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Abstract

While the existence of the magnetic fields in galaxies and galaxy clusters
is reported, their origin is still unknown. An attractive scenario is that
the Primordial Magnetic Fields (PMFs), which are the tiny seed fields gen-
erated in the early universe, evolve to become the astrophysical magnetic
fields. However, the PMFs are not yet confirmed observationally, and it
is an open question that whether or not the PMFs exist, and how their
strength is. To solve this problem, many efforts have been made to investi-
gate the observational signatures of the PMFs. Currently, the upper limits
on the PMFs are given by the Cosmic Microwave Background (CMB) and
the Large-Scale Structure (LSS) observations. The purpose of this thesis is
to discuss the improvement of the PMF constraints with the latest and fu-
ture CMB observations and a new cosmological probe, HI 21-cm line global
signal measurement.

First, we revisit the impact of the PMFs on the primary CMB anisotropies.
We calculate the baryon velocity perturbations induced by the Lorentz force
due to the PMFs before the CMB decoupling from baryons. We especially
focus on perturbations of smaller scales than the mean free path of CMB
photons, which are not discussed in the previous studies. We find the PMFs
enhance the CMB anisotropies on such small scales. As a result, an improved
constraint on the PMF strength is obtained from the CMB observations of
Planck and South Pole Telescope (SPT).

Next, we investigate the secondary CMB anisotropies created by the
PMFs after the decoupling epoch. One of the important generation mecha-
nisms of the secondary CMB anisotropies is the thermal Sunyaev-Zel’dovich
effect (tSZ effect), which is the inverse-Compton scattering by hot electron
gas. The PMFs create the gas density fluctuations through the Lorentz
force, and heat up gas due to the so-called ambipolar diffusion. The re-
sultant fluctuations of gas density and temperature depending on the PMF
structure create the CMB anisotropies via the tSZ effect. We calculate the
time evolutions of the gas density and temperature by a numerical simu-
lation including the Lorentz force and MHD dissipation effect. Then, we
evaluate the CMB temperature anisotropies from the tSZ effect. The PMFs
strongly affect the thermal history of baryon gas in low-density regions, and
create significant CMB anisotropies on very small angular scales around 1
arc second.



Furthermore, we discuss the impact of the PMFs on the redshifted HI
21-cm line observation. In the cosmological context, the observation of the
redshifted 21-cm line can probe the cosmic history of the baryon gas tem-
perature in the Cosmic Dawn (CD) and the Epoch of Reionization (EoR).
The PMFs can strongly affect the baryon gas thermal history during these
periods through their energy dissipation. We calculate the baryon gas tem-
perature history including the heating due to the PMF dissipation until the
EoR. The recent 21-cm line signal measurement by Experiment to Detect
the Global EoR Signature (EDGES) gives a clue to the thermal history
of baryon gas around the CD and EoR. Employing the measurement of
EDGES, we can set the stringent upper limit on the PMFs, which is less
than sub-nano Gauss.

For future prospects, our results suggest that the constraints on the
PMFs can be improved more from future CMB and 21-cm line observations
such as CMB-S4, and Square Kilometre Array (SKA). Additionally, the
possible existence of small-scale density structure induced by the Lorentz
force of the PMFs, which we find, might be checked by the on-going or next-
generation observations of LSS, for examples, Hyper Suprime-Cam (HSC),
Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST),
Euclid, and so on.
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Chapter 1

Introduction

1.1 Magnetic fields present everywhere

Magnetic fields exist on different scales in the universe. Figure 1.1 shows
the typical strength of magnetic fields of various astrophysical objects with
different scales, e.g., planets, ordinary stars, compact objects, molecular
clouds, interstellar medium, galaxies, galaxy clusters, and superclusters [1].
These magnetic fields with astrophysical objects are measured in several
different ways. For example, the synchrotron radiation is caused by free
electrons spirally moving around magnetic field lines. The polarization of
an electromagnetic wave is also useful to measure magnetic fields because
an electromagnetic wave is scattered by aligned dust grains, which are the
tracers for magnetic fields. Observed polarization is also affected by Faraday
rotation, which is the rotation effect of an electromagnetic wave polarization
plane during its propagation through the magnetized medium. The mea-
surement of the Zeeman effect is another traditional method, which is the
splitting of energy levels occurred by the interaction between charged parti-
cles spins and the magnetic fields. Although a wide variety of astrophysical
objects are found to be magnetized by the methods introduced above, the
origin and evolution of the cosmic magnetic fields are still mysterious. Es-
pecially, the large-scale magnetic fields with galaxies, galaxy clusters, and
superclusters invoke the interest of people because such magnetic fields are
possibly connected to the physics in the early universe or the particle physics
beyond the Standard Model. Therefore, we focus on the magnetic fields with
larger scales than galaxies (∼ 10 kpc) in this thesis.
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Figure 1.1: The typical strength of magnetic fields are shown versus scales of
various objects which they accompany. GC, ISM, MW, ICM, and IGM are
the abbreviations for Globular Clusters, Interstellar Medium, Milky Way,
Intracluster Medium, and Intergalactic Medium, respectively. Horizontal
and vertical axes represent the physical scale of astronomical objects R and
strength of magnetic fields B, respectively. (This figure is referred from
literature [1].)

1.1.1 Magnetic fields in galaxies and galaxy clusters

Magnetic fields present in many galaxies including the Milky Way [2]. In the
1960s, the first observations of the magnetic fields inside our Galaxy have
been made by the measurements of the optical and radio linear polarization
and the synchrotron emission [3,4]. More detailed observations have carried
out after that, and they have found the structure of the Galactic magnetic
fields; magnetic fields along the spiral arms and randomly distributed fields
inside the disk region [5–7]. Moreover, many studies have reported the
existence of magnetic fields in extragalaxies [8,9] and in galaxy clusters [10].
The typical strength of galactic magnetic fields is a few µG [11–14], and
the field strength of galaxy clusters is around 1 µG [15–18]. For much
larger scales, Virgo supercluster, Perseus-Pisces supercluster, and Hercules
superclusters are reported to be magnetized as 0.5 µG [19–22]
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1.1.2 Magnetic fields in the intergalactic medium

It is difficult to probe magnetic fields in the intergalactic region in direct ways
mentioned above. Instead, the magnetic fields of strength 10−18–10−15 G in
the intergalactic region are suggested by the high energy γ-ray observations
indirectly [23–29]. These studies estimate the strength of intergalactic mag-
netic fields based on rapidly repeated GeV γ-ray from blazars and so on, Al-
though MeV and GeV γ-ray is considered to travel to the earth with almost
no scatterings, TeV γ-ray scatters with the surrounding low-energy photons
from galaxies during propagation, and the pair creation of relativistic elec-
trons and positrons occurs. Then, high-energy charged particles produced
from TeV γ-ray inject energy into surrounding photons through inverse-
Compton scattering, and then the photons gained energy reach to the earth
as cascaded GeV γ-rays. Here, if magnetic fields exist in the intergalactic
region, the propagation of the produced electrons and positrons can be bent,
and the arrival time of the cascaded γ-ray is expected to be delayed. Thus,
in the presence of the intergalactic magnetic fields, in addition to the GeV
γ-ray emitted by high-energy objects and reaching the Earth directly, the
delayed GeV γ-ray that receives energy from high-energy charged particles
should be observed. This hypothetical repeated γ-ray emissions due to the
intergalactic magnetic fields is called “pair echo”, and proposed by Plaga in
1995 [30]. Afterward, γ-ray observation data with Fermi put a constraint on
the pair echo flux [27], and they have suggested that intergalactic magnetic
fields on 1 kpc scale are B1 kpc & 10−20.5 G. The cascade of the γ-ray energy
spectra emitted from blazars have also put lower limits on the intergalactic
magnetic fields as B & 10−16–10−15 G [24, 31]. Besides, the bending effect
due to the intergalactic magnetic fields can introduce multiple trajectories
of the cascaded γ-ray photons to us. As a result, it causes the “pair-halo”
of cascaded γ-ray signals from a point source [32]. These pair-halo signals
have been applied to estimate intergalactic magnetic fields as B ≈ 10−15 G
in 2010 [23], and 5 years later as 10−17 G . B . 10−15 G [28]. We note
that, in addition to the γ-ray observation, a cosmic ray is also applicable to
estimate the strength of intergalactic magnetic fields, as previously reported
as 10−17 G . B . 3× 10−14 G [25], and B1 Mpc . 0.7− 2.2× 10−10 G [33].
These estimations from γ-ray observations are remarkable since all of the
estimated field strengths are in good agreement at about 10−20–10−15 G,
even though they are independent studies using different data and methods.
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1.2 Origin of cosmic magnetic fields

It is under discussion how the magnetic fields in galaxies, galaxy clusters, and
intergalactic region introduced above are generated. The scenarios about the
origin and evolution of the cosmic magnetic fields are roughly classified into
two classes.

• Astrophysical origin: Seed magnetic fields are generated around the
epoch of formation of the first astrophysical objects, and the following
activities or explosion spread them into the intergalactic region.

• Primordial origin: Tiny magnetic fields are generated in the early
universe before recombination, and they provide the seed magnetic
fields of the galactic magnetic fields and so on. These hypothetical
magnetic fields in the early universe are called the “Primordial Mag-
netic Fields” (PMFs).

What is the difference between the magnetic fields generated by these sce-
narios? Or, which is more favorable for the observation data? To answer
these questions, we argue the theoretical prediction of typical field strength
from each scenario in this section, and current constraints on the PMFs
obtained by some observations in the next section.

1.2.1 Astrophysical origin

One of the most widely accepted ways of generating magnetic fields is the
so-called Biermann battery mechanism [34]. This mechanism is caused by
the rotational turbulence in electromagnetic fluid, which induces the rela-
tive velocity between electrons and ions and the resultant rotational elec-
tric current produces magnetic fields. Biermann battery can produce mag-
netic fields even when the initial magnetic fields are absent, and it may
support the astrophysical origin of the cosmic magnetic fields. The first
magnetic field strength produced by the Biermann battery mechanism has
been theoretically predicted as 10−21–10−18 G around protogalaxies [35,36],
10−17–10−14 G around supernova remnants of first stars [37], 10−9 G in
the central region of first stars [38], 10−19 G around first stars [39], and
B100 kpc ∼ 10−23 G around reionization sources [40]. Additionally, the sub-
sequent amplification due to the turbulence [41] and injection into the in-
tergalactic region throughout the outflow or astrophysical jet [42–46] have
been discussed.
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1.2.2 Primordial origin

On the other hand, there are many mechanisms proposed for generation
of the magnetic fields in the early universe; e.g., the generation during
the inflation epoch [47–51], the magnetogenesis due to the phase transition
of the universe [52–54] and the other scenarios [55–58] (For recent review,
see [59–61]). Regardless of the mechanisms, however, the predicted magnetic
field strength is less than 10−30–10−20 G. Therefore it is an open question
whether or not such tiny PMFs can be amplified to the magnetic fields in
galaxies or galaxy clusters, which have larger magnitudes than the PMFs
by 10 orders [62]. Dynamo theory, which enables the magnetic fields to be
amplified and sustained inside the rotating electromagnetic fluid, such as
inside ordinary stars, is expected to solve this question [63, 64]. However,
the efficiency of magnetic amplification with dynamo theory has a large un-
certainty because it strongly depends on the physical state of astrophysical
objects [65–67]. On the other hand, the observations of the intergalactic
magnetic fields seem to be naturally explained by the PMFs, which is left
behind in intergalactic space by the expansion of the universe. To confirm
the evolutions of the PMFs, it is important to investigate their observa-
tional signatures with many observables. In this thesis, we focus on the
observational constraints on the PMFs, especially with the primary CMB
anisotropies, thermal Sunyaev-Zel’dovich effect, and 21-cm line observations.

1.3 Observational status on large-scale magnetic
fields

The origin of the cosmic magnetic fields is one of the most mysterious prob-
lems in cosmic magnetism. As explained above in section 1.2, a lot of mech-
anisms are suggested to produce the first magnetic fields, and they have
different scales and strength of generated magnetic fields. Therefore it is
necessary to put a stringent observational constraint on the PMFs to access
the origin of the cosmic magnetic fields. However, in the direct observational
methods introduced at the beginning of this chapter, such signals from the
PMFs are extremely smaller than the nearby astrophysical magnetic fields.
While it is difficult to use them as probes of the PMFs, there are several
approaches to constrain the large-scale cosmic magnetic fields. Figure 1.2
shows the theoretical and observational constraints on the (cosmologically-
produced) large-scale magnetic fields, and the constraints are roughly di-
vided into three parts.
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Figure 1.2: The current constraints on the large-scale cosmic magnetic
fields. The color shaded regions are excluded by the MHD turbulence decay,
observations of CMB anisotropies, and the γ-ray from blazars. This plot is
referred in [68].

First, the γ-ray observations put the lower limit on the large-scale mag-
netic fields as explained in section 1.1. In addition, the MHD turbulence
decay limits the magnetic field at small scales [69]. The magnetic field evo-
lution in the early universe is calculated by solving MHD equations. The
time-scale of the MHD turbulence depends on the correlation length of the
magnetic fields. Consequently, the smaller the correlation length scale is,
the more efficiently the magnetic fields decay. Therefore the upper lim-
its on the magnetic fields are more stringent on smaller scales. Finally,
various cosmological observations including the CMB anisotropies have put
upper limits on the magnetic fields on larger scales than Mpc. Other ob-
servational probes for large-scale constraints are weak lensing [70], Lyman
alpha [71,72], CMB spectral distortions [71,73], and the Sunyaev-Zel’dovich
effect [74]. These different observations give constraints on the PMFs at
different epochs. However, there are little observations at the Dark Ages,
which are from the recombination around z ∼ 1100 to the Cosmic Dawn
around z ∼ 15 − 30. Future radio observations, such as measurements of
the redshifted 21-cm line, are expected to find cosmological signals from the
Dark Ages. Therefore we revisit the effects on the CMB anisotropies and 21-
cm line signal as cosmological observations theoretically and put constraints
on the PMFs.
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1.4 Purpose and structure of this thesis

In this thesis, we discuss the constraints on the PMFs from the current
and future observations. Particularly, we focus on the small-scale CMB
anisotropies induced by the PMFs [75], and the impact of the PMFs on the
thermal history of baryon gas during the Dark Ages [76–78]. In Chapter 2,
we introduce the principal assumptions and mathematical formalizations of
the PMFs, and previous constraints of the PMFs. Next, we investigate the
impacts of the PMFs on the primary CMB anisotropies on small scales,
and show their constraint from Planck and SPT measurements in Chap-
ter 3. Then, we dedicate Chapter 4 to the secondary CMB anisotropies
induced by the PMFs due to the thermal Sunyaev-Zel’dovich effect, and
discuss the possibility for current and future constraints. Finally, we pro-
pose a novel constraint on the PMFs from the 21-cm global signal, obtained
by the EDGES experiment in Chapter 5, and we conclude in Chapter 6. We
also describe special functions that are related to the treatment of the CMB
temperature anisotropies in Appendix A. Throughout this thesis, we adopt
the cosmological concordance flat ΛCDM model, and cosmological param-
eters are set as Hubble constant H0 = 67.8 km/s/Mpc, density parameters
for dark energy ΩΛ = 0.692, non-relativistic matter Ωm = 0.308, and baryon
Ωb = 0.048, based on Planck 2015 results [79] unless explicitly mentioned
otherwise.
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Chapter 2

Basic Equations and the
Primordial Magnetic Fields

2.1 MHD equations

In this section, we briefly review the basic Magnetohydrodynamics (MHD)
equations. At first, Maxwell equations in CGS units are

∇ ·E = 4πρe , (2.1)

∇×E = −
1

c

∂B

∂t
, (2.2)

∇ ·B = 0, (2.3)

∇×B =
4π

c
je +

1

c

∂E

∂t
, (2.4)

with the electric field E, the magnetic field B, the electric charge density
ρe, and the electric current density je. From Eq. (2.2), the electric field is
smaller than the magnetic field, as |E| ∼ (v/c)× |B| with v being the bulk
velocity of the fluid. Therefore, we may neglect the displacement current
c−1∂E/∂t in Eq. (2.4). This is called the MHD approximation. Because the
conductivity of astrophysical plasma is actually very large, this is the case.
Thus, Ampere’s law (2.4) becomes

