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Abstract 12 

In disease-association studies using neuroimaging data, evaluating the biological or clinical 13 
significance of individual associations requires not only detection of disease-associated areas 14 
of the brain, but also estimation of the magnitudes of the associations or effect sizes for 15 
individual brain areas. In this paper, we propose a model-based framework for voxel-based 16 
inferences under spatial dependency in neuroimaging data. Specifically, we employ 17 
hierarchical mixture models with a hidden Markov random field structure to incorporate the 18 
spatial dependency between voxels. A non-parametric specification is proposed for the effect 19 
size distribution to flexibly estimate the underlying effect size distribution. Simulation 20 
experiments demonstrate that compared with a naive estimation method, the proposed 21 
methods can substantially reduce the selection bias in the effect size estimates of the selected 22 
voxels with the greatest observed associations. An application to neuroimaging data from an 23 
Alzheimer's disease study is provided.  24 

1. Introduction 25 

In disease-association studies using neuroimaging data, such as those related to brain 26 
magnetic resonance imaging (MRI), screening of disease-associated regions in the brain is a 27 
fundamental statistical task to understand the underlying mechanisms of disease and also to 28 
develop disease diagnostics. Such screening analysis typically involves detection of disease 29 
associations in the framework of hypothesis testing, followed by estimation of the 30 
magnitudes of the associations or their effect sizes to determine their biological or clinical 31 
significance.  32 

Many statistical methods have been proposed to detect disease associations. In a cluster-level 33 
inference, groups of contiguous voxels whose association statistic values are above a certain 34 
threshold are defined and then associated with disease status [1, 2]. Another approach is to 35 
test every voxel individually, which takes into account the serious multiplicity problem of 36 
testing enormous numbers of voxels simultaneously. In this voxel-level inference, several 37 
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model-based methods based on random field theory have been proposed. Smith and Fahrmeir 38 
proposed to use an Ising prior in a classical Markov random field to model the dependency 39 
among contiguous voxels [3]. More recently, Shu et al. (2015) [4] proposed to use hidden 40 
Markov random field modelling, and developed a multiple testing procedure based on the 41 
local index of significance (LIS) proposed by Sun and Cai (2009) [5] in multiple testing 42 
under dependency. Brown et al. (2014) proposed to use a Gaussian random field with 43 
conditional autoregressive models [6]. With these voxel-level methods, contiguous voxels 44 
may be more prone to rejection than conventional, voxel-level multiple testing procedures. 45 
They may also facilitate the interpretation of significant voxels or regions in neuroimaging 46 
data, as in cluster-level inference, while circumventing the problems with that approach, 47 
including the arbitrariness of the threshold used in initial clustering and the lack of spatial 48 
specificity [1]. 49 

On the other hand, for the problem of estimating disease associations, traditional 50 
neuroimaging studies reported “naive” estimates, such as Cohen’s 𝑑, for significant voxels. 51 
However, several authors have pointed out that such methods may suffer from 52 
overestimation, reflecting a selection bias for picking up voxels with the greatest effect sizes, 53 
possibly due to random errors [7, 8]. Reddan et al. (2017) recommended several ways to 54 
either avoid such bias, for instance by testing predefined regions of interest or integrating 55 
effects across multiple voxels into a particular model, or to adjust bias using independent 56 
samples [7]. However, in association analysis of neuroimaging data with spatial dependency, 57 
the estimation problem has not been well studied compared with the detection problem using 58 
multiple testing. 59 

In this paper, we use empirical Bayes estimation and hierarchical modelling of summary 60 
statistics from the whole set of features to derive shrinkage estimation for individual features 61 
[9, 10], and adapt this method to the analysis of disease-association studies using 62 
neuroimaging data with spatial dependence. Specifically, we employ hierarchical mixture 63 
models with a hidden Markov random field structure to incorporate the spatial dependency 64 
between voxels. We assume a non-parametric distribution for the underlying distribution of 65 
voxel-specific effect sizes. With a generalized expectation-maximization (EM) algorithm, we 66 
can estimate all the parameters in the model, including the effect size distribution. We then 67 
obtain shrinkage estimates for individual voxels and also an estimate of the LIS for control of 68 
the false discovery rate (FDR) in the detection problem based on the fitted model.  69 

