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Abstract

The Standard Model (SM) in particle physics is successful but still incomplete in the

sense that the electroweak scale is unstable under quantum corrections. In order to

solve this problem, we need to understand an origin of electroweak symmetry break-

ing and high energy physics that realize the mechanisms protecting the electroweak

scale from the large quantum corrections. On the other hand, in experimental side,

Higgs boson couplings are planned to be measured more precisely in the LHC. Be-

cause Higgs sector is deeply related to the symmetry breaking, deviations from SM

predictions may enable us to extract information about the high energy physics. In

such a situation, we have pursued the research to answer the following question: how

can we extract information about the new particles’ properties such as spin, charge,

helicity etc. from deviation patterns in Higgs precision measurements?

For the purpose of obtaining model-independent information about the new heavy

particles, it is well known that the Standard Model Effective Field Theory (SMEFT)

is useful. In the SMEFT, it is, however, implicitly assumed that the observed Higgs

boson is coming from the SU(2)L scalar doublet. In order to remove this assumption

and consider the most general set up, we have focused on the Higgs Effective Field

Theory (HEFT), which is constructed by adding the observed Higgs boson to the

electroweak chiral perturbation theory. Furthermore, we have generalized the HEFT

so that it includes additional scalar degrees of freedom. We also calculated one of

the most precisely measured parameters: the Peskin Takeuchi S, T , U parameters.

We saw theoretical correlations between these parameters and four-point scattering

amplitudes, and found nontrivial relations.
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Chapter 1

Introduction

In particle physics, there is one successful theory, the Standard Model (SM), which

gives predictions reproducing various measurements correctly and precisely. In 2012,

the last piece of the SM, the Higgs boson, was discovered at the Large Hadron

Collider (LHC) [1,2], and all the particles predicted by the SM have been discovered.

Now, the collider experiments in particle physics enter the new stage: the precision

measurements of the observed particles’ properties. In the near future, the Higgs

couplings to the SM vectors (hV V ) and fermions (hff̄) will be measured in O(1)%

accuracy in the LHC Run3, HL-LHC, and hopefully, ILC experiments.

Despite the brilliant successes on the experimental side, the SM has serious prob-

lems on the theoretical side called hierarchy problem or naturalness problem. This

problem is deeply related to the Higgs boson mentioned above. In the SM, the Higgs

boson causes the electroweak symmetry breaking at the energy scale of O(102) GeV.

This energy scale is far below the cut-off scale of the SM, which is expected to be

O(1016) GeV. In order to realize such a high hierarchy, we must expect unnaturally

large cancellation between quantum corrections and the bare mass scale of the Higgs

boson.

Considering these situations, we want to ask one simple question: is the scalar

boson discovered at the LHC really the Higgs boson predicted by the SM? In many

new physics models beyond the SM, the electroweak symmetry breaking sector is

extended from that of the SM, and some of them predict new scalar bosons other
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than the observed Higgs boson. If the discovered scalar boson is not the Higgs boson

predicted by the SM, the sign of the new physics may appear in the future Higgs

precision measurements: Higgs couplings such as hV V and hff̄ may turn out to

deviate from the SM predictions.

One important thing is that if hV V couplings turn out to deviate from the SM

prediction, it may cause a serious problem involving unitarity: the scattering am-

plitude of longitudinal gauge boson mode, VLVL → VLVL, shows energy growing

behavior and it exceeds the upper bound coming from the unitarity arguments. In

the SM, the energy growing behavior of VLVL → VLVL is completely canceled out

thanks to the appropriately tuned hV V coupling, but if hV V deviates from the SM

prediction, the observed scalar boson cannot restore the unitarity of VLVL → VLVL

scattering completely. To cure this unitarity violation, new scalar fields should ap-

pear to cancel the remaining energy growing behavior. The unitarity conditions for

VLVL → VLVL scattering are good probes for investigating new physics. In this the-

sis, we try to approach the new physics beyond the SM from the future precision

measurements of the Higgs couplings, focusing on the unitarity conditions as one of

the probes for new physics search.

The deviations from the SM predictions can be described by the effective theory

approach. The Higgs Effective Field Theory (HEFT) is one of the most general

effective field theory written in terms of the SM matter fields [3–19]. The HEFT is

quite useful to parametrize the deviations from the SM predictions, but it also has

disadvantages: in the framework of the HEFT, the heavy particle degrees of freedom

are integrated out, so we cannot calculate the physical processes with these heavy

particles appearing in the initial and the final state, such as production cross section

and the decay rate of the heavy particles. In order to obtain concrete predictions on

the properties of new particles, we must extend the HEFT so that it includes new

particle degrees of freedom.

In this thesis, we extend the HEFT so that it includes the arbitrary number of

neutral and charged scalar fields, and formulate “Generalized Higgs Effective Field

Theory (GHEFT).” Using the GHEFT framework, we derive the unitarity conditions

of VLVL → VLVL scattering amplitude. We also calculate one of the most precisely

measured parameters, Peskin-Takeuchi S, T , U parameters in the GHEFT. Focusing
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on the geometry of the field space, we express these unitarity conditions and the S,

T , U parameters in the covariant form. Furthermore, we derive the theoretical

correlation between the unitarity conditions and oblique parameters in the model-

independent manner.

This thesis is organized as follows: In Chap. 2, we will review the Standard Model

(SM) in particle physics. In Chap. 3, we will review the Higgs Effective Field Theory

(HEFT) and its key ingredient, the non-linearly realized symmetry. In Chap. 4, we

will extend the HEFT so that it includes the arbitrary number of neutral and charged

scalar fields, and formulate “Generalized Higgs Effective Field Theory (GHEFT).”

In Chap. 5, we will point out difficulties in the analysis based on the effective field

theory approach, and introduce a technique for overcoming the disadvantages.

In Chap. 6, we will derive a series of conditions for respecting the unitarity of

VLVL → VLVL scattering amplitude in the GHEFT framework. In Chap. 7, we will

calculate oblique parameters S, T , U in the GHEFT. In Chap. 8, we will relate the

unitarity conditions derived in Chap. 6 and the expressions of oblique parameters

derived in Chap. 7 by focusing on the geometry of the field space. We will summarize

this thesis in Chap. 9.
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Chapter 2

Standard Model in Particle

Physics

The Standard Model in particle physics is a quite successful theory, established by S.

L. Glashow, S. Weinberg, and A. Salam in the 1960s, constructed based on SU(3)C×
SU(2)L×U(1)Y gauge symmetry. In this chapter, we will briefly review the SM and

its fundamental ingredients, spontaneous symmetry breaking.

2.1 Framework

Various phenomena observed in nature can be described by the behavior of elemen-

tary particles. The behavior of elementary particles are described by four fundamen-

tal interactions: gravitational interaction, strong interaction, weak interaction, and

electromagnetic interaction. Among these four interactions, gravitational interaction

is extremely weak. If we consider quite heavy particles, we must take the gravita-

tional interaction into account, but because masses of elementary particles are quite

small compared with the Planck scale, which is the mass scale where gravitational in-

teraction become strong and non-negligible, we can ignore gravitational force as long

as we focus on the interactions among the elementary particles. The remaining three

interactions, strong interaction, weak interaction, and electromagnetic interaction

can be successfully described by a framework of gauge symmetry.
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Gauge symmetry of the SM is given by SU(3)C×SU(2)L×U(1)Y . Associated with

each gauge symmetry, a spin one vector boson called gauge boson is introduced, and

these gauge bosons control the fundamental three interactions mentioned above. The

gauge boson associated with SU(3)C gauge symmetry is called gluon and it rules the

strong interaction. The gauge bosons associated with SU(2)L×U(1)Y symmetry are

called electroweak gauge bosons altogether. As we will mention in Sec. 2.2, SU(2)L×
U(1)Y is spontaneously broken to its subgroup U(1)em, generating one massless and

three massive vector bosons. The massless gauge boson associated with unbroken

U(1)em symmetry is called photon and rules electromagnetic interaction. The three

massive vector bosons are called weak bosons, controlling weak interaction.

Other than the gauge bosons controlling the fundamental interactions, the SM

includes spin one-half fermions and spin-zero scalar boson as its matter contents.

In Table 2.1, we listed all the matter fields comprising the SM, together with their

representations under Lorentz symmetry and SU(3)C ×SU(2)L×U(1)Y gauge sym-

metry.

spin SU(3)C SU(2)L U(1)Y

Gµ 1 8 1 0

Wµ 1 1 3 0

Bµ 1 1 1 0

qiL = (uiL, d
i
L)

T 1/2 3 2 +1/6

uiR 1/2 3 1 +2/3

diR 1/2 3 1 −1/3

liL = (νiL, e
i
L)

T 1/2 1 2 −1/2

eiR 1/2 1 1 −1

H 0 1 2 −1/2

Table 2.1: Matter contents in the Standard Model

Gµ, Wµ, and Bµ in the first row of Table 2.1 denote gluon, SU(2)L electroweak
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gauge bosons, and U(1)Y electroweak gauge boson, respectively.

The spin one-half particles in the second row, qiL, u
i
R, and d

i
R, are fermions called

quarks, and the spin one-half particles in the third row, liL and eiR, are fermions called

leptons. Contrary to the gauge bosons, these fermions comprise matters in nature.

For a famous example, the electron in the third row of Table 2.1 comprises atoms

together with the nucleus, and the nucleus is made of protons and neutrons, which

are composed of quarks combined by the strong interaction.

The quarks and leptons have three kinds, which are labeled by index “i” running

from 1 to 3. In particle physics, we call these particle sets generations and so the

SM has three generations of quarks and leptons. In Table 2.2, we listed all the three

generations of quarks and leptons.

The significant feature of the SM fermions is that the left-handed fermions and

the right-handed fermions are assigned different representations under electroweak

gauge symmetry SU(2)L × U(1)Y . For example, as you can find in the third row

of Table 2.1, left-handed electron eL and right handed electron eR have different

quantum numbers under SU(2)L × U(1)Y : the former belongs to SU(2)L doublet

and is assigned −1/2 as U(1)Y hypercharge, while the latter is SU(2)L singlet and

its U(1)Y hypercharge is −1. Such fermions are called chiral fermions and, as we

will see later, the chiral fermions cannot have mass terms. This means quarks and

leptons are massless in the SM and they move around at the speed of light, which is

far from our intuition. This description is drastically changed after the spontaneously

breaking of electroweak symmetry occurs. We will explain the details of this topic

in the next section.

The last particle denoted by H in the fourth row of Table 2.1 is a scalar field

called Higgs doublet. As we will see in Sec. 2.2, this Higgs doublet plays a crucial

role in spontaneously breaking of the electroweak symmetry.
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1st generation (i = 1) 2nd generation (i = 2) 3rd generation (i = 3)

q1L = (uL, dL)
T q2L = (cL, sL)

T q3L = (tL, bL)
T

uR cR tR

dR sR bR

l1L = (νeL, eL)
T l2L = (νµL, µL)

T l3L = (ντL, τL)
T

eR µR τR

Table 2.2: Generations of quarks and leptons in the Standard Model

The SM Lagrangian is given by writing down all the invariant operators under

SU(3)C × SU(2)L × U(1)Y gauge symmetry 1 ,

L = Lgauge + Lscalar + Lfermion , (2.1)

where Lgauge, Lscalar, and Lfermion each denotes the gauge sector, scalar sector, and

fermion sector, respectively. In the remaining of this section, we will closely see each

sector in turn.

Gauge sector

The Lagrangian of the gauge sector in the SM is given by the kinetic terms of SU(3)C ,

SU(2)L, and U(1)Y gauge fields with its explicit form given by

Lgauge = −1

2
Tr [GµνG

µν ]− 1

2
Tr [WµνW

µν ]− 1

4
BµνB

µν , (2.2)

where Gµν , Wµν , and Bµν are field strength tensors of SU(3)C , SU(2)L, and U(1)Y ,

respectively. Their explicit form is written in terms of gauge fields listed in Table 2.1

1Other than operators listed in the SM Lagrangian, we can write down another SU(3)×SU(2)L×
U(1)Y invariant, CP violating operator so called theta term. This operator involves electromagnetic
dipole moment (EDM). The EDM is a quite important topic in particle phenomenology, but is
beyond the scope of this thesis.
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as

Gµν = ∂µGν − ∂νGµ + igC [Gµ, Gν ] , (2.3)

Wµν = ∂µWν − ∂νWµ + igW [Wµ,Wν ] , (2.4)

Bµν = ∂µBν − ∂νBµ , (2.5)

where gC and gW are gauge coupling of SU(3)C and SU(2)L, respectively. Gµ and

Wµ are given as

Gµ :=
8∑

A=1

GA
µ

λA

2
, Wµ :=

3∑
a=1

W a
µ

τa

2
, (2.6)

with λA being Gell-mann matrix and τa (a = 1 ∼ 3) being Pauli matrix. The explicit

form of Gell-mann matrices is given as

λ1 =

 0 1 0

1 0 0

0 0 0

 , λ2 =

 0 −i 0
i 0 0

0 0 0

 , λ3 =

 1 0 0

0 −1 0

0 0 0

 ,

λ4 =

 0 0 1

0 0 0

1 0 0

 , λ5 =

 0 0 −i
0 0 0

i 0 0

 , λ6 =

 0 0 0

0 0 1

0 1 0

 ,

λ7 =

 0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0

0 1 0

0 0 −2

 , (2.7)

while that of Pauli matrices are given as

τ 1 =

(
0 1

1 0

)
, τ 2 =

(
0 −i
+i 0

)
, τ 3 =

(
1 0

0 −1

)
. (2.8)

The transformation law of each gauge field under each gauge symmetry is given by

SU(3)C : Gµ → gCGµg
†
C +

i

gC
gC∂µg

†
C , (2.9)
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SU(2)W : Wµ → gWWµg
†
W +

i

gW
gW∂µg

†
W , (2.10)

U(1)Y : Bµ → Bµ +
1

gY
∂µθY , (2.11)

where gC and gW are SU(3)C and SU(2)L transformation matrix, respectively, and

their explicit form is given as

gC = exp

(
i

8∑
A=1

θAC
λA

2

)
, (2.12)

gW = exp

(
i

3∑
a=1

θaW
τa

2

)
. (2.13)

θAC , θ
a
W , and θY are gauge parameters and all of them are the real numbers. We can

easily find that Lagrangian of the gauge sector (2.2) is invariant under SU(3)C ×
SU(2)× U(1)Y transformation with arbitrary θAC , θ

a
W , and θY .

Scalar sector

The Lagrangian of the scalar sector in the SM is composed of a kinetic term of Higgs

doublet H and a scalar potential V :

Lscalar = (DµH)†DµH − V (H) , (2.14)

with

V (H) = µ2|H|2 + λ|H|4 . (2.15)

The covariant derivative DµH is given as

DµH =

(
∂µ − igWWµ − igY

1

2
Bµ

)
H . (2.16)
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The transformation law of Higgs doublet H under SU(2)L × U(1)Y are given as

SU(2)L : H → gWH , (2.17)

U(1)Y : H → ei
1
2
θYH , (2.18)

with gW given by Eq.(2.13). We can easily check that the covariant derivative given

by Eq.(2.16) transforms covariantly under SU(2)L × U(1)Y .

In the SM, the mass of Higgs doublet H is taken to be negative, µ2 < 0. Due

to this, the scalar potential V has an extreme minimum at the nonzero field value.

This causes the electroweak symmetry breaking. We will explain its details in the

next section.

Fermion sector

The Lagrangian of the fermion sector in the SM is composed of fermion kinetic terms

and Yukawa terms, with its explicit form given as

Lfermion =
3∑

i=1

q̄iLi /Dq
i
L +

3∑
i=1

l̄iLi /Dl
i
L +

3∑
i=1

ūiRi /Du
i
R +

3∑
i=1

d̄iRi /Dd
i
R +

3∑
i=1

ēiRi /De
i
R

+

(
3∑

i,j=1

yuij q̄
i
LH̃u

j
R +

3∑
i,j=1

ydij q̄
i
LHd

j
R +

3∑
i,j=1

yeij l̄
i
LHe

j
R + h.c.

)
, (2.19)

where H̃ in the second line is defines as

H̃ := iτ 2H∗ . (2.20)

The covariant derivative for each fermion field is given as follows:

DµqL =

(
∂µ − igCGµ − igWWµ − igY

1

6
Bµ

)
qL , (2.21)

DµuR =

(
∂µ − igCGµ − igY

2

3
Bµ

)
uR , (2.22)
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DµdR =

(
∂µ − igCGµ − igY

−1

3
Bµ

)
dR , (2.23)

DµlL =

(
∂µ − igWWµ − igY

−1

2
Bµ

)
lL , (2.24)

DµeR =

(
∂µ − igY (−1)Bµ

)
eR , (2.25)

with flavor indices suppressed. yuij, y
d
ij, and y

e
ij are three by three Yukawa matrices

and their components can take arbitrary complex values.

Before closing this section, we will briefly mention the fermion mass terms in the

SM. As you can see in the fermion sector given by Eq.(2.19), the SM fermions do

not have mass terms. This is because the SM fermion is chiral, namely, left-handed

fermions and right-handed fermions are assigned different quantum numbers under

SU(2)L × U(1)Y symmetry. As shown in Table 2.1, all the fermions in the SM have

nonzero U(1)Y hypercharge and so the mass terms of charged fermion are given by

Dirac mass terms,

∆Lmass = −m(ψ̄LψR + ψ̄RψL) , (2.26)

with ψL and ψR denoting a left-handed and a right-handed Dirac fermion, respec-

tively. A significant feature of the Dirac mass term is that it inevitably combines

the left-handed fermion ψL and the right-handed fermion ψR. Therefore, if ψL and

ψR have different quantum numbers under underlying symmetry, the mass terms

(2.26) cannot be invariant under the symmetry. The same thing happens in the

SM. Because the left- and right-handed SM fermions are assigned different quantum

numbers under SU(2)L ×U(1)Y , their mass terns are forbidden by SU(2)L ×U(1)Y .

In the real world, however, we can see that matters around us have nonzero masses.

This puzzle is resolved by the symmetry breaking of the SU(2)L×U(1)Y , which will

be treated in the next section.

So far, we have explained the details of the SM framework. As we mentioned

above, the SM gives descriptions that are far from our intuition: all the SM fermions

are massless and they move around at the speed of light. In the next section, we

will show how to fix this problem and introduce a mechanism generating masses of
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gauge bosons, quarks, and leptons.

2.2 Spontaneous symmetry breaking

In the previous section, we reviewed the foundation of the SM and found that the SM

is the chiral theory: each SM fermion is assigned different quantum number according

to its handedness under the SU(2)L × U(1)Y symmetry. Because the fermion mass

terms inevitably combine the left-handed and right-handed fermions, we can not

write down the mass terms in the chiral theory. In this section, we will focus on this

topic.

As we briefly mentioned in the previous section, the scalar sector of the SM,

given by Eq.(2.14) plays a crucial rule in electroweak symmetry breaking. The scalar

potential V in the SM scalar sector is given by

V (H) = µ2|H|2 + λ|H|4 . (2.27)

Due to the negative mass squared, µ2 < 0, the scalar potential V has extreme

minimum at the nonzero field value. The field value at the extreme minimum is

called vacuum expectation value and in this case, its explicit form is given by

⟨H⟩ = 1√
2

(
0

v

)
, (2.28)

with

v =

√
−µ2

λ
. (2.29)

The nonzero vacuum expectation value of the Higgs doublet cause the electroweak

symmetry breaking. This can be easily seen by acting SU(2)L×U(1)Y transformation

matrix on the vacuum expectation value given by Eq.(2.28). The transformation law

of Higgs doublet H under SU(2)L and U(1)Y symmetry is given by Eq.(2.17) and

Eq.(2.18), respectively. If we take the transformation parameters θaW and θY quite

small and consider infinitesimal transformation under SU(2)L×U(1)Y , H transforms
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under each symmetry as

SU(2)L : H → H + δWH , (2.30)

U(1)Y : H → H + δYH , (2.31)

with

δWH := i

(
3∑

a=1

θaW
τa

2

)
H , δYH := iθY

1

2
H . (2.32)

Replacing Higgs doublet H in Eq.(2.32) with its vacuum expectation value ⟨H⟩
given by Eq.(2.28), we can easily see that vacuum expectation value ⟨H⟩ breaks

SU(2)L × U(1)Y symmetry because it changes its value under SU(2)L and U(1)Y

transformation: (
3∑

a=1

θaW
τa

2

)
⟨H⟩ ̸= 0 , (2.33)

θY
1

2
⟨H⟩ ̸= 0 . (2.34)

Considering the special transformation with θ1W = θ2W = 0 and θ3W = θY , however,

we can keep ⟨H⟩ invariant:

θem

(
τ 3

2
+

12

2

)
⟨H⟩ = 0 , (2.35)

with

θem := θ3W = θY . (2.36)

This means that ⟨H⟩ breaks SU(2)L × U(1)Y to the diagonal combination of U(1)L

and U(1)Y , where U(1)L denotes the subgroup of SU(2)L with its generator given by

τ 3/2. As notation suggests, this diagonal combination is the symmetry associated

with electromagnetic interaction, U(1)em. Therefore, the nonzero vacuum expecta-

tion value of Higgs doublet ⟨H⟩ breaks SU(2)L × U(1)Y symmetry to its subgroup
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U(1)em.

It is worth pointing out that the field value of H giving an extreme minimum of

the scalar potential V is not only the value given by Eq.(2.28), but there are a series

of equivalent vacuum. When Higgs doublet H takes nonzero vacuum expectation

value, only one vacuum is chosen from the series of equivalent vacuum and this

cause symmetry breaking of SU(2)L × U(1)Y . Such symmetry breaking is called

spontaneous symmetry breaking. As we will see in the remainder of this section,

spontaneous symmetry breaking plays a crucial role in giving masses to the SM

gauge bosons and fermions.

