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Abstract

We propose an electroweakly interacting spin-1 dark matter (DM) model. The elec-
troweak gauge symmetry, SU(2)L×U(1)Y , is extended into SU(2)0×SU(2)1×SU(2)2×U(1)Y .
A discrete symmetry exchanging SU(2)0 and SU(2)2 is imposed. This discrete symme-
try stabilizes the DM candidate. The spin-1 DM particle (V 0) and its SU(2)L partners
(V ±) interact with the Standard Model (SM) electroweak gauge bosons without any
suppression factors. Consequently, pairs of DM particles efficiently annihilate into the
SM particles in the early universe, and the measured value of the DM energy density is
easily realized by the thermal freeze-out mechanism. The model also predicts a heavy
vector triplet (W ′± and Z ′) in the visible sector. They contribute to the DM annihi-
lation processes. The mass ratio of Z ′ and V 0 determines values of various couplings,
and constraints on W ′ and Z ′ restrict regions of the parameter space that are viable for
DM physics. We investigate the constraints from perturbative unitarity of scalar and
gauge couplings, the Higgs signal strength, W ′ search at the LHC, DM direct detection
experiments, and indirect detection experiments. We found that our DM can explain the
right amount of the DM relic abundance for 3 TeV ≲ mV 0 ≲ 27.5 TeV.
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Chapter 1

Introduction

Dark matter (DM) is a necessary entity in explaining the results of the various astrophys-
ical observations. We know that DM accounts for about 27% of the total energy in the
universe today [1]. However, its true nature is still unknown. Since the Standard Model
(SM) of elementary particle physics does not have a candidate for DM, it is necessary to
extend the model if we assume that DM is an elementary particle. The Weakly Interact-
ing Massive Particle (WIMP) model has been intensively studied because it can easily
explain the amount of DM in the present universe through the thermal freeze-out mech-
anism [2]. However, the WIMP models are very strongly constrained by direct detection
experiments. The latest upper bound on the DM-nucleon scattering cross section is given
by the XENON1T experiment [3]. In particular, models in which DM particles are an-
nihilated by the Higgs-mediated or Z boson-mediated interaction can be easily explored
in the direct detection experiments and many parameter regions are already restricted.

The electroweakly interacting massive particle (EWIMP) model can evade the con-
straints by the direct detection experiments since the correct amount of the DM energy
density can be explained by the electroweak interaction rather than by the DM-Higgs
coupling or the DM-Z coupling. The pure Wino DM, SU(2)L triplet fermion in the su-
persymmetric models is one of the famous EWIMP models [4]. Many EWIMP models
for the spin-0 and spin-1/2 DM have been proposed.

In this thesis, we propose a renormalizable model of spin-1 EWIMP that does not
require Z and Higgs couplings to a DM particle to obtain the correct amount of the DM
density by the freeze-out mechanism.1 We extend the electroweak gauge symmetry in the
SM, SU(2)L×U(1)Y , into SU(2)0×SU(2)1×SU(2)2×U(1)Y and impose that the model is
symmetric under exchanging of SU(2)0 and SU(2)2. This symmetry predicts a stable
SU(2)L triplet vector boson, V 0 and V ±. After the symmetry breaking, the charged
vector boson, V ±, gets slightly heavier than the neutral one, V 0, and thus V 0 is a DM
candidate in our model. The vector DM in our model can directly couple to the SM weak
gauge bosons and efficiently annihilate in the early universe even without the DM-Higgs
coupling. The V 0-V 0-Z coupling is automatically forbidden by the gauge symmetry.
Therefore, the model easily evades the constraint from the XENON1T experiment and
has a large region of viable parameter space.

1Non-renormalizable models for the electroweakly interacting spin-1 DM are discussed in [5, 6].
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There are many spin-1 DM models, but they are originated from a U(1) gauge sym-
metry [7–17] or an SU(2) gauge symmetry that is isolated from the SM electroweak
sector [18–27]. Therefore, they rely on the scalar exchanges that require the mixing be-
tween the SM Higgs and new scalar particles to obtain the measured value of the DM
energy density. The scalar mixing, however, is constrained from the direct detection ex-
periments. On the other hand, our model does not require the scalar mixing for the DM
energy density. This is a different feature of our model from the other spin-1 DM models.
Another aspect of our model is that new spin-1 particles are predicted in the visible sector
as well as the dark sector. Those new spin-1 particles in the visible sector are regarded
as W ′ and Z ′. They play an important role in the DM annihilation processes. Moreover,
the fermion sector of our model is as simple as in the SM. We do not need to introduce
new fermions into the model to obtain the realistic mass spectra for the SM fermions.2

We organize the rest of this thesis as follows. First of all, we review the Standard
Model of particle physics and dark matter in Chapters. 2 and 3, respectively. In Chap-
ter. 4, we describe our model. Some technical details are discussed in Appendices. In
Chapter. 5, we discuss constraints on the model from perturbative unitarity, the mass
ratio of Z ′ and V 0, W ′ and Z ′ searches at the LHC, electroweak precision measurements,
and the Higgs coupling measurements at the LHC. After constraining the model parame-
ters, we discuss the phenomenology of DM in Chapter. 6. We start by discussing the mass
difference between V ± and V 0. As discussed later, V ± is one of the targets for long-lived
particle searches at the LHC. After that, we discuss the thermal relic abundance in this
model. We also address the constraint from the direct detection experiment. We show
that the viable mass range of V 0 as a thermal relic is 3 TeV ≲ mV 0 ≲ 27.5 TeV. Finally,
we consider the limit from the indirect detection of the γ-ray from the Galactic center
of the Milky Way galaxy. This bound looks very stringent, however not believable today
because of the uncertainties of the dark matter density profiles. Even so, a large mass
region in our model can be searched by the indirect detection experiments. Chapter 7 is
devoted to our conclusions.

2Non-abelian vector DM with an extended fermion sector are discussed in [28–31].
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Chapter 2

The Standard Model of particle
physics

The Standard Model (SM) of particle physics includes all discovered elementary particles
until today and can explain almost all of the results of various experiments. In this
chapter, we briefly review the SM and the reasons why many particle physicists consider
the extension of this very successful model.

2.1 SM gauge symmetry and particle contents

The gauge symmetry of the SM is SU(3)C×SU(2)L×U(1)Y . SU(3)c describes the strong
interaction. SU(2)L×U(1)Y is the electroweak symmetry and spontaneously broken to
U(1)EM. The gauge bosons of the symmetries are GA

µ ,W
a
µ , Bµ, respectively. The other

particles of the SM, fermions and the Higgs boson, and their charges under the gauge
symmetry are summarized in Table 1 There are three generations of fermions in the SM.

field spin SU(3)c SU(2)L U(1)Y

qiL
1
2

3 2 1
6

uiR
1
2

3 1 2
3

diR
1
2

3 1 -1
3

ℓiL
1
2

1 2 -1
2

eiR
1
2

1 1 -1

H 0 1 2 1
2

Table 1: The matter and Higgs fields and their gauge charges in the SM. i(=1,2,3) is the
indices of the generations.

6



The left-handed fermions are doublets under SU(2)L,

q1L =

(
uL
dL

)
, q2L =

(
cL
sL

)
, q3L =

(
tL
bL

)
, (2.1)

ℓ1L =

(
νe
eL

)
, ℓ2L =

(
νµ
µL

)
, ℓ3L =

(
ντ
τL

)
. (2.2)

However the right-handed fermions are singlets under SU(2)L.

u1R = uR, u2R = cR, u3R = tR, (2.3)

d1R = dR, d2R = sR, d3R = bR, (2.4)

e1R = eR, e2R = µR, e3R = τR. (2.5)

The right-handed neutrinos are not included in the SM. The Higgs boson is a doublet
under SU(2)L. The component fields are shown in the next subsection.

The Lagrangian of the SM can be divided into four parts as follows.

L = Lgauge + Lfermion + LHiggs + LYukawa. (2.6)

The gauge part of the SM Lagrangian, Lgauge contains kinetic terms of SU(3)C , SU(2)L
and U(1)Y gauge bosons. They are given by

Lgauge = −
8∑

A=1

1

4
GA
µνG

Aµν −
3∑

a=1

1

4
W a
µνW

aµν − 1

4
BµνB

µν . (2.7)

where GA
µν ,W

a
µν and Bµν are the field strengths of SU(3)C , SU(2)L and U(1)Y gauge

bosons, respectively,

GA
µν =∂µG

A
ν − ∂νG

A
µ + gsf

ABCGB
µG

C
ν , (2.8)

W a
µν =∂µW

a
ν − ∂νW

a
µ + gϵabcW b

µW
c
ν , (2.9)

Bµν =∂µBν − ∂νBµ. (2.10)

fABC and ϵabc are the structure constants of SU(3)C and SU(2)L, respectively.
The fermion part, Lfermion, is given by

Lfermion =
∑
ψ

ψ̄i /Dψ. (2.11)

Here the covariant derivative for the particle which has a hyper-charge Y is

Dµ = ∂µ − igsT
A
s G

A
µ − igT aW a

µ − igY Y Bµ, (2.12)

where TAs and T a are SU(3)c and SU(2)L generators.
The fermion (Dirac) mass terms are prohibited by the gauge symmetries because

the left-handed and right-handed particles are charged under the different symmetries.
However, after the symmetry breaking, the mass terms come from the Yukawa part,

LYukawa = −yiju q̄iLH̃u
j
R − yijd q̄

i
LHd

j
R − yije ℓ̄

i
LHe

j
R + (h.c.). (2.13)
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Here yiju , y
ij
d and yije are 3×3 complex matrices, called ”Yukawa matirix” and H̃ is defined

as

H̃ = ϵH∗, ϵ =

(
0 1
−1 0

)
. (2.14)

In the SM, there are no right-handed neutrinos so that we can not write Yukawa inter-
action terms for them.

The Higgs part, LHiggs, contains the kinetic term of the Higgs boson and the potential,

LHiggs = (DµH)†DµH − V, (2.15)

where the Higgs potential, V , is given by

V = m2H†H + λ(H†H)2. (2.16)

The 3-point interaction is prohibited because the Higgs boson is a doublet under SU(2)L.
The structure of this potential causes symmetry breaking as we will show the details next
subsection.

2.1.1 Electroweak symmetry breaking

The electroweak symmetry, SU(2)L×U(1)Y , is spontaneously broken by the vacuum ex-
pectation value (VEV), v of the Higgs field, H.

⟨H⟩ =
(

0
v√
2

)
. (2.17)

This VEV is related to the Higgs potential parameters with the following stationary
condition.

m2 = −λv2. (2.18)

Although both SU(2)L and U(1)Y are broken because of this VEV, the mixed U(1)
symmetry, U(1)EM, remains. The unbroken generator, Q ≡ T 3 + Y , corresponds to the
electric charge of the particle. The Higgs field has four degrees of freedom. Since there
is only one unbroken generator, three of them are eaten by gauge bosons, so these are
would-be Nambu-Goldstone (NG) bosons, π0 and π±. The component fields of the Higgs
are given as

H =

(
iπ+

v+h−iπ0
√
2

)
. (2.19)

In the unitarity gauge, the NG bosons disappear in the Lagrangian. Hence the Higgs
potential is rewritten as

V = −1

4
λv4 +

1

2
(2λv2)h2 + λvh3 +

1

4
λh4. (2.20)
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Then, the mass of the physical Higgs particle, h, is given by

m2
h = 2λv2. (2.21)

There is a three-point interaction in this potential since the SU(2)L symmetry is broken.
After the symmetry breaking, the gauge bosons also have mass terms coming from

the kinetic term of the Higgs field. Substituting the VEV of H to the covariant derivative
of H, we get

Dµ⟨H⟩ = − iv

2
√
2

(
g(W 1

µ − iW 2
µ)

−gW 3
µ + g′Bµ

)
. (2.22)

Then,

(Dµ⟨H⟩)†Dµ⟨H⟩ = 1

8
v2g2(W 1

µ − iW 2
µ)(W

1µ + iW 2µ) +
1

8
v2(−gW 3

µ + g′Bµ)
2. (2.23)

The eigenstate and the mass of charged gauge boson, W±, is given by

W± =
W 1
µ ∓W 2

µ√
2

, (2.24)

mW =
1

2
gv. (2.25)

The mass terms of neutral gauge bosons are given by

−1

2
(W 3

µ , Bµ)M
(
W 3µ

Bµ

)
, (2.26)

where the mass matrix, M, is

M =
1

4

(
g2v2 −gg′v2

−gg′v2 g′2v2

)
. (2.27)

The diagonalization matrix is defined as(
Zµ
Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
, (2.28)

where the mixing angle, θW , is called ”weak mixing angle” or ”Weinberg angle”. This
mixing angle is related to the gauge couplings by the following relations.

cos θW =
g√

g2 + g′2
, (2.29)

sin θW =
g′√

g2 + g′2
. (2.30)

The masses of these eigenstates are given by

mZ =
1

2

√
g2 + g′2v, (2.31)

mA = 0. (2.32)
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Particle Mass

h 125.10 ± 0.14 GeV
W 80.379 ± 0.012 GeV
Z 91.1876 ± 0.0021 GeV

Table 2: The mass spectrum of gauge bosons and Higgs boson [32].

The massless gauge boson is photon and the massive neutral gauge boson is Z-boson. The
experimental values of gauge boson masses and Higgs boson mass are shown in Table 2

Using the mass eigenstates of the gauge bosons, the covariant derivative for SU(2)L×U(1)Y
can be rewritten as

Dµ = ∂µ − i
g√
2
(W+

µ T
+ +W−

µ T
−)− i

g

cos θW
Zµ(T

3 − sin2 θWQ)− ieAµQ, (2.33)

where T± ≡ T 1 ± iT 2 and Q = T 3 + Y is the electric charge of particles. The coupling,
e, is the electron charge and defined as

e ≡ gg′√
g2 + g′2

. (2.34)

Then, we can rewrite fermion part as

Lfermion =
∑
ψ

ψ̄i/∂ψ +
g√
2
(W+

µ J
µ+
W +W−

µ J
µ−
W ) +

g

cos θW
ZµJ

µ
Z + eAµJ

µ
EM, (2.35)

where

Jµ+W = ν̄Lγ
µeL + ūLγ

µdL, (2.36)

Jµ−W = ēLγ
µνL + d̄Lγ

µuL, (2.37)

JµZ = ν̄Lγ
µ(
1

2
)νL + ēLγ

µ(−1

2
+ sin2 θW )eL + ēRγ

µ(sin2 θW )eR

+ ūLγ
µ(+

1

2
− 2

3
sin2 θW )uL + ūRγ

µ(−2

3
sin2 θW )uR

+ d̄Lγ
µ(−1

2
+

1

3
sin2 θW )dL + d̄Rγ

µ(+
1

3
sin2 θW )dR, (2.38)

JµEM = ēLγ
µ(−1)eL + ūLγ

µ(+
2

3
)uL + d̄Lγ

µ(−1

3
)dL

+ēRγ
µ(−1)eR + ūRγ

µ(+
2

3
)uR + d̄Rγ

µ(−1

3
)dR. (2.39)

The charged currents, Jµ±W , mix the different flavors of fermions, so called ”flavor chang-
ing” current. The other currents are neutral and flavor conserved.
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2.1.2 fermion masses and CKM matrix

After the symmetry breaking, fermions also obtain masses from the Yukawa terms. For
example, mass terms of the up-type quarks are given by

−yiju q̄iL⟨H̃⟩ujR + (h.c.) = − v√
2
yiju ū

i
Lu

j
R + (h.c.)