∇×B =
4π

c
je . (2.5)
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We also assume that the electric current density is equivalent to the con-
duction current, which is determined by the Ohm’s law as

je = σ

(
E +

v

c
×B

)
, (2.6)

where σ is the electric conductivity, and v is the velocity of the fluid. Using
Eqs. (2.5) and (2.6), the induction equation (2.2) is represented by

∂B

∂t
−∇× (v ×B) = −∇× (η∇×B) , (2.7)

where we denote the electrical resistivity η by

η ≡
c2

4πσ
. (2.8)

From Eq. (2.5), the Lorentz force density is written as

fLorentz = je ×
B

c
=

(∇×B)×B

4π
. (2.9)

Therefore, the continuity equation and the Euler equation are

∂ρ

∂t
+∇ · (ρv) = 0 , (2.10)

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −ρ∇Φ−∇P + fLorentz . (2.11)

Here, ρ is the mass density of the fluid, Φ is the gravitational potential,
and P is the thermal pressure. The gravitational potential Φ satisfies the
Poisson equation,

∆Φ = 4πGρ . (2.12)

Besides, the thermal pressure P is given by the equation of state (EoS).
For ideal gas through the adiabatic process, the EoS is simply with some
constant C and the adiabatic index γ,

P = Cργ . (2.13)

Eqs (2.3), (2.7), and (2.10)-(2.13) are the complete set of MHD equations.
For cosmological applications, we define the co-moving spatial coordi-

nates xc in an expanding universe. The co-moving coordinates xc is related
to the static coordinates x as

x = a(t)xc , (2.14)
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with the cosmic scale factor a(t), which corresponds to the size of the uni-
verse at time t. The time- and spatial-derivatives in the static frame can be
related to those in the co-moving frame with the subscription “c” as

∂

∂t
=

∂

∂tc
−
ȧ

a
xc · ∇c , ∇ =

1

a
∇c . (2.15)

Similarly, the co-moving velocity vc, gravitational potential Φc, and mag-
netic fields Bc are respectively

v = ȧxc + vc , (2.16)

Φ = Φc −
1

2
aä|xc|2 . (2.17)

With these co-moving variables Eqs. (2.14)-(2.17), the fluid equations (2.10)
and (2.11) are transformed to

∂ρ

∂tc
+ 3

ȧ

a
ρ+

1

a
∇c · (ρvc) = 0 , (2.18)

ρ

[
∂vc

∂tc
+
ȧ

a
vc +

1

a
(vc · ∇c)vc

]
= −

1

a
ρ∇cΦc −

1

a
∇cP + fLorentz . (2.19)

In Chapter 3, we use this Euler equation (2.19).
From here, we omit the subscription “c”, and use Ȧ for the time deriva-

tive of A for simplicity. Then, we introduce the perturbed density field
as

δ(x, t) ≡
ρ(x, t)− ρ̄(t)

ρ̄(t)
, (2.20)

where ρ̄(t) is the spatially homogeneous background density field. We rewrite
the continuity equation (2.18), the Euler equation (2.19), and the Poisson
equation (2.12) with the overdensity δ. As a result, the perturbed equations
are

δ̇ +
1

a
∇ · [(1 + δ)v] = 0 , (2.21)

v̇ +
ȧ

a
v +

1

a
(v · ∇)v = −

1

a
∇Φ−

1

aρ̄(1 + δ)
∇cP +

fLorentz

ρ̄(1 + δ)
, (2.22)

∆Φ = 4πGa2ρ̄δ . (2.23)
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At the first order of the density perturbation δ, we can obtain the evolu-
tionary equation for δ from Eqs. (2.21)-(2.23) as

δ̈ + 2
ȧ

a
δ̇ − 4πGρ̄δ =

∇P
ρ̄a2
−

1

ρ̄a
∇ · fLorentz . (2.24)

By neglecting the thermal pressure, we can obtain the evolutionary equations
for cold dark matter (4.1) and baryon density fluctuations (4.2) in Chapter 4.

2.2 Statistical properties of the PMFs

In this section, we argue the time evolution and the spatial distribution of the
PMFs. First, we mention about the time evolution of the PMFs. Adiabatic
evolution of the PMFs as B(x, t) ∝ 1/a2(t) is a good approximation in the
high-redshift universe. In Chapter 5, we give a more realistic estimate of
the PMF evolution.

Then, we discuss the statistical property of the PMF spatial distribution.
Throughout this paper, we assume the PMFs as Gaussian random fields.
Therefore the statistical property of the PMFs is completely determined by
the two-point correlation function. Additionally, we assume that the spatial
distribution of the PMFs are statistically homogeneous and isotropic. Thus,
the two-point correlation function of the PMFs in wave-number space can
be written with the form of power spectrum PB(k) with k = |k| as [80,81]

〈Bi(k)B∗j (k′)〉 = δD(k − k′)(δij − k̂ik̂j)PB(k) . (2.25)

Here k̂i is the normalized wave number vector, δD is the Dirac’s delta
function, and Bi(k) is the PMF in Fourier space as defined by B(k) =∫
d3x eik·xB(x) . Here we neglect the helical component of the PMFs.

For simplicity, we assume that the power spectrum of the PMFs has a
single power-law shape in k-space as

PB(k) = ABk
nB (for k < kcut) . (2.26)

Here AB is the amplitude of the PMF power spectra and nB gives the scale
dependence. In the context of the constraints on the PMFs, the smoothed
PMF strength on λn = 1 Mpc scale, B1Mpc is often introduced. This
smoothed PMF strength is related to the amplitude of the PMF power
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spectrum as

B2
1Mpc =

∫
d3k

(2π)3
e−k

2λ2nPB(k)

=
AB

4π2λnB+3
n

Γ

(
nB + 3

2

)
. (2.27)

We note that we choose a Gaussian filter as the smoothing window function.
1 Also, in derivation of the second line in equation (2.27), we have used the
definition of the Gamma function, Γ(x) ≡

∫∞
0 e−ttx−1dt. In this thesis,

we do not specify any generation mechanisms of the PMFs. Instead of
that, we use the model parameter for the PMFs as B1Mpc and nB to cover
a wide range of PMF models. However, some previous observational and
theoretical works discuss the PMFs with different smoothing scales of the
PMFs from λn = 1 Mpc. In comparison with such works, we can relate the
PMF strength smoothed on any scale λ as

Bλ = B1Mpc

(
1Mpc

λ

)(nB+3)/2

. (2.28)

Equation (2.28) implies that the case of nB = −3.0 corresponds to the scale-
invariant PMFs. Additionally we adopt nB > −3.0 throughout this thesis
to avoid the infrared divergence of the PMFs.

On the other hand, in the ultraviolet regime, the PMFs have the cut-
off scale due to the MHD effect in the early universe. According to the
previous studies [86, 87], the radiative diffusion before the recombination
epoch damps the PMFs on small scales. The damping scale increases as the
universe evolves. Therefore, we assume that the power spectrum has the
sharp cut-off on the damping scale at the recombination epoch,

PB(k) = 0 (for k ≥ kcut) . (2.29)

According to Ref. [88], the cut-off scale at the recombination epoch is given

1 We have used this definition of the smoothed amplitude of the PMFs from [82].
Although this definition is slightly different from some other works (such as [83, 84]), the
value of Bλ is almost unchanged among different definitions. There are some different
definitions of the power spectrum of PMFs, for example, see Eq. (3.8) in [85]. We follow
the above one with which most previous studies have worked.
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by(
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)−2

=
V 2

A
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0

dt

a2(t)ne(t)

'

1.32× 10−3

(
Bn

1 nG

)2(
Ωbh

2

0.02

)−1(
Ωmh

2

0.15

)1/2
 2

(nB+5)

,

(2.30)

where σT and ne(t) are the cross section for Thomson scattering and the
electron number density, respectively. Here, the Alfvén velocity, VA, is de-
fined as

VA ≡
Bλcut(trec)√

4πργ(trec)
, (2.31)

with λcut = 2π/kcut. From Eq. (2.30), we can find that the larger Bn and
nB give the shorter cut-off length.
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Chapter 3

Impact on CMB primary
anisotropies

In this chapter, we briefly review the CMB, which is considered to be the
footprint of Big Bang theory, and give an updated constraint on the PMFs
from CMB anisotropies.

3.1 The Big Bang theory and discovery of the CMB

Currently, the Big Bang theory as the cosmological model is widely accepted,
and this describes that the earliest observable universe is the high density
and temperature state. Friedmann and Lemâıtre have independently shown
that the universe might expand as the solution of the Einstein equation
[89,90]. So far, there are three strong observational pieces of evidence of the
Big Bang theory.

In 1929, Edwin Hubble reported that the line-of-sight velocity of galaxies
(called “nebulae” at that time) is proportional to the distance to them [91].
He estimates the distance to the galaxies from the apparent brightness and
their velocity from the spectral energy distribution including the Doppler
effect. 1 Here we define the redshift z as

z =
λo − λe

λe
, (3.1)

with the wavelength of the emitted photon from the galaxy in the rest frame

1 Vesto Slipher had already measured the Doppler shift of the spiral galaxies in
1912 [92]. However, Hubble pointed for the first time the relation between the corre-
sponding velocities of measured galaxies and the distances to them.
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λe and the observed wavelength λo. Together with the speed of light c and
the recessional velocity of the galaxy v, Doppler’s law suggests 2

v = cz . (3.3)

On the other hand, the distance to the galaxy is required to be calculated, in
addition to the recessional velocity v. Hubble has used Cepheid variables in
galaxies as a “standard ruler”, and discovered that the recessional velocities
of galaxies are proportional to the distances to them r as

v = Hr , (3.4)

with the Hubble constant H. This relation is known as “Hubble-Lemâıtre
law”. Expanding spacetime, which is the most basic idea of the Big Bang
theory, gives us a straightforward explanation of the relation (3.4).

What we can use as standard rulers are not only Cepheid variables, but
also annual parallax, stars in the main sequence, Tully-Fisher relation for
the spiral galaxies, Fundamental Plane for the elliptical galaxies, and Type
Ia supernovae (SNe Ia). In particular, SNe Ia are the brightest standard
candle among them, and their observations have told us the fact that the
Hubble constant H is not a constant; i.e., dark energy exists. To uncover
the nature of dark energy is the physicists’ biggest dream.

In 1948, Alpher, Bethe, and Gamow reported that the Big Bang universe
gets colder as it expands, and then light chemical elements such as hydrogen
and helium are synthesized [93]. Because their prediction of abundance is
in good agreement with the fraction of elements in the present universe,
this supports the validity of the Big Bang cosmology. This nucleosynthesis
model is also known as αβγ theory named after the authors. Afterward,
this nucleosynthesis model is revisited by Hayashi, and the abundance of
the light elements is explained more precisely [94].

In 1951, Alpher and Herman suggested that the Universe continues to
get colder even after the nucleosynthesis, and the atomic nuclei produced
by the Big Bang nucleosynthesis capture the free electrons, leading to the
most amount of hydrogen and helium becoming neutral [95]. Therefore this
epoch is called the cosmic “recombination”. Before the recombination, the

2 Here we assume that the galactic motion is non-relativistic. Consideration for the
relativistic Doppler effect changes the relation between the redshifts and the recessional
velocities of the galaxies as

1 + z =

√
1 + v/c

1 − v/c
. (3.2)

Taylor-series expansion of this equation with v/c � 1 leads to Eq. (3.3).
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photons are strongly coupled to the free electrons via Thomson scattering.
After that, the photons decouple from baryons and they start to travel a
long distance with little scattering. Alpher and Herman calculated these de-
coupled photons would be observed as isotropic radiation with about 28 K
at the present epoch. More recent precise calculation of the thermal history
revealed that the recombination occurs around 380 thousand years after the
Big Bang, and this isotropic background radiation is around 2.7 K. As de-
scribed below, the discovery of the cosmic microwave background radiation
is considered as the evidence of big bang cosmology together with the confir-
mation of light element abundance produced by Big Bang nucleosynthesis.

The CMB has the almost perfect black body spectrum, which was dis-
covered by Arno Penzias and Robert Woodrow Wilson in 1964 [96]. Later,
a lot of the CMB measurements were provided, including Cosmic Back-
ground Explorer (COBE) satellite and Wilkinson Microwave Anisotropy
Probe (WMAP) of National Aeronautics and Space Administration (NASA),
and Planck of the European Space Agency (ESA). Their measurements of
the CMB conclude that its temperature is almost isotropic. According to
the COBE results [97], the mean temperature is

T0 ' 2.72548K . (3.5)

Currently, the CMB temperature map has small anisotropies as shown in
Fig. 3.1.

3.2 CMB temperature anisotropy

In this section, we discuss how to treat observables of the CMB temperature
anisotropy. Observed CMB temperature anisotropy has roughly two com-
ponents; the primary anisotropy, which is created before the recombination,
and the secondary anisotropy, which is induced after the recombination.
The primary anisotropy is caused by the metric perturbations, which is
originated in the inflation mechanism. The secondary anisotropies include
the dipole component from the Milky Way’s motion, integrated Sachs-Wolfe
effect, Sunyaev-Zel’dovich effect, which is discussed in the next chapter, and
so on. Because the relevant epochs and the spatial scales differ from these
effects, these components are roughly distinguished by decomposing CMB
anisotropies with different angular scales.

Here, we write the observed temperature T (n) of the CMB photon com-
ing from a direction vector n. In general, T (n) is different from the averaged
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Figure 3.1: (top) the all-sky CMB temperature map measured by Penzias
and Wilson. Galactic foreground radiation can be observed at the center
of the image. (center) the CMB map measured by COBE satellite. For
the first time, dipole anisotropy due to the Galactic motion was observed.
(bottom) the CMB map measured by WMAP satellite. The small-scale
anisotropies of the CMB temperature were precisely measured, and then
WMAP contributed to the precise cosmology. (This figure was brought by
NASA/WMAP Science Team.)

CMB temperature T0 in Eq. (3.5). We define this differential value of tem-
peratures as

δT (n) ≡ T (n)− T0 (3.6)

It is convenient to expand the fraction of temperature difference to the mean
temperature, with the spherical harmonics Ylm(n) as

δT (n)

T0
=

∞∑
l=1

m=l∑
m=−l

almYlm(n) . (3.7)

Spherical harmonics is a complete set of functions that is a orthonormal basis
on the surface of a sphere (For details, see Reference [98] and Appendix A.2).
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From the positivity of temperature and property of the spherical harmonics
Y ∗l,m = (−1)−mYl,−m, coefficients alm satisfy the following relation,

a∗l,m = (−1)mal,−m. (3.8)

Since the spherical harmonics form a orhonormalized functions, We rewrite
alm with the integral form as

alm =

∫
dn

δT (n)

T0
Y ∗lm(n) . (3.9)

Here integration is for the unit sphere surface. Using this equation, we can
obtain the coefficients alm from measured values δT0(n). Then we consider
the physical meaning of the coefficients alm. From the asymptotic expression
of the spherical harmonics (A.36), which is valid for l � 1, multipole l
roughly corresponds to an angular scale θ ∼ π/l, and alm represent the
temperature anisotropy smoothed on the corresponding angular scale. The
largest contribution to the CMB temperature anisotropies is l = 1, which
corresponds to the dipole moment. This component arises from the proper
motion of the earth at the CMB rest frame. In the cosmological analysis,
we usually neglect this dipole anisotropy due to this Doppler effect for the
proper motion. Unless the isotropy of the universe is broken, coefficients
alm are not correlated for different l and m. This idea is applied to an
imaginary set of universe“s”, which consists of many independent universes
including our universe. We assume that the ensemble average for such a set
of universes satisfies the following property.