Now, let’s consider the consequence of spontaneously breaking of the electroweak

symmetry. Rewriting Higgs doublet H in terms of its vacuum expectation value

given by Eq.(2.28) and the fluctuations from the vacuum,

H =

 w+

(v + h+ iz)/
√
2

 , (2.37)

and substituting Eq.(2.37) into the scalar sector (2.14), we get Lagrangian in the

broken phase. From the potential term of Eq.(2.14), we get

V (H) =
1

2
m2

hh
2 + λvh3 +

λ

4
h4 + λ(w+w−)h2 +

λ

2
h2z2

+ 2λv(w+w−)h+ λvzh+ λ(w+w−)2 + λ(w+w−)z2 +
λ

4
z4 , (2.38)

with the mass of h given by

m2
h =

√
2λv . (2.39)

The scalar matter field h is called Higgs boson. In 2012, the scalar boson with its

properties consistent with the SM Higgs boson was finally discovered in the LHC

and all the particles predicted by the SM are observed. The mass of the Higgs boson
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is measured and turns out to be

m2
h = (125GeV)2 . (2.40)

As you can see in Eq.(2.38), scalar fields w± and z have no mass terms. These

massless scalar bosons correspond to the fluctuations along with the flat directions

of the scalar potential: as we mentioned previously, in the spontaneous symmetry

breaking, one vacuum is chosen from the series of equivalent vacuum, so there always

exist the flat direction starting from chosen vacuum to the other equivalent vacuum.

The massless scalar bosons resulting from spontaneous symmetry breaking are called

Nambu-Goldstone bosons (NG bosons). From Goldstone theorem, the number of NG

bosons are equal to the number of broken generators. In the case of electroweak

symmetry breaking, SU(2)L × U(1)Y → U(1)em, there are three broken generators

and so the three NG bosons should exist, which are denoted by w± and z in Eq.(2.38).

From the kinetic term of the Higgs doublet in Eq.(2.14), we get the mass terms

of gauge bosons

(DµH)†(DµH) ⊃ m2
WW

+
µ W

−µ +
1

2
m2

ZZµZ
µ , (2.41)

where weak bosons W± and Z are the linear combinations of SU(2)L × U(1)Y elec-

troweak gauge bosons:

W±
µ :=

W 1
µ ∓ iW 2

µ√
2

, Zµ :=
gWW

3
µ − gYBµ√
g2W + g2Y

. (2.42)

Note that the masses of weak bosons W±, Z are expressed as

m2
W :=

1

4
g2Wv

2 , m2
Z :=

1

4

√
g2W + g2Y v

2 . (2.43)

It is worth mentioning degrees of freedom before and after the electroweak symmetry

breaking. A massless vector boson has two physical degrees of freedom called trans-

verse modes, while a massive vector boson has three physical degrees of freedom, a

longitudinal mode and two transverse modes. Therefore, in order for a massless vec-
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tor boson to acquire its mass, they need to absorb one degree of freedom. In the case

of the SM, three gauge bosons, W± and Z, acquire their masses after electroweak

symmetry breaking, so three degrees of freedom should be provided to these three

gauge bosons. Where do these additional degrees of freedom come from? Actually,

they are provided by three NG bosons arising in the process of spontaneous symmetry

breaking: W± and Z absorb massless NG bosons w± and z, respectively, and obtain

the longitudinal mode to become massive. The mechanism for massless gauge bosons

acquiring their masses through the absorption of would-be NG bosons is called the

Higgs mechanism, and plays a crucial role in generating the gauge bosons’ masses

in the SM. As we will see in the next section, the Higgs mechanism may cause a

serious problem involving unitarity, however. The unitarity violation caused by the

longitudinal gauge bosons is one of the main topics of this thesis.

Before closing this section, we will mention the masses of the SM fermions after

the electroweak symmetry breaking. Replacing the Higgs doublet H in the fermion

sector (2.19) with its vacuum expectation value ⟨H⟩, we can easily see that the

Yukawa terms in the second line of Eq.(2.19) generate the mass terms of the SM

fermions. For a concreat example, from the Yukawa term of lepton fields, we get

3∑
i,j=1

yeij l̄
i
L⟨H⟩ejR =

3∑
i,j=1

yeij√
2
vēiLe

j
R . (2.44)

Diagonalizing Yukawa matrix yeij by appropriate field redefinition, we get the mass

terms of the SM leptons.

2.3 Perturbative unitarity

As we mentioned in the previous section, after electroweak symmetry SU(2)L ×
U(1)Y is spontaneously broken to its subgroup U(1)em, weak bosons acquire the third

degree of freedom, longitudinal mode, and become massive. The longitudinal mode of

massive gauge bosons may cause a serious problem involving unitarity, however: the

scattering amplitude of the longitudinal mode may show an energy growing behavior

and exceed the upper bound coming from the unitarity argument. In this section,
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we will see the details of this topic.

Before the electroweak symmetry breaking, all the gauge bosons are massless

and each of them has two transverse modes denoted by ϵµT1
and ϵµT2

. The important

features of these transverse modes is that they are orthogonal to the momentum

vector kµ:

kµϵ
µ
T1
(k) = kµϵ

µ
T2
(k) = 0 . (2.45)

After the electroweak symmetry breaking, weak gauge bosons acquire the third de-

gree of freedom, longitudinal mode, by absorbing NG boson (Higgs mechanism).

The explicit form of the polarization vector of the longitudinal mode ϵµL with its

momentum being kµ = (Ek, 0, 0, k) is given as

ϵµL(k) = (
k

m
, 0, 0,

Ek

m
) . (2.46)

The significant feature of the longitudinal mode, which is absent in the transverse

modes, is that as the energy of the gauge boson increases, the polarization vector ϵµL
become gradually parallel to its momentum kµ:

ϵµL(k) =
kµ

m
+O(m/Ek) . (2.47)

This means that the scattering amplitude of longitudinal modes picks up a momen-

tum dependence through the polarization vectors of the external gauge bosons, and

shows energy growing behavior. This is not good from the view of unitarity argu-

ments: in order for the scattering amplitude to be calculated perturbatively, they

should not exceed upper bound coming from the unitarity of the scattering ampli-

tude. We will explain the details of perturbative unitarity in the remainder of this

section.

The scattering angle dependence of each scattering amplitudeA can be parametrized

by its expansion coefficients of Legendre polynomials,

A = 16π
∞∑
l

(2l + 1)alPl(cos θ) . (2.48)
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Each coefficient al has upper bound called unitarity bound coming from the dispersion

relation. The absolute value of coefficient al must be equal or smaller than unity,

|al| ≤ 1 . (2.49)

In Eq.(2.49), the coefficient al is interpreted to be calculated in all order of the

perturbation. In the practical situation, however, we do not calculate scattering

amplitude A in all order, but only consider the leading order denoted by Atree,

Atree = 16π
∞∑
l

(2l + 1)atreel Pl(cos θ) . (2.50)

If the perturbation works properly, the unitarity bound (2.49) should be respected

by the leading order of the perturbation,

|atreel | ≤ 1 , (2.51)

otherwise, we must take into account the higher order contribution to restore the

unitarity and this means the failure of the perturbation. Therefore, checking whether

the unitarity bound (2.49) is respected by the leading order can be used to test the

validity of the perturbation. If Eq.(2.50) is satisfied, we can say that the scattering

amplitude respect the tree level unitarity or perturbative unitarity.

As we mentioned above, the scattering amplitude involving longitudinal mode of

massive gauge bosons, VLVL → VLVL, shows energy growing behavior. Therefore,

it can easily exceed the unitarity bound at the high energy. In the case of the

SM, however, these energy growing behavior are completely canceled out by the

contributions coming from the Higgs exchange diagrams. In Fig. 2.1, we show a

series of diagrams contributing to VLVL → VLVL scattering amplitude in the SM. The

Higgs exchange diagrams which restore the unitarity are shown in the red color in

Fig. 2.1. Thanks to appropriately tuned couplings among observed Higgs bosons and

electroweak gauge fields, shortly the hV V couplings, the Higgs exchange diagrams

completely cancel energy growing behavior and restore the perturbative unitarity.
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Z, γ

Z, γ Z, γ+ + +

h
h h+ + +

Figure 2.1: A series of diagrams contributing to VLVL → VLVL scattering amplitude

in the SM

The important thing is that these delicate cancellations are spoiled if hV V cou-

plings are turned out to deviate from the SM predictions. In that case, the observed

Higgs boson unitalize VLVL → VLVL scattering only partially, and additional scalar

fields are needed to restore the perturbative unitarity completely.
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Chapter 3

Higgs Effective Field Theory

The SM in particle physics introduced in the previous chapter has some problems

such as the hierarchy problem mentioned in Chap. 1. To solve these problems, many

new physics models are suggested. Checking every new physics model one by one

takes a lot of time. There is a good approach for extracting universal predictions

about the new physics in a bottom-up manner, which is called the effective field the-

ory approach. In the effective field theory approach, we write down all the invariant

operators consistent with underlying symmetry and set the coefficient of each opera-

tor free parameter. These free parameters are used to parametrize the deviation from

the SM predictions. Representative examples of the effective field theory approach

in the context of the new physics beyond the SM are the Standard Model Effective

Field Theory (SMEFT) and the Higgs Effective Field Theory (HEFT).

The SMEFT is the effective field theory written in terms of matter fields in the

symmetric phase [20–22]. Its symmetry is SU(3)C ×SU(2)L ×U(1)Y and its matter

contents are given by the SM matter contents listed in Table 2.1. The leading order

of the SMEFT is given by the SM Lagrangian (2.1). The next leading order (NLO)

Lagrangian is the dimension six operators consistent with SU(3)C×SU(2)L×U(1)Y .
For examples, the NLO Lagrangian involving Higgs doublet H is given as

∆LNLO =
cH
Λ2
∂µ(H

†H)∂µ(H†H) +
cT
Λ2

(
H†
←→
DµH

)(
H†
←→
DµH

)
, (3.1)

where Λ denotes the cut-off scale of the SMEFT. In the SMEFT, it is, however,
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implicitly assumed that the observed Higgs boson is coming from the SU(2)L scalar

doublet. To remove this assumption and consider the most general set up, we will

focus on the Higgs Effective Field Theory (HEFT), which is constructed by adding

the observed Higgs boson to the electroweak chiral perturbation theory.

3.1 Higgs Effective Field Theory

In this section, we will review the Higgs Effective Field Theory (HEFT) [3–19].

The HEFT is an effective field theory constructed by adding observed Higgs boson

to the electroweak chiral perturbation theory [23–28]. In Table 3.1, we listed all

the matter fields comprising the HEFT, together with their representations under

Lorentz symmetry and SU(3)C ×U(1)em gauge symmetry. Note that the SM matter

contents listed in Table 2.1 and the HEFT matter contents listed in Table 3.1 are a

little bit different: the former is classified under SU(3)C×SU(2)L×U(1)Y symmetry

while the latter is classified under SU(3)C × U(1)Y symmetry. In this chapter, we

will call the particles classified under SU(3)C × SU(2)L × U(1)Y symmetric phase

particles and the particles classified under SU(3)C × U(1)em broken phase particles.
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Field spin SU(3)C U(1)em

GA
µ 1 8 0

W±
µ 1 1 ±1

Zµ 1 1 0

uiL,R 1/2 3 +2/3

diL,R 1/2 3 −1/3

eiL,R 1/2 1 −1

νiL 1/2 1 0

h 0 1 0

w± 0 1 ±1

z 0 1 0

Table 3.1: Matter contents in Standard Model

Lagrangian of the HEFT in O(p2) order is given as

L = Lgauge + Lscalar + Lfermion , (3.2)

where Lgauge, Lscalar, and Lfermion each denotes the gauge sector, scalar sector, and

fermion sector, respectively. In the remaining of this section, we will closely see each

sector in turn.

Gauge sector

The Lagrangian of the gauge sector in the HEFT is given as

Lgauge = −1

2
Tr [GµνG

µν ]− 1

2
Tr [WµνW

µν ]− 1

4
BµνB

µν . (3.3)

Note that the electroweak gauge fields in Eq.(3.3) are written in terms of symmetric

phase fields Wµ, Bµ rather than broken phase fields W±
µ , Zµ, Aµ. It is possible to
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rewrite the gauge sector in terms of broken phase fields W±
µ , Zµ, Aµ, but for later

convenience, we write it in terms of symmetric phase fields Wµ and Bµ.

Scalar sector

The Lagrangian of the scalar sector in the HEFT is given as

Lscalar =
v2

4
F (h)Tr

[
(DµU)

†DµU
]
+

1

2
∂µh∂

µh− V (h) (3.4)

where v is the decay constant of NG bosons:

v = 246GeV . (3.5)

F (h) and V (h) are arbitrary functions of observed Higgs boson h,

F (h) = 1 + 2κW
h

v
+ κ

(2)
W

(
h

v

)2

+ · · · , (3.6)

V (h) =
1

2
m2

hh
2 + λ(3)

(
h

v

)3

+ · · · , (3.7)

with κW , κ
(2)
W , · · · in Eq.(3.6) and mh, λ

(3), · · · in Eq.(3.7) are free parameters.

Here we assume F (0) = 1 so that the kinetic terms of NG fields are canonically

normalized. The symbol U is two by two matrix and its explicit form is given as

U = exp

(
i
√
2

v
(w+τ+ + w−τ−) +

i

v
zτ 3

)
, (3.8)

where τ± are given as

τ± =
1

2
(τ 1 ± iτ 2) . (3.9)

The covariant derivative DµU is given as

DµU = ∂µU + igWWµU − igYUBµ . (3.10)
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Note that the transformation law of matrix U under SU(2)L × U(1)Y is

U → U ′ = gWUg
†
Y . (3.11)

Fermion sector

The Lagrangian of the fermion sector in the HEFT is composed of fermion kinetic

terms and Yukawa-like terms, with its explicit form given as

Lfermion

=
3∑

i=1

q̄iLi /Dq
i
L +

3∑
i=1

ūiRi /Du
i
R +

3∑
i=1

d̄iRi /Dd
i
R +

3∑
i=1

l̄iLi /Dl
i
L +

3∑
i=1

ēiRi /De
i
R

+ v

(
3∑

i,j=1

q̄iLY
ij
u (h)UP+r

j +
3∑

i,j=1

q̄iLY
ij
d (h)UP−r

j +
3∑

i,j=1

l̄iLY
ij
e (h)UP−η

j + h.c.

)
.

(3.12)

Note that Y ij
u (h), Y ij

d (h), and Y ij
e (h) are three by three matrices and are arbitrary

functions of observed Higgs boson h,

Yu(h) = Y (0)
u +

∞∑
n=1

Y (n)
u

(
h

v

)n

, (3.13)

Yd(h) = Y
(0)
d +

∞∑
n=1

Y
(n)
d

(
h

v

)n

, (3.14)

Ye(h) = Y (0)
e +

∞∑
n=1

Y (n)
e

(
h

v

)n

, (3.15)

with flavor indices suppressed. r and η are the two-component vectors composed of

right-handed quarks and leptons:

r =

(
uR

dR

)
, η =

(
eR

0

)
. (3.16)
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P± is the projection operators projecting to the upper and lower components respec-

tively,

P± :=
1

2
12 ±

τ3
2
, (3.17)

with 12 being two times two identity matrix. Note that the transformation laws of

the left-handed fermions qL and lL under SU(2)L symmetry are given as

qL → q′L = gW · qL , (3.18)

lL → l′L = gW · lL , (3.19)

while the right-handed fermions uR, dR, and eR remain invariant.

The transformation law of all the fermions under U(1)Y symmetry are given as

qL → q′L = ρq[gY ] · qL , (3.20)

r → r′ = ρr[gY ] · r , (3.21)

lL → l′L = ρl[gY ] · lL , (3.22)

η → η′ = ρη[gY ] · η , (3.23)

with

ρq[gY ] =

(
e

i
6
θY

e
i
6
θY

)
, (3.24)

ρr[gY ] =

(
e

i2
3
θY

e−
i
3
θY

)
, (3.25)

ρl[gY ] =

(
e−

i
2
θY

e−
i
2
θY

)
, (3.26)

ρη[gY ] =

(
e−iθY

1

)
. (3.27)

It is easy to see that the HEFT fermions sector (3.12) is invariant under the SU(2)L×
U(1)Y gauge symmetry.
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Note that, in order to pursue the perturbative calculation in the framework of the

effective field theory, we need a power counting formula. In Appendix B, we give the

power counting formula for the electroweak chiral perturbation theory (EWChPT).

The EWChPT is the effective field theory written in terms of the SM fields other

than the Higgs boson, and its leading order Lagrangian is obtained by setting h→ 0

in the leading order HEFT Lagrangian (3.2). Extending the power counting formula

to incorporate observed Higgs boson is easy.

As we mentioned at the beginning of this section, the HEFT Lagrangian is written

in terms of broken phase fields; all the fields in Table 3.1 are classified under the

broken phase symmetry, U(1)em. In spite of this, the HEFT Lagrangian is invariant

under not only U(1)em, but the whole set of SU(2)L ×U(1)Y symmetry. This seems

strange, but if we look closely at the interaction terms in the HEFT Lagrangian

(3.2), we can find that the SU(2)L × U(1)Y symmetry actually exists, and forbid

some parts of U(1)em-invariant interactions.

Assume that the HEFT respects only U(1)em symmetry, not the whole set of

SU(2)L × U(1)Y symmetry. In that case, the HEFT Lagrangian should include all

the U(1)em-invariant and Lorentz-invariant interactions, because effective field theory

should be composed of all the consistent terms with its symmetry. Then, in addition

to interaction terms in Eq.(3.2), the HEFT Lagrangian should also include the mass

terms for the NG bosons:

mww
+w− ,

1

2
m2

zz
2 . (3.28)

As we see in Eq.(3.2), however, the HEFT scalar potential V (h) only depends on the

observed Higgs boson h, and does not depend on the NG fields w± and z. The absence

of the mass terms of NG fields is due to the remnant SU(2)L×U(1)Y symmetry. As

we see later, the remnant SU(2)L × U(1)Y acts on NG fields as some kind of shift

symmetry, and this shift symmetry forbids the potential of NG boson fields.

Generally speaking, if the symmetry group G is spontaneously broken to its

subgroup H, the symmetry group G is not really broken, but it remains as non-

linearly realized symmetry in the broken phase.
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3.2 Non-linearly realized symmetry

As I mentioned at the end of the previous section, if global symmetry G is spon-

taneously broken to its subgroup H, G is not really broken but it remains as a

non-linearly realized symmetry. The properties of the non-linearly realized symme-

try play important roles in the HEFT, so we will treat its details and reveal what

the non-linearly symmetry is, and how it can be useful for writing down EFT. In the

remainder of this section, I will describe the concept of the non-linearly realized sym-

metry using a simple example: O(N) linear sigma model with symmetry breaking

pattern O(N) → O(N − 1).

Firstly, we will briefly describe a setup of O(N) linear sigma model. The La-

grangian of the O(N) linear sigma model is given as follows:

L =
1

2
∂µϕ⃗ · ∂µϕ⃗− V (ϕ) , (3.29)

V (ϕ) =
1

2
µ2(ϕ⃗ )2 +

λ

4
(ϕ⃗ )4 , (3.30)

where ϕ⃗ is a N component scalar field in the fundamental representation of the global

O(N) symmetry. The transformation law of ϕ⃗ under O(N) is given as

O(N) : ϕ⃗→ ϕ⃗′ = g · ϕ⃗ , (3.31)

where g is a transformation matrix of O(N) and its explicit form is written in terms

of O(N) generator T a as

g = exp

(
iθagT

a

)
. (3.32)

Here we adopt the following normalization condition for the O(N) generators,

Tr
[
T aT b

]
=

1

2
δab . (3.33)

If the scalar potential V has a negative mass term (µ2 < 0), then the potential

V becomes a wine bottle type potential, just like the SM, and the scalar field takes
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a nonzero vacuum expectation value

⟨ϕ⟩ =
√

−µ2

λ
=: v . (3.34)

As a result, O(N) symmetry is spontaneously broken to its subgroup O(N − 1).

This is the set up of O(N) linear sigma model, and in the remainder of this

section, we will rewrite the symmetric phase Lagrangian (3.29) into the broken phase

Lagrangian, and see how the O(N) symmetry is realized in the broken phase. When

O(N) is spontaneously broken to its subgroup H, the generators of O(N) symmetry,

T a, can be divided into the broken generator denoted by Xa and the unbroken

generator denoted by Sa,

T a = {Xa, Sa} . (3.35)

Because the number of original O(N) generators is N(N − 1)/2 and the remaining

unbroken O(N − 1) symmetry has (N − 1)(N − 2)/2 generators, the total number

of broken generators is N − 1. According to Goldstone’s theorem, associated with

these N − 1 broken generators, the N − 1 number of Nambu-Goldstone bosons (NG

bosons) arise. Now the scalar field ϕi can be rewritten in terms of fluctuation fields

from the new vacuum ⟨ϕ⟩: ϕi can be expressed in terms of the N − 1 NG bosons

which are denoted by πa (a = 1 ∼ N − 1) and one scalar matter field denoted by σ

as

ϕ⃗ = (π1, π2, · · · , πN−1, v + σ)T . (3.36)

Substituting Eq.(3.36) into Eq.(3.29), and neglecting constant terms, we get the

broken phase Lagrangian given as

L =
1

2
∂µπ⃗ · ∂µπ⃗ +

1

2
∂µσ∂

µσ − 1

2
m2

σσ
2 − λ

4
σ4 − λvσ3 − λv(π⃗ )2σ − λ

4
(π⃗ )4 , (3.37)

where the mass of the scalar field σ is given as

mσ =
√
2λv . (3.38)
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As we mentioned in the previous section, when the global symmetry G is sponta-

neously broken to its subgroup H, the broken phase Lagrangian respects not only

the unbroken symmetry H, but also the whole set of G symmetry, which is real-

ized as the remnant symmetry at the broken phase. Applying this statement to this

O(N) sigma model example, the broken phase Lagrangian (3.37) respects not only

the unbroken O(N − 1) symmetry but also a remnant O(N) symmetry.