= −ūiLMij
u u

j
R + (h.c.), (2.40)

where yiju is a complex 3 × 3 matrix and we define a mass matrix, Mij
u ≡ yiju v/

√
2. We

can get mass terms for down-type quarks and charged leptons in the same way.

−
∑

f=u,d,e

f̄ iLM
ij
f f

j
R + (h.c.). (2.41)

To diagonalize these mass matrices, we use two unitary matrices, U f
L and U f

R. Then, the
mass eigenstates of fermions are given by

(fmassL )i = (U f
L

†
)ijf jL, (2.42)

(fmassR )i = (U f
R

†
)ijf jR. (2.43)

Using these matrices, we get

−
∑
f

f̄ iLM
ij
f f

j
R + (h.c.) = −(f̄massL )l(U f

L

†
)liMij

f (U
f
R)

jk(fmassR )k + (h.c.)

= −(U f
L

†MfU
f
R)

lk(f̄massL )l(fmassR )k + (h.c.), (2.44)

where

U f
L

†MfU
f
R =

v√
2
U f
L

†
yfU

f
R

=


diag(mu,mc,mt) f = u,
diag(md,ms,mb) f = d,
diag(me,mµ,mτ ) f = e.

(2.45)

The neutrinos do not have mass terms because the right-handed neutrinos are not in-
cluded in the SM. This is one of the problems in the SM as we will discuss in the next
section.

The fermion mass values obtained from the experiments are summarized in Table 3.
The heaviest fermion in the SM is the top quark, mt ≃ 172 GeV and the lightest fermion
is the electron (except for neutrinos), me ≃ 0.5 MeV. Hence the Yukawa interaction
varies in scale by six orders of magnitude from the top quark to the electron. If we try
to introduce neutrino masses, things get more serious as we will show later.

Since the neutral currents via Z-boson and photon are proportional to ψ̄L,Rγ
µψL,R as

in Eqs. (2.38) and (2.39), thus the diagonalization matrices, U f
L,R are canceled. However

11



Particle Mass

u 2.16+0.49
−0.26 MeV

c 1.27 ± 0.02 GeV
t (Pole) 172.4 ± 0.7 GeV

d 4.67+0.48
−0.17 MeV

s 93+11
−5 MeV

b 4.18+0.03
−0.02 GeV

e 0.5109989461 ± 0.0000000031 MeV
µ 105.6583745 ± 0.0000024 MeV
τ 1776.86 ± 0.12 MeV

Table 3: The SM fermion mass spectrum [32]

the charged currents, Eqs. (2.36) and (2.37), are proportional to ūLγ
µdL, then the product

of diagonalization matrices is remained.

ūiLγ
µdiL = (ūmassL )kγµ(Uu

L
†)ki(Ud

L)
il(dmassL )l. (2.46)

We define the Cabbibo-Kobayashi-Maskawa matrix [33,34],

VCKM ≡ Uu
L
†Ud

L =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (2.47)

This 3×3 unitary matrix has nine free parameters. Three of them are mixing angles and
the others are phases. Utilizing the phase rotation of six quark fields, we can eliminate
five phases. So the remained free parameters are three angles and one phase. The
experimental results [32] for the magnitudes of the CKM elements are

|(VCKM)ij| =

0.97401± 0.00011 0.22650± 0.00048 0.00361+0.00011
−0.00009

0.22636± 0.00048 0.97320± 0.00011 0.04053+0.00083
−0.00061

0.00854+0.00023
−0.00016 0.03978+0.00082

−0.00060 0.999172+0.000024
−0.000035

 . (2.48)

This matrix shows the off-diagonal elements are much smaller than the diagonal elements.
Thus the flavor changing process via W± is suppressed in the SM.

2.2 Beyond the SM

2.2.1 The problems in the SM

• Strong CP problem
We can write the CP violating gauge invariant term as follows.

∆Lθ =
θg2s
64π2

ϵµνρσGA
µνG

A
ρσ, (2.49)
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where θ is the coupling of this term. It is reasonable to assume that θ ∼ O(1). This
term has a contribution to the neutron electric dipole moment. The experiment
gives the very small upper bound on the coupling, θ < 10−11 [35]. Why it takes
such a tiny value is known as ”The Strong CP Problem”.

• No mass terms of the neutrino species
Neutrino oscillations imply that neutrinos are massive. However, there are no neu-
trino mass terms in the SM. This is a Standard Model problem that has to be
solved. Although their absolute masses are not known today, the values of the two
mass-square differences are known [36].

∆m2
21 ≃ 7.6× 10−5eV2, (2.50)

|∆m2
31| ≃ 2.5× 10−3eV2. (2.51)

where ∆m2
ij = m2

i − m2
j and indices show the generations. These limitations are

derived from observations of solar and atmospheric neutrinos. These results mean
that two of three generations are massive at least. However, there are still two
possibilities for the order of mass. (Normal ordering : m3 > m2 > m1 or Inverted
ordering : m2 > m1 > m3)
From the cosmological observations, we obtain the upper bound on the sum of their
masses [1], ∑

mν < 0.11eV. (2.52)

So the masses of neutrinos are about 0.01 eV. The simplest solution is to introduce
the right-handed neutrinos to the SM. Then we can write the Yukawa terms for
neutrinos and obtain masses from the VEV of the Higgs boson. However, the
required magnitudes of Yukawa couplings for neutrino masses are about 10−13.
These are too small compared to the Yukawa interaction of the top quark, yt ∼ 1.
This is a further problem for the mass of neutrinos.

• No dark matter candidate
There is a lot of evidence that dark matter exists, but there are no candidate
particles in the SM. It remains possible that dark matter is not an elementary
particle, but it can be successfully explained by extending the SM. We will focus
on this topic in Chapter. 3.

As described above, there are many points that should be improved in the SM, and many
extended models have been proposed to date.

13



Chapter 3

Dark Matter

In this thesis, we extend the SM to explain the existence of dark matter. This chapter is
devoted to this topic.

3.1 Indirect evidence of dark matter

There are some of indirect evidence of the existence of dark matter.

• Galaxy rotation curve
The rotation velocity of stars in a spiral galaxy can be directly observed and also
predicted by using the observed distribution of the visible matters. The rotation
velocity of the star at r, the distance from the center of the galaxy, is given by

v(r) =

√
GNM(r)

r
, (3.1)

where GN(= 6.67430× 10−11 m3 kg−1 s−2 [32]) is the Newtonian constant of gravi-
tation. M(r) is defined as

M(r) ≡
∫ r

0

4πr′2ρ(r′)dr′, (3.2)

where ρ(r′) is the visible matter density. Here ρ is assumed to be spherically
symmetric. For the large r region, the density, ρ, can be neglected and M(r) ≃
Mtotal(Constant). Then we get

v(r) ≃
√
GNMtotal

r
∝ 1√

r
. (3.3)

If nothing exists outside of the visible matter, we can see that the rotation speed
decreases by 1/

√
r in the region far from the center.

For example, Fig.1 shows the rotation curve of the Triangulum Galaxy (M33) [37].
The observed values (points) are different from the estimated values (dashed line)
from the visible disk. The rotation velocity is nearly constant for the region where
visible matter contributions are small. This suggests an invisible presence, dark
matter. To date, numerous galaxy rotation curves have been observed [38–41].
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Figure 1: The rotation curve (points) of the Triangulum Galaxy. The horizontal axis
shows the distance from the center of the galaxy. The long dashed line and short dashed
line represent the contributions from the gas and stellar disk. The dashed-dotted line
shows the dark matter contribution. Figure taken from [37]

• Large structure of the universe
The formation of large-scale structure in the universe has been analyzed using N-
body simulations. It is known that simulations using the ΛCDM model, which
assumes collisionless and non-relativistic dark matter, can reproduce the observed
large-scale structure of the universe well [42–44]. In addition to suggesting the
existence of dark matter, it is also clear that dark matter should be non-relativistic
during the time of structure formation.

• Cosmic microwave background (CMB)
The CMB is electromagnetic radiation that was emitted after the end of recombi-
nation in the history of the universe. It contains a lot of important information
since it is the oldest electromagnetic radiation that can be observed today. The
CMB has the same spectrum as that of black body radiation with a temperature of
about 2.7 K, and is approximately isotropic, but contains small anisotropies, which
can be precisely measured and analyzed to determine cosmological parameters.

From the observation of the CMB, we can get to know the components of energy in
the universe. The Planck collaboration give the pricise values [1]. Baryonic matter
accounts for about 5% and the dark matter accounts for about 27% of the total
energy of the universe. Thus the dark matter contribution is not negligible.

• Bullet cluster
The object discovered by the X-ray telescope, 1E0657-558, is a system after the
collision of two clusters and is called the Bullet cluster [45]. When the two clusters
pass each other, the gas, which is interstellar material, collides and slows down, so
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it still remains in the central part of the system. On the other hand, gravitational
lensing shows that most of the mass passes by almost without collision, and is
completely separated from the gas distribution. Since most of the baryonic mass is
gas, if there were no dark matter, it would not be separated in this way, and this is
taken as evidence for the existence of dark matter.

All of the above pieces of evidence were found in observations involving gravitational
interaction. Except for these, we currently have very little information about dark matter.
Some properties which we know today are the followings.

• electrically neutral
Strictly speaking, tiny charged dark matter is allowed. The upper bound on the
electrical charge of dark matter which has mass, mDM, is 10

−14 mDM/(GeV·e) [46].

• Non-relativistic (cold dark matter)
Non-relativistic dark matter is desirable in terms of the large structure formation
of the universe.

• stable (long-lived)
At least, the dark matter is long-lived as long as the universe age.

• the energy density of dark matter, relic abundance
From the current results of Planck Collaboration [1], dark matter makes up about
27% of the total energy in the universe.

• No direct evidence in the observations and experiments so far
This means that DM models must be hidden from these observations and exper-
iments. For example, the dark matter direct detection, which we will review in
Sec.3.4, strongly constrains the model parameters. These constraints make the
model building very difficult today.

We focus on the elementary particle for the candidate of the dark matter in the following
sections. However, we do not know the spin, the mass, and the interaction with the SM
particles so that various models are possible.

DM candidate in SM?

A dark matter candidate should satisfy the above properties. Then, is there a dark matter
candidate in the SM? Neutrinos are only dark matter candidates in the SM because they
are stable, massive, electrically neutral, and have the weak interaction. However, there
are two main reasons why neutrinos are not dark matter.

• Structure formation
Neutrinos are relativistic in the early universe so that not favored.

• They can not explain the whole relic abundance.
We know that the amount of neutrinos remaining in the current universe is less than
10% of the required amount of dark matter since the masses of them are considered
to be extremely light.
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Figure 2: The annihilation process of WIMPs from left to right.

Therefore we consider the extension of the SM to explain the existence of dark matter.

3.2 WIMP -thermal freeze-out mechanism-

To reproduce the observed relic abundance the thermal freeze-out mechanism has been
favored for a long time. Models that use this mechanism are called WIMP (Weakly
interacting massive particle) models. Our model is also based on this idea. We briefly
review WIMP models here.

Discrete symmetries such as Z2 symmetry are often used to stabilize dark matter
in many dark matter models, not just the WIMP models. The dark matter particle is
assigned −1 charge, so it is called an odd particle under this symmetry. On the other
hand, SM particles are assigned +1 charge, so they are called even particles. This discrete
symmetry prohibits interactions that contain an odd number of dark matter particles.
Then, it is impossible for a dark matter particle to decay only to the SM particles. Hence
the dark matter in these models is stable.

In WIMP models we assume that the dark matter has the mass and a weakly inter-
action to the SM particles. Then dark matter and SM particles are in the same thermal
bath in the early universe. As the universe expanding and the temperature decreasing,
dark matter becomes non-relativistic. Then the dark matter particles are pair annihilated
to the SM particles. The energy density of dark matter is exponentially decreasing. In
sooner or later, the dark matter particles will not be able to be pair annihilated so that
the energy density per comoving volume is fixed. This mechanism is called the ther-
mal freeze-out mechanism. The value of the pair annihilation cross section determines
the energy density of dark matter in this mechanism. We will show the details of this
mechanism using the Boltzmann equation in Sec.3.3.

WIMPs have an annihilation cross section of a reasonable size, which means that
another view of the same process can be searched in various observations. Fig.2 schemat-
ically shows the annihilation process of WIMPs from left to right. This process can be
searched by the indirect detection experiments. If you look at this figure from top to bot-
tom, this diagram shows the WIMP-SM particles scattering process that can be observed
by the direct detection experiments. If you look at this from right to left, this shows the
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WIMPs production process that can occur in the particle colliders like LHC. There are
various experiments and observations which explore dark matter. However, there is no
signal, unfortunately. We will show the results of each experiment in Sec.3.4 and 3.5.

3.3 Relic density

To calculate the energy density of dark matter we must deal with non-equilibrium ther-
modynamics. The Boltzmann equation which describes the change in the particle number
density of the particle of interest, the dark matter is given by

dn

dt
= −3Hn− ⟨σeffv⟩(n2 − n2

eq). (3.4)

where n is the number density of dark matter, t is the time, H is the Hubble parameter.
neq is the equilibrium number density of the dark matter. ⟨σeffv⟩ is the thermal average
of the effective annihilation cross section. The first term on the right-hand side represents
the contribution of density dilution due to the expansion of the universe and the second
term shows the contribution of the dark matter annihilation.