〈alma∗l′m′〉 = Clδll′δmm′ , (3.10)

where proportional constant Cl depends on only total angular momentum
l, and does not on m. Also, if the initial density perturbations completely
follow a Gaussian distribution, a higher-order correlation function (3-point
and more) cannot be produced. Therefore, under these assumptions, the
coefficients Cl completely determine the property of the CMB temperature
anisotropy. We can access the information of only one universe, and we can
obtain one value of alm for one combination (l,m). Therefore, in principle,
we cannot confirm the statistical relation (3.10) directly from the observa-
tional data. However, for large multipole `, we can confirm whether or not
many alm for the subsamples satisfy the Eq. (3.10). We have no evidence
for such inconsistency from the current CMB observations.
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Under the assumption (3.10), one can sum the variances of alm over m
to estimate Cl as

Cl =
1

2l + 1

m=l∑
m=−l

|alm|2 (3.11)

We note that Cl follows χ2
2l+1 distribution because of the definition of Cl in

Eq. (3.11) and assumption that alm obey the Gaussian distribution with the
mean value 0. Therefore, the variance of Cl is (δCl)

2 = 2C2
l /(2l + 1), and

the statistical uncertainty of Cl is order of 1/
√
l + 1/2. This statistical un-

certainty is inevitable because we can obtain one all-sky CMB temperature
map, and it is called the “cosmic variance”. Thus the theoretical predic-
tion of Cl values may differ from the measurements within the fraction of
1/
√
l + 1/2. We note that the cosmic variance affects the precision to de-

termine the cosmological parameters from the measurement of the matter
power spectra, as well as from those of the CMB anisotropies.

Coefficients Cl determine the two-point correlation function of the CMB
temperatures 〈δT (n1)δT (n2)〉. If the temperature fluctuations follows the
Gaussian distribution perfectly, the property of their spatial distribution can
be described by the two-point correlation function. Using Eq. (3.7), we can
write down the two-point correlation function as

〈δT (n1)δT (n2)〉 = T 2
0

∑
l

Cl
∑
m

Ylm(n1)Y ∗lm(n2)

= T 2
0

∑
l

2l + 1

4π
ClPl(n1 · n2) , (3.12)

where Pl is Legendre polynomial (see Appendix A.2). We used Eqs. (A.19)
and (A.34). From Eq. (3.12) We can also find the temperature variance as

〈δT 2(n)〉 = T 2
0

∑
l

2l + 1

4π
Cl ∼ T 2

0

∫
d(log l)

l(l + 1)

2π
Cl . (3.13)

Note that we have assumed the large l in the second approximation. We
have derived the quantity

Dl ≡ T 2
0

l(l + 1)

2π
Cl , (3.14)

which represents the squared amplitude of the differential temperature with
varying a multipole d(log l). the CMB temperature angular power spectrum
is often plotted with Dl.
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Figure 3.2: The CMB temperature anisotropies measured by Planck satel-
lite. The horizontal axis shows the multipole l, and the vertical axis shows
the anisotropy Dl, defined by Eq. (3.14). In the horizontal axis, plots are
logarithmically for 2 ≤ l ≤ 30 and linearly for l ≥ 30. The Planck ob-
servational data are plotted with the blue points with error bars, and the
theoretical curve obtained by regression analysis is shown with the red solid
line. The error bars represent one standard deviation of uncertainty, ±1σ.
In the theoretical calculation, the concordance ΛCDM cosmological model
is adapted with the best-fitted cosmological parameters. obtained by the
Markov chain Monte Carlo analysis. The bottom panel shows the deviation
of the observational data from the theoretical values. (The figure is provided
by ESA/Planck collaboration [79].)
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Figure 3.2 shows the CMB temperature anisotropies measured by Planck
satellite. This plotting has the following characteristics of the primary CMB
anisotropies:
(1) The typical amplitude of the CMB temperature anisotropy is δT/T0 ∼
10−4–10−5.
(2) The angular power spectrum has oscillations, whose peaks are at l ∼
200, 500, 800, 1100, 1400.
(3) The anisotropy decreases with increasing l for l & 500.
(4) The oscillations rapidly decay for l & 1000.

These signatures can be explained by adiabatic scalar-type curvature
perturbations in ΛCDM model and the flat primordial curvature spectrum
with the amplitude of 10−5. The oscillation in the angular power spectrum
is caused by the acoustic wave in the baryon-photon plasma at the recom-
bination epoch [99, 100]. 3 Finally, this acoustic oscillation starts to damp
around l & 1000, and this is called the “Silk damping” [101]. Although the
CMB photons are coupling with baryons before the recombination epoch,
each photon can travel a finite distance as a random walk with scattering
repeatedly. As a result, the density perturbations below the random walk
distance should be smoothed out due to the diffusion effect. Therefore the
amplitude of the angular power spectrum starts to decay for l & 1000.

3.3 CMB polarization

In addition to the CMB temperature anisotropies, its polarization fields
are important in cosmology. The CMB photons are polarized from the
quadrupole temperature anisotropies because of the existence of the Thom-
son scattering, as shown in Fig. 3.3.

If neglecting the circular polarization, two variables are needed to rep-
resent the polarization of a propagating photon. In such a case, the Stokes
parameters, Q and U are often used. While the temperature anisotropy is
a rotational invariant value, Q and U change under the rotational transfor-
mation of the coordinates on a spherical surface, and thus they are spin-2
quantities. Therefore, instead of Eq. (3.7), we can expand the Stokes Q and

3 This oscillating feature is called the “acoustic oscillation”, and important to constrain
the cosmological models. The first mentioning of this acoustic oscillation is in [99], and
this paper also predicts the Sunyaev-Zel’dovich effect (SZ effect) for the first time. (We
treat the SZ effect in Chapter 4.) It is surprising that two important effects on the CMB
anisotropies, i.e., the acoustic oscillation and the SZ effect, were predicted in a single paper
in 1970, which is only 5 years later than the discovery of the CMB! (Of course, it was not
clear that the CMB temperature anisotropy can be observed or not.)
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Figure 3.3: An outgoing polarized photon along z-axis, which is scattered
with an electron at the origin. The temperature difference between the
incoming photon along x-axis and one along y-axis can produce polarization
after the scattering. (This figure is reprinted from Ref. [102].)
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U with the spin-weighted spherical harmonics ±2Ylm as

Q(n)± iU(n) =
∑
l

∑
m

a±2,lm ±2Ylm(n) . (3.15)

Instead of a±2,lm, it is convenient to define different two quantities: Elm
and Blm as

Elm ≡ −
(a2,lm + a−2,lm)

2
, (3.16)

Blm ≡
i(a2,lm − a−2,lm)

2
. (3.17)

This enables to decompose the polarization fields into the parity-even E-
mode and the parity-odd B-mode.

Now, we introduce the useful points for this E-B decomposition. As de-
scribed at the beginning of section 3.2, temperature anisotropies including
the quadrupole moments arise from the metric perturbations. In the cosmo-
logical perturbation theory, the metric perturbations are decomposed into
the scalar-, vector-, and tensor-types with respect to the rotational symme-
try. The temperature anisotropies from the tensor-type perturbations (the
gravitational wave) can create the B-mode polarization while those from
the scalar-type perturbations cannot because of the above nature of parity.
Therefore, detecting the CMB B-mode polarization is a useful tool to search
for the primordial gravitational wave. Note that the vector-type perturba-
tions are not discussed very much because they must decay unless there is
some anisotropic stress tensor to source them. In the following sections,
we discuss the velocity perturbations and the vector-type CMB anisotropies
induced by the anisotropic stress tensor of the PMFs.

3.4 CMB anisotropies created by the PMFs

As mentioned in section 1.3, the CMB observations put upper limits on
the PMF strength. One of the most important works is carried out from
the Planck 2015 observation [112]. Recently, Zucca et al. [103] have im-
proved the PMF constraints from the combined data of Planck and SPT
B-mode polarization. Because the anisotropic stress tensor of the PMFs
induces all types of metric perturbations, the measurement of the B-mode
polarization is a powerful probe for the PMFs, as well as for the primor-
dial gravitational wave. Although the stringent limit on the PMFs have
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already obtained from the B-mode observations, we show that the small-
scale temperature anisotropies can also give a powerful constraint on the
PMFs. While the primary CMB anisotropy, which is caused by the infla-
tionary metric perturbation, experiences the so-called Silk damping around
multipoles ` ∼ 2000, the PMFs can create CMB anisotropies much smaller
than the Silk scale, not only for B-mode but also for T-mode and E-mode.
SPT has recently detected TT, EE, and TE power spectrum for a wide mul-
tipole range, 50 < ` < 8000 [104]. This precise measurement of small-scale
CMB fluctuations can give us a tighter constraint on the PMFs, especially
with blue-tilted power spectra. We put the first PMF constraint with both
temperature and polarization from Planck and SPT. We introduce the CMB
angular power spectra sourced by the stress-energy tensor of the PMFs in
this section.

3.4.1 Formalisms of the PMFs

Since the primordial plasma in the Universe has high conductivity, the ideal
MHD is valid to provide the evolution of the PMFs. Besides, the back-
reaction from the primordial plasma motion on the PMFs is described as a
higher-order effect in the linear cosmological perturbation theory, and we can
neglect them in this work. Therefore, the PMF evolution can be described
adiabatically. Following the cosmological expansion, the PMFs evolve as
B(x, t) ∝ B0(x)/a2(t), where a(t) is the scale factor at time t, which is
normalized in a(t0) = 1 at the present epoch, t0.

In this study, we do not focus on any specific PMF generation mech-
anism, but calculate the CMB anisotropies with three free parameters,
B1Mpc, nB, and ηB for characterizing our PMF model. Here, ηB is the
conformal time at which the PMFs are generated, and this determines the
initial condition of the PMF induced perturbations. The effect on the CMB
anisotropies of varying ηB is discussed later.

Under the above assumptions, the energy-momentum tensor of the PMFs
in Fourier space, TB

µ
ν , is given by

TB
0
0(k, t) = −

1

8πa4(t)

∫
d3k′

(2π)3
Ba(k′)Ba(k − k′) ≡ −ργ∆B , (3.18)

TB
0
i(k, t) = 0 , (3.19)

TB
i
j(k, t) =

1

4πa4(t)

∫
d3k′

(2π)3

[
1

2
Ba(k′)Ba(k − k′)δij −Bi(k′)Bj(k − k′)

]
≡ pγ(∆Bδ

i
j −ΠB

i
j) . (3.20)
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Here we have defined the dimensionless parameters ∆B and ΠB
i
j with the

energy density ργ and pressure pγ of CMB photons. The dimensionless mag-
netic energy density ∆B and the anisotropic stress ΠB

i
j source the cosmo-

logical perturbations via Einstein-Boltzmann equations. The scalar-vector-
tensor decomposition is powerful to analyze the evaluations of perturbation
quantities at the linear order in cosmological perturbation theory. Since ∆B

is a scalar quantity, it can source only the scalar-type perturbations. On the
other hand, the PMF anisotropic stress tensor ΠB

i
j can be decomposed into

the scalar Π
(0)
B , vector Π

(±1)
B , and tensor part Π

(±2)
B (for detailed discussion,

see, e.g., Refs. [88, 105]) and, then, it can source all types of perturbations.
Besides the metric perturbation induced by the energy-momentum tensor

of the PMFs via the Einstein equation, the PMFs can generate perturbations
through the Lorentz force on the baryon plasma. The Lorentz force Li can
be related to the magnetic energy density and anisotropic stress. Thus the

Lorentz force term is also decomposed into the scalar-type L(S) = 2Π
(0)
B /9−

∆B/3 with the scalar-type values, ∆B and Π
(0)
B , and the vector-type L

(V)
i =

ik(Π
(+1)
B k̂(ie

+
j) +Π

(−1)
B k̂(ie

−
j))k̂j with the vector-type value Π

(±1)
B . Here, e± ≡

−i/
√

2(e1 ± ie2) are the helicity basis with complex orthonormal bases, e1

and e2, which are perpendicular to k [88, 105].

3.4.2 Impact of the PMFs on the CMB spectra

To study the evolution of the cosmological perturbations, we solve the Boltz-
mann and Einstein equations with some initial conditions. In practice, we
set the initial condition on the super-horizon scale and well after the neutrino
decoupling. However, it is known that neutrinos provide different effects on
the perturbations induced by the PMFs before and after the neutrino de-
coupling. After the neutrino decoupling, neutrinos freely stream, and then
they can create the non-zero anisotropic stress to compensate for that of
the PMFs. On the other hand, before the neutrino decoupling, neutrinos
tightly couple with the photon-baryon fluid. As a result, neutrinos have no
anisotropic stress and cannot compensate for that of PMFs. This difference
between before and after the neutrino decoupling brings two modes with
different initial conditions; passive and compensated modes.

The passive mode arises due to the anisotropic stress of the PMFs before
the neutrino decoupling. The non-zero contribution of the PMF anisotropic
stress on the metric evolution grows the passive mode logarithmically soon
after the generation of the PMFs. When neutrinos decouple from the
photon-baryon fluid, the anisotropic stress of the PMFs is compensated by
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free-streaming neutrinos, as mentioned before. Although the perturbation
growth halts after that, the induced perturbation can exist as a constant per-
turbation, similar to an inflationary adiabatic perturbation. The amplitude
of this mode depends on ln(ην/ηB), with the conformal time of the neutrino
decoupling ην and that of the PMF generation ηB [105]. The vector-type
perturbation for the passive mode after the neutrino decoupling decays in
the same way as the inflationary adiabatic vector-type perturbation does.
Therefore the CMB anisotropies arise from the scalar and tensor-type per-
turbation for the passive mode. The angular power spectrum of the CMB

anisotropies due to the passive mode are proportional to 〈Π(0)∗
B Π

(0)
B 〉 for the

scalar-type contribution and 〈Π(±2)∗
B Π

(±2)
B 〉 for the tensor-type contribution.

On the other hand, the perturbation induced by the PMFs after the
neutrino decoupling is called the compensated mode. After the neutrino de-
coupling, the PMF anisotropic stress is canceled by the neutrino free stream-
ing motion. There is no contribution of the PMF anisotropic stress to the
metric perturbation. As a result, the metric perturbation for the compen-
sated mode is not generated at the leading order on super-horizon scales.
In this respect, the compensated mode is similar to the isocurvature per-
turbation. With this initial condition, the PMFs induce the perturbation
sourced by the stress-energy tensor of the PMFs including the Lorentz force
on sub-horizon scales. The compensated mode is important on small-scale
CMB anisotropies. Although some fraction of the compensated mode per-
turbation is erased by the Silk damping effect, the CMB anisotropies on
smaller scales than the Silk scale can be created by the compensated mode.
This is because the PMFs can survive and continue to source the CMB
anisotropies even below the Silk damping scale. We discuss the behavior of
such small-scale CMB anisotropies in section 3.5. In the compensated mode,
the scalar, vector, and tensor types can generate the CMB anisotropies. In
the scalar type, the amplitude of the CMB angular power spectrum is pro-

portional to 〈∆∗B∆B〉, 〈Π(0)∗
B Π

(0)
B 〉, and 〈∆∗BΠ

(0)
B 〉. In the vector and tensor

types, 〈Π(±1)∗
B Π

(±1)
B 〉 and 〈Π(±2)∗

B Π
(±2)
B 〉 appear on the CMB angular power

spectrum, respectively.
Figure 3.4 shows that the CMB temperature-temperature (TT) auto-

power spectra induced by the PMFs for three dominant contributions, namely,
the passive scalar mode, the compensated vector mode, and the passive ten-
sor mode. The PMF contributions to the CMB angular power spectra with
B1Mpc = 4.0 nG, nB = −2.5 are plotted in the left panel, and those with
B1Mpc = 3.0 nG, nB = −1.5 are shown in the right panel. It is clear that the
passive tensor mode has a significant contribution on large-scale as ` . 100
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Figure 3.4: The top thin solid line is the primary CMB temperature angular
power spectrum, which is due to the adiabatic perturbation created by the
inflation mechanism. We show the magnetically induced power spectra for
three magnetic modes, the passive scalar mode (sca P) with the dashed line,
the compensated vector mode (vec C) with the dash-dotted line, and the
passive tensor mode (ten P) with the dotted line. In the plots, we take
the PMF parameters as B1Mpc = 4.0 nG and nB = −2.5 for the left panel,
and B1Mpc = 3.0 nG and nB = −1.0 for the right panel. The compensated
scalar and tensor modes are not shown because they have relatively smaller
amplitudes. We also show the total magnetic contribution as the thick solid
line.

in case that B1Mpc = 4.0 nG and nB = −2.5, while the compensated vector
mode is dominant for ` & 4000. When plotting Fig. 3.4, we fix the PMF
generation epoch at the grand unified theory (GUT) phase transition, as
ην/ηB = 1017. We also plot the measurements of the CMB temperature
anisotropies obtained by Planck and SPT in Fig. 3.4.

