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Abstract

Speech generation techniques including text-to-speech (TTS), speech enhancement,

and voice conversion ones are widely applied to current daily applications such as a

personal mobile assistant and car navigation. The naturalness of synthesized speech

and the flexibility of acoustic controllability are the main challenges of speech genera-

tion. That is, high-fidelity synthesized speech sounding like natural speech and speech

components being flexibly manipulated are important to a speech generation system.

A speaker voice conversion (VC) task is adopted in this thesis as a paradigm of speech

generation systems, and the VC task involves converting the speaker identity of input

speech to a specific target speaker while keeping the same speech content. A general

VC system is composed of analysis, manipulation, and synthesis modules, and the

thesis focuses on improving the synthesis module using prior knowledge of speech.

A baseline VC system for the non-parallel VC (SPOKE) task of voice conversion

challenge 2018 (VCC2018) has been established in this study. The analysis module

of the VC system parameterizes speech into spectral and prosodic features using the

WORLD vocoder, which is a conventional source–filter-based vocoder. Since the train-

ing corpus is non-parallel, the speech contents of the source and target utterances

of the SPOKE task are different. A two-stage spectral conversion model with TTS-

generated reference speech has been adopted to map the non-parallel source and target

utterances. In contrast to conventional VC systems, the baseline system replaces the
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synthesizer of the conventional vocoder with a neural-based speech generation model,

WaveNet (WN). The WN as a vocoder directly transfers the converted acoustic fea-

tures to speech waveforms without many ad hoc designs of speech production imposed

on the conventional vocoder. Both the internal and external evaluation results in this

thesis show the better performance of the WN vocoder than the conventional vocoder.

However, because of the data-driven nature, generic network architecture, and lack

of speech-related prior knowledge, the WN vocoder sometimes generates unexpected

outputs such as non-speechlike noise while the input acoustic features are unseen or dis-

torted. To avoid the collapsed speech problem of the WN vocoder, a collapsed speech

detection and suppression approach has been studied in this thesis. The method is

based on the prior knowledge of speech continuity and the stability of conventional

vocoders. Specifically, although the naturalness of the WORLD-generated speech is

worse, the speech is more stable than the WN-generated speech. The proposed de-

tection method segmentally compares the waveform envelope difference between the

WORLD- and WN-generated utterances to detect the collapsed speech segments. The

WN vocoder regenerates the detected segments with a waveform-based constraint de-

rived from the continuity extracted from the WORLD-generated speech.

On the other hand, because of the implicit pitch modeling of the WN vocoder, the

lack of pitch controllability is a problem. That is, regardless of whether the input

fundamental frequency feature F0 is scaled or not in the F0 range of the training data,

the WN vocoder usually cannot generate speech with accurate pitches. To improve

the pitch controllability of the WN vocoder, which is an essential vocoder feature, a

pitch-dependent dilated convolutional neural network (PDCNN) and a quasi-periodic

(QP) structure have been studied in this thesis. The PDCNN introduces the prior peri-

odicity knowledge of speech to the WN vocoder for dynamically adapting the network



ix

architecture according to the input F0. The QP structure based on the prior knowl-

edge of speech production applies a source–filter-like structure to the WN vocoder for

modeling pitch- and spectral-related components. With the PDCNN and QP struc-

ture, QPNet has been proposed, which markedly improves the pitch controllability and

speech modeling efficiency of the WN vocoder.

Furthermore, to achieve real-time generation, a non-autoregressive neural-based speech

generation model, parallel WaveGAN (PWG), with a compact network has also been

studied in this thesis. Since the training process and network designs of the PWG

are similar to those of the WN, the PWG also suffers from the difficulty of pitch con-

trollability. With the proposed PDCNN and QP structure, the proposed QPPWG

also markedly improves the pitch controllability and speech modeling efficiency of the

PWG. Because of the direct waveform output, the internal generative mechanisms are

easily revealed by the intermediate outputs of the PWG and QPPWG. The visual-

ized results confirm the effectiveness of the QP structure to make the QPPWG like a

source–filter model with a unified neural network. That is, the QPPWG simultane-

ously attains high-fidelity speech generation as the PWG with better tractability and

interpretability.

To summarize, the studies show that applying the speech-related prior knowledge

to the neural-based speech generation models significantly improves the robustness

against the distorted and unseen acoustic features, pitch controllability, and speech

modeling efficiency of these speech generation models.





1 Introduction

1.1 Background

Speech generation is a technique used to generate specific speech samples correspond-

ing to given inputs such as text (text-to-speech, TTS) [1–3], noisy speech (speech en-

hancement, SE) [4–6], and source speaker speech (speaker voice conversion, VC) [7–9].

A general speech synthesis system includes three modules, analysis, manipulation, and

synthesis. Specifically, the analysis module parameterizes the given input into a specific

representation, and then the manipulation module converts the representation accord-

ing to the target requirement. The final synthesis module generates the target speech

on the basis of the converted representation.

Taking VC as an example, the target is to change the speaker identity of the given

source speech to the identity of a specific target speaker while keeping the linguistic

content the same. As shown in Fig. 1.1, a conventional VC system first parameterizes

the source speech into acoustic features such as spectral and prosodic features. That

is, the analysis module disentangles the input speech into several speech components

such as pitch and timbre. Second, these source acoustic features are converted to

target acoustic features by changing the corresponding speech components. Last, the

synthesis module generates the converted speech on the basis of the converted acoustic

features.

Different speech generation tasks usually have specific analysis and manipulation
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Speech 
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Source 

speech
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speech

Speech

synthesis

Feature 

conversion

Source to target

Figure 1.1: Voice conversion flowchart.

modules. For example, the analysis and manipulation modules of a TTS system usually

transfer the input text into various acoustic features such as a mel-spectrogram [10,11]

corresponding to its synthesis module. However, the synthesis modules of different

tasks, which map specific acoustic features to speech waveforms, are usually similar.

In my research, I focus on improving the synthesis module. There are several common

challenges for arbitrary synthesis modules, and four main challenges are explored in

this thesis. The details are described in the next section.

1.2 Thesis Scope

A useful synthesis module is usually general for arbitrary front-end modules, which

may involve various speech component transformations such as spectral and pitch con-

versions. In this thesis, I explore techniques of tackling speech generation with distorted

acoustic features and transformed pitch, and the aim of this thesis is to develop robust

synthesis modules with high-fidelity generated speech for different speech manipulation

tasks. Specifically, to explore speech generation techniques, a non-parallel VC appli-

cation is first adopted. In this thesis, I start with building a baseline VC system for

the non-parallel VC task in voice conversion challenge 2018 (VCC2018) and continu-

ally improve the synthesis module of the baseline VC system. Furthermore, a pitch

transformation scenario is also explored. Although the research is applied to VC and

pitch-transform systems, the proposed methods are generally applicable to other speech
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generation tasks. That is, the thesis explores four fundamental challenges of speech

generation. First, the quality of the generated speech is usually important. Many of

speech generation research studies focus on improving the naturalness of the generated

speech and making the generated speech indistinguishable from natural speech as much

as possible. Second, the robustness of distorted input is also important for the synthesis

module. Since the input representations of the synthesis module are predicted by the

manipulation module, the converted representations usually include some distortion.

Third, the controllability of speech components is an essential feature of the synthesis

module. Last, the efficiency of generation such as real-time generation is necessary for

many practical speech synthesis applications.

To tackle these challenges, the main concept of this thesis is applying speech-related

prior knowledge in speech generation systems. Most of the state-of-the-art speech

generation models [12–26] focus on pure data-driven and end-to-end networks without

many ad hoc assumptions of the speech generation process. The advantage of adopting

these models is that they prevent networks from suffering quality degradation of some

oversimplified designs imposed on them. However, the disadvantage of these models

is that the generated speech sometimes includes some significant errors, which are

obviously non-speechlike, but it is difficult to directly adjust the models to fix the

errors because of their data-driven nature without explicitly controlling the speech

components. Moreover, the lack of speech controllability also degrades the flexibility

of these speech generation models for speech synthesis. However, since speech is a

sequential signal with long-term correlations, there are many specific characteristics

of speech signals such as continuity and periodicity. These specific characteristics are

speech-related prior knowledge, which can advance the speech modeling ability of the

speech generation models and prevent the generated signals from violating the inherent
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patterns of speech [27,28].

Furthermore, although signal-processing-based conventional speech generation mod-

els and codecs [29–37] usually suffer from naturalness degradation because of many

oversimplified speech modeling mechanisms, the underlying knowledge and empirical

designs are still valuable for learning more about human speech production mechanisms.

In this thesis, speech modeling mechanisms based on conventional speech modeling

techniques are adopted to advance neural-based speech generation models. The pro-

posed architectures [38–42] based on the knowledge of speech production mechanisms

make the neural-based speech generation models more tractable and interpretable. Be-

cause of the improved tractability and interpretability, the proposed models also realize

speech components with higher controllability, which markedly improves the flexibility

of the speech generation models.

To summarize, a basic VC system is adopted in this thesis to explore the quality,

robustness, controllability, and generation efficiency challenges of speech generation.

Specifically, a basic VC system [43] for the VCC2018 non-parallel VC task is first

introduced. Both a popular conventional speech generative technique [37] and a state-

of-the-art neural-based speech generation model [12] have been combined with the

VC system to show the significant improvement of the neural-based speech generation

model. However, although the neural-based speech generation model usually achieves

high-fidelity speech generation, the robustness of these models against unseen acoustic

features such as the distorted acoustic features from the conversion model is insufficient.

A postprocessing method [27, 28] based on the prior knowledge of speech continuity

is introduced to prevent the neural-based speech generation model from generating

unexpected noise while being conditioned on the VC acoustic features. Furthermore,

the insufficient pitch controllability of the neural-based speech generation model is
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Figure 1.2: source–filter model.

also tackled using a novel network [38, 39], which introduces the prior knowledge of

speech periodicity into the neural-based speech generation model. Last, the real-time

generation [41, 42] has also been explored in this thesis. More details of the speech

generation challenges and the corresponding work in this thesis are as follows.

1.2.1 Quality

The basic technique applied in speech analysis and synthesis is the use of a voice

coder, vocoder [29–31]. A vocoder includes an analyzer to parameterize speech into

specific representations (acoustic features) for different speech components, such as

spectral and prosodic components, and a synthesizer to generate speech on the basis of

these representations. One of the most general speech modeling techniques for vocoders

is the source–filter model [34]. As shown in Fig. 1.2, speech production is formulated as

a convolution of an excitation (source) signal and a spectral filter with a high-pass filter

in the final stage. The excitation signal models vocal fold vibration, the spectral filter

models vocal tract resonance, and the high-pass filter models lip radiation. Specifically,

speech includes voiced and unvoiced sounds, the excitation signal of a voiced sound is

quasi-periodic and the excitation signal of an unvoiced sound is similar to that of white

noise. The fundamental frequency (F0) of the voiced sound is pitch, and the F0 of the
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unvoiced sound is set to zero. The spectral filter is time-variant, which is assumed to

be pitch-independent and timbre-dependent; however, it is difficult to achieve complete

pitch independence in a practical vocoder. Because of the time-invariant characteristics

of the lip radiation, the lip radiation modeling is usually integrated into a time-variant

spectral envelope parameter.

Conventional vocoders such as STRAIGHT [35, 36] and WORLD [37], which are

adopted in many VC works, usually model vocal fold vibrations on the basis of F0

and the aperiodicity feature (ap) and model vocal tract resonance on the basis of the

spectral envelope feature (sp). However, because many oversimplified assumptions

of speech production such as a fixed length of the analysis window, a time-invariant

linear filter, and a stationary Gaussian process are imposed on these conventional

vocoders, phase information and temporal details are lost during the analysis and

synthesis processes. This loss of phase information and temporal details causes signif-

icant naturalness degradation of the generated speech such as buzzy noise. Therefore,

many neural-based speech generation models [12–26] have been proposed to directly

model speech waveforms without many ad hoc assumptions imposed on their speech

production mechanisms. Moreover, integrating these advanced neural-based speech

generation models into a VC system [43–46] also results in significant improvements.

That is, the conventional vocoders of the speech synthesis module are replaced with

these neural-based speech generation models to greatly recover the lost phase informa-

tion and temporal details. Since these neural-based speech generation models generate

speech condition on the acoustic features from the analysis and manipulation modules,

these generative models are called neural vocoders [47–50].

In this thesis, the quality of the WaveNet vocoder [47, 48] is first compared with

that of the conventional vocoder WORLD for our baseline VC system to show the



1.2. Thesis Scope 7

effectiveness of neural vocoders. The quality of the pitch-transformed speech of the

WaveNet and WORLD vocoders is also presented. Furthermore, another state-of-the-

art neural vocoder parallel WaveGAN [24] is also compared with the WORLD vocoder

for pitch transformation.

1.2.2 Robustness

Since the analysis and manipulation modules of a speech synthesis system are im-

perfect, the converted or predicted acoustic features usually suffer from distortions

and prediction errors. For instance, the converted acoustic features of conventional

statistical VC models usually suffer from the oversmoothing problem [9] because of

their statistical nature. Moreover, because of insufficient training data, these conver-

sion models sometimes generate distorted acoustic features. Since the prediction and

conversion errors from the analysis and manipulation modules will propagate to the

synthesis module, these distorted acoustic features usually cause significant naturalness

degradation of the synthesis module. Therefore, the robustness of the neural vocoders

in a VC system against the distorted acoustic features is important.

Although training the neural vocoders with these distorted acoustic features will ease

the oversmoothing problem [44,51–53], the prediction and conversion errors still make

the neural vocoders generate unexpected speech samples such as those with marked

discontinuity [27, 28]. Since speech is a sequential signal with strong continuity and

these neural vocoders directly model speech waveforms, even a few prediction errors of

the neural vocoders will cause significant perceptually quality degradation. As a result,

a waveform-based constraint is introduced in the models. Specifically, the proposed

technique takes advantage of the prior knowledge of speech continuity to derive a

constraint making the output waveform samples of the neural vocoders follow the prior
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speech continuity. With the waveform-based constraint, the WaveNet vocoder of our

VC system greatly eases the discontinuity problem and generates a more stable speech.

1.2.3 Controllability

To prevent the degradation of these neural vocoders caused by many ad hoc assump-

tions of speech production, these neural vocoders are usually a unified neural network

trained in a data-driven manner to directly model the transformation from acoustic

features to speech waveforms. Although these neural vocoders usually achieve high-

fidelity speech generation, the insufficient speech component controllability of these

neural vocoders is a problem. That is, since these neural vocoders model the relation-

ships between acoustic features and speech waveforms with a multilayer complicated

nonlinear mapping function, it is difficult to directly control specific speech components

by adjusting the input acoustic features, especially when the changed acoustic features

are unseen data. For example, when the input F0 is outside the observed F0 training

range of the training data or the input F0 and other features are an unseen combina-

tion, it is difficult for the WaveNet vocoder to generate speech with accurate pitch and

good quality [38, 39]. That is, the WaveNet vocoder lacks pitch controllability, which

is an essential feature of a vocoder.

Not only the WaveNet vocoder but also the parallel WaveGAN model has an in-

sufficient pitch controllability problem, so the proposed pitch-dependent convolutional

neural network (PDCNN) and quasi-periodic (QP) structure have been applied to

them. Specifically, since speech is a quasi-periodic signal, it is reasonable to adjust

the neural networks based on the input F0. The proposed PDCNN is a pitch-adaptive

network, whose network architecture is dynamically changed according to the input F0.

The proposed QP structure is a cascaded network architecture that captures the hier-
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archical information of speech signals. The adaptive subnetwork of the QP structure

adopts PDCNNs to model pitch-related information with long-term dependence, and

the fixed subnetwork of the QP structure adopts dilated convolutional neural networks

(DCNNs), which are also adopted in the WaveNet and parallel WaveGAN models, to

model spectral-related information with short-term dependence. With the PDCNN

and QP structure, the quasi-periodic WaveNet and parallel WaveGAN attain higher

pitch controllability and more efficient speech modeling because of the introduced prior

knowledge of speech periodicity by the PDCNN and QP structure. To summarize, this

thesis focuses on improving the pitch controllability of data-driven and unified neural

vocoders by introducing the prior speech periodicity knowledge to the neural networks.

1.2.4 Generation Efficiency

For practical speech synthesis systems, real-time and streaming generations are im-

portant. Specifically, the generation time of a real-time system should be equal to or

less than the length of the generated speech, and streaming generation is a more diffi-

cult technique to continuously generate speech according to the streaming inputs in a

very lowlatency manner. Since speech is a real-time communication medium, and the

conversation is continuous, real-time generation is the minimum requirement in most

speech generation scenarios. Moreover, since a conversation continues in a back and

forth manner, streaming speech generation with very low latency is preferred.

I start with a high-quality but extremely slow generative model, WaveNet [12], and

then adopt a batch-type generative model, parallel WaveGAN [24], simultaneously

generating all samples in one utterance to improve generation efficiency. Specifically,

autoregression and the huge network architecture make the generation speed of the

WaveNet vocoder extremely low. Even with the proposed PDCNN and QP structure
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to improve speech modeling efficiency resulting in a 50 % model size, the generation

speed of the quasi-periodic WaveNet [38,39] is still far away from real-time generation.

Therefore, the non-autoregressive parallel WaveGAN model with a compact network

size is also adopted in this thesis with the proposed PDCNN and QP structure [41,42].

The advantage of non-autoregression is that the network can simultaneously generate

all samples, which significantly improves the generation speed. Only the batch-type

real-time generation is explored in this thesis, and the streaming generation remains

for future work.

1.3 Thesis Overview

High-quality speech generation models for VC and pitch transformation applica-

tions are the main topics of this thesis, and the thesis overview is shown in Fig. 1.3.

Specifically, a speech generation system usually includes three modules, analysis, ma-

nipulation, and synthesis, and this thesis focuses on improving the synthesis module

for VC and pitch transformation scenarios. For the VC scenario, a basic VC system

submitted to the non-parallel VC task of VCC2018 is taken as the baseline system of

this thesis. For the pitch transformation scenario, controlling the pitch of the generated

speech on the basis of the input F0 is explored.

Four fundamental challenges of the synthesis module, quality, robustness, control-

lability, and generation efficiency, are explored. For quality, two neural-based speech

generation models, WaveNet and parallel WaveGAN, are taken as vocoders to gener-

ate a high-fidelity speech on the basis of acoustic features, and the fundamentals for

these neural vocoders are introduced in Chapter 2. In Chapter 3, the early success

of the baseline VC system combining a basic VC module with the WaveNet vocoder

in VCC2018 is shown. In Chapters 4, 5, and 6, WaveNet, parallel WaveGAN, and
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the conventional vocoder WORLD are compared to show the effectiveness of the neu-

ral vocoders. For robustness, a waveform-based constraint, which includes abnormal

speech detection and suppression modules, for the WaveNet vocoder is presented in

this thesis. In Chapter 4, the proposed waveform-based constraint is applied to the

WaveNet vocoder of the baseline VC system, and the obtained subjective results show

speech quality improvements achieved with the proposed method dealing with the dis-

torted VC acoustic features.

For the controllability of speech components, this thesis focuses on pitch control-

lability, and a pitch-adaptive network (PDCNN) and a cascaded network structure

(QP structure) are described. The PDCNN and QP structure are applied to the

WaveNet and parallel WaveGAN vocoders to improve their pitch controllability and

speech modeling efficiency. In Chapters 5 and 6, both objective and subjective re-

sults obtained show the higher pitch accuracy of the utterances generated by the QP

WaveNet (QPNet) and QP parallel WaveGAN (QPPWG) vocoders in the pitch trans-
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formation scenario while keeping the speech quality similar with smaller model sizes.

For the generation efficiency, the parallel WaveGAN, which is a non-autoregressive

model with a compact network size, is explored in this thesis for real-time generation.

The real-time factor (RTF) results in Chapter 6 show that the proposed QPPWG

achieves real-time generation on both GPU and CPU. To summarize, the high-fidelity

and real-time speech generation techniques combining VC and pitch transformation

applications have been explored in this thesis. With the proposed waveform-based

constraints, the speech quality of the baseline VC system has been improved by the

more robust WaveNet vocoder. With the proposed QP structure, the pitch controlla-

bility of the WaveNet and parallel WaveGAN vocoders has been enhanced.

This thesis is organized as follows. The related work is reviewed in Chapter 2, and

the baseline VC system is introduced in Chapter 3. The proposed waveform-based

constraint for the WaveNet vocoder is described in Chapter 4. The proposed PDCNN

and QP structure are applied to the WaveNet in Chapter 5 and the parallel WaveGAN

in Chapter 6. Lastly, the summary and future work are presented in Chapter 7.
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The main technique involved in this thesis is a vocoder with speaker voice conversion

(VC). The proposed methods in the following chapters focus on improving the qual-

ity, robustness, and controllability of neural-based vocoders for VC and pitch trans-

formation scenarios. In this chapter, the review from conventional parametric-based

vocoders to recent neural-based vocoders is first presented. There are three main topics

of the vocoder review. First, since this thesis focuses on incorporating prior knowledge

of speech production into speech generation models, a review of speech production

mechanisms and speech modeling is introduced. Second, the baseline neural vocoders,

WaveNet and parallel WaveGAN, are introduced. Third, the controllability of each

speech component is an essential feature of a vocoder, and I will review the speech

manipulation of conventional vocoders. I will also discuss the fundamental techniques

of VC and introduce two neural-based VC models adopted in this thesis.

2.1 Vocoder

A vocoder [29–31] models the human vocal system, which is composed of the vocal

fold, vocal tract (the space between the vocal fold and the lips) couping with the nasal

tract, and the lips. As shown in Fig. 2.1, a general speech production flow includes

three main stages. First, an excitation signal is generated. Second, the generated

excitation signal is modulated by the resonance of the vocal and nasal tracts. Third,
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Figure 2.1: Human vocal system.

the modulated signal is transferred by the lips. Specifically, the speech includes three

categories, voiced, unvoiced, and plosive, corresponding to different types of excitation

signal [54]. A source airflow is first generated by the lungs, bronchi, and trachea

and then transformed into different excitation signals through different mechanisms.

The excitation signal of a voiced sound has a quasi-periodic waveform, which is due

to the air vibration produced by the vocal fold vibrations and source airflow. The

excitation signals of the unvoiced and plosive sounds are noiselike waveforms, which

are the turbulence and burst of the airflow respectively produced by the constriction

and closure of specific points along the vocal tract without vocal fold movements.

The vocoder techniques introduced in this chapter can be divided into two categories,

source–filter and unified vocoders, and the details are as follows.

2.1.1 Source–filter Vocoder

For a discrete-time digital system, one of the most general speech modeling techniques

is the source–filter model [34]. The excitation signal is represented as a digital signal,

and the spectral properties of vocal and nasal tracts resonances and lip radiation are

represented as a digital filter. The digital source signal excites the digital filter to gener-

ate speech signals. The spectral envelope of the speech signal can be estimated by linear
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Figure 2.2: (a) Simple vocoder; (b) STRAIGHT vocoder.

prediction coding (LPC) or using a mel-generalized cepstrum (MGC) as in the case of

LPC [55, 56] and MGC [57, 58] vocoders. As shown in Fig. 2.2 (a), the simplest way

to model the excitation signal is by using a pulse train and white noise, and the pulse

train is generated according to the fundamental frequency (F0) of the speech signal.

However, the simplest vocoders usually suffer from “buzzy” noise caused by unnatural

harmonic components and “hissy” noise caused by missed harmonic components.

To improve the excitation signal modeling, many advanced methods such as mixed

excitation [8, 35–37, 59–61] and glottal source modeling [62, 63] have been proposed.

For speech generation applications such as text-to-speech (TTS) and voice conversion

(VC), the STRAIGHT [35, 36] (Fig. 2.2 (b)) and WORLD [37] vocoders are two of

the most popular conventional parametric vocoders. Both STRAIGHT and WORLD

vocoders are multiband mixed excitation vocoders, which model excitation signals using

the Gaussian noise, F0, and subband aperiodicity (ap) of the speech signal. Although

the high flexibility and tractability of STRAIGHT and WORLD make these vocoders

applicable to many TTS and VC systems, the imperfect excitation signal modeling still

causes significant naturalness degradation.

Owing to the thriving development of neural networks (NNs), many source–filter-

based neural vocoders shown in Fig. 2.3 have been proposed to improve the naturalness



16 2 Related Work

Source-filter models

Resonance 

IIR filtering

Excitation 

generation

Acoustic 

features

AR pathParametric

Resonance 

FIR filtering

Excitation 

generation

Acoustic 

features

NN-based

Resonance 

filtering

Excitation 

generation

Acoustic 

features

Resonance 

filtering

Excitation 

generation

Acoustic 

features

Resonance 

filtering

Excitation 

generation

Acoustic 

features

e.g., LPC vocoder,

MGC vocoder etc.

e.g., STRAIGHT,

WORLD etc.

e.g., LPCNet etc. e.g., GlotGAN,

GELP etc.

e.g., NSF etc.

Resonance 

filtering

Excitation 

generation

Acoustic 

features

e.g., DDSP, NHV,

HooliGAN etc.

Figure 2.3: Source–filter vocoder.

of vocoder-generated speech. For instance, to generate a better excitation signal, LPC-

Net [16] adopts a recurrent neural network (RNN) to model the LPC residual signal in

an autoregressive (AR) manner. GlotGAN [64,65] and GELP [66] adopt non-AR con-

volutional neural networks (CNNs) with a generative adversarial network (GAN) [67]

structure to generate glottal source signals. Furthermore, to advance the spectral fil-

tering, the authors of [68] and [69] also proposed a neural source–filter (NSF) network

to adopt an advanced CNN-based neural filter. The authors of [70] also proposed an-

other GAN-based vocoder with tailored periodic and aperiodic inputs, and the model

was trained with the GAN loss of the generated waveform and the Gaussian loss of

its aperiodic components. Recently, on the basis of the neural excitation generation

of differentiable digital signal processing (DDSP) [71] and the neural spectral filtering

of NSF, completely differentiable source–filter vocoders with a GAN structure such as

neural homomorphic vocoder (NHV) [72] and HooliGAN [73] have also been proposed.
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2.1.2 Unified Vocoder

On the other hand, to avoid many ad hoc assumptions of speech production, many

NN-based unimodal vocoders have been proposed. As shown in Fig. 2.4, in contrast to

the source–filter-based vocoders, the unified vocoders directly model the relationships

among speech waveform samples. Specifically, AR models such as CNN-based WaveNet

(WN) [12] and RNN-based SampleRNN [13] achieve high-fidelity speech generation by

modeling the probability distribution of each speech sample with the given auxiliary

features and previous samples. Taking conventional-vocoder-extracted acoustic fea-

tures as the auxiliary features for the unified vocoders [47–50, 74], which replace the

synthesizer of the conventional vocoders, also achieved early success. However, the AR

mechanism and huge network architectures of WN and SampleRNN result in a slow

generation speed. To overcome these problems, many compact AR models with spe-

cific knowledge [14, 15] and non-AR models such as flow-based [17–22] and generative

adversarial network (GAN)-based [23–26] models have been proposed.
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Although these unified vocoders achieve high-fidelity speech generation without many

ad hoc assumptions of speech production, the data-driven nature, the generic network

architecture, and the lack of prior speech-related knowledge make most of these models

lose their acoustic controllability and robustness against unseen auxiliary features. For

instance, the WN vocoder sometimes generates non-speechlike noisy segments when

the input is VC acoustic features [43, 44, 46], and it is difficult for the WN vocoder to

generate speech with accurate pitches when the input F0 is outside the F0 range of

training data [38,39].

As shown in Fig. 2.4, for the robustness of the WN vocoder with distorted acoustic

features such as VC features, a waveform-domain LPC constraint based on the prior

knowledge of speech continuity [27,28] is introduced in this thesis. For pitch controlla-

bility, although the authors of [68–70] proposed different NN-based models to explicitly

control the excitation signal with the input F0, carefully designed mixed periodic and

aperiodic inputs are required. A pitch-adaptive unified vocoder, QPNet [38,39], which

improves the pitch controllability of the WN vocoder without the requirements of spe-

cific inputs, is first introduced in this thesis. The QPNet vocoder introduces the prior

knowledge of speech periodicity and source–filter modeling into the network by dynam-

ically adapting the network architecture according to the input F0 and the proposed

QP structure. Moreover, to achieve real-time generation, a non-AR unified vocoder,

parallel WaveGAN (PWG) [24], is adopted, and the proposed QP structure is also

applied to the PWG vocoder (QPPWG) to improve its pitch controllability and speech

modeling efficiency [41,42].



2.1. Vocoder 19

2.1.3 Baseline WaveNet Vocoder

The AR unified WN vocoder is taken as a baseline AR neural vocoder in this thesis.

That is, the WN vocoder is adopted as the baseline vocoder of the baseline VC system

submitted to VCC2018 in Chapter 3, the collapsed speech detection and suppression

technique in Chapter 4, and the QPNet vocoder in Chapter 5. The details of the WN

model and WN vocoder are as follows.