If there are some odd particles in the model, we must include their contributions.
The thermal average of the effective annihilation cross section,⟨σeffv⟩ is defined by

⟨σeffv⟩ ≡
∑
i,j

⟨σijvij⟩ni,eqnj,eq
n2
eq

, (3.5)

where ⟨σijvij⟩ is the thermally averaged annihilation cross section which include all odd
particles processes. Odd particles finally decay into the dark matter particle so that their
number density should be considered in the calculation of relic abundance of dark mat-
ter. These processes are called ”co-annihilation” [47]. Since the dark matter candidate
should be lighter than the other odd particles in a model, these odd particles are non-
relativistic. Thus if their masses are much heavier than the dark matter, their number
density is exponentially small, so the co-annihilation process that includes these particles
is negligible. Therefore the mass difference between the dark matter particle and their
partner is essential for the co-annihilation.

Since the contribution of density dilution due to the expansion of the universe is not
an intrinsic part of what we want to know, such as the decrease in the number of particles
depending on the annihilation process, we will rewrite it as an amount per unit volume
by dividing it by the entropy, s,

Y ≡ n

s
. (3.6)

The entropy of the universe is given by

s =
2π2

45
g∗sT

3, (3.7)
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where T is the temperature of the universe and

g∗s =
∑

i=bosons

gi

(
Ti
T

)3

+
∑

j=fermions

gj

(
Tj
T

)3

. (3.8)

Ti is the temperature of the particle i and gi is the number of degrees of freedom of
the particle i. Also we introduce the dimensionless parameter, x ≡ m/T . Then we can
rewrite the Boltzmann equation(3.4) as follows.

dY

dx
= −s⟨σeffv⟩

xH(x)
(Y 2 − Y 2

eq). (3.9)

This equation can not be solved analytically. So we calculate numerically and obtain the
current value, Y0. Then, the energy density of the dark matter is given by

ρDM = mDMnDM = mDMs0Y0, (3.10)

where mDM is the mass of the dark matter and s0 is the current value of the entropy.
Dividing this value by the critical density, ρcrit = 3H2

0/8πG, we get the dimensionless
value,

ΩDM ≡ ρDM

ρcrit
. (3.11)

The observed value of H0 = 67.66 ± 0.42 km/s/Mpc is given by [1]. Before the Planck
measurements, this value contained the large uncertainty. So we consider H0 = h ×
100 km/s/Mpc and use Ωh2 as the value of the relic abundance. The current experi-
mental value of the dark matter relic abundance is given by the Planck collaboration [1].

Ωh2 = 0.120± 0.001. (3.12)

To understand the behavior of the thermal freeze-out mechanism, we assume that the
freeze-out suddenly happens for simplicity. Then we can define the freeze-out tempera-
ture, Tf , as follows.

nf⟨σeffv⟩Tf = H(Tf ), (3.13)

where nf and ⟨σeffv⟩Tf is the number density and the effective annihilation cross section
at the freeze-out.

Under this assumption, we find the relation between the current energy density and
the energy density at the freeze-out temperature.

n0 ≃
s0
sf
nf , (3.14)

where s0 and sf are the entropy at the present temperature and the freeze-out tempera-
ture, respectively. The energy density at the freeze-out temperature is equal to the energy
density in the thermal equilibrium. Then we get

nf ≃ g
m3

DM

(2π)3/2
x
−3/2
f e−xf . (3.15)
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Figure 3: The required values of the thermally averaged cross section to obtain the
observed relic abundance. Figure taken from [48].

where g is the number of degrees of freedom for dark matter. Therefore we obtain

Ωh2 =
mDMn0

ρcrit
h2

≃ g

(2π)3/2
g∗s(T0)

g∗s(Tf )

T 3
0mDM

ρcrit/h2
x
3/2
f e−xf . (3.16)

Here we consider WIMP, so the dark matter has a weakly interaction. Then ⟨σv⟩ is
about 10−26 cm3/s. Substituting this value to Eqs.(3.13) and (3.16), we get xf ∼ 25 and
the relic abundance, Ωh2 ∼ 0.1. Therefore if the dark matter has the weak interaction,
the relic abundance of dark matter can be easily explained. The precise values of the
required annihilation cross section for the WIMP mass are numerically calculated in [48]
and shown by Fig.3. For 10 GeV≲ mDM ≲ 100 TeV , ⟨σv⟩ ∼ 2 × 10−26 cm3/s can
reproduce the observed value of relic abundance in WIMP models.

In this derivation, there are many parameters which have much different mass scale
each other. However, it is really interesting that eventually, we need a cross section of
about the weak interaction to obtain the observed relic abundance. So sometimes it is
called ”the WIMP miracle”. Even though numerous WIMP models have been studied
over the years, no dark matter signal has yet been discovered. From the next section, we
explain what observations and experiments have been carried out in the exploration of
dark matter.
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3.4 Direct Detection

The Earth is in the Milky Way Galaxy which is considered to be a dark matter rich object.
So dark matter particles can be scattered with matters around us. Today the XENON
collaboration [3] gives the strongest constraint on the scattering cross section. Other
plans are underway to observe this scattering, including the LZ (LUX ZEPLIN) [49], the
PandaX-4T [50], and the DarkSide-20k [51].

The direct detection experiments observe the reaction rate of the interaction between
the nucleus at the laboratory and the dark matter around the Earth.

R =
σρDM(r⊙)vDMFξ

mDMMA

. (3.17)

The left-hand side is the reaction rate, R, that is observable. MA is the mass of the
nucleus and Fξ is the form factor of the nucleus. These parameters are determined by the
target nucleus. ρDM is the mass density of the dark matter around the Earth and vDM is
the velocity of the dark matter. The numerical values used by the XENON collaboration
are

ρDM(r⊙) ∼ 0.3 GeV/cm3, (3.18)

vDM ∼ 220 km/s, (3.19)

where r⊙ ∼ 8.5 kpc is the distance from the Sun to the Galactic center. Estimated
values for ρDM(r⊙) are summarized in [52]. The results are highly variable. The dark
matter velocity distribution around us is determined by using data from the Apache Point
Observatory Galactic Evolution Experiment (APOGEE) in [53],

vDM ∼ 218± 6 km/s. (3.20)

This value is consistent with the Milky Way-like galaxy simulations [54]. The unknown
parameters are the nucleus-DM cross section, σ,and the dark matter mass, mDM. These
parameters depend on the dark matter model.

In the vector dark matter model, the nucleus-DM cross section is given by [55]

σ =
1

π

(
MA

MA +mDM

)2 [
|npfp + nnfn|2 +

8

3

J + 1

J
|ap⟨Sp⟩+ an⟨Sn⟩|2

]
. (3.21)

np and nn are the number of protons and neutrons in the target nucleus, respectively. J
is the total spin of the nucleus and ⟨SN⟩ (N = p, n) are the expectation values of the
total spin of protons and neutrons in the nucleus. fN is the spin-independent effective
coupling and aN is the spin-dependent effective coupling. These effective couplings for
our model will be calculated in Sec.6.2.

The spin-independent dark matter-nucleus cross section is proportional to the number
of protons or neutrons, so enhanced by the atomic number. The constraint on the spin-
independent cross section is stronger than the spin-dependent one. Fig.4 shows the
current results of the XENON1T experiment. For TeV scale dark matter, the upper
bound of the dark matter nucleon cross section is σ ∼ 10−45[cm2]. Many of the WIMP
models are constrained by this bound.
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Figure 4: Current bounds on the spin-independent WIMP-nucleon cross section. Figure
taken from [3].

3.5 Indirect Detection

The indirect detection experiments search for the γ-ray, cosmic ray, and neutrinos from
dark matter rich regions. Here we focus on the γ-ray search. For example, the Galactic
center of the Milky Way galaxy is one of the attractive objects. The H.E.S.S. (High
Energy Stereoscopic System) Collaboration uses the Imaging Atmospheric Cherenkov
Telescopes at the Earth and the LAT (Large Area Telescope) Collaboration uses the
Fermi Gamma-ray Space Telescope. The former constrains on the relatively heavy dark
matter, while the latter constrains on the lighter dark matter, as we will show later.

Dark matter is considered to be electrically neutral, so the dark matter pair anni-
hilation into two photons that can be searched by the indirect detection experiments is
prohibited at the tree-level. However, it is known that such a process can be enhanced by
the ”Sommerfeld effect” when the dark matter particle has the electroweak interaction,
such as pure Wino dark matter in the Supersymmetric Standard Model. Therefore these
results can be a stringent limit on such dark matter models.

The differential γ-ray flux per unit energy produced by the annihilation of dark mat-
ters in a solid angle ∆Ω is given by

dΦ

dEγ
=

⟨σv⟩
8πm2

DM

dNγ

dEγ
× J(∆Ω), (3.22)

where ⟨σv⟩ is the velocity-averaged annihilation cross section. mDM is the dark matter
mass. Nγ is the number of photons per annihilation and dNγ/dEγ = 2δ(Eγ −mDM) for

22



Profiles Einasto NFW

ρs(GeVcm−3) 0.079 0.307
rs(kpc) 20.0 21.0
αs 0.17 /

Table 4: profile parameters used in [61]

the annihilation into 2 photons. J is called ”J-factor” and given by

J(∆Ω) =

∫
∆Ω

dΩ

∫
ds ρ2DM, (3.23)

where ρDM is the density of the dark matter and s is the distance from the Earth to the
annihilation point. The integration is done for the region of interest (ROI). The J-factor
is determined by the dark matter density profile for an observed object. For instance, the
J-factor for an object of uniform density ρ with radius r, located d (d ≫ r) away from
the Earth, is expressed as

J ≃ 4πr3ρ2

3d2
. (3.24)

Thus the most promising objects for indirect detection are those with high dark matter
density (J ∝ ρ2), large volumes (J ∝ V ), and close to the Earth (J ∝ d−2). A good
example is the center of the Milky Way Galaxy. We will focus on this in the following.

Although the Galactic center is a fascinating object, there is a very large indeterminacy
in the dark matter density profile. The profile can only be estimated from N-body
simulations. For example, the Navarro, Frenk, and White (NFW) profile [56] and the
Einasto profile [57] are respectively given by

ρNFW(r) = ρs

(
r

rs

(
1 +

r

rs

)2
)−1

, (3.25)

ρEinasto(r) = ρs exp

[
− 2

αs

((
r

rs

)αs

− 1

)]
, (3.26)

where r is the distance from the Galactic center and the numerical values often used
for the other parameters are shown in Table 4. Fig. 5 shows the density distributions
using these parameters. ρs, αs and rs are numerically determined to satisfy the measured
values like the local dark matter density around us, ρDM(r⊙) ∼ 0.39 GeV/cm3. This
value, ρDM(r⊙) is different from the value used by the XENON collaboration, however a
more accurate one obtained by using a Bayesian analysis [58]. For the NFW profile,

ρDM(r⊙) = 0.389± 0.025 GeV cm−3, (3.27)

and for the Einasto profile,

ρDM(r⊙) = 0.385± 0.027 GeV cm−3. (3.28)
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Figure 5: The density profile around the Galactic center as a function of the radius from
the center.

The distance from the Sun to the Galactic center, r⊙, also include ambiguities. In this
analysis, r⊙ = 8.33 ± 0.35 kpc in [59] is used, although the recent study [60] find r⊙ =
8.127± 0.031 kpc.

Fig.6 shows the current constraints on the velocity averaged dark matter annihilation
cross section to 2 photons from the H.E.S.S. [61] and fermi-LAT [62]. They observed the
γ-ray flux from the Galactic center of the Milky Way Galaxy. For TeV scale dark matter,
they give the upper limit on the annihilation cross section, ⟨σv⟩γγ ≲ 10−27 cm3/s. As you
can see, these constraints depend on the dark matter density profiles. In this analysis,
they consider only the cuspy profile for the dark matter density at the center that is
consistent with the N-body simulations [63]. However, some observations show that the
dark matter density near the center is constant [64–68]. They claimed that if the dark
matter distribution at the center is the kpc-sized cored profile, the H.E.S.S. bounds can
be altered by 2-3 orders of magnitude. It must be noted that the use of this bound
involves great indeterminacy.

3.6 Status of WIMP models

Since the amount of the WIMP relic abundance is determined by the size of the
annihilation cross section, the interaction with the SM particles is important. Therefore,
WIMP models are often classified according to their interaction with the SM particles.
The Higgs boson mediated models are called Higgs portal models, and various types
of models have been proposed because they are relatively easy to construct. However,
these models are strongly restricted in the parameter range from the direct detection
experiments. Let us first examine these situations using the simplest model, the singlet
scalar dark matter model [69–71].

3.6.1 Singlet real scalar dark matter

This model is very simple. The dark matter particle, S, is spin-0 and a singlet under the
SM gauge symmetry. The Z2 symmetry is imposed to stabilize the dark matter, so this
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Figure 6: Current bounds on the velocity averaged dark matter annihilation cross section
to 2 photons. The red (blue) points show the bounds for the Einasto (NFW) profile
from the H.E.S.S. collaboration [61]. The white triangles show the bounds from the
Fermi-LAT [62]. The figure is taken from [61]

model is invariant under S → −S. Then, the Lagrangian is given by

L = LSM +
1

2
∂µS∂

µS − VS, (3.29)

where

VS =
1

2
m2
S0S

2 + λHSS
2H†H + λSS

4. (3.30)

After the electroweak symmetry breaking, the SM Higgs, H, has the VEV, v. Then, the
potential in the unitarity gauge is rewritten as

VS =
1

2
m2
SS

2 + λHSvS
2h+

1

2
λHSh

2S2 + λSS
4, (3.31)

where the mass of S is given by

m2
S = m2

S0 + λHSv
2. (3.32)

Through the interaction of the second term, the dark matter annihilates into the SM
particles. So λHS is relevant to the value of relic abundance. A larger λHS results in a
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Figure 7: The blue line shows the spin-independent dark matter nucleon cross section as
a function of the mass of the dark matter, mS. λHS is determined to obtain Ωh2 = 0.12.
The red shaded regions are excluded by the XENON1T experiment [3]. The red dotted
line show the prospect of the XENONnT experiment [72].

larger annihilation cross section and therefore a smaller amount of the relic abundance,
while a smaller λHS results in a larger amount of the relic abundance. We can choose the
value of λHS to reproduce the observed dark matter energy density.

The h-S-S coupling also contributes to the spin-independent dark matter-nucleon
cross section that is searched by the direct detection experiments. Fig.7 shows the spin-
independent dark matter-nucleon cross section. λHS is determined to obtain the observed
relic abundance. Except for the resonance region (mS ∼ mh/2), mS < 900 GeV region
is already excluded. The heavy mass region is allowed, however, will be searched up to
10 TeV by the XENONnT experiment [72].

Higgs portal models and Z portal models for spin-0,1/2,1 dark matter are studied
in [73, 74] and most parameter region is excluded for both cases by the direct detection
experiments. To avoid this bound, there are ways to add particles to the model. Some
of these models are summarized in [74]. Since the relic density decreases via processes
mediated by added particles, the correct amount of the relic density can be explained
even if the contribution of the processes constrained by the direct detection experiments
is small.