With an appropriate effect size statistic and its asymptotic sampling distribution, our method 70 
is generally applicable to effect size estimations in many neuroimaging association studies 71 
where general linear models have been employed, such as those with functional/structural 72 
MRI (fMRI/sMRI), diffusion tensor imaging (DTI), and so forth. This paper is organized as 73 
follows. We provide the proposed method in Section 2. We describe simulation experiments 74 
to evaluate the performance of the proposed methods and an application to neuroimaging data 75 
from an Alzheimer’s disease study in Section 3. We discuss the details of the methods and 76 
results in Section 4. Finally, we conclude this paper in Section 5. 77 

 78 

2. Materials and Methods 79 

We propose an estimation method based on a hierarchical mixture model in which the 80 
underlying distribution of voxel-specific effect sizes is specified. We suppose a simple 81 
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situation where diseased and normal control subjects are compared without any covariates 82 
(see Section 2.5 for incorporation of covariates). We introduce a binary disease status 83 
variable with a group label of either 1 or 2, for example disease or normal. Let 𝑛! and 𝑛" be 84 
the numbers of diseased and normal control subjects, respectively, and 𝑛 = 	𝑛! + 𝑛" be the 85 
total number of subjects. We suppose that spatial normalization [1] has been performed for 86 
each subject to adjust for differences in the size or shape of the observed image, and the 87 
image is divided into voxels by a three-dimensional grid. We also suppose a further 88 
normalization to ensure normality of the voxel-level intensity values across subjects within 89 
each group. Let 𝑆 be the set of all voxels in the neuroimaging data and 𝑚 denote the number 90 
of voxels in 𝑆. In order to measure the association of the observed intensity values from 91 
individual voxels with the disease status variable, we define the standardized mean difference 92 
between the two groups. Specifically, for voxel 𝑠 ∈ 𝑆, 𝛿# =	 (𝜇!# − 𝜇"#)/𝜎#, where 𝜇!# and 93 
𝜇"# are the means of voxel 𝑠 for groups 1 and 2, respectively, and 𝜎# is the common standard 94 
deviation for voxel 𝑠 across groups. As an estimate of 𝛿#, we use the following statistic, 95 

𝑌# =	
𝜇̅!# −	𝜇̅"#

𝜎#4
	 (1) 96 

where 𝜇̅!# and 𝜇̅"# are sample means of voxel values in the two groups and 𝜎6#" is an estimator 97 
of the common within-group variance. This statistic is essentially a two-sample t-statistic, 98 
apart from the sample size term. One may consider a calculation of 𝑌# from the t-value 99 
provided by software packages such as Statistical Parametric Mapping (SPM, 100 
https://www.fil.ion.ucl.ac.uk/spm/). Let 𝒀 = {𝑌#:	𝑠 ∈ 𝑆} be the vector of 𝑌# for all 𝑚 voxels. 101 
Of note, the reason for using the standardized mean difference, rather than test statistics such 102 
as Z-statistics, is that it is a direct interpretation of the effect size of individual voxels with no 103 
dependency on the sample size. 104 

2.1. Hierarchical Mixture Models in a Hidden Markov Random Field 105 

We assume a hidden Markov random field model [4] for 𝒀. Let 𝚯 = {Θ#:	𝑠 ∈ 𝑆} ∈ {0,1}$ be 106 
a set of latent variables, where Θ# = 0 if the voxel 𝑠 is null (i.e., no association with disease) 107 
and Θ# = 1 otherwise (i.e., association with disease). The dependence structure across 108 
contiguous voxels is modeled assuming that this latent variable 𝚯 is generated from the 109 
following Ising model with two parameters 𝜸 = (𝛾!, 𝛾")%, 110 

