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Abstract
At the end of the cosmic dark ages, the first generation of stars (the first stars) form

in the Universe, telling the begging of the epoch of reionization (EoR). The popula-

tion III stars (pop III stars), which means stars formed from pristine metal-free gas

and the first stars are included in Pop III stars, play key roles in the thermal history

and the history of the structure formation. For example, the ionizing photons emit-

ted from pop III stars ionize the inter-galactic medium (IGM) contributing more or

less to the reionization, and the heavy elements ejected at the end of stellar lifetime

enhance the formation of subsequent generation of stars. To what extent Pop III

stars affect the cosmic history strongly depends on the stellar properties such as star

formation rate density (SFRD) and initial mass function (IMF).

Since the clear detection of pop III stars has not reported, the theoretical re-

searches have proceed our understanding of pop III stars’ properties. However, the

results of theoretical works have not converged yet. Recently neutral hydrogen 21-

cm line emission is getting more and more attention because the 21-cm signal carries

information on gas at high-z Universe including Pop III stars. Thus, constructing

theoretical models which connects the 21-cm observable with the properties of pop

III stars is necessary to extract information on Pop III stars from current and future

observations.

We investigate the 21-cm signals at the both small and large scales. As for the

small scale, we develop spherically-symmetric one-dimensional radiation hydrody-

namics (RHD) simulations and study the profile of the 21-cm brightness temperature

around individual pop III star. What we find is that the gas dynamics plays an es-

sential role: In early phase, the ionized region is well confined in the halo so that the

deep absorption region is seen around the central star, then in late phase, the ionized

region expands beyond the halo radius letting the absorption signal weaker. Also we

revel the stellar mass, halo mass and redshift dependences of the 21-cm profile.

In regards to the large scale, we develop and conduct the cosmological 21-cm

semi-numerical simulations which for the first time incorporate both UV photo-

heating and time-evolving escape fraction which reflects increasing minimum halo

mass for star formation due to the Lyman-Werner (LW) negative feedback. We find

that if Pop III stars do not contribute the cosmic reionization, the 21-cm signals do

not carry information on Pop III stellar mass although the 21-cm global signal pro-

vides us with the information on SFRD. On the other hand, when Pop III stars con-

tribute the reionization, the 21-cm global signal and the power spectrum reflect both

the typical stellar mass and SFRD.
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Chapter 1

General Introduction

The Universe was born as high-density fireball with high temperature about 13.8 bil-

lion years ago. Since then, the Universe has been expanding so that the temperature

and density are decreasing. When the age of the Universe was about 380 thousand

years old, the photons decoupled from baryon, so-called recombination, and started

propagating straight toward us. The radiation from the last scattering surface is ob-

served as the cosmic microwave background (CMB). The historical observation by

the COBE satellite has found the tiny fluctuation on the CMB. This inhomogeneity at

the early Universe is indeed the seed of all the structure in the Universe. The gravity

has the essential nature for the structure formation which grows the seed: a place

in which there are a little bit more matter has stronger gravitational force attracting

more surrounding matter, so that the place has even stronger gravity. As a result,

the initial tiny fluctuation increases and finally yields the rich variety of structures

seen in the Universe as of today. After the COBE observation, the CMB has been

observed more precisely by the subsequent satellites of the WMAP and the Planck

and we now know the initial temperature fluctuates is in order of∼ 10−5 in fraction.

The epoch after recombination is called the dark ages because there are no lu-

minous objects, however, the tiny initial density fluctuation grows in the dark Uni-

verse. Resultantly, around when the cosmic age is about 200 million years old, the

first generation of stars (the first stars) are born. The first stars are expected to be

fairly different from most stars observed today like the Sun. In the star formation

process, the gas cooling is necessary for gas cloud to contract until the density be-

comes high enough to begin the nuclear reaction. The dominant coolant in the case

of stars formed in late-time Universe is heavy elements, which is also called metal

oftentimes, however on the other hand, the first stars are formed from the primor-

dial gas whose chemical composition is determined by the Big Bang nucleosynthe-

sis, that is, there are no elements heavier than the lithium. The main coolant in this

case is the molecular hydrogen whose cooling efficiency is relatively low. Therefore,

stars made of the zero-metal primordial gas (so called the population III stars) are

expected to be more massive.

The first stars play an important role regarding to the cosmic ionization status.
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After the cosmic recombination drastically changes the ionization status of the Uni-

verse from being almost fully ionized to being almost neutral, the Universe remains

neutral throughout the dark ages. The ionizing photons emitted from the first stars

start re-ionizing the Universe for the first time since recombination. The period from

when the first stars begins ionizing the Universe (cosmic age of ∼ 200 million years)

to when the Universe is again completely ionized (∼ 900 million years) is called the

epoch of reionization (EoR). The pop III stars must more or less contribute to the

reionization.

In additional to the reionization, the pop III stars have other key roles in the his-

tory of the Universe. Since the pop III stars are expected to be massive, they would

end up their lives as energetic supernova (SN), providing metals created inside stars

into the surrounding regions. The metal enhances the formation of the subsequent

generation of stars by letting gas cooling efficient. Moreover, the black hole left after

SN is one of the candidates for seeds of extremely massive black hole found at the

center of galaxies.

The pop III stars have essential roles in the thermal history and the structure

formation as described just above. How large impact the pop III stars have strongly

depends on the stellar properties such as the star formation rate density (SFRD) and

the initial mass function (IMF). For example, the emissivity of ionizing photons from

pop III stars depends on SFRD and whether the pop III stars leave back holes is

determined by their stellar mass. Therefore, understanding pop III stars is the key

to achieve the goal of cosmology and astronomy, which is to reveal the whole history

of the Universe and phenomena in the Universe.

Since the clear evidence of pop III stars has not yet obtained by observations,

the theoretical researches mainly progress our understanding of pop III stars’ prop-

erties. Especially in the past decade, our knowledge of SFRD and IMF have been

deepened due to the recent developments of the computer technology and the nu-

merical algorithms. However, the results of the researches have not reached consen-

sus yet. Therefore, not only the bottom-up approach by theoretical studies but also

the top-down approach by observations are highly demanded in order to further

understand the properties of the pop III stars.

As for observations, the 21-cm line emission is recently attracting more and more

attention. The 21-cm radiation is emitted from the hyperfine structure of neutral hy-

drogen. Since there would be abundant HI at the era when pop III star formation

is dominant, the 21-cm observations should be advantageous way to investigate the

pop III stars. Moreover, we can investigate each redshift tomographically by choos-

ing observation frequency because the 21-cm emission is a line emission. Recent

technological developments related with observations are about to enable us to de-

tect 21-cm signals from the high-redshift Universe. Currently, several observations
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are running, for instance, the Murchison Widefield Array (MWA) and The Experi-

ment to Detect the Global EoR Signature (EDGES). Also the huge radio telescope,

the Square Kilometre Array (SKA), is about to start its observations.

In order to extract fruitful information on the pop III stars from forthcoming

observational results, the theoretical models which connect the 21-cm observables

with properties of pop III stars are absolutely indispensable. However, models able

to distinguish typical stellar mass and SFRD of pop III stars have not established yet.

Thus, constructing such theoretical model is the urgent issue.

I, throughout my PhD course, have been addressing the issue by investigating

how the SFRD and the typical stellar mass of pop III stars influence the 21-cm signa-

ture in both small scale and large scale. As for the small scale, I with collaborators

studies the profile of the 21-cm brightness temperature around individual pop III

star with the one-dimensional spherically-symmetric radiation hydrodynamics sim-

ulations (RHD simulations). We for the first time consider the dense gas in halo

and study how the hydrodynamic feedback affects the 21-cm profile around a pop

III star. Regarding to the large scale, we develop and conduct the cosmological 21-

cm semi-numerical simulation considering the UV photo-heating and time-changing

escape fraction of ionizing photons. The UV photo-heating and escape fraction for

time first time account for the stellar mass dependence being enabled by results of

our RHD simulations. By analyzing the simulation results, we investigate whether

we can distinguish the SFRD and the typical stellar mass of pop III stars.

This thesis is organized as follows: In Chapter 2, I describe the standard cosmo-

logical model, which is the background environment for structure formation, and

the observational status quo. I explain structure formation in Chapter 3; the linear

perturbation theory, approximation methods for non-linear regime, and the star for-

mation at high-redshift Universe. The Chapter 4 is dedicated to explain the 21-cm

basics and the current status of observations. I describe my studies about the 21-cm

signature around pop III stars in Chapter 5, and about the cosmological 21-cm signal

in Chapter 6. Finally, I summarize and conclude my works in Chapter 7.

Throughout this thesis, We work on a flat ΛCDM cosmology with the cosmo-

logical parameters with the matte density, Ωm0 = 0.308, the baryon density, Ωb0 =

0.0485, the Hubble constant, h0 = 0.678, the index of initial matter power spectrum,

ns = 0.968, the rms mass fluctuation on 8 Mpc/h scales at present day, σ8 = 0.828,

the mass fraction of Helium, YHe = 0.249 (Planck Collaboration XIII 2016).
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Chapter 2

Standard cosmological model

In this chapter, I briefly introduce the theoretical background of the modern cosmol-

ogy. The cosmology basically determines the dynamical evolution of the Universe

itself, which fundamentally provides the background environment for the structure

formation in the Universe.

What I firstly explain is the Friedmann equation which is the basic equation to

describe dynamical evolution of the Universe. Then, I introduce the cosmological

parameters, which are the parameters needed to solve the Friedmann equation, and

some cosmological models. Finally, the observational constraints on the cosmologi-

cal parameters are briefly introduced.

2.1 Friedmann equation

In this section, I concisely describe the flow to derive the Friedmann equation from

the Einstein equation combined with the Friedmann-Lemaître-Robertson-Walker met-

ric (FLRW metric).

The modern cosmology is based on the general theory of relativity in which the

time and space is no longer independent variables. The spacetime and the compo-

nent (matter and energy) of the Universe evolve while interacting each other. The

co-evolution of spacetime and component is governed by the Einstein equation:

Gµ
ν =

8πG
c4 Tµ

ν , (2.1)

where Gµ
ν is the Einstein tensor, Tµ

ν is the stress-energy tensor, c is the speed of light,

and G is gravitational constant. Under the cosmological principle, which is the fun-

damental assumption of the cosmology under which the Universe is uniform and

isotropic on large scale, the stress-energy tensor is known to be given as

T0
0 = −ρ, Ti

0 = T0
i = 0, Ti

j = p, (2.2)

where ρ and p are energy density and pressure.



Chapter 2. Standard cosmological model 5

The Einstein equation is general form in terms of metric, so that we need to give

the metric of the Universe. The cosmological principle provides the FLRW metric in

the spherical coordinate (r, θ, φ):

ds2 = −c2dt2 + a2(t)
[

dr2

1− Kr2 + r2(dθ2 + sin2 θdφ2)

]
, (2.3)

where a is scale factor, and K is curvature.

Applying the FLRW metric to the Einstein equation gives us the equations below:

(
ȧ
a

)2

=
8πG
3c2 ρ− c2K

a2 , (2.4)

ä
a
= −4πG

3c2 (ρ + 3p). (2.5)

Combining the two equations above and deleting ä provides

ρ̇ + 3
ȧ
a
(ρ + p) = 0. (2.6)

Equation (2.6) is obviously not independent, however, the equation has importance

in the sense that it corresponds to the energy-momentum conservation. Equation (2.4)

is especially called the Friedmann equation which is corresponding to the energy

equation.

The general procedure to solve the time-evolution of the scale factor is as follows.

As independent equations, we take the two equations (2.4) and (2.6). We can not

solve the equations simply because the unknown variables are a, ρ, p which are more

than the number of equations. In order to close the equation system, we need the

equation of state for each matter and energy component of the Universe. Since the

entropy of the whole Universe is conserved, the unknown thermodynamics variable

is only one. Thus, the equation of state can be written in p = p(ρ). Substitute the

equation of state into the conservation equation (2.6) gives us the relation of energy

density and scale factor that is ρ = ρ(a). Then, by substituting the relation to the

Friedmann equation (2.4), we finally obtain the time-evolution of the scale factor

a = a(t).

Through the procedure we need to solve the first-order time-differential equation

twice. Therefore we need two integration constants as which the energy density and

scale factor at present day ρ0 ≡ ρ(t0) and a0 = a(t0) are often assigned. In terms of

the scale factor, the current value is normalized as unity by definition. On the other

hand, the energy density at present depends on the energy components of the Uni-

verse. The ratio of each component is only determined by observations. I describe

some parameters which is necessary to determine the ratio of cosmic components.
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2.2 Cosmological parameters

We cannot solve the cosmic evolution only with the theoretical framework described

in the previous section. We additionally need the cosmological parameters which

are determined only by observations. In other words, cosmological parameters are

essential to get the solution of the Friedmann equation (2.4). Thus, the curvature

and the total energy density at present are the cosmological parameters. Because the

total energy density is composed of energy components such as matter and the dark

energy, the current value of each energy density is also cosmological parameters. By

combining the parameters, we can indeed create any number of new cosmological

parameters. But, I here in this section introduce often-used parameters.

Hubble constant

We define the Hubble parameter as,

H(t) ≡ ȧ(t)
a(t)

. (2.7)

The parameter describes the expansion rate of the Universe at arbitrary time t. The

Hubble constant is defined as the current value of the Hubble parameter:

H0 =
ȧ
a

∣∣∣∣
t=t0

. (2.8)

The normalized Hubble constant h is also often used:

H0 = 100h[km/s/Mpc] = 3.24× 10−18h[/s]. (2.9)

Critical energy density

The critical density is defined as the matter density which is enough to stop the

expansion of the Universe but not to lead to re-collapse. The expression is given

with equation (2.4) substituting K = 0,

ρc0 =
3c2H2

0
8πG

. (2.10)

Apart from multiplied constants, the critical energy density is the paraphrase of the

Hubble constant.
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Density parameters

When the Universe consists of multiple energy components, the total energy density

at present time can be written by,

ρ0 = ∑
A

ρA0, (2.11)

where ρA0 is the current energy density of component A. The density parameter is

the current energy density normalized by the critical energy density and defined for

each cosmic component. For the component A, the density parameter is defined by,

ΩA0 ≡
ρA0

ρc0
=

8πGρA0

3c2H2
0

. (2.12)

The density parameter for the total energy density is,

Ω0 ≡
ρ0

ρc0
= ∑

A
ΩA0. (2.13)

Under the assumption that the dark energy is given by the cosmological constant,

the density parameter of the dark energy is,

ΩΛ0 =
c2Λ
3H2

0
. (2.14)

At present Universe, the most energy consists of matter and dark energy compo-

nents. Therefore, by neglecting the contribution from radiation components,

Ω0 ≈ Ωm0 + ΩΛ0, (2.15)

where Ωm0 is the density parameters of matter.

Curvature parameter

With the density parameters, the Friedmann equation (2.4) can be written as,

Ω0 −
c2K
H2

0
= 1. (2.16)

The curvature itself has the dimension of [length2]. We call dimensionless curvature

the curvature parameter which is the second term in the left-hand side:

ΩK0 ≡ −
c2K
H2

0
. (2.17)
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Then, equation (2.16) can be re-written as,

Ω0 + ΩK0 = ∑
A

ΩA0 + ΩK0 = 1. (2.18)

The curvature parameter has a similar role as density parameters. The Universe is

currently dominated by the matter and the dark energy components so that we can

neglect the radiation component. As a result,

Ωm0 + ΩΛ0 + ΩK0 = 1, (2.19)

is a good approximation.

2.3 Flat lambda model

There are several cosmological models depending on which component exists in the

Universe. For example, the Einstein-de Sitter model assumes that curvature and

dark energy are negligible (ΩK0 = ΩΛ0 = 0). The Friedmann model includes non-

zero curvature on the Einstein-de Sitter model (ΩK0 6= 0, ΩΛ0 = 0) so that it is a

little more complicated. However, our Universe is favored to be nearly zero curva-

ture with positive dark energy density parameter (ΩK0 = 0, ΩΛ0 > 0) by several

observations. Therefore, I in this thesis explain only the flat model.

The Friedmann equation with the cosmological constant Λ is,

(
ȧ
a

)2

=
8πG
3c2 ρ− c2K

a2 +
c2Λ

3
. (2.20)

Assuming the flat curvature (K = 0) and matter domination (ρ ∼ ρm = ρm0/a3),

equation (2.20) is, (
ȧ
a

)2

= H2
0

(
Ωm0

a3 + ΩΛ0

)
. (2.21)

Then, we can get the time differential equation:

da
dt

= H0

[
Ωm0

a
+ (1−Ωm0)a2

]1/2

, (2.22)

where I utilize equation (2.19) to convert the curvature parameter to the density

parameter of matter (ΩΛ0 = 1−Ωm0). The integral form of equation (2.22) is,

H0t =
∫ a

0

√
a da√

Ωm0 + (1−Ωm0)a3
. (2.23)

The integration can be conducted analytically. The solution form depends on the

sign of the cosmological constant. For comparison, I show the negative and zero
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FIGURE 2.1: The time evolution of the scale factor in the flat lambda
model. The green, orange, and blue lines are the cases of ΩΛ < 0,
ΩΛ > 0, and ΩΛ = 0, respectively. The blue line corresponds to the
Einstein-de Sitter model. The absolute vales of both axes are deter-
mined by the cosmological parameters, however, the shape of evolu-

tion is similar for different values of cosmological parameters.

lambda cases. When the cosmological constant is zero, the solution is identical with

the solution of the Einstein-de Sitter model.

When Λ > 0 (Ωm0 < 1):

a =

(
Ωm0

1−Ωm0

)1/3

sinh2/3
(

3
2

√
1−Ωm0 H0t

)
. (2.24)

When Λ < 0 (Ωm0 > 1):

a =

(
Ωm0

Ωm0 − 1

)1/3

sinh2/3
(

3
2

√
Ωm0 − 1 H0t

)
. (2.25)

When Λ = 0 (Ωm0 = 1)

a =

(
3
2

H0t
)2/3

, (2.26)

which is the same as the Einstein-de Sitter universe.

The time-evolution of the scale factor in each case is shown in Figure 2.1. If

the matter density is low and the cosmological constant has a positive value, the

universe first expands and the speed of expansion decelerates. However, at the time,

tacc =
ln(2 +

√
3)

3H0
√

1−Ωm0
, (2.27)

the expansion of the universe starts to accelerate because the dark energy density is

constant while the matter density is decreasing with a−3. The size of the universe
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expands exponentially up to infinite. On the other hand, if a universe has a high

matter density and a negative cosmological constant, the expansion stops at,

tstop =
π

3H0
√

Ωm0 − 1
. (2.28)

Then the size of the universe begins shrinking. Finally, at the time of,

tcrunch = 2tturn =
2π

3H0
√

Ωm0 − 1
, (2.29)

the big crunch at which a = 0 happens. From observations, our Universe is found

to be the case of positive cosmological constant. To understand the cosmic evolution

in more detail, we need to measure the values of cosmological parameters including

ΩΛ, which is described in Section 2.5.

2.4 Indicator of cosmological distance

Cosmological redshift

The wavelength of the light emitted in the Universe is extended due to the Hubble

expansion. When the light is emitted in distant place, the extension can be non-

negligible. Letting λ0 being the wavelength at observer and λ1 being that at emitter,

the cosmological redshift z is defined as:

z ≡ λ0 − λ1

λ1
. (2.30)

The relation with the scale factor is

a =
1

1 + z
. (2.31)

Cosmic age and distance

Using equation (2.7) and (2.31), the age of the Universe at redshift z is calculated

with

tcos =
∫

dt =
∫ dt

da
da
dz

dz = −
∫ z

∞

dz
H(1 + z)

. (2.32)

With the cosmological parameters of Ωm = 0.3 and ΩΛ = 0.7, the cosmic age as o to-

day is about 13 billion years old. At the redshift 20 around when the first generation

of stars are believed to form, the cosmic age is about 200 million years old.

The cosmological distance, which is the distance a photon run from redshift z1 to

z2, can be calculated in similar manner as the cosmic age,

lcos = a
∫ cdt

a
=

1
1 + z

∫ z1

z2

cdz
H

. (2.33)
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Note that lcos is physical distance.

2.5 Observational constraint

Owing to the recent precise measurements such as the cosmic microwave back-

ground (CMB) and the type Ia supernova, tight constraints are successfully imposed

on the cosmological parameters. I here introduce some examples.

The Figure 2.2 shows the observational constrains on the matter density param-

eter and dark energy parameters, and Figure 2.3 shows the constraint on the matter

density parameter and the parameter of equation of state for dark energy, pd = ωρd,

assuming the flat lambda model. These constrains are derived from the observations

of the CMB, the type I a supernova, and the baryon acoustic oscillation.

Explaining how each observation imposes the constraint is out of the scope of

this thesis, however, the importance is that the parameters are well constrained so

that we can conduct astrophysical researches to investigate thermal and structural

histories using the well-constrained cosmological parameters.

As of today, the flat lambda model (ΩK = 0) in which three-fourth of total energy

density is occupied with the dark energy is well consistent with all the observations.

As far as we consider standard cosmological models, models without dark energy

are rejected.

Throughout the thesis, we work on the flat ΛCDM Universe with the cosmolog-

ical parameters constrained by the Planck satellite Planck Collaboration et al., 2016;

the matter density, Ωm0 = 0.308, the baryon density, Ωb0 = 0.0485, the Hubble con-

stant, h0 = 0.678, the index of initial matter power spectrum, ns = 0.968, the rms

mass fluctuation on 8 Mpc/h scales at present day, σ8 = 0.828, the mass fraction of

Helium, YHe = 0.249. The types of the dark matter and its influences on the structure

formation are explained in Section 3.2.4.
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FIGURE 2.2: Constraint on Ωm0 and ΩΛ0. The contour represents the
statistical confidence levels of 68.3% (1σ), 95.4% (2σ) and 99.7% (3σ)
from inside to outside. CMB: observation of cosmic microwave back-
ground, SNe: observation of distant supernova, BAO: observation of
baryon acoustic oscillation. The gray contour is the combination of all
the observation data. The figure is taken form Silvestri and Trodden,

2009.
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FIGURE 2.3: Constraint on Ωm0 and ωd The contour represents the
statistical 68.3% (1σ), 95.4% (2σ) and 99.7% (3σ) confidence levels
from inside to outside. CMB: observation of cosmic microwave back-
ground, SN Ia: observation of distant supernova, BAO: observation
of baryon acoustic oscillation. The gray contour is the combination of
all the observation data. The figure is taken form Huterer and Shafer,

2018.
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Chapter 3

Structure formation

In the previous chapter, I described the basics of dynamical evolution of the Universe

and explain that the constraints on the cosmological constants are fairly tight for dis-

cussing what has been happening in the Universe with the constrained parameters

in the flat lambda model. I dedicate this chapter to summarize the basics of struc-

ture formation in the Universe. The CMB observation successfully revealed that the

Universe at the early time is quite uniform. The fluctuations are as small as ∼ 10−5

in fraction. The variety of structures in the present Universe is formed from such

small fluctuations with the help of the gravity. The theory of structure formation in

which the gravity is thought to be driving force is called the gravitational instabil-

ity theory. In the following I summarize the basics of the gravitational instability

theory, starting from linear regime of matter fluctuations. The non-linear evolution,

including the Zel’dvich approximation and cooling condition for star formation, are

also described.

3.1 Linear perturbation theory

3.1.1 Basic equations

Only non-relativistic matter can grow and form a variety of structures in the Uni-

verse today. Relativistic radiation component has too large pressure to form struc-

ture. Therefore, I focus on the non-relativistic matter and depict the growth of its

fluctuation, regarding the expanding Universe as background spacetime.

Assuming matter in the Universe can be well approximated as an ideal fluid,

the states can be fully determined by mass density field, pressure field, and veloc-

ity field, ρm(r, t), p(r, t), v(r, t). The basic equations for the fluid are the continuous

equation and the Euler equation, which can be written, in static and flat spatial co-

ordinate r, as
∂ρm

∂t
+∇ · (ρmv) = 0, (3.1)

∂v
∂t

+ (v · ∇)v = −∇p
ρm
−∇φ, (3.2)
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where the φ(r, t) is gravitational potential, ∇ = ∂/∂r. Equation (3.2) is the Newto-

nian equation of motion for fluid. The first term in the right hand side is the force

applied by pressure gradient, and the second term corresponds to the force by grav-

ity.

Now we re-written the two equations with the comoving coordinate x = r/a.

