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Abstract
—————————————————————————————————————–

In this thesis, we discuss the evolution of the large scale structure (LSS) of the Universe,
which is the frothy pattern made by galaxies or whole matter, from the perspective of the
sizes and the shapes of the under-dense regions called cosmic voids. The main purpose
of this thesis is to understand the evolution of voids and its relation between background
cosmology and gravitational field precisely.

Because the voids are under-dense and generally huge objects, they have the advantage
as a cosmological tracer that they are hardly affected by local events such as supernova
feedback or electromagnetic fields, which can be screened at large scales. Therefore, the
dynamics of the voids can be described by the density perturbation theory better than
galaxies. In this thesis, we first discuss the nature of cosmic voids and the application to a
cosmological test. The Alcock-Paczynski (AP) test estimates the expansion history of the
Universe by using the apparent distortion of the isotropic objects such as the two-point
correlation function of galaxies. Therefore, the universal profile of the cosmic void can
also be utilized. The major obstacle to the void AP test is the peculiar velocity, which can
distort the voids in redshift space as well as background universal expansion. To correct
this, we apply linear density perturbation theory to estimate the peculiar velocity from
the density profile. We will also introduce our void finder in the HI intensity map for
preparing next-generation observations, and discuss the statistical nature of the HI voids.

Despite of the usefulness as described above, the statistical analysis of the universal
void profile has a difficulty that the larger the voids are, the fewer they can be observed
and therefore suffer from a serious statistical error. This difficulty is, though, gradually
being resolved as the observation volume expands, and therefore voids are getting more
and more attention as promising probes of cosmological models and gravity theories. For
example, Zivick et al. (2015) have used distributions of the size, ellipticity and central
density of the voids to distinguish some gravitational theories. However, the shapes of
the voids vary widely and the differences between the theoretical models can be easily
buried in the individuality of the void. On the other hand, the study on the nature of
the dynamics of voids is still in the early stages and especially the individuality of the
voids is mostly left untouched. To make full use of the results of next-generation precision
observations, we should improve in understanding the individuality of each void.

In the last chapter of this thesis, we investigate the individuality of the void shape
response to the tidal field in the LSS with N-body simulation, assuming standard cos-
mological model. Though Park & Lee (2007) have analytically shown that the overall
ellipticity distribution is well explained by tidal field, it is still not clear whether the each
void is really deformed by tidal field. We trace each voids with particle ID and introduce
particle retention parameter to evaluate how the void loses/gains particles in its time evo-
lution process. In our analysis, the shape of each void is not necessarily stretched within
1 Gyr, which is sufficiently short time scale but longer than the simulation time step.
However, the voids with small mass density are significantly stretched depending on the
strength of the tidal field. Those voids are tend to retain its member particles for 1Gyr.
In contrast, higher density voids are considerably stretched/rounded when they gain/lost
particles. This result points out great environmental effect on the evolution of the void
shape, and it explicitly brings a particle picture-like effect to the evolution of the void
region, which has been commonly discussed based on fluid approximation.
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Chapter 1

Introduction

1.1 The Universe and Physics

The universe has been stirring our curiosity and imagination as an unknown place which
is far from human reach. Ancients found the empirical laws of motion of heavenly bodies,
such as the periodic movement of the sun, in early time. However, regarding the reason
why they move that way, they had no choice but to believe in the existence of unknown
supreme being like gods. The things have begun to progress by the appearance of the
scientific method for testing a hypothesis based on experiments. Of course, since we
cannot experiment with celestial bodies, early Physics had developed for the materials on
the earth independent to Astronomy. In the 18th century, I. Newton and J. Kepler noticed
that the heavenly bodies behave the same way as the objects on the earth and succeeded
in describing the motions of both of them with one systematic theory. With their works,
we inevitably recognize that the stars and the earth are essentially very similar, nonspecial
objects and that we are not necessarily at the centre of the Universe. Furthermore, after
a few hundred years, A. Einstein published general relativity (GR) (Einstein 1907), where
what we thought were completely different from each other like space, time, energy and
mass are related to each other. General relativity succeeds in explaining observations
very well, as is described in section 2.3 in this thesis. Now, space-time geometry of the
Universe, as well as heavenly bodies, are one of the frontier topics of physics.

This history gives us two ideas: one is that there is no special place in the Universe,
and the other is that there may be a simple systematic theory which can describe all
phenomena. Today, the former is called cosmological principle, and it is supported by
the detection of the cosmic microwave background radiation, which has a black body
spectrum with the temperature of 3K uniformly in the whole sky except for the thermal
fluctuation that is 10−5 times the average. The latter, on the other hand, has been passed
down to the idea of the grand unified theory: currently, not a few researchers are looking
for a way to handle all phenomena in an extreme situation, such as the one with ultra-
high/low energy particles or ultra-long/short distance interactions. In this context, the
Universe is ideal for improving physics in extreme environments.
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1.2 Standard Cosmological Model

The most common scenario of the cosmic history today roughly consists of the inflation,
the big-bang, and the structure formation with the ΛCDM universe described below.
First, assuming the cosmological principle, observations imply that our current universe
expands deceleratingly first, and then acceleratingly. That is, if you go back in time, the
Universe becomes smaller and smaller, denser and denser, and finally, it will be a hot
fireball: this is the big-bang advocated by J. Gamow and his collaborators (Alpher 1948).
Furthermore, Sato (1981) and Guth (1981) proposed the cosmic inflation model, where
space exponentially expands before big-bang, to explain the isotropy and the flatness
of the Universe indicated by cosmic microwave background observation. The late time
universe after inflation and big-bang through reheating is well explained by the ΛCDM
model, where Λ is the cosmological constant in Einstein equations causing an acceleration
of the space expansion and CDM is the cold dark matter, which is the perfect fluid without
pressure and does not interact with electromagnetic fields. To explain observations, we
need CDM about five times as large as the mass of known matter.

According to the simplest scenario, the quantum fluctuation of a scalar field is first
stretched and classicized and become the density fluctuation in the inflation era. This
initial fluctuation grows only by gravity at the later universe. Under this description, we
often assume the density fluctuation is initially Gaussian random field. This scenario can
roughly explain most of the current observations. However, the real identity of the CDM is
still unknown, and there are some inconsistencies in the standard cosmological simulation
and observation results regarding dark matter halo properties. Furthermore, recent obser-
vations with improving accuracy have revealed the issue called“Hubble tension”, which
is the unsolved tension lies between the local measurements of the Hubble constant, which
is the current expansion rate of the Universe, and the expansion rate inferred from the
cosmic microwave background observation assuming the ΛCDM cosmology. Therefore,
many researchers are verifying and improving this standard cosmological model.

1.3 The large scale structure and Voids

In the 1980s, the irregularity of the galaxy cluster distribution at a larger scale than
megaparsecs was observed for the first time, which is called the large scale structure of
the Universe (LSS) or the cosmic web today. Before the discovery of the LSS, we already
had gotten important suggestions from heavenly bodies such as galaxies which suggests
dark matter and Type Ia supernovae which leads to the dark energy problem. Also,
the gravitational waves which have been observed from 2016 mainly carry information
from massive binaries and high-density regions. Needless to say, such information from
high-density structures is valuable to us, but on the other hand, those signals tend to
be strongly affected by local events. Thus, when discussing cosmology, voids will be a
powerful source of information that is complementary to that of high-density structures.

A void is a term that refers to the low-density region, but its definition varies from liter-
ature to literature: some define it from the density field, and another use the gravitational
potential, for example. The smoothing window of the density field also causes diversity.
Regarding the observation, the galaxy survey by Sloan Digital Sky Survey (SDSS) found
about 10 thousand voids whose radii are about 10∼100 megaparsecs. Previous works
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have shown that the evolution of a long-wavelength mode of the density fluctuation is
successfully described by linear cosmological perturbation theory, and the typical size of
the voids corresponds to quasilinear scale. Moreover, on the smaller scale than the size
of galaxy clusters, we need to consider various effects such as feedback of supernova ex-
plosions or electromagnetic interactions, but these effects are generally considered to be
negligible compared with that of gravity for a sufficiently long-wavelength mode. Thus,
the analysis using voids will be more simple than using high-density structures like galax-
ies or galaxy clusters. Furthermore, there are many gravitational theories devised that
reproduce GR by the screening mechanism on the solar system scale, and it is expected
that such theories can be tested by observing the structures larger enough than a galaxy
such as voids. For these reasons, many researchers have been conducting applied studies
for the test of gravity theories and cosmological models using voids. For example, Cai
et al. (2015); Clampitt et al. (2013); Contarini et al. (2020); Perico et al. (2019); Voivodic
et al. (2017); Zivick et al. (2015) have investigated void properties hypothesizing modified
gravity theory. Also, Hamaus et al. (2016); Mao et al. (2016); Ryden (1995); Sutter et al.
(2012) have discussed the AP test (Alcock & Paczynski 1979) using voids, which is origi-
nally applied for the clusters to estimate matter density and dark energy. In light of the
increasing attention to applied studies and scheduled precise observations in near future,
there are many challenges left in theoretical aspects. Currently, there are roughly two
approaches to make a theoretical prediction on the void properties: the (semi) analytical
modelling and the numerical analysis.

The cosmological perturbation theory on the density fluctuations is one of the most
successful semi-analytical approaches to describe the evolution of the LSS. This theory
has been suggested by Lifshitz (1946) and Lifshitz & Khalatnikov (1963). The strong
point of this method is that the equation of motion becomes much simpler and easier to
solve, and it can treat nonlinearity of the evolution systematically. However, once the
nonlinearity grows too much, the fluid approximation becomes no more valid. Another
choice is to use some specific models assuming fluid approximation and initial density
profiles and solve the equation of motion exactly. For example, assuming an ellipsoid
with uniform density in the uniformly expanding background, the underdense ellipsoid
expands and becomes rounded as time passes with natural initial velocity (Icke 1984).
This result is in contrast to a kind of Zel’dovich pancake (Zel’dovich 1970), where the
dense ellipsoid collapses especially quickly in the short axis direction. This approach can
describe nonlinear evolution, but it is a somewhat unrealistic model for a void because a
void in the LSS is an open system, while this ellipsoid model is a perfect closed system.

Regarding the numerical approach, the cosmological N-body simulation has rapidly
developed in recent years. It is a powerful tool to investigate the complex evolution of the
gravitational multibody system. Instead, we must pay attention to the numerical error
and possible non-physical systematic errors which may come from optimisation parameters
like softening length. To discuss if the simulation results are physical or not, they must
be compared with those of other simulations or analytical models. The discussions on
voids using N-body simulation just have become active in the last few decades. Most of
the studies focus on the overall statistics as a first step. For example, Sheth & van de
Weygaert (2004) have computed the void size distribution with N-body simulation and
have discussed the consistency with their model, which is an application of excursion
set formulation devised for modelling halo mass function, to voids. Also, Hamaus et al.
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(2014) have investigated universal radial density/velocity profiles of the voids using N-
body simulation and have discussed the predictability of the velocity profile by the linear
perturbation theory.

Although there are many approaches being suggested, most of us use perturbation
theory today, which is successful for some extent in reproducing the matter power spectra
and overall distributions such as halo/void abundances or size distributions calculated
by N-body simulations. On the other hand, some researchers have pointed out the limit
of the perturbation theory. Whet we should do here for the healthy void analysis is to
confirm the validity of the perturbation theory in describing the dynamics of voids and
to improve void models or analysis procedures for making full use of precise observational
results coming soon.

1.4 This Thesis

Based on the research background described above, we investigate the void nature and its
usability as an information source of cosmology and gravitational field lying behind. There
are two main parts in this thesis: the first is on the cosmology test using a universal void
profile and the second is that where we discuss the correlations between time variation of
the void shape and the surrounding tidal field.

The first part aims to confirm the validity of existing methods of the AP test with lin-
ear velocity correction, exploring the room for precision improvement, and finally putting
constraints to the cosmological model parameters from the voids in state-of-the-art ob-
servations. While the standard cosmological model today has been mainly based on the
two-point correlation functions of the CMB and the galaxy number/shape distributions,
there are the reports that the suggested cosmological parameters systematically differ
among recent observations. Therefore, it is important to further estimate the parameters
from other observables when exploring the next-generation cosmological model. As the
cosmic voids have the merits as a cosmological probe described in the previous section,
we focus on them and discuss their usability as the measure of the background space-time
expansion.

The motivation of the second part is to understand the void formation and evolution
more precisely, going further from the overall statistics, and also to find out which voids
have the signal of the gravitational field. Some works have tried to test gravity theory
by using void size and shape. Although Zivick et al. (2015) have pointed out that the
shape may distinguish several gravitational theories, the ellipticity distribution has a
large variance and the difference in the mean shape caused by different gravity theories
can easily get lost in the individuality. While we know that the overall shape distribution
of the voids is well explained by the tidal field (Park & Lee 2007), the overall distribution
can be also affected by the void formations or void mergers as well and if each void shape
evolves owing to the tidal field is still left unclear. Making this point clear, we can know
what kind of voids keep original (initial) form and what another kind of voids have the
information of gravity.

This thesis is organized as follows. First, in Chapter 2, we derive the fluid equation by
coarse-graining of the two-body collisional system. The main purpose of this chapter is to
clarify the assumptions when we treat the LSS as a fluid. In Chapter 3, we introduce the
background universe as a homogeneous and isotropic solution of the Einstein equations.
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The distance measurement of the background space is also discussed in this chapter.
In this background space-time, we solve the perturbed fluid equations to describe the
cosmological evolution of the LSS in Chapter 4. We also show the features of the LSS in
the Fourier space and the redshift space. In both Chapter 5 and Chapter 6, we focus on
the universal profile of the void. In Chapter 5, we first introduce void finding algorithms
before showing the universal profile of the void. As there are many kinds of void finding
procedures, we summarize them first and then describe the void finding methods we use.
The AP test using the universal profile of the void is also discussed at this chapter. In
Chapter 6, we further consider the universal profile of the HI void looking ahead the
upcoming large-scale survey. We propose a more natural void finding method for the
previous study on the AP test using the HI voids. At the end of this chapter, we show
the properties of the voids which are found by our original void finder in the simulation
data. Finally, we report the results of our analysis on the individuality in void shape-tide
response in Chapter 7. We give the details of our simulation and analysis methods for
void tracing and tidal field estimation in the beginning, and show the correlation between
the time variation of the void shape and the tidal field. We discuss the effect of the mass
exchange on the void shape as well. In Chapter 8, we summarize this thesis and comment
on future perspectives of our works.
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Chapter 2

Fundamental equations in cosmology

In the standard cosmological scenario, the formation and the evolution of the LSS is well
described by the continuous density field which grows according to the fluid equations.
However, in reality, the matter in the Universe is discrete: for example, a dark matter
particle or a galaxy can be a basic mass unit. To estimate the density field at each point in
the space, we usually smooth the particle distribution on a specific scale. In this chapter,
we introduce the fluid as a macroscopic field of the multi-particle system and derive the
fluid equations. We also introduce Einstein equations to describe the evolution of the
background universe. We use the notation in Table 2.1 unless otherwise noted.

2.1 Theoretical Treatment of Cold Dark Matter

The current universe is well explained by the Λ CDM model, which means ’GR with the
cosmological constant (Λ)’ + ’cold dark matter’. ’Cold’ means that the mass particles
are moving slowly compared with the speed of light, and ’dark’ means that the particles
interact only by gravity. However, especially on a smaller scale than the galaxy size, some
differences between the simulation assuming this model and the observation results have
been found, and the following points are currently discussed as known problems:

Observing facts that do not explained by the Λ CDM N-body simulation� �
• Core-cusp problem:

In the simulation, it is denser toward the centre and the profile is sharp (cusp),
but in the observation, the density profile of the dark matter halo becomes flat
near the centre (core).

• Missing-satellite problem:
The number of dark matter sub-halos estimated from observations is less than
the number predicted by simulation.

• Too-big-to-fail problem:
The maximum value of the line-of-sight velocity of the halo around the cluster
is higher in the simulation than in the observation.

� �
13
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Table 2.1: Notations

Name Symbols/Definitions
Speed of light c = 1
Kronecker delta δij = {1 for i = j or 0 for others}.
Einstein summation convention xiy

i :=
∑

i xiy
i

transition of the subscript to/from superscript Xµ = gµνX
ν , Xµ = gµνXν

Partial derivative ∂X = ∂/∂X (∂i = ∂/∂xi for coordinate xi)

Time derivative Ẋ = ∂X/∂t

These are under further discussion with taking account of, for example, halo shape, tidal
destruction or baryon flow.

Also, the cold dark matter is often described as a perfect fluid *1 . However, with re-
spect to the density perturbation theory, which is based on fluid approximation, Bernardeau
(2014); Blas et al. (2014) have shown that the high-order mode-coupling leads to a
larger UV contribution, while the N-body simulation shows suppressed UV contribution
(Nishimichi et al. 2016). This fact may imply that the failure of the single-stream picture
at a small scale.

2.2 Newtonian Fluid Equations

2.2.1 Continuum Approximation

Window functions and smoothed field

Continuum approximation is basically based on the average operation in an element with
sufficiently small volume. Usually, the weights in this average operation are arbitrary
given by window functions depending on the purpose. When the distribution function
f(x) is smoothed to be F (x) using the window function W (x), F (x) is expressed as

F (x) =

∫
d3x′f(x′)W (x− x′). (2.1)

The window functions commonly used are as follows:

• top-hat filter:
arithmetic mean in a finite volume with uniform weight

W (r) =
3

4πR3
Θ
[
1− r

R

]
, (2.2)

• Gaussian filter:
arithmetic mean but the value at the centre of the window has the heaviest weight

W (r) =
1

(2πR2)
2
3

exp

[
− r2

2R2

]
, (2.3)

*1 Perfect fluid: the fluid without viscosity. It can be characterized only by its mass density and isotropic
pressure.
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• Sharp-k filter:
smoothing in k-space, no mode mixing

W (k) = Θ [K − k] , (2.4)

where r and k are radial coordinate and radial wave number respectively, R and K are
arbitrary scales, and Θ is the Heaviside step function.