Pr(𝚯 = 𝜽) = 	
exp{𝜸%𝑯(𝜽)}

𝐶(𝜸) , 111 

where 𝑯(𝜽) = H∑ 𝜃#(#,()∈+! 𝜃( , ∑ 𝜃##∈+ K, and 𝐶(𝜸) is the normalizing constant. In the vector 112 
𝑯(𝜽), the first component pertains to a summation over all pairs of contiguous voxels, 𝑆!, 113 
and the second component to a summation over all voxels, 𝑆.  114 

Given the latent status 𝚯 = 𝜽, we assume that the statistics 𝑌#s are mutually independent, 115 
such that  116 

Pr	(𝒀 = 𝒚|𝚯 = 𝜽) =NPr	(𝑌# = 𝑦#|𝛩# = 𝜃#) .
#∈+

(2) 117 
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For the component Pr	( 𝑌# = 𝑦#|Θ# = 𝜃#), we define 𝑓- as the null density function, 𝑓-(𝑦#) =118 
Pr	( 𝑌# = 𝑦#|Θ# = 0), and 𝑓! as the non-null density function, 𝑓!(𝑦#) = Pr	( 𝑌# = 𝑦#|Θ# = 1). 119 
We assume the distribution of 𝑌# as the mixture of null and non-null distributions,  120 

Pr(𝑌# = 𝑦#) = 𝑃𝑟(𝛩# = 0)𝑓-(𝑦#) + 𝑃𝑟	(𝛩# = 1)𝑓!(𝑦#), 	 (3) 121 

Of note, this is an instance of the so-called “two-groups model” [11] when the hidden 122 
Markov random field model is introduced. When the sample size 𝑛 is sufficiently large, it is 123 
reasonable to employ asymptotic normality for 𝑌#. For the null voxels, we assume 𝑓- to be a 124 
normal distribution, 𝑁(0, 𝑐."), where 𝑐. = Y𝑛/𝑛!𝑛". For the non-null voxels, we assume the 125 
hierarchical structure with two levels: 126 

𝑌#|𝛿#, Θ# = 1 ∼ 𝑁(𝛿#, 𝑐."),
𝛿# ∼ 𝑔(⋅).

(4) 127 

At the first level, the conditional distribution of 𝑌# for effect size 𝛿# is normal with mean 𝛿# 128 
and variance 𝑐.", again based on asymptotic normality for 𝑌#. At the second level, the voxel-129 
specific effect size 𝛿# has an effect size distribution 𝑔. From this hierarchical structure, we 130 
can express the non-null density function as the marginal density function, 𝑓!(𝑦#) =131 
∫𝑓 (𝑦#|𝛿, 𝜃# = 1)𝑔(𝛿)𝑑𝛿, where 𝑓(𝑦#|𝛿, 𝜃# = 1) is a conditional density function in the first 132 
level of Equation (4). Note that Equation (4) is the Brown-Stein model for estimating effect 133 
sizes [9, 12, 13]. 134 

If the sample size is not large enough, as occurs in many exploratory neuroimaging studies, it 135 
is reasonable to use the 𝑡-distribution rather than the normal distribution. In this case, the 136 
statistic 𝑌#/𝑐. follows a 𝑡-distribution with 𝑛 − 2 degrees of freedom for the null voxels, and 137 
we consider the following hierarchical model for the non-null voxels:  138 

𝑌#
𝑐.
|𝛿#, 𝛩# = 1 ∼ 𝑡./",0"/2# ,

𝛿# ∼ 𝑔(⋅).
(5) 139 

where 𝑡./",0"/2# represents a non-central 𝑡-distribution with 𝑛 − 2 degrees of freedom and 140 
noncentrality parameter 𝛿#/𝑐.. 141 