3.5 Calculation of the compensated vector mode
on small-scales

In this section, we focus on the compensated vector mode because it is the
dominant PMF contribution to small-scale CMB anisotropies as mentioned
in section 3.4. The vector-type induced CMB temperature anisotropies arise
from the Doppler and integrated Sachs-Wolfe (ISW) effect [106], and the
observable temperature anisotropies can be written as

Θ(η0, k, n̂) =
[
vb(η, k) · n̂

]ηrec
η0
−
∫ ηrec

η0

dη V̇ (η, k) · n̂ , (3.21)
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where n̂ is a line-of-sight unit vector, and ηrec denotes the recombination
time. Also, vb(η) is divergence-free baryon velocity perturbation, and V (η)
is the vector component of metric perturbation, which satisfies the gauge-
invariance as defined in [107]. Therefore we need to solve the Euler equation
of baryons for vb(η) and Einstein equation for V (η) to calculate the CMB
anisotropies from the compensated vector mode. 4 In this work, we do not
discuss the evolution of the vector potential V (η) because its contribution
to the CMB anisotropies via the ISW effect is negligible. In other words, it
is expected that the enhancement of the CMB anisotropies on small scales
comes from the scale-dependence of the baryon velocity at the recombi-
nation, vb(ηrec, k). In order to confirm this, we plot the fully numerical
solution for vb(ηrec, k) calculated by the Boltzmann code [103] in figure 3.5.
This shows that the behavior of baryon velocity can be divided into three
different scales: the large scale k . kS ≈ 0.14 Mpc−1, the intermediate scale
kS . k . kmfp ≈ 0.38 Mpc−1, and the small scale k & kmfp. Here kS and
kmfp denote the Silk damping scale and the mean free path scale of the CMB
at the recombination epoch, respectively.

For large and intermediate scales as k . kmfp, the evolution of the vector
perturbation has been analytically studied with the tight-coupling approx-
imation, vb ' vγ [88, 108]. According to their results, for the larger scales
than the Silk scale (or on the earlier phase of the evolution), the baryon
velocity is sourced by the PMF Lorentz force, and the photon velocity (i.e.,
dipole anisotropy vγ) catches up the baryon due to the Compton scattering.
As a result, the baryon velocity and the photon dipole moment are grow-
ing with wavenumber (or time) together for k . kS ≈ 0.1 Mpc−1. For the
intermediate scales, the photon viscosity effect partially erases the baryon
and photon velocity perturbations. Therefore the baryon velocity vb and
the photon velocity vγ starts to decay.

In fact, as shown in figure 3.5, the coupling between the baryons and
photons continue to keep below the Silk scale. However, in case the velocity
perturbation scale is smaller than the photon mean free path, the baryon-
photon coupling no longer holds, and the baryon velocity starts to grow due
to the PMFs again. Here, we try to explain k-dependence of the baryon ve-
locity on such small scales, by analytically solving the Euler equation. When
the dipole moment of photon is completely damped, the Euler equation in

4In fact, we also consider the Boltzmann equations of photons, dark matter, and neu-
trinos. However, these components do not give an impact on our discussion. Therefore
we do not mention their evolution.
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Figure 3.5: The scale-dependent baryon velocity perturbation and the
photon dipole moment at the recombination are shown by the solid and
dashed lines, respectively. The model parameters of the PMFs are fixed
with B1Mpc = 3.0 nG and nB = −1.0.
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presence of the PMFs is given by(
∂

∂t
+H +

τ ′

R

)
vb = −

ργL
(V )

2aρb
, (3.22)

in the non-relativistic limit [69,109]. Here ρb and ργ are the energy density
of baryon and photon respectively, R ≡ 3ρb/4ργ is the pressure ratio of
baryon and photon, and τ ′ ≡ aneσT is the photon opacity. The left side
of equation (3.22) includes the Hubble expansion, Compton scattering, and
the right side represents the Lorentz force due to the PMFs. After solving
equation (3.22) with an initial condition as vb(a = ai) = vi , we obtain

vb(k, a) =vi exp

{
τ ′

2aHR

[
1− y2(a)

]}

−
ργL

(V )

4aHρb

[
Ei

(
−

τ ′

2aHR

∣∣∣∣∣
i

)
− Ei

(
−

τ ′

2aHR

)]
exp

(
τ ′

2aHR

)
,

(3.23)

with y(a) ≡ a/ai is the scale factor normalized at the initial time, subscript
“i” denotes the value at the initial time, and Ei(x) ≡

∫ x
−∞ e

t/t dt is the
exponential integral. The first term on the right side in equation (3.23) rep-
resent the decaying due to the Compton scattering, and the second term is
the inhomogeneous solution, which comes from the PMF source term, i.e.,
from the right side in the equation (3.22). We have confirmed that the solu-
tion (3.23) agrees with the full numerical calculation on much smaller scales
than the Silk damping wavenumber, i.e., k � kS , as shown in figure 3.6.

3.6 Data Analysis with Planck and SPT

In this work, we perform data analyses to constrain the PMF parameters,
(B1Mpc, nB, τB), with the observational data of the CMB anisotropies. We
apply the Markov Chain Monte Carlo (MCMC) method to the constraint
on the PMFs. As one of the most popular methods to evaluate convergence,
We impose a convergence criterion as the so-called Gelman-Rubin diagnostic
with R−1 < 0.01. Here, R is the square root of the ratio of the marginalized
variance of all chains and that for each chain. For the MCMC analysis, we
use publicly available numerical codes, MagCAMB and MagCosmoMC, which are
developed by Zucca et al. [103]. MagCAMB can solve the linearized Boltzmann
and Einstein equations with the PMFs. Based on CAMB [110] and its modifi-
cation [105], it was extended to calculate the CMB angular power spectra for
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Figure 3.6: Numerical solution for the baryon velocity and the analytical
solution that we have obtained. After the baryon velocity damps due to the
photon viscous effect, our analytical solution is in good agreement with the
numerical solution for 10−5 . a . 10−3. Here we fix k = 1000 Mpc−1 and
the PMF parameters are the same as in figure 3.5.
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all types of contributions sourced by the PMFs mentioned in the previous
section. MagCosmoMC is developed, based on CosmoMC [111]. It enables us to
explore cosmological parameters and the PMF model parameters with the
foreground and data calibration parameters.

This study aims to investigate how the small-scale measurement of the
CMB anisotropy by SPT improves the constraint on the PMF parameters,
compared to the previous constraints by Planck data [103, 112]. First, we
perform a likelihood analysis with only Planck low-` (2 ≤ ` ≤ 29) TT,
EE, TE, and BB power spectra data, and high-` (30 ≤ ` ≤ 2508) TT,
TE, and EE power spectra. This analysis has been already presented in
references [103, 112]. Next, we use the combined data for Planck 2015 and
SPTpol 2015/2017 for the first time. SPTpol 2015 data includes the BB
power spectra in 300 ≤ ` ≤ 2300 for three spectral combinations, 95 GHz ×
95 GHz, 95 GHz × 150 GHz, and 150 GHz × 150 GHz [113], and SPTpol
2017 data contains the TT, TE, and EE power spectra in 50 ≤ ` ≤ 8000
for the frequency band, 150 GHz × 150 GHz [104]. We note that Zucca et
al. [103] has already studied the constraint on the PMFs with the Planck
and SPTpol 2015 BB bandpowers. In this work, we update the constraint
on the PMFs by adding small-scale TT, TE, and EE data from SPTpol
2017.

One problem is that the SPT 2017 bandpowers are partially overlapped
with the Planck power spectra for 50 ≤ ` ≤ 2508. We have used both Planck
and SPT for these multipole scales, and this leads to erroneously tighter
constraints on the standard cosmological parameters. However, this BAO
wiggle region around 200 . ` . 3000 is mainly determined by the standard
cosmological parameters. Therefore we can expect that the constraint on
the PMF parameters is not affected very much by using the duplicated CMB
data on these scales.

We show the CMB temperature anisotropies measured by Planck and
SPT in Figure 3.4. The PMF contributions to the CMB angular power
spectra with B1Mpc = 4.0 nG, nB = −2.5 are plotted in the left panel, and
those with B1Mpc = 3.0 nG, nB = −1.5 are shown in the right panel. Both
of these parameter combinations are allowed by the previous constraint from
Planck collaboration [112] with a 95% confidence level (C.L.). However, we
expect that the high-` CMB spectrum measured by SPT can constrain large
nB as shown in Figure 3.4. As clearly seen in Fig. 3.4, the CMB spectra
observed by SPT have tiny errors on small-scales as ` & 2000, and the
effect on such small-scale CMB anisotropy is dominated by the compensated
vector mode, which is relevant for the parameter estimation using the SPT
data. Finally, the blue-tilted PMF spectra (this corresponds to a large
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spectral index nB) that enhance the small-scale CMB anisotropies are tightly
constrained by the high-` CMB measurement of SPT.

3.7 Results and Discussion

First, we show the constraint on the PMF parameters, (B1Mpc, nB), derived
from MagCosmoMC with the Planck and SPT data in figure 3.7. The 2D
constraint only with the Planck data is, as we have expected, almost the
same in size and shape as the previous works [103,112]. We have found the
normalized PMF strength and the PMF spectral index can be constrained
more tightly with the SPT data. For the constraint with Planck and SPT,
the MCMC analysis consumes computing time dozens of times longer than
for the Planck only. This is because the calculation includes the CMB
anisotropies up to ` ∼ 8000, and there arises a strong degeneracy between
the PMF parameters and foreground ones on such small scales. In figure 3.7,
our analysis with the Planck and SPT does not reach the convergence of the
MCMC analysis. Our analysis with the Planck and SPT in figure 3.7 finds
R > 10. Therefore the 2D color contour in Figure 3.7 is not a smooth
shape. However, the marginalized one-dimensional constraints on B1Mpc

and nB seem to have smooth probability distribution functions in Figure 3.7.
Besides, we found that, after reaching the current level of the constraint in
Figure 3.7, the upper limit on the PMF parameters does not change for a
long time during the calculation. Therefore we conclude that the constraint
on the PMF parameters in Figure 3.7 is not far from the result that would
be obtained from the converged MCMC analysis.

The results for the constraints on the standard cosmological parameters
and the PMF ones from Planck and SPT data are presented in table 3.1.
The PMF amplitude smoothed on 1 Mpc is constrained as B1Mpc < 1.52
nG for a 95 % confidence level (C.L.) when we include the SPT bandpowers
for MCMC analysis, while the Planck 2015 data only put the upper limit
as B1Mpc < 3.18 nG. The constraint on the magnetic spectral index is also
improved, as nB < −1.14 for Planck and SPT data and nB < −0.28 for only
Planck data. We find the high-` SPT temperature anisotropy data favor the
nearly scale-invariant PMF spectrum, as discussed in section 3.6. On the
other hand, the change on ην/ηB mainly affects the amplitudes of the pas-
sive mode perturbation, and consequently, it influences the large-scale CMB
anisotropies. Therefore we have an almost unchanged constraint on the
ην/ηB when adding the small-scale SPT data for the parameter estimation.
In table 3.1, although we put the best-fitted value for ην/ηB, we do not show
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Figure 3.7: The constraint on the magnetic field strength B1Mpc and the
spectral index of PMFs nB. The thick and thin color region stands for 68%
and 95% confidence level (C.L.), respectively.
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Table 3.1: The best-fitted values and constraints on the cosmological pa-
rameters and PMF model parameters are shown. The constraints on the
cosmological parameters are with 68% C.L. Those for the epoch of the
PMF generation, ηB, and the upper limits for B1Mpc and nB are with 95%
C.L. The left two columns show the constraints from the Planck data and
the Planck and SPT data without the PMF parameters, and the right two
columns include the PMF parameters.

Parameters
ΛCDM PMF

Planck Planck + SPT Planck Planck + SPT

-log(likelihood) 6472.072 6557.605 6491.749 6610.238

# of parameters 78 94 81 97

Ωbh
2 0.0222± 0.00016 0.0223 0.0222 0.0224

Ωch
2 0.1199± 0.0015 0.1190 0.1201 0.1177

100θMC 1.0407± 0.0003 1.0408 1.0408 1.0409

τ 0.078± 0.017 0.069 0.066 0.036

B1Mpc < 3.182 < 1.515

nB < -0.28 < -1.14

log (ην/ηB) 9.92+2.09
−5.92 9.41

ln(As× 1010) 3.092± 0.033 3.070 3.068 2.997

ns 0.964± 0.005 0.966 0.962 0.968

H0 67.20± 0.65 68.16 67.64 68.73

the error-bars for the Planck and SPT case. This is because we have used
duplicated information of CMB angular power spectra for 50 ≤ ` ≤ 2500,
and may we underestimate the error, as explained in section 3.6.

Next, we discuss the impact of the PMF parameter on the determina-
tion of the ΛCDM cosmological parameter. In Fig. 3.8, we compare the
ΛCDM cosmological parameter constraint with only Planck data and that
with Planck and SPT TT/TE/EE, and BB data, including the PMF pa-
rameters. As a comparison, we also summarize the best-fitted values of the
cosmological parameters and the PMF parameters in case of Planck-only
and Planck and SPT data analyses in table 3.1. Our results indicate that
the cosmological parameter estimation can be biased when considering the
PMF effects and the SPT high-` data. In particular, Thomson optical depth
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τ and the amplitude of the primordial power spectrum for the scalar sector
As decrease by 1-2 σ compared with the Planck only analysis. The SPT TT
data favor nearly scale-invariant spectra of the PMFs as shown in Fig. 3.7.
For such PMFs, the passive tensor mode significantly enhances the low-` EE
power spectrum. To compensate for the enhancement on large scales by the
PMFs, the MCMC chooses the small optical depth τ , which also contributes
to the signals on the large-scale EE power spectrum.

As dedicated in section 3.6, the measured multipole ranges of the TT/TE/EE
spectra which we have used are overlapped for Planck and SPT in 50 . ` .
2500. However, this is not harmful to our results because the CMB power
spectra for these angular scales are almost determined only by the cos-
mological parameters, and are not affected by the PMF contribution very
much. We have confirmed that the best-fitted values of the cosmological
parameters are not changed for Planck and Planck+SPT when excluding
the PMFs for our analyses (ΛCDM case). For similar reasons, we do not
perform BICEP2/Keck-Planck joint analysis [103,112].

Before closing this section, we make some comments on other PMF
effects on the CMB anisotropies, which are not included in our analysis.
Previous studies predict the generation of the helical PMFs during infla-
tion [114–117]. While such helical PMFs can induce the parity-odd spec-
trum, TB and EB, the contributions of the helical part of the PMFs to the
parity-even TT, TE, EE, and BB power spectra are always subdominant
in comparison with the contribution of the non-helical PMFs [112]. There-
fore, adding the helical component of the PMFs to parameter estimation
would not significantly change our constraint. The dissipation of magnetic
fields before the recombination epoch also affects the thermal history and
recombination history of the baryon gas [109,118–120]. Including this effect
can improve the constraint on the PMFs via increasing the energy density
of CMB photons [121], creating y-type distortion [122, 123], and changing
the evolution of Thomson optical depth [73]. Including these effects may
improve our constraint on the PMFs, in particular, with a large spectral in-
dex. However, the dissipation of the PMFs is a highly non-linear effect, and
there is still a large uncertainty in the calculation of this effect. Therefore
we neglect the dissipation process in our analysis. Besides, the PMFs can
induce non-Gaussian CMB anisotropies [124, 125]. The current constraint
on the non-Gaussianity in the CMB anisotropies by Planck observation pro-
vides the same order of ours [112]. Furthermore, the CMB polarization map
should be altered by Faraday rotation if the PMFs exist. The Planck collab-
oration puts an upper limit on the PMF strength via the Faraday rotation,
and the resultant constraint is much weaker than via the other effects de-
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Figure 3.8: The constraint on the magnetic field strength B1Mpc and the
spectral index of the PMFs nB. The thick and thin color region stands for
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40



scribed here. Therefore, we have neglected the effect of the Faraday rotation
from the PMFs in our analysis.
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Chapter 4

Creation of CMB secondary
anisotropies

4.1 Cosmic magnetism and gas physics

The PMFs affect the baryon gas dynamics even after the recombination
epoch. In particular, we focus on two effects: creation of the matter density
fluctuations due to the Lorentz force, and heating of the IGM gas due to the
ambipolar diffusion of the PMFs. Such hot and dense IGM gas can leave
an observational signature with the CMB temperature anisotropies, via the
so-called thermal Sunyaev-Zel’dovich (tSZ) effect as explained in section 4.2.
In this section, we discuss the time evolution of the IGM gas density and
temperature with consideration of the PMFs.

