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Abstract

Planets are thought to form in a protoplanetary disk that consists of gas and dust

grains. Dust grains first grow into km-sized objects called planetesimals, and planets

form through collisional growth of planetesimals. However, planetesimal formation suf-

fers some issues and still under debate. One issue is that mm- and cm-sized dust grains

fall onto a central star and depleted. Another issue is collisional fragmentation, which

prevents bottom-up coagulation toward planetesimals especially at inner regions.

Recent high-resolution observations with Atacama Large Millimeter/submillimeter

Array (ALMA) have been providing detailed dust distributions that can be the key to

understand planetesimal formation. One of the most highlighted observational results is

the discovery of annular substructures in dust distributions, i.e., rings and gaps. Rings

and gaps are found in most of the resolved disks, which indicates ubiquitousness of

annular substructures. The existence of such substructures means that mm-sized grains

are trapped in rings, which is in contrast to the classical theories that show mm-sized

grains are depleted. Thus, revealing dust ring formation will provide important clues to

understand planetesimal formation.

In this thesis, we focus on disk evolutions via secular gravitational instability, which

is one possible mechanism of ring and planetesimal formation. Secular GI is one of the

dust-gas instabilities and originally proposed as a mechanism of planetesimal formation.

Previous studies showed that secular GI is stabilized by dust diffusion driven by gas

turbulence. However, the previously-used advection-diffusion equation for dust density

violates angular momentum conservation. Thus, we first reformulate equations for dust

based on the Reynolds averaging. The Reynolds averaging is a method that divides mean

flow components and fluctuating components due to turbulence. Averaging usual dust

continuity equation introduces an additional advection term of momentum accompanied

by diffusion. We find that including the additional advection term recovers angular

momentum conservation. Using the reformulated equations, we conduct linear analyses

of secular GI. The results show that secular GI is an exponentially growing mode without

oscillation while the previous studies found that secular GI is an overstable mode. The

overstability in the previous studies is found to be due to the nonconservation of angular

momentum. We also found another unstable mode that we name two-component viscous

GI (TVGI). TVGI is triggered by a combination of friction and turbulent gas viscosity

and grows more easily than secular GI in the absence of dust drift.



Second, we develop numerical methods to investigate long-term linear evolution and

subsequent nonlinear evolution of secular GI. We develop a Lagrangian-cell-based method,

which is free from the numerical diffusion accompanied by dust drift. We also utilize the

symplectic integrator and reduces accumulation of errors due to time integration. Test

simulations of secular GI show that combining the method with the piecewise exact so-

lution for dust-gas friction enables long-term simulation for linear/nonlinear secular GI.

Using the developed method, we perform numerical simulations of secular GI in radially

extended disks while assuming uniform profile of dimensionless stopping time that is a

measure of dust sizes. We found that nonlinear growth of secular GI is similar to the

gravitational collapse of dust rings whose timescale is well represented in terms of the

freefall timescale. The resultant rings will fragment in the azimuthal direction and turn

into planetesimals. The nonlinear growth increases dust surface density by an order of

magnitude. On the other hand, the gas disk is less affected and show insignificant sub-

structures. Thus, secular GI increases dust-to-gas ratio in rings, which also accelerates

dust coagulation and promotes planetesimal formation. When the growth of secular GI

is too slow, secular GI only creates transient dust rings and gaps that move inward.

Because secular GI creates significant substructures only in a dust disk, gas observations

will give hints to understand which ring-forming process operating in the observed disks.

Finally, we investigate a connection between the first bottom-up coagulation and

planetesimal formation via secular GI. Secular GI requires high dust-to-gas ratio for

mm- or cm-sized grains although the bottom-up coagulation results in depletion of those

dust grains. Thus, secular GI requires reaccumulation of mm- and cm-sized dust grains.

We propose a new instability as a mechanism of the reaccumulation. The instability we

call“ coagulation instability” is triggered by a combination of dust coagulation itself

and small scale traffic jam. In the absence of dust diffusion, coagulation instability grows

faster at shorter wavelengths. This is because a timescale of traffic jam becomes shorter.

Coagulation instability still operates in the presence of diffusion and grows within a tens

of the Keplerian periods even in a region where dust-to-gas ratio is of the order of 10−3.

Therefore, coagulation instability efficiently accumulates mm- and cm-sized dust grains,

and connects the first bottom-up coagulation to the top-down planetesimal formation

via secular GI.
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Chapter 1

Introduction

Over 4000 planets have been found with a wide variety of masses and orbital radii (e.g.,

hot Jupiters and super Earths) in extra-solar systems 1. Formation of those planets starts

from coagulation of sub-micron-sized dust grains in a gaseous disk around a central star (a

“protoplanetary disk). Such small grains stick to each other through intermolecular force,

and their coagulation results in kilometer-sized objects called planetesimals. Resultant

planetesimals further coalesce with the help of gravity and grow toward planets. Among

this overall scenario, planetesimal formation from tiny dust grains suffers some “barriers”,

including a radial drift barrier (e.g., Weidenschilling 1977) and a fragmentation barrier

(e.g., Weidenschilling & Cuzzi 1993). Although some theories have been proposed to

explain the origin of planetesimals (e.g., Ward 2000; Youdin & Johansen 2007; Okuzumi

et al. 2012), planetesimal formation is still under debate.

In addition to theoretical studies of planetesimal formation, recent disk observations

have been providing hints to reveal dust growth toward planetesimals. Radio observations

can see spatial distributions of dust grains with size ∼ mm. High resolution observations

with Atacama Large Millimeter/submillimeter Array (ALMA) have shown that most of

the resolved disks with ages < a few Myr host bright ring and dark rings (“gaps”) in

intensity profiles. These observations indicate that mm-sized dust grains are trapped in

such rings, which is in contrast to the classical theories showing that grains are depleted

because of the fast radial drift. The observed dust rings are thought to result from

planet formation or other processes before planet formation. Therefore, revealing dust

ring formation will provide important keys to resolve planetesimal formation. This thesis

explores one possibility that dust-gas instabilities in protoplanetary disks explain both

dust-ring formation and planetesimal formation.

1https://exoplanets.nasa.gov/ , http://exoplanet.eu/
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1.1. FROM MOLECULAR CLOUD CORES TO PROTOPLANETARY DISKS

In this chapter, we briefly review disk formation from a molecular cloud core, basic

dust dynamics, and ALMA observations.

1.1 From Molecular Cloud Cores to Protoplanetary

Disks

A protoplanetary disk is a by-product of a star-forming process. Star formation starts

from self-gravitational collapse of a molecular cloud core. A molecular cloud core is a

gas clump with a size of ∼ 0.1 pc, number density of ∼ 104−5 cm−3. Gas temperature

of molecular cloud cores is about 10 K, which is mainly determined by thermal equi-

librium with radiative cooling due to C II fine-structure line and radiative heating due

to photoelectric emission from dust grains and PAHs (Wolfire et al. 1995; Koyama &

Inutsuka 2000). Those isothermal gas clumps collapse in self-similar manner once their

self-gravity dominates thermal pressure gradient force (Larson 1969). This first isother-

mal collapse proceeds until inner collapsing gas becomes optically thick and behaves as

adiabatic gas. Effective specific heat ratio γeff of the resultant dense region is initially 5/3

although the dense gas consists of H2. This behavior originates from high temperature

that is required for the lowest rotational transition of H2 to be excited (≃ 510 K). When

compressional heating increases temperature enough, the rotational transition is excited

and γeff becomes 7/5.

These adiabatic gas cores can decelerate self-gravitational collapse as described below.

For a polytropic gas, thermal pressure P and gas mass density ρ are related by P = Kργeff ,

where K is a constant. Using this relation, one can estimate a pressure gradient force

−ρ−1∂P/∂r ∼ Kργeff−1/r, where r is a radial dimension of the core. Assuming spherical

symmetry, one obtains −ρ−1∂P/∂r ∝ r2−3γeff . On the other hand, self-gravity exerted

on the sphere of the core is GM/r2 ∝ rρ ∝ r−2, where G and M are the gravitational

constant and a core mass, respectively. Thus, when the ratio of the specific heats is

larger than 4/3, the pressure gradient force will dominate the self-gravity as the collapse

decreases the core radius r, resulting in a hydrostatic core called a “first core”. Larson

(1969) performed the first numerical simulation of the core collapse based one dimensional

hydrodynamic equations, and showed that the first core initially has a mass of ∼ 0.01M⊙

and a radius of ∼ 4 au.

The resultant first core grows in mass through material infall from a surrounding

envelope, and gradually shrinks with help of radiative energy loses from its outer layer.

Once the internal temperature reaches ∼ 2000 K, molecular gas turns into monoatomic

2



1.1. FROM MOLECULAR CLOUD CORES TO PROTOPLANETARY DISKS

gas through dissociation of H2 whose binding energy is ≃ 4.47 eV corresponding to

> 104 K (Wolniewicz 1995; Gaustad 1963). The H2 dissociation plays a role in cooling

the gas and triggers the second collapse of the core. Because the energy of collapsing

gas is used to dissociate hydrogen molecule, the gas temperature increases insignificantly

and the process is closely isothermal (γeff < 4/3). The second collapse is quenched once

all hydrogen molecules are dissociated, resulting again in a hydrostatic core called a

second core or a “protostar”. The mass of the protostar is about 10−3M⊙, and it radius

is ∼ 10−2 au corresponding to about 1 solar radius (see, Larson 1969; Masunaga &

Inutsuka 2000). The protostar also grows in mass via mass accretion from the surrounding

envelope, and finally goes to a (pre-)main-sequence star.

In reality, initial cloud cores have non-zero angular momentum. Gravitational col-

lapse of such a rotating cloud core forms a gaseous disk around a resultant protostar. The

resultant disk is called a protostellar disk, and grows toward a protoplanetary disk that is

more radially extended than a protostellar disk. Three-dimensional hydrodynamic sim-

ulations of the core collapse showed that the first core formed before the second collapse

eventually turns into a protostellar disk (Bate 1998; Machida et al. 2010). A protostellar

disk is thus initially a few au in size and more massive (∼ 0.01M⊙) than a protostar

(∼ 10−3M⊙). Along with the protostellar evolution through mass accretion from the

protostellar disk, the disk also grows in size and mass through magnetic interaction with

the surrounding envelope and mass infall.

The disk formation and evolution has also been extensively studied based on (non-

)ideal magnetohydrodynamical simulations (e.g., Machida et al. 2014). When inner col-

lapsing gas has a low density and Ohmic dissipation is ineffective, angular momentum of

the gas is transferred outward by threaded magnetic fields. This process is called mag-

netic braking (e.g., Mestel & Spitzer 1956; Mouschovias & Paleologou 1979). Magnetic

braking on inner collapsing gas is effective when the outer gas is more massive, which

is expected in the early phase of the runaway collapse. Magnetically driven wind and

outflow also contributes to extract angular momentum from the very inner region (e.g.,

Blandford & Payne 1982; Tomisaka 1998, 2002).

The inner gas density increases as the collapse proceeds. Once the gas number den-

sity reaches ∼ 1011−12 cm−3, Ohmic dissipation operates and dissipates magnetic field

(Nakano et al. 2002; Machida et al. 2014). Dissipation of magnetic field leads to inefficient

angular momentum transfer, and a rotationally supported disk forms around a protostar.

Figure 1.1 overviews of disk formation and evolution. The first core, which is a precursor

of a protostellar disk, is thermally supported and a few au in size at its formation. The

rotationally supported disk where Ohmic dissipation operates (a “magnetically inactive

3



1.1. FROM MOLECULAR CLOUD CORES TO PROTOPLANETARY DISKS

Figure 1.1: Schematic picture of disk evolution. The initially small magnetically inactive

region grows in radius because of mass accretion. Further mass accretion from the surrounding

envelope results in a rotationally supported disk that is more extended than the first core. This

figure is from Fig. 23 of Machida et al. (2014).

region”) is initially (sub-)au scale. Surrounding gas inside of the first core continues to

accrete on the inner disk, increasing the gas density of the disk. In addition, accreting

gas brings angular momentum to the disk. As a result of the increase in gas density and

angular momentum, the inner magnetically inactive region expands radially outward. In

other words, the disk radius increases. Machida et al. (2014) showed that a disk radius

exceeds 10 au a few thousands year after formation of a protostar. The disk extends fur-

ther toward ≃ 100 au after the infalling gas outside the first core becomes less massive

than the inner disk (Machida et al. 2011). Figure 1.2 shows mass evolution of a disk and

a protostar, originally shown in Inutsuka et al. (2010). Because of the nature of runaway

collapse, the protostellar mass is smaller than the first protostellar disk, denoted by a

“circumstellar disk” in Figure 1.2. Such a massive disk evolves not only by magnetic

interaction but also by its self-gravity that causes gravitational instability. Gravitational

instability creates spiral structures, which drive angular momentum transport and mass

4



1.2. DUST DYNAMICS IN PROTOPLANETARY DISKS

Figure 1.2: Schematic diagram of disk and protostar evolution in time versus mass plane. A

protostar is initially less massive than a protostellar disk, denoted as a “circumstellar disk”

in this figure. Mass accretion driven by gravitational instability in the disk increases the

protostellar mass beyond the disk mass. This figure is from Fig. 2 of Inutsuka et al. (2010).

accretion in magnetically inactive region (e.g., Bate 1998; Machida et al. 2011; Tomida

et al. 2017). The protostar grows in mass via resultant mass accretion from the disk,

evolving toward a protoplanetary disk less massive than a central star.

1.2 Dust Dynamics in Protoplanetary Disks

Dust grains in a molecular cloud core also accrete with collapsing gas onto a resultant

disk. Dust abundance relative to gas was observationally derived for interstellar medium,

and dust-to-gas mass ratio is about ∼ 0.01 (Bohlin et al. 1978). This small amount of

dust grains and their dynamics are important for planetesimal and planet formation in

protoplanetary disks. In this section, we briefly review key processes of dust grains in a

gas disk.

Dust grains aerodynamically couple with a gas disk. Hereafter, we refer to this dust-

gas coupling as “friction”. Characteristic timescale of friction on a dust grain with a

size of a and mass of m is called stopping time tstop. Stopping time is determined by

surrounding gas density ρg, sound velocity cs, and internal dust mass density ρint as

5



1.2. DUST DYNAMICS IN PROTOPLANETARY DISKS

follows:

tstop =


√

π

8

ρinta

ρgcs
a <

9

4
λmfp√

π

8

4ρinta
2

9ρgcsλmfp

a >
9

4
λmfp

, (1.1)

where λmfp is the mean free path of gas. The former is called the Epstein law while the

latter is called the Stokes law. We usually describe how strongly dust grains are coupled

to gas using dimensionless stopping time τs ≡ tstopΩ. Dust with τs ≪ 1 is tightly coupled

while it is decoupled for τs ≫ 1. Thus, we can us τs as a measure of dust sizes in a

protoplanetary disk. In the following subsections, we summarize dynamical processes

mostly based on stopping time.

If we neglect self-gravity of a disk, equations of motion of a dust grain orbiting around

a star with mass M∗ in cylindrical coordinate (r, ϕ, z) are

dvr
dt

=
v2ϕ
r

− GM∗r

(r2 + z2)3/2
− vr − ur

tstop
, (1.2)

dvϕ
dt

= −vrvϕ
r

− vϕ − uϕ

tstop
, (1.3)

dvz
dt

= − GM∗z

(r2 + z2)3/2
− vz − uz

tstop
, (1.4)

where vr, vϕ, and vz are radial, azimuthal, and vertical velocity of a dust grain. Gas

velocities are denoted by ur, uϕ, and uz. Gas equations are

dur

dt
=

u2
ϕ

r
− 1

ρg

∂P

∂r
− GM∗r

(r2 + z2)3/2
− ρd

ρg

ur − vr
tstop

, (1.5)

duϕ

dt
= −uruϕ

r
− 1

ρgr

∂P

∂ϕ
− ρd

ρd

uϕ − vϕ
tstop

, (1.6)

duz

dt
= − 1

ρg

∂P

∂z
− GM∗z

(r2 + z2)3/2
− ρd

ρg

uz − vz
tstop

, (1.7)

where we neglect turbulent viscosity, magnetic fields, and self-gravity. Gas pressure P is

given by P = c2sρg, and dust density is denoted by ρd.

In the absence of frictional backreaction to the gas, we can derive some gas disk prop-

erties used as a zeroth-order background field. For simplicity, we consider axisymmetric

disk. We then obtain a steady vertical gas density profile from Equation (1.7):

ln ρg = C +
GM∗

c2s
√
r2 + z2

− GM∗

c2sr
, (1.8)
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1.2. DUST DYNAMICS IN PROTOPLANETARY DISKS

where C is an integral constant, and we consider a vertically isothermal structure that

is expected in the interior of stellar-irradiated disks (see Chiang & Goldreich 1997). For

z ≪ r, one obtains the following Gaussian density distribution

ρg =
Σg√
2πH

exp

(
− z2

2H2

)
, (1.9)

where the integral constant is chosen as gas surface density. The vertical thickness H is

called a gas scale height and given by H ≡ cs/Ω where Ω ≡
√

GM∗/r3 is the Keplerian

angular velocity at the disk midplane.

We can also derive azimuthal gas velocity for a steady axisymmetric disk and in the

absence of the frictional backreaction. Equation (1.5) shows that radial force balance

leads to sub-Keplerian gas velocity: uϕ < vKep ≡ rΩ. At the disk midplane (z = 0), one

obtains

uϕ =

(
1 +

c2s
v2Kep

∂ lnP

∂ ln r

)1/2

vKep ≃ (1− η)vKep, (1.10)

η ≡ −1

2

(
cs

vKep

)2
∂ lnP

∂ ln r
. (1.11)

The factor η is usually used as a measure of gas pressure gradient force (e.g., Nakagawa

et al. 1986). If gas is barotoropic P = P (ρg) and we neglect friction force on gas,

Equations (1.5) and (1.7) give a steady gas solution whose angular velocity is uniform in

the vertical direction.

Based on the above equations and the derived “zeroth-order” gas profie, we will

describe basic processes of dust in a gas disk.

1.2.1 Radial drift and vertical sedimentation

One important consequence of frictional interaction with gas is radial drift of dust grain

(e.g., Whipple 1972; Weidenschilling 1977; Adachi et al. 1976; Nakagawa et al. 1986).

Since dust grains move with Keplerian velocity in the absence of gas, they counter a

head wind in a sub-Keplerian gas disk. Friction force causes angular momentum transfer

from dust grains to gas, and thus dust grains fall toward a central star. In a steady

sub-Keplerian gas disk (ur = uz = 0 and uϕ = (1− η)vKep), terminal velocity of dust is

vr = − 2τs
1 + τ 2s

ηvKep, (1.12)

vϕ = vKep −
ηvKep

1 + τ 2s
. (1.13)
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1.2. DUST DYNAMICS IN PROTOPLANETARY DISKS

When we include the backreaction to the gas, we obtains

vr = − 2τs
(1 + ϵ)2 + τ 2s

ηvKep, (1.14)

vϕ = vKep −
(1 + ϵ)

(1 + ϵ)2 + τ 2s
ηvKep, (1.15)

where ϵ ≡ ρd/ρg is dust-to-gas ratio. Equation (1.12) shows that dust grains with τs = 1

has the fastest drift speed. Once pressure profile is specified, one can estimate the drift

rate of dust grains in a gas disk. A model often used in the literature is the “minimum

mass solar nebula” (MMSN) model where the disk mass is minimal for the solar system

planets to form (Kusaka et al. 1970; Hayashi 1981). Based on power-law disk models

including the MMSN model, Weidenschilling (1977) showed that drift velocity of meter-

sized dust can reach 104 cm sec−1 ∼ 10−2 au yr−1. Thus, dust grains located at r = 1 au

fall onto a central star within just 100 yr, which is shorter by an order of magnitude

than one orbital period of protoplanetary disks ∼ 100 au in size. In other words, this

fast drift results in dust depletion and introduces a “barrier” against dust coagulation

beyond meter sizes (e.g., Weidenschilling 1977) while Brauer et al. (2008) found that the

issue is sensitive to the initial dust abundance in disks.

Another important process is vertical sedimentation. Equation (1.4) shows that dust

grains settle toward the midplane at the following terminal velocity

vz − uz = −tstop
GM∗z

(r2 + z2)3/2
. (1.16)

For the thin disk limit (z ≪ r), one obtains

vz − uz ≃ −τsΩz. (1.17)

In a hydrostatic gas disk, dust grains settle at the velocity vz = −τsΩz. Small grains

with τs ≪ 1 take longer time to settle than larger grains with τs ∼ 1. Note that when too

large grains τs ≫ 1 show vertical oscillation with a frequency Ω rather than settling with

the above terminal velocity. The following extrapolated velocity formula to a maximum

velocity of large grains is often used (Brauer et al. 2008):

vz = − τsΩ

1 + τs
z. (1.18)

1.2.2 The effects of turbulence on dust grains

Gas in a protoplanetary disk is thought to be turbulent to some extent, leading to

angular momentum transfer and mass accretion via “turbulent viscosity”. Strength of
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1.2. DUST DYNAMICS IN PROTOPLANETARY DISKS

turbulence is usually measured by the dimensionless parameter α (Shakura & Sunyaev

1973), and turbulent viscosity coefficient is given by ν = αcsH. The value α depends

on a driving mechanism of gas turbulence. Origins of gas turbulence in protoplanetary

disks can be various hydrodynamical or magnetohydrodynamical instabilities including

convective overstability (e.g., Lin & Papaloizou 1980; Klahr & Hubbard 2014) and vertical

shear instability (e.g., Urpin & Brandenburg 1998; Urpin 2003; Nelson et al. 2013), and

magnetorotational instability (e.g., Balbus & Hawley 1991, 1998).

Dust grains in turbulent gas suffer diffusion, which prevents vertical settling intro-

duced in the previous subsection. An equilibrium profile of dust density can be derived

from the continuity equation with mass diffusion term:

∂ρd
∂t

+
∂ρdvz
∂z

=
∂

∂z

(
Dz

∂ρd
∂z

)
, (1.19)

where Dz is a vertical diffusion coefficient, and we ignore radial and azimuthal gradient

for simplicity. For steady density profile, ρd satisfies

ρdvz = Dz
∂ρd
∂z

. (1.20)

Adopting vz = −τsΩz for dust tightly coupled to turbulence, we obtain the following

Gaussian profile (e.g., Dubrulle et al. 1995; Cuzzi et al. 1993; Carballido et al. 2006):

ρd =
Σd√
2πHd

exp

(
− z2

2H2
d

)
(1.21)

Hd ≡
√

Dz

τsΩ
, (1.22)

where we use a dust surface density Σd for an integral constant, and Hd called dust scale

height represents a vertical thickness of a dust disk. The diffusion coefficient has been

estimated analytically (e.g., Cuzzi et al. 1993; Youdin & Lithwick 2007). For tightly

coupled dust grains, Dz is equal to a gas diffusion coefficient Dg = αcsH.

Using the Langevin equation that includes orbital motion of dust grains, Youdin &

Lithwick (2007) derived diffusion coefficients and dust scale height that are also applicable

for large dust grains (τs ≳ 1). For uniform turbulence, the dust scale height is

Hd = H

√
α

τs

(
1 +

Stτ 2e
1 + St

)−1

, (1.23)

where τe ≡ teddyΩ is dimensionless turnover time of the largest eddies, and St ≡ tstop/teddy

is so-called Stokes number. For eddies in protoplanetary disks, we often assume τeddy = 1,

9



1.2. DUST DYNAMICS IN PROTOPLANETARY DISKS

and thus St = τs. They also modify Equation (1.23) derived for constant ρg in order to

make the formula applicable for stratified disks:

Hd = H

√
α

α + τs

(
1 +

Stτ 2e
1 + St

)−1

, (1.24)

For τeddy = 1 and St = τs, the above equation is reduced to the following

Hd = H

√
α

α + τs

(
1 + 2τs
1 + τs

)−1

, (1.25)

≃ H

(
1 +

τs
α

1 + 2τs
1 + τs

)−1/2

. (1.26)

Dust diffusion also occurs in the radial direction. Youdin & Lithwick (2007) derived

the radial diffusion coefficient given as follows

D =
1 + τs + 4τ 2s
(1 + τ 2s )

2
αcsH, (1.27)

where we assumed isotropic turbulence (see also Youdin 2011). For small dust grains

with τs ≪ 1, diffusion coefficient becomes D ≃ αcsH. The right hand side corresponds

to a rate of gas diffusion via its eddy motion. Thus, dust grains are mixed by gas eddies

when they are well coupled to gas. Relatively large grains do not follow gas eddy’s

motion, and their trajectories are determined by a combination of the Coriolis force and

stochastic kicks by gas eddies. The Coriolis force dominate the kicks for τs ≳ 1, and the

diffusion coefficient monotonically decreases.

Along with the diffusion, gas turbulence generates non-zero velocity dispersion cd.

The velocity dispersion is also derived in Youdin & Lithwick (2007). For isotropic tur-

bulence, c2d is given by

c2d =
1 + 2τ 2s + (5/4)τ 3s

(1 + τ 2s )
αc2s . (1.28)

The non-zero velocity dispersion acts as Reynolds stress and affects evolution of mean

dust flow. The process is often modeled by effective pressure gradient force proportional

to c2d (e.g., Youdin 2005a, 2011; Shariff & Cuzzi 2011).

1.2.3 Gravitational instability of a dust layer

In the standard scenario of planet formation, planetesimals are thought to form via

gravitational instability (GI) and fragmentation of a dust disk around the midplane

10



1.2. DUST DYNAMICS IN PROTOPLANETARY DISKS

(e.g., Safronov 1969; Goldreich & Ward 1973). We review basic properties of GI based

on one-dimensional linear analyses.

GI can be found in infinitesimally thin disks. We first review GI in such thin disks

based on vertically integrated continuity equation and equations of motion of dust in

local shearing sheet coordinates (Goldreich & Lynden-Bell 1965b):

∂Σd

∂t
+

∂Σdvx
∂x

= 0, (1.29)

∂vx
∂t

+ vx
∂vx
∂x

= 3Ω2x+ 2Ωvy −
c2d
Σd

∂Σd

∂x
− ∂Φ

∂x
, (1.30)

∂vy
∂t

+ vx
∂vy
∂x

= −2Ωvx, (1.31)

∂2Φ

∂x2
= −4πGΣdδ(z), (1.32)

where (x, y) = (r − R, R(ϕ − Ωt)) is the co-orbital coordinate with a reference radius

R and angular velocity Ω =
√

GM∗/R3. Self-gravitational potential of a dust disk is

denoted by Φ. We also assumed that a disk is axisymmetric and dust grains are free

from diffusion and friction, for simplicity. Taking a uniform density profile Σd = Σd,0

and Keplerian velocity field (vx, vy) = (0,−3Ωx/2) as an unperturbed state, we introduce

linear perturbations and linearize the continuity equation and the equations of motion:

∂δΣd

∂t
+ Σd,0

∂δvx
∂x

= 0, (1.33)

∂δvx
∂t

= 2Ωδvy −
c2d
Σd,0

∂δΣd

∂x
− ∂δΦ

∂x
, (1.34)

∂δvy
∂t

= −Ω

2
δvx, (1.35)

where the unperturbed value is represented by subscripts “0”, and linear perturbations

are denoted with δ. We assume perturbations proportional to exp(ikx+nt) and perform

Fourier transformation of the above equations:

nδΣd + ikΣd,0δvx = 0, (1.36)

nδvx = 2Ωδvy − ikc2d
δΣd

Σd,0

− ikδΦ, (1.37)

nδvy = −Ω

2
δvx. (1.38)

Perturbed self-gravitational potential is given by δΦ = −2πGδΣd/k, which satisfies a

boundary condition that δΦ diminishes outside the disk (e.g., see Shu 1992). Equations
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1.2. DUST DYNAMICS IN PROTOPLANETARY DISKS

(1.36)-(1.38) and δΦ = −2πGδΣd/k have nontrivial solutions only when n = 0 for

arbitrary wavenumber k or the following dispersion relation is satisfied:

−n2 = Ω2 − 2πGΣd,0k + c2dk. (1.39)

The solution of n = 0 is called a static mode or a neutral mode, and corresponds to a

steady solution of the linearized equations. Equation (1.39) is a dispersion relation of GI

mode. GI can grow if n has positive real parts. The criterion is given by

Qd ≡ cdΩ

πGΣd,0

< 1, (1.40)

where Qd is the Toomre’s Q value for a dust disk (Toomre 1964).

Explicitly including vertical structures reduces growth rate and makes the critical

mass larger. Goldreich & Lynden-Bell (1965a) showed that GI of uniformly rotating gas

disks grows when πGρmid/4Ω
2 > 0.73 is satisfied, where ρmid is midplane gas density.

Applying this criterion for Keplerian dust disks with the midplane dust density ρd,mid,

one obtains

Q3D ≡ Ω2

πGρd,mid

≲ (0.73)−1 ≃ 1.3. (1.41)

Assuming the vertical Gaussian profile for dust density distribution, the midplane density

is related to Σd,0 by ρd,mid = Σd,0/
√
2πHd. In this diffusion-less arguments, the vertical

thickness of a dust disk is determined by balance of effective pressure gradient force and

vertical gravity as in the case of a gas disk shown in the beginning of this section. Thus,

the vertical thickness Hd in this case is given by Hd = cd/Ω. We then have

Qd =
Q3D√
2π

≲ 0.55. (1.42)

This criterion shows that twice larger disk-mass is required for GI to operate in vertically

stratified disks.

Since dust grains settle toward the midplane as a result of frictional interaction with

gas, the midplane dust density monotonically increases in the absence of gas turbulence.

However, dust settling itself can trigger Kelvin-Helmholtz instability that stirs dust grains

up. Dust sedimentation is more difficult in the presence of vertical dust diffusion, which is

not considered in the above derivation of the critical Qd. Kelvin-Helmholtz instability in

this context is self-regulated because the instability is powered by vertical shear resultant

from dust sedimentation. If dust grains are diffused too much to lead to vertical shear,

Kelvin-Helmholtz instability and resultant turbulence become weak. This implies an

equilibrium dust density profile. Sekiya (1998) calculated the equilibrium profiles under

12



1.2. DUST DYNAMICS IN PROTOPLANETARY DISKS

the influence of Kelvin-Helmholtz instability. They showed that vertical diffusion driven

by Kelvin-Helmholtz instability makes the midplane dust density much lower than the

critical value required of GI. Sekiya (1998) also showed that a high dust-to-gas ratio

weakens Kelvin-Helmholtz instability, and the midplane dust layer can be GI-unstable.

For example, for GI to operate at r = 1 au, a dust-to-gas ratio should be about 0.07-0.08

(see Fig. 2 and Table 1 therein). Nevertheless, turbulence powered by other instabilities

will prevent dust sedimentation. Thus, the direct formation of planetesimals via GI still

seems difficult unless other processes locally concentrate dust grains.

1.2.4 Secular gravitational instability

Pure gravitational instability requires Toomre’s Q value less than unity. Toomre’s Q

value represents the magnitude of Coriolis force and pressure gradient force relative to

self-gravity. If some processes weaken either Coriolis force or pressure gradient force, GI

will grow even in a disk with Q > 1. For example, radiative cooling weakens pressure

gradient force and augments GI (e.g., Gammie 2001; Lin & Kratter 2016).

Dust-gas friction modifying dust and gas mean flows is another process that can

make dust GI more unstable. Dust grains frictionally interacting with gas can not freely

move with epicyclic frequency but tend to follow gas flow around their positions. In

other words, friction weakens rotational support due to Coriolis force, which is one of the

restoring forces exerted on dust. This process augments dust GI and makes its growth

faster.

In addition to the augmentation of dust GI, the friction triggers another instability

called “dissipative GI” or “secular GI”. Secular GI is a process that most of my thesis

focuses on. We thus review properties of secular GI in detail based on previous studies.

The idea of secular GI was pointed out by Ward (2000). Ward (2000) and subse-

quent works by Youdin (2005a, 2005b) analyzed stability of a self-gravitating dust disk

embedded in a static gas disk. Thus, their analyses are based on one-fluid equations.