2.2. Non-Parametric Effect Size Distribution 142 

We can consider both parametric and non-parametric specifications for the effect size 143 
distribution 𝑔. However, the information regarding the parametric form of 𝑔 is generally 144 
limited because of the exploratory nature of disease-association studies that observe 145 
neuroimaging data with a large number of voxels (see Section 4 for discussion of the 146 
technical difficulty of specifying parametric mixture models for the effect size distribution). 147 
We therefore consider a non-parametric specification and estimate it based on presumed 148 
parallel association structures across a large number of voxels. For this estimation, we 149 
propose to perform the smoothing-by-roughening method [14], in the same way this method 150 
has been used for analyzing genomic data [15]. We approximate that 𝑔 has discrete 151 
probabilities 𝒑 = (𝑝!, … , 𝑝3) at each mass point 𝑡 = (𝑡!, … , 𝑡3), 152 

𝑔(𝑡4; 𝒑) = 𝑝4 , 	 𝑏 = 1,… , 𝐵, (6) 153 
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where 𝐵 is a sufficiently large number of mass points and discrete probability 𝑝4 satisfies 154 
𝑝! +⋯+ 𝑝3 = 1. In practice, we set 𝐵 = 200, following the guideline by Shen and Louis 155 
(1999) [14]. The mass point 𝑡 may be specified to cover a possible range of 𝑌 and 𝑡4 ≠ 0 for 156 
any 𝑏. 157 

When asymptotic normality is assumed, then based on Equations (4) and (6), the marginal 158 
non-null distribution of 𝑌#, 𝑓!, can be expressed as a mixture of normal distributions, 159 

𝑓!(𝑦; 𝒑) = j𝑝4

3

45!

𝜙(𝑦; 𝑡4 , 𝑐."), (7) 160 

where 𝜙(⋅; 𝜇, 𝜎") represents the density function of normal distribution, 𝑁(𝜇, 𝜎"). If the 161 
sample size is not large enough, the non-central t-distribution, 𝜙((𝑦/𝑐.; 𝑛 − 2, 𝑡4/𝑐.), is 162 
substituted for the normal distribution, 𝜙(𝑦; 𝑡4 , 𝑐."), in Equation (7), where 𝜙((⋅; 𝜈, 𝛿) 163 
represents the density function of the non-central t-distribution 𝑡6,0. In this case, the marginal 164 
non-null distribution of 𝑌#, 𝑓!, is a mixture of non-central t-distributions. 165 

The parameter set specifying the above hierarchical model is 𝒑. We use the vector 𝝋 =166 
(𝜸,, 𝒑,), to represent the set of all parameters, including those in the Ising model. The 167 
parameter set 𝝋 is estimated by a generalized EM algorithm. Details of the algorithm are 168 
provided in Appendix A. Another approach to estimating the effect size distribution 𝑔 is a 169 
non-parametric Bayes estimation with a Dirichlet process (DP) prior [16]. Assuming a DP 170 
prior for the discretized version of 𝑔, Equation (4) forms a DP mixture model that is 171 
equivalent to an infinite mixture model. It is pointed out that the estimated non-parametric 172 
distribution based on the smoothing-by-roughening algorithm with initial distribution 𝐺(-) 173 
behaves similarly to the one based on DP hyper-prior with mean 𝐺(-), where the number of 174 
repetitions in the smoothing-by-roughening algorithm is related to prior precision of the DP 175 
[15]. 176 

2.3. FDR Estimation 177 

In our framework, multiple testing methods can be derived based on the estimated model. We 178 
employ the LIS [5] to estimate the FDR to incorporate the spatial dependency between 179 
voxels. As a function of the parameter 𝝋, the LIS is defined as the posterior probability that 180 
the voxel is null given all 𝑌#s, 181 