Knudsen number

We often treat the multi-particle system as a continuum. This is a good approximation
when we look at a scale L sufficiently larger than the mean free path λ. The ratio λ/L is
called Knudsen number:

Kn ≡
λ

L
. (2.5)

If λ � L, the particles do not interact with each other, and the degrees of freedom of
each particle must be described separately. On the other hand, in the case of λ � L,
the particles interact sufficiently, and we can treat them as a viscous fluid. Commonly,
Kn < 0.01 is regarded as a continuum. CDM particles interact with each other only
through gravity and when the density fluctuation of CDM is small, they are almost free
streaming.

2.2.2 Liouville’s theorem

Bogolyubov (1946) has shown that the fluid equations can be derived based on Liouville’s
theorem. First of all, when there is no interaction between particles, the volume of an
element in the phase space does not change with time as shown in Figure 2.1. Indeed, this

Figure 2.1: When there is no interaction between particles, the volume (area) of the
element in phase space does not change.

conservation law is also valid for the case where the particles interact with conservative
force*2 as shown below.

*2 Conservative force: the work done on a particle which moves between two points with conservative
force is independent of the path.
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First, the Hamiltonian H does not depend on time directly when only conservative
force works on the system. In this case, from Hamilton’s canonical equations of motion{

q̇i = ∂H
∂pi

ṗi = −∂H
∂qi
,

(2.6)

we find the phase space coordinates after ∆t are expressed as{
qi = qi0 + ∆qi = q0 + ∂H

∂p
∆t

pi = pi0 + ∆pi = pi0 − ∂H
∂q

∆t.
(2.7)

Thus, the phase space volume conserve as follows:

dqi = dq0 +

(
∂

∂q

∂H

∂p

∣∣∣∣
0

dqi0 +
∂

∂p

∂H

∂p

∣∣∣∣
0

dpi0

)
∆t

=

(
1 +

∂2H

∂p∂q
∆t

)
dqi0 +

∂2H

∂p2
∆t dpi0

dpi =

(
1 +

∂2H

∂p∂q
∆t

)
dpi0 −

∂2H

∂q2
∆t dqi0

(2.8)

∴
n∏
i=1

dpidqi =
n∏
i=1

dpi0dqi0 +O((∆t)2). (2.9)

Now, the Liouville’s theorem is given by

∂tρ = −{ρ,H}P , (2.10)

where ρ is the probability of finding a system in each volume fraction in (position-velocity)
phase space and { }P is Poisson bracket. This equation means the conservation law for the
probability density ρ because if we start from Hamilton’s canonical equations of motion,
we can derive

dρ

dt
=
∂ρ

∂t
+

n∑
i=1

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)
=
∂ρ

∂t
+

n∑
i=1

(
∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi

)
= 0

(2.11)

using Equation (2.10) on the third line.
Though Bogolyubov (1946) derives the Boltzmann equation by introducing the Hamil-

tonian including interaction part, we derive the Boltzmann equation in a more intuitive
way in the following part.

2.2.3 Multisystem with two-body collision — Boltzmann equa-
tion —

If the mean free path is large enough compared to the size of the particle, the evolution
of the system is well described by the two-body collision process. With the external force
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F ext, the time evolution of the particle distribution function f(t, r,v) as a function of
phase space coordinates (r,v) is given by

d

dt
f(t, r,v) =

∂f

∂t
+ ṙ · ∂f

∂r
+ v̇ · ∂f

∂v

=
∂f

∂t
+ v · ∇f +

F ext

m
· ∂f
∂v

.

(2.12)

Assuming that the two-body interaction only works between the particles at the same
spacial position r, f(t, r,v), which is the number of the particles with velocity v, varies
when i) the particles with other velocity get/lose the kinetic energy by the collision and
come to have velocity v, or, ii) the particles with velocity v change its velocity due to the
collision as well.

Consider the situation that a particle with velocity v and another particle with velocity
v1 collide with each other, and have velocity v′ and v′1 respectively (Hereafter, we simply
denote f(t, r, v) as f(v)). With differential scattering cross section R2dω cosθ =: dΩ in

Figure 2.2: The collision in the rest frame of the particle at right side. ω is the unit
vector in the direction connecting the centres of two particles. R2dω cosθ corresponds to
the differential scattering cross section.

the figure 2.2, the number of particles which have velocity v1 and collide with the particle
with velocity v per unit time is expressed as∫

d3v1

∫
dω

[
R2f(v)f(v1)|(v1 − v) · ω|

]
=

∫
d3v1

∫
dΩ f(v)f(v1)|v1 − v|,

(2.13)

where we assume (v1 − v) · ω < 0. Also, considering the reverse process, that is, the
collision of the particle with velocity v′1 and the one with velocity v′ forming the particle
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with velocity v, the number of particles formed per unit time is∫
d3v′1

∫
dΩ f(v′)f(v′1)|v′1 − v′|. (2.14)

Combining Equations 2.12 - 2.14, the Boltzmann equation is given by:

∂f

∂t
+v·∇f+

F ext

m
·∂f
∂v

=

∫
dΩ

(∫
d3v′1f(v′)f(v′1)|v′1 − v′| −

∫
d3v1f(v)f(v1)|v1 − v|

)
.

(2.15)
Here, if the particle masses are the same and the elastic scattering takes place, the formula

v1 − v = v′1 − v′ (2.16)

is established and the net increase in particle number with velocity v becomes

d

dt
f(t, r,v) =

∫
d3v′1

∫
dΩ

(
f(v′)f(v′1)− f(v)f(v1)

)
|v1 − v|. (2.17)

Here, the integration range is for all combinations involving particles with velocity v.
Therefore, the Boltzmann equation assuming elastic collision is

∂f

∂t
+ v · ∇f +

F ext

m
· ∂f
∂v

=

∫
d3v′1

∫
dΩ

(
f(v′)f(v′1)− f(v)f(v1)

)
|v1 − v|. (2.18)

For simplicity, we shorten the collision term:

∂f

∂t
+ v · ∇f +

F ext

m
· ∂f
∂v

=
∂f

∂t

∣∣∣∣
coll

. (2.19)

Although we have given a specific collision term here, the following discussions can be
more general.

2.2.4 Moment expansion

Because Equation (2.19) is the function of the 6-dimensional phase space coordinates,
it is hopelessly difficult to solve it in general. However, by introducing a macroscopic
quantity, this can be solved as a fluid equation. Here we introduce moment expansion.
The nth-order x moment of the function g is given by

g(n)(x, y, · · · ) =

∫
dx g(x, y, · · · ) xn. (2.20)

This can also be interpreted as the g(x, y, · · · )-weighted average of xn. Since the Boltz-
mann equation is the function of the velocity distribution function, it is natural to take
the velocity as x here. Taking velocity (after mean subtraction) moment of both sides of
the Boltzmann equation, we obtain the fundamental equations as follows:
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0th moment — equation of continuity (mass conservation)

Multiplying m to Equation (2.19) and integrating over v, the zeroth order Boltzmann
equation is written as

∂

∂t

∫
d3v mf +

∫
d3v mv · ∇f +

∫
d3v F ext ·

∂f

∂v
=

∫
d3v m

∂f

∂t

∣∣∣∣
coll

. (2.21)

As v is a variable that independent of x, the second term of the Equation (2.21) is
deformed as ∫

d3v mv · ∇f = ∇ ·
∫
d3v mfv. (2.22)

When we assume F ext to be independent of velocity and f → 0 at |v| → ∞, the external
force term disappears. Moreover, collision term vanishes from local mass conservation
and we find

∂ρ

∂t
+∇ · (ρu) = 0 (2.23)

with
Mass density:

ρ(t, r) :=

∫
d3v mf(t, r,v), (2.24)

Mean velocity field:

ρ(t, r) u(t, r) :=

∫
d3v mf(t, r,v) v. (2.25)

Hereafter we denote mass-weighted average of variable X as

〈X〉 :=
1

ρ

∫
d3v mfX. (2.26)

1st moment — equation of motion (momentum conservation)

The first moment of Equation (2.19) is given as

∂

∂t

∫
d3v mfv +

∫
d3v mv · ∇f v +

∫
d3v F ext ·

∂f

∂v
v =

∫
d3v mv

∂f

∂t

∣∣∣∣
coll

. (2.27)

Dividing the velocity to the mean velocity and the deviation from the mean as

vi =: ui + wi, (2.28)

the second term of Equation (2.27) is written down as

m ∂i

(∫
d3v f vivj

)
=: ∂i

(
ρ
〈
vivj

〉)
= ∂i

(
ρuiuj + ρ

〈
wiwj

〉)
.

(2.29)
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Assuming vif → 0 at |v| → ∞, the third term of Equation (2.27) is deformed as∫
d3v F i

ext∂vifv
j =

∫
d3v F i

ext

(
∂vi(fv

j)− δji f
)

= −F j
ext

∫
d3vf

= −ρF
j
ext

m
.

(2.30)

Therefore, as far as we consider the collisions which conserve momentum, the equation of
motion is written as

∂

∂t
(ρui) + ∂j(ρu

iuj + pδij − σij)− ρF
i
ext

m
= 0 (2.31)

with
Pressure:

p(t, r) :=
1

3
ρ
〈
|w|2

〉
, (2.32)

Stress tensor:
σij(t, r) := pδij − ρ

〈
wiwj

〉
. (2.33)

2nd moment — equation of energy transportation (energy conservation)

The second moment of Equation (2.19) is given as

∂

∂t

∫
d3v mf |v|2 +

∫
d3v mv · ∇f |v|2 +

∫
d3v F ext ·

∂f

∂v
|v|2

=

∫
d3v m|v|2 ∂f

∂t

∣∣∣∣
coll

.

(2.34)

Hereafter, we denote |X| as X for a given vector X. As the same way as to lower moment
equations, we assume that the external force is independent of the velocity and that fvivj

converges to zero in the limit of v →∞. Using Equation (2.31), the first term is deformed
as

∂t
(
ρ
〈
v2
〉)

= ∂t
(
ρu2 + ρ

〈
w2
〉)

= 2ui

(
−∂j(ρuiuj + ρ

〈
wiwj

〉
) + ρ

F i
ext

m

)
+ 3 ∂tp.

(2.35)

The second term is written down as

∂i
(
ρ
〈
(u2 + 2ujw

j + w2)(ui + wi)
〉)

= ∂i
[
ρ
〈
uju

jui + u2wi + 2ujw
jui + 2ujw

iwj + w2ui + w2wi
〉]
.

(2.36)

For each term in the Equation (2.36), we can see

2∂i
(
ρuj

〈
wiwj

〉)
= 2∂iuj(pδ

ij − σij) + 2uj∂i
〈
wiwj

〉
,

∂i
(
ρui
〈
w2
〉)

= 3
(
p∂iu

i + ∂ipu
i
)
.

(2.37)
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Moreover, collision term vanishes by considering collisions where energy is conserved.
Therefore, we obtain the equation of energy transportation following:

3

2

∂p

∂t
+∇ ·

(
3

2
pu

)
+ p∇ · u+∇ · q −∆Θ = 0 (2.38)

with
Energy flux:

q(t, r) :=
1

2
ρ
〈
w|w|2

〉
, (2.39)

Dissipation rate:
∆Θ(t, r) := σji ∂ju

i. (2.40)

Closure relation — equation of state —

We can consider higher-order equations in the same way, but usually, we use the equations
up to second order and close these equations with what is called a closure relation. In the
case of the fluid, equation of state

p =: wρ (2.41)

is introduced as a closure relation. w is typically the function of scale factor a(t) only.

2.2.5 Chapman-Enskog approximation

In the previous section, we have derived the 3-dimensional equation with macroscopic
quantities such as mass density and pressure from the 6-dimensional Boltzmann equation.
Though we already obtain the basic form of the fluid equations, we have assumed well
behaving collision terms. wi nor f is not given concretely because the boundary and
initial conditions are not given. Chapman-Enskog approximation is one of the methods
to give some concrete solutions in a systematic way.

Perfect fluid — Euler equation —

First, Maxwell-Boltzmann distribution

f(t, r,v)→ fMB(v) ∝ Exp

[
− mw2

2kBT

]
, (2.42)

with Boltzmann constant kB and temperature T is an equilibrium solution of the Boltz-
mann equation. When the velocity distribution function is perfectly Maxwell-Boltzmann
distribution function and homogeneous, the Boltzmann equation becomes an identical
equation and the system never evolves. Moving on to the next step, we can consider
the situation that the velocity distribution function is locally Maxwell-Boltzmann but the
values as mass density and velocity are fluctuate place to place around those in the equilib-
rium state. In this case, the terms in the left hand side of the Boltzmann equation (2.19)
is not constant, while the right hand side is zero (therefore, the equation apparently the
same as that of the non-collision system). Since Maxwell-Boltzmann distribution function
is isotropy, σij in Equation (2.31) vanishes and it becomes Euler equation:

∂u

∂t
+ (u · ∇)u+

∇p
ρ
− F ext

m
= 0. (2.43)
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Viscose fluid — Navier-Stokes equation —

Going further from the local equilibrium approximation in the previous section, we can
consider the perturbation of the velocity distribution function from the local equilibrium
system with Knudsen number (Chapman-Enskog expansion):

f(t, r,v) = f0(t, r,v) + f1(t, r,v)Kn +O(K2
n), (2.44)

where f0 is the local Maxwell-Boltzmann distribution function. Substituting this to the
Boltzmann equation, we obtain Navier-Stokes equation for the first-order of Kn

*3 :

∂u

∂t
+ (u · ∇)u− 1

ρ
divσ − F ext

m
= 0 (2.45)

with the stress tensor σ written by

σij = (−p+ ζ∇ · u0)δij + µ

(
∂iuj0 + ∂jui0 −

2

3
∇ · u0δ

ij

)
, (2.46)

where µ, ζ are both constant called shear viscosity coefficient and volume viscosity*4 co-
efficient respectively. They are determined by the interaction term.

Euler equation and Navier-Stokes equation become more simple form with Lagrange
derivative*5

dA

dt
=
∂A

∂t
+ (v · ∇)A (2.47)

for arbitrary A, as
du

dt
= −∇p

ρ
+
F ext

m
(2.48)

and
du

dt
=

1

ρ
divσ +

F ext

m
. (2.49)

2.3 General Relativity and Einstein Equations

2.3.1 Historical background and guiding principles

First of all, Newton mechanics published around the 17th century by I. Newton is based
on the following three fundamental laws.

*3 Navier-Stokes equation also can be derived by BGK(Bhatnagar-Gross-Krook) approximation, where
velocity independence of the relaxation time is assumed
*4 Forces other than pressure acting perpendicular to the surface when the fluid is compressible. It is

the resistance to volume change, and unlike pressure, it depends on the time derivative of the volume.
*5 Essentially, this is the time derivative of a physical quantity in Lagrange coordinate (where the

positions of particles or elements do not change with time). Expanding the time derivative of Ai with
chain rule, it can be expressed as
dAi

dt = ∂Ai

∂t + ∂Ai

∂xj
dxj

dt = ∂Ai

∂t + ∂Ai

∂xj v
j = ∂Ai

∂t + (vj∂j)A
i with Euler coordinate xi. However, since Lagrange

derivative breaks down if the fluid element is taken too small, it is often represented by different symbol
from the total derivative.
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Three fundamental principles of Newtonian mechanics� �
• Law of inertia: An object continues to move linearly with a constant velocity

unless it receives a force.

• Equation of motion: A proportional relationship between force and acceleration.

• Action-reaction law: The forces acting on two interacting objects have the
same magnitude and opposite directions.

� �
Note that the law of inertia guarantees the existence of the inertial frame and the equation
of motion is Galilei transformation (transformation between two systems with constant
relative velocity) invariant. While these laws can explain almost all kinematic phenom-
ena, the important fact was pointed out in the 19th century that if we require Galilei
transformation invariance in electromagnetism as well, the speed of light must change
depending on the speed of the observer. However, experiments *6 show that the speed of
light is independent of the observer. In 1905, A. Einstein published the special theory of
relativity, which is an extension of Newton’s theory under the following guiding principles.

Guiding principles of Special relativity� �
• Invariant speed of light: The speed of light is invariant at any inertial coordinate.

• Special principle of relativity: All inertial coordinate systems are equivalent.

� �
Following this, the general theory of relativity (GR), which is the extension of the special
theory of relativity to acceleration systems, was proposed in 1915 based on the following
principles.

Guiding principles of General relativity� �
• Equivalence principle*7 : Gravity mass and inertial mass are equivalent, and

special relativity always holds in any local inertial system.

• General principle of relativity: The laws of physics do not depend on the
coordinate system.