Secular GI originates from a static mode that is present in friction-free self-gravitating

disks (see the previous subsection). The static mode represents an equilibrium state that

holds radial force balance of self-gravity, Coriolis force, and effective pressure gradient

force. At shorter wavelength (kcd/Ω ≫ 1), self-gravity and effective pressure gradient

force are dominant, and the radial force balance is mainly achieved by these two. Per-

turbations with such short wavelengths are insignificantly affected by friction because

stabilizing effects due to Coriolis force are small. On the other hand, the static mode

at longer wavelengths shows the force balance mainly determined by Coriolis force and
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1.2. DUST DYNAMICS IN PROTOPLANETARY DISKS

self-gravity, and thus significantly affected by friction. Youdin (2005a) showed that long-

wavelength perturbations are unconditionally unstable, which also can be shown in the

following.

Another feature of secular GI is its slow growth in contrast to pure GI that grows at

timescale of ∼ Ω−1. Here, we derived growth rate based on terminal velocity approxi-

mation. Considering that velocity perturbations damp at a timescale tstop, we use the

following linearized equation of motion:

nδvx = 2Ωδvy − ikc2d
δΣd

Σd,0

− ikδΦ− δvx
tstop

, (1.43)

nδvy = −Ω

2
δvx −

δvy
tstop

. (1.44)

Terminal approximation and δΦ = −2πGδΣd/k give

2Ωδvy − ikc2d
δΣd

Σd,0

+ i2πGδΣd −
δvx
tstop

= 0, (1.45)

δvy = −τs
2
δvx. (1.46)

From Equations (1.36), (1.45), and (1.46), we obtain the following approximated disper-

sion relation:

n =
1

tstop

2πGΣd,0k − c2dk
2

Ω2 + t−2
stop

. (1.47)

This shows that perturbations with k < 2πGΣd,0/c
2
d are unconditionally unstable. For

small dust with τs = tstopΩ ≪ 1 and sufficiently long wavelengths so that the numerator

can be approximated as 2πGΣd,0k, the growth rate is reduced to

n ≃ tstop2πGΣd,0k = 2π

(
λ

tstop × 2πGΣd,0

)−1

, (1.48)

where λ = 2π/k is a wavelength of perturbations. The last equality of Equation (1.48)

shows that the growth rate is roughly given by a timescale for dust grains to transverse

one wavelength with terminal velocity tstop2πGΣd,0 (see also Section 2 of Youdin 2011).

Growth rate relative to Ω is n/Ω ∼ τs × (kcdΩ
−1)/Qd, which is less than unity because

of the factor τs. Therefore, secular GI grows much slower than dust GI. Regardless of its

slow growth, secular GI was proposed as a possible mechanism of planetesimal formation

because “one-fluid” secular GI can grow without thresholds in contrast to GI (see also,

Sekiya 1998).

In the presence of radial diffusion of dust grains, secular GI is found to be significantly

stabilized. Youdin (2011) and Shariff & Cuzzi (2011) performed linear analyses using
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hydrodynamic equations of motions for dust as in the above description and continuity

equation with diffusion term:

∂Σd

∂t
+

∂Σdvx
∂x

= D
∂2Σd

∂x2
. (1.49)

Michikoshi et al. (2012) analyzed secular GI with diffusion in a more rigorous manner

using Langevin equations, and showed consistent results with Youdin (2011) and Shariff

& Cuzzi (2011). Dispersion relation in the presence of radial diffusion is as follows (see

also Equation (22) in Youdin (2011) and Equation (15) in Shariff & Cuzzi (2011)):

n3 + C2n
2 + C1n+ C0 = 0, (1.50)

C2 = Dk2 + 2/tstop, (1.51)

C1 = 2Dk2/tstop + 1/t2stop + Ω2 + c2dk
2 − 2πGΣd,0k, (1.52)

C0 = Dk2
(
Ω2 + t−2

stop

)
+
(
c2dk

2 − 2πGΣd,0k
)
/tstop. (1.53)

Adopting the MMSN model (e.g., Hayashi 1981) for calculating disk properties,

Youdin (2011) derived growth timescale, unstable wavelengths, and masses of dust grains

accumulated via the instability into one ring. Figure 1.3 originally from Youdin (2011)

shows their results for dust grain size a = 1 mm and dust-to-gas surface density ratio

is 0.01. Kinks of lines seen in each panel are due to transition from Epstein region to

Stokes region of dust-gas friction. Growth timescale decreases toward the outer region

because Toomre’s Q also decreases. For significantly weak turbulence with α = 10−10,

secular GI can grow in wide radial region from 0.1 au to 100 au. On the other hand,

turbulence with α = 10−6 significantly stabilizes secular GI especially in the inner region.

They concluded that secular GI creates dust rings with a mass of ∼ 0.1M⊕ and resultant

rings will fragment into planetesimals.

Shariff & Cuzzi (2011) compared growth timescale of secular GI and a timescale of

radial drift:

tdrift =
r

|vr|
. (1.54)

Figure 1.4 originally from Shariff & Cuzzi (2011) shows their results for r = 3 au and

the MMSN disk model. Larger grains show faster growth, and the growth timescale of

secular GI is shorter than tdrift when turbulence is weak (α = 10−6, 10−7). On the other

hand, growth timescale becomes comparable to tdrift for α = 10−5 even when dust grains

are 1 m in size. Therefore, secular GI can be a mechanism for creating planetesimals

at the outer region (r ∼ 101−2 au) rather than the inner region (r ∼ 1 au), and weakly

turbulent disks are preferable.
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Figure 1.3: Properties of “one-fluid” secular GI in the presence of radial diffusion of dust.

Horizontal axis is a radial distance from a central star. Top panel shows growth timescale of

the instability for different strength of turbulence α. Gray sections of solid and dashed lines

represent a region where the growth time is longer than a typical lifetime of protoplanetary

disks ∼ 106−7 yr (e.g., Strom et al. 1989; Beckwith et al. 1990). Middle panel shows unstable

wavelength in the unit of gas scale height. The half disk radius R/2 and the most unstable

wavelength of pure GI λG = 2π2GΣd,0/Ω
2 are also plotted. Bottom panel shows mass of

concentrating dust grains during the growth of secular GI. Because dust grains are concentrated

into a ring, the mass is referred to as a ring mass Mring. This figure is from Fig. 2 of Youdin

(2011).
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Figure 1.4: Growth timescale of secular GI tgrow and drift timescale tdrift as a function of dust

sizes a in the case of MMSN disk. The radial position is fixed at 3 au. Solid, dotted, and

dashed lines correspond to results for α = 10−5, 10−6, and 10−7, respectively. Thin and thick

lines denote tdrift and tgrow, respectively. Although larger dust grains show faster growth, the

growth timescale is still longer than the drift timescale if strength of turbulence is α = 10−5

for MMSN disks. This figure is from Fig. 4 of Shariff & Cuzzi (2011).

We should emphasize that the above findings of Youdin (2011) and Shariff & Cuzzi

(2011) are based on the MMSN model where disk masses are set to be minimal. Disk

masses significantly affect growth timescale of secular GI through Toomre’s Q value.

According to disk formation and evolution reviewed in the previous section, disk masses

decrease from its formation time. In other words, increasing disk masses adopted corre-

sponds to considering early-phase disks. Therefore, early massive disks will be one site

where secular GI grows.

The previous studies reviewed above are based on one-fluid equations for dust. In-

cluding gas equations and frictional backreaction to gas introduces another property of

secular GI. Takahashi & Inutsuka (2014) performed two-fluid analyses of secular GI, and

showed that long-wavelength perturbations are stabilized as a result of backreaction,

which is in contrast to the previous studies showing unconditionally unstable secular GI.

Figure 1.5 originally from Takahashi & Inutsuka (2014) shows growth rate of “two-fluid”

secular GI for cd = 0, D = 10−4csH, Q = 3, τs = 10−2, and unperturbed dust-to-

gas surface density ratio Σd,0/Σg,0 = 0.1. Long-wavelength perturbations show negative
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Figure 1.5: Growth rate of “two-fluid” secular GI for cd = 0, D = 10−4csH, Q = 3, τs = 10−2,

and Σd,0/Σg,0 = 0.1. Horizontal axis is wavenumber normalized by gas scale height H. This

figure is from Fig. 1 of Takahashi & Inutsuka (2014).

growth rates, meaning that the mode is a damping mode for those wavelengths. Taka-

hashi & Inutsuka (2014) showed that the stabilization of long-wavelength perturbations

are accounted for Coriolis force exerted on dust. In contrast to one-fluid analyses, gas

slightly moves and follows radial concentration of dust grains as a result of backreaction.

Radially concentrating flows in positive x−direction induce Coriolis force in the negative

y−direction, and decelerate the azimuthal velocity of gas. Dust grains are also decel-

erated because of the azimuthal friction. This deceleration tends to reduce the radially

concentrating flows, and quenches at long wavelengths (see also Latter & Rosca 2017). In

this way, backreaction renders secular GI operational only at intermediate wavelengths

comparable to gas scale height.

Takahashi & Inutsuka (2014) also derived the following growth condition for secular

GI in the absence of velocity dispersion cd:

DΩ2

(πGΣg,0)2
< ε(1 + ε)τs, (1.55)

where ε ≡ Σd,0/Σg,0 is dust-to-gas surface density ratio (see Equation (21) in Takahashi

& Inutsuka 2014). They also numerically calculated maximum growth rate with the

inclusion of velocity dispersion, turbulent gas viscosity, and the stabilizing effect due to a

finite disk thickness (Vandervoort 1970; Shu 1984). Figure 1.6 originally from Takahashi

& Inutsuka (2014) shows their results for Q = 3 and ε = 0.1. One can see that “two-
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Figure 1.6: Maximum growth rate of “two-fluid” secular GI for Q = 3 and ε = Σd,0/Σg,0 = 0.1

as a function of strength of turbulence α and dimensionless stopping time τs. Solid line shows

maximum α derived from the growth condition (Equation (1.55)), and dashed line shows three

times lower α. Because they include the gas turbulent viscosity and the stabilizing effect due

to the disk thickness to plot this figure, the maximum α is smaller than one shown by the solid

line. This figure is from Fig. 3 of Takahashi & Inutsuka (2014).

fluid” secular GI is operational for α ∼ 10−4 when dust-to-gas ratio is high and Toomre’s

Q for gas is 3.

Although their linear analyses does not include collective dust drift as in the previous

studies, they estimated condition for secular GI to grow in the presence of dust drift

comparing the growth rate and the drift timescale. They found that secular GI can grow

when the following condition is satisfied (see Equation (39) theirein):(
α

4× 10−5

)( ε

0.1

)−2
(
Q

10

)2 ( η

0.01

)
≲ 1. (1.56)

Even for high dust-to-gas ratio, turbulence should be weak (α ∼ 10−5). When Toomre’s

Q is ∼ 5 during the disk evolution from its formation, disks with turbulence of α ∼ 10−4

marginally host secular GI although high dust-to-gas ratio is still required.

1.3 ALMA Observations of Annular Substructures

Classically, the presence of protoplanetary disks was observationally confirmed based

on infrared excesses in spectral energy distributions (SEDs). Based on SEDs at µm-

wavelengths, Lada (1987) proposed three classes that would divide the evolutionary
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timeline of stars and disks (see Figure 1.7). Class I refers to embedded objects that

show wider SED relative to stellar black body radiations because of a surrounding en-

velope. Class II objects show infrared excess relative to stellar black body radiation.

The infrared excess is responsible for emissions from dusty-gas disks, i.e., protoplanetary

disks. Class III objects correspond to a star with a fairly dispersed disk. In addition to

the three classes, Andre et al. (1993) introduced Class 0 as a group of very young objects

embedded in dense envelopes (see also Andre & Montmerle 1994).

Recent observational developments enable us to directly see disks and their structures

of ∼10-au scales. For example, optical and near-infrared observations with Subaru tele-

scope and Very Large Telescope (VLT) with SPHERE2 have detected disks with rings,

spirals, and shadows casted on disk surfaces (e.g., Muto et al. 2012; Benisty et al. 2015;

Hashimoto et al. 2015; Momose et al. 2015; Stolker et al. 2016; van Boekel et al. 2017;

Avenhaus et al. 2018). Those observations see scattered light from small dust grains

floating in an upper layer of a disk.

Atacama Large Millimeter/submillimeter Array (ALMA) has also been showing ob-

servational results on detailed disk structures. ALMA observations at (sub-)mm wave-

lengths trace dust grains around the midplane. High resolution disk observations with

ALMA revealed that most of the observed and resolved disks have annular substructures,

i.e., rings and gaps (e.g., ALMA Partnership et al. 2015; Andrews et al. 2016; Tsukagoshi

et al. 2016; Isella et al. 2016; Fedele et al. 2017; Long et al. 2018; Andrews et al. 2018).

Those rings and gaps have been observed not only in relatively old disks (∼ 10 Myr;

e.g., TW Hya, Andrews et al. 2016, Tsukagoshi et al. 2016; HD169142, Fedele et al.

2017, Pérez et al. 2019) but also in very young disks (≲ 1 Myr; e.g., HL Tau, ALMA

Partnership et al. 2015; WL 17, Sheehan & Eisner 2017). It is reported by a very recent

study that Class 0/I object also hosts a dust ring (e.g., Sheehan & Eisner 2018; Nakatani

et al. 2020).

The Disk Substructures at High Angular Resolution Project (DSHARP) is a Class-II-

disk survey for statistical studies of dust substructures (e.g., Andrews et al. 2018). They

observed 20 disks at 5-au resolutions. Figure 1.8 shows the disk images from Andrews

et al. (2018). The observed disks show various substructures including rings/gaps and

spirals. 18 disks show annular structures and thus rings and gaps seem common in their

samples. Although their observations are targeted to large bright disks, the other disk

observations also indicate the ubiquitousness of ring-gap structures in protoplanetary

disks (e.g., ALMA Partnership et al. 2015; Andrews et al. 2016; Tsukagoshi et al. 2016;

Isella et al. 2016; Fedele et al. 2017; Long et al. 2018).

2Spectro-Polarimetric High-contrast Exoplanet REsearch
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Figure 1.7: SED classifications proposed by Lada (1987). Top panel shows a schematic SED of

a Class I object, which has wider energy distribution compared to one of a stellar black body.

Middle panel shows a Class-II SED. Class II objects show infrared excess relative to a stellar

black body radiation with a flat or negative slope. Bottom panel shows a most evolved objects

among these, referred to as Class III. This figure is from Fig. 2 of Lada (1987).

Huang et al. (2018) studied properties of rings and gaps of the DSHARP disks. Based

on mean intensities around a gap Id and a ring Ib, they define widths of those structures

as a radial distance between radii of the intensity I = 0.5(Id+Ib). The intensity variation

of adjacent rings and gaps are typically less than 20% (see Section 3.2 of their paper).
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Figure 1.8: Disk images at wavelength of 1.25 mm presented by the DSHARP project. White

scalebars shown on the right bottom corners of each panel represent 10 au scale. Beam sizes

are shown on the left corners of each panel. This figure is from Fig. 3 of Andrews et al. (2018).

Measured widths are shown in Figure 1.9 that is originally from Figure 4 of Huang et al.

(2018). The observed rings and gaps are marginally resolved. They found that the

widths of most of their targets are smaller than 10 au. Assuming that disk temperature

is determined by stellar irradiation, Dullemond et al. (2018) showed that the observed

ring-widths are comparable to or less than the gas scale height H.

Figure 1.9 also shows that the observed rings and gaps are widely distributed from

∼ 10 au to 160 au. The dependence of ring- and gap-radius on stellar properties are

shown in Figure 1.10 originally from Figure 10 of Huang et al. (2018). One can see that

substructures are present across a wide parameter space, and there is no clear trend with
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Figure 1.9: Radial distribution of measured widths of rings (red) and gaps (blue) in each object.

The vertical axis in each panel is the widths normalized by the locations of the substructures.

The vertical red and blue lines show locations of rings and gaps that are too shallow to allow

the measurement of those widths. The gray curves show the resolution limit. This figure is

from Fig. 4 of Huang et al. (2018).

stellar mass, mass accretion rate, and stellar age.

Possible origins of the observed substructures

Many studies have proposed mechanisms to explain the origins of the observed rings and

gaps, and the origins are still in debate. One possible mechanism is “planet-based” and

that (sub-)Jupiter mass planets already exist in the observed disks (e.g., Gonzalez et al.

2015; Kanagawa et al. 2015; Zhang et al. 2018). A planet embedded in a disk gravitation-

ally interacts with gas and dust, leading to angular momentum transport. Gas and dust
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Figure 1.10: Radial distribution of the detected rings and gaps as a function of stellar mass

(left figure), mass accretion rate onto a star (middle panel), and stellar age (right panel). Error

bars correspond to 1σ error from the stellar properties and the locations of the substructures.

This figure is from Fig. 10 of Huang et al. (2018).

around the planetary orbit are then cleared out. This planet-driven clearing makes a gap

in the disk. In addition, such a planet excites waves called density waves. Propagating

density waves eventually steepen into shocks at radii away from the planetary orbit. Bae

et al. (2017) shows that even low-mass planets induce multiple waves (spiral arms) and

shocks due to the steepening create multiple gaps.

Although recent works reported kinematic signatures of Jupiter-mass planets at the

observed gaps in some disks (Pinte et al. 2018; Teague et al. 2018; Pinte et al. 2019;

Pérez et al. 2020; Pinte et al. 2020), it is still unknown whether such planets also exist in

the other disks. If planets actually exist in younger disks hosting annular substructures,

this gives strong time-constraints on planet formation (within ∼ 1 Myr; e.g., Sheehan &

Eisner 2018). It is not still understood how to form planets within only 1 Myr at larger

radii where gaps are observed. Such a fast planet formation seems difficult at least in

the core accretion model (Mizuno 1980; Pollack et al. 1996). For example, collisional

fragmentation of planetesimals delays formation of planetary cores necessary to accrete

gas at radii ≳ 10 au (Kobayashi et al. 2010; Kobayashi et al. 2011).

Mechanisms without assuming planets have also been proposed. Dullemond et al.

(2018) analyzed the DHSARP data using analytical models, and showed that the ob-

served rings can be explained by dust-trapping due to hypothetical “pressure bumps”
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(e.g., Whipple 1972). A pressure bump has a positive and negative pressure gradient at

inner and outer radii. According to the formula of the drift velocity (Equation (1.14)),

dust grains tend to accumulate at pressure maxima, which creates dust rings. The

boundary of magnetically dead and active zones is one possible location where a pressure

bump exists (Flock et al. 2015). The magnetic activity itself is also found to form ring-

like substructures through reconnection of the toroidal magnetic fields (Suriano et al.

2018;Suriano et al. 2019). Based on local shearing-box simulations and linear analyses,

Riols & Lesur (2019) shows that a disk subject to disk-wind mass loss can be unstable

and host rings and gaps as a result of such a “wind-driven instability”.

In the above processes, dust grains just follow the background gas structures and

accumulate into rings (e.g., pressure bumps). On the other hand, dust itself can drive

processes leading to ring formation. Such “active” processes include secular GI (Taka-

hashi & Inutsuka 2014 2016), which is reviewed in the previous section. Takahashi &

Inutsuka (2016) performed linear analyses using disk models consistent with observations

of HL Tau. They found that widths of outer rings (r ≃ 100 au) are consistent with the

most unstable wavelengths of secular GI. The presence of dust leads to another type

of instability called viscous ring instability (Dullemond & Penzlin 2018). Instead of the

self-gravity, this instability requires the turbulent viscosity dependent on dust abundance

(e.g., Sano et al. 2000; Ilgner & Nelson 2006).

Zhang et al. (2015) discussed ring formation by rapid dust growth near snow lines

where dust grains evaporate. They showed that the process explains the three prominent

gaps in the HL Tau disk ALMA Partnership et al. (2015). Sintering of dust aggregates

is another important process that changes dust sizes near the snow lines. Okuzumi

et al. (2016) shows that dust aggregates that experience sintering fragment and pile up

slightly outside snow lines, and resultant piling-up regions are observed as bright dust

rings. Those radially changing dust size results in variations of the ionization degree and

mass accretion rate across snow lines, which augments the ring-gap formation (Hu et al.

2019). This process is similar to the instability discussed in Dullemond & Penzlin (2018).

However, Huang et al. (2018) showed that expected locations of snow lines of CO,N2 are

not correlated with radii of the DSHARP rings/gaps although some of the substructures

may result from the processes with snow lines.

1.4 Purposes of this thesis

As shown in the previous sections, the recent high-resolution observations have been

providing detailed information on disk structures, especially on spatial distributions of
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dust grains. The revealed annular substructures are some clues to reveal planetesimal

formation, and planet formation. For example, if the observed substructures result from

radial dust concentration without any planets, those observations indicate ongoing plan-

etesimal formation. The ubiquitousness of dust rings may indicate that ring formation

is a common process before planetesimal formation. Therefore, it is important to study

ring-forming mechanisms without planets and their connection to planetesimal forma-

tion.

According to Zhu et al. (2019), protoplanetary disks having observed at mm-wavelengths

can be optically thick because of scattering of thermal radiation, and they indicate that

disks are more massive than expected previously. Such self-scattering of dust thermal

emissions is indicated from polarization observation by ALMA (e.g., Kataoka et al. 2015;

Yang et al. 2016; Kataoka et al. 2017; Stephens et al. 2017). These observational results

motivate us to study secular GI, which is one ring-forming process operational in massive

disks.

As mentioned in the previous section, there is another possibility that unseen planets

create the observed substructures. If this is the case, the observations indicate that

formation of planet(esimal)s have occurred at early disk-evolutionary stages. Since the

early phase disks are more massive according to the disk formation theories (Section 1.1),

understanding physics in relatively massive dusty disks seems to be the key to figure out

early planet formation. Secular GI is one possible explanation of early planet formation.

Therefore, studies on secular GI is also important even when we discuss formation of

planets that finally carve gaps in Class II disks.

Based on the above motivations, we investigate the disk evolution via secular GI in

this thesis. The previous studies focused on linear growth of secular GI, and they found

that turbulent diffusion is the most efficient process to stabilize secular GI. As reviewed

in this chapter, turbulent diffusion is usually modeled by mass diffusion term introduced

in the continuity equation. Although this modeling is widely used, just introducing the

diffusion term violates the conservation law of angular momentum of a disk (e.g., Good-

man & Pindor 2000). Since angular momentum is one fundamental physical property,

the violation of its conservation law will affect not only stabilities of dusty-gas disks but

also radial transport and mixing of dust grains. In Chapter 2, we revisit dust dynamics

in turbulent disks and reformulate macroscopic equations that guarantee the angular

momentum conservation and describe turbulent dust diffusion. Our formulation is based

on mean-field approximation usually used to model turbulent fluid. Our results show

that introducing turbulent effects not only in the continuity equation but also in the

momentum equations holds the conservation law. We also study the stability of pro-
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toplanetary disks using the reformulated equations and revisit properties of secular GI.

The linear analyses also show another instability that is unphysically stabilized because

of the diffusion modeling in previous works.

In Chapter 3, we investigate nonlinear growth of secular GI using the reformulated

equations. In contrast to the previous works, we perform numerical simulations of secular

GI and discuss how secular GI grow under the influence of radial dust drift and to what

extent the instability accumulates dust grains into rings. To simplify the problem and

separately consider multiple processes, we assume dust sizes limited by radial drift in

the simulations presented in Chapter 3 rather than explicitly include dust growth. Our

simulations show that perturbations growing via secular GI move inward with the so-

called drift velocity. The drifting properties can be understood from linear analyses

including dust drift in an unperturbed state. Our numerical results also show two types

of growth of secular GI: formation of thin dense rings, and formation of transient rings. In

the former case, secular GI grows into the nonlinear phase and accumulates over 50% of

dust grains into multiple rings. In the latter case, a growth timescale of secular GI is too

long for the instability to show nonlinearity. Once amplified density perturbations enter

a stable region, those start to decay, that is, rings become transient. Thus, planetesimal

formation via secular GI requires that perturbations grow into the nonlinear phase before

they enter a stable region.

Secular GI requires higher dust-to-gas ratio than interstellar values (≃ 0.01) although

the required dust-to-gas ratio depends on other parameters including strength of tur-

bulence. Dust-to-gas ratio in protoplanetary disks is not constrained observationally.

Nevertheless, theoretical studies showed that if a disk is isolated dust coagulation and

radial drift decrease dust surface density because of its inside-out nature (e.g., Brauer

et al. 2008). Such an isolated disk may correspond to a disk of a very late stage at

which we can not expect mass infall from an envelope. Even when dust and gas accrete

onto a disk from the envelope, dust coagulation may proceed from the inner region and

inner large dust grains fall onto a central star. Thus, dust would tend to be depleted

to some extent regardless of the mass infall. Since secular GI also requires large dust

(e.g.,τs ∼ 0.1), the dust depletion resulting from coagulation is problematic. In Chapter

4, we propose another instability triggered by coagulation as a re-accumulation process

of large dust grains. We call the instability “coagulation instability”. Based on linear

analyses with a single-sized coagulation equation, we show that coagulation instability

can grow at tens orbital periods even when dust-to-gas ratio decreases down to 10−3.

We also investigate effects of diffusion and find that coagulation instability overcomes

the diffusion and concentrates dust grains at a spatial scale ∼ H that is comparable to
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the most unstable wavelength of secular GI. Therefore, coagulation instability will set up

dust-rich circumstances and assist the growth of secular GI and its further development

toward planetesimal formation.

In Chapter 5, we summarize the present thesis and discuss issues to be addressed in

the future work.
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Chapter 2

Revision of Macroscopic Equations

for Dust Diffusion

This chapter is based on a published paper, Tominaga, Takahashi, & Inutsuka 2019, The

Astrophysical Journal, Volume 881, pp. 53-69 (Tominaga et al. 2019).

2.1 Short introduction: unphysical momentum trans-

port due to the diffusion term

In Chapter 2, we revisit macroscopic description of dust disk evolution. Most of studies

use the advection-diffusion equation for dust density to describe dust evolution in a

turbulent gas disk (e.g., see Equations (1.19) and (1.49)). This widely-used equation

for dust does not conserve the total angular momentum. We first analytically show

the violation of the angular momentum conservation due to the diffusion and a possible

solution to recover the conservation law.

The following statement is independent from spatial dimensions one adopts. In this

chapter, we use equations of a two-dimensional disk (a razor thin disk) because we also

consider such a disk in Chapters 3 and 4. The continuity equation and the azimuthal

equation of motion for the dust in the cylindrical coordinates are as follows:

∂Σd

∂t
+

1

r

∂ (rΣdvr)

∂r
=

1

r

∂

∂r

(
rD

∂Σd

∂r

)
, (2.1)

Σd

[
∂vϕ
∂t

+ vr
∂vϕ
∂r

]
= −Σd

vϕvr
r

− Σd
vϕ − uϕ

tstop
, (2.2)

where we assume axisymmetric disks. This assumption does not change the following

statement. As introduced in the previous Chapter, the right hand side of Equation
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(2.1) models turbulent dust diffusion (e.g., Youdin 2011). Using the above equations, we

obtain an equation for angular momentum of dust Σdjd ≡ Σdrvϕ:

∂ (Σdjd)

∂t
+

1

r

∂

∂r
(rvrΣdjd) = −rΣd

vϕ − uϕ

tstop
+ jd

1

r

∂

∂r

(
rD

∂Σd

∂r

)
. (2.3)

The first term on the right hand side represents a torque due to dust-gas friction. If we

take into account the frictional backreaction to gas, the frictional torque term unchange

total angular momentum of dust and gas as shown in the following. The continuity

equation and the azimuthal equation of motion for gas are

∂Σg

∂t
+

1

r

∂ (rΣgur)

∂r
= 0, (2.4)

Σg

[
∂uϕ

∂t
+ ur

∂uϕ

∂r

]
= −Σg

uϕur

r
+ Σd

vϕ − uϕ

tstop
, (2.5)

These equations give an equation for angular momentum of gas Σgjg ≡ Σgruϕ:

∂ (Σgjg)

∂t
+

1

r

∂

∂r
(rurΣgjg) = rΣd

vϕ − uϕ

tstop
. (2.6)

We thus obtain an evolutionary equation of total angular momentum summing Equations

(2.3) and (2.6):

∂

∂t
(Σgjg + Σdjd) +

1

r

∂

∂r
(rurΣgjg + rvrΣdjd) = jd

1

r

∂

∂r

(
rD

∂Σd

∂r

)
. (2.7)

The term on the right hand side cannot be written in the form of divergence of an angular

momentum flux. Thus, the volume integral of this term has non-zero values in general,

meaning that the set of the above equations violates the total angular momentum con-

servation. One can immediately see that this “unphysical” nonconservation originates

from the mass diffusion term in Equation (2.1) because the right hand side is propor-

tional to the diffusion coefficient. The diffusion term directly changes the dust angular

momentum and affects orbital evolution of dust. Gas motion is also affected by the un-

physical angular momentum changes because gas and dust always exchange their angular

momentums through friction. The effect on gas motion is, however, smaller than that on

dust motion by a factor of dust-to-gas mass ratio Σd/Σg because the angular momentum

transport via friction is proportional to the dust surface density (Equation (2.6)). Thus,

the violation of the momentum conservation mainly affects on dust evolution.

We can see how the angular momentum nonconservation affects dust motion through

the following rearrangement of Equation (2.3):

∂ (Σdjd)

∂t
+

1

r

∂

∂r

[
r

(
vr −

D

Σd

∂Σd

∂r

)
Σdjd

]
= −rΣd

vϕ − uϕ

tstop
−D

∂Σd

∂r

∂jd
∂r

. (2.8)
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The second term on the left hand side vanishes when one integrate the equation over all

space. One the other hand, the second term on the right hand side remains and changes

the angular momentum. We here consider a Keplerian disk for further discussion. For

such a disk, the second term on the right hand side represents a negative (positive)

torque when the dust surface density gradient is positive (negative). In a dust-piling-up

region, an inner dust (∂Σd/∂r > 0) loses its angular momentum and goes inward, and

vice versa. Thus, the unphysical torque prevents dust accumulation, and the previous

studies underestimated it. To discuss dust accumulating process precisely, it is necessary

to revise the often-used equations with the dust diffusion term.

When dust grains are so small that their stopping time satisfies τs = tstopΩ ≪ 1, dust

diffusion is mainly driven by radial friction (“kicks”) due to turbulent gas (Youdin &

Lithwick 2007). In that case, specific angular momentum of dust grains remains constant

during the radial displacements although they will exchange their angular momentum at

a place to which they are going. Equation (2.1) is rearranged to

∂Σd

∂t
+

1

r

∂

∂r

[
r

(
vr −

D

Σd

∂Σd

∂r

)
Σd

]
= 0, (2.9)

which shows that the dust advection velocity due to diffusion is −DΣ−1
d ∂Σd/∂r. Consid-

ering the advection velocity and the fact that small dust grains are displaced with their

angular momentum being constant, we experimentally consider the following equation

Σd

[
∂jd
∂t

+

(
vr −

D

Σd

∂Σd

∂r

)
∂jd
∂r

]
= −rΣd

vϕ − uϕ

tstop
, (2.10)

where we add the advection velocity −DΣ−1
d ∂Σd/∂r to the usual advection term. From

this equation, we obtain an equation for dust angular momentum

∂ (Σdjd)

∂t
+

1

r

∂

∂r

[
r

(
vr −

D

Σd

∂Σd

∂r

)
Σdjd

]
= −rΣd

vϕ − uϕ

tstop
. (2.11)

This equation shows that dust angular momentum changes only through friction. Using

Equations (2.6) and (2.11), we can show that the total angular momentum is conserved

∂

∂t
(Σgjg + Σdjd) +

1

r

∂

∂r

[
rurΣgjg + r

(
vr −

D

Σd

∂Σd

∂r

)
Σdjd

]
= 0. (2.12)

The above experimental discussion indicates that considering momentum advection as-

sociated with mass diffusion guarantees angular momentum conservation.