The time derivative of the static coordinate r is expressed as

ṙ = ȧx + aẋ. (3.3)

The term ȧx means the apparent velocity in the static coordination originated from

the expanding background. Thus, in comoving coordination, the velocity compo-

nent should be subtracted. To do that what should do is to replace v as v + ȧx.

Additionally, by converting time differential ∂
∂t and space differential ∇ appropri-

ately in the coordination transformation of (r, t) → (x, t), equation (3.1) and (3.2)

become,
∂ρm

∂t
+ 3

ȧ
a

ρm +
1
a
∇ · (ρmv) = 0, (3.4)

∂v
∂t

+
ȧ
a

v +
1
a
(v · ∇)v = −1

a
∇Φ− 1

ρma
∇p, (3.5)

where, Φ = φ + (1/2)aä|x|2 whose second term compensates the apparent accel-

eration by expanding background in the static coordination. We need gravitational

potential which is related with the deviation of matter density from the average,

∆Φ = 4πGa2(ρm − ρ̄m), (3.6)

where we assume the energy density of the relevant fluid dominates other compo-

nents. The assumption is fairly good approximation in the matter domination era.

This equation is famous as the Poisson equation.

Taking spatial average of equation (3.4) produces,

d
dt
(a3ρ̄m) = 0, (3.7)

where, ρ̄m is the average of the mass density. This equation is corresponding to

the conservation equation (2.6). We define the density fluctuation field δ(x, t) and

pressure fluctuation field p(x, t) as follows,

δ(x, t) =
ρm(x, t)− ρ̄m(t)

ρ̄m(t)
, (3.8)

δp(x, t) = p(x, t)− p̄(t), (3.9)
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where p̄ is the average of pressure. Using equations (3.7), (3.8), and (3.9), the contin-

uous equation (3.4) and the Euler equation (3.5) can be re-written as,

∂δ

∂t
+

1
a
∇ · [(1 + δ)v] = 0, (3.10)

∂v
∂t

+
ȧ
a

v +
1
a
(v · ∇)v = −1

a
∇Φ− ∇(δp)

aρ̄m(1 + δ)
. (3.11)

Also, the Poisson equation (3.6) becomes,

∆Φ =
4πG

c2 a2ρ̄δ. (3.12)

The equations (3.10), (3.11), and (3.12) are the basic equations to describe time-

evolution of mass density fluctuation of non-relativistic matter in the expanding

Universe. The degree of freedom of variables δ, δp, v is five. On the other hand,

the number of equations except for the Poisson equation is four. Therefore, we ad-

ditionally need the equation of state to solve the equations.

3.1.2 Jeans instability

The gravity is attraction force. Thus, in early time, regions which are little bit denser

attract more matter and become even denser. Then, the regions attract surrounding

matter more strongly. This cycle lets initial small fluctuations extremely large at later

time. However, if the pressure, which works as repulsive force, is strong enough to

support the gravity force, the fluctuations can no longer grow. This leads to the

condition for fluctuations to grow by gravitational instability.

The fluctuations are initially small probed by the CMB observation ∼ 10−5. The

small fluctuations have to grow as a first step of structure formation. Thus, we first

use linear approximation leaving only first order terms. By using equation (3.10)

and equation (3.11), and deleting the velocity field v, we obtain

∂2δ

∂t2 + 2
ȧ
a

∂δ

∂t
− δ(δp)

a2ρ̄m
=

4πG
c2 ρδ, (3.13)

where we assume the self-gravitating system, which means the relevant component

dominates the other components. In addition, we assume the entropy fluctuation

can be neglected (δS = 0), where S is the entropy per unit mass. Under the assump-

tion, the equation of state p = p(ρm, S) can be expanded as,

δp =

(
∂p

∂ρm

)
S

ρ̄mδ = c2
s ρ̄mδ, (3.14)
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where cs is the speed of sound c2
s = (∂p/∂ρm)S. Then, equation (3.13) can be re-

written as,
∂2δ

∂t2 + 2
ȧ
a

∂δ

∂t
−
(

4πGρ̄mδ +
c2

s
a2 ∆δ

)
= 0. (3.15)

Converting equation (3.15) in Fourier space provides us with clear understand-

ing of time-evolution of matter fluctuation in each scale indeed. The Fourier trans-

formation and its inverse transformation of the mass density fluctuation are,

δ̃(k, t) =
∫

d3xe−ik·xδ(x, t), (3.16)

δ(x, t) =
∫ d3k

(2π)3 eik·xδ̃(k, t). (3.17)

Then, equation (3.15) in Fourier space is,

∂2δ̃

∂t2 + 2
ȧ
a

∂δ̃

∂t
−
(

4πGρ̄m −
c2

s k2

a2

)
δ̃ = 0. (3.18)

Each Fourier mode evolves independently in linear approximation. Since different

modes do not interact each other, the analysis is simple and we can obtain clear

insight. Hereafter, we focus only on δ in Fourier space, and thus, we write δ̃ as

simply δ.

Equation (3.18) can be seen as the Newtonian equation of motion regarding δ as

position of a particle. The first term corresponds to the acceleration of the particle.

The second term can be understood as the friction proportional to the velocity. Also,

we can recognize the third term as potential force depending on the particle position.

The potential is V(δ) = −0.5δ2(4πGρm − c2
s k2/a2).

Depending on the sign of A ≡ 4πGρm − c2
s k2/a2, the behavior of δ is different.

If A is negative, the potential is convex downward. The fluctuation δ can not grow

because the δ oscillates as it is damping. This happens when the speed of sound is

large, in other words, the pressure is large. The gravity which shrinks a over-dense

region and the pressure which pushes back the region competes each other. Resul-

tantly, the region oscillates. This oscillation phenomenon is so-called the acoustic

oscillations.

If A is positive, on the contrary, the potential is convex upward. In this case, the

fluctuation can grow even though the friction works as suppression. The gravity

overcomes the pressure and matter contracts gravitationally. The friction is origi-

nated from the Hubble expansion. Namely, the expansion of the Universe suppress

the growth of matter fluctuation.
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A = 0 gives us the condition for the growth of fluctuation. The critical wave

number kJ is,

kJ =
a
√

4πGρ̄m

c2
s

. (3.19)

The length of the scale is,

λJ ≡
2πa
kJ

= cs

√
π

Gρ̄m
. (3.20)

The fluctuation whose scale is shorter than the λJ can not grow due to pressure, and

on the other hand, the fluctuation whose scale is longer can grow. This critical length

λJ is called the Jeans length. Also the mass in the sphere whose diameter is the Jeans

length is called the Jeans mass which is expressed as follows:

MJ ≡
4πρ̄m

3

(
λJ

2

)3

=
π5/2

6
c3

s√
G3ρ̄m

. (3.21)

This provides us with the minimum mass of object that can grow through the gravi-

tational instability.

3.1.3 Growth of density fluctuation

At much larger scales than the Jeans scale, the pressure is much weaker than gravity.

Therefore, the time-evolution equation (3.18) becomes,

δ̈ + 2Hδ̇− 4πGρ̄mδ = 0. (3.22)

To understand the time-evolution of fluctuation, we first apply equation (3.22)

to the Einstein-de Sitter cosmological model. Using equation (2.26), and the energy

density ρ = ρ0/a3 = c2/(6πGt2), the Hubble parameter and the average mass den-

sity are,

H =
ȧ
a
=

2
3t

, (3.23)

ρ̄m =
1

6πGt2 . (3.24)

Then, equation (3.22) can be written as,

δ̈ +
4
3t

δ̇− 2
3t2 δ = 0. (3.25)

By substituting δ ∝ tn, we find the solutions of n = 2/3,−1. Thus, the general

solution should be,

δ = At2/3 + Bt−1, (3.26)

where, the first term is called the growing mode, and the second term is called the

decaying mode. The decaying mode decreases rapidly as time passes so that the
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term can not contribute to the structure formation. While, the growing mode has the

same dependence on time as the scale factor does a ∝ t2/3, which suggests that the

density fluctuation evolves as δ ∝ a in the matter domination era.

In cases with non-zero curvature parameter and a cosmological constant, the

solutions can be obtained analytically. The growing mode and the decaying mode

are, respectively,

D+ ∝ H
∫ a

0

da
a3H3 , (3.27)

D− ∝ H. (3.28)

The D+(t) is particularly called the linear growth factor. After the matter domina-

tion, the Hubble parameter is expressed as,

H = H0

√
Ωm0

a3 + ΩΛ0 +
1−Ωm0 −ΩΛ0

a2 . (3.29)

The linear growth factor can be written using the cosmological parameters Ωm and

ΩΛ,

D+ =
5
2

aΩm

∫ 1

0

dx
(Ωm/x + ΩΛx2 + 1−Ωm −ΩΛ)3/2 . (3.30)

If long enough time passes after the fluctuation starts to grow, neglecting the

decaying mode is a good approximation. Thus, writing the density fluctuation at

present time as δ0(x), the density fluctuation in the past can be estimated by,

δ(x, t) = D(t)δ0(x), (3.31)

where, D(t) ≡ D+(t)/D+(t0) is the normalized linear growth factor.

3.2 Non-linear regime

In the previous section, I introduce the density fluctuation with linear approxima-

tion. The linear method is a good approximation as long as the fluctuation δ is much

smaller than one. However, when the value of δ increases and becomes order of

unity by the gravitational instability, the accuracy gets worse. In such non-linear

regime, each Fourier mode starts to get coupled with the other modes, which makes

calculation of the fluctuation growth more complicated. In the following, how we

can approximately treat the non-linear evolution is described.

3.2.1 Spherical collapse model

The spherical collapse model is often used to investigate the non-linear evolution

of the density fluctuation approximately. In this model, we work with a spheri-

cal density distribution. The center of the each spherical shell is located at a point.
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We here neglect the velocity dispersion. Then, we can treat the system as a simple

one-dimensional problem. For simplicity, we assume the Einstein-de Sitter model

universe.

The force applied on a shell whose radius is R is determined only by the mass

which is packed within R. Therefore, the equation of motion is

d2R
dt2 = −GM

R2 . (3.32)

In the expanding universe, the shell has initially outward velocity. By integrating

the equation of motion once,

(
dR
dt

)2

=
2GM

R
+ 2E, (3.33)

where E is the integration constant, which corresponds to the total energy per unit

mass. In the case of E < 0, integrating the equation above again provides us with

R = (GM)1/3A2(1− cos θ), (3.34)

t = A3(θ − sin θ), (3.35)

while in the case of E > 0,

R = (GM)1/3A2(cosh θ − 1), (3.36)

t = A3(sinh θ − θ), (3.37)

where A is an integration constant. The mass density of the shell ρm is

ρm =
3M

4πR3 . (3.38)

Since the background density in the Einstein-de Sitter universe is given by equa-

tion (3.24), the density fluctuation in the shell is

δ(t) =
9GMt2

2R3 − 1, (3.39)

where t is related to R with θ; In the case of E < 0,

δ(t) =
9
2
(θ − sin θ)2

(1− cos θ)3 − 1. (3.40)

On the other hand, in the case of E > 0,

δ(t) =
9
2
(sinh θ − θ)2

(cosh θ − 1)3 − 1. (3.41)
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When E > 0, the shell has enough energy to expand eternally. Thus no object can

form. While, if E < 0, the expansion stops in finite time and start shrinking toward

the center. The radius is maximum at the turning-around point θ = π. The time and

radius at the point are, respectively,

tturn = πA3, (3.42)

Rturn = 2(GM)1/3A2. (3.43)

The density fluctuation at the point is,

δturn =
9π2

16
− 1 ∼ 4.55. (3.44)

At the point when the shell radius becomes zero, the density diverges to infinity.

This divergence point corresponds to θ = 2π. The time at the point is

tcoll = 2tturn = 2πA3. (3.45)

The time from the turning-around to the collapse is so-called the free-fall timescale.

With the density ρm,turn = 3M/(4πR3
turn), the free-fall time scale is

tff = tcoll − tturn = πA3 =

√
3π

32Gρm,turn
. (3.46)

Expanding the equations 3.34 and 3.40 gives

δ =
3
20

θ2 + O(θ4), (3.47)

t =
A3

6
θ3 + O(θ5). (3.48)

The time dependence of the first-order term (δ ∝ t2/3) is identical with the linear

evolution of density fluctuation (equation 3.26). The first term which we define as

δL can be written by

δL(t) =
3(6t)2/3

20A2 . (3.49)

Then the values of the fluctuation at the turning-around point and collapse point

are,

δL(tturn) =
3(6π)2/3

20
∼ 1.06, (3.50)

δL(tcoll) =
3(12π)2/3

20
∼ 1.69. (3.51)

The results suggest that when the linear density fluctuation grows and become δL =
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1.69, the non-linear spherical fluctuation indeed collapses, that is, some objects form.

Although we proceed the calculations in the Einstein-de Sitter model until here, the

values in different cosmological models do not change significantly.

3.2.2 Virial theorem

In the spherical collapse model, the density fluctuation diverges at the collapse point.

However, the velocity dispersion is not negligible in reality so that the velocity-

dispersion-supported system forms instead. When a system is gravitationally bound

and in equilibrium, the total energy equals to the half of time-averaged potential en-

ergy, which is so-called the Virial theorem:

〈E〉 = 1
2
〈U〉. (3.52)

Because E = K + U, where K is the kinetic energy, the relation between the kinetic

energy and the potential energy is

〈K〉 = −1
2
〈U〉. (3.53)

Now we adopt the virial theorem to a simple case which is the gravitationally

bound uniform sphere with radius R and mass M. The system is in equilibrium and

has uniform mass density. The mass density is ρm = 3M/(4πR3). The total mass

inside a radius r (0 < r < R) is 4πr3ρm/3 = Mr3/R3. Also, the mass of a shell with

width dr is 4πr2ρmdr = 3Mr2dr/R3. Therefore, the potential energy of the unifrom

sphere is

U = −3
5

GM2

R
. (3.54)

Then using the virial theorem provides us with the kinetic energy and the total en-

ergy,

K =
3
10

GM2

R
. (3.55)

E = − 3
10

GM2

R
. (3.56)

For simplicity, we assume the system consists of N particles with mass m so that

M = Nm. Using the velocity dispersion σ2 = ∑i |vi|2/N, where vi is the velocity of

the partile i, the kinetic energy is,

K =
1
2

m
N

∑
i=1
|v2

i | =
1
2

Mσ2. (3.57)
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With equations (3.55) and (3.57),

σ2 =
3
5

GM
R

. (3.58)

The velocity dispersion on the line of sight is relatively easy to observe. Assuming

the isotropic velocity dispersion, the line-of-sight value equals to σ2
r = σ2/3. The

mass defined with the σr

Mvir =
5Rσ2

r
G

, (3.59)

is the virial mass. This mass is derived from the simplified system so that it is not

the exact mass of the observed object. However, the virial mass is frequently used as

a roughly estimated value and is more importantly useful.

Next, we work on a uniform sphere, whose radius is R, composed of N particles

of ideal gas with average molecular weight of µ. In this case, the velocity dispersion

of the molecules can be written as

〈v2〉 = 1
NµmH

∑
i

mi|vi|2. (3.60)

The kinetic energy is

K =
1
2

NµmH〈v2〉. (3.61)

With the virial theorem (equation 3.55) and M = NµmH,

〈v2〉 = 3
5

GM
R

. (3.62)

Regarding the kinetic energy as thermal energy and adopting the law of equiparti-

tion of energy (1/2)µmH〈v2〉 = (3/2)kBT, we define the temperature as the virial

temperature:

Tvir =
µmH〈v2〉

3kB
. (3.63)

In the case of uniform sphere (equation 3.62), the virial temperature is

Tvir =
GMµmH

5kBR
. (3.64)

Finally we adopt the virial theorem to the spherical collapse model discussed

in the previous section. The potential of the system can be obtained with equa-

tion (3.54). At the turning-around point, the velocity of the shell becomes zero so

that the potential energy at the time should be the same as the total energy of the

system,

E = −3
5

GM2

Rturn
. (3.65)

After turning around, the system begins to shrink. The sphere collapse to a central
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point and the density diverges to infinity. But, the velocity dispersion supports the

system in reality and the system reaches the virial equilibrium. The potential energy

at the radius Rvir,

Uvir = −
3
5

GM2

Rvir
. (3.66)

With equations (3.65) and (3.52), the radius Rvir,

Rvir =
1
2

Rturn. (3.67)

Since it roughly takes the free-fall timescale to reach the virial equilibrium, we as-

sume the system is in equilibrium at the time tcoll. The background density at

the time is ρ̄m,coll = 1/(6πGtcoll). Also using the density of the system ρm,coll =

3M/(4πR3
vir), the density fluctuation is

δcoll = 18π2 − 1 ∼ 177. (3.68)

Namely, the mass density of objects which is in the virial equilibrium is roughly 178

times denser than the background density at the collapse time.

3.2.3 Zel’dvich approximation

To analyze the non-linear evolution of non-spherical fluctuation is extremely diffi-

cult. Therefore, some approximation methodologies have been invented. I here de-

scribe the Zel’dvich approximation which is one of the analytical methods (Zel’Dovich,

1970).

In linear perturbation theory, the states of fluids such as mass density filed and

velocity filed are expressed as functions of comoving coordinate x. This approach

is called the Euler specification. On the other hand, using the coordination q which

is sticked on a small fragment of fluid and tracing the dynamical evolution of the

small fragment is the other approach which is so-called the Lagrangian specification.

the coordinate q is called the Lagrange coordinate. The Zel’dvich approximation is

based on the Lagrangian specification.

The Euler coordinate is related with the Lagrange coordinate as,

x(q, t) = q + p(q, t), (3.69)

where the p is displacement vector field. In the following, we try to write the density

fluctuation and velocity with the displacement field p. The mass density filed in the

Euler coordinate is ρm(x, t). In ideally homogeneous and isotropic universe, x = q

is satisfied and the mass density is ρ̄m(t) everywhere in the universe. Then the mass
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conservation between the ideal universe and the inhomogeneous universe gives us,

ρm(x, t)d3x = ρ̄m(t)d3q. (3.70)

Using Jacobian, the density field can be written as

ρm(x, t) =
ρ̄m(t)

det(∂x/∂q)
=

ρ̄m(t)
det(δij + ∂pi/∂qj)

. (3.71)

If the fluctuation is small, ∂p/∂q should be small. Thus, we expand about the

value and hold only the first order term. Then the density fluctuation is

δ(x, t) =
ρm(x, t)

ρ̄m
− 1 ≈ −∇q · p, (3.72)

where, ∇q = ∂/∂q is the gradient in Lagrange coordinate. While the velocity is

v(x, t) = aẋ(q, t) = aṗ(q, t). (3.73)

Equations (3.72) and (3.73) are the functions of Euler coordinate x. However, even if

we replace x with q, the difference comes from second and higher orders. Thus, as

long as the δ is sufficiently small, the difference is tiny.

In linear regime, the fluctuation δ and velocity v should be consistent with the

solutions of the linear theory. In Zel’dvich approximation, the displacement vector

is determined so that equations (3.72) and (3.73) are consistent with the solution of

the linear perturbation theory. Then, the p can be written as,

p(q, t) = D(t)∇qψ0(q), (3.74)

where, the ψ0(q) is not dependent on time but only on Lagrange coordinate q, and

it is calculated from the gravitational potential,

ψ0(q) = −
Φ0(q)

4πGρ̄m
, (3.75)

where, the Φ0 is the current value of gravitational potential.

The Zel’dvich approximation is the method to extrapolate the linear time-evolution

of displacement field p and resulting fluctuation and velocity fields (equations (3.72)

and (3.73)) to non-linear regime. Therefore, the accuracy decreases as non-linearity

grows. However, compared with the N-body simulation, which calculates gravita-

tional acceleration of each particle at each time step, the Zel’dvich approximation

is computationally low-cost. Accordingly, it is often used especially in researches

related with the structure formation on large scales.
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3.2.4 Dark matter classification

Many of observations say that the dominant component among matter in the Uni-

verse is not baryon but the dark matter. However, what the dark matter is or what

properties the dark matter has are not perfectly understood yet. The dark matter is

defined as a matte that interacts only through gravity.

As for the structure formation with dark matter, the free streaming is essential.

If the dark matter has the velocity dispersion, the free motion damps the fluctua-

tions on small scales. The velocity dispersion is different in different models of dark

matters. Thus, to observe the free-streaming effect is a strong way to constraint the

models.

We assign v(t) to typical velocity of dark matter particle. When particles run in

a timescale dt, we write the distance as dx. Then v(t)dt = a(t)dx is satisfied. Thus,

the comoving scale of free streaming of the dark matter can be written as,

Lfs(t) =
∫ t

0

v(t′)
a(t′)

dt′ =
∫ a(t)

0

vda
a2H

, (3.76)

where we assume the particles decouple from other energy components and move

freely at sufficiently early time, and therefore, we take zero as the lower limit of the

integration.

When the particles are relativistic, its velocity is the speed of light. After the

particles become non-relativistic, the velocity decreases as approximately,

v ∼

c (a < anr)

canr/a (a > anr)
(3.77)

where anr is the scale factor at which the dark matte particles become non-relativistic.

If anr > aeq, where aeq is the scale factor at the matter-radiation equality, the dark

matter behave as radiation and cannot contribute the structure formation. Thus, we

work on the assumption of anr < aeq.

We divide the integration in equation (3.76) into two parts: (1) before anr and (2)

between anr and aeq. Since the Hubble parameter in radiation domination evolve as

H(a) ≈ H0Ω0.5
r0 a−2,

Lfs ≈
c

H0
√

Ωr0

∫ anr

0
da +

canr

H0
√

Ωr0

∫ aeq

anr

da
a

(3.78)

=
canr

H0
√

Ωr0

[
1 + ln

(
aeq

anr

)]
. (3.79)

Thus, the important factor which determines the free-streaming scale is the time, anr.

If the dark matter particles become non-relativistic at sufficiently early time, the
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particles do not have enough time to erase the roughness of the initial density fluctu-

ation. In contrast, if the particles have large anr, the fluctuation is flattened at larger

scales.

anr is different for different types of dark matters. Therefore, dark matters are

classified into three types depending on anr: Hot Dark Matter, Warm Dark Matter,

and Cold Dark Matter. The hot dark matter has the largest anr, namely, the free-

streaming effect affects on largest scales, while, the fluctuation reduction of the cold

dark matter is negligible. The intermediate type is the warm dark matter.

Hot dark matter

In the case of hot dark matter, the structure formation starts from large scales which

are not affected by the free-streaming of the dark matter particles. For example,

neutrinos are classified as the hot dark matter. Their free-streaming scales are larger

than that of superclusters. In the collapsed object, the smaller objects such as galaxy

clusters and galaxies can form by the non-linear evolution. This story of structure

formation is called the top-down scenario.

Observations reveal that the galaxies in the Universe have existed longer than the

galaxy clusters. Also superclusters are now in the process of the formation. There-

fore, the top-down scenario is not considered to be realistic.

Cold dark matter

The cold dark matter do not erase the small scale fluctuations. Variety of observa-

tions are consistent with this type of dark matter, and thus, the cold dark matter is

in the standard model in recent years. For instance, the Weakly Interacting Massive

Particles (WIMP) and Axion are classified as the cold dark matter.

In contrast to the hot dark matter, the small scale fluctuations remain preserved,

hence, the smaller objects first form. Such small objects gather at later time and form

larger objects. This story of structure formation is so-called bottom-up scenario.

Warm dark matter

Although the cold dark matter is the standard model, there is well-known missing-

satellite problem (e.g. Kauffmann, White, and Guiderdoni, 1993; Moore et al., 1999)

The theoretical prediction of the cold dark matter says that there should be more

small scale structures compared with observations. In order to solve the difference

between theory and observations, a dark matter whose free-streaming affects the

relevant small scales has been considered. This intermediate type of dark matter is

called the warm dark matter. However, such small objects should be influenced by

non-linearity and baryonic physics which are highly complicated. Thus, whether
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the missing-satellite problem is originated only from the dark matter free-streaming

length is uncertain as of today.

3.3 Cosmological statistics

In the previous sections, I describe how the density fluctuation arisen in the early

time evolves in both linear and non-linear regime in which approximation methods

are utilized. The fluctuation itself is observable, however, theory does not predict a

concrete value at a point of the Universe. What the theory forecasts is its statistical

properties. In this section, I explain the two-point correlation function of the fluctu-

ation and the power spectrum which corresponds to its Fourier transformation.