WaveNet

Autoregression is adopted in WN to sequentially predict the probability distribution

of each waveform sample conditioned on previous samples for modeling the relationships

among these audio samples. The conditional probability function is formulated as

P (x) =
T∏
t=1

P (xt | xt−1, . . . , xt−r) , (2.1)

where t is the sample index, xt is the current audio sample, and r is a specific length of

previous samples called the receptive field. Instead of the general recurrent structure

for AR modeling, WN applies stacked CNNs with a dilated mechanism [75] and a

causal structure to model the very long term dependence and causality of audio signals.

Since the modeling capability of WN is highly related to the amounts of previous

samples considered to predict the current sample, the dilated mechanism is crucial to

the efficient extension of the receptive field. Moreover, a categorical distribution is

applied to model the conditional probability, whereas audio signals are encoded into 8

bits by using the µ-law algorithm. The categorical distribution is flexible to model an

arbitrary distribution of the target speech.

As shown in Fig. 2.5, the data flow of WN is as follows: previous audio samples

first pass through a causal layer and several residual blocks with skip connection out-
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puts, and then the summation of all skip connections is processed by two ReLU [76]

activations with 1× 1 convolutions and one softmax layer to output the predicted dis-

tribution of the current audio sample. Each residual block includes a DCNN layer,

a gated structure, a residual connection, and a skip connection output. The gated

structure for enhancing the modeling capability of the network is formulated as

y(o) = tanh
(
Vf,k ∗ y(i)

)
,⊙σ

(
Vg,k ∗ y(i)

)
, (2.2)

where y(i) and y(o) are the input and output feature maps of the gated structure,

respectively. V is a trainable convolution filter, ∗ is the convolution operator, ⊙ is an

elementwise multiplication operator, σ is a sigmoid function, k is the layer index, and

f and g are the filter and gate, respectively.

Furthermore, to guide the WN model to generate desired contents, the vanilla WN
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is also conditioned on linguistic and F0 features. Equation 2.1 is modified as

P (x | h) =
T∏
t=1

P (xt | xt−1, . . . , xt−r,h) , (2.3)

where h is the vector of the auxiliary features (linguistic and F0 features), and Eq. 2.2

with auxiliary features becomes

y(o) =tanh
(
V

(1)
f,k ∗ y(i) + V

(2)
f,k ∗ h′

)
⊙ σ

(
V

(1)
g,k ∗ y(i) + V

(2)
g,k ∗ h′

)
, (2.4)

where V (1) and V (2) are trainable convolution filters and h′ is the temporal extended

auxiliary features, whose temporal resolution matches the speech samples.

WaveNet Vocoder

Many speech synthesis systems adopt source–filter-based conventional vocoders such

as STRAIGHT [35] and WORLD [37] because of their flexibility and controllability.

However, the oversimplified assumptions, such as analysis windows with a fixed length,

time-invariant linear filters, and stationary Gaussian processing, imposed on the con-

ventional vocoders make these vocoders lose some essential information of speech such

as phase and temporal details causing marked quality degradation. To address this

problem, the authors of [47, 48] proposed the WN vocoder to replace the synthesis

part of conventional vocoders to synthesize high-fidelity speech on the basis of the

prosodic and spectral acoustic features extracted by conventional vocoders. With the

WN conditioned on the acoustic feature, most of the lost phase information and tem-

poral details are recovered by the WN vocoder. Furthermore, conditioning WN on the

acoustic features greatly reduces the requirements of the amount of training data, and

it makes WN more tractable.
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2.1.4 Baseline Parallel WaveGAN Vocoder

In addition to the WN vocoder, PWG is been taken as a baseline non-AR neural

vocoder in this thesis. As shown in Fig. 2.6, PWG includes a classical GAN structure,

which consists of CNN-based discriminator (D) and generator (G) modules, and an

additional multi-resolution STFT loss module. The details are as follows.

GAN-based Waveform Generation

A WN-like architecture is adopted for the generator of PWG. The main differences

between the PWG generator and the WN are a Gaussian noise input instead of previous

samples, a raw waveform output instead of a probability distribution, and a non-AR

manner. Specifically, the inputs of the generator are a Gaussian noise sequence z and

auxiliary acoustic features, and z is taken from a Gaussian distribution with zero mean

and standard deviation, denoted as N(0, I). The output of the generator is waveform
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samples. The generator, which tries to generate realistic speech samples, is trained in a

manner adversarial to the discriminator, which attempts to distinguish natural (real)

and generated (fake) speech waveforms. The adversarial loss of the generator (Ladv)

is formulated as

Ladv(G,D) = Ez∈N(0,I)

[
(1−D(G(z)))2

]
. (2.5)

Note that all auxiliary features of the generator are omitted in this section for simplicity.

Unlike some flow-based models [19,20], which adopt an invertible network to map real

data into the Gaussian noise sequence, the generator of PWG learns to transfer the

input noise sequence to the output waveforms via the feedback from the discriminator.

Furthermore, a simple architecture consisting of stacked DCNN layers with the ac-

tivation function LeakyReLU [77] is adopted for the discriminator of PWG, and the

dilation size of each DCNN layer increases exponentially with a base of 2 and the ex-

ponent of its layer index. The discriminator is trained to minimize the adversarial loss

(LD) formulated as

LD(G,D) = Ex∈pdata
[
(1−D(x))2

]
+ Ez∈N(0,I)

[
D(G(z))2

]
, (2.6)

where x denotes the natural samples and pdata denotes the data distribution of the

natural samples.

Multi-resolution STFT Loss

Since it is difficult to stably train PWG with only adversarial losses, an additional

STFT-based loss (Lsp) is adopted to improve the stability and efficiency of GAN train-

ing. Specifically, a spectral convergence loss (Lsc) is formulated as

Lsc(x, x̂) =
∥|STFT(x)| − |STFT(x̂)|∥F

∥|STFT(x)|∥F
, (2.7)
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and a log STFT magnitude loss (Lmag) is formulated as

Lmag(x, x̂) =
1

N
∥log |STFT(x)| − log |STFT(x̂)|∥L1 , (2.8)

where x̂ denotes the PWG-generated samples, ∥·∥F is the Frobenius norm, ∥·∥L1 is the

L1 norm, |STFT (·)| denotes the STFT magnitudes, and N is the number of magnitude

elements. The multi-resolution STFT-based loss Lsp is formulated as

Lsp(G) =
1

M

M∑
m=1

(L(m)
sc (G) + L(m)

mag(G)), (2.9)

where M denotes the number of STFT setting groups, and each group includes differ-

ent FFT sizes, frame lengths, and frame shifts. The losses L
(m)
sc and L

(m)
mag are calculated

on the basis of the STFT features extracted using the settings of the m group. The

multiple STFT losses prevent a suboptimal problem for the generator and enhance

the modeling capability of the generator by making it capture hierarchical speech

structures. Taken together, the overall training loss of the PWG generator (LG) is

formulated as

LG(G,D) = Lsp(G) + λadvLadv(G,D), (2.10)

which is a weighted sum of Ladv and Lsp with weight λadv, and the hyperparameter

λadv is empirically set to 4.0 in this thesis.

WaveNet-like Generator

As shown in Fig. 2.7, a WN-like architecture including DCNN, auxiliary acoustic

features, skip connections, and gated structures is adopted for the PWG generator.

The main differences between the PWG generator and the WN are a Gaussian noise

input instead of previous samples, a raw waveform output instead of a probability
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Figure 2.7: Generator of parallel WaveGAN.

distribution, and non-AR and noncausal manners. Moreover, a more compact model

including fewer CNN channels is adopted in the PWG generator. Therefore, the gener-

ation speed of the PWG is much higher than the WN because of the parallel generation

by the non-AR structure and the much smaller model.

2.1.5 Speech Manipulation of STRAIGHT and WORLD

To flexibly manipulate speech components such as pitch and timbre, many source–

filter vocoder techniques have been proposed. However, the spectral estimation of early

approaches such as the linear predictive coding (LPC) vocoder technique [55, 56] are

susceptible to signal periodicity [78]. Specifically, obtaining a stable spectral envelope

regardless of windowing temporal positions is difficult for voiced speech analysis. The

time-variant pitch and natural fluctuations result in the periodicity interferences in
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spectral analysis because of the fixed window length.

To address this problem, STRAIGHT [35] and WORLD [37] have been proposed.

The STRAIGHT vocoder adopts a pitch-synchronized mechanism [79] with phasic in-

terference reduction and oversmoothing compensation to extract stable spectra, which

are highly uncorrelated to the instantaneous F0. Specifically, when extracting features,

the window of each frame has a different length according to the F0 of this frame to

prevent the periodicity interferences from the voiced speech. Furthermore, as an im-

proved and real-time version, the WORLD vocoder also adopts the pitch-synchronized

concept for spectral analysis [80].

Although the STRAIGHT and WORLD vocoders achieve speech manipulation with

high flexibility, the lost details and phase information problems cause speech quality

degradation. The recent neural vocoders greatly improve speech quality but suffer from

the limited flexibility of speech manipulation. As a result, we propose a pitch-adaptive

component, PDCNN, and a cascaded structure to improve the pitch controllability of

the WN and PWG vocoders while trying to maintain a similar speech quality. The pro-

posed QPNet and QPPWG vocoders are also conditioned on the WORLD-extracted

features, and we expect that the QPNet and QPPWG vocoders are capable of manip-

ulating the pitch similarly to the WORLD vocoder.

2.2 Voice Conversion

Voice conversion is a technique of converting speech characteristics such as the

speaker identity and emotion of an input speech while maintaining the same linguistic

content. Speaker voice conversion is the most general voice conversion scenario con-

verting a source speaker identity to a specific target speaker. For simplicity, VC is used

in this thesis to refer to speaker voice conversion. Parallel and non-parallel VC tasks
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are two main VC categories according to the content of each speaker in the training

corpus. The details are as follows.

2.2.1 Parallel Voice Conversion

All speakers in a parallel corpus have identical utterances with the same linguistic

contents. Although the data lengths may differ among the parallel utterances because

of speaker-dependent (SD) speaking rates, it is easy to train a mapping function be-

tween source and target speakers with implicit one-to-one correlations. As shown in

Fig. 2.8, the simplest method of tackling the mismatched data lengths is the use of dy-

namic time warping (DTW) [81] to align framewise the source and target acoustic fea-

tures. With the aligned source-target acoustic features, a framewise conversion function

such as the Gaussian mixture model (GMM) [7–9], deep neural network (DNN) [82–84],

or exemplar-based model [85–87] can be easily built. However, because of the extra

aligned errors introduced by the DTW and the limited prosody conversion capability

of the frame-based conversion techniques, many advanced sequence-to-sequence (S2S)

models [88–90] have been proposed. Since prosodic characteristics such as speaking

rate are highly related to the speaker identity, the S2S conversion models usually at-

tain better speaker similarity of the converted speech.
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2.2.2 Non-parallel Voice conversion

The collection of a parallel corpus for VC training is however time-consuming and

expansive; thus, many non-parallel VC methods have been proposed. Erro et al. [91]

proposed the INCA algorithm to iteratively align the non-parallel corpus for conven-

tional parallel GMM-based VC, as shown in Fig. 2.9. Sun et al. [92] and Xie et al. [93]

proposed similar frameworks using a well-trained automatic speech recognition (ASR)

system to extract speaker-independent (SI) phonetic posteriorgrams (PPGs) and adopt

an SD PPG-to-spectrum model to generate converted spectra, as shown in Fig. 2.10

(a). Restricted Boltzmann machine (RBM)- [94] and variational autoencoder (VAE)-

based [95–97] (Fig. 2.10 (b)) models have also been proposed to disentangle the acoustic

features into SD and SI components for VC. Moreover, inspired by the success of cycle

consistent adversarial networks (CycleGAN) for image translation [98], cycleconsis-

tency has been widely applied to non-parallel VC [53,99,100] as shown in Fig. 2.11.
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In addition, non-parallel VC with external reference speakers has also been widely

surveyed. For instance, building a VC model of reference speakers with a parallel cor-

pus and adapting it for source and target speakers with a non-parallel corpus [101,102]

achieved early success. On the basis of the GMM-based speaker verification tech-

nique [103], speaker adaptation from a universal background model (UBM) [104] for

non-parallel VC also shows the effectiveness of assistance from reference speakers. Rep-

resenting the source and target utterances on the basis of weighted reference dictionaries

also attains good quality for exemplar-based VC [105]. Eingenvoice conversion (EVC)

technique [106–108] also adopts limited parallel data including several pre-stored speak-

ers and one reference speaker to build an initial model, and then the model is adapted

for arbitrary source speakers to the reference speaker and the reference speaker to ar-

bitrary target speakers. The final many-to-many process is performed by the cascaded

source-to-reference and reference-to-target models. The reference speaker is treated as

a hidden variable in the EVC system, which is similar to the latent variable in the VAE-

based VC. In this thesis, a two-stage non-parallel VC system with a reference speaker

is taken as the baseline VC system. The cascaded VC system is also built on the basis

of a combination of many-to-reference and reference-to-many models [108–110].
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2.2.3 DNN-based Voice Conversion

A general DNN-based framewise spectral conversion model [111,112] including train-

ing and conversion stages has been adopted in the baseline VC system submitted to

VCC2018 [43]. In the training stage, given the paired source feature vector Sn =[
s⊤n ,∆s⊤n

]⊤
and target feature vector Tn =

[
t⊤n ,∆t⊤n

]⊤
, which include static and delta

spectral features with the frame index n, the DNN-based conditional probability is

formulated as

P (Tn | Sn,λ,Σ) = N (Tn; fλ(Sn),Σ) , (2.11)

where λ and fλ respectively denote the parameters and nonlinear transformation func-

tion of the DNN model, N is the Gaussian distribution, and Σ is the diagonal co-

variance matrix of the training data. In the training stage, the DNN parameter λ̂ is

updated as

λ̂ = argmax
λ

N∑
n=1

logP (Tn | Sn,λ,Σ)

= argmin
λ

N∑
n=1

(Tn − fλ(Sn))Σ
−1(Tn − fλ(Sn)). (2.12)

In the conversion stage, the maximum likelihood parameter generation (MLPG) [113] is

adopted to alleviate the discontinuity caused by the framewise approach, and the global

variance (GV) postfilter [9] is applied to minimize the oversmoothing effect caused by

the statistical nature.

2.2.4 DMDN-based Voice Conversion

Because the weakness of the DNN-based VC model is its unimodal nature without

variances, a multimodal approach, deep mixture density network (DMDN) [114], has
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also been applied to the baseline VC system [28]. The DMDN model attains the vari-

ance predicting capability and enhances the model capacity by modeling the conditional

probability with mixtures of Gaussian distributions instead of a single Gaussian distri-

bution. Given the same condition as those in Eq. 2.11, the DMDN-based conditional

probability is formulated as

P (Tn | Sn,θ) =
M∑

m=1

αm(Sn) N
(
Tn | µm(Sn), σ

2
m(Sn)

)
, (2.13)

where θ denotes the parameters of the DMDN model, N (· | µ, σ2) denotes a single

Gaussian mixture with the mean µ and covariance matrix σ2, M is the number of

mixture components, m is the mixture index, and αm denotes the mixture weight of

the mth component given Sn. The DMDN outputs are as follows:

αm(Sn) =
exp

(
ψ

(α)
m (Sn,θ)

)
∑M

j=1 exp
(
ψ

(α)
j (Sn,θ)

) , (2.14)

µm(Sn) = ψ(µ)
m (Sn,θ) , (2.15)

σm(Sn) = exp
(
ψ(σ)
m (Sn,θ)

)
, (2.16)

where ψ(α), ψ(µ), and ψ(σ) respectively denote the weight, mean, and variance acti-

vations of the DMDN output layer. The updated form of the DMDN parameters is

defined as

θ̂ = argmax
θ

N∑
n=1

logP (Tn | Sn,θ) . (2.17)

The MLPG and GV techniques are also adopted in the DMDN conversion stage.

2.3 Summary

In this chapter, the development of vocoders and VC techniques is reviewed. The

baseline WN and PWG vocoders and DNN and DMDN VC models are also introduced.
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Although this thesis focuses on improving unified vocoders such as WN and PWG,

prior knowledge related to the source–filter model and speech production mechanisms

is applied to the baseline unified vocoders to improve their pitch controllability in

Chaptesr 5 and 6. The basic DNN and DMDN VC models is adopted to develop the

baseline non-parallel VC model in Chapter 3. Since in this thesis I attempt to improve

the neural vocoders for VC and pitch transformation scenarios, a simple cascaded non-

parallel VC model is adopted in the next chapter, and the following chapters focus

on techniques of improving the quality, robustness, and controllability of the neural

vocoders.



3 Non-parallel Voice Conversion

with Reference Speaker

The main motivation of this thesis is developing high-quality neural-based speech

synthesis modules for different speech generation applications. In addition to the basic

analysis-synthesis scenario of vocoders, voice conversion (VC) and pitch transformation

applications have been constructed to evaluate the performance of the adopted neural

vocoders. In this chapter, a basic non-parallel VC system using a WaveNet (WN)

vocoder is introduced, and this system is the VC baseline of Chapter 4 and 5. Since the

baseline system has been submitted to Voice Conversion Challenge 2018 (VCC2018),

and the organizer provides many subjective results from crowdsourced evaluations, the

system is a convincing reference for the following evaluations in this thesis.

3.1 Introduction

Voice conversion is a technique to generate specific target speech based on given

source speech while maintaining the same linguistic content. One of the most general

VC scenarios is speaker conversion, which converts speaker identity from a source

speaker to a target speaker. For simplicity, we use the term VC in this thesis to

denote speaker conversion. For conventional VC [7–9,82–87], a parallel corpus including

paired source and target utterances is required, and the paired utterances have the
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same linguistic contents. However, collecting a parallel corpus is expensive, time-

consuming, and impractical for real-world applications. Therefore, many non-parallel

VC techniques [53,91–97,99–102,104,105,108–110] have been proposed.

In this chapter, the NU (Nagoya University) non-parallel VC system [43] for the

SPOKE task of VCC 2018 is presented. A non-parallel corpus and corresponding

transcripts of source and target speakers are provided in the SPOKE task. The key

idea of our proposed system is taking advantage of the provided transcripts to generate

a parallel corpus using a text-to-speech (TTS) system. That is, the TTS speaker

is taken as a reference speaker, so source-to-reference (StoR) and reference-to-target

(RtoT) conversion models can be respectively built. With the cascaded StoR and RtoT

models, a non-parallel VC system is available. In VCC2018 [115], our system adopted a

deep neural network (DNN)-based [111,112] spectral conversion model and a WN [12]

vocoder [47,48], and achieved the second-best score for similarity and an above-average

score for naturalness among all submitted systems.

Since the cascaded VC with a TTS reference still caused performance degradation,

an AutoEncoder (AE) framework [116] has been adopted to compensate for the acous-

tic mismatch between training and testing stages. Moreover, because of the lack of

variances and the unimodal nature of a DNN-based VC model, the effectiveness of a

deep mixture density network (DMDN)-based [114] VC model has also been explored.

The main contributions of this work are three-fold:

• The effectiveness of a neural network (NN)-based non-parallel VC system using

TTS-generated reference utterances has been shown.

• The effectiveness of DNN- and DMDN-based VC models have been explored.

• An AE to compensate for the acoustic mismatch between the training and testing

stages has been proposed.
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Figure 3.1: Parallel voice conversion system.

The rest of this chapter is organized as follows. The proposed cascaded VC model is

presented in Section 3.2. Both objective and subjective evaluation results are presented

in Section 3.3. Last, we give a summary in Section 3.4.

3.2 Cascaded Voice Conversion

As shown in Fig. 3.1, a typically parallel VC model usually includes training and

conversion stages. In the training stage, the source-to-target (StoT) mapping function

of the StoT conversion model is constructed with a parallel corpus, which has an

inherent one-to-one relationship between source and target data. However, an inherent

one-to-one relationship does not exist in a non-parallel corpus such as the SPOKE set

of VCC2018 [115]. To address this issue, since the transcripts of the SPOKE set are

available, it is feasible to use a TTS system to respectively generate corresponding

parallel utterances for the source and target speakers of the SPOKE set. With the

TTS-generated parallel corpus, a cascaded non-parallel VC system is available [43].

Moreover, to ease the training and testing mismatch, we also proposed an AE for

mismatch compensation [116]. The details are as follows.
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Figure 3.2: Cascaded voice conversion system with reference speaker.

3.2.1 VC with Reference Speaker

As shown in Fig. 3.2, source-to-reference (StoR) and reference-to-target (RtoT) mod-

els are respectively developed using the TTS speaker as a reference speaker in the train-

ing stage, and source features are converted to target features via the cascaded StoR

and RtoT models in the conversion stage. Specifically, the parallel corpus for training

the StoR model includes the source corpus and reference corpus S, which is established

by a unit-selection-based single-speaker TTS system with the source transcripts. The

RtoT model is trained with the parallel corpus including the target corpus and ref-

erence corpus T, which is established by the same TTS system but with the target

transcripts. In the conversion stage, the input source features are converted to refer-

ence features by the StoR model, and then the reference features are further converted

to the target features by the RtoT model.

To alleviate the alignment mismatch between the source/target and reference utter-

ances, human-labeled short pauses and silences of the training utterances are adopted

to handle the short pauses and silences of the TTS-generated speech to match that
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Figure 3.3: Cascaded voice conversion system with mismatch compensation.

of the corresponding source/target speech. After that, because the TTS system uses

hidden Markov model (HMM)-state alignments, the framewise DTW technique is still

applied to alleviate the spectral mismatch between the natural acoustic features and

the acoustic features extracted from the TTS-generated speech. In conclusion, arbi-

trary parallel VC models can be adopted for non-parallel VC using the TTS-generated

parallel corpus and cascaded two-stage approach. In this chapter, we respectively apply

DNN- and DMDN-based VC models to the cascaded VC system.

3.2.2 Cascaded VC with Mismatch Compensation

The proposed cascaded VC system converts features in a two-stages manner, and

these cascaded conversion models are independently trained. Therefore, the proposed

system suffers a mismatch problem of the two-stage conversion. Specifically, the mis-

match between the outputs of the StoR model in the conversion stage and the inputs

of the RtoT model in the training stage will cause quality degradation. Therefore,

we proposed an AE module for mismatch compensation [116]. As shown in Fig. 3.3,
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after the training of the StoR model is finished, an AE is trained for mapping original

reference features to converted reference features. When we train the RtoT model, the

input reference features are processed by the trained AE to simulate the distorted input

features from the StoR model outputs in the conversion stage. With the aid from the

AE, we can ease the mismatch between the inputs of the RtoT model in the training

and conversion stages.

3.3 Experimental Evaluation

In this section, we present the internal objective evaluations and the external sub-

jective evaluations carried out in VCC2018. The details are as follows.

3.3.1 Experimental Setting

VCC2018 Corpus

The VCC18 corpus [115] is an English dataset provided by the VCC2018 organizer.

The corpus includes two subsets, HUB and SPOKE. The HUB subset consists of four

male speakers and four female speakers. Two males and two females are the source

speakers, and the remaining four speakers are the target speakers for the parallel VC

task (HUB task). Each speaker in the HUB set has 81 utterances for training and 35

utterances for testing. The linguistic contents of the utterances in the HUB set are

parallel, which means that each HUB speaker recorded their utterances based on the

same transcription. On the other hand, the SPOKE subset includes another two male

and two female speakers as the source speakers for the non-parallel VC task (SPOKE

task). Each speaker in the SPOKE set also has 81 utterances for training and 35 parallel
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utterances for testing. Although each SPOKE speaker also recorded their utterances

based on the same transcription, the SPOKE transcription is different from the HUB

transcription. The total number of source-target pairs in the SPOKE task is 16 (four

SPOKE source speakers and four HUB target speakers), which includes four female-to-

female (F–F) pairs, four female-to-male (F–M) pairs, four male-to-female (M–F) pairs,

and four male-to-male (M–M) pairs. The sampling rate of speech signals is 22,050 Hz

and the resolution per sample is 16 bits. Both HUB and SPOKE transcripts are also

provided by the VCC2018 organizer.

Internal TTS Corpus and TTS-generated Reference Corpus

The reference utterances used to construct the cascaded VC system was generated

by a concatenative unit-selection TTS system, which was trained by around 3000 ut-

terances from a single male speaker. Notably, although the linguistic contexts are

the same, each speaker still has different prosody such as short-pause positions. The

different prosodic patterns result in significantly different spectral characteristics. To

alleviate these acoustic mismatches, we controlled the short-pause positions of the

TTS-generated utterances using human-labeled pauses. Therefore, each speaker in the

SPOKE task has its specific TTS-generated reference utterances.

WORLD Acoustic Feature

The WORLD [37] vocoder was adopted to extract a 513-dimensional aperiodicity

(ap), 513-dimensional spectral envelope (sp), and one-dimensional fundamental fre-

quency (F0) with 5 ms frameshift. The sp feature was further parameterized into a 34-

dimensional mel-spectrum (mcep), and the ap feature was coded into a two-dimensional

aperiodic component (codeap). Joint spectral features were aligned via dynamic time
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warping (DTW). For non-parallel VC, each source mcep was converted to a target

mcep by the cascaded VC model. The source F0 sequence was linearly transformed

into a target one in the logarithm domain. The source codeap was kept the same.

Network Architecture

Both DNN- and DMDN-based VC models contained four hidden layers with 1024

hidden units, and the mixture number of the DMDN model was 16. The nonlinear

activation functions were rectified linear units (ReLUs) [76] and the optimization al-

gorithm was Adam [117]. The weights were randomly initialized by Xavier [118] and

the biases were initially set to zero. The learning rate was 6× 10−4 without decay, the

training epochs was 15, and the utterance-based mini-batch was adopted. The settings

of the compensation AEs followed the VC models, but the numbers of training epoch

were increased to 85.

3.3.2 Objective Evaluation

To easily compare the proposed non-parallel VC models with parallel VC models,

a parallel corpus consisting of 12 speaker pairs was adopted. The 12 speaker pairs

were constructed on the basis of the four speakers in the SPOKE subset. Although

the parallel corpus was adopted, the proposed non-parallel VC models did not use any

parallel information. Moreover, the results of [91] also confirm that taking a parallel

corpus for non-parallel training achieves almost the same experimental tendency as

taking a non-parallel corpus for that. Therefore, four SPOKE-to-reference and four

reference-to-SPOKE conversion models were trained with the SPOKE subset and the

corresponding TTS-generated utterances. These eight VC models formed the 12 simu-
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lated non-parallel VC (two-stage) paired models, which did not adopt any source-target

parallel information.

In this section, a comparison among the parallel-VC and the proposed two-stage

VC systems is first presented. Secondly, the proposed method is also compared with

a basic any-to-one (AtoO) VC system adopted in the VCC2018 baseline system [43].

The objective measurement was the mel-cepstrum distortion (MCD), which is defined

as

MCD[dB] =
1

N

N∑
n=1

10

ln 10

√√√√2
D∑

d=1

(ŷn,d − yn,d)
2 , (3.1)

where ŷ is the converted mcep, y is the target mcep, n is the frame index, and d is the

dimension index.

Comparison of Proposed Methods

In this comparison, four main arguments were explored. First, the degradation of

the proposed non-parallel (two-stage) VC compared with the parallel (one-stage) VC

was investigated. Secondly, the effectiveness of TTS-generated speech as a reference

was evaluated. Thirdly, the effectiveness of the proposed AE was also evaluated. Last,

the evaluation of a non-parallel corpus was also conducted. The six systems built for

the evaluation are as follows.

• One-stage: the basic one-to-one parallel VC system.

• Two-stage (TTS): the proposed cascaded VC system with TTS-generated speech

as the reference.

• Two-stage (Natural): the proposed cascaded VC system with parallel natural

speech as the reference speech
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Table 3.1: MCD of DNN- and DMDN-based VC models

DNN-based DMDN-based

w/o GV w/ GV w/o GV w/ GV

One-stage 5.48 6.12 5.39 6.00

Two-stage (TTS) 5.64 6.22 5.59 6.13

Two-stage (Natural) 5.67 6.19 5.55 6.10

Two-stage (AE) 5.70 6.35 5.54 6.15

Two-stage (VC) 5.61 6.25 5.57 6.20

Non-parallel (TTS) 5.54 6.01 5.46 5.90

• Two-stage (AE): the proposed cascaded VC system with the compensation AE.

• Two-stage (VC): the RtoT model of the proposed cascaded VC system was di-

rectly trained with the parallel converted features from the StoT model.

• Non-parallel: the proposed cascaded VC system with the non-parallel corpus

(SPOKE source and HUB target speakers).

Since the parallel natural speech and the parallel converted features from the StoT

model do not exist in a real non-parallel scenario, the two-stage (Natural) and (VC)

are the systems in a control group.

As shown in Table 3.1, the one-stage VC system still outperforms all two-stage VC

systems for both DNN- and DMDN-based VC models. The results show that the

parallel information is still a strong prior knowledge for framewise spectral conversion.