3.6.2 EWIMP model

From the results of the previous sub-section, we found that it is difficult for the Higgs
portal (and Z portal) models to avoid the direct detection bounds. These models rely on
the Higgs mediated processes to reproduce the relic density, however, the same diagrams
contribute to the spin-independent dark matter-nucleon cross section. Therefore the
challenge is how to build a model that is not already limited by the direct detection
experiments.
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One solution is the electroweakly interacting massive particle (EWIMP). EWIMP
is a multiplet under the SU(2)L symmetry and depends on the electroweak interaction
to reproduce the observed value of the relic abundance. The EWIMP model can be
considered for the combination of the representation of SU(2)L, the magnitude of the
Hypercharge, Y , and the spin of dark matter. The famous one is the pure Wino dark
matter in the supersymmetric model. Wino is a SU(2)L triplet fermion, so does not have
direct interaction with the Higgs doublets. Hence the Wino-nucleon scattering is induced
by the loop diagrams. The spin-independent cross section is calculated up to the next-
to-leading order in αs(= g2s/4π) in [75], σSI ≃ 2.3× 10−47 cm2. Thus this model can not
be excluded easily by the direct detection experiments.

EWIMP is a multiplet under the SU(2)L symmetry, and hence there are partner
particles. Their masses are nearly degenerate with the mass of dark matter so that the co
annihilation processes are important for the relic density. Moreover, if their masses are
much heavier than the electroweak gauge bosons, W± and Z, the EWIMP annihilation
is enhanced by the Sommerfeld effect. Although it is difficult to explore EWIMP models
by the direct detection experiments, this model can be probed by the indirect detection
experiments due to the enhanced annihilation processes into photons. The prediction of
the relic abundance can be altered by this effect. For the pure Wino, this effect reduces
the relic abundance by about 50% [4] and mDM ∼ 3 TeV is required for the observed
energy density. The Sommerfeld effect can be the main feature of this type of model.

Many EWIMP models have been proposed. EWIMP models for spin-0 and spin-1/2
are summarized in [76]. In [77], various bounds are considered for the cases of Y ̸= 0
fermion EWIMP and most parameter region is already constrained for Y = 3/2. Some
non-renormalizable spin-1 EWIMP models have been proposed [5, 6, 78], however, there
is not much discussion about the case of a spin-1. So we focus on the renormalizable
model of the vector EWIMP model. In the next chapter, we explain our model that has
the electroweakly interacting vector dark matter candidate.
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Chapter 4

Model

The gauge symmetry is SU(3)c×SU(2)0×SU(2)1×SU(2)2×U(1)Y in our Model. Here,
SU(3)c is for the QCD as in the same as the SM. The matter and Higgs fields are sum-
marized in Table 5.1 In this section, we focus on the extended electroweak gauge sector,
namely SU(2)0×SU(2)1×SU(2)2×U(1)Y . We denote the gauge fields of them as W a

0µ,
W a

1µ, W
a
2µ, and Bµ, respectively, where a = 1, 2, 3. Their gauge couplings are g0, g1, g2,

and g′, respectively. The gauge transformation of two Higgs fields, Φ1 and Φ2 , are given
by

Φ1 → U0Φ1U
†
1 , (4.1)

Φ2 → U2Φ2U
†
1 , (4.2)

where Uj’s are two-by-two unitary matrices of the SU(2)j gauge transformation. To
reduce the number of degrees of freedom, we impose

Φj = −ϵΦ∗
jϵ, where ϵ =

(
0 1
−1 0

)
. (4.3)

Before imposing this constraint, Φ1 and Φ2 contain four complex degrees of freedom (eight
real degrees of freedom), respectively. After imposing this constraint, each field has four
real degrees of freedom as shown later in Eq. (4.14). This constraint has nothing to do
with the dark matter stability.

We impose the following discrete symmetry.

qL → qL, uR → uR, dR → dR, (4.4)

ℓL → ℓL, eR → eR, (4.5)

H → H, Φ1 → Φ2, Φ2 → Φ1, (4.6)

W a
0µ → W a

2µ, W a
1µ → W a

1µ, W a
2µ → W a

0µ. (4.7)

This discrete symmetry is equivalent to the exchange of SU(2)0 and SU(2)2. It requires
g0 = g2. The symmetry works as a Z2 symmetry that is utilized in many dark matter

1A model with a similar gauge group is studied in [79] but with different matter contents and with
different gauge charge assignments.
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field spin SU(3)c SU(2)0 SU(2)1 SU(2)2 U(1)Y

qL
1
2

3 1 2 1 1
6

uR
1
2

3 1 1 1 2
3

dR
1
2

3 1 1 1 -1
3

ℓL
1
2

1 1 2 1 -1
2

eR
1
2

1 1 1 1 -1

H 0 1 1 2 1 1
2

Φ1 0 1 2 2 1 0
Φ2 0 1 1 2 2 0

Table 5: The matter and Higgs fields and their gauge charges in the model. The genera-
tion indices for the matter fields are implicit.

models. Linear combinations (W a
0µ −W a

2µ)/
√
2 are odd under the symmetry. They are

mass eigenstates as we will see below, and one of them is a DM candidate. On the other
hand, the other linear combinations of the gauge fields are even under the symmetry.
Similarly, linear combinations of Φ1 and Φ2 divide scalar fields into the odd and even
sectors. All the SM particles are even under the discrete symmetry.

The discrete symmetry under exchanging SU(2)0 and SU(2)2 is inspired by the de-
construction [80, 81] of models in extra dimension on S1/Z2. Using the deconstruction
approach, such models are expressed by moose diagrams [82]. The Z2 symmetry is realized
by identifying two sites. Some models with the gauge symmetry G =SU(2)0×SU(2)1 ×
· · ·×SU(2)2N with identifying SU(2)j and SU(2)2N−j are equivalent to the models in ex-
tra dimension on S1/Z2 upto 2N Kaluza-Klein (KK) modes. The SU(2) sector in our
model corresponds to the case for N = 1. The similar approach was taken in studying a
U(1) vector dark matter model [10].

Under this setup, we can write the Yukawa interaction terms as

−yuq̄LH̃uR − ydq̄LHdR − yeℓ̄LHeR + (h.c.), (4.8)

where H̃ = ϵH∗. The gauge symmetry forbids Φ1 and Φ2 to couple to the fermions, and
only H is the relevant Higgs field for the Yukawa interaction terms. This Yukawa sector
is as simple as one in the SM, and we do not need to extend the fermion sector. This
is a reason why we add two extra SU(2) gauge symmetries into the SM. If we added
only one extra SU(2), there would be two possibilities. One possibility is that the extra
SU(2) is isolated and does not mix with the SU(2)L gauge field. In this case, the dark
SU(2) gauge bosons do not couple to the SM weak gauge bosons, and the model is the
Higgs portal type. This is not our concern. The other possibility is to mix the extra
SU(2) gauge field with the SU(2) gauge field in the SM. It is expected by the mixing
that the dark SU(2) gauge bosons couple to the SM weak gauge bosons. In this case,
however, we need an exchanging symmetry under these two SU(2) gauge field to stabilize
the dark matter. Since the SM left-handed fermions feel SU(2)L gauge symmetry, the
symmetry exchanging the two SU(2) fields requires two types of the fermions; one is the

29



doublet fields under an SU(2), the others are doublet under the other SU(2). Some linear
combinations of them are the SM left-handed fermions, and the other linear combinations
are extra fermions. Therefore, if we add only one extra SU(2), then the symmetry to
stabilize the dark matter requires to double the fermion fields compared to the SM. On
the other hand, by considering two extra SU(2) gauge symmetries, we can realize the
simple Yukawa interaction terms without extending the fermion sector as in Eq. (4.8).
This is a distinctive feature of this model from other SU(2) dark matter models.

4.1 Bosonic sector

We briefly describe the electroweak sector and the related scalar sector. More details are
discussed in Appendices. The Lagrangian for those two sectors is given by

L ⊃− 1

4
BµνB

µν −
2∑
j=0

3∑
a=1

1

4
W a
jµνW

aµν
j

+DµH
†DµH +

1

2
trDµΦ

†
1D

µΦ1 +
1

2
trDµΦ

†
2D

µΦ2

− Vscalar, (4.9)

where the covariant derivatives of Φj are given by

DµΦ1 = ∂µΦ1 − ig0W
a
0µT

aΦ1 + ig1Φ1W
a
1µT

a, (4.10)

DµΦ2 = ∂µΦ2 − ig0W
a
2µT

aΦ2 + ig1Φ2W
a
1µT

a, (4.11)

and the potential is given by

Vscalar =m
2H†H +m2

Φtr
(
Φ†

1Φ1

)
+m2

Φtr
(
Φ†

2Φ2

)
+ λ(H†H)2 + λΦ

(
tr
(
Φ†

1Φ1

))2
+ λΦ

(
tr
(
Φ†

2Φ2

))2
+ λhΦH

†Htr
(
Φ†

1Φ1

)
+ λhΦH

†Htr
(
Φ†

2Φ2

)
+ λ12tr

(
Φ†

1Φ1

)
tr
(
Φ†

2Φ2

)
. (4.12)

Some coupling constants in the Higgs potential are common because of the discrete sym-
metry. We assume that the Higgs fields obtain the following vacuum expectation values
at the global minimum.

⟨H⟩ =
(

0
v√
2

)
, ⟨Φ1⟩ = ⟨Φ2⟩ =

1√
2

(
vΦ 0
0 vΦ

)
. (4.13)

Three SU(2) symmetries are broken to one mixed SU(2) symmetry because of the VEV of
Φj. This mixing makes our dark matter have the electroweak interaction. The remained
SU(2) and U(1)Y symmetries are broken to U(1)EM because of the VEV of H. This is
similar to the electroweak symmetry breaking in the SM. The component fields of these
Higgs fields at this vacuum are given by

H =

(
iπ+

3
v+σ3−iπ0

3√
2

)
, Φj =

vΦ+σj+iπ
0
j√

2
iπ+
j

iπ−
j

vΦ+σj−iπ0
j√

2

 . (4.14)
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From the stationary condition, we find

m2 =− λv2 − 2λhΦv
2
Φ, (4.15)

m2
Φ =− λhΦ

2
v2 − (λ12 + 2λΦ)v

2
Φ. (4.16)

4.2 Gauge sector

After the electroweak symmetry breaking, the gauge boson mass terms come from the
kinetic terms of Higgs bosons and are given by

(
W+

0µ W+
1µ W+

2µ

)
M2

C

W−µ
0

W−µ
1

W−µ
2

+
1

2

(
W 3

0µ W 3
1µ W 3

2µ Bµ

)
M2

N


W 3µ

0

W 3µ
1

W 3µ
2

Bµ

 , (4.17)

where

M2
C =

1

4

 g20v
2
Φ −g0g1v2Φ 0

−g0g1v2Φ g21(v
2 + 2v2Φ) −g1g0v2Φ

0 −g1g0v2Φ g20v
2
Φ

 , (4.18)

M2
N =

1

4


g20v

2
Φ −g0g1v2Φ 0 0

−g0g1v2Φ g21(v
2 + 2v2Φ) −g1g0v2Φ −g1g′v2

0 −g1g0v2Φ g20v
2
Φ 0

0 −g1g′v2 0 g′2v2

 . (4.19)

After diagonalizing these mass matrices, we find the following mass eigenstates,

γ,W±, Z, V 0, V ±, W ′±, Z ′, (4.20)

where γ, W±, and Z are identified as the SM electroweak gauge bosons. V 0 and V ± are
odd under the discrete symmetry and are given by

V 0 =
W 3

0µ −W 3
2µ√

2
, (4.21)

V ± =
W±

0µ −W±
2µ√

2
. (4.22)

The details, such as linear combinations for other gauge fields, are discussed in Ap-
pendix A.1.

The masses of dark matter V 0 and its charged partner V ± are given by

m2
V ± = m2

V 0 =
g20v

2
Φ

4
≡ m2

V , (4.23)

at the tree level. At the loop level, the mass difference is generated, and mV ± becomes
slightly heavier than mV 0 as we discuss in Sec. 6.1. Therefore, V 0 is a dark matter
candidate in our model.
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The other gauge boson masses are complicated as shown in Appendix.A.1. To un-
derstand the mass spectrum of these particles, we consider the limit of vΦ ≫ v which
is required to obtain the observed relic abundance as we will discuss in Sec.6.3. In this
limit, we get neutral gauge boson masses,

m2
Z ≃1

4
(g2W + g′2)v2, (4.24)

m2
Z′ ≃

1

4
(g20 + 2g21)v

2
Φ, (4.25)

and charged gauge boson masses,

m2
W ≃1

4
g2Wv

2, (4.26)

m2
W ′ ≃

1

4
(g20 + 2g21)v

2
Φ, (4.27)

where we introduce gW as

gW ≡
(

2

g20
+

1

g21

)−1/2

=

√
g20g

2
1

g20 + 2g21
. (4.28)

We find gW ≃ 0.65 for vΦ ≫ v numerically, namely gW is approximately the SU(2)L
gauge coupling in the SM. So we can obtain right masses for W± and Z bosons in this
limit. The heavy gauge bosons, W ′ and Z ′ have nearly same masses, mZ′ ≃ mW ′ , since
they are components of the triplet under the mixed SU(2) symmetry. We also obtain the
relations between V and Z ′ as

m2
Z′

m2
V

≃1 +
2g21
g20
. (4.29)

so that mZ′ > mV . Since Z
′ has a contribution from the SU(2)1 symmetry unlike V , Z ′

is heavier than V .

4.3 Physical scalars

There are 12 scalars in the model, and 9 of them are would-be NG bosons. The three
remaining neutral scalars are physical, and their mass terms are given by

L ⊃1

2

(
σ3 σ1 σ2

) 2λv2 2vvΦλhΦ 2vvΦλhΦ
2vvΦλhΦ 8v2ΦλΦ 4v2Φλ12
2vvΦλhΦ 4v2Φλ12 8v2ΦλΦ

σ3σ1
σ2

 . (4.30)

After diagonalizing this mass matrix, we obtain the mass eigenstates, h, h′, and hD,
where hD is odd under the discrete symmetry.σ3σ1

σ2

 =

 cosϕh − sinϕh 0
1√
2
sinϕh

1√
2
cosϕh

1√
2

1√
2
sinϕh

1√
2
cosϕh − 1√

2

 h
h′

hD

 . (4.31)
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The masses of higgs,h, h′, hD are given by

m2
hD

= 4(2λΦ − λ12)v
2
Φ, (4.32)

m2
h = λv2 + 2(λ12 + 2λΦ)v

2
Φ −

√
λ2v4 − 4(−2λ2hΦ + λ(λ12 + 2λΦ))v2v2Φ + 4(λ12 + 2λΦ)2v2Φ,

(4.33)

m2
h′ = λv2 + 2(λ12 + 2λΦ)v

2
Φ +

√
λ2v4 − 4(−2λ2hΦ + λ(λ12 + 2λΦ))v2v2Φ + 4(λ12 + 2λΦ)2v2Φ.