� �
The key idea here is that even the accelerating system can be treated as an inertial

*6 Michelson-Morley experiment played a leading role. As a result, the existence of ether (medium of
light) was denied. The idea of this experiment is that if the relative velocities of the system with respect
to the ether rest system differed between a certain direction on the earth and a direction perpendicular
to it, there would be a difference in the optical path distance and interference would occur, though it was
not detected with sufficient accuracy.
*7 This is precisely called the ’strong equivalence principle’. The ’equivalence principle of gravitational

mass and inertial mass’ or the claim that ’acceleration in the gravitational field does not depend on
the substance’ in Newton’s mechanics is called ’weak equivalence principle’, and the claim that ’physical
laws other than gravity are isomorphic in any inertial system’ is sometimes called ’Einstein’s equivalence
principle’. However, these distinctions differ slightly depending on the person and situation, and the
’strong equivalence principle’ here is often referred to as ’Einstein’s equivalence principle.’
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system locally*8 , and today, this theory is well consistent with all observations, such as
those listed below.

Consistency between GR predictions and observation experiments� �
• Solar system experiment

The delay in the arrival of signals from radio celestial bodies to the earth
(Shapiro delay effect), which is said to be caused by changes in the optical
path distance when the sun passes.

• Mercury’s apsidal precession
The effect of a slight rotation of Mercury’s elliptical orbit. It occurs because the
gravitational field due to the sun in our inertial system deviates from Newton’s
gravity.

• Gravitational lens effect
A phenomenon where the light path is bent along the space-time which is dis-
torted by the sun or a star cluster with a very large mass and the source of the
photon behind a massive object is apparently distorted.

• Dragging of the inertial system
The satellite rotating around the earth receives a force in the direction of rotation
of the earth*9 .

• Gravitational wave
The propagation of the space-time distortion. It is considered to be a transverse
wave with two degrees of freedom in the direction perpendicular to the direction
of propagation. It occurs because there is a dynamic degree of freedom in
space-time. It was first observed on September 14, 2015, by LIGO (Laser
Interferometer Gravitational-Wave Observatory), which was installed at two
locations in Hanford and Livingston, USA*10 .

� �

2.3.2 Metrics and Einstein equations

Metrics

One of the most important consequences of GR is the development of the methodology
for dealing with the geometric structure of the space-time. The geometric structure
of the space-time can be represented by the metric tensor gµν . Hereafter, in vectors
and tensors, superscripts represent ’contravariant components’ and subscripts represent

*8 In the original paper, Einstein first proves that the equation that is an extension of Poisson equation
with coordinate invariance does not exist (up to the second differential equation), and moves on to the
discussion of the local inertial system as a second-best way
*9 Of course, it also receives correction due to space-time distortion. The effect of dragging was about

two orders of magnitude smaller than the effect of space-time distortion.
*10 Gravitational waves are the tensor mode in GR. Although the laser interferometer can detect scalar

and vector modes as well, these were not observed and were consistent with GR.
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’covariant components’. The metric tensor is a quantity that determines the inner product
of basis vectors*11 (in other words, a mapping to a real number from two covariant vector
arguments):

gµν = eµ · eν . (2.50)

Inertial system — Minkowski metric —

Let us consider the coordinates specifically. Here, we take the natural unit and consider
a particle moving in the Cartesian coordinate system (t, x, y, z). We can write the 4-
dimensional length of the track of the particle as

ds2 = −dt2 + dx2 + dy2 + dz2. (2.51)

This is called ’world interval’. Since this can be transformed as(
ds

dt

)2

= −1 + v2, (2.52)

you can find that ds becomes zero when v = 1 (speed of light). ds is a coordinate
invariant, and in fact, δ{

∫
ds} = 0 is the equation of motion of the mass point. By defining

Lagrangian as follows using the world interval ds and the inertial mass m, δ{
∫
ds} = 0

becomes the form of Hamilton’s principle of least action:

δ

{∫
L dt

}
= 0

L : = m
ds

dt
= m
√
v2 − 1.

(2.53)

The corresponding equation motion is written as

d

dt

(
∂L

∂v

)
− ∂L

∂x
= 0

=
d

dt

(
mv√
v2 − 1

)
.

(2.54)

Here we take the x-axis in the direction of velocity. If the inertial mass does not depend on
time, this leads to a constant velocity. Therefore, particles with the above world interval
move linearly with constant velocity. The energy and the momentum calculated based
on the methodology in analytical mechanics from this Lagrangian reproduce that of the
special theory of relativity.

By the way, in terms of the metric tensor, Equation (2.51) is written as

ds2 = gµνdx
µdxν (2.55)

with the metric tensor
gµν = diag(−1, 1, 1, 1) =: ηµν . (2.56)

This metric tensor is called the Minkowski metric, and as we have seen, it has the special
meaning of ’metric of an inertial system (for an arbitrary particle) in special relativity’.
We use the symbol eta to distinguish it from other metrics.

*11 When defining a positive inner product for an arbitrary vector, it is called a Riemann metric, but
the theory of relativity deals with the pseudo-Riemann metric in which the inner product can be either
positive or negative.
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Einstein equations

As we have already seen, there are two guiding principles of GR. First, we summarize
how they are incorporated into the theory.

i) Equivalence principle
The weak equivalence principle is already incorporated in special relativity. Therefore,

the point here is that a local inertial system where special relativity holds can always be
taken. Since the local inertial system refers to a system that cancels the gravitational
acceleration locally, the question is whether there is a system in which the mass point
moves with a constant velocity even if gravity works. From the viewpoint of Riemannian
geometry, this question is the same as that whether there is always a coordinate transfor-
mation that transforms a metric tensor into a Minkowski metric. The answer is always
yes, at least in terms of degrees of freedom (Schutz 1985). In other words, as long as using
Riemannian geometry, the equivalence principle is naturally supported.

ii) General principle of relativity
This principle means that the physical quantity and the physical law are invariant

with respect to the coordinate transformation. In that sense, a scalar quantity does not
depend on the coordinates, and the physical law does not depend on the coordinates if it
can be expressed by the tensor equation as follows. Under the coordinate transformation,
the tensor T is transformed as

T µ
′
1,µ

′
2,···

ν′1,ν
′
2,··· =

(
∂xµ

′
1

∂xµ1

)(
∂xµ

′
2

∂xµ2

)
· · ·
(
∂xν

′
1

∂xν1

)(
∂xν

′
2

∂xν2

)
· · ·T µ1,µ2,···ν1,ν2,···, (2.57)

or, defining Jacobian of the coordinate transformation xµ → xν
′

as Λν′
µ, it is expressed as

T µ
′
1,µ

′
2,···

ν′1,ν
′
2,··· = Λµ′1

µ1
Λµ′2

µ2
· · ·Λν1

ν′1
Λν2

ν′2
· · ·T µ1,µ2,···ν1,ν2,···. (2.58)

Though the tensor itself can change depending on the coordinates, the amount of scalar
created by taking contraction between the tensor and the coordinate base does not depend
on the coordinates. Thus, if the law of physics as the equation of motion is written by
tensor, the general principle of relativity is satisfied.

Based on these tools, we can derive the Einstein equation as following.
The energy/momentum conservation law and the Poisson equation of Newtonian mechan-
ics are the hint of the derivation. First, we define the energy-momentum tensor

Θµν := ρ0
dxµ

ds

dxν

ds
. (2.59)

Here ρ0 := m/V , where m and V are the rest mass and volume of the fluid element respec-
tively. From analytical mechanics, energy/momentum conservation laws are summarized
in the form of (√−g gσµΘµν

)
,ν
− 1

2

√−g gµν,σΘµν = 0 (2.60)

with the additional second term due to space-time geometry. Equation (2.60) should
hold at any coordinate system. Here, from the analogy of Poisson equation, the relation
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between the space-time geometry and the energy-momentum tensor in the form of

κΘµν = Γ µν (2.61)

is expected, where κ is a constant and Γ µν is a tensor which consists of up to the second
derivative of the metric tensor.

On the other hand, the identity on the metric is transformed as(√−g gσµϑµν),ν − 1

2κ

√−g gµν,σ(−∆µν + κϑµν) = 0

ϑµν := − 1

2κ
(gαµgβνgτρ,αg

τρ
,β −

1

2
gµνgαβgτρ,αg

τρ
,β)

∆µν :=
1√−g (gαβ

√−g gµν,β)α − gαβgτρgµτ ,αgνρ,β.

(2.62)

Substituting Equation (2.61) to Equation (2.60) and comparing it to Equation (2.62),

Γ µν = ∆µν − κϑµν (2.63)

is necessary for making the Equation (2.60) always valid. As a consequence, the conser-
vation Equation (2.60) is written as(√−g gσµ(Θµν + ϑµν)

)
,ν

= 0 (2.64)

and generalized Poisson equation Equation (2.61) is written as

∆µν = κ(Θµν + ϑµν). (2.65)

Though we omit the proof here, this equation is the tensor equation. Today Equation
(2.61) is rewritten as

Gµν = κT µν (2.66)

and we call it Einstein equation with Einstein tensor Gµν and the energy-momentum
tensor T µν . The coefficient κ is determined to reproduce Newton’s Poisson equation
4φ = 4πGρ in the limit of gµν → ηµν , ρ� p*12 : κ = 8πG. Also, the energy-momentum
conservation is written as

T µν;µ = 0 (2.67)

(therefore Gµν
;µ = 0 as well).

Interestingly, even if you add the term Λgµν with a constant Λ to the left side of
Einstein equation, it is still a tensor equation that satisfies (Gµν + Λgµν);µ = 0 (→ en-
ergy/momentum conservation), and Einstein adds it to reproduce the closed universe
without boundaries that Einstein had imaged. This Λ is today called cosmological con-
stant and attracting attention as a cause of acceleration in the expansion speed of the
Universe.

Using linearized Einstein equations, we can decompose a scholar mode corresponding
to the density field from other modes, and derive the relativistic fluid equations in an
appropriate gauge. However, as it is a good approximation at the scale of interest, here
we assume that the background space-time and density field is decoupled and the density
field evolves according to the Newtonian fluid equations.
*12 In a uniform isotropic space-time such as flat space-time ηµν , the energy-momentum tensor can be

written only by ρ and p. See the section on uniform isotropic solutions following.
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Chapter 3

Homogeneous and isotropic universe

3.1 FLRW Space-Time

Friedmann equation
The homogeneous and isotropic metric is represented by FLRW (Friedmann-Lemaitre-
Robertson-Walker) metric*1 :

ds2 = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2dΩ2

)
, (3.1)

where dΩ2 = dθ2 + sin2 θ dφ2. Matrix representation of FLRW metric with coordinates
(t, x, y, z) is

gµν =

(
−1 0
0 gij

)
(3.2)

and using this, we can calculate Ricci tensor

Rµν =

(
−3 ä

a
0

0
(
ä
a

+ 2
(
ȧ
a

)2
+ 2K

a2

)
gij

)
, (3.3)

and Einstein tensor

Gµν = Rµν −
1

2
R gµν

=

(
3
(
ȧ
a

)2
+ 3K

a2
0

0 −
(

2 ä
a

+
(
ȧ
a

)2
+ K

a2

)
gij

)
.

(3.4)

Therefore, the left hand side of Einstein equation is given by

Gµν + Λ gµν =

(
3
(
ȧ
a

)2
+ 3K

a2
− Λ 0

0 −(2 ä
a

+
(
ȧ
a

)2
+ K

a2
− Λ)gij

)
. (3.5)

*1 This metric can be easily obtained by considering the total derivative of a virtual four-dimensional
sphere:

x2 + y2 + z2 + w2 = K−2

(w disappear by using definition of world interval, dl2 = dx2 + dy2 + dz2 + dw2). The point is to consider
Euclidean neighborhood.

29
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Here, consider a fluid element that is static in this coordinate system (a fluid element
that moves with the coordinates). The four velocity in this coordinate system is uµ =
(1, 0, 0, 0). By definition, T00 is the energy density ρ, and T0i and Ti0 are zero, assuming no
energy flux. In regard to the spatial component of the energy tensor, first, it is symmetric
Tij = Tji because of homogeneity and isotropy *2 . Also, since the acceleration of the
particle is also uniform and isotropic, there is no shear force. Therefore the off-diagonal
component of Tij is zero. Because of the covariance of the tensor equation, Tij must be
a diagonal matrix in any coordinate system. Such diagonal matrices are proportional to
the identity matrix. Therefore, we can find Tij = pδij with scholar p. As a result, the
energy-momentum tensor of the uniform isotropic material field becomes the following
perfect fluid form:

Tµν =

(
ρ 0
0 p δij

)
. (3.6)

Therefore, under the assumption of uniform isotropic, the following two independent
equations out of the 16 Einstein equations are obtained*3 :

H2 :=

(
ȧ

a

)2

=
8πG

3
ρ− K

a2
+

Λ

3
(3.7)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (3.8)

where H denotes Hubble parameter. These equations, especially the upside one is referred
to as the Friedmann equations. When these two equations are combined, the energy
conservation law:

ρ̇ = −3H(ρ+ p). (3.9)

Any two of these three equations 3.7 - 3.9 can be used, but the combination of 3.7 and
3.9 will be easy to handle. The Friedmann equation can be expressed more simply with
the introduction of the density parameter Ω as

1 = Ωr + Ωm + Ωk + ΩΛ
Ωr := 8πGρr

3H2 =
H2

0

H2
Ωr0

a4

Ωm := 8πGρm
3H2 =

H2
0

H2
Ωm0

a3

Ωk := − c2k
a2H2 =

H2
0

H2
Ωk0

a2

ΩΛ := c2Λ
3H2 =

H2
0

H2 ΩΛ0.

(3.10)

Here we show light speed c. ρ is the energy density. The subscripts r,m, k,Λ denotes radi-
ation*4 , (non-relativistic) matter, curvature, and the cosmological constant, respectively,

*2 This is generally required for making angular momentum ∝ (Tij − Tji)/l2 with scale of the system l
finite at l→ 0.
*3 In the above calculation, K is treated as a constant from the beginning, but even if we consider

K = K(t), the constraint condition K̇ = 0 is additionally derived from the off-diagonal component.
*4 The term radiation refers to a ’relativistic’ substance whose kinetic energy is sufficiently larger than

mass energy and the sound speed is almost the speed of light (cs ∼ c/
√

3)



3.2. DISTANCE MEASUREMENT 31

and of those mentioned above as ’matter’, the component with p� ρ and the component
with p � ρ are called matter and radiation respectively here. The a dependency of the
density parameters in Equation (3.10) is given by the analogy of statistical mechanics.
We give the equation of state

p = wρ (3.11)

as a closure relation. For each of radiation, matter, curvature, and cosmological con-
stant, w = 1/3, 0, −1/3, −1 is appropriate considering the ratio of 00 component to ii
component of energy tensor. With Equation (3.9), it is transformed as

ρ ∝ a−3(1+w). (3.12)

3.2 Distance Measurement

With the cosmological principle, it is natural to regard FLRW space-time as a background
universe. We can measure the distances by observing the electromagnetic wave from
heavenly bodies and see how they are redshifted by Doppler effect. Considering the
situation where the electromagnetic wave with the wavelength λemit is emitted from a
heavenly body at (temit, remit, 0, 0) and become wavelength λ when it observed at (t, 0,
0, 0), the redshift z is defined as

z =
λ− λemit

λemit

=
λ

λemit

− 1

= a−1(t)− 1.

(3.13)

In the last line of the Equation (3.13), we use the facts described below. The electromag-
netic wave propagates on null geodesics ds = 0 and it satisfies dθ = dφ = 0 by isotoropy
of the Universe. Therefore, from Equation (3.1), we can derive

dt

a(t)
=

dr√
1−Kr2

. (3.14)

Moreover, assuming that the heavenly body does not move relative to the background
universe, we can see∫ t+∆t

temit+∆temit

dt′

a(t′)
=

∫ remit

0

dr′√
1−Kr′2

=

∫ t

temit

dt′

a(t′)
(3.15)

for the time intervals ∆temit and ∆t which are sufficiently smaller than the propagation
time scale t− temit. Therefore, for the first order of ∆t ∼ ∆temit,

∆t

a(t)
=

∆temit

a(temit)
. (3.16)

Regarding ∆t or ∆temit as the frequency of the electromagnetic wave at the time of
emission or observation, and choosing a(t) to be one at the current time, the last line of
Equation (3.13) can be derived.
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By the way, if we assume we can measure the distance at the same time in addition
to Equation (3.14), we can obtain ds with dt = 0 as

ds = a(t)
dr√

1−Kr2
. (3.17)

The comoving distance χ is defined as a value which is obtained by integrating the ds in
Equation (3.17) in the current time a(t) = 1, as

χ =

∫ remit

0

dr′√
1−Kr′2

=

∫ t

temit

dt′

a(t′)
=

∫ z

0

dz′

H(z′)
. (3.18)

Conversely, r is written as a function of χ as

r(χ) =


(−K)−1/2 sinh

[
(−K)1/2χ

]
(K < 0)

χ (K = 0)

K−1/2 sin
[
K1/2χ

]
(K < 0)

. (3.19)

When the absolute luminosity L [erg/s] of the emitter is known and apparent brightness
F [erg/s/cm2] is observed, they satisfy the following relationship:

F =
L

4πr2(1 + z)2
(3.20)

because F decreases as the beams spread out to the spherical surface around emitter
= 4πr2, the energy E of a beam is lost due to redshifted wavelength as E ∝ λ−1 =
(λemit(1 + z))−1 from Equation (3.13), and the linear density of a beam also decreases as
the expansion of the Universe. Here, we define the luminosity distance dL as

dL :=

√
L

4πF
= r(χ)(1 + z). (3.21)

On the other hand, from the analogy in the Euclid space (space without expansion nor
curvature), we can define a kind of distance from true scale of something like a heavenly
body l and its visual angle ∆θ on the celestial sphere as

dA :=
l

∆θ

=

∫
dθ ar/∆θ

∼ ar∆θ/∆θ

= r(χ)/(1 + z),

(3.22)

where we have used Equation (3.1) with dt = dr = dφ = 0 in the second line and have
applied Limber approximation in the third line. This dA is called the angular distance.