However, the results also show the effectiveness of the two-stage VC system to achieve

an acceptable spectral prediction accuracy. Furthermore, the two-stage systems with

TTS or natural speech as the reference attain similar MCDs, which indicate that TTS-

generated speech already contains sufficient acoustic components for being the reference

speech.
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However, the MCD differences between the one-stage and two-stage (TTS) systems

still imply that the mismatch between the training and conversion stages causes per-

formance degradation. Therefore, we applied the compensation AE in the training

stage for easing the input mismatch of the RtoT model between the training and con-

version stages. As shown in Table 3.1, we can find that both the two-stage (AE) and

(VC) systems outperform the two-stage (TTS) system in the DMDN-based VC with-

out GV. The results confirm the degradation caused by the two-stage mismatch and

show the effectiveness of the compensation AE. Although the two-stage (AE) system

achieves higher MCDs than the two-stage (TTS) system in the DNN-based VC, the

two-stage (VC) system still outperforms the two-stage (VC). The results also imply

the speech degradation caused by the mismatch problem. However, the settings or

hyper-parameters of DNN-based AE might not be optimized, so the compensation AE

only shows the effectiveness in the DMDN-based VC.

Furthermore, the DMDN-based VC models achieve slightly higher spectral prediction

accuracies than the DNN-based VC models. Although applying the GV postfilter

leads to higher MCD values, the tendencies are still the same. The results confirm a

reasonable spectral prediction accuracy of the DMDN-based system, and the DMDN-

based system is comparable to our DNN-based system submitted to VCC2018. In

conclusion, although the parallel VC (one-stage) models exhibit a higher conversion

performance, the two-stage models still achieve an acceptable conversion accuracy, and

the well-trained compensation AE can ease the mismatch problem.

Comparison Between Cascaded VC and Any-to-one VC

In this comparison, we compared the proposed two-stage VC framework with a basic

AtoO VC system, which was adopted in the VCC2018 baseline system [43]. The basic
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Table 3.2: MCD of DNN- and GMM-based VC models

DNN-based GMM-based

w/o GV w/ GV w/o GV w/ GV

One-stage 5.54 6.16 5.46 6.13

Two-stage (TTS) 5.68 6.23 5.54 6.14

AtoO 6.09 6.90 5.95 6.79

Source 8.46

AtoO VC system used the parallel data of two source speakers and a target speaker

to train a VC model for each target speaker. Since our TTS system was built with a

male speaker, we constructed an M–F AtoO VC model for each SPOKE male speaker

using the utterances from the other SPOKE male speaker and the TTS system. The

evaluation involved cross-validation of the two male speakers in the SPOKE subset.

Because the VCC2018 baseline system was GMM-based, we evaluated the performance

of both GMM-based and DNN-based models. The GMMs were 32 mixtures with

a full covariance matrix. As shown in Table 3.2, the proposed system outperforms

the AtoO system for both the DNN-based and GMM-based models w/o and w/ GV

scenarios. That is, for the speaker spectral conversion, the proposed method achieves

a comparable performance to the one-stage system and outperforms the basic AtoO

system in the objective evaluation. Note that since we only conducted this evaluation

with the M–F pairs, the DNN-based MOS results were a little different from the results

in Table 3.1. To summarize, the evaluation results show the effectiveness of using TTS-

generated reference speech for non-parallel VC while the training data is very limited.
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basis of the auxiliary features of the converted F0, coded ap, 

and converted spectral feature without the analysis-synthesis 

framework. The number of converted utterances was 560 and 

the number of the labeled collapsed utterances was 47. Two 

detectors were compared: 

• maxMCD:  A voice activity detection system (VAD) was

first applied to all generated utterances, and then the

MCDs of WaveNet-generated utterances and WORLD-

generated utterances where calculated. The final score

was the maximum difference between the WaveNet

MCDs and WORLD MCDs.

• maxPOW:  The proposed measurement is the difference

between the maximum power of the WaveNet-generated

utterance and the WORLD-generated utterance.

Figure 7 shows the detection error tradeoff (DET) curves of the 

two detectors. Not only the equal error rate (EER) of maxPOW 

is much lower than that of maxMCD, but also the entire curve 

for maxPOW is lower than that for maxMCD. The results 

indicate that the proposed maxPOW score is a more robust 

measurement of collapsed speech detection than the maxMCD 

score, and we can detect 80% of collapsed utterances with a 

false reject rate of less than 5% for clean utterances. 

4.4. External evaluation results from VCC2018 

The VCC2018 organizer conducted subjective tests on all 

submitted systems for both the HUB task and the SPOKE task. 

The evaluations included naturalness and similarity tests. In the 

naturalness tests, the measurement was the five-point mean 

opinion score (MOS), where “5” stood for “completely natural” 

and “1” stood for “completely unnatural”. In the similarity tests, 

listeners were asked to decide whether or not the converted 

utterances and target utterances were spoken by the same 

person. A four point scale was given to listeners: “definitely the 

same”, “probably the same”, “probably different” and 

“definitely different”. The final similarity scores were the 

percentage of the summation of “definitely the same” and 

“probably the same”.  

For the submitted NU non-parallel VC system, each 

decoder was trained using all the training data of the 

corresponding SPOKE source speaker and TTS outputs, and 

each Decoder was trained using all training data of the 

corresponding HUB target speaker and TTS outputs. Four 

modes of generated speech were used as the candidates in the 

system selection: 

• WN-diff-anasyn: speech generated by the WaveNet

vocoder on the basis of the converted F0, coded ap, and

converted spectral features with analysis-synthesis

framework (f0‘, coded a2, and m3 in Fig.1).

• WN-diff-anasyn-lpc: speech generated under the same

conditions as WN-diff-anasyn, but the conditional

probabilities of the WaveNet vocoder were constraint on

previous samples by linear predictive coding.

• WN-diff: speech generated under the same conditions as

WN-diff-anasyn, but ap and the converted spectral

features were processed without the last synthesis-

analysis step (a1 and m2 in Fig. 1).

• WD-diff-anasyn: speech generated under the same

conditions as WN-diff-anasyn, but with the WaveNet

vocoder replaced by the WORLD vocoder.

The priority was set as 1. WN-diff-anasyn, 2. WN-diff-

anasyn-lpc, 3. WN-diff, and 4. WD-diff-anasyn according to 

an unofficial internal evaluation. Specifically, we performed 

collapsed speech detection of all utterances generated by the 

WaveNet vocoder, and then the system selected the final 

submitted files according to the detection results and the 

predefined priority. Furthermore, the detection threshold was 

set on the basis of the operating point from the DET curve in 

Fig. 7 corresponding to a 5% false reject rate and 20% false 

accept rate. The final submitted files contained 3% WN-diff-

anasyn-lpc, 1% WN-diff, and 1% WD-diff-anasyn files. 

Figure 8 shows the overall results and Table 3 demonstrates 

the significance relationships of our system (N17) with others 

in terms of the p-values in the naturalness evaluations.  Our 

system is about third place in the naturalness evaluations and 

second place in the similarity measurements. The average MOS 

of the proposed system is about 3, and the average similarity 

accuracy is about 70%, as described in detail in the following. 

4.4.1. Naturalness 

As shown in Table 4, the MOS scores of the proposed VC 

system are stable for each pair, indicating the effectiveness of 

the proposed system under different conversion conditions. 

Compared with the baseline system (B01), the results of cross-

gender evaluations are consistent with the objective evaluations 

(Figs. 5 and 6), implying that the spectrum prediction of our VC 

system is better than that of the speaker independent GMM VC 

Figure 8. Overall summary of evaluation results for 

VCC2018 SPOKE task

Table 3. p-values of the naturalness evaluation results of 

VCC2018 SPOKE task. 

null hypothesis  Quality is better or worse than N17 

p-value > 0.6 Baseline, N11, N18, N04, N12 

p-value = 0.073 N13 

p-value = 0.016 N05 

p-value < 2-16 Source, Target, N10, N06, N16 

Submitted systems 

Figure 3.4: Overall evaluation results of VCC2018 SPOKE task.

3.3.3 External Subjective Evaluation

The VCC2018 organizer conducted a crowdsourced perceptual evaluation on all sub-

mitted systems for both the HUB task and the SPOKE task [115]. The number of

unique listeners was 267 (146 male and 121 female). The evaluation included natural-

ness and speaker similarity tests. In the naturalness test, the measurement was the

five-point mean opinion score (MOS), where “5” stood for “completely natural” and

“1” stood for “completely unnatural”. In the similarity test, listeners were asked to de-

cide whether or not the converted utterances and target utterances were spoken by the

same person. A four-point scale was given to listeners: “definitely the same”, “prob-

ably the same”, “probably different” and “definitely different”. The final similarity

scores were the percentage of the summation of “definitely the same” and “probably

the same”.
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Table 3.3: p-values of the naturalness evaluation results of VCC2018 SPOKE task.

Null hypothesis: quality is better or worse than N17

p-value >0.6 B01 (Baseline), N11, N18, N04, N12

p-value = 0.073 N13

p-value = 0.016 N05

p-value <2-16 S00 (Source), T00 (Target), N10, N06, N16

Furthermore, the VCC2018 organizer also provided a GMM-based baseline system

(B01) [119]. For the spectral conversion, the baseline system constructed four AtoO

GMM-based VC models for the HUB target speakers. The AtoO VC models were

trained using the parallel utterances in the HUB subset. For example, when train-

ing an AtoO VC model for a female target speaker in the HUB subset, all female

source speaker in the HUB subset were adopted to train this model. For the converted

speech waveform generation, a vocoder-free method [120,121] was adopted for the intra-

gender conversions, and an excitation generation and a mel-log-spectral-approximation

(MLSA) filter [122,123] were adopted for the inter-gender conversions.

On the other hand, the submitted NU non-parallel VC system (N17) [43] adopted the

proposed DNN-based two-stage (TTS) VC model, and the final converted speech wave-

forms are respectively generated by four speaker-dependent (SD) WN vocoders [47,48].

The details of the SD WN vocoders can be found in Section 4.6. Figure 3.4 shows the

overall results and Table 3.3 presents the significant relationships of our N17 system

with others in terms of the p-values in the naturalness evaluations. Our system is about

third place in the naturalness evaluations and second place in the speaker similarity

measurements. The average MOS of the proposed system is about 3, and the average

similarity accuracy is about 70 %. The details are described as follows.
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Table 3.4: Crowdsourced Perceptual Evaluation Results of VCC2018 SPOKE Task.

MOS of naturalness Speaker similarity

F–F F–M M–F M–M Avg. F–F F–M M–F M–M Avg.

S00 4.69 4.69 4.69 4.69 4.69 S00 10 % 10 % 10 % 10 % 10 %

T00 4.64 4.64 4.64 4.64 4.64 T00 97 % 97 % 97 % 97 % 97 %

N10 4.24 4.19 4.02 4.15 4.15 N10 83 % 94 % 74 % 86 % 88 %

N13 3.12 3.05 2.90 3.11 3.05 N17 79 % 71 % 70 % 59 % 72 %

B01 3.60 2.66 2.46 3.29 3.00 N05 65 % 68 % 56 % 78 % 66 %

N11 3.28 2.83 2.93 2.73 2.94 N18 66 % 72 % 37 % 55 % 62 %

N18 3.25 2.77 2.94 2.72 2.92 N13 55 % 66 % 53 % 70 % 60 %

N17 3.20 2.86 2.75 2.85 2.92 B01 66 % 59 % 49 % 35 % 56 %

N04 2.89 2.93 2.69 3.03 2.88 N11 46 % 60 % 18 % 50 % 48 %

N12 3.38 3.05 2.08 3.00 2.88 N16 38 % 63 % 14 % 56 % 45 %

N05 3.20 2.49 2.56 2.82 2.76 N12 25 % 60 % 9 % 68 % 43 %

N03 2.70 2.81 2.13 2.92 2.64 N04 24 % 69 % 17 % 57 % 43 %

N06 2.93 2.21 2.05 2.46 2.41 N06 28 % 33 % 0 % 50 % 30 %

N16 2.20 1.93 1.82 2.13 2.02 N03 17 % 37 % 3 % 34 % 24 %

Naturalness

As shown in Table 3.4, the similar MOS scores for all pairs indicate the generality of

our N17 system under different conversion conditions. Compared with the B01 baseline

system, the higher MOS scores of the cross-gender pairs imply the higher spectral

prediction accuracy of the proposed two-stage VC model than that of the AtoO GMM-

based VC model and the higher naturalness of the WN-generated speech than the

MLSA-generated speech. However, our N17 system achieved worse performance in the

intra-gender pairs, and the possible reason was the vocoder-free framework [119–121]

of the B01 system. Specifically, since the vocoder-free framework directly modified

the input source waveform to the target waveform bypassing the conventional vocoder
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process, the naturalness of the converted speech was well maintained. However, since

the WN vocoder was conditioned on the WORLD-extracted acoustic features, the

extraction errors propagated to the WN-generated speech. For example, the pitch

of a SPOKE male speaker is very low, and it easily causes voiced/unvoiced decision

errors when extracting the F0 by WORLD. According to the MOS results, there was a

marked naturalness gap between the F–F pair and the other pairs of our N17 system.

When listening to the converted speech, we found that the flawed F0 values caused

many unexpected scratchy voices, which significantly degraded speech naturalness.

Furthermore, because the WN vocoder was trained with natural acoustic features but

tested with converted acoustic features, the WN-generated speech sometimes became

unstable. The instability made the generated speech include some unexpected noise,

which is called a collapsed speech problem. This collapsed speech problem sometimes

markedly degrade the speech quality, so the instability of the WN-generated speech

might be another possible reason for the worse naturalness. The details of the collapsed

speech problem will be described in Chapter 4.

Speaker Similarity

As shown in Table 3.4, our N17 system significantly outperforms the B01 baseline

system for both inter-gender and intra-gender tasks. The results show that the WN

vocoder retained the target’s timbre better than the conventional vocoding process

and the vocoder free frameworks [119–121]. Nonetheless, although our system achieves

an above-average accuracy for speaker similarity in cross-gender and F–F pairs, the

performances of our M–M pairs are seriously degraded. Broken excitation signals

caused by the flawed F0 might be a possible reason because the WORLD vocoder often

has the difficulty in extracting the correct F0 for male speakers. We also found that
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the WN vocoder was more sensitive to flawed F0 than the WORLD vocoder, and it

resulted in many scratchy voices of the WN-generated speech. The scratchy voices

usually cause significant blurring of speaker identity, particularly in same-gender pairs.

Therefore, the speaker similarity of the M–M pairs was significantly degraded than

that of the other pairs of our N17 system. To summarize, the proposed two-stage VC

model with the WN vocoder shows the effectiveness of speaker identity conversion.

3.4 Summary

In this chapter, a non-parallel VC framework with a two-stage conversion and TTS-

generated reference speech is described. The main concept is that using a TTS system

to respectively generate parallel utterances for source and target speakers. The TTS-

generated speech is a bridge to connect the non-parallel source and target utterances.

However, the mismatch between the two stages of the cascaded conversion causes per-

formance degradation, so we adopt a compensation AE in the training stage to ease the

mismatch. On the other hand, because of the unimodal nature and the lack of variance

of a DNN-based model, the effectiveness of a DMDN-based model for the proposed two-

stage VC is also explored. Moreover, to easily compare with the VCC2018 baseline

system, we also explore the proposed VC framework with a GMM-based model. In-

ternal experimental results show that the proposed VC framework achieves acceptable

spectral prediction accuracy, which is slightly worse than a parallel VC system, as well

as the effectiveness of the compensation AE and the DMDN-based model. External

subjective evaluation results provided by the VCC2018 organizer are also presented.

The crowdsourced perceptual evaluation results demonstrate that our submitted non-

parallel VC system, which is developed based on the DNN-based two-stage VC models

and the WN vocoder, achieves a beyond average performance in both quality and
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similarity measurements in VCC2018.

Although the evaluation results of the proposed VC system show the early effec-

tiveness of the WN vocoder for generating high-quality VC speech, conditioned on the

defective VC acoustic features usually causes instability of the WN vocoder. That is,

the WN vocoder sometimes generates non-speech like and very noisy speech segments

when the input acoustic features are distorted by a manipulation module such as VC

models. These discontinue and noisy segments usually significantly degrade the gener-

ated speech quality. Therefore, to improve the quality and robustness of the proposed

VC system, a waveform-based constraint for the WN vocoder will be presented to ease

the negative effects of the unstable problem in the next chapter.



4 Collapsed Speech Detection and

Suppression

Because of the rapid developments of neural-based speech generations, the state-

of-the-art speech generative model such as WaveNet (WN) achieves very high-fidelity

speech generation with natural acoustic features for the basic analysis-synthesis ap-

plication. However, for most speech generation applications, the auxiliary acoustic

features are distorted because of the manipluations. These distorted acoustic features

usually cause unstable problem of the WN-generated speech. Therefore, to improve

the robustness of our baseline voice conversion (VC) system introduced in Chapter 3,

the defect of the WN vocoder combined with the VC model and a waveform-based

constraint will be explored in this chapter.

4.1 Introduction

Conventional VC systems usually adopt parametric-based (conventional) vocoders

such as STRAIGHT [35] and WORLD [37], which encode (analyze) speech into acoustic

features such as spectral and prosodic features and decode (synthesize) speech based

on these acoustic features. However, the oversimplified assumptions of the speech

generation mechanism, such as the fixed length of analysis windows, a time-invariant

linear filter, and a stationary Gaussian process, imposed on conventional vocoders lead
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to loss of phase and temporal details of the original speech, which cause significant

speech quality degradation of the synthesized speech signals.

Recently, many neural-based autoregressive (AR) models directly modeling raw

speech waveforms such as WN [12] and SampleRNN [13] have been proposed. These

neural-based models achieve high-fidelity speech generation by modeling the condi-

tional probability distribution of each speech sample conditioned on past speech sam-

ples. The authors of [47, 48] applied WN to replace the synthesis part of conventional

vocoders to markedly improve the quality of the synthesized speech. Specifically, the

WN vocoder generates speech conditioned on not only previous speech samples but also

conventional-vocoder-extracted acoustic features without various ad hoc assumptions,

so the lost phase and temporal details can be greatly recovered by the WN vocoder.

However, directly integrating the WN vocoder into a VC system causes serious mis-

match problems. Because of the length difference between the source and target data

of a VC speaker pair, the WN vocoder is usually trained with natural target acoustic

features and waveform pairs. In the testing stage, the trained WN vocoder is con-

ditioned on the converted acoustic features, which have the same data length as the

source acoustic features, to generate the converted waveforms, so the acoustic mis-

match between the natural and converted acoustic features leads to significant quality

degradation such as a waveform-based discontinuity [27,28,43]. Moreover, the inherent

exposure bias problem [124,125] caused by the AR nature of the WN vocoder sometimes

leads to unexpected noisy segments, especially when the WN vocoder is conditioned

on artificial acoustic features such as those used in VC. The discontinuous waveforms

and unexpected noisy segments caused by the acoustic and temporal mismatches and

the exposure bias are called the collapsed speech problem [27,28].

To address this problem, a simple and low cost collapsed speech suppression frame-
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work [27, 28] using the prior knowledge of speech continuity is presented in this chap-

ter. The framework includes a collapsed speech detection technique and a collapsed

speech suppression constraint in waveform-domain. Since speech is a sequential signal

with strong continuity, the WN-generated speech might follow the speech continuity.

Furthermore, the conventional-vocoder-generated speech is a good reference, which

is usually stable and collapsed-speech-free, so the predicted distributions of the WN

vocoder might be constrained by the sequential correlations of the reference speech.

Specifically, WN-generated speech is segmentally inspected using WORLD-generated

speech as a reference. If collapsed speech is detected, the WN will regenerate this seg-

ment with a distribution constraint derived from the WORLD-generated speech and

previous samples.

In this chapter, the proposed collapsed speech detection and suppression approach

is evaluated with a baseline non-parallel VC system [43] submitted to the non-parallel

VC (SPOKE) task of Voice Conversion Challenge 2018 (VCC2018) [115]. This chapter

is organized as follows. In Section 4.2, the details of the collapsed speech problem are

described. In Section 4.3, the collapsed speech detection technique is presented. In

Section 4.4, the collapsed speech suppression constraint is described. In Section 4.5,

the WN vocoder with the proposed framework is introduced. In Section 4.6, we report

objective and subjective tests carried out to evaluate the effectiveness of the proposed

framework. Finally, the conclusion is given in Section 4.7.

4.2 Collapsed Speech Problem

To directly model a speech waveform, WN [12] adopts an AR approach to generate

the speech waveform sample by sample. Specifically, WN models the probability dis-

tribution of each speech sample conditioned on a segment of previous samples called a
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receptive field. To guide WN to generate the desired speech content, WN is conditioned

on the previous samples in the receptive field and auxiliary features such as linguistic

features. Furthermore, taking WN as a vocoder [47–49], which adopts the conventional-

vocoder-extracted acoustic features as the auxiliary features, greatly reduces the huge

training data requirement and makes it easy to combine WN with conventional VC

systems [43,44,46]. The conditional probability of the WN vocoder is formulated as

P (x | h) =
T∏
t=1

P (xt | xt−r, . . . , xt−1,h) , (4.1)

where t is the sample index, r is the length of the receptive field, xt is the current

audio sample, and h is the vector of the acoustic features. In this chapter, the µ-law

is applied to encode speech waveforms into 8 bits, so the output of the WN vocoder is

a logistic distribution with 256 levels. The details about WN and the WN vocoder are

presented in Section 5.2.

Although the effectiveness of the WN vocoder for generating high-fidelity speech on

the basis of acoustic features has been proved, the AR nature and waveform-domain

modeling make the WN vocoder vulnerable to prediction errors. Specifically, because

the WN vocoder is conditioned on previous samples to predict the current sample, a

prediction error will propagate through the sequential speech samples. The negative

ripple effect easily leads to the WN vocoder generating very noisy speech, which is

similar to white noise, especially when conditioned on acoustic features with high

amplitudes. This white-noise-like speech is defined as Type I collapsed speech as shown

in Fig. 4.1 (a). Furthermore, even if the prediction errors only occur in a few samples,

it still leads to the significant discontinuity of the WN-generated waveform because

of the direct waveform modeling. This waveform-domain discontinuity usually causes

short impulse noise with significant perceptual quality loss. We define the short impulse

noise as Type II collapsed speech as shown in Fig. 4.1 (a).
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Type II Type I

Figure 4.1: (a) WN-generated waveform w/ collapsed speech. (b) WN-generated wave-

form w/ proposed collapsed speech suppression.

The possible reasons for collapsed speech are a lack of training data, conditioned

on artificial acoustic features, and exposure bias [124, 125]. Specifically, because of

the different lengths of the source and target utterances for VC, the WN vocoder is

usually trained with natural target acoustic features and waveforms but tested with

converted acoustic features. The acoustic mismatch between the training and testing

stages usually leads to the WN vocoder generating unexpected speech waveforms. Even

if a data alignment technique such as dynamic time warping (DTW) is adopted to allow

the WN vocoder to be trained with the VC acoustic features and natural waveforms

pair, extra errors caused by the imperfect alignment are introduced. Furthermore, in

our previous work [126], we found that even if the source and target utterances are

length-matched, the temporal structures of the source and target utterances are still

different. Training the WN vocoder using this temporal mismatched data still causes

performance degradation. Moreover, because the AR WN model is usually trained
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with ground-truth natural waveforms but tested with self-generated waveforms, the

different decoding behavior, which is called the exposure bias problem, sometimes

leads to unexpected generation results.

4.3 Collapsed Speech Detection

To tackle the collapsed speech problem, the first step is collapsed speech detection.

According to the observation in our previous work [27, 28, 43], although the quality of

WN-generated speech is usually higher than that of WORLD-generated speech, the WN

vocoder is more sensitive to imperfect converted acoustic features while the WORLD-

generated speech is usually stable and collapsed-speech-free. Moreover, although the

perceptual qualities are different, the waveform envelopes and powers of the utterances

generated by these vocoders are similar because of the same input acoustic features.

Therefore, it is reasonable to take the utterance generated from the WORLD vocoder as

a reference to evaluate whether or not the WN-generated utterance contains collapsed

speech.

In our VC system submitted to VCC2018 [43, 46], a simple power-based collapsed

speech detection technique is adopted. Since the powers of WN-generated andWORLD-

generated utterances are similar, a large difference of the maximum powers usually

indicates the WN-generated utterance suffers from collapsed speech, particularly in

the high-frequency band. Following this observation, an utterance-based detection

criterion has been proposed. Specifically, given the frame-based power sequences

p(wn) =
[
p
(wn)
1 , . . . , p

(wn)
N

]
and p(wd) =

[
p
(wd)
1 , . . . , p

(wd)
N

]
, and the power sequences of

Nyquist frequency p
(wn)
L =

[
p
(wn)
L,1 , . . . , p

(wn)
L,N

]
and p

(wd)
L =

[
p
(wd)
L,1 , . . . , p

(wd)
L,N

]
, the detec-
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tion measurements are defined as

∆p = max
(
p(wn)

)
−max

(
p(wd)

)
(4.2)

and

∆pL = max
(
p
(wn)
L

)
−max

(
p
(wd)
L

)
, (4.3)

where (wn) denotes powers of a WN-generated utterance, (wd) denotes powers of a

utterance generated by the conventional WORLD vocoder, and N is the frame number

of these utterances. If both ∆p and ∆pL are higher than an empirical threshold, the

collapsed speech is detected. According to our internal experiments, the differences

between maximum powers are more stable than the frame-based power differences.

However, there are several problems with the power-based method. First, impulse

noise (Type II collapsed speech) is easily ignored by the utterance-based detection.

Secondly, the utterance-based detection is inefficient for WN generation. Because col-

lapsed speech usually occurs in a few samples, a segmental detection manner is more

efficient for WN tackling the collapsed speech. Moreover, a segmental collapsed detec-

tion and suppression also restricts the side effects from the collapsed speech suppres-

sion in a short period. Therefore, we proposed a collapsed speech segment detection

(CSSD) [27, 28] technique to segmentally detect the collapsed speech and only apply

our collapsed speech suppression technique to the problematic segments.

The motivation of the proposed CSSD is that even without listening to audio sam-

ples, people still easily detect collapsed speech segments from the waveform shape.

Therefore, the core of the CSSD is to segmentally compare the waveform envelopes of

WN- and WORLD-generated utterances. A segment is detected as a collapsed seg-

ment when the difference between the two envelopes is larger than a threshold, which

is determined by a detection error tradeoff (DET) curve. Note that because the condi-

tional acoustic features of the WN vocoder already contain a power component, which
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Step1: taking absolute value

Step2: peak detection

Step3: low-pass filtering

Waveform signal

Figure 4.2: Three steps of waveform shape detection.

is consistent with that of the acoustic features for WORLD synthesis, the amplitudes

of the WN- and WORLD-generated waveform envelopes should be similar. Therefore,

the CSSD is employed without any waveform normalization.

Because of the frequent detection requirements, a low-computational-cost approach [127]

is adopted to obtain the waveform envelopes for the CSSD. As shown in Fig. 4.2, we first

take the absolute value of waveform signals. Secondly, a peak detection is performed

by dividing the whole absolute sequence into non-overlapping slots and replacing all

signals in each slot with the one with the maximum value in that slot. Finally, the

final waveform envelope is obtained by processing the detected peak sequence with a

low-pass filter. To achieve a lower collapsed speech detection error rate, the Hilbert

transform (HT) instead of taking the absolute value is adopted in the first step. The

length of the speech segment of the CSSD was 4000 samples, which means that the

system checked for collapsed speech every time the WN vocoder generated 4000 new

samples. The length of the peak detection window was 200 samples and the cutoff

frequency of the low-pass filter in the CSSD was 300 Hz.
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Figure 4.3: Probability distributions of WN-predicted PMF, LPCDC PMF with regu-

larizer ρ = 0.01, and LPCDC-modified PMF.

4.4 Collapsed Speech Suppression

Since speech waveform is a sequential signal with strong continuity, any waveform-

domain discontinuity usually causes marked noisy voices, collapsed speech. However,

because of the prediction errors caused by the limited training data, distorted auxil-

iary features, and exposure bias problem, WN-generated speech sometimes suffers from

waveform-domain discontinuities. Since the WN vocoder implicit models speech conti-

nuity because of the data-driven nature, we proposed a postprocessing module [27,28]

to explicitly constrain the WN output following the speech continuity extracted from

WORLD-generated speech. Specifically, each WN output probability distribution is

multiplied by another constraint probability distribution derived from the WORLD-

generated speech to explicitly make WN-generated speech follow the continuity.
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In our previous work [27, 28], we adopted a simple codec, linear prediction coding

(LPC), to model speech continuity and derive the constraint probability distribution,

LPC distribution constraint (LPCDC). The main concept of LPC is that the current

speech sample can be represented as a linear combination of previous speech sam-

ples, so the relationship between the current and previous samples is described by

the LPC coefficients. The proposed LPCDC extracts the relationships from WORLD-

generated speech and constrains the corresponding outputs of the WN vocoder with

these relationships. As shown in Fig. 4.3, the LPCDC-constrained (modified) form of

equation 4.1 is derived as

P (x | h,ϕ) =
T∏
t=1

P (xt | xt−r, . . . , xt−1,h,ϕ)

=
T∏
t=1

P (xt | xt−r, . . . , xt−1,h, ) (P (xt | xt−d, . . . , xt−1,ϕ))
ρ , (4.4)

where d is the number of LPC dimensions, ϕ denotes the LPC coefficients extracted

from the corresponding WORLD-generated speech, and ρ is a regularization hyper-

parameter. That is, the probability distribution of each speech sample is constrained

by the LPCDC mask (P (xt | xt−d, . . . , xt−1,ϕ))
ρ, which is a probability mass function

(PMF) approximating a Gaussian distribution with the mean µlpc and variance σ2
lpc.