(4.34)

Using the fact, λ12 + 2λΦ > 0, for vΦ ≫ v

m2
h = 2

(
λ− λhΦ

λ12 + 2λΦ

)
v2 +O

(
v2

v2Φ

)
, (4.35)

m2
h′ = 4(2λΦ + λ12)v

2
Φ +

2λ2hΦ
λ12 + 2λΦ

v2 +O
(
v2

v2Φ

)
. (4.36)

For the gauge sector, we obtain the condition, mZ′ > mV . However we can’t decide
theoretically which mass is greater hD or h′. 2 If we choose the mass eigenvalues and the
mixing angle (mh,mh′ ,mhD , ϕh) as input parameters, then the quartic couplings in the
Higgs potential are given by

λ =
m2
h cos

2 ϕh +m2
h′ sin

2 ϕh
2v2

, (4.37)

λhΦ =− sinϕh cosϕh

2
√
2vvΦ

(m2
h′ −m2

h), (4.38)

λΦ =
m2
h sin

2 ϕh +m2
h′ cos

2 ϕh +m2
hD

16v2Φ
, (4.39)

λ12 =
m2
h sin

2 ϕh +m2
h′ cos

2 ϕh −m2
hD

8v2Φ
. (4.40)

The quartic coupling of H, λ tends to be large value because this is not supplessed by
vΦ unlike the others. For mh′ ≫ mh and ϕh ∼ O(0.1), the perturbative unitarity is not
satisfied as we will show below.

4.4 Model parameters

The Lagrangian in the electroweak sector contains the following parameters.(
g0, g1, g

′, m2, m2
Φ, λ, λΦ, λhΦ, λ12

)
. (4.41)

Instead of them, we can use the following parameters as inputs,

(e, mZ , v, mh, mZ′ , mV , mh′ , mhD , ϕh) , (4.42)

2In a rough discussion, the higgs sector has more free parameters than the gauge sector so that the
conditions of masses are loosened.
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where e is the QED coupling constant,

e =

(
1

g2W
+

1

g′2

)−1/2

=
g2Wg

′2

g2W + g′2
, (4.43)

and v is related to the Fermi constant as

v =
(√

2GF

)−1/2

. (4.44)

The first four parameters are already measured, and thus we have five free parameters in
this model. The relation between the gauge couplings and the masses of the gauge bosons
is discussed in Appendix A.1. The derivation of Eq. (4.44) is discussed in Appendix A.3.

Using gW , mZ′ , and mV , we can obtain g0 and g1 in the vΦ ≫ v limit as

g0 ≃
√
2gW

mZ′

mV

1√
m2

Z′
m2

V
− 1

, (4.45)

g1 ≃gW
mZ′

mV

. (4.46)

If the mass difference between mV and mZ′ is very small, g0 become very large. Con-
versely, if the mass difference is very large, g1 become large value. We will consider the
perturbative unitarity conditions on these gauge couplings in the next section.

The gauge boson couplings to the fermions are given by

gWuLdL = gWℓLνL(≡ gWfLfL) ≃gW , (4.47)

gW ′uLdL = gW ′ℓLνL(≡ gW ′fLfL) ≃− gW

√
m2
Z′

m2
V

− 1, (4.48)

gZqLqL = gZℓLℓL = gZνLνL ≃ e

sZcZ

(
t3 − s2ZQ

)
, (4.49)

gZ′qLqL = gZ′νLℓL = gZ′νLνL ≃− t3gW

√
m2
Z′

m2
V

− 1, (4.50)

gZqRqR = gZℓRℓR = gZνRνR ≃− esZ
cZ

Q, (4.51)

gZ′qRqR = gZ′ℓRℓR = gZ′νRνR =O
(
v2

v2Φ

)
, (4.52)

where t3 =
1

2

(
−1

2

)
for up-type (down-type) fermions, Q is the QED charge of the

fermions, cZ =
√

1− s2Z , and sZ is given as a solution of

s2Zc
2
Z =

v2e2

4m2
Z

. (4.53)

We can see that the W ′ and Z ′ couplings to the SM fermions are controlled by the mass
ratio of Z ′ and V . If mZ′ and mV are degenerated, then those couplings are suppressed
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while g0 becomes very large. Therefore, we expect that the values ofW ′ and Z ′ couplings
to the SM fermions are comparable to those of the W couplings in the region where
perturbation works. We discuss this point further in Sec. 5.2.

Using gW and the masses of the gauge bosons, we find that the triple gauge couplings
are given by

gWWZ ≃ gW ′W ′Z ≃ gV −V +Z ≃gW
mW

mZ

≃ gSMWWZ , (4.54)

gWWZ′ ≃gW
m2
W

m2
Z′

√
m2
Z′

m2
V

− 1, (4.55)

gWW ′Z ≃gW
mWmZ

m2
W ′

√
m2
Z′

m2
V

− 1, (4.56)

gW ′W ′Z′ ≃gW
1√

m2
Z′

m2
V
− 1

(
2− m2

Z′

m2
V

)
, (4.57)

gWW ′Z′ = gW+V −V 0 = gW−V +V 0 ≃gW , (4.58)

gV −W ′+V 0 = gW ′−V +V 0 ≃ gV −V +Z′ ≃gW
1√

m2
Z′

m2
V
− 1

. (4.59)

We emphasize that V 0 and V ± couple to W and Z without any suppression factors, see
Eqs. (4.54) and (4.58). Therefore, DM pairs can annihilate into the SM gauge bosons
through these couplings, gV −V +Z and gW±V ∓V 0 . This is a distinctive feature of our vector
DM model.

Couplings of physical scalar bosons to the gauge bosons are

gWWh ≃
2m2

W

v
cosϕh ≃ gSMWWh cosϕh, (4.60)

gWW ′h ≃
2m2

W

v

(
− cosϕh

√
m2
Z′

m2
V

− 1 +
mW

mV

mZ′

mV

sinϕh

)
, (4.61)

gZZh ≃
2m2

Z

v
cosϕh ≃ gSMZZh cosϕh, (4.62)

gZZ′h ≃
2mWmZ

v

(
− cosϕh

√
m2
Z′

m2
V

− 1 +
mW

mV

mZ′

mV

sinϕh

)
, (4.63)

gV 0V 0h ≃ gV +V −h ≃
gWmZ′√
m2

Z′
m2

V
− 1

sinϕh, (4.64)

gV 0V 0h′ ≃ gV +V −h′ ≃
gWmZ′√
m2

Z′
m2

V
− 1

cosϕh. (4.65)

Note that gWWh is the same as the SM prediction for cosϕh = 1. This gWWh coupling
is already measured by the ATLAS and CMS experiments, and the measured value is
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consistent with the SM value. Accordingly, we take small ϕh in the following analysis.
For a small ϕh limit, the V 0 coupling to h is suppressed. However, as we mentioned
already, the annihilation processes of DM pairs into the SM particles do not need to rely
on the DM-Higgs coupling. Therefore, we can obtain the right amount of DM energy
density even if we take small |ϕh|.
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Chapter 5

Constraints

5.1 Perturbative unitarity

We obtain the constraints on g0, g1, and scalar quartic couplings from the perturbative
unitarity conditions for two-particle scattering processes in the high energy regime.

First, we consider two-to-two scalar bosons scattering processes in the high energy
limit and derive the constraints on the scalar quartic couplings. In our derivation, we
assume that these quartic couplings are much larger than the other couplings, such as
gauge couplings. This model contains 12 scalars and there are 76 two scalar particle
channels. We obtain the following conditions.

|λ| ≤ 4π, (5.1)

|λhΦ| ≤ 4π, (5.2)

|λΦ| ≤ π, (5.3)

|λ12| ≤ 2π, (5.4)

|3λΦ − λ12| ≤ π, (5.5)∣∣∣∣3λ+ 4(3λΦ + λ12)±
√
(3λ− 4(3λΦ + λ12))

2 + 32λ2hΦ

∣∣∣∣ ≤ 8π. (5.6)

As we discussed in Sec.4.3, λ can be larger than the other scalar quartic couplings. If
we ignore them, we obtain the unitarity bound on λ from Eq.(5.6) with + sign.

|λ| ≲ 4π

3
. (5.7)

This is stronger than Eq.(5.1). λ depends on the mh′ and ϕh, hence the values of λ in the
mh′-ϕh plane are shown in Fig.8. We find that large values of mh′ and ϕh are constrained
by the perturbative unitarity.

Second, we can derive the upper bounds on the gauge couplings from vector-vector
to scalar-scalar scattering processes. In our model, one of g0 and g1 can be larger than
the other in most of the region of the parameter space, and thus the result in Ref. [83] is
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Figure 8: The contour show the value of λ in the mh′-ϕh plane. Red line show the contour
for λ = 4π/3.

applicable. We find that

gj <

√
16π√
6
≃ 4.53. (j = 0, 1) (5.8)

The gauge couplings depend on the mass ratio of Z ′ and V , mZ′/mV , as in Eqs.(4.45)
and (4.46). g1 is proportional to this mass ratio. g0 has a pole at mZ′/mV = 1 and nearly
constant in the m2

Z′/m2
V ≫ 1 limit. Fig. 9 shows g0 and g1 plotted as a function of the

mass ratio. We find that when the mass difference is very small(mZ′ < 1.02mV ), g0 is
non-perturbative. Conversely, when the mass difference is very large(mZ′ > 6.97mV ), g1
is non-perturbative.

5.2 The mass ratio of Z ′ and V

We find in Sec. 4.4 that the mass ratio of Z ′ and V is important to determine the model
parameters and couplings. Although the mass ratio is a free parameter, there is a viable
range.

It can be seen from Eq. (4.45) that g0 becomes very large for mZ′ ∼ mV , and we can
not treat g0 as a small perturbation. For mZ′ ≫ mV , we can see from Eqs. (4.46) and
(4.48) that g1 and gW ′fLfL become large. This is also bad for the perturbative calculation.
Moreover, the decay widths of W ′ and Z ′ become larger for the larger gW ′fLfL .

38



1 2 3 4 5 6 7

1

2

3

4

5

6

mZ' / mV

g 0
,g

1

Figure 9: The blue (green) line shows the value of g0 (g1) as a function of the mass ratio,
mZ′/mV . The red shaded region (gi > 4.53) is constrained by the perturbative unitarity.

For vΦ ≫ v and |ϕ| ≪ 1, we find

Γ(W ′ → ff̄) ≃ Nc

48π
mW ′g2WfLfL

(
m2
Z′

m2
V

− 1

)
, (5.9)

Γ(W ′ → WZ) ≃ 1

192π
mW ′g2WfLfL

(
m2
Z′

m2
V

− 1

)
, (5.10)

Γ(W ′ → Wh) ≃ 1

192π
mW ′g2WfLfL

(
m2
Z′

m2
V

− 1

)
, (5.11)

where Nc = 3 for quarks and 1 for leptons. Here we take VCKM = 1 for simplicity. If
W ′ cannot decay into the non-SM particles kinematically, then the total width of W ′ is
given by

ΓW ′ ≃mW ′
25

96π
g2W

(
m2
Z′

m2
V

− 1

)
. (5.12)

We show some values of g0, g1, ΓW ′/mW ′ , and |gW ′fLfL/gWfLfL| for given ratios of mZ′

and mV in Tab. 6. We find that we cannot treat g0 as a small perturbation for mZ′ ≃ mV .
We obtain a lower bound on the ratio of masses of Z ′ and V as mZ′/mV ≳ 1.02 from the
perturbativity condition for g0 shown in Eq. (5.8). Similarly, the perturbativity for g1
gives an upper bound on mZ′/mV . We find mZ′/mV < 6.97. The total width also gives
an upper bound onmZ′/mV because the total width is proportional to the imaginary part
of the one-loop diagrams while the mass is at the tree level. Therefore, our calculation
based on the perturbation is valid only for the region where mW ′ > ΓW ′ . This gives the
upper bound on mZ′ for a given value of mV , and we find that mZ′ < 5.45mV . We also
find that ΓW ′/mW ′ < 0.1 is satisfied for mW ′ ≲ 2mV .
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mZ′/mV g0 g1 ΓW ′/mW ′ |gW ′fLfL/gWfLfL|
1.02 4.53 0.661 0.00148 0.207
1.05 3 0.680 0.00358 0.321√

2 1.30 0.916 0.0348 1
4.63 0.938 3 0.711 4.52
5.45 0.932 3.53 1 5.36
6.97 0.93 4.53 1.66 6.90

Table 6: The values of g0, g1, ΓW ′/mW ′ , and gW ′fLfL/gWfLfL given ratios of mZ′ and mV .

5.3 W ′ and Z ′ searches at the LHC

New heavy vector bosons are being searched by the ATLAS and CMS experiments. Our
model predicts the heavy vector bosons, W ′ and Z ′, and they couple to the SM particles.
The W ′ and Z ′ couplings to SM particles are determined by the ratio of mZ′ and mV

as discussed in Sec. 4.4. The couplings to the fermions and the SM vector bosons can
be as large as the SU(2)L gauge coupling in the SM, and the former is larger than the
latter. Therefore, the main production process of W ′ and Z ′ at the LHC is qq̄ → W ′/Z ′.
The branching fraction to two fermions is larger than two bosons, see Eqs.(5.9)–(5.11).
Therefore, the main search channel of W ′ and Z ′ are pp→ W ′ → ℓν and pp→ Z ′ → ℓℓ.
The former gives the stronger constraint on the mass of W ′, and we focus on that process
here.

The ATLAS experiment searches the pp→ W ′ → ℓν process and finds the lower bound
on mW ′ as 6 TeV for the Sequential Standard Model (SSM) [84].1 The W ′ couplings to
the SM fermions in our model are different from those in the SSM. We recast the bound
and obtain the lower bound on mW ′ for a given coupling ratio of gW ′fLfL and gWfLfL .
The result is shown in Fig. 10. Here we assume that the K factor is 1.3. We find that
mW ′ ≳ 7 TeV for gW ′fLfL/gWfLfL ≳ 1.42. Since the ATLAS experiment does not give the
bound for mW ′ > 7 TeV, we cannot obtain the bound on mW ′ for gW ′fLfL/gWfLfL ≳ 1.42.
Similarly, we also recast the prospect ofW ′ search at the ATLAS experiment with 14 TeV
with 3000 fb−1 [86]. Other channels give weaker bound than this ℓν channel.