Before we see the details of the remnant O(N) symmetry, let us consider the

choice of the coordinate system in the field space. When we write down the broken

phase Lagrangian (3.37), we firstly express the original scalar field ϕi in terms of new

fluctuation fields σ and πa like Eq.(3.36). The parametrization Eq.(3.36) corresponds

to the Cartesian coordinate system in the field space. For illustrating the non-

linearly realized symmetry, however, the other choice of the coordinate system, a

polar coordinate system, turns out to be more convenient. In the remainder of this

section, we will adopt the polar coordinate system and see how the remnant O(N)

symmetry is realized in the broken phase.

Firstly, let us consider the parametrization of the NG boson fields in the polar

coordinate system. NG boson is a massless particle and therefore it parametrizes the

flat direction in the field space. This means that NG boson is a fluctuation along

with the super surface composed of a series of equivalent vacuum. Therefore, we can

regard NG bosons as coordinate variables which transform one vacuum vector F⃗ to

another equivalent vacuum:

ξ(π) · F⃗ = F⃗ ′ . (3.39)

On the other hand, a scalar matter field σ is a massive particle and needs nonzero

energy when it is excited from the vacuum. Therefore it can be regarded as coordinate

variable parametrizing the radial direction. As a result, O(N) multiplet ϕ⃗ can be

decomposed into a fluctuation along with a flat direction and excitation along with

the radial direction,

ϕ⃗ = (v + σ) ξ(π) · F⃗ , (3.40)
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where ξ is the N×N unitary matrix living in coset space G/H and F⃗ is a unit vector

directing to the vacuum,

ξ(π) = exp

(
i

v
πaXa

)
, (3.41)

F⃗ = (0, · · · , 0, 1)T . (3.42)

with X denoting broken generator. The schematic picture of the decomposition

(3.40) is shown in Fig. 3.1.

Figure 3.1: Polar decomposition of the O(N) multiplet ϕ⃗

Note that the vacuum vector F⃗ is invariant under the unbroken O(N − 1) trans-

formation:

h · F⃗ = F⃗ , h ∈ O(N − 1) , (3.43)

where explicit form of h is given as

h = exp
(
iθahS

a
)
. (3.44)

As we mentioned previously, O(N) symmetry is not really broken in the vacuum but

remained as the non-linearly realized symmetry. In the remainder of this section, we
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will see this using the polar coordinate system introduced above.

To understand the concept of non-linearly realized symmetry, let us consider the

transformation law of σ and πa under the O(N) symmetry. We can easily anticipate

the O(N) transformation law of σ and πa from Eq.(3.31) and Eq.(3.40). Substituting

Eq.(3.40) into Eq.(3.31), we get

O(N) : ϕ⃗ = (v + σ) ξ(π) · F⃗ → ϕ⃗′ = (v + σ) g · ξ(π) · F⃗ . (3.45)

As we see in (3.45), the transformation matrix g pass through (v + σ) and only acts

on the ξ(π) · F⃗ . From Eq.(3.45), we can anticipate the O(N) transformation law of

σ and ξ as

O(N) : σ → σ , ξ(π) → g · ξ(π) . (3.46)

The fact that F⃗ is invariant under O(N−1) (see Eq.(3.43)) allows h to act on ξ from

the right side. So the O(N) transformation law of ξ is modified from Eq.(3.57) to

O(N) : ξ(π) → g · ξ(π) · hT . (3.47)

At this point, the insertion of h in Eq.(3.47) seems to be arbitrary, but in the following

discussion, we will find that hT is necessary to give the appropriate transformation

law of ξ.

From the explicit form of ξ(π) given by Eq.(3.41), we anticipate that the O(N)

transformed matrix ξ(π′) should be expressed as

ξ(π′) = exp

(
i

v
π′

a
Xa

)
. (3.48)

The O(N) transformation law given by Eq.(3.57) is, however, contradict to Eq.(3.48)

because g · ξ in Eq.(3.57) is no longer the element of G/H, but the element of G:

O(N) : ξ → g · ξ(π) ̸= ξ(π′) , (3.49)

so we must conclude that Eq.(3.57) is not appropriate for the O(N) transformation
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law of ξ.

This problem can be fixed by the following theorem: if G has subgroup H, the

group element of G can be always expressed by the product of group element of H

and that of G/H. According to this theorem, we can always divide g · ξ(π) into ξ(π′)
living in G/H and h living in H like

g · ξ(π) = ξ(π′) · h(π, θg) . (3.50)

Here we write h as h(π, θg) to emphasize that h in Eq.(3.50) generally depends on the

NG fields π and O(N) transformation parameter θg given in Eq.(3.32). Multiplying

hT to both side of Eq.(3.50) from the right, we get

ξ(π′) = g · ξ(π) · hT (π.θg) , (3.51)

and we interpret Eq.(3.51) as the transformation law of ξ. As we mentioned, the

insertion of h is allowed from the discussion above Eq.(3.47).

Eventually, we get the following O(N) transformation law of σ and ξ

O(N) : σ → σ , ξ(π) → g · ξ(π) · hT (π, θg) . (3.52)

Now it is clear the meaning of “non-linearly realized symmetry.” O(N)-transformed

field π′ is no longer the linear combination of the original field π but the non-linear

function of π,

π′ = const. shift + π +O(π2) , (3.53)

and this is why π is called the non-linear representation of O(N).

So far, we describe the concept of the non-linearly realized symmetry using

O(N)/O(N − 1) as the example and see the associated NG bosons transform non-

linearly under O(N). In general, the non-linear property we described above is com-

mon in any symmetry breaking pattern G→ H: when G is spontaneously broken to

its subgroup H, fields in the broken phase transforms non-linearly under G.
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In any symmetry breaking pattern G → H, the associated NG fields can be

always regarded as the coordinate parametrizing the coset space G/H,

ξ(π) = exp

(
i

v
πaXa

)
, (3.54)

with Xa denoting the broken generator. The transformation law of ξ under G/H is

given as

G : ξ(π) → ξ(π′) = g · ξ(π) · hT (π, θg) , (3.55)

g ∈ G, h ∈ H . (3.56)

This fact leads us interesting possibility: if our vacuum respects the symmetry H and

if we somehow know that H is the remnant symmetry resulting from the spontaneous

symmetry breaking G→ H, we can use not only the symmetry H but also the non-

linearly realized symmetry G to restrict the allowed operator at the broken phase.

How can we write down the non-linearly realized G invariant theory, then? The

answer to this question will be given in the next section.

3.3 CCWZ formalism

In the previous section, we describe the concept of the non-linearly realized symmetry

and see that the NGB associated with G/H transforms non-linearly under G. In the

last part of the previous section, we see that the non-linear realized symmetry may

be useful to restrict the possible operator in the broken phase, but how can we write

down effective field theory respecting non-linearly realized symmetry?

To capture the property of the non-linearly realized symmetry, we again focus on

the transformation law of ξ matrix under the G symmetry,

O(N) : ξ(π) → ξ(π′) = g · ξ(π) · hT (π, θg) . (3.57)

The key thing is that the transformation matrix h(π, θg) ∈ H depends on the space-
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time coordinate xµ though the NB boson field π(x), so even if we consider the global

O(N) transformation law of ξ, ξ matrix essentially experience the local transforma-

tion.

Now the important features of the non-linearly realized symmetry become clear:

• G is non-linearly realized at the broken phase in the sense that the NG bosons

and matter fields transforms in a non-linear manner under G.

• Fields in the broken phase experience local transformations under non-linearly

realized G symmetry even if G is introduced as the global symmetry.

In order to write down the effective field theory with symmetry breaking pattern

G → H, we must construct operators invariant under the local and non-linearly

realized symmetry G. How can we construct such operators?

The answer to this question was given some decades ago by C. G. Callan, S.

R. Coleman, J. Wess and B. Zumino [29–31]. They show how to construct the

building blocks for writing down the non-linearly realized G invariant operators.

The fundamental quantity is the Cartan one-form given by

αµ(π) :=
1

i
ξ(π)−1∂µξ(π) . (3.58)

From Eq.(3.55), we can derive the transformation law of αµ under the global sym-

metry G,

G : αµ(π) → αµ(π
′) = h(π, θg)αµ(π)h

−1(π, θg) +
1

i
h(π, θg)∂µh

−1(π, θg) . (3.59)

αµ is G-valued tensor and can be decomposed into broken and unbroken generator

as

αµ = α∥µ + α⊥µ , (3.60)
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with

α∥µ := Tr [αµS
a]Sa , (3.61)

α⊥µ := Tr [αµX
a]Xa . (3.62)

Note that the normalization conditions for unbroken and broken generators are given

as

Tr
[
SaSb

]
= δab , (3.63)

Tr
[
XaXb

]
= δab . (3.64)

Substituting Eq.(3.60) into Eq.(3.59), we get

α∥µ(π
′) + α⊥µ(π

′) = h(π, θg)α∥µ(π)h
−1(π, θg) +

1

i
h(π, θg)∂µh

−1(π, θg)

+ h(π, θg)α⊥µ(π)h
−1(π, θg) . (3.65)

We can easily show that the first line of Eq.(3.65) belongs to H: by definition,

α∥µ ∈ H is the adjoint representation of H, so the first term is the element of H.

The second term also belongs to H for the same reason why αµ given by Eq.(3.58)

belongs to G. As for the second line of Eq.(3.65), we can show that it belongs to

G −H by checking the orthogonality between hα⊥h
−1 and Sa:

Tr
[
hα⊥µh

−1Sa
]
= Tr

[
hα⊥µh

−1Sa(hh−1)
]

= Tr
[
hα⊥µS

b[ρh]b
ah−1

]
= Tr

[
α⊥µS

b
]
[ρh]b

a

= 0 . (3.66)

Now we can extract the transformation law of α⊥µ and α∥µ under G by decomposing

Eq.(3.65) into unbroken and broken generator part:

α∥µ(π
′) = h(π, θg)α∥µ(π)h

−1(π, θg) +
1

i
h(π, θg)∂µh

−1(π, θg) , (3.67)
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α⊥µ(π
′) = h(π, θg)α⊥µ(π)h

−1(π, θg) . (3.68)

As shown in Eq.(3.68), α⊥µ transforms homogeneously under G and we can build

the non-linearly realized G invariant operator using α⊥µ as

Lπ =
v2

2
Tr [α⊥µα

µ
⊥] . (3.69)

Rewriting Eq.(3.69) in terms of the NG boson π , we can see that Eq.(3.69) gives the

kinetic term of NG bosons. The factor v2 in front of the operator is for the canonical

normalization of the NG bosons.

Note that a group of broken generators, {Xa} comprise reducible representation

under H in general: {Xa} can be divided into some irreducible representation groups

{Xα}, {Xα′}, · · · , {Xα′′} and they transform by U(1)em matrix h in particular

representation, ρX(h),

hXαh−1 =
[
ρX(h)

]α
βX

β , (3.70)

hXα′
h−1 =

[
ρX′(h)

]α′

β′Xβ′
, (3.71)

...

hXα′′
h−1 =

[
ρX′′(h)

]α′′

β′′Xβ′′
. (3.72)

In that case, associate NG boson fields {πα}, {πα′}, · · · , {πα′′} also comprise different

multiplets under U(1)em, and we can assign the different decay constants to these

NG boson fields:

ξ(πα) = exp

(
i

v
παXα

)
, (3.73)

ξ(πα′
) = exp

(
i

v′
πα′

Xα′
)
, (3.74)

...

ξ(πα′′
) = exp

(
i

v′′
πα′′

Xα′′
)
. (3.75)
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Then, the operator Eq.(3.69) is modified to

Lπ =
v2

2
Tr [α⊥µα

µ
⊥] +

v′2

2
Tr
[
α′⊥µα

′µ
⊥
]
+ · · ·+ v′′2

2
Tr
[
α′′⊥µα

′′µ
⊥
]

(3.76)

where α⊥µ, α
′
⊥µ, · · · , α′′⊥µ are defined according to Eq.(3.62) with broken generator

Xa replaced to Xα, Xα′
, · · · , Xα′′

, respectively. The most familiar example of this

case is the symmetry breaking pattern of SM: SU(2)L × U(1)Y → U(1)em. We will

give the explicit construction of the EFT with this symmetry breaking pattern in

Sec. 4.

3.4 Perturbative unitarity in HEFT

Before closing this chapter, we will briefly mention the perturbative unitarity of the

HEFT. Remember that the scattering amplitude among longitudinal gauge bosons

VLVL → VLVL shows energy-growing behavior in general, and may violate the pertur-

bative unitarity. In the case of the SM, this energy growing behavior are delicately

canceled out by the contribution from the Higgs exchange diagrams. Because the

cancellation in the SM is realized by appropriately-tuned hV V couplings, the de-

viation from the SM predictions in hV V coupling easily spoil the cancellation and

reoccur the unitarity violation.

The purpose of the HEFT is describing the effects of the new physics and the

HEFT has many free parameters for describing the deviations from the SM predic-

tions. The hV V coupling is also set to be a free parameter in the HEFT. As we

mentioned above, the deviation from the SM predictions in hV V coupling spoils the

cancelation of the energy growing behavior in VLVL → VLVL scattering amplitude.

We expect that this energy growing behavior may be cancelled by the new particles’

contribution. Because the HEFT include only the SM particles, however, the energy

growing behavior in VLVL → VLVL scattering amplitude is never cancelled out once

hV V coupling deviate from the SM predictions. Eventually, VLVL → VLVL scatter-

ing amplitude violate the perturbative unitarity at a certain energy scale and this

sets the upper limit of the energy scale where the HEFT is applicable. The energy

scale of the unitarity violation can be expressed in terms of the deviation in the hV V
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coupling as

Λ ∼ 4πv√
|1− κ2W |

(3.77)

with κW given in Eq.(3.6). At the energy scale above Λ, the perturbative calculation

in the HEFT becomes non-reliable.

If the new physics weakly interact with the SM particles, we expect that the new

particles appear below the energy scale Λ, namely,Mnew < Λ withMnew denoting new

particle’s mass. In order to directly produce the new physics particles, we should

know which scattering channel is more efficient for producing the new particles.

This cannot be done in the existing effective field theory framework because the new

particles are integrated out and we cannot treat the production process of the new

particles. We must extend the HEFT to include the new particles degrees of freedom.

In the next section, we will extend the HEFT to incorporate the arbitrary number

of the scalar fields with arbitrary electromagnetic charges.

41



Chapter 4

Generalization of Higgs Effective

Field Theory

As we mentioned in the previous chapter, the HEFT introduced in Sec. 3 is the

most general effective field theory composed of the observed particles. The HEFT

includes all the operators consistent with SU(3)C×SU(2)L×U(2)Y gauge symmetry,

and a coefficient of each effective operator is set to be a free parameter, which can

parametrize the deviation from the SM prediction. Because the HEFT has so many

free parameters, it can deal with any pattern of deviations from the SM predictions.

Therefore, the HEFT can take into account the various types of new physics effects

to low-energy physics.

The important thing is that the HEFT is quite useful for parametrizing deviations

from the SM predictions, but because it is written in terms of the observed particles

only, it does not suit for constraining the new particles’ properties. For a concrete

example, within the HEFT framework, we cannot calculate the production cross

section of the new particles. This is because, in the framework of effective field

theory, all the heavy particle degrees of freedom are removed by integrating out.

This means we cannot treat physical processes with the heavy particles appearing

in the initial or final state, such as decay or production process. Of course, the

information about the new particles does not vanish completely in the low-energy

effective Lagrangian, but is parametrized in the coefficient of each effective operator.
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Because the value of each operator coefficient reflects various effects of new particles,

however, it is difficult to extract the information about each new particle’s properties

from these coefficients. Therefore, in order to obtain the concrete predictions about

the new particles’ properties, we must extend the HEFT so that it includes new

particle degrees of freedom.

Considering the possible UV models realized above the electroweak scale, there

are various kinds of candidate of new particles: they can be scalar fields, fermion

fields, and vector fields. In this chapter, we will focus on new scalar particles, be-

cause we are interested in the mechanism realizing electroweak symmetry breaking:

as we mentioned previously, we believe that understanding the way to break elec-

troweak symmetry is the key to solve the hierarchy problem, and the scalar particles

may play an important role in the symmetry breaking. For a concrete example, if

we try to solve the hierarchy problem by generating the electroweak scale dynami-

cally, the observed Higgs boson can be a composite particle and various interactions

involving the Higgs boson are modified from the SM predictions. This model is a

so-called composite Higgs model. In the framework of the composite Higgs models,

the additional global symmetry breaking is assumed at the energy scale above the

electroweak symmetry breaking scale, and the observed Higgs boson is interpreted

as a pseudo NG boson getting its nonzero mass through the explicit breaking of

the underlying global symmetry. The minimal realization of the composite Higgs

models consistent with the electroweak precision measurements is well-known as the

minimal composite Higgs model with its global symmetry breaking pattern given by

SO(5)/SO(4) [49]. Besides, if we also try to incorporate dark matter into the com-

posite Higgs’ framework, its coset space is enlarged from the minimal one and the

additional scalar fields are predicted. This model is called the non-minimal compos-

ite Higgs models. For an explicit example, the non-minimal composite Higgs model

with its symmetry breaking pattern given by SO(6)/SO(5) predicts the additional

light scalar particle, which plays the role of dark matter.

In this chapter, we extend the HEFT so that it includes the arbitrary number

of neutral and charged scalar fields. The authors of [50] already constructed the

extended HEFT including the arbitrary number of neutral scalar fields. The work of

this thesis is the further extension of [50].
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4.1 Generalized Higgs Effective Field Theory

In this section, we will construct generalized Higgs Effective Field Theory (GHEFT)

so that it includes the arbitrary number of neutral and charged scalar fields. Note

that, just like the HEFT introduced in Sec. 3, the GHEFT is written in terms of

broken phase fields. To add new scalar fields to the HEFT keeping the invariance

under non-linearly realized SU(2)L × U(1)Y , we must rely on the CCWZ formalism

introduced in Sec. 3.3.

Before entering the details of GHEFT, let us introduce the main feature of the

GHEFT. The symmetry of the GHEFT is SU(3)C ×SU(2)L×U(1)Y , and its matter

contents include new charged and neutral scalar matter fields as well as SM fields.

The list of matter contents of the GHEFT is given in Table 4.1.

Field spin SU(3)C U(1)em

GA
µ 1 8 0

W±
µ 1 1 ±1

Zµ 1 1 0

uiL,R 1/2 3 +2/3

diL,R 1/2 3 −1/3

eiL,R 1/2 1 −1

νiL 1/2 1 0

h 0 1 0

w± 0 1 ±1

z 0 1 0

ϕI 0 nI qI

Table 4.1: Matter contents in the Generalized Higgs Effective Field Theory

Note that we collectively express observed Higgs boson as well as new scalar

matter fields by ϕI , which will be explained in detail later. In the next section, we

44



focus on the NG boson sectors and the matter sectors in the GHEFT in turn.

4.2 Construction of GHEFT

In this section, we will construct the GHEFT introduced in the previous section

relying on the CCWZ method.

4.2.1 NG bosons

The generator of unbroken symmetry U(1)em can be written as

S =
1

2

(
τ 3

τ 3

)
. (4.1)

Note that, in (4.1), upper-left two by two matrix denotes SU(2)L subspace, and lower-

right two by two denotes that of U(1)Y . The form of unbroken U(1)em generator

is reasonable because unbroken U(1)em is the symmetry which rotate U(1)Y and

U(1)L subgroup of SU(2)L in the same angle. In the symmetry breaking pattern

SU(2)L × U(1)Y → U(1)em, there are three would-be NG bosons, w± and z, which

are going to be eaten by gauge fieldsW± and Z. In this chapter, we choose the three

broken generator as

Xα =
1

2

(
τα

0

)
(α = 1, 2) , X3 =

1

2

(
0

τ 3

)
. (4.2)

Using the unbroken generator introduced above, we can express transformation ma-

trix of the unbroken symmetry U(1)em as

h = exp
(
iθhS

)
=

(
eiθh

τ3

2

e−iθh
τ3

2

)
. (4.3)

The important thing is that the broken generators X1,2 and X3 transform inde-

pendently under U(1)em symmetry, namely, {X1, X2} and X3 comprise irreducible
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representation 1 :

h (X1, X2, X3) h† = (X1, X2, X3)

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 . (4.7)

We can see that a transformation matrix on the RHS is block diagonalized. This

means that broken generators {X1, X2} and X3 transform independently under

U(1)em, and so each comprise irreducible representation. In that case, as we men-

tioned in the end of Sec. 3.3, we can assign different decay constants to NG bosons

associated with {X1, X2} and X3. Here we assign a decay constant v to NG boson

fields w1,2, which are associated with broken generators X1,2, and assign a decay

constant vZ to NG boson field z, which is associated to the broken generator X3.