LIS#(𝒚) = Pr	( Θ# = 0|𝒀 = 𝒚;𝝋). 182 

Note that the LIS corresponds to the local FDR [17] when independence across voxels is 183 
assumed. Multiple testing is based on the LIS. Let LIS(!)(𝒚) ≤ ⋯ ≤ LIS($)(𝒚) represent a 184 
series of ordered LISs across voxels and let 𝐻(7) be the null hypothesis (representing no 185 
association with disease) on the voxel corresponding to LIS(7)(𝒚). A LIS-based, oracle LIS 186 
procedure was proposed for minimizing the false negative rate subject to a constraint on FDR 187 
under hidden Markov chain dependence [5]; this procedure was then extended under a hidden 188 
Markov random field for analyzing neuroimaging data [4]. The oracle LIS procedure 189 
determines rejected voxels using the following rule:  190 
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let 𝑘 = max{𝑖:
1
𝑖 jLIS(8)(𝒚) ≤ 𝛼

7

85!

~ ,

then reject all 𝐻(7), 𝑖 = 1,… , 𝑘.

(8) 191 

This procedure controls the FDR level at 𝛼. Since the parameter 𝝋 is unknown, a plug-in 192 
estimator, LIS� #(𝒚) = Pr	( Θ# = 0|𝒚;𝝋4), is used. This probability, LIS� #(𝒚) = Pr	( Θ# =193 
0|𝒚;𝝋4), can be calculated using the Gibbs sampler from the distribution of 𝚯|𝒀 [4],  194 

Pr	( 𝚯 = 𝜽|𝒀 = 𝒚;𝝋4) ∝ exp	 �𝛾!4 j 𝜃#
(#,()∈+!

𝜃( +j{𝛾6" − log	 𝑓- (𝑦#) + log	 𝑓! (𝑦#; 𝒑4)}
#∈+

𝜃#� . (9) 195 

In applying the aforementioned FDR estimation procedure to neuroimaging data, it is 196 
generally reasonable to divide all voxels into neurologically defined sub-regions with distinct 197 
functional or structural features, such as Automated Anatomical Labeling (AAL, [18]) (thus 198 
resulting in plausible heterogeneity in effect size and dependence structure across sub-199 
regions). We apply the pooled LIS [19] and fit the model separately for each sub-region, 200 
thereby obtaining LIS values within sub-region. We then determine rejected voxels by 201 
equation (8), where LIS(!)(𝒚) ≤ ⋯ ≤ LIS($)(𝒚) is the ordered LIS for a pool of all sub-202 
regions. 203 

2.4. Effect Size Estimation 204 

As mentioned in Section 1, estimation of effect sizes for selected voxels is important for 205 
evaluating their biological or clinical significance. Of note, the naive estimator given by 𝛿�# =206 
𝑌# generally overestimates the true effect size (absolute 𝛿#) for the selected “top” voxels with 207 
the highest statistical significance. This estimation bias reflects the selection bias, caused by 208 
random variation, that is inherent in selecting voxels with the largest absolute 𝑌#. We 209 
consider shrinkage estimation for selected voxels. Specifically, we extend posterior indices 210 
originally developed in the case of independent 𝑌#s [10] to the case of dependent 𝑌#s. 211 

The posterior mean of 𝛿# for a non-null voxel 𝑠 is given by 212 

𝐸[𝛿#|𝑦#, Θ# = 1;𝝋] = � 𝛿
9

/9
𝑓(𝛿|𝑦#, 𝜃# = 1; 𝒑)𝑑𝛿, (10) 213 

where 𝑓(𝛿|𝑦#, 𝜃# = 1; 𝒑) is the posterior probability,  214 

𝑓(𝛿|𝑦#, 𝜃# = 1; 𝒑) =
𝜙(𝑦#; 𝛿, 𝑐.")𝑔(𝛿; 𝒑)

𝑓!(𝑦#; 𝒑)
, (11) 215 

when the normal approximation is employed for the sampling distribution of 𝑌#. Since the 216 
effect size under the null hypothesis is zero, the posterior mean of the effect size of the voxel 217 
𝑠 is given by 218 

𝐸[𝛿#|𝑦; 𝝋] = 𝐸[𝛿#|𝑦#, Θ# = 1;𝝋] Pr	( Θ# = 1|𝑦;𝝋). 219 
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Based on these formulas, we can then estimate the effect size using the following posterior 220 
indices, 221 

𝛿�# = 𝑑#ℓ#, (12) 222 

where 𝑑# and ℓ# are plug-in estimators, 𝑑# = 𝐸[𝛿#|𝑦#, Θ# = 1;𝝋4] and ℓ# = Pr	( Θ# =223 
1|𝒚;𝝋4) = 1 − LIS� #(𝒚). Based on equations (10) and (11), we have the following form for 224 
the estimator 𝑑#, 225 

𝑑# =j𝑡4

3

45!