The mean µlpc is the LPC-predicted value of the current sample, which is given by the

weighted sum of the past samples multiplied by the d-dimensional LPC coefficients.

The variance σ2
lpc is the variance of the prediction errors derived from the corresponding

frames of the WORLD-generated speech utterance. ρ is the weight used to control the

balance between the LPCDC mask and the WN-predicted probability distribution.

For efficient WN generation, the waveform envelope and LPC coefficients of the

WORLD-generated speech are extracted in advance. Only the WN vocoder segmentally

generates speech samples, which are checked by the CSSD, in the testing stage. To
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Figure 4.4: WN vocoder with LPCDC and CSSD.

simulate the effect of the µ–law codec, the WORLD-generated speech is also encoded

and decoded by the µ–law. The 8-bit µ–law encoding is as follows:

f(x) = sgn(x)
ln (1 + 255 ∗ |x|)

ln (1 + 255)
, (4.5)

where x is the input speech sample. The output of the WN vocoder is the µ–law-

encoded 256-level logistic distribution. To derive an LPCDC mask, we first obtain the

real waveform amplitude of each level ylevel as

ylevel = f−1(q), q ∈ [0, 1, . . . , 255]. (4.6)

Then, the value of each level of the LPCDC mask is approximated as

lpcdc(ylevel) =
1

σlpc
√
2π

exp

(
−(ylevel − µlpc)

2

2σ2
lpc

)
. (4.7)

Last, the LPCDC mask is normalized to make the summation equal to 1.

4.5 WaveNet Vocoder with Collapsed Speech De-

tection and Suppression

As shown in Fig. 4.4, the proposed system includes the WN and WORLD vocoders

and the LPCDC and CSSD modules. Given acoustic features, reference speech is gen-
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erated by the WORLD vocoder, and then LPC coefficients and reference waveform en-

velopes are extracted from the WORLD-generated reference speech. The WN vocoder

sequentially generates nonoverlapping speech segments, and each WN-generated seg-

ment is examined by the CSSD. If collapsed speech is detected, the WN vocoder will

regenerate this segment with the LPCDC. The maximum number of the regeneration

times is three, and the regularizer ρ is respectively set as 0.01, 0.1, and 1 for the first,

second, and third regenerations. The system preserves the latest results. The addi-

tional computational costs of the proposed system are mainly from WN regenerations

compared with other fast modules (LPC extraction, LPCDC distribution derivation,

waveform envelope detections and comparisons for CSSD, and WORLD synthesis).

Therefore, if the WN generation time can be markedly reduced, a robust low-latency

segmental generation system might be implemented based on the proposed system.

We take the WN-generated utterance of Fig. 4.5 (a) as an example, which is the same

utterance as that in Fig. 4.1 (a). The corresponding WORLD-generated waveform is

shown in Fig. 4.5 (b), the extracted waveform envelopes are shown in Fig. 4.5 (c), and

the difference in waveform envelope is shown in Fig. 4.5 (d). The WORLD-generated

waveform is stable and without collapsed speech segments, but the WN-generated one

contains several Type I and II collapsed speech segments. The results in Figs. 4.5 (c)

and (d) confirm the effectiveness of the CSSD module, which detects the collapsed

speech segment based on the envelope difference.

Moreover, as shown in Fig. 4.6 (a), if we zoom in on a partial PMF sequence from the

first Type II collapsed speech segment in Fig. 4.1 (a), we can find that a few samples

with unexpected prediction errors lead to serious discontinuity and unexpected impulse

noise. However, after applying the LPCDC PMF sequence shown in Fig. 4.6 (b) to

constrain the WN vocoder outputs, the modified PMF sequence in Fig. 4.6 (c) is free
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Figure 4.5: (a) WN-generated waveform w/ collapsed speech. (b) WORLD-generated

waveform. (c) Extracted waveform envelopes. (d) Difference in waveform envelope.

from the unexpected prediction error. Furthermore, as shown in Fig. 4.7, the PMF

sequences corresponding to the last Type I collapsed speech segment in Fig. 4.1 (a)

also show the effectiveness of the proposed system. Specifically, most PMF values of

the collapsed segment in Fig. 4.7 (a) are close to extremums resulting in continuous

maximum amplitudes, but the modified PMF sequence in Fig. 4.7 (c) is normal and

speech-like. Note that the modified predicted PMF sequence of Fig. 4.6 (c) / 4.7 (c)

is not the result of directly multiplying the predicted PMF sequence of Fig. 4.6 (a)

/ 4.7 (a) by the LPCDC PMF sequence of Fig. 4.6 (b) / 4.7 (b). Because of the AR

manner of WN, when the first sample in this segment is changed by the LPCDC, the

distributions of the following samples are also affected. Finally, the refined speech

waveform is shown in Fig. 4.1 (b), which is free from collapsed speech.
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Figure 4.6: (a) Predicted PMF sequence of WN w/ Type II collapsed speech. (b) PMF

sequence from LPCDC. (c) Modified PMF sequence of WN w/ LPCDC and CSSD.

4.6 Experimental Evaluation

In this section, our non-parallel VC system submitted to VCC2018 is taken as a

baseline system. Both collapsed speech detection and perceptual quality evaluations

are presented to respectively show the effectiveness of the proposed CSSD module and

the proposed WN vocoder with the LPCDC and CSSD for improving the baseline

system.
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Figure 4.7: (a) Predicted PMF sequence of WN w/ Type I collapsed speech. (b) PMF

sequence from LPCDC. (c) Modified PMF sequence of WN w/ LPCDC and CSSD.

4.6.1 Experimental Setting

Corpus and Acoustic Feature

For the evaluations, three English corpora, VCC2018 [115], CMU-ARCTIC [128],

and an internal TTS corpus, were adopted. The details of the VCC2018 and internal

TTS corpora can be found in Section 3.3.1, and both of them were set to a 22,050 Hz

sampling rate and 16-bit quantization. To advance the WN voder capacity, the partial

CMU-ARCTIC corpus was involved in the WN vocoder training. Since the sampling

rate of most data of the CMU-ARCTIC corpus was 16 kHz, and only speakers “bdl”

and “slt” had 32 kHz data, only these two speakers’ data were adopted for the require-

ment of the target 22,050 Hz sampling rate. Speaker “bdl” had 1131 utterances and

speaker “slt” had 1132 utterances. All data of speakers “bdl” and “slt” were down-
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sampled from 32 kHz to 22,050 Hz, and the quantization number was also 16 bits.

The WORLD acoustic features mentioned in Section 3.3.1 were adopted for the non-

parallel VC models and the WN vocoders. The auxiliary features of the WN vocoders

included mcep, coded ap, interpolated continuous F0, and a voice/unvoice binary code.

Moreover, the LPC coefficients for the LPCDC were 30-dimensional with 20 ms frame

length and 5 ms frameshift.

Architecture and Hyperparameter

A standard WN architecture [12] was adopted. Each WN vocoder included 30 resid-

ual blocks, and the dilated and 1 × 1 convolutions in each residual block had 512

channels. The dilation sizes of these dilated convolutions were set to 20–29 with three

cycles (one cycle included 10 residual blocks). The 1×1 convolutions between the skip

connections and softmax of a WN vocoder had 256 channels. The number of trainable

parameters of a WN vocoder was 44 million. A multi-speaker WN vocoder was first

trained based on the training data of all VCC2018 speakers and speakers “bdl” and

“slt” of the CMU-ARCTIC corpus. Four speaker-dependent (SD) WN vocoders were

fine-tuned by updating the output layers of the multi-speaker WN vocoder with the

training data of the corresponding target speakers. The number of training iterations

was 200,000 and the training learning rate was initially 0.001 with 50 % decay per

50,000 iterations. The number of updating iterations was 50,000 and the updating

learning rate was 0.001 without decay. The mini-batch size was one and the batch

length is 20,000 samples. Adam [117] was adopted for optimization. Furthermore, the

noise shaping (NS) technique [74] was applied to the WN vocoders.
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Figure 4.8: DET curve for overall collapsed speech detection.

4.6.2 Collapsed Speech Detection Evaluation

To evaluate the performance of the proposed CSSD, a human-labeled test set of the

VCC18 SPOKE task was adopted. The test set was established using DNN-based non-

parallel VC models with SD WN vocoders. The number of speaker pairs of the SPOKE

task was 16, so the total number of utterances in this test set was 560. According to

the labeled results, 46 utterances suffered from the Type I collapsed speech problem

and 276 utterances had the Type II short impulse noise. Although more than 50 % of

the utterances suffered from the collapsed speech problem, some utterances with the

Type II short impulse noise did not cause perceptual degradation. This is because the

label criterion was only based on the waveform shape and the perceptual loss was not

considered.
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Collapsed speech detection was formulated as a verification problem in the evalua-

tion. The detection performance was measured via the false acceptance rate (FAR)

and false rejection rate (FRR). Specifically, the rate of the collapsed utterances that

were not detected was FAR, and the rate of the normal utterances that were detected

was FRR. As shown in Fig. 4.8, the proposed CSSD method was compared with a

mel-cepstrum distortion (MCD)-based detection method and the power-based detec-

tion method described in Section 4.3. Both MCD- and power-based methods conducted

utterance-based detections based on the MCD/power differences between the generated

and reference utterances. Because we adopted the NS technique for the WN vocoder

and the HT for waveform envelope extraction, four CSSD variants of the waveform

envelope extraction before (bNSR) and after NS restoration (aNSR) and with (w/ HT)

and without the HT (w/o HT) were considered in the evaluation.

The detection performance of all utterances including the Type I and II collapsed

speech segments is shown in Fig. 4.8, and the results show that the proposed CSSD

significantly outperforms the MCD- and power-based methods. Because of the known

weakness of utterance-based detection methods for Type II collapsed speech detection,

we also present the results of the utterances only including Type I collapsed speech

segments in Fig. 4.9. However, the CSSD-series methods still achieve a lower equal

error rate (EER), especially the methods with the HT. In conclusion, the experimental

results confirm the effectiveness of the proposed CSSD with the HT, which detects

Type I collapsed speech segments with an EER lower than 5 % and both Type I and

Type II collapsed speech segments with an EER of 20 %. Because of the convenience of

implementation and the similar detection performance, the following evaluations were

conducted on the system with the CSSD applied with the HT before the NSR.
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Figure 4.9: DET curve for Type I collapsed speech detection.

4.6.3 Subjective Evaluation

To evaluate the perceptual performance of the proposed system, we conducted a

speech quality evaluation measured by a mean opinion score (MOS) and a speaker

similarity evaluation measured by a similarity score [115]. In this subsection, both

DNN- and DMDN-based non-parallel VC models mentioned in Section 3 were trained

with a non-parallel corpus, which took the speakers of the SPOKE set as the sources

and the four target speakers of the HUB set as the targets to form 16 speaker pairs.

The demo utterances can be found on our demo page 1.

1https://bigpon.github.io/LpcConstrainedWaveNet demo/
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Speech Quality

Three sets, upper bound, collapse-free, and collapsed, including 10 systems were

evaluated in the MOS test for speech quality. The upper bound set included natural

speech and the WN vocoder conditioned on the target natural acoustic features. For the

collapse-free and collapsed sets, utterances of DNN- and DMDN-based non-parallel VC

were first generated by the WN vocoders and then partitioned into the corresponding

sets by the CSSD results. Collapsed utterances were detected in 377 of 560 utterances

generated by the DNN-based system, and the number of detected collapsed utterances

of the DMDN-based system was 335. Possible reasons for the high ratio of collapsed

utterances were the 20 % EER of the CSSD and the unoptimized threshold. Further-

more, the utterances of the DMDN-based VC generated by the WN vocoder with only

LPCDC and the WORLD vocoder were also included in this evaluation as a control

group. Since the proposed system only applied the LPCDC to the CSSD detected

segments, only the collapsed set included the results of the DMDN-based VC with the

WN vocoder, LPCDC, and CSSD (the proposed system).

An evaluation set including 800 (5× 16× 10) utterances was collected by randomly

selecting five utterances of each system and speaker pair. The evaluation set was evenly

portioned into five subsets, and each subset was evaluated by three listeners with the

same device in a quiet environment. Although the 15 listeners were not native English

speakers, most of them had worked on speech or audio generation research. The speech

quality of each utterance was evaluated by the listeners, who assigned a MOS of 1–5,

where the higher the MOS, the higher the speech quality of the utterance.

As shown in Fig. 4.10, although the synthesized speech of the WN vocoder suf-

fers from a slight speech quality degradation, it still achieves a MOS of 4.5, which

confirms the effectiveness of the WN vocoder for generating high-fidelity speech. For
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Figure 4.10: MOS evaluation of speech quality with 95 % CI. (The performance of

the proposed system is the combination of DMDN + WN in the collapse-free set and

DMDN + LPCDC + CSSD in the collapsed set.)

the collapse-free set, the results also show the effectiveness of the vanilla WN vocoder

(DMDN +WN) for achieving higher speech quality than the WORLD vocoder (DMDN

+WORLD). However, the results of the collapsed set indicate that the collapsed speech

significantly degrades the speech quality for both the DNN- and DMDN-based systems.

We also find that the WN vocoder (DMDN + LPCDC), which always applies the

LPCDC, also suffers from a severe speech quality degradation. The same MOSs of the

collapse-free and collapsed sets generated by the DMDN-based system with the WN

vocoder applying the LPCDC imply that although the LPCDC alleviates the collapsed

speech problem, it causes extra speech quality degradation.

However, when the LPCDC was applied to only the CSSD detected segments, the

negative effect of the LPCDC was well limited into very short periods. The system with

the LPCDC and CSSD in the collapsed set attains a similar MOS to the systems with

the vanilla WN vocoder for the collapse-free set. The results (DMDN + LPCDC +

CSSD) show that the proposed system not only markedly alleviates the collapsed speech

problem but also prevents the WN vocoder from speech degradation caused by applying

the LPCDC. In conclusion, the proposed LPCDC and CSSD modules significantly
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Figure 4.11: Speaker similarity evaluations with 95 % CI of the same speaker (same

and maybe the same) and different speakers (different and maybe different).

alleviate the collapsed speech problem of the WN vocoder while maintaining a similar

speech quality.

Speaker Similarity

A speaker similarity test on the proposed system, the DNN-based system with the

vanilla WN vocoder, and the DMDN-based system with the WORLD vocoder was

conducted. The listeners, devices, and environment were the same as in the MOS

test. The same evaluation set including five subsets was adopted, and each subset was

also evaluated by three listeners. The similarity measurement was the same as that in

Section 3.3.3. Each listener was asked to determine whether the speakers of the natural

and converted utterances are the same or not, and the final similarity score is the sum

of the definitely the same and maybe the same scores. As shown in Fig. 4.11, the

proposed method achieves a higher speaker similarity than the DMDN-based system

with the WORLD vocoder, which is consistent with previous comparisons with the WN
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and WORLD vocoders [47, 48]. Moreover, the proposed system also attains a similar

speaker similarity to the DNN-based system with the WN vocoder, which confirms

that the proposed LPCDC with the CSSD can simultaneously ease the collapsed speech

problem, greatly alleviate the negative effect of the LPCDC, and maintain the same

speaker similarity as the vanilla WN vocoder without the collapsed speech problem

Comparison with NU VCC2018 System

Our non-parallel VC system submitted to VCC2018 (NU non-parallel VC system) [43]

was a DNN-based non-parallel VC system with the vanilla WN vocoder. The collapsed

speech utterances were detected using power differences between the generated and

reference utterances, which achieves a lower accuracy than the CSSD method with

waveform envelope detection. Moreover, the LPCDC was applied to the whole col-

lapsed speech utterance, which also caused speech quality degradation. However, the

system still attained second place in the speaker similarity test and above-average

speech quality as shown in Section 3.3.3. In this chapter, a DMDN-based system with

the proposed CSSD and LPCDC is introduced. Since the system applies the LPCDC

to only the CSSD detected collapsed speech segments, the speech degradation caused

by the LPCDC was greatly alleviated. The experimental results also confirm the effec-

tiveness of the proposed CSSD and LPCDC modules. To sum up, the proposed system

in this chapter obviously outperforms the previously submitted system.

4.7 Summary

In this chapter, we first introduce the collapsed speech problem of the WN vocoder,

and then the proposed collapsed speech detection and suppression framework are pre-
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sented. The collapsed speech is caused by the prediction errors of the WN vocoder,

and the possible reasons are limited training data, conditioned on distorted features,

and exposure bias. The WN prediction errors result in waveform-domain discontinuity

causing noisy voices, and the phenomena can be observed in the WN-predicted PMF

sequences. Moreover, significant quality degradation caused by the collapsed speech is

also shown in the subjective results.

An utterance-based detection method using a maximum power difference criterion

and a segmental detection method using a waveform envelope difference criterion,

CSSD, are introduced. Because of the segmental detection and the straightforward

criterion, the proposed CSSD outperforms the power-based method. Moreover, the

segmental detection also makes the system apply the proposed collapsed speech sup-

pression method to only the detected segments, which greatly restricts the negative

effects of the suppression method in short periods.

An LPC coefficients-derived distribution constraint, LPCDC, is introduced to sup-

press the collapsed speech. The prior speech continuity knowledge is extracted from

the WORLD-generated reference speech and applied to the WN-predicted distribution.

Although the LPCDC also introduces extra degradation, the LPCDC combined with

the CSSD still significantly improves the speech quality of the utterances suffering the

collapsed speech problem.

The proposed LPCDC combined with the CSSD was applied to our non-parallel VC

system submitted to VCC2018, and the subjective results show that the advanced sys-

tem in this chapter outperforms the submitted system. Since the proposed framework

can be applied to any predicted probability distribution, the framework might be easily

extended to other AR neural vocoders such as WaveRNN [15], which sequentially pre-

dicts the probability distribution of each speech sample. Furthermore, the LPC codec



4.7. Summary 75

of the proposed distribution constraint also can be easily replaced by other advanced

speech coding techniques.

To summarize, in this chapter, the evaluation results show that directly combining

the WN vocoder with a VC model sometimes causes the collapsed speech problem.

To improve the robustness of the baseline VC system, a waveform-based constraint

has been introduced to the WN vocoder to tackle the collapsed speech problem. The

proposed method adopts the prior knowledge of the speech continuity and the stability

of the WORLD-generated speech to design the detection and suppression techniques.

The evaluation results also show the improved speech quality of the WN-generated VC

utterances adopting the proposed LPCDC and CSSD, which indicates the robustness

of the WN vocoder against the distorted acoustic features has been enhanced by the

proposed techniques. Furthermore, besides the robustness of the WN vocoder, another

essential feature, controllability of the speech components, of a vocoder will be explored

in the next chapter.





5 Quasi-Periodic WaveNet for

Audio Waveform Generation

In Chapter 3 and 4, the proposed baseline speaker voice conversion (VC) system,

the instability of the WaveNet (WN) vocoder combined with the VC model, and the

techniques for easing the unstable problem were introduced. In addition to the VC

scenario and the robustness enhancement of the WN vocoder, the pitch controllability,

which is an essential feature of a vocoder, and the pitch transformation scenario will

be presented in this chapter. Specifically, the proposed collapsed speech detection and

suppression techniques in Chapter 4 focused on only the speech continuity and avoiding

the collapsed speech problem, but the match of the generated speech and the input

VC acoustic features was not considered. However, a vocoder should precisely generate

speech according to the changes of the input acoustic features. In this chapter, the

insufficient pitch controllability of the WN vocoder and the improved WN vocoder

with pitch-dependent architectures will be introduced. Moreover, the performance of

the improved WN vocoder combined with the baseline VC model will also be evaluated.

5.1 Introduction

Since audio waveform is a sequential signal with extremely high temporal resolution

(sampling rates are usually higher than 16 kHz), directly modeling the long term de-

pendence of audio waveform is challenging. Conventional audio analysis and synthesis
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techniques, which are called the vocoder [29–31], usually encode audio into low tem-

poral resolution acoustic features and decode audio waveforms on the basis of these

acoustic features. However, because of the lost temporal details and phase information

during the analysis and synthesis, conventional vocoders [35, 37] usually suffer from

buzz noise and naturalness degradation.

Owing to the recent development of deep learning, many neural-based audio genera-

tion models [12–20,68–70] have been proposed to directly model raw audio waveforms

without many over-simplified assumptions of speech generation imposed on conven-

tional vocoders. In this chapter, we focus on the state-of-the-art audio generation

model, WN [12]. The core of WN is a convolutional neural network (CNN)-based au-

toregressive (AR) network modeling the probability distribution of each audio sample

conditioned on auxiliary features and a fixed number of previous samples called a re-

ceptive field. A variety of applications such as music generation [129], text-to-speech

(TTS) [11,130], speech coding [131], speech enhancement [132,133], and voice conver-

sion [43, 44, 46] have adopted WN. Furthermore, taking WN as a vocoder [47–49, 74]

to generate speech waveforms conditioned on conventional-vocoder-extracted acoustic

features greatly ease the lost information problem of conventional vocoders.

Although WN achieves high-fidelity speech generation, the fixed architecture without

prior knowledge of audio periodicity is inefficient and limits the pitch controllability of

the WN vocoder. For instance, because of the quasi-periodicity of speech, each sample

may have a specific dependent field related to its periodicity instead of a fixed receptive

field that presumably includes many redundant previous samples. Furthermore, the

data-driven architecture without prior periodic knowledge only implicitly models the

relationship between the periodicity of waveform signals and the auxiliary fundamental

frequency (F0) features, which may not explicitly generate speech with the precise
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pitch corresponding to the auxiliary F0 values, especially in an unseen F0 case [38,39].

However, the pitch controllability is an essential feature for the definition of a vocoder.

To address these problems, we proposed Quasi-Periodic WaveNet (QPNet) [38, 39]

with a pitch-dependent dilated convolution neural network (PDCNN) inspired by

the source–filter model [34] and code-excited linear prediction (CELP) codec [32, 33].

Specifically, the generation process of periodic signals can be modeled as the generation

of a single periodic cycle signal (short-term correlation) and then extending this single

cycle signal to form the whole periodic sequences based on pitches (long-term corre-

lation). Therefore, QPNet including two cascaded networks has been proposed. The

first network is vanilla WN with a fixed network architecture modeling the short-term

correlations of the nearest samples within one periodic cycle. The second network is

a pitch-dependent WN with an adaptive network architecture utilizing the PDCNNs

to link the correlations of the relevant segments in the current and previous periodic

cycles. With the cascaded network structure, the proposed QPNet achieves higher

pitch controllability and maintains similar speech quality with a more compact model.

This chapter is organized as follows. In Section 5.2, a brief introduction of WN and

the limitations of the WN vocoder is presented. In Section 5.3, the concepts and details

of the QPNet are described. In Sections 5.4, the effectiveness of the QPNet for gener-

ating high-temporal-resolution periodic sinusoid signals was evaluated. In Section 5.5,

objective and subjective tests were conducted to evaluate the speech generation with

pitch manipulations performance. In Section 5.6, the results of the QPNet combined

with VC are reported. Finally, the conclusion is given in Section 5.7.
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5.2 WaveNet and Limitations of WaveNet Vocoder

WaveNet [12] is a CNN-based AR model sequentially predicting the probability dis-

tribution of each waveform sample conditioned on a fixed number of previous samples

and auxiliary features. The probability distribution is formulated as

P (x | h) =
T∏
t=1

P (xt | xt−1, . . . , xt−r,h) (5.1)

where t is the sample index, xt is the current audio sample, h denotes the auxiliary

features, and the receptive field length is r. Since the model capacity is highly related

to the length of the receptive field, WN applies stacked dilated CNNs (DCNN) [75] to

efficiently attain a large receptive field. Furthermore, taking WN as a vocoder [47, 48]

to generate speech conditioned on the auxiliary acoustic features extracted by conven-

tional parametric-based vocoders also achieves marked speech quality improvements.

However, the core of a vocoder is the controllability of each speech component such

as pitch. Although the WN vocoder achieves high-fidelity speech generation, the WN

vocoder lacks pitch controllability. Specifically, when conditioned on the F0 values

that are not observed in the F0 range of training data, the WN vocoder usually has

difficulties in generating speech with precise pitch [38,39]. Moreover, even if the F0 and

spectral features are within the observed range, an unseen combination of the auxiliary

features still markedly degrades the generation performance of the WN vocoder [27,

28, 43, 44, 46]. The possible reasons for this problem are that WN lacks prior speech

knowledge and does not explicitly model the relationship between the auxiliary F0

feature and pitch. Moreover, because of the fixed architecture of the WN, each sample

has the same receptive field length. However, making each sample have a specific

receptive field length corresponding to its pitch is more reasonable. The inefficient

receptive field extending of the WN may lead to the costly requirements of a huge
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network and lots of computation power.

5.3 Quasi-Periodic WaveNet

To improve speech modeling efficiency and pitch controllability, the proposed QPNet

introduces the prior knowledge of speech periodicity into WN by dynamically changing

the network architecture according to the auxiliary F0 features. As shown in Fig. 5.1,

the main differences between WN and QPNet are the pitch-dependent dilated convo-

lution mechanism handling the periodicity of audio signals and the cascaded fixed and

adaptive residual blocks simultaneously modeling the long- and short-term correlations

of speech samples. The pitch filtering in CELP, which is the basis of the PDCNN, and

the details of QPNet are described as follows.

5.3.1 Pitch Filtering in CELP

As shown in Fig. 5.2, the CELP system [32, 33] includes an innovation signal code-

book and two cascaded time-varying linear recursive filters, and the speech modeling is

formulated into three steps. First, each innovation signal in the codebook is scaled and

passed to the pitch filter (long delay) to generate the pitch periodicity of the speech,

and then the linear-prediction filter (short delay) restores the spectral envelope to ob-

tain the synthesized speech. Secondly, the mean-square errors between the original

and synthesized speech signals are weighted by a linear filter to attenuate/amplify fre-

quency components that are less/more perceptually important. Finally, the optimum

innovation signal and the scaled factor are determined by minimizing the weighted
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mean-square error. Specifically, the pitch-filtering process can be formulated as

c
(o)
t = g × c

(i)
t + b× c

(o)
t−td

(5.2)

where c(i) is the input, c(o) is the output, td is the pitch delay, g is the gain, and b is

the pitch filter coefficient. This periodic feedback structure handling speech periodicity

is the basis of the proposed PDCNN, and the cascaded recursive structure modeling

hierarchical speech information is also applied to QPNet.
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5.3.2 Causal Pitch-dependent Dilated Convolution

The main idea of the PDCNN is that since audio signals have the quasi-periodic

property, the network architecture can be dynamically adapted using the prior periodic

information. Specifically, a causal convolution with a size two kernel can be formulated

as

y
(o)
t = W (c) × y

(i)
t +W (p) × y

(i)
t−d, (5.3)

where y
(o)
t is the output of the DCNN layer at sample t, y

(i)
t is the input of the DCNN

layer at sample t, and d is the dilation size. The trainable 1×1 convolution filters W (c)

andW (p) are respectively for the current and previous samples. The dilation size of the

vanilla CNN is set to one, and the dilation size of the DCNN is predefined and constant.

However, the dilation size of the PDCNN is pitch-dependent and time-variant.

To efficiently enlarge the receptive field length, stacked chunks including DCNN

layers with different dilation sizes are adopted in the vanilla WN. Each chunk contains

a specific number of DCNN layers, and the dilation sizes of the DCNN layers in each
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Figure 5.4: Sampling sparsity of different dense factor a.

chunk are exponentially increased with base two. As shown in Fig. 5.3, the dilation sizes

of PDCNN layers in the stacked adaptive chunks of QPNet follow the same extension

rule but multiplied by an extra dilated factor to match the instantaneous pitch of the

current sample. The pitch-dependent dilated factor Et is derived from

Et = Fs/(F0,t × a), (5.4)

where Fs is the utterance-wise constant sampling rate, F0,t is the fundamental frequency

with speech sample index t, and a is a hyperparameter called the dense factor, which

indicates the number of samples in one periodic cycle taken into consideration as shown

in Fig. 5.4 when predicting the current sample.

Specifically, the grid sampling locations of each DCNN is controlled by the dilation

size d, and the dilation size d′ of each PDCNN is controlled by the dilated factor Et as

d′ = Et × d. (5.5)
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Figure 5.5: Effective receptive fields with different F0 values.