In this case, ξ can be written as

ξ = exp

(
i

v

∑
α=1,2

wαXα

)
exp

(
i

vZ
zX3

)
. (4.8)

The transformation law of matrix ξ under SU(2)L × U(1)Y are given as

ξ → ξ′ = g · ξ · h†(π, θg) , (4.9)

g ∈ SU(2)L × U(1)Y , (4.10)

h ∈ U(1)em . (4.11)

Cartan one-form defined by Eq.(3.58) is written in terms of ξ given by Eq.(4.8) as

αµ =
1

i
ξ†∂µξ . (4.12)

1To get Eq.(4.7), we used the following formulae:

eiθ
τ3
2 τ1e

−iθ
τ3
2 = τ1 cos θ − τ2 sin θ (4.4)

eiθ
τ3
2 τ2e

−iθ
τ3
2 = τ1 sin θ + τ2 cos θ (4.5)

eiθ
τ3
2 τ3e

−iθ
τ3
2 = τ3 (4.6)
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The next step is decomposing αµ into unbroken generator part and broken generator

part like

αµ = α∥µ + α⊥µ , (4.13)

where their transformation law under SU(2)L × U(1)Y is given as

α′∥µ = h(π, θg)α∥µh
†(π, θg) +

1

i
h(π, θg)∂µh

†(π, θg) , (4.14)

α′⊥µ = h(π, θg)α⊥µh
†(π, θg) . (4.15)

Note that when we choose the broken generators Xa as Eq.(4.2), X1 and X2 are

orthogonal to S, but X3 is not.

Tr
[
X3S

]
̸= 0 (4.16)

Because the unbroken generator S and broken generators Xa are not orthogonal, the

projection of αµ to the unbroken generator S does not give α∥µ, and the projection

of αµ to the broken generator X does not give α⊥µ:

α∥µ ̸= Tr [αµS]S , (4.17)

α⊥µ ̸= Tr [αµX
a]Xa . (4.18)

The HEFT Lagrangian introduced in Sec. 3 is constructed with an assumption

that its global symmetry breaking pattern is SU(2)L × SU(2)R → SU(2)V . In that

case, the decomposition of Cartan one-form into unbroken and broken generator

parts is not so difficult as we show inappendix A, because the coset space SU(1)L ×
SU(2)R/SU(2)V is symmetric: commutation relations of the generators have the

parity symmetry τp defined by Eq.(A.7). This parity symmetry gave us guidelines

on how we can decompose the Cartan one-form into unbroken and broken generator

parts.

In the GHEFT case, we will treat new physics effects as model-independent as

possible, so we do not assume any global symmetries: a global symmetry breaking
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pattern of the GHEFT is identical to that of the SM gauge symmetry breaking,

SU(2)L × U(1)Y → U(1)em. Because a coset space SU(2)L × U(1)Y /U(1)em is not

symmetric space, commutation relations of the unbroken generator S and the broken

generators X do not have parity symmetry τp any longer.

The decomposition of Cartan one-form into unbroken and broken generator part

is not so easy, so we will consider extracting the unit of transformation. when we

consider the basis of the unbroken and broken generator, we identify the upper-left

two by two matrix to be SU(2)L subspace, and the lower-right two by two matrix to

be that of U(1)Y . In this notation, ξ can be expressed as

ξ =

(
ξ̂W

ξ̂Y

)
, (4.19)

with

ξ̂W = exp

(
i

2v

∑
α=1,2

wατα

)
, ξ̂Y = exp

(
i

2vZ
zτ 3

)
. (4.20)

If we express transformation matrices g ∈ SU(2)L × U(1)Y and h ∈ U(1)em as

g =

(
ĝW

ĝY

)
, h =

(
ĥ

ĥ

)
, (4.21)

with

ĝW = exp

(
i

3∑
a

θaW
τa

2

)
, (4.22)

ĝY = exp

(
iθY

τ 3

2

)
, (4.23)

ĥ = exp

(
iθh(ω

α, z, θW , θY )
τ 3

2

)
, (4.24)

then the transformation law of ξ̂W and ξ̂Y under SU(2)L × U(1)Y can be expressed
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given as

ξ̂W → ĝW ξ̂W ĥ† , (4.25)

ξ̂Y → ĝY ξ̂Y ĥ
† . (4.26)

Then we find that the following quantities have simple transformation law.

α̂∥µ := −1

i
ξ̂†Y ∂µξ̂Y , (4.27)

α̂⊥µ :=
3∑

a=1

α̂a
⊥µ
τa

2
, (4.28)

with each component of αa
⊥µ (a = 1 ∼ 3) given as

α̂α
⊥µ = Tr

[
1

i
ξ̂†W∂µξ̂W τ

α

]
,

(
α = 1, 2

)
, (4.29)

α̂3
⊥µ = Tr

[
1

i
ξ̂†W∂µξ̂W τ

3

]
− Tr

[
1

i
ξ̂†Y ∂µξ̂Y τ

3

]
. (4.30)

We can easily check that, under SU(2)L×U(1)Y symmetry, α∥ transforms like gauge

fields and α⊥ transforms homogeneously:

α̂′∥µ = ĥα̂∥µĥ
† +

1

i
ĥ∂µĥ

† , (4.31)

α̂′⊥µ = ĥα̂⊥µĥ
† . (4.32)

Note that {αα
⊥µ} and α3

⊥µ comprise irreducible representation:

h
(
{α̂α
⊥µ}, α̂3

⊥µ
)
h† =

(
{α̂β
⊥µ}, α̂

3
⊥µ
)( ρβα(h) 0

0 1

)
, (4.33)

with

ρ(h) = exp
(
iθh(π, g)τ2

)
. (4.34)
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Now we can write down the operator respecting non-linearly realized SU(2)L×U(1)Y
using α⊥µ:

Lπ =
1

2

3∑
a,b

G
(0)
ab α̂

a
⊥µα̂

bµ
⊥ , (4.35)

where G
(0)
ab is a three by three matrix with its explicit form given as

G
(0)
ab =

1

4

 v2

v2

v2Z

 . (4.36)

Further calculation lead Eq.(4.35) to simpler form

Lπ =
v2

4
Tr
[
(∂µU)

†∂µU
]
− v2Z − v2

8
Tr
[
U †(∂µU)τ3

]
Tr
[
U †(∂µU)τ3

]
, (4.37)

with

U := ξW ξ
†
Y . (4.38)

4.2.2 Matter fields

Next, we will consider adding new scalar matter fields to the HEFT Lagrangian.

Here we consider adding nC charged scalar fields and nN neutral scalar fields to the

HEFT matter contents.

Firstly, we will consider charged scalar fields.Note that the charged particles are

expressed by complex fields, and if we add a complex scalar field with its electro-

magnetic charge +q, we must add its antiparticle with the same mass but opposite

charge −q, which is expressed by Hermitian conjugation of the original field. The nC

pairs of charged scalar particles and anti-particles are written in terms of the 2nC

number of real scalar degrees of freedom as

ϕ1 ± iϕ2

√
2

,
ϕ3 ± iϕ4

√
2

, · · · , ϕ
2nC−1 ± iϕ2nC

√
2

, (4.39)
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where ϕ1 · · ·ϕ2nC are real scalar fields. If we assign electromagnetic charge ∓qk to

the charged scalar fields (ϕk ± ϕk+1)/
√
2, then, its transformation law under U(1)em

is given by

1√
2

ϕk − iϕk+1

ϕk + iϕk+1

→

 e+iqkθ

e−iqkθ

 1√
2

ϕk − iϕk+1

ϕk + iϕk+1

 , (4.40)

with k runs from 1 to nC .

Combining with the remaining nN real scalar fields which are labeled as

ϕ2nC+1, ϕ2nC+2, · · · , ϕ2nC+nN , (4.41)

we can express all the charged and neutral scalar matter fields in terms of real scalar

degrees of freedom as

ϕI = {

Charged︷ ︸︸ ︷
ϕ1, · · · , ϕ2nC ,

Neutral︷ ︸︸ ︷
ϕ2nC+1, · · · , ϕ2nC+nN} . (4.42)

The transformation law of scalar matter fields ϕI under non-linearly realized SU(2)L×
U(1)Y is quite simple. Because charged scalars’ transformation law under U(1)em is

given by Eq.(4.40) and neutral scalar fields do not transform under U(1)em, the

transformation law of ϕI is given by

ϕI → [ρϕ(h(π, gG1))]
I
Jϕ

J , (4.43)

where

ρϕ(h(π, gG1)) = exp[iθh(π, gG1)Qϕ] , (4.44)
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with Qϕ being (2nC + nN)× (2nC + nN) matrix given by

Qϕ =



q1σ2
. . .

−qnC
σ2

0
. . .

0


, (4.45)

with σ2 = τ2. Because the transformation matrix (4.44) depends on NG fields, it is

a local transformation. Therefore, in order to write down invariant operators under

SU(2)L×U(1)Y , we must define a covariant derivative. As we see at the beginning of

this section, unbroken generator part of Cartan one-form, α∥, transforms like gauge

field, so we can construct covariant derivative as

(Dµϕ)
I = ∂µϕ

I + iV3
µ[Qϕ]

I
Jϕ

J , (4.46)

with V3
µ given as

V3
µ = −Tr

[
1

i
ξ̂†Y (∂µξ̂Y )τ3

]
+ c α̂3

⊥µ . (4.47)

where c is an arbitrary constant.

Now we can write down the GHEFT Lagrangian respecting the non-linearly re-

alized SU(2)L × U(1)Y symmetry. The building blocks are given as

α̂⊥µ, (Dµϕ)
I . (4.48)

The most general O(p2) Lagrangian invariant under non-linearly realized SU(2)L ×
U(1)Y is given by

L =
1

2
Gabα̂

a
⊥µα̂

bµ +GaI α̂
a
⊥µ(Dµϕ)I +

1

2
GIJ(Dµϕ)

I(Dµϕ)J − V , (4.49)

where Gab, GaI , GIJ are functions of NG bosons and scalar matter fields, which
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transform homogeneously under SU(2)L × U(1)Y .
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Chapter 5

Geometry of the Scalar Sector

The origin of various physical phenomena can be understood from the behavior of

the elementary particles, and what controls the rules of these elementary particles

is quite simple in theoretical particle physics: interaction operators in Lagrangian.

Interaction operators are quite important in the sense that they determine how par-

ticles interact with each other: if there is an operator that connects a particle A and

a particle B with a large coupling constant, these particles are expected to interact

strongly with each other, and if there are no operators connecting particle A to B,

they never interact with each other in the tree level. They may interact from the

higher order of the perturbation, but their interactions are expected to be weak.

Furthermore, basic observables such as decay rate and scattering cross section are

written in terms of the coupling constants, which is the coefficients of the interaction

operators.

There is one subtle point, however. The forms of the interaction terms are affected

by a choice of the field basis of the particles: if we take the different field basis, the

appearance of the interaction operators may be drastically changed. The change of

the coordinate system is, however, a quite artificial process and it should not affect

the physical observables such as decay rates or scattering cross sections. Considering

these situations, one simple question may arise: how can it be possible to get identical

results under the different choice of field basis? In this chapter, we will focus on this

topic.
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5.1 Different interactions for different coordinate

systems

One of the difficulties in EFT analysis is that the physical properties such as forms

of interaction vertices look different depending on a choice of the field basis. Let’s

consider a simple example and check how the identical results are obtained under the

different choice of field basis. In this section, we again consider the O(N) linear sigma

model as a concrete example, which is already described in Sec. 3.2. Lagrangian of

O(N) linear sigma model is given by

L =
1

2
∂µϕ⃗ · ∂µϕ⃗− V (ϕ) , (5.1)

V (ϕ) =
1

2
µ2(ϕ⃗ )2 +

λ

4
(ϕ⃗ )4 . (5.2)

where ϕ⃗ is a N component scalar field in the fundamental representation of the global

O(N) symmetry. As we previously mentioned in Sec. 3.2, if the scalar potential V

has a negative mass term (µ2 < 0), then the potential V becomes a wine bottle type

potential, just like the SM, and the scalar field takes a nonzero vacuum expectation

value

⟨ϕ⟩ =
√

−µ2

λ
=: v . (5.3)

As a result, O(N) symmetry is spontaneously broken to its subgroup O(N − 1).

The scalar field ϕ⃗ should now be replaced by the broken phase fields such as NG

bosons denoted by π⃗ and a massive scalar matter field denoted by σ. The way how

to express the symmetric phase field ϕ⃗ in terms of the broken phase fields π⃗ and σ

is not unique. In Sec. 3.2, we show two kinds of parametrization as examples. One

is the Cartesian coordinate system, and the other is the polar coordinate system.

In the Cartesian coordinate system, ϕ⃗ is expressed by π⃗ and σ as

ϕ⃗ = (π1, π2, · · · , πN−1, v + σ)T . (5.4)
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and Lagrangian after the spontaneous symmetry breaking is expressed as

LL =
1

2
∂µπ⃗ · ∂µπ⃗ +

1

2
∂µσ∂

µσ − V (π⃗, σ) , (5.5)

with

V (π⃗, σ) =
1

2
m2

σσ
2 +

λ

4
σ4 + λvσ3 + λv(π⃗ )2σ +

λ

4
(π⃗ )4 . (5.6)

The important features we want to emphasize at this point is that, in the Cartesian

coordinate system, the scalar potential V depends on both NG boson π and scalar

matter field σ: V = V (π⃗, σ). The scalar potential should depend on the scalar matter

field σ because σ has a nonzero mass, but V also depends on NG boson π through

self-interaction terms such as ππππ interaction. Also, NG boson π and scalar matter

field σ interact with each other through the three-point ππσ interaction term in the

fourth term in Eq.(5.6). As we will see later, these features are absent in the polar

coordinate system.

On the other hand, in the polar coordinate system, the interaction terms look

quite different from those in the Cartesian coordinate system. Remember that, in

the polar coordinate system, the symmetric phase field ϕ⃗ is expressed in terms of

broken phase fileds π and σ as

ϕ⃗ = (v + σ) ξ(π) · F⃗ , (5.7)

where ξ is the N×N unitary matrix living in coset space G/H and F⃗ is a unit vector

directing to the vacuum,

ξ(π) = exp

(
i

v
πaXa

)
, (5.8)

F⃗ = (0, · · · , 0, 1)T . (5.9)

with Xa denoting the broken generator. In this case, Lagrangian in the broken phase
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can be expressed as

LNL =
1

2

(
1 +

σ

v

)2 [
∂µπ⃗ · ∂µπ⃗ +

1

3v2
{
(π⃗ · ∂µπ⃗)2 − (π⃗ · π⃗)(∂µπ⃗ · ∂µπ⃗)

}
+O

(
(π)6

)]
+

1

2
∂µσ∂

µσ − V (σ) , (5.10)

with

V (σ) =
λ

4
(σ2 + 2vσ)2 . (5.11)

An important feature we want to emphasize at this point is that the scalar potential

V depends only on the scalar matter field σ, V = V (σ). Contrary to the case of the

Cartesian coordinate system, NG boson π does not have any self-interactions in the

scalar potential. Alternatively, π has self-interaction terms in the kinetic term. As

you see in Eq.(5.10), there are the infinity numbers of self-interaction terms in the

kinetic term.

Comparing the Lagrangian in the Cartesian coordinate system Eq.(5.5) and that

in the polar coordinate system Eq.(5.10), we can find many differences in their in-

teraction terms. As we mentioned previously, physical observables should not be

affected by the choice of the coordinate system, but it seems to be quite nontrivial to

get the same results in the Cartesian and polar coordinate Lagrangians when we cal-

culate the physical observables such as the decay rate or the scattering cross section

in each coordinate system. For examples, if we calculate the NG boson’s four-point

ππ → ππ scattering cross section, we expect that the results will show completely

different behaviors in each coordinate system. If we calculate ππ → ππ scattering

amplitude in the Cartesian coordinate system, because ππππ self-interaction is in-

cluded in the potential term, momentum dependence may only come from the scalar

field’s propagator and we do not expect the energy growing behavior of the scatter-

ing amplitude. On the other hand, if we calculate ππ → ππ scattering amplitude

in the polar coordinate system, we expect that the amplitude shows energy grow-

ing behavior, because ππππ self-interaction is included in the kinetic term and the

resulting amplitude picks up the momentum dependence through space-time deriva-

tive. Therefore, scattering amplitude in the Cartesian coordinate system may not
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show the energy growing behavior, but the same amplitude calculated in the polar

coordinate system will grow up as the center of mass energy increases. As we will

see below, the expressions of ππ → ππ scattering amplitude are exactly the same:

the expected energy growing behavior in polar coordinate are canceled out when we

sum up all the contributions from relevant Feynman diagrams. In the remaining of

this section, we will calculate NG boson’s four-point scattering cross section in both

the Cartesian and polar coordinate system and find that we actually obtain the same

results.

Firstly, we will calculate ππ → ππ scattering amplitude in the Cartesian coor-

dinate system. O(N) linear sigma model Lagrangian in the Cartesian coordinate

system is given as Eq.(5.5). The contribution from the contact interaction is calcu-

lated as

iAc = −2iλ(δabδcd + δacδbd + δadδbc) , (5.12)

and contributions from scalar exchange diagrams is calculated as

iAσ = iAs + iAt + iAu , (5.13)

with

iAs = −4λ2v2
i

s−m2
σ

δabδcd , (5.14)

iAt = −4λ2v2
i

t−m2
σ

δacδbd , (5.15)

iAu = −4λ2v2
i

u−m2
σ

δadδbc . (5.16)

Combining the result of the contact interaction (5.12) and that of scalar exchange

(5.13), we get the final result given as

iAtotal = − 2iλ

(
1 +

m2
σ

s−m2
σ

)
δabδcd
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− 2iλ

(
1 +

m2
σ

t−m2
σ

)
δacδbd

− 2iλ

(
1 +

m2
σ

u−m2
σ

)
δadδbc . (5.17)

As we expected, the momentum dependence of the scattering amplitude only comes

from the scalar matter field exchange, and the resulting Mandelstam variables s,

t, and u only appear in the denominator. Therefore, there is no energy growing

behavior in the scattering amplitude calculated in the Cartesian coordinate system.

Next, we will calculate ππ → ππ scattering amplitude in polar coordinate system.

O(N) linear sigma model Lagrangian in the polar coordinate system is given as

Eq.(5.10). The contribution from the contact interaction is calculated as

iAc =
i

v2
(s δabδcd + t δacδbd + u δadδbc) . (5.18)

As we expected, contact interaction diagram pick up momentum dependence through

self interactions in the NG boson’s kinetic term, and show the energy growing be-

havior.

On the other hand, contributions from scalar exchange diagrams is calculated as

iAσ = iAs + iAt + iAu , (5.19)

with

iAs = −s
2

v2
i

s−m2
σ

δabδcd , (5.20)

iAt = − t2

v2
i

t−m2
σ

δacδbd , (5.21)

iAu = −u
2

v2
i

u−m2
σ

δadδbc . (5.22)

As we see, each scalar exchange diagram is proportional to the square of the Man-

delstam variables. This is because three-point σππ interaction picks up space-time
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derivative two times and there are two σππ vertices in one scalar exchange diagram.

Therefore, we find that not only the contact interaction diagram but also the scalar

exchange diagram show energy growing behavior. Combining the result of the con-

tact interaction (5.18) and that of scalar exchange (5.19), however, we find that the

energy growing behaviors are completely canceled out. For examples, the energy

growing behavior proportional to s is canceled as

s− s2

s−m2
σ

= s− s2 −m4
σ +m4

σ

s−m2
σ

= s−
(
s+m2

σ −
m4

σ

s−m2
σ

)
. (5.23)

We finally find that the resulting expression,

iAtotal = − 2iλ

(
1 +

m2
σ

s−m2
σ

)
δabδcd

− 2iλ

(
1 +

m2
σ

t−m2
σ

)
δacδbd

− 2iλ

(
1 +

m2
σ

u−m2
σ

)
δadδbc, (5.24)

is exactly the same form as Eq.(5.17), which is obtained in the Cartesian coordinate

system.

We now confirm that even if we adopt a different field basis, we get identical

results when we calculate the physical observables such as scattering cross sections.

At the same time, we reveal problems about the choice of coordinate system: if we

choose a bad coordinate system, we will misunderstand the behavior of the observ-

ables just like we did in the previous examples of the polar coordinate system. How

can we avoid this ambiguity coming from a choice of the coordinate system? How

can we extract the coordinate independent properties of the observables? One of the

solutions is focusing on the geometry of the field space, which will be explained in

the next section.
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5.2 Geometry of the scalar sector

In the previous section, we show that the bad choice of the coordinate system may

course misunderstanding of the observables’ behavior. Observables should not be

affected by a choice of the coordinate system. What should we do if we want to

extract coordinate-independent information?

Before considering the coordinate system in the field space, let us focus on the

more familiar example, the space-time coordinate system. The line element of the

space-time is expressed as

ds2 = gµν(x)dx
µdxν . (5.25)

In the case of space-time coordinate, the information of the coordinate system is re-

stored in the functional form of the metric tensor, gµν . Here, we want to emphasize

that we cannot extract the information about space-time manifold from the func-

tional form of the metric tensor: even if space is flat, gµν change its functional form

depending on a choice of the coordinate system. To make sure space is flat or curved,

we should focus on the other quantities which reflect the information of geometry in

a more direct way and are independent of a choice of the coordinate system. What

is the best quantity reflecting the information of the space-time geometry? One way

to extract the information about the space-time manifold is calculating geometri-

cal quantities such as the Riemann curvature tensor: even if we choose a different

coordinate system, the Riemann curvature tensor is always zero in the flat space.

The same thing may happen in the case of the field space. As we mentioned in the

previous section, observables should not depend on a choice of the field coordinate.

Therefore, it is natural to anticipate that the physical property can be expressed in

terms of the geometrical quantities such as the Riemann curvature tensor in the field

space. To check this idea, let’s consider the scalar field Lagrangian in the following

form,

L =
1

2
gij(ϕ)∂µϕ

i∂µϕj − V (ϕ) , (5.26)

with ϕi scalar field. Note that index i runs all kinds of scalar fields in the theory: if
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there are nπ NG bosons and nσ scalar matter fields in the theory, i runs from 1 to

nπ + nσ and ϕi can be expressed as

ϕi = (π1, · · · , πnπ , σ1, · · · , σnσ) . (5.27)

Here we want to emphasize that any type of scalar field Lagrangian can be expressed

in the form of Eq.(5.26). This is just like what we see in the space-time coordinate:

even if we have any type of space-time geometry, the world line in the geometry can

always be expressed in the form of Eq.(5.25). By the analogy of space-time coordi-

nate (5.25), we naively anticipate that observables can be expressed in terms of the

geometrical quantity calculated from “metric tensor” gij. This assumption turns out

to be true as we will see in chapter 6. Detailed explanation on this topic will be

given in chapter 6 and in this section, we just demonstrate that the Riemann cur-

vature tensor is a good quantity for extracting coordinate-independent information

and gives the same results even if we adopt a different coordinate system in field

space.