Now that the relation between theoretical model parameters and the observable dis-
tances are given, we can estimate model parameters from observation. One of the methods
we can apply for the objects that we know the true shape but do not know the size is the
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Alcock Paczynski (AP) test (Alcock & Paczynski 1979). As the simplest case, let us con-
sider observing spherical (isotropic) object which moves with the background space-time
at redshift z. We can estimate comoving length in the direction perpendicular/parallel to
the line of sight as

R⊥(z) = ∆θ

∫ z

0

c

H(z′)
dz′ (3.23)

R‖(z) =

∫ z+∆z

z

c

H(z′)
dz′ (3.24)

for given cosmological model: H(z). The point here is that, since we know this object is
spherical, R⊥ should be equal to R‖ when we choose correct cosmology:

1 =
R⊥(z)

R‖(z)
∼ χ(z)∆θ

c
H(z)

∆z
. (3.25)

Therefore, the theoretical prediction and observed values are related as

H(z)χ(z) =
c∆z

∆θ
. (3.26)

Figure 3.1: The illustration of the idea of the AP test. The visual angle ∆θ and depth
in redshift space ∆z are the observables.
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Chapter 4

Large scale structure of the Universe

4.1 Linear Perturbation Theory

We solve the set of equations below:

Continuity equation
∂ρ

∂t
+∇r · (ρu) = 0, (4.1)

Euler equation
∂u

∂t
+ (u · ∇r)u+

∇rp

ρ
+∇rφ = 0, (4.2)

Equation of state
p = p(ρ, S), (4.3)

Poisson equation
4r φ = 4πGρ− Λ. (4.4)

Poisson equation is derived from Einstein equation with cosmological constant at Newto-
nian limit. Here we introduce comoving coordinate x

x =
r

a(t)
, (4.5)

with scale factor a(t), in contrast to physical coordinate r. Then the differential values
are written as

∇r =
∇x

a
(4.6)(

∂f

∂t

)
r

=

(
∂f

∂t

)
x

− ȧ

a
(x · ∇x)f. (4.7)

We define physical velocity u and peculiar velocity v as

u =
dr

dt

= ȧx+ a
dx

dt
=: ȧx+ v.

(4.8)

35
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v/a is called comoving velocity. Here, the first term on the right side is the effect of
uniform expansion of the space, and the second term can be interpreted as the deviation
from it. Therefore, v is a perturbation amount. Then, continuity equations and Euler
equations are deformed as

ρ̇+ 3Hρ+∇x · (ρv/a) = 0 (4.9)

v̇ +Hv +
1

a
(v · ∇x)v = −1

a
∇xΦ−

∇xp

aρ
(4.10)

with

Φ = φ+
1

2
äa|x|2. (4.11)

Furthermore, the field δ that represents the density fluctuation and the field δp that
represents the pressure fluctuation are introduced below

δ(t,x) ≡ ρ(t,x)− ρb(t)
ρb(t)

(4.12)

δp(t,x) ≡ p(t,x)− pb(t). (4.13)

The subscript b represents the background space-time, and here it means the total spatial
mean value. With the conservation of mass d(ρba

3)/dt = (ρba
3)̇ = 0, we can rewrite

continuity equation, Euler equation and Poisson equation with these perturbatives and Φ
as below:

Continuity equation’

δ̇ +∇x · {(1 + δ)v/a} = 0, (4.14)

Euler equation’

v̇ +Hv +
1

a
(v · ∇x)v = −1

a
∇xΦ−

∇x(δp)

aρb(1 + δ)
. (4.15)

Poisson equation’

4xΦ = 4πGa2ρb(1 + δ)− a2Λ + 3äa

= 4πGa2(ρbδ − 3pb δp).
(4.16)

Here, we have chosen the uniform and isotropic space-time as the background geometry
and used Equation (3.8) in the second line of Equation (4.16).

What we want to do first is to combine the continuity equation (4.14) and Euler
equation (4.15) to eliminate v. From the rotation of continuity equation (4.14), we can
see

(a∇x × v)̇ = −∇x × [(v · ∇x)v]

= [(∇x × v) · ∇x]v − (v · ∇x)(∇x × v)− (∇x · v)(∇x × v).
(4.17)

In linear order, it leads to (a∇x × v)̇ = 0 ⇒ (∇x × v)̇ ∝ a−1(t). Therefore, rotv decays
while the fluctuation δ is small. Even in non-linear regime, since∇x×v = 0 is the solution
of Equation (4.17), if rotv sufficiently decays in the linear evolution era, it is expected to
stay small.
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As the simplest way, we can substitute the velocity obtained from the continuity
equation

v = −a∇
−1
x δ̇

1 + δ

= −a∇−1
x δ̇

(
1− δ +

1

2
δ2 + · · ·

)
= −a∇−1

x δ̇ + aδ∇−1
x δ̇ +O(δ3)

(4.18)

to Euler equation, noting ∇x · (∇−1
x δ) := δ. Although there are degrees of freedom for rot

for the inverse operation of nabla as div rot of any vector field becomes 0, we ignore it
here from the reason described above.

Here, consider the terms up to the linear order with respect to δ and δp. We can start
from

δ̈ + 2Hδ̇ − 4πGρbδ −
4x(δp)

a2ρb
= 0. (4.19)

Now, if we take the variation of the equation of state (4.3) for matter, we see

δp = cs
2ρbδx +

(
∂p

∂S

)
ρ

δS (4.20)

with the speed of sound cs =
√

(∂p/∂ρ)S. Considering the adiabatic process δS = 0,

δp = cs
2ρbδ (4.21)

is given and Equation (4.19) leads to

δ̈ + 2Hδ̇ − 4πGρbδx −
cs

2

a2
4x δ = 0. (4.22)

When the pressure is 0 such as the case of CDM, or when the scale of fluctuation is
sufficiently larger than the scale capable of gravitational growth*1 , the last term on the
left side can be ignored:

δ̈ + 2Hδ̇ − 4πGρbδ = 0. (4.26)

*1 Jeans length. Equation (4.22) in the Fourier space

δ̈k + 2Hδ̇k −
(

4πGρb +
cs

2k2

a2

)
δk = 0 (4.23)

is the form of the wave equation. In fact, if we denote the third term of Equation (4.23) as V and
substitute δk = ewt, we see {

w2 + 2Hw − V
}
δk = 0 (4.24)

and the solution δk± = e(−H±
√
H2+V )t, which exponentially grows for the case of δk+ and V > 0, or damp

for other cases. The wave number k which satisfies V = 0 is called Jeans wave number kJ :=
√

4πGρb a/cs

and its corresponding scale is called Jeans wavelength λJ := kJ
2π a = cs

√
π
Gρb

. With this coefficient,

Equation (4.23) is rewritten as

δ̈k + 2Hδ̇k −
cs

2

a2
(k2J + k2)δk = 0. (4.25)
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Introducing y = aδ, this equation is rewritten as

ÿ −
(
ä

a
+ 4πGρb

)
y = 0. (4.27)

On the other hand, from Equation (3.8) and ρ̇b = 3Hρb,

...
a − äȧ

a
− 4πGȧρb = 0. (4.28)

Therefore, y = aδ = ȧ is a particular solution of Equation (4.26). Another solution can
be found by substituting y = ȧw to (4.27) as

w ∝
∫
da

ȧ3
. (4.29)

As a result, the solutions of Equation (4.26) are these growing mode:

D+ ∝ H

∫ a

0

da

a3H3
(4.30)

and the decaying mode:
D− ∝ H. (4.31)

Here, we define the linear growth factor D(t) and the linear growth rate f(t) so that

δ ∼ D+(t)

D+(t0)
δ0 =: D(t)δ0, (4.32)

− ∇ · v
a

= δ̇ = ˙D(t)δ0 =
Ḋ(t)

D(t)
δ =: Hfδ, (4.33)

where the decaying mode is ignored. The linear growth rate f also can be written as

f =
Ḋ/D

ȧ/a
=
dlnD

dlna
. (4.34)

It is known that for wide parameter range, f ∼ Ω0.55
m is a good approximation (Linder

2017).
In the standard cosmology, the Universe experience radiation-dominant era followed

by matter-dominant era after big-bang. Especially in the matter dominant universe, δ
and velocity in the linear order are given by{

δMD
(1) = aδ0

vMD
(1) = −Hf∇−1

x δ0,
(4.35)

for initial over density δ0, if we ignore the decaying mode.

4.2 Matter Correlation and Polyspectrum

We measure the correlation between two fields (functions of position) through the corre-
lation function. It is especially called the auto correlation function when the two fields
are the same field, and if not, it is called cross correlation function. Here, we simply refer
to the self correlation function as the correlation function.
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4.2.1 Ensemble average and correlation function

Given the probability that the function δ(x) takes the value between δ and δ+dδ is ρ[δ]dδ,
the ensemble average is given by

〈δ〉 :=

∫
dδ ρ[δ]δ. (4.36)

Now consider the ensemble average of the product of the values at two points (called
second moment). If the events at each position are independent of each other, the proba-
bility that δ(x) takes δ ∼ δ+ dδ and δ′ ∼ δ′+ dδ′ at x and x′ respectively is given by the
product of the single event probabilities ρ[δ]ρ[δ′]dδdδ′. Therefore, the second moment of
the δ(x) is written as

〈δ(x)δ(x′)〉 =

∫
dδ

∫
dδ′ ρ[δ]ρ[δ′]δδ′ = 〈δ〉2 . (4.37)

However, when the values of δ(x) at x and x′ are correlated, the probability density
function changes depending on the value taken at another point as ρ[δ]ρ′[δ, δ′]δδ′, and the
second moment changes as

〈δ(x)δ(x′)〉 =

∫
dδ

∫
dδ′ ρ[δ]ρ′[δ, δ′]δδ′, (4.38)

which is generally different from 〈δ〉2. Therefore, the difference between 〈δ(x)δ(x′)〉 and
〈δ〉2 characterizes the degree of correlation. We define the two-point correlation function
of the δ(x) as

〈δ(x)δ(x′)〉c := 〈δ(x)δ(x′)〉 − 〈δ(x)〉 〈δ(x′)〉 . (4.39)

More generally, the higher-order correlations are defined by the similar discussions as

〈δ1〉c := 〈δ1〉
〈δ1δ2〉c := 〈δ1δ2〉

− 〈δ1〉c 〈δ2〉c
〈δ1δ2δ3〉c := 〈δ1δ2δ3〉

− 〈δ1〉c 〈δ2〉c 〈δ3〉c
− 〈δ1〉c 〈δ2δ3〉c − 〈δ2〉c 〈δ1δ3〉c − 〈δ3〉c 〈δ1δ2〉c

〈δ1δ2δ3δ4〉c := 〈δ1δ2δ3δ4〉
− 〈δ1〉c 〈δ2〉c 〈δ3〉c 〈δ4〉c
− 〈δ1〉c 〈δ2δ3δ4〉c − 〈δ2〉c 〈δ1δ3δ4〉c − 〈δ3〉c 〈δ1δ2δ4〉c − 〈δ4〉c 〈δ1δ2δ3〉c
− 〈δ1δ2〉c 〈δ3δ4〉c − 〈δ1δ3〉c 〈δ2δ4〉c − 〈δ1δ4〉c 〈δ2δ3〉c
− 〈δ1δ2〉c 〈δ3〉c 〈δ4〉c − 〈δ1δ3〉c 〈δ2〉c 〈δ4〉c − 〈δ1δ4〉c 〈δ2〉c 〈δ3〉c
− 〈δ1〉c 〈δ2〉c 〈δ3δ4〉c − 〈δ1〉c 〈δ3〉c 〈δ2δ4〉c − 〈δ1〉c 〈δ4〉c 〈δ2δ3〉c

〈δ1δ2δ3δ4δ5〉c :=

...

(4.40)

(the argument x is omitted).
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4.2.2 Ergodic hypothesis

In the real observation, we can know only one universe and one density field. Therefore,
strictly speaking, we cannot know the δ(x) and δ′(x′) had been generated by the same
field. Instead, we can observe countless δ(x) at different positions. Here, we assume a kind
of ergodic hypothesis and assume these δ(x) at different positions are generated by the
same field. The ergodic hypothesis is usually described as the idea that, in a dynamical
system, when we trace a representative point over a long time, the time average of the
physical quantity the point takes becomes equal to the overall ensemble average. Assuming
the uniformity and isotropy of the background universe, we can regard the all points in
the space as identical, and we adopt the ergodic hypothesis with the space coordinate
instead of time. Then, the probability that the function δ(x) takes the value δ is given
by

ρ[δ] =

∫
V

δD(δ(x)− δ)d3x/V, (4.41)

where V denotes the survey volume and
∫
V

is the integration over V . δD(x) is the Dirac
delta function. Therefore, the ensemble average of δ(x) is derived as

〈δ(x)〉 =

∫
V

d3x′
∫

dδ δ δD(δ(x′)− δ)/V

=

∫
V

d3x′ δ(x′)/V.

(4.42)

In the same way, we can consider the second moment. The probability that δ(x) takes
the value δ at the region d3x around x and also takes δ′ at the region d3x′ around x′ is
given by

ρ[δ]ρ′[δ, δ′] =

∫
V

d3x

∫
P

d3x′δD(δ(x)− δ)δD(δ(x′)− δ′) /V P, (4.43)

where the region P is δD(x′) or the spherical shell centered at δ(x) when we assume
isotropy of the random field δ(x). The second moment is written as

〈δ(x)δ(x′)〉 =

∫
V

d3x

∫
P

d3x′
∫
dδ

∫
dδ′δδ′δD(δ(x)− δ)δD(δ(x′)− δ′)/V P

=

∫
V

d3x

∫
P

d3x′ δ(x)δ(x′)/V P.

(4.44)

Hereafter, we take P as the spherical shell and then 〈δ(x)δ(x′)〉 become the function of
|x′ − x| only. We often denote the isotropic two-point correlation function with ξ as

ξ(x) := 〈δ(x)δ(x′)〉c||x− x′|=x = 〈δ(x)δ(x′)〉||x− x′|=x − 〈δ(x)〉2 . (4.45)

In the context of cosmology, we often assume the Gaussian random field as the pri-
mordial density fluctuation:

G(δ) =
1√

2πσ2
exp

[
−(δ − µ)2

2σ2

]
, (4.46)
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where µ = 〈δ〉 and σ2 = 〈(δ − µ)2〉. In this case, the moments are written as

〈δ〉 =

∫
dδ G(δ)δ

=

∫ ∞
−∞

dδ
1√

2πσ2
exp

[
−(δ − µ)2

2σ2

]
δ

= µ,

(4.47)

〈
δ2
〉

=

∫
dδ

∫
dδ′ G(δ)δD(δ − δ′)δδ′

=

∫ ∞
−∞

dδ
1√

2πσ2
exp

[
−(δ − µ)2

2σ2

]
δ2

=
1√

2πσ2

∫ ∞
−∞

dχ exp

[
− χ2

2σ2

]
(χ+ µ)2

= µ2 + σ2,

(4.48)

〈
δ3
〉

=

∫ ∞
−∞

dδ
1√

2πσ2
exp

[
−(δ − µ)2

2σ2

]
δ3

= µ3 + 3µσ2,

(4.49)

〈
δ4
〉

=

∫ ∞
−∞

dδ
1√

2πσ2
exp

[
−(δ − µ)2

2σ2

]
δ4

= µ4 + 6µ2σ2 + 3σ4.

(4.50)

In summary, from the moments

〈δ〉 = µ〈
δ2
〉

= µ2 + σ2〈
δ3
〉

= µ3 + 3µσ2〈
δ4
〉

= µ4 + 6µ2σ2 + 3σ4

...

(4.51)

we can compute the cumulants using Equation (4.40) as

〈δ〉c = µ〈
δ2
〉
c

= σ2〈
δ3
〉
c

= 0〈
δ4
〉
c

= 0

...

(4.52)

In fact, the Gaussian random field is characterized only by the average µ and the variance
σ2, and all of the higher cumulants become zero.

We often use the Gaussian random field based on the central limit theorem, which
states that for a population {x} with an arbitrary mean µ and variance σ, if the number
of samples n is large enough, the sample mean distribution

√
n(x̄− µ)/σ approaches to
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the Gaussian distribution (as the effective variance decreases). However, some inflation
models lead to the deviation from the Gaussian distribution in the primordial density
fluctuation. In this sense, the odd order cumulants of the large-scale structure of the
Universe is an important clue to test the early cosmic model.

4.2.3 Polyspectrum

Let us consider the correlation function in the Fourier space. The correlation function is
transformed by the Fourier transformation as

〈δ(k)δ(k′)〉c =

〈∫
d3x e−ik·xδ(x)

∫
d3x′ e−ik

′·x′δ(x′)

〉
c

=

∫
d3x

∫
d3x′ e−ik·x−ik

′·x′ 〈δ(x)δ(x′)〉c .
(4.53)

Substituting Equation (4.45), it is written down as

〈δ(k)δ(k′)〉c =

∫
d3x

∫
d3x′ e−ik·x−ik

′·x′ξ(|x− x′|)

=

∫
d3x̃

∫
d3x′ e−ik·(x̃+ x′)−ik′·x′ξ(|x̃|)

=

∫
d3x′ e−i(k + k′)·x′

∫
d3x̃ e−ik·x̃ξ(|x̃|)

= (2π)3δD(k + k′)

∫
d3x̃ e−ik·x̃ξ(|x̃|)

=: (2π)3δD(k + k′)P (k).