4.1.1 IGM density fluctuations due to PMFs

As investigated in the previous study [126, 127], the evolutional equations
of the density fluctuations for cold dark matter δc(t) and baryons δb(t) at
time t are written as

δ̈c(t) + 2
ȧ(t)

a(t)
δ̇c(t)− 4πG[ρc(t)δc(t) + ρb(t)δb(t)] = 0 , (4.1)

δ̈b(t) + 2
ȧ(t)

a(t)
δ̇b(t)− 4πG[ρc(t)δc(t) + ρb(t)δb(t)] = S(t) . (4.2)

where Ẋ represents the time derivative of X, and ρb,c are the densities of
baryons (b) and cold dark matter (c), respectively. Also, S(t) is the source
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term due to the Lorentz force of the PMFs and given by

S(t) =
∇ · (∇×B(x, t))×B(x, t)

4πρb(t)a2(t)
, (4.3)

where ∇ is taken in the comoving coordinate.
Now we write the total matter density and density fluctuation as ρm(t) =

ρc(t) + ρb(t) and δm(t) ≡ [ρc(t)δc(t) + ρb(t)δb(t)]/ρm(t), the evolutionary
equation for δm(t) can be obtained from Eqs. (4.1) and (4.2) as

δ̈m(t) = −2
ȧ(t)

a(t)
δ̇m(t) + 4πGρm(t)δm(t) +

ρb(t)

ρm(t)
S(t) (4.4)

We can obtain the solution of Eq. (4.4) analytically by the Green function
method. Taking D1(t) and D2(t) as the special solutions of Eq. (4.4) with
S(t) = 0, we can obtain the general solution as

δm(t) = AD1(t)+BD2(t)−D1(t)

∫ t

ti

dt′
S(t′)D2(t′)

W (t′)
−D2(t)

∫ t

ti

dt′
S(t′)D1(t′)

W (t′)
.

(4.5)
Constants A and B are determined by the initial conditions of δm and ˙δm,
and W (t) is the Wronskian and given by W (t) = D1(t)Ḋ2(t)−D2(t)Ḋ1(t).

From here, we assume the matter-dominated universe because we are
interested in the structure formation after the recombination. Then, we can
find the homogeneous solutions for Eq. (4.4) as

D1(t) ∝ t−1, D2(t) ∝ t
2
3 . (4.6)

With these homogeneous solutions, we can find the inhomogeneous one as

δm(t) =
3

5

Ωb

Ωm

3

2

(
t

ti

) 2
3

+

(
t

ti

)
−

5

2

S(ti)ti , (4.7)

and δb = 0 initially, we can write the evolution of δb as

δb =
2S(t)

15H2(t)

[(
3yr + 2y−3/2

r − 15 ln yr

) Ωb

Ωm

+15 ln yr + 30

(
1−

Ωb

Ωm

)
y−1/2

r −

(
30− 25

Ωb

Ωm

)]
, (4.8)

where Ωm and Ωb are the density parameters of total matter and baryons,
respectively, and arec is the cosmic scale factor at the recombination epoch.
Note that Eqs. (4.1) and (4.2) are valid only when δb � 1 and the baryon
pressure is negligible. We discuss the validity of these assumptions later.
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4.1.2 Thermal history of the IGM gas

In addition to the density fluctuations, IGM gas temperature is also affected
by the PMFs. After the cosmic recombination, the ionization fraction of
the IGM gas rapidly decreases. However, a small fraction of the IGM gas
remains ionized, and these ionized particles feel the Lorentz force of the
PMFs, while neutral particles do not feel it. Resultantly, there comes a
relative motion between ionized and neutral particles. The bulk energy due
to this relative motion is dissipated to the thermal energy of the IGM gas
by collisional friction between ionized and neutral particles, which is the
process known as the ambipolar diffusion. The evolutional equation of the
gas temperature Tgas with the ambipolar diffusion is given by [128]

dTgas

dt
=− 2H(t)Tgas +

δ̇b

1 + δb
Tgas +

xi

1 + xi

8ργσT

3mec
(Tγ − Tgas)

+
Γ(t)

1.5kBnb
−

xinb

1.5kB
[Θxi + Ψ(1− xi) + ηxi + ζ(1− xi)],

(4.9)

where xi is the ionization fraction of the IGM gas, σT is the Thomson scat-
tering cross section, me is the electron mass, kB is the Boltzmann constant,
nb is the IGM baryon number density, and the subscript γ denotes the values
for the CMB photons. The first, second, and third term in the right-hand
side of Eq. (4.9) represent the adiabatic cooling by the expansion of the
Universe, adiabatic compression or expansion due to the local density fluc-
tuations, and the Compton cooling (or heating), respectively. The fourth
term represents the extra heating of the IGM gas due to the PMF energy
dissipation. Here the heating rate Γ(t) is given by [119]

Γ(t) =
|(∇×B(t,x))×B(t,x)|2

16π2ξρ2
b(t)

(1− xi)

xi
, (4.10)

where we adopt the drag coefficient ξ = 3.5 × 1013 [cm3 g−1 s−1] from
Ref. [129]. The last term in the Eq. (4.9) stands for the several cooling
effects; i.e., the free-free cooling (bremsstrahlung), the collisional excitation
cooling, the recombination cooling, and the collisional ionization cooling.
We write these cooling coefficients as Θ, Ψ, η, and ζ, respectively, and these
values are referred from Fukugita and Kawasaki [128].

When solving Eq. (4.9), we need to calculate the ionization fraction xi.
According to Refs. [119,130], time evolution of the IGM ionization fraction
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is given by

dxi

dt
=

[
−αenbx

2
i + βe(1− xi) exp

(
−

∆E12

kBTγ

)]
D + γenb(1− xi)xi, (4.11)

where we adopt the three-levels model, with the ground state (n = 1), the
first excited state (n = 2), and the continuum (n > 2) based on the RECFAST
code [130, 131]. In Eq. (4.11), ∆E12 = hPlc/λ12 = 10.2 eV represents the
energy of Ly-α photon, and D is the suppression factor due to the Ly-α
resonance photons, which is given by

D =
1 +KΛnb(1− xi)

1 +KΛnb(1− xi) +Kβe(1− xi)
, (4.12)

with the Ly-α redshift rate K ≡ λ3
12/8πH(t), and the two-photon emission

coefficient Λ = 8.22458 s−1 [130]. The first, second, and last terms in the
right-hand side in Eq. (4.11) represent the collisional recombination, the
photoionization and the collisional ionization, respectively. With the defi-
nitions of the hydrogen energy levels, En = −13.6/n2 [eV] (n=1,2), those
coefficients are given by

αe = 1.14× 10−13 ×
4.309 T−0.6166

4

1 + 0.6703 T 0.5300
4

[cm3 s−1], (4.13)

βe = αe

(
2πmekBTγ

h2
Pl

) 3
2

exp

(
E2

kBTγ

)
[s−1], (4.14)

γe = 0.291× 10−7 × U0.39 exp(−U)

0.232 + U
[cm3 s−1], (4.15)

with T4 = Tgas/104 K and U = |E1/kBTgas| as in RECFAST code [131]. Here,
note that the original RECFAST code uses the gas temperature Tgas instead
of the CMB one Tγ in the definition of βe in Eq. (4.14). However, Chluba et
al. [120] has pointed out the RECFAST code might overestimate the ionization
fraction when the extra heating decouples the gas temperature from the
CMB photon temperature. In this work, the PMFs can heat up the IGM
gas up to Tgas ∼ 103−4 K, as described in section 4.4. Therefore, we adopt
Eq. (4.14) to calculate the ionization fraction of the IGM gas.

For simplicity, we do not include any astrophysical ionizing sources, such
as the UV and X-ray photons emitted from the stars, galaxies, AGNs, and so
on. We also neglect the primordial helium and heavier elements. When we
calculate the IGM thermal history Eqs. (4.9) and (4.11), we take into account
the fluctuations of the hydrogen number density nH and mass density ρb in
situ, which are evaluated by Eq. (4.8).
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4.2 SZ angular power spectrum

In the previous section, we discuss the impacts of the PMFs on the IGM
gas density, temperature, and the ionization fraction. When the PMFs are
tangled, these physical values in the IGM gas fluctuate. Such fluctuated gas
can create the CMB temperature anisotropies through the inverse-Compton
scattering, which is the so-called thermal Sunyaev-Zel’dovich (tSZ) effect.
In this section, we describe the tSZ effect and its angular power spectrum
induced by the PMFs.

4.2.1 tSZ effect as a secondary CMB anisotropy

In Chapter 3, we introduce the CMB temperature anisotropy and the rela-
tion between the observable temperature and the angular power spectrum.
In this subsection, we focus on the Sunyaev-Zel’dovich effect, which is the
mechanism to distort the black-body spectrum of CMB photons, and to
induce the secondary CMB temperature anisotropies [132, 133]. Sunyaev
and Zel’dovich 1969 [132, 133] have suggested that the energy spectrum of
the CMB photon can be changed when hot ionized gas causes the inverse
Compton scattering with the CMB photons. This effect is called “thermal
Sunyaev-Zel’dovich effect” (tSZ effect), and a lot of radio telescopes have al-
ready confirmed this effect. tSZ effect is usually caused by the hot electron
gas in galaxy clusters with typical temperature ∼ 107–108 K. For another
case of the CMB spectral distortion due to the inverse-Compton scattering,
the kinematic SZ effect (kSZ effect) is caused by the line-of-sight component
of the bulk velocity of the hot electron gas cloud. The tSZ effect and kSZ
effect are called the SZ effect, generally.

The photon distribution function f(ν, t) with time t and frequency ν
obeys the photon Boltzmann equation. Using the Fokker-Planck expan-
sion of the Boltzmann equation lead us to obtain the following Kompaneets
equation [99]

∂f(ν, t)

∂y
=

1

x2

∂

∂x

(
x4∂f(ν, t)

∂x

)
, (4.16)

where

x(ν) ≡
hPlν

kBTγ
, (4.17)

and

y(n̂, t) ≡
kBσT

mec2

∫ χ(t)

0
dχ′ a′χw(χ′, n̂) . (4.18)
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Figure 4.1: The undistorted CMB spectrum (dotted) and the distorted one
by SZ effect (solid). To illustrate the distortion clearly, this distortion is
assumed to be caused by a galaxy cluster which is 1000 times more massive
than the typical galaxy clusters. The dotted and solid lines intersect at the
frequency of 218 GHz (wavelength of 1.38 nm). This figure is referred to as
from [134].

This quantity y(n̂, t) is called the Compton y-parameter on the line-of-
sight direction [99], and this characterize the strength of the tSZ effect.
In Eq. (4.18), χ, aχ, and n̂ are the comoving distance, the unit vector to
the line-of-sight, and the scale factor corresponding to χ, respectively. Also,
w(χ, n̂) is the function of nb, xi and Tgas at a comoving three-dimensional
position x = χn̂, and given by

w(χ, n̂) = xinb(Tgas − Tγ)|x . (4.19)

Kompaneets equation (4.16) is derived with the assumptions that the free
electrons are non-relativistic and follow the Maxwell-Boltzmann distribution
function. After solving Eq. (4.16), we can find the altered photon spectral
energy distribution as the decrement in the low-energy side (Rayleigh-Jeans
region) and increment in the high-energy side (Wien region). Also, the fre-
quency where the photon distribution function is unchanged is independent
on the gas temperature or when the scattering occurs, and this is determined
as x ' 3.83, ν ' 218 GHz, λ ' 1.38 nm. For the illustrative understanding,
we show the CMB spectral distortion due to the tSZ effect in Fig. 4.1.
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4.2.2 CMB temperature angular spectrum due to the tSZ
effect

The Compton y-parameter in Eq. (4.18) is related with the CMB temper-
ature anisotropies caused by the tSZ effect depending observed frequencies
as

∆T

T
(n̂, ν) = g(ν) y(n̂, t0) , (4.20)

where t0 is the present time, and g(ν) is the spectral function of the tSZ effect
given by g(ν) = −4 + x/ tanh(x/2) with x ≡ hPlν/kBT . Especially, g(ν) in
the Rayleigh-Jeans (low-frequency) limit goes to g(ν)→ −2 as ν → 0.

According to Eq. (4.20), we can obtain the tSZ angular power spectrum
as

C` =

[
g(ν)kBσT

mec2

]2 ∫
dχ
Pw(χ, `/χ)

χ2
. (4.21)

Here ` is a multipole moment, and Pw(χ, k) is the three-dimensional power
spectrum of the Compton y-parameter at a comoving distance χ. We obtain
Pw(χ, k) from w defined by Eq. (4.19). When deriving Eq. (4.21), we adopt
the Limber’s approximation because we are interested in large ` modes.

4.3 Simulation Setup

We calculate the CMB angular power spectrum due to the tSZ effect from
Eqs. (4.18) and (4.21) with the solutions for Eqs. (4.8), (4.9) and (4.11) for a
given spatial distribution of the PMFs. Because this equation system is non-
linear, we perform numerical simulations to find the spatial distributions of
the gas density, temperature, and ionization fraction and calculate the tSZ
angular power spectrum from their fluctuations.

As explained in Chapter 2, the statistical property of the PMFs in our
work is determined by only two parameters, Bn and nB. We investigate
the tSZ anisotropies induced by the PMFs with some combinations of these
PMF parameters in Table 4.3. These parameters are consistent with the
Planck constraint on the PMFs [112].

Now we explain the details of the simulation setup. At first, we set the
calculation box size to (1 Mpc)3. It is required to resolve the cut-off scale in
Eq. (2.30) to accurately generate the magnetic field distribution. We adopt
the grid numbers as summarized in Table 4.3, which are enough to resolve
the cut-off scale of the PMFs.
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Table 4.1: The models of PMFs adapted in this work. Each column repre-
sents the model number, the PMF strength Bn, the spectral indices nB, the
cut-off length in real space λc, the box length of the calculation volume Lbox,
the grid size of numerical calculation Lgrid, from left to right, respectively.

No. Bn [nG] nB λc [kpc] Lbox [Mpc] Lgrid [kpc]

1 0.5 2.0 318 2.0 31.25
2 0.5 1.0 263 1.0 15.625
3 0.5 0.0 201 1.0 15.625
4 0.5 -1.0 135 1.0 15.625
5 0.1 2.0 200 1.0 15.625
6 0.1 1.0 154 1.0 15.625
7 0.1 0.0 106 1.0 15.625
8 0.1 -1.0 60.3 0.5 7.8125
9 0.05 2.0 165 1.0 15.625

10 0.05 1.0 122 1.0 15.625
11 0.05 0.0 80.1 0.5 7.8125
12 0.05 -1.0 42.6 0.25 3.90625
13 0.01 2.0 104 0.5 7.8125
14 0.01 1.0 71.3 0.5 7.8125
15 0.01 0.0 42.1 0.25 3.90625
16 0.01 -1.0 19.1 0.25 3.90625

To erase the divergence of the PMFs numerically, we first make a distri-
bution of the vector potential field, A(k), in three-dimensional wave-number
space. Then, the PMF strength B(k) are obtained by

B(k) = ik ×A(k). (4.22)

In this way, the divergenceless condition ∇·B = 0 is automatically satisfied.
Besides, a distribution of ∇ × B(k) is calculated by the outer product of
ik and B(k) in wave-number space. Then, we perform the inverse Fourier
transformation of these values to obtain B and ∇×B in real space. From
these distributions, we can evaluate the source terms of the density fluctu-
ation and gas temperature in Eqs. (4.8) and (4.9) in real space.

To save the computational resources, our calculation of gas density, tem-
perature, and ionization fraction, which are represented by Eqs. (4.8), (4.9),
and (4.11), are performed at each cell in the simulation box, independently.
We adopt the fourth-order Runge-Kutta method as the solver for Eqs. (4.9)
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and (4.11), and make output data at 67 redshift slices taken logarithmically
from z = 1000 to z = 10. We then calculate the power spectrum Pw(χ(z), k),
at each redshift slice. We integrate these power spectra with the linear in-
terpolation between the slices and, finally, we obtain the angular power
spectrum in Eq. (4.21).