In order to demonstrate that the Riemann curvature tensor is useful for extracting

coordinate-independent information, we will calculate the Riemann curvature tensor

in O(N) linear sigma model and show that the results calculated in both the Carte-

sian and polar coordinate system are the same. The Cartesian coordinate system is

given by Eq.(5.4) and the metric tensor is given by N times N identity matrix:

gij = 1N . (5.28)

the Riemann curvature tensor is defined in terms of metric tensor gij as

Rijkl :=
1

2

(
∂2gil
∂ϕj∂ϕk

+
∂2gjk
∂ϕi∂ϕl

− ∂2gik
∂ϕj∂ϕl

− ∂2gjl
∂ϕi∂ϕk

)
+ gmn

(
Γm
il Γ

n
jk − Γm

ikΓ
n
jl

)
,

(5.29)

where Γi
jk denotes Affine connection in field space with its explicit form given by

Γi
jk :=

1

2
gil
(
∂glj
∂ϕk

+
∂glk
∂ϕj

− ∂gjk
∂ϕl

)
. (5.30)

62



In the Cartesian coordinate system, because metric tensor is independent of the

scalar fields, the Riemann curvature tensor is trivially zero.

On the other hand, calculation in polar coordinate system is a little bit com-

plicated. Polar coordinate system is given by Eq.(3.40) and its Lagrangian can be

rewritten as

LNL =
1

2

(
1 +

σ

v

)2 [
δab +

1

3v2
{
πaπb − (π⃗ · π⃗)δab

}
+O

(
(π)4

)]
∂µπ

a∂µπb

+
1

2
∂µσ∂

µσ − V (σ)

=
1

2
(∂µπ

a, ∂µσ)

(
g̃ab(π, σ)

1

)(
∂µπb

∂µσ

)
− V (σ) , (5.31)

with

g̃ab(π, σ) =
(
1 +

σ

v

)2 [
δab +

1

3v2
{
πaπb − (π⃗ · π⃗)δab

}
+O

(
(π)4

)]
. (5.32)

Comparing the last line of Eq.(5.31) with Eq.(5.26), we can read out ϕi, gij and V

as

ϕi = (πa, σ) , gij(ϕ) =

(
g̃ab(π, σ)

1

)
, V (ϕ) = V (σ) . (5.33)

Now let’s calculate the Riemann curvature tensor with its index taken to all NG

bosons, Rabcd. The first term of the Riemann curvature tensor (5.29) can be easily

calculated as

1

2

(
∂2gad
∂ϕb∂ϕc

+
∂2gbc
∂ϕa∂ϕd

− ∂2gac
∂ϕb∂ϕd

− ∂2gbd
∂ϕa∂ϕc

)
= − 1

v2
(δadδbc − δacδbd) . (5.34)

Calculating each component of Affine connection from the metric tensor given in

Eq.(5.33), we can easily find that the nonzero component of Affine connection is

Γ̄σ
ab = −1

v
δab , (5.35)
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and the other components are all equal to zero. Therefore, the second term of the

Riemann curvature tensor (5.29) is calculated as

gmn

(
Γm
il Γ

n
jk − Γm

ikΓ
n
jl

)
= gσσ (Γ

σ
adΓ

σ
bc − Γσ

acΓ
σ
bd)

=
1

v2
(δadδbc − δacδbd) . (5.36)

Combining Eq.(5.34) and Eq.(5.36), we find that NG boson component of the Rie-

mann curvature tensor is equal to zero:

R̄abcd = 0 . (5.37)

Similarly, we find

R̄σσσσ = 0 , (5.38)

R̄σaσb = 0 . (5.39)

The other components of the Riemann curvature tensor are trivially zero. Now we

confirm that the Riemann curvature tensor in O(N) sigma model equal to zero in

both the Cartesian and polar coordinate system.

5.3 Symmetry of the scalar sector

Before closing this chapter, we will mention the symmetry of the scalar sector. If

we rewrite the scalar sector into the form of Eq.(5.26), it becomes difficult to see

its underlying symmetry. In Eq.(5.26), we express all the scalar fields by ϕi re-

gardless of which multiplet each component belongs to, so the underlying symmetry

becomes implicit. How can we extract the information about underling symmetry

from Lagrangian in the geometrical form, Eq.(5.26)? As we see later, the underlying

symmetry can be expressed by the Killing vector in the field space.

The Killing vector is the infinitesimal field variation under the global symmetry

transformation. At first, we consider SU(2)L Killing vectors in the SM. If rotation
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angle θw is much small, θw ≪ 1, then the transformation law of ϕi can be written as

ϕi → ϕ′
i
= ϕi + θaw w

i
a(ϕ) . (5.40)

The Killing vector for SU(2)L symmetry is the field variation wi
a in (5.40).

Let’s search the conditions the Killing vectors should satisfy. Variating the

SU(2)L × U(1)Y symmetric Lagrangian, we get

δwL[ϕ] = L[ϕ+ θawwa(ϕ)]− L[ϕ]

=
1

2
θaw

(
wk

a gij,k + (wk
a),i gkj + (wk

a),j gik

)
∂µϕ

i∂µϕj − θawV,kw
k
a , (5.41)

where we use a comma-derivative notation,

gij,k :=
∂

∂ϕk
gij , (5.42)

(wk
a),i :=

∂

∂ϕi
wk

a , (5.43)

V,k :=
∂

∂ϕk
V . (5.44)

In order to satisfy

δwL[ϕ] = 0 (5.45)

in arbitrary θw, the Killing vector should satisfy the following equations:

0 = wk
a gij,k + (wk

a),i gkj + (wk
a),j gik , (5.46)

0 = wk
a V,k . (5.47)

The first condition (5.46) is coming from the invariance of the kinetic term, and is

the usual conditions for the Killing vectors. This is coming from the fact that the

kinetic term of Lagrangian can be regarded as the line element of the target space

manifold. In Lagrangian (5.26), we have the other term which cannot be related to

the line element of the target space manifold: the scalar potential V (ϕ). Therefore,
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in addition to Eq.(5.46), we have a new condition (5.47) for the Killing vectors, which

is coming from the invariance of the scalar potential under SU(2)L global symmetry.

In the same way, we get conditions for the U(1)Y Killing vectors yi, which is the

infinitesimal field variation under the U(1)Y global symmetry:

ϕi → ϕ′
i
= ϕi + θy y

i(ϕ) . (5.48)

In order to satisfy

δyL[ϕ] = L[ϕ+ θyy(ϕ)]− L[ϕ] = 0 (5.49)

in arbitrary θy, the Killing vector should satisfy the following equations.

0 = ykgij,k + (yk),igkj + (yk),jgik , (5.50)

0 = ykV,k . (5.51)
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Chapter 6

Perturbative Unitarity Conditions

As we mentioned previously, couplings among the observed Higgs boson and elec-

troweak gauge fields, shortly the hV V couplings, are planned to be measured at

O(1)% accuracy in the future collider experiments. If hV V couplings turn out to

deviate from the SM prediction, the observed Higgs boson fails to unitarize the am-

plitude of the longitudinal gauge boson scattering VLVL → VLVL and the unitarity

violation will occur: remember that the cancellation of the energy growing behavior

in the SM is realized due to the appropriately tuned value of the hV V couplings. In

order to avoid the unitarity violation, we must expect that the new heavy degrees

of freedom appear at some energy scale and cancel the energy growing behavior to

unitarize VLVL → VLVL scattering amplitude completely, together with the observed

Higgs boson.

In the previous section, we add the new scalar degrees of freedom to the HEFT.

Thanks to these new scalar fields, VLVL → VLVL scattering amplitude can remain

perturbative unitary even if the hV V couplings turns out to deviate from the SM

prediction: the new contribution coming from the new scalar exchange diagrams

cancels the energy growing behavior together with the Higgs exchange diagrams. In

order to restore the perturbative unitarity completely, however, we must tune the

coupling among these scalar fields and gauge fields, shortly, ϕIV V couplings. At

this point, one naive question may arise: What conditions should we impose on

the ϕIV V couplings in order to restore the perturbative unitarity? The conditions
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that should be satisfied by ϕIV V couplings in order to respect the perturbative

unitarity are called unitarity sum rules [37–39]. In this chapter, we will calculate the

VLVL → VLVL scattering amplitude in the GHEFT and derive unitarity sum rules.

6.1 Geometry of the Generalized HEFT

Feynman diagrams of VLVL → VLVL scattering amplitude are composed of two parts

as we showed in Fig. 2.1, pure gauge diagrams and scalar exchange diagrams. Calcu-

lating the first part, pure gauge diagrams, we must read out relevant Feynman rules

from the gauge sector given in Eq.(3.3). Because the gauge self-interactions are a

little bit complicated, it is not so easy to calculate gauge contributions from V V V

and V V V V vertices. In order to calculate pure gauge diagrams in a more simple

manner, we will rely on the useful theorem called equivalence theorem [32–36]. Re-

member that the longitudinal mode of massive gauge boson comes from absorption

of an additional degree of freedom, provided by NG boson. Reflecting this fact, the

longitudinal component becomes increasingly similar to NG bosons as the center of

mass energy increases. In the high energy limit, the scattering amplitude with VL

appearing in the initial of the final state becomes equal to the scattering amplitude

with VL replaced with would-be NG boson. Therefore, checking the energy growing

behavior of VLVL → VLVL, we simply calculate vv → vv, where v denotes would be

NG boson absorbed by gauge field V .

As we briefly explained in Sec.5, there are some difficulties in calculating scatter-

ing amplitude using effective Lagrangian: depending on a choice of the field coordi-

nate system, interaction operators look different, and this makes it difficult to extract

the relevant information involving observables’ behavior. To avoid this ambiguity,

we introduced a useful technique in Sec.5. Rewriting the scalar Lagrangian to the

following form,

L =
1

2
gij(ϕ)∂µϕ

i∂µϕj − V (ϕ) , (6.1)

and focusing the geometry of the field space implicated by “metric tensor” gij, we

can extract the coordinate-independent information. We expect that the geometry
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defined by gij may give us some implication on the observables’ behavior, which also

should be coordinate-independent. As we will see later in this section, the geometrical

quantity calculated from gij definitely gives us physical information, the perturbative

unitarity conditions of the various scattering amplitudes.

In order to focus on the geometry of the GHEFT in the field space, we first need

to rewrite the GHEFT Lagrangian (4.49) into the form of Eq.(5.26). Expressing gij

in terms of Gab, GaI , and GIJ in Eq.(4.49) is a little bit complicated, so we skip the

detailed calculation and only show the results in appendix B.

In the remaining of this section, we will calculate the energy growing amplitude

from the Lagrangian (6.1). We firstly decompose ϕi into its vacuum expectation

value ϕ̄i and an excitation fields φi: ϕi = ϕ̄i +φi. Now we need to rewrite the scalar

Lagrangian (6.1) in terms of excitation fields φi. The metric tensor in Eq.(6.1) can

be expanded around the vacuum ϕ̄ as

gij(ϕ) = ḡij + ḡij,k φ
k +

1

2
ḡij,kl φ

kφl + · · · , (6.2)

where each coefficient of Taylor expansion is given as

ḡij := gij(ϕ̄) , (6.3)

ḡij,k :=
∂

∂ϕk
gij(ϕ)

∣∣∣∣
ϕ=ϕ̄

, (6.4)

ḡij,kl :=
∂2

∂ϕk∂ϕl
gij(ϕ)

∣∣∣∣
ϕ=ϕ̄

, (6.5)

...

Similarly, we can expand the potential V (ϕ) around the vacuum ϕ̄ as

V (ϕ) = V̄ + V̄,iφ
i +

1

2
V̄,ijφ

iφj +
1

3!
V̄,ijkφ

iφjφk +
1

4!
V̄,ijklφ

iφjφkφl · · · , (6.6)

where each coefficient of Taylor expansion is given as

V̄ := V (ϕ̄) , (6.7)
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V̄,i :=
∂

∂ϕi
V (ϕ)

∣∣∣∣
ϕ=ϕ̄

, (6.8)

V̄,ij :=
∂2

∂ϕi∂ϕj
V (ϕ)

∣∣∣∣
ϕ=ϕ̄

, (6.9)

...

Because the scalar potential V (ϕ) should be minimized at the vacuum ϕ̄, we impose

that

V̄,i = 0 . (6.10)

Also, we assume that the kinetic and mass terms of the scalar fields are diagonalized,

namely,

ḡij = δij , (6.11)

and

V̄,ij = δijm
2
i . (6.12)

6.2 Three-point amplitude

We start with the evaluation of the three-point scalar scattering amplitude

iM(123) (6.13)

at the tree level. The interaction vertices relevant for this amplitude are give as

L3 =
1

2
ḡij,k φ

k(∂µφ
i)(∂µφj)− 1

3!
V̄,ijk φ

iφjφk . (6.14)

The on-shell amplitude can be evaluated as

iM(123) =
i

2
(ḡi1i2,i3 + ḡi2i1,i3)(−p1 · p2) +

i

2
(ḡi2i3,i1 + ḡi3i2,i1)(−p2 · p3)
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+
i

2
(ḡi3i1,i2 + ḡi1i3,i2)(−p3 · p1)− iV̄,i1i2i3

=
i

2
ḡi1i2,i3

(
m2

i1
+m2

i2
− s12

)
+
i

2
ḡi2i3,i1

(
m2

i2
+m2

i3
− s23

)
+
i

2
ḡi3i1,i1

(
m2

i3
+m2

i1
− s31

)
− iV̄,i1i2i3 . (6.15)

From the conservation of the total momentum

p1 + p2 + p3 = 0 ,

it is easy to see

s12 = (p1 + p2)
2 = p23 = m2

i3
,

and similarly

s23 = m2
i1
, s31 = m2

i2
.

The on-shell three-point amplitude, Eq.(6.15), can therefore be rewritten as

iM(123) =
i

2
ḡi1i2,i3

(
m2

i1
+m2

i2
−m2

i3

)
+
i

2
ḡi2i3,i1

(
m2

i2
+m2

i3
−m2

i1

)
+
i

2
ḡi3i1,i1

(
m2

i3
+m2

i1
−m2

i2

)
− i V̄,i1i2i3

=
i

2
m2

i1

(
ḡi1i2,i3 + ḡi1i3,i2 − ḡi2i3,i1

)
+
i

2
m2

i2

(
ḡi2i3,i1 + ḡi2i1,i3 − ḡi3i1,i2

)
+
i

2
m2

i3

(
ḡi3i1,i2 + ḡi3i2,i1 − ḡi1i2,i3

)
− i V̄,i1i2i3 . (6.16)

The first three terms of Eq.(6.16) have the same tensor structure with that of Affine

connection Γl
jk,

gilΓ
l
jk :=

1

2
[gij,k + gki,j − gjk,i] . (6.17)

Rewriting the first three terms of Eq.(6.16) in terms of Affine connection and using

Eq.(6.11) and Eq.(6.12), we finally get the following expression,

iM(123) = i V̄,i1lΓ̄
l
i2i3

+ i V̄,i2lΓ̄
l
i3i1

+ i V̄,i3lΓ̄
l
i1i2

− i V̄,i1i2i3 . (6.18)
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The final form of the three-point amplitude (6.18) looks quite similar to the third

covariant derivative of the scalar potential, V̄ijk. Let’s calculate the third covariant

derivative evaluated at the vacuum, V̄ijk, explicitly and compare the result with the

RHS of Eq.(6.18). The first, second, and third order of covariant derivative are given

by

V;i = V,i , (6.19)

V;ij = V,ij − Γl
ijV,l , (6.20)

V;ijk = (V;ij),k − Γl
kiV;lj − Γl

jkV;li ,

= V,ijk − (Γl
ij),kV,l − Γl

ijV,lk

−Γl
ikV,lj − Γl

jkV,li + Γl
ikΓ

m
ljV,m + Γl

jkΓ
m
li V,m . (6.21)

Applying Eq.(6.10) to the third order of covariant derivative (6.21), we find that the

third order of covariant derivative V;ijk evaluated at the vacuum can simply given as

V̄;ijk = V̄,ijk − Γ̄l
ijV̄,lk − Γ̄l

ikV̄,lj − Γ̄l
jkV̄,li , (6.22)

which is exactly the same form as the RHS of Eq.(6.18). It is easy to see that V̄;ijk

is symmetric under the i↔ j, i↔ k and j ↔ k exchanges, so we get

V;ijk = V;(ijk) , (6.23)

with V;(ijk) being the totally symmetrized derivative of the potential. We now find

the on-shell three-point amplitude formula given in a simple form,

iM(123) = −iV̄;(i1i2i3) . (6.24)

6.3 Four-point amplitude

Next, we will calculate the four-point scalar scattering amplitude. Here we skip the

details of the calculation and only show the results. The final result of the four-point
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scalar scattering amplitude iM(1234) is given as

iM(1234) = iM(1234)

+iM(125)[D(s12)]i5i6iM(346)

+iM(135)[D(s13)]i5i6iM(246)

+iM(145)[D(s14)]i5i6iM(236) , (6.25)

with

iM(1234) = −iV̄;(i1i2i3i4) −
i

3

(
R̄i1i3i4i2 + R̄i1i4i3i2

)
s12

− i

3

(
R̄i1i2i4i3 + R̄i1i4i2i3

)
s13 −

i

3

(
R̄i1i2i3i4 + R̄i1i3i2i4

)
s14 , (6.26)

and

[D(s)]ij :=
i

s−m2
i

ḡij . (6.27)

The first line of Eq.(6.25) comes from the contact interaction. The second, third,

and fourth line of Eq.(6.25) comes from scalar exchange diagrams with iM(125),

iM(346), · · · , iM(236) in Eq.(6.25) denoting the three point amplitude derived

in the previous section. Note that the Riemann curvature tensor evaluated at the

vacuum, R̄ijkl is defined as

R̄ijkl =
1

2
(ḡil,jk + ḡjk,il − ḡik,jl − ḡjl,ik) + ḡmn

(
Γ̄m
il Γ̄

n
jk − Γ̄m

ikΓ̄
n
jl

)
, (6.28)

and the symmetrized fourth covariant derivative of the scalar potential evaluated at

the vacuum, V̄;(ijkl) is given as

V̄;(ijkl) = V̄,ijkl − V̄,ijmΓ̄
m
kl − V̄,klmΓ̄

m
ij − V̄,ikmΓ̄

m
jl − V̄,jlmΓ̄

m
ik − V̄,ilmΓ̄

m
jk − V̄,jkmΓ̄

m
il

+ V̄,mn

[
Γ̄m
ij Γ̄

n
kl + Γ̄m

ikΓ̄
n
jl + Γ̄m

il Γ̄
n
jk

]
+ Aijkl + Ajikl + Akijl + Alijk , (6.29)
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with

Aijkl :=
1

6
V̄,imḡ

mn [ḡjk,nl + ḡkl,nj + ḡjl,nk − 2(ḡnj,kl + ḡnk,jl + ḡnl,jk)]

+ V̄,im
[
Γ̄m
jnΓ̄

n
kl + Γ̄m

knΓ̄
n
jl + Γ̄m

lnΓ̄
n
jk

]
+

1

3
V̄,imḡ

mp
[
Γ̄q
pjΓ̄

n
kl + Γ̄q

pkΓ̄
n
jl + Γ̄q

plΓ̄
n
jk

]
ḡqn . (6.30)

6.4 Unitarity sum rules

Applying the on-shell condition

s12 + s13 + s14 = m2
i1
+m2

i2
+m2

i3
+m2

i4
, (6.31)

we can eliminate one of the sij. Eliminating s14, we get

iM(1234) =− i

3
(R̄i1i3i4i2 + R̄i1i4i3i2 − R̄i1i2i3i4 − R̄i1i3i2i4)s12

− i

3
(R̄i1i2i4i3 + R̄i1i4i2i3 − R̄i1i2i3i4 − R̄i1i3i2i4)s13 +O(E0). (6.32)

Because s12 and s13, amplitude grows up as center of mass energy increases. In order

to avoid perturbative unitarity violation, we must impose the coefficients of the

energy growing terms to be equal to zero. Therefore, we get the following unitarity

sum rule conditions [37–39]:

R̄i1i3i4i2 + R̄i1i4i3i2 − R̄i1i2i3i4 − R̄i1i3i2i4 = 0 , (6.33)

R̄i1i2i4i3 + R̄i1i4i2i3 − R̄i1i2i3i4 − R̄i1i3i2i4 = 0 . (6.34)

Because the Riemann curvature tensor satisfy

Rijkl ≡ −Rijlk , (6.35)

the unitarity sum rules (6.33) and (6.34) can be rewritten as

2R̄i1i3i4i2 − R̄i1i4i2i3 − R̄i1i2i3i4 = 0 . (6.36)
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Applying Bianchi identity

Rijkl +Riklj +Riljk ≡ 0 , (6.37)

Eq.(6.36) can be simplified as

3R̄i1i3i4i2 = 0 . (6.38)

Here we get the important conclusion: in order for four point scattering amplitude

to be perturbative unitary, the Riemann curvature tensor of scalar manifold should

satisfy the following conditions:

R̄ijkl = 0 , (6.39)

namely, the Riemann curvature tensor should be flat at the vicinity of the vacuum.
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Chapter 7

Oblique Parameters

7.1 One-loop corrections

In order to compare the predictions with precisely-measured observables, we need

to calculate loop corrections. The authors of [41] calculated the scalar one-loop

corrections to the Lagrangian (5.26) using the background field method [44–47, 52],

and derive a one-loop effective Lagrangian in a coordinate-independent form. They

showed a divergent part of the scalar one-loop corrections whose explicit form is

given as

∆Lφ−loop
div =

1

(4π)2ϵ

[
1

12
tr(YµνY

µν) +
1

2
tr(X2)

]
, (7.1)

where ϵ is dimensional regularization parameter and is written in terms of spacetime

dimension D as

ϵ := 4−D . (7.2)

Yµν and X are given as

[Yµν ]
i
j = Ri

jkl(Dµϕ)
k(Dνϕ)

l +W a
µν(w

i
a);j +Bµν(y

i);j , (7.3)

[X]ik = Ri
jkl(Dµϕ)

j(Dµϕ)l + gijV;jk , (7.4)
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where covariant derivatives for SU(2)L Killing vectors wi
a and U(1)Y Killing vectors

yi are given by

(wi
a);j := wi

a,j + Γi
jkw

k
a , (7.5)

(yi);j := yi,j + Γi
jky

k . (7.6)

As we show in Eq.(D.29), Yµν includes SU(2)L and U(1)Y gauge field strength.