5.4 Electroweak precision measurements

For mW ′/Z′ ≫ mW/Z limit, it is easy to obtain the electroweak precision parameters, Ŝ,

T̂ , W , and Y , introduced in [87]. At the tree level, we find that

Ŝ = T̂ = Y = 0,

W =
2g21

g20 + 2g21

m2
W

m2
W ′
. ≃

(
1− m2

V

m2
Z′

)
m2
W

m2
W ′
. (5.13)

1The CMS experiment also searches the same channel but gives a weaker bound on mW ′ , mW ′ >
5.2 TeV [85].
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Figure 10: The solid curve shows the lower bound on mW ′ for a given gW ′fLfL coupling
obtained by recasting the result in Ref. [84]. The dashed curve shows the prospect at the
ATLAS experiment with 14 TeV with 3000 fb−1 [86].

The constraint is given as W = (−0.3± 0.6)× 10−3. We find that this constraint is much
weaker than the constraint from the W ′ search at the LHC experiment.

5.5 Higgs signal strength

Among the three scalar fields, only H contributes to the Yukawa interaction terms, and
thus the h couplings to the fermions are equal to those in the SM times cosϕh. As we
have shown in Eq. (4.60), gWWh for vΦ ≫ v is approximately given by the SM coupling
times cosϕh. Thus the Higgs signal strengths are given by

κF = cosϕh, κV ≃ cosϕh. (5.14)

We can constrain ϕh from the measurement of the Higgs couplings. We use the result
from the ATLAS experiment [88],

κV =1.05± 0.04, (5.15)

κF =1.05± 0.09, (5.16)

with the linear correlation between them is observed as 44%, and obtain |ϕh| < 0.3 in
2 σ level. We consider 0 ≤ |ϕh| < 0.3 in the following discussions.
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Chapter 6

DM phenomenology

6.1 Mass difference and its implication for collider

physics

At the tree level, V 0 and V ± have the same mass. However, the mass difference is
generated at the loop level, and thus V ± is slightly heavier than V 0. The mass difference
is given by

δmV
≡ mV ± −mV 0 =

√
m2
V +ΠV +V −(m2

V ±)−
√
m2
V +ΠV 0V 0(m2

V 0)

≃ΠV +V −(m2
V )− ΠV 0V 0(m2

V )

2mV

, (6.1)

where ΠV +V − and ΠV 0V 0 are the self-energies of V ± and V 0, respectively. We calculate
δmV

at the one-loop level by using FormCalc [89]. In vΦ ≫ v limit, we find

δmV
≃ m3

WGF√
2π

(
1− mW

mZ

)
≃ 168 MeV. (6.2)

This result is consistent with the result in [90]. We have also checked it numerically by
using LoopTools [89], without taking vΦ ≫ v limit.

This small mass difference is the same as the mass difference between the charged and
neutral components of Wino (W̃ ) in the MSSM. Wino is SU(2)L triplet fermions. The
charged Wino decays into the neutral Wino, but its lifetime is long due to the small mass
difference. Thus, Wino is being searched in the long-lived particle searches at the LHC.
Our DM candidate, V 0, and its partner, V ±, has the same properties as the Wino. The
decay rate of V ± and the mass difference of V ± and V 0 are exactly equal to those of Wino.
Therefore, the long-lived particle search is also a useful tool to find V ± in our model. The
only difference of V from W̃ is the production rate of the charged particles. Figure 11
shows the production cross sections of V ± and W̃± at the LHC with

√
s = 13 TeV. We

find that the production cross section of V ±,0 depends on mW ′ and mZ′ as well as mV .
It is also found that the production cross section of V ±,0 is smaller than the production
cross section of Wino because of the interference between the diagrams exchanging W
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Figure 11: The production cross section of V ± and W̃± from proton collisions at
√
s =

13 TeV. The left panel shows the cross section of pp → V +V 0, the right shows pp →
V −V 0, and the bottom shows pp→ V +V −. In each figure, the black line shows the Wino
production cross section and the dashed (dotted) line shows the V ± for mZ′,W ′ = 1.5mV

(mZ′,W ′ = 1.3mV ).

and W ′ (Z and Z ′) in the s-channel. Therefore, the constraint on mV from the long-lived
particle search is weaker than that on the Wino, mW̃ ≳ 460 GeV [91]. Once we require
V 0 to explain the measured value of the DM energy density, then mV ≳ 3 TeV is required
as we will see in the following. Therefore, our model is consistent with the results of the
long-lived search if the whole of DM in our universe is explained by V 0.

6.2 Direct detection

At the leading order, DM-nucleon scattering is mediated by two scalars, h and h′, which
are even under the discrete symmetry. Z boson mediated processes do not work at
tree-level since the V 0-V 0-Z coupling is prohibited by the gauge symmetry. The spin-
independent vector DM-nucleon scattering cross section is given by

σNSI =
1

π

(
mN

mN +mV

)2

|fNV |2, (6.3)
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Figure 12: The leading diagrams mediated by h and h′.

wheremN is the nucleon mass (N = p, n) and fNV is the effective coupling of DM-nucleon
interactions.

Figure 12 shows the leading diagrams at the parton-level. The following Parton-level
effective interactions are relevant to the DM-nucleon cross section,

Leff =
∑

q=u,d,s

cqV
0µV 0

µmq q̄q +
∑
Q=c,b,t

cQV
0µV 0

µmQQ̄Q, (6.4)

where mq and mQ are light and heavy quark masses, respectively. The couplings, cq and
cQ, in our model are

cq = cQ =
m2
V√

2vvΦ
sinϕh cosϕh

(
1

m2
h′
− 1

m2
h

)
. (6.5)

To obtain the effective coupling of the DM-nucleon interactions, fNV , we use the
nucleon matrix elements,

⟨N |mq q̄q|N⟩ ≡ mNf
(N)
Tq , (q = u, d, s), (6.6)

⟨N |αs
π
Ga
µνG

aµν |N⟩ = −8

9
mN

(
1−

∑
q

f
(N)
Tq

)
. (6.7)

where Ga
µν and αs are the SU(3)c field strength tensor and coupling constant, respectively.

The numerical values of the mass fractions for the nucleon, f
(N)
Tq (N = p, n), are obtained

by lattice simulations, and we take the default values of micrOMEGAs [92].

fpTu = 0.0153, fnTu = 0.011

fpTd = 0.0191, fnTd = 0.0273

fpTs = fnTs = 0.0447.

(6.8)

For light quarks (q = u, d, s), we can obtain the contribution to the effective coupling fNV
using nucleon matrix elements of the mass operators. For the heavy quarks (Q = c, b, t),
the leading contribution is loop diagrams (Fig. 12 right). The operator mQQ̄Q equals
− αs

12π
Ga
µνG

aµν in the matrix element, so the matrix elements of the heavy quark mass
operators are given by

⟨N |mQQ̄Q|N⟩ = 2

27
mN

(
1−

∑
q

f
(N)
Tq

)
, (Q = c, b, t). (6.9)
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Using these matrix elements, the effective coupling fNV is given by

fNV
mN

=
∑
q

cqf
N
Tq +

2

27

∑
Q

cQ(1−
∑
q

fNTq)

=
m2
V√

2vvΦ
sinϕh cosϕh

(
1

m2
h′
− 1

m2
h

)(
2

9
+

7

9

∑
q

f
(N)
Tq

)
. (6.10)

Finally, we obtain the spin-independent nucleon-vector DM cross section as follows.

σNSI =
1

2π

m4
Nm

4
V

(mN +mV )2
1

v2v2Φ
sin2 ϕh cos

2 ϕh

(
1

m2
h′
− 1

m2
h

)2
(
2

9
+

7

9

∑
q=u,d,s

fNTq

)2

≃ g20
32πv2

m4
N

m4
h

sin2(2ϕh)

(
2

9
+

7

9

∑
q=u,d,s

fNTq

)2

≃10−44 × g20 sin
2(2ϕh) [cm

2]. (6.11)

Here we assumed that mV ≫ mN , and also mh′ ≫ mh in the last two lines of Eq. (6.11).
This cross section is proportional to sin2(2ϕh), and thus the large |ϕh| region is severely
constrained from the direct detection experiments. The direct detection limit on the
DM-nucleon cross section for TeV scale DM is around 10−45 cm2 [3]. For g0 = 1, we
find ϕh ≲ 0.15. This upper bound can be stronger than the bound from the Higgs
signal strength. If ϕh is smaller than ∼ 0.01, the higher-order diagrams dominate in the
DM-nucleon SI scattering process so that σNSI ∼ 10−47cm2 [75, 93,94].

6.3 Relic abundance

The model contains two DM candidates, V 0 and hD. In this thesis, we treat V 0 as the
DM candidate by assuming hD is always heavier than V 0.

We calculate the thermal relic abundance of V 0 by using micrOMEGAs [92]. The model
file is generated by FeynRules [95]. Since the mass difference of V ± and V 0 is tiny, the
coannihilation processes, which are automatically calculated in micrOMEGAs, are relevant.
All the masses of the new particles are proportional to vΦ, hence the large mass difference
among the new particles requires large couplings. To avoid large couplings and to keep
working within the perturbative regime, we keep the mass ratio of the new particles to
the DM mass within O(1). However, the h′ mass can be very light if 2λΦ ∼ −λ12. So we
consider 2 cases, heavy and light h′ in the following subsections.

6.3.1 heavy h′ (mh′ = 1.4mV )

Figure.13 shows the value of ϕh that is required to obtain the observed relic abundance
in the mV -mZ′ plane. The other model parameters, mh′ and mhD , are fixed as follows.

mhD = 1.2mV , mh′ = 1.4mV . (6.12)
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Figure 13: The contours show ϕh that reproduce the measured value of the DM relic
abundance. Here, mhD = 1.2 mV and mh′ = 1.4 mV . In the gray shaded region, this
model cannot explain the whole abundance. The pink region (ϕh > 0.3) is constrained
by the measurement of the Higgs signal strength [88]. In the black shaded region, g0 is
beyond the perturbative unitarity bound.

For small ϕh, the contributions to the relic abundance from Higgs particles are negli-
gible. In this region, our dark matter only depends on the gauge interaction to reproduce
the observed relic density. So our model does not need to rely on the Higgs portal
interaction.

For large ϕh, the electroweak interaction and the Higgs portal couplings contribute to
the value of the relic abundance. As ϕh increases, the contribution of the Higgs portal
couplings increases and the relic abundance decreases, so mZ′ must increase accordingly
to obtain the observed relic abundance. The larger ϕh requires the heavier mZ′ to obtain
the observed relic abundance. However, ϕh > 0.3 regions are constrained by the Higgs
signal strength as we discussed in Sec.5.5.

There are three regions in which this model can explain the whole relic density ; the
light mZ′ region (mZ′ ≲ 2mV ), the V

′-resonant region(mZ′ ≃ 2mV ), and the heavy mZ′

region (mZ′ ≳ 2mV ).
For the light mZ′ region, pairs of the dark vector bosons mainly annihilate into visible
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massive gauge bosons including W ′± and Z ′. The mass of Z ′ and W ′ must degenerate
to the dark matter mass to decrease the relic abundance, especially when ϕh is small. In
the V ′-resonant region, which looks like a horn in the figure, the main (co)annihilation
channel is V 0V ± → qq̄ via W ′ exchange in the s-channel. In the heavy mZ′ region, pairs
of the dark matter particles mainly annihilate into W± and Z because the processes with
a W ′± or a Z ′ in final states are kinematically forbidden. The masses of W ′ and Z ′ are
much larger than the dark matter particles, and thus W ′ and Z ′ are almost decoupled
from the annihilation processes.

For our model to account for the whole amount of DM the mass of V 0 must be roughly
above 3 TeV. This lower limit is in the region of small ϕh and heavy mZ′ . This region is
similar to the Wino DM model [4] and SU(2)L triplet scalar DM models [90]. In those
models, DM mainly annihilates into W± and Z, and the mass of the DM is fixed by
requiring the thermal relic to explain the measured value of the DM energy density.

6.3.2 light h′ (mh′ = 4 TeV)

If we consider the small h′ region, we can easily avoid the bounds from perturbative
unitarity of the Higgs quartic couplings for large ϕh values as we discussed in Sec.5.1.
The main difference from the analysis usingmh′ = 1.4mV is that the relic abundance does
not depend on ϕh. In this region, λ is too small to contribute to the relic abundance,
unlike themh′ = 1.4mV analysis. The other contributions from the Higgs portal couplings
are proportional to the following at the freeze-out temperature.

1

4m2
V −m2

h

− 1

4m2
V −m2

h′
. (6.13)

Thus, these contributions are canceled in mV ≫ mh′ limit. Fig. 14 shows the value of
ϕh that is required to reproduce the observed value of the relic abundance. The masses
of hD and h′ are fixed as follows.

mhD = 1.2mV , mh′ = 4 TeV. (6.14)

As you can see, the overlap of the contour lines is greater than in the heavy h′ case.
Especially for mV ≳ 6 TeV region, the contour lines are completely overlapped and
consistent with the contour line when ϕh ≃ 0 for mh′ = 1.4mV . The required mZ′ for a
given value of mV is determined regardless of the value of ϕh.

6.4 Combined results

In the previous section, we find three-parameter regions that can explain the whole relic
abundance in our model in both mh′ analyses. The V ′-resonant region requires small
fine-tuning mZ′ ≃ 2mV , so we consider the other two scenarios, the light, and heavy mZ′

regions, and show the results with the limitations that come from the experiments and
observations.
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Figure 14: The contours show ϕh that reproduce the measured value of the DM relic
abundance. Here, mhD = 1.2 mV and mh′ =4 TeV. In the gray shaded region, this model
cannot explain the whole abundance. The pink region (ϕh > 0.3) is constrained by the
measurement of the Higgs signal strength [88]. The black shaded region is theoretically
forbidden.

6.4.1 heavy h′ (mh′ = 1.4mV )

Fig.15 shows the combined results. The left panel in Fig.15 shows the lightmZ′ region and
the right panel shows the heavymZ′ region. For both cases, the XENON1T experiment [3]
gives a stronger constraint than the Higgs signal strength(ϕ < 0.3). The strongest bound
on ϕh comes from the perturbative unitarity of the Higgs quartic couplings that highly
depends on the values of mh′ . If we consider the small mh′ region, the perturbative
unitarity bound can be weaker than the XENON1T experiment as we will show next
sub-section.