In the next section, we derive such an advection term based on the mean-field ap-

proximation.
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2.2 Reformulation of basic equations from the mean-

field approximation

The mean-field approximation is sometimes used to derive macroscopic equations gov-

erning evolution of mean-fields. We use the Reynolds averaging, which is one technique

to analyze turbulent fluid based on averaging physical properties over a timescale longer

than a typical turnover time of turbulent eddies. We decompose a physical variable A

into a time-averaged term ⟨A⟩ and a short-term fluctuation originating from turbulence

∆A ≡ A− ⟨A⟩, where ⟨∆A⟩ = 0. We average the following equations for dust:

∂Σd

∂t
+

1

r

∂ (rΣdvr)

∂r
= 0, (2.13)
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+
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2
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∂

∂r

(
Φ− GM∗

r

)
− Σd

vr − ur

tstop
, (2.14)

∂ (Σdvϕ)
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+
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∂
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(rΣdvϕvr) = −Σd

vϕvr
r

− Σd
vϕ − uϕ

tstop
. (2.15)

Substituting Σd = ⟨Σd⟩ + ∆Σd and vr = ⟨vr⟩ + ∆vr to Equation (2.13) and averaging

both side of the equation in time, we obtain an equation for the mean density:

∂ ⟨Σd⟩
∂t

+
1

r

∂ (r ⟨Σd⟩ ⟨vr⟩)
∂r

= −1

r

∂ (r ⟨∆Σd∆vr⟩)
∂r

. (2.16)

We model the term ⟨∆Σd∆vi⟩ based on the “gradient diffusion hypothesis” (see Cuzzi

et al. 1993):

⟨∆Σd∆vr⟩ = −D
∂ ⟨Σd⟩
∂r

, (2.17)

⟨∆Σd∆vϕ⟩ = −D

r

∂ ⟨Σd⟩
∂ϕ

= 0. (2.18)

In the last equality of Equation (2.18), we make use of the assumption of axisymmetric

disks. Finally, we obtain the Reynolds-averaged continuity equation

∂ ⟨Σd⟩
∂t

+
1

r

∂ (r ⟨Σd⟩ ⟨vr⟩)
∂r

=
1

r

∂

∂r

(
rD

∂ ⟨Σd⟩
∂r

)
. (2.19)

This equation is equivalent to Equation (2.1).

In the same way, we obtain equations for mean velocity fields averaging Equations
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(2.14) and (2.15)
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where
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represent the so-called Reynolds stress. Using a closure relation ⟨∆v2r⟩ =
⟨
∆v2ϕ

⟩
= c2d

adopted in Shariff & Cuzzi (2011), we obtain the effective pressure gradient force as

follows:
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⟩
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In this thesis, we neglect the terms σ′
rr, σrϕ, σ

′
ϕϕ for simplicity since a closure relation on

these terms is uncertain. Moreover, we only consider cases that dust grains are so small

that we can assume ∆vr = ∆ur, ∆vϕ = ∆uϕ. Adopting these assumptions, we obtain
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r ⟨vr⟩D

∂ ⟨Σd⟩
∂r

)
, (2.28)
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∂ (⟨Σd⟩ ⟨vϕ⟩)t
∂t

+
1

r

∂

∂r

[
r ⟨Σd⟩

(
⟨vr⟩ −

D

⟨Σd⟩
∂ ⟨Σd⟩
∂r

)
⟨vϕ⟩

]
= −⟨Σd⟩ ⟨vϕ⟩

r

(
⟨vr⟩ −

D

⟨Σd⟩
∂ ⟨Σd⟩
∂r

)
− ⟨Σd⟩

⟨vϕ⟩ − ⟨uϕ⟩
tstop

. (2.29)

The fourth term on the right hand side of Equation (2.28) represents a fluctuated compo-

nent of self-gravity originating from density fluctuations due to turbulence. In this thesis,

we assume that volume-integrated density fluctuations are so small that we can neglect

the term. In addition, following Cuzzi et al. (1993), we neglect the sixth term on the

right hand side assuming the term is smaller than the time derivative of ⟨Σd⟩ ⟨vr⟩. The

seventh term represents the advection of the linear momentum ⟨∆Σd∆vr⟩ with the mean

velocity ⟨vr⟩. This term is the same order of the advection of ⟨Σd⟩ ⟨vr⟩ along diffusive

flow. Adopting these assumptions, we rearrange Equations (2.28) and (2.29), and obtain

the following equations for the mean velocities:

⟨Σd⟩
[
∂ ⟨vr⟩
∂t

+

(
⟨vr⟩ −

D

⟨Σd⟩
∂ ⟨Σd⟩
∂r

)
∂ ⟨vr⟩
∂r

]
= ⟨Σd⟩

⟨vϕ⟩2

r
− ∂ (c2d ⟨Σd⟩)

∂r

− ⟨Σd⟩
∂

∂r

(
⟨Φ⟩ − GM∗

r

)
− ⟨Σd⟩

⟨vr⟩ − ⟨ur⟩
tstop

+
1

r

∂

∂r

(
r ⟨vr⟩D

∂ ⟨Σd⟩
∂r

)
,

(2.30)

⟨Σd⟩
[
∂ ⟨vϕ⟩
∂t

+

(
⟨vr⟩ −

D

⟨Σd⟩
∂ ⟨Σd⟩
∂r

)
∂ ⟨vϕ⟩
∂r

]
=− ⟨Σd⟩ ⟨vϕ⟩

r

(
⟨vr⟩ −

D

⟨Σd⟩
∂ ⟨Σd⟩
∂r

)
− ⟨Σd⟩

⟨vϕ⟩ − ⟨uϕ⟩
tstop

(2.31)

Equation (2.31) yields

⟨Σd⟩
[
∂ (r ⟨vϕ⟩)

∂t
+

(
⟨vr⟩ −

D

⟨Σd⟩
∂ ⟨Σd⟩
∂r

)
∂ (r ⟨vϕ⟩)

∂r

]
= −⟨Σd⟩ r

⟨vϕ⟩ − ⟨uϕ⟩
tstop

, (2.32)

which is equivalent to Equation (2.10) since the mean specific angular momentum is

r ⟨vϕ⟩. One can also obtain an equation equivalent to Equation (2.11) using Equations

(2.19) and (2.32):

∂ (⟨Σd⟩ r ⟨vϕ⟩)
∂t

+
1

r

∂

∂r

[
r

(
⟨vr⟩ −

D

⟨Σd⟩
∂ ⟨Σd⟩
∂r

)
⟨Σd⟩ r ⟨vϕ⟩

]
= −r ⟨Σd⟩

⟨vϕ⟩ − ⟨uϕ⟩
tstop

.

(2.33)

Using the gas equation (Equations (2.6)), one can derive an equation equivalent to Equa-

tion (2.12), showing total angular momentum conservation.
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It is also possible to model diffusion with the following closure relation

⟨∆Σd∆vr⟩ = −D ⟨Σg⟩
∂

∂r

(
⟨Σd⟩
⟨Σg⟩

)
, (2.34)

which is another often-used diffusion model (e.g., Dubrulle et al. 1995). Even in this case,

adopting this closure relation to the momentum equations leads to similar equations that

hold momentum conservations. One can derive the equations just replacing D∂ ⟨Σd⟩ /∂r
in the above equations by D ⟨Σg⟩ ∂ (⟨Σd⟩ / ⟨Σg⟩) /∂r.

In subsequent parts of this thesis, we use the reformulated equations for dust but

omit the brackets representing the averaged value for convenience.

2.3 Linear analyses

To investigate to what extent the revised equations affect dust dynamics, we perform

linear analyses of secular GI and compare the previous studies.

2.3.1 Basic equations

We summarize a set of basic equations including the newly formulated dust equations.

We use the following equations for gas and the Poisson equation, which were also used

in Takahashi & Inutsuka (2014 2016):

∂Σg

∂t
+

1

r

∂ (rΣgur)

∂r
= 0, (2.4)

Σg

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= −c2s

∂Σg

∂xi

− Σg
∂

∂xi

(
Φ− GM∗

r

)
+

∂

∂xj

[
Σgν

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂uk

∂xk

)]
+ Σd

vi − ui

tstop
, (2.35)

∇2Φ = 4πG (Σg + Σd) δ(z), (2.36)

where ui, vi are the i-th component of gas and dust velocities, and Φ is the gravitational

potential of the dust-gas disk, respectively. The third term on the right hand size of

Equation (2.35) is turbulent viscosity with viscosity coefficient ν = αcsH (Shakura &

Sunyaev 1973).

The reformulated dust equations with dust diffusion are summarized as follows:

∂Σd

∂t
+

1

r

∂ (rΣdvr)

∂r
=

1

r

∂

∂r

(
rD

∂Σd

∂r

)
, (2.1)
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Σd

[
∂vr
∂t

+

(
vr −

D

Σd

∂Σd

∂r

)
∂vr
∂r

]
= Σd

v2ϕ
r

− c2d
∂Σd

∂r
− Σd

∂

∂r

(
Φ− GM∗

r

)
− Σd

vr − ur

tstop
+

1

r

∂

∂r

(
rvrD

∂Σd

∂r

)
, (2.37)

Σd

[
∂vϕ
∂t

+

(
vr −

D

Σd

∂Σd

∂r

)
∂vϕ
∂r

]
= −Σd

vϕ
r

(
vr −

D

Σd

∂Σd

∂r

)
− Σd

vϕ − uϕ

tstop
, (2.38)

We again note that we omit the brackets representing the averaged value for convenience.

We investigate mode properties in the local shearing sheet (x, y). In the local frame,

the above continuity equations and the equations of motion yield

∂Σg

∂t
+

∂Σgux

∂x
= 0, (2.39)

∂ux

∂t
+ux

∂ux

∂x
= 3Ω2x+2Ωuy−

c2s
Σg

∂Σg

∂x
− ∂Φ

∂x
+

1

Σg

∂

∂x

(
Σgν

4

3

∂ux

∂x

)
+
Σd

Σg

vx − ux

tstop
, (2.40)

∂uy

∂t
+ ux

∂uy

∂x
= −2Ωux +

∂

∂x

(
Σgν

∂uy

∂x

)
+

Σd

Σg

vy − uy

tstop
, (2.41)

∂Σd

∂t
+

∂Σdvx
∂x

=
∂

∂x

(
D
∂Σd

∂x

)
, (2.42)

∂vx
∂t

+ vx
∂vx
∂x

= 3Ω2x+ 2Ωvy −
c2d
Σd

∂Σd

∂x
− ∂Φ

∂x
− vx − ux

tstop
, (2.43)

∂vy
∂t

+ vx
∂vy
∂x

= −2Ωvx −
vy − uy

tstop
. (2.44)

Solving the above equations corresponds to an eigenvalue problem. We derive a dispersion

relation (n = n(k)) under the condition that the eigenfunctions are nontrivial.

2.3.2 Linearized equations

We choose an unperturbed state with uniform surface densities and radial velocities of

ux,0 = vx,0 = 0, where subscripts “0” represent unperturbed state values. The Keplerian

rotational velocities uy,0 = vy,0 = −3Ωx/2 satisfy the steady condition with the above

basic equations.

Considering axisymmetric perturbations δΣ, δΣd, δux, δuy, δvx, δvy, δΦ proportional to

exp[nt + ikx], we linearize Equations (2.36) and (2.39)-(2.44) and obtain the following

linearized equations

nδΣg + ikΣg,0δux = 0, (2.45)

nδux = 2Ωδuy −
c2s
Σg,0

ikδΣg − ikδΦ− 4

3
νk2δux + ε

δvx − δux

tstop
, (2.46)
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nδuy = −Ω

2
δux − νk2δuy − ik

3νΩ

2Σg,0

δΣ + ε
δvy − δuy

tstop
, (2.47)

nδΣd + ikΣd,0δvx = −Dk2δΣd, (2.48)

nδvx = 2Ωδvy −
c2d
Σd,0

ikδΣd − ikδΦ− δvx − δux

tstop
, (2.49)

nδvy = −Ω

2

(
δvx −

ikD

Σd,0

δΣd

)
− δvy − δuy

tstop
, (2.50)

δΦ = −2πG

k
(δΣg + δΣd) , (2.51)

where ε ≡ Σd,0/Σg,0 is the dust-to-gas mass ratio.

2.3.3 Results

In this section, we present linear analyses and results with and without the turbulent

viscosity separately. In both cases, there are six modes in the system considered because

the basic equations include six time-derivatives. In the absence of the dust-gas friction,

the dust diffusion and the turbulent gas viscosity, there are two density waves for dust

and gas disks respectively, and two static modes. A static mode is a steady solution

of linearized equations. Figure 2.1 shows how the six modes change by adding three

physical processes step by step and which mode becomes unstable. As shown in Figure

2.1, the two static modes become unstable, which we will explain in more detail.

Without turbulent viscosity

In the absence of turbulent viscosity, we find one static mode (n = 0) and one unstable

mode (the modes B’ and C in Figure 2.1) besides four density waves. The static mode is

a perturbed state where dust has the same azimuthal velocity with gas, and the radial

force balance holds. The latter mode corresponds to the secular GI.

Adopting the terminal velocity approximation (tstop ≪ n−1) and assuming tstop ≪
Ω−1 ≪ n−1, we obtain the following approximate dispersion relation of the secular GI:

A1n+ A0 = 0, (2.52)

A1 ≡

{
Ω2 +

(
1 + ε

tstop

)2
}
ω2
gd +

εDk2

tstop
c2sk

2, (2.53)

A0 ≡
ω2
g

1 + ε

{(
1 + ε

tstop

)2

Dk2 +
1 + ε

tstop
c2dk

2

}
+ ω2

d

εc2sk
2

tstop
, (2.54)
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Figure 2.1: A schematic diagram showing mode classes. There are six modes in our analysis:

four density waves and unstable mode stemming from independent static modes. The modes

on the top line are those obtained in the absence of friction, dust diffusion, and turbulent gas

viscosity. (Step 1, the second line) The friction couples the dust and gas density waves, resulting

in modified density waves (DWs, the mode A’). The modified density waves become unstable

when self-gravity is large enough, which are referred to as the classical GI. One of the static

modes becomes secular GI because of friction (the mode B). (Step 2, the third line) The dust

diffusion does not qualitatively change properties of those six modes although growth rates for

each mode change. (Step 3, the bottom line) The turbulent viscosity destabilizes the remaining

static mode (the mode D). This destabilized static mode is referred to as two-component viscous

gravitational instability (TVGI). Two of the modified DWs become viscous overstable modes.

This figure is originally from Figure 1 of the published paper, Tominaga et al. (2019).
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Figure 2.2: Growth rate (left) and frequency (right) of secular GI for D = 10−4c2sΩ
−1, cd =

0, ϵ = 0.1, τs = 0.01, Q = 3 as a function of dimensionless wavenumber kH. The vertical axis of

the both panels is normalized by the Keplerian frequency Ω. The black line is the dispersion

relation obtained in the previous work (Takahashi & Inutsuka 2014; Latter & Rosca 2017),

while the red line shows the results of the present analysis. The blue cross mark on the left

panel is growth rates obtained from Equation (2.52). The imaginary part Im[n] is zero for

the secular GI mode obtained in our analysis in contrast to the previous work. This figure is

originally from Figure 2 of the published paper, Tominaga et al. (2019).

where

ω2
gd ≡ Ω2 +

c2s + εc2d
1 + ε

k2 − 2πG (1 + ε) Σg,0k, (2.55)

ω2
g ≡ Ω2 + c2sk

2 − 2πG (1 + ε) Σg,0k, (2.56)

ω2
d ≡ Ω2 + c2dk

2 − 2πG (1 + ε) Σg,0k. (2.57)

Figure 2.2 compares the dispersion relations of secular GI obtained in the present

analyses and the previous work (Takahashi & Inutsuka 2014) for D = 10−4c2sΩ
−1, cd =

0, ϵ = 0.1, τs ≡ tstopΩ = 0.01, and Toomre’s Q value for gas

Q ≡ csΩ

πGΣg,0

(2.58)

is set to be 3. As in Takahashi & Inutsuka (2014), secular GI obtained in this work is

also stabilized at long wavelengths by the Coriolis force exerted on dust. In contrast,

short wavelength perturbations are stabilized by turbulent diffusion. At intermediate

wavelengths where secular GI is unstable, the gas pressure gradient force dominates the

Coriolis force exerted on gas. As a result, an azimuthal zonal flow form (see, Latter

& Rosca 2017), and dust accumulates by the self-gravity of itself. The growth rate of

secular GI obtained in the present analyses is several times larger than that obtained in
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the previous work. The most remarkable difference is that secular GI is a monotonically

growing mode in the present analyses while it is an overstable mode in the previous studies

(Takahashi & Inutsuka 2014; Latter & Rosca 2017). This shows that the overstability in

the previous work originate from the unphysical torque acting on dust (Equation (2.3)).

We derive an approximate unstable condition of the secular GI from Equation (2.52).

The condition is that at least two solutions for n = 0 exist in a region k > 0. This is

equivalent to the condition that A0/k
2 = 0 has two distinct positive real solutions. We

then obtain the following approximate unstable condition:

Q2 (tstopc
2
d +D)

(1 + ε) [tstop (εc2s + c2d) +D (1 + ε)]
< 1. (2.59)

Equation (2.59) is equivalent to the condition derived in Latter & Rosca (2017) in the case

of D = 0 (see Equation (43) in their paper). If we assume cd = 0 and (1+ε)D ≪ εc2s tstop,

Equation (2.59) yields

Q <

√
ε (1 + ε) tstopc2s

D
. (2.60)

Equation (2.60) is equivalent to Equation (50) in Latter & Rosca (2017) for (1 + ϵ)D ≪
ϵc2s tstop. Thus, our formulation does not change the condition for secular GI if D is so

small that (1 + ϵ)D ≪ ϵc2s tstop is satisfied.

We find mode exchange between secular GI and dust GI at k = kc,−, kc,+ where

the growth rate of dust GI becomes zero (Figure 2.3). Mode exchange is reconnection

of curves in the k – n plane of dispersion relations for two different modes. Youdin

(2011) also found the mode exchange even in the one-fluid linear analyses (see Figure

10 therein). To distinguish the different mode on the same branch of the dispersion

relation, we designate the growing mode in the limited range of wavenumbers where dust

GI remains unstable even for tstop → ∞ as “dust GI”. On the other hand, we designate

the growing mode in the disconnected curves in the regions of wavenumbers where dust

GI is stable for tstop → ∞ as “secular GI”.

Figure 2.4 shows the maximum growth rate of secular GI and dust GI as a function

of τs and α for ε = 0.1, Q = 3. To plot this figure, we use Equations (1.27) and (1.28)

for the diffusion coefficient D and the velocity dispersion cd. The short-dashed line in

Figure 2.4 represents the approximated maximum value of α for the growth of secular GI,

which is obtained from Equation (2.59). The exact upper limit of α is well represented

by Equation (2.59). Secular GI is the fastest growing mode in the colored region above

the long-dashed line, while dust GI grows faster in the region below the long-dashed line.

On the long-dashed line, the most unstable wavelengths are kc,−. Dust GI becomes the
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Figure 2.3: Schematic picture of mode exchange between secular GI and dust GI. The left

figure shows the dispersion relations of the static mode and dust GI in the absence of friction.

The right figure shows the dispersion relations obtained with friction. The gray dashed line

represents a growth rate of the dust GI mode, and the blue solid line is that of the static mode or

secular GI. The labels (A), (A’) and (B) shown in the legends correspond to the labels shown in

Figure 2.1. The mode exchange occurs at wavelengths where the eigenvalue and eigenfunction

degenerate in the absence of friction. This figure is originally from Figure 3 of the published

paper, Tominaga et al. (2019).
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Figure 2.4: Maximum growth rate of secular GI and dust GI for ε = 0.1 and Q = 3 as a

function of dimensionless stopping time τs and strength of turbulence α. The color represents

the growth rate normalized by the Keplerian angular velocity Ω. We note that Im[n] is zero

in the whole parameter space. The short-dashed line represents the approximate condition for

the instability (Equation (2.59)). Dust GI is the most unstable mode below the long-dashed

line. In the colored region above the long-dashed line, secular GI is the fastest growing mode.

Both instabilities are stable in the white region. This figure is originally from Figure 4 of the

published paper, Tominaga et al. (2019).

fastest growing mode for smaller α cases since effects of the diffusion and the velocity

dispersion is smaller.

With turbulent viscosity

Next, we show the linear stability in the presence of turbulent viscosity exerted on the

gas (Step 3 in Figure 2.1). In this case, we find a new instability that is different

from secular GI. We name this new instability “two-component viscous gravitational

instability (TVGI)”. TVGI originates from the static mode that appears in the absence

of turbulent viscosity (the mode labeled (C) in Figure 2.1). The static mode is a steady

solution where gas and dust have the same azimuthal velocity (δuy = δvy). In this steady

state, the radial force balance is maintained mainly by self-gravity and the Coriolis force,

that is, 2Ωδuy − ikδΦ = 2Ωδvy − ikδΦ ≃ 0. This radial force balance is not realized

once turbulent viscosity is taken into accout. The viscosity decreases δuy, resulting in

the azimuthal relative motion between dust and gas. Since dust is interacting with gas

through friction, the azimuthal velocity perturbation δvy also decreases. The decrease of

both δuy and δvy breaks the radial force balance, and thus both dust and gas accumulate
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by the self-gravity. This is the physical interpretation of TVGI. The decrease of the

Coriolis force due to both viscosity and friction is important for the growth of TVGI.

In the absence of friction, this unstable mode becomes a static mode that satisfies the

radial force balance for both components and

δux = 0, (2.61)

−νk2δuy − ik
3νΩ

2Σg,0

δΣg = 0, (2.62)

δvx −
ikD

Σd,0

δΣd = 0. (2.63)

This indicates that TVGI is different from the so-called viscous instability, which grows

even in the one-fluid system and does not require friction (e.g., Lynden-Bell & Pringle

1974; Schmit & Tscharnuter 1995; Gammie 1996; Lin & Kratter 2016).

Adopting the terminal velocity approximation and assuming tstop ≪ Ω−1 ≪ n−1, we

derive the reduced dispersion relation as a quadratic function of n:

B2n
2 +B1n+B0 = 0, (2.64)

B2 ≡

{
Ω2 +

(
1 + ε

tstop

)2
}
ω2
gd +

εDk2

tstop
c2sk

2

+
νk2

(1 + ε)2

[
(1 + ε)2

tstop
εω2

gd + εDk2
{
3 (1 + ε) Ω2 + εc2sk

2
}

+
(1 + ε)3

t2stop
Dk2 +

1 + ε

tstop

(
c2d + εc2s

)
k2

]
+

4νk2

3

1 + ε

tstop

(
Dk2

tstop
+

εΩ2

1 + ε
+ c2dk

2 − 2πGεΣg,0k

)
, (2.65)

B1 ≡
ω2
g

1 + ϵ

{(
1 + ε

tstop

)2

Dk2 +
1 + ε

tstop
c2dk

2 + ενk2

(
2πGΣg,0k +

Dk2

tstop

)}
+

εω2
d

1 + ε

{
1 + ε

tstop
c2sk

2 + νk2
(
3Ω2 + c2sk

2 − 2πGΣg,0k
)}

+
ενk2

(1 + ε) tstop

{
1 + ε

tstop

(
c2d − c2s

)
k2 +Dk2

(
c2sk

2 − Ω2
)}

+
νk2

1 + ε

{
Ω2 +

(
1 + ε

tstop

)2
}{

3Ω2 + c2sk
2 − 2πG (1 + ε) Σg,0k

}
, (2.66)
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Figure 2.5: Growth rates Re[n]/Ω of TVGI and secular GI for α = 10−3, ε = 0.1, τs = 0.3 and

Q = 5 as a function of dimensionless wavenumbers kH. The solid and dashed lines represent

the dispersion relation of TVGI and secular GI, respectively. The blue cross mark represents

the approximated growth rates obtained from Equation (2.64). In this case, the secular GI is

stable.

B0 ≡
νk2

1 + ϵ

{(
1 + ϵ

tstop

)2

Dk2 +
1 + ϵ

tstop
c2dk

2

}(
3Ω2 + c2sk

2 − 2πGΣg,0k
)

− νk2 ϵc
2
sk

2

tstop

(
2πGΣg,0k +

Dk2

tstop

)
. (2.67)

When reducing the dispersion relation, we neglected the second and higher order terms

of νk2 assuming weak turbulence (α ≪ 1). Equation (2.64) yields growth rates of two

modes: secular GI and TVGI. In fact, the solutions of Equation (2.64) gives the static

mode (n = 0) and the growth rate of secular GI (Equation (2.52)) in the absence of

turbulent viscosity (ν = 0).

Figure 2.5 shows the dispersion relations of TVGI and secular GI for α = 10−3, ε =

0.1, τs = 0.3 and Q = 5. For those parameters, secular GI is stable, and only TVGI

is unstable. Note that n is real for both TVGI and secular GI, and thus they are not

oscillating modes. The growth rate of TVGI is very small at long wavelengths because the

angular momentum transport via turbulent viscosity becomes ineffective as k decreases.

We derive the condition for the growth of TVGI from the approximate dispersion

relation (Equation (2.64)). We consider a case where secular GI is stable and also assume
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that a disk is self-gravitationally stable and ω2
gd > 0, that is,

(1 + ε)3/2√
1 + ε (cd/cs)

2
< Q. (2.68)

For ω2
gd > 0 and weak turbulence that satisfies ϵνk2/tstop ≪ Ω2, one finds B2 > 0. In

such a case, the unstable condition is that Equation (2.64) has one negative solution and

one positive solution for a certain wavenumber k. This is equivalent to the condition for

wavenumbers satisfying B0 < 0 to exist. From Equation (2.67), we obtain the following

quadratic equation for k > 0:

B0tstop
νk4

= 3

(
1 + ε

tstop
D + c2d

)
Ω2 − 2πGΣg,0

(
1 + ε

tstop
D + c2d + εc2s

)
k +

(
D

tstop
+ c2d

)
c2sk

2.

(2.69)

Thus, such wavelengths exist if the discriminant of the right hand side of Equation (2.69)

is positive. We then find the following condition for the instability:

3Q2 (tstopc
2
d +D) [tstopc

2
d + (1 + ε)D]

[tstop (c2d + εc2s ) + (1 + ε)D]
2 < 1. (2.70)

The left hand side of Equation (2.70) is independent from ν. This is partly because

we assume weak turbulence. Another reason is that infinitesimally small viscosity is

enough for TVGI. Leaving the lading term in Equation (2.70) under the assumptions of

α ≪ τs ≪ 1 and c2d/c
2
s ∼ DΩ/c2s ∼ α gives

3 (1 + ε)

(
QD

εtstopc2s

)2

≲ 1, (2.71)

or (
tstopπGΣg,0H

−1
)−1 ≲ (DH−2)

−1√
3 (1 + ε)

. (2.72)

The left hand side of Equation (2.72) represents a timescale at which dust grains travel

across a length of H = csΩ
−1 with the terminal velocity. The right hand side represents a

diffusion timescale of dust surface density perturbation with the length scale ∼ H. Thus,

Equation (2.70) represents that TVGI can grow if dust grains can accumulate with the

terminal velocity overcoming turbulent diffusion. This physical picture is analogous to

that of the one-component secular GI discussed in Youdin (2011).

We can also estimate the most unstable wavelength if the higher order terms of

νk2 are negligibly small. The growth rate of TVGI is also small since its growth is

determined by the efficiency of viscous angular momentum transport. Hence, the growth
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Figure 2.6: Growth rates Re[n]/Ω of TVGI and secular GI for α = 10−4, ε = 0.1, τs = 0.03

and Q = 4 as a function of dimensionless wavenumbers kH. The solid lines show the exact

dispersion relations. The blue cross mark is the approximated growth rates (Equation (2.64)).

In this case, both TVGI and the secular GI grow. This figure is originally from Figure 6 of the

published paper, Tominaga et al. (2019).

rate is approximately given by −B0/B1 (see Equation (2.64)). Neglecting the higher

order terms of νk2, we obtain the reduced growth rate:

n ≃ −νk2 3Ω2D (1 + ε)− 2πGΣg,0 {tstopεc2s +D (1 + ε)} k +Dc2sk
2

{tstopεc2s +D (1 + ε)}Ω2 − 2πG (1 + ε) Σg,0 {tstopεc2s +D (1 + ε)} k +D (1 + ε) c2sk
2

(2.73)

Here, we neglect c2dk
2 since this term has a smaller effect to stabilize TVGI than dust

diffusion. The most unstable wavenumber kmax is of the order of a wavenumber at which

n/νk2 has the local maximum, which is

kmax ∼
πGΣg,0 [tstopεc

2
s +D (1 + ε)]

Dc2s

=
1 + ε

Q
H−1 +

ετs
(DΩc−2

s )Q
H−1. (2.74)

The right hand side of the Equation (2.74) is about 4.5H−1 for α = 10−3, ε = 0.1, τs = 0.3

and Q = 5, which is consistent with the most unstable wavenumber seen in Figure 2.5.

Note that the unstable condition depends on ν when the higher order terms of νk2 are

not negligible.

In the case that both TVGI and secular GI are unstable, those appear on one branch

of the dispersion relation. Figure 2.6 shows the dispersion relations for α = 10−4, ϵ =
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Figure 2.7: Schematic picture of the mode exchange between TVGI and secular GI. The mode

exchange occurs because of turbulent viscosity. Left figure shows the dispersion relations of

secular GI and the statice mode in the absence of turbulent viscosity, and right figure shows

those obtained in the presence of the turbulent viscosity. The blue line shows a branch of

secular GI, and the red line shows the static mode or TVGI. The labels (B’), (B”), (C) and

(D) shown in the legends correspond to the labels in Figure 2.1. The mode exchange occurs

at wavelengths where eigenvalues and eigenfunctions degenerate in the absence of turbulent

viscosity. This figure is originally from Figure 7 of the published paper, Tominaga et al. (2019).
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Figure 2.8: Maximum growth rates of TVGI and secular GI as a function of τs and α for

ϵ = 0.05 and Q = 10. The short-dashed line shows the maximum α for which TVGI can grow

(Equation (2.70)). TVGI is the fastest growing mode in the colored region above the dotted

line. In the region between the dotted and long-dashed lines, secular GI grows the fastest.

Dust GI is the most unstable mode below the long-dashed line as in Figure 2.4. This figure is

originally from Figure 8 of the published paper, Tominaga et al. (2019).

47



2.4. DISCUSSION: EFFECTS OF DISK THICKNESS

0.1, τs = 0.03 and Q = 3. Those parameters satisfy the unstable conditions of TVGI and

secular GI (Equations (2.59) and (2.70)). However, Figure 2.6 only shows one growing

mode. We find that this apparent “single” unstable mode results from mode exchange

between TVGI and secular GI (Figure 2.7). In the absence of turbulent viscosity, eigen-

values and eigenfunctions of the static mode and secular GI degenerate at wavenumbers

where the growth rate of the secular GI is zero. In the presence of small but finite tur-

bulent viscosity, curves of the dispersion relations of the destabilized static mode (i.e.,

TVGI) and secular GI reconnect at their crossing points, which results in single unsta-

ble branch. As shown in Figure 2.7, we designate the growing mode as secular GI at

wavenumbers where secular GI is unstable for ν = 0. On the other hand, we call the

mode TVGI at wavenumbers where secular GI is stable for ν = 0.

Figure 2.8 shows the maximum growth rate of TVGI and secular GI for ε = 0.05

and Q = 10 as a function of τs and α. TVGI is the fastest growing mode in the colored

region above the dotted line. The dotted line almost coincides with the maximum α for

which secular GI can grow (Equation (2.59)). Secular GI is the fastest growing mode

in the parameter space enclosed by the dotted and long-dashed lines. Figure 2.8 also

shows that TVGI can grow in a parameter space where turbulence and friction are so

strong that secular GI is stable. We thus expect that TVGI grows earlier than secular

GI since the stopping time becomes larger as dust grains grow in protoplanetary disks.