The sparsity of the CNN sampling grids is controlled by set specific F0 values and dense

factor a to attain the desired effective receptive field length. As shown in Fig. 5.5,

because of the same dense factors and sampling rates of the sinusoids in Fig. 5.5 (a)

and (b), even though the frequencies of these sinusoids are different, their effective

receptive fields still include the same numbers of periodic cycles. The difference is the

temporal sparsity of the effective receptive field. The lower the frequency, the higher

the sparsity. That is, fixing the number of sampling grids in each periodic cycle by

the dense factor and changing the gaps between the grid sampling locations by the

instantaneous F0 values lead to pitch-dependent and time-variant effective receptive

field lengths.

In summary, the dilated factor Et is the ratio of the effective receptive field length

to the receptive field length, and the ratio of the receptive field length to the dense

factor a is the number of past period cycles in the effective receptive field. With

the pitch-dependent structure, each sample has an exclusive effective receptive field
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length, which is efficiently enlarged according to the auxiliary F0 values. In addition,

since speech has voiced and unvoiced segments, we have tried to set Et to one or the

value calculated by interpolating the F0 values of the adjacent voiced segments for the

unvoiced segments, and the results in Section 5.5 show that QPNet with the continuous

Et from interpolated F0 values achieves higher speech quality.

5.3.3 Cascaded Autoregressive Network

Audio generative models are usually capable to simultaneously model the long-term

(periodicity) and short-term (aperiodicity) correlations of audio samples because most

audio signals are sequential and quasi-periodic. As shown in Fig. 5.1, a fixed macroblock

and an adaptive (pitch-dependent) macroblock are adopted in the proposed QPNet.

The fixed macroblock models the sequential relationship between the current sample

and a segment of the most recent samples. The adaptive macroblock models the

periodic correlations of the current and related past segments in the successive periodic

cycles. Specifically, the fixed macroblock (macroblock 0 in Fig. 5.1) of the QPNet is

composed of several fixed chunks. Each fixed chunk consists of several stacked residual

blocks with DCNNs (fixed blocks), conditional auxiliary features, gated activations, and

residual and skip connections, similarly to the vanilla WN. The adaptive macroblock

(macroblock 1 in Fig. 5.1) also contains several adaptive chunks, which also have similar

stacked residual blocks but with PDCNNs (adaptive blocks). In summary, the cascaded

structure of QPNet presumably mimics a similar generative procedure of CELP for

quasi-periodic audio signals generation.
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Table 5.1: Architecture of sinusoidal generative model

WNf WNc (r)QPNet pQPNet

Fixed chunk 3 4 3 -

Fixed block 10 4 4 -

Adaptive chunk - - 1 4

Adaptive block - - 4 4

CNN channel (Causal and dilated CNN) 128

CNN channel (CNN in residual block) 128

CNN channel (CNN in output layer) 64

Number of trainable parameter (×106) 2.4 1.5 1.5 1.5

5.4 Periodic Signal Generation Evaluation

To evaluate the pitch controllability of the proposed QPNet with the PDCNNs, gen-

erative evaluations of simple periodic but high-temporal-resolution signals were con-

ducted. The training data of QPNet were sine waves within a specific frequency range

and the corresponding F0 values. In the test stage, QPNet was conditioned on an F0

value and a small piece of the related sine wave for initializing the receptive field to

generate sinusoid waveforms.

5.4.1 Experimental Setting

Model Architecture

Three types of QPNet with two types of WN were involved in this evaluation. Specif-

ically, in addition to the basic QPNet, because a sinusoid is a simple periodic signal

that can be modeled well by a pure pitch-dependent structure, the QPNet model with

only adaptive residual blocks (pQPNet) was taken into account. The QPNet model

with the reverse order of the fixed and adaptive macroblocks (rQPNet) was also con-
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sidered. Moreover, a compact-size WN (WNc) and a full-size WN (WNf) models were

evaluated as a control group.

The details of the network architectures are shown in Table 5.1. Since the numbers

of CNN channels were the same for all models, the model sizes were proportional to

the numbers of the chunks and residual blocks. For instance, the WNf contained 3

chunks and each chunk included 10 residual blocks, so the model size of the WNf was

larger than that of the WNc, which only had 4 chunks with 4 residual blocks in each

chunk. The learning rate was 1× 10−4 without decay, the minibatch size was one, the

batch length was 22,050 samples, the training epochs were two, and the optimizer was

Adam [117] for all models.

Evaluation Setting

The pitch range of the training sine waves was set to be in the same range as most

speech, which was 80–400 Hz with a step size of 20 Hz (ex: 80, 100, 120 . . . Hz). A

related one-dimensional F0 value was adopted as the auxiliary feature for each model.

Since the single-tone generation was evaluated, the auxiliary features of all samples in

one utterance were the same. To prevent the networks from suboptimal training and

lacking the generality for sinusoid generations with unseen F0 values, both sinusoid

and auxiliary signals were mixed with white noise.

The signal-to-noise ratio (SNR) of the sine waves was around 20 dB, and the noise of

the auxiliary feature was a random sequence between -1 and 1. Random initial phases

were also applied to the sinusoid signals. The number of training utterances was 4000,

and each utterance was one second. The ground truths were clean sinusoid signals, so

each model was trained as a denoising network. The test data included 20 different F0

values, which were 10–80 Hz with a step size of 10 Hz, 100–400 Hz with a step size of
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100 Hz, and 450–800 Hz with a step size of 50 Hz, and each F0 value contained 10 test

utterances with different phase shifts. Both training and test data were encoded using

the µ-law into 8 bits, and the sampling rate was 22,050 Hz.

In the test stage, the initial receptive field of each network was initilized with the

noisy test sine wave, and the length of the generated sinusoid was set to 1s. The quality

of each generated waveform was evaluated based on the SNR and the root-mean-square

error (RMSE) of the log F0 value measured from the peak of the power spectral density

(PSD). Moreover, the test data were divided into 10–40 Hz (under 1/2L), 50–80 Hz

(above 1/2L), 100–400 Hz (inside), 450–600 Hz (under 3/2U), and 650–800 (above

3/2U) subsets. L is the lower bound and U is the upper bound of the inside F0 range,

which was the F0 range of the training data. As a result, the under 1/2L and above

1/2L F0 ranges are the lower outside F0 range, and the under 3/2U and above 3/2U

F0 ranges are the higher outside F0 range.

5.4.2 Performance Measurement

The quality of each generated waveform was evaluated on the basis of the SNR and

the root-mean-square error (RMSE) of the log F0 value measured from the peak of the

power spectral density (PSD). Specifically, because the SNRs are related to the noisy

degrees of the generated signals, the SNR values will indicate the generated signals are

clear sinusoids or not. Since it was a single-tone sinusoid generation test, the high log

F0 RMSEs might imply that the generated signals include much harmonic noise or the

frequencies of these signals are incorrect. In other words, the generated signal with a

high SNR and a high RMSE might be a clear sinusoid with an inaccurate frequency,

the generated signal with a low SNR and a high RMSE might be a noisy sinusoid

with much harmonic noise, and the generated signal with a very low SNR might be a
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noise-like signal.

5.4.3 Experimental Result

The periodic signal generation evaluation includes two parts. First, to explore the

efficient dense factor value of the PDCNNs, several pQPNet models with different dense

factors were evaluated. Secondly, three types of QPNet with the most efficient dense

factor according to the first evaluation and two types of WN were evaluated. The

details are as follows.

Dense Factor

Since the chunk and block numbers of the pQPNets were set to four, the length

of the receptive field was 61 samples. That is, the receptive fields included from 61

past periodic cycles to less than one periodic cycle according to the dense factors

from 20 to 26. Moreover, in contrast to containing a fixed number of past cycles for

sinusoids with arbitrary pitch, the receptive fields of the WNf contained 11 past cycles

for 80 Hz sinusoids and 56 past cycles for 400 Hz sinusoids when the sampling rate

was 22,050 Hz. As a result, the effective receptive fields of the pQPNet with a dense

factor 2 already contained a comparative number of the past periodic cycles as the

WNf. Since the pQPNets introduced prior periodicity knowledge into the network, the

required number of the past cycles for modeling the sinusoids might be less than that

of the WNf.

The number of training epochs of the pQPNet models with dense factors from 22

to 26 was two. For dense factors of 20 and 21, the pQPNets required at least 10

training epochs to attain stable results. As shown in Tables 5.2 and 5.3, even though
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Table 5.2: SNR (dB) of sinusoid generation with different dense factors

Dense 20 21 22 23 24 25 26

Under 1/2L 6.7 14.4 20.8 21.9 25.8 28.0 27.9

Above 1/2L 19.8 11.9 21.5 26.6 24.5 28.9 26.4

Inside 17.1 19.1 19.4 26.0 29.9 23.2 17.5

Under 3/2U 1.1 6.7 3.0 19.9 23.2 17.1 -17.7

Above 3/2U -8.1 -0.8 -0.3 2.7 8.3 3.0 -23.5

Average 7.3 10.3 12.9 19.4 22.3 20.0 6.1

the pQPNet with the dense factor of 20 was trained with 10 epochs, the network was

still very unstable. The results indicate that although the small dense factor made

the network have long effective receptive fields, the overbrief information of each past

periodic cycle might make it difficult to capture audio information well. For the inside

and lower outside F0 ranges, the networks with dense factors greater than 21 achieved

high SNR values. However, the performance of the network with a dense factor of 26

markedly degraded when the auxiliary F0 values were in the higher outside F0 range.

The possible reason is that the PDCNNs of the network degenerated to DCNNs because

the Et became one when the dense factor was 26 and the F0 values were higher than

350 Hz. Moreover, the log F0 RMSE results show a similar tendency to the SNR results.

The networks with dense factors of 20 and 26 achieved the lowest pitch accuracies while

the networks with dense factors of 22 and 23 achieved the highest pitch accuracies.

Furthermore, according to the Nyquist–Shannon sampling theorem [134], a signal

can be perfect reconstructed if the bandwidth of the signal is less than the halved

sampling rate. Therefore, the dense factor 21 is theoretically enough to model the

periodic signals. The instability and markedly high RMSE results of the pQPNet with

dense factor 20 also confirm this theory. However, in signal processing, oversampling
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Table 5.3: Log F0 RMSE of sinusoid generation with different dense factors

Dense 20 21 22 23 24 25 26

Under 1/2L 0.26 0.00 0.00 0.00 0.03 0.05 0.14

Above 1/2L 0.00 0.01 0.00 0.00 0.01 0.01 0.10

Inside 0.42 0.00 0.00 0.01 0.01 0.02 0.03

Under 3/2U 1.95 0.08 0.03 0.04 0.08 0.09 0.89

Above 3/2U 0.61 0.04 0.05 0.06 0.09 0.15 1.97

Average 0.65 0.03 0.02 0.02 0.04 0.06 0.63

usually improves resolution and SNR, and relaxes filter performance requirements to

avoid aliasing. The higher SNR and lower RMSE of the pQPNets with dense factor

22 and 23 have shown this tendency, and the performance degradation of the pQPNet

with dense factor 26 is caused by the PDCNN degeneration issue, which is irrelevant

to the sampling theorem.

In conclusion, the PDCNN with an appropriate dense factor was found to be robust

against the conditions in the outside F0 range, especially in the lower outside F0 range

conditions. For the higher outside F0 range conditions, the networks still had acceptable

quality until the F0 value exceeded 600 Hz. Therefore, we set the dense factors to 23 for

the models in the following evaluations because of the balance between the generative

performance and the number of past periodic cycles covered in its receptive fields.

Network Comparison

As shown in Tables 5.4, the PDCNNs significantly improved pitch controllability.

The PDCNNs made the QP-series networks achieve much higher SNR and lower log

F0 RMSE values than the same-size WNc network in both higher and lower outside F0

ranges, and it shows the effectiveness of the PDCNNs to enlarge the effective receptive
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Table 5.4: SNR (dB) and Log F0 RMSE of sinusoid generation with different models

WNc WNf pQPNet QPNet rQPNet

SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE

Under 1/2 L -18.1 2.93 24.3 1.75 21.9 0.00 -8.1 2.00 18.4 0.18

Above 1/2 L 8.1 0.55 23.0 0.58 26.6 0.00 28.2 0.02 28.7 0.00

Inside 28.8 0.01 34.5 0.00 26.0 0.01 25.9 0.01 27.0 0.00

Under 3/2 U 13.7 0.04 17.6 0.50 19.9 0.04 8.7 0.11 19.3 0.11

Above 3/2 U -14.1 0.12 -0.4 0.48 2.7 0.06 -18.6 0.48 -8.2 0.06

Avg. 3.7 0.73 19.8 0.66 19.4 0.02 7.2 0.53 17.0 0.07

field length. Although the full-size WNf attained similar SNRs to the pQPNet, the

log F0 RMSE of WNf was much higher in the outside F0 ranges. The results indi-

cate that the WNf tended to generate the signals in the inside F0 range instead of

being consistent with the auxiliary F0 feature. That is, the generated waveform of the

WNf might still be a perfect sinusoid signal but with an incorrect pitch. The results

also imply that the PDCNNs improved the periodical modeling capability using prior

periodicity knowledge. Furthermore, because of the simple periodic signal generation

scenario, the pQPNet with the longest effective receptive fields and the pure PDCNN

structure attained the best generative performance among all QP-series networks. The

QPNet and the rQPNet showed some quality degradations when the auxiliary F0 val-

ues were far away from the inside F0 range, but they still outperformed the WNc in

both measurements and the WNf in terms of log F0 RMSE.

5.4.4 Discussion

To further explore the physical phenomena behind the objective results, several si-

nusoid generation examples are presented. As shown in Figs. 5.6 (a) and (b), the
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Figure 5.6: Waveform and PSD of 500 Hz sinusoid generated by pQPNets with dense

factors (a, b) 23, (c, d) 20, and (e, f) 26.

pQPNet with a dense factor 23 generated clear sine waves with an SNR 23.7 dB when

conditioned on an outside auxiliary value of 500 Hz (under 3/2U). The peak value of

the PSD of the pQPNet-generated signal is 502 Hz, which is very close to the ground

truth, and the log F0 RMSE is less than 0.01. However, the results in Figs. 5.6 (c) and

(d) show that the sine wave generated by the pQPNet with a dense factor 20 includes

much harmonic noise, which results in a low SNR. Even if the generated sine wave is

still like a periodic signal, the wrong peak value from the second harmonic component

of the PSD also causes a high log F0 RMSE. Moreover, the results in Figs. 5.6 (e) and

(f) show that the pQPNet with a dense factor 26 generated a very noisy signal, which

results in a low SNR and an incorrect peak value of its PSD.

In addition, as shown in Figs. 5.7 (a) and (b), the pQPNet with a dense factor 23
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Figure 5.7: Waveform and PSD of 20 Hz sinusoid generated by (a, b) pQPNet with a

dense factor 23 (c, d) WNc, and (e, f) WNf.

still generated a clear sine wave with an SNR 23.3 dB and a correct peak value of its

PSD when conditioned on an outside 20 Hz (under 1/2L) auxiliary value. However, the

same-size WNc could not generate any meaningful signal, and the SNR of the WNc-

generated signal is very low as shown in Figs. 5.7 (c) and (d). on the other hand, the

WNf still generated a clear sine wave with an SNR 33 dB but its frequency is incorrect

as shown in Figs. 5.7 (e) and (f). Specifically, the PSD peak value is 120 Hz, and it

implies that the WNf tends to generate seen signals even if conditioned on an unseen

auxiliary feature.

The results confirm our assumptions that the high SNR and RMSE signal like Fig. 5.7

(e) is a clear sinusoid with an inaccurate frequency, the low SNR and high RMSE

signal like Fig. 5.6 (c) is a noisy sinusoid with much harmonic noise, and the very low
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SNR signal like Figs. 5.6 (e) or 5.7 (c) is a noise-like signal. More results of different

frequencies can be found on our demo page1.

5.5 Speech Generation Evaluation

In this section, the effectiveness of the PDCNNs for speech generation are evaluated.

The appropriate proportions of adaptive and fixed residual blocks, the continuous pitch-

dependent dilated factor, and the order of the macroblocks are explored.

5.5.1 Experimental Setting

Model Architecture

Three types of vocoder, WN, QPNet, and WORLD (WD), were involved in the

speech generation evaluation, and the total number of all vocoder variants was 11.

First, to explore the efficient receptive field extension by the PDCNNs, the compact-

size QPNet vocoders were compared with the same-size WNc and double-size WNf

vocoders. Secondly, eight variants of QPNet were adopted. Four compact-size QPNet

models and four full-size QPNet (QPNetf) models, which were full-size WN vocoders

cascaded with four extra adaptive residual blocks, were also taken into consideration

to explore the effect of the ratio of adaptive to fixed residual blocks. Both fixed-to-

adaptive (QPNet) and reversed adaptive-to-fixed (rQPNet) macroblock orders were

evaluated. Moreover, continuous and discrete Et sequences were also explored. For

the unvoiced frames, the discrete Et sequence was set to ones, and the continuous Et

sequence was calculated using interpolated F0 values as mentioned in Section 5.3.2.

Last, the conventional WD vocoder was adopted as a reference.

1https://bigpon.github.io/QuasiPeriodicWaveNet demo/
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Table 5.5: Architecture of speech generative model

WNf WNc (r)QPNet (r)QPNetf

Fixed chunk 3 4 3 3

Fixed block 10 4 4 10

Adaptive chunk - - 1 1

Adaptive block - - 4 4

CNN channel (Causal and dilated CNN) 512

CNN channel (CNN in residual block) 512

CNN channel (CNN in output layer) 256

Number of trainable parameter (×106) 44 24 24 50

The network architectures and model sizes are shown in Table 5.5. The learning rate

was 1 × 10−4 without decay, the minibatch size was one, the batch length was 20,000

samples, and the optimizer was Adam [117] for all models. Since even the compact-size

WNc had tens of millions parameters, which was the same order of magnitude as that

of WNf, the training iterations were empirically set to 200,000 for all models. Note

that we did not evaluate speech generation using the pQPNet model because it failed

to model the short-term correlation of speech according to our internal experiments.

Evaluation Setting

All models were trained in a multispeaker manner. The training corpus of these

multispeaker NN-based vocoders consisted of the training sets of the “bdl” and “slt”

speakers of CMU-ARCTIC [128] and all speakers of voice conversion challenge 2018

(VCC2018) [115]. The total number of training utterances was around 3000, and the

total training data length was around three hours. The evaluation corpus was composed

of the SPOKE set of VCC2018, which included two female and two male speakers, and

each speaker had 35 test utterances. All speech data were set to a sampling rate of
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22,050 Hz and a 16-bit resolution. The waveform signals for the categorical output

of the NN-based vocoders were further encoded into 8 bits using the µ-law. The 513-

dimensional spectral (sp) and aperiodicity (ap) and one-dimensional F0 features were

extracted using WD. The sp feature was further parameterized into 34-dimensional

mcep, ap was coded into two-dimensional components, and F0 was converted into

continuous F0 and the voice/unvoice (U/V ) binary code for the auxiliary features [47].

The F0 range of the SPOKE set was around 40–330 Hz, and the F0 mean was around

150 Hz. The unseen outside auxiliary features were simulated by replacing the original

F0 values of the acoustic features with the scaled F0 values, and the scaling ratios were

1/2, 3/4, 5/4, 3/2, and 2. A demo and open-source QPNet implementation can be

found on our demo page2.

5.5.2 Objective Evaluation

For the objective evaluations, the ground truth acoustic features were extracted

from natural speech utterances using WD, and the extraction error from WD was

neglected. A speaker-dependent F0 rage was applied to the feature extraction of each

speaker to improve the extraction accuracy, and the F0 range was set following the

process in a open-source VC system (sprocket3). Since WD was developed to extract

F0 independent spectral features [37], the WD-extracted sp feature was assumed to

be highly uncorrelated to the F0 feature in this chapter. Therefore, the ground truth

acoustic features for the scaled F0 scenarios were the same natural spectral features

with the F0 feature scaled by an assigned ratio. The auxiliary features of the evaluated

vocoders were the ground truth acoustic features. Mel-cepstral distortion (MCD) was

2https://bigpon.github.io/QuasiPeriodicWaveNet demo/
3https://github.com/k2kobayashi/sprocket
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Table 5.6: QPNet with different dense factors

Dense 20 21 22 23 24 25 26

MCD (dB) 4.05 4.02 4.03 4.08 4.17 4.63 4.26

F0RMSE 0.23 0.17 0.15 0.13 0.14 0.21 0.24

U/V (%) 21.8 16.0 14.2 13.2 13.5 20.9 19.3

applied to measure the spectral reconstruction capability of the vocoders, and the

MCD was calculated between the auxiliary mcep and the WD-extracted mcep from

the generated speech. The pitch accuracy of the generated speech was evaluated using

the RMSE of the auxiliary F0 and the WD-extracted F0 value from the generated

speech in the logarithmic domain. The unvoiced/voiced (U/V ) decision error was also

taken into account in the evaluation of the prosodic prediction capability, which was

the percentage of the unvoiced/voiced decision difference of each utterance.

An objective evaluation of the QPNet models with different dense factors for speech

generation was first conducted to check the consistency of the efficient dense factor

value. As shown in Table 5.6, the tendency of the objective evaluation is similar to the

results of the sinusoid generation evaluation. That is, the QPNets with dense factors

from 21–24 achieved similar generative performance while the speech quality and pitch

accuracy of the QPNets with dense factors 25 and 26 markedly degraded because of

the much shorter effective receptive field lengths. Specifically, as shown in Table 5.7,

the average effective receptive field lengths of the QPNets with the dense factors 25

and 26 are much shorter than others, and the lengths were too short to cover at least

one cycle of the signal with 150 Hz, which was the F0 mean of the SPOKE set.

Furthermore, although the QPNet with a 20 dense factor had the longest average

effective receptive field length and achieved an acceptable MCD, the higher RMSE of

log F0 and U/V error indicate its instability, which was also observed in the sinusoid
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Table 5.7: Average effective receptive field length (samples).

Dense 20 21 22 23 24 25 26

Length 2753 1399 723 384 215 130 88

Table 5.8: MCD (dB) of different speech generative models

WD WNc WNf QPNet rQPNet QPNetf rQPNetf

Et - - - cont. disc. cont. disc. cont. disc. cont. disc.

1× F0 2.51 4.34 3.58 4.08 4.16 3.59 3.60 3.91 3.97 3.54 3.58

1/2×F0 3.88 5.02 4.56 4.79 4.90 4.49 4.46 4.66 4.79 4.43 4.40

3/4×F0 2.91 4.58 3.95 4.34 4.43 3.95 3.91 4.19 4.26 3.87 3.88

5/4×F0 2.76 4.39 3.62 4.16 4.25 3.54 3.60 3.98 4.03 3.60 3.63

3/2×F0 3.04 4.50 3.68 4.27 4.35 3.56 3.64 4.06 4.12 3.65 3.67

2× F0 3.75 4.75 3.86 4.59 4.64 3.82 3.88 4.33 4.37 3.92 3.90

Average 3.14 4.60 3.87 4.37 4.45 3.83 3.85 4.19 4.26 3.84 3.84

generation evaluation. The results also confirm our assumption that the QPNet with

a 20 dense factor cannot model the periodic components well because the Nyquist fre-

quency of the QPNet adaptive macroblock is lower than the bandwidth of the periodic

components. Moreover, because of the natural fluctuations of speech, F0 extraction

errors, etc., the oversampling models with an appropriate dense factors such as 22–24,

which keep long enough effective receptive fields, also achieve better performance. As

a result, the dense factors of the following QPNet-series models were set to 23 because

of the lowest RMSE of log F0 and U/V error with an acceptable MCD. Our internal

subjective evaluation results also show the preference of the utterances generated by

the QPNet with the dense factor 23.

As shown in Table 5.8, in terms of spectral prediction capability, the compact-size
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Table 5.9: Log F0 RMSE of different speech generative models

WD WNc WNf QPNet rQPNet QPNetf rQPNetf

Et - - - cont. disc. cont. disc. cont. disc. cont. disc.

1× F0 0.09 0.26 0.14 0.13 0.14 0.15 0.15 0.16 0.16 0.15 0.15

1/2×F0 0.13 0.38 0.30 0.23 0.24 0.33 0.34 0.26 0.26 0.33 0.33

3/4×F0 0.10 0.32 0.20 0.17 0.18 0.22 0.22 0.21 0.22 0.21 0.21

5/4×F0 0.09 0.25 0.17 0.14 0.13 0.15 0.15 0.16 0.16 0.15 0.16

3/2×F0 0.09 0.27 0.21 0.16 0.15 0.19 0.19 0.18 0.19 0.20 0.20

2× F0 0.09 0.28 0.26 0.18 0.17 0.26 0.26 0.18 0.20 0.29 0.33

Average 0.10 0.29 0.21 0.17 0.17 0.22 0.22 0.19 0.20 0.22 0.23

(r)QPNet vocoders with the proposed PDCNNs significantly outperformed the same-

size WNc vocoder. The results confirm the effectiveness of the QP structure to skip

some redundant samples using the prior periodicity knowledge for a more efficient

receptive field extension. However, the MCDs of the double-size WNf vocoder are lower

than that of the compact-size (r)QPNet vocoders, and the full-size (r)QPNetf vocoders

with the largest network size also outperformed the WNf vocoder in terms of MCD.

The results indicate that the MCD values are highly related to the network sizes, so

a deeper network attains a more powerful spectral modeling capability. Furthermore,

the systems with continuous pitch-dependent dilated factors achieved better MCDs

than those with discrete ones, and the result is consistent with our internal subjective

evaluation for speech quality. However, the MCD differences of the rQPNet and QPNet

vocoders were not reflected in the perceptual quality, and they had similar speech

qualities according to the internal evaluation.

The log F0 RMSE results in Table 5.9 also show that both the compact-size QPNet

and rQPNet vocoders attained markedly higher pitch accuracy than the same-size

WNc vocoder, particularly when conditioned on the unseen F0 with a large shift.
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Since the WNf vocoder usually generates seen signals even conditioned on unseen

auxiliary features, the compact-size QPNet vocoder achieved higher pitch accuracies

than the WNf vocoder as expected. The results indicate that the PDCNNs with

the prior periodicity knowledge improved the pitch controllability of these vocoders

against the unseen F0. However, the pitch accuracies of the full-size QPNetf and

rQPNetf vocoders are lower than that of the (r)QPNet vocoders. The possible reason

is that the unbalanced proportion of the adaptive and fixed residual blocks impaired

the pitch controllability. That is, for the full-size (r)QPNetf vocoders, the number of

the fixed blocks is markedly larger than the number of the adaptive blocks. Therefore,

the network might be dominated by the fixed blocks, which degraded the influence

from the adaptive blocks. For the (r)QPNet vocoders with a dense factor 23, the

receptive field length of the fixed blocks is 46 samples (The details of the receptive field

length can be found in Discussion), and the average effective receptive field length of

the adaptive blocks is 384 samples as shown in Table 5.7. However, for the full-size

(r)QPNetf vocoders, the receptive field length of the fixed blocks is 3070 samples, which

was much longer than the 384 samples of the extra four adaptive blocks. Therefore,

the influence of the adaptive blocks might be very limited.

As shown in Table 5.10, the compact-size QPNet vocoder attained the lowest U/V

decision error among all NN-based vocoders, and it indicates a higher capability to

capture U/V information. In conclusion, the compact-size QPNet vocoder with the

proposed PDCNNs and continuous pitch-dependent dilated factors attained the high-

est accuracy of pitch and U/V information among the evaluated NN-based vocoders.

Although the compact-size QPNet vocoder did not achieve the same spectral prediction

capability as the WNf vocoder according to the MCD results, it is difficult to measure

a perceptual quality difference only based on MCD. As a result, subjective evaluations
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Table 5.10: U/V Decision error rate (%) of different speech generative models

WD WNc WNf QPNet rQPNet QPNetf rQPNetf

Et - - - cont. disc. cont. disc. cont. disc. cont. disc.

1× F0 9.9 23.6 14.5 13.2 13.9 14.9 14.3 15.7 15.2 14.0 14.7

1/2×F0 16.0 35.0 26.6 22.3 22.8 29.9 30.1 27.6 26.3 29.5 30.4

3/4×F0 12.2 29.1 18.2 16.4 17.5 20.2 20.2 19.8 20.2 18.5 19.5

5/4×F0 9.6 24.9 13.3 13.1 13.9 13.9 13.5 14.5 14.2 14.1 13.9

3/2×F0 9.9 27.9 13.8 14.7 15.5 13.6 14.8 16.3 15.7 13.3 14.8

2× F0 10.5 36.7 20.3 21.9 20.6 26.2 24.3 25.3 26.3 29.6 33.4

Average 11.3 29.5 17.8 16.9 17.4 19.8 19.5 19.8 19.7 19.8 21.1

of the compact-size QPNet (with continuous pitch-dependent dilated factors), WNc,

and WNf vocoders are presented in the next section. Moreover, although the WD

vocoder had the best objective evaluation results, the WD-generated speech usually

lacks naturalness and contains buzz noise, which may not be reflected in the objec-

tive measurements. Therefore, the WD vocoder was also involved in the subjective

evaluations.