In the top-left area of the left panel in Fig.15, the SU(2)1 gauge coupling, g1 is large.
Therefore the decay rate of W ′ is beyond the perturbative. The upper limit on mZ′ is
around 16 TeV and the required and allowed dark matter mass is 2.9 TeV≲ mV ≲ 3.2 TeV
for this scenario.

For the heavy mZ′ scenario, the W ′ search by the ATLAS experiment [84] gives the
bound, mV ≳ 4.2 TeV. The allowed region is a thin white area. Thus when the dark
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Figure 15: Combined results in themV -mZ′ plane. The gray shaded region cannot explain
the whole abundance and the black shaded region is theoretically forbidden. The orange
region is already constrained by the XENON2018 and the dotted line shows the prospect
by XENONnT (20 ton·year). In the purple region, some of the Higgs quartic couplings
are non-perturbative. The red shaded region is constrained by ATLAS and the red dashed
line shows the prospect. In the left panel, the green line shows the value of ΓW ′/mW ′ , and
ΓW ′ > mW ′ in the green shaded region. In the right panel, g0 is beyond the perturbative
unitarity bound in the blue shaded region.

matter mass is determined, the mass of Z ′ is also roughly determined.
Most of the parameter space can be searched by the XENONnT experiment [72] for

both scenarios. Also, we find theW ′ search at the HL-LHC [86] can exploremV ≲ 5.8 TeV
and mZ′ ≲ 8.5 TeV region. The W ′ search at the collider experiment is independent of
ϕh. Therefore the XENONnT experiment and the HL-LHC are complementary to each
other.

The smaller ϕh region is degenerate in Figs. 15. We magnify those regions in Fig. 16.
The values of mZ′ that are required to obtain the right amount of DM energy density are
shown in the mV -ϕh plane. The left panel shows the lighter mV region. We find that the
combination of the DM direct detection at the XENONnT experiment and theW ′ search
at the HL-LHC is a powerful tool to seek this region. The former will give an upper bound
on ϕh that is almost independent of mV . The latter, on the other hand, is sensitive for
3 TeV ≲ mV ≲ 3.9 TeV. For the lighter mV , mV ≲ 3 TeV, the W ′ decay width can be
as large as mV , but in most of the region it satisfies 0.1 < ΓW ′/mW ′ < 0.2. The right
panel in Fig. 16 is for V that is heavier than 4 TeV. The direct detection experiment is
important in this region as well to determine the value of ϕh. For mV ≲ 6 TeV, we can
test this model from the W ′ search. We find that the perturbative unitarity of scalar
quartic couplings gives the upper limit on mV , mV ≲ 19 TeV.
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Figure 16: Combined results in the mV -ϕh plane. The left (right) panel shows the case
for mZ′ > 2mV (mZ′ < 2mV ). We determine mZ′ to obtain the right amount of the DM
relic abundance, and the values are shown by the black-solid contours in TeV unit. The
orange dotted line shows the prospect of XENONnT [72]. The red dashed line shows the
prospect of W ′ search [86]. In the left panel, the green line shows the value of ΓW ′/mW ′ ,
and ΓW ′ > mW ′ in the green shaded region. The red shaded region in the right panel
is already constrained by the W ′ search [84]. The black shaded regions in both panels
are excluded by the perturbative unitarity of the scalar quartic couplings. The blue-solid
contours in the right panel show the value of g0.

6.4.2 light h′ (mh′ = 4 TeV)

The strongest constraint on ϕh comes from the perturbative unitarity of the Higgs quartic
couplings in the above analysis. However, if mh′ is light, we don’t have to care about this
constraint. In the heavy mZ′ region, the allowed region simply expands, whereas when
we investigate the light mZ′ region, we can grasp a new feature of this model. Hence we
focus on the light mZ′ region.

Fig.17 shows the combined results for mh′ = 4 TeV. We choose the value of mh′ so
that the unitarity bound of scalar quartic couplings is small enough. In this case, the
XENON1T gives the strongest constraint on the scalar mixing angle, ϕh ≲ 0.15. The
allowed region is extended compared to the mh′ = 1.4mV case. Nevertheless, we find the
upper limit on mV , mV ≲ 27.5 TeV, by the perturbative unitarity of the SU(2)0 gauge
coupling. Thus the mass of our dark matter has the theoretical upper limit in both cases.

50



5 10 15 20 25
0.00

0.05

0.10

0.15

0.20

mV[TeV]

Φ
h

𝐦𝐡𝐃 = 𝟏.𝟐𝐦𝐕 ,𝐦𝐡# = 𝟒	𝐓𝐞𝐕

XENONnT(20t•y)

Perturbative unitarity

𝐖
#→

𝒍	𝝂
prospect

𝐖
#→

𝒍	𝝂

𝒈
𝟎
>
𝟒.
𝟓𝟑

10 14 18 22 26

XENON1T(2018)

Figure 17: Combined results formh′ =4 TeV in themV -ϕh plane. The black contours show
the values of mZ′ in TeV unit to obtain the right amount of the DM relic abundance. The
orange shaded region and red shaded region are already constrained by the XENON1T
experiment [3] and the W ′ search [84], respectively. The orange dotted line shows the
prospect of XENONnT [72]. The red dashed line shows the prospect of W ′ search [86].
The small purple shaded region at the top left is excluded by the perturbative unitarity
of the scalar quartic couplings. In the blue shaded region, SU(2)0 gauge coupling is
non-perturbative.

6.5 Indirect detection

Since our dark matter has the electroweak interaction and is much heavier than the
electroweak gauge bosons, the dark matter pair annihilation can be enhanced by the
Sommerfeld effect [96–100]. The annihilation into photons can be searched by the indirect
detection experiments.

The s-wave pair dark matter annihilation cross section with Sommerfeld enhancement
is given by

σv = 2× σtreev × |S|2, (6.15)

where the coefficient two is a necessary factor for the annihilation of identical particles
and |S|2 is called the enhancement factor. We should solve the Schroedinger equations
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Figure 18: DM pair annihilation cross section into two photons times relative velocity
with Sommerfeld enhancement. The dashed (dotted) line shows the total spin-2 (spin-0)
annihilation. The plain line shows the sum of them.

to obtain this enhancement factor. If we focus on the small ϕh and the heavy Z ′ and W ′

region, contributions from Higgs particles and heavy gauge bosons are negligible so that
the potential in the Schroedinger equation is the same as in the pure Wino dark matter
case. Therefore the enhancement factors for our model are equal to one for the Wino.
We can use results in [98]. The tree-level spin-averaged V −V + → γγ cross sections for
each total spin J = 0, 1, 2 are given by

σJ=0vrel =
2

3

πα2

m2
V

, (6.16)

σJ=1vrel = 0, (6.17)

σJ=2vrel =
32

9

πα2

m2
V

. (6.18)

The derivation is shown in Appendix. A.4.
Fig.18 shows the V 0V 0 → γγ cross section including the Sommerfeld effect. The

enhancement factors are the same, so our dark matter and Wino have resonance regions
in the same places. The total annihilation cross section in our model is nearly four times
larger than one in the pure Wino model. Therefore the constraints on our dark matter
mass from the indirect detection are expected to be stronger.

6.5.1 Constraints on ⟨σv⟩γγ
The constraints on the velocity-weighted annihilation cross section into two photons from
the H.E.S.S. experiment [61] are shown in Fig.19. The strength of the bounds varies de-
pending on the profile we choose. The most aggressive limit comes from the Einasto pro-
file. mV ≲ 11.4 TeV and 18.8 TeV ≲ mV ≲ 21.4 TeV regions are already constrained. For
the NFW profile, mV ≲ 10.7 TeV and 19.3 TeV ≲ mV ≲ 21 TeV regions are constrained.
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Figure 19: The upper bounds on the velocity averaged cross section into 2 photons from
the H.E.S.S. collaboration [61]. The plane (dashed) black line shows the annihilation
cross section with the Sommerfeld enhancement in our model (pure Wino). The red
shaded region shows the constraint obtained by using the Einasto profile for the dark
matter distributions in the Galactic center. The red dotted line and dashed line show the
upper limits for the NFW profile and the Einasto2 profile, respectively.

The Einasto2 profile gives the weakest constraints of them, because ρ⊙ = 0.3 GeV/cm3

is assumed to determine the profile parameters, while ρ⊙ = 0.39 GeV/cm3 is used for the
other profiles. The areas of mV ≲ 4.6 TeV and 7.2 TeV ≲ mV ≲10.4 TeV and 19.6 TeV
≲ mV ≲ 20.8 TeV has already been explored. So most of the heavy Z ′ and W ′ region is
limited by the H.E.S.S. experiment.

As discussed in Sec.3.5, this bound could be relaxed by about two or three orders of
magnitude if the Galactic center profile is core-like. The H.E.S.S. collaboration does not
give the bound for that case, so we are not sure how severe that restriction is for our
model. Besides, we have to keep in mind that the bounds coming from the cusp profile
may not be believable.

6.5.2 Prospects on the line cross section

The prospects from the CTA collaboration are shown in Fig.20. Here we use the upper
bounds on the line cross section obtained by [101]. The definition of the line cross section
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Figure 20: The black plain line and the dashed line show the velocity-averaged line cross
section for our model and Wino dark matter, respectively. Each colored line gives an
expected upper limit from the CTA collaborations corresponding to the dark matter
profile. We use the values in [101].

is given by

⟨σvrel⟩line = ⟨σvrel⟩γγ +
1

2
⟨σvrel⟩Zγ. (6.19)

They also take into account the cases of core profiles. For the core radius, r ≲ 5 kpc
region is considered because dark matter cores can be extended to this value by baryonic
effects [102]. The strength of the restriction can vary up to a factor of 50, depending on
the profile.

If the dark matter distribution at the Galactic center is the Einasto profile, the dark
matter mass in our model is only allowed to be above 100 TeV. Even if we believe the
conservative prospect (cored profile : r = 5 kpc), mV ≲ 24.9 TeV region can be searched.
So the indirect detection experiments are very important in exploring our dark matter.
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Chapter 7

Conclusions

We constructed a model of spin-1 dark matter that has the electroweak gauge interaction.
The electroweak gauge symmetry is extended into SU(2)0×SU(2)1×SU(2)2×U(1)Y , and
the discrete symmetry under the exchanging of SU(2)0 and SU(2)2 is imposed. It is
not necessary to extend the fermion sector to realize the realistic fermion mass spectra
through the Yukawa interactions. Since the dark matter candidate in this model couples
to the electroweak gauge bosons, we do not need to rely on the Higgs portal couplings.
These two features are distinctive of our model from other spin-1 dark matter models.
Our model predicts spin-0 and spin-1 dark matter candidates, and the heavier one decays
into the lighter one. In this paper, we focus on the spin-1 dark matter candidate.

The model predicts a heavy vector triplet (W ′± and Z ′) in the visible sector. We found
that the W ′ searches at the LHC give a strong constraint. That has already excluded
some regions of the parameter space that can explain the measured value of the dark
matter energy density by the freeze-out mechanism.

There are three scenarios that the model predicts the right amount of the dark matter
relic abundance. The first scenario is that the heavy vector triplet is slightly heavier than
the dark matter but has almost degenerate mass. In this case, pairs of dark matter
particles can annihilate into a heavy triplet and a SM particle. This process is efficient,
and the measured value of dark matter energy density is explained for mV ≳ 4 TeV. The
upper bound on the mass of the dark matter is imposed by the perturbative unitarity
bound of the gauge couplings, mV ≲ 19 TeV. The HL-LHC can test this scenario up
to 6 TeV. The second scenario is for mW ′ ≃ 2mV that utilizes the W ′ resonance in
the (co)annihilation processes of pairs of dark matter particles. In this case, the gauge
couplings are well in the perturbative regime. The third scenario is for mW ′ ≫ mV .
In this scenario, the mass of the dark matter is almost uniquely determined with the
assumption that the relic abundance explains the full of the dark matter energy density,
mV ≃ 3 TeV. This last scenario is similar to other SU(2)L-triplet dark matter models.
The mass of the W ′ is bounded by the condition that ΓW ′ < mW ′ , and we find mW ′ ≲
15 TeV in the small scalar mixing limit.

Although we do not need to rely on the Higgs portal interactions in this model, it
predicts the signal for the direct detection experiments, and thus we also discussed the
effects of the scalar mixing. We found that the perturbative unitarity bounds for the
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scalar quartic couplings give a stronger constraint on the mixing. We also found that the
model is testable at the XENONnT experiment if |ϕh| ≳ 0.03.

We can choose light h′ to avoid the perturbative unitarity bounds for the scalar
quartic couplings. In this case, the stronger limit on the scalar mixing comes from the
direct detection experiment, ϕh ≲ 0.15. The perturbative unitarity of the SU(2)0 gauge
coupling gives the upper limit on the dark matter mass, mV ≲ 27.5 TeV. Hence, for both
cases, our model has the upper limit on the dark matter mass.

The indirect detection experiment gives a stringent limit on our model. Conserva-
tively, the regions of mV < 4.6 TeV and 7.2 TeV ≲ mV ≲10.4 TeV and 19.6 TeV
≲ mV ≲20.8 TeV are already restricted by the H.S.S.S. collaboration, so the mZ′ > 2mV

scenario has already been explored. But this bound may not be believable due to the
very large indeterminacy of the dark matter profile at the Galactic center. We found that
the prospect of the CTA collaboration can search mV < 24.9 TeV region if we use the
profile that gives the weakest limit.