(4.54)

Now we see the Dirac delta function in Equation (4.54), which shows that each Fourier
mode is independent of other modes. We call P (k) as the power spectrum. Similarly, we
define the n-th polyspectrum P (n)(k1, · · · ,kn) as

〈δ(k1) · · · δ(kn)〉c =: (2π)3δD(k1 + · · ·+ kn)P (n)(k1, · · · ,kn). (4.55)

The n-th order polyspectrum shows the correlation between n fields which satisfy k1+· · ·+
kn = 0, and we can know the detailed statistical feature of the field δ(x) by using higher-
order polyspectrums. However, the cosmologists today mainly use the power spectrum
(second order) and the bispectrum (third order) because of the high computational cost
and low observably (when δ is small and the linear theory works, the higher order spectrum
becomes extremely small). Such equivalence of the auto correlation function in Fourier
space and the power spectrum is called Wiener-Khintchine theorem.

4.2.4 Power spectrum in cosmology

Since a perfectly uniform field cannot grow by gravity, there must be even a slight density
fluctuation at the beginning. Although the generation mechanism of the density fluctu-
ation in the early universe is still an open question, the classicalization of the quantum
fluctuation due to cosmic inflation is a promising candidate. Because of the exponential
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expansion of the causal patch, we can explain the global uniformity currently observed.
There is the model uncertainty such as the nature of the field(s) which supplies(supply)
the energy for the inflation, and the statistical feature of the initial fluctuation generated
by each model is generally different from each other. However, the CMB observation
indicates that the power low index of the primordial power spectrum is ns ∼ 1.

Harrison-Zel’dovich spectrum

The power spectrum with the power low index ns = 1 is called Harrison-Zel’dovich spec-
trum:

P (k) ∝ k. (4.56)

This spectrum is naturally derived if we assume the density amplitude in the horizon
(causal patch) is constant as discussed below. First, the mean variance of density fluctu-
ations within the horizon whose radius is given by c/aH = rH ∝ k−1

H is written as∫
x<rH

d3x
〈
δ2
〉
/

4πr3
H

3
=

∫
d3k

(2π)3
P (k)

∫
x<rH

d3x eik·x/
4πr3

H

3

∼
∫ kH

0

k2dk

2π2
P (k)

∼
∫ kH

0

k2dk

2π2
Pi(k)D(t, k)2,

(4.57)

where D(t, k) is the growth facter and Pi(k) denotes the initial (the time where rH =
0) curvature power spectrum. In the radiation dominant era, a ∝ t1/2 and therefore
rH ∝ a ∝ k−1

H . Also, from the linear perturbation theory in GR, the super horizon mode
(typically given by the solution with k � 1) grows by D ∝ a2. Thus,

D ∝ a2 ∝ k−2
H (4.58)

and from dimensional analysis, Pi(k) ∝ kis derived if we assume the density amplitude
independent of the horizon scale.

The linear evolution of the power spectrum

We can roughly describe the time evolution of the power spectrum with linear perturba-
tion theory.

— Radiation dominant (RD) era
First, the radiation dominant period continues for a while after the initial density fluc-
tuation is formed*2 . The perturbative solutions of the Einstein equation in Newtonian
gauge*3 in RD era is a2 for the super horizon mode (k � 1) and constant for the sub
horizon mode (k � 1). From a phenomenological point of view, it can be interpreted that
the pressure hinders the growth of fluctuations on the scale rH , which is the scale that

*2 When the time is reversed, the volume of the Universe decreases, and at some point the matter (non-
relativistic particles) energy density becomes smaller than the radiation energy density, because radiation
energy ∝ a−4 while matter energy ∝ a−3. This time is called matter-radiation equality.
*3 One of the coordinates choice to fix the unphysical degrees of freedom called gauge field in the metric.
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the radiation can reach with its sound speed cs ∼ c. In Figure 4.1, we show the rough
image of the linear growth of the power spectrum. First, in RD era, we know a ∝ t1/2

and thus the horizon scale is written as k(a) = aH/c ∝ 1/a. Then the amplitude grows
before horizon enter by δk ∝ a2 ∝ k−2 (and stop growing after horizon enter). Therefore,
the spectral index becomes P (k)/Pin(k) ∼ δ2

k ∝ k−4 (thus P (k) ∝ k−3) within the horizon
size at each time.

— Matter dominant (MD) era
After matter-radiation equality, matter becomes the leading component of the Universe.
In the linear perturbation theory in Newtonian gauge, the fluctuations of all wavenumber
modes grow equally at a.

The observed power spectrum is shown in Figure4.2.
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Figure 4.1: Matter power spectrum in double-logarithmic graph. kcom denotes comoving
wave number. Initial power spectrum is the Harrison-Zel’dovich spectrum and keq
denotes the wave number corresponding to the horizon scale at matter-radiation
equality.

4.3 Redshift Space Distortion

The shape of the objects in the redshift space is distorted not only by the universal
expansion but also by the peculiar velocity. When we denote the real/redshift space
orthogonal coordinate as xi/xr;i and comoving velocity as vi for i = 1, 2, 3, the relation
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Figure 4.2: Observational constraints on the current matter power spectrum(from
Tegmark et al. 2004).
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between them is given as {
xr;1,2 = x1,2

xr;3 = x3 + v3
H(z)

,
(4.59)

where we have assumed that the object is so far from us that the xr;3 is approximately
always parallel to the line of sight. Because of the mass conservation ρrdx

3
r = ρdx3, we

can estimate the density field in the redshift space with Jacobian as

ρr = ρ det

(
dxi
dxr;j

)

= ρ det

1 0 ∂3v3/H(z)
0 1 ∂3v3/H(z)
0 0 1 + ∂3v3/H(z)


= ρ (1 + ∂3v3/H(z)).

(4.60)

We have treated H(z) as constant within the scale of interest. In the linear order of δ,
the over density can be written as

δr(xr) = δ(x)− ∂3v3/H. (4.61)

By the Fourier transformation and Equation (4.33), we find the redshift space power
spectrum as

Pr(k) = (1 + fµ2
k)

2P (k) (4.62)

with µk = k3/|k|. This relation between the real space power spectrum and the redshift
space power spectrum with linear theory is called Kaiser formula (Kaiser 1987).



Chapter 5

Universal profile of the cosmic void

Since the standard cosmological model is based on the cosmological principle, the sky
averaged quantities are valid for the test of cosmological models. Here we show the
universal density profile of the void and discuss the AP test using it. As has been described
in Section 3.2, the AP test estimates the background expansion history of the Universe
using isotropic objects. We can expect that the void is statistically isotropic object and
thus the averaged void profile is appropriate for the test.

5.1 Void Finders

As I mentioned earlier, voids are frequently explained as under-dense regions. However,
the definition varies depending on researches. In Figure 5.1, we show the dark matter
density field of the LSS. We can roughly identify the under-dense regions by eye. However,
as the center of the void is almost ’nothing’, it is difficult to determine the ’position’ of the
void exactly. Also, though the cosmic voids are mostly observed in the galaxy distribution
as shown in Figure 5.2, the galaxy voids are less distinguishable than the dark matter voids
because of the Poisson noise comes from the discreteness of the data. To make the matter
worse, there are fewer galaxies in the under-dense region and the discreteness is more
pronounced. In this context, the voids are ambiguous features compared to the galaxy or
the galaxy cluster. As a consequence, there are many kinds of void finding procedures as
shown in the following section. In general, each has complementary information and it is
hard to decide which one is better than the other.

5.1.1 Diversity of the void finders

Here we summarize the basic elements that characterize each void finder below. Although
there are 2D void finders and 3D void finders, we focus on the latter here.

The target tracer

For the purpose of the theoretical investigation with N-body simulation, the void finders
using dark matter particles are easy to use. On the other hand, for observational data,
the galaxy void finders and halo void finders are developed.

47
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Figure 5.1: The color shows the dark matter density in the IllustrisTNG simulation
(Nelson et al. 2018), where the blue/yellow indicates the low/high density. The length of
a side is 205 Mpc/h.

Figure 5.2: The galaxy distribution observed by 2dF galaxy survey (from Nelson,
Springel, Pillepich, Rodriguez-Gomez, Torrey, Genel, Vogelsberger, Pakmor, Marinacci,
Weinberger, Kelley, Lovell, Diemer & Hernquist 2dF). A blue dot denotes a galaxy.
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• DM particles:
we can use the position and the velocity (e.g. Hahn et al. 2007; Neyrinck 2008;
Platen et al. 2007; Plionis & Basilakos 2002; Shandarin et al. 2006)

• Halos:
we can use the mass and size of each halo as well as the position and the velocity
(e.g. Brunino et al. 2007; Gottloeber et al. 2003)

• Galaxies:
we can use the species (brightness, mass, shape, colour,· · · ), the position and the
velocity (e.g. Foster & Nelson 2009; Hoyle & Vogeley 2002)

Density estimation

As the definition of the void is the low density region, we should estimate the density from
discrete particle distributions. The (effective) window functions diverse depending on the
finder and some finders use multiple methods in combination. Also, after the density field
estimation, we can further smooth the density field with some given window functions.

• Spherical window function:
count the number (in the case of the galaxy or halo distribution, we may also use
mass weighted value, for example) of the point sources within the spherical patch
(e.g. Brunino et al. 2007)

• Regular grid:
similar to the case of spherical window function but the window function is rect-
angular. This is very useful for numerical computation, but the void shape will be
anisotropic due to anisotropy in the window function (e.g. Gottloeber et al. 2003)

• Function of proximity and separation length:
such as Voronoi/Delaunay tesselation (see Figure 5.3). Both are the special gridding
algorithms where the window function flexibly changes depending on the particle
separation but is uniquely determined by particle positions (e.g. Neyrinck 2008;
Platen et al. 2007)

• Gravitational potential:
determine the void from gravitational potential field (e.g. Hahn et al. 2007)

Surface determination

Some void finder assume fixed shape but there are those perform grid connection based
on some algorithms to find irregular shape.

• Fixed shape:
determine the shape of the void by hand. The sphere is commonly used (e.g. Brunino
et al. 2007; Gottloeber et al. 2003)

• Block connection:
for example, Mueller et al. (2000) first prepare empty box and paste neighbor empty
layers on the surface (see also Kauffmann & Fairall 1991)
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• Watershed algorithum:
in this algorithm, the density field on the grid cell is given and the cells flow in to
the neighbour cell which has the lowest density among the neighbours. The goal
of these flows is the local minima. Then, we can find a group of cells whose goal
point is the same and the basin which has one minimum point in it is regarded as
a void(e.g. Neyrinck 2008; Platen et al. 2007)

Of course, these are just the main process of the void finders and there is also variety
in the post processes. Colberg et al. (2005) have compared the voids found by various
kind of void finders as shown in Figure 5.5. Not only the apparent shape but the centre
varies significantly depending on the void finder.

5.1.2 VIDE (The Void IDentification and Examination Toolkit)

In this and the following part, we describe the specific void finders. VIDE(Sutter et al.
2015) is the wrapper for ZOBOV(Neyrinck 2008). It estimates the density field from the par-
ticle distribution by Voronoi tessellation method, where the space are divided by bisecting
planes between particles to Voronoi cells as shown in Figure 5.3. Since each Voronoi cell
has one particle in it, the inverse volume of each cell can be regarded as the density.

The voids are basically found based on the watershed algorithm. Let us consider
the water flowing along the density gradient. For each cell, the water flows into the cell
with the lowest density among the adjacent cells and the flow stops at the local density
minimum. The cells that share the same end point of the flow form a basin, which is
called a zone in Neyrinck (2008). Although a zone is a potential void as it has a concave
density profile, further post processes are performed for the purpose of removing the effect
of Poisson noise. First, zones are jointed if the ridge density is less than the threshold
value (default is 0.2 times the average) because such a low-density ridges can be strongly
affected by discreteness noise. In addition, it removes the voids with higher central density
than the threshold value (default is 0.2 times the average again). The central density is
given by the particle number density within the sphere whose volume is 1/43 times the
void volume. The voids of smaller size than the simulation resolution are also removed,
if any.

In the zone joint process, as we lower the threshold, we can find smaller voids in the
voids found with original threshold. We call the large void a parent and the smaller ones
inside children. In VIDE, the void hierarchy is labeled so that the voids without parent is
0 and the children of 0-labelled voids are 1, and so on (see Figure 5.4).

5.1.3 Regular grid watershed void finder

This is the void finder we have made for the purpose of analysing the voids in the regular
grid data, while VIDE or ZOBOV finds voids from particle distributions. In this void finder,
we start from the density data on the regular grid and perform watershed algorithm to
find voids. We can optionally smooth the density field by a Gaussian filter before that
step. If a particle distribution is given, we use cloud-in-cell weight function (see Figure
5.6) to assign mass for each grid.



5.1. VOID FINDERS 51

Figure 5.3: The boundaries of the Voronoi cells (black lines) and Delaunay triangles
(grey lines) against the random 2D particle distribution.

0
1
2

Void Hierarchy

...

Figure 5.4: A rough sketch of the void hierarchy. Each lines show the boundary of the
voids (boundaries are usually overlapping, but here they are drawn separately for
visibility). As we lower the density threshold for jointing zones, we can find smaller
voids inside voids.
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Figure 5.5: The distributions of the dark matter particles (black dots), those inside the
representative void (green circles) and the galaxies within any void region (blue circles).
The red circle shows the centre of the representative void. The depth and the length of
a side of each panel are 5Mpc/h and 40 Mpc/h, respectively. (from Colberg et al. 2005).
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Figure 5.6: The one dimensional window functions used in four mass assignment
schemes in the real space (left) and Fourier space (right). The origin of the horizontal
axis is the position of each mass particle. H in this figure denotes the grid spaceing and
kNyq := π/H is the Nyquist frequency of the grid. NGP, CIC, TSC and PCS in the
legend are the acronyms of Nearest Grid Point, Cloud In Cell, Triangular Shaped Cloud
and Piecewise Cubic Spline, respectively (from Sefusatti et al. 2016).

5.2 The Universal Void Profile

Hamaus et al. (2014) have investigated the universal profile of the voids found by ZOBOV

(Neyrinck 2008), which uses a watershed algorithm, and have provided a fitting formula:

δ(r) = δc
1− (r/rs)

α

a+ (r/rv)β
(5.1)

with five arbitrary parameters, δc, rv, rs, α, β. This formula successfully describe the mean
radial profile of the large voids with a radius of about 10 Mpc/h. We also try to fit the
voids found in the dark matter distribution in the IllustrisTNG simulation (Nelson et al.
2018) with this formula. The simulation box size and the resolution of this simulation is
Lbox = 205 [Mpc/h] and Lbox/NDM = 205/625 ∼ 0.33 [Mpc/h] respectively, and it also
contains gas particles, while the simulation by Hamaus et al. (2014) contains only dark
matter particles. We estimate the density field from dark matter particle distributions by
counting the number within each regular grid cell. Also, we smoothed the density field by
Gaussian filter with σ = 1Mpc/h. Then, we obtain the radial profiles as shown in Figure
5.7 for z = 0.5 and Figure 5.8 for z = 3. The colour in the figure denotes the difference
in void size. In the right panel of each figure, the radial velocity and linear prediction
using fitted density profile are shown. We see the density is well fitted by Equation (5.1),
though the linear prediction fails a little inside the void. This deviation may be caused
by the insertion error inside the void.
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Figure 5.7: The radial velocity of dark matter particles at z = 0.5. Each colour shows
the corresponding void size. The solid line is the data from Illustris simulation and the
shaded region is the standard deviation in each r bin. Dashed lines show the fitting
function defined by Equation (5.1) for the left panel, and the prediction of linear theory
with the fitted function for the right panel.

Figure 5.8: The same as Figure 5.7, but for z = 3.
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5.3 Void Alcock Paczynski Test

5.3.1 Overview

As discussed in Section 3.2, we can estimate the expansion history of the Universe by the
Alcock Paczynski (AP) test (Alcock & Paczynski 1979) using Equation (3.26).

The AP test has been applied to various observables such as the galaxy correlation
function (e.g. Ballinger et al. 1996; Matsubara & Suto 1996), the gradient of the galaxy
density (Li et al. 2014), and the cosmic voids (e.g. Lavaux & Wandelt 2012; Ryden 1995).
The observational constraints using voids in the recent galaxy survey data are reported
by Sutter et al. (2012), Sutter et al. (2014a) and Mao et al. (2016) as shown in Figure
5.9. They estimate Ωm0 because assuming the flat ΛCDM universe, the cosmological
parameter that can be constrained by the AP test is only Ωm0. They correct the RSD
effect discussed in 4.3 using the results from N-body simulations, but the uncertainty in
the RSD model and small sample number still prevent us from precision constraining Ωm0.

Figure 5.9: The constraints on Ωm0 using voids in SDSS Data Release (DR) 7 (left,
Sutter et al. 2012), SDSS DR7 and DR10 (centre, Sutter et al. 2014a), and SDSS DR12
(right, Mao et al. 2016). The figures are from corresponding papers. Regarding the
right panel, the red line is the pure result and the blue dashed line shows the optimal
constraint given by using theoretical prediction fitting observation.