3.3.1 Tow point correlation function

Let us consider density fluctuation at xA and xB. Fixing the distance of the two

points, xAB ≡ |xA − xB|, we take ensemble average of the product of the two fluctu-

ation values,

ξ(xAB) = 〈δ(xA)δ(xB)〉. (3.80)

The ξ(xAB) is the two-point correlation function. If the values of density field dis-

tribute randomly regardless of values at other places, the correlation function should

be zero. While, when δ(xA) is large and places whose distance is away from xA by

xAB tend to have large δ, then the correlation function has a positive value. In con-

trast, when they tend to have low density, the value should be negative.

Sine the spatial average of density fluctuation is zero, by integrating equation (3.80),∫ ∞

0
dxx2ξ(x) = 0. (3.81)

The two-point correlation function satisfies the condition above.

I here introduce the two-point correlation function which tells us the information

on the statistical property of density fluctuation. But, the correlation function can be

expanded to N-point correlation functions and the fluctuations in general has non-

zero values of N-point correlations.

As special case, the probability field whose three-points or more correlations are

all zero is called the Gaussian filed. By observations, the initial density fluctuation in

the Universe is found to be fairly close to the Gaussian filed. If the non-Gaussianity

is detected, it can in principle constrain the inflation models which affect the initial

fluctuation.
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3.3.2 Power spectrum

The power spectrum is the Fourier transformation of the two-point correlation func-

tion. By using equations (3.16) and (3.17) which are the Fourier transformation of

fluctuation,

〈δ̃(k)δ̃(k′)〉 =
∫

dx3
Ad3xBe−ik·xA−ik′·xB ξ(|xA − xB|). (3.82)

The integration of the right hand side fixing xB leads to the definition of the power

spectrum P(k) under the cosmological principle,

〈δ̃(k)δ̃(k′)〉 = (2π)3δ3
D(k + k′)

∫
d3xe−ik·xξ(|x|) (3.83)

≡ (2π)3δ3
D(k + k′)P(k). (3.84)

The power spectrum and the two-point correlation function are Fourier transforma-

tion of each other,

P(k) =
∫

d3xe−ik·xξ(|x|), (3.85)

ξ(x) =
∫ d3k

(2π)3 eik·xP(|k|). (3.86)

This relation is called the Wiener-Khintchine relation.

3.4 Star Formation in high redshift Universe

Until here in this chapter, we understand how the density fluctuation grows and

the resultant halo formation. In the haloes which is composed of dark matter, the

star formation occurs. Since stars are made of baryon gas, baryon physics is the

key. Stars play various roles in thermal history and structure formation history of

the Universe. Thus, in this section, I briefly summarize the classification of stars,

their roles, and the observational aspects, especially focusing on the high redshift

Universe.

3.4.1 Stellar population

Stars in the Universe can be classified into three populations, roughly depending on

the abundance of heavy elements, that is metalicity (e.g. Hirano et al., 2015). Highly-

metaled stars are called population I stars (pop I stars). The most observed stars in

our galaxy, especially at the disk, are the pop I stars. The sun is classified in the pop

I group. The abundance of hydrogen and helium of the sun is about 71 % and 27%.

The element heavier than helium is about 2%. The ages of the observed pop I stars

range from very young age to 10 billion years.
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On the other hand, the population II stars (pop II stars) have little metalicity of

around 1% of solar metalicity. The pop II stars are found to belong to bulge and halo.

The estimated ages of the pop II stars are more than 10 billion years in most cases.

Thus, the pop II stars are expected to have formed in the early Universe younger

than 10 billion-year-old.

Finally, the population III stars are defined as zero-metal stars. The big bang

nucleosynthesis does not create heavy elements, and therefore, the primordial gas

must not have the metals. Consequently the first generation of stars in the Universe,

which are so-called the first stars, are metal-free stars. Thus, the first stars are classi-

fied as Pop III stars. Even after the first generation of stars form, some places in the

Universe can remain metal-free. For example, low-density regions begin star forma-

tion later than higher-density regions do. Such regions can hold no-metal gas at later

time and possibly create Pop III stars (Mebane, Mirocha, and Furlanetto, 2018). In

addition, less massive Pop III stars than 0.8M� have longer age than cosmic age so

that they can survive at present Universe even if they are born at early time. Simula-

tions suggest that such survived Pop III stars are concentrated at the central region

of halo and subhaloes (Ishiyama et al., 2016).

Pop III stars are classified into sub-categories, Pop III.1 and Pop III.2. Pop III.1

stars are the very first generation of stars, and on the other hand, Pop III.2 stars are

the stars which are not only made of the primordial gas, which is the same as Pop

III.1, but also are formed under the influence of radiations from the first stars. Ac-

cording to recent theoretical researches using numerical simulations, Pop III.2 stars

tend to be more massive than Pop III.1 stars because the molecular hydrogen, which

is important coolant in Pop III star formation, is dissociated by radiation (e.g. Hirano

et al., 2015).

3.4.2 Gas cooling process

The virialized dark matter objects have 178 times larger density compared with the

background δ ∼ 177 (section 3.2.2). After virialization, the energy is conserved so

that the dark matter halo no longer shrink. On the other hand, since the baryon

interact with photons, they can release energy by radiation. Such cooled baryon can

contract further. Therefore, considering the cooling efficiency of baryon gas leads to

the condition for star formation in a dark matter halo.

The radiation generated by interaction of particles carries energy away, which

works as cooling. For instance, the collisional excitation excites electrons to upper

energy levels. Then, the electrons would de-excite by spontaneous emission. The

emission pull out some energy from the gas cloud. If the gas is optically thin, the

cooling rate per unit volume per unit time by particle i and particle j interaction can
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FIGURE 3.1: The cooling function of the primordial gas. The H2 and
HD (only if stars form from initially ionized gas) are important for
Pop III star formation. The figure is taken from Galli and Palla, 1998.

be written as,

|Ėcool,ij| = ninjΛij(T), (3.87)

where ni and nj are the number density of particle i and j, Λij(T) is the cooling func-

tion depending on temperature. The cooling function of the primordial gas is shown

in Figure 3.1. The values relating with H+
2 or LiH are dominant in some range of tem-

perature, but, the abundance of these molecules is much less than other particles so

that these contributions can be neglected. The cooling by HD is dominant in some

cases such that the gas is initially highly ionized. Pop III.1 stars are formed from the

neutral gas, while, Pop III.2 stars formation can occur in such ionized gas clouds in

which the HD cooling plays the important role.
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When we write the gas kinetic energy as Ek, the timescale of the cooling is

tcool =
Ek

∑ij |Ėcool,ij|
(3.88)

By comparing the cooling timescale with the free-fall timescale (equation 3.46), we

can roughly estimate the condition of whether the gas can cool down enough to

make star formation happen. Figure 3.2 shows the condition for star formation of a

halo collapsed at zvir with virial temperature of Tvir.

If the cooling timescale is longer than the free-fall timescale, the gas cloud stops

shrinking at the size when virial equilibrium is reached. Then, the cloud quasi-

statically shrinks by the slow cooling process. This case corresponds the narrow

area marked as tff < tcool < H−1. In this case, in smaller scales than the halo scale,

structure formation cannot proceed, and thus, stars do not form in such slowly cool-

ing gas cloud. On the other hand, if the cooling timescale is shorter than the free-fall

timescale, the temperature decreases at sufficiently high rate, which is correspond-

ing to the area marked as tff > tcool. As a result, stars can form in the dark matter

halo. If H−1 < tcool, the cooling takes longer than cosmic timescale so that the gas

cannot cool, and certainly stars do not appear in such haloes.

3.4.3 Roles of Pop III stars in cosmic history and stellar properties

Pop III stars have several important roles in the thermal history and the structure for-

mation history of the Universe. In this section, the key roles are concisely described

especially focusing on the contribution to the cosmic reionization, the metal enrich-

ment, and the candidate of the super massive black hole (SMBH) seed. Additionally,

I introduce recent works investigating IMF of Pop III stars.

The first stars mainly form at redshift 20− 30 in MHs (e.g. Tegmark et al., 1997;

Nishi and Susa, 1999; Abel, Bryan, and Norman, 2002; Bromm, Coppi, and Larson,

2002; Yoshida et al., 2003; Yoshida et al., 2006; Gao et al., 2007; O’Shea and Norman,

2007; Yoshida, Omukai, and Hernquist, 2008), which terminates the cosmic dark

ages and tells the beginning of the epoch of reionization (EoR). The first stars are

the first luminous object emitting ionizing photons after the cosmic recombination,

apart from exotic sources. The IGM is almost fully neutral in the dark ages. The

ionizing photons emitted from the first stars ionize the neutral IGM and create the

ionized bubbles around thereof. Therefore, the first stars more or less contribute to

the cosmic reionization (e.g. Alvarez, Bromm, and Shapiro, 2006; Johnson, Greif, and

Bromm, 2007).

Pop III stars end their lives as energetic super nova (SN) expelling the heavy ele-

ments created in the nucleosynthesis in stars to the surrounding region. The heavier



Chapter 3. Structure formation 33

FIGURE 3.2: The cooling diagram in the redshift-virial temperature
plane. The thick solid curves are derived from compering the cooling
timescale, the free-fall timescale, and the Hubble timescale. The right
bottom region marked by TCMB > Tvir is forbidden region where the
virial temperature is higher than the CMB temperature so that the
compton heating increases the gas temperature in haloes. The dashed
lines mean the condition of whether gas cloud is destroyed by SN
with energy of 1052 erg and 1051 erg, but, the SN effect is not in the

scope of the thesis. The figure is taken from Nishi and Susa, 1999.
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FIGURE 3.3: The initial mass function of Pop III stars. The figure is
taken from Susa, Hasegawa, and Tominaga, 2014.

elements than lithium do not inhabit the primordial gas. The heavy elements scat-

tered from the SN metal-enrich the circumference. From such metal enriched gas,

the second generation of stars, that is pop II stars, form (e.g. Wise et al., 2012; Karls-

son, Bromm, and Bland-Hawthorn, 2013).

The observations in the past ten years reveal that galaxies have a extremely mas-

sive black hole at the center with mass of ∼ 106−9M� which depends on the size of

galaxies (Venemans et al., 2013; Bañados et al., 2014; Wu et al., 2015). However, the

seed of the super massive black holes (SMBHs) has not been clarified yet. Since Pop

III stars tend to be massive and likely leave a BH after SN, Pop III stars are one of the

candidates of SMBH’s seed (Pelupessy, Di Matteo, and Ciardi, 2007; Li et al., 2007;

Alvarez, Wise, and Abel, 2009).

How large impact Pop III stars have on the thermal history and the structure

formation is strongly dependent on the stellar properties such as the initial mass

function (IMF) and the star formation rate density (SFRD). For example, Pop III stars

with masses between 25 M� - 140 M� and more massive than 260 M� leave a BH

at the end of lifetime, but Pop III stars whose mass is not in the mass ranges do not

(Heger and Woosley, 2002). As another example, the emissivity of ionizing photons

are dependent on SFRD (and the escape fraction).

Since Pop III stars have not clearly been observed yet, the theoretical researches



Chapter 3. Structure formation 35

FIGURE 3.4: The initial mass function of Pop III stars. The figure is
taken from Hirano et al., 2015.

have proceeded our understanding of the stellar properties. I show examples of the-

oretical studies investigating the IMF (Susa, Hasegawa, and Tominaga, 2014; Hirano

et al., 2015) in Figure 3.3 and Figure 3.4. They take initial conditions from the cos-

mological simulations and then conduct local radiation hydrodynamics simulations

to track star formation process. The resultant IMFs have different shapes: In Susa,

Hasegawa, and Tominaga, 2014, the IMF has one peak around a few tens of solar

mass, and on the other hand, the IMF in Hirano et al., 2015 has two peaks which

around a few tens of solar mass and a few hundreds of solar mass.

One of the reasons why the two IMFs have different shape is the dimension of

simulations: The simulations done by Hirano et al., 2015 is axisymmetrically two-

dimensional, on the other hand, that of Susa, Hasegawa, and Tominaga, 2014 is

three-dimensional. The protostellar disk, which is disk-like gaseous structure rotat-

ing around protostars, are known to fragment (e.g. Clark et al., 2011; Greif et al.,

2011). The fragmented objects may end up as other stars, which means the multiple

star formation in a MH. Three-dimensional simulation can follow the fragmentation,

but while, the two-dimensional simulation cannot. One of the possible reasons why

the IMF obtained by Susa, Hasegawa, and Tominaga, 2014 tend to be less massive

than that by Hirano et al., 2015 is the dimensional difference. But, the two simula-

tions are different in other methodological details, therefore, several reasons would

complexly yield the difference.
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3.4.4 Observational attempts for Pop III stars

Pop III stars play several key roles in the history of the Universe (see Section 3.4.3).

Several observation projects are running or planning in order to observe Pop III stars.

There are roughly two types of approaches. The one is direct observations of stars

in high-redshift galaxies. The other is searching relic Pop III stars in the Milky Way

galaxy.

First, the direct observations is explained. The effective temperature of Pop III

stars is expected to be extremely high (∼ 105 K) due to the heaviness. Thus, Pop

III galaxies, which are the galaxies mainly consisted of Pop III stars, emit abundant

high-energy photons able to ionize HeII. Consequently, the spectral energy distribu-

tion (SED) of Pop III galaxy uniquely shows HeII recombination lines as shown in

Figure 3.5. These HeII lines remain remarkable until the massive Pop III stars die.

Because the typical lifetime of massive Pop III stars is about two million years, Pop

III galaxy exhibits the HeII feature for 2 million years after the galaxy is born.

Some high-redshift galaxies displaying the HeII lines are reported, for example,

the Cosmic Redshift 7 observed at z ∼ 6.6 (Sobral et al., 2015). However, the ev-

idence is not certainly clear. Although the observation of the first stars should be

even more difficult, the next generation of observations such as the James Webb

Space Telescope1 and the Thirty Meter Telescope2 aim to detect the light of the first

stars.

Next, the seeking low metal stars in our galaxy is another approach. If Pop III

stars are less massive than the solar mass, its lifetime is longer than the age of the

Universe. Since mini-haloes merge to form large haloes, our galaxy would have the

small Pop III stars. Indeed, the dozens of metal poor stars with Z < 10−3.5 have

already been found in the Galaxy. Simply judging from the metalicity, the stars are

pop II stars. However, they are possibly Pop III star whose surface is contaminated

by the accretion of metal-enriched gas.

In addition, the neutral hydrogen 21-cm line signal is recently getting more and

more attention as a promising way to explore the high-redshift Universe including

the era of Pop III star formation. The basics and recent observational progress are

described in Chapter 4.

1https://www.jwst.nasa.gov/
2https://www.tmt.org/
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FIGURE 3.5: The spectral energy distribution of Pop III galaxy assum-
ing the Salpeter IMF. The lower and upper limits of IMF are 1 and 500
M�. The solid line is the emission taking into account the recombina-
tion lines of H and He from ionized gas around the galaxy. While, the
dashed line is the pure stellar emission. To compare to pop II galaxy,
the dotted line is the SED of pop II galaxy whose metalicity is 1/50Z�
with Salpeter IMF whose lower and upper limit of mass are 1 and 150
M�. The thick dashed lines on the spectrum are the recombination
lines of HeII, and thin dashes lines are that of HeI. While the solid
lines on the spectrum is that of H. The vertical lines correspond to
energy needed to ionize H, He, and He+. The figure is taken from

Schaerer, 2002.
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Chapter 4

The 21-cm line

In Section 3.4.4, I introduce some approaches to detect Pop III stars. Additionally,

the neutral hydrogen 21-cm line signal is another powerful tool to investigate Pop

III stars. In this section, I explain the basics of the 21-cm line, the statistics of the

21-cm brightness temperature which is the observable, and current status of 21-cm

observations.

The neutral hydrogen has the hyperfine structure on its ground state. When

the electron and the proton have the same direction of spin state, the energy level

corresponds to the upper level. While, when the directions are anti-parallel, the

energy level is the lower one. When the spin state flips from the parallel to the

anti-parallel state, the photon whose wavelength is about 21 cm is emitted. The

wavelength corresponds to the energy difference of the hyperfine structure.

The era when Pop III star formation dominates over that of other populations

(the Pop III era) is the initial phase of the EoR, and there should be abundant fraction

of neutral hydrogen. Therefore, the 21-cm line signal is a good tool to probe the Pop

III era. The observed wavelength is stretched due to the Hubble expansion so that we

observe 21× (1+ z) cm radiation as the 21-cm line signal at redshift z. Consequently,

by observing relevant range of frequency, we can tomographically scan the Universe.

4.1 21-cm brightness temperature

4.1.1 Radiative transfer

The radiative transfer equation adopted to a spectral line is

dIν

dl
=

φ(ν)hν

4π
[n1A10 − (n0B01 − n1B10)Iν], (4.1)

where, Iν is the specific intensity with frequency ν, dl is a proper length element, n is

the number density, 0 and 1 denote the lower and upper energy levels of the relevant

transition. A10, B01 and B10 are the Einstein coefficients of the spontaneous emission

and collisional transitions where Bij means that i is the initial state and j is the final

state. φ is the line profile normalized as
∫

φ(ν)dν = 1. The Einstein relations give us
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the connection between the Einstein coefficients as follows

B10 =
g0

g1
B01, (4.2)

B10 = A10
c2

2hν3 , (4.3)

where g is the statistical degrees of freedom. In the case of 21-cm transition, g1/g0 =

3.

The spin temperature which corresponds to the excitation temperature for the

spin flip transition is defined using the ratio of the number density of hydrogen

whose electron is on each energy level,

n1

n0
=

g1

g0
exp

(
−T∗

TS

)
, (4.4)

where T∗ is the corresponding temperature of the spin flip transition T∗ ≡ E10/kB =

68 mK. When the spin temperature is higher, more hydrogen atoms have its own

electron on the upper energy level. If the spin temperature is much higher than the

T∗, namely TS � T∗, the electrons of three fourth of neutral hydrogen are asymptot-

ically on the upper level, n1/n0 ≈ 3.

It is convenient to use the brightness temperature Tb(ν) instead of the intensity

Iν. The brightness temperature is converted with Iν = Bν(Tb) where Bν(T) is the

black body radiation with temperature T. As for the relevant range of frequency and

temperature of 21-cm transition, the Rayleigh–Jeans limit is a good approximation.

With the Rayleigh-Jeans approximation and under the assumption of the thermal

equilibrium, the equation of radiative transfer can be written as

T′b(ν) = TS(1− e−τν) + T′R(ν)e
−τν , (4.5)

where τν is the optical depth, T′R is the brightness temperature of the background

radiation incident on a cloud, and the T′b is the emerging brightness temperature

from the cloud. To solve the equation, calculating the optical depth τν =
∫

αdl is

needed, where α is the absorption coefficient which can be written as,

α = φ(ν)
hν

4π
(n0B01 − n1B10). (4.6)

Since the condition TS � T∗ is almost always satisfied in the relevant eras of the

Universe, the ratio of number densities is n1/n0 ≈ 3. Thus, the stimulated emission

becomes non-negligible. The second term of equation (4.6) is the correction term due

to the stimulated emission.

By re-writing the absorption coefficient (equation 4.6) with the Einstein relations
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(equations 4.2 and 4.3), and using equation (4.4), the optical depth can be calculated

by,

τν =
∫

dlσ01(1− e−T∗/TS)φ(ν)n0 (4.7)

≈ σ01

(
hν

kBTS

)
n0φ(ν)l, (4.8)

where σ01 ≡ 3c2A10/(8πν2) and l is the length of the cloud in the line of sight. At the

second line, we expand the exponential because the T∗/TS is certainly small. Since

the one fourth of neutral hydrogen have electron with lower hyperfine energy level,

n0 ≈ nHxHI/4 where xHI is the fraction of neutral hydrogen. Also using φ(ν) ∼
1/(∆ν) where the ∆ν is calculated with the velocity dispersion of the cloud on the

line of sight, the optical depth for the 21-cm emission is

τ10 =
3

32π

hc3A10

kBTSν2
10

xHInH

(1 + z)(dv‖/dr‖)
(4.9)

≈ 0.0092(1 + δ)(1 + z)3/2 xHI

TS

[
H(z)/(1 + z)

dv‖/dr‖

]
, (4.10)

where dv‖/dr‖ is the velocity gradient in the line of sight, and δ is overdensity. At the

second line, we assume that the velocity gradient in the cloud is originated mainly

from the Hubble expansion, and approximate the density evolution as the average

IGM expanding uniformly due to the Hubble expansion.

In practice, the background radiation is the CMB radiation, T′R = TCMB. We

observe the small deviation from the CMB temperature, so that we define the differ-

ential brightness temperature which is written as,

δTb(ν) =
TS − TCMB(z)

1 + z
(1− e−τ10) (4.11)

≈ TS − TCMB(z)
1 + z

τ10 (4.12)

≈ 9xHI(1 + δ)(1 + z)1/2
[

1− TCMB(z)
TS

] [
H(z)/(1 + z)

dv‖/dr‖

]
mK. (4.13)

At the second line, we expand the exponential because the optical depth is small

enough. When the spin temperature of neutral gas is higher than the background

CMB temperature TS > TCMB, the differential brightness temperature is positive

which means the signal is emission against the CMB radiation. On the other hand,

when the spin temperature is lower TS < TCMB, the δTb is negative meaning that

we observe the absorption signal. Also, when TS = TCMB, the differential brightness

temperature is zero.
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4.1.2 Spin temperature

The spin temperature is determined by the number densities of hydrogen whose

electron is lower/upper energy level (equation 4.4). The three physical processes

that cause the spin flip transition are important: (1) absorption and re-emission of the

CMB photons, (2) collisions with gas particles, and (3) scattering with UV photons.

Since the time scales of these processes are shorter than the cosmic time scale, the

equilibrium of the three process determine the spin temperature,

n1(C10 + P10 + A10 + B10 ICMB) = n0(C01 + P01 + B01 ICMB), (4.14)

where C10 and C01 are de-excitation and excitation rates due to collisions, P10 and

P01 are de-excitation and excitation rates due to the scattering with UV photons. Re-

writing equation (4.14) with the Rayleigh–Jeans approximation gives us,

T−1
S =

T−1
CMB + xcT−1

gas + xαT−1
α

1 + xc + xα
, (4.15)

where Tgas is the gas kinetic temperature, Tα is the Lyα color temperature, xc and

xα are the coupling coefficients for gas particle collisions and scattering with UV

photons, respectively.

As for the collisional coupling, the coefficient for the collision of neutral hydro-

gen with particle i is

xi
c =

Ci
10

A10

T∗
TCMB

=
niκ

i
10

A10

T∗
TCMB

, (4.16)

where κi
10 the rate coefficient for the collision with particle i. Hydrogen atoms collide

with other neutral hydrogen atoms, electrons, and protons. The collisions with deu-

terium and helium atoms are unimportant because their abundances are low. We

sum up xi
c for all species to obtain xc = ∑i xi

c. Figure 4.1 shows the values of κ10. The

H-H collision almost always contributes most and determines the total coefficient xc

because the ionization fraction is small at Pop III era. In partially ionized gas, the

H-e− becomes important. The H-p+ is main contributor only in the low temperature

range.

The scattering with UV photons indirectly mix the hyperfine structure. I first

describe the case of Lyman alpha photon as an example with Figure 4.2. Let us

consider a neutral hydrogen atom whose electron is on the hyperfine upper level of

the ground state. When the H absorb a Lyman alpha photon, the electron excite to

the n = 2 level, where n is the quantum principle number. Then, the electron de-

excites re-emitting a photon whose energy is that of Lyman alpha. At this point, the

electron can de-excite to the both upper and lower levels. If the electron drops on the

lower level, the spin flip occurs overall by absorbing and re-emitting Lyman alpha
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FIGURE 4.1: The rate coefficients of de-excitation for collisions of neu-
tral hydrogen with neutral hydrogen (H-H), electrons (H-e−), and

proton (H-p+). The figure is taken from Furlanetto and Oh, 2006.

photon. This process is the scattering with UV photons or so-called the Wouthuysen-

Field effect (WF effect).

Other Lyman series photons contribute the 21-cm transition as well. For exam-

ple, when hydrogen absorb the Lyman-γ, the electron climbs the energy potential

to n = 4 energy level. Then, the electron can de-excite to the level with n = 3, and

then to n = 2. Finally the electron de-excite to the ground state, possibly changing

the initial hyperfine state. The cascade process increases the Lyman alpha coupling

xα. However, note that only Lyman-β does not contribute to the WF effect because

of the electric dipole selection rules.