As described above, the dust grains accumulate through the growth of TVGI. Therefore,

TVGI should be a promising mechanism to form planetesimals.

We should note that the above analyses do not include the radial drift of dust grains

at the unperturbed state. In the presence of the significant radial drift, secular GI is

more important than TVGI. Linear analyses with the radial drift are shown in the next

Chapter.

2.4 Discussion: effects of disk thickness

In the previous section, we assume that a disk is infinitesimally thin. The vertical

thickness however stabilizes unstable modes to some extent because the thickness reduces

self-gravity estimated for an infinitesimally thin disk. In this section, we investigate such

effects on growth rates of secular GI and TVGI.

According to Vandervoort (1970) and Shu (1984), the self-gravitational potential δΦ

reduced by the disk thickness is approximately given by

δΦ = −2πG

k

(
δΣg

1 + kH
+

δΣd

1 + kHd

)
, (2.75)
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Figure 2.9: Dispersion relations of secular GI (left panel) and TVGI (right panel) for ϵ = 0.05

and Q = 10. The dimensionless stopping time and strength of turbulence (τs, α) are set to be

(0.1, 2.5× 10−5) for the left panel and (1, 2.5× 10−4) for the right panel (see also, Figure 2.10).

We neglect the turbulent viscosity in the left panel so that only the secular GI grows. The solid

lines represent the dispersion relation for a disk with finite thickness while the dashed lines

are those for a razor thin disk. The growth rates and the most unstable wavenumbers become

smaller as a result of the reduced self-gravity due to the disk thickness. This figure is originally

from Figure 9 of the published paper, Tominaga et al. (2019).

where Hd is the dust scale height (Equation (1.26)). Using this equation rather than

Equation (2.51) gives the reduced growth rate.

Figure 2.9 shows how introducing the thickness changes the dispersion relations of

secular GI and TVGI for ϵ = 0.05 and Q = 10. The dimensionless stopping time and

strength of turbulence (τs, α) are set to be (0.1, 2.5 × 10−5) for the left panel of Figure

2.9 and (τs, α)=(1, 2.5 × 10−4) for the right panel. The most unstable mode is secular

GI and TVGI in the former and latter cases, respectively. In both cases, introducing the

disk thickness decreases the maximum growth rates by a factor of a few. Figure 2.10

shows the maximum growth rate as a function of τs and α for the same parameters as in

Figure 2.8. Although the maximum growth rates are smaller than those in Figure 2.8,

the extent of the unstable region is almost the same, and the maximum α for which the

instabilities can grow does not change more than a factor of two.

Equation (1.26) shows that a dust disk is generally thinner than a gas disk. In reality,

gas above a dust disk hardly interact with dust grains via friction because of less dust

abundance at the upper layer. In the above analysis, the back reaction is assumed to

be exerted on all of gas. Thus, we may need to exclude gas located above a dust disk

from our analysis (see also, Latter & Rosca 2017). We should note that, even though gas

above a dust disk is frictionally decoupled from dust, upper gas and the midplane dust
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Figure 2.10: Maximum growth rate obtained when we introduce the disk thickness. Toomre’s

Q for gas and dust-to-gas ratio ϵ are set to be the same value as those of Figure 2.8. The

horizontal and vertical axes are the dimensionless stopping time τs and strength of turbulence

α. The color represents the maximum growth rate normalized by Ω. The short-dashed line is

the same as that shown in Figure 2.8. TVGI grows the fastest in the colored region above the

dotted line. In the region below the dotted line, secular GI is the fastest growing mode. Both

instabilities are stable in the white region.

interact with each other through their self-gravity. Thus, it is unclear to what vertical

extent dust and gas should be considered. Although multidimensional analyses will give

solutions to this problem, we focus on one-dimensional analyses in this work and discuss

with some simplifications, which is described below.

Assuming the following Gaussian functions for the unperturbed density structures,

we investigate stability in a dust disk:

ρg,0 ≡
Σg,0√
2πH

exp

(
− z2

2H2

)
, (2.76)

ρd,0 ≡
Σd,0√
2πHd

exp

(
− z2

2H2
d

)
, (2.77)

where ρg,0 and ρd,0 are the mass density of gas and dust, respectively. Vertically integrat-

ing these density profiles gives surface densities within a dust disk although there is a

large uncertainty in the appropriate range of the vertical integration. Here, we integrate

these densities in −3Hd ≤ z ≤ 3Hd. Although the dust density at z = 3Hd is smaller

by orders of magnitudes than that at the midplane, the dust-to-gas mass ratio is still

large because the dust scale height is much smaller than the gas scale height and dust

concentrates around the midplane. In addition, friction force per unit mass exerted on
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dust grains is independent from dust density, which means that the dust even at a low

density region can take part in instabilities. The vertical integration of the mass densities

gives

Σ′
g,0 ≡

∫ 3Hd

−3Hd

ρg,0dz = Σg,0erf

(
3Hd√
2H

)
, (2.78)

Σ′
d,0 ≡

∫ 3Hd

−3Hd

ρd,0dz = Σd,0erf

(
3√
2

)
≃ 0.997Σd,0, (2.79)

where erf(x) is the error function. The relation between the mid-plane dust-to-gas mass

ratio and Σ′
d,0/Σ

′
g,0 is

ρd,0(z = 0)

ρg,0(z = 0)
=

Σ′
d,0H

Σ′
g,0Hd

erf

(
3Hd√
2H

)[
erf

(
3√
2

)]−1

. (2.80)

We perform linear analyses using these surface densities and the dust-to-gas mass ratio

Σ′
d,0/Σ

′
g,0. In these analyses, we introduce the modified Toomre’s Q parameter for a gas

disk Q̃ ≡ csΩ/πGΣ′
g,0. We also modify the self-gravitational potential using Hd for both

gas and dust:

δΦ = −2πG

k

δΣ′
g + δΣ′

d

1 + kHd

. (2.81)

Figure 2.11 shows the maximum growth rates as a function of total dust-to-gas mass

ratio Σd,0/Σg,0 and Q = csΩ/πGΣg,0 for τs = 0.1 and α = 10−4. In this case, Hd/H is

about 0.03, and, thus, Q̃/Q is about 14, meaning that Q̃ is 14 times larger than Q in

the whole parameter space of Figure 2.11. The dust-to-gas mass ratio in the dust disk

Σ′
d,0/Σ

′
g,0 is also about 10 times larger than Σd,0/Σg,0. Secular GI grows the fastest in

the parameter space bounded by the dotted and dashed lines. This is because Q̃ is too

large and dust GI grows faster than secular GI. TVGI can grow in a larger parameter

space. Since the self-gravity of dust is important for its growth, TVGI grows even for

large Q̃. Thus, at least in the absence of the radial drift, TVGI can grows even when we

consider the vertical structures.

We again note that gas above the dust disk will affect the motion in the dust disk

through the gravitational interaction. Thus, we may underestimate the self-gravity in

this analysis. Increasing the vertical extent of the integration results in smaller Q̃ and a

larger parameter space where secular GI is the most unstable. To examine the effects of

the upper gas on the instabilities in the dust disk, we need to perform multidimensional

analyses, which are beyond the scope of this thesis. Moreover, dust is less diffusive in

dust rich regions Schreiber & Klahr (2018). The less radial diffusivity makes the disk

more unstable to secular GI than in Figure 2.11.
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Figure 2.11: Maximum growth rates of secular GI, TVGI, and dust GI as a function of total

dust-to-gas mass ratio Σd,0/Σg,0 and Q = csΩ/πGΣ0 for τs = 0.1 and α = 10−4. The color

represents the maximum growth rate normalized by the angular velocity Ω. In the colored

region above the dotted line, TVGI is the most unstable mode. Secular GI grows the fastest in

the region enclosed by the dotted and dashed lines. Dust GI is the most unstable mode below

the dashed line. This figure is originally from Figure 11 of the published paper, Tominaga et al.

(2019).

2.5 Summary

In Chapter 2, we revisit dust dynamics in turbulent gas and reformulate the macroscopic

equations of dust based on the mean-field approximation (the Reynolds-averaging). The

reformulated equations conserve total angular momentum, which is in contrast to the

previous studies that simply use the advection-diffusion equation for dust density. The

difference comes from the fact that we introduce the advection terms originating from

the diffusive flow in momentum equations. The reformulated equations can be used for

various studies because of its simplicity.

Using the reformulated equations, we perform linear stability analyses on secular GI.

We find that secular GI grows monotonically with a few times larger growth rate than

expected in the previous studies. The property of the monotonic growth is in contrast

to the previous studies that found overstabilized secular GI. Our linear analyses show

that the overstability in the previous studies is resultant from the violation of angular

momentum conservation.

The present linear analyses show that turbulent viscosity introduces a new instability

that we refer to as TVGI. TVGI grows for larger α and smaller τs for which secular

GI can not grow. Because τs increases as dust grains grow, we may expect that TVGI
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becomes operational earlier than secular GI at least in the absence of significant radial

drift (cf. Chapter 3).

The vertical structure is a possible source stabilizing the instabilities. Simply assum-

ing the Gaussian density profiles, we investigate its effect on the maximum growth rates of

secular GI and TVGI. Although it is unclear to what vertical extent dust and gas should

be considered, we consider the extent of −3Hd ≤ z ≤ 3Hd and perform linear analyses.

Results show that secular GI grows the fastest in a region bounded by the dotted and

dashed lines in Figure 2.11. This is because gas mass in −3Hd ≤ z ≤ 3Hd is about

10 times smaller than the overall gas mass. On the other hand, TVGI can grow even

larger Q and smaller dust-to-gas mass ratio. We should note that increasing the vertical

extent in consideration expands unstable regions of those instabilities. Because upper

gas interacts with the midplane dust through gravity, we may underestimate the growth

rate and extents of parameter space unstable to secular GI. To explore more precisely,

we need to perform linear analyses where vertical structures are explicitly considered.

Those multidimensional analyses are our future work.
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Chapter 3

Numerical Simulations of Secular

Instabilities

This chapter is based on published papers, Tominaga, Inutsuka, & Takahashi 2018,

Publication of the Astronomical Society of Japan, Volume 70, pp. 3 (1-15) (Tominaga

et al. 2018), and Tominaga, Takahashi, & Inutsuka 2020, The Astrophysical Journal,

Volume 900, pp. 182-198 (Tominaga et al. 2020).

3.1 Short introduction

Chapter 2 and the previous studies on secular GI focused on linear growth of the insta-

bility (e.g., Ward 2000; Youdin 2005a; Youdin 2011; Takahashi & Inutsuka 2014; Latter

& Rosca 2017). The linear analyses showed the possibility that secular GI creates some

observed ring-like structures (Takahashi & Inutsuka 2014). Moreover, resultant dust con-

centration is expected to lead to planetesimal formation (e.g., Youdin 2011; Takahashi

& Inutsuka 2016). However, the process from ring formation to planetesimal formation

is a nonlinear process, which has not been studied. Studies on nonlinear secular GI are

necessary toward understanding planetesimal formation.

Although the linear growth at the local frame is well studied (e.g., Youdin 2011;

Takahashi & Inutsuka 2014; Tominaga et al. 2019 and Chapter 2), it is also necessary to

investigate the growth of secular GI toward planetesimal formation as a global problem.

This is because dust grains drift inward throughout a disk where the growth efficiency

of secular GI varies radially. Numerical simulations are useful to study such a nonlin-

ear global problem. We thus perform numerical simulations of secular GI and explore

how the instability grows in a radially extended disk and to what extent the instability
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concentrates dust grains into rings.

For numerical simulations of secular GI, it seems necessary to take notice especially

of numerical errors and diffusion. A growth timescale of secular GI is typically about

100 times longer than one Keplerian period. Such a slow process will suffer numerical

diffusion during long-term integrations. In addition, numerical diffusion due to spatial

discretization and advection prevents growth of secular GI because dust grains drift in-

ward in a disk and the associated advection numerically smoothes out seed perturbations

of secular GI.

Motivated by these numerical issues, we develop a Lagrangian-cell method that uti-

lizes a symplectic integrator for time integrations (Tominaga et al. 2018). Using La-

grangian cells, we avoid numerical diffusion due to the spatial advection. A symplectic

integrator is one method used in N-body simulations for orbital evolutions because the

method preserves an error in total energy throughout a calculation for Hamiltonian

systems. Since secular GI requires frictional dissipation and the system is not exactly

Hamiltonian, we adopt the operator splitting and use a symplectic integrator only for time

integration with Hamiltonian part. We solve momentum evolution due to friction using

the piecewise exact solution (Inoue & Inutsuka 2008) that is free from time-step require-

ment due to small tstopΩ. Adopting these methods, we perform radially one-dimensional

simulations secular GI (Tominaga et al. 2020).

In Section 3.2, we describe numerical methods and show some test calculations. We

then show results of simulations of secular GI in Section 3.3. Discussions and summary

are given in Sections 3.4 and 3.5.

3.2 Numerical methods

As in the previous chapter, we consider the following gas and dust equations:

∂Σg

∂t
+

1

r

∂ (rΣgur)

∂r
= 0, (2.4)

Σg

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= −c2s

∂Σg

∂xi

− Σg
∂

∂xi

(
Φ− GM∗

r

)
+

∂

∂xj

[
Σgν

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂uk

∂xk

)]
+ Σd

vi − ui

tstop
, (2.35)

∂Σd

∂t
+

1

r

∂ (rΣdvr)

∂r
=

1

r

∂

∂r

(
rD

∂Σd

∂r

)
, (2.1)
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Σd

[
∂vr
∂t

+

(
vr −

D

Σd

∂Σd

∂r

)
∂vr
∂r

]
= Σd

v2ϕ
r

− c2d
∂Σd

∂r
− Σd

∂

∂r

(
Φ− GM∗

r

)
− Σd

vr − ur

tstop
+

1

r

∂

∂r

(
rvrD

∂Σd

∂r

)
, (2.37)

Σd

[
∂vϕ
∂t

+

(
vr −

D

Σd

∂Σd

∂r

)
∂vϕ
∂r

]
= −Σd

vϕ
r

(
vr −

D

Σd

∂Σd

∂r

)
− Σd

vϕ − uϕ

tstop
, (2.38)

∇2Φ = 4πG (Σg + Σd) δ(z), (2.36)

where the numbering of the equations are the same as in the previous chapter. We solve

these equations utilizing the operator splitting method. In the following, we describe the

methods in detail.

3.2.1 Lagrangian-cell method

First, we formulate the Lagrangian-cell method adopted for dissipationless parts of hy-

drodynamic equations. For the simplicity, we fist consider a one-dimensional sound wave

in gas in the Cartesian coordinates and demonstrate that our method is free from the nu-

merical diffusion due to the advection. Next, we formulate the method in the cylindrical

coordinates.

Our formulation starts from the action principle. The Lagrangian of a certain fluid

is given by

L =

∫
dx

[
ρ

(
ẋ2

2
− u

)]
, (3.1)

where x and ẋ denote position and velocity, ρ denotes mass density, and u denotes specific

internal energy. Assuming a barotropic relation P = P (ρ), one obtains

u =

∫
P

ρ2
dρ. (3.2)

Next, we discretize the Lagrangian as the following:

L =
N−1∑
i=1

(
mi+1/2

ẋ2
i+1/2

2

)
−

N∑
i=1

miui, (3.3)

mi+1/2 =
mi+1 +mi

2
, (3.4)

where N denotes the number of cells, physical properties defined in the ith cell are

represented with the index i. xi+1/2 denotes a boundary position between the ith and
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(i + 1)th cells. Our Lagrangian formulation assumes that mass in the i-th cell mi is

constant in time. The density ρi is given by

ρi =
mi

xi+1/2 − xi−1/2

. (3.5)

Substituting Equation (3.3) into the Euler-Lagrange equation

d

dt

(
∂L

∂ẋi+1/2

)
− ∂L

∂xi+1/2

= 0, (3.6)

we obtain

mi+1/2ẍi+1/2 = − ∂

∂xi+1/2

N∑
j=1

mjuj. (3.7)

With the use of Equation (3.2), the right hand side of Equation (3.7) is

− ∂

∂xi+1/2

N∑
j=1

mjuj = − ∂

∂xi+1/2

(mi+1ui+1 +miui),

= − ∂ρi+1

∂xi+1/2

∂ (mi+1ui+1)

∂ρi+1

− ∂ρi
∂xi+1/2

∂ (miui)

∂ρi
,

= −Pi+1 + Pi. (3.8)

Finally, we obtain the following equation of motion of cell boundaries:

mi+1/2ẍi+1/2 = −(Pi+1 − Pi). (3.9)

We integrate Equation (3.9) using a symplectic integrator. In this work, we use the

leap-frog integrator, which is the second-order symplectic integrator.

Equation (3.9) has the second-order accuracy in ∆xi, which can be shown as follows.

Assuming that cell widths are small enough (∆xi ≪ xi), we conduct the Taylor-series

expansion on the right hand side of Equation (3.9) around xi+1/2 and obtain

mi+1/2ẍi+1/2 = −∆xi +∆xi+1

2

dP

dx
+O(∆x3

i ), (3.10)

where xi is set to be
(
xi+1/2 + xi−1/2

)
/2, and we assume ∆xi+1 = ∆xi + O(∆x2

i ). The

mass mg,i+1/2 can be written as follows:

mi+1/2 =
1

2
(mi +mg,i+1)

=
1

2
(ρi∆xi + ρi+1∆xi+1)

=
ρi+1/2

2
(∆xi +∆xi+1) +O(∆x3

i ). (3.11)
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Dividing both side of Equation (3.9) by mi+1/2 gives

ẍi+1/2 = − 1

ρi+1/2

dP

dx
+O(∆x2

i ). (3.12)

Therefore, our method has the second-order accuracy in ∆xi.

We test our method for one-fluid plane wave propagation in a one-dimensional domain

with the length L. We equally space the domain using N =128 cells. We assume the

isothermal equation of state. A time-step ∆t is taken to be 0.5L/Ncs. We adopt code

units where the unperturbed gas density is 2 and L = cs = 1. We initially displace cells

with an amplitude of ξ = 1.0× 10−6 and a wavelength of λ = 0.5.

Figure 3.1 shows errors in the total energy as a function of time t and time evolution

of the density perturbation δρ. The oscillating property in the error is one feature of

the symplectic integrator. Although there is a dispersive error in the profile of δρ, the

amplitude of the sound wave keeps constant over 100 periods, meaning that the method

is free from numerical diffusion.

We also check convergence and spatial accuracy of our scheme. The unperturbed

density, the wavelength and the amplitude are the same as those of the above test. We

conduct two test simulations: (1) propagation of sound wave under the periodic boundary

condition, and (2) standing wave under the fixed boundary condition. We let the fluid

evolve until t = 3 periods using ∆t = 0.1L/512cs for both simulations. Figure 3.2 shows

the N -dependence of L2 norm error of the density profile at the end of the simulations

The error is proportional to N−2, meaning that our scheme has the second-order accuracy

in space.

We finally formulate methods in the cylindrical coordinates (r, ϕ) for infinitesimally

thin axisymmetric disks. We use the following discretized Lagrangian and surface density

at each cell:

L =
N−1∑
i=1

mi+1/2

(
ṙ2
i+1/2

2
+ Φ(ri+1/2)

)
−

N∑
i=1

miui, (3.13)

ṙ2
i+1/2 ≡ ṙ2i+1/2 + r2i+1/2ϕ̇

2
i+1/2, (3.14)

Σi =
mi

π
(
r2i+1/2 − r2i−1/2

) , (3.15)

where Φ is the gravitational potential. Substituting Equation (3.13) into the Euler-

Lagrange equation, we obtain

mi+1/2r̈i+1/2 =
J2
i+1/2

mi+1/2r
3
i+1/2

− 2πri+1/2(Pi+1 − Pi)−mi+1/2

∂Φ(ri+1/2)

∂ri+1/2

, (3.16)
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Figure 3.1: Tests on a one-fluid plane wave propagation. The left figure shows a time variation

of the error in the total energy．Although we show the time variation only for 10 periods, the

amplitude of errors is constant for a longer-term calculation. The right figure shows density

perturbations of a plane wave. The solid green lines show the exact solution while the black

circles show the numerical simulation. One can see that the perturbation amplitudes keep

constant over 100 periods although there are dispersive errors. This figure is originally from

Figure 16 of Tominaga et al. (2018).

dJi+1/2

dt
= 0, (3.17)

Ji+1/2 ≡
∂L

∂ϕ̇i+1/2

, (3.18)

where Ji+1/2 is angular momentum of a cell boundary at r = ri+1/2. Figure 3.3 shows

where physical variables are defined in the cylindrical coordinates. For two-fluid calcula-

tions, we also use the same cell-structures for dust and gas. In the absence of frictional

interaction between dust and gas, our method is a symplectic scheme, which is free from

numerical diffusion and enables accurate long-term calculations.

Self-gravity solver

We regard self-gravity of a disk as a sum of gravitational forces from infinitesimally thin

rings that are (1) coaxial with the center at (r, ϕ) = (0, 0), (2) located in z = 0 plane,

and (3) having uniform line densities. Gravitational potential Φring(r, z;Rring) due to a

ring with a mass of Mring and a radius of Rring is given by

Φring(r, z; a) = MringU(r, z;Rring), (3.19)

U(r, z;Rring) ≡ −2GK(n)

πp
, (3.20)
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Figure 3.2: N -dependence of L2 norm error from the convergence tests. The symbols □ and

△ represent the results of a plane wave propagation and a standing wave tests, respectively.

This figure is originally from Figure 17 of Tominaga et al. (2018).

where p and n are

p ≡
√
(r +Rring)2 + z2, (3.21)

n ≡ 4Rringr

p2
. (3.22)

K(n) is the complete elliptic integral of the first kind

K(n) ≡
∫ π/2

0

dϕ√
1− n sin2 ϕ

. (3.23)

One obtains the ring gravity per unit mass Fr(r, z;Rring) by differentiating the potential:

Fr(r, z;Rring) ≡ MringF̃ (r, z;Rring) (3.24)

F̃ (r, z;Rring) = − G

πp

[
K(n)

r
+ A(r, z;Rring)

E(n)

q2

]
, (3.25)

A(r, z;Rring) ≡
r2 − z2 −R2

ring

r
, (3.26)

q ≡
√

(r −Rring)2 + z2, (3.27)
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Figure 3.3: Schematic picture to show where variables are defined. The surface density is

denoted by Σ, and a radial location of a cell boundary between the i-th and the (i+1)-th cells

is denoted by ri+1/2. Radial velocity and angular momentum are defined at each cell boundary.

R(i) denotes a radius that equally divides a mass in a ith cell. This figure is originally from

Figure 1 of Tominaga et al. (2018)

where E(n) is the complete elliptic integral of the second kind

E(n) ≡
∫ π/2

0

√
1− n sin2 ϕdϕ. (3.28)

In this thesis, we use approximated functions to evaluate the elliptic integrals (Hastings

et al. 1955).

We approximate self-gravity of a one-fluid disk per unit mass at r = ri+1/2 using

perturbed ring masses δmi+1/2 defined in terms of surface density Σ and unperturbed

surface density Σ0 as follows:

δmi+1/2 ≡
δmi+1 + δmi

2
, (3.29)

δmi ≡ π (Σ− Σ0)
(
r2i+1/2 − r2i−1/2

)
, (3.30)∑

i ̸=j

δmj+1/2F̃r(ri+1/2, 0; rj+1/2). (3.31)

The above method with δm corresponds to the solution of the Poisson equation with

perturbed surface density δΣ ≡ Σ − Σ0 as a source term. For a problem with dust and
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Figure 3.4: This figure shows how to distribute a mass in the ithe cell before we calculate the

correction terms for self-gravity. The mass assigned at r = ri is m− = m−,a +m−,b/2, where

m−,a ≡ π
[
r2i+1/2 − r2i

]
Σi and m−,b ≡ π

[
r2i − r2i−1/2

]
Σi. We replace the mass at r = ri−1/2,

i.e. mi−1/2, with [mi−1 +m−,b] /2. This figure is originally from Figure 18 of Tominaga et al.

(2018).

gas, we calculate the self-gravity using this approximation for both dust and gas based

on their surface densities Σd, Σg, unperturbed densities Σd,0, Σg,0, and their cell masses

md,i, mg,i. When we use softening length h for self-gravity to avoid divergence at ring

positions, we use the following equation∑
i ̸=j

δmj+1/2F̃r(ri+1/2, h; rj+1/2). (3.32)

We find that including gravity of a ring from itself to calculate self-gravity increases

the accuracy. In the following, we consider self-gravity exerted on a ring at r = ri+1/2 as

an example. In addition to the formula (Equation 3.31), we introduce gravity from rings

at r = ri, ri+1 as “correction terms”. To calculate gravity from the ring at r = ri, we

divide the mass mi into two parts: m−,a and m−,b (see Figure 3.4):

m−,a ≡ π
[
r2i+1/2 − r2i

]
Σi, (3.33)

m−,b ≡ π
[
r2i − r2i−1/2

]
Σi. (3.34)

Using these masses, we change masses defined at r = ri (m = m−), ri−1/2 (m = mi−1/2)
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as follow

m− = m−,a +
m−,b

2
, (3.35)

mi−1/2 =
mi−1 +m−,b

2
. (3.36)

We also calculate masses m+ and mi+3/2 of rings at r = ri+1, ri+3/2 respectively using

m+,a and m+,b as follows:

m+,a ≡ π
[
r2i+1 − r2i+1/2

]
Σi+1, (3.37)

m+,b ≡ π
[
r2i+3/2 − r2i+1

]
Σi+1, (3.38)

m+ = m+,a +
m+,b

2
, (3.39)

mi+3/2 =
mi+2 +m+,b

2
. (3.40)

With these masses, we calculate gravity exerted on a ring at r = ri+1/2 from r = ri−1/2,

ri, ri+1, and ri+3/2 in the same way as Equation (3.31). For dust-gas systems, we make

use of the above correction for both dust and gas based on their cell masses md,i, mg,i.

Using the above method, we test our scheme calculating growth of pure GI. As a test

simulation, we consider a Keplerian disk around a solar mass star. A local domain is set

around r = 80 au with a radial width L of twice the most unstable wavelength. Only in

test simulations, we use a piecewise polytropic relation (cf., Machida et al. (2006))

P = c2s,0Σ0

[
Σ

Σ0

+

(
Σ

Σ0

)5/3
]
, (3.41)

where cs,0 is an isothermal sound speed, and Σ0 is set to be the unperturbed surface

density. The most unstable wavelength is scaled by cs,0/Ω. To compare results with

“local” linear analyses, we assume small cs,0 (cs,0 ≃ 0.18 m s−1) and make the most

wavelength ∼ 10−4 times shorter than the orbital radius. The assumed sound speed

is a thousand times smaller than a sound speed with mean molecular weight 2.37 and

temperature 10 K. We set the unperturbed surface density Σ0 for Toomre’s Q value to

be 0.999 at r = 80 au. We initially put perturbations with the amplitude δΣ/Σ0 ∼ 10−5

based on the eigenfunction of the most unstable mode. Although we adopt the fixed

boundary condition, we let a surface density outside the domain evolve according to the

eigenfunction of GI. The external density perturbations on both sides are resolved by 128

cells. We space the domain using 512 cells. Time interval ∆t is set to be ∆t = L/512cs.

We also use the softening length h = L/4N to avoid divergence of ring gravity. Figure

3.5 shows the time evolution of the density peak at the center of the domain. The growth
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Figure 3.5: Time evolution of the surface density peak via GI. The horizontal axis is normalized

by angular velocity Ω. The black circles represent the result of the test simulation, and the

solid green line shows the linear growth rate from local linear analyses. The numerical results

show good agreement with the linear growth rate, meaning that our scheme can accurately

solve such a long-term evolution. This figure is originally from Figure 2 of Tominaga et al.

(2018).

rate is about 4.5 × 10−2Ω for Q = 0.999. The numerical results reproduce analytically

derived growth rate. In this way, our scheme can accurately solve such a very slow

evolution with our symplectic method.

3.2.2 The piecewise exact solution for friction

We adopt the piecewise exact solution to calculate frictional momentum transport (Inoue

& Inutsuka 2008). The stopping time is much smaller than one Keplerian period for small

dust grains considered in this thesis. In such a case, time stepping for stable simulations

is restricted by the small stopping time, which makes long-term simulations difficult.

The piecewise exact solution enables us to get rid of such a restriction. The method

is based on an operator splitting method. In our cases, we split the equations into

time evolutions due to (1) friction, (2) dust diffusion, (3) turbulent viscosity, and (4)

the other hydrodynamical force that are solved based on the Lagrangian-cell method

(e.g., pressure gradient, self-gravity). In the part (1), the momentum equations can be

solve analytically. The piecewise exact solution utilizes the analytical solution and let
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momentums evolve. This method is not only free from the above restriction but also

unconditionally stable. In the following, we describe the scheme in more detail. The

part (3) is described afterward.

When solving the frictional interaction, we only update linear and angular momen-

tums of dust and gas whose positions are unchanged. Because our method is based on

the Lagrangian description, positions of dust cells do not necessarily coincide with gas

cells’ positions. Thus, we first interpolate physical variables in ri ≤ r < ri+1 using the

physical values at r = ri+1/2. We use linear functions in r for radial velocities, jg/
√
r and

jd/
√
r, where jd and jg are specific angular momentum of dust and gas. Coefficients of r1

and r0 in the linear functions are determined so that spatial integrations of the interpo-

lation functions give the radial momentum and angular momentum of the cell boundary

at r = ri+1/2. In this way, we avoid numerical diffusion due to the interpolation.

Figure 3.6: Regions used for the piecewise exact solution (colored with dark and light gray).

Their boundaries are either the cell boundary or the cell center of gas and dust. The number k

characterizes each region. Cells enclosed by thick lines represent gas cells while those enclosed

by thin lines represent dust cells. This figure highlights regions used for calculating momentum

changes at the gas cell boundary at r = rg,i+1/2. This figure is originally from Figure 3 of

Tominaga et al. (2018).