The very recent study, Endo et al. (2020) have discussed on the AP test using the HI

void, looking the future observation ahead. They use the public results of the latest cos-
mological magnetohydrodynamical simulation: the IllustrisTNG 300 simulation (Nelson
et al. 2018). This simulation includes gas particles as well as the dark matter particles,
and the evolution of the gas is calculated by Arepo code (Weinberger et al. 2020) us-
ing moving-mesh method.Cosmological parameters are determined to be consistent with
Planck 2015 (Ade et al. 2016) and the mass resolution is mDM = 3.8 × 109M� for dark
matter and mDM = 7.0 × 108M� for gas. In their analysis, the dummy particles are
scattered to the region where the density is over the average and the voids are found by
using VIDE (refer to Section 5.1 for the details). They use the axial ratio

edata
i,j :=

∆z

z∆θ

∣∣∣∣
i,j

=
χ(zi)H(zi)

czi

√
∆x2
‖(zi, Reff,j)

∆x2
⊥(zi, Reff,j)

, (5.2)

where ∆x⊥ or ∆x‖ denotes the mean separation of the particles from each void center
along with the perpendicular or parallel to the line of sight, and Reff is the effective radius
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of the void, which is given by the radius of the sphere with the same volume as the
void. To deal with the RSD effect, they modeled the redshift space axial ratio with free
parameters α and β as

∆s‖
∆s⊥

= αf(z)D(z) + β. (5.3)

Here ∆s⊥ or ∆s‖ denotes the mean separation of the particles from each void center along
with the perpendicular or parallel to the line of sight in redshift space. They consider the
Hubble parameter with w as

H(z) = H0

√
Ωm0(1 + z)3 + (1− Ωm0)(1 + z)3(1+w), (5.4)

and find constraints on Ωm0 and w as Figure 5.10. Since they fit the α and β simultane-
ously, which are in fact largely degenerate with the cosmological parameters, the best fit
values are biased. Therefore, we should improve the method for RSD correction further.

Figure 5.10: The constraints on Ωm0 and w (modified from Endo et al. 2020).
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5.3.2 Redshift space void profile

The big issue of the AP test is that the apparent shape of an object also can change
by the Doppler effect due to emitter’s peculiar velocity. To deal with this issue, we can
estimate velocity profile using linear theory assuming a spherical universal profile given
by Equation (5.1). In linear theory, the velocity is given as

vlin(r) =
1

3

f(z)H(z)

1 + z
rδ̄(r),

δ̄(r) =
3

r3

∫ r

0

dr′r′
2
δ(r′)

= δc 2F1

[
1,

3

β
,

3

β
+ 1,−

(
r

rv

)β]

− δc
(
r

rs

)α
3

α + 3
2F1

[
1,
α + 3

β
,
α + 3

β
+ 1,−

(
r

rv

)β]
.

(5.5)

Once the velocity profile is given, we can estimate the redshift space density profile as
follows:

ρr = ρ

[
1 +

1

H(z)

((
1− z2

r2

)
v(r)

r
+
x2

3

r2
∂rv(r)

)]
(5.6)

The density profile in the redshift space given by Equation (4.60) is shown in Figure 5.11.
Now we can estimate H(z) by comparing ρr with the observed profile.

Figure 5.11: The redshift space density profiles computed by using a model density
profile with δc = −0.8, α = 2, β = 5, and rv = rs = 4 Mpc/h, and also corresponding
linear velocity. The left panel is the real space profile and others show the redshift space
profiles at z = 3 (middle panel) and z = 0.5 (right panel) respectively. The contours
represent the over density δ = 1− ρ/ρb and the horizontal/vertical axis is the coordinate
along the direction vertical/horizontal to the line of sight.

5.3.3 Markov Chain Monte Carlo

In section 5.3.2, we have shown that we can estimate H(z) by comparing model density
profile given by Equation (4.60) and observed profile. To fitting these density profile, we
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need to compute the model profile with various parameter set of δc, rv, rs, α, β in addition
to cosmological parameters. Here, we use Markov Chain Monte Carlo (MCMC) methods
for iterative comparison of the profiles. Monte Carlo method is the method to estimate the
probability of an event approximately by repeating experiment/calculation with random
inputs. On the other hand, Markov chain means a discrete stochastic process where each
step is determined only depends on the current state. Once initial state (parameter set)
is given, the point moves in the parameter space with random walk. Roughly speaking,
the next step is chosen so that maximize likelihood P (B|A), which is the probability to
obtain data B when parameter set A is given. In practice, likelihood depends on the error
in the observational data.

In terms of Bayesian analysis, we explain how we obtain the probability for parameter
set A from the observation data B as follows. Bayes’ theorem is given as

P (A|B)P (B) = P (A,B) = P (B|A)P (A), (5.7)

where P (A|B) is the conditional probability of event A when B is given, and P (A,B) is
the probability of observing A and B at the same time. It leads to

P (A|B) =
P (B|A)P (A)

P (B)
=
P (B|A)P (A)∑

A P (A,B)
=

P (B|A)P (A)∑
A P (B|A)P (A)

. (5.8)

Therefore, if we give prior distribution P (A) and assume P (B|A) follows gaussian distri-
bution:

P (B|A) =
∏
i

1√
2πσ2

i

exp

[
−X

data
i −Xmodel(A)

2σ2
i

]
, (5.9)

we can estimate P (A|B), the posterior distribution.

5.3.4 AP test with ideal void

Here we perform the AP test for one ideal void (or we can regard it as an ideal universal
(stacked) profile) that the spherical and perfectly fitted by Equation (5.1), and also grows
with the linear velocity. We first prepare a void with fidutial parameters: Ωm0 = 0.3089,
δc = −0.8, rs = rv = 4 [Mpc/h], α = 2, β = 5. Other cosmological parameters are set
to be the same as the IllustrisTNG simulation (Nelson et al. 2018). We assume uniform
error for all grid cells, and give the log-likelihood for simplicity as

lnL = −
∑
xi∈B

[
(δdata(xi)− δmodel(xi))2

(0.1)2

]
, (5.10)

where i is grid label and x is 3-dimensional grid position in the observation coordinate:
RA, Dec and redshift. Here B is also fixed in the observation coordinate a box whose side
length is about 6 times the radius of the void in comoving coordinate assuming fidutial
cosmology. When we use one void at z = 0.5, we find the test reproduce correct param-
eters. With the parameter set on the 1-sigma contour, the summation of the difference
between data and model becomes about 0.1, as we give it in log-likelihood. We can also
see degeneracy between the parameters. Especially, Ωm0 negatively correlate with rs.
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Figure 5.12: The result of the AP test using one ideal void profile at z=0.5. The contour
denotes 0.5, 1, 1.5, 2 σ confidence levels from inside to outside. Red points and lines
denote the fiducial values.
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5.3.5 AP test with mock galaxy voids

Hamaus et al. (2015) have performed the AP test for the voids in a mock-galaxy catalog
generated by N-body simulation. The two kind of mock catalogues are adopted to SDSS
DR7 MAIN sample (called dense galaxy catalog) and SDSS DR9 CMASS sample (called
sparse galaxy catalog) respectively. They take into account velocity dispersion as well as
the model parameters given in Equation (5.1), and constraint on AP parameter ε = R‖/R⊥
and the linear growth rate f ∼ Ω0.55

m (Linder 2017) over a linear bias parameter b ∼ 1.8.
The results of the AP test for dark matter voids (top), dense galaxy voids (bottom left)
and sparse galaxy voids (bottom right) are shown in Figure 5.13. Unfortunately, they
does not reproduce fiducial values and Hamaus et al. (2015) have commented that the
residual offset is due to modeling error. For more improvement in the cosmological test
using void, we cannot avoid proper modelling of the universal profile and peculiar velocity
in such an era of precision cosmology.

5.3.6 AP test with real galaxy voids

Hamaus et al. (2016) have performed the AP test for the voids in the SDSS DR11 CMASS
galaxy sample, where the galaxies are distributed in the redshift range of 0.43 < z < 0.7
with the median of z̄ = 0.57. They constraint on the matter density parameter Ωm0 and
the linear growth rate f over the linear bias parameter b. For the constraint, they use AP
parameter

ε =
R‖
R⊥

=
d true
A (z)Htrue(z)

d fid
A (z)Hfid(z)

, (5.11)

where the superscript ’true’ means the unknown true value and ’fid’ means the value
assuming fiducial cosmology which is given by Ωm0 = 0.27 and f/b = 0.4 here. The
results of the AP test using the voids in each void size bin are shown in Figure 5.14.
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Figure 5.13: Constraints on AP parameter ε = R‖/R⊥ and the linear growth rate f
(over a linear bias parameter b ∼ 1.8), for all dark matter voids (top panel), voids in
dense mock galaxies (bottom left panel) and voids in sparse mock galaxies (bottom right
panel). Solid, dashed and dotted contours show the 68.3%, 95.5% and 99.7% confidence
levels. The fiducial values are f/b = 0.58 and ε = 1 (from Hamaus et al. 2015).
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Figure 5.15: Joint constraints from all voids are shown in the upper panel. The lower
panels show the similar results but using different fiducial values: Ωm0 = 0.25 and
f/b = 0.39 for the left panel and Ωm0 = 0.31 and f/b = 0.41 for the right panel. (from
Hamaus et al. 2016).
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Chapter 6

Void in 21cm intensity map

Though the galaxy surveys has been bringing various fruitful results for cosmology, the
next-generation HI intensity mapping survey is expected to overwhelm them on both
survey volume and redshift range. In this chaper, we summarize the HI observation and
the potential of cosmology with voids in HI distribution.

6.1 Differential brightness temperature

In practice, we can observe HI distribution by 21cm line, which is emitted from HI atoms
when the spin-flip transition takes place. Its wavelength is about 21cm just after the
emission, then redshifted according to the cosmological expansion by the time it reaches
us. However, we should take it in account that 21cm photons can be absorbed by other
HI atoms or scattered by other photons after emission. As there are many CMB photons,
what we observe is the energy deviation from this background. It is called differential
brightness temperature, and can be written as follows (Furlanetto et al. 2006; Madau
et al. 1998):

δTb =
(Ts − TCMB(z))

1 + z
(1− e−τ ), (6.1)

where tau denotes optical depth, Ts and TCMB are the spin temperature and CMB temper-
ature. The spin temperature is determined by spin energy, that is to say, when there are
n0 HI atoms at ground state and n1 HI atoms at excited state in the super fine structure,
then spin temperature Ts is given by

n1

n0

= 3exp

(
− hν10

kBTs

)
(6.2)

with Planck constant h, Boltzmann constant kB and the frequency ν10 which corresponds
to wavelength of 21cm. By the way, τ appears in Equation (6.1) is given by

τ =
3

32π

A10hc
2

ν10kB

nHI

Ts
φ(ν), (6.3)

where nHI is the HI number density and A10 is Einstein coefficient for the spontaneous
emission. φ(ν) is the line profile, which initially has sharp peak at ν = ν10, but gradually
spread due to Hubble expansion (Horii et al. 2017) like

φ(ν) =
c

ν10 (1 + z)
∣∣dv‖/dx‖∣∣ (6.4)
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dv‖
dx‖
∼ H(z)

1 + z
. (6.5)

As HI atoms interact with gas particles (atoms and electrons) and background Lyman
α photons (called Wouthuysen–Field effect (Field 1959a;b; Wouthuysen 1952) ), spin
temperature is coupled to both kinetic temperature TK of the gas and color temperature
TC of Lyman α photons with coefficients yK and yC (Field 1959b) as

T−1
s =

T−1
CMB + yKT

−1
K + yCT

−1
C

1 + yK + yC
. (6.6)

As is shown in Figure 6.1, Ts first evolves along with TK because collisional coupling
with gas particles is dominant, but as the Universe expands, the density decreased and
particles rarely collide. Therefore, at around z ∼ 100, Ts turn around and come up with
CMB temperature. Ts decouples from CMB temperature again at around z ∼ 35, due to
Lyman α emission from first stars. At the same time, TK start to increase by the X-ray
heating by the stars. They keep increase and finally exceed CMB temperature.

Figure 6.1: The redshift dependencies of the spin temperature Ts, kinetic temperature
TK , CMB photon temperature Tγ (from Widmark 2019).
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6.2 Square Kilometre Array Project

Square Kilometre Array (SKA) project is national collaboration to build a next-generation
radio telescope consist of thousands of dishes (SKA-MID) and up to a million low-
frequency antennas (SKA-LOW). This project is divided into two phases: SKA1 and
SKA2. SKA1 will be built in 2018-2023 Regarding SKA1-MID, the survey volume reaches
as large as 700Gpc3, and the redshift range is also huge as is shown in Figure 6.2. Ac-
cording to Furlanetto et al. (2006), an equivalent brightness temperature uncertainty of
the telescope sensitivity is given by

∆TN(ν) =
Tsys

Aeffν2∆θ2
√

∆νtobs

, (6.7)

where Tsys is the system temperature, Aeff is the effective collecting area, ∆θ is the
diffraction-limited angular resolution, ∆ν is the bandwidth, and tobs is the total observing
time. Regarding SKA1-mid, Aeff = 48900 m2 and ∆ν = 3 MHz. Also, Tsys is given by
the sum of the instrumental noise temperature, which is 30 K for SKA1-mid, and the sky
temperature which is roughly estimated at 180(180 MHz/ν)2.6 K. Using these values, we
can draw the noise level lines in Figure 6.3.

Figure 6.2: The survey volumes at the central redshift and redshift ranges of recent and
future observations (Santos et al. 2015). ’(IM)’ denotes intensity mapping survey, in
contrast to galaxy surveys.
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Figure 6.3: The redshift evolution of the differential brightness temperature by
IllustrisTNG simulation for each angular resolution ∆θ in each panel. Red asterisks,
green filled circles and the blue filled squares show the results with full structures, only
the structures with the density lower than 1000, and only the structures with the
density lower than 200, respectively. The solid/dashed line denotes the noise level for
the total observing time tobs = 1000/100 hr each.
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6.3 Mock HI Void Catalogue

As we have seen in Section 5.3, Endo et al. (2020) have performed HI void AP test.
However, the method is not straightforward because it involves the additional step of
scattering the particles. Instead, we use our grid-based void finder presented in Section
5.1.3. Again we use the result of IllustrisTNG 300 simulation here. We estimate the
differencial brightness temperature from the simulation data by using Equations (6.1)
and (6.3) on the regular grid whose resolution is about 1.2 Mpc/h, and smooth it with
Gaussian window function with σ = 1 Mpc/h to remove small scale noise and get large
voids. After that, we apply watershed algorithm to the pixelized differential brightness
temperature, and simply define each basin as a void. The void radius is given by the
radius of the sphere with the same volume as the void. As a result, we have obtained the
dark matter/HI void catalogue whose size distribution is given in Figure 6.4/6.5 each. In
both cases, there are fewer small voids in the redshift space than in the real space, and
the small voids are disappear in the low redshift. The mean radius of the DM voids in
the real space at z = 0.5 is 4.6 Mpc/h, while the HI void radius is 5.1 Mpc/h on average.

Figure 6.4: Size distribution of the dark matter voids. Blue histograms show the size
distributions of real space voids and red ones show those of redshift space voids.
Solid/dashed line represents that the distribution is given at z = 0.5/z = 3.
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Figure 6.5: The same as Figure 6.4 but for the voids in the neutral hydrogen 21cm
intensity map.
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6.4 Radial Velocity Profile of HI Void

For the purpose of confirming whether the linear theory can describe the HI velocity
profile, we try to apply the same methodology as dark matter void analysis for HI void.
We fit the radial density profile of HI void in the simulation data with model profile defined
by Equation (5.1) and as well as dark matter analysis, estimate radial velocity assuming
linear theory, and then compare it with the radial velocity in the simulation data. We have
already shown dark matter density/velocity profile and fitted model profiles in Figure 5.7
for redshift z = 0.5 and Figure 5.8 for z = 3, but here we additionally show the radial
density/velocity profiles of HI at z = 0.5 and 3 in the same way as dark matter case in
Figure 6.6 and Figure 6.7. As you can see, the linear theory under estimate the velocity.
This is because the high contrast of HI density profile compered with dark matter. In
practice, HI is coupled with dark matter, which has smoothed density profile and therefore
have small velocity, as it is roughly proportional to the potential gradient: see Equation
(4.35). To estimate the velocity, we may need to model CDM-HI bias in real space.

6.5 Future Directions

Throughout Chapter 5 and Chapter 6, we have discussed the cosmological test using
the universal void properties. We confirmed that the AP test estimates the cosmological
parameters correctly when the universal void profile linearly evolves and can be fitted
perfectly by the model function in Chapter 5. Moreover, we made a grid-based void finder
and found the universal radial profile of the void found by that finder is successfully fitted
by the existing model function. Also, in Chapter 6, we found the linear theory fails to
predict the velocity profile of the HI void from its density profile. However, the bias from
the true HI velocity seems almost uniform, and if we can model it properly, the precision
cosmology with HI voids will be realized.
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Figure 6.6: The same as Figure 5.7, but for HI. The linear prediction in the right panel
is computed using the model profile fitted to the HI density profile.

Figure 6.7: The same as Figure 6.6, but for z = 3.



Chapter 7

Void shape evolution

In the previous chapters, we have mainly focus on the universal density profile. In the sky
average analysis, the individuality of the voids are treated just as noise. However, they
also have the information of inhomogeneity of the Universe, or, may have the information
which supports the result from sky average analysis through mode transformation, for
example. Here, we report the findings from our investigation on the relation between
shape variance of individual voids and surrounding tidal field.