5.5.3 Subjective Evaluation

The subjective evaluations included the mean opinion score (MOS) test for speech

quality and the ABX preference test for perceptual pitch accuracy. Specifically, the

naturalness of each utterance in the evaluation set for the MOS test was evaluated

by several listeners by assigning scores of 1–5 to each utterance; the higher the score,

the greater naturalness of the utterance. The MOS evaluation set was composed of

randomly selected utterances generated by the WD, WNf, WNc, and QPNet vocoders,

and the auxiliary features with 1/2 F0, 3/2 F0, and unchanged F0. The compact-size
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QPNet vocoder with the continuous dilated factors was adopted and abbreviated as

QPNet in the subjective evaluations. We randomly selected 20 utterances from the 35

test utterances of each condition and each speaker to form the MOS evaluation set, so

the number of utterances in the set was 960. The mean, standard deviation, longest,

and shortest lengths of the selected utterances were 4 s, 1.6 s, 8 s, and 1 s, respectively.

The MOS evaluation set was divided into five subsets, and each subset was evaluated

by two listeners, so the total number of listeners was 10. All listeners took the test

using the same devices in the same quiet room. Although the listeners were not native

speakers, they had worked on speech or audio generation research.

In the ABX preference test, the listeners compared two test utterances (A and B)

with one reference utterance (X) to evaluate which testing utterance had a pitch contour

more consistent with that of the reference utterance. Because the natural speech

with the desired scaled F0 does not exist, and the conventional vocoders usually have

high pitch accuracy, we took the WD-generated speech as the reference. The ABX

evaluation set consisted of the same generated utterances of the WNf, QPNet, and

WD vocoders as the MOS evaluation set. The number of ABX utterance pairs was

240, and each pair was evaluated by two of the same 10 listeners as in the MOS test.

Since the ABX test focus on pitch accuracy, all listeners were asked to focus on the

pitch differences and ignore the quality differences.

MOS of Speech Quality

As shown in Fig. 5.8, for the female speaker set, the QPNet vocoder significantly

outperforms the same-size WNc vocoder in all cases. Although the QPNet vocoder

achieves slightly lower naturalness than the WNf vocoder in the unchanged F0 (in-

side) case, the QPNet vocoder still attains markedly better naturalness than the WNf
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vocoder in the 1/2 F0 (outside) case. The results indicate that halving the network

size markedly degrades the speech modeling capability of the WN vocoder. However,

the proposed PDCNNs significantly improves the modeling capacity with the halved

network size, especially in the 1/2 F0 case which makes QPNet obtain a long effective

receptive field length. On the other hand, owing to the small dilated factors caused

by the high F0 values, many of the PDCNNs may degenerate to DCNNs in the 3/2 F0

case. Specifically, when the dilated factors are less than or equal to one because of the

high F0 values, the dilation sizes of PDCNN are also less than or equal to DCNN. As

a result, while the F0 values of the auxiliary features are scaled by 3/2, although the

QPNet vocoder still outperforms the WNc vocoder, the naturalness of the WNf- and

WORLD-generated utterances is higher than that of the QPNet-generated utterances

because of the much shorter effective receptive field length of the QPNet vocoder.

Furthermore, as the results of the male speaker set shown in Fig. 5.9, the natural-

ness of the QPNet-generated utterances is comparable to that of the WNf-generated

utterances and significantly better than that of the WNc-generated utterances in all

F0 cases. Specifically, even if the F0 values are scaled, most of the 3/2 F0 values of

the male utterances are still within the range of the normal female F0. Therefore, the

effective receptive field lengths of the QPNet vocoder are still much longer than the

receptive field lengths of the WNc vocoder for most male utterances with scaled F0.

On the other hand, the WORLD vocoder shows a similar tendency in the evaluations

of both female and male speaker sets. In the unchanged F0 case, the naturalness of the

WORLD-generated utterances is slightly lower than the WNf- and QPNet-generated

utterances. In the scaled F0 cases, the WORLD vocoder achieves even much lower

naturalness in the 1/2 F0 case, but comparable naturalness in the 3/2 F0 case.
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Figure 5.8: Sound quality MOS evaluation of female speakers with 95 % CI.
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Figure 5.9: Sound quality MOS evaluation of male speakers with 95 % CI.

ABX of Pitch Accuracy

As shown in Figs. 5.10 and 5.11, the QPNet vocoder significantly outperforms the

WNf vocoder in terms of pitch accuracy in most F0 cases and both the female and male

sets except in the unchanged F0 cases of the female set, which may be caused by the

naturalness degradation. The results confirm the pitch controllability improvement of

the QPNet vocoder with the PDCNNs. In summary, the QPNet vocoder with the more

compact network size achieves comparable speech quality to the WNf vocoder under
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Figure 5.10: Pitch accuracy ABX evaluation of female speakers with 95 % CI.
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Figure 5.11: Pitch accuracy ABX evaluation of male speakers with 95 % CI.

most conditions except for the female set with 3/2 F0 because the higher F0 values

may make the PDCNNs degenerate to the DCNNs. The QPNet vocoder conditioned

on the unseen F0 also gets the markedly higher pitch accuracy than the WNf vocoder.

Moreover, the QPNet vocoder achieved higher or comparable speech quality than the

WORLD vocoder under most conditions except conditioned on the acoustic features

with the unseen 3/2 female F0.
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Figure 5.12: Distributions of receptive field lengths of different vocoders.

5.5.4 Discussion

As shown in Fig. 5.12, the length of the receptive fields of WNf is 3070 samples (The

receptive field length of 10 blocks in each chunk is 20+21+ · · ·+29 = 1023 samples, so

the total length is 1023 × 3 samples with an extra one sample from the causal layer),

that of WNc is 61 samples (Each chunk contains 20 + 21 + 22 + 23 = 15 samples, so

the total receptive field length is 15 × 4 + 1 = 61 samples), and that of QPNet is

100–1000 samples (The receptive field length of the fixed blocks and the causal layer is

15×3+1 = 46 samples, and that of the adaptive blocks is 15×Et samples. The pitch-

dependent dilated factor Et with a dense factor 8 was around 60 for 50 Hz and 6 for

500 Hz). Specifically, the receptive field lengths of WNf and WNc are constant because

of the fixed network structure, and the receptive field length of QPNet is time-variant

and pitch-dependent because of the QP structure.

Furthermore, the results in Fig. 5.12 also show that the effective receptive field

lengths of both SPOKE male and female speakers are longer than the receptive field

length of WNc, which are consistent with the evaluation results showing that QPNet
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significantly outperforms WNc. Furthermore, most of the effective receptive field

lengths of the female set are shorter than that of the male set, and it is caused by

the higher F0 values of the female speakers. The distribution results also imply that

the effective receptive field lengths of QPNet are close to the receptive field length of

WNc when conditioned on the female 3/2 F0 because most PDCNNs degenerate to

DCNNs. In conclusion, the performance of AR models is highly related to the length

of the receptive fields.

However, the length of the receptive fields may be more strongly correlated to the

quality of the generated speech, whereas a balanced proportion of the adaptive and

fixed modules may be an essential factor for the pitch accuracy. Specifically, although

the full-size QPNet has the longest effective receptive field lengths and achieves the

lowest MCD, the pitch accuracy of full-size QPNet is still lower than that of compact-

size QPNet. The possible reason is that the full-size QPNet is dominated by the fixed

blocks because the number of the fixed blocks is much larger than the number of the

adaptive blocks while the compact-size QPNet has more balanced numbers of the fixed

and adaptive blocks.

In addition, as shown in Tables 5.1 and 5.5, the number of the trainable parameters of

the compact-size QPNet model is around half of that of the WNf model, so only about

75 % of the training time and 40 % of the generation time were required. However,

because of the very long effective receptive fields, the memory usage of QPNet in the

training stage was almost the same as that of WNf. The huge memory requirement in

the training process limits the possible ratio of the fixed to adaptive modules, which

leads to an unbalanced proportion problem. Therefore, improving the efficiency of

memory usage will be one of the main tasks of future QPNet research.
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5.6 Voice Conversion Evaluation

In this section, the performance of the QPNet vocoder combined with a basic VC

model is presented [40]. According to the previous work [43, 46, 48], we know that

target speaker adaptation is necessary for the WN vocoder combined with VC models.

Therefore, the investigation of the speaker adaptation strategy of the WNf, WNc, and

QPNet vocoders are first described. Then, the objective tests to evaluate the waveform

generation capability of these vocoders and subjective tests to evaluate the performance

of the whole VC system are presented.

5.6.1 Experimental Setting

The training corpus and hyperparameters of these multispeaker vocoders are the

same as that in Section 5.5. The adopted VC models are the DNN-based non-parallel

VC models in Section 3, which are the same as the VC models of the NU non-parallel

VC system [43] for the VCC2018 SPOKE task. For the VC flow, a source mcep is

converted to a specific target mcep by the trained DNN-VC model, and then the

speaker-dependent (SD) QPNet vocoder generates the converted speech waveforms

conditioned on the converted mcep, linearly transformed F0, and source ap.

5.6.2 Speaker Adaptation

Two strategies to adapt the speaker-independent (SI) WN-based vocoders to SD ones

are presented. The first one is updating all network parameters (SDa) and the second

one is only updating the final output layers of the network (SDo) with the training data

of the target speakers. Figure 5.13 shows the training loss (cross-entropy) of the SD

vocoders with speaker TM1 while the other target speakers have the same tendency.
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Figure 5.13: Adaption training losses of different vocoders (SD: speaker-dependent; o:

only update output layers; a: update whole network).

The utterances used for adaptation were only the 81 utterances of TM1, the updating

batch size was one, the batch length was 20,000 samples, and the number of iterations

was from 100 to 50,000. As shown in Fig. 5.13, the training losses of the SDa vocoders

start to markedly decrease when beyond 1000 iterations, whereas the training losses

of the SDo vocoders are stable regardless of the number of iterations. The results

indicate that updating the whole network with very limited data will cause serious

overfitting. Furthermore, the adaptation performance using the training loss of the

validation data while fixing the network parameters denoting the validation loss was

evaluated. Figure 5.14 shows that the validation losses of the SDa vocoders start to

increase from around 500 iterations (∼ 2 epochs), whereas the SDo vocoders exhibited

stable validation losses. Therefore, we set the number of updating iteration as 500

for the SDa vocoders and 50,000 for the SDo vocoders (our NU system submitted to

VCC2018 was SDo-WNf with 50,000 iterations) in the following evaluations.
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Figure 5.14: Validation losses of different vocoders (SI: speaker-independent; SD:

speaker-dependent; o: only update output layers; a: update whole network).

5.6.3 Objective Evaluation

To evaluate the performance of these vocoders with statistically converted acoustic

features, we measured the mel-cepstral distortion (MCD) and the root-mean-square

error (RMSE) of logarithmic F0 between the acoustic features extracted from the con-

verted speech and the auxiliary features of these vocoders. Specifically, we computed

MCD between the conditional and extracted mcep to evaluate the robustness of spec-

trum reconstruction with the vocoders conditioned on the VC acoustic features. More-

over, to evaluate the generation pitch accuracy of each vocoder corresponding to the

conditional linearly transformed F0, we calculated the RMSE between the conditional

F0 and the F0 extracted from the converted speech in the logarithmic domain.

As shown in Table 5.11, the QPNet vocoder significantly outperforms the same-size

WNc vocoder in both MCD and RMSE measurements. Even compared with the WNf

vocoder with double the network size, the QPNet vocoder still achieves slightly higher
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Table 5.11: MCD and RMSE of logF0 with different vocoders.

WNf WNc QPNet

SI SDo SDa SI SDo SDa SI SDo SDa

MCD 3.25 3.11 3.02 3.83 3.73 3.68 3.57 3.51 3.46

RMSE 0.15 0.15 0.15 0.21 0.20 0.19 0.15 0.13 0.14

pitch accuracy. Although the WNf vocoder had the highest spectrum prediction capa-

bility because of its longest receptive filed length, the QPNet vocoder still outperforms

the same-size WNc vocoder. That is, the much shorter receptive field length caused by

the halved network size degrades the spectral prediction capability, but the PDCNNs

of the QPNet markedly improve the spectral modeling capability. In summary, the

objective evaluations show that the QPNet vocoder achieves higher pitch accuracy and

more efficient spectral modeling than the WN vocoders. Furthermore, all SDo and SDa

vocoders achieve better MCD than the relevant SI vocoders, and the results confirm

the effectiveness of the target speaker adaptation. Because the SDa vocoders attain the

highest spectrum prediction capabilities, we applied the adaptation strategy of SDa to

the VC systems in the following evaluations.

5.6.4 Subjective Evaluation

To evaluate the speech quality and speaker similarity of the converted waveforms

generated by the different vocoders conditioned on the converted acoustic features,

MOS and speaker similarity tests were conducted. Specifically, we randomly selected

20 utterances from 35 testing utterances of each speaker pair and vocoder to establish

an evaluation set. Then, we divided this set into 10 non-overlapping subsets for 10

listeners, and each subset was evaluated by one listener. As a result, each listener
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Figure 5.15: MOS evaluation of sound quality with 95% CI. (SI: speaker-independent

vocoder; SDa: speaker-dependent vocoder with fine-tuning of whole network).

evaluated 224 different utterances generated by seven vocoders including the SI and

SDa WN-based and WD vocoders in the MOS test. The speech quality was assigned

a value of 1–5; the higher the score, the better the naturalness. Moreover, the speaker

similarity evaluation followed the test flow of VCC2018 [115]. That is, a subject was

first asked to listen to a natural speech and a converted speech and then asked to

evaluate the speaker similarity of the two speech files using four labels: definitely the

same, maybe the same, maybe different, and definitely different. The final speaker

similarity scores were the sum of the percentages of definitely the same and maybe the

same and the sum of definitely different and maybe different.

As shown in Fig. 5.15, the MOS evaluation results of WNc and QPNet indicate that

the PDCNNs significantly improve the speech quality of converted speech even though

the network sizes of these two vocoders were the same. Furthermore, the overall results

confirm the effectiveness of the SD adaptation of all WN-based vocoders to achieve

significantly better speech naturalness. Compared with the full-size WN vocder, SI-

QPNet attained slightly better performance than SI-WNf, and the perceptual qualities
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Figure 5.16: Speaker similarity evaluation with 95% CI. (SI: speaker-independent

vocoder; SDa: speaker-dependent vocoder with fine-tuning of whole network).

of SDa-QPNet and SDa-WNf were comparable despite the network size of QPNet

being only half of that of WNf. Moreover, SDa-QPNet also achieved markedly better

conversion speech generation capability than the traditional WORLD vocoder. To

further evaluate the conversion accuracy of speaker identity among these WN-based

vocoders, we conducted the speaker similarity tests on the SDa-WNf, SDa-WNc, and

SDa-QPNet vocoders. The results in Fig. 5.16 demonstrate the same tendency as the

speech naturalness results. SDa-QPNet markedly outperforms SDa-WNc for speaker

similarity and achieved similar performance to SDa-WNf. The demo utterances can be

found on our demo page4.

5.7 Summary

In this chapter, we introduce a WaveNet-like audio waveform generation model

named QPNet, which models quasi-periodic and high-temporal-resolution audio sig-

nals based on an NN-based AR model with the PDCNN component and cascaded

4https://bigpon.github.io/QuasiPeriodicWaveNet demo/
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structure. Specifically, the PDCNN component is a variant of a DCNN that dynam-

ically changes the dilation size corresponding to the instantaneous F0 for modeling

the long-term correlations of audio samples. The cascaded adaptive blocks with the

PDCNNs and fixed blocks with the DCNNs respectively modeling the periodic and

aperiodic audio components are adopted in the QPNet.

The proposed QPNet was respectively evaluated with the generations of periodic

sinusoids, F0-transformed speech, and VC speech. According to the sinusoid genera-

tion evaluation results, the PDCNNs significantly improves the periodicity-modeling

capability of the generation network using the introduced prior periodicity informa-

tion. Furthermore, the QPNet vocoder models the short- and long-term correlations

of speech samples based on the cascaded fixed and adaptive macroblocks, respectively.

The speech generation evaluation results indicate that the proposed QPNet vocoder at-

tains a much higher pitch accuracy and comparable speech quality to the WN vocoder

especially when conditioning on the unseen auxiliary F0 values. Moreover, the network

size and generation time requirements of the QPNet vocoder are only half of those of

the WN vocoder.

For VC, the effectiveness of two speaker adaption methods for SDWN-based vocoders

was first evaluated. Both objective and subjective evaluations confirm the effectiveness

of the speaker adaption technique and the QPNet vocoder, which takes advantage of

the PDCNNs to attain better pitch controllability and achieve comparable quality to

the WN vocoder with only half the network size. That is, the proposed QPNet model

with the PDCNN component and compact cascaded network architecture significantly

improves the pitch controllability of the vanilla WN model, and it makes the QPNet

vocoder more in line with the definition of a vocoder, which precisely manipulates the

pitch of the generated speech according to the F0.
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To summarize, this chapter focuses on the essential feature of a vocoder, pitch con-

trollability. The evaluation results show the insufficient pitch controllability of the

vanilla WN vocoder and the markedly improved pitch controllability of the proposed

QPNet with the PDCNN and QP structure. Since the network architecture of the

QPNet is dynamically adapted to the instantaneous input F0, the pitch accuracy

of the QPNet-generated speech is improved. Furthermore, because of the more ef-

ficient speech modeling of the pitch-dependent structure, the QPNet-generated speech

achieves similar speech quality as the WN-generated speech while the model size of the

QPNet vocoder is only half of that of the WN vocoder. However, although the gener-

ation speed is also increased because of the smaller model, the AR nature still makes

the generation of the QPNet vocoder far away from real-time generation, which de-

grades the practicality of the QPNet vocoder. Therefore, a non-AR model for real-time

generations will be explored in the next chapter.





6 Quasi-Periodic Parallel

WaveGAN for Speech Waveform

Generation

In Chapter 5, the effectiveness of the proposed pitch-dependent architecture for the

WaveNet (WN) vocoder has been shown. However, the autoregressive (AR) generation

manner makes the generation of the proposed quasi-periodic WN (QPNet) very slow.

To improve the generation efficiency for practical applications, this chapter adopts a

non-AR model, parallel WaveGAN (PWG). Since the PWG model also suffers from

the insufficient pitch controllability problem, the proposed pitch-dependent architecture

will be applied to the PWG model in this chapter.

6.1 Introduction

Speech generation is a technique to generate specific speech according to given inputs

such as texts (text-to-speech, TTS). The core of speech generation is the controllability

of speech components, and the fundamental technique is called a vocoder [29–31].

Conventional vocoders such as STRAIGHT [35] and WORLD [37] are based on a

source–filter model [34], which models speech with vocal fold movements (excitation)

and vocal tract resonances (spectral envelope). However, these conventional vocoders

usually suffer from the losses of phase information and temporal details caused by
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ad hoc designs result in speech quality degradation.

In contrast to the conventional source–filter-based vocoders, neural network (NN)-

based models have been proposed to directly model speech waveforms. Specifically, AR

models such as WN [12] and SampleRNN [13] achieve high-fidelity speech generation

by modeling the probability distribution of each speech sample with the given aux-

iliary features and previous samples. Taking conventional-vocoder-extracted acoustic

features as the auxiliary features for NN-based speech generation models [47–50, 74],

which replace the synthesizer of the conventional vocoders, also achieved early success.

However, the AR mechanism and huge network architectures of WN and SampleRNN

result in a very slow generation, making these models impractical for realistic scenarios.

To tackle these problems, many compact AR models with specific knowledge [14–16]

and non-AR NN-based speech generation models such as flow-based [17–22] and gen-

erative adversarial network (GAN)-based [23–26,41, 42, 64–66,72, 73, 135] models have

been proposed.

Although these NN-based speech generation models achieve high-fidelity speech gen-

eration without many ad hoc designs of speech generation, the data-driven nature, the

generic network architecture, and the lack of prior acoustic knowledge of these mod-

els make most of them lose acoustic controllability and robustness to unseen auxiliary

features [27,28,43,44,46]. For instance, without explicitly modeling the excitation sig-

nals as conventional source–filter models, it is difficult for WN to generate speech with

accurate pitches outside the fundamental frequency (F0) range of training data when

conditioned on the scaled F0 feature [38,39]. However, using carefully designed mixed

periodic and aperiodic inputs and source–filterlike architectures, the authors of [68–70]

proposed different NN-based models attaining pitch controllability.

In Chapter 5, we also introduce QPNet [38,39], which improves the pitch controllabil-
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ity of WN by dynamically changing the network architecture according to the auxiliary

F0 feature without the requirement of specific mixed inputs. However, the AR mecha-

nism and the huge network requirement of the QPNet result in a slow generation. To

address this problem, we applied the quasi-periodic (QP) structure to PWG [24], which

is a compact non-AR model with a WN-like network architecture consisting of stacked

dilated convolutional neural networks (DCNNs) [75]. The proposed QPPWG speech

generation model [41, 42] attains pitch controllability using a simple pitch-dependent

architecture without the requirement of specific mixed periodic and aperiodic inputs

as in [68–70].

This chapter is organized as follows. In Section 6.2, a brief introduction of PWG

and the limitations of the PWG vocoder is presented. In Section 6.3, the concepts and

details of the proposed QPPWG are described. In Section 6.4, objective and subjective

tests are reported to show the effectiveness of QPPWG for generating speech with

scaled F0. Further discussion of QPPWG is presented in Section 6.5. Finally, the

conclusion is given in Section 6.6.

6.2 Parallel WaveGAN and Limitations of Parallel

WaveGAN Vocoder

As shown in Fig. 6.1, the PWG model [24] consists of a generator, a discriminator,

and a multi-resolution short-time Fourier transform (STFT) module. Specifically, the

generator adopts a WN-like architecture to transfer the input noise sequence into speech

samples conditioned on auxiliary features. Since the whole noise sequence and acoustic

features are given, the generator achieves real-time generation with a non-AR manner.

A DCNN-based discriminator is applied to guide the generator to generate high-fidelity
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Figure 6.1: Architectures of PWG and QPPWG.

speech using adversarial losses. However, training a high-quality generator with only

the adversarial losses is difficult. Therefore, a multi-STFT loss has been introduced

for improving the stability and efficiency of the GAN training. The multi-STFT loss

is calculated based on several different frame lengths and shifts to make the network

capture the hierarchical information of speech signals. Furthermore, taking PWG as

a vocoder to generate speech samples conditioned on conventional-vocoder-extracted

acoustic features also achieves marked naturalness improvements than the conventional

parametric-based vocoders [42].

However, although the PWG vocoder achieves high-fidelity speech generation, it is

still vulnerable to unseen acoustic features such as scaled F0. That is, the speech quality

and pitch accuracy of the PWG-generated speech will markedly degrade when the F0

of the auxiliary acoustic features is scaled or is outside the training data range [41,42].

The possible reasons for the degradation are the generic architecture, data-driven na-

ture, and lack of prior periodicity knowledge. Moreover, since speech is a quasi-periodic

signal, which includes both periodic components with long-term correlations and ape-
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riodic components with short-term correlations, modeling both components with the

fixed network architecture of PWG is inefficient. Therefore, the QP structure [38, 39]

has also been applied to PWG as show in Fig. 6.1 for improving pitch controllability

and modeling efficiency. The details of the proposed QPPWG are as follows.

6.3 Quasi-Periodic Parallel WaveGAN

Since pitch controllability is an essential feature of a vocoder, QPPWG [41, 42] has

been proposed to improve the pitch controllability and speech modeling efficiency of

PWG. Specifically, since the effectiveness of the GAN structure and the multi-resolution

STFT losses have been shown for PWG, the proposed QPPWG inherits the discrimina-

tor and Lsp of PWG and focuses on improving the generator. The QP structure of the

proposed generator introduces periodicity information to the network via a PDCNN

module and a cascaded structure. The details are as follows.

6.3.1 Noncausal Pitch-dependent Dilated Convolution

In Chapter 5, the causal PDCNN inspired by pitch filtering in code-excited linear

prediction (CELP) [32,33] has been described. In this chapter, the noncausal extension

of the PDCNN is presented. As shown in Fig. 6.2, a DCNN is a convolution layer with

gaps between input samples, and the length of each gap is a predefined hyperparameter

called the dilation size (rate). The noncausal dilated convolution can be formulated as

y
(o)
t = W (c) × y

(i)
t +W (p) × y

(i)
t−d +W (f) × y

(i)
t+d, (6.1)

where y
(o)
t is the DCNN output at sample t, y

(i)
t is the DCNN input at sample t, and

d is the dilation size. W (c), W (p), and W (f) are the trainable 1× 1 convolution filters
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Figure 6.2: Fixed and pitch-dependent noncausal dilated convolution.

of the current, previous, and following samples, respectively. For the DCNN, d is a

predefined time-invariant constant. As an extension of a DCNN, the dilation size d′

of a PDCNN is pitch-dependent and time-variant. Specifically, the pitch-dependent

dilated factor Et is multiplied by the dilation size d in each time step t to dynamically

set the dilation size d′ as

d′ = Et × d. (6.2)

The dilated factor Et is derived from

Et = Fs/(F0,t × a), (6.3)

where Fs is the sampling rate, F0,t is the fundamental frequency of the input sample

at time step t, and a is the dense factor. The dense factor a is a hyperparameter that

indicates the number of samples in one periodic cycle taken as the inputs of a PDCNN.

The higher the dense factor, the lower the sparsity of the PDCNN. Using the pitch-

dependent dilation size, the architecture of QPPWG with PDCNNs is dynamically

changed according to the input F0 feature.
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Figure 6.3: Architecture of QPPWG generator.

Furthermore, according to our previous work [38,39], calculating Et using the inter-

polated F0 values of the adjacent voiced segments achieves higher speech quality than

directly setting Et to one for the unvoiced segments. Because our internal evaluation

results of QPPWG also show the same tendency, all QPPWG models in this thesis

adopt the interpolated F0 values for calculating the Et values of the unvoice segments.

In conclusion, the adaptive architecture of QPPWG introduces prior periodicity knowl-

edge to the network to improve the pitch controllability, allow each sample to have a

specific receptive field size, and efficiently extend the receptive field.

6.3.2 QPPWG Generator with PDCNN

As shown in Fig. 6.3, a generator of QPPWG/PWG consists of input, macroblock,

and output modules. The input module includes a Gaussian noise input with 1×1 CNN

and upsampled acoustic features with the matched temporal resolution to the output

waveform samples. As shown in Fig. 6.4, several stacked residual blocks compose a

macroblock. The inputs of each residual block are the residual connection output of
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the previous block and auxiliary features. The outputs of each residual block are the

residual connection output for the next block input and the skip connection to the

output module. The architecture of each residual block contains a DCNN/PDCNN

layer, a gate structure, and a residual connection. Last, the summation of the skip

connections from all residual blocks is processed by two ReLU [76] activations with

1× 1 CNNs to directly output speech waveform samples.

The main difference between the QPPWG and PWG generators is the QP structure,

and a QPPWG generator includes a fixed macroblock and an adaptive macroblock while

a PWG generator includes only one fixed macroblock. The fixed macroblock consists of

only fixed (residual) blocks with DCNN layers, and the adaptive macroblock consists

of only adaptive (residual) blocks with PDCNN layers. Each fixed block adopts a

DCNN with a fixed network architecture to model the aperiodic speech components

such as spectral envelopes with short-term correlations. Each adaptive block adopts

a PDCNN layer to model the periodic speech components such as excitation signals

with long-term correlations, and the PDCNN layer makes the architecture of the block
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adaptive to auxiliary F0 values.

As shown in Fig. 6.3 (a), QPPWG adopts a cascaded architecture composed of

two different macroblocks, which is unlike PWG consisting of residual blocks with only

DCNNs. The cascaded architecture simultaneously models both periodic and aperiodic

speech components efficiently by using prior pitch knowledge, which also improves its

pitch controllability. The cascaded architecture with prior pitch knowledge is assumed

to have better tractability and interpretability than the original PWG architecture

since it models different speech components with related specific network structures.

Furthermore, since we assume that the fixed and adaptive macroblocks respectively

focus on aperiodic and periodic components, we also explore a parallel QP structure as

shown in Fig. 6.3 (b) to better understand the internal speech production mechanisms.