The coupling strength of the WF effect depends on the scattering rate of Lyman

alpha photons Pα (the rate at which the gas is scattered with Lyman alpha photons

per atom),

xα =
4Pα

27A10

T∗
TCMB

(4.17)

Pα is calculated by

Pα = 4πσ0

∫
dνJνφα(ν), (4.18)

where σ0 ≡ (πe2/mec) fα with the oscillator strength of the Lyman α transition fα =

0.4162, Jν is the angle-averaged specific intensity, and φα(ν) is the line profile of

Lyman α which is known to be the Voigt profile.
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FIGURE 4.2: The figure illustrates how the absorption and re-
emission of Lyman alpha photons contribute the 21-cm spin flip tran-
sition. The lines are the energy levels of electron with quantum prin-

ciple number n.

The practical methods to calculate the coefficients xc and xα in simulations are

introduced in Chapter 5.

4.2 21-cm statistics

Since the theory predicts only statistical properties of the 21-cm signals, I here in-

troduce the 21-cm global signal which is the all-sky-averaged value and the 21-cm

power spectrum.

4.2.1 The global signal

The 21-cm global signal is the averaged value of 21-cm brightness temperature over

the sky. It is also called the monopole of the brightness temperature. Since different

frequencies correspond to different redshifts, we can investigate the cosmic history

from the global signal.

Figure 4.3 shows the global signal as a function of redshift (or frequency) and the

corresponding evolutions of temperature and ionization degree. The black lines are

the results from the standard model. Around z ∼ 200, which is out of the redshift

range of the figure but worth mentioning, the baryon gets decoupled with CMB

photons. Thus, the redshift evolution of gas kinetic temperature changes from Tk ∝

(1 + z) to Tk ∝ (1 + z)2 which corresponds to the adiabatic cooling. As a result,

the gas temperature cools faster than the CMB temperature making the difference

between Tk and TCMB. At that time, the Universe is so dense that the collisional

coupling effectively couples the spin temperature with the gas temperature TS ∼ Tk.

Therefore, the absorption signal emerges.

Until z ∼ 40, the absorption signal becomes weak as the Universe expands and

the IGM is diluted meaning that the gas particle collisions becomes ineffective for
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FIGURE 4.3: The histories of the 21-cm global signal and the rele-
vant physical quantities. The black solid curves are the fiducial case,
the blue curves are from model with less effective X-ray heating, and
the long-dashed curves are from the model with strong photoheating
feedback. The panel (a) shows the evolutions of the CMB temper-
ature, the gas kinetic temperature, and the spin temperature. The
panel (b) shows the ionization fraction as a function of redshift. The
panel (c) shows the history of the 21-cm global signal as a function
of redshift or frequency. This figure is taken from Furlanetto and Oh,

2006.

the coupling. Then the spin temperature gets closer to the CMB temperature. Thus,

the differential brightness temperature is nearly zero from z ∼ 40.

Around z ∼ 20− 30, the first generation of stars or the first stars form in the Uni-

verse and start emitting photons including Lyman series photons. The scattering of

the UV photons increases the coupling coefficient xα due to the WF effect. Thus, the

spin temperature again gets decoupled from the CMB temperature, and approaches

the colder gas temperature so that the strong absorption signal appears.

Then, around z ∼ 17, the gas heating become sufficient to increase the gas tem-

perature. In the standard model, the X-ray heating is considered. The possible

sources of the X-rays are, for example, the high mass X-ray binaries, the photons

which obtain energy by inverse Compton scattering with high-energy electrons ac-

celerated in supernova, and any exotic sources like primordial black holes. As a

result of the X-ray heating, the gas temperature increases beyond the CMB tempera-

ture, showing the emission signal.

Re-ionization starts affecting the global signal around z ∼ 10. Since the frac-

tion of neutral hydrogen decreases as the re-ionization proceeds, the emission signal

becomes weaker and finally becomes nearly zero around z ∼ 7.
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The redshift of each epoch such as when the Lyman alpha coupling gets effi-

cient and when X-ray heating becomes efficient strongly depends on the models.

The astronomical uncertainties in high-redshift Universe is fairly large. Therefore,

theoretical works to investigate the 21-cm signal should consider a wide range of

parameters, and observations are also needed to constrain the theoretical models.

4.2.2 Power spectrum

The 21-cm global signal is the sky-averaged value of the 21-cm brightness tempera-

ture, as seen in the previous section. On the other hand, the spacial inhomogeneity of

the signal has richer information than the global signal. The 21-cm power spectrum

is the two-point statistics and reflects the statistical property of the inhomogeneity.

Let us define the fluctuation of the 21-cm brightness temperature as follows

δ21(x, z) ≡ δTb(x, z)− δTb(z)
δTb(z)

, (4.19)

where δTb(z) is the spacial average of the brightness temperature at redshift z which

corresponds to the 21-cm global signal. The Fourier transformation of the two-point

correlation of the 21-cm fluctuation is the 21-cm power spectrum P21(k),

〈δ̃21(k1)δ̃21(k2)〉 = (2π)3δD(k1 − k2)P21(k1), (4.20)

where δ̃21(k) is the Fourier transformation of δ21 with the wave number vector k,

δD is the Dirac delta function. Under the cosmological principle, we can convert

the P21(k) to spherically-averaged power spectrum P21(k) with the norm of wave

number vector k. The power spectrum whose unit is mK2 is often used,

∆2
21(k) =

k3

2π2 P21(k)〈δTb〉2 [mK]2 (4.21)

By observing the 21-cm power spectrum, we can obtain information on the his-

tory of the Universe. The results of a theoretical simulations are shown in Figure 4.4

and Figure 4.5 as examples.

At z ∼ 30, the absorption signal is seen only at high-density regions because Ly-

man alpha coupling is prominent at denser regions due to more advanced structure

formation than lower regions. Thus, the brightness temperature at the low-density

regions is nearly zero. The inhomogeneity of the signal at this epoch is sourced by

the Lyman alpha coupling.

Then, around z ∼ 21, the structure formation in the Universe proceeds and the

intensity of Lyman series photons become sufficient enough to couple the spin tem-

perature with the gas temperature TS ∼ Tgas. At high-density regions, the gas is
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FIGURE 4.4: This figure shows the two-dimensional slice of three-
dimensional 21-cm brightness temperature distribution calculated
with the 21cmFAST which is publicly-opened semi-numerical simu-
lation. The spherically-averaged three-dimensional power spectrum
of the 21-cm signal is also displayed. When the redshift is z ∼ 30 cor-
responds to the epoch before the Lyman alpha coupling dominates
the most part of the Universe. While when the redshift is z ∼ 21
is corresponding to the epoch when the WF effect strongly couple the
spin temperature with the gas kinetic temperature almost everywhere
in the Universe. This figure is taken from Mesinger, Furlanetto, and

Cen, 2011.
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heated above the CMB temperature mainly by X-rays, as a result, the brightness

temperature is positive. While, at the low-density regions, the gas temperature is

not increased yet, showing absorption signal. At this epoch, the power is dozens

times larger than that at z ∼ 30.

The gas heating proceeds as time passes and the gas temperature becomes much

higher than the CMB temperature (TS ∼ Tgas � TCMB) until around z ∼ 18. The map

of 21-cm brightness temperature and its power spectrum are shown in Figure 4.5.

At this redshift, the neutral fraction is nearly one, that is, the cosmic reionization is

still at the initial phase. Thus, the brightness temperature can be approximated by

δTb ≈ 9(1+ δ)(1+ z)1/2 (c.f. equation 4.11). Namely, the signal fluctuates sourced by

matter fluctuation. Thus, the observation of 21-cm signal at this epoch is important

not only for astronomy but also for cosmology.

Then, around at z = 10, the cosmic reionization proceeds enough to affect the 21-

cm signal. The ionized region is created mainly by UV photons emitted from stars.

The mean free path of UV photons is fairly short, and therefore, the ionized region

is nearly spherical centered at high-density regions. Such spherical ionized regions

are often called ionized HII bubbles or simply bubbles. In the bubbles, almost no

neutral hydrogen exist, thus, the brightness temperature is nearly zero. This highly

inhomogeneous distribution of ionization degree boosts the power.

The redshift of each epoch is strongly dependent on the model parameters. For

example, the ionization efficiency parameter which determines how efficiently stars

ionize the IGM. Thus, the redshifts above are only examples of a specific model. Con-

versely, by estimating each epoch by observations, we can constrain the theoretical

models. Therefore, one of what we should do is definitely to construct theoretical

models of 21-cm signals precisely for forthcoming 21-cm observations such as the

Square Kilometre Array.

4.3 21-cm line observations

Until the previous section, the theoretical framework of the 21-cm signal and some

statistical signals such as the global signal and the power spectrum are described.

In this section, I briefly introduce some current 21-cm observations and forthcoming

future observations, focusing on the 21-cm global signal and the power spectrum.

As for the 21-cm global signal, the collaboration of the Experiment to Detect the

Global EoR Signature (EDGES) has first reported the detection (Figure 4.6). They

claim that the absorption trough at redshift around 17 which corresponds to the ab-

sorption era expected by theory when the Lyman alpha coupling effectively couple

the spin temperature with the colder gas kinetic temperature than the CMB temper-

ature.
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FIGURE 4.5: This figure is same as Figure 4.4, but at lower redshift
when gas heating make the brightness temperature positive almost
everywhere, and when the reionization is at its middle point. This

figure is taken from Mesinger, Furlanetto, and Cen, 2011.
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FIGURE 4.6: The global signal detected by the EDGES observation.
The absorption trough around redshift 17 corresponds to the era
when the Lyman series photons couple the spin temperature with the
cold gas temperature through the WF effect. The absorption (∼ 500
mK) is much deeper than standard theoretical models which is less

than ∼ 350 mK. This figure is taken from Bowman et al., 2018.

However, the amplitude of the absorption ∼ 500 mK is much larger than that

predicted by the standard model and even the case with tight coupling limit and no-

heating limit. The baryon decouples from the CMB radiation at z ∼ 200 and the gas

temperature begins to decrease adiabatically (Tgas ∝ (1+ z)2). The CMB temperature

is 2.7 K as of today, and thus, TCMB(z = 200) = 56.7 K because TCMB ∝ (1 + z).

On the other hand, if heating is not effective at redshift 20, the gas temperature is

Tgas(z = 20) = TCMB(z = 200)× (1 + 20)2/(1 + 200)2 = 5.9 K. Assuming the tight

coupling (TS = Tgas), the global signal is δTb,global(z = 20) = −355 mK.

Many researches try to explain the difference between the observed amplitude

and the theoretical value. For example, the interaction between baryon and dark

matter can additionally transfer the energy from gas to dark matter resulting in a

colder gas temperature (Barkana, 2018). As another example, the enhancement of

the diffuse radio background can explain the larger absorption amplitude (Feng and

Holder, 2018). As of today the discussion over the EDGES result has not converged

yet. We need not only more theoretical works to explore possibilities to explain the

excess of the absorption but also further observations of the 21-cm global signal.
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FIGURE 4.7: The upper limits imposed on the 21-cm power spec-
trum by current 21-cm observations: the GMRT, the MWA, the LO-
FAR, the OVRO-LWA, and the PAPER. The dashed line is the fiducial
model calculated by the semi-numerical simulation code, 21cmFAST.
Although the upper limits are not imposed on the same scale, but,
they are plotted for easy by-eye comparison on one figure. The scales
of these observations are distributed roughly around 0.1 Mpc−1. This

figure is taken from Parsons et al., 2019.

As for the 21-cm power spectrum, several observatories have already imposed

upper limits around the scale of k ∼ 0.1 Mpc−1 as shown in Figure 4.7. Any current

observations have not reached the fiducial model, however, the forthcoming Square

Kilometre Array (SKA) is planned to have enough sensitivity to detect the fiducial

signal. The SKA will start the routine science observation in late 2020s.

The main difficulty of detecting the 21-cm signal is originated from the fore-

ground. The amplitude of both extra-galactic and galactic foregrounds are order

of Kelvin, on the other hand, the desired 21-cm signal from hydrogen at high red-

shift Universe has signal amplitude of only order of 1 - 10 mK. Therefore, foreground

removal is extremely difficult.
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Chapter 5

21-cm signal around population III

stars

In this chapter, I summarize my study about the 21-cm signal structure around in-

dividual population III stars. This work focuses on the small scales, while, the other

study of mine about large scale cosmological 21-cm signature is described in Chap-

ter 6. This chapter is mainly composed of (Tanaka et al., 2018).

5.1 Introduction: Previous works and aim of the chapter

It is highly expected that the distribution of 21-cm line signal reflects the stellar mass

because the ionization state and temperature of the gas around the pop III stars are

determined by their luminosity. Chen and Miralda-Escudé (2008) computationally

showed that a distinctive 21-cm signature appears around the pop III star. In the very

vicinity of the pop III star, there is almost no 21-cm signal because the gas is highly

ionized. At the ionization front (I-front), the gas is partially ionized and heated. The

gas far from the I-front is colder than the Cosmic Microwave Background (CMB)

temperature, and the gas temperature almost equals to the spin temperature owing

to the coupling process through the Lyman-α (Lyα) pumping (Wouthuysen-Field

effect; hereafter WF effect Wouthuysen, 1952; Field, 1958). Consequently, a 21-cm

emitting region is surrounded by a 21-cm absorption region. Yajima and Li (2014)

also studied the 21-cm signature around the pop III stars by conducting radiative

transfer simulations, and estimated the detectability of the signal with the Square

Kilometre Array (SKA). They concluded that detecting the signal is difficult even

with the SKA.

However, these studies consider a static and uniform medium around the pop

III stars and seem to miss some important points that affect the estimated 21-cm sig-

nature. For example, the dense gas distributed in a mini-halo, which they did not

resolve, likely impacts the escape fraction of ionizing photons from the halo, thus

the resultant size of the ionized region around the halo may change accordingly. In
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order to estimate the escape fraction precisely, radiation hydrodynamics (RHD) sim-

ulations are required. Kitayama et al. (2004) performed RHD simulations to study

the evolution of ionized regions around the pop III stars. They found that a halo

hosting the pop III star is completely photo-ionized if an I-front changes from the

D-type I-front to the R-type I-front1 within the lifetime of the central star. Since the

transition of the I-front occurs when the central region in a halo dynamically ex-

pands due to the thermal pressure enhanced by photo-heating, the type transition

is sensitive to the amount of the gas in the halo, the potential of the halo, and the

luminosity of the pop III star. Therefore the time evolution of the escape fraction

strongly depends on the stellar and halo masses (Kitayama et al., 2004).

In addition to the 21-cm signal in the vicinity of an individual halo, the 21-

cm global signal likely has some imprints reflecting the properties of the pop III

stars (Chen and Miralda-Escudé, 2004; Furlanetto, 2006; Pritchard and Loeb, 2010;

Mesinger, Ferrara, and Spiegel, 2013; Yajima and Khochfar, 2015), and recently at-

tracts more attention due to the claim of detection of the signal (Bowman et al.,

2018). However, previous studies based on simplified one-zone models and did not

take into account the stellar-mass dependence of the global signal; the stellar-mass-

dependent escape fraction mentioned above brings about the mass-dependent-heating

rate of the intergalactic medium (IGM). Besides, even with a given cosmic star for-

mation rate density (SFRD), the cosmic stellar mass density would depend on the

stellar mass function of the pop III stars because their lifetime has a dependence on

their mass.

To obtain reliable 21-cm signatures around the pop III stars, in this work, we

conduct a series of spherically symmetric one-dimensional RHD simulations for in-

dividual pop III stars. In particular, we resolve the high-density region within a

halo, by which we are able to appropriately consider the escaping process of ion-

izing photons from a halo and to evaluate time evolution of the radial profile of

the 21-cm brightness temperature. Based on our simulation results, we explore the

dependence of the 21-cm signal around the pop III stars on their stellar mass, halo

mass, and their formation redshift. Furthermore, using our simulation results, we

evaluate the detectability of the 21-cm signal around individual pop III stars and the

dependence of the global 21-cm signal on properties of the pop III stars.

This chapter is organized as follows. In Section 5.2, we describe the methodology

of our simulations. Then in Section 5.3, we show simulated spatial distributions of

the 21-cm brightness temperature around individual pop III stars and evaluate the

detectability of these signals with the SKA. In Section 5.4, we compute the global

1A D-type I-front slowly propagates in a high-density region. On the other hand, an R-type I front
travels through a rarefied medium with supersonic speed.
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21-cm signal by using our simulation results. Section 5.5 is devoted to discuss un-

certainties in our results. Finally, we summarize this chapter in Section 5.6.

5.2 Mothod

5.2.1 Setup

We consider a single pop III star embedded in a mini-halo, and each run starts just

after the ignition of the pop III star. Each simulation run is characterized by three pa-

rameters: the halo mass (Mhalo), the stellar mass (Mstar), and the formation redshift

of the pop III star (zf). The halo mass is defined as the total mass of three compo-

nents, i.e, the gaseous, stellar, and dark matter components, within the virial radius

rvir:

Mhalo = Mstar + Mgas + MDM, (5.1)

MDM =

(
1− Ωb

Ωm

)
Mhalo, (5.2)

where Mgas and MDM are respectively the gas mass and the dark matter mass. Once

the halo mass is determined, the corresponding virial radius can be expressed as

rvir = 50.8
(

Mhalo

105M�

)1/3 (1 + zf

20

)−1

physical pc. (5.3)

The initial gas density profile in a halo is assumed to obey a power-law distri-

bution with the index of −2.2, which is indicated by previous studies (e.g., Omukai

and Nishi, 1998; Susa, Hasegawa, and Tominaga, 2014; Hirano et al., 2015), and

is serially connected to the uniform IGM density at a given redshift, ρIGM(z) =

8.6× 10−30Ωb0(1 + z)3 g cm−3. Hence the gas density distribution is given by

ρgas(r) = max

{
ρIGM(zf), ρgas,c

(
r
rc

)−2.2
}

, (5.4)

where r is the distance from the centre of the halo, ρgas,c is the gas mass density of the

innermost shell, and rc is the core radius. We set ρgas,c = 1.67× 10−18 g cm−3 so that

the central gas number density corresponds to 106 cm−3, as in Kitayama et al. (2004).

The core radius, rc, is determined to satisfy a condition of 4π
∫ rvir

0 ρgas(r)r2dr = Mgas.

As for the dark matter density profile in a halo, we use the NFW profile (Navarro,

Frenk, and White, 1995; Navarro, Frenk, and White, 1996; Navarro, Frenk, and

White, 1997) given by

ρDM(r) =
ρ0,DM

(r/rs)(1 + r/rs)2 , (5.5)

where rs is the scale radius defined as rs = rvir/cvir. We employ the concentration

parameter, cvir, depending on redshift and halo mass shown by Bullock et al. (2001).
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The amplitude of the profile is determined so that the total dark matter mass within

rvir corresponds to MDM.

The initial gas temperature is determined based on the following assumption;

The gas adiabatically evolves after the decouple epoch 1+ zdec ≈ 137 (Peebles, 1993),

and the gas in high-density regions cool via molecular hydrogen cooling down to

500 K. Letting TIGM(zf) be the IGM temperature at zf, the temperature distribution is

given by

Tgas(r) = min

{
TIGM(zf)

(
ρgas(r)

ρIGM(zf)

)2/3

, 500 K

}
, (5.6)

where TIGM(zf) = TCMB,zdec

(
1+zf

1+zdec

)2
, with being TCMB,zdec = 2.725× (1 + zdec) K at

the decoupling epoch zdec. The index of 2/3 is derived from the assumption that the

gas is adiabatically heated up.

For the initial velocity, we only consider the Hubble velocity, vinit(r) = r/H(zf).

In reality the gas in a halo should still accretes toward the centre of the halo when

the central star is born. However, such an initial infall velocity hardly changes the

resultant structure of the 21-cm brightness temperature because it reverses due to

the thermal pressure of ionized gas soon after the simulation starts.
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We conduct each simulation during the main-sequence lifetime of the pop III

star, tlife. The values of the effective temperature, Teff, the total number of ionizing

photon emitted per second, ṅion, and tlife, depending on the stellar mass Mstar, are

taken from Schaerer (2002). For simplicity, the time evolution of the spectrum is not

considered.

Since it is important to discuss the impact of resolving dense gas in a mini-halo,

we also perform a reference run employing a static and uniform medium, which is

assumed in previous studies (Chen and Miralda-Escudé, 2008; Yajima and Li, 2014).

In this run, we assume 50 per cent of ionizing photons can escape from the halo.

Table 5.1 summarizes representative runs that we perform in this study.

5.2.2 Simulation code

Based on the initial setup, the evolution of the gas in a halo is calculated with a

modified version of an RHD simulation code used in previous studies (Kitayama et

al., 2000; Kitayama et al., 2001; Kitayama et al., 2004; Hasegawa, Umemura, and Ki-

tayama, 2009), which adopts the Lagrangian finite-difference scheme in a spherically

symmetric geometry. The code enables us to solve hydrodynamics, non-equilibrium

chemistry regarding primordial gas, and the radiative transfer of ionizing photons

self-consistently.

The basic equations for a Lagrangian gas shell are

dm
dr

= 4πr2ρ, (5.7)

d2r
dt2 = −4πr2 dp

dm
− GMtot(r)

r2 +
d(rH)

dt
, (5.8)

du
dt

=
p
ρ2

dρ

dt
+
H−L

ρ
, (5.9)

where r, m, ρ, p, u, Mtot(r), H, H, and L are the distance from the central star, mass,

mass density, pressure, specific internal energy, the total mass inside r of the shell,

the Hubble parameter, the heating rate, and the cooling rate, respectively. Also,

mp and kB respectively indicate the proton mass and the Boltzmann constant. The

equation of state, p = (2/3)ρu = ρkBTgas/(µmp), is used to close the equations

above, letting µ be the mean molecular weight. We treat the dark matter component

as a static medium, by which we consider a dynamically relaxed (virialized) halo.

As for the equation of motion, equation (5.8), we neglect the radiation force caused

by ionizing photons but consider the Hubble expansion, because of the following

reasons: (i) the impact of the radiation force on the gas in a halo is remarkable only at

a very early phase after the central pop III star starts to shine (Kitayama et al., 2004),

and (ii) the 21-cm signal around the pop III star is often extended up to 1 comoving
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Mpc where the Hubble expansion is not negligible (e.g., Chen and Miralda-Escudé,

2008; Yajima and Li, 2014).

To solve the energy equation, equation (5.9), the heating rate,H, and the cooling

rate, L, are obtained by solving the radiative transfer of ionizing photons and the

chemical reactions regarding primordial gas. The chemical evolution follows

dni

dt
= Ci(Tgas, nj)− Di(Tgas, nj)ni, (5.10)

where ni is the number density of the i-th species, Ci and Di are the creation and

destruction rates of the i-th species. In addition to chemical species of e, HI, HII,

H−, H2, H+
2 , which are originally considered in Kitayama et al. (2004), we further

consider HeI, HeII, and HeIII to calculate the distributions of HI and gas temperature

accurately. The chemical reactions and cooling rates of He are taken from Fukugita

and Kawasaki (1994). The thermal and chemical evolution are implicitly solved at

the same time, assuming the initial abundance shown by Galli and Palla (1998).

When we solve the thermal and chemical evolution, the photo-heating and photo-

ionization rates of i-th species (i=HI, HeI, and HeII) should be determined consis-

tently, by solving the radiative transfer. Taking the weight of the absorption proba-

bility by the i-th species into account, we estimate the photo-ionization rates at each

time step as (Susa, 2006; Yoshiura et al., 2017),

ki,γ(r) =
1

Vshelln

∫ ∞

νi

dν
niσi(ν)

∑j njσj(ν)

L(ν)
hν

e−τν(r)(1− e∆τν(r)), (5.11)

where Vshell is the volume of the shell, σi(ν) is the cross section of the i-th species,

L(ν) is the luminosity of the central source, νi is the ionization threshold frequency

of the i-th species, τν(r) is the optical depth between the central star and the shell,

τν(r) = ∑
i

σi(ν)
∫ r

0
nidr, (5.12)

∆τν is the optical depth in the shell, and h is the Planck constant. In the radiative

transfer calculation, we employ the on-the-spot approximation because the transfer

of diffuse photons hardly affects the dynamics and the distribution of neural hydro-

gen (Hasegawa and Umemura, 2010).

Similar to the photo-ionization rates, the total photo-heating rate is given by

H(r) =
1

Vshell
∑

i

∫ ∞

νi

dν
niσi(ν)

∑j njσj(ν)

L(ν)
hν

e−τν(r)

× (1− e∆τν(r))(hν− hνi)(1− ηα), (5.13)
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where, ηα is the fraction of the ejected electrons’ energy which is not directly con-

verted to the thermal energy but is used for exciting neutral hydrogen (see Sec-

tion 5.2.3). We use the formula ηα(xHII) = 0.4766(1− x0.2735
HII )1.5221, where xHII is the

ionization fraction of hydrogen (Shull and van Steenberg, 1985).