7.1 Dark Matter Void Catalogue

For simplicity, we consider the standard cosmology here and perform N-body simulation
for only dark matter particles. For computation, we use the publicly available code
GADGET-2 (Springel 2005) with the ΛCDM cosmological parameters Ωm0 = 0.31, ΩΛ =
0.69, σ8 = 0.8, h = 0.7 based on CMB observation (Planck Collaboration et al. 2018). The
initial condition is generated by using the second Lagrange perturbation theory (Crocce
et al. 2006), and we start the simulation from z = 20. The simulation box is 500 Mpc/h on
a side, and it contains 5123 dark matter particles. Since the largest voids found with the
current galaxy survey are around 100 Mpc/h, 500 Mpc/h box size is enough to reproduce
such the largest voids. If we focus on the voids larger than 1Mpc/h, which is less affected
by the non-linear evolution of the structure, the number of particles given here suffices
the required resolution. Among the dark matter particles in each redshift, we find voids
with VIDE (Sutter et al. 2015) (see Section 5.1). Usually, VIDE makes cutoff using central
density which is defined by particle number within Rv/4, but with this quantity, small
voids which may come from Poisson noise as shown in Neyrinck (2008) is apt to be
included. Therefore we use a core density ρcore, which is the reciprocal of the largest
Voronoi cell in the void, as a cutoff criterion instead. We set both the zone-joint density
threshold and the core cutoff density threshold 0.2ρ̄, where ρ̄ is the mean matter density
of the Universe. Although we have already discarded the voids potentially from Poisson
noise in terms of core density, we place further selection with the density contrast of voids
to remove void-like objects from noise thoroughly. ZOBOV calculates the probability that
a void arises from Poisson noise by using a fit to the probability distribution of density
contrast of the voids in Poisson particle distribution (see equation (1) of Neyrinck (2008)).
We remove the voids of which noise probability exceeds 5%. Also, here we select only the
0-level in hierarchy to avoid the double-counting of the ancestor voids when we trace the
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void in different snapshots for the later analysis.
We summarize the fundamental quantities of voids below:

- Rv: effective radius of the void (see (iv) above)

- ρcore: core density, the reciprocal of the largest Voronoi cell in the void

- ρv: void mass density, the total mass of void member particle divided by the void
volume

- e: the ellipticity of the void (see Section 7.2)

7.2 Ellipsoidal fitting

It is still an open question to characterize the shape of voids and various definitions have
been proposed in the literature (e.g. Lavaux & Wandelt 2012; Neyrinck 2008). We find
that the ellipticity defined using an inertia tensor does not necessarily represent the shape
of the void in the case where the dense clumps are embedded in the wall. Therefore, here
we describe the void with a triaxial ellipsoid shell with axis lengths, a3 ≤ a2 ≤ a1. Then
the ellipticity is defined as

e = 1−
√
a2a3

a1

. (7.1)

VIDE computes the ellipticity based on the inertia tensor of the member particles of each
void. Assuming that the density is uniform inside the void, we can uniquely define an
ellipsoid which represents the void shape, as shown in Fig. 7.1 labelled ’eigen’. However,
we find the inertia tensor is strongly affected by local structures and does not necessarily
represent the shape of the void. Therefore, we determine the void shape by ellipsoidal shell
fitting. Fig. 7.1 demonstrates the dark matter distribution along with the 3-dimensional
ellipsoids defined by different two methods, which clearly show that our approach better
represents the apparent shape of the void. The ellipsoid defined with the inertia tensor can
well reproduce the underlying dark matter distribution when dark matter is distributed
almost uniformly on the ellipsoidal shell. However, as we show in Fig. 7.1, the dark
matter is significantly localized, and ellipsoid defined in this way is different from the
actual distribution of dark matter. Conversely, our method, fitting the shape of dark
matter distribution with ellipsoid, can better reproduce the dark matter distribution
around the void.

The radial distance to the triaxial ellipsoid shell can be described by three axial lengths
and three Y-Z-Y Euler angles, α, β and γ,

r(ψ, φ) =[(
γc(βsψsφs + βc(ψcαcφs − φcαs))− γs(αcφc + ψcαsφs)

a1

)2

+

(
βcψsφs + βs(φcαs − ψcαcφs)

a2

)2

+

(
γc(αcφc + ψcαsφs) + γs(βsψsφs + βc(ψcαcφs − φcαs))

a3

)2
]−1/2

, (7.2)
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Figure 7.1: Comparison of two methods for approximating void shape with ellipsoid.
The dots represent the constituent dark matter particles of the void. The grey grid
represents the ellipsoid characterized by the eigenvalues of inertia tensor, while the black
grid represents the ellipsoid by shell fitting (see text for details).

where subscript s and c stand for the sine and cosine functions, i.e. φc ≡ cos(φ). The
axis directions are

(A1,A2,A3) = Ry(α)Rz(β)Ry(γ) (ex, ey, ez) , (7.3)

where ei (i = {x, y, z}) are bases of global coordinates of the simulation box, and R is the
rotation matrix. To fit an ellipsoid to voids, we take a standard chi-square minimization
for all the constituent particles for each void at the position (ψ, φ),

χ2 =
∑
i∈void

[r(φi, ψi)−ARi]
2, (7.4)

where Ri is the measured distance from the void centre to each constituent particle, and
A is introduced to absorb a similarity transformation. Here the void centre is defined as
the average of member particle positions weighted by the Voronoi cell volumes.

With this fitted ellipsoid, we compute the ellipticity defined by Equation (7.1), and
averaged over all voids, the mean ellipticity is ē = 0.37 at z = 1 and ē = 0.41 at z = 0,
respectively.

7.3 Void Tracing Algorithm

To study the time evolution of voids, we prepare two snapshots of the simulation at a
given redshift which has slightly different cosmic time. For each of the snapshots, we
find the void using VIDE as described in Section 7.1. To trace voids, we have tracing
criteria using particle ID as introduced by Sutter et al. (2014b). We consider all pairs of a
low-redshift void A (denotes ’after’ evolution) and a high-redshift void B (denotes ’before’
evolution) and estimate the following two quantities for all pairs: unification parameter

UP = NA∩B/NA (7.5)
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and division parameter

DP = NA∩B/NB, (7.6)

where NA and NB are the numbers of constituent particles for void A and B, respectively,
and NA∩B denotes the number of particles shared by both void A and B. Both of the two
parameters are indicators of particle retention but independent of each other. UP takes
the maximum value of 1 if all member particles of descendant void A come from ancestor
void B. On the other hand, if void A inherits all the member particles of void B, then DP
takes the value of 1. We then consider void A and void B are identical only when both
UP and DP is sufficiently high, where significant merger nor division does not take place
during their time evolution.

We first calculate UP and DP for all pairs of voids. Then for given descendant void
Ai, we define the candidate ancestor void B which maximizes the UP . Conversely, we
also find the best candidate for given void Bj by looking at DP . We connect void A and
B only when the best candidates coincide with each other.

To quantify how many particles remain in the void during the evolution, we define
particle retention

PR =
√
UP DP. (7.7)

When PR is high, it means that the void retains member particles. Therefore, we can
focus only on the voids which are less affected by merger or division by looking at the
voids with high PR.

Also, by looking at the flow parameter

FP =
NA −NB

NA +NB −NA∩B

, (7.8)

we can further distinguish whether particles immigrate from other voids or emigrate to
others. As is shown in Figure 7.2, high PR corresponds to FP ∼ 0, as no particle
exchange occurs.

Here, we calculate time derivatives of fundamental quantities of voids at z ∼ 0. For
this purpose, we take a time interval sufficiently shorter than the typical time scale of
the void evolution, which can be roughly estimated as follows. In our catalogue, the
median of void mass density/core density is ρv ∼ 1.5ρ̄ or ρcore ∼ 0.1ρ̄, where ρ̄ is an
average mass density of the Universe. Then dynamical timescale of a void is roughly
t ∼ (Gρv)

−1/2 ∼ 60 Gyr. Therefore, the timestep of 1 Gyr should be reasonable to trace
the dynamical evolution of the voids. In practical N-body simulation, 1 Gyr at z = 0
takes about 100 timesteps which also seems reasonable for smooth particle motions. For
later convenience, we introduce the notation for the time evolution of physical quantity
X as

∆X ≡ X(t = t1)−X(t = t0), (7.9)

where t0 is the time taken at z = 0 and t1 is the time 1 Gyr after t0.
First, we show the probability density functions of void sizes in Figure 7.3. There are

58457 voids (indicated by ’all’ in the legend) found, while 12191 of them are traceable
(indicated by ’all traceable’ in the legend). The size distributions of these two are almost
the same except small difference at large Rv. We additionally show the distribution of the
2636 ’well isolated’ voids, whose PR is higher than 0.75 (exchange fewer particles during
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isolated

lose
particles

gain
particles

Figure 7.2: The number distribution of voids as a function of FP and PR. The grey
regions are forbidden by the definition of parameters. The voids with high PR (marked
’isolated’ in the figure) exchanges very few particles compared to the number of its
member particles. If FP is high (’gain particles’ in the figure), a void gain particles from
outside of its progenitor, and if it is low (’lose particles’ in the figure), the majority of
the member particles flow out of the descendant void.

the evolution). Again, the distribution does not change significantly, but voids tend to be
slightly smaller in this case.

The size distribution function has a peak at 5Mpc/h and we find the number of the
voids smaller than 5Mpc/h in size increases in the higher resolution simulation. To reduce
the resolution effect, we use the voids with a size of Rv ≥ 5Mpc/h hereafter.

Second, we show the distribution of the increase of ellipticity in 1 Gyr at z = 0 in
Figure 7.4. According to the results of the N -body simulation by Wojtak et al. (2016),
the distorted void tends to become more spherical, and the spherical void tends to distort
as it grows. However, this tendency is not statistically recognized in our catalogue. The
vertical axis of this figure is the increment per 1 Gyr of the ellipticity, and the horizontal
axis is the ellipticity at z = 0. As in Figure 7.5, the dashed lines in each violin plot
represent the median, and the dotted lines represent 25 and 75 percentiles. While the
voids with small ellipticity seem to have a relatively large median of ∆e, it is still not
statistically significant because of the large dispersion as is the case for alignment.

One possible reason for the difference between Wojtak et al. (2016) and our result may
lie in the difference in the time scale. We focus on the short-term variation (differential
quantity) at z = 0 in 1 Gyr, while they focus on the variance from the early (z = 100) void
to the present (z = 0) void. The larger the time interval, the larger |∆e| is allowed and
those with large |∆e| can be strongly affected by the parameter space boundary; ∆e = 1
is only possible at e = 0 and ∆e = −1 is only possible at e = 1. This boundary can
cause a negative correlation between e and ∆e even if e is randomly changing. Another
possibility is the different definition of a void, but this would not be the main cause. They
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Figure 7.3: The probability density functions of void sizes at z = 0 in each criterion. ’all
traceable’ means that the voids do not die within 1 Gyr and ’well isolated’ denotes the
voids with PR > 0.75, which means that the voids exchange fewer particles in the
process of evolution. We do not use the voids smaller than 5Mpc/h in size in the
following analysis to reduce the resolution effect.
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connect the neighbouring zones at z = 0, which ensures the voids do not rapidly change
their shape due to merger or segmentation. In contrast, we do not make zone connections
stable as they do but can select voids that hardly experience merger and segregation by
monitoring PR parameter. Nevertheless, our result hardly depends on PR besides a slight
change in the median of ∆e. This fact implies that the difference in e − ∆e relation is
hardly affected by whether we consider particle exchange or not.

0 e(0) < 0.3 0.3 e(0) < 0.5 0.5 e(0) 0.7
0.4

0.2

0.0

0.2

0.4

e 
[/G

yr
]

all traceable

Figure 7.4: The distributions of ellipticity increase per Gyr at z = 0. The dashed line in
each violin plot represents the median, and the dotted lines represent 25 and 75
percentiles.

Finally, Figure 7.5 shows the time evolution tendency of θ. The vertical axis in the
figure is the amount of change of θ per Gyr, and the horizontal axis is θ(0, 0), the alignment
at z = 0. The dashed line in each violin plot represents the median, and the dotted lines
represent 25 and 75 percentiles. Though the median of ∆θ at high-θ(0, 0) seems to be
slightly underside, a significant trend is not found because of the large dispersion.

Although 1 Gyr is sufficiently smaller than the typical evolutionary timescale of voids
as mentioned in 7.3, the dispersion of ∆θ is about 10 %, which is not so small. If voids
deform by tidal field, ∆θ < 0 is expected because tidal field and void should be aligned
with time. However, a considerable number of voids have a positive ∆θ. Moreover, this
result hardly depends on PR. Even the voids that retain most of the particles do not show
the correlation between tidal field and void orientation. This fact implies that not a few
voids exist whose shape is strongly affected by various factors other than the tidal field.
They are possibly the effect of finite resolution of simulation or other gravitational force
components such as higher multipole components or angular components of gravitational
force, for example. Keep it in mind, though, that this result does not mean that all the
voids are independent of the tidal field, as there are plenty voids with ∆θ < 0.
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Figure 7.5: The distributions of alignment increase per Gyr at z = 0. The dashed line in
each violin plot represents the median, and the dotted lines represent 25 and 75
percentiles.

7.4 Tidal Field and Void-Tide Alignment

In this section, we describe how we measure the gravitational tidal field around voids.
We take an arbitrary direction n̂ and expand the radial component of gravitational force
on the spherical shell of radius r, centred at the centre of gravity of a void, in Legendre
series;

F
(l)
n̂ (r) = −2l + 1

2

∫ 1

−1

∂Φ(r, θ̂)

∂r
Pl(µ) dµ, (7.10)

where µ = θ̂ · n̂ and Φ is gravitational potential. We use Gadget-2 to estimate the gravi-
tational potential. By embedding dummy massless particles, we have Gadget-2 calculate
potential Φ at 3072 Healpix (Hierarchical Equal Area isoLatitude Pixelization) (Gorski
et al. 2005) grid points on two concentric spherical shells around each void, whose inter-
val is 1 Mpc/h. These pixels have equal solid angle ' 13.5 [deg]2. Then we calculate
the radial gradient in equation (7.10) numerically. The integration in equation (7.10) is
approximated by the summation on Healpix grid points. We locate the direction of n̂
where F (l) is maximized or minimized; the direction that maximizes or minimizes the l-th
multipole mode is written as

n̂(l)
max(r) = arg max

n̂

[
F

(l)
n̂ (r)

]
, n̂

(l)
min(r) = arg min

n̂

[
F

(l)
n̂ (r)

]
, (7.11)

and the F (l) expanded in those coordinates can be denoted as

F (l)
max(r) = max

n̂

[
F

(l)
n̂ (r)

]
, F

(l)
min(r) = min

n̂

[
F

(l)
n̂ (r)

]
. (7.12)
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The maximum and minimum directions n̂max and n̂min are defined as the central position
of the pixel. Here, we focus on the quadratic component since ellipticity is also a quadratic
approximation of void shape. Hereafter we simply refer to the quadrupole moment of
radial gravitational force F (2) as a tidal field.

In section 7.2, we determine void axes direction by fitting an ellipsoid to each void.
Using the best-fitting parameters for two different snapshots, we define time variation of
void major axis direction

ϑ∆void = cos−1(A1(t0) ·A1(t1)). (7.13)

along with time variation of tidal direction

ϑ∆tidal = cos−1(n̂(2)
max(Rv, t0) · n̂(2)

max(Rv, t1)), (7.14)

and void-tide alignment

θ(t1) = cos−1[A1(t1) · n̂(2)
max(Rv, t0)]. (7.15)

Finally, we define maximal tidal strength as

T = F (2)
max(Rv) (7.16)

and its vector component of the major axis direction of void:

Tθ = T cos θ. (7.17)

We show the probability density distribution function of alignment θ at z = 0 in
Figure 7.6 for all traceable voids. The histogram in the figure is the probability density
function of alignment P (θ), and the vertical dotted line is the average. The black line is
the angular probability density function Pa(θ), which is obtained by dividing P (θ) by the
solid angle of each bin:

P (θi) ∝ Pa(θi) 2π sin θi, (7.18)

where θi is the middle point of i-th θ bin. Both P (θ) and Pa(θ) are normalized with
respect to the total number of voids. Pa(θ) is the probability where the volume effect is
removed, and it takes the maximum value at θ = 0 as shown in the figure. The average
value of the alignment of all traceable voids, P (θ) is 28 deg, which is not much different
from the overall average 26 deg.

7.5 Gravitational Field vs. Density Field

7.5.1 Rotation of void and the tidal field

In the Newtonian gravity, the gravitational potential Φ and the density fluctuation δ in
the Fourier space are related as Φ ∝ k−2δ. Therefore, we can naively expect that a smaller
scale structure with stronger non-linearity in the potential field is relatively smoothed out
compared to the density field. In other words, the geometrical structures in the potential
field, such as the peaks or saddle points, are expected to be more stable than those of the
density field because of its relatively stronger linearity.
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Figure 7.6: The histogram shows probability density function P (θ) for the alignment
angle θ of all traceable voids at z = 0. The black and solid line is Pa(θ): the probability
density function normalized by solid angle. The vertical dashed line indicates the mean
value θ ∼ 28, while 60 is expected for random rotation.

Therefore, we suppose that the void rotates toward the direction of the quadrupole
component of the almost fixed tidal field. To evaluate this assumption, we examine the
rotation angles at 1 Gyr concerning the major axes of the void and tidal field directions.
We show the result in Figure 7.7; The solid-line histogram in the figure represents the
rotation angle of the major axis of the void, and the dashed-line histogram represents the
rotation angle of the tidal field. In this figure, the fraction of ϑ∆tidal less than our angular
grid resolution, ∼ 5 deg, account for 78 % of all traceable case, while more than a half of
the voids rotate more than 5 degrees. This result roughly supports our assumption.