6.4 Experimental Evaluation

6.4.1 Model Architecture

Several variants of PWG and QPPWG models and a baseline QPNet model were

involved in the evaluations. To describe the different architecture of each model, several

basic modules were introduced. Specifically, a macroblock module consisting of stacked

chunks was adopted. Each chunk included several residual blocks, and the dilation sizes

in each chunk were exponentially increased with base two. All chunks in a macroblock

were only composed of one type of residual block namely, adaptive blocks (BA) or fixed

blocks (BF). The PWGmodels only consisted of one macroblock (Macro 0) with several

chunks including only fixed residual blocks. The models with a QP structure, namely,

the QPPWG and QPNet models, were composed of two cascaded macroblocks (Macro

0 and 1) with chunks including different residual block types. Taking vanilla PWG as
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an example, the architecture composed of three chunks, and each chunk includes 10

fixed blocks was denoted as C3BF10

Moreover, all PWG and QPPWG models had the same discriminator architecture,

which consisted of 10 noncausal DCNN layers with 64 convolution channels, three

kernels, and LeakyReLU (α = 0.2) activation functions. For each adaptive/fixed block

of the QPPWG/PWG generator, a gated activation with tanh and sigmoid functions

was adopted, and the number of CNN channels of residual and skip connections and

auxiliary features was also 64. The QPNet structure followed that in Section 5.5, and

the number of CNN channels of residual connections and auxiliary features was 512

and that of skip connections was 256.

6.4.2 Experimental Setting

All speech generation models in the evaluations were trained in a multi-speaker

manner. The training corpus consisted of 2200 utterances of the“ slt”and“ bdl”

speakers of the CMU-ARCTIC corpus [128] and 852 utterances of all speakers of the

Voice Conversion Challenge 2018 (VCC2018) corpus [115]. The total size of the training

corpus was around 3000 utterances and the data length was around 2.5 hours. The

testing corpus was the SPOKE set of the VCC2018 corpus. The SPOKE set consists

of two male and two female speakers, and each speaker has 35 testing utterances. The

sampling rate of all speech data was set to 22,050 Hz, and the resolution of the speech

data was 16-bit.

The WORLD (WD) vocoder was adopted to extract one-dimensional F0 and 513-

dimensional spectral (sp) and aperiodicity (ap) features with a frameshift of 5 ms. F0

was interpolated to the continuous F0 and converted to one-dimensional unvoiced/voiced

binary code (U/V ), ap was coded into two-dimensional coded aperiodicity (codeap),
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and sp was parameterized into 35-dimensional mel-cepstrum (mcep). The auxiliary

features of these speech generation models were composed of U/V , F0, mcep, and

codeap. To simulate unseen data, the continuous F0 was scaled by ratios of 0.5, 1.5,

and 2 while keeping the other features the same. Moreover, the dilated factor Et of

QPPWG was empirically calculated based on the continuous F0 because of the better

speech quality.

All PWG-like models were trained with the RAdam optimizer [136] (ϵ = 10−6) with

400 k iterations. Specifically, the generators were trained with only multi-resolution

STFT losses for the first 100 k iterations and then jointly trained with the discrimina-

tors for the following 300 k iterations. The multi-resolution STFT losses were calculated

on the basis of three different FFT sizes (1024/2048/512), frame shifts (120/240/50),

and frame lengths (600/1200/240). The balanced weight λadv of Ladv was set to 4.0.

The generators ’ learning rate was 10−4 and the discriminators ’ learning rate was

5 × 10−5. Both learning rates decayed by 50 % every 200 k iterations. The mini-

batch size was six and the batch length was 25,520 samples. Furthermore, the baseline

QPNet [38,39] model was trained with the Adam optimizer [117] with 200K iterations.

The learning rate of QPNet was 10−4 without decay, and the minibatch size was one

with a batch length of 20,000 samples.

6.4.3 Objective Evaluation

The quality of these vocoders was evaluated by the mel-cepstral distortion (MCD),

root mean square error (RMSE) of log F0, and U/V decision error. These measurements

were calculated using the auxiliary features and the acoustic features extracted from

the generated speech. The following objective evaluations were conducted to explore

the different hyperparameter settings, and the WD vocoder was used as a reference.
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Table 6.1: CNN channels of PWG generator

WD PWG

Channels - 64 32 16 8

MCD (dB) 2.58 3.69 4.15 4.23 4.89

F0RMSE 0.10 0.12 0.14 0.15 0.20

U/V (%) 10 14 16 16 15

Size (×106) - 1.16 0.34 0.11 0.04

Number of CNN Channels

To explore the relationship between model capacities and the number of CNN chan-

nels, vanilla PWG generators with 8–64 CNN channels were evaluated. Note that

because we focused on improving the generator, all PWG/QPPWG models in this

section adopted the same discriminator, whose number of CNN channels was 64 and

whose model size was 0.1 M. The results in Table 6.1 show that the original setting

(64 CNN channels) predictably achieves the best performance characteristics of all ob-

jective measurements. However, even if the number of CNN channels is reduced to 16,

which greatly reduces the training time because of the compact model size, the speech

quality and pitch accuracy are still acceptable. To efficiently explore the efficiency

of the network architectures, the objective evaluations in the following sections were

conducted based on models with 16 CNN channels.

Numbers of Chunks and Blocks

Since one of the motivations for adopting the QP structure is taking advantage of

the higher speech modeling capability to reduce the model size, the importance of the

numbers of chunks and residual blocks was first evaluated. The results in Table 6.2
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Table 6.2: Blocks and chunks of PWG generator

Chunk (C) 3 2 1 4 1

Block (BF) 10 10 10 5 20

MCD (dB) 4.23 4.61 5.95 4.59 5.98

F0RMSE 0.15 0.17 0.31 0.35 0.30

U/V (%) 16 17 33 44 27

Size (×106) 0.11 0.08 0.04 0.08 0.08

show that the model capacity is highly dependent on the total number of residual

blocks, which is directly related to the receptive field length. However, the results of

C2BF10, C1BF20, and C4BF5 also imply that not only the number of residual blocks

but also the number of chunks is important. Although the same number of residual

blocks with fewer chunks result in a longer receptive field, the network may not capture

the speech information well. By contrast, the larger the number of chunks, the shorter

the receptive field. Since a longer effective receptive field can be achieved by replacing

fixed blocks with adaptive blocks, we focus on improving the C2BF10 and C4BF5 PWG

generators using the QP structure in this thesis.

Ratio of Fixed and Adaptive Blocks

Since speech is a quasi-periodic signal, speech modeling is theoretically required both

fixed and adaptive blocks to respectively model aperiodic and periodic components. To

explore the efficient ratio of fixed and adaptive blocks, four QPPWG models with dense

factor 4 were evaluated (more discussions of dense factor are presented in the following

subsection). Each QPPWG model was composed of four chunks, and each chunk

included five residual blocks. As shown in Table 6.3, although the C3BF5+C1BA5

model achieves the lowest MCD, its F0 and U/V accuracies are also lowest. On the
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Table 6.3: Ratios of fixed and adaptive blocks of QPPWG generator

Macro 0 C3BF5 C2BF5 C1BF5 -

Macro 1 C1BA5 C2BA5 C3BA5 C4BA5

MCD (dB)

1× F0 4.79 4.79 5.58 7.48

1/2× F0 5.22 5.29 6.03 8.16

2× F0 5.66 6.03 7.13 8.47

Average 5.22 5.37 6.24 8.04

RMSE of logF0

1× F0 0.13 0.12 0.13 0.14

1/2× F0 0.22 0.17 0.17 0.19

2× F0 0.10 0.12 0.12 0.14

Average 0.15 0.14 0.14 0.15

U/V error (%)

1× F0 23 16 16 20

1/2× F0 26 21 20 22

2× F0 18 15 16 18

Average 23 17 17 20

other hand, when the ratio of adaptive blocks increases, the F0 and U/V accuracies

become higher, but the MCD also becomes higher. The same tendency can also be

observed in the spectral domain. The more adaptive blocks the model has, the more

harmonic components the generated speech has. However, overenhanced harmonic

structures generate significantly robotic and unnatural sounds.

Since the balanced C2BF5+C2BA5 model achieves the highest pitch accuracy and

lowest U/V error while keeping acceptable spectral accuracy and attaining longer re-

ceptive fields than the C3BF5+C1BA5 model, the 20 residual blocks with balanced

numbers of adaptive and fixed blocks was selected as the QPPWG paradigm. To sum-

marize, the ratio of adaptive and fixed blocks is crucial to the network for avoiding

over/undermodeling the harmonic structures, and this observation is consistent with

the experimental results in Section 5.5. Moreover, since one chunk including 10 fixed
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Table 6.4: QP structure of QPPWG 20 generator

QP structure stacked parallel

MCD RMSE U/V MCD RMSE U/V

1× F0 5.10 0.14 18 5.80 0.32 28

1/2× F0 5.49 0.18 21 6.05 0.48 43

2× F0 6.32 0.14 26 6.00 0.45 52

Average 5.63 0.15 22 5.95 0.42 41

blocks showed effectiveness in the PWG and WN models, and the receptive fields of

10 fixed blocks are longer than that of two chunks with five fixed blocks, the archi-

tecture of the following QPPWG models was set to C1BF10+C2BA5. The QPPWG

architecture is denoted as QPPWG 20.

QP Structure

Since the fixed and adaptive blocks are assumed to respectively model aperiodic

and periodic components of speech signals, a parallel QP structure (Fig. 6.3 (b)) was

evaluated in this section compared to the original stacked QP structure (Fig. 6.3 (a)).

The CNN channel size was 16, and the dense factor was 4, too. The results in Table 6.4

show that the QPPWG 20 model with a parallel QP structure achieves very low pitch

accuracy and high U/V errors, which indicate the very limited periodic component

modeling capability of the parallel model. Observing the output waveforms of the skip

connection summation from the adaptive/fixed blocks, we also find that the output

waveforms are dominated by the fixed blocks in the parallel QP model while the outputs

of the adaptive blocks are very small. In other words, these results show that only the

fixed blocks are well activated for speech modeling when the parallel QP structure is

adopted.
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The possible reason is that the difficulty of modeling speech using a fixed network

architecture is lower than that of the network adopting a more complicated pitch-

adaptive architecture in the very initial stage. Since the gradient paths of the fixed and

adaptive macroblocks are separated, this difference of modeling difficulty may make

the whole adaptive macroblock inactive. On the other hand, because the adaptive

and fixed macroblocks are cascaded in the stacked QP structure, these macroblocks

are in the same gradient flow, which makes the entire network participates in the

speech modeling. Furthermore, since the aperiodic and periodic components are not

completely independent, the stacked QP structure takes advantage of the aperiodic and

periodic information propagations between the fixed and adaptive macroblocks to get

better speech modeling capability. As a result, the stacked QP structure was selected

as the QPPWG paradigm. Further discussion and more details about the outputs

of the adaptive and fixed macroblocks will be presented in Section 6.5. Moreover,

the cascaded adaptive to fixed macroblock order is denoted as af , and the reversed

macroblock order is denoted as fa. The effectiveness of the macroblock order will be

presented in the overall objective evaluation.

Dense Factor

The dense factor is inversely proportional to the receptive field length, and the

QPPWGaf 20 models with 16 CNN channels and 20–24 dense factors were evaluated.

The results in Table 6.5 show that while the models with dense factors of 22–24 achieve

similar generative performance, the models with dense factors of 20 and 21 achieve

slightly worse performance. A similar tendency was also observed by listening to the

generated speech. The generated utterances from the models with dense factors of 20

and 21 were more unstable. Furthermore, PDCNN degenerates to DCNN when Et is
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Table 6.5: Dense factor of QPPWGaf 20 generator

Dense 20 21 22 23 24

MCD (dB)

1× F0 5.36 5.35 5.10 5.26 5.26

1/2× F0 5.61 5.61 5.49 5.57 5.64

2× F0 6.03 5.99 6.32 6.06 5.92

Average 5.67 5.65 5.63 5.63 5.60

RMSE of logF0

1× F0 0.17 0.14 0.14 0.13 0.13

1/2× F0 0.28 0.23 0.18 0.17 0.21

2× F0 0.15 0.14 0.14 0.14 0.14

Average 0.20 0.17 0.15 0.14 0.16

U/V error (%)

1× F0 17 17 18 17 17

1/2× F0 27 24 21 21 25

2× F0 20 20 26 19 24

Average 21 20 22 19 22

one, and a larger dense factor makes Et closer to one for more F0 values. Therefore,

since a lower dense factor attains a longer receptive field expansion and a higher lower

bound of F0, which makes PDCNN degenerate to DCNN, the dense factors of the

following QPPWG models were set to 22.

Overall Objective Evaluation

An overall objective evaluation was conducted including the WD, QPNet, PWG, and

QPPWG models. Specifically, since the AR QP structure has shown effectiveness for

the WN [38,39] vocoder, it is interesting to explore the generality of the QP structure

for non-AR models and the performance difference between the QPNet and QPPWG

models. Because the QPNet adopts an architecture including four chunks with four

residual blocks, the PWG and QPPWG models with the same architecture were also
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Table 6.6: Number of trainable parameters (G: Generator; D: Discriminator)

QPNet PWG

- 30 20 16

Macro 0 C3BF4 C3BF10 C2BF10 C4BF4

Macro 1 C1BA4 - - -

G (×106) 24 1.16 0.78 0.63

D (×106) - 0.10 0.10 0.10

QPPWG

af 20 af 16 fa 20 fa 16

Macro 0 C2BA5 C2BA4 C1BF10 C2BF4

Macro 1 C1BF10 C2BF4 C2BA5 C2BA4

G (×106) 0.79 0.63 0.79 0.63

D (×106) 0.10 0.10 0.10 0.10

evaluated. Moreover, the effectiveness of the different QPPWG macroblock orders was

also explored. The number of CNN channels of the PWG and QPPWG models was set

to 64 following the original setting. The model sizes (numbers of trainable parameters)

are shown in Table 6.6. Since the model size is proportional to the square of the number

of CNN channels, the model size of vanilla PWG is only 5 % of that of QPNet because

of the greatly reduced number of CNN channels. The sizes of the QPPWG models

were reduced further by 30–50 % because of the reduced number of residual blocks

compared with that of vanilla PWG.

According to the MCD results shown in Table 6.7 and 6.8, the QPPWG models with

the af order still achieve higher spectral accuracy than the QPPWG models with the

fa order. The QPPWG models with 20 residual blocks also predictably outperform

the QPPWG models with only 16 residual blocks. Moreover, the QPPWGaf 20 model

achieves a comparable spectral accuracy with the PWG 30 and PWG 20 models. On



6.4. Experimental Evaluation 137

Table 6.7: Overall comparison

WD QPNet PWG 30 PWG 20 PWG 16

MCD (dB)

1× F0 2.58 4.20 3.69 3.74 4.25

1/2× F0 3.89 4.92 4.47 4.39 4.65

2× F0 3.79 4.61 5.24 5.06 4.56

Average 3.42 4.58 4.46 4.40 4.49

RMSE of logF0

1× F0 0.10 0.14 0.12 0.15 0.41

1/2× F0 0.14 0.23 0.27 0.32 0.42

2× F0 0.10 0.18 0.15 0.15 0.73

Average 0.11 0.19 0.18 0.21 0.51

U/V error (%)

1× F0 10 14 14 15 55

1/2× F0 15 26 21 22 45

2× F0 11 22 12 17 66

Average 12 21 16 18 55

the other hand, although the average MCD of PWG 16-generated utterances is not very

high, the very high RMSE of log F0 and the very high U/V error indicate that the speech

quality is low. Specifically, the similar MCDs of PWG 16-generated utterances with

different scaled F0 values imply that the PWG 16 model tends to ignore the F0 scaled

ratio to generate similar speech waveforms. The very high RMSE of log F0 and the

very high U/V error also indicate that the PWG 16-generated speech waveforms lack

fine harmonic structures. On the other hand, compared to QPNet, although the model

size of QPPWGaf 16 is much smaller than that of QPNet, the non-AR mechanism and

GAN structure still make QPPWG achieve comparable spectral prediction accuracy.

The results of the F0 RMSE and U/V error in Table 6.7 and 6.8 also show that

the non-AR PWG models already achieve a comparable pitch accuracy with the AR

QPNet model, and the possible reason is that the GAN structure greatly improves

the speech modeling capability. However, the QP structure further improves the pitch
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Table 6.8: Overall comparison (continued)

QPPWGaf 20 QPPWGaf 16 QPPWGfa 20 QPPWGfa 16

MCD (dB)

1× F0 3.80 4.18 4.54 4.99

1/2× F0 4.52 4.89 5.18 5.60

2× F0 4.92 5.42 5.61 5.97

Average 4.41 4.83 5.11 5.52

RMSE of logF0

1× F0 0.11 0.10 0.11 0.12

1/2× F0 0.19 0.15 0.20 0.19

2× F0 0.11 0.10 0.11 0.11

Average 0.14 0.12 0.14 0.14

U/V error (%)

1× F0 16 18 15 16

1/2× F0 23 22 23 22

2× F0 19 14 13 11

Average 19 18 17 17

accuracy of the non-AR PWG models. The QPPWGaf 16 model even attains a sim-

ilar pitch accuracy to the reference WD vocoder. Moreover, although the pitch and

U/V accuracies of PWG 16 markedly degrade because of the short receptive field, the

QPPWGaf 16 model significantly improves them to an acceptable level. In conclusion,

the QP structure efficiently increases the effective receptive field size and introduces

the prior periodicity information to the network, resulting in a comparable spectral ac-

curacy, a much higher pitch accuracy, and a smaller model size. The objective results

show the effectiveness of the proposed QP structure for the PWG models.

On the other hand, since the WD-extracted mcep and F0 are not completely inde-

pendent, taking mcep extracted from natural speech as the ground truth of the scaled

F0 scenarios might cause some mismatches. However, the objective evaluations still

provide meaningful information about the performance of these vocoders, and we also

conducted the subjective evaluation in the following subsection to provide convincing
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results from different aspects.

6.4.4 Subjective Evaluation

The subjective evaluation set was composed of 1680 synthesized and 80 natural ut-

terances. The synthesized utterances were generated by seven vocoders conditioned

on three F0 scaled ratios (unchanged, halved, and doubled) and four speakers (the

VCC2018 SPOKE set). For each vocoder, speaker, and F0 scaled ratio, we randomly

selected 20 utterances from the 35 testing utterances for both mean opinion score

(MOS) and ABX evaluations. Specifically, the speech quality of each utterance was

evaluated by listeners assigning MOSs of 1–5. The higher the MOS, the better the

speech quality. For each ABX, two testing utterances were compared with one ref-

erence, and the listeners chose the one whose pitch was more consistent with that of

the reference. Eight listeners evaluated part of the subjective evaluation set in both

MOS and ABX tests, and each utterance/pair was evaluated by at least two listeners.

Although the listeners were not native English speakers, they worked on audio-related

research. The demo utterances can be found on our demo page1.

MOS of Speech Quality

The vocoders of WD, QPNet, PWG of three different sizes, and QPPWG of two

different sizes were involved in the MOS evaluation. The results shown in Figs. 6.5

and 6.6 are presented for three different F0 scaled ratios for male and female speak-

ers, respectively. The overall results show that the proposed QP structure improves

the speech modeling capacity of the PWG vocoders. In particular, while the PWG 16

1https://bigpon.github.io/QuasiPeriodicParallelWaveGAN demo/
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ratios to generate similar speech waveforms. The high RMSE 

of log F0 and U/V error also indicate that the PWG_16-

generated speech waveforms lack fine harmonic structures. 

The results of the F0 RMSE and U/V error shown in Table VII 

also show that the non-AR PWG models already achieve a 

comparable pitch accuracy as the AR QPNet model. However, 

the QP structure still further improves the pitch accuracy of the 

non-AR PWG models. The QPPWGaf_16 model even attains a 

similar pitch accuracy as the reference WD vocoder. Moreover, 

although the generative performance of PWG_16 markedly 

degrades because of the short receptive field, the QPPWGaf_16 

significantly improves its speech quality and pitch accuracy to 

an acceptable level. In conclusion, the QP structure efficiently 

extends the effective receptive field size and introduces the F0 

information to the network conducing to the comparable 

spectral accuracy, much higher pitch accuracy, and smaller 

model size. The objective results show the effectiveness of the 

proposed QP structure for the PWG models.   

D. Subjective Evaluations 

The subjective evaluation set was composed of 1680 

synthesized utterances and 80 natural utterances. The 

synthesized utterances were generated by seven vocoders 

conditioned on three F0 scaled ratios (unchanged, halved, and 

doubled) and four speakers (VCC2018 SPOKE set). For each 

vocoder, speaker, and F0 scaled ratio, we randomly selected 20 

TABLE VII 

COMPARISONS OF WORLD, QPNET, PWG-SERIOUS, AND QPPWG-SERIOUS MODELS 

WD QPNet PWG QPPWG 

- - 30 20 16 af_20 af_16 fa_20 fa_16 

MCD (dB) 

1×F0 2.58 4.20 3.69 3.74 4.25 3.80 4.18 4.54 4.99 
½ ×F0 3.89 4.92 4.47 4.39 4.65 4.52 4.89 5.18 5.60 

³∕₂×F0 3.09 4.32 4.23 4.12 4.36 4.21 4.73 5.00 5.44 

2×F0 3.79 4.61 5.24 5.06 4.56 4.92 5.42 5.61 5.97 

Average 3.34 4.51 4.41 4.33 4.45 4.36 4.80 5.08 5.50 

RMSE of log F0 

1×F0 0.10 0.14 0.12 0.15 0.41 0.11 0.10 0.11 0.12 

½ ×F0 0.14 0.23 0.27 0.32 0.42 0.19 0.15 0.20 0.19 
³∕₂×F0 0.10 0.16 0.12 0.12 0.40 0.11 0.10 0.10 0.11 

2×F0 0.10 0.18 0.15 0.15 0.73 0.11 0.10 0.11 0.11 

Average 0.11 0.18 0.16 0.18 0.49 0.13 0.11 0.13 0.13 

U/V decision error (%) 
1×F0 10 14 14 15 55 16 18 15 16 

½ ×F0 15 26 21 22 45 23 22 23 22 

³∕₂×F0 10 15 11 12 63 15 15 13 13 
2×F0 11 22 12 17 66 19 14 13 11 

Average 11 19 15 16 57 18 17 16 16 

Fig. 4.  Speech quality MOS evaluations of male speakers with 95% CI. 

Fig. 5.  Speech quality MOS evaluations of female speakers with 95% CI. 
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Figure 6.5: Speech quality MOS evaluations of male speakers with 95 % CI.
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ratios to generate similar speech waveforms. The high RMSE 

of log F0 and U/V error also indicate that the PWG_16-

generated speech waveforms lack fine harmonic structures. 

The results of the F0 RMSE and U/V error shown in Table VII 

also show that the non-AR PWG models already achieve a 

comparable pitch accuracy as the AR QPNet model. However, 

the QP structure still further improves the pitch accuracy of the 

non-AR PWG models. The QPPWGaf_16 model even attains a 

similar pitch accuracy as the reference WD vocoder. Moreover, 

although the generative performance of PWG_16 markedly 

degrades because of the short receptive field, the QPPWGaf_16 

significantly improves its speech quality and pitch accuracy to 

an acceptable level. In conclusion, the QP structure efficiently 

extends the effective receptive field size and introduces the F0 

information to the network conducing to the comparable 

spectral accuracy, much higher pitch accuracy, and smaller 

model size. The objective results show the effectiveness of the 

proposed QP structure for the PWG models.   

D. Subjective Evaluations 

The subjective evaluation set was composed of 1680 

synthesized utterances and 80 natural utterances. The 

synthesized utterances were generated by seven vocoders 

conditioned on three F0 scaled ratios (unchanged, halved, and 

doubled) and four speakers (VCC2018 SPOKE set). For each 

vocoder, speaker, and F0 scaled ratio, we randomly selected 20 

TABLE VII 

COMPARISONS OF WORLD, QPNET, PWG-SERIOUS, AND QPPWG-SERIOUS MODELS 

WD QPNet PWG QPPWG 

- - 30 20 16 af_20 af_16 fa_20 fa_16 

MCD (dB) 

1×F0 2.58 4.20 3.69 3.74 4.25 3.80 4.18 4.54 4.99 
½ ×F0 3.89 4.92 4.47 4.39 4.65 4.52 4.89 5.18 5.60 

³∕₂×F0 3.09 4.32 4.23 4.12 4.36 4.21 4.73 5.00 5.44 

2×F0 3.79 4.61 5.24 5.06 4.56 4.92 5.42 5.61 5.97 

Average 3.34 4.51 4.41 4.33 4.45 4.36 4.80 5.08 5.50 

RMSE of log F0 

1×F0 0.10 0.14 0.12 0.15 0.41 0.11 0.10 0.11 0.12 

½ ×F0 0.14 0.23 0.27 0.32 0.42 0.19 0.15 0.20 0.19 
³∕₂×F0 0.10 0.16 0.12 0.12 0.40 0.11 0.10 0.10 0.11 

2×F0 0.10 0.18 0.15 0.15 0.73 0.11 0.10 0.11 0.11 

Average 0.11 0.18 0.16 0.18 0.49 0.13 0.11 0.13 0.13 

U/V decision error (%) 
1×F0 10 14 14 15 55 16 18 15 16 

½ ×F0 15 26 21 22 45 23 22 23 22 

³∕₂×F0 10 15 11 12 63 15 15 13 13 
2×F0 11 22 12 17 66 19 14 13 11 

Average 11 19 15 16 57 18 17 16 16 

Fig. 4.  Speech quality MOS evaluations of male speakers with 95% CI. 

Fig. 5.  Speech quality MOS evaluations of female speakers with 95% CI. 

4.8 3.1 1.7 2.84.3 2.9 2.64.1 2.2 3.13.7 2.1 2.71.3 1.3 1.34.1 2.8 3.13.3 1.7 2.5
1

2

3

4

5

1×𝐹₀ ½ ×𝐹₀ 2×𝐹₀

M
E

A
N

 O
P

IN
IO

N
 S

C
O

R
E

Natural WD QPNet PWG_30 PWG_20 PWG_16 QPPWG𝑎𝑓_20 QPPWG𝑎𝑓_16

4.8 3.9 2.6 3.04.0 3.6 1.84.5 3.7 1.83.9 3.3 1.71.2 1.2 1.24.1 3.7 2.33.3 3.2 2.0
1

2

3

4

5

1×𝐹₀ ½ ×𝐹₀ 2×𝐹₀

M
E

A
N

 O
P

IN
IO

N
 S

C
O

R
E

Natural WD QPNet PWG_30 PWG_20 PWG_16 QPPWG𝑎𝑓_20 QPPWG𝑎𝑓_16

Figure 6.6: Speech quality MOS evaluations of female speakers with 95 % CI.

vocoder achieves very low quality because of the very small receptive field, the same-size

QPPWG 16 markedly outperforms the PWG 16 for all scenarios in the MOS evalua-

tion. However, since the performance of the QPPWG 16 still worse than the vanilla

PWG (PWG 30), the following discussion focuses on comparisons among QPPWGaf 20,

PWG 30, and QPNet.

For the halved F0 scenario, the QPPWGaf 20 vocoder markedly outperforms the

PWG 30 and WD vocoders and attains a similar speech quality to the QPNet vocoder

for the male set. For the female set, the QPPWGaf 20 vocoder is comparable to

the PWG 30 and QPNet vocoders while still outperforming the WD vocoder. The

results indicate that the models with the QP structure are more robust for an unseen

F0 outside the F0 range of the training data, such as most of the half F0 values in
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the male set. On the other hand, although the combination of the half F0 and other

acoustic features in the female set is still unseen, the scaled F0 values are almost in

the F0 range of the training data. Therefore, the PWG 30 vocoder can still achieve a

similar speech quality to the QPPWGaf 20 vocoder.

For the doubled F0 scenario, because most of the scaled F0 values of the male set are

in the F0 range of the training data, the performance of the QPPWGaf 20 vocoder is

similar to that of the PWG 30 vocoder for the male set. The QPPWGaf 20 vocoder

outperforms the WD and QPNet vocoders in the male set, while the QPNet vocoder

achieves an inferior speech modeling capacity for the doubled F0 scenario [38, 39].

On the other hand, although the QPPWGaf 20 vocoder predictably outperforms the

PWG 30 and QPNet vocoders in the doubled female F0 scenario, the WD vocoder

achieves a higher speech quality than the QPPWGaf 20 vocoder. A possible reason

for this is that many PDCNNs of the QPPWGaf 20 model might degenerate to DCNNs

because of the values of Et close to one due to the very high F0 values.

In conclusion, the proposed QPPWG vocoder with 20 residual blocks attains compa-

rable speech quality to the PWG vocoder with 30 residual blocks for natural auxiliary

features even though the model size is only 70 % of that of the PWG model. When

conditioned on the auxiliary features with the unseen F0 values, which are outside the

F0 range of the training data, the proposed QPPWG vocoders achieve a higher speech

quality than the PWG vocoders. The results confirm the effectiveness of the proposed

QP structure for the PWG model in efficiently modeling speech signals and dealing

with unseen F0 features using the prior periodicity knowledge.
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utterances from the 35 testing utterances for both mean opinion 

score (MOS) and XAB evaluations. Specifically, the speech 

quality of each utterance was evaluated by listeners assigning 

MOSs (1–5). The higher the MOS, the better the speech quality. 

For each XAB trail, two testing utterances were compared with 

one reference, and the listeners chose the one whose pitch was 

more consistent with that of the reference. Eight listeners 

respectively evaluated partial subjective evaluation set for both 

MOS and XAB tests, and each utterance/pair was evaluated by 

at least two listeners. Although the listeners were not native 

speakers, they worked on audio-related researches. The demo 

utterances can be found on the demo page [35]. 