𝑝̂4𝜙(𝑦#; 𝑡4 , 𝑐.")/j 𝑝̂4

3

45!

𝜙(𝑦#; 𝑡4 , 𝑐."). 226 

This posterior mean 𝑑# is the shrinkage estimate of effect sizes, given that the voxel is non-227 
null. The probability ℓ# depends on the multiple testing index LIS� #(𝒚), which incorporates 228 
spatial dependency and is calculated using the Gibbs sampler from the distribution of 𝚯|𝒀, 229 
presented in equation (9). These two posterior indices adjust for two different errors. The first 230 
is overestimation of effect sizes, and the shrinkage estimate 𝑑# is used to adjust this bias. The 231 
second is incorrect selection of the null voxel, and ℓ# is used to correct for this error. Again, 232 
if the sample size is not large enough, the t-distribution 𝜙((𝑦/𝑐.; 𝑛 − 2, 𝑡4/𝑐.) is substituted 233 
for the normal distribution 𝜙(𝑦; 𝑡4 , 𝑐."). 234 

2.5. Incorporating Additional Covariates 235 

We shall now address adjustment for additional subject-level covariates (other than the 236 
disease status) by employing general linear models. For each voxel, we first standardize all 237 
the intensity values across subjects based on the common within-group variance (𝜎6#") such 238 
that the within-group variance equal to 1. Let 𝑥7,# be the standardized intensity value of voxel 239 
𝑠 on subject 𝑖 (𝑠 ∈ 𝑆, 𝑖 = 1,… , 𝑛). We then assume a general linear model for 𝑥7,# as the 240 
observed intensity values for voxel 𝑠, 241 

𝑥7,# = 𝛽-,# + 𝛽!,#𝑤7,! +⋯+ 𝛽:,#𝑤7,: + 𝜀7,#, 	 𝑖 = 1,… , 𝑛, (13) 242 

where 𝑤7,! is the binary variable on disease status, 𝑤7,", … , 𝑤7,: represents the additional 243 
covariates on subject 𝑖, and 𝜀7,# is an error term. As an estimate of the effect size for voxel 𝑠  244 
(with adjustment for the additional covariates), we use 𝑌#,;<= = 𝛽�!,# with the variance 245 
Var� (𝛽�!,#) (in the first level of the hierarchical model). When 𝑝 = 1 (no additional 246 
covariates), 𝑌#,;<= may reduce to 𝑌# in equation (1). We approximate that the distribution of 247 
𝑌#,;<= is normal, 𝑁(𝛽!,#, (𝑊,𝑊){""}/! ), where 𝑊 = (𝑤!,, … , 𝑤.,), and 𝑤7 = (1,𝑤7,!, … , 𝑤7,:), 248 
and (𝑊,𝑊){""}/!  represents the (2, 2) entry of the inverse matrix 𝑊,𝑊. If the sample size is 249 
not large enough, we assume 𝑌#,;<=/(𝑊,𝑊){""}/! ∼ 𝑡6,0 where 𝜈 = 𝑛 − 𝑝 − 1 and 𝛿 =250 
𝛽!,#/(𝑊,𝑊){""}/! . 251 