4.4 Results and Discussion

We perform our simulations for four different PMF models with the param-
eter sets listed in Table 4.3. Depending on the PMFs, the evolutions of the
gas quantities, δb, Tgas and xi, are different. First, we focus on the PMF
dependence of these values.

In the left column of Fig. 4.2, we show the co-moving two-dimensional
structure of the x-component of (∇×B)×B, which are the Lorentz force
terms appeared in Eqs. (4.3) and (4.10). Each panel in Fig. 4.2 corresponds
to the case for models 1–4 listed in Table 4.3, from top to bottom, respec-
tively. We do not show the results for models 5–16 while we have calculated
these cases. The middle and right columns are the results for the ionization
fraction and the hydrogen number density maps at z = 10.0, respectively.
For all PMF models, the IGM gas is heated up to ∼ 20000 K due to the am-
bipolar diffusion, in regions where the Lorentz force is strong. In addition,
the gas densities are extremely lower in such regions because the divergence
of the Lorentz force is negative. Since the collisional recombination rate is
not so effective in such underdense regions, the ionization fraction of the
IGM gas maintains around the unity, even when the redshift is around 10.
Therefore, the correlation between xion and nH is always negative. We also
comment that the cut-off length in Table 4.3 corresponds to the fluctua-
tion scale shown in Fig. 4.2. We also find that the density contrast rapidly
evolves as |δb| � 1, as small scale as the resolution of our simulation, even
soon after the recombination. Therefore we set the lower limit of the density
fluctuations to δb = −0.9 to avoid the negative density. Since it is linearized,
Eq. (4.8) is not valid in such a highly nonlinear regime. We discuss this point
at the end of this section.

Figure 4.3 shows the time evolutions of the spatial-averaged gas temper-
ature (top) and the ionization fraction (bottom), for different PMF mod-
els. We obtain these values by density-weighted averaging. Thus Fig. 4.3
mainly reflects the quantities in overdense regions. Here, the heating rate
of the IGM gas due to the PMF dissipation in Eq. (4.9) is proportional
to the inverse square of the baryon mass density, and heating efficiency be-
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comes suppressed in high-density regions. Actually, the top panel of Fig. 4.3
shows that although the gas mean temperature keeps increasing soon after
the recombination, it turns downward after reaching 3000–4000 K around
z ∼ 300. At the earlier stage of the evolution as z & 300, the density fluc-
tuation has not yet grown so much, and, the heating efficiency can be still
high at almost all cells. However, the non-linear evolution of the density
contrast starts after z ∼ 300, and the heating rate due to the Lorentz force
keeps lowering because of the cosmic expansion. Consequently, the gas den-
sities in the high-density regions start to drop. We also find the dependence
of the gas temperature on the PMF models is small, as shown in Fig. 4.3.
The difference between the gas temperatures for model 1 and 4 is within
the factor of 2, even at z = 10. This is because the saturated temperature
at high redshifts does not depend on the PMF model, and it is mainly de-
termined by the atomic cooling effects and the ionization fraction. After
the saturation, the gas temperature gradually decreases with the balance of
the cooling and heating effects. Thus, the PMF model dependence of the
IGM gas temperature is small for the magnetic field strengths considered in
this work. Although it is not apparent in Fig. 4.3, we also investigate the
gas temperature evolutions in the underdense regions. We find that the gas
temperature in such low-density regions quickly increases soon after the re-
combination epoch as well as that in the high-density regions. However, the
gas temperature in the low-density regions keeps as high as the saturated
temperature even in the lower redshifts.

We show the density-weighted average of the ionization fractions xi in
the bottom panel of Fig. 4.3. Contrary to the gas temperature evolution,
the averaged value of the ionization fraction does not simply agree with
the values in high-density regions. This is because the typical ratio of the
ionization fraction values in the high-density region to the low-density region
is much larger than that of the density contrast values, i.e., (ρxi)

high density <
(ρxi)

low density. As we can expect, the ionization fraction in lower density
regions keeps xi ≈ 1 after the recombination epoch. This is because the
collisional recombination term in Eq. (4.11) becomes small in such a low-
density region. On the other hand, as the IGM gas density evolves in the
high-density region, the collisional recombination becomes effective and the
ionization fraction quickly drops down. We find out that, while xi ≈ 1 at the
lowest density regions where δb = −0.9, xi ≈ 10−7 at the highest density
regions with δb > 103. Because of this huge gap in xi between low- and
high-density regions, the density-weighted average value of xi does not only
reflect xi in high-density regions. Basically, the full ionization in low-density
regions makes the average value of the ionization fraction larger than that
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without PMFs plotted in black in Fig. 4.3. On the other hand, the almost
neutral gas in high-density regions can decrease the average value below
that without PMFs (see the yellow short dash-dotted line around z ∼ 600
in the bottom panel of Fig. 4.3). In summary, the averaged value of xi is
determined by the balance between low and high-density regions. Although
the ionization fraction is larger for the stronger PMF strength at the cut-off
scale, the model dependence is not so significant.

We show the CMB temperature angular power spectrum due to the
tSZ effect in the IGM caused by PMFs in Fig. 4.4. The tSZ angular power
spectrum has a peak around the cut-off scale of the PMFs and the amplitude
depends on the PMF strength at the cut-off scale. Therefore, the angular
spectrum in model 1 has the largest amplitude among our PMF models.
However, it is difficult to provide the dependence of the power spectrum
amplitude on the PMF parameters in the analytical form. This is because
the physical gas quantities related to the tSZ effect are highly nonlinear and
become saturated in some regions. We also find that the tSZ angular power
spectrum decays proportional to ` on larger scales than the cut-off scale
independently on the spectral index of the PMF, nB. This means that the
tSZ effect comes from the magnetic field predominantly on the cut-off scale,
and magnetic fields on larger scales have little impact on the tSZ CMB power
spectrum. Although we have shown the results with nB = 0.0 and −1.0 in
Fig. 4.4, we have confirmed that nB indeed affects tSZ anisotropies only
through the cut-off scale in the cases with −1.0 < nB < 2.0. However, it
does not necessarily mean that the tSZ angular power spectrum is insensitive
to nB because the cut-off scale does depend on nB. Therefore, we conclude
that, although the measurement of the tSZ effect due to the PMFs can
provide the information about the cut-off scale of the PMFs, it is required
to perform a careful comparison between the observational data and the
theoretical prediction to deduce the properties of the PMFs, such as the
field strength and the spectral index.

At the end of this section, we make comments on the validity of the gas
density evolution and the impact on the final results. To obtain the density
evolution, we solve Eqs. (4.1) and (4.2) in which we make two important
assumptions, i.e., neglecting the thermal pressure and employing linear per-
turbations. For the validity of the former assumption, we have confirmed
that the grid scales of our simulations are always larger than the Jeans scale.
On the other hand, as already mentioned above, we find that there are many
regions where the density contrast is much larger than unity and the lin-
ear approximations are no longer valid. However, such high-density regions
have a tiny ionization fraction in general due to the collisional recombination
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process. As a result, the contribution to the tSZ angular power spectrum is
negligibly small. The overestimation of the gas density does not harm our
final results. As regards low-density regions, we set the lower limit of the
IGM density contrast to δb = −0.9 in order to avoid a negative IGM density.
This procedure means that we artificially take into account the nonlinear
structure formation, that is, the void formation, because voids are observed
as significant underdense regions with δb < −0.85 [136]. This limit violates
the mass conservation in a simulation box. However, although this violation
leads to the overestimation of the density in overdense regions, it does not
seem to give a negative impact on the estimation of the y-parameter in low-
density regions which produces significant contributions on the tSZ angular
power spectrum. To confirm this point, it is required to calculate the tSZ
spectrum including the nonlinear effect in the IGM density evolution. We
perform the numerical simulations in our future work to take into account
this nonlinear effect.
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Figure 4.2: Two dimensional illustration of (∇×B)×Bx (left column),
ionization fraction (middle column) and the IGM number density (right
column) in the PMFs models 1–4 from top to bottom at z = 10.0. From
this figures, negative spatial correlation between xi and nH is apparent. It is
also visible that the PMFs with smaller values of Bλ and nB generate more
homogeneous structure of the Lorentz force and the gas density distributions.
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Figure 4.3: Time evolutions of the gas temperature (top) and ionization
fraction (bottom), which are averaged per unit mass with and without the
PMFs. The black solid lines are time evolutions without the PMFs, and in
the top panel, the CMB temperature is also shown with the red solid line. We
plot values for different models of the PMFs with dashed, dotted, long-dash-
dotted, and short-dash-dotted lines. If the PMFs exist, the gas temperature
is always larger than that without the PMFs due to the ambipolar diffusion.
On the other hand, the values of the ionization fraction with PMFs tend to
be smaller than that without PMFs at high redshifts, and start to increase
after z ∼ 300.
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Figure 4.4: Angular power spectra of the tSZ effect induced by the PMFs,
obtained by integrating Eq.(4.21) from z = 1000 to z = 10, for the four
models listed in Table 4.3. We also plot the primary CMB angular power
spectrum with the black solid line and the observational data with Ata-
cama Cosmology Telescope (ACT) [135] with the red points and error bars.
Clearly, the present observational data cannot constrain the PMF models
1–4 because the angular resolution is not enough.

56



Chapter 5

New constraint from 21-cm
global signal

In this chapter, we focus on the 21-cm global signal observation as a cosmo-
logical probe to constrain the PMFs. At first, in section 5.1, we describe the
physics around the 21-cm line radiation and cosmological signature in its
global signal, which is the all-sky averaged value. And then, we review the
observation of the 21-cm global signal recently reported by Experiment to
Detect the Global Epoch of Reionization Signature (EDGES) in section 5.2.
Finally, we investigate the constraint on the PMFs from the EDGES obser-
vation in section 5.3 and 5.4.

5.1 21-cm global signal

21-cm line is an electromagnetic wave emitted by transition of two states of
a neutral hydrogen atom due to its hyperfine structure. Its wavelength is
about 21 cm, and therefore it is called 21-cm line. The intensity of 21-cm line
depends on the physical state of the atomic hydrogen such as the number
density, the temperature, and the ionization fraction. Thus the observa-
tion of redshifted 21-cm line can open a new window in the observational
cosmology. The observable of the 21-cm line global signal, which is all-sky
averaged intensity, is given by the differential brightness temperature as

δTb(z) ' 27xHI(z)

[
1−

Tγ(z)

Tspin(z)

]
×

(
Ωbh

2

0.02

)(
0.15

Ωmh2

)1/2(
1 + z

10

)1/2

[mK] ,

(5.1)
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where xHI is the neutral fraction of hydrogen, Tγ is the CMB temperature
and Tspin is the spin temperature [137]. The spin temperature is defined by
the population ratio of the hyperfine levels in a neutral hydrogen as

n1

n0
=
g1

g0
exp

(
−

∆T10

Tspin

)
. (5.2)

Here, n1 and n0 are number densities in the excited state and bound state
of the hyperfine structure, and g1 and g0 are their statistical weights, re-
spectively.

When the spin temperature is the same as the CMB one, the 21-cm
signal vanishes as shown in Eq. (5.1). In the cosmological context, there are
two processes to make the spin temperature deviate from the CMB one. One
is the collisional interaction and the other is the interaction with Ly-α flux
field [138, 139]. They can couple the hyperfine structure with the IGM gas
temperature. Besides the CMB interaction (the 21-cm photon emission and
absorption), these processes control the evolution of the spin temperature.
In literature [140], the spin temperature evolves between the values of the
CMB and the IGM gas temperatures as

T−1
spin =

T−1
γ + xαT

−1
α + xcT

−1
K

1 + xα + xc
(5.3)

Here, Tα is the color temperature of the background Ly-α photons, and it
is considered to be coupled with the kinetic gas temperature TK because
the Ly-α photons repeatedly experience the resonant scattering with the
hydrogen atoms. Also, xα and xc are coupling coefficients for Ly-α inter-
action and collisional interaction, respectively. Although many effects have
been considered with the numerical and analytical calculations, history of
the spin temperature has ambiguity of baryon physics.

Time evolution of the spin temperature in the standard picture is shown
in Fig. 5.1. In Fig. 5.1, the spin temperature evolution can be divided into
four regimes. First, after the decoupling of the gas temperature from the
CMB one around z ∼ 200, the spin temperature follows the gas temper-
ature through the collisional coupling as TK ' Tspin < Tγ . Then at the
second stage, the spin temperature approaches to the CMB one because
the collisional interaction becomes weak due to the cosmic expansion as
TK < Tspin ' Tγ . In the third regime, the first luminous objects play impor-
tant roles. They can produce the strong Ly-α field and the Ly-α interaction
becomes effective. So far the gas temperature evolves adiabatically after the
decoupling from the CMB one and the gas is cooler than the CMB again, as
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Figure 5.1: A typical spin temperature evolution from semi-numerical cal-
culation [141].
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TK ' Tspin < Tγ . Accordingly the spin temperature also gets lower than the
CMB one. Eq. (5.1) tells us that the global 21-cm signal becomes negative
in this regime. In other words, the signals are observed as the absorption
trough. After that, as the star and galaxy formation becomes active, a lot
of UV photons are produced at this regime. They start to ionize and heat
up the gas. Quickly the gas temperature increases and surpasses the CMB
temperature. The spin temperature also becomes higher than the CMB and
the signal is measured as emission. Gradually the IGM gas is ionized and,
finally, the ionization of the IGM is completed. At this point the global
21-cm signal totally vanishes again.

5.2 EDGES observation

Recently, Bowman et al. [142] has reported the detection of the strong ra-
dio absorption signal around 78 MHz with the Experiment to Detect the
Global Epoch of Reionization Signature (EDGES) as shown in Fig. 5.2.
This signal can be considered as the redshifted 21-cm line as 15 . z . 20,
and observing the absorption signal implies that the neutral hydrogen hy-
perfine structure coupled well with the gas temperature through Ly-α field
from the first generation stars, and the IGM gas was cooler than the CMB
photons around these redshifts. Therefore, the EDGES result can be in-
terpreted as a constraint on a cosmological heating source. Note that the
EDGES result is difficult to be explained by the standard scenario: the
amplitude of the absorption trough is almost twice as large as the maxi-
mal value expected in the standard cosmology. However, instead of giving
the explanation on this anomaly, several authors have already applied the
EDGES result to constrain some models: the Hawking evaporation of small
Primordial Black Holes (PBHs) [143], the emission from the accretion disks
around large PBHs [144], the decaying [143, 145] or annihilating dark mat-
ter [146,147], warm dark matter [148], primordial power spectrum [149] and
so on. In the next section, we show how the PMFs affect the evolution of
the IGM gas temperature.

Now the measurement of cosmological 21-cm line signatures is also ex-
pected to be a useful tool to constrain the PMFs. The 21-cm line signal
depends on the physical states of neutral hydrogen gas such as its number
density, its temperature and so on. The PMFs can provide the effect on
them through the magnetohydrodynamic (MHD) effects [119]. Ref. [151]
has pointed out that the measurements of 21-cm fluctuations by future ra-
dio interferometer telescopes can provide a strong constraint on the PMFs
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Figure 5.2: Best-fit 21 cm absorption profiles from the EDGES observation
against redshift and age of the Universe. Different lines represent different
hardware configurations for their data analyses, and the thick black line is
one with the highest signal-to-noise ratio among them. This figure is from
Ref. [142].
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and has stimulated further detailed studies [152,153].
In this work, we study the implication of the EDGES result to the PMFs

and derive a constraint on them. The PMFs work as extra cosmologi-
cal heating sources through the so-called ambipolar diffusion, in particu-
lar, in the late universe. Several authors have already pointed out that
the measurement of the global 21-cm signal can put the constraint on the
PMFs [154,155]. Following these works, we evaluate the global thermal his-
tory with the PMFs and obtain a constraint on the amplitude and the scale
dependence of the PMFs.