In this thesis, we include the Sommerfeld effect to consider the bounds from the
indirect detection experiments for the small ϕh region. However, our dark matter can
directly interact with the Higgs boson for large ϕh. This is an important difference from
Wino dark matter. Moreover, our results for the relic abundance may be altered by the
Sommerfeld effect. We leave this to future studies.
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Appendix A

our model

A.1 Some details in the gauge sectors

The mass eigenstates are given by V ±
µ

W±
µ

W ′±
µ

 =

 ω0
V ω1

V ω2
V

ω0
W ω1

W ω2
W

ω0
W ′ ω1

W ′ ω2
W ′

W±
0µ

W±
1µ

W µ
2µ

 =


1√
2

0 − 1√
2

sinϕ±√
2

cosϕ±
sinϕ±√

2
cosϕ±√

2
− sinϕ±

cosϕ±√
2


W±

0µ

W±
1µ

W µ
2µ

 , (A.1)


V 0
µ

Aµ
Zµ
Z ′±
µ

 =


ω0
V ω1

V ω2
V ωBV

ω0
γ ω1

γ ω2
γ ωBγ

ω0
Z ω1

Z ω2
Z ωBZ

ω0
Z′ ω1

Z′ ω2
Z′ ωBZ′



W 3

0µ

W 3
1µ

W 3
2µ

Bµ

 =


1√
2

0 − 1√
2

0
e
g0

e
g1

e
g0

e
g′

ω0
Z ω1

Z ω0
Z ωBZ

ω0
Z′ ω1

Z′ ω0
Z′ ωBZ′



W 3

0µ

W 3
1µ

W 3
2µ

Bµ

 , (A.2)

where

e =

(
2

g20
+

1

g21
+

1

g′2

)−1/2

, (A.3)

ω0
Z = ω2

Z =
eg1√

g20 + 2g21g
′
cosϕ0 +

g0√
2(g20 + 2g21)

sinϕ0, (A.4)

ω1
Z =

eg0√
g20 + 2g21g

′
cosϕ0 −

√
2g1√

g20 + 2g21
sinϕ0, (A.5)

ωBZ =− e
√
g20 + 2g21
g0g1

cosϕ0, (A.6)

ω0
Z′ = ω2

Z′ =
g0√

2(g20 + 2g21)
cosϕ0 −

eg1√
g20 + 2g21g

′
sinϕ0, (A.7)

ω1
Z′ =−

√
2g1√

g20 + 2g21
cosϕ0 −

eg0√
g20 + 2g21g

′
sinϕ0, (A.8)

ωBZ′ =
e
√
g20 + 2g21
g0g1

sinϕ0. (A.9)
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Using gW =
√
g20g

2
1/(g

2
0 + 2g21), the electron charge, e, is rewritten as

e =

(
1

g2W
+

1

g′2

)−1/2

=
g2Wg

′2

g2W + g′2
. (A.10)

Here we introduce ϕ± and ϕ0 that satisfy

1

4

(
g21(v

2 + 2v2Φ) −
√
2g0g1v

2
Φ

−
√
2g0g1v

2
Φ g20v

2
Φ

)(
cosϕ± − sinϕ±
sinϕ± cosϕ±

)
=

(
cosϕ± − sinϕ±
sinϕ± cosϕ±

)(
m2
W 0
0 m2

W ′

)
,

(A.11)

1

4

 g20g
2
1g

′2

e2(g20+2g21)
v2 −

√
2g0g31g

′

e(g20+2g21)
v2

−
√
2g0g31g
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e(g20+2g21)
v2

(g20+2g21)
2v2Φ+2g41v

2

(g20+2g21)

(cosϕ0 − sinϕ0

sinϕ0 cosϕ0
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cosϕ0 − sinϕ0

sinϕ0 cosϕ0

)(
m2
Z 0
0 m2

Z′

)
.

(A.12)

We find

cos2 ϕ± =
m2
V ± −m2

W

m2
W ′ −m2

W

. (A.13)

One can always choose cosϕ± > 0 as a convention, and thus

cosϕ± =

√
m2
V ± −m2

W

m2
W ′ −m2

W

, sinϕ± =

√
m2
W ′ −m2

V ±

m2
W ′ −m2

W

. (A.14)

We also find neutral gauge boson masses,

m2
Z =

1

8

{
g21v

2 + g20v
2
Φ + 2g21v

2
Φ + v2g′2

−
√

(g21v
2 + g20v

2
Φ + 2g21v

2
Φ + v2g′2)2 − 4(g20g

2
1 + g20g

′2 + 2g21g
′2)v2v2Φ

}
, (A.15)

m2
Z′ =

1

8

{
g21v

2 + g20v
2
Φ + 2g21v

2
Φ + v2g′2

+
√

(g21v
2 + g20v

2
Φ + 2g21v

2
Φ + v2g′2)2 − 4(g20g

2
1 + g20g

′2 + 2g21g
′2)v2v2Φ

}
, (A.16)

and charged gauge boson masses,

m2
W =

1

8

{
g21v

2 + (g20 + 2g21)v
2
Φ −

√
−4g20g

2
1v

2v2Φ + [g21v
2 + (g20 + 2g21)v

2
Φ]

2

}
, (A.17)

m2
W ′ =

1

8

{
g21v

2 + (g20 + 2g21)v
2
Φ +

√
−4g20g

2
1v

2v2Φ + [g21v
2 + (g20 + 2g21)v

2
Φ]

2

}
. (A.18)
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For vΦ ≫ v, the mixing angles are given by

cosϕ± =
g0√

g20 + 2g21
+O(v−2

Φ ) ≃ mV

mZ′
, (A.19)

sinϕ± =

√
2g1√

g20 + 2g21
+O(v−2

Φ ) ≃

√
1− m2

V

m2
Z′
, (A.20)

cosϕ0 =1 +O(v−4
Φ ), (A.21)

sinϕ0 =

√
2g0g

3
1g

′

e(g20 + 2g21)
2

v2

v2Φ
+O(v−4

Φ ). (A.22)

A.2 Would-be NG bosons

The mass matrices for the gauge bosons are given by

M2
C = Qt

WQW , M2
N = Qt

ZQZ , (A.23)

where

QW =
1

2

g0vΦ −g1vΦ 0
0 g1v 0
0 −g1vΦ g0vΦ

 , (A.24)

QZ =
1

2

g0vΦ −g1vΦ 0 0
0 g1v 0 −g′v
0 −g1vΦ g0vΦ 0

 . (A.25)

In the Rξ gauge, the mass terms are given by

−
(
π+
1 π+

3 π+
2

)
ξQWQ

t
W

π−
1

π+
3

π−
2

− 1

2

(
π0
1 π0

3 π0
2

)
ξQZQ

t
Z

π0
1

π0
3

π0
2

 . (A.26)

The eigenvectors of the mass matrices are

Qt
WQW ω⃗X =m2

X ω⃗X , (A.27)

QWQ
t
W ω⃗πX =m2

X ω⃗πX , (A.28)

Qt
ZQZω⃗X =m2

X ω⃗X , (A.29)

QZQ
t
Zω⃗πX =m2

X ω⃗πX . (A.30)

Multiplying QW to Eq. (A.27) and comparing it with Eq. (A.28), one can find that
QW ω⃗X ∝ ω⃗πX . Note that (QW ω⃗X)

t(QW ω⃗X) = ω⃗tXQ
t
WQW ω⃗X = m2

X and ω⃗tπX ω⃗πX = 1.
Similar relations are also found in the neutral sector. Finally, we find

QW ω⃗X =mX ω⃗πX , (A.31)

QZω⃗X =mX ω⃗πX . (A.32)
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These relations are useful to obtain the Fermi constant and some relation among cou-
plings. For example, we use

g1vω
1
X =2mXω

3
πX

(A.33)

to obtain the Fermi constant.
The mixing angles for the charged NG-bosons are given by

(
ω⃗πV ± ω⃗πW ω⃗πW ′

)
=

ω1
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where sinϕπ and cosϕπ satisfy
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Comparing Eqs. (A.34) and (A.31), we find

cosϕπ =
g1v

2mW

cosϕ±, (A.36)

sinϕπ =
g1v

2mW ′
sinϕ±. (A.37)

The mixing angles for the neutral NG-bosons are given by
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− 1√

2

sinϕπ0√
2

cosϕπ0√
2

 , (A.38)

where sinϕπ0 and cosϕπ0 satisfy

1

4

(
(g21 + g′2)v2 −

√
2g21vvΦ

−
√
2g21vvΦ (g20 + 2g21)v

2
Φ

)(
cosϕπ0 − sinϕπ0
sinϕπ0 cosϕπ0

)
=

(
cosϕπ0 − sinϕπ0
sinϕπ0 cosϕπ0

)(
m2
Z 0
0 m2

Z′

)
.

(A.39)

Comparing Eqs. (A.38) and (A.32), we find

cosϕπ0 =
v

2mZ

(g1ω
1
Z − g′ωBZ ), (A.40)

sinϕπ0 =− v

2mZ′
(g1ω

1
Z′ − g′ωBZ′). (A.41)

A.3 Fermi constant

The Fermi constant is defined by the muon decay, µ→ νµeν̄e. There is a W ′ exchanging
diagram as well as the W -exchanging diagram. We have to add both contributions. We
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Figure 21: The tree-level diagrams which contribute to V −V + → γγ process.

can simplify the calculation by using the relation between the mixing angles in the gauge
sector and NG-boson sector. The Fermi constant is given by

√
2GF ≡

∑
X=W,W ′

gXν̄µgXēνe
4m2

X

=
∑

X=W,V,W ′

(g1ω
1
X)

2

4m2
X

=
∑

X=W,V,W ′

(ω3
πX

)2

v2

=
1

v2
. (A.42)

In the last line, we used that
∑

X ω
j
πX
ωkπX = δjk. Therefore, we find

√
2GF =

1

v2
. (A.43)

A.4 V −V + → γγ annihilation cross section

In this section we calculate the cross section for the V − and V + annihilation into two
photons. The tree-level diagrams in the unitarity gauge are shown in Fig.21. The
V −(p−)V

+(p+) → γ(k1)γ(k2) amplitude for each diagram is given as follows.

iM4 =ie
2(gµρgνσ + gνρgµσ − 2gµνgρσ)ϵσ(p−)ϵρ(p+)ϵ

∗
µ(k1)ϵ

∗
ν(k2), (A.44)

iMt =ie[(p− + q)µgασ + (−p− − k1)
αgµσ + (k1 − q)σgµα]

−i
q2 −m2

V

(
gαβ −

qαqβ
m2
V

)
× ie[(q − p+)

νgβρ + (−q − k2)
ρgβν + (k2 + p+)

βgρν ]ϵσ(p−)ϵρ(p+)ϵ
∗
µ(k1)ϵ

∗
ν(k2),

(A.45)

iMu =ie[(p− + q′)νgασ + (−p− − k2)
αgνσ + (k2 − q′)σgνα]

−i
q′2 −m2

V

(
gαβ −

q′αq
′
β

m2
V

)
× ie[(q′ − p+)

µgβρ + (−q′ − k1)
ρgβµ + (k1 + p+)

βgρµ]ϵσ(p−)ϵρ(p+)ϵ
∗
µ(k1)ϵ

∗
ν(k2),

(A.46)
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where q ≡ p− − k1 and q′ ≡ p− − k2.
To calculate the Sommerfeld effects, we need to know the cross section for each total

spin state. In this case, the initial state (two spin-1 particles) can be total spin, J =
0, 1, 2. We can obtain the cross section for each total spin by replacing the initial state
polarization vectors with the initial spin state matrix for the total spin, J and the z-
component of the spin, Jz, as follows.

ϵσ(p−)ϵρ(p+) → SJ,Jzσρ . (A.47)

We consider the non-relativistic limit for the initial state. The polarization vectors of
massive gauge bosons in the initial state are given by

|1, 1⟩ : ϵµ =
1√
2


0
−1
−i
0

 , |1, 0⟩ : ϵµ =


0
0
0
1

 , |1,−1⟩ : ϵµ =
1√
2


0
1
−i
0

 . (A.48)

The time-like components of these polarization vectors are 0, so S00 = 0 and Sσ0 =
0 = S0ρ. Then the space-like components of the initial spin state matrix, ŜJ,JZ ≡ SJ,Jzij

(i, j = 1, 2, 3) are given by

Ŝ2,2 =
1

2

1 i 0
i −1 0
0 0 0

 , Ŝ2,1 =
1

2

 0 0 −1
0 0 −i
−1 −i 0

 , Ŝ2,0 =
1√
6

−1 0 0
0 −1 0
0 0 2

 ,

Ŝ2,−1 =
1

2

0 0 1
0 0 −i
1 −i 0

 , Ŝ2,−2 =
1

2

 1 −i 0
−i −1 0
0 0 0

 ,

(A.49)

Ŝ1,1 =
1

2

0 0 −1
0 0 −i
1 i 0

 , Ŝ1,0 =
1√
2

 0 i 0
−i 0 0
0 0 0

 , Ŝ1,−1 =
1

2

0 0 −1
0 0 i
1 −i 0

 , (A.50)

Ŝ0,0 =
−1√
3

1 0 0
0 1 0
0 0 1

 . (A.51)

ŜJ,Jz is symmetric for J = 0, 2 and anti-symmetric for J = 1. Using these properties, the
sum of the amplitudes in the center-of-mass frame is rewritten to the following form.

MJ=0,2 = 2e2
[
4ϵ∗i (k1)Ŝ

J,JZ
ij ϵ∗j(k2)− ϵ∗i (k1)ϵ

∗
i (k2)

(
trŜJ,JZ − 2

m2
V

kjŜ
J,JZ
jk kk

)]
, (A.52)

MJ=1 = 0. (A.53)
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where ϵi(k) and ki are the space-like components of ϵµ(k) and k1µ, respectively. S
2,Jz is

trace-less but S0,0 is proportional to the unit matrix. Then, we get

MJ=0 = 2e2
[
4ϵ∗i (k1)Ŝ

0,0
ij ϵ

∗
j(k2)− ϵ∗i (k1)ϵ

∗
i (k2)

(
trŜ0,0 − 2

m2
V

kjŜ
0,0
jk kk

)]
, (A.54)

MJ=1 = 0, (A.55)

MJ=2 = 2e2
[
4ϵ∗i (k1)Ŝ

2,Jz
ij ϵ∗j(k2) + ϵ∗i (k1)ϵ

∗
i (k2)

2

m2
V

kjŜ
2,Jz
jk kk

]
. (A.56)

The polarization vectors for photons in the final state are given by

ϵ±i (k1) =
1√
2

∓ cos θ
−i

± sin θ

 , ϵ±i (k2) =
1√
2

± cos θ
−i

∓ sin θ

 , (A.57)

where θ is the angle of momentum, k1 as viewed from the z-axis. Then, we take the sum
of the final state spins for the squared amplitudes and obtain∑

final

|MJ=0|2 = 24e4, (A.58)∑
final

|MJ=1|2 = 0, (A.59)

∑
final

|MJ=2|2 =


8e4(1 + 6 cos2 θ + cos4 θ), for Jz = ±2,
16e4 sin2 θ(3 + cos 2θ), for Jz = ±1,
48e4 sin4 θ, for Jz = 0.

(A.60)

Using these values, we can calculate the cross section for each total spin

σJ=0vrel = 6
πα2

m2
V

, (A.61)

σJ=1vrel = 0, (A.62)

σJ=2vrel =
32

5

πα2

m2
V

, for each Jz = ±2,±1, 0. (A.63)

The spin averaged total cross section is given by

σtot(γγ)vrel =
1

9
σJ=0vrel +

3

9
σJ=1vrel +

5

9
σJ=2vrel

=
38

9

πα2

m2
V

. (A.64)
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