1) MOS Evaluation of Speech Quality

The MOS evaluation included the WD, QPNet, three different 

sized PWG, and two different sized QPPWG vocoders. The 

MOS results shown in Fig. 4 and 5 are presented with the 

scenarios of three different F0 scaled ratios and two genders. 

The overall results show that the proposed QP structure 

improves the speech modeling capacity of the PWG vocoders, 

especially when the PWG_16 vocoder has a very limited 

receptive field size. Because the QPPWG vocoders markedly 

outperform the same sized PWG vocoders for all scenarios in 

this section, the following discussions focus on comparisons 

among QPPWGaf_20, PWG_30, and QPNet. 

For the halved F0 scenario, the QPPWGaf_20 vocoder 

markedly outperforms the PWG_30 and WD vocoders and 

attains a similar speech quality as the QPNet vocoder in the 

male set. In the female set, the QPPWGaf_20 vocoder is 

comparable to the PWG_30 and QPNet vocoders while still 

outperforming the WD vocoder. The results indicate that the 

models with the QP structure are more robustness for the 

unseen F0, which is totally outside the F0 rage of the training 

data, such as the most half F0 values in the male set. On the 

other hand, although the combination of the half F0 and other 

acoustic features in the female set is still unseen, the scaled F0 

values are almost in the F0 range of the training data. Therefore, 

the PWG_30 vocoder can still achieve a close speech quality as 

the QPPWGaf_20 vocoder. 

For the doubled F0 scenario, because the most scaled F0 

values are in the F0 range of the training data, the performance 

of the QPPWGaf_20 vocoder is close to that of the PWG_30 

vocoder in the male set. The QPPWGaf_20 also outperforms 

the WD and QPNet vocoder in the male set while the QPNet 

achieves a worse speech modeling capacity for the doubled F0 

scenario. However, although the QPPWGaf_20 vocoder 

predictably outperforms the PWG_30 and QPNet vocoders in 

the doubled female F0 scenario, the WD vocoder achieves a 

higher speech quality than the QPPWGaf_20 vocoder. The 

possible reason is that many PDCNNs of the QPPWGaf_20 

model might degenerate to DCNNs because of the close to one 

ET caused by the very high F0 values. 

In conclusion, the proposed QPPWG vocoder with 20 residual 

blocks attains a competitive speech quality as the PWG vocoder 

with 30 residual blocks for the natural auxiliary features while 

the model size is only 70% of that of the PWG model. When 

conditioned on the auxiliary features with unseen F0, the 

proposed QPPWG vocoders achieves a higher speech quality 

than the PWG vocoders. The results confirm the effectiveness 

of the proposed QP structure for the PWG model to efficiently 

model the speech signals and deal with the unseen F0 features.  

2) XAB Evaluation of Pitch Accuracy

To evaluate the perceptual pitch accuracy, we conducted the 

XAB tests of the QPPWGaf_20, PWG_30, and QPNet 

vocoders while the WD-generated utterances taken as the 

references. Because the results of female and male sets have the 

same tendency, only the overall results are shown in Fig. 6. We 

can find that the perceptual pitch accuracy of the proposed 

QPPWGaf_20 vocoder is much better than that of the PWG and 

QPNet vocoders for both halved and doubled F0 scenarios. To 

sum up, the XAB results show the perceptible pitch differences 

between QPPWG- and PWG-/QPNet-generated utterances, and 

the XAB experimental results are consistent with the objective 

results of the RMSE of log F0.  

VI. DISCUSSION

A. Effective Receptive Field 

Our previous works [18, 19] show that the capacity of AR 

vocoder is highly related to the length of the receptive field, and 

we argue that the No-AR vocoder has a similar tendency. 

Specifically, the receptive field length of PWG_30 is 6139 

(20+...+29=1023 with three cycles and two sides plus one) and 

that of PWG_20 is 4093. For the QPPWG, the effective 

Fig. 6.  Pitch accuracy XAB evaluations with 95% CI. 
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Fig. 7.  Comparison of receptive field lengths of PWG_30, PWG_20, and 

QPPWG_20 with male (M) and female (F) sets. 

Figure 6.7: Pitch accuracy ABX evaluations with 95 % CI.

ABX of Pitch Accuracy

To evaluate the perceptual pitch accuracy, ABX tests of the QPPWGaf 20, PWG 30,

and QPNet vocoders were conducted while the WD-generated utterances taken as ref-

erences. Note that since there were no natural utterances with scaled F0 and the

conventional signal-processing-based vocoder usually attains accurate pitch control-

lability, the WD-generated utterances were an alternative ground truth. Since the

speech quality of the WD-generated speech is usually worse than the neural-vocoder-

generated-speech, we asked the listeners to focus on the pitch differences and ignore

the speech quality differences. Because the results of the female and male sets have

the same tendency, only the overall results are shown in Fig. 6.7. We find that the

perceptual pitch accuracy of the proposed QPPWGaf 20 vocoder is much better than

that of the PWG and QPNet vocoders for both halved and doubled F0 scenarios. To

summarize, the ABX results show perceptible pitch differences between QPPWG- and

PWG-/QPNet-generated utterances, and the ABX experimental results are consistent

with the objective results of the RMSE of logF0.
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6.5 Discussion

In this section, we further explore the internal speech generative mechanism of the

QPPWG. Specifically, the visualized cumulative intermediate outputs of residual blocks

are presented to show the internal process of speech generation. Furthermore, the sta-

tistical results of the effective receptive fields are also presented for easily comparing the

modeling capacity of the QPPWG with that of the PWG by the receptive field lengths.

Last, a discussion about the PDCNN and classical deformable CNN are presented.

PWG 20 QPPWGaf 20 QPPWGfa 20
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Figure 6.8: Intermediate cumulative outputs.

6.5.1 Understanding of QP Structure

Because of the direct waveform outputs of PWG/QPPWG, we can easily dissect

the models to explore the internal speech modeling mechanisms. Specifically, the raw
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Figure 6.8: Intermediate cumulative outputs (continued).

waveform outputs of the PWG/QPPWG models are the cumulative results of the skip

connection outputs from the residual blocks. Therefore, the speech modeling behavior

of the residual blocks can be explored via the visualized intermediate outputs of partial

residual blocks. Spectrograms of the intermediate outputs of the cumulative residual

blocks are presented in Fig. 6.8. For the PWG vocoder results (Figs. 6.8 (a)–(d)), the

spectrogram contains more details and textures as the number of cumulative residual

blocks increases. In contrast to the PWG vocoder, which gradually adds both harmonic

and non-harmonic components to the spectrogram, the first 10 adaptive blocks of the

QPPWGaf vocoder mostly focus on modeling the harmonic components as shown in

Fig. 6.8 (f). By contrast, the first ten fixed blocks of the QPPWGfa vocoder mostly

generate the non-harmonic part of the speech as shown in Fig. 6.8 (j). The results

confirm our assumption that the adaptive blocks with the PDCNNs primarily model
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Figure 6.9: Cumulative intermediate outputs of 1–10 blocks with scaled F0.

the pitch-related speech components with long-term correlations, while the fixed blocks

with the DCNNs mainly focus on the spectrum-related components with short-term

correlations.

In addition, to explore the behaviors of the adaptive and fixed blocks for differ-

ent scaled F0 features, comparisons among the visualized cumulative outputs of the

first 10 residual blocks from the QPPWGaf and QPPWGfa vocoders are presented.

The spectrograms of QPPWGaf shown in Figs. 6.9 (a)–(c) have similar structures

along the time axis but increasingly stretched harmonic structures along the frequency

axis as F0 increases. By contrast, despite the different F0 scaled ratios, both the fre-

quency and temporal structures of the spectrograms of QPPWGfa shown in Figs. 6.9

(d)–(f) are similar. The results imply that the adaptive blocks primarily model the

pitch-dependent harmonic components and the fixed blocks mainly focus on the pitch-

independent non-harmonic components.
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Although the QPPWG vocoder is a unified NN-based waveform generative model,

the generative mechanism of its QP structure is similar to that of a source–filter model.

The cascaded adaptive (pitch-dependent) and fixed macroblocks of the QP structure are

analogous to the excitation generation and spectral filtering of the source–filter model.

Furthermore, since scaling F0 mostly affects the excitation generation parts, which is

modeled by the adaptive blocks, it may be the possible reason for the QPPWGaf out-

performing the QPPWGfa with the scaled F0. Specifically, the adaptive macroblock

of the QPPWGaf first models the corresponding excitation signal based on the scaled

F0, and then pass this information to the fixed macroblock. Therefore, when the fixed

macroblock of the QPPWGaf models the spectral information, it already had plentiful

information about the F0 scaled excitation signal. However, when the fixed macroblock

of the QPPWGfa models the spectral information, which is less related to the F0, the

generated spectral may not be well matched to the scaled F0. In conclusion, because

a vocoder is assumed to have the capability for independently controlling each speech

component, the QPPWG vocoder is more consistent with the definition of a vocoder

while having a more tractable and interpretable architecture. More details of the visu-

alized intermediate outputs can be found on our demo page2.

6.5.2 Effective Receptive Field

The experimental results in Chapter 5 show that the speech modeling capacity of an

AR vocoder is strongly related to the length of its receptive field, and we argue that

a non-AR vocoder has a similar tendency. Specifically, the receptive field length of

PWG 30 is 6139 samples (20+ · · ·+29 = 1023 samples for one side in each chunk. The

total length includes three chunks with two sides plus one sample) and that of PWG 20

2https://bigpon.github.io/QuasiPeriodicParallelWaveGAN demo/
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Figure 6.10: Receptive field lengths of PWG 30, PWG 20, and QPPWG 20 for male

(M) and female (F) sets.

is 4093 samples. For the QPPWG, the effective receptive field length is the summation

of 2047 samples for C1BF10 and 124×Et samples ( two chunks with two sides, and each

side in a chunk has 20+ · · ·+24 = 31 samples) for C2BA5. The male F0 range is around

40–240 Hz and the female F0 range is around 100–400 Hz, so the Et with the dense

factor four of the male set is around 20–140 and that of the female set is around 10-–60.

As shown in Fig. 6.10, most of the effective receptive filed lengths of QPPWG 20 for

the male set are longer than the receptive filed length of PWG 30, which may result

in the higher pitch accuracy and comparable speech quality of QPPWG. The slightly

lower speech quality of QPPWG 20 than of PWG 30 for the female set may result

from the shorter effective receptive fields of QPPWG 20. In conclusion, the speech

modeling capacity of a non-AR vocoder is still strongly related to the receptive field

length. The proposed QPPWG has longer effective receptive fields by skipping some
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redundant samples of the periodic components. Although the network may also lose

some details of the aperiodic components owing to the skipping mechanism, the overall

experimental results still show the effectiveness of the QP structure.

6.5.3 Deformable Dilated Convolution

The idea of a dynamically updated attention mechanism, which makes a sequen-

tial network know “where to look” at each time step, is not new. Generative mod-

els [137–139] that utilize differentiable attention mechanisms to constrain the read and

write operations of the network to specific parts of the scene have been proposed. To

handle the limitation of the fixed geometric structure of the CNNs, the authors of [140]

proposed a learnable spatial transformation of the input feature maps of the CNNs

to regularize the input of each CNN layer. Moreover, the authors of [141] proposed a

deformable convolution to enable the freeform deformation of the CNN sampling grid.

The deformable convolution gives the network an adaptive receptive filed that focuses

on different locations of the input feature map corresponding to the current conditions.

Since the offsets of the grid sampling locations in PDCNN are derived from the

F0 values, the proposed PDCNN is a special case of the deformable CNN. Specifically,

both the deformable CNN and the PDCNN dynamically index the input feature map to

implement the deformation of the CNN sampling grid, and the main difference between

them is that the deformation index of the PDCNN is calculated from the sampling rate

and instantaneous F0 while that of the deformable CNN is predicted using a NN. As

the deformable CNN with few additional parameters and computations, the PDCNN

is implemented with a simple indexing technique without a large extra computational

cost. As shown in Table 6.9, the average real-time factor (RTF) of the QPPWG 20

inferences is similar to that of PWG 20 and less than that of PWG 30 when running
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Table 6.9: RTF of Model Inference

PWG 20 PWG 30 QPPWG 20

Intel Xeon Gold 6142 0.474 0.579 0.512

Nvidia TITAN V 0.011 0.016 0.020

on an Intel Xeon Gold 6142 CPU (2.60 GHz and 32 threads). However, because of

the different indexing processes of each CNN kernel, the parallelization of the CNN

computation on a GPU is degraded. As shown in Table 6.9, although the model size

of QPPWG 20 is only 70 % of that of PWG 30, the QPPWG 20 model has 170 % of

the training time and 130 % of the inference time of the PWG 30 model when using

an Nvidia TITAN V GPU. However, since the RTF of the PWG generation is much

less than one, the additional inference time of QPPWG is insignificant.

6.6 Summary

In this chapter, the proposed QPPWG vocoder is introduced. Specifically, although

the proposed QPNet in Chapter 5 has reduced 50 % model size of the WN, the genera-

tion speed of the QPNet is still far away from real-time generation. To achieve real-time

generation, a compact NN-based vocoder, PWG, is adopted. However, because of the

fixed geometric structure and data-driven nature without much prior speech knowl-

edge, the PWG lacks pitch controllability. Therefore, the QPPWG vocoder has been

proposed to introduce the prior periodicity information to the network using the QP

structure. The QPPWG network architecture is dynamically adapted to the input

F0 feature of each input sample using the proposed non-AR PDCNN, and this pitch-

dependent mechanism improves speech modeling efficiency and pitch controllability by
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introducing the prior periodicity knowledge to the network.

Both objective and subjective experimental results show the effectiveness of the QP

structure for the PWG vocoder. The QPPWG vocoder outperforms the PWG vocoder

in pitch accuracy and speech quality for unseen scaled F0 features while attaining a

comparable speech quality to the PWG vocoder for natural F0 features. Because of the

more efficient receptive field expansion by PDCNNs, the model size of the QPPWG

vocoder is only 70 % of that of the PWG vocoder.

Moreover, the visualized intermediate outputs of QPPWG vocoders confirm our

assumption that adaptive blocks mainly model long-term correlations and fixed blocks

focus on short-term correlations. The results also imply that although the QPPWG

vocoder is a unified NN, the cascaded adaptive and fixed modules work like a source–

filter model to respectively model excitation signal and spectral information. That

is, the proposed QPPWG vocoder is a fast and simple waveform generative model

with higher pitch controllability, smaller model size, and better interpretability and

tractability than vanilla PWG. The effectiveness of the QPPWG vocoder also indicates

the generality of the QP structure for different CNN-based speech generative models.

To summarize, in this chapter, the generation efficiency of our speech synthesis mod-

ule has been significantly improved because of adopting a non-AR generative model,

PWG. The proposed QPPWG vocoder also markedly improves the pitch controllabil-

ity of the vanilla PWG vocoder because of the proposed PDCNN and QP structure.

Both objective and subjective results show a superior pitch accuracy of the QPPWG-

generated speech. Moreover, because of the more efficient speech modeling by the

pitch-dependent architecture, the QPPWG vocoder reduces 30 % model size compared

to the vanilla PWG vocoder while achieving similar speech quality with natural acoustic

features and higher speech quality in the pitch transformation scenarios.
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7.1 Summary of This Thesis

Speech generation is a technique of generating desired speech based on a specific

input such as text. A speech generation system usually includes an analysis mod-

ule to parametrize the input to a specific representation, a manipulation module to

manipulate the representation according to the requirements or transfer the input rep-

resentation to another proper representation(s) for speech synthesis, and a synthesis

module to generate speech waveforms based on the manipulated representation. A

speaker voice conversion (VC) task, which changes the speaker identity while main-

taining the speech content, and a pitch transformation task are the two examples of

speech generation systems discussed in this thesis, and the research mainly focuses on

improving the synthesis module. Four fundamental challenges of the synthesis module,

namely, quality, robustness, controllability, and generation efficiency, were studied, and

the proposed methods introduced in this thesis are mainly related to improving the

robustness against the distorted acoustic features and pitch controllability of neural-

based speech generation models.

The main aim of this research is to advance neural-based speech generation models

using prior knowledge of speech signals and speech production mechanisms. Specif-

ically, since speech is a continuous sequential signal with long-term dependence, the

neural model-generated speech should have the same characteristics such as continuity



152 7 Conclusions

and periodicity. As a result, a waveform constraint based on the speech continuity and

a pitch-adaptive network based on the speech periodicity have been developed in my

research. Moreover, since the human speech production mechanism is similar to a cas-

caded system with vocal fold vibrations and vocal tract resonance, conventional speech

modeling techniques usually model speech production using a source–filter model. The

source signal models the signal generated by vocal fold vibrations and the spectral filter

models the vocal tract resonance. The cascaded structure with the prior knowledge of

the speech production mechanism has also been applied to the proposed neural-based

generative models, and it makes those models more tractable and interpretable.

In Chapter 2, the fundamental concepts of a vocoder and source–filter model were

reviewed. The currently developed source–filter-based and unified-model-based neural

vocoders with autoregressive and non-autoregression were also introduced. On the

other hand, the background knowledge and techniques of VC with parallel and non-

parallel training corpora were also reviewed.

In Chapter 3, the details of the baseline two-stage deep neural network (DNN)-

based NU non-parallel VC system developed for VCC2018 were first described, and

the main concept was to use text-to-speech (TTS) outputs as a bridge to connect

non-parallel source and target speaker utterances. To improve the unimodal weakness

and the lack of capability to predict the variance of the DNN-based model, the deep

mixture density network (DMDN)-based VC model was also presented. Furthermore,

since the mismatch between the two stages of the cascade conversion structure caused

performance degradation, a compensation AutoEncoder to reduce the mismatch was

described. Internal objective evaluation results showed that the baseline DNN-based

VC system achieved a slightly worse spectral prediction accuracy than a parallel VC,

and the DMDN-based model slightly improved the spectral prediction accuracy. The
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evaluation results also showed the potential capability for the spectral prediction ac-

curacy improvement of the compensation AutoEncoder. Furthermore, the subjective

evaluations provided by the VCC2018 organizer showed that the submitted baseline

VC system achieved an above-average performance in both quality and similarity mea-

surements.

In Chapter 4, the phenomena, possible reasons, and negative effects of the collapsed

speech problem of the WaveNet (WN) vocoder were first described. To prevent the WN

vocoder from generating unexpected and non-speech-like outputs (collapsed speech),

collapsed speech detection and suppression techniques were introduced. The collapsed

speech segment detection (CSSD) technique segmentally detects the collapsed speech

segments of the WN-generated speech, and the proposed suppression technique was

applied to the detected segment to suppress the collapsed speech. The suppression

technique is a waveform-based distribution constraint, which constraints the WN out-

put distribution according to the relationships among reference speech samples. Since

it is usually stable and collapse-free, the WORLD-generated speech was adopted as

the reference speech. The sample-based relationships are described by linear predic-

tion coding (LPC) coefficients, so the waveform-based constraint is called the LPC

distribution constraint (LPCDC). The subjective evaluation results showed that the

WN vocoder with the proposed CSSD and LPCDC significantly improved the speech

quality and maintained the same speaker similarity of the baseline VC system.

In Chapter 5, a WN-like audio waveform generation model named QPNet was intro-

duced. The QPNet models quasi-periodic and high-temporal-resolution audio signals

with a pitch-dependent dilated convolutional neural network (PDCNN) and a cascaded

network structure in an autoregressive (AR) manner. The PDCNN is a variant of a

dilated convolutional neural network (DCNN), and the dilation size of the PDCNN is



154 7 Conclusions

DCNN-based

Logistic 

distribution

DCNN-based

Discriminator

Previous samples Gaussian noise

Output samples

Output sample

Acoustic feature Acoustic feature

PWGWaveNet

Logistic 

distribution

Previous samples

Output sample

Acoustic feature

QPNet

PDCNN-based
DCNN-based

DCNNs

Discriminator

Gaussian noise

Output samples

Acoustic feature

QPPWG

DCNN-based
PDCNN-based

Figure 7.1: Neural vocoders in this thesis.

dynamically changed corresponding to the input fundamental frequency feature (F0)

for modeling the long-term correlations of audio samples. The cascaded structure was

induced by the conventional source–filter model to respectively model the spectrum

and pitch-related components of speech samples by the cascaded fixed and adaptive

modules. Specifically, the adaptive module adopts PDCNNs to model the long-term

correlations with a pitch-adaptive network architecture, and the fixed module adopts

DCNNs to model the short-term correlations with a fixed network architecture. A sine

wave generation task was presented to show the effectiveness of the proposed PDCNN

for generating sine waves with unseen frequencies. In the pitch transformation task, the

QPNet vocoder achieved higher pitch controllability and similar speech naturalness to

the double-size WN vocoder. In the VC task, the QPNet vocoder also achieved similar

naturalness and speaker similarity to the double-size WN vocoder. In conclusion, the

QP structure with the PDCNN improves the pitch controllability and speech modeling

efficiency of the WN vocoder.

In Chapter 6, quasi-periodic parallel WaveGAN (QPPWG) was presented. The

QPPWG is a parallel WaveGAN (PWG)-based model with the proposed QP structure
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Figure 7.3: Speech quality comparison of the vocoder-generated speech in this thesis.

and non-AR PDCNNs to improve the pitch controllability of the PWG by introducing

the prior periodicity information of speech signals. The architecture differences of the

WN, QPNet, PWG, and QPPWG vocoders are shown in Fig. 7.1. Since the PWG

is a non-AR speech generation model with a compact model size, which is less than

3 % of that of the WN, the generation speed of the PWG is much higher than the real

time. Although the PDCNNs slightly degrade the parallelization of the non-AR CNN

computation, the generation speed of the QPPWG is still much higher than the real

time because of the non-AR mechanism and an even smaller model size.
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In the pitch transformation task, although the PWG had already achieved sim-

ilar pitch accuracy to the QPNet because of the assistance of the GAN structure,

the QPPWG still markedly improved the pitch accuracy of the PWG. Moreover, the

QPPWG vocoder even outperformed the PWG vocoder in speech quality for unseen

scaled F0 features while attaining a comparable speech quality to the PWG vocoder

for natural F0 features. Overall, for the natural acoustic features (unchanged F0), the

speech qualities of the WN, QPNet, PWG, and QPPWG-generated utterances are simi-

lar and markedly higher than those of the WORLD-generated utterances, which shows

the effectiveness of the neural vocoders. For the scaled F0 scenarios, the QPPWG-

generated utterances achieve slightly higher speech quality and much higher pitch ac-

curacy than other vocoder-generated utterances. The pitch controllability, generation

speed, and speech quality performance characteristics of the neural vocoders in this

thesis are shown in Figs. 7.2 and 7.3, and both objective and subjective results in

Chapters 5 and 6 showed the effectiveness of the proposed QP structure and PDCNN

for improving the speech modeling efficiency and pitch controllability of neural-based

speech generation models. In addition, the visualized intermediate outputs of QPPWG

vocoders also showed the higher tractability and interpretability of the neural vocoders

with the QP structure.

In conclusion, this thesis demonstrates several ways to introduce the prior knowledge

of speech signals and speech production mechanisms into data-driven unimodal neural-

based vocoders to improve the robustness against the distorted acoustic features, pitch

controllability, and speech modeling efficiency of the neural-based vocoders. Both

objective and subjective results showed the effectiveness of the proposed methods.

Moreover, visualized results are also provided to show the internal behaviors of the

neural-based vocoders for understanding how the proposed methods work in the neu-



7.2. Future Work 157

ral networks. The main contribution of this thesis is as follows. Although end-to-end

neural networks are the mainstream of the current research for avoiding oversimplified

assumptions causing mismatches, properly introducing the signal-related prior knowl-

edge into the neural networks not only improves their capability but also makes these

neural networks more than a black box. That is, the internal generative behaviors

and mechanisms of the neural networks are more controllable and consistent with our

understanding and observation of signals.

7.2 Future Work

Although the proposed methods greatly ease the collapsed speech issue and improve

the pitch controllability and speech modeling efficiency of the WN and PWG vocoders,

several challenges should be addressed in the future.

7.2.1 Collapsed Speech Detection and Suppression

For the collapsed speech detection, although the waveform-envelope-based detection

is simple and efficient, the equal error rate (EER) is still around 20 %, which means

that there is room for improvement. There are several possible directions such as a

better reference speech than the WORLD-generated speech and a more detailed label

of training data. For the collapsed speech suppression, since the proposed method is a

Gaussian distribution with a specific mean and variance derived from linear prediction

coding (LPC) results, the LPC can be easily replaced with other advanced speech

coding techniques such as linear spectral pairs (LSP) to obtain a better mean and

variance.
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7.2.2 Pitch-dependent Dilated Convolution

The dilation size of the PDCNN is determined from the input F0. In this thesis,

the WORLD-extracted F0 from the auxiliary acoustic features is directly adopted.

However, since the performance of the PDCNN is assumed to be highly related to the

accuracy of the input F0, adopting advanced F0 extraction methods may improve the

performance of the PDCNN. Furthermore, only the PDCNN with the F0 of natural

speech and scaled F0 has been evaluated, but the robustness of the PDCNN with the

F0 of noisy speech is an interesting question. On the other hand, the dilation size

expansion of the stacked PDCNNs directly follows that of the stacked DCNNs in the

WN. However, other possible expansion methods that are more consistent with the

speech production mechanism may improve the tractability and interpretability of the

networks.

7.2.3 Quasi-Periodic Structure

According to the evaluation results in Chapters 5 and 6, the ratio of the fixed to adap-

tive blocks of the QP structure is highly related to the performance. However, because

of the GPU memory limitation, only a few possible combinations of the fixed and adap-

tive blocks were evaluated. A more efficient way to explore the optimized ratio of the

fixed to adaptive blocks is necessary in future work. Furthermore, the adaptive-to-fixed

macroblock order achieves a similar performance to the fixed-to-adaptive macroblock

order in the QPNet while significantly outperforming the fixed-to-adaptive macroblock

order in the QPPWG. The root cause will be another interesting research topic in

future work. This thesis only introduces the most straightforward and simple way to

apply the PDCNN and QP structure to the WN and PWG. However, there is still room
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for improvement in the usage and hyperparameters of the PDCNN and QP structure.

7.2.4 Real-time Generation

Although the proposed QPPWG has already achieved real-time generation on both a

GPU and a CPU with multiple cores and threads, the generation speed of the QPPWG

will become much lower on devices with limited computation power such as a single

CPU without multiple cores and threads. Furthermore, since only utterance-based

generation was evaluated in this thesis, the capability of the QPPWG for streaming

generation is still a question. Because many applications are running on mobile devices

nowadays, the low resource requirement and streaming generation are very important

features for a speech synthesis system.

7.2.5 Prior Knowledge

In this thesis, only the basic speech continuity and periodicity and the conventional

source–filter model were applied to the generative models in the speech generation

tasks. However, more advanced knowledge of audio signals such as music can be

introduced to the generative networks for other audio generation tasks. This thesis

is just the beginning of applying prior knowledge to dynamically adapt the outputs

or architectures of networks. Further advanced exploration of prior knowledge with

neural networks will be an interesting future work.
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7.2.6 More than Audio Synthesis

Since not only audio signals have periodicity, the PDCNN concept can be applied to

other sequential signals. For example, many web applications collect many user data

to analyze users behaviors. Since user behaviors usually include specific patterns and

cycles related to time (e.g., the specific day in each week), modeling user behaviors

using a dilated CNN with time-dependent dilation size is reasonable. In conclusion,

sequential signals usually have some specific patterns, and a sequential signal modeling

network can benefit from the adaptation corresponding to these implicit patterns.
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Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020, Full

virtual, Oct. 2020.

26. W.-C. Huang, P.L. Tobing, Y.-C. Wu, K. Kobayashi, and T. Toda,“The NU voice

conversion system for the voice conversion challenge 2020: on the effectiveness
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Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020, Full
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2. Y.-C. Wu, P. L. Tobing, T. Hayashi, K. Kobayashi, and T. Toda, “Development

of NU non-parallel voice conversion system 2018,” 電子情報通信学会技術研究報告,
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NU voice conversion system for Voice Conversion Challenge 2018,” 日本音響学会
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4. P.L. Tobing, Y.-C. Wu, T. Hayashi, K. Kobayashi, and T. Toda, “Development of
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6. P.L. Tobing, Y.-C. Wu, T. Hayashi, K. Kobayashi, and T. Toda, “Voice conversion

with cyclic recurrent neural network for WaveNet fine-tuning,” 日本音響学会講演
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7. K. Yasuhara, Y.-C. Wu, P. L. Tobing, N. Matsunaga, Y. Ohtani, and T. Toda, “

テキスト音声合成におけるポストフィルタとしてのWaveNetボコーダ学習法,” 日
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Awards

1. NEC C&C 2019年度外国人研究員助成事業

2. INTERSPEECH 2019 Travel Grant