We integrate the interpolation functions and calculate masses, radial momentums,

and angular momentums in a region where jth dust cell and ith gas cell overlap with

each other. Those values are denoted by mk
g, m

k
d, P

k
g , P

k
d , J

k
g , and Jk

d for gas and dust

at kth overlap region (see Figure 3.6). We update these momentums using the following
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equations:
dP k

g

dt
= −mk

d

Uk − V k

tkstop
, (3.42)

dP k
d

dt
= −mk

d

V k − Uk

tkstop
, (3.43)

dJk
g

dt
= −mk

d

jkg − jkd
tkstop

, (3.44)

dJk
d

dt
= −mk

d

jkd − jkg
tkstop

, (3.45)

where Uk ≡ P k
g /m

k
g and V k ≡ P k

d /m
k
d denote radial velocity, and jkg ≡ Jk

g /m
k
g and

jkd ≡ Jk
d/m

k
d are specific angular momentum. Assuming mk

g and mk
d to be constant, one

can analytically solve the above differential equations as follows:

P k
g (t+∆t) = P k

g (t)−
[
Uk(t)− V k(t)

]
fk(∆t), (3.46)

P k
d (t+∆t) = P k

d (t) +
[
Uk(t)− V k(t)

]
fk(∆t), (3.47)

Jk
g (t+∆t) = Jk

g (t)−
[
jkg (t)− jkd(t)

]
fk(∆t), (3.48)

Jk
d (t+∆t) = Jk

d (t) +
[
jkg (t)− jkd(t)

]
fk(∆t), (3.49)

fk(t) ≡
mk

gm
k
d

mk
d +mk

g

[
1− exp

(
mk

d +mk
g

mk
g

t

tkstop

)]
, (3.50)

where the interval of time integration is from t to t+∆t. Using these analytical solutions,

we update momentums and angular momentums at each region where a dust cell overlaps

with a gas cell. Summing up updated values P k
g , P

k
d , J

k
g , and Jk

d in each cell gives radial

linear momentums, P k
g,i+1/2 and P k

d,i+1/2, and angular momentums, Jk
g,i+1/2 and Jk

d,i+1/2,

of cell boundaries:

Pg,i+1/2(t+∆t) =
∑
k

P k
g (t+∆t), (3.51)

Pd,i+1/2(t+∆t) =
∑
k

P k
d (t+∆t), (3.52)

Jg,i+1/2(t+∆t) =
∑
k

Jk
g (t+∆t), (3.53)

Jd,i+1/2(t+∆t) =
∑
k

Jk
d (t+∆t), (3.54)

This method exactly conserves total linear momentum and total angular momentum.
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3.2.3 Methods for turbulent diffusion and viscosity

We implement dust diffusion solver and viscosity solver based on the second-order Runge-

Kutta integrator. To calculate the mass flux de to dust diffusion, we first interpolate

dust surface density using a quadratic function. We then evaluate D∂Σd/∂r at dust cell

boundaries and displace them using velocity −Σ−1
d D∂Σd/∂r, which corresponds to the

diffusion term in Equation (2.1). We keep angular momentums of dust cell boundaries

invariant when displacing them because the Lagrangian derivative in the equation for the

mean specific angular momentum includes advection along the diffusive flow (Equation

(2.32)) and the mass at a cell boundary are constant in time. On the other hand, the

radial linear momentum of ith dust cell boundary, md,i+1/2vr,i+1/2, evolves during the

diffusion because of the last term on the right hand side of Equation (2.30). We evaluate

F (r) ≡ rvrD∂Σd/∂r at r = rd,i+1, rd,i, and update md,i+1/2vr,i+1/2 with using F (rd,i+1)−
F (rd,i), where we omit brackets representing the averaged value for the simplicity. Dust

diffusion tends to limit the time step when secular GI collects dust grains in small radial

regions and results in spiky structures. To reduce the limitation due to dust diffusion,

we adopt the super-time-stepping (STS) (Alexiades et al. 1996) if ∆t is limited by dust

diffusion. The number of substeps and the stability parameter in the STS scheme are

fixed to be 4 and 0.1, respectively. Because the total time step in the STS should be

shorter than a timescale “physically” required by dust diffusion, we just moderately

accelerate the time stepping.

In the part for viscous evolution, we interpolate radial velocity ur and specific angular

momentum jg to obtain radial and angular momentum fluxes at r = rg,i+1, rg,i. In the

cylindrical coordinates, the radial and angular momentum changes due to turbulent

viscosity are written as follows(
∂Σgur

∂t

)
vis

≡ 1

r

∂Fvis,r

∂r
− 2ur

3r3
∂r2Σν

∂r
, (3.55)(

∂Σgjg
∂t

)
vis

≡ 1

r

∂Fvis,ϕ

∂r
, (3.56)

Fvis,r ≡
4

3
rΣν

∂ur

∂r
, (3.57)

Fvis,ϕ ≡ r3Σν
∂

∂r

(uϕ

r

)
. (3.58)

Spatial integration of the above equations give equations for momentums of ith gas cell

boundary mg,i+1/2ur,i+1/2 and mg,i+1/2jg,i+1/2:

∂mg,i+1/2ur,i+1/2

∂t
= [2πFvis,r]

rg,i+1

rg,i
− 4π

3

∫ rg,i+1

rg,i

ur

r2
∂r2Σν

∂r
dr, (3.59)
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Figure 3.7: Surface density profile normalized by the unperturbed gas surface density and its

evolution via secular GI. The horizontal axis is normalized by the assumed gas scale height.

Red and blue lines represent surface density of dust and gas, respectively. The short-dashed,

long-dashed, and solid lines correspond to the profile at tΩ = 0, 456, 657.

∂mg,i+1/2jg,i+1/2

∂t
= [2πFvis,ϕ]

rg,i+1

rg,i
, (3.60)

where [A(r)]r2r1 ≡ A(r2) − A(r1). We update radial and angular momentums of gas cell

boundaries according to Equations (3.59) and (3.60). We evaluate the last term on the

right hand side of Equation (3.59) by −
(
4πur,i+1/2/3r

2
g,i+1/2

)
[r2Σν]

rg,i+1

rg,i
.

Test simulations on secular GI and TVGI

To validate our numerical methods, we perform test simulations of secular GI and TVGI.

As in the test simulations of GI, we use the piecewise polytropic equation of state for

gas pressure, and initially set flat surface density profiles for dust (Σd,0) and gas (Σg,0).

The Toomre’s Q of gas is set to be 5, and strength of turbulence α is 2 × 10−4. We

also assume that tstopΩ is uniform in the domain and set tstopΩ = 0.1. We consider two

values of the dust-to-gas ratio Σd,0/Σg,0: 0.08 for a simulation of secular GI and 0.04 for

a simulation of TVGI. Although diffusion coefficient D and velocity dispersion cd have

tstop-dependences, those are small for tstopΩ < 1 and we simply assume D = αcsH and

cd =
√
αcs. To guarantee the locality, we place the center of the domain at r = 80

au and set 100 time smaller gas scale height H than that for a disk around solar mass
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Figure 3.8: Time evolution of surface density peaks of dust (red line) and gas (blue line)

via secular GI. The black segments represent the linear growth rate derived from the linear

analyses. Numerical simulations reproduce the linear growth of secular GI.

star. The domain width is 4 times the most unstable wavelength. We adopt periodic

boundary condition for dust and gas surface density profiles, which we utilize to calculate

self-gravity. The number of cells is 512 for both dust and gas, and the domain is equally

spaced. The softening length is initially set to be one fourth of the cell width. To follow

nonlinear evolution, we change the softening length in time at a region of positive surface

density perturbations and reset the length to be one fourth of the cell width at each time.

The time step is set based on the following:

∆t = min (∆tg,∆td,∆tdiff ,∆tvis) , (3.61)

where ∆tg and ∆td are the time steps determined by the Courant-Friedrich-Levy (CFL)

condition for gas and dust equations without the dust diffusion or the viscosity, ∆tdiff

and ∆tvis are those determined by the diffusion term and the viscosity term: ∆tdiff =

0.125 × min((rd,i+1/2 − rd,i−1/2)
2/D), and ∆tvis = 0.125 × min((rg,i+1/2 − rg,i−1/2)

2/ν).

The CFL number is set to be 0.5.

Figure 3.7 shows dust and gas surface density evolution via secular GI. The amplitude

δΣd/Σd,0 is larger by an order of magnitude than δΣg/Σg,0. Secular GI concentrates dust

into narrow regions with a width of ≪ H while its linear growth proceeds at a wavelength

∼ H. The resultant concentration increases dust-to-gas ratio above unity in the dust

rings. Figure 3.8 shows the time evolution of the surface density peak. The black segment
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Figure 3.9: Dust surface density evolution at the nonlinear growth phase. The horizontal axis

is the looking-back time from the collapse time tc obtained by fitting the data. The divergent

nature with proportional to (tc− t)−1 is consistent with the freefall collapse of a self-gravitating

ring.

represents the linear growth rate obtained from the linear analyses. The numerical results

at the long-term linear growth until tΩ ≃ 500 are in good agreement with the linear

analyses, which validates the efficiency of our scheme for exploring long-term evolution

even in the presence of the friction.

The simulation shows divergent behavior at the nonlinear growth phase of secular

GI. To understand the physics of the nonlinear growth, we fit the dust surface density

evolution in 500 ≤ tΩ ≤ 670 using the power-law function:

δΣd

Σd,0

=
a

(tcΩ− tΩ)b
, (3.62)

where a, b, tc are parameters. The time tc represents collapse time. The fitting gives

a = 103 ± 5, b = 1.05 ± 0.01, and tcΩ = 663.0 ± 0.1. Figure 3.9 shows the resultant

fitting function and the original data. The density evolution is almost proportional to

(tc − t)−1. This behavior originates from gravitational collapse of a ring as explained

below. A timescale of self-gravitational collapse is given by the freefall time: tff ∼
1/
√
Gρd. Assuming Σd ∼ ρdλJ where λJ ∼ cd/

√
Gρd is the Jeans length, one obtains

Σd ∼ cd/G×tff , Thus, dust surface density increases with being proportional to (tc−t)−1.

Figures 3.10 and 3.11 show results of the test simulation of TVGI. TVGI also concen-

trates dust into thin rings through its nonlinear growth. Although the growth timescale
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of TVGI is much longer than secular GI, our scheme can trace such a long-term linear

growth until tΩ ≃ 2250 and the result shows in good agreement with the linear analyses.

This validates the efficiency of our scheme.

3.3 Simulations of radially extended disks

Using the method in the previous section, we investigate evolution of radially extended

disks via secular GI using Equations (2.4) (2.35), (2.1), (2.37), (2.38), and (2.36), which

are summarized at the beginning of this chapter.

Because secular GI requires friction to operate, a dust layer around the midplane

seems to be the most important region, which is also discussed in the linear analyses

presented in Chapter 2. Gas above the dust layer will also contribute to the growth of

secular GI via the gravitational interaction although its frictional interaction with dust is

relatively weak. In the present study, we thus adopt Equations (2.4) (2.35), (2.1), (2.37),

(2.38), and (2.36) for a “lower layer” that includes those dust and gas driving secular GI.

As also mentioned in Section 2.4, the vertical extent of such a lower layer is unknown

unless one perform multidimensional analyses. Hereafter, we do not concern the vertical

extent since it is beyond the scope of this study.

Setups

The initial inner boundaries for dust and gas are set at 10 au. We use 1024 cells for both

dust and gas and space the radial domain so that each cell has the same mass. Such a

spacing gives the outer boundaries located at r ≃ 300 au. We fixed the gas and dust

outer boundaries in simulations. We let the gas inner boundary move so that the inner

most gas surface density is constant in time. On the other hand, we allow dust cells

to move to the inner region of r < rg,1 where rg,1 denotes the radius of the fist gas cell

center. The radial velocities of those inner dust cells are fixed to the steady drift velocity

(e.g., Nakagawa et al. 1986) estimated for the initial density profiles at r = rg,1. When

calculating self-gravity, we weakens the individual-ring gravity using a softening length

of half cell’s width (∼ 0.1 au), and rescale it when the cell width becomes larger in time.
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Table 3.1: Summary of parameters and results originally from Table 1 of Tomi-

naga et al. (2020)

Label Q100
a α Results tfin

b

Q4a10 4 1× 10−3 thin dense dust rings 2.1× 104 yr

Q4a20 4 2× 10−3 transient low-contrast rings 5.9× 104 yr

Q5a5 5 5× 10−4 thin dense dust rings 1.9× 104 yr

Q5a8 5 8× 10−4 transient low-contrast dust rings 5.6× 104 yr

Q5a8Lc 5 8× 10−4 thin dense dust rings 2.5× 104 yr

Q6a3 6 3× 10−4 thin dense dust rings 2.7× 104 yr

Q6a5 6 5× 10−4 transient low-contrast dust rings 6.2× 104 yr

a Toomre’s Q value for the lower layer of a gas disk at r =100 au
b Time that simulations last for
c The letter “L” means a run with six times larger perturbations

We consider disks around 1M⊙ mass star, and set the initial gas and dust surface

density profiles by the following power law function:

Σg(r) = Σg,100

( r

100 au

)−q

exp
(
− r

100 au

)
, (3.63)

Σd(r) = Σd,100

( r

100 au

)−q

exp
(
− r

100 au

)
, (3.64)

where Σg,100 and Σd,100 are constants. In this study, we use the Toomre’s Q value of

gas (Q = csΩ/πGΣg) to show how massive the lower layer is. One obtains Σ100 from

the Q value at r = 100 au (Table 3.1), Keplerian angular velocity and the temperature

shown below. The dust surface density at r = 100 au is determined by the assumed

initial dust-to-gas ratio in the lower layer Σd/Σg. We note that Σd/Σg represents the

dust-to-gas mass ratio averaged in the lower layer, which is different from Σd,tot/Σg,tot

where Σd,tot and Σg,tot are total surface densities of dust and gas disks including both

upper and lower layers. In weakly turbulent gas disks, Σd/Σg easily becomes higher

than Σd,tot/Σg,tot by an order of magnitude. In this work, considering dust rich disks

Σd,tot/Σg,tot = 0.05, we assume Σd/Σg = 0.1. According to Kitamura et al. (2002), disks

observed around T Tauri stars have density profiles with the power-law index between

0-1 in most cases. Motivated by this study, we take the median value and fix q = 0.5 in

the present simulations.

In our simulations, a gas disk is assumed to be locally isothermal, and its temperature

profile T (r) is

T (r) = 10 K
( r

100 au

)−1/2

, (3.65)
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where we mimic a disk passively heated by the stellar radiation (e.g., Chiang & Goldreich

1997). We calculate the sound speed cs at each radius assuming the molecular weight to

be 2.34. The gas scale height is H ≃ 6.3 au (r/100au)5/4. We set the initial azimuthal

velocity based on the radial force balance without friction, diffusion or viscosity.

The dimensionless stopping time tstopΩ is one important parameter characterizing the

growth of secular GI. Although it is important to explicitly implement dust growth in our

code and explore the coevolution of dust grains and secular GI, we focus only on secular

GI in radially global disks and assume a uniform tstopΩ profile to make the problem simple.

Because a timescale of the dust coagulation is expected to be shorter than that of secular

GI when dust grains are small (see Takahashi & Inutsuka 2014), dust grains will grow up

to the drift-limited size (see also, Okuzumi et al. 2012). The drift-limited value can be

regarded as a maximum value expected from the direct bottom-up coagulation. We thus

adopt the drift-limited tstopΩ, which is about 0.6 for Σd,tot/Σg,tot = 0.05 (see Appendix

A). We do not consider fragmentation-limited dust sizes because we are focusing on

dynamics at outer region in weakly turbulent gas disks (see also, Birnstiel et al. 2009

2012).

Although the diffusion coefficient D and the velocity dispersion cd depend on tstopΩ

and α (Youdin & Lithwick 2007), those are well approximated by D ≃ αc2sΩ
−1 and

cd ≃
√
αcs for tstopΩ < 1, which are also used in the test simulations. Thus we use

those relations in the present simulations for simplicity. In this study, we perform nu-

merical simulations with different Toomre’s Q values and strength of turbulence α. We

summarize the parameters in Table 3.1.

Our choice of the parameters is optimistic to study and understand physics of radially

global secular GI and its nonlinear outcomes. For example, disks are massive. On the

other hand, disk masses and dust-to-gas surface density ratio Σd,tot/Σg,tot are not well-

constrained by observations partly because of uncertainties in dust opacity. In addition,

recent work shows that neglecting scattering effects of dust thermal emissions underes-

timates dust masses in a disk (Zhu et al. 2019). We thus assume massive disks where

secular GI relatively easily grows in our simulations. The situations might correspond to

early disks if dust grains can grow up to the drift-limited sizes in the early phase.

We put initially random perturbations to positions of the cell boundaries and their

velocity. Amplitudes of the position and velocity perturbations are five percent of the

cell widths and cd, respectively.
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Figure 3.12: (Left panel) Surface density evolution from Q4a10 run. Multiple dust rings and

gaps form within 104 yr. (Right panel) Surface density evolution from a run where we use the

same parameters as in Q4a10 run and switch off self-gravity. In both panels, red and blue lines

show dust and gas surface densities. The dotted-dashed, dashed and solid lines show snapshots

at t =0.0 yr, 1.5× 104 yr and 2.1× 104 yr, respectively. We note that the classical GI is stable

in this simulation because of the dust diffusion, meaning that the multiple ring-gap formation

is result from secular GI. This figure is originally from Figure 1 of Tominaga et al. (2020).

Results

We overview the results of our simulations. The results show two regimes of the disk

evolution via secular GI: formation of “thin dense dust rings” and “transient low-contrast

dust rings” (see also Table 3.1). In the following, we show those results in detail.

Formation of Thin Dense Dust Rings

Figure 3.12 shows time evolution of dust and gas surface densities from Q4a10 run. We

also show the surface density evolution from a run in which we switch off self-gravity to

eliminate secular GI. Note that the gas disk is self-gravitationally stable and the dust GI

is also stabilized because of dust diffusion within the set of the parameters. The results

show formation of multiple dust rings and gaps only when we switch on self-gravity. Thus,

the ring-gap formation is associated with secular GI. Secular GI grows at wavelengths

∼ cs/Ω, resulting in the ring-gap formation in the dust disk (see the dashed line in Figure

3.12). Nonlinear growth of secular GI makes the resultant rings much thinner as in the

test simulations, and the dust surface density increases by a factor of ≃ 10.

On the left panel of Figure 3.13, we show trajectories of dust cells that compose the

resultant rings and gaps. The red dashed line shows the trajectory of the 525th cell as a

reference cell in one dust ring. We note that a reduced number of cells are shown on the

left panel of Figure 3.13. Because our numerical scheme is based on the Lagrangian-cell
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Figure 3.13: (Left) Trajectories of dust cells in Q4a10 run. Color of each line shows dust

surface density at each dust cell. We used a reduced number of cells to plot this figure. Red

dashed line is the trajectory of the 525th dust cell. (Right) The radial velocity of some dust

cell boundaries (r = rd,i+1/2 where i = 520 − 530) at each radius. The 525th cell boundary

whose trajectory is shown in red roughly corresponds to the ring peak position. The inner

and outer cells are shown in gray and black, respectively. The spreading of the lines in vr − r

plane represents the collapsing toward the ring center. At the radius ≃ 77 au, the gravitational

softening suppresses the accelerated collapse. At r ≲ 77 au, the drift speed decreases as Σd/Σg

increases. This figure is originally from Figure 2 of Tominaga et al. (2020)
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the steady drift velocity. The gas has small positive velocity because of frictional back-reaction

from the dust drift. This figure is originally from Figure 3 of Tominaga et al. (2020)
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method, the motion of cells represents actual motion of dust, and a cell-concentrating

region corresponds to a high density region. The dust initially moves inward with the

steady drift velocity vdri (Figure 3.14)

vdri ≡ − 2tstopΩ

(1 + ε0)2 + (tstopΩ)
2η

′rΩ, (3.66)

where ε0 is the initial surface density ratio Σd/Σg and

η′ ≡ − c2s
2r2Ω2

∂ ln (c2sΣ)

∂ ln r
. (3.67)

Note that Equation (3.66) is different from Equation (1.14). Since we use vertically

integrated equations, the steady drift velocity depends not on η and ϵ but on η′ and ε.

Those drifting dust finally concentrates into the rings via secular GI. One can see that

the dust density perturbations also move inward with the drift velocity.

The significant dust concentration (t = 1.3×105 yr) results from the self-gravitational

ring collapse that is discussed in the test calculations and in Tominaga et al. (2018). On

the right panel of Figure 3.13, we plot radial velocities of dust cell boundaries (r(t) =

rd,i+1/2) that compose one dust ring (i = 520− 530). The red curve shows trajectory of

the 525th dust cell boundary in the vr − r plane. Those dust cells initially move inward

with the drift velocity. As secular GI grows (r ≳ 77 au), the radial velocities deviate

from the drift velocity, and the lines spread in the vr−r plane. When the dust cell width

becomes smaller than the gravitational softening length, the softening weakens the radial

collapse (e.g., r ≃ 77 au for i = 526−530). Because the dust-to-gas surface density ratio

increases, the radial velocities of those cell boundaries gradually decreases.

Figure 3.15 shows the cumulative dust mass Md(< r). From the height of “cliffs” on

each line, one can roughly evaluate dust-ring masses from Figure 3.15 and find that the

large amounts (∼ tens of M⊕) of dust reside in the individual ring. Summing up masses

of dust cells between the adjacent local minima in the dust surface density, we estimate a

mass of the ith ring (Mring,i) whose radius is defined as the radius of the local maximum

in dust surface density. We then compare the dust disk mass Md and the total ring mass

Mring,tot ≡
∑Nring

i=1 Mring,i, where Nring is the number of the dust rings whose amplitudes

are increasing or saturated at a certain time. In order to discuss the ring mass fraction,

we set a certain radius denoted by Rd,out and use dust cells whose initial radii are smaller

than Rd,out to calculate Md and Mring,tot. We calculate the ring masses at the time when

dust-to-gas mass ratio in one of the dust rings exceeds unity.

77



3.3. SIMULATIONS OF RADIALLY EXTENDED DISKS

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 50  60  70  80  90  100C
u

m
u

la
ti

v
e 

d
u

st
 m

as
s 

M
(<

r)
 [

1
0

2
M

E
ar

th
]

Radius [au]

Q4a10 (t = 2.1 x10
4
yr)

Q5a5 (t = 1.9 x10
4
yr)

Q6a3 (t = 2.7 x10
4
yr)

Figure 3.15: Cumulative dust mass M(< r) obtained from Q4a10, Q5a5 and Q6a3 runs.

Thick black line corresponds to Q4a10 run, from which we obtain the surface density evolution

in Figure 3.12. Positions of cliffs correspond to dust ring radii, and the height of the each cliff

corresponds to dust mass in each ring, from which one can see that the mass of the individual

dust ring is ≳ 10M⊕. This figure is originally from Figure 4 of Tominaga et al. (2020).
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Table 3.2: List of the evaluated masses originally from Table 2 of Tominaga et al. (2020)

Rd,out = 120 au Rd,out = 200 au

Label and Time Mring,tot [M⊕] Md [M⊕] Mring,tot/Md Mring,tot [M⊕] Md [M⊕] Mring,tot/Md

Q4a10 (t = 2.0× 104 yr) 4.7×102 1.2×103 0.38 8.5×102 1.8×103 0.46

Q5a5 (t = 1.6× 104 yr) 4.5×102 9.8×102 0.46 7.4×102 1.4×103 0.51

Q5a8L (t = 2.3× 104 yr) 3.2×102 9.8×102 0.33 6.9×102 1.4×103 0.47

Q6a3 (t = 1.8× 104 yr) 3.5×102 8.1×102 0.42 7.3×102 1.2×103 0.60

Table 3.3: List of the evaluated masses originally from Table 3 of Tominaga et al. (2020)

Rd,in = 60 au, Rd,out = 120 au Rd,in = 60 au, Rd,out = 200 au

Label and Time Mring,tot [M⊕] Md [M⊕] Mring,tot/Md Mring,tot [M⊕] Md [M⊕] Mring,tot/Md

Q4a10 (t = 2.0× 104 yr) 4.7×102 6.5×102 0.72 8.5×102 1.2×103 0.68

Q5a5 (t = 1.6× 104 yr) 4.5×102 5.2×102 0.85 7.4×102 9.9×102 0.75

Q5a8L (t = 2.3× 104 yr) 3.2×102 5.2×102 0.62 6.9×102 9.9×102 0.69

Q6a3 (t = 1.8× 104 yr) 3.5×102 4.3×102 0.79 7.3×102 8.2×102 0.88

The results for Rd,out = 120 au and 200 au are summarized in Table 3.2 originally

from Table 2 of Tominaga et al. (2020). We find that secular GI can convert tens of

percent of the dust mass into ring mass. The ring mass Mring,tot increases as increasing

Rd,out because dust drifting from the outer disk are concentrated into rings at inner region

(see Figure 3.13).

The massMd includes the mass of dust initially located at the secular-GI-stable region

(see also Section 3.4). Those dust grains never concentrate into rings. Thus, the mass

fraction Mring,tot/Md will increase if one excludes those dust grains from the estimation.

Table 3.3 originally from Table 3 of Tominaga et al. (2020) summarizes Mring,tot, Md and

Mring,tot/Md for dust grains initially at an unstable region Rd,in ≤ r ≤ Rd,out, where we

set Rd,in = 60 au because secular GI can grow at r > 60 au in all runs. Over half of the

dust masses are collected into the rings in most of the runs. Especially, 88 percent of the

dust grains are saved in the dust rings in the case of Q6a3 run with Rd,in = 60 au and

Rd,out = 200 au.

The dust-to-gas mass ratio in the ring becomes comparable to or higher than unity,

which makes the dust drift velocity smaller (see also the right panel of Figure 3.13). The

increase in dust surface density is saturated because of the balance between diffusion

and self-gravitational collapse. Figure 3.16 compares two velocities around one dust ring

with a radius of r ≃ 73.6 au at t = 2.1 × 104 yr: (1) dust velocity with respect to

the ring velocity vring = −1.5 × 10−3 au/yr that we measured from the data and (2)

the velocity due to dust diffusion vdiff ≡ −DΣ−1
d ∂Σd/∂r. The red line shows the sum
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Figure 3.16: Radial velocity profile normalized by the ring velocity vring at t = 2.1× 104 yr in

Q4a10 run. Black solid line shows the dust velocity with respect to the ring velocity, vr − vring.

Black dashed line shows the velocity vdiff ≡ −DΣ−1
d ∂Σd/∂r. Red line with filled circles showing

the data point is the sum vr − vring + vdiff . This figure is originally from Figure 5 of Tominaga

et al. (2020).

of them. The red filled circles in the Figure 3.16 are the data points, which show that

the dusty ring is well resolved while the adjacent gaps are not. In the well-resolved

dust ring, we find |vr − vring| ≃ |vdiff | > |vr − vring + vdiff |, meaning that dust diffusion

prevents further self-gravitational collapse. Especially, one can see the equilibrium at the

inner half of the well-resolved ring. At the outer half of the ring, the red line shows an

increasing trend. This means that the radially converging flow is slower than the diffusive

flow. This slow converging flow results from the deceleration due to the last term on

the right hand side of Equation (2.37), i.e., r−1∂F (r)/∂r where F (r) = rvrD∂Σd/∂r.

Figure 3.17 compares the four forces per mass exerted on dust: self-gravity, pressure

gradient force (Σ−1
d c2d∂Σd/∂r), the sum of the curvature term and the stellar gravity,

and Σ−1
d r−1∂F (r)/∂r. The magnitude of Σ−1

d r−1∂F (r)/∂r is comparable to that of the

self-gravity, meaning that the term decelerates the radial speed of dust coming from the

outer gap toward the ring.

Because the constant gravitational softening term weakens self-gravity, the final dust

surface density might be underestimated1. To check whether the dust surface density

1The actual finite thickness of the disk slightly weakens the self-gravity for short-wavelength modes

(Shu 1984, Vandervoort 1970), and the softening term is expected to account for this effect to some
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Figure 3.17: Radial profile of the forces per mass exerted on dust in the ring with radius of

≃ 73.6 au. The vertical axis is normalized by 10−6GM⊙/(1 au)2. We only plot the self-gravity

(black dashed line), the pressure gradient force (Σ−1
d c2d∂Σd/∂r, gray short dashed line), the

sum of the curvature term and the stellar gravity (gray dot-dashed line), and the force coming

from the last term on the right hand side of Equation (2.37), i.e., Σ−1
d r−1∂F (r)/∂r where

F (r) = rvrD∂Σd/∂r (blue solid line). At the outer half of the ring, the third term becomes

comparable to self-gravity, and decelerates the radial converging speed toward the ring center.

This figure is originally from Figure 6 of Tominaga et al. (2020). Note that the legend of the

blue line is based on the numbering of equations in Tominaga et al. (2020).

81



3.3. SIMULATIONS OF RADIALLY EXTENDED DISKS

is underestimated or not, we evaluate a resultant dust surface density Σd,f which one

would obtain if the gravitational softening is neglected. The diffusion timescale becomes

comparable to the gravitational-collapse timescale when nonlinear growth is saturated:

D2k4
c ∼ 2πGΣd,fkc, (3.68)

where k−1
c represents the length scale of a spiky ring. This gives kc ∼ (2πGΣd,f/D

2)
1/3

.

Assuming that a ring mass does not change throughout the linear and nonlinear growth,

one has a relation between the dust surface density and the wavenumber: Σd,f/kc =

Σd,0/k0, where Σd,0 and k0 denote the unperturbed dust surface density and the wavenum-

ber at which secular GI grows in the linear phase, respectively. Using this relation and

Equation (3.68), one obtains

Σd,f

Σd,0

=

(
2πGΣd,0

D2

) 1
2

k
− 3

2
0

≃ 9.3

(
Σd,0/Σg,0

0.1

) 1
2
(

α

1× 10−3

)−1(
Q

4.5

)− 1
2
(
k0H

8

)− 3
2

, (3.69)

where Σg,0 is the unperturbed gas surface density. This estimation is in good agreement

with the resultant dust density of the ring at r ≃ 73.6 au in Q4a10 run (see Figure 3.12).

When the assumed α is smaller, numerical simulations with the constant softening length

would underestimate Σd,f .

Formation of Transient Low-Contrast Dust Rings

Figure 3.18 shows the surface density and radial velocity profiles from Q5a8 run. Dust

rings and gaps form at t = 3.2 × 104 yr. However, these structures decay as they move

inward, which is in contrast to Q4a10 run (Figure 3.12). The mean radial velocity of dust

is in good agreement with the steady drift velocity as in the other runs. The relative

motion with respect to the radial drift is so low that dust grains are insignificantly

concentrated. As a result, the dust rings drift further without achieving a significant

increase in dust-to-gas mass ratio.

The decay of the dust substructures can be clearly seen in Figure 3.19 where we show

deviation of Σd from the initial profile Σd(t = 0) as a function of radius and time. The

perturbations with a wavelength of ≃ 5 au grow while they drift inward from r ≳ 100

au. Their amplitudes decrease after they cross r ≃ 60–70 au. Q4a20 and Q6a5 runs

extent. Thus, the following estimation of the dust surface density might be regarded as a reasonable

upper limit.
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Figure 3.18: (Left panel) Dust and gas surface density profiles at t =0.0 yr (dot-dashed line),

3.2× 104 yr (dashed line) and 5.6× 104 yr (solid line) from Q5a8 run. Although dust rings and

gaps form, their contrast is low compared to the rings and the gaps in Q4a10 run (Figure 3.12).

Those substructures decay while drifting inward. (Right panel) Dust and gas radial velocity

profiles at t = 3.2 × 104 yr. The gray line is the steady dust drift velocity (Nakagawa et al.

1986). The mean radial velocity of the dust is in good agreement with the steady drift velocity

as in Figure 3.14 (Q4a10 run). In contrast, the relative motion with respect to the drift is

insignificant. This figure is originally from Figure 7 of Tominaga et al. (2020).

Figure 3.19: Deviation of dust surface density Σd from the initial value Σd(t = 0) as a function

of radius and time in Q5a8 run. One can see the radial perturbations moving inward. Those

patterns become faint after they enter an inner region r ≲ 65 au. This figure is originally from

Figure 8 of Tominaga et al. (2020).
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also show formation of such transient low-contrast rings and gaps. In those cases, the

unstable region is so small that the dust moves across the unstable region without a

significant increase in the surface density, which is discussed in the next section.

3.4 Discussion

3.4.1 Linear analyses with dust drift

To understand the physics seen in the numerical results, we perform linear analyses

including the radial drift of dust. We also show which mode becomes secular GI in

the dust-drifting system. Although the simulations treat both dust and gas, we begin

with one-fluid (dust) linear analyses to readily understand mode properties of secular

GI. The simplified analysis seems valid for qualitative comparison with two-component

simulations because the gas disk does not significantly evolve in our simulations. Two-

fluid linear analyses are described later.