5.3 Impact of the PMFs on the gas temperature

After the recombination epoch, the magnetic fields dissipate their energy
and heat the IGM gas through two processes [119]. One is the decaying
turbulence and the other is the ambipolar diffusion. According to Ref. [119],
it has been shown that, while the first one is active around the recombination
epoch, the latter becomes effective at the late universe (z < 500). The
evolution of the IGM gas temperature TK with the above heating effects
from the PMFs is given by

dTK

dt
= −2HTK +

xe

1 + xe

8ργσT

3mec
(Tγ − TK) +

2

3kBnb
(Q̇AD + Q̇DT) , (5.4)

where H, xe, ργ , me, c, kB and nb is the Hubble parameter, the ionization
fraction of the baryon gas, the energy density of CMB photons, the rest
mass of an electron, the speed of light, the Boltzmann constant, and the
number density of the baryon gas, respectively. Q̇AD and Q̇DT in the right
hand side represent the global heating rate due to the ambipolar diffusion
(AD) and the decaying turbulence (DT), respectively. These two heating
rates are written as [119]

Q̇AD =
|(∇×B)×B|2

16π2ξρ2
b

1− xe
xe

, (5.5)

Q̇DT =
3wB

2
H
|B|2

8π
a4 [ln(1 + td/trec)]

wB

[ln(1 + td/trec) + ln(t/trec)]
1+wB

, (5.6)

with the time-dependence of the decaying turbulence wB ≡ 2(nB + 3)/(nB + 5),
the mass density of the baryon gas ρb, the physical time-scale for the decay-
ing turbulence td and the drag coefficient ξ = 1.9×1014 (TK/1 K)0.375 cm3g−1s−1

as referred in [156]. Here, since we assume a blue spectrum of the PMFs,
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nB > −3, we can take td = (kcutVA)−1 as the Alfvén time scale at the cut-off
scale of the PMFs, as referred in [119].

We can calculate the absolute value of the Lorentz force and the magnetic
energy in Eqs. (5.5) and (5.6) with the PMF model parameters, Bn and nB
as

|(∇×B)×B|2 =

∫
d3k1

(2π)3

∫
d3k2

(2π)3
k2

1PB(k1)PB(k2) f2nB+8(t)(1 + z)10 ,

(5.7)

|B|2 =

∫
d3k

(2π)3
PB(k) fnB+3(t)(1 + z)4 . (5.8)

Here, f(t) is an evolutionary function of the cut-off wave-number as kcut(t) =
kcut,recf(t). One can remind that kcut,rec is given by Eq. (2.30). As described
in Chapter 2, the PMFs evolve adiabatically as B(x, t) ∝ 1/a2(t) at high
redshifts. However, when considering the energy dissipation of the PMFs
to the intergalactic medium (IGM) gas, which is introduced here, the PMF
energy can decrease by a few orders during the Dark Ages. Since the dissi-
pation of the PMFs is effective on smaller scales, the dissipation could evolve
the cut-off scales. In this study, we obtain the evolution of f(t) based on
the energy conservation law of PMFs including the energy dissipation given
in Eqs. (5.5) and (5.6),

d

dt

(
|B|2

8π

)
= −4H

|B|2

8π
− Q̇AD − Q̇DT . (5.9)

Rewriting this equations in terms of the PMF power spectrum with the
cut-off scales, we can obtain the time evolution of f(t).

In this study, we neglect two effects on the thermal evolution of the IGM
gas included in the previous work [156]. First, we do not take into account
any radiative cooling effects, such as collisional excitation and ionization,
recombination, and bremsstrahlung. We have confirmed these terms are
negligible for the PMF model parameters of our interest. The other as-
sumption here is that there are no astrophysical objects. We mention this
point in Chapter 6.

In order to solve Eq. (5.4), we also need to follow the evolution of the
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ionization fraction,

dxe

dt
= γenbxe +

1 +KαΛnb(1− xe)
1 +Kα(Λ + βe)nb(1− xe)

×

[
−αenbx

2
e + βe(1− xe) exp

(
−

3Eion

4kBTγ

)]
, (5.10)

where Kα, Λ, αe, βe and γe are the parameters for the ionization and the
recombination processes. For these parameters, we adopt the functions in
Refs. [131] and [130] with the modifications suggested in Ref. [120]. In
Eqs. (5.4) and (5.10), we neglect the primordial helium and the heavier
elements for simplicity.

Now, assuming the power spectrum of the PMFs, we solve Eqs. (5.4), (5.10)
and (5.9) simultaneously, and we can uniquely obtain the evolution of TK,
xe, and f(t) for a given PMF model with (nB, Bn).

5.4 Results

Figure 5.3 shows the gas temperature evolution TK for different Bn with
the nearly scale-invariant PMFs (nB = −2.9). Even below the nano Gauss
PMFs, kinetic gas temperature is strongly affected by the PMFs. In this
case, the gas temperature starts to be well deviated from the one in the case
without the PMFs (Bn = 0 nG) around z ∼ 100 − 300, depending on the
normalized PMF strength Bn.

We have confirmed that the ambipolar diffusion is the dominant contri-
bution to the heating mechanisms of the IGM at the redshifts of our interest.
Then, the redshift dependence of the PMF heating rate due to the ambipolar
diffusion can be described as

Q̇AD =
1

16π2ξxe

〈|(∇×B)×B|2〉(1 + z)10

ρ2
b,0(1 + z)6

=
(2π)2(nB+2)B4

nk
2
n

ξρ2
b,0xe(nB + 3)(nB + 5)Γ2

(
nB+3

2

) (kcut

kn

)2(nB+4)

(1 + z)4 ,

(5.11)

except for the redshift dependence of the ionization fraction xe. Therefore
the redshift dependence of the PMF heating term in Eq. (5.5) follows as
2Q̇AD/3kBnb ∝ (1 + z). On the other hand, the dominant cooling term in
the right hand side of Eq. (5.4) for z � 200 is the first one, and −2HTK ∝
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Figure 5.3: The gas temperature evolutions with the PMFs. The dotted
line is the CMB temperature, and solid lines are the gas temperature for
the cases with Bn = 0.0, 0.1, 0.2, 0.5 nG, respectively. In this figure, nB is
fixed to −2.9 for these lines. The blue shaded region represents the redshift
range 15 . z . 20 corresponding to the strong absorption signal reported
by EDGES.

(1+z)3.5, which decreases faster than the heating term due to the ambipolar
diffusion. Therefore as we take larger values of Bn, the heating of the IGM
gas due to the ambipolar diffusion becomes more effective and dominates
the cooling terms at higher redshifts. After the IGM is heated well and the
magnetic energy is significantly dissipated, the values for the heating source
terms in Eq. (5.5) start to decrease. As a result, the kinetic gas temperature
TK starts to deviate from the adiabatic evolution (Bn = 0 nG) at first, and
the IGM gas is getting cooler slowly after the saturation. We find that the
larger value of Bn makes the earlier and stronger heating, and the value of
nB determines the duration of the PMF heating.

As we explained in section 5.2, the EDGES experiment has reported
the detection of the global 21-cm absorption signal in the redshifts range of
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15 . z . 20 [157]. In order to compare this observational signature to our
results, we highlight these redshift regions with the blue shade in Fig. 5.3.
Because the global signal is detected as an absorption, the spin temperature
must have been cooler than background radiation temperature, that is TK ∼
Tspin < Tγ . Therefore, we can exclude a PMF parameter region (nB, Bn)
which gives TK > Tγ at zabs. Based on the EDGES reported detection, we
set zabs = 17 which is the central redshift of the absorption signal in the
EDGES experiment. Calculating the evolution of the gas temperature for
different Bn with some given spectral indices of the PMFs nB, we get a
novel constraint on the PMFs from the condition TK < Tγ at zabs = 17.
The obtained constraints are Bn . 1.2 × 10−1 nG for nB = −2.9, Bn .
6.3× 10−3 nG for nB = −2.0, and Bn . 2.0× 10−4 nG for nB = −1.0. We
can fit our new constraint in a linear relation between Bn and nB as

log

(
Bn

1 nG

)
. −(3nB + 10)

2
for − 3.0 < nB < −1.0. (5.12)

We plot our PMF constraint on the (nB, Bn) plane in Fig. 5.4 with a solid
line. For comparison, we also show the constraint from [82] and the one
from the magnetic reheating before the recombination [84] in the dotted
and dashed lines, respectively. In the range of −3.0 < nB < −2.0, the
EDGES experiment could constrain the PMF amplitude most tightly.

Finally, by varying zabs from 15 to 20, we have investigated the depen-
dence of the PMF constraint on zabs. We have found out that the resultant
upper limit differs less than 10 per cent for different zabs between 15 and 20.
We can conclude that the dependence on zabs is very weak.

66



3 2 1
scale dependence nB

4

3

2

1

0

1

lo
g 

(B
n/1

nG
) Previously

excluded regionEDGES constraint

Planck'16
Saga+'18
This work (zabs=17.0)

Figure 5.4: The upper limit of the PMFs parameters obtained by the
recent observation of 21-cm line absorption by EDGES experiment (solid).
The gray shaded region is the excluded region by previous works; [82] in the
dotted line and [84] in the dashed line.

67



Chapter 6

Conclusion

First, we revisited the impact of the PMFs on the primary CMB anisotropies
in Chapter 3. The stress-energy tensor of the PMFs induces the metric
perturbation besides the primordial curvature perturbation, and the Lorentz
force acts on the motion of primordial baryon-photon plasma. To obtain the
CMB anisotropy angular power spectra with the PMFs, we have performed
a numerical calculation to solve the Einstein-Boltzmann equation system
including the above two effects of the PMFs. The PMFs can source the
scalar-, vector-, and tensor-type perturbations, and the contribution of the
vector-type perturbation is dominant for small angular scales as ` & 4000.
Since the vector-type CMB anisotropies are caused by the Doppler effect,
we investigated the evolution of the baryon velocity perturbation including
the Lorentz force of the PMFs. In particular, we have analytically solved
the Euler equation below the photon mean-free-path scale for the first time.
The derived baryon velocity perturbation on such small scales induces the
dominant CMB anisotropies on ` & 4000, depending on the spectral indices
of the PMFs. Then we also provided the constraint on the PMFs from
the CMB temperature and polarization anisotropies observed by the latest
Planck and SPT data. As a result, the high-resolution measurement of
the CMB anisotropies with SPT favors the nearly scale-invariant PMFs.
Finally, we have obtained the constraint on the PMFs as B1Mpc < 1.52 nG
and nB < −1.14 for 95 % C.L. with the Planck 2015 and SPT 2015/2017
bandpowers. Our analysis improves the PMF constraint compared with the
Planck 2015 constraint, which is B1Mpc < 4.4 nG. We have found that the
cosmological parameter estimation can be biased when including the PMF
parameter and SPT data. The PMF induced perturbation with the small
spectral index nB enhances the low-` polarization anisotropies, and this
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results in the smaller Thomson optical depth τ and the primordial scalar
power spectrum amplitude As. While the high-resolution CMB anisotropies
measured by SPT as ` ≤ 8000 provide a tighter constraint on the PMFs,
there arises the degeneracy between the PMF and foreground parameters
on such small scales. Subtracting the foreground is important not only to
improve the constraint on the PMFs but also to understand tSZ clusters [99],
the CMB gravitational lensing [158], and the reionization process with the
kSZ effect [159]. In principle, the multi-frequency observations might help
to remove the CMB foreground and improve our constraint.

Second, in Chapter 4, we have investigated the secondary CMB tem-
perature anisotropies caused by the tSZ effect in the IGM with the PMFs.
Here we have taken into account two effects of PMFs on the IGM gas; the
generation of the IGM density fluctuations by the Lorentz force, and the
heating of the IGM through the ambipolar diffusion. The spatially inho-
mogeneous PMFs can induce the fluctuations of the density, temperature
and ionization fraction in the IGM through these effects. These fluctuated
IGM gas induce the anisotropy of y-type distortions of the CMB photons via
the tSZ effect after the recombination epoch, which can be observed as the
CMB temperature anisotropy. We estimated the CMB angular power spec-
trum due to the tSZ effect, assuming the PMF statistical properties, i.e., the
amplitude of the power spectrum Bn and the spectral index nB. To evalu-
ate the tSZ angular power spectrum, we solved the non-linear evolutionary
equations for the IGM baryon gas in Dark Ages with the realization of ran-
dom Gaussian PMFs. This is the first attempt to investigate the effects of
PMFs on the spatial distributions of the IGM gas properties consistently.
Our simulations for different PMF models revealed that the characteristic
scales of the spatial distributions correspond to the cut-off scales of the
PMFs. Our results indicate that the heating rate of the IGM gas per unit
mass is small in over-dense regions, and therefore the IGM temperature is
not effectively heated. The ionization fraction in such regions remains small
because the recombination rate increase due to the high density. On the
other hand, the IGM temperature and ionization fraction can be still high
even in low redshifts as Tgas ∼ 20000 K and xi ∼ 1 when 10 . z . 300
in the low density regions. Thus, there are strong anti-correlations between
the IGM density and temperature, and also between density and ionization
fraction. From the results of our simulations, we have calculated the tSZ
angular power spectrum due to the IGM with PMFs. We have found that
since high density regions are almost neutral, their contributions to the tSZ
power spectrum are almost negligible. Therefore the SZ measurement can
probe mainly lower density regions heated by the PMFs. The tSZ angular
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power spectrum has a peak around the cut-off scale of the PMFs (` ∼ 106

for sub-nG PMFs) and its amplitude depends on the PMF strength at the
cutoff scale. On such small scales, the tSZ effect in galaxy clusters and the
kSZ effect due to the patchy reionization can produce the CMB temper-
ature anisotropies. However these signals have the peaks around ` . 104

and decay on high ` modes. On the other hand, the tSZ angular power
spectrum even for 0.1 nano Gauss PMFs keeps increasing up to ` ∼ 106.
In this work, we have used the linearized equation to calculate the density
evolution of the IGM. It is known that the density fluctuations generated by
the PMFs have the blue spectrum. Therefore, in our simulations, there are
many regions where the IGM density contrast is greater than unity and the
linearized equation is no longer valid there. However, as mentioned above,
such high density regions have significantly small ionization fraction and
their contributions to the Compton y-parameter are expected to be negli-
gibly small. That is, the existence of much higher density contrast than
unity does not make us overestimate the tSZ angular power spectrum. In
low density regions, we set the bound of the density contrast, δb > −0.9
to avoid the negative density. Imposing this bound, we intend to take into
account approximately the nonlinear effect of the structure formation in a
low density region, i.e., a void formation. The density evolution is deter-
mined by the local strength of the Lorentz force in our simulation based
on the linear density perturbation theory. However, the formation of voids
also depends on the environmental condition. Therefore, it is required to
include the nonlinear effect of the structure formation to evaluate the tSZ
angular power spectrum properly. Besides, we only consider the cosmologi-
cal expansion in the PMF evolution. Even in low ionization fraction, PMFs
could be frozen in the IGM and the density evolution gives the effect on the
PMF evolution. This PMF evolution can affect the thermal history of the
IGM, in particular, in high density regions and may enhance the tSZ angu-
lar power spectrum. To improve these simplified treatments, the detailed
MHD simulation of cosmological structure formation with PMFs is required.
Furthermore, such a simulation allows us to investigate the PMF effect on
the collapse condition [160] and the enhancement of the tSZ angular power
spectrum due to galaxy clusters [74,161]. We have shown that the PMFs can
generate tSZ signal on small scales after the recombination epoch. There-
fore it is worth mentioning about the possibility to provide constraints on
the PMFs from small-scale CMB observations. In the current observation
status, the foreground emissions dominate on small scales where the tSZ
signal from the PMFs arises, and it is difficult to remove the foreground. In
addition to the tSZ signal studied in this work, the existence of PMFs can
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create non-negligible small-scale CMB anisotropy before the recombination
epoch through the Doppler effect due to the velocity perturbations induced
by the PMFs [162, 163]. Therefore, in order to obtain constraints on the
PMFs, it is required to precisely investigate the CMB anisotropies on small
scales including all of these contributions. However, it is beyond the scope
of this paper and we address this issue in the future.