Since the relevant physical scales widely range from ∼ 0.1 pc (the core scale of

a halo) to ∼ 100 kpc (the size of an ionized bubble), a uniform shell mass is inap-

propriate to solve the equation of motion. Therefore, we employ the shell mass that

logarithmically increases toward outside,

log mn = log mmin + (n− 1)
log mmax − log mmin

Nbin
, (5.14)

where, mn is the mass of the n-th shell (n = 1, 2, · · ·, Nbin), Nbin is the total number

of the shells for which we adopt Nbin = 500. With mmin being the central mass of a

halo (4π/3r3
c ρgas,c) and mmax = 1010M�, we can resolve inner ∼ 0.1 physical pc, and

can trace the evolution of an ionization front up to ∼ 100 physical kpc.

5.2.3 Computing 21-cm signal

Based on results from the RHD simulations, we compute the 21-cm signal around the

pop III star. The basics of 21-cm line signal are explained in Section 4.1, therefore, we

here introduce the method to calculate the coupling coefficients (See equations 4.16

and 4.17) in detail.

We rewrite the equation that determines the 21-cm differential brightness tem-

perature (equation 4.11), assuming the peculiar velocity of gas is negligible com-

pared to the Hubble velocity

δTb =
TS − TCMB(z)

1 + z
(1− e−τ21)

≈38.7
nHI

n̄H

(
1 + z

20

)1/2 TS − TCMB(z)
TS

mK, (5.15)

In order to determine C10, we take into account collisions of neutral hydrogen

with neutral hydrogen, protons and electrons:

C10 = nHIκHI(Tgas) + neκe(Tgas) + npκp(Tgas). (5.16)

As for these collisional coupling coefficients, κHI, κe, and κp, we use the fitting for-

mulae given by Kuhlen, Madau, and Montgomery (2006), Liszt (2001), and Smith

(1966). The quantities required for calculating the coefficients, i.e. nHI, ne, np, and

Tgas, can be obtained from the RHD simulations.

We basically follow the method developed by Chen and Miralda-Escudé (2008)

to calculate the coupling via the WF effect. The Lyα mean intensity at a position r is
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required to obtain P10, for which we consider two processes. One is the redshifted

ultraviolet (UV) continuum photons emitted from the central star with frequencies

between the Lyα frequency and the Lyman limit frequency: The resonance occurs

when the redshifted photons coincide with particular energies of the Lyman series.

In this case, the subsequent cascade process leads to the production of new Lyα

photons. The number intensity of these “recycled" Lyα photons can be written by

Jc =
nmax

∑
n=2

Θ(νn+1 − ν′n) frecycle(n)
N(ν′n)

(4π)2r2 , (5.17)

where Θ is the Heaviside function to take into account horizon scales of Lyman series

photons (Ahn et al., 2015), ν′n is the frequency of emitted photons at the rest frame of

the central star, which can redshift to the frequency corresponding the n-th excitation

level, νn, when they arrive at r, N(ν) is the number luminosity per frequency of the

central star, and frecycle(n) is the fraction of Lyman series photons which turn out to

be Lyα photons via cascades (Furlanetto and Oh, 2006). The typical optical depth of

each shell in our simulations is much larger than unity. For that reason, we assume

that emitted photons with frequencies of νn-νn+1 are immediately absorbed when

their frequencies becomes νn. Therefore, each Lyman series photon has its horizon

scale, beyond which any absorptions do not happen. The summation of n should be

stopped at some large nmax for which we set nmax = 30 (Furlanetto and Oh, 2006).

The other process is excitations of neutral hydrogen by secondary electrons ejected

via photo-ionization. Since we consider photons with hard spectra from the central

stars, the ejected electrons have kinetic energies high enough to excite neutral hydro-

gen. The Lyα mean intensity produced by subsequent de-excitations is expressed as

Ji =
cηαH

4πH(z)hν2
α

. (5.18)

By using Jc and Ji, P10 is described as

P10 =
4
27

H(z)τGP(z)
JcSc + JiSi

J̃0
. (5.19)

Here J̃0 is defined as cnH/(4πνα). The Gunn-Peterson optical depth, τGP, is given by

τGP =
χαn̄HI(z)c

H(z)να
. (5.20)

Here, χα = (πe2/mec) fα is the Lyα absorption cross section at the line centre ,

fα = 0.4162 is the oscillator strength of the Lyα transition, n̄HI is the average number

density of the neutral hydrogen. In equation (5.19), Sc and Si are the suppression fac-

tors originated from the fact that the shape of the radiation spectrum changes during
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multiple scattering. We assume that Sc = Si, and use the fitting formula given by

Furlanetto and Pritchard (2006):

Sc = Si ≈ 1− 4π

3
√

3Γ(2/3)
α +

8π

3
√

3Γ(1/3)
α2 − 4

3
α3, (5.21)

α = 0.717T−2/3
gas

(τGP

106

)1/3
, (5.22)

in the wing approximation of the Voigt profile. Here, Γ(x) is the Gamma function.

5.3 21-cm signature around the pop III star

5.3.1 Importance of resolving gas in a halo

As described in Section 5.1, considering gas dynamics in each halo is indispensable

to precisely calculate the time-evolving escape fraction. Thus, our simulations take

into account gas dynamics and resolve gas distribution in a mini-halo unlike previ-

ous studies (Chen and Miralda-Escudé, 2008; Yajima and Li, 2014). In this section,

we investigate how the effects of resolving dense gas in a halo and gas dynamics

impact the emerging radial distribution of δTb. To do this, we compare Run-Ref, in

which static and uniform gas density is assumed, and Run-z20S100H8e5, in which

the RHD effect is considered (see Table 5.1). Figure 5.1 shows the radial profiles

of the 21-cm brightness temperature at tage = 0.5, 1.5, 1.7, and 2.7 Myr, where the

upper and lower panels correspond to the profiles obtained from Run-z20S100H8e5

and Run-Ref. Figure 5.2 shows the time evolution of physical quantities relevant to

the brightness temperature in these runs.

In Run-Ref, a well-known characteristic feature, i.e. an emitting region sur-

rounded by an absorption region, monotonically moves away from the central star

as an I-front propagates. This characteristic feature is known to be caused by com-

bination of partially ionized warm gas in the I-front and abundant Lyff photons,

forcing the spin temperature to be coupled with the gas temperature, in front of the

I-front (see the right panels in Figure 5.2).

Compared to Run-Ref, there are two remarkable features in Run-z20S100H8e5.

One is the strong emission region at r ∼ 10−2 kpc, which disappears in a short time-

scale within 0.5 Myr. The other is the deep absorption feature outside the virial

radius, which is almost steady until tage = 1.5 Myr and then decays with time. The

strong emission region has not been calculated in previous studies because the halo

was considered to be too small for observations. The amplitude of the high temper-

ature in the strong emission region is proportional to the number density of neutral

hydrogen (see Equation 5.15), therefore, if the halo has a denser core, the emission

from the central region of the halo would be stronger. Note that Equation (5.15) is
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FIGURE 5.1: Radial profile of the differential brightness temperature
as a function of the distance from the central star. The upper and
lower panels respectively show the profiles in Run-z20S100H8e5 and
Run-Ref. In these runs, the parameters are Mstar = 100M�, zf = 20,
and Mhalo = 8 × 105M�. The red solid, green dotted, magenta
dot-dashed, and blue dashed curves represent the profiles at tage =
0.5Myr, 1.5Myr, 1.7Myr, and 2.7Myr, respectively. The thin curves
show δTb(r) which is based on an assumption that the spin temper-
ature is completely coupled with the gas temperature. The vertical

arrow with rvir indicates the virial radius.
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FIGURE 5.2: Radial profiles of physical quantities associated with
the differential brightness temperature in Run-z20S100H8e5 (left col-
umn) and Run-Ref (right column) at tage = 0.5Myr (yellow thick
curves) and tage = 2.7Myr (green thin curves). From top to bottom,
each panel shows the radial profiles of the number density, ionized
fraction of hydrogen, the spin and gas temperatures, the Lyα coupling
coefficients originated in the continuum photons (solid) and the sec-
ondary excitation (dashed), and the collisional coupling coefficient.
In Panel 3 and 8, the CMB temperature is shown by the horizontal
dotted line, and the gas and spin temperatures are respectively rep-
resented by the solid and dashed curves. In Panel 4, 5, 9 and 10,
the horizontal dashed line indicates unity above which the coupling
processes effectively work to couple the spin temperature to the gas

temperature.
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FIGURE 5.3: Time evolution of the escape fraction in Run-
z20S100H8e5. The constant escape fraction of fesc = 0.5, which is

assumed in Run-Ref, is also shown by the horizontal dashed line.

not accurate for computing δTb in haloes, because haloes are isolated from the cos-

mic expansion. With an appropriate treatment for 21-cm optical depth in haloes (e.g.,

equation (7) in Furlanetto and Loeb, 2002), the δTb becomes smaller by about two

orders of magnitude. Nevertheless, the overestimation does not affect our claims

in later sections because the volume of the emission region is significantly small.

Figure 5.2 reveals that the spike in the emitting region (δTb > 0) is caused by a

shock preceding the I-front (see Panel 1 of Figure 5.2). Although the brightness tem-

perature at the spike is high at the very early phase, the spike rapidly disappears

because the shock propagates outward quickly. On the other hand, the deep absorp-

tion feature comes from the gas residing in the outer rim of the halo where the gas

is slightly overdense and colder than the CMB temperature. As shown by Kitayama

et al. (2004), the ionized region is well confined until the I-front is converted from

D-type to R-type (Panel 2 of Figure 5.2). Therefore photo-heating does not work

at the outer rim of the halo, and the gas is kept as the cold state (Panel 3 of Fig-

ure 5.2). In contrast to the ionizing photons, UV continuum photons, which enable

the spin temperature to be coupled with the gas temperature through the WF effect,

can reach the outer edge of the halo (Panel 4 of Figure 5.2). Furthermore, the radial

profile of δTb ∝ nHI

(
1− TCMB

TS

)
has the local minimum (the thin solid curve in the

upper panel of Figure 5.1) in the case that the spin temperature is completely cou-

pled with the gas temperature (TS = Tgas). The combination of the local minimum of

nHI

(
1− TCMB

TS

)
and the dilution of the Lyff flux results in the remarkable absorption
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feature at the outer rim of the halo.

The rapid decay of the absorption feature starts when the ionizing photons es-

cape from the halo. The escape fraction of ionizing photons can be calculated by

fesc =

∫ ∞
νHI,L

L(ν)
hν e−τν(rvir)dν∫ ∞

νHI,L

L(ν)
hν dν

, (5.23)

where νHI,L is the Lyman limit frequency. Figure 5.3 shows the time evolution of

the escape fraction of ionizing photons. The escape fraction sharply rises at tage ∼
1.5 Myr, when the absorption feature starts to decay. Hereafter, we call this character-

istic time as tdecay. As shown by Figure 5.3, the escape fraction in Run-z20S100H8e5

after tdecay is higher than that assumed in Run-Ref, i.e., fesc = 0.5. This is a reason

why the I-front in Run-z20S100H8e5 almost catches up that in Run-Ref at tage >

tdecay (e.g., tage ∼ 2.7 Myr in Panel 2 and 7 of Figure 5.2). We note that the expansion

of the ionized region due to hydrodynamics does not appear significantly because

the recombination time is much shorter than the lifetime of the central star.

It is worth to mention that the dominant process coupling the spin temperature

with the gas temperature differs between Run-Ref and Run-z20S100H8e5. Since the

spin temperature deviates from the CMB temperature if the coupling coefficient (ei-

ther xc or xα) is greater than unity, the size of a signal region is roughly determined

by the position where a coupling coefficient becomes unity. As shown by Panel 5

of Figure 5.2, the collisional coupling process is important only in the high-density

region, and is usually less efficient than Lyα coupling processes. Thus, we hereafter

focus solely on xα. In Run-Ref, the size of the signal region is determined by the

secondary excitation process rather than redshifted UV continuum at any evolution-

ary phases (see Panel 9 of Figure 5.2), because the absorption region moves with the

I-front where electrons are ejected by photo-ionization (Chen and Miralda-Escudé,

2008). On the other hand, in Run-z20S100H8e5, the process determining the size of

the signal region differs according to dynamical evolution. Before tdecay, the size is

determined by the redshifted UV continuum photons emitted from the central star,

as shown in Panel 4 of Figure 5.2. This is because the ionized region is well con-

fined in the halo, so that the contribution from Lyα flux induced by the secondary

electrons does not work at the outer edge of the absorption region and the radial

size of the absorption region is smaller than that in Run-Ref which is calculated in

the same manner as (Chen and Miralda-Escudé, 2008). After tdecay, because the I-

front is converted into R-type, the ionized region expands rapidly beyond the virial

radius. Correspondingly, the Lyα photons associated with the secondary excitation

start dominating the coupling process at the absorption region as in Run-Ref. How-

ever, the radial size of the absorption region is still smaller than that in Run-Ref

because the propagation of the I-front is initially delayed due to the attenuation by
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the halo gas.

The deep absorption region may be an attractive target for observations in the

future, because the existence of such a deep absorption implies a mini-halo hosting

the pop III star. Even if the profile is not resolved, the spatially smoothed signal

within the resolution of a telescope is more or less influenced by the high amplitude

as we discuss in Section 5.3.5 and Section 5.3.6. We also show that the decay time

tdecay plays an important role on the detectability of the individual 21-cm signal, and

is strongly dependent on the stellar mass, the halo mass, and the formation redshift

in the following sections Section 5.3.2, Section 5.3.3, and Section 5.3.4.

5.3.2 Stellar mass dependence

Since unveiling the mass of the pop III stars is very important issue, we now inves-

tigate how the 21-cm signal around the pop III star depends on the stellar mass.

Figure 5.4 shows the time evolution of the radial profiles of the brightness tem-

perature in Run-z20S500H8e5, Run-z20S100H8e5, and Run-z20S40H8e5, in which

stellar masses are respectively 500 M�, 100 M�, and 40 M�. In the runs, other pa-

rameters are fixed as Mhalo = 8 × 105M� and zf = 20. At a very early phase of

tage = 0.3 Myr, the shapes of the profiles in these three runs are very similar to each

other, and the peak positions of the absorption feature are almost identical. How-

ever, at later phases, the shape of the radial profile strongly depends on the stellar

mass; tdecay becomes earlier as the stellar mass increases. Figure 5.5 shows the time

evolution of the escape fractions in these three runs. The result with a luminous

massive star suggests that the short tdecay is originated in the leakage of ionizing

photons due to rapid expansion of the ionized region. In the case of a less massive

star, ionizing photons cannot escape from the halo during the lifetime of the central

star so that the deep absorption feature lasts longer as shown by the green dotted

curve in Figure 5.4. Thus, we find that δTb(r) sensitively depends on the mass of the

pop III stars. We would like to emphasize that such a strong dependence of δTb(r)

on stellar mass appears only if the absorption of ionizing photons in a mini-halo is

appropriately solved.

5.3.3 Halo mass dependence

Since the time evolution of δTb(r) is sensitive to the dynamics of the ionized gas in a

halo as shown in Section 5.3.1, the time evolution is expected to be sensitive to halo

mass as well. In this section, we perform simulations with various halo masses and

examine the halo mass dependence of the 21-cm signal.
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FIGURE 5.4: Radial profiles of the differential brightness temperature
at tage = 0.3 Myr (upper left), 0.5 Myr (upper right), 1.4 Myr (lower
left), and 1.9 Myr (lower right). The profiles obtained from Run-
z20S500H8e5, Run-z20S100H8e5, and Run-z20S40H8e5 are shown by
the blue dashed, red solid, and green dotted curves, respectively. The
thin curves show δTb(r) assuming the spin temperature tightly cou-

pled with the gas temperature.
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FIGURE 5.5: Time evolution of the escape fraction in Run-
z20S500H8e5 (blue dashed curve), Run-z20S100H8e5 (red solid

curve), and Run-z20S40H8e5 (green dotted curve).

Figure 5.6 shows the radial profiles of the brightness temperature in Run-z20S100H3e5,

Run-z20S100H8e5, and Run-z20S100H3e6, in which different halo masses of 3 ×
105 M�, 8× 105 M� and 3× 106 M� are employed.

The results at an early phase (tage = 0.4 Myr) show that the absorption fea-

ture has its peak position in further distance from the central star for more massive

haloes, and also its amplitude is smaller for more massive haloes. As discussed in

Section 5.3.1, the peak position is determined by the distributions of nHI and Tgas.

More massive haloes are spatially more extended following rvir ∝ M1/3
halo, thus the

peak is located farther for more massive haloes. This fact also indicates that Lyα

flux from the central star at the peak is weaker for more massive haloes, thus its

amplitude is smaller for more massive halo.

In addition, the time evolution from tage = 0.4 Myr to 2.7 Myr shows that tdecay

becomes longer for more massive haloes. This delay is caused by the abundant gas

and deep gravitational potential of a massive halo. Figure 5.7 shows the escape

fraction of ionizing photons and indeed the rapid increase of the escape fraction is

delayed as the halo mass increases. As a result, the massive halo with 3× 106 M� is

able to exhibit the deep absorption feature over the lifetime of the central star even

if the star is as massive as 100 M�.
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FIGURE 5.6: Same as Figure 5.4, except for showing Run-
z20S100H3e5 (green dotted curve), Run-z20S100H8e5 (red solid

curve), and Run-z20S100H3e6 (blue dashed curve).
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FIGURE 5.7: Same as Figure 5.5, except for showing Run-
z20S100H3e5 (green dotted curve), Run-z20S100H8e5 (red solid

curve), and Run-z20S100H3e6 (blue dashed curve).

5.3.4 Redshift dependence

In this section, we investigate the redshift dependence of the radial profile of the

21-cm signal, which is likely caused by the variation of gravitational potential and

the gas density of a halo at different redshifts.

Figure 5.8 represents the time evolution of δTb(r) in Run-z30S100H8e5, Run-

z20S100H8e5, and Run-z10S100H8e5. The results at tage = 0.5 Myr show that the

amplitude of the signal increases as redshift decreases. This behaviour is understood

as follow; the differential brightness temperature is approximately proportional to

−1/
√

1 + zf, because the gas temperature and the CMB temperature respectively

scale as Tgas ∝ (1 + zf)
2 and TCMB ∝ (1 + zf). In addition, the Lyα coupling coef-

ficient, xα, is proportional to Sα(z)/TCMB(z), where Sα weakly depends on redshift.

These two redshift dependences work so as to make the differential brightness tem-

perature lower for lower redshift.

As straightforwardly expected, tdecay is earlier for lower redshift halo because of

the shallower potential, as indicated by the time evolution of the escape fraction in

Figure 5.9. Therefore, the deep absorption feature around the halo at z = 10 rapidly

disappears, while that at z = 30 is sustained for long time.
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FIGURE 5.8: Same as Figure 5.4, except for showing Run-
z30S100H8e5 (green dotted curve), Run-z20S100H8e5 (red solid

curve), and Run-z10S100H8e5 (blue dashed curve).
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FIGURE 5.9: Same as Figure 5.5, except for showing Run-
z30S100H8e5 (green dotted curve), Run-z20S100H8e5 (red solid

curve), and Run-z10S100H8e5 (blue dashed curve).

5.3.5 Time evolution of spatially smoothed signal

Our results indicate that the radial profile of the differential brightness tempera-

ture is sensitive to the properties of the pop III star. Therefore the detection of the

21-cm signal around individual mini-haloes likely provides us with fruitful informa-

tion. Before estimating the detectability of signals from individual stars, which we

show in the next section, we here calculate the volume-weighted average of δTb(r)

(hereafter 〈δTb〉) within an expected angular resolution of the SKA (1 arcmin) and

understand the behaviour of the smoothed signal.

Figure 5.10 shows the time evolution of the smoothed signals 〈δTb〉 for various

parameter sets. Note that we show the absolute values of 〈δTb〉 in Figure 5.10,

though all of the original values are negative. As shown in previous sections, the

deep absorption feature with ∼ −100 mK is most notable if the radial profiles of

δTb can be spatially resolved. However, the expected angular resolution of the SKA,

which corresponds to 1.5× 102 physical kpc at z = 20, does not allow us to resolve

it. Therefore, the very weak 21-cm signals (δTb ∼ 0 at the region extended outer than

the absorption region) dominate the area within the scale of the SKA angular reso-

lution and the amplitude of a smoothed signal is only up to ∼ 0.1− 1 mK. Besides,

the amplitude of a smoothed signal becomes stronger for higher zf despite the fact

that the absorption features on spatially resolved profiles show the opposite trend

(see Section 3.4). The redshift dependence of the smoothed signal is originated from

smaller physical scale corresponding to 1 arcmin for higher z, i.e. 1.1× 102 physical
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FIGURE 5.10: Time evolution of the spatially smoothed differen-
tial brightness temperature 〈δTb〉, where the smoothing scale corre-
sponds to ∼ 1 arcmin. Note that the absolute values of 〈δTb〉 are
shown, though all of the original values are negative. The left and
right columns respectively correspond to the cases without and with
the dense gas in mini-haloes. In each panel, the time evolution of
〈δTb〉 for Mstar = 40M�, Mstar = 100M�, and Mstar = 500M� are
indicated by the green dotted, red solid, and blue dashed curves,
respectively. In the all cases, the halo mass is set to be Mhalo =

8× 105M�.
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kpc at z = 30 whereas 2.6× 102 physical kpc at z = 10.

The left panels of Figure 5.10 show the time evolution of 〈δTb〉 in the cases of a

static and uniform medium (e.g. Run-Ref), where the amplitudes of the smoothed

signals monotonically decrease with time and increase with stellar mass because the

amplitudes are determined by xff which is roughly proportional to Mstar/r2.

On the other hand, the time evolution of 〈δTb〉 obtained from our RHD simu-

lations behaves differently as shown in the right panels of Figure 5.10. (To help

understanding the behaviour, the blue dashed line in the right middle panel well

represents the typical time evolution.) At the phase of tage < tdecay, the smoothed

signals hardly evolve because the radial profiles are almost steady (see Figure 5.1).

Although Figure 5.1 also shows that the absorption feature on δTb(r) starts to decay

soon after tdecay, the rapidly expanding signal region, which works to increase the

amplitude, dominantly affects the smoothed signal rather than the decreasing am-

plitude of the deep absorption, thus the amplitude of 〈δTb〉 rapidly increases at this

phase. After the sudden increase in |〈δTb〉|, Lyα coupling efficiency decreases due

to the dilution of radiation, resulting in the gradually decreasing |〈δTb〉|. Although

this sequence is commonly seen in |〈δTb〉| as far as tdecay < tlife, the earlier phase can

only be seen if tdecay is late (e.g. Run-z10S100H8e5 indicated by the red solid line

in the right-top panel in Figure 5.10). In the cases in which tdecay > tlife is satisfied

(e.g., Run-z30S40H8e5 indicated by the green dotted line in the right-bottom panel

in Figure 5.10), |〈δTb〉|monotonically decreases as the IGM density decreases via the

Hubble expansion.

We emphasize that the amplitudes of the smoothed signals based on the RHD

simulations are usually larger than those in the cases with a static and uniform

medium after tdecay, because the smoothed signals in the latter cases start to de-

cay soon after the birth of the star (e.g., comparison between the blue dashed curves

in the top panels of Figure 5.10). In contrast, when tage < tdecay, the opposite trend

appears (i.e, the amplitudes of the smoothed signals in the former cases are smaller

than those in the latter cases), because the signal regions are quite localized within

the vicinities of the haloes. Thus, roughly speaking, resolving gas in a halo enhances

the detectability of its smoothed signal if the pop III star (the host halo) is massive

(less massive) for which tdecay is typically early.
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5.3.6 Detectability of 21-cm signal around a mini-halo

In this section, we compare the smoothed signal 〈δTb〉 with noise temperature ex-

pected for the SKA. Following Furlanetto et al. (2009), the noise temperature is ap-

proximately given by

Tnoise ∼ 1.9× 102
(

106 m2

Aeff

)(
1 arcmin

∆θ

)2

×
(

1 + z
21

)4.6 (MHz
∆ν

1000 h
tint

)0.5

mK (5.24)

where Aeff is the effective collect area, ∆ν is the bandwidth, ∆θ is the angular res-

olution, and tint is the integration time. We adopt Aeff = 106 m2, ∆θ = 1 ar-

cmin, ∆ν = 1 MHz, and tint = 1000 h, respectively. According to equation (5.24),

Tnoise = 9.7 mK at z = 10, Tnoise = 1.9× 102 mK at z = 20, and Tnoise = 1.2× 103 mK

at z = 30.