As in the previous chapter, we explore the linear stability in the local coordinates

(x, y) rotating around the central star with the angular velocity Ω0 = Ω(r = R). Basic

equations for dust are the following:

∂Σd

∂t
+

∂

∂x
(Σdvx) = D

∂2Σd

∂x2
, (3.70)

∂vx
∂t

+

(
vx −

D

Σd

∂Σd

∂x

)
∂vx
∂x

=3Ω2
0x+ 2Ω0vy −

c2d
Σd

∂Σd

∂x
− ∂Φ

∂x

− vx
tstop

+
1

Σd

∂

∂x

(
vxD

∂Σd

∂x

)
, (3.71)

∂vy
∂t

+

(
vx −

D

Σd

∂Σd

∂x

)
∂vy
∂x

= −2Ω0

(
vx −

D

Σd

∂Σd

∂x

)
− vy − Ug,0

tstop
, (3.72)

where Ug,0 ≡ −3Ω0x/2 − η′0RΩ0 is an azimuthal velocity of a steady gas disk, and

η′0 ≡ η′(r = R) (see Equation (3.67)). We include dust diffusion so that dust momentum

is conserved in the absence of the drag force (see Chapter 2). As an unperturbed state,

we use the steady drift solution, vx,0, vy,0, with uniform surface density Σd = Σd,0:

vx,0 = − 2tstopΩ0

1 + (tstopΩ0)
2η

′
0RΩ0, (3.73)

vy,0 = Ug,0 +
(tstopΩ0)

2

1 + (tstopΩ0)
2η

′
0RΩ0. (3.74)
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Assuming that perturbations δΣd, δvx, δvy are proportional to exp[ikx+ nt], we derive

the following linearized equations:

(n+ ikvx,0)δΣd + ikΣd,0δvx = −Dk2δΣd, (3.75)

(n+ ikvx,0)δvx = 2Ω0δvy − ikc2d
δΣd

Σd,0

− ikδΦ− δvx
tstop

− vx,0Dk2 δΣd

Σd,0

, (3.76)

(n+ ikvx,0)δvy = −Ω0

2

(
δvx − ikD

δΣd

Σd,0

)
− δvy

tstop
. (3.77)

Because this analysis consider only the dust motion, we assume that the background gas

is not perturbed and δΦ = −2πGδΣd/k. From the above linearized equations, we obtain

the following dispersion relation for γ ≡ n+ ikvx,0:(
γ +

1

tstop

)[
FDW(γ, k) + γ

(
1

tstop
+Dk2

)
+Dk2

(
−ikvx,0 +

1

tstop

)]
=

Ω2
0

tstop
, (3.78)

FDW(γ, k) ≡ γ2 + Ω2
0 + c2dk

2 − 2πGΣd,0k. (3.79)

In the absence of the dust diffusion (D = 0), Equation (3.78) for γ is equivalent to

Equation (1.50) for n derived in Youdin (2011) (see also Equation (22) therein). One of

the solutions of Equation (3.78) with D = 0 corresponds to the one-component secular

GI (e.g., Youdin 2005a, 2011), which is denoted by γSGI in the following, and we obtain

n = −ikvx,0 + γSGI. Note that Equation (3.78) for D = 0 is a cubic equation of γ with

the real coefficients, and Im[γSGI] = 0. This is mathematically and physically expected

because one can remove the drift motion performing the Galilean transformation (see also

Youdin 2005a). The phase velocity Re[n/(−ik)] is equivalent to the steady drift velocity

vx,0, which is consistent with our numerical simulations (see Figures 3.14 and 3.18). As

noted in Chapters 1 and 2, secular GI originates from a static mode, i.e. γSGI → 0 for

tstopΩ → ∞ (see Figure 2.1). Equation (3.78) also shows n → 0 for tstopΩ → ∞ because

vx,0 becomes zero for friction-free cases.

Dust diffusion due to weak turbulence does not qualitatively change the mode prop-

erties of secular GI of the drifting dust, and just suppresses the growth rate especially at

short wavelengths. Although strong dust diffusion results in non-zero Im[γSGI] at short

wavelengths, such wavelengths are stable to secular GI (Re[γSGI] < 0). Note that Equa-

tion (3.78) is different from the dispersion relation (Equation (1.50)) derived by Youdin

(2011) because the diffusion modeling is different. As mentioned in Chapter 2 Tominaga

et al. (2019), the diffusion modeling adopted in Youdin (2011) unphysically changes an-

gular momentum of dust while ours does not. Hence, our dispersion relation (Equation

(3.78)) describes the mode properties more precisely. For example, Youdin (2011) found
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mode coupling between the static mode and GI mode when including dust diffusion. Our

dispersion relation, Equation (3.78), does not show the mode coupling.

We also perform two-fluid analyses assuming the steady drift solution in an unper-

turbed state. In contrast to the one-fluid analyses, we can not remove the drift motion

because dust and gas have different drift speeds. We use the following equations for gas:

∂Σ

∂t
+

∂

∂x
(Σux) = 0, (3.80)

∂ux

∂t
+ux

∂ux

∂x
= 3Ω2

0x+2Ω0uy+2η′0RΩ2
0−

c2s
Σ

∂Σ

∂x
− ∂Φ

∂x
+

1

Σ

∂

∂x

(
4

3
Σν

∂ux

∂x

)
+
Σd

Σ

vx − ux

tstop
,

(3.81)
∂uy

∂t
+ ux

∂uy

∂x
= −2Ω0ux +

1

Σ

∂

∂x

(
Σν

∂uy

∂x

)
+

Σd

Σ

vy − uy

tstop
. (3.82)

The external force 2η′0RΩ2
0 in the radial equation of motion mimics the global pressure

gradient that drives the dust drift (e.g., Youdin & Goodman 2005). The equations for

the dust are the almost same as Equations (3.70)-(3.72) except for replacing Ug,0 by uy

in Equation (3.72).

The unperturbed state is the following steady drift solution where the unperturbed

surface densities, Σd,0 and Σg,0, are spatially constant (Nakagawa et al. 1986):

vx,0 = − 2tstopΩ0

(1 + ε)2 + (tstopΩ0)
2η

′
0RΩ0, (3.83)

vy,0 = −3

2
Ω0x−

[
1− (tstopΩ0)

2

(1 + ε)2 + (tstopΩ0)
2

]
η′0RΩ0

1 + ε
, (3.84)

ux,0 =
2tstopΩ0ε

(1 + ε)2 + (tstopΩ0)
2η

′
0RΩ0, (3.85)

uy,0 = −3

2
Ω0x−

[
1 +

(tstopΩ0)
2 ε

(1 + ε)2 + (tstopΩ0)
2

]
η′0RΩ0

1 + ε
, (3.86)

where ε = Σd,0/Σg,0. We use the fixed tstop for comparison with the numerical simula-

tions2. The linearized continuity equation for dust is the same as Equation (3.75). The

other linearized equations are as follows:

(n+ ikux,0)δΣg + ikΣg,0δux = 0, (3.87)

2Even if we consider Σg,0-dependence of tstop when linearizing the equation, the mode properties do

not change much.
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(n+ ikux,0)δux =2Ω0δuy − ikc2s
δΣg

Σg,0

− ikδΦ− 4

3
νk2δux

+
δΣd

Σg,0

vx,0 − ux,0

tstop
− ε

δΣg

Σg,0

vx,0 − ux,0

tstop
+ ϵ

δvx − δux

tstop
, (3.88)

(n+ ikux,0)δuy =− Ω0

2
δux −

3

2
Ωikν

δΣg

Σg,0

− νk2δuy

+
δΣd

Σg,0

vy,0 − uy,0

tstop
− ε

δΣg

Σg,0

vy,0 − uy,0

tstop
+ ε

δvy − δuy

tstop
, (3.89)

(n+ ikvx,0)δvx = 2Ω0δvy − ikc2d
δΣd

Σd,0

− ikδΦ− δvx − δux

tstop
− vx,0Dk2 δΣd

Σd,0

, (3.90)

(n+ ikvx,0)δvy = −Ω0

2

(
δvx − ikD

δΣd

Σd,0

)
− δvy − δuy

tstop
, (3.91)

where δΦ = −2πG(δΣg + δΣd)/k.

Figure 3.20 shows the derived dispersion relation of secular GI. We take the physical

values from Q4a10 run to set the unperturbed state. The qualitative properties are the

same as in the previous studies that neglected the drift motion. The long-wavelength

perturbations are stabilized by the back reaction from dust to gas. The dust diffusion

limits the shortest unstable wavelength. Thus, secular GI is operational only at the

intermediate wavelengths.

We also show the growth rate of a viscosity-free case (filled circles) and the approx-

imated dispersion relation nap obtained without turbulent viscosity and drift motion

(gray line; Equation (2.52)). The gray line well reproduces the dispersion relation in the

dust-drifting system (filled circles). The frequency −Im[n] is shown on the right panel

of Figure 3.20. The frequency vx,0k (black line) well expresses the derived frequency

of secular GI (filled circles and cross symbols) as in the one-fluid analyses. At higher

wavenumbers, the frequency deviates from vx,0k because of the dust diffusion term.

The drift motion insignificantly modify the growth rate of secular GI significantly,

which is similar to the above one-fluid analyses (see the filled circles and the gray line

in Figure 3.20). To demonstrate this, we plot dispersion relations of secular GI for vari-

ous power-law indices q of gas surface density Σg in Figures 3.21 and 3.22. We exclude

turbulent viscosity when plotting Figure 3.21 because secular GI does not require viscos-

ity. We find that changing q insignificantly change the growth rate. Thus, regardless of

the variety of gas surface density distribution, the dust drift insignificantly change the

growth rate of secular GI. The oscillation frequencies are well reproduced by vx,0k/Ω0 for

each power-law index q at small wavenumbers (see the right panel of Figure 3.21). Thus,
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Figure 3.20: Growth rate (left panel) and frequency (right panel) of secular GI as a function of

dimensionless wavenumber kH. The physical parameters are tstopΩ0 = 0.6, ε = 0.1, Q = 4.463

and η′ = 0.003014, which are taken from the initial-state values at r = 75 au of Q4a10 run.

In both panels, the cross symbols and the filled circles show n calculated with and without

the turbulent viscosity, respectively. The gray line on the left panel shows the approximated

dispersion relation in the case without the turbulent viscosity or the drift motion (Equation

(2.52)). The black line on the right panel shows vx,0k/Ω0 that reproduces well the frequency

of secular GI. This figure is originally from Figure 9 of Tominaga et al. (2020).
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Figure 3.21: Growth rate (left panel) and frequency (right panel) of secular GI as a function of

dimensionless wavenumber kH in the absence of turbulent viscosity. We assume tstopΩ = 0.6,

Σd,0/Σ0 = 0.1 and α = 1×10−3. The Toomre’s Q value is fixed to be 4.463, which corresponds

to the value at r = 75 au in Q4a10 run (q = 0.5). The filled circles, the red cross symbols and

the blue triangles show dispersion relations for q = 0.5, 1, 1.5, respectively. The solid, dashed

and short dashed lines on the right panel show vx,0k/Ω0 for q = 0.5, 1, 1.5, respectively. This

figure is originally from Figure 13 of Tominaga et al. (2020).
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Figure 3.22: Growth rate (left panel) and frequency (right panel) of secular GI as a function

of dimensionless wavenumber kH. Here we also consider the turbulent viscosity. We assume

tstopΩ = 0.6, Σd,0/Σ0 = 0.1 and α = 1 × 10−3. The Toomre’s Q value is fixed to be 4.463 as

in Figure 3.21. The filled circles, the red cross symbols and the blue triangles show dispersion

relations for q = 0.5, 1, 1.5, respectively. The solid, dashed and short dashed lines on the right

panel show vx,0k/Ω0 for q = 0.5, 1, 1.5, respectively. This figure is originally from Figure 14

of Tominaga et al. (2020).

the power-law index only change the frequency mostly through the term vx,0. Including

turbulent viscosity only slightly change the dispersion relation (Figure 3.15).

The present analyses do not show an unstable mode corresponding to TVGI. In the

previous analyses in Chapter 2 adn Tominaga et al. (2019), TVGI originates from a static

mode in which dust velocity perturbations are in phase with gas velocity perturbations.

This situation is not realized if dust grains have significant drift velocities, which seems

to be the reason for the stabilization of TVGI.

3.4.2 Condition for the thin dense ring formation

For the development from linear growth of secular GI to planetesimal formation, forma-

tion of thin dense rings seems important as resultant high dust density will promote dust

coagulation or lead to ring fragmentation. We first discuss its condition based on the

previous linear analyses.

The condition for the formation of thin dense rings is that the radial drift motion

is almost stopped because of resultant high dust-to-gas mass ratio in rings. Q4a10 run

shows that the maximum dust-to-gas mass ratio reaches about unity, and the thin dense

rings form (Figure 3.12). On the other hand, the maximum dust-to-gas ratio is smaller

than unity in Q5a8 run, and the transient low-contrast dust rings form (Figure 3.18).
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Figure 3.23: Growth timescales of secular GI at wavelengths λ = 3 au, 5 au, 10 au for disk

models in Q4a10 run (left panel) and Q5a8 run (right panel). The unstable region is located

at an outer region in Q5a8 run compared to Q4a10 run. Perturbations at long wavelength can

grow only at outer radii. This figure is originally from Figure 10 of Tominaga et al. (2020).

Thus, the critical dust-to-gas mass ratio seems to be about unity.

To what extent the dust-to-gas ratio increases depends on the radial extent of an

unstable region. Figure 3.23 shows radial dependence of growth timescales of secular GI

in Q4a10 and Q5a8 runs. We plot three lines corresponding to different wavelengths:

λ =3 au, 5 au and 10 au. Q5a8 run shows smaller radial extent of the unstable region for

each wavelength than the Q4a10 run. As shown in the previous section, the perturbations

with λ ≃ 3−5 au grow and form the substructures in both cases (see Figres 3.12 and 3.18).

In the Q4a10 case, Figure 3.23 shows that those perturbations can grow at r ≳ 50 au,

which is consistent with Figure 3.12. The resultant dust enrichment up to Σd/Σg ≃ 1

decelerates the drift velocity of the rings before they reach the stable region. As a

result, the thin dense rings do not become transient but sustain their dust-concentrating

structure. On the other hand, in Q5a8 case the growth timescale at λ = 5 au starts

increasing significantly at r ≃ 60 − 70 au (see the right panel of Figure 3.23). In other

words, the growth of perturbations are reduced while those perturbations keep drifting

inward. Thus, the pertubations eventually enter the stable region (r ≲ 58 au for λ = 5

au), and start to decay as shown in Figure 3.19.

Resultant dust-to-gas ratio in rings also depends on the amplitudes of initial pertur-

bations. We performed a simulation in which we set the same parameters as Q5a8 run

but initial random perturbations with six times larger amplitudes. We do not initially

perturb a region of 10 au < r < 20 au to avoid sudden dust concentrations near the

inner boundary due to the initial large perturbations. Figure 3.24 shows surface density

profiles of dust and gas and their evolution. Spiky dust rings form before they enter
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the stable region, resulting in thin dense rings with Σd/Σg ≃ 1 (see also Figure 3.25).

For instance, amplitudes of perturbations in an actual disk come from disk turbulence

or disturbances due to mass accretion form the envelope. However, those are unknown,

and we thus do not qualitatively discuss perturbation amplitudes in the present thesis.

In the present simulations, we fix the power-law index q of the surface densities.

In disks with larger q, the inner region is more massive than smaller-q disks, and thus

the unstable region shifts inward. If α, tstopΩ, Q and Σd/Σg are the same, the growth

timescale becomes shorter because the power-law index insignificantly changes the growth

timescale and the timescale is scaled by the Keplerian period 2πΩ−1 ∝ r3/2. Although

the drift timescale r/|vr| also becomes shorter, its change is smaller than that of the

growth timescale. The drift speed is faster for larger q. If one neglect the exponential

cutoff term, η′rΩ is independent from the radial distance. Thus, the drift timescale is

linearly proportional to r. The r-dependence is weaker than that of the growth timescale

(r3/2). Therefore, secular GI can grow and more easily create thin dense rings in steeper

disks. We note that unstable wavelengths become shorter because they are scaled by the

gas scale height that decreases inward. The widths of resultant rings are thus smaller

than we present in this thesis, which will require higher numerical resolutions.

3.4.3 Subsequent evolution of dusty rings

In dense dusty rings resultant from nonlinear evolution of secular GI, accelerated coagu-

lation and gravitational collapse will form planetesimals. Because the rings are massive

with mass of ≳ 10M⊕ and self-gravitational, they will aimuthally fragment into solid

bodies. The timescale of the ring fragmentation can be measured by the freefall time tff .

The mean dust surface density in a dust ring Σ̃d is given by

Σ̃d =
Mring

2πRringwring

, (3.92)

where Mring, Rring, wring are mass, radius and width of a dust ring, respectively. As-

suming a relation ρ̃d = Σ̃d/
√
2πHd, we obtain tff =

√
3π/32Gρ̃d. For the ring of

Mring = 49.7M⊕, Rring = 73.6 au and wring = 0.3 au in Q4a10 run, we have tff ≃ 55

yr, which is much shorter than one Keplerian period at r = 73.6 au (≃ 631 yr).

Both total dust-to-gas ratio Σd,tot/Σg,tot and the dust-to-gas ratio Σd/Σg in a lower

layer around the midplane increase in a growing dusty ring. Because the coagulation

timescale tgrow is inversely proportional to the total dust-to-gas ratio Σd,tot/Σg,tot in the

Epstein regime (see Equation (A.3)), the dust growth should proceed faster in resultant

dusty rings. When the height of the lower layer is much larger than the dust scale height,
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one has Σd ≃ Σd,tot. Because Σg insignificantly changes during the growth of secular GI,

Σg,tot will be also almost constant in time. Thus, the enhancement of Σd,tot/Σg,tot will

be similar to that of Σd/Σg. In the case of Q4a10 run, if the initial total dust-to-gas

ratio is 0.05 and increases as well as Σd/Σg by a factor of 9.3 as expected from Equation

(3.69), we have tgrow ≃ 199 yr at r = 73.6 au. Thus, coagulation also proceeds within

one Keplerian period although the coagulation timescale is still longer than the freefall

time.

In Q5a8L run, Σd/Σg becomes an order of magnitude larger than the initial value

at r ≃ 80 au (Figure 3.24). The coagulation timescale in the dust ring is about 209

yr, which is much shorter than the radial drift timescale. Thus, the dust grains in the

ring will grow and decouple from gas before the dust ring drifts into the inner stable

region. This combination of dust ring formation and coagulation will also prevent the

ring from being transient. Thus, to consider both ring fragmentation and dust growth is

important for further discussion on ring and planetesimal formation. More quantitative

analyses require multidimensional simulations with the dust growth, which is our future

work. Nevertheless, we can expect the subsequent planetesimal formation via either ring

fragmentation or accelerated coagulation if the significant dust concentration occurs via

secular GI.

3.4.4 Observational justification

Our simulations show that secular GI results in significant substructures only in a dust

disk. This property is in contrast to a planet-based scenario in which Jupiter-mass planets

carve gaps in both dust and gas disks (e.g., Gonzalez et al. 2015; Kanagawa et al. 2015;

Zhang et al. 2018). Therefore, observations of a gas distribution near the midplane will

enable us to discriminate between the proposed ring formation mechanisms: one requires

gap-like profiles in a gas disk (i.e., hidden high-mass planet scenario) while another shows

a relatively smooth gas profile (i.e., the secular-GI-based mechanism). We should note

that if nonlinear growth of secular GI results in massive rocky objects, those large objects

would create some substructures in the gas disk. If the gas gap is as wide as the dust gap,

it might be difficult to distinguish the secular-GI-based mechanism and the planet-based

mechanism. Even in this case, secular GI might explain the origin of the hypothetical

planets in the gap.

In contrast to a high-mass planet, a low-mass planet can carve a gap only in a

dust disk. A low-mass planet first creates prominent structures in a dust disk and

takes a long time to carve a significant gas gap because the dust scale height is smaller
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than the gas scale height (e.g., Yang & Zhu 2020). Thus, there is a possibility that

observations only identify resolvable high-contrast dust gaps but cannot resolve low-

contrast gas gaps. Thus, the low-mass-planet-based scenario and the secular-GI-based

scenario can be degenerate. Nevertheless, those scenarios depend on the disk properties

and dust sizes in different ways. Therefore, accurately observing a midplane gas density

is important as well as observations of dust distributions.

As discussed above, dust growth to larger solid bodies can occur in resultant dust

rings. If those objects are large enough, the rings would be dark at millimeter wave-

lengths. This indicates that resultant multiple spiky rings and adjacent gaps would be

observed as a wide gap structure. Because collisional fragmentation of the resultant larger

bodies would supply small grains that contribute to sub-mm emissions, the re-supplied

dust grains will determine the “floor” intensity in the apparent gap. The re-supplied

dust grains take part in the growth of secular GI and subsequent fragmentation supplies

small dust grains again. This recycling process indicates the existence of an equilibrium

between dust-to-planetesimal conversion via secular GI and dust supply via planetesimal

fragmentation. A similar process is investigated by Stammler et al. (2019) although they

focus on a different instability called streaming instability (Youdin & Goodman 2005).

Stammler et al. (2019) claims that planetesimal formation in dust rings via streaming

instability stalls the growth of itself because dust grains are depleted as a result of plan-

etesimal formation. Because the resultant planetesimals are not observed at sub-mm

emission, this self-regulating process can limit the optical depth at sub-mm wavelengths.

The DSHARP observations revealed that the optical depth in dust rings are limited to

around ≃ 0.2 − 0.5 (see also, Dullemond et al. 2018, Huang et al. 2018). To consis-

tently examine substructures and optical depth profiles resultant from secular GI, we

have to explicitly include both dust growth and fragmentation in our simulations. Be-

cause self-gravitational ring fragmentation will occur simultaneously, nonaxisymmetric

analyses and simulations are important to explore observational signatures. Those will

be the scope of our future studies.

3.4.5 Effects on dust-to-gas ratio dependence on the dust coef-

ficient

In our simulations, the dust diffusion coefficient D is given by a constant parameter α.

However, numerical studies suggest that the dust diffusivity decreases when dust-to-gas

mass ratio increases as in rings resultant from secular GI (see Figures 3.12). Schreiber &

Klahr (2018) measured the dust diffusivity under the influence of turbulence driven by
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streaming instability. They found that the turbulent diffusion weakens when the dust-

to-gas mass ratio is larger than unity. If the turbulent diffusion in dust rings is driven by

streaming instability, the saturated surface density of thin dense rings will be larger than

that obtained from our simulations or estimated in Equation (3.69) with the constant

diffusivity. It is also possible that the inefficient diffusion cannot support the thin dense

ring and the ring just radially collapses. In either case, a timescale of planetesimal

formation via gravitational collapse or accelerated dust growth will be shorter.

We can estimate the saturated surface density at a dense ring with the reduced

diffusivity. We assume that the dust diffusion coefficient is proportional to power-law

function of Σd,f/Σg,0

D = α1
c2s
Ω

(
Σd,f

Σg,0

)−β

, (3.93)

where α1 is dimensionless diffusion parameter when Σd,f/Σg,0 = 1. Following the same

way to derive Equation (3.69), we evaluate the dust surface density at its saturation:

Σd,f

Σd,0

= f(β)

(
Σd,0/Σg,0

0.1

) 1+2β
2−2β

(
α1

1× 10−3

) 1
β−1
(

Q

4.5

) 1
2β−2

(
k0H

8

) 3
2β−2

, (3.94)

f(β) ≃ (8.7× 101−2β)
1

2−2β . (3.95)

The equation has no solution and f(β) diverges if β = 1. This indicates that the dust

diffusion can not sustain the radial ring collapse if Σd,f/Σg,0-dependence of D is steeper

than β = 1. Although Equation (3.94) has a solution for β > 1, the situation is not

achieved during the growth of perturbations because the diffusion timescale becomes

shorter than the collapse timescale before the dust surface density reaches Σd,f .

The velocity dispersion of dust grains cd is also expected to decrease as the dust-

to-gas ratio increases beyond unity. If cd decreases, the Coriolis force will be a unique

repulsing force against self-gravity. The characteristic length scale λcrit of such a system

is

λcrit ≡
4π2GΣd

Ω2
. (3.96)

Dust clumps smaller than λcrit will self-gravitationally collapse. Adopting Σd = 9.5 g/cm2

at r = 73.6 au taken from the ring properties in Q4a10 run, one obtains λcrit ≃ 17.7 au,

which is much larger than the resultant ring width (see Figure 3.12). A circumference

of a ring with r = 73.6 au is about 462 au, which is 6 times longer than λcrit. This

indicates that non-axisymmetric modes with an azimuthal wavenumber m larger than 6

will grow and result in azimuthal fragmentation. Because higher m modes have larger

growth rates, sizes of resultant dust clumps can be much smaller. If the dust ring in
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Q4a10 run whose mass is Mring = 49.7M⊕ and radius is r =≃ 73.6 au fragments, the

mass of the dust clump Mclump is

Mclump =
Mring

m
≃ 8.2M⊕

(m
6

)−1

. (3.97)

The above clump mass for m = 6 gives upper limit because the non-axisymmetric modes

with m < 6 are expected to be stable. For further studies, non-axisymmetric simulations

are necessary.

3.5 Summary

In Chapter 3, we show numerical simulations of secular GI in radially extended disks.

Because dust grains suffer radial drift toward a central star, exploring the growth of

secular GI with a radially wide region is essentially important to discuss formation of

dust substructures and planetesimals in a protoplanetary disk. Numerical simulations are

powerful tools to investigate such a problem. However, numerical diffusion prevents the

slow growth of secular GI. Motivated by this issue, we develop the Lagrangian-cell method

utilizing the symplectic integrator. The Lagrangian-cell method is free from numerical

diffusion due to advection, and the symplectic integrator reduces the accumulation of

errors due to time integration. Combining the method with the piecewise exact solution

for dust-gas friction, we performed numerical simulations of linear/nonlinear secular GI.

Nonlinear growth of secular GI shows the gravitational collapse of dust rings whose

timescale is characterized by the freefall time. As a result, the dust surface density

increases by an order of magnitude while the gas surface density insignificantly changes.

This results in high dust-to-gas ratio in thin dense rings. The dust enrichment suppresses

dust drift through the backreaction to the gas and saves dust grains in a disk. If a

growth timescale of secular GI is too long, secular GI only creates low-contrast rings.

Such rings eventually drift into an inner stable region and start to decay. Thus, resultant

substructures are transient. Because rings smoothly decay, it seems possible that rings

resultant from secular GI are observed even in the stable region. According to the above

results, planetesimal formation requires dust enrichment up to Σd/Σg ≃ 1 via thin dense

ring formation by secular GI.

We simply estimate the coagulation timescale and the freefall timescale and show that

both ring fragmentation and accelerated coagulation will proceed within one Keplerian

period once secular GI develops into the nonlinear phase. Thus, secular GI can be an

efficient process to cause planetesimal formation.
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The mass conversion from dust grains to planetesimals will make resultant rings

darker at sub-mm wavelengths. This indicates that resultant multiple spiky rings will

be observed as a single wide gap substructure. Planetesimal fragmentation after its for-

mation will re-supply small dust grains that continue to accumulate via secular GI. This

recycling of dust grains indicates the existence of a state at which dust depletion via

planetesimal formation and dust supply via planetesimal fragmentation are in equilib-

rium. Such a self-regulating process might explain the observed marginally optically thin

substructures as discussed in Stammler et al. (2019).

In contrast to the ring-gap formation by high-mass planets, secular GI creates promi-

nent substructures only in a dust disk. Therefore, observations of a midplane gas density

profile will provide the key to understand what process actually operates and forms sub-

structures in the observed disks. We should note that low-mass planets carve prominent

dust gaps and low-contrast gas gaps, which might observationally degenerate with the

secular-GI-based scenario if observations cannot resolve the low-contrast gas gaps.

For further quantitative studies, we need to perform multidimensional simulations

with dust coagulation and fragmentation.
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Chapter 4

Coagulation Instability:

Self-Induced Dust Concentration

This chapter is based on a paper submitted to The Astrophysical Journal, Tominaga,

Inutsuka, & Kobayashi (2021).

4.1 Short introduction

As discussed in the previous chapters, secular GI has the potential to locally concentrate

dust grains and accelerate further dust growth toward planetesimals in resultant rings.

The numerical simulations in Chapter 3 show that dust surface density increases by an

order of magnitude once secular GI develops into nonlinear regime.

The unstable condition of secular GI is given by Equation (2.60). In terms of the

dust-to-gas surface density ratio, disks satisfying the following condition become unstable

to secular GI:

ε > 0.016

(
D

10−4c2s/Ω

)( τs
0.1

)−1
(
Q

4

)2

, (4.1)

where τs = tstopΩ is dimensionless stopping time and we assume ε ≪ 1 to reduce Equation

(2.60). The above condition means that the dust-to-gas ratio for dust with τs = 0.1 should

be higher than 0.016 for secular GI to operate. Assuming that dust grains of a size a are

in the Epstein regime

τs =
π

2

ρinta

Σg

, (4.2)
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Figure 4.1: Time evolution of dust surface density via direct coagulation in the minimum

mass solar nebula (MMSN) disk. The combination of inside-out dust growth and radial drift

decreases dust surface density by an order of magnitude. This figure is originally from Figure

3 of Okuzumi et al. (2012).

one obtains

a =
2

π2

τs
ρintQ

H

r

M∗

r2
(4.3)

≃ 0.6 cm
( τs
0.1

)( ρint

1.4 g/cm3

)−1(
Q

4

)−1(
H/r

0.05

)( r

50 au

)−2
(

M∗

1M⊙

)
. (4.4)

Thus, for secular GI to grow in a disk, Equation (4.1) should be satisfied for mm- or

cm-sized dust grains although the required dust size depends on the other parameters

and the radial location. Collisional coagulation will grow dust grains up to the required

sizes (∼ 1 cm).

However, according to numerical studies on coagulation in an isolated disk, dust

surface density significantly decreases as dust grows into the size of ∼ 1 cm (τs ≃ 0.1)

unless the surrounding envelope supplies dust grains to the disk (e.g., Brauer et al. 2008;

Okuzumi et al. 2012). In other words, pure coagulation that provides large dust tends to

violate the condition on the dust density (i.e., dust-to-gas ratio, Equation(4.1)). Figure

4.1 shows a dust surface density evolution via compact dust coagulation presented by

Okuzumi et al. (2012). Dust coagulation proceeds in the inside-out manner because

its timescale is proportional to the Keplerian orbital period 2π/Ω ∝ r3/2 (see Equation

(A.3)). As a result of the inside-out coagulation, an inner region hosts larger grains
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Figure 4.2: Currently proposed mechanisms for dust retention: (1) concentration at a pressure

bump (e.g., Whipple 1972) and (2) combination of recondensation and traffic jam of dust grains

(e.g., Stevenson & Lunine 1988). A pressure bump concentrates dust grains at its center because

the radial drift velocity is proportional to the pressure gradient ∂ lnP/∂ ln r (see, Equation

(1.14)). The second mechanism takes place at a H2O snow line where water ice on grain’s

surface evaporates. If silicate grains inside the snow line is fragile enough, inner dust grains

fragment into smaller solids and pile up.

that have larger drift velocity, leading to the decrease in the dust surface density. They

assumed that there is no dust supply to the disk from its outside, which corresponds to

the very last stage of the disk evolution. The tendency for dust density to decrease as

a result of coagulation may hold in the early disk although the density decrease may be

less prominent because of gas and dust accretion from the envelope.

This “discrepancy” is problematic not only for secular GI but also for other dust-

gas instabilities expected as a promising mechanism to form planetesimals. Streaming

instability is one example (e.g., Youdin & Goodman 2005; Youdin & Johansen 2007;

Johansen & Youdin 2007; Jacquet et al. 2011). Streaming instability has the potential

to cause dust clumping at much smaller scales than secular GI, and resultant clumps

eventually collapse self-gravitationally once those mass densities exceed Roche density

(e.g., Johansen et al. 2007; Simon et al. 2016). The validity of streaming instability

also depends on dust-to-gas ratio ε = Σd/Σg and dimensionless stopping time (e.g.,

Johansen et al. 2009b; Carrera et al. 2015; Yang et al. 2017). Carrera et al. (2015) and

Yang et al. (2017) numerically investigated conditions of dust clumping via streaming

instability. They found the required dust-to-gas ratio larger than 0.02 for dust of τs = 0.1,

which is similar to secular GI (Equation (4.1)). Higher dust-to-gas ratio is required for

smaller dust (τs = 10−2 − 10−3). In the presence of turbulent diffusion, strong clumping
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via streaming instability will require much higher dust abundances (Chen & Lin 2020;

Umurhan et al. 2020; Gole et al. 2020).

Therefore, reaccumulation of large dust grains resultant from coagulation is necessary

for the dust-gas instabilities to operate and lead to planetesimal formation. Because of

their growth wavelength of ≲ H, a spatial scale of reaccumulation should be ≲ H at least.