In Eq.(7.1), one-loop correction to the following quantity

WµνW
µν , BµνB

µν , WµνB
µν , (7.7)

are evaluated. The last quantity in Eq.(7.7) corresponds to the Peskin Takeuchi S

parameter, so from Eq.(7.1), we can evaluate the effect of the new scalar fields to

parameter S [51]. The remaining oblique parameters T and U are not yet evaluated

in [41], and also, only the scalar-loop contributions are calculated and not the gauge

fields’ contributions. In order to complete the evaluation, we must calculate the whole

set of oblique parameters S, T , U , and also evaluate the gauge bosons’ contributions

to these parameters.

In this section, we will evaluate the Peskin Takeuchi S, T , U parameters in the

GHEFT framework. To calculate oblique parameters respecting gauge symmetry, we

rely on background field method [52]. The Peskin Takeuchi’s S, T , and U parameters

are defined as

S := 16π(Π′33(0)− Π′3Q(0)) , (7.8)

U := 16π(Π′11(0)− Π′33(0)) , (7.9)

αT := 4

(
1

v2
Π11(0)−

1

v2Z
Π33(0)

)
, (7.10)

where ΠAB(0) is a vacuum polarization evaluated at p2 = 0,∫
d4qJA(q

2)JB(0) = igAgBgµνΠAB + pµpν , (7.11)
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and Π′AB(0) is a derivative function with respect to p2 evaluated at p2 = 0,

Π′AB(0) :=
d

dp2
ΠAB(p

2)

∣∣∣∣
p2=0

. (7.12)

In the remaining of this section, we will calculate vacuum polarization diagrams

relevant to the S, T and U oblique parameters,

Π3Q :=
1

ggY
ΠZA +

1

g2
ΠAA , Π11 , Π33 . (7.13)

7.2 Scalar loop

In this subsection, we will evaluate a scalar loop contribution to the vacuum polar-

ization Π3Q, Π11 and Π33 in turn.

Π3Q vacuum polarization

Firstly, we will evaluate the one-loop scalar contribution to Π3Q, denoted by Πξξ
3Q.

Relevant diagrams are listed in Fig.7.1, with gauge and scalar fields expressed by

wavy and dashed lines, respectively.

ĀνZ̄µ

diagram A

ĀνĀµ

diagram B
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ĀνZ̄µ

diagram C

ĀνĀµ

diagram D

Figure 7.1: Feynman diagrams contributing to Πξξ
3Q

Summing up the contributions coming from vacuum polarization diagrams shown

in Fig. 7.1, we get the following result,

g2Πξξ
3Q(p

2) =− 2

(4π)2
(GZ)

i
j(GA)

j
iB22(p

2;M2
i ,M

2
j )

− 2

(4π)2
(GA)

i
j(GA)

j
iB22(p

2;M2
i ,M

2
j )

− 1

(4π)2
(GZ)

k
i(GA)

l
jδklδ

ijA(M2
i )

− 1

(4π)2
(GA)

k
i(GA)

l
jδklδ

ijA(M2
i ) , (7.14)

Note that GZ and GA in Eq.(7.14) are defined as

(GZ)
i
j = gW cW (w̄i

3);j − gY sW (ȳi);j , (7.15)

(GA)
i
j = gW sW (w̄i

3);j + gY cW (ȳi);j , (7.16)

where (w̄i
3);j and (ȳi);j are the covariant derivatives of SU(2)W and U(1)Y Killing

vectors evaluated at the vacuum, respectively, and sW and cW defined as

cW :=
gW√

g2W + g2Y
, sW :=

gY√
g2W + g2Y

. (7.17)
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B22 and A are loop functions [53] and their explicit form is given as

i

(4π)2
A(m2) =

∫
d4k

(2π)4
1

k2 −m2
, (7.18)

i

(4π)2
B22(p

2;m2
1,m

2
2) =

∫
d4k

(2π)4
kµkν

(k2 −m2
1){(k + p)2 −m2

2}

∣∣∣∣
gµν

, (7.19)

Note that the notation for the loop functions is identical to that of [54]. We finally

get

Πξξ
3Q(p

2) =
−2

(4π)2

{
(w̄i

3);j(w̄
j
3);i + (w̄i

3);j(ȳ
j);i

}
B22(p

2;M2
i ,M

2
j )

+
1

(4π)2

{
(w̄i

3);j(w̄
j
3);i + (w̄i

3);j(ȳ
j);i

}
A(M2

M) . (7.20)

For the estimation of the UV divergences, we regularize the loop functions A, B0, and

B22 by employing the dimensional regularization. The loop functions are expanded

as

A(m2) = −Λ2 +m2 ln
Λ2

µ2
− (4π)2Ar(m) , (7.21)

B22(p
2,m2

1,m
2
2) = −1

2
Λ2 +

1

4

(
m2

1 +m2
2 −

p2

3

)
ln

Λ2

µ2
+

1

4
(4π)2B0r(m1,m2, p

2) ,

(7.22)

where the terms proportional to Λ2 and lnΛ2 correspond to the terms proportional to

1/(2−D) and 1/(4−D), respectively. D and µ denote the spacetime dimension and

the renormalization scale, respectively. Ar and Br are Λ-independent (µ-dependent)

functions and their explicit forms are given as

Ar(m) = − m2

(4π)2

[
ln
µ2

m2
+ 1

]
, (7.23)

Br(m1,m2; p
2) =

1

(4π)2

∫ 1

0

dx ln

(
µ2

m2
1x+m2

2(1− x)− p2x(1− x)

)
. (7.24)

Substituting Eq.(7.21) and Eq.(7.22) into Eq.(7.20), we can evaluate the UV diver-
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gence of the vacuum polarization, which is given by

Π
′ξξ
3Q(0)

∣∣∣
div

=
1

6(4π)2

{
(w̄i

3);j(w̄
j
3);i + (w̄i

3);j(ȳ
j);i

}
ln

Λ2

µ2
. (7.25)

Πab vacuum polarization

Next, we will evaluate the one-loop scalar contribution to Πab, (a, b = 1 ∼ 3),

denoted by Πξξ
ab. Relevant diagrams are listed in Fig.7.2.

W̄ 1
ν

W̄ 1
µ

diagram A

W̄ 1
ν

W̄ 1
µ

diagram B

Figure 7.2: Feynman diagrams contributing to Πξξ
11

Summing up the contributions coming from vacuum polarization diagrams shown

in Fig. 7.2, we get the following result,

Πξξ
ab(p

2) =
−2

(4π)2
(w̄i

a);j(w̄
j
b);iB22(p

2;M2
i ,M

2
j )

− 1

(4π)2

(
(w̄k

a);i(w̄
l
b);jδkl − (w̄k

a)(w̄
l
b)R̄kilj

)
δijA(M2

m) , (7.26)

where the first line comes from loop diagram in left side of Fig.7.2, and the second

line comes from loop diagram in right side of Fig.7.2.

Substituting Eq.(7.21) and Eq.(7.22) into Eq.(7.26), we can evaluate the UV
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divergence of the vacuum polarization, which is given by

Πξξ
ab(0)

∣∣∣
Λ2

= − 1

(4π)2
(w̄k

a)(w̄
l
b)R̄kiljδ

ijΛ2 , (7.27)

Πξξ
ab(0)

∣∣∣
ln Λ2

=
1

(4π)2
(w̄k

a)(w̄
l
b)R̄kiljM

2
ij ln

Λ2

µ2
. (7.28)

7.3 Scalar gauge loop

In this subsection, we will evaluate a scalar and gauge loop contribution to the

vacuum polarization Π3Q, Π11 and Π33 in turn.

Π3Q vacuum polarization

Firstly, we will evaluate the one-loop scalar and gauge contribution to Π3Q, denoted

by ΠVξ3Q. Relevant diagrams are listed in Fig.7.3, with gauge and scalar fields ex-

pressed by wavy and dashed lines, respectively.

ĀνZ̄µ

diagram E

ĀνĀµ

diagram F

Figure 7.3: Feynman diagrams contributing to ΠVξ3Q

Diagrams in Fig.7.3 contain B0 and do not contain any other loop functions, so

ΠVξ3Q remains finite at one-loop level.
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Πab vacuum polarization

Next, we will evaluate the one-loop scalar and gauge contribution to Πab, denoted

by ΠVξab . Relevant diagrams are listed in Fig.7.4.

W̄ 1
ν

W̄ 1
µ

diagram C

Figure 7.4: Feynman diagrams contributing to ΠVξab

Calculating the vacuum polarization diagram shown in Fig. 7.4, we get the fol-

lowing result,

ΠVξab (p
2) = − 4

(4π)2
(w̄m

a )(w̄
n
b )

[
g2

2∑
α=1

2∑
β=1

(w̄m
α );i(w̄

n
β);jδ

ijδαβB0(p
2;M2

i ,M
2
W )

+ (GZ)
m
k(GZ)

n
lδ

klB0(p
2;M2

Z ,M
2
i )

+ (GA)
m

k(GA)
n
lδ

klB0(p
2; 0,M2

i )

]
. (7.29)

B0 is loop function and its explicit form is given as

i

(4π)2
B0(p

2;m2
1,m

2
2) =

∫
d4k

(2π)4
1

(k2 −m2
1){(k + p)2 −m2

2}
. (7.30)

For the estimation of the UV divergences, we regularize the loop functions B0 by

employing the dimensional regularization. The loop function B0 is expanded as

B0(p
2,m2

1,m
2
2) = ln

Λ2

µ2
+ (4π)2Br(m1,m2, p

2) , (7.31)
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where B0r is Λ-independent (µ-dependent) functions and their explicit forms are

given as

B0r(m1,m2; p
2) =

2

(4π)2

∫ 1

0

dx [m2
1x+m2

2(1− x)− p2x(1− x)]×

×
[
ln

(
µ2

m2
1x+m2

2(1− x)− p2x(1− x)

)
+ 1

]
.

(7.32)

Substituting Eq.(7.31) into Eq.(7.29), we can evaluate the UV divergence of the

vacuum polarization, which is given by

ΠVξab (0)
∣∣∣
div

= − 4

(4π)2
(w̄m

a )(w̄
n
b )
[
g2

3∑
c=1

(w̄m
c );i(w̄

n
c );j + g2Y (ȳ

m);i(ȳ
n);j

]
δij ln

Λ2

µ2
.

(7.33)

7.4 Gauge loop

In this subsection, we will evaluate a gauge loop contribution to the vacuum polar-

ization Π3Q, Π11 and Π33 in turn.

Π3Q vacuum polarization

Firstly, we will evaluate the one-loop gauge contribution to Π3Q, denoted by ΠVV3Q .

Relevant diagrams are listed in Fig.7.5, with gauge fields expressed by wavy line.

ĀνZ̄µ

diagram G

ĀνĀµ

diagram H
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ĀνZ̄µ

diagram I

ĀνĀµ

diagram J

Figure 7.5: Feynman diagrams contributing to ΠVV3Q

Summing up the contributions coming from vacuum polarization diagrams shown

in Fig. 7.5, we get the following result,

ΠξV
3Q =

4

(4π)2

[
2p2sW cWB0(p

2;M2
W ,M

2
W ) + 4sW cWB22(p

2,M2
W ,M

2
W )

]
+

4

(4π)2

[
2p2s2WB0(p

2;M2
W ,M

2
W ) + 4s2WB22(p

2,M2
W ,M

2
W )

]
− 8

(4π)2
sW cWA(M

2
W )

− 8

(4π)2
s2WA(M

2
W )

=
4

(4π)2

[
2p2B0(p

2;M2
W ,M

2
W ) + 4B22(p

2,M2
W ,M

2
W )− 2A(M2

W )

]
. (7.34)

Substituting Eq.(7.21), Eq.(7.22) and Eq.(7.31) into Eq.(7.26), we can evaluate the

UV divergence of the vacuum polarization, which is given by

Π
′VV
3Q (0)

∣∣∣
div

=
1

(4π)2
20

3
ln

Λ2

µ2
. (7.35)

Πab vacuum polarization

Next, we will evaluate the one-loop gauge contribution to Πab, denoted by ΠVVab .

Relevant diagrams are listed in Fig.7.6.
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W̄ 1
ν

W̄ 1
µ

diagram D

W̄ 1
ν

W̄ 1
µ

diagram E

Figure 7.6: Feynman diagrams contributing to ΠVV11

Summing up the contributions coming from vacuum polarization diagrams shown

in Fig. 7.6, we get the following result,

ΠVV11 (p
2) =

4

(4π)2

[
2p2c2WB0(p

2;M2
Z ,M

2
W ) + 4c2WB22(p

2,M2
Z ,M

2
W )

+ 2p2s2WB0(p
2; 0,M2

W ) + 4s2WB22(p
2, 0,M2

W )

− A(M2
W )− c2WA(M

2
Z)− s2WA(0)

]
, (7.36)

ΠVV33 (p
2) =

4

(4π)2

[
2p2B0(p

2;M2
W ,M

2
W ) + 4B22(p

2;M2
W ,M

2
W )− 2A(M2

W )
]
.

(7.37)

Substituting Eq.(7.21), Eq.(7.22) and Eq.(7.31) into Eq.(7.36) and Eq.(7.37), we can

evaluate the UV divergence of the vacuum polarization, which is given by

ΠVV11 (0)
∣∣∣
div

=
4

(4π)2

[
4c2W

(
−1

2
Λ2 +

1

4
(M2

W +M2
Z) ln

Λ2

µ2

)
+ 4s2W

(
−1

2
Λ2 +

1

4
M2

W ln
Λ2

µ2

)
−
(
−Λ2 +M2

W ln
Λ2

µ2

)
− c2W

(
−Λ2 +M2

Z ln
Λ2

µ2

)
− s2W

(
−Λ2 + 0× ln

Λ2

µ2

)]
= 0 ,

(7.38)
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and

ΠVV33 (0)
∣∣∣
div

=
4

(4π)2

[
4
(
−1

2
Λ2 +

1

2
M2

W ln
Λ2

µ2

)
− 2
(
− Λ2 +M2

W ln
Λ2

µ2

)]
= 0 .

(7.39)

7.5 Ghost loop

In this subsection, we will evaluate a scalar and ghost loop contribution to the vacuum

polarization Π3Q, Π11 and Π33 in turn.

Π3Q vacuum polarization

Firstly, we will evaluate the one-loop ghost contribution to Π3Q, denoted by Πcc
3Q.

Relevant diagrams are listed in Fig.7.7, with gauge and ghost fields expressed by

wavy and dotted lines, respectively.

ĀνZ̄µ

diagram K

ĀνĀµ

diagram L
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ĀνZ̄µ

diagram M

ĀνĀµ

diagram N

Figure 7.7: Feynman diagrams contributing to Πcc
3Q

Summing up the contributions coming from vacuum polarization diagrams shown

in Fig. 7.7, we get the following result,

g2Πcc
3Q(p

2) =
1

(4π)2

[
−8sW cWB22(p

2;M2
W ,M

2
W )
]

+
1

(4π)2

[
−8s2WB22(p

2;M2
W ,M

2
W )
]

+
4

(4π)2
sW cWA(M

2
W )

+
4

(4π)2
s2WA(M

2
W ) . (7.40)

Eq.(7.41) can be further simplified as

Πcc
3Q(p

2) = − 4

(4π)2

[
2B22(p

2;M2
W ,M

2
W )− A(M2

W )
]
. (7.41)

Substituting Eq.(7.21) and Eq.(7.22) into Eq.(7.41), we can evaluate the UV diver-

gence of the vacuum polarization, which is given by

Π
′cc
3Q(0)|div =

1

(4π)2
2

3
ln

Λ2

µ2
. (7.42)
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Πab vacuum polarization

Next, we will evaluate the one-loop ghost contribution to Πab, denoted by Πcc
ab. Rel-

evant diagrams are listed in Fig.7.8.

W̄ 1
ν

W̄ 1
µ

diagram F

W̄ 1
ν

W̄ 1
µ

diagram G

Figure 7.8: Feynman diagrams contributing to Πcc
11

Summing up the contributions coming from vacuum polarization diagrams shown

in Fig. 7.8, we get the following result,

Πcc
11(p

2) =
2

(4π)2

[
−4c2WB22(p

2;M2
Z ,M

2
W )− 4s2WB22(p

2; 0,M2
W )

+A(M2
W ) + c2WA(M

2
Z) + s2WA(0)

]
. (7.43)

Πcc
33(p

2) =
1

(4π)2

[
−8B22(p

2;M2
W ,M

2
W ) + 4A(M2

W )
]
. (7.44)

Substituting Eq.(7.21) and Eq.(7.22) into Eq.(7.43) and Eq.(7.44), we can evalu-

ate the UV divergence of the vacuum polarization, which is given by

Πcc
11(0)

∣∣∣
div

=
2

(4π)2

[
−4c2W

(
−1

2
Λ2 +

1

4
(M2

W +M2
Z) ln

Λ2

µ2

)
− 4s2W

(
−1

2
Λ2 +

1

4
M2

W ln
Λ2

µ2

)
+
(
−Λ2 +M2

W ln
Λ2

µ2

)
+ c2W

(
−Λ2 +M2

Z ln
Λ2

µ2

)
+ s2W

(
−Λ2 + 0× ln

Λ2

µ2

)]
= 0 ,

(7.45)
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and

Πcc
33(0)

∣∣∣
div

=
4

(4π)2

[
−2
(
−1

2
Λ2 +

1

2
M2

W ln
Λ2

µ2

)
+
(
− Λ2 +M2

W ln
Λ2

µ2

)]
= 0 .

(7.46)

7.6 S, U parameters

Definitions of S and U parameters are given as follows,

S := 16π(Π′33(0)− Π′3Q(0)) , (7.47)

U := 16π(Π′11(0)− Π′33(0)) , (7.48)

with ΠAB is the momentum integral of the product of conserved current JA and JB,

given by Eq.(7.11). The divergent parts of S and U are given as

Sdiv = − 1

12π
(w̄i

3);j(ȳ
j);i ln

Λ2

µ2
, (7.49)

Udiv =
1

12π

(
(w̄i

1);j(w̄
j
1);i − (w̄i

3);j(w̄
j
3);i
)
ln

Λ2

µ2
. (7.50)

The above results are quite reasonable and we can easily understand the origin of their

structures from the current algebra. Because the Killing vector is the infinitesimal

variation under the conserved symmetry, it is natural that it relates to the conserved

current of the associated symmetry. Actually, The conserved current of SU(2)L and

U(1)Y symmetry are roughly related to the associated Killing vectors as

Jµ
a ∼ ϕi(wi

a);j∂
µϕj , (a = 1 ∼ 3) , (7.51)

Jµ
Q ∼ ϕi(wi

3 + yi);j∂
µϕj . (7.52)

Combining the above relation to the definition of S parameter (7.47), we get

Sdiv ∝ (w̄i
3);j(w̄

j
3);i − (w̄i

3);j(w
j
3 + yj);i = −(w̄i

3);j(y
j);i . (7.53)

90



Similarly we find

Udiv ∝ (w̄i
1);j(w̄

j
1);i − (w̄i

3);j(w̄
j
3);i . (7.54)
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Chapter 8

Unitarity v.s. Oblique Corrections

In this chapter, we will check the relation between the perturbative unitarity and

the oblique correction parameters S, T and U .

8.1 Perturbative unitarity v.s. S, U parameters

As we see in Sec. 7.6, divergent part of oblique parameters S and U can be expressed

in terms of the Killing vectors of SU(2)L and U(1)Y as

Sdiv = − 1

12π
(w̄i

3);j(ȳ
j);i ln

Λ2

µ2
, (8.1)

Udiv =
1

12π

(
(w̄i

1);j(w̄
j
1);i − (w̄i

3);j(w̄
j
3);i
)
ln

Λ2

µ2
. (8.2)

In this section, we consider relating the coefficient of the UV divergence of oblique

parameters, appearing in Eq.(8.1) and Eq.(8.2), to the perturbative unitarity of the

four-point scalar scattering amplitude. Firstly, we will focus on the equations the

Killing vectors should satisfy.