Concerning the previous works, Park & Lee (2007) has calculated current void shape
distribution function using Zel’dovich approximation to the initial density field taking the
tidal force into account. Their model well reproduce the simulation results that is also
given by themselves. However, statistical properties averaged over the whole sample can
also be affected by the void formation or void merger. The non-linear velocities or local
structures also can change the shape, and we do not know precisely how these affect the
void. Therefore, it is worth exploring whether the tidal field is the leading cause of the
shape evolution for all voids. Though the correlation between void shape and tidal field
at redshift z = 0 has also been examined by Platen et al. (2008), the time evolution has
not been explored. On the other hand, Wojtak et al. (2016) has shown that the shape of
a void in the LSS in the ΛCDM Universe rotates and becomes distorted with time, while
it does not examine the gravitational field in detail. We investigate the time evolution of
individual voids in relation to the gravitational force surrounding the voids. It will help us
to understand the mechanism of void formation more accurately and to find appropriate
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Figure 7.7: The angular variation of the void major axis directions (solid lines) or tidal
quadrupole (dashed lines) in 1 Gyr for all traceable voids. The bin width on the x-axis is
5 deg. About 80 % of the tidal field rotates only 5 deg or less, while over half of voids
rotate more than 5 deg.

statistical methods or values to reconstruct the gravitational field behind from the void.

7.5.2 Tidal force-shape variation correlation

If the tidal field is strong (along the void major axis), the void will become more elongated.
In this case, these should be a positive correlation between Tθ (the amplitude of the tidal
field along void major axis) and ∆e (the ellipticity increment). To quantify the correlation
between the Tθ and ∆e, we calculate the correlation coefficient. The coefficient of Tθ and
∆e for the set of voids that satisfy condition Z is given as

corrcoef(Tθ,∆e|Z) =
Cov(Tθ,∆e|Z)√

Cov(Tθ, Tθ|Z) Cov(∆e,∆e|Z)
, (7.19)

using components of covariance matrix:

Cov(X, Y |Z) =
1

NZ − 1

NZ∑
i∈Z

(Xi − 〈X〉Z) (Yi − 〈Y 〉Z) , (7.20)

〈X〉Z =
1

NZ

NZ∑
i∈Z

Xi (7.21)

where the sum runs over voids which satisfy condition Z, and NZ is the number of such
voids. X, Y denote either Tθ or ∆e.
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The correlation coefficient between the tidal force Tθ and the ellipticity increase ∆e is
shown in Figure 7.8 as a function of minimum value of particle retention parameter PR.
The shaded region in the figure represents a 95 % confidence interval. Here we exclude
the voids whose major axes rotate over 45 degrees because they are almost spherical and
major and minor axes are easily interchanged in 1 Gyr. However, such voids comprise
only about 5 % of the total traceable voids, and the result hardly changes so much even
if we include them.

The correlation coefficient is zero-consistent within the 95 % level when we include
small PR voids, PR < 0.5, while it takes significant positive value if we limit the sample
with PR > 0.6. This result indicates that the voids which retain particles before and
after evolution are distorted by the tidal field. It is worth noting, however, that averaged
over all PR, the correlation coefficient becomes consistent with zero with our definition
of a void.

We show the relation between the tidal force Tθ and the ellipticity increase ∆e in more
detail in Figure 7.9. Black contours in Fig. 7.9 represent the number distribution of voids.
The colours in Figure 7.9 represent FP , which reflects the amount of particle exchange.

Quantity FP indicates whether particles have entered or exited; if it is positive (neg-
ative), it means that the void has lost (gained) dark matter particles in 1 Gyr. Although
PR is also an index indicating whether or not particles are exchanged, we use FP here
to discriminate whether a void has gained or lost particles.

The variance in ∆e is large where Tθ is small. In other words, the significant shape
distortion occurs where the tidal field is relatively weak. It is expected that the external
tidal field cannot be the main reason to distort the shape of the voids for voids with
Tθ < 105[M�Mpc Gyr−2]. On the other hand, the tendency is especially prominent at the
low-Tθ side in Figure 7.9 that the smaller the value on the horizontal axis, the smaller the
value of FP . Conversely, the larger the value on the horizontal axis, the larger the value
of FP . This fact means that a void tends to be distorted when it gets particles from its
surroundings, and if it loses particles, it tends to become closer to a sphere. Deformation
due to this effect produces a large variance in the increase in void ellipticity ∆e, leading to
a lower correlation between the shape evolution tendency of the void and the tidal field.
As shown in Figure 7.2, voids with large |FP | generally have small PR. Therefore, if we
select only high-PR voids, then most of the voids with large shape variance and small Tθ
removed.

7.6 Proxy of Particle Retention Parameter

The particle retention parameter PR cannot be determined from observation. However,
we find that the average density in the void is strongly correlated with PR. Figure 7.10
shows the relation between the average density of a void δ̄v and PR. δ̄v is defined as

δ̄v =
ρv
ρ̄
− 1, (7.22)

where ρv is void mass density defined in 7.1 and ρ̄ is the average mass density of the
Universe. Hence, it can be effectively determined by the mass of the wall surrounding a
void. In Figure 7.10, the shaded region shows the standard deviation and the solid line
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Figure 7.8: Correlation coefficients of ∆e and Tθ calculated by using the voids with
particle retention rate PR greater than or equal to a lower limit represented by PR′.
The shaded region shows 95% confidence interval.
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Figure 7.9: Tidal force Tθ against ∆e. Black contours indicate void number count. The
colour denotes FP , which means that if it is high, the void gains most of the particles
owned by the void after evolution from outside of the void, and if it is low, it means that
the void parts with most of its particles the void owned before evolution (see also
section 7.3).
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indicates the average of δ̄v in each PR bin. We find a clear anti-correlation between δ̄v
and PR.

Using this relation, δ̄v can be used as a proxy of PR. We revisit the correlation
coefficient analysis as a function of the maximum value of δ̄v, instead of the minimum
value of PR in Figure 7.11. We find that the significant positive correlation between Tθ
and ∆e appears with more than 95% confidence when the upper limit of δv is less than
around 2.

0.5 0.6 0.7 0.8
PR

0

2

4

δ̄ v

Figure 7.10: Mean overdensity in void against particle retention PR (see text for
definition). The shaded region represents the standard deviation at each PR bin.

This relation between PR and δ̄v implies that a void with higher mass density ex-
changes a larger proportion of particles, which can be explained as follows. For the voids
with larger δ̄v, the density of the surrounding area is higher, and non-linearity becomes
prominent. Therefore, a tidal field around a void may mainly arise from the non-linearly
evolving small-scale fluctuations, and the large-scale modes across the void hardly affect
the tidal field around the void. If the small scale structures dominate, the tidal field in
the radial direction can fluctuate on smaller scales than the size of the void.

To confirm this, we compare the inner (outer) tidal fields measured on a sphere with
a radius of half (twice) of Rv with the one measured on Rv. Figure 7.12 shows the
distributions of the angle between the direction of the tidal field at Rv and 0.5 Rv (left)
and 2Rv (right). Voids are divided into two groups; the voids with δ̄v < 0.5 (open-
histogram) and δ̄v ≥ 0.5 (filled-histogram). Note that the distributions in this figure
are not corrected for the volume effect and thus they follow sine function if the angle is
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Figure 7.11: Correlation coefficient between Tθ and ∆e for the voids whose average over
density δ̄v is less than or equal to arbitrary given δ̄′v. The shaded region indicates the 95
% confidence interval.
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made by two random directions. In the left panel, you can see that the tidal field inside
the void is aligned to the tidal field at r = Rv in most cases. On the other hand, as
can be seen in the right panel, the voids with low δ̄v tend to have a smaller variation
of tidal field direction than the voids with high δ̄v, while the high-density voids seem to
have the tidal field outside the void which faces almost independent direction to the one
at r = Rv. This fact means that the quadrupole component of the gravitational field
fluctuates on a short scale near a void especially in the case that the void has high δ̄v.
Such a small-scale fluctuation in the gravitational field can cause particle exchanges, and
the tidal field surrounding the void is no more enough to explain the shape evolution of
the void. However, for low δ̄v voids, the tidal field is relatively coherent up to the outside
of the void, and the description that a void evolves by background gravitational field
seems to be well supported.

7.7 Conclusion

We have investigated the correlation between the shape evolution of cosmic voids and the
tidal field around them at around z = 0 by N -body simulations. As is well known, the
shape of a void in the cosmic web is distorted (and becomes more and more distorted)
on average, which is confirmed in section 7.3. However, it is not evident since (Icke 1984)
has found that the low-density region itself approaches a sphere. Although it is expected
that the tidal field distorts the shape of a void, it is still unclear whether all the voids are
affected by the tidal field in the same manner.

Tracing individual voids, we have found out that the voids are full of individuality and
change its shape by the amplitude of the surrounding tidal field and particle exchange.
The results on the evolution of individual voids in 1 Gyr and the tidal field on the void
scale are summarized below:

1. We do not find a significant tendency in the evolution trend of ellipticities and
alignments, owing to the very large intrinsic scatter.

2. A positive correlation between Tθ (vector component of tidal force in the direction
of the void principal axis) and an increase in ellipticity is found only for voids with
little particle exchange.

3. A negative correlation between particle retention and average void density exists.
A positive correlation appears again as with voids with high particle retention, on
examining the correlation between Tθ and ellipticity increment for low-density voids.

4. High-density structures around a void shorten the coherent scale of the surrounding
tidal field, which can be a cause of particle exchanges.

The second point suggests that if PR is high, the shape of a void evolves with reflecting the
tidal field. An investigation of the voids with low particle retention shows that voids tend
to be distorted when the particles are obtained and rounded when the particles are lost.
This causes a large variance in the time evolution of the ellipticity and hides sign of the
response to the quadrupole component of the gravitational field at void scale, as discussed
in section 7.6. Such voids tend to have a higher average density. When the average void
density (≈ density of wall around the void) is large, the quadrupole component of radial
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gravity turns significantly around the void, and it can be one of the reasons why particle
exchange often occurs in a high-density void. Conversely, voids with a very low average
density, have a positive correlation between the effective tidal field and the increase in
ellipticity, which is a sign of pure dynamical evolution by the tidal force.
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Chapter 8

Summary of This Thesis

Throughout this thesis, we discussed the dynamical evolution of the LSS from the per-
spective of voids. Voids are so huge object that they are expected to be less affected by
the local phenomena such as strong magnetic field or baryonic flow compared to galaxies
or stars. Therefore, the cosmic void is a promising probe of cosmology and the long range
interaction like gravity. Moreover, owing to the large-scale surveys such as galaxy sur-
veys or 21cm intensity mapping surveys being planned in near future, it is expected that
the number of the voids increase. With many more voids, the statistical error improves,
which is another factor that attract the attention of cosmologists today. Against this
background, in this thesis, we have discussed on the nature of the cosmic void and its
applications as a probe of cosmology and gravity.

In the first half of this thesis, we reviewed the theoretical frameworks for describ-
ing the evolution of the LSS. The LSS is roughly modeled by the Newtonian fluid with
gravitational potential that is modified by the expansion of flat FLRW background space-
time. In reality, the LSS is considered to be composed by dark matter particles. To
clarify specific assumptions for fluid approximation, we derived the fluid equations from
the Boltzmann equation with two-body perfectly elastic collision term. Following the his-
tory, we introduced the Einstein equations after that. In Chapter 3, we discussed on the
background space-time evolution as a homogeneous and isotropic solution of the Einstein
equations. The main components of the Universe today is classified into matter, which
consists of baryons and dark matter, and radiation (relativistic species). If we focus on
the later universe, it is almost matter dominant or dark energy dominant. Usually the
voids are the structures that are developed at lower redshift than z ∼ 10, they are good
candidate of the probe of the dark matter and the dark energy. The AP test estimates
the cosmological model parameters such as the matter density. However, the peculiar ve-
locity can hide the signal. To correct it, we use the linear perturbation theory described
in Chapter 4. For the later discussions, we also showed the two-point statistics of the
density fluctuation in the Universe and its Fourier space and redshift space features as
well.

In Chapter 5, we showed the basic features of the voids, followed by the discussion
on how the universal void profile can contribute to constrain cosmological model. The
universal profile of the void can be used as a promising target of the AP test if the
RSD correction is successful. We confirmed that if the universal profile of the voids
is distorted by the linear peculiar velocity, we can constrain cosmological parameters

91



92 CHAPTER 8. SUMMARY OF THIS THESIS

correctly. However, the fitting error to the stacked void profile and the non-linearity of
the peculiar velocity in the realistic situation can generate the deviation between the true
values and the best-fit values. However, the statistical error of the observational data is
so large that those errors are less important for now.

Considering the next-generation large scale intensity mapping survey, the universal
properties of the voids in HI distribution are also the promising probes of cosmology.
In Chapter 6, we first described the perspectives of the HI observations in near future
and discussed on the nature of the HI voids with the original void finder. Our void
finder simply adopting watershed algorithm for the pixelized data can find the void-like
structures directly from the observation data without any tuning parameters (except
the smoothing window function). Using the methods introduced in Chapter 5, we can
estimate the cosmological expansion history from HI voids if we successfully estimate the
HI velocity, correcting the bias between the HI density and the total matter density.

Not only the universal properties of the voids, we investigated the individuality of the
voids in the context of the correlation between void shape and the tidal field in Chapter7.
In the analysis based on the universal statistics, the individuality of the voids is treated
merely as noise for global signal, in spite of its possible usefulness as a tracer of local
space-time geometry. Especially, expecting that the shape of the voids traces the tidal
field at the void scale, we have made the detailed investigation on the individuality in the
void shape in Chapter7 of the thesis. We performed N-body simulation in the standard
cosmology, and confirmed the tendency that the voids, in average, are more distorted
at lower redshift. Then, going further from overall statistics, we traced individual voids
using particle IDs, and also introduced particle retention rate PR for the first time to
estimate the identity of the void before and after the evolution. As a result, we have
found the positive correlation between the ellipticity increment within 1 Gyr and the
tidal force along void major axis with 2-sigma confidence level, but only if we focus on
those voids which retain most of their member particles. If we include whole voids, then
the correlation is lost. With respect to the voids which exchange particles, we have found
that the voids tend to be suddenly stretched when they get particles and conversely,
shrink when they lose particles. As the ellipticity variation due to the particle exchanges
is larger than the variation possibly due to tidal field within 1 Gyr, the correlation between
shape variance and tidal force can be easily blinded. We note that, however, this result
may depends on the void finder: the void finder we have used does not smooth density
field to pick up the detail of the structure, while the small scale fluctuation can works as
noise for larger scale density fluctuation. Nevertheless, even smoothing does not remove
the small-scale motions. Therefore, we should understand the coupling between different
wavelength modes of density field appropriately to solving this issue.

At the end of this thesis, we comment on the future prospects of void cosmology. It is
very recent that the statistically sufficient number of voids come to be observed by galaxy
survey and there are many project aiming for observing the LSS in near future. The void
cosmology is therefore just at dawn and the increasing number of cosmologists have begun
to be interested in cosmic voids as a cosmological probe. In deed, our discussions on the
matter/HI void profile are the preparation of upcoming large-scale observations. One of
our concerns is the variety in the void finding methods, which may make it difficult to
make consensus between studies on voids. We hope that we can find the comprehensive
and systematic way to treat different kinds of voids. With its remarkable improvements,



93

artificial intelligence may classify these various ’voids’ based on the correlation between
the voids’ properties in near future. Apart from that, the improvement of the simulation
is also a big factor to boost cosmological test using the LSS. Needless to say that we need
a theory for interpretation, the experiments can give us new insights and perspectives.
Now we have machine power on our side and we expect that numerical experiments will
open up new possibilities for void cosmology.
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Appendix A

Confidence interval for correlation
coefficients

We derive confidence interval of the correlation coefficient given by equation (7.19) ref-
erencing Anderson (1958). Here, the sample correlation coefficient is written as c and
the population correlation coefficient is written as cg. Using Fisher’s z-transformation
(inverse hyperbolic tangent function)

z(x) =
1

2
loge

1 + x

1− x, (A.1)

it is known that z(c) is normally distributed around z(cg) with variance 1/(n − 3) when
the number of samples n is large enough (Fisher 1915). That is, znorm = (z(c) −
z(cg))/(1/

√
n− 3) has a normal distribution with mean 0 and variance 1.

With this fact, the p % confidence interval of a given correlation coefficient can be
calculated as below. First, the top ((100 - p) / 2) % percentile of the standard normal
distribution is given by

P (p) =
√

2 erfc−1(1− p/100), (A.2)

where

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt (A.3)

is the complementary error function, which satisfies the relation erfc(x) = 1− erf(x) with
the error function

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (A.4)

Therefore, assuming that znorm is between −P (p) and P (p), the section where z(cg) exists
with the probability of p% can be obtained; postulating

− P (p) ≤ z(c)− z(cg)

1/
√
n− 3

≤ P (p), (A.5)

we obtain the range of z(cg) as below:

z(c)−
√
n− 3P (p) ≤ z(cg) ≤ z(c) +

√
n− 3P (p). (A.6)
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Performing the inverse transformation of Equation (A.1), this inequality is transformed
as

z−1
(
z(c)−

√
n− 3P (p)

)
≤ cg ≤ z−1

(
(z(c) +

√
n− 3P (p)

)
. (A.7)

Since the transformation z is arctanh, we finally obtain

f− − 1

f− + 1
≤ cg ≤

f+ − 1

f+ + 1
,

f± = exp

[
2

(
1

2
loge

(
1 + c

1− c

)
− P (p)√

n− 3

)] (A.8)

as the p% confidence interval of the correlation coefficient.
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