Pressure bumps or zonal flows in a gas disk are possible sites of dust reaccumulation (e.g.,

Whipple 1972; Kretke & Lin 2007; Johansen et al. 2009a; Bai & Stone 2014; Flock et al.

2015). If a “bump” structure in a gas pressure profile, dust grains at an inner region of

the bump move outward while those at an outer region fall inward because their drift

velocity is proportional to ∂ lnP/∂r (Equation (1.14)). Thus, dust grains pile up at

the center of the bump (see Figure 4.2). Streaming instability in pressure bumps has

been investigated both analytically (Auffinger & Laibe 2018) and numerically (Taki et al.

2016; Carrera et al. 2020). Auffinger & Laibe (2018) and Carrera et al. (2020) showed

that streaming instability develops for dust-to-gas ratio of 0.01 if a relative amplitude

of a pressure bump is larger than 10-20%. However, we should note that deformation

of a bump due to frictional backreaction potentially inhibits subsequent gravitational

collapse (Taki et al. 2016). Gas vortices also trap dust particles (e.g., Barge & Sommeria

1995; Chavanis 2000; Lyra & Lin 2013; Raettig et al. 2015). Although some disks are

considered to host a vortex (Fukagawa et al. (2013); van der Marel et al. (2013); Casassus

et al. 2015), other disks hosting annular substructures show few evidences that vortices

are present.

A combination of recondensation of water vapor and dust traffic jam near a water

snow line is another possible process for reaccumulating dust grains (e.g., Stevenson &

Lunine 1988; Dra̧żkowska & Dullemond 2014; Dra̧żkowska & Alibert 2017; Schoonenberg

& Ormel 2017; Schoonenberg et al. 2018). A water snow line is a location where water

ice on grain’s surface evaporates. Resultant bare silicate grains are relatively fragile and

fragment into smaller grains. The radial speed decreases inward across the snow line,

leading to traffic jam. Because vaporized water diffuses outward and recondenses onto

dust grains outside the snow line and they become larger, dust grains successively pile

up around the snow line (see Figure 4.2). The process however is highly dependent on

a critical velocity at which collisional fragmentation becomes efficient. It is found that

dust grains efficiently pile up around the snow line if water vaporization inside the snow

line provides fragile silicate grains whose critical velocity is ∼ a few m/s. However,

experiments suggest that dry silicate grains are less fragile than previously considered (a

critical velocity ≳ 10 m/s, Kimura et al. 2015; Steinpilz et al. 2019). If this is the case

in protoplanetary disks, the dust reaccumulation around the snow line may not operate
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(see discussion in Dra̧żkowska & Alibert 2017).

In this chapter, we propose another mechanism for retention and reaccumulation of

mm- and cm-sized dust grains. We find that the inside-out coagulation itself triggers

an instability that we call “coagulation instability”. Coagulation instability grows even

when dust is highly depleted and dust-to-gas ratio is of the order of 10−3. In contrast

to the above mechanisms that operate at a specific location in a disk (e.g., a snow line),

coagulation instability can operate and reaccumulate dust grains throughout a disk.

We first describe basic equations for linear analyses in Section 4.2 and show results

in Section 4.3. Discussion and summary are present in Sections 4.5 and 4.6.

4.2 Moment method for dust coagulation

Dust coagulation is described by the Smoluchowski equation for a column number density

N(r,m) per unit dust particle mass m (Smoluchowski 1916; Schumann 1940; Safronov

1972):

∂mN

∂t
=

m

2

∫ m

0

dm′K(r,m′,m−m′)N(r,m′)N(r,m−m′)

−mN(r,m)

∫ ∞

0

dm′K(r,m,m′)N(r,m′)dm′ − 1

r

∂

∂r
(rvr(r,m)mN(r,m)) , (4.5)

where K(r,m1,m2) is a collision kernel representing a vertically integrated collision rate

between dust particles of masses m1 = 4πρinta
3
1/3 and m2 = 4πρinta

3
2/3

1. The expression

of the collision kernel is (e.g., Brauer et al. 2008)

K(r,m1,m2) ≡
σcoll

2πHd(m1)Hd(m2)

∫ ∞

−∞
∆vpp exp

[
−z2

2

(
1

Hd(m1)2
+

1

Hd(m2)2

)]
dz,

(4.6)

where ∆vpp is collision velocity and σcoll is a cross section:

σcoll ≡ π(a1 + a2)
2. (4.7)

Note that the radial velocity vr and the dust scale height Hd depend on dust particle

mass.

In this thesis, we describe dust growth using moment equations of Equation (4.5)

because analytical treatments of the Smoluchowski equation are difficult (see Estrada &

1In this thesis, we focus on collisional growth of compact spherical dust grains for simplicity. Colli-

sional growth of porous dust aggregates are investigated in Okuzumi et al. (2012).
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Cuzzi 2008; Ormel & Spaans 2008; Sato et al. 2016; Taki et al. 2020). Following Sato

et al. (2016), we define the ith moment Mi(r) as

Mi(r) ≡
∫ ∞

0

mi+1N(r,m)dm, (4.8)

and the ith moment equation is

∂Mi

∂t
=

1

2

∫ ∞

0

dm

∫ ∞

0

dm′K(r,m,m′)N(m)N(m′)
[
(m+m′)i+1 − (mi+1 +m′i+1)

]
− 1

r

∂

∂r

(
r
⟨
mivr

⟩
m
Σd

)
, (4.9)

where ⟨
mivr

⟩
m
≡ 1

Σd

∫ ∞

0

mi+1vr(m)N(r,m)dm. (4.10)

Note that the dust surface density Σd is equivalent to 0th moment M0. Thus, the 0th

moment equation yields the continuity equation

∂Σd

∂t
+

1

r

∂

∂r
(r ⟨vr⟩m Σd) = 0. (4.11)

The 1st moment equation gives an evolutionary equation of a “peak mass”, mp ≡ M1

(Ormel & Spaans 2008):

∂mpΣd

∂t
=

∫ ∞

0

dm

∫ ∞

0

dm′mm′K(r,m,m′)N(m)N(m′)− 1

r

∂

∂r
(r ⟨mvr⟩m Σd) . (4.12)

To solve the 0th and 1st moment equations, we assume the following closure relation (see

Sato et al. 2016; Taki et al. 2020):

mpvr(mp) = mp ⟨vr⟩m = ⟨mvr⟩m . (4.13)

Sato et al. (2016) found that the moment equation can reproduce full-size calculations

(Equation (4.5)) if one approximate the first term as the equal-sized kernel K(mp,mp):∫ ∞

0

dm

∫ ∞

0

dm′mm′K(r,m,m′)N(m)N(m′)

≃ K(mp,mp) =
2a2

Hd(mp)

∫ ∞

−∞
∆vpp exp

(
− z2

Hd(mp)2

)
dz, (4.14)

where we use mp = 4πρinta
3/3. Although the integrant includes z-dependent collision

speed, they approximately put the term outside of the integral∫ ∞

0

dm

∫ ∞

0

dm′mm′K(r,m,m′)N(m)N(m′) ≃ 2
√
πa2∆vpp

Hd(mp)
. (4.15)
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Sato et al. (2016) also showed that adopting a collision speed with a dust size ratio

of 1:2 for ∆vpp show better agreement between the moment calculations and full-size

calculations. Based on these assumptions and the closure relation, we obtain the basic

equations for coagulating dust grains:

∂Σd

∂t
+

1

r

∂

∂r
(rvrΣd) = 0, (4.16)

dmp

dt
=

∂mp

∂t
+ vr

∂mp

∂r
=

2
√
πa2∆vpp
Hd

Σd, (4.17)

where vr = vr(mp) and Hd = Hd(mp). Although Equation (4.16) is apparently the same

as the usual continuity equation (Equation (2.1)), we should note that the surface density

Σd in Equation (4.16) denotes total surface mass density of various sized dust particles

and the velocity vr denotes the representative velocity vr(mp).

Further simplification and equations at the local frame

In this chapter, we assume dust particles in the Epstein regime, and calculate the

dimensionless stopping time τs ≡ tstopΩ using the size of the-peak-mass dust a =

(3mp/4πρint)
1/3:

τs =

√
π

8

ρinta

ρgcs
Ω. (4.18)

We also use the midplane value of τs and vr because most of the dust particles are

distributed near the midplane. For a vertical gas density profile, ρg(z = 0) is given by

Σg/
√
2πH (Equation (1.9)), and thus one obtains

τs =
π

2

ρinta

Σg

. (4.19)

Equations (4.17) and (4.19) yield

∂τs
∂t

+ vx
∂τs
∂r

=

√
π

4

(
Σd

Σg,0

)(
∆vpp
τsHd

)
τs. (4.20)

In this chapter, we mainly focus on turbulent-induced collisions at which dust particles

collide with a relative velocity ∆vpp =
√
Cτsαcs (Ormel & Cuzzi 2007), where C is a

numerical factor and C ≃ 2.3 for dust grains with a size ratio of 0.5. We also use the

simplified expression for the dust scale height: Hd =
√
α/τsH. These simplifications

reduce Equation (4.20) as follows:

∂τs
∂t

+ vr
∂τs
∂r

=
Σd

Σg

τs
3t0

+
τs
Σg

1

r

∂

∂r
(rΣgur)−

τs
Σg

vr
∂Σg

∂r
, (4.21)
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where t0 ≡ (4/3
√
Cπ)Ω−1 ≃ 0.49Ω−1.

In the following sections, we perform linear analyses in the Cartesian local shear-

ing sheet (Goldreich & Lynden-Bell 1965b) whose radial distance from a star is R and

Keplerian orbital frequency is Ω. In the local frame, the basic equations for dust are

summarized as follows:
∂Σd

∂t
+

∂Σdvx
∂x

= 0, (4.22)

∂τs
∂t

+ vx
∂τs
∂x

=
Σd

Σg

τs
3t0

+
τs
Σg

∂Σgux

∂x
− τs

Σg

vx
∂Σg

∂x
, (4.23)

4.3 One-fluid linear analyses and results

We first perform one-fluid linear analyses considering only dust equations. We assume

that the gas surface density is uniform at the local frame, Σg = Σg,0, and the radial dust

velocity is given by the so-call drift velocity

vx = − 2τs
1 + τ 2s

ηRΩ. (4.24)

The assumption of the steady uniform gas reduces Equation (4.23) as follows:

∂τs
∂t

+ vx
∂τs
∂x

=
Σd

Σg,0

τs
3t0

. (4.25)

We set an unperturbed state with uniform surface densities for gas and dust. As

shown below, a growth timescale of coagulation instability is shorter than a coagula-

tion timescale 3t0Σg,0/Σd. Thus, we can safely neglect the evolution of the background

state via dust coagulation, and assume uniform dimensionless stopping time τs,0 and the

velocity vx,0 = −2τs,0ηRΩ/(1 + τ 2s,0).

Based on the above unperturbed state, we obtain the linearized equations from Equa-

tions (4.22), (4.24) and (4.25)

(n+ ikvx,0)δΣd + ikΣd,0δvx = 0, (4.26)

δvx =
1− τ 2s,0
1 + τ 2s,0

δτs
τs,0

vx,0, (4.27)

(n+ ikvx,0)δτs =
δΣd

Σg,0

τs,0
3t0

+
Σd,0

Σg,0

δτs
3t0

, (4.28)

where we assume plane-wave perturbations as in the previous chapters, i.e., δΣd ∝ δvx ∝
δτs ∝ exp(ikx + nt). Solving the eigenvalue problem with Equations (4.26) - (4.28), we
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obtain the following dispersion relation

n = nap,± ≡ −ikvx,0 +
ε

6t0

(
1±

√
1− 12t0

ε

1− τ 2s,0
1 + τ 2s,0

ikvx,0

)
, (4.29)

where ε ≡ Σd,0/Σg,0. There is one growing mode. For short-wavelength perturbations,

the complex growth rate n of the growing mode can be approximated as

nap,+ ≃ −ikvx,0 +
ε

6t0

(
1 +

√
12t0
ε

1− τ 2s,0
1 + τ 2s,0

ik|vx,0|

)

= −ikvx,0 +
ε

6t0

(
1 + (1 + i)

√
6t0
ε

1− τ 2s,0
1 + τ 2s,0

k|vx,0|

)
. (4.30)

Thus, the growth rate, i.e. the real part of n, at large k is

Re[nap,+] ≃
ε

6t0

(
1 +

√
6t0
ε

1− τ 2s,0
1 + τ 2s,0

k|vx,0|

)

≃ ε

3t0

√
3t0
2ε

1− τ 2s,0
1 + τ 2s,0

k|vx,0|. (4.31)

Equation (4.31) is always positive, and thus a disk is unconditionally unstable. The

growth rate is much larger than ε/3t0 at k ≫ ε/t0|vx,0|. Therefore, this instability

develops faster than the unperturbed state that evolves at the timescale of 3t0/ε.

A characteristic length scale of coagulation instability is Lgdl ≡ 3t0|vx,0|/ε, which is

called a growth-drift length in the following. The growth-drift length is a distance that

dust moves at the unperturbed velocity within the e−folding time of its size. We find

that Lgdl is comparable to the gas scale height H as follows:

Lgdl

H
= 3

(
t0Ω

0.5

)( ε

0.01

)−1
(
|vx,0|/cs
0.02

)
. (4.32)

Using Lgdl to normalize a wavenumber k̃ ≡ kLgdl and assuming k̃ ≫ 1, we obtain

nap,+ ≃ i
ε

3t0
k̃ +

ε

6t0

(
1 + (1 + i)

√
1− τ 2s,0
1 + τ 2s,0

2k̃

)
. (4.33)

Thus, we obtain

Re[nap,+]

(
3t0
ε

)
=

1

2
+

1

2

√
1− τ 2s,0
1 + τ 2s,0

2k̃ (4.34)
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When dust particles are so small that the dimensionless stopping time satisfies τs,0 ≲ 0.1

and 1± τ 2s,0 ≃ 1, we obtain

Re[nap,+]

(
3t0
ε

)
=

1

2
+

√
k̃

2
. (4.35)

We note that Lgdl depends on τs,0. Equation (4.35) signifies that coagulation instability

has the self-similarity. Thus, one can derive growth rates for different dust sizes scaling

wavelengths k̃.

The amplitude of δτs/τs,0 is smaller than δΣd/Σd,0 for coagulation instability. At

short wavelengths, the relative amplitude is approximately given as

δτs/τs,0
δΣd/Σd,0

≃ (1− i)
ε

6t0

√
6t0

εk|vx,0|
1 + τ 2s,0
1− τ 2s,0

,

= exp
(
−i

π

4

)√ 1

kLgdl

1 + τ 2s,0
1− τ 2s,0

. (4.36)

This shows that the relative amplitude decreases as increasing k For kLgdl = 100, δτs/τs,0

is smaller than δΣd/Σd,0 by an order of magnitude.

Coagulation instability is triggered by a combination of dust coagulation and traffic

jam. When there is a perturbation in dust surface density, dust particles grow more

efficiently than those at nodes of the perturbation. On the other hand, dust growth is

less efficient at a region of negative density perturbations. These spatially varying growth

efficiencies result in δτs perturbation that is in phase with δΣd. Because non-zero δτs

leads to radial variation of drift velocity δvx, dust particles tend to concentrate at nodes

where radial gradients of δvx is negative. This concentration shifts the surface density

perturbation toward the central star. Dust growth is enhanced in the shifted region of

δΣd > 0, leading to amplification of δτ . The amplification of δτs augments the velocity

perturbation δvx and results in more stronger traffic jam. This successive dust growth

and traffic jam lead to coagulation instability.

4.4 Two-fluid linear analyses and results

Next, we perform two-fluid linear analyses and discuss effects of gas motion on coagu-

lation instability. In this analysis, we do not assume the terminal velocity for dust and

gas. Basic equations are summarized as follows

∂Σg

∂t
+

∂Σgux

∂x
= 0, (4.37)

107



4.4. TWO-FLUID LINEAR ANALYSES AND RESULTS

∂ux

∂t
+ ux

∂ux

∂x
= 3Ω2x+ 2Ωuy −

1

Σg

∂c2sΣg

∂x
+

Σd

Σg

vx − ux

τs
Ω, (4.38)

∂uy

∂t
+ ux

∂uy

∂x
= −2Ωux +

Σd

Σg

vy − uy

τs
Ω, (4.39)

∂Σd

∂t
+

∂Σdvx
∂x

= 0, (4.22)

∂vx
∂t

+ vx
∂vx
∂x

= 3Ω2x+ 2Ωvy −
vx − ux

τs
Ω, (4.40)

∂vy
∂t

+ vx
∂vy
∂x

= −2Ωvx −
vy − uy

τs
Ω, (4.41)

∂τs
∂t

+ vx
∂τs
∂x

=
Σd

Σg

τs
3t0

+
τs
Σg

∂Σgux

∂x
− τs

Σg

vx
∂Σg

∂x
. (4.23)

As in the one-fluid analyses, we set a unperturbed state without using Equation

(4.23). The unperturbed state is then derived from the following equations:

∂Σg,0ux

∂x
= 0, (4.42)

ux
∂ux

∂x
= 3Ω2x+ 2Ωuy −

1

Σg,0

∂c2sΣg,0

∂x
+

Σd,0

Σg,0

vx − ux

τs
Ω, (4.43)

ux
∂uy

∂x
= −2Ωux +

Σd

Σg

vy − uy

τs
Ω, (4.44)

∂Σdvx
∂x

= 0, (4.45)

vx
∂vx
∂x

= 3Ω2x+ 2Ωvy −
vx − ux

τs
Ω, (4.46)

vx
∂vy
∂x

= −2Ωvx −
vy − uy

τs
Ω. (4.47)

Coagulation instability requires the drift motion in the unperturbed state. We thus

consider non-zero radial gradient of the unperturbed gas surface density Σ′
g,0 ≡ ∂Σg,0/∂x

and gradient of gas pressure (c2sΣg,0)
′ ≡ ∂(c2sΣg,0)/∂x. Assuming small x/R, we approxi-

mate the physical variables as constants or linear functions in x:

ux = ux,0 + u′
x,0x, (4.48)

uy = −3

2
Ωx+ uy,0 + u′

y,0x, (4.49)

Σd = Σd,0 + Σ′
d,0x, (4.50)

vx = vx,0 + v′x,0x, (4.51)
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vy = −3

2
Ωx+ vy,0 + v′y,0x, (4.52)

τs = τs,0 + τ ′s,0x. (4.53)

The degree of freedom is 12 for given gas surface density and pressure gradients. We also

assume that second- and higher-order terms of those gradients are small enough that we

can neglect those terms.

Equation (4.42) gives

Σ′
g,0ux,0 + Σg,0u

′
x,0 + 2Σ′

g,0u
′
x,0x = 0. (4.54)

The first and second terms are the second order in Σ′
g,0 because ux,0 should be propor-

tional to Σ′
g,0/Σg,0 in the drift solution. The third term is the third-order in Σ′

g,0 because

the spatial derivative of ux,0 introduces Σ′
g,0. Therefore, Equation (4.54) is satisfied at

the first order in Σ′
g. One also finds that Equation (4.45) is satisfied as well. The re-

maing equations (Equations (4.43), (4.44), (4.46) and (4.47)) introduce 8 equations to

determine the coefficients of x0 and x1 for the unperturbed state variables. Because the

number of variables (12) is larger than the number of equations (8), we can freely fix

four coefficients. In the present analyses, we set Σ′
d,0 = v′x,0 = u′

x,0 = τ ′s,0 = 0. In this

case, we find the following velocity fields from the equations of motion:

ux,0 =
2ετs,0

(1 + ε)2 + τ 2s,0

(
−(c2sΣg,0)

′

2ΩΣg,0

)
, (4.55)

uy,0 = −
[
1 +

ετ 2s,0
(1 + ε)2 + τ 2s,0

](
− (c2sΣg,0)

′

2ΩΣg,0(1 + ε)

)
, (4.56)

vx,0 = − 2τs,0
(1 + ε)2 + τ 2s,0

(
−(c2sΣg,0)

′

2ΩΣg,0

)
, (4.57)

vy,0 = −
[
1−

τ 2s,0
(1 + ε)2 + τ 2s,0

](
− (c2sΣg,0)

′

2ΩΣg,0(1 + ε)

)
, (4.58)

We note that ε, Σ′
g,0, (c

2
sΣg,0)

′, and τs,0 are parameters to be determined in advance. One

finds that the above solution corresponds to the steady drift velocity given by Nakagawa

et al. (1986) when relating Σ′
g,0 to η as follows:

−(c2sΣg,0)
′

Σg,0

= 2ηRΩ2. (4.59)

Assuming the temperature profile, one obtains Σ′
g,0 from the following equation:

Σ′
g,0

Σg,0

= − 1

R

(
2η

R2Ω2

c2s
+

∂ ln c2s
∂ lnR

)
. (4.60)
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Linearized equations

Using the above unperturbed state, we linearize the basic equations. Perturbations

are assumed to be proportional to exp(ikx + nt). The amplitudes of the perturbations

generally depend on x because the above unperturbed state has x−dependent gas surface

density. In this thesis, we focus on short-wavelength perturbations with kx ≫ 1 and

neglect spatial gradients of the amplitudes based on WKB approximation. We also

assume an isothermal disk and do not consider temperature perturbation. Under these

approximations, the linearized equations are

(n+ ikux,0)δΣg +

(
ikΣg,unp +

∂Σg,unp

∂x

)
δux = 0, (4.61)

(n+ ikux,0)δux =2Ωδuy +
δΣg

Σ2
g,unp

∂c2sΣg,unp

∂x
− c2s

Σg,unp

ikδΣg

+
Σd,0

Σg,unp

vx,0 − ux,0

τs,0
Ω

(
δΣd

Σd,0

− δΣg

Σg,unp

+
δvx − δux

vx,0 − ux,0

− δτs
τs,0

)
, (4.62)

(n+ ikux,0)δuy =− Ω

2
δux +

Σd,0

Σg,unp

vy,0 − uy,0

τs,0
Ω

(
δΣd

Σd,0

− δΣg

Σg,unp

+
δvy − δuy

vy,0 − uy,0

− δτs
τs,0

)
,

(4.63)

(n+ ikvx,0)δΣd + ikΣd,0δvx = 0, (4.64)

(n+ ikvx,0)δvx = 2Ωδvy −
vx,0 − ux,0

τs,0
Ω

(
δvx − δux

vx,0 − ux,0

− δτs
τs,0

)
, (4.65)

(n+ ikvx,0)δvy = −Ω

2
δvx −

vy,0 − uy,0

τs,0
Ω

(
δvy − δuy

vy,0 − uy,0

− δτs
τs,0

)
, (4.66)

(n+ ikvx,0)δτs =
Σd,0

Σg,unp

τs,0
3t0

(
δΣd

Σd,0

− δΣg

Σg,unp

+
δτs
τs,0

)
+

τs,0
Σg,unp

[(
ikΣg,unp +

∂Σg,unp

∂x

)
δux + ikux,0δΣg

]
− τs,0vx,0

Σg,unp

ikδΣg

− τs,0vx,0
Σg,unp

∂Σg,unp

∂x

(
δτs
τs,0

+
δvx
vx,0

− δΣg

Σg,unp

)
, (4.67)

where Σg,unp ≡ Σg,0 + Σ′
g,0x. We calculate the complex growth rate n for x = 0, i.e.,

Σg,unp = Σg,0.
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Figure 4.3: Growth rates and oscillation frequencies for τs,0 = 0.1, ε = 10−3, and R = 20 au.

In this case, one has Lgdl ≃ 33.78H. The grey dashed lines correspond to the growth rate and

the oscillation frequency obtained from one-fluid analyses (Equation (4.29)). Cross marks on

the right panel shows the oscillation frequency due to the dust drift vx,0k.

Growth rate of coagulation instability in two-fluid disks

In the present analyses, we use the minimum mass solar nebula disk model (Hayashi 1981)

with a solar-mass star to estimate Σ′
g,0. The gas surface density and the temperature T

are given by Σg,0 = 1700(R/1 au)−3/2 g cm−2 and T = 280(R/1 au)−1/2 K. Assuming

the midplane gas density ρg(0) = Σg/
√
2πH and the mean molecular weight of 2.34, we

obtain η ≃ 1.8 × 10−3(R/1 au)1/2. We then calculate growth rates and phase velocities

for a certain radius R.

Figure 4.3 shows the growth rate Re[n] normalized by ε/3t0 and the oscillation fre-

quency −Im[n] normalized by the Keplerian frequency Ω in the case of τs,0 = 0.1, ε =

10−3, and R = 20 au. We also plot the growth rate and the frequency obtained from

the one-fluid analyses (Equation (4.29)). The two-fluid analyses give lower growth rates,

and the difference is significant especially at longer wavelengths. On the other hand,

the oscillation frequencies show a good agreement between the one-fluid and two-fluid

analyses. The frequencies from both analyses are well reproduced by the drift-induced

frequency vx,0k.

The quantitative differences come from the third term on the right hand side of

Equation (4.23). The term represents that the stopping time decreases as dust drifts

into the inner high gas density region. To show the effect on the dispersion relation, we

perform “modified” one-fluid analyses using Equation (4.22) and the following equation:

∂τs
∂t

+ vx
∂τs
∂x

=
Σd

Σg

τs
3t0

− τs
Σg

vx
∂Σg

∂x
, (4.68)
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Figure 4.4: Growth rate and oscillation frequency at R = 20 au. Blue and yellow solid lines

show the results for (τs,0, ε) = (10−2, 10−2) and (10−1, 10−3), respectively. Filled circles and plus

marks represent growth rates and phase velocities obtained from modified one-fluid analyses.

We find that the results of the two-fluid analyses are well reproduced by the modified one-fluid

analyses.

In the same way of the one-fluid linear analyses in the previous subsection, one can derive

a dispersion relation of the growing mode:

nap(k, T ) ≡ −ikvx,0 +
ε

6t0

(
T +

√
T 2 − 12t0

ε

1− τ 2s,0
1 + τ 2s,0

ikvx,0

)
, (4.69)

T ≡ 1 +
2

1 + τ 2s,0

Lgdl

Σg,0/Σ′
g,0

. (4.70)

Considering τs,0 ≪ 1, one obtains

nap(k, T ) ≃ −ikvx,0 +
ε

6t0

(
T +

√
T 2 − 12t0

ε
ikvx,0

)
(4.71)

T ≃ 1 + 2
Lgdl

Σg,0/Σ′
g,0

. (4.72)

Figure 4.4 compares of the modified one-fluid dispersion relation nap(k, T ) and two-fluid

dispersion relation n for (τs,0, ε) = (10−2, 10−2) and (10−1, 10−3). The two-fluid dispersion

relations are well reproduced by the modified one-fluid dispersion relation, meaning that

the decrease of the growth rates is responsible for the third term on the right hand
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side of Equation (4.23). In other words, modes of gas are irrelevant to coagulation

instability, and the only unperturbed gas structure (Σg,0) affects the growth rate. The

newly introduced factor T is less than unity because of the negative gas surface density

gradient, and thus the growth rate becomes smaller than in one-fluid analyses (T = 0).

The oscillation frequencies are mainly determined by the drift velocity vx,0, which depends

on the dimensionless stopping time τs,0 even in the modified one-fluid analyses.
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Figure 4.5: Growth rate for kH = 60 as a function of the dimensionless stopping time τs,0 and

the unperturbed dust-to-gas surface density ratio ε = Σd,0/Σg,0. Here we assume R = 20 au.

The color shows the growth rate in the unit of Ω. Even for ε ∼ 10−3, the growth rates of

coagulation instability can be ∼ 0.01Ω, which shows that the instability grows only within 20

Keplerian periods.

Figure 4.5 shows the two-fluid growth rate as a function of the dimensionless stopping

time and the unperturbed dust-to-gas surface density ratio. We plot the growth rates at

kH = 60 as the reference value. If one takes larger k, one will find larger growth rate (see

Figure 4.4). We find that the growth rate increases as τs,0 and ε increase. These trends

are consistent with the ε- and τs,0-dependences of the one-fluid dispersion relation. As

τs,0 increases, one obtains larger dust drift speed |vx,0|. Because the velocity perturbation

is proportional to vx,0 (Equation (4.27)), the faster drift speed leads to stronger traffic

jam and thus larger growth rate. As ε increases, dust coagulation becomes effective

and coagulation instability grows faster. According to Equation (4.72), the growth rate

at short wavelengths (12t0k|vx,0|/εT 2 ≫ 1) is proportional to
√

k|vx,0|t0/ε ∝
√
τs,0/ε.

Therefore, the growth rates are constant along lines of constant τs,0/ε, which can be seen

in Figure 4.5.
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4.5 Discussion

4.5.1 Stabilization due to dust diffusion

Gas turbulence drives not only collisional growth but also dust diffusion, which smooths

out dust surface density perturbations. The diffusion will prevent coagulation instability

especially at short wavelengths and limits its growth rate. In this subsection, we discuss

to what extent the diffusion stabilizes the instability by simply performing one-fluid

analyses.

As shown in Chapter 2, simply adding the diffusion term to the continuity equation

violates the angular momentum conservation. We showed that replacing dust velocity

by a sum of the mean-flow velocity and the diffusive-flow velocity recovers the angular

momentum conservation. We thus simply replace vx in Equations (4.22) and (4.68) as

vx = ⟨vx⟩ −
D

Σd

∂Σd

∂x
, (4.73)

where D is a diffusion coefficient and ⟨vx⟩ is the mean-flow component representing the

collective drift and defined by

⟨vx⟩ ≡ − 2τs
1 + τ 2s

ηRΩ. (4.74)

Some studies use another form of the diffusion flux proportional to gradient of dust-to-

gas ratio, which corresponds to another closure relation between ⟨∆Σd∆vr⟩ and ⟨Σd⟩.
To check the difference, we thus consider another case where we use the following dust

velocity:

vx = ⟨vx⟩ −
DΣg

Σd

∂

∂x

(
Σd

Σg

)
. (4.75)

Substituting Equation (4.73) to the continuity equation gives

∂Σd

∂t
+

∂Σd ⟨vx⟩
∂x

=
∂

∂x

(
D
∂Σd

∂x

)
(4.76)

∂τs
∂t

+

(
⟨vx⟩ −

D

Σd

∂Σd

∂x

)
∂τs
∂x

=
Σd

Σg

τs
3t0

− τs
Σg

(
⟨vx⟩ −

D

Σd

∂Σd

∂x

)
∂Σg

∂x
. (4.77)

When we use Equation (4.75), we obtain the following equations:

∂Σd

∂t
+

∂Σd ⟨vx⟩
∂x

=
∂

∂x

(
DΣg

∂

∂x

(
Σd

Σg

))
(4.78)

∂τs
∂t

+

(
⟨vx⟩ −

DΣg

Σd

∂

∂x

(
Σd

Σg

))
∂τs
∂x

=
Σd

Σg

τs
3t0

− τs
Σg

(
⟨vx⟩ −

DΣg

Σd

∂

∂x

(
Σd

Σg

))
∂Σg

∂x
.

(4.79)
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We perform linear analyses based on Equations (4.76) and (4.77) and those based on

Equations (4.78) and (4.79). In both cases, we set unperturbed states with uniform

dust surface density and uniform dimensionless stopping time. We take into account the

dust growth equation (Equation (4.77) or (4.79)) only for perturbed quantities as in the

one-fluid analyses.