3. Results 252 

3.1. Simulation Experiments 253 
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We conducted simulation experiments to evaluate the performance of effect size estimation 254 
in the proposed method. We simulated the values of the summary statistic 𝑌# according to the 255 
hierarchical mixture model in a hidden Markov random field, as given in Section 2.1. With 256 
this simulation, we supposed implementation of appropriate preprocessing normalization 257 
procedures for various neuroimaging analysis platforms and devices to obtain normally 258 
distributed intensity data across subjects for individual voxels. We considered a simple 259 
situation where disease and normal control subjects were compared with no additional 260 
covariates. The numbers of disease and normal control subjects, 𝑛! and 𝑛", were set as 𝑛! =261 
𝑛" = 𝑛/2. We specified the total number of subjects n as 50,100, or 200. Further, we 262 
specified the number of voxels 𝑚 as 3375	(= 15 × 15 × 15), which was the number of 263 
voxels per sub-region defined based on brain parcellation in effect size estimation within sub-264 
region (see the application in Section 3.2).  We generated the true latent variables 𝜃 from an 265 
Ising model with parameter values 𝜸 = (𝛾!, 𝛾"),. We considered that the parameter values 266 
𝛾! = 0.05, 0.15, and 0.25 represented weak, intermediate, and strong degrees of dependency 267 
across voxels, respectively. Another parameter, 𝛾", was determined such that the proportion 268 
of disease-associated voxels accounted for 10%, 20%, and 50% of all the voxels. When 𝜃# =269 
0 (i.e., the voxel 𝑠 was not associated with the disease status), the true effect size was set as 270 
𝛿# = 0; otherwise, the true effect size was set as 𝛿# ≠ 0 and generated from 𝑁(0.3,0. 1"). 271 
Here it is reasonable to assume positive effects only (i.e., one-sided detection) when studying 272 
the loss of neurological function after disease onset. The statistics 𝑌# were generated from a t-273 
distribution, 𝑌#/𝑐.|𝛿# ∼ 𝑡./",0"/2#. 274 

For simulated data for 𝑚 voxels, we applied a counterpart of the proposed estimation method 275 
with normal approximation for the sampling distribution of 𝑌# (given the true effect size for 276 
voxel 𝑠), and also a method assuming a t-distribution without normal approximation for the 277 
sampling distribution of 𝑌# (see Section 2). To reduce the computational burden when 278 
performing the proposed methods, we assumed that the parameters in the Ising model were 279 
constant. We ascertained similar simulation results for a small number of simulation 280 
repetitions when the parameters in the Ising model were estimated (results not shown). 281 
Following the guideline on the smoothing-by-roughening method [14], we used 𝐵 = 200 in 282 
these simulation experiments. We also ascertained similar results in estimating effect sizes of 283 
individual voxels when we used a smaller number 𝐵 = 20 (results not shown), indicating that 284 
the estimation is relatively insensitive to the selection of 𝐵. 285 

In evaluating the proposed method’s performance regarding effect size estimation, estimation 286 
biases for voxels with the greatest statistical significance (i.e., greatest values of 𝑌#) were 287 
compared between the naive estimator 𝛿�# = 𝑌# and the proposed estimators. We conducted 288 
100 simulations for each configuration of the parameter values in the Ising model and the 289 
total sample size. Figure 1 plots average bias values, each defined as the estimate minus the 290 
true value of effect size, over 100 simulations at each voxel ranking for the naive estimator 291 
and the two counterparts of the proposed posterior mean in Equation (12), for the case in 292 
which the proportion of disease-associated voxels was 20% of all the voxels. Note that the 293 
top-ranked voxels differed across the 100 simulated datasets, but the three estimates 294 
pertained to the same voxels (based on the ranking based on Ys) for each simulated dataset. 295 
We also note that we had similar results for the other proportions of disease-associated 296 
voxels, i.e., 10% and 50% (see Appendix B). 297 

From Figure 1, we can see that naive estimators suffered from serious overestimation. The 298 
proposed estimators were generally less biased. Moreover, we can see that the counterpart of 299 
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the proposed method, based on a t-distribution, generally gave less biased estimates for 𝑛 =300 
50 and 100 compared with the method based on normal distribution. 301 