Figure 5.10 immediately informs us that the expected noise level is too high to

detect the simulated signals around individual haloes, although the time averaged

|〈δTb〉| is enhanced by considering dense gas in a halo and the radiation hydrody-

namic effects in some cases. One may think that the signals tend to be detectable if

we improve the angular resolution. However, finer spatial resolutions in observa-

tions do not enhance the detectability because the noise level increases faster than the

signals. Therefore we need to increase Aeff× t0.5
int to detect the individual signals. For

example, Aeff = 2.6× 106 m2 and tint = 1500 h are required for detecting the peak in

Run-z10S500H8e5 (the blue dashed curve in the top right panel of Figure 5.10) with

S/N = 2.

5.4 Application to 21-cm global signal

In this section, we study the 21-cm global signal which reflects properties of the pop

III stars, such as SFRD (ρ̇?), and their typical stellar mass. The results in Section 5.3

show that the radial profiles of the gas temperature, the neutral hydrogen number

density, and the Lyff coupling coefficient are written as functions of Mstar, Mhalo,

tage, and zf (see Figure 5.2). These results allow us to compute the 21-cm global

signal considering inhomogeneities of physical quantities required for calculating

δTb at each position. The following describes the steps for computing the global

signal with a given parameter set of Mstar, and ρ̇?. The redshift is fixed to be z = 20

because this is currently the most attractive redshift (Bowman et al., 2018).

1. We randomly place 10 stars with tage in a periodic three dimensional calcula-

tion box. The average volume which a pop III star occupies equals to n−1
star Mpc3,
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thus the volume of the calculation box containing 10 stars is corresponding to

10n−1
star Mpc3. Here, the number density of the pop III stars, nstar, is given by

nstar =
ρ̇?tlife

Mstar
, (5.25)

which enables us to take into account tlife previous works did not consider. The

number of grids is determined so as to let the spatial resolution be 4 physical kpc 2.

The probability distribution of tage obeys the uniform probability with 0 ≤
tage ≤ tlife. Whereas the masses of haloes hosting the stars are randomly deter-

mined according to the Press-Schechter mass function raging from 3× 105 M�
to 4 × 106 M� 3. The lower limit of the mass function roughly corresponds

to the minimum halo mass above which H2 cooling effectively works (e.g.

Tegmark et al., 1997; Nishi and Susa, 1999).

2. We assign Tgas and nHI to all grids, by referring to the radial profiles of Tgas

and nHI obtained from the RHD simulations. We allow the overlaps of haloes:

we calculate nHI by summing up components of the all overlapped haloes, and

designate the maximum value of Tgas among the overlapped components.

3. We determine the Lyα coupling coefficients xα at all grids. In contrast to the

case of an isolated halo shown in Section 5.3, many stars contribute to xα at a

given position. In this case, redshifted continuum photons mainly contribute

to xα. We extrapolate xα assuming xα ∝ r−2.4, and truncate the xα at the horizon

scale of Lyβ photons (see Section 5.2.3 for the detailed explanation of the hori-

zon scale). Then, we sum up all values of xα at each grid to consider the Lyα

flux from all stars. The scaling relation is motivated by the fact that horizon

scales are smaller for higher Lyman series photons (Pritchard and Furlanetto,

2006).

4. According to Tgas, nHI, and xα assigned to all grids, we finally compute δTb

at the grids with equation (5.15) and (4.15), and average them to obtain the

global 21-cm signal, δTb, global. Note that the halo components increase the total

hydrogen mass in the calculation box, resulting in an artificially high δTb, global.

Thus, we rescale δTb, global so as to compensate the artificial increase in the total

hydrogen mass 4.

We repeat these steps 2000 times to evaluate the mean value and the variance of

the global 21-cm signals for a given parameter set of Mstar and ρ̇?.
2We confirmed that estimated global signals hardly change even if we improve the grid size by an

order of magnitude.
3We divide the halo mass range into 5 bins of Mhalo = 4× 105M�, 6× 105M�, 8× 105M�, 106M�,

and 2× 106M�, for which we additionally performed runs.
4Without the rescaling, |δTb, global| turns out to be significantly higher than ∼ 200 mK in the case of

40 M� and ρ̇? = 5× 10−3 M� yr−1 Mpc−3.
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FIGURE 5.11: Absolute value of global 21-cm signals at z = 20 for
ρ̇? = 5 × 10−5 M� yr−1 Mpc−3 (red solid line), ρ̇? = 5 × 10−4

M� yr−1 Mpc−3 (blue dashed line), ρ̇? = 5× 10−3 M� yr−1 Mpc−3

(green dotted line) as a function of the stellar mass. Note that all of the
original values of the global signals shown in this figure are negative.
As for the thick lines the temperature distribution is computed based
on the results on RHD simulations, whereas Tgas = TIGM is assume

for the thin lines.

It is worth clarifying differences between our method and one-zone models which

are usually used for evaluating the global signal (e.g. Furlanetto, Oh, and Briggs,

2006). The notable difference appears when the Lyα radiation fields become quite

inhomogenous. For example, in a case of ρ̇? = 5 × 10−5 M� yr−1 Mpc−3 and

Mstar = 500M�, we obtain x̄α = 0.51 with our method and xα = 0.20 with an ana-

lytical method by Furlanetto, Oh, and Briggs (2006). Accordingly, while our method

gives δTb, global = −5.2 [mK], the uniform xα gives δTb, global = −46 [mK].

As stated in Section 5.1, the stellar-mass-dependent lifetime and heating rate,

which previous studies did not consider appropriately, are expected to leave their

footprints on the global 21-cm signal. Figure 5.11 shows the obtained global sig-

nals for 40 M� < Mstar < 500 M� and 5 × 10−5 M� yr−1 Mpc−3 < ρ̇? < 5 ×
10−3 M� yr−1 Mpc−3. Let us pop III discuss how the stellar-mass-dependent life-

time is important, by showing the global signals obtained with an assuming of

Tgas = TIGM(z) (see equation 5.6) as the thin lines in Figure 5.11. As previous studies

(Furlanetto, 2006; Pritchard and Loeb, 2010; Mesinger, Ferrara, and Spiegel, 2013; Ya-

jima and Khochfar, 2015) showed, the amplitude becomes stronger for higher SFRD,

because the WF effect becomes more efficient as the number of stars increases. Fur-

thermore, the amplitude decreases with increasing stellar mass: roughly speaking,

the amount of Lyα photons is proportional to the total stellar mass, which follows

∝ ρ̇?tlife (equation 5.25). As shown by Table 5.1, the lifetime is longer for less massive
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stars, thus the WF effect effectively works to couple the spin temperature with the

gas temperature if the pop III stars are less massive. Note that the stellar mass de-

pendence of the global signal coming from the lifetime is weak. For example, with

ρ̇? = 5× 10−4 M� yr−1 Mpc−3, the amplitudes are −59 mK for Mstar = 40M�, and

−55 mK for Mstar = 500M�.

The discrepancy between the thin and thick lines in Figure 5.11 reflects the im-

portance of heating, because the thick lines are obtained by taking photo-heating by

the pop III stars into account. In the highest SFRD case of ρ̇? = 5× 10−3 M� yr−1 Mpc−3,

the global signal is controlled by the average gas temperature owing to the effective

WF effect, consequently the discrepancy is most notable in this case. We note that

the heating is less remarkable if Mstar = 40 M� even though the total stellar mass

is the largest in this case. This seemingly strange behaviour is caused by the stellar-

mass-dependent escape fraction shown in Section 5.3, where we show tdecay is later

for less massive stars. When Mstar = 40 M�, ionizing photons suffer from the ab-

sorption by the gas in haloes, thus hardly heat the IGM even with the highest SFRD.

In the contrary case of the very massive pop III stars (Mstar = 500 M�) for which

tdecay is early, ionizing photons from the pop III stars well heat the IGM, resulting in

the large discrepancy between the thin and thick lines in Figure 5.11. We would like

to emphasize that it is very difficult to enhance the amplitude of the global signal

if the typical mass of the pop III stars is massive, because the photo-heating rate as

well as the Lyα flux increases with SFRD even if we do not consider X-ray radiation.

To conclude, the stellar mass dependence of the 21-cm global signal especially

caused by the time-evolving escape fraction is quite important, though the calcula-

tion in this section may be too simplified to quantitatively promise the dependence

of the global signal on the SFRD and the pop III star mass.

5.5 Discussion

In this work, we focus only on the 21-cm signature around the main sequence pop

III stars. However, in reality even after the lifetime of the central stars, partially

ionized regions remain as relic HII regions. Tokutani et al. (2009) found that relic

HII regions are bright in the 21-cm line during the recombination time of the IGM.

Since the recombination time, which corresponds to an order of 10 Myr at high red-

shifts, is much longer than the typical lifetime of the pop III stars, the emission from

such relic HII regions likely contribute to the global 21-cm signal. In addition, it has

been known that the fate of the pop III star depends on its mass (e.g., Heger and

Woosley, 2002; Umeda and Nomoto, 2002; Tominaga, Umeda, and Nomoto, 2007),

and the pop III star with a certain mass range ends its life as an energetic supernova
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(SN). Kitayama and Yoshida (2005) reported that the SN significantly affects the dis-

tribution of the gas temperature and density around a mini-halo. Shocks induced

by the SN expand outward and sweep up the gas in a relic HII region, resulting in

the enhancement of the detectability of an individual relic region. Also high energy

photons emitted from the heated gas are expected to affect the IGM temperature

and thus impact the 21-cm brightness temperature. Further studies of the stellar

mass dependence of the 21-cm signals by considering the effects of relic HII regions,

SN, and high-energy photons are needed.

Yajima and Li (2014) studied the distinctive 21-cm signatures around the galaxies

and quasars, but did not consider the effects by the dense gas in a halo and gas

dynamics. The effects are also expected to play an important role on the brightness

temperature around galaxies and quasars as well as the pop III stars as shown in the

chapter.

When we evaluate the global 21-cm signal, we simply assume that the pop III

stars are randomly distributed. However, in reality, the distribution of the stars

obeys the background matter distribution, and the number density of the pop III

stars depends on the local density (Ahn et al., 2012). Measuring the 21-cm fluctu-

ation arisen by the inhomogeneous distribution of the pop III stars likely provides

us with the information of the clustering of the pop III stars as well as the typical

scale of a 21-cm signal region. Such large scale 21-cm signal and its fluctuations are

studied in the next chapter.

5.6 Summary of this chapter

In this work, we first performed RHD simulations resolving gas distribution in a

mini-halo which previous studies omitted, to investigate the 21-cm signal distribu-

tion around the pop III stars. The simulations with such a new point enable us to

consider the time-evolving escape fraction. When the escape fraction is considerably

small, a characteristic deep absorption feature with δTb < −100 mK appears at the

outer rim of a halo where the gas is colder than the CMB temperature. The deep

absorption signal starts to decay after the escape fraction rapidly increases at the

characteristic time tdecay, then the signal shape becomes similar to that in previous

studies where they assume the static and uniform medium. We found for the first

time that the resultant radial profile of the brightness temperature strongly depends

on the properties of the pop III stars and the host halo, because the time evolution

of the escape fraction is sensitive to the luminosity of the central star and the gravi-

tational potential of the halo as shown by Kitayama et al. (2004). In our simulations,

tdecay is earlier for more massive stars, for less massive haloes, and for lower redshift
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haloes, as straightforwardly expected. In some cases that tdecay is longer than the

stellar lifetime, the absorption feature is sustained until the central star dies.

Next, we discussed the detectability of the 21-cm signals around individual haloes

by comparing the simulated signals with the currently expected specification of the

SKA. Since an expected angular resolution of the SKA is much larger than the typical

virial radius, the radial profile of δTb is spatially smoothed out and its amplitude de-

creases down to∼ 0.1− 1 mK. Thus, the currently expected specification of the SKA

is insufficient to detect the individual signal, although the time-evolving brightness

temperature in our simulations often enhances the amplitude of the smoothed sig-

nal. We proposed that Aeff × t0.5
int = 1.0 × 108 [m2 h0.5] is at least required for the

detection of the 21-cm signal around individual haloes.

We finally investigated how the properties of the pop III stars are reflected on

the 21-cm global signal, by utilizing our simulation results. Given SFRD, less mas-

sive stars with longer lifetime provide larger amount of Lyα photons than massive

stars do, thus the WF effect becomes more effective if the pop III stars are typically

less massive. However, this effect turns out to be not notable because of the weak

dependence of the lifetime on the stellar mass (see Table 5.1). The dominant process

controlling the stellar mass dependence of the 21-cm global signal is the heating rate

originated in the time-evolving escape fraction described above: the earlier tdecay for

more massive stars leads to more efficient heating of the IGM. An interesting pre-

diction from our results is that the extremely strong absorption feature of the 21-cm

global, e.g. ∼ −200 mK at z = 20, is difficult to be reproduced even with an ex-

tremely high SFRD if the pop III stars are typically very massive. In summary, to

interpret the 21-cm global signals, it is desirable to take into account heating by the

pop III stars, which strongly depends on tdecay (thus on the stellar mass).
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Chapter 6

Cosmological 21-cm signal and

population III stars

In this chapter, we summarize our research about the cosmological 21-cm signal

originated from Pop III stars. This chapter is mainly composed of (Tanaka and

Hasegawa, 2020)

6.1 Introduction: Previous works and aim of the chapter

As we see in the previous chapter, detecting the individual 21-cm signature around

Pop III stars is difficult even with SKA. Thus, theoretically modeling the cosmo-

logical scale signal, which is much more detectable than the individual signal, is

urgently needed to extract information on the properties of Pop III stars. Ahn et al.,

2012 have conducted the radiative transfer (RT) simulations in cosmological scale

with the sub-grid model about the number of MHs in simulation grids, instead of

directly resolving MHs which need enormous computational resources. They have

calculated 21-cm power spectrum assuming the tight coupling between the gas ki-

netic temperature and the spin temperature (Shapiro et al., 2012). Visbal, Bryan, and

Haiman, 2020 have used semi-analytic methods to efficiently calculate the 21-cm

signal. However, the models of Pop III stars in these previous works are rather sim-

ple. For instance, they assume constant escape fraction of ionizing photons in time.

Therefore, we in this work develop an elaborated model of Pop III stars, focusing on

not only the escape fraction of the ionizing photons and also UV photo-heating on

the gas kinetic temperature, which has ever been neglected, and investigate impacts

of the escape fraction and UV photo-heating on the 21-cm statistics such as the 21-cm

global signal and the power spectrum.

The escape fraction is known to depend on the halo mass and the stellar mass in

the halo (Kitayama et al., 2004; Tanaka et al., 2018). The LW negative feedback boosts

the minimum halo mass able to hold enough number of molecular hydrogen for star

formation, therefore, the escape fraction of MHs should depend on the LW intensity.

Therefore, the escape fraction of the LW photons is also important as well as that of
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ionizing photons, however, it is often neglected and set to be unity in cosmological

21-cm signal calculations (e.g. Visbal, Bryan, and Haiman, 2020; Qin et al., 2020a; Qin

et al., 2020b). We self-consistently incorporate the LW negative feedback on the Pop

III star formation and the escape fractions of ionizing photons and the LW photons.

UV photo-heating has ever been neglected in 21-cm signal simulations because

its mean free path is relatively short so that the UV photo-heated region and the

ionized region well overlap each other. However, Yajima and Li, 2014 found that Pop

III stars create large partially ionized region due to the high effective temperature,

in which the gas temperature is much higher than the CMB temperature resulting in

positive value of 21-cm brightness temperature. Also, Tanaka et al., 2018 found that

this UV photo-heating has non-negligible effect on the global 21-cm signal in some

cases like star formation rate density (SFRD) is high by simple estimation using the

results from the radiation hydrodynamics (RHD) simulations which is summarized

in the previous chapter.

In this work, we develop new MH model, focusing on the escape fractions of

both ionizing and H2-dissociating photons, and installed it in the public semi-numerical

simulation code, 21cmFAST (Mesinger, Furlanetto, and Cen, 2011). Also, our simula-

tion, for the first time, incorporates the effect of UV photo-heating using the results of

detailed RHD simulation. And, we evaluate the impacts of LW-intensity-dependent

escape fractions and UV photo-heating on the cosmological 21-cm signals.

This chapter is organized as follows. In Section 6.2, we describe the method

to account for UV photo-heating, to incorporate the LW negative feedback, and to

model time-evolving escape fraction dependent on the LW background intensity

using RHD simulation results. Also, we explain the modification of ionization cal-

culation of 21cmFAST in order to solve some difficulties occurred due to the time-

evolving escape fraction. Then, showing simulation results in Section 6.3, we explain

how our escape fraction model and UV photo-heating affect the ionization history,

the 21-cm global signal, and the 21-cm power spectrum. In addition, whether we

can distinguish SFRD and typical stellar mass of Pop III stars is investigated. We

next discuss the limitation and uncertainties of this work in Section 6.5, and finally

summarize this chapter in Section 6.6.

6.2 New simulation code

In this section, we first summarize the basics of the 21-cm signal, introduce the pub-

lic code, 21cmFAST, and then describe the method to take into account UV photo-

heating, the model of time-evolving escape fractions, and the modification of the

ionization calculation of the 21cmFAST code.
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FIGURE 6.1: The calculation flow of 21cmFAST.

The cosmological 21-cm signal can be written as (e.g. Furlanetto and Oh, 2006)

δTb = 38.7xHI(1 + δ)

(
1 + z

20

)1/2 TS − TCMB(z)
TS

mK, (6.1)

where xHI is fraction of neutral hydrogen, δ is overdensity, and TCMB(z) is the CMB

temperature at redshift z, respectively. The spin temperature TS is determined by,

T−1
S =

T−1
CMB + xcT−1

gas + xαT−1
α

1 + xc + xα
(6.2)

where Tgas, Tα, xc, and xα are the gas kinetic temperature, the color temperature of

the Lyα photons, the collisional coupling coefficient, and Lyα coupling coefficient,

respectively. We assume Tα = Tgas because of the large cross section of Lyα photons

to neural hydrogen.

6.2.1 21cmFAST

We develop new module for Pop III stars and install it on the 21cmFAST which is

publicly opened semi-numerical simulation code able to efficiently generate three-

dimensional realizations of the cosmological 21-cm signal and its time evolution

(Mesinger, Furlanetto, and Cen, 2011). The advantage of 21cmFAST is low com-

putational cost so that we can run simulations relatively many time with limited

computational resources.

The calculation flow of 21cmFAST is shown in Figure 6.1. The initial condition

is generated in roughly the same way as the cosmological N-body simulations, that
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is, the combination of the initial random Gaussian field and the Lagrangian per-

turbation theory. Then, using the obtained initial conditions of density field and

velocity field at initial redshift zini, the 21cmFAST code calculates the density field at

z (z < zini) with the Zel’dovich approximation (Section 3.2.3). The baryon is treated

in the same way as the dark matter. This approximation enables us to simulate fast,

but, at non-linear regime, the calculation accuracy decreases. As long as we focus on

the linear regime, it should be a good approximation.

The method to obtain ionization field is described in detail in Section 6.2.4, but

basically, 21cmFAST judges whether the cell is ionized or not by comparing the num-

bers of ionizing photons and atoms in that cell. The emissivity of ionizing photons

is controlled by the parameter, NUV, which is the number of ionizing photons pro-

duced by single stellar baryon.

As for the field of spin temperature, inhomogeneous Lyα radiation field is taken

into account. Not only the direct stellar emission but also contribution from X-ray

are considered as Lyα sources: When the X-ray photon ionizes a HI, high-energy

electron is produced. The electron excites surrounding HI, and the excited HI emits

Lyman series photons. As for gas temperature, the X-ray gas heating is considered.

In order to calculate the X-ray intensity or Lyα intensity at position x at redshift

z, 21cmFAST sums up contributions from shells whose center is at (x, z) instead of

solving the radiative transfer equation. This method remarkably reduces the compu-

tational cost. The emisivity of Lyman series photons is based on the spectral model

of Barkana and Loeb, 2005.

The self-consistently generated 3D distributions of density, HI fraction, and spin

temperature are used to obtain the 21-cm brightness temperature field at the end.

6.2.2 Gas heating by UV radiation

Even though the mean free path of UV radiation emitted from massive PopIII stars

is longer than that of galaxies due to the high effective temperature, and have con-

siderable impact on surrounding 21-cm signature, it is still too short to consider UV

photo-heating is uniform in a simulation grid (The grid size of semi-numerical simu-

lation is typically∼ 1 comoving Mpc). In the case of X-ray, mean free path is exceed-

ingly long (∼ 1 Gpc at z = 20, hν = 5 keV, assuming cosmic mean baryon density)

so that X-ray heating can be treated as uniform heating in grid. On the other hand,

the mean free path of UV photons (∼ 1 kpc at z = 20, hν = 50 eV) is much shorter

than the size of simulation grids. In the calculation of 21-cm brightness tempera-

ture, when sub-grid scale fluctuation of gas temperature is neglected and averaged

gas temperature is used, the resulting 21-cm brightness can be totally wrong because

of the non-linearity of the gas temperature dependence of 21-cm brightness. For in-

stance, if gas temperature is extremely high in a small region in a grid and the other
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regions are cold, the averaged gas temperature of the grid would become hotter than

the CMB temperature, resulting in emission signal, nevertheless, the absorption sig-

nal should be obtained.

In order to incorporate the inhomogeneous UV photo-heating in sub-grid scale,

we develop a new method: we divide the whole region of a grid into three different

regions which are the ionized region, the cold region, and the heated region. The

ionized region is where no neutral hydrogen exists and no signal comes from. The

cold region is a neutral region and not heated so that gas in this region absorbs

the background CMB radiation. The heated region is slightly ionized and its gas

temperature is higher than the CMB temperature, creating a emission signal. When

we write the 21-cm brightness temperatures in these three regions as δTb,ion, δTb,cold,

δTb,heat, the 21-cm signal of the grid can be written as:

δTb,grid = ∑
i

fiδTb,i (i = ion, cold, heat), (6.3)

where fi is the volume fraction of i region. Since ∑i fi = 1, we need ionized fraction

fion and ratio of heated region to ionized region, γh/i ≡ fheat/ fion. We describe how

to calculate ionization filed with semi-numerical simulations in Section 6.2.4. The

21-cm brightness temperatures in these three regions are expressed as

δTb,ion = 0 mK, (6.4)

δTb,cold = 38.7(1 + δ)

(
1 + z

20

)1/2 TS − TCMB(z)
TS

mK, (6.5)

δTb,heat = 38.7(1 + δ)

(
1 + z

20

)1/2

mK. (6.6)

where we assume strong Lyα coupling in the heated region because the heated re-

gion is close enough to Pop III stars to have high intensity of Lyman series photons

shown by Tanaka et al., 2018.

In order to investigate γh/i, we conduct one-dimensional spherically-symmetric

RHD simulations developed by Tanaka et al., 2018. The RHD simulation can pro-

duce the profile of 21-cm brightness temperature around an individual MH hosting

a Pop III star by solving gas dynamics, radiative transfer of ionizing photons, and

non-equilibrium chemical reactions. We assume that one MH hosts one PopIII star

at the center. As some studies have shown (Tanaka et al., 2018; Chen and Miralda-

Escudé, 2008; Yajima and Li, 2014), the 21-cm signature around the Pop III star has

typical structure: The most-inner region is ionized region where no neutral hydro-

gen remain, resulting in a zero signal. The next outer region is a heated region where

gas is partially ionized and heated above the CMB temperature so that the emerging

signal is emission. The region outside the heated region is the cold region where the
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gas remain cold below the CMB temperature while the Lyα coupling is sufficiently

strong to couple the spin temperature with the cold gas temperature, showing the

absorption signal.

To estimate γh/i, we use the profiles of ionized fraction and 21-cm brightness

temperature calculated with the RHD simulations. We locate the ionized and heated

regions around the MHs as follows: The boundary between these two is defined as

the shell whose neutral fraction is 1%. Whereas the boundary between the heated

and cold regions is defined as where the δTb first turns to be positive, judging from

the most-outer cold shell. Once we locate the radius of the ionized region rion and

the outer radius of the heated region rheat, γh/i can be calculated as γh/i = (r3
heat −

r3
ion)/r3

ion. The ionization fraction at the heated region defined in this way is less than

10%, therefore we treat the heated region as neutral one for simplicity.