Third, we applied the heating effects of the IGM baryon gas from the
PMFs to 21-cm line global signal in Chapter 5. 21-cm line intensity depends
on the temperature difference between baryons and CMB photons. When
the cosmic baryon gas is cooler than the CMB photons, the 21-cm global
signal can be measured as an absorption signal. The EDGES experiment
has reported the 21-cm absorption signals in redshifts between 15 . z . 20.
Therefore, this result suggests that the IGM gas is cooler than the CMB
during these periods, and provides a constraint on the PMFs as a heating
source of the IGM gas. We numerically evaluated the thermal evolution of
the IGM gas with the PMFs via decaying turbulence and ambipolar diffu-
sion. By requiring TK < Tγ at zabs = 17.0 as the center redshift of the
EDGES absorption profile, we obtained a stringent upper limit on the PMF
strength roughly about Bn . 0.1 nG. We also found that the PMF con-
straint is not so changed in case the absorption redshift is deviated from
zabs = 17.0. Finally, we briefly discuss the impact of the astrophysical ob-
jects on the PMF constraint. Of course they can significantly heat up and
ionise the IGM gas, and the constraint from the 21-cm absorption signal
might become tighter if we include such astrophysical processes (e.g., the
star formation and the AGN activity). On the other hand, some previous
works have pointed out that the condition of the astrophysical object forma-
tion is also affected by the PMFs [126,160]. In order to calculate the global
21-cm signal history with these effects, we should solve the fully non-linear
MHD equations and the realistic astrophysical processes [153,164]. We leave
these points to future work.
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[67] L. L. Kitchatinov and G. Rüdiger. Seed fields for galactic dynamos
by the magnetorotational instability. A&A, 424:565–570, September
2004.

[68] R. Durrer and A. Neronov. Cosmological magnetic fields: their gen-
eration, evolution and observation. A&A Rev., 21:62, June 2013.

[69] Robi Banerjee and Karsten Jedamzik. Evolution of cosmic magnetic
fields: From the very early Universe, to recombination, to the present.
Phys. Rev. D, 70(12):123003, December 2004.

[70] C. Fedeli and L. Moscardini. Constraining primordial magnetic fields
with future cosmic shear surveys. J. Cosmology Astropart. Phys.,
11:055, November 2012.

[71] Kanhaiya L. Pandey and Shiv K. Sethi. Probing Primordial Magnetic
Fields Using Lyα Clouds. ApJ, 762(1):15, January 2013.

[72] Tina Kahniashvili, Yurii Maravin, Aravind Natarajan, Nicholas
Battaglia, and Alexander G. Tevzadze. Constraining Primordial Mag-
netic Fields through Large-scale Structure. ApJ, 770(1):47, June 2013.

[73] Kerstin E. Kunze and Eiichiro Komatsu. Constraints on primordial
magnetic fields from the optical depth of the cosmic microwave back-
ground. J. Cosmology Astropart. Phys., 2015(6):027, Jun 2015.

[74] H. Tashiro and N. Sugiyama. Sunyaev-Zel’dovich power spectrum pro-
duced by primordial magnetic fields. MNRAS, 411:1284–1292, Febru-
ary 2011.

[75] Teppei Minoda, Kiyotomo Ichiki, and Hiroyuki Tashiro. Small-scale
CMB anisotropies induced by the primordial magnetic fields. arXiv
e-prints, page arXiv:2012.12542, December 2020.

[76] Teppei Minoda, Kenji Hasegawa, Hiroyuki Tashiro, Kiyotomo Ichiki,
and Naoshi Sugiyama. Thermal Sunyaev-Zel’dovich effect in the in-
tergalactic medium with primordial magnetic fields. Phys. Rev. D,
96:123525, Dec 2017.

78



[77] Teppei Minoda, Kenji Hasegawa, Hiroyuki Tashiro, Kiyotomo Ichiki,
and Naoshi Sugiyama. Thermal Sunyaev-Zel’dovich Effect in the IGM
due to Primordial Magnetic Fields. Galaxies, 6(4):143, December 2018.

[78] Teppei Minoda, Hiroyuki Tashiro, and Tomo Takahashi. Insight into
primordial magnetic fields from 21-cm line observation with EDGES
experiment. MNRAS, 488(2):2001–2005, September 2019.

[79] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ash-
down, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G.
Bartlett, and et al. Planck 2015 results. XIII. Cosmological parame-
ters. A&A, 594:A13, September 2016.

[80] A. S. Monin and A. M. Iaglom. Statistical fluid mechanics: Mechanics
of turbulence. Volume 2 /revised and enlarged edition/. 1975.

[81] L. D. Landau and E. M. Lifshitz. Statistical physics. Pt.1, Pt.2. 1980.

[82] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, F. Ar-
roja, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J.
Banday, and et al. Planck 2015 results. XIX. Constraints on primordial
magnetic fields. A&A, 594:A19, September 2016.

[83] C. Fedeli and L. Moscardini. Constraining primordial magnetic fields
with future cosmic shear surveys. J. Cosmology Astropart. Phys.,
11:055, November 2012.

[84] S. Saga, H. Tashiro, and S. Yokoyama. Magnetic reheating. MNRAS,
474:L52–L55, February 2018.

[85] M. Giovannini. Growth rate of matter perturbations as a probe of
large-scale magnetism. Phys. Rev. D, 84(6):063010, September 2011.
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[89] A. Friedmann. Über die Krümmung des Raumes. Zeitschrift fur
Physik, 10:377–386, 1922.
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galactiques. Annales de la Société Scientifique de Bruxelles, 47:49–59,
1927.

[91] E. Hubble. A Relation between Distance and Radial Velocity among
Extra-Galactic Nebulae. Proceedings of the National Academy of Sci-
ence, 15:168–173, March 1929.

[92] V. M. Slipher. The radial velocity of the Andromeda Nebula. Lowell
Observatory Bulletin, 2:56–57, 1913.

[93] R. A. Alpher, H. Bethe, and G. Gamow. The Origin of Chemical
Elements. Physical Review, 73:803–804, April 1948.

[94] C. Hayashi. Proton-Neutron Concentration Ratio in the Expand-
ing Universe at the Stages preceding the Formation of the Elements.
Progress of Theoretical Physics, 5:224–235, March 1950.

[95] R. A. Alpher and R. C. Herman. Neutron-Capture Theory of Element
Formation in an Expanding Universe. Physical Review, 84:60–68, Oc-
tober 1951.

[96] A. A. Penzias and R. W. Wilson. A Measurement of Excess Antenna
Temperature at 4080 Mc/s. ApJ, 142:419–421, July 1965.

[97] D. J. Fixsen. The Temperature of the Cosmic Microwave Background.
ApJ, 707(2):916–920, December 2009.

[98] L. D. Landau and E. M. Lifshitz. Quantum mechanics. 1965.

[99] R. A. Sunyaev and Y. B. Zeldovich. Small-Scale Fluctuations of Relic
Radiation. Ap&SS, 7:3–19, April 1970.

[100] P. J. E. Peebles and J. T. Yu. Primeval Adiabatic Perturbation in an
Expanding Universe. ApJ, 162:815, December 1970.

[101] J. Silk. Cosmic Black-Body Radiation and Galaxy Formation. ApJ,
151:459, February 1968.

[102] Scott Dodelson. Modern cosmology. 2003.

80



[103] Alex Zucca, Yun Li, and Levon Pogosian. Constraints on primor-
dial magnetic fields from Planck data combined with the South Pole
Telescope CMB B -mode polarization measurements. Phys. Rev. D,
95(6):063506, March 2017.

[104] J. W. Henning, J. T. Sayre, C. L. Reichardt, P. A. R. Ade, A. J. Ander-
son, J. E. Austermann, J. A. Beall, A. N. Bender, B. A. Benson, L. E.
Bleem, J. E. Carlstrom, C. L. Chang, H. C. Chiang, H. M. Cho, R. Cit-
ron, C. Corbett Moran, T. M. Crawford, A. T. Crites, T. de Haan,
M. A. Dobbs, W. Everett, J. Gallicchio, E. M. George, A. Gilbert,
N. W. Halverson, N. Harrington, G. C. Hilton, G. P. Holder, W. L.
Holzapfel, S. Hoover, Z. Hou, J. D. Hrubes, N. Huang, J. Hubmayr,
K. D. Irwin, R. Keisler, L. Knox, A. T. Lee, E. M. Leitch, D. Li,
A. Lowitz, A. Manzotti, J. J. McMahon, S. S. Meyer, L. Mocanu,
J. Montgomery, A. Nadolski, T. Natoli, J. P. Nibarger, V. Novosad,
S. Padin, C. Pryke, J. E. Ruhl, B. R. Saliwanchik, K. K. Schaffer,
C. Sievers, G. Smecher, A. A. Stark, K. T. Story, C. Tucker, K. Van-
derlinde, T. Veach, J. D. Vieira, G. Wang, N. Whitehorn, W. L. K.
Wu, and V. Yefremenko. Measurements of the Temperature and E-
mode Polarization of the CMB from 500 Square Degrees of SPTpol
Data. ApJ, 852(2):97, Jan 2018.

[105] J. R. Shaw and A. Lewis. Massive neutrinos and magnetic fields in
the early universe. Phys. Rev. D, 81(4):043517, February 2010.

[106] R. Durrer. Gauge Invariant Cosmological Perturbation Theory: A
General Study and It’s Application to the Texture Scenario of Struc-
ture Formation. Fund. Cosmic Phys., 3:209–339, January 1994.

[107] James M. Bardeen. Gauge-invariant cosmological perturbations.
Phys. Rev. D, 22(8):1882–1905, October 1980.

[108] Wayne Hu and Martin White. CMB anisotropies: Total angular mo-
mentum method. Phys. Rev. D, 56(2):596–615, July 1997.
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Appendix A

Special functions

A.1 Bessel function

Bessel’s differential equation for any complex number l is given by

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − l2)y = 0 . (A.1)

For non-negative integer l = 0, 1, 2, ..., two linearly independent solutions
are obtained

Jl(x) =
∞∑
m=0

(−1)m

m!Γ(m+ l + 1)

(
x

2

)2m+l

, (A.2)

Nl(x) = lim
α→l

Jα(x) cos(απ)− J−α(x)

sin(απ)
. (A.3)

Here, Γ(α) is Euler’s gamma function for real number α.
In the polar coordinates system, there are useful functions as the solu-

tions of the differential equation,

d2y

dx2
+

2

x

dy

dx
+

[
1−

l(l + 1)

x2

]
y = 0 . (A.4)

The equation is called the spherical Bessel differential equation. The solu-
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tions for Eq. (A.4) are written as

jl(x) =

(
π

2x

) 1
2

Jl+ 1
2
(x) , (A.5)

nl(x) =

(
π

2x

) 1
2

Nl+ 1
2
(x) . (A.6)

They are called the spherical Bessel functions of the first kind and second
kind (also known as the spherical Neumann functions), respectively.

The recurrence relation for the first kind spherical Bessel function is

jl−1 + jl+1 =
2l + 1

x
jl, l = 1, 2, ... (A.7)

ljl−1 − (l + 1)jl+1 = (2l + 1)
djl

dx
, l = 0, 1, 2, ... (A.8)

Removing jl−1 from these three-term recurrence relations, we obtain the
following two-term recurrence relation as

jl+1 =
l

x
jl −

djl

dx
. (A.9)

For l = 0, we solve Eq. (A.4) and obtain

j0(x) =
sinx

x
. (A.10)

From the two-term recurrence relation (A.9), the Bessel function of the first
kind for l = 0, 1, 2, ... is generally expressed by

jl(x) = (−1)lxl

(
1

x

d

dx

)l
j0(x) . (A.11)

This is called Rayleigh’s formula of the spherical Bessel function.

A.2 Legendre polynomial and spherical harmonics

Legendre polynomial in order of a non-negative integer n is defined as the
solution of the following equation

(1− x2)
d2Pn

dx2
− 2x

dPn

dx
+ n(n+ 1)Pn = 0 , (A.12)
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in range for −1 ≤ x ≤ 1. We note that this solution is normalized as

Pn(1) = 1 . (A.13)

Legendre polynomial satisfies the three-term recurrence relation

(2n+ 1)xPn − nPn−1 = (n+ 1)Pn+1 , (A.14)

and

nxPn − nPn−1 = (x2 − 1)
dPn

dx
. (A.15)

These relations are called Bonnet’s recursion formula, and equivalently rep-
resented as

Pn+1 = xPn +
x2 − 1

n+ 1

dPn

dx
. (A.16)

Eq. (A.12) and (A.13) lead

P0(x) = 1 . (A.17)

Substituting this into Eq. (A.16), the Legendre polynomials are concretely
written down as

P1(x) = x, P2(x) =
3x2 − 1

2
, P3(x) =

5x3 − 3x

2
, ..., (A.18)

and generally expressed by

Pn(x) =
1

n!2n
dn

dxn
(x2 − 1)n . (A.19)

The latter representation is commonly called the Rodrigues’ formula of the
Legendre polynomials. We note that the Legendre polynomials satisfy

Pn(−x) = (−1)nPn(x) , (A.20)

under a parity transformation. We can find that Pn(x) is a n-th order
polynomial from Eq. (A.19). Then, we use the following relation

d2

dx2
(x2 − 1)n =

d2

dx2

n∑
m=0

(−1)n−m
n!x2m

m!(n−m)!

=
n∑

m=0

(−1)n−m
n!2m(2m− 1)

m!(n−m)!
x2m−2 (A.21)

91



and Eq. (A.19) to obtain

Pn(x) =
1

2n

n∑
m=[n/2]

(−1)n−m
2m(2m− 1) · · · (2m− n+ 1)

m!(n−m)!
x2m−n . (A.22)

Here, [n/2] is the floor function of n/2 introduced by Gauss, which is the
largest integer less than or equal to n/2. Then we can rewrite Eq. (A.22)
as the summation for k = n − m, and obtain the simple expression by
multiplying the numerator and the denominator by (n − 2k)!. Finally the
general formula of Legendre polynomials is

Pn(x) =
1

2n

[n/2]∑
k=0

(−1)k(2n− 2k)!

k!(n− k)!(n− 2k)!
xn−2k . (A.23)

Here, we discuss the orthogonality of the Legendre polynomials. By
multiplying Eq. (A.19) by xm, where m is an integer such that 0 ≤ m < n,
and integrating for x, we can derive∫ 1

−1
xmPn(x)dx =

1

n!2n

∫ 1

−1
xm

dn

dxn
(x2 − 1)ndx

= (−1)m
m!

n!2n

∫ 1

−1

dn−m

dxn−m
(x2 − 1)ndx = 0 . (A.24)

In the second line, we integrate by parts m times, and used the fact that the
surface term (x2 − 1) goes to zero. Because Pn(x) is orthogonal to xm for
m < n and Pn(x) is a polynomial of n-th order, each Legendre polynomial
is orthogonal to all others as∫ 1

−1
Pn(x)Pm(x)dx = 0, m 6= n. (A.25)

∫ 1

−1
P 2
n(x)dx =

(−1)n

4n(n!)2

∫ 1

−1
dx(x2 − 1)n

d2n

dx2n
(x2 − 1)n . (A.26)

Using ∫ 1

−1
(x2 − 1)ndx = (−1)n

√
πΓ(n+ 1)

Γ

(
n+

3

2

) , (A.27)

and
d2n

dx2n
(x2 − 1)n = (2n)! , (A.28)
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Eq. (A.26) leads to ∫ 1

−1
P 2
n(x)dx =

2

2n+ 1
. (A.29)

From Eqs. (A.25) and (A.29), Legendre polynomials for −1 ≤ x ≤ 1 are
orthonormalized by ∫ 1

−1
Pn(x)Pm(x)dx =

2δnm

2n+ 1
. (A.30)

We can expand the plane wave with the Legendre polynomials as

e−ix cos θ =

∞∑
l=0

(2l + 1)(−i)ljl(x)Pl(cos θ) . (A.31)

We introduce a new variable y = cos θ, and rewrite Eq. (A.31) as∫ 1

−1
e−ixyPn(y)dy = 2(−i)njn(x). (A.32)

Legendre polynomial is asymptotically expressed by

Pn(cos θ) =

√
2

nπ sin θ
cos

[(
n+

1

2

)
θ −

π

4

]
+O

(
1

n
3
2

)
, (A.33)

for large n [165]. We can find that Pn(cos θ) oscillates with the period of
2π/n for large n.

The spherical harmonics are given by

Ylm(θ, φ) = (−1)
m+|m|

2 ·

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

· sin|m| θ ·
d|m|Pl(cos θ)

(d cos θ)|m|
· eimφ ,

(A.34)
and they satisfy∫

dn Y ∗lm(n)Yl′m′(n) =

∫
sin θ dθ dφ Y ∗lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ .

(A.35)
The asymptotic form of the spherical harmonics is

Ylm(θ, φ) =
1

π
√

sin θ
cos

[(
l +

1

2

)
θ −

π

4
+
mπ

2

]
· eimφ +O

(
1

l

)
. (A.36)

This asymptotic form is valid for l� 1, l� m.
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