We also evaluated the performance in effect size estimation for two scenarios where the 302 
model was misspecified. Specifically, for Scenario 1, the true latent variables 𝜃 were 303 
generated independently across voxels as in Brown et al (2014) [6], but the true effect sizes 304 
were smoothed with a Gaussian kernel after initial effect sizes were independently generated 305 
from 𝑁(0.3,0. 1") across voxels. For Scenario 2, the true effect sizes were smoothed with a 306 
Gaussian kernel as in Scenario 1, but the true latent variables 𝜃 were generated from an Ising 307 
model to reflect special dependency. We ascertained similar performance in effect size 308 
estimation for these two scenarios where the model was misspecified. 309 

 310 

Figure 1: Average bias in estimating effect sizes for each of the top 500 voxels across 100 simulations when the 311 
sample size n is 50 (left), 100 (center), and 200 (right). Panels (a), (b), and (c) represent scenarios with 312 
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various degrees of dependency among contiguous voxels specified by the parameter γ of the Ising 313 
model when the proportion of disease-associated voxels is 20%. 314 

3.2. Application 315 

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders 316 
responsible for dementia with brain atrophy. We illustrated our method using a dataset on T1-317 
weighted MRI images from the Open Access Series of Imaging Studies (OASIS), including 318 
longitudinal MRI measurements from 150 subjects aged 60 to 96 years (website: 319 
https://www.oasis-brains.org/; dataset: “OASIS-2”) [20]. Each subject underwent MRI scans 320 
using the same scanner with identical sequences at two or more visits with intervals of at 321 
least one year. At each subject visit, three or four individual T1-weighted MRI images were 322 
obtained during a single imaging session, and the Clinical Dementia Rating (CDR) scale was 323 
administered. Here, we evaluated whether assessment of brain sub-regions at the first visit 324 
(baseline) could be used for early diagnosis of AD, by associating the baseline MRI 325 
measurements with the conversion from mild cognitive impairment (MCI) at baseline to AD 326 
at the second visit, where MCI was defined as CDR = 0.5 and AD was defined as CDR ≥ 1. 327 
Specifically, in the original dataset we identified 𝑛 = 51 MCI subjects (with CDR = 0.5) at 328 
baseline; of those 51, at the second visit there were 𝑛! = 38 non-converters with CDR = 0.5 329 
and 𝑛" = 13 converters with CDR ≥ 1. Of note, 𝑛" = 13 converters were diagnosed as CDR 330 
= 1 at the second visit within 2 years after the baseline visit. We thus compared baseline 331 
MRI data between the non-converter and converter groups. 332 

The baseline MRI data were obtained as follows. In order to make the subject-specific MRI 333 
data comparable in assessing brain atrophy at each coordinate across subjects, we utilized the 334 
SPM software (https://www.fil.ion.ucl.ac.uk/spm/) to obtain a 91 × 109 × 91 voxel image 335 
grid with 2-mm cubic voxels for each subject. Specifically, three or four individual scan 336 
images were obtained during single imaging sessions at baseline for each subject and were 337 
then co-registered (to make them comparable across each subject’s scan images), and image 338 
intensity values at respective coordinates were averaged across scan images. The software 339 
was then used to achieve the following: segmenting the images into different tissue classes; 340 
co-registration of segmented gray and white matter (to make the averaged images comparable 341 
among subjects) using the algorithm Diffeomorphic Anatomical Registration using 342 
Exponentiated Lie algebra (DARTEL, [21]); normalization to a standard brain space (MNI-343 
space, developed by Montreal Neurological Institute); modulation of the transformation of 344 
intensity values of gray and white matter images into the tissue volume for each coordinate; 345 
and smoothing across contiguous voxels based on an 8-mm cube of full-width at half 346 
maximum of the Gaussian blurring kernel. After the processing by SPM, gray matter 347 
intensity normalization was performed based on white matter intensity using R package 348 
WhiteStripe [22] to obtain comparable images across subjects. See Appendix F for more 349