Figure 6.2 shows γh/i as a function of redshift. At higher redshift, the value

decreases. To understand the behaviour, we write the ratio as γh/i = 3(l/rion) +

3(l/rion)2 + 3(l/rion)3 where l ≡ rheat − rion is the width of the heated region which

roughly corresponds to the average mean free path of UV photons. To think simply,

we regard the ionized region as ionized sphere which located at uniform density

field and its ionization status is far from the ionization equilibrium. Then the rion ∝

n1/3 because Nion = (4/3)πr3
ionn for given ionizing photon number Nion, where n

is the number density of gas, assuming the gas is composed of only hydrogen. On

the other hand, l ∝ n−1, therefore as redshift increases and the mean density of the

Universe gets denser, l/rion becomes smaller, resulting in smaller γh/i.

The stellar mass dependence of γh/i is smaller than the error which is originated

from the spacial resolution of the RHD simulations (see the blue solid line, orange

dashed line, and these error regions in Figure 6.2), so that we neglect the stellar mass

dependence. In details, the stellar mass dependence of the effective temperature

affects the mean free path of UV photons. Also, the different life time of different

stellar mass of Pop III stars slightly influences the resulting γh/i.

The halo mass dependence is too small to affect the γh/i (see the dashed orange

line and green dash-dotted line in Figure 6.2) as well as the stellar mass dependence.

Thus, we neglect the dependence in this work. Although γh/i of massive MHs (&

3 × 106M�) would be different because of dense gas profile in and near the vrial

radius, the Pop III star does not emit enough ionizing photons within the lifetime

to ionize whole gas in such massive haloes. Therefore, these massive MHs do not

contribute ionization degree of the Universe due to the nearly-zero escape fraction

of ionizing photons.

We develop the fitting formula for γh/i (the thin black solid line in Figure 6.2):

log(γh/i) = −3.11 log(1 + z) + 5.23. (6.7)
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FIGURE 6.2: γh/i as a function of redshift. The blue solid line is the
case of Ms = 200M�, Mh = 105M�, the orange dashed line is the case
of Ms = 500M�, Mh = 105M�, the green dashed-dotted line is the
case of Ms = 500M�, Mh = 106M�. The shaded regions represent the
errors originating from the spacial resolution of the one-dimension

RHD simulation. The thin black solid line is fitted line.

We use the formula to obtain the value of γh/i.

6.2.3 LW feedback

The LW photons dissociate molecular hydrogen, suppressing the formation of Pop

III stars in MHs. In this work, we take into account the negative feedback and its

redshift dependence by calculating the box-averaged LW intensity at each redshift.

The LW intensity, JLW, boosts the minimum halo mass which can hold enough num-

ber of molecular hydrogen to cool gas and form stars, Mcool. The relation of JLW and

Mcool is investigated with numerical simulations (Machacek, Bryan, and Abel, 2001;

Wise and Abel, 2007; O’Shea and Norman, 2008), and it is well fitted by (Visbal et al.,

2014)

Mcool = 3.4× 105
(

1 + z
21

)−1.5

×
{

1 + 6.96 (4π JLW(z))0.47
}

M�, (6.8)

where, the unit of JLW is [10−21 erg s−1 cm−2 Hz−1 str−1].

We calculate JLW(z) by averaging the LW intensity at each grid, JLW(x, z), over

the simulation box. JLW(x, z) is obtained by the way similar to that of X-ray intensity

implemented in the original 21cmFAST and that used in Fialkov et al., 2013, which
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sums up contributions from shells whose center is at the grid position x:

JLW(x, z) =
∫ zmax

z
dz′

1
4π

1
4πr2

p

dε(x, z′)
dz′

, (6.9)

where z′ is corresponding to the redshift when the reached photons to the grid was

emitted in each shell, and the rp is the proper distance from the shell. The LW specific

emissivity per redshift [erg s−1 Hz−1] can be written as,

dε(x, z′)
dz′

=

(
NLWELW

∆νLW

)
f∗ fesc,LW n̄b,0(1 + δ̄R)

dV
dz′

d fcoll

dt
, (6.10)

where f∗ is the star formation efficiency, fesc,LW is the escape fraction of the LW band

photons, n̄b,0 is the mean baryon number density at z = 0, δ̄R is the overdensity aver-

aged over the shell scale R, dV is the comoving volume of the shell, and dz is redshift

width corresponding to the shell width, respectively. The factor (NLWELW/∆νLW)

means the energy of LW photons per stellar baryon per frequency. We adopt values

used in Mebane, Mirocha, and Furlanetto, 2018. The escape fraction of dissociation

photons, fesc,LW, has similar dependences of halo mass, stellar mass, and redshift to

that of ionizing photons (Kitayama et al., 2004). Therefore, we use our escape frac-

tion model of ionizing photons, which is described in Section 6.2.4, for the LW escape

fraction for simplicity. In terms of zmax, we assume all LW band photons redshift by

4% before absorbed by any Lyman lines (Visbal et al., 2014):

1 + zmax

1 + z
= 1.04. (6.11)

Using equation (6.9) and (6.10), we get (c.f. Equation (25) of Mesinger, Furlanetto,

and Cen 2011):

JLW(x, z) =
f∗n̄b,0c

4π

NLWELW

∆νLW

∫ zmax

z
dz′(1 + z′)3(1 + δ̄R)

d fcoll

dz′
, (6.12)

where, c is the speed of light.

6.2.4 Ionization field

We estimate the effect of UV photo-heating on the cosmological 21-cm signal using

ionization field and γh/i as described in Section 6.2.2. In the original 21cmFAST code,

the criteria judging whether a grid is ionized or not is:

ζion fcoll > 1 + n̄rec, (6.13)

where ζion = NUV fesc f∗ with NUV being the number of ionizing photons per stellar

baryon, and n̄rec being the number of recombination per baryon. When taking into
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account the time-evolving LW feedback, two problems occur.

One problem is that the collapse fraction has redshift dependence induced by

Mcool(JLW(z)). Therefore, equation (6.13) cannot judge the ionization status appro-

priately. For example, when the LW intensity rise rapidly, the critical halo mass for

star formation, Mcool, also rises rapidly, then the collapse fraction, which is the frac-

tion of matter collapsed in more massive haloes than Mcool, possibly decreases in

time. In such a case, the part of ionizing photons emitted in the past is not counted

to judge the ionization status.

The other problem is about the escape fraction of ionizing photons. Sicne the

escape fraction depends on halo mass, the value of the escape fraction should be

obtained by taking average weighted by the halo mass function (MHF). The Mcool

gives the minimum value of halo mass in the integration, meaning that the escape

fraction depends on the JLW(z). This dependence of fesc would have large impact

on the ionization history of the Universe: At z = 20, the averaged escape fraction

over the stellar lifetime with halo mass of Mh = 3 × 105 / 2 × 106M�, hosting a

signal PopIII star with mass of Ms = 200M�, are fesc ∼ 0.6 / 0.0, respectively. The

minimum mass becomes Mcool ∼ 2× 106M� when JLW = 0.05, which means the

escape fraction becomes nearly zero before the LW feedback saturates. The massive

halos whose escape fraction is zero do not contribute the reionization anymore.

In order to solve the two difficulties explained above and calculate ionization

field appropriately with the time-evolving escape fraction, we develop new method-

ologies: (1) we modify the ionization criterion and (2) develop sub-grid model of

the escape fraction using high-resolution N-body simulations and the detailed RHD

simulations. Our method is only valid at high redshift when Pop III stars are the

dominant sources of ionizing photons. In following part of this section, we describe

the method.

Ionization calculation including recombination

We introduce a new criterion below to account for the redshift dependencies of the

escape fraction and the collapse fraction induced by time-evolving Mcool:

N̄R
ion > 1 + N̄R

rec. (6.14)

where N̄R
ion and N̄R

rec are the numbers of ionizing photons and recombination per

baryon spatially averaged at scale R, based on values at each grid, Nion(x) and

Nrec(x):

Nion =
∫ zinit

z
dz ζion(z)

d fcoll(z)
dz

. (6.15)

Nrec =
∫ zinit

z
dz αBnH(Nion,prev − Nrec,prev)

dt
dz

(6.16)
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where, αB is the case-B recombination coefficient, nH is the number density of hy-

drogen, Nion,prev and Nrec,prev are the values at the previous time step. Note that Nrec

is different from nrec introduced by Sobacchi (2014): The nrec is the recombination

number in a fully ionized cell to keep the grid ionized, which means they do not

take into account recombination before the cell is fully ionized. On the other hand,

our Nrec additionally includes the recombination when the cell is partially ionized.

Indeed Visbal, Haiman, and Bryan, 2018 found that the recombination can be ig-

nored due to the rapid growth of the star formation rate density. However, in our

simulations, the escape fraction would drop to nearly zero so that the emissivity of

ionizing photons can decrease. Therefore, the recombination is needed to be taken

into account.

With the criterion, equation (6.14), simulation cells are judged weather they are

fully ionized or not from the largest scale to the cell scale. We take 30 Mpc as the

largest scale which is large enough in the high redshift we are interested in. If the

cells are not judged as fully ionized even at the cell scale, the ionization fraction is

calculated by xe = min{Nion − Nrec, 1}. This is because Nion − Nrec does not mean

ionization fraction but means the number of surrounding cells the cell can ionize

with photons produced in the cell. Thus, Nion − Nrec can exceed unity.

Both 21cmFAST and our simulation code assume that hydrogen and single ion-

ized helium have the same ionization fraction xe. Ignoring helium recombination

in equation (6.16) is indeed a good approximation given that photons produced by

helium recombination have enough energy to ionize hydrogen.

We have checked this algorithm by solving the Strömgren sphere problem. Al-

though this method to calculate the non-equilibrium ionization is relatively simple

comparing the radiative transfer simulations, the error of the Strömgren radius is

less than ∼ 10%.

Escape fraction of ionizing photons

Because the minimum mass of star forming haloes affects the escape fraction as we

explained in the first part of this section, we here describe how to incorporate the

Mcool dependence on the escape fraction fesc(z). The strategy is straightforward:

since the escape fraction of an individual halo hosting Pop III stars, fesc,ind(Mh, Ms),

is dependent on the halo mass, we take average of the individual escape fraction

over all haloes whose mass is above the minimum halo mass Mcool, weighted by the

halo mass function (HMF), dn
dMh

:

fesc =

∫ ∞
Mcool

dMh
dn

dMh
fesc,ind(Mh, Ms)∫ ∞

Mcool
dMh

dn
dMh

. (6.17)
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FIGURE 6.3: The individual escape fraction fesc,ind at redshift 20 as a
function of halo mass. The red solid line, the green dashed line, and
blue dashed-dotted line are the cases of stellar mass of Ms = 500M�,
200M�, and 80M�, respectively. The thin lines are the fitted curves

(equation 6.19).

For simplicity, we assume the single mass initial mass function of Pop III stars, that

is, all stars have the same mass. Indeed the individual escape fraction depends on

redshift, but the dependence is so small compared to dependences of stellar mass

and halo mass that we ignore the redshift dependence in this work.

In order to obtain the HMF, we use the high-resolution N-body simulations (Ishiyama

et al., 2016) in (16Mpc/h)3 box with 40963 dark matter particles. The gravitational

softening length is 60 pc/h, the initial redshift is 127. We define haloes with the

Friends-of-Friends (FoF) algorithm developed by Davis et al. 1985 with a linking

parameter of b = 0.2. The minimum FoF halo mass is set to be 1.6× 105M�/h being

resolved by 32 particles.

We conduct series of RHD simulations which is described in Section 6.2.2 to ob-

tain fesc,ind. Since the RHD simulation directly solves dynamics of the dense gas in a

halo, we can trace the time-evolving gas density profile, which allows us to calculate

the optical depth τν at any stellar age of tage. Using the optical depth, the escape

fraction at tage can be written as,

f̃esc,ind =

∫ ∞
νL

dν Lν
hν exp(−τν(rvir))∫ ∞

νL
dν Lν

hν

(6.18)

where Lν is specific luminosity of Pop III stars, νL is the Lyman limit frequency, rvir is

the virial radius of the halo. We approximate the stellar spectrum as the black-body
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FIGURE 6.4: The escape fraction as a function of the minimum halo
mass for star formation, Mcool. The red solid line, the orange dashed
line, and the blue dashed-dotted line are the cases of stellar mass of

Ms = 500M�, 200M�, and 80M�, respectively.

spectrum of the effective temperature of Pop III stars (Schaerer, 2002). Then, averag-

ing f̃esc,ind over the lifetime of the star, tlife, gives fesc,ind =
∫ tlife

0 f̃esc,inddtage/tlife.

In Tanaka et al., 2018, the behavior of fesc,ind is described in detail. Thus, we

here show the halo mass dependence of the individual escape fraction in Figure 6.3.

In the case of less massive haloes, the ionized bubble easily expands beyond the

virial radius due to less amount of gas inside. Thus, soon after the Pop III star was

born, the fesc,ind becomes almost unity, resulting in a large fesc,ind. As the halo mass

increases, more amount of gas prevents the ionized bubble from expanding, which

keeps fesc,ind small. Thus, in the cases of massive MHs (Mh & a few ×106M�),

the fesc,ind remains nearly zero even at the end of the lifetime. Consequently the

individual escape fraction is zero. By simulating in a wide range of parameter space,

we develop useful fitting formula for fesc,ind (Thin curves in Figure 6.3):

fesc,ind = MAX
{
−18.14M−0.67

s

(
Mh

106[M�]

)
+ 0.97, 0

}
. (6.19)

The formula is valid with Mh > 105M� and Ms = [40− 500]M�.

Now we see the Mcool dependence of the escape fraction fesc in Figure 6.4. As the

Mcool rises, the escape fraction falls. This is because the individual escape fraction

is smaller for more massive haloes. The larger stellar mass of Pop III stars results in

larger escape fraction due to the larger luminosity of ionizing photons which enable

to ionize whole gas inside the halo within shorter timescale. We use the model of
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escape fraction dependent on Mcool in our simulations.

6.3 Results1: The impact of our escape fraction model

We have done series of simulations, using our escape fraction model, to take into ac-

count the effect that the LW intensity affects minimum halo mass for star formation

of Pop III stars. Also we investigate the effect of UV photo-heating on the 21-cm sig-

nal. All the results in this chapter are from simulations with boxes size of 5123 Mpc3,

grid number of 5123. The initial conditions are calculated with 15363 grids at redshift

300. The simulations starts from z = 60 when the star formation rate density of Pop

III stars was too low to affect the ionization fraction of the Universe on cosmological

scales. Since we investigate the impact of UV feedback on the cosmological 21-cm

signal in this work, we turn off the X-ray heating so that we can obtain clear insights

of UV photo-heating.

The parameters used in our simulations of this section are NUV = 70000, f∗ =

0.015. With f∗ = 0.015 resulting number of stars in MHs is less than the order of

unity at maximum. As for Lyα coupling, we use the Pop III spectral models (Barkana

and Loeb, 2005) prepared in the original 21cmFAST to calculate Lyα intensity.

We have conducted simulations with our escape fraction model with stellar mass

of Ms = 500M�, 200M�, 80M�, which are named as Run-Ms500, Run-Ms200, and

Run-Ms80. In order to compare our model with the conventional constant escape

fraction, we have also done simulations with the constant value of fesc = 0.5, named

as Run-Fesc05.

In this section, we mainly investigate how our escape fraction model affects the

21-cm observable and several physical values such as ionization history and evolu-

tion of the SFRD, comparing with the conventional constant fesc model, with same

star formation efficiency f∗. While, in the next section, we discuss whether we can

estimate the typical stellar mass of Pop III stars from the 21-cm signals.

6.3.1 Ionization history

First of all, we show how our escape fraction model impacts on the ionization history

in Figure 6.5. To understand the ionization history, we plot the time evolution of the

escape fraction and the LW intensity in Figure 6.6.

In our escape fraction models (Run-Ms500, Run-Ms200, and Run-Ms80), the LW

intensity is so low at high redshift (z ∼ 40− 60) that the escape fraction is nearly

unity. Therefore, the box-averaged ionization degree increases with growing star

formation density, and is slightly larger than Run-Fesc05 owing to fesc > 0.5. Then,

the growth of the LW intensity gradually halts the star formation in less massive

haloes. As a result, the escape fraction drops sharply at z ∼ 28− 35 depending on
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FIGURE 6.5: The box-averaged ionization fraction and SFRD
[M�/yr/Mpc3] as a function of redshift. The red solid line, the or-
ange dashed line, the blue dotted line, and the green dashed-dotted
line are the cases of Run-Ms500, Run-Ms200, Run-Ms80, and Run-

Fesc05, respectively.
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FIGURE 6.6: Top: The escape fraction dependent on the LW intensity
as a function of redshift. The meaning of line types is the same as
Figure 6.5. Bottom: The normalized LW intensity as a function of

redshift.

the stellar mass. After the escape fraction drops, the LW intensity saturates. The

saturated value of JLW corresponds to fesc ∼ 0. Consequently, the IGM is no longer

irradiated with the ionizing photons from Pop III stars and the ionization fraction

of the Universe turns over. Then, recombination slowly gets the ionization status of

the Universe closer to neutral.

In Run-Fesc05, even though the LW intensity grows with time and boosts the

Mcool, more massive haloes than Mcool continue contributing to the reionization, re-

sulting in the monotonic increase of ionization fraction, xe.

The peak of xe is only ∼ 10−4 even in the massive Pop III star case (Run-Ms500).

The peak value is comparable with the fraction of the relic electrons. Thus, Pop III

stars hardly contribute to the cosmic reionization. In other words, using constant

escape fraction in time would result in an overestimation of the cosmic ionization

fraction.
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FIGURE 6.7: 2D slices of the 21-cm brightness temperature at redshift
20. The panels of left top and right top are with and without UV
photo-heating in the case of Run-Ms500. The panels of left bottom
and right bottom are with and without UV photo-heating in the case
of Run-Fesc05. Each map is 512 Mpc on a side and the thickness is
1 Mpc. The box-averaged ionization fractions are xe ∼ 1× 10−5 and

∼ 5× 10−2 in Run-Ms500 and Run-Fesc05.

6.3.2 21-cm brightness temperature

In this section, we show the results of 21-cm brightness temperature and describe

how our models of escape fraction and UV photo-heating influence the 21-cm sig-

nal. As we see in Section 6.3.1, in our model with all stellar masses, the ionization

fractions are low due to the decreasing escape fraction with time. Therefore, the stel-

lar mass difference has only tiny impacts on the 21-cm signals indeed. Thus, in this

section, we compare the results from Run-Ms500, which is on behalf of all the stellar

mass cases, with that from Run-Fesc05.

In Figure 6.7, we show the 2D slices of the 21-cm brightness temperature field at

z = 20. Until this redshift, the intensity of Lyman series photons become moderately

strong: The box-averaged coupling coefficients are ∼ 5.7 and 1.1 for Run-Ms500 and
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Run-Fesc05, respectively. Therefore, the spin temperature gets decoupled from the

CMB temperature especially at high-density regions, showing absorption or emis-

sion signal depending on the gas kinetic temperature. In Run-Ms500 without UV

photo-heating, since the ionization fraction is small, we see deep absorption regions

which is corresponding to the high-density regions where δ in equation 6.1 and xα

in equation 6.2 are large. The δTb map of Run-Ms500 with UV photo-heating looks

same as that without UV photo-heating, because the small ionization fraction means

the small volume fraction of a heated region.

In Run-Fesc05, on the other hand, the ionization fraction is xe ∼ 5% so that we

can see the ionized region as red-colored regions in the left bottom panel of Fig-

ure 6.7. Such ionized regions corresponds to again the high-density regions and

have brightness temperature closer to zero ∼ 0 [mK], because xHI in equation 6.1 is

small. When taking into account UV photo-heating in Run-Fesc05, δTb is increased

by the sub-grid-scale UV-heated regions. The increment depends on the ionization

fraction of grids. As a result, the emission regions (Red regions in the right bottom

panel of Figure 6.7) appear while the absorption signals are weakened. The reason

why the average color of Run-Ms500 and Run-Fesc05 is different is that the strength

of Lyα coupling is different.

We show the box-averaged 21-cm brightness temperature as the 21-cm global

signal in Figure 6.8. In Run-Ms500, at high redshift (z & 40), the density of the Uni-

verse is so high that the gas particle collisions effectively couple the spin temprature

with the gas temperature which is colder than the CMB temperature, and therefore,

the signal is absorption. As the Universe becomes diluted due to the Hubble ex-

pansion, the collisional coupling becomes weaker. Around z = 30, since the Lyman

series photons emitted from Pop III stars start to be effectual, the global signal turns

over, showing deeper absorption with time.

The differences appear at the deep absorption phase at lower redshift. The strength

of Lyα coupling mainly determines the absorption depth because the ionization frac-

tion is still small in all the models. Since the intensity of the dissociation photons is

larger in Run-Fesc05, the less massive haloes cannot host stars so that the coupling is

weaker than the other models. The differences among Run-Ms500, Run-Ms200, and

Run-Ms80 are originated from the differences of SFRD (or JLW). The less massive

case produces deeper absorption signal due to smaller value of the escape fraction.

The effect of UV photo-heating appears when the ionization fraction is roughly

more than 1%. In the case of Run-Fesc05, the curve with UV photo-heating starts

separated from that without the heating around z ∼ 22, and the difference becomes

larger as the ionization fraction increases. In cases of Run-Ms500, Run-Ms200, and

Run-Ms80, however, UV photo-heating does not have significant effect because the

ionization fraction remains tiny.
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FIGURE 6.8: The box-averaged 21-cm brightness temperature as a
function of redshift. The red solid line, the orange dashed line,
the blue dotted line, and the green dashed-dotted line are the cases
of Run-Ms500, Run-Ms200, Run-Ms80, and Run-Fesc05 without UV
photo-heating, respectively. The thin green and thin red curves are
the case of Run-Fesc05 and Run-Ms500 with UV photo-heating. Note

that red thin and thick curves overlap each other.
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FIGURE 6.9: The power spectra of the 21-cm brightness temperature
at redshift 20. The green solid and red dotted curves respectively in-
dicate the results of Run-Ms500 without and with UV photo-heating.
The blue dashed and magenta dashed-dotted curves are these of Run-
Fesc05. The shaded regions correspond to the 10 - 90 percentiles ob-

tained from 10 realizations each.
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In Figure 6.9, we show the power spectra of 21-cm brightness temperature, ∆2
21(k, z) ≡

δT
2
b(z) 〈|δ21(k, z)|2〉k3/(2πV), at z = 20, where δ21(x, z) ≡ [δTb(x, z)− δTb(z)]/δTb(z).

The power spectrum of Run-Ms500 has relatively flat shape at the middle scale range

(k ∼ 10−1 − 1 [Mpc]−1) and indicates the drop at larger scale (k . 10−1 [Mpc]−1),

which is consistent with the results of Mesinger, Furlanetto, and Cen, 2011 when the

Universe is neutral and Lyα coupling turns on. Since the ionization fraction is small,

taking into account UV photo-heating does not affect the power spectrum as well as

the 21-cm global signal.

The results of the Run-Fesc05 in which the ionization fraction is relatively large,

on the other hand, slightly differ from that of Run-Ms500. Moreover, the Run-Fesc05

with UV photo-heating shows larger difference around at k ∼ 0.1[Mpc−1]. This sug-

gests that if the Universe is slightly ionized, the power is about one order of magni-

tude smaller than the neutral case at the scale. By intensively analyzing simulation

data, we find that when the ionization fraction is xe & 1%, UV photo-heating has

non-negligible impact on the 21-cm power spectrum.

6.4 Result2: Can we distinguish typical stellar mass from 21-

cm signals?

I showed, in the previous section, how our escape fraction model impacts on the

ionization history and 21-cm signals: For given star formation efficiency f∗, SFRD

varies with different stellar mass because different escape fraction leads to different

strength of the LW feedback. Additionally, Pop III stars do not contribute to the

cosmic reionization indeed due to decreasing escape fraction as the LW feedback

becomes strong. In this section, we discuss whether we can extract typical stellar

mass of Pop III stars from 21-cm observations.

6.4.1 Modifying escape fraction model

If Pop III stars do not contribute to the reionization, we cannot distinguish different

stellar mass from 21-cm signals. xα depends on SFRD and not the stellar mass. The

gas temperature does not depend typical stellar mass neither. Therefore, the bright-

ness temperature is almost unchanged for different stellar mass of Pop III stars. To

be strict, the saturated value of J21 depends on Ms, but the differences on the 21-cm

global signal is not large.