As I mentioned previously, the invariance of the Lagrangian under SU(2)L×U(1)Y
is reflected to the invariance of the metric tensor under infinitesimal SU(2)L×U(1)Y
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transformation, which is expressed as the Killing equations,

0 = (wk
a)gij,k + (wk

a),igkj + (wk
a),jgik , (8.3)

0 = (yk)gij,k + (yk),igkj + (yk),jgik . (8.4)

Now let’s consider expanding the Killing equations (8.3) and Eq.(8.4) around the

vacuum, ϕi = ϕ̄i, If we take Riemann normal coordinate system, the metric tensor

gij can be expanded around the vacuum as

gij(ϕ) = δij −
1

3
R̄ikjlφ

kφl + · · · , (8.5)

with

δij = ḡij = gij(ϕ)

∣∣∣∣
ϕ=ϕ̄

, R̄ijkl = Rijkl

∣∣∣∣
ϕ=ϕ̄

. (8.6)

Also, we can expand SU(2)L and U(1)Y Killing vectors wi
a and y

i around the vacuum

as

wi
a = w̄i

a + (w̄i
a),jφ

j +
1

2!
(w̄i

a),jkφ
jφk + · · · , (8.7)

yi = ȳi + (ȳi),jφ
j +

1

2!
(ȳi),jkφ

jφk + · · · . (8.8)

As we see in Eq.(8.5), Taylor expansion of the metric tensor includes the Riemann

curvature tensor in its expansion coefficient, so it seems that by substituting the Tay-

lor expansions of the metric tensor and the Killing vectors into the Killing equation

(8.3) and (8.4), we can relate the Killing vectors to the Riemann curvature tensor.

Substituting the above Taylor expansions into Killing equations (8.3) and (8.4),

and comparing both sides of the equation in each order of ϕi, we can obtain series of

relations which holds only at the vacuum,

0 = ḡik(w̄
k
a),j + ḡjk(w̄

k
a),i , (8.9)

0 = ḡik(ȳ
k),j + ḡjk(ȳ

k),i , (8.10)

(w̄i
a),jk =

1

3

(
R̄i

jkl + R̄i
kjl

)
w̄l

a , (8.11)
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(ȳi),jk =
1

3

(
R̄i

jkl + R̄i
kjl

)
ȳl , (8.12)

...

In Eq.(8.11) and Eq.(8.12), we can see that we successfully relate the Killing vector

to the Riemann curvature tensor, but as we can see, the Killing vector begins to

relate to the Riemann curvature tensor from the second-order of the derivative. This

means that, as long as we focus on the Killing equation only, we cannot obtain the

desired equations relating the first covariant derivative of the Killing vector to the

Riemann curvature tensor. We need another equation.

Actually, commutation relation of SU(2)L ×U(1)Y Killing vectors play this role.

[wa , wb] = εabcwc , (8.13)

[wa , y] = 0 , (8.14)

with

wa := wi
a

∂

∂ϕi
, y := yi

∂

∂ϕi
. (8.15)

Taylor expanding the both side of the commutation relation, we get

w̄j
a(w̄

i
b),j − w̄j

b(w̄
i
a),j = ϵabcw̄

i
c , (8.16)

w̄j
a(ȳ

i),j − ȳj(w̄i
a),j = 0 , (8.17)

w̄j
a(w̄

i
b),jk1 + (w̄j

a),k1(w̄
i
b),j − w̄j

b(w̄
i
a),jk1 − (w̄j

b),k1(w̄
i
a),j = ϵabc(w̄

i
c),k1 , (8.18)

w̄j
a(ȳ

i),jk1 + (w̄j
a),k1(ȳ

i),j − ȳj(w̄i
a),jk1 − (ȳj),k1(w̄

i
a),j = 0 , (8.19)

...

Substituting the solution of the Killing equation (8.11) into the commutation relation

(8.18), we get

(Ta)j
i =

1

2
εabc ([Tb, Tc])j

i +
1

2
εabc(w̄

k
b ) (w̄

l
c) R̄

i
jkl , (8.20)
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with

(Ta)j
i := (w̄i

a),j . (8.21)

Now we can see that in Eq.(8.20), the first derivative of the Killing vector wa is suc-

cessfully related to the Riemann curvature tensor. Similarly, substituting Eq.(8.12)

into the commutation relation (8.19), we get

0 = ([Ta, TY ])j
i + (w̄k

a) (ȳ
l) R̄i

jkl , (8.22)

with

(TY )j
i := (ȳi),j . (8.23)

Again, we can see that in Eq.(8.22), the first derivative of the Killing vector y is

successfully related to the Riemann curvature tensor.

Now we are ready to relate the coefficient of the S parameter’s divergence in

Eq.(8.1), which is expressed by the first derivative of the Killing vector, to the per-

turbative unitarity, which is expressed by the Riemann curvature tensor.

(w̄i
3),j(y

j),i = tr(T3TY )

=
1

2
ε3bc tr([Tb, Tc]TY ) +

1

2
ε3bc(w̄

k
b ) (w̄

l
c) R̄

i
jkl(TY )i

j

=
1

2
ε3bc tr([Tc, TY ]Tb) +

1

2
ε3bc(w̄

k
b ) (w̄

l
c) R̄

i
jkl(TY )i

j

= −1

2
ε3bc(w̄

k
c ) (ȳ

l) R̄i
jkl(Tb)i

j +
1

2
ε3bc(w̄

k
b ) (w̄

l
c) R̄

i
jkl(TY )i

j

=
1

2
ε3bc(w̄

k
c ) (w̄

l
3) R̄

i
jkl(Tb)i

j +
1

2
ε3bc(w̄

k
b ) (w̄

l
c) R̄

i
jkl(TY )i

j . (8.24)

To get the second line from the first line, we used Eq.(8.20). To get the third line,

we used the invariance of trace under cyclic permutations. To get the forth line, we

used Eq.(8.20). To get from the last line, we used

0 = w̄i
3 + ȳi . (8.25)

which is ensured by the U(1)em symmetry conserved in the broken phase.
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Eq.(8.24) can be rewritten in a covariant form

(w̄i
3);j (ȳ

j);i =
1

2

(
ε3bc (w̄

k
c ) (w̄

l
3) R̄

i
jkl (w̄

j
b);i + ε3bc (w̄

k
b ) (w̄

l
c) R̄

i
jkl (ȳ

j);i
)
. (8.26)

(w̄i
1);j (w̄

j
1);i − (w̄i

3);j (w̄
j
3);i =

1

2

(
ε1bc(w̄

k
b ) (w̄

l
c) R̄

i
jkl (w̄

j
1);i − ε3bc(w̄

k
b ) (w̄

l
c) R̄

i
jkl (w̄

j
3);i
)
.

(8.27)

Substituting Eq.(8.26) into Eq.(8.1), we can rewrite the coefficient of the UV diver-

gence of the parameter S as

Sdiv = − 1

12π

(
ε3bc(w̄

k
c ) (w̄

l
3) R̄

i
jkl (w̄

j
b);i + ε3bc(w̄

k
b ) (w̄

l
c) R̄

i
jkl (ȳ

j);i
)
ln

Λ2

µ2
. (8.28)

As we previously mentioned in Sec. 6, the Riemann curvature tensor corresponds to

the unitarity sum rules in the ϕiϕj → ϕkϕl scattering amplitude. Looking carefully

at the expression (8.1), we can see that the divergent part of the S parameter is

nontrivially related to the perturbative unitarity.

Similarly, the divergent part of the parameter U can be expressed in terms of the

Riemann curvature tensor by substituting Eq.(8.27) into Eq.(8.2),

Udiv =
1

12π

(
ε1bc(w̄

k
b ) (w̄

l
c) R̄

i
jkl (w̄

j
1);i − ε3bc(w̄

k
b ) (w̄

l
c) R̄

i
jkl (w̄

j
3);i
)
ln

Λ2

µ2
. (8.29)

Before closing this section, we will mention the implication of Eq.(8.28) and

Eq.(8.29). As we found in Sec.6.4, the Riemann curvature tensor gives conditions

for respecting the perturbative unitarity. The unitarity sum rules are given as the

flatness condition at the vicinity of the vacuum,

R̄ijkl = 0 . (8.30)

Sdiv and Udiv are both proportional to the Riemann curvature tensor, so we get the
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following relation,

R̄ijkl = 0 ⇒ Sdiv = Udiv = 0 . (8.31)

This means that once the unitarity sum rules are satisfied, the divergent part of

the parameter S and U is automatically canceled out, so the perturbative unitarity

ensures the one-loop finiteness of the oblique parameters S and U .

How about the inverse relation of Eq.(8.31)? Remember that the w̄i
a denotes

the ith component of the SU(2)L Killing vector, and the Killing vector corresponds

to the scalar fields’ variation under the infinitesimal symmetry transformation. The

index i includes both NG boson indices and scalar matter fields’ indices, but w̄i
a takes

nonzero values only when index i corresponds to NG bosons’ index:

w̄i
a ̸= 0, (i = NG fields’ index) ,

w̄i
a = 0, (i = scalar matter fields’ index) . (8.32)

This is because non-linearly realized SU(2)L acts on NG bosons as some kinds of shift

symmetry, and even if we substitute zero field value, wα = z = 0, to the infinitesimal

variation, it still has nonzero value coming from a constant shift. On the other hand,

scalar matter variation under infinitesimal SU(2)L transformation can be expressed

by the generator acting on the scalar matter fields, so if we substitute ϕI = 0, it

vanishes. Therefore, the Riemann curvature component R̄i
jkl with its indices k or

l corresponding to the matter field indices does not contribute to the Sdiv and Udiv

Therefore, we can say that the perturbative unitarity conditions are stronger than

finiteness conditions.

8.2 Perturbative unitarity v.s. T parameter

From Eq.(7.27), we get(
1

v2
Π11(0)−

1

v2Z
Π33(0)

)∣∣∣∣
Λ2

=

(
1

v2
Πξξ

11(0)−
1

v2Z
Πξξ

33(0)

)∣∣∣∣
Λ2

97



= − 1

(4π)2

(
1

v2
(w̄k

1)(w̄
l
1)−

1

v2Z
(w̄k

3)(w̄
l
3)

)
R̄kiljδ

ijΛ2 ,

(8.33)

and from Eq.(7.28) and Eq.(7.33), we get(
1

v2
Π11(0)−

1

v2Z
Π33(0)

)∣∣∣∣
ln Λ2

=

(
1

v2
Πξξ

11(0)−
1

v2Z
Πξξ

33(0)

)∣∣∣
ln Λ2

+

(
1

v2
ΠVξ11 (0)−

1

v2Z
ΠVξ33 (0)

)∣∣∣
ln Λ2

=
1

(4π)2

(
1

v2
(w̄k

1)(w̄
l
1)−

1

v2Z
(w̄k

3)(w̄
l
3)

)
×

×
[
R̄kiljM

2
ij − 4

(
g2

3∑
a=1

(w̄k
a);i(w̄

l
a);j + g2Y (ȳ

k);i(ȳ
l);j

)
δij
]
ln

Λ2

µ2
, (8.34)

with

M2
ij := g2

3∑
a=1

(w̄i
a)(w̄

j
a) + g2Y (ȳ

i)(ȳj) + V;ij . (8.35)

As we see from Eq.(8.34), the coefficient of the T parameter divergence is partially

expressed by the Riemann curvature tensor, but there is part independent of the

Riemann curvature tensor. This means that we need additional conditions to ensure

the one-loop finiteness of the parameter T . In addition to the perturbative unitarity

of four scalar scattering amplitude, we need the following conditions:(
1

v2
(w̄k

1)(w̄
l
1)−

1

v2Z
(w̄k

3)(w̄
l
3)

)(
g2

3∑
a=1

(w̄k
a);i(w̄

l
a);j + g2Y (ȳ

k);i(ȳ
l);j

)
δij = 0 . (8.36)
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Chapter 9

Summary and Conclusions

In this thesis, we have done two things.

1. We extended the Higgs Effective Field Theory (HEFT) so that it includes the

arbitrary number of neutral and charged scalar fields, and formulated “Gener-

alized Higgs Effective Field Theory (GHEFT).”

2. We derived the perturbative unitarity condition and oblique parameters S,

T , U in the context of the GHEFT in the covariant form. Focusing on the

geometry of the GHEFT, we find correlations between unitarity sum rules and

the oblique parameters.

We firstly generalized the Higgs Effective Field Theory (HEFT) so that it includes the

arbitrary number of neutral and charged scalar fields. Because SU(2)L×U(1)Y sym-

metry is non-linearly realized in the broken phase, we relied on the CCWZ method to

add new scalar fields to the HEFT in a consistent manner with underlying symmetry.

We named the extension of the HEFT as “Generalized Higgs Effective Field The-

ory (GHEFT).” The explicit form of the GHEFT Lagrangian is given by Eq.(4.49).

Thanks to the GHEFT, we can calculate the physical process with new scalar parti-

cles appearing in the initial of the final state, such as the production cross sections

and decay rates of the new scalars. These processes cannot be calculated in the

HEFT framework because new particles are integrated out from the theory.
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Furthermore, we rewrote the GHEFT Lagrangian to avoid the ambiguity coming

from a choice of the field coordinate system. The dictionary for converting the origi-

nal GHEFT Lagrangian (4.49) into its geometrical form (6.1) is given in appendix B.

Secondly, We derived the perturbative unitary conditions and the expression of

the Peskin Takeuchi S, T , U parameters in the framework of the GHEFT. Thanks

to the geometrical form of the GHEFT (6.1), we derived these expressions in the

covariant forms. Deriving the perturbative unitarity conditions, we found that the

unitarity sum rules are expressed by the flatness conditions in the vicinity of the

vacuum, R̄ijkl = 0. We also found that the coefficient of one-loop divergence of the

oblique parameters S, T , and U can be written in terms of the Killing vectors and

Riemann curvature tensors. Furthermore, using the Killing equations and the com-

mutation relations of the Killing vectors, we find that the coefficients of the divergent

parts of S and U are proportional to the Riemann curvature tensor evaluated at the

vacuum. This ensures that once perturbative unitarity conditions are satisfied, a one-

loop divergence of the oblique parameters S and U is automatically canceled out.

The inverse relation does not hold, however: even if the S and U are one-loop finite,

this does not ensure the perturbative unitarity. Therefore, we concluded that the

perturbative unitarity conditions are sufficient conditions for the one-loop finiteness

of S and U , but not the necessary conditions.
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Appendix A

Thanks to the CCWZ formalism introduced in Sec3.3, we can construct the HEFT

Lagrangian. Here we will construct the HEFT SU(2)L × SU(2)R → SU(2)V , where

SU(2)V is the symmetry rotating same angle in SU(2)L and SU(2)R. Generators of

SU(2)L × SU(2)R can be expressed by four by four matrices as

T a
L =

1

2

(
τa

0

)
, T a

R =
1

2

(
0

τa

)
, (A.1)

where τa denotes Pauli matrices given by Eq.(2.8). Upper-left two by two matrix

denotes SU(2)L subspace, and lower-right two by two denotes that of SU(2)R.

The unbroken generator Sa is rotate SU(2)L and SU(2)R by the same angle, so

it can be expressed by sum of SU(2)L and SU(2)R generators. As for the broken

generator Xa, it can be expressed simply by subtraction of SU(2)L and SU(2)R gen-

erators. Therefore unbroken and broken generators of SU(2)L × SU(2)R → SU(2)V

can be written as

Sa =
T a
L + T a

R

2
=

1

2

(
τa

τa

)
, Xa =

T a
L − T a

R

2
=

1

2

(
τa

−τa

)
. (A.2)

Note that the broken generators in general has an ambiguity of adding or subtracting

the unbroken generators Sa. Therefore we can also adopt the following matrices

X ′a as the broken generator, which is different from Xa in Eq.(A.8) by the sum of
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unbroken generators Sa:

X ′
a
= Xa + Sa =

(
τa

0

)
. (A.3)

The two theories constructed by the generators {Sa, Xa} and by {Sa, X ′a} look dif-

ferent at the first look, but these theories are simply related by the field redefinitions.

Though these two theories give different interaction vertices, we can show that they

give exactly the same scattering cross sections. In this thesis, we adopt simpler

parametrization, which is given by Eq.(A.8).

Unbroken and broken generators given by Eq.(A.8) satisfy following commutation

relations

[Sa, Sb] = iϵabcSc , (A.4)

[Sa, Xb] = iϵabcXc , (A.5)

[Xa, Xb] = iϵabcSc . (A.6)

Here we define parity operation τp, under which unbroken and broken generator

transform as

τp : Sa → Sa ,

Xa → −Xa . (A.7)

This parity operation τp actually corresponds to the exchange of SU(2)L and SU(2)R

generators. As we see in Eq.(A.8), unbroken generator Sa and broken generator Xa

can be expressed in terms of SU(2)L and SU(2)R generators T a
L, T

a
R by

Sa =
T a
L + T a

R

2
, Xa =

T a
L − T a

R

2
. (A.8)

Exchanging T a
L and T a

R, unbroken generator Sa remains invariant, but broken gener-

ator Xa flip its sign, reproducing Eq.(A.7). The important thing is that commuta-

tion relations Eqs.(A.4)-(A.6) are invariant under the parity transformation τp. This

property turns out to be quite useful when we construct the invariant operator under
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non-linearly realized SU(2)L × U(1)Y .

The matrix ξ given by Eq.(3.54) can be written in this case as

ξ(π) =

(
ξ̂L(π)

ξ̂R(π)

)
, (A.9)

where ξ̂L and ξ̂R are given by

ξ̂L(π) := exp

(
i

2v
πaτa

)
, (A.10)

ξ̂R(π) := exp

(
− i

2v
πaτa

)
. (A.11)

In the remaining of this section, matrixM with hat symbol, M̂ , denote 2 by 2 matrix

embedded in upper-left or lower-right of the four by four matrix. Note that, if we

express the transformation matrix of SU(2)L × SU(2)R as

g =

(
ĝL

ĝR

)
(A.12)

where

ĝL = exp

(
iθaL

τa

2

)
, (A.13)

ĝR = exp

(
iθaR

τa

2

)
, (A.14)

then ξL and ξR in Eq.(A.9) transforms under SU(2)L × SU(2)R like

ξ̂L(π) → ξ̂L(π
′) = ĝL · ξ̂L(π) · ĥ†(π, θL, θR) , (A.15)

ξ̂R(π) → ξ̂R(π
′) = ĝR · ξ̂R(π) · ĥ†(π, θL, θR) . (A.16)

Note that ĥ in Eq.(A.15) is not ĥ(π, θL) and ĥ in Eq.(A.16) is not ĥ(π, θR), but they

are identical matrix ĥ(π, θL, θR). This fact is easily understood by coming back to

four by four matrix notation, where the transformation law (A.15) and (A.16) are
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collectively expressed as(
ξ̂L(π)

ξ̂R(π)

)
→

(
ξ̂L(π

′)

ξ̂R(π
′)

)
=

(
ĝL

ĝR

)(
ξ̂L(π)

ξ̂R(π)

)
h† . (A.17)

Now it is clear that the upper-left matrix and the lower-right matrix in h must be

identical, otherwise h is not a group element of unbroken symmetry SU(2)V , which

rotate ξ̂L and ξ̂R in the same angle.

Cartan one-form defined by Eq.(3.58) is written in terms of ξ given by Eq.(A.9)

as

αµ(π) =
1

i
ξ†(π)∂µξ(π) . (A.18)

The next step is decomposing αµ into unbroken generator part and broken generator

part like

αµ = α∥µ + α⊥µ , (A.19)

α∥µ := Tr [αµS
a]Sa , (A.20)

α⊥µ := Tr [αµX
a]Xa . (A.21)

At this point, it is important to focus on the commutation relation of generators.

αµ =

(
1
i
ξ̂†L∂µξ̂L

1
i
ξ̂†R∂µξ̂R

)
=:

(
α̂Lµ

α̂Rµ

)
(A.22)

αµ can be trivially decomposed as

αµ =
1

2

(
α̂Lµ + α̂Rµ

α̂Lµ + α̂Rµ

)
+

1

2

(
α̂Lµ − α̂Rµ

−α̂Lµ + α̂Rµ

)
. (A.23)

We consider operating the parity transformation τp introduced in Eq.(A.7) to the

Cartan one form αµ. As we previously commented, parity transformation τp cor-
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responds to the exchange of SU(2)L and SU(2)R generators. For α̂Lµ and α̂Rµ, τp

operate as an exchange α̂Lµ ↔ α̂Rµ. Under this exchange, the first term of RHS of

Eq.(A.23) remain invariant, but the second term of RHS of Eq.(A.23) flip its overall

sign. Comparing it with Eq.(A.7), we can conclude

α∥µ =
1

2

(
α̂Lµ + α̂Rµ

α̂Lµ + α̂Rµ

)
, (A.24)

α⊥µ =
1

2

(
α̂Lµ − α̂Rµ

−α̂Lµ + α̂Rµ

)
. (A.25)

Now we can write down a kinetic term of NG bosons:

Lπ =
v2

2
Tr [α⊥µα

µ
⊥] . (A.26)

Expressing the kinetic term (A.26) in terms of ξL and ξR, we get

Lπ =
v2

2
Tr [(α̂Lµ − α̂Rµ)(α̂

µ
L − α̂µ

R)] =
v2

4
Tr
[
∂µ
(
ξ̂Lξ̂

†
R

)†
∂µ
(
ξ̂Lξ̂

†
R

)]
. (A.27)

Defining

U := ξ̂Lξ̂
†
R , (A.28)

we finally get

Lπ =
v2

4
Tr
[
∂µU

†∂µU
]

(A.29)

where the transformation law of U under SU(2)L × SU(2)R is given as

U → U ′ = gLUgR . (A.30)
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Appendix B

In this section, we will treat the power counting formula for the electroweak chiral

perturbation theory (EWChPT) [8, 13]. The EWChPT is the effective field theory

written in terms of the SM fields other than the Higgs boson, and its leading order

Lagrangian is obtained by setting h → 0 in the leading order HEFT Lagrangian

(3.2).

In the first raw of Table 1, we listed all types of the interaction vertices found in

the leading order of the EWChPT. Note that φ denotes the would-be NG bosons w±

and z, collectively. Xµ expresses weak gauge boson fields Wµ and Bµ, and ψL(R) de-

notes left-handed (right-handed) SM fermions. From now on, we will consider L - loop

diagram DL containing a ni number of φ2i-vertices, νk Yukawa-type ψ̄L(R)ψR(L)φ
k-

vertices, a ml number of gauge-NG boson vertex Xµφ
l, a rs numer of X2

µφ
s-vertex,

a x number of four point gauge self-interaction X4
µ, a u number of three point gauge

self-interaction X3
µ, and a g number of ψ̄L(R)ψL(R)Xµ-vertex.