First, we perform linear analyses using Equations (4.76) and (4.77). In this case, the

unperturbed velocity is

vx,0 = ⟨vx,0⟩ = −2τs,0η
RΩ

1 + τ 2s,0
. (4.80)

Based on the above unperturbed velocity with uniform Σd,0 and τs,0, we obtain the

following linearized equations:

(n+ ik ⟨vx,0⟩+Dk2)
δΣd

Σd,0

+
1− τ 2s,0
1 + τ 2s,0

ik ⟨vx,0⟩
δτs
τs,0

= 0, (4.81)

(
n+ ik ⟨vx,0⟩ −

ε

3t0
+

2 ⟨vx,0⟩
1 + τ 2s,0

Σ′
g,0

Σg,0

)
δτs
τs,0

+

(
− ε

3t0
− ikD

Σ′
g,0

Σg,0

)
δΣd

Σd,0

= 0. (4.82)

The full dispersion relation is

(n+ ik ⟨vx,0⟩)2 + A1(n+ ik ⟨vx,0⟩) + A0 = 0, (4.83)

A1 = − ε

3t0
+

2 ⟨vx,0⟩
1 + τ 2s,0

Σ′
g,0

Σg,0

+Dk2, (4.84)

A0 = ik ⟨vx,0⟩
(
1− τ 2s,0
1 + τ 2s,0

)(
ε

3t0
+ ikD

Σ′
g,0

Σg,0

)
+Dk2

(
− ε

3t0
+

2 ⟨vx,0⟩
1 + τ 2s,0

Σ′
g,0

Σg,0

)
. (4.85)

The terms proportional to Σ′
g,0 come from the last term on the right hand side of Equation

(4.77). Using Lgdl = 3t0 ⟨vx,0⟩ /ε and T defined by Equation (4.70), we obtain the

dispersion relation of a growing mode

n
3t0
ε

= ik̃ +
1

2

(
T − βk̃2

)
+

1

2

√(
T + βk̃2

)2
+ 4ik̃

1− τ 2s,0
1 + τ 2s,0

(
1 + ik̃βLgdl

Σ′
g,0

Σg,0

)
, (4.86)

where β = DL−2
gdl(3t0/ε) is a dimensionless diffusion coefficient. Assuming that dust

particles are so small that they satisfy τs,0 ≪ 1 and D ≃ αc2sΩ
−1 (see Youdin & Lithwick

2007), we can relate β to often-used strength of turbulence α as follows (see also Equation

(4.32)):

β ≃α

(
H

Lgdl

)2
3t0Ω

ε

≃6.6× 10−4

(
α

1× 10−4

)(
t0Ω

0.5

)−1(
ε

1× 10−3

)(
|vx,0|/cs
0.01

)−2

. (4.87)
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Figure 4.6: Growth rate with the dust diffusion. The left panel shows growth rates calculated

without the terms proportional to Σ′
g,0 in Equation (4.86) while the right panel shows growth

rate that we derive with all terms in Equation (4.86). The dashed line shows wavenumber

estimated by Equation (4.88)

We note that β depends on dust sizes because the drift speed |vx,0| depends on the

dimensionless stopping time. As in the comparison of the one-fluid and modified one-

fluid analyses, we evaluate (1) growth rates without the terms proportional to Σ′
g,0 and

(2) growth rates with all terms in Equation (4.86), separately.

Figure 4.6 shows growth rates as a function of kLgdl and the dimensionless diffusion

coefficient β for τs = 0.1. On the left panel, we show growth rates calculated without

the last term on the right-hand side of Equation (4.77) while on the right panel we show

growth rates that we derived using all terms. In both cases, coagulation instability is

stabilized at short wavelengths. As in the diffusion-free case, including the decrease of

τs due to the gas surface density gradient Σ′
g,0 reduces the growth rate by a factor of a

few for Lgdl ≃ 33.79H. One finds smaller growth rates for stronger diffusion, i.e., larger

β. When a gas disk is less turbulent and β becomes less than 1 × 10−4, coagulation

instability grows 2-10 times faster than dust coagulates. Such a situation is realized in a

region where α× ϵ ≃ 1.5× 10−8 (see Equation (4.87)).

As a result of diffusion, coagulation instability has the most unstable wavenumber

kmax in contrast to the diffusion-free case. We find that the most unstable wavenumber

is well described by the following relation:

kmaxLgdl ≃
1

3

(
4

β2

1− τ 2s,0
1 + τ 2s,0

)1/3

. (4.88)

The dashed line in Figure 4.6 shows the wavenumber given by the right hand side of

Equation (4.88). In both panels, Equation (4.88) well reproduces the most unstable
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Figure 4.7: Growth rate at kLgdl = (4β−2(1 − τ2s,0)/27(1 + τ2s,0))
1/3 (Equation (4.88)) as a

function of dimensionless stopping time τs,0 and unperturbed dust-to-gas surface density ratio

ε = Σd,0/Σg,0. The left and right figures show the growth rate for α = 10−3 and α = 10−4,

respectively.

wavenumber. Considering small dust particles with 1 ± τ 2s,0 ≃ 1, one obtains the most

unstable wavelength λmax ≡ 2π/kmax as follows:

λmax ≃ 1.07H

(
α

1× 10−4

)2/3(
t0Ω

0.5

)1/3(
ε

1× 10−3

)−1/3( |vx,0|/cs
0.02

)−1/3

(4.89)

Figure 4.7 shows the growth rate at a wavelength given by Equation (4.88). We

neglect the last term on the right-hand side of Equation (4.77) because the global sim-

ulations of coagulation show radial constant τs (e.g., Okuzumi et al. 2012). Following

Youdin & Lithwick (2007) and Youdin (2011), we calculate the diffusion coefficient as

D =
1 + τs,0 + 4τ 2s,0(

1 + τ 2s,0
)2 αcsH. (4.90)

The strength of turbulence α is assumed to be 10−3 on the left panel of Figure 4.7 and

10−4 on the right panel. In weakly turbulent disks with α = 10−4, coagulation instability

can develop within ≃ 10 − 30 Keplerian period even when the dust-to-gas ratio is less

than 0.01 if dust grains grow up to τs,0 ≃ 0.1. The timescale is still tens of Keplerian

periods even for α = 10−3.

Next, we perform linear analyses using Equations (4.78) and (4.79). We found little

difference from the above analyses based on Equations (4.76) and (4.77). We thus simply

show a dispersion relation.

The unperturbed state with uniform Σg,0 has the dust drift velocity vx,0 = ⟨vx,0⟩ +
DΣ′

g,0/Σg,0. Linearizing Equations (4.78) and (4.79), we obtain the following dispersion
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relation:

(n+ ikvx,0)
2 +B1(n+ ikvx,0) +B0 = 0, (4.91)

B1 = − ε

3t0
+

2vx,0
1 + τ 2s,0

Σ′
g,0

Σg,0

+Dk2 −D

(
Σ′

g,0

Σg,0

)2 1− τ 2s,0
1 + τ 2s,0

, (4.92)

B0 = ikvx,0

(
1− τ 2s,0
1 + τ 2s,0

)(
ε

3t0
+ ikD

Σ′
g,0

Σg,0

)
+Dk2

(
− ε

3t0
+

2vx,0
1 + τ 2s,0

Σ′
g,0

Σg,0

)
−ikεD

3t0

Σ′
g,0

Σg,0

1− τ 2s,0
1 + τ 2s,0

.

(4.93)

The differences from Equations (4.86)-(4.85) are (1) ⟨vx,0⟩ is replaced with vx,0, (2) the

last terms on the right-hand side of Equations (4.92) and (4.93). The former is small

for | ⟨vx,0⟩ | > D|Σ′
g,0/Σg,0|, which roughly corresponds to τs,0 > α. We also find that

the latter difference is also small as follows. The last term of Equation (4.92) is much

smaller than the third term Dk2 because coagulation instability grows at kH ≫ 1. The

last term on the right-hand side of Equation (4.93) is also smaller than the first term

for τs,0 > α and |vx,0| > D|Σ′
g,0/Σg,0| are satisfied. Because of Hd/H ≃

√
α/τs,0, the

condition τs,0 > α is equivalent to Hd < H. This is what we usually expect for large

grains.

4.5.2 Effects of other collision velocities

Although we consider turbulent-induced collisions in the above sections, the collision

velocity in reality consists of multiple components:

∆vpp =

√
(∆vt)

2 + (∆vB)
2 + (∆vr)

2 + (∆vϕ)
2 + (∆vz)

2, (4.94)

where ∆vt is the turbulent-induced velocity, ∆vB is a collision velocity due to Brownian

motion, ∆vr, ∆vϕ, and ∆vz are relative velocities due to the drift motion. Considering

these collision velocities increases coagulation rate, and thus coagulation instability will

grow faster.

In the following, we estimate how much coagulation instability is accelerated. For a

collision of dust grains with masses of m1 and m2, the collision velocity induced by the

Brownian motion is

∆vB =

√
8kBT (m1 +m2)

πm1m2

. (4.95)

According to Brauer et al. (2008), the Brownian motion is effective only for small dust

grains that show insignificant drift. We can neglect the Brownian motion in the present

discussion because coagulation instability grows when dust grains drift. In the absence
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of frictional backreaction to gas, the radial, azimuthal, vertical relative velocities are

∆vr = − 2τs(2− τ 2s )

(4 + τ 2s )(1 + τ 2s )
ηRΩ, (4.96)

∆vϕ =
3τ 2s

(4 + τ 2s )(1 + τ 2s )
ηRΩ (4.97)

∆vz = − τs
(2 + τs)(1 + τs)

zΩ, (4.98)

where we assume dust grains whose size ratio is 0.5. Assuming ∆vt =
√
Cατscs, one finds

∆vr/∆vt ∝ ∆vz/∆vt ∝
√

τs/α and ∆vϕ/∆vt ∝ τs
√

τs/α for leading-order terms. Thus,

∆vr and ∆vz are larger than ∆vϕ for τs < 1, and we approximate the collision velocity

∆vpp using the following equation:

∆vpp ≃ ∆vt

√
1 + f

τs
α
, (4.99)

where f is defined as

f ≡ α

τs

((
∆vr
∆vt

)2

+

(
∆vz
∆vt

)2
)
,

=
4

C

(
2− τ 2s

(4 + τ 2s )(1 + τ 2s )

)2(
ηRΩ

cs

)2

+
1

C(2 + τs)2(1 + τs)2

( z

H

)2
(4.100)

Substituting Equation (4.99) into Equation (4.20) gives

∂τs
∂t

+ vx
∂τs
∂x

=

√
1 + f

τs
α

Σd

Σg,0

τs
3t0

. (4.101)

We thus expect that growth rates of coagulation instability becomes larger by a factor

of
√
1 + fτs,0/α. If the dust scale height is determined by turbulent stirring (z ≃ Hd ≃√

α/τsH), one obtains
√

1 + fτs,0/α ≃ 5 for τs,0 = 0.1, α = 10−4, C = 0.49, and

ηRΩ = 0.11cs that corresponds to a value at R = 20 au in the minimum-mass solar

nebula. In such a case, coagulation instability will grow five times faster than shown in

the previous sections.

4.5.3 Comparison with the drift timescale

Exponentially growing perturbations due to coagulation instability move inward at a

phase velocity ≃ vx,0 as shown in the above sections. Thus, coagulation instability
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Figure 4.8: Growth timescale in the unit of drift timescale tdri at the most unstable wavelength.

The vertical and horizontal axes show the unperturbed dust-to-gas surface density ratio ε =

Σd,0/Σg,0 and dimension less stopping time τs,0. The strength of turbulence is assumed to be

α = 10−4.

significantly affects the disk and dust evolution only if its growth timescale is shorter

than the drift timescale:

tdri =
R

|vx,0|
=

1 + τ 2s
2τs,0ηΩ

. (4.102)

One finds tdriΩ ≃ 631 for τs,0 = 0.1 and η = 0.008. Thus, perturbations reach a central

star within one hundred orbital periods. Figure 4.8 shows the growth timescale of coag-

ulation instability normalized by tdri at the most unstable wavelength. The vertical and

horizontal axes are dust-gas ratio ε = Σd,0/Σg,0 and dimensionless stopping time τs,0,

respectively. The growth timescale is basically shorter than the drift timescale in plotted

region. Including the relative drift speed in the collision speed, one will find shorter

growth timescales of the instability. Thus, we expect coagulation instability operates

and affects the disk and dust evolution.

4.5.4 Effects of fragmentation and erosion

In the above sections, we neglect collisional fragmentation of dust grains that takes place

when the collision speed is larger than a critical speed (e.g., Wada et al. 2013 2009).

Erosive collisions will reduce growth efficiency of peak-mass dust particles (Krijt et al.

2015). We discuss whether coagulation instability operates in the presence of collisional

fragmentation and erosion. In this thesis, we simply modify Equation (4.25) introducing
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a sticking efficiency ϵeff as in previous studies (e.g., Okuzumi & Hirose 2012, Okuzumi

et al. 2016, Ueda et al. 2019):

∂τs
∂t

+ vx
∂τs
∂x

= ϵeff
Σd

Σg,0

τs
3t0

. (4.103)

Replacing t0 with t0/ϵeff in Equation (4.29), we obtain one-fluid dispersion relation in

the presence of fragmentation:

nap,± ≡ −ikvx,0 + ϵeff
ε

6t0

(
1±

√
1− ϵ−1

eff

12t0
ε

1− τ 2s,0
1 + τ 2s,0

ikvx,0

)
. (4.104)

When fragmentation or erosion results in imperfect sticking (0 < ϵeff < 1), the growth rate

of coagulation instability decreases. At short wavelengths, the growth rate is proportional

to
√
ϵeff .

When catastrophic fragmentation (ϵeff < 0) occurs, we find that a mode with a

complex growth rate nap,− becomes unstable while coagulation instability becomes stable

(i.e., Re[nap,+] < 0). The growth rate Re[nap,−] at short wavelengths is

Re[nap,−] ≃ |ϵeff |
ε

6t0

√
|ϵeff |−1

6t0
ε

1− τ 2s,0
1 + τ 2s,0

k|vx,0|. (4.105)

At short wavelengths, the relative amplitude of δτs and δΣd is approximately given by

δτs/τs,0
δΣd/Σd,0

≃ − exp
(
i
π

4

)√ |ϵeff |ε
3t0k|vx,0|

1 + τ 2s,0
1− τ 2s,0

. (4.106)

Although Equation (4.106) shows negative correlation except for exp(iπ/4) in contrast to

coagulation instability, its physical mechanism is similar to coagulation instability. Dust

particles are subject to more significant fragmentation at high density regions (δΣd >),

leading to a radial variation of δτs and δvx. The resultant radial gradient of δvx leads to

traffic jam in the radial direction and promotes further fragmentation at dust-piling-up

regions. This positive feedback results in the “fragmentation-driven” instability.

4.5.5 Coevolution with other dust-gas instabilities

Because coagulation instability is triggered by dust coagulation, the instability is entirely

different from any other dust-gas instabilities previously studied, including secular GI

and TVGI discussed in Chapters 2 and 3. For example, one will find that Re[nap,+]

in Equation (4.29) goes to zero when taking the limit of t0 → ∞, meaning that dust

coagulation is the essential process for the instability.
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The previous studies on dust coagulation showed dust depletion if a disk is isolated

and there is no mass infall (e.g., Brauer et al. 2008; Okuzumi et al. 2012). In such

a dust-depleted region, the previously-studied dust-gas instabilities can not grow. On

the other hand, coagulation instability can grow even when dust-to-gas surface density

ratio is 10−3. Development of coagulation instability leads to dust concentration at small

scale ∼ k−1. In the presence of dust diffusion, we can expect such a dust concentration

at a spatial scale of ∼ H (see Equation (4.89)). Nonlinear development will results in

significant increase in dust surface density by an order of magnitude, which will be briefly

shown in the next chapter. If such a nonlinear development is achieved, coagulation

timescale becomes short and collisional growth toward planetesimals might be expected.

If coagulation instability increases dust sizes and dust-to-gas ratio from 10−3 to 0.02 or

even higher, secular GI will subsequently operates in the resultant dust-piling-up region.

Therefore, we expect that coagulation instability is a powerful mechanism to connect the

first bottom-up coagulation and planetesimal formation via secular GI.

It is also possible that streaming instability operates in dust-rich regions resultant

from coagulation instability. Because unstable wavelengths of streaming instability are

much shorter than the gas scale height, streaming instability will create azimuthally

elongated filaments in a dust-rich region. However, recent studies show that streaming

instability is substantially stabilized when there is a power-law dust size distributions

(Krapp et al. 2019; Zhu & Yang 2020; Paardekooper et al. 2020). Therefore, how coag-

ulation instability affects dust size distribution is an issue to address in the context of

the coevolution of coagulation instability and streaming instability. We will also explore

this issue in future studies.

4.6 Summary

Planetesimal formation via dust-gas instabilities has a problem in their growth conditions.

Secular GI requires larger dust-to-gas ratio (> 0.01) for large dust grains (τs,0 ≃ 0.1; see

Chapters 1 and 2). The other dust-gas instabilities (e.g., streaming instability) also

require such enrichment of large dust grains. On the other hand, the first coagulation

and the radial drift lead to depletion of such large dust grains in the absence of dust

supply from the infalling envelope. Thus, the previous dust-gas instabilities require some

dust retention mechanisms.

In this chapter, we present an instability driven by coagulation (“coagulation insta-

bility”) as a mechanism of dust retention. Coagulation instability operates as a result

of a positive feedback between coagulation and traffic jam: coagulation is accelerated
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at dust-rich regions and amplifies dust size perturbations while traffic jam due to the

size perturbations locally amplifies dust density perturbations. In the absence of dust

diffusion, coagulation instability grows faster at shorter wavelengths, which is because

a timescale of traffic jam is shorter at shorter wavelengths. For example, the growth

timescale of the instability is tens Keplerian periods for (τs,0, ε) = (10−1, 10−3), which is

20-30 times shorter than the coagulation timescale (ε/3t0)
−1 (see Figures 4.3 and 4.5).

In the presence of dust diffusion, short-wavelength perturbations are stabilized, and

thus the dispersion relation of coagulation instability shows the most unstable wavelength

at ∼ H (see Equation (4.89)). Coagulation instability still grows only within a few tens

of the Keplerian periods regardless of the stabilization due to dust diffusion. Therefore,

coagulation instability can be a promising mechanism for reaccumulating dust grains,

and bridge the gap between the first coagulation and planetesimal formation via the

dust-gas instabilities.
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Chapter 5

Summary and Future Prospects

5.1 Summary of this thesis

Planetesimal formation from dust grains in a protoplanetary disk is the first step in the

planet forming processes. However, the formation mechanism is still unrevealed and

controversial because of the difficulties due to the radial drift and fragmentation (e.g.,

Weidenschilling 1977; Weidenschilling & Cuzzi 1993; Brauer et al. 2008). Recent ALMA

observations have been sowhong some clues for revealing planetesimal formation. One

of the most highlighted results of the observations is the discovery of ubiquitous annular

substructures in dust distributions, i.e., rings and gaps. The existence of multiple dust

rings in disks are in contrast to the classical theories that showed fast depletion of mm-

sized dust because of the radial drift. Therefore, investigating the origin of multiple rings

and connections to planetesimal formation will provide the key to reveal planetesimal

formation and unify the disk evolution theory and planet formation theory.

In this thesis, we focus on disk evolution via secular GI, which is one possible mech-

anism of ring and planetesimal formation. Secular GI is one of the dust-gas instabilities

and originally proposed as a mechanism of planetesimal formation (e.g., Ward 2000;

Youdin 2005a, 2005b). Takahashi & Inutsuka (2014) and Takahashi & Inutsuka (2016)

showed that secular GI can create multiple dust rings with a width of ≃ H, which is

consistent of the observed rings. However, the previous studies have some issues:

1. their equations with dust diffusion violate angular momentum conservation,

2. the previous studies focused on the locally linear growth but nonlinear growth in

a radially extended disk is important to explore ring and planetesimal formation

3. secular GI requires high dust-to-gas ratio for mm- or cm-sized grains although the
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first bottom-up coagulation toward those sizes results in dust depletion.

This thesis addresses these issues.

In Chapter 2, we first reformulate equations describing dust diffusion while not vio-

lating the momentum conservation. Our formulation is based on the Reynold averaging,

which divides physical properties into mean-flow parts and fluctuating parts due to tur-

bulent motion. Averaging the usual hydrodynamic equations naturally reproduce the

diffusion equation (see also Cuzzi et al. 1993) and simultaneously introduces a new term:

momentum advection along diffusion flow. We found that including such an advection

term in momentum equations recovers the momentum conservation.

Based on the reformulated equations, we perform linear analyses of secular GI. In

contrast to the previous studies that showed overstability, our results show that secular GI

is an exponentially growing mode without oscillation. The overstability in the previous

studies was found to be due to the nonconservation of angular momentum. We also

found another unstable mode that we name two-component viscous GI (TVGI). TVGI

is triggered by a combination of friction and turbulent gas viscosity. Although the linear

analyses in Chapter 2 show that TVGI grows for wider parameter space than secular

GI, including dust drift stabilizes TVGI as shown in Chapter 3. Thus, TVGI can be

a powerful mechanism for forming planetesimals at a region where dust insignificantly

drifts.

In Chapter 3, we first develop numerical methods for long-term simulations of secular

GI. Secular GI has long growth timescales, ≃ 100 orbital periods, and thus one needs long-

term integrations. However, the dust drift throughout a gas disk potentially introduces

significant numerical diffusion due to advection, which numerically prevents the growth

of secular GI. Motivated by this issue, we develop the Lagrangian-cell method, which is

free from the numerical diffusion. We also utilizing the symplectic integrator and reduces

the accumulation of errors due to time integration. Test simulations with local radial

domain show that combining the method with the piecewise exact solution for dust-gas

friction enables simulations of linear/nonlinear secular GI.

We perform numerical simulations of secular GI in radially extended disks while as-

suming uniform profile of dimensionless stopping time for simplicity. We found that non-

linear growth of secular GI shows the gravitational collapse of dust rings whose timescale

is well represented in terms of the freefall time. As a result, the dust surface density

increases by an order of magnitude. On the other hand, the gas surface density insignif-

icantly changes, leading to high dust-to-gas ratio in thin dense rings. If the dust-to-gas

ratio increases enough, the dust drift is suppressed because of strong backreaction to the

gas. Thus, dust grains are saved in a disk once secular GI grows into the highly nonlinear
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regime. If the growth of secular GI is too small to create high-contrast rings and gaps,

those substructures enter the inner stable region and finally become transient. According

to those results, planetesimal formation via secular GI requires dust enrichment toward

around the gas density, i.e., dust-to-gas ratio ≃ 1.

Simple estimates of the coagulation timescale and the freefall timescale indicate that

accelerated coagulation and ring fragmentation will result in planetesimals within one

Keplerian period at the ring location. This implies that multiple rings resultant from

secular GI are dark at mm wavelengths and would be observed as a single wide gap

structure. Subsequent fragmentation of planetesimals will supply smaller dust grains that

determine a floor intensity at the wide gap. Because secular GI creates only insignificant

substructures in a gas disk, observations of gas profiles around the midplane will provide

hints to understand which ring-forming process actually operates in the observed disks.

In Chapter 4, we address the third issue: secular GI requires reaccumulation of mm-

and cm-sized dust grains. Although previous studies already proposed some dust reten-

tion mechanisms including dust-piling-up near the water snow line and the dead-zone

inner boundary, those operate at a specific location. However, traffic jam around the

snow line is not operational for less fragile silicate that recent experiments suggest (e.g.,

Kimura et al. 2015; Steinpilz et al. 2019). In addition, those mechanisms operate at

inner regions (r ≲ a few au) and do not explain the origin of outer planetesimals and

asteroids. We propose a new instability as another mechanism for reaccumulating dust

grains. The instability is triggered by a combination of dust coagulation and small scale

traffic jam, and thus we call it “coagulation instability”. In the absence of dust diffu-

sion, coagulation instability shows larger growth rate at shorter wavelengths, which is

because a timescale of traffic jam becomes shorter at shorter wavelengths. Even in the

presence of dust diffusion and in a dust-depleted region, coagulation instability grows at

a wavelength comparable to the gas scale height. Its growth timescale is about a few tens

of the Keplerian periods. Therefore, coagulation instability efficiently accumulates mm-

and cm-sized dust grains, connecting the first coagulation to the top-down planetesimal

formation via secular GI investigated in Chapters 2 and 3.

5.2 Future prospects

Simulations of coagulation instability

In this thesis, we only explore the linear growth of coagulation instability. Nonlinear

simulations of coagulation instability are necessary to investigate to what extent the
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Figure 5.1: Preliminary results of a numerical simulation of coagulation instability. The left

panel shows dust surface density evolution while the right panel shows evolution of dimensionless

stopping time. In both panel, black dotted line shows initial profile, and the red solid and gray

dashed lines show profiles at t = 5.6×104 yr obtained from simulations with and without initial

perturbations, respectively.

instability reaccumulates dust grains. In addition, its growth in a radially extended disk

is important to discuss the resultant disk morphology.

We have been doing simulations of coagulation instability using one-fluid code based

on the symplectic method presented in Chapter 3. Figure 5.1 shows a preliminary result.

We here assumed MMSN disk model with initial dust-to-gas ratio of 0.01 and initial dust

sizes of 10 µm. Turbulence strength is set to be α = 10−4 and dust diffusion is taken into

account in the simulations. We input sinusoidal perturbations with a wavelength of 2 au

for r ≥ 50 au. We also show the results of a simulation without initial perturbation (the

grey dashed lines). Inside-out coagulation lets inner dust grains drift inward, resulting

in dust depletion as seen in Figure 4.1. The initially perturbed simulation (the red lines)

shows spiky structures resultant from linear/nonlinear coagulation instability. The dust

surface density locally increases by a factor of 10. Note that we do not include self-

gravity in these simulations. Because the initial dust-to-gas surface density ratio is 0.01,

the dust-to-gas ratio in one dust-rich region at r ≃ 40 au is about 0.03. We just stopped

simulations once the time step becomes smaller than 10−2/(2π) yr, and thus further dust

enrichment can be expected. The right panel of Figure 5.1 indicates a slightly larger dust

size in dust-rich regions. Dust enrichment by an order of magnitude accelerates dust

coagulation and increases dust sizes, which is another property of nonlinear coagulation

instability. As time proceeds, the accelerated dust coagulation will increase dimensionless

stopping time above unity. In such a case, slightly outer dust grains of τs < 1 are going to

overtake the forward dust of τs > 1, and thus single-size approximation becomes invalid.
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For further discussions, we need to directly solve the Smoluchowski equation with a dust

size distribution (Equation (4.5)).

One can see that the separation of the adjacent dust-rich region (≃ 5 au) is larger than

the wavelength of initial perturbations (= 2 au). This is due to the global dust evolution.

Inner dust grains are larger and drift faster, and thus the phase speed is larger in the inner

region, leading to an increase in the separation. Numerical investigation of this separation

evolution will be important for observational implications on disk substructures.

Coagulation instability at the early disk-evolution stage

If turbulence is not so strong, coagulation instability always grows because a disk is

unconditionally unstable (see Chapter 4). On the other hand, as mentioned in Chapter

1, secular GI grows in relatively massive disks, for example, Q ≲ 6, although the required

disk mass depends on the other parameters. Thus, it is worthwhile to investigate whether

coagulation instability grows and sets up conditions preferable for secular GI at the early

disk-evolution stage where a disk is thought to be massive (see Figure 1.2).

Coagulation instability in young disks is also important in the context of substructure

formation. Some works reported that young disks with an age of ≲ 1 Myr already

host dust ring structures (e.g., ALMA Partnership et al. 2015; Sheehan & Eisner 2017;

Dipierro et al. 2018; Sheehan & Eisner 2018; Nakatani et al. 2020). These observations

may indicate that dust grains have grown up to millimeter sizes. Coagulation instability

will be operational for those dust grains and create some substructures as shown in Figure

5.1.

Because coagulation instability accelerates dust coagulation at the nonlinear growth

phase, the instability potentially creates the first-generation planetesimals directly. Such

an early planetesimal formation will support the hypothesis that planets already form in

Class II disks and carve gaps (e.g., Gonzalez et al. 2015; Kanagawa et al. 2015; Zhang

et al. 2018). Therefore, investigating coagulation instability at the very early stage is

important for both planet-based and secular-GI-based ring formation scenarios.

Secular GI with dust growth and multidimensional analyses

In Chapter 3, we showed that secular GI can create multiple thin dense rings, where

one can expect dust growth or planetesimal formation via ring fragmentation within one

Keplerian period. Thus, we expect that those multiple rings would be observed as a dark

gap. To obtain further observational implications, we have to implement dust growth in

simulations of secular GI. Collisional fragmentation is also necessary because it supplies
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small dust grains that we can observe at the ALMA bands. The equilibrium between

dust supply due to fragmentation and dust depletion due to planetesimal formation via

secular GI will determine the intensity at the wide gap. In future studies, we will explore

the coevolution of secular GI and dust growth and also perform synthetic observations

aiming at direct comparison with the observed intensity profiles.

Multidimensional analyses including simulations are also important to understand the

disk evolution via secular GI. Introducing the azimuthal direction, we can directly treat

ring fragmentation and quantify planetesimal formation rates. Numerical simulations

with radial and azimuthal directions will be necessary because planetesimal formation

occurs at the nonlinear stage. The inclusion of the vertical motion is also important. As

mentioned in Chapters 2 and 3, secular GI will be operational around the midplane. It

is however unclear to what vertical extent we have to consider dust and gas because gas

at the upper layer will interact with midplane dust through gravity. Multidimensional

linear analyses will reveal the vertical extent. These are the scope of our future studies.
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Appendix A

Drift-Limited Stopping Time

This chapter is based on a published paper, Tominaga, Takahashi, & Inutsuka 2020, The

Astrophysical Journal, Volume 900, pp. 182-198 (Tominaga et al. 2020).

We estimate the drift-limited stopping time based on our disk model. The drift-

limited stopping time in different disk models was derived in (Birnstiel et al. 2012) and

Okuzumi et al. (2012). Following those studies, we compare two timescales: dust growth

timescale tgrow within which dust size becomes twice larger, and drift timescale tdrift

within which dust drifts and falls onto the central star.

The dust growth timescale for spherical grains is given by

tgrow = 3m

(
dm

dt

)−1

=
3m

ρdσ∆v
, (A.1)

where m is mass of a single dust grain. The cross section and the relative velocity of

dust grains are denoted by σ and ∆v, respectively. For compact spherical dust grains

with the radius of a and the internal density of ρint, Equation (A.1) yields

tgrow =
ρinta

ρd∆v
. (A.2)

Assuming turbulence-driven collisions with ∆v =
√
3tstopΩαcs (Ormel & Cuzzi 2007),

the Epstein drag regime, and vertically Gaussian profiles for dust and gas disks gives the

following dust growth timescale at the midplane (z = 0):

tgrowΩ ≃ 2

√
2

3π

Σg,tot

Σd,tot

. (A.3)

Note that the growth timescale depends not on Σd/Σg but on Σd,tot/Σg,tot.

The drift timescale tdriftΩ is given by

tdriftΩ =
rΩ

|vr,drift|
. (A.4)
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The denominator vr,drift is the steady drift velocity given by Equation (1.14) (Naka-

gawa et al. 1986). Assuming that the radial profile of Σg,tot has the same power law

index q as Σg (see Equation (3.63)), Equation (1.11) at the midplane (ρg(r, z = 0) =

Σg,tot(r)/
√
2πH(r)) becomes

η =
H2

2r2

(
7

4
+ q +

r

100au

)
≃ 2× 10−3

(
9

4
+

r

100 au

)( r

100au

) 1
2
, (A.5)

where we use q = 1/2. We approximate the radial drift velocity with vdrift ≃ −2ηrΩtstopΩ

and obtain

tdriftΩ ≃ 1

2ηtstopΩ
. (A.6)

According to Okuzumi et al. (2012), dust grains will grow in size without significant

radial drift when they satisfy tgrow ≲ tdrift/10
1. Thus, using Equations (A.3), (A.5) and

(A.6), we obtain the drift-limited stopping time

tstopΩ ≃ 0.13

(
Σd,tot/Σg,tot

0.01

)(
η

4× 10−3

)−1

. (A.7)

Our assumption tstopΩ = 0.6 for Σd,tot/Σg,tot = 0.05 is almost consistent with the above

value in 30 au ≤ r ≤ 100 au.

1In Okuzumi et al. (2012), tgrow denotes the mass doubling timescale, and thus the coefficient of tdrift

is different by a factor of three.
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