Do not Pop III stars really contribute to the reionization? The escape fraction

would have larger values than that of our model indeed. We use spherically sym-

metric 1D RHD simulations, putting a single Pop III star at the center of haloes.
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FIGURE 6.10: The individual escape fraction averaged over stellar
lifetime depending on stellar mass. The blue solid line is the results
with our 1D RHD simulations (Tanaka et al., 2018), the red dashed
line is the results with 3D ray tracing simulation (Alvarez, Bromm,

and Shapiro, 2006).

However, the 3D simulations taking into account the inhomogeneity of gas distribu-

tion show larger escape fraction.

For example, Yajima, Choi, and Nagamine, 2011 have conducted the post-process

3D RT simulations based on gas density distribution from cosmological simulations

and derived escape fraction of high-z galaxies. Their results show the variation of

the value of escape fraction ranging fesc ∼ [0− 1]. The variation is originated from

gas density inhomogeneity in radial direction. Ionizing photons can escape more

easily at the low-column-density direction and vice versa. Although they have in-

vestigated haloes with mass of Mh ≥ 109M�, less massive MHs would have variety

of fesc values, and the averaged value would not be zero.

As another example, Alvarez, Bromm, and Shapiro, 2006 have conducted 3D

ray-tracing calculation to investigate the evolution of ionization front with 3D gas

distribution taken from cosmological simulation as initial condition. The resultant

time-averaged escape fraction over stellar lifetime is shown in Figure 6.10, with halo

mass of 106M�, at redshift 20. we overplot the results of our 1D simulations in the

same figure. We see the 3D simulation tend to give larger values of escape fraction

resulted from inhomogeneity of gas distribution.

The 3D calculation needs enormous computational cost, and therefore, modeling

the escape fraction in the same manner as ours with 3D simulations is fairly difficult.
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FIGURE 6.11: The thin curves are our escape fraction model devel-
oped with 1D RHD simulations, while the thick curves are the mod-
ified escape fraction model taking into account the 3D effect just by
increasing the critical halo mass, at which the escape fraction drops
nearly zero, for simplicity. The red solid, green dashed, and blue
dotted-dashed curves means stellar mass of 500M�, 200M�, and

80M�.

Therefore, we take into account the "3D effect" just by increasing the critical halo

mass, at which the escape fraction drops to nearly zero, for simplicity. We show our

escape fraction model with Ms = 500M� and that with 10 times larger critical halo

mass in Figure 6.11. We extrapolate in less massive range of halo mass where there

are no data points, setting an upper limit of unity.

We conducted several simulations with the escape fraction model considering

the 3D effect. In order to investigate the stellar mass dependence of 21-cm sig-

nals, we adjust the star formation efficiency f∗ so that SFRDs at z = 20 are same

in different stellar mass of Pop III stars: f∗ = 0.015, 0.01328, and 0.01134 for Ms =

500M�, 200M�, and 80M�. Apart from the escape fraction model and the star for-

mation efficiency, the other parameters are the same as the simulations in the pre-

vious section. We name the simulations with stellar mass of Ms = 500M�, 200M�,

and 80M� as Run-Ms500_Mc10x, Run-Ms200_Mc10x, and Run-Ms80_Mc10x.
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FIGURE 6.12: The box-averaged ionization fraction (top panel) and
star formation rate density (bottom) as a function of redshift. The red
solid, the orange dashed, and the blue dotted curves are the cases of
Run-Ms500_Mc10x, Run-Ms200_Mc10x, and Run-Ms80_Mc10x5, re-

spectively.
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FIGURE 6.13: Top: The escape fraction dependent on the LW intensity
as a function of redshift. Bottom: The normalized LW intensity as a

function of The meaning of line types is the same as Figure 6.12.
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FIGURE 6.14: The box-averaged 21-cm brightness temperature con-
sidering UV photo-heating as a function of redshift. The red solid,
orange dashed, and blue dotted-dashed curves are the results of Run-

Ms500_Mc10x, Run-Ms200_Mc10x, and Run-Ms80_Mc10x.

6.4.2 Ionization history and 21-cm global signal including the 3D effect

The ionization history and SFRD are shown in Figure 6.12, and the escape fraction

and the LW intensity are exhibited in Figure 6.13. The SFRD at redshift 20 are identi-

cal for different stellar mass cases. With the escape fraction model with the 3D effect,

Pop III stars contribute to the reionization and ionization degree is different for dif-

ferent stellar mass. Since more massive Pop III stars lead to larger escape fraction,

the ionization degree is larger. Resultant xe at z = 20 are 2.3%, 1.0%, and 0.24% for

Run-Ms500_Mc10x, Run-Ms200_Mc10x, and Run-Ms80_Mc10x.

The 21-cm global signal is shown in Figure 6.14. Even though the SFRD is iden-

tical with each other and the strength of the Lyα coupling is similar, the differ-

ence of ionization fraction results in different value of the global signal. Because

δTb,gl ∝ (1− xe)(TS − TCMB)/TS, larger ionization degree in cases of more massive

Pop III stars leads to shallower absorption signal. In addition, the larger xe means

more effective UV photo-heating so that the absorption becomes even shallower for

massive Pop III cases. Consequently, the difference of the global signal between

Run-Ms500_Mc10x and Run-Ms80_Mc10x at z = 20 is about 37 mK.

Because of the stellar mass dependence of the 21-cm global signal, if we can
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estimate the SFRD with other observations, for example, the cosmic infrared back-

ground, we would be able to estimate the typical stellar mass of Pop III stars. How-

ever, without knowing the SFRD, the SFRD and Pop III stellar mass are indeed de-

generated in the global signal. Thus, we need more information than the global

signal to evaluate both the SFRD and the typical stellar mass, which is discussed in

the next subsection.

6.4.3 Resolving degeneracy between stellar mass and SFRD

The 21-cm global signal has information on the SFRD and the typical stellar mass of

Pop III stars. However, they degenerate: (1) SFRD is high and stellar mass is mas-

sive, which means higher ionization degree and more effective UV photo-heating

and (2) SFRD is low and stellar mass is less massive. The two cases can have the

same value of the 21-cm global signal. The result in Section 5.4 indicates the nature

of degeneracy in the global signal as well.

We can indeed resolve the degeneracy utilizing the spatial fluctuation of 21-cm

brightness temperature together with the 21-cm global signal. In this section, we

simulate the degenerated case with stellar mass of 500M� and 80M� and show how

the spatial fluctuation resolves the degeneracy.

We adjust the star formation efficiency f∗ = 0.0058 for Ms = 80M� (namaed as

Run-Ms80_Mc10x_2) so that the resultant global signal at redshift 20 becomes the

same as Run-Ms500_Mc10x. The simulated ionization history and SFRD are shown

in Figure 6.15, and the escape fraction and the intensity of LW radiation are exhibited

in Figure 6.16. The resultant global signal is shown in Figure 6.17. We see that the

global signal at redshift 20 equals each other, δTb,global ∼ −111 mK.

The stellar mass dependence indeed appears on the evolution of the global sig-

nal. However, the IMF of Pop III stars can be different at different redshift. For

example, Hirano et al., 2015 shows the Pop III.2 stars which form under the influ-

ence of UV radiation background tend to be more massive than the Pop III.1 stars

which form not being affected UV radiation. Since the UV radiation background

evolves with time, the IMF of Pop III stars can evolve as well. Therefore, we would

like to estimate both the SFRD and the typical stellar mass from the 21-cm signal at

a particular redshift.

Now we see the spatial distribution of the 21-cm brightness temperature in Fig-

ure 6.18. The right two figures are the 2D map of δTb with UV photo-heating. The

both have the same averaged value of ∼ −111 mK, but clearly the contrast is dif-

ferent: in the case of Run-Ms500_Mc10x, the emission signals emerge from the UV

heated regions (Red regions in top right panel), on the other hand, the result of Run-

Ms80_Mc10x_2 exhibits less area of UV heated regions. Also the Lyα coupling is
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FIGURE 6.15: The box-averaged ionization fraction (top panel) and
SFRD [M�/yr/Mpc3] (bottom) as a function of redshift. The red solid
and the blue dotted curves are the cases of Run-Ms500_Mc10x, and

Run-Ms80_Mc10x_2, respectively.
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FIGURE 6.16: Top: The escape fraction dependent on the LW intensity
as a function of redshift. Bottom: The normalized LW intensity as a

function of The meaning of line types is the same as Figure 6.15.
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FIGURE 6.17: The box-averaged 21-cm brightness temperature con-
sidering UV photo-heating as a function of redshift. The red solid
and blue dotted-dashed curves are the results of Run-Ms500_Mc10x

and Run-Ms80_Mc10x_2.
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FIGURE 6.18: 2D slices of the 21-cm brightness temperature at red-
shift 20. The panels of left top and right top are with and with-
out UV photo-heating in the case of Run-Ms500_Mc10x. The pan-
els of left bottom and right bottom are with and without UV photo-
heating in the case of Run-Ms80_Mc10x_2. Each map is 512 Mpc
on a side and the thickness is 1 Mpc. The box-averaged ionization
fractions are xe ∼ 2.3% and ∼ 0.3% in Run-Ms500_Mc10x and Run-

Ms80_Mc10x_2.
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FIGURE 6.19: The power spectra of the 21-cm brightness tempera-
ture at redshift 20. The red solid and the blue dotted curves are Run-
Ms500_Mc10x and Run-Ms80_Mc10x_2. The thick and thin curves

are with and without UV photo-heating.

different, xα = 1.45 and 1.19 for Run-Ms500_Mc10x and Run-Ms80_Mc10x_2. There-

fore, the δTb contrast of Run-Ms500_Mc10x is stronger than that of Run-Ms80_Mc10x_2.

The difference of the contrast appears on the power spectrum shown in Fig-

ure 6.19. Without UV photo-heating, the power spectra are relatively similar to each

other whose difference is originated mainly from the Lyα radiation and ionization

fraction. Once we take into account UV photo-heating, the difference becomes larger

especially at the scale of k ∼ 0.1 Mpc−1. UV photo-heating decreases the power at

large scales. Since the ionization fraction of Run-Ms500_Mc10x is larger than that

of Run-Ms80_Mc10x_2 so that the influence of UV photo-heating and the resulting

drop of power is larger. Therefore, even if SFRD and typical stellar mass degenerate

in the 21-cm global signal, we can resolve the degeneracy with spatial distribution

of δTb and its power spectrum.

We note that we need to improve the foreground removal model or other inno-

vative ideas to reduce error of the global signal and the power spectrum in order to

estimate SFRD and Pop III stellar mass from the 21-cm observations.

6.4.4 Application for arbitrary IMF

In all the simulations until here, we approximate IMF assuming that all Pop III stars

have the same mass (single-mass IMF). But, our model of escape fraction can be
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FIGURE 6.20: Normalized IMFs mimicking the IMFs obtained in Hi-
rano et al., 2015 (red solid curve) and Susa, Hasegawa, and Tominaga,

2014 (blue dashed curve).

easily extended to arbitrary IMF as long as the individual escape fraction for the

mass range of the IMF is available. In this section, we demonstrate the extension.

We create two IMFs in such a way that the shapes become similar to the IMFs ob-

tained in the simulations of Hirano et al., 2015 and Susa, Hasegawa, and Tominaga,

2014 (See Figure 3.4 and Figure 3.3).

dnHirano

dMs
= exp

{
− (log Ms − log 250)2

2× 0.32

}
+

3
20

exp
{
− (log Ms − log 25)2

2× 0.12

}
, (6.20)

dnSusa

dMs
= exp

{
− (log Ms − log 30)2

2× 0.32

}
, (6.21)

where the unit of Ms is solar mass. The Hirano IMF (equation 6.20) is modeled as

the summation of two Gaussian distributions. The first and second peaks are at

250M� and 25M�. On the other hand, the Susa IMF (equation 6.21) is expressed as

a single Gaussian whose peak is at 30M�. Both IMFs are normalized at the position

of the first peak. The variances are chosen so that the shapes become similar to the

original IMFs obtained with the numerical simulations. The two IMFs are shown in

Figure 6.20.

To obtain the escape fraction model with the IMFs (equation 6.20 and 6.21), we

replace fesc,ind(Mh, Ms) in equation 6.17 with fesc,IMF(Mh):

fesc,IMF(Mh) =

∫
dMs

dnIMF
dMs

fesc,ind(Mh, Ms)∫
dMs

dnIMF
dMs

, (6.22)
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FIGURE 6.21: The escape fraction as a function of the minimum halo
mass for star formation, Mcool. The red solid and the blue dashed
curves are Hirano and Susa models. The dotted curves are the single-
mass IMF models for Ms = 500M� (green), 200M� (magenta) 80M�

(brown), respectively.

where dnIMF
dMs

is dnHirano
dMs

or dnSusa
dMs

. We use the fitting formula (equation 6.19) for the indi-

vidual escape fraction. We again neglect the redshift dependence because it is much

smaller than halo mass and stellar mass dependences in relevant redshift range (Sec-

tion 6.2.4).

Then, we obtain the escape fraction model, that is, escape fraction depending

on the minimum halo mass for star formation, which is shown in Figure 6.21. In

the cases of the single-mass IMF, once the Mcool goes beyond the critical halo mass,

at which the individual escape fraction for the single stellar mass sharply drops,

the escape fraction drops sharply as well (the dotted curves in Figure 6.21). In the

cases of the Hirano and Susa IMFs, on the other hand, even though the LW feedback

increases, massive stars can still provide ionizing photons into IGM. As a result, the

shape becomes flatter than the case of single IMF.

With the escape fraction models with the Hirano and the Susa IMFs, we con-

ducted simulations, taking into account the 3D effect. We choose the star formation

efficiency so as to fix SFRD at redshift 20: f∗ = 0.015 and 0.1172 for the Hirano

IMF and the Susa IMF, respectively. These runs are named as Run-Hirano_Mc10x

and Run-Susa_Mc10x. The other parameters are adapted from the simulations in

previous sections.
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FIGURE 6.22: The box-averaged ionization fraction and SFRD as a
function of redshift. The red solid and the blue dashed curves are the

cases of Run-Hirano_Mc10x and Run-Susa_Mc10x, respectively.
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FIGURE 6.23: Top: The escape fraction dependent on the LW intensity
as a function of redshift. Bottom: The normalized LW intensity as a
function of redshift. The red solid and the blue dashed curves are the

cases of Run-Hirano_Mc10x and Run-Susa_Mc10x, respectively.
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FIGURE 6.24: The box-averaged 21-cm brightness temperature as a
function of redshift. The red solid and the blue dashed curves are
the cases of Run-Hirano_Mc10x and Run-Susa_Mc10x, respectively.
The thick and thin curves are the cases with and without UV photo-

heating.

Figure 6.22 shows the time evolution of ionization fraction and SFRD, and Fig-

ure 6.23 shows the time evolution of escape fraction and LW intensity. In Run-

Hirano_Mc10x, since the typical stellar mass of the Hirano IMF is massive, the es-

cape fraction is larger. As a result, the ionization fraction increases at higher rate

compared with the case of Run-Susa_Mc10x. The ionization fraction at z = 20 is

2.2% and 0.6% for Run-Hirano_Mc10x and Run-Susa_Mc10x.

The 21-cm global signal is shown in Figure 6.24. Because the ionization frac-

tion is higher in Run-Hirano_Mc10x, the ionization and UV photo-heating make

the absorption signal shallow to greater extent than Run-Susa_Mc10x. The 21-cm

global signal with UV photo-heating at z = 20 is -111 mK and -137 mK for Run-

Hirano_Mc10x and Run-Susa_Mc10x. Figure 6.25 shows the 21-cm power spectrum.

When considering UV photo-heating, the slope becomes steeper compared to the

case without UV photo-heating. The power at k = 0.12 Mpc−1 is 4.57 and 14.2 for

Run-Hirano_Mc10x and Run-Susa_Mc10x.

As we demonstrate in this section, it is easy to model escape fraction with arbi-

trary shape of IMF and investigate how IMFs impact on the reionization history and

the 21-cm signals.
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FIGURE 6.25: The power spectra of the 21-cm brightness temperature
at redshift 20. The red solid and the blue dashed curves are the cases
of Run-Hirano_Mc10x and Run-Susa_Mc10x, respectively. Thick and
thin curves mean the result with UV photo-heating and that without

UV photo-heating.

6.5 Discussion

In this work, we use the box-averaged LW intensity and single value of escape frac-

tion at each redshift, however, the LW intensity can fluctuate largely (Ahn et al.,

2009), which may have not a little impact on the escape fraction and the 21-cm sig-

nals. At high density regions, the LW intensity rises earlier than the average and

the escape fraction falls toward zero, while, the low density region can remain low-

intensity levels in which less massive haloes, whose escape fraction is large, can still

form stars and possibly contribute to reionization. Thus, we incorporate the inho-

mogeneous LW feedback in future study.

In our escape fraction model, we assume that one MH does not host more than

one Pop III star. However, recent states-of-arts simulations show the wide variation

about the multiplicity of the Pop III star formation. Some simulations (e.g. Greif

et al., 2012; Machida and Doi, 2013; Hirano and Bromm, 2017) suggest the multiple

star formation. In the accretion disk around the protostar, the fragmentation pro-

duces multiple clumps. Such clumps would end up as a group of stars. However,

Hosokawa et al., 2016 reported that such clumps eventually merge onto the central

protostar, and as a result, single massive star forms at the center. Although these re-

sults have not yet converged, it would be worth studying 21-cm signals with models
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assuming the multiple star formation in which stellar properties like typical stellar

mass, stellar lifetime, and spectral hardness are different.

Although investigating other heating sources with UV photo-heating is beyond

the scope of this work, studying the X-ray heating together with UV photo-heating

is necessary. Pop III stars would end up as high mass X-ray binaries (HMXBs) which

are often presumed to be dominant X-ray source at high redshift (Fragos et al., 2013).

Such early X-ray photons can heat (and also ionize) the gas enough to largely affect

the 21-cm signals (e.g. Fialkov, Barkana, and Visbal, 2014). Since the mean free path

of X-ray is much longer than that of UV, the different fluctuation scale of gas heating

would help us distinguish the two types of heating (see Das et al. 2017 as example

of different scale of 21-cm fluctuations originated from mean free path difference).

Thus, we are planing to investigate the 21-cm power spectrum and its time evolution

with both the UV and X-ray heatings in our future work.

6.6 Summary of this chapter

We have conducted the semi-numerical simulations which for the first time account

for time-evolving escape fraction reflecting the boosted minimum halo mass for star

formation by the LW negative feedback. Additionally, we have developed a new

method to take into account UV photo-heating, which has ever been neglected, on

the calculation of the cosmological 21-cm signal by utilizing the 1D RHD simula-

tions. With the simulations, we study how the time-evolving escape fraction and

UV photo-heating affect on the ionization history and cosmological 21-cm signals

at high redshift, and investigate whether we can estimate SFRD and typical stellar

mass of Pop III stars, focusing on the epoch when the Pop III star formation domi-

nates the other stellar populations.

The results show that the escape fraction of MHs decreases with time as the LW

intensity grows and prevents less massive haloes, from which most ionizing pho-

tons escape, from continuing star formation. With the escape fraction model with

1D RHD simulation, the escape fraction fraction drops to nearly zero z = 28-35 de-

pending on the stellar mass of Pop III stars, and as a result, the ionization fraction

of the Universe stops increasing. This picture is different from that with a constant

escape fraction which is conventionally assumed in reionization and 21-cm simula-

tions.

The differences of ionization history modify the deepness of the absorption in

the 21-cm global signal. Comparing the result with the constant escape fraction

model, the absorption bottom of the global signal becomes deeper in the case of time-

evolving escape fraction because high-density regions are observed as deep absorp-

tion instead of zero-signal ionized region. When accounting for UV photo-heating,
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in all the places where the ionization fraction is not zero, the 21-cm brightness tem-

perature increases. Therefore, the global 21-cm signal is more closer to zero than the

case without UV photo-heating. We found that the impact on UV photo-heating on

the global signal is comparable to that of the ionization.

We simulate the Universe and calculate 21-cm signals with escape fraction con-

sidering the gas density inhomogeneity just by increasing the critical halo mass for

simplicity as well. In these simulations, Pop III stars contribute to the cosmic reion-

ization and the 21-cm signals exhibit the stellar mass dependence. Even though the

SFRD and the typical mass of Pop III stars degenerate in the 21-cm global signal, the

case with more massive stars show stronger contrast of the 21-cm brightness tem-

perature. The difference also appears in the 21-cm power spectrum. Although we

need to improve the foreground removal technique to precisely observe the 21-cm

signals, we found that the SFRD and the typical stellar mass of Pop III stars can be

estimated from high-z 21-cm signals, in principle.

Our results indicate the importance of studying the escape fraction of MHs in

more detail with three-dimensional simulations taking into account the gas density

inhomogeneity, and investigating whether Pop III stars contribute to the reionization

or not. Moreover, UV photo-heating is also needed to be studied in more detail

together with the X-ray heating.
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Chapter 7

Summary and Conclusion

In this final chapter, I summarize the thesis followed by the general conclusion. The

future prospects are also mentioned.

The dynamical evolution of the Universe is well described by the flat lambda

model with precisely constrained cosmological parameters by, for example, the CMB

observations (Chapter 2). The structure formation in the Universe such as stars and

galaxies roots in the initial tiny fluctuations in early Universe which grows due to

the gravitational instability. Although Pop III stars, which is made of the pristine

metal-free gas, have important roles in the history of the Universe, the results of the

theoretical works investigating their properties have not yet converged (Chapter 3).

As for observations, the neutral hydrogen 21-cm line emission and absorption have a

potential to reveal the nature of Pop III stars because it should reflect the properties,

even though the foreground removal is challenging (Chapter 4).

The theoretical models, which connect the 21-cm observables and the proper-

ties of Pop III stars, are needed to further proceed our understanding with current

and future 21-cm observations. I with collaborators investigate the profile of 21-cm

brightness temperature around an individual Pop III star in detail by developing

and conducting the radiative hydrodynamics simulations. We find that the gas dy-

namics plays an essential role: In early phase, the ionized region is well confined in

the halo so that the deep absorption region is seen around the central star, and then

in late phase, the ionized region goes beyond the halo radius letting the absorption

signal weaker. Also we revel the stellar mass, halo mass and redshift dependences

of the time evolution of the 21-cm signal profile (Chapter 5).

We study not only the small scale signal around Pop III stars but also the cos-

mological scale signal. We have developed and conducted the cosmological 21-cm

semi-numerical simulation for the first time considering the UV photo-heating and

time-evolving escape fractions of ionizing photons and H2 dissociation photons self-

consistently with the LW negative feedback on star formation. We developed two

models of the escape fraction: One is modeled with 1D RHD simulation (fesc1D

model), and the other simply takes into account the effect of 3D gas distribution

(fesc3D model). What we find is that, in the case with fesc1D model, Pop III stars



Chapter 7. Summary and Conclusion 120

hardly contribute to the cosmic reionization because the LW feedback halts the star

formation in less massive haloes whose escape fraction is large. Consequently, the

global signal is about twice stronger than that with the constant escape fraction

which is conventionally used. However, if Pop III stars do not contribute to the

reionization, the 21-cm signals reflect only SFRD, but do not inform us of the typical

stellar mass of Pop III stars. On the other hand, the fesc3D model lets Pop III stars

contribute to the reionization in which we can distinguish both the typical mass of

Pop III stars and the SFRD from the 21-cm global signal and the power spectrum

under the assumption that the formation of Pop III stars dominates that of other

populations and X-ray heating can be neglected (Chapter 6).

Through our works, we conclude that the 21-cm signals are significantly impor-

tant to proceed our understanding of Pop III stars because the observations of the

21-cm global signal and the power spectrum possibly enable us to estimate the SFRD

and the typical stellar mass of Pop III stars.

Although we yield new knowledge and perspectives about 21-cm signals origi-

nated from Pop III stars, there are still room for improvement such as modeling the

escape fraction more accurately with 3D simulations, considering the inhomogene-

ity of the LW radiation background, and so forth. In addition, installing the X-ray

heating together with the UV photo-heating is needed because the effectiveness of

the X-ray heating is still highly uncertain.

Improving theoretical works, including our works, step by step together with

the current and forthcoming 21-cm observations may clarify the properties of Pop

III stars at some future time. The perspectives of the high-redshift Universe is also

supposed to contribute to the understanding of the lower-redshift Universe as well

as the opposite way. I would like to expect that our efforts summarized in the the-

sis finally contribute to the ultimate goals of cosmology and astronomy which is to

completely grasp the whole history of the Universe.
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