Table 1: LO interactions, corresponding vertices, and the number of vertices in DL

interactions φ2i ψ̄L(R)ψR(L)φ
k Xµφ

l X2
µφ

s X4
µ X3

µ ψ̄L(R)ψL(R)Xµ

factors of vertices p2/v2i−2 y/vk−1 gp/vl−2 g2/vs−2 g2 gp g

# of vertices in DL ni νk ml rs x u zL(zR)

The L - loop diagrams DL with B NG boson propagators, V gauge boson propa-

gators, and FL(R) left-handed (right-handed) fermion propagators can be expressed
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as

DL ∼ v2L

Λ2L

yΣkνkgΣlml+Σs2rs+2x+u+z

vΣi(2i−2)ni+Σk(k−1)νk+Σl(l−2)ml+Σs(s−2)rs

×p4L+Σi2ni+Σlml+u−2B−2V−FL−FR−V ψ̄
F 1
L

L ψ
F 2
L

L ψ̄
F 1
R

R ψ
F 2
R

R φB(Xµν)
V , (B.1)

where F 1
L, F

2
L, F

1
R, and F

2
R denote the number of external fields of left-handed anti-

fermion, left-handed fermion, right-handed anti-fermion, right-handed fermion, re-

spectively. B denotes the number of external NG boson fields and V denotes the

number of external gauge boson fields which should appear in the form of field

strength.

The power of the momentum in (B.1) express the superficial degree of divergence

for the diagram DL, which is denoted by “d ” with

d = 4L+
∑
i

2ni +
∑
l

ml + u− 2B − 2V − FL −FR − V . (B.2)

Note that, in Eq.(B.2), 4L powers of momentum comes from the integration with

respect to the loop momentum,
∑

i 2ni +
∑

lml + u powers of momentum comes

from the derivative interactions listed in Table 1, −2B − 2V − FL − FR powers of

momentum comes from the NG boson, gauge boson, and fermion propagators, and

−V powers of momentum comes from the field strength of the external gauge boson

fields Xµν , which can be obtained by replacing one of the external momentum with

a derivative acting on the external gauge field.

We can eliminate the number of internal fields, FL(R), B, and V from Eq.(B.2)

by using the following identities,

FL + 2FL =
∑
k

νk + 2zL , (B.3)

FR + 2FR =
∑
k

νk + 2zR , (B.4)

B + 2B =
∑
i

2ini +
∑
k

kνk +
∑
l

lml +
∑
s

srs , (B.5)

V + 2V =
∑
l

ml +
∑
s

2rs + 4x+ 3u+ z . (B.6)
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Note that the LHS’s of (B.3)-(B.6) express the sum of the external fields and the

internal fields. The number of internal fields, FL(R), B, and V , are multiplied by

two because we need to contract two internal fields to get a propagator. The sum

of the external fields and the internal fields should be equal to the total number of

particle fields appearing in the diagram DL through the interaction vertices, which

are expressed by the RHS’s of (B.3)-(B.6).

After eliminating the number of internal fields, FL(R), B, and V in (B.2), we get

d = 4L+B +
FL + FR

2
+
∑
i

(2− 2i)ni −
∑
k

(k + 1)νk −
∑
l

lml −
∑
s

(s+ 2)rs

− 4x− 2u− 2z . (B.7)

Applying the topological identities for Feynman diagrams,

L = FL + FR + B + V −
∑
i

ni −
∑
k

νk −
∑
l

ml −
∑
s

rs − x− u− z + 1 , (B.8)

we get the final expression for d,

d = 2L+ 2− FL + FR

2
− V − ν −m− 2r − 2x− u− z , (B.9)

with

ν :=
∑
k

νk , (B.10)

m :=
∑
l

ml , (B.11)

r :=
∑
s

rs . (B.12)

The important thing in (B.9) is that all the vertices have negative contributions to

the superficial degree of divergence, d. Given the fixed value of the loop order “L,”

the diagram DL has loop divergence when d takes the non-negative value, d ≥ 0.

Thanks to the negative contributions from the interaction vertices, however, d has
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the maximal value, and this means we can absorb all the divergence in the various

loop diagrams by the finite number of counter terms: listing all the combinations of

(FL(R), V, ν, m, r, x, u, z) for each non-negative value of d, and introducing corre-

sponding operators to the L-th order HEFT Lagrangian, we can pursue perturbative

calculations systematically.

The formula (B.7) gives the power counting rules for the HEFT, because once we

give the loop order L, we can write down all the counter terms needed for absorb-

ing the divergence by using the formula (B.7), which correspond to the L-th order

operators in the loop expansion.
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Appendix C

In this Appendix, we list the dictionary for converting the original GHEFT La-

grangian (4.49) into its geometrical form (6.1). We express the metric tensor gij in

Eq.(6.1) in terms of Gab, GaI , and GIJ in Eq.(4.49). Not that w̃a := wa/v with

a = 1, 2.

(i, j) = (a, b)

g11 = G11 −G13w̃
2 +

1

3

(
−G11w̃

2w̃2 +G12w̃
1w̃2
)
+

1

4
G33w̃

2w̃2 +O((π)3) , (C.1)

g12 = G12 +
1

2

(
G13w̃

1 −G23w̃
2
)

+
1

6

(
G11w̃

1w̃2 +G22w̃
1w̃2 −G12w̃

1w̃1 −G12w̃
2w̃2
)
− 1

4
G33w̃

1w̃2 +O((π)3) ,

(C.2)

g13 = G13 −
1

2
G33w̃

2 +
1

6

(
−G13w̃

2w̃2 +G23w̃
1w̃2
)
−G1I [iQϕ]

I
Jϕ

J

(
1− 1

6
w̃2w̃2

)
+

1

2
G3I [iQϕ]

I
Jϕ

Jw̃2 − 1

6
G2I [iQϕ]

I
Jϕ

Jw̃1w̃2 +O((π)3) , (C.3)

g22 = G22 +G23w̃
1 +

1

3

(
−G22w̃

1w̃1 +G12w̃
1w̃2
)
+

1

4
G33w̃

1w̃1 +O((π)3) , (C.4)

g23 = G23 +
1

2
G33w̃

1 +
1

6

(
G13w̃

1w̃2 −G23w̃
1w̃1
)
−G2I [iQϕ]

I
Jϕ

J

(
1− 1

6
w̃1w̃1

)
− 1

2
G3I [iQϕ]

I
Jϕ

Jw̃1 − 1

6
G1I [iQϕ]

I
Jϕ

Jw̃1w̃2 +O((π)3) , (C.5)

g33 = G33 − 2G3I [iQϕ]
I
Jϕ

J +GIJ [iQϕ]
I
K [iQϕ]

J
Lϕ

KϕL , (C.6)

(i, j) = (a, I)
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g1I = G1I +
1

2
G3Iw̃

2 − 1

6
G1Iw̃

2w̃2 +
1

6
G2Iw̃

1w̃2 +O((π)3) , (C.7)

g2I = G2I +
1

2
G3Iw̃

1 +
1

6
G1Iw̃

1w̃2 − 1

6
G2Iw̃

1w̃1 +O((π)3) , (C.8)

g3I = G3I −GIJ [iQϕ]
J
Kϕ

K , (C.9)

(i, j) = (I, J)

gIJ = GIJ . (C.10)
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Appendix D

In this appendix, we will derive one-loop correction to the Lagrangian

L =
1

2
gij(ϕ)(Dµϕ)

i(Dµϕ)j − V (ϕ) , (D.1)

with Dµ denoting gauge covariant derivative,

(Dµϕ)
i = ∂µϕ

i + Aα
µt

i
α(ϕ). (D.2)

The authors of [41] derive the one loop correction to the Lagrangian (D.1), which is

given by

∆Lφ−loop
div =

1

(4π)2ϵ

[
1

12
tr(YµνY

µν) +
1

2
tr(X2)

]
, (D.3)

where ϵ is dimensional regularization parameter and is written in terms of spacetime

dimension D as

ϵ := 4−D . (D.4)

Yµν and X are given as

[Yµν ]
i
j = Ri

jkl(Dµϕ)
k(Dνϕ)

l + F a
µν(t

i
a);j , (D.5)

[X]ik = Ri
jkl(Dµϕ)

j(Dµϕ)l + gijV;jk , (D.6)

where covariant derivatives for Killing vectors tia is given by

(tia);j := tia,j + Γi
jkt

k
a . (D.7)
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The aim of this appendix is to derive Eq.(D.3).

In order to calculate one-loop correction respecting gauge invariance, we use the

background field method.

Firstly, let us decompose ϕi into a background field ϕ̃i and a fluctuation field ξi

as

ϕi = ϕ̃i + ξi − 1

2
Γ̃i
jkξ

jξk + · · · , (D.8)

where Γ̃i
jk is Affine connection evaluated at ϕi = ϕ̃i. For the definition of Affine

connection, see Eq.(5.30). We consider variating the action

S =

∫
d4x

[
1

2
gij(ϕ)(Dµϕ)

i(Dµϕ)j − V (ϕ)

]
, (D.9)

with respect to the fluctuation field ξ. Expanding the metric tensor gij, the Killing

vector tia, and the scalar potential V around ϕi = ϕ̃i, we get

gij(ϕ) = g̃ij −
1

3
R̃ikjl ξ

kξl + · · · , (D.10)

tia(ϕ) = t̃ia + t̃ia;jξ
j − 1

3
R̃i

kjl t̃
j
a ξ

kξl + · · · , (D.11)

V (ϕ) = Ṽ + Ṽ,iξ
i +

1

2
Ṽ;ijξ

iξj + · · · . (D.12)

To get Eq.(D.11), we used the following relation coming from the Killing equation,

gil(w
l
a);jk = Rikjlw

l
a . (D.13)

In order to make the callcuration easy, we consider the Riemann Normal Coor-

dinate (R.N.C.) in the remaining of this appendix. Note that, in the R.N.C., the

following relations are satisfied,

Γ̃i
(j1j2)

= 0 , (D.14)

Γ̃i
(j1j2, j3)

= 0 , (D.15)

Γ̃i
(j1j2, j3j4)

= 0 , (D.16)
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...

where parentheses indicate the symmetrization with respect to indices: T(j1j2) =
1
2!
(Tj1j2 +Tj2j1). Note that, in the R.N.C., Riemann curvature tensor R̄i

jkl appearing

in Eq.(D.11) can be expressed as

R̃i
jkl = Γ̃i

jl,k − Γ̃i
jk,l , (D.17)

because of Eq.(D.14).

Expanding the covariant derivative (Dµϕ)
i defined by Eq.(D.2) around ϕi = ϕ̃i

in the R.N.C. coordinate, we get

(Dµϕ)
i = (Dµϕ)

i
∣∣∣
ξ0
+ (Dµϕ)

i
∣∣∣
ξ1
+

1

2!
(Dµϕ)

i
∣∣∣
ξ2
+ · · · , (D.18)

with

(Dµϕ)
i
∣∣∣
ξ0

= ∂µϕ̃
i + Ãa

µt̃
i
a =: (D̃µϕ̃)

i , (D.19)

(Dµϕ)
i
∣∣∣
ξ1

= ∂µξ
i + Ãa

µ(t̃
i
a);jξ

j =: (D̃µξ)
i , (D.20)

(Dµϕ)
i
∣∣∣
ξ2

= −
(
1

2
(Γ̃i

jk),l(∂µϕ̃
l) +

1

3
Ãa

µt̃
l
aR̃

i
jlk

)
ξjξk . (D.21)

Using Eq.(D.10), Eq.(D.12) and Eqs. D.19)-(D.21), we can calculate the second vari-

ation of the action (D.9) with respect to the fluctuation field ξ, which is denoted by

Sξξ. The explicit form of Sξξ is given as

Sξξ =
1

2

∫
d4x

[
g̃ij(D̃µξ)

i(D̃µξ)j − R̃kilj(D̃µϕ̃
k)(D̃µϕ̃l)ξiξj − Ṽ;ijξ

iξj

+ g̃ik

(
2

3
R̃k

mjn − (Γ̃k
mn),j

)
(D̃µϕ̃)

i(∂µϕ̃j)ξmξn
]
. (D.22)

where covariant derivatives (D̃µϕ̃)
i and (D̃µξ)

i are defined by Eq.(D.19) and Eq.(D.20),

respectively. We can easily show that the second line of Eq.(D.22) vanishes: focusing
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on the relevant part of the second line of Eq.(D.22), we get(
2

3
R̃k

mjn − (Γ̃k
mn),j

)
ξmξn = − 1

3

(
(Γ̃k

mn),j + (Γ̃k
mj),n + (Γ̃k

mj),n

)
ξmξn

= − 1

3

(
(Γ̃k

mn),j + (Γ̃k
jm),n + (Γ̃k

nj),m

)
ξmξn . (D.23)

In the first line of Eq.(D.23), we used the expression of the Riemann curvature tensor

in R.N.C., Eq.(D.17). To get the second line from the first line of Eq.(D.23), we

exchanged the dummy indices m↔ n in the third term in the parenthesis. Applying

Eq.(D.15), we can see that the last line of Eq.(D.23) vanishes.

The final expression of Sξξ is therefore given as

Sξξ =
1

2

∫
d4xξi

[
− g̃ijD̃µD̃

µ − R̃kilj(D̃µϕ̃)
k(D̃µϕ̃)l − Ṽ;ij

]
ξj . (D.24)

Adding Affine connections to Eq.(D.24) appropriately and rewriting Eq.(D.24) in the

covariant form, we finally get

Sξξ =
1

2

∫
d4xξi

[
− g̃ijD̃µD̃

µ − R̃kilj(D̃µϕ̃)
k(D̃µϕ̃)l − Ṽ;ij

]
ξj . (D.25)

with

(Dµξ)
i := [δij∂µ + Γi

jk(∂µϕ
k)]ξj + Aα

ν [t
i
α,j + Γi

jkt
k
α]ξ

j . (D.26)

The second variation (D.25) enters the one-loop effective action,

Γone-loop =
i

2
log det

(
−gik δ2S

δξkδξj

)
. (D.27)

Reading out the effective Lagrangian from Eq.(D.27), we finally get the one-loop

correction to the action (D.1), whose explicit form is given by

∆Lφ−loop
div =

1

(4π)2ϵ

[
1

12
tr(YµνY

µν) +
1

2
tr(X2)

]
, (D.28)
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with

[Yµν ]
i
j = [Dµ,Dν ]

i
j , (D.29)

[X]ik = Ri
jkl(Dµϕ)

j(Dµϕ)l + gijV;jk . (D.30)

Calculating the commutation relation in RHS of Eq.(D.28) explicitly, which is done

in appendix D, we get

[Yµν ]
i
j = Ri

jkl(Dµϕ)
k(Dνϕ)

l + F a
µν(t

i
a);j . (D.31)
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Appendix E

In this appendix, we will express the commutation relation

Yµν := [Dµ,Dν ]
i
j , (E.1)

in terms of covariant quantities such as the Riemann curvature tensor, the Killing

vectors, and the covariant derivative of the scalar fields. Note that Dµ denotes a

covariant derivative defined by Eq.(D.26).

Expressing the commutation relation in terms of tensors appearing in the RHS

of Eq.(D.26), we get

[Dµ,Dν ]
i
j η

j =
[
Γi
jk,l + Γi

mlΓ
m
jk

]
(∂µϕ

l)(∂νϕ
j)ηk

+ Aβ
ν (t

i
β;k),j(∂µϕ

j)ηk + Γi
jl(∂µϕ

j)Aα
ν t

l
α;kη

k − Aα
ν t

i
α;lΓ

l
jk(∂µϕ

j)ηk

+ (∂µA
α
ν )t

i
α;kη

k + Aα
µt

i
α;lA

β
ν t

l
β;kη

k

− (µ↔ ν) . (E.2)

We will rewrite the first, second, and third line of Eq.(E.2) in turn.

1. First line of Eq.(E.2)

It is easy to see that the square bracket in the first line of Eq.(E.2) leads to the

Riemann curvature tensor:[
Γi
jk,l + Γi

mlΓ
m
jk

]
(∂µϕ

l)(∂νϕ
j)ηk − (µ↔ ν)
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=
[
Γi
jk,l + Γi

mlΓ
m
kj − (l ↔ j)

]
(∂µϕ

l)(∂νϕ
j)ηk

= Ri
klj(∂µϕ

l)(∂νϕ
j)ηk , (E.3)

with

Ri
klj := Γi

jk,l − Γi
lk,j + Γi

mlΓ
m
kj − Γi

mjΓ
m
kl . (E.4)

Note that the Riemann curvature tensor defined by Eq.(E.4) satisfy usual anti-

symmetric relation,

Ri
klj = −Ri

kjl . (E.5)

2. Second line of Eq.(E.2)

Next, we will focus on the second line of Eq.(E.2). It is easy to check that the second

line of Eq.(E.2) can be rewritten as

Aβ
ν (t

i
β;k),j(∂µϕ

jηk + Γi
jl(∂µϕ

j)Aα
ν t

l
α;kη

k − Aα
ν t

i
α;lΓ

l
jk(∂µϕ

j)ηk − (µ↔ ν)

=Aα
ν (∂µϕ

j)ηk
(
tiα,kj + Γi

kl + Γi
jlt

l
α,k − Γl

kjt
i
α,l

)
+ Aα

ν (Γ
i
kl),jt

l
α(∂µϕ

j)ηk + Γi
jl(∂µϕ

j)Aα
νΓ

l
kmt

m
α η

k − Aα
νΓ

i
lmt

m
α Γ

l
jk(∂µϕ

j)ηk

− (µ↔ ν) . (E.6)

Applying the following formula

0 = tlαΓ
i
kj,l + tlα,kΓ

i
lj + tlα,jΓ

i
kl − tiβ,lΓ

l
kj + tiβ,kj (E.7)

to the parenthesis in the second line of Eq.(E.6), we get

Eq.(E.6) = Aα
ν t

l
α(∂µϕ

j)ηk
(
Γi
kl,j − Γi

kj,l + Γi
jmΓ

m
kl − Γi

mlΓ
m
jk

)
− (µ↔ ν)

= −Aα
ν t

l
α(∂µϕ

j)Ri
kljη

k − (µ↔ ν)

= 2Aα
µt

l
α(∂νϕ

j)Ri
kljη

k . (E.8)
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To get the second line from the first line of Eq.(E.8), we used the definition of

the Riemann curvature tensor (E.4). To get the third line from the second line of

Eq.(E.8), we used Eq.(E.5).

3. Third line of Eq.(E.2)

Finally, we will focus on the third line of Eq.(E.2),

(∂µA
α
ν )t

i
α;kη

k + Aα
µt

i
α;lA

β
ν t

l
β;kη

k − (µ↔ ν) . (E.9)

The second term of Eq.(E.9) can be rewritten as

Aα
µt

i
α;lA

β
ν t

l
β;kη

k − (µ↔ ν)

= Aα
µA

β
ν

[
tiα,lt

l
β,k + Γl

kmt
i
α,lt

m
β + Γi

ljt
j
αt

l
β,k + Γi

ljΓ
l
kmt

j
αt

m
β − (α ↔ β)

]
= Aα

µA
β
ν

[(
tiβ,lk + Γi

jlt
j
β,k − Γm

klt
i
β,m

)
tlα + Γi

ljΓ
l
kmt

j
αt

m
β − (α ↔ β)

]
− fαβ

γAα
µA

β
ν t

i
γ,k

= Aα
µA

β
ν

[(
Γi
km,l − Γi

kl,m + Γi
jlΓ

j
km − Γi

jmΓ
j
kl

)
tlαt

m
β − [tα, tβ]

mΓi
km

]
ηk − fαβ

γAα
µA

β
ν t

i
γ,k

= Aα
µA

β
ν

(
Ri

klmt
l
αt

m
β − fαβ

γtiγ;k

)
ηk . (E.10)

To get the second term from the first term of Eq.(E.10), we replace µ ↔ ν with

α ↔ β. To get the third line from the second line of Eq.(E.10), we used the following

relation

tiα,lt
l
β,k − tiβ,lt

l
α,k = tlαt

i
β,lk − tlβt

i
α,lk − fαβ

γ , (E.11)

which is obtained by differentiate the Killing vectors’ commutation relation with

respect to scalar index,

[tα, tβ]
i = tlαt

i
β,l − tlβt

i
α,l = fαβ

γtiγ . (E.12)
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To get the fourth line from the third line of Eq.(E.10), we used

tiβ,lk + tjβ,kΓ
i
jl − tiβ,mΓ

m
kl = −tmβ Γi

kl,m − tmβ,lΓ
i
km , (E.13)

which comes from Eq.(E.7). Finally, to get the forth line from the third line of

Eq.(E.10), we used the commutation relation (E.12) and the definition of the Rie-

mann curvature tensor (E.4).

Substituting the final result in Eq.(E.10) into the second term of Eq.(E.9), we

get

(∂µA
α
ν )t

i
α;kη

k + Aα
µt

i
α;lA

β
ν t

l
β;kη

k − (µ↔ ν) = Ri
klm(A

α
µt

l
α)(A

β
ν t

m
β )η

k + F γ
µνt

i
γ;kη

k ,

(E.14)

with

F γ
µν = ∂µA

γ
ν − ∂νA

γ
µ − fαβ

γAα
µA

β
ν . (E.15)

4. Total of Eq.(E.2)

Combining Eq.(E.3), Eq.(E.8), and Eq.(E.14), we finally get

[Dµ,Dν ]
i
j = Ri

jkl(Dµϕ)
k(Dµϕ)l + Fα

µνt
i
α;j . (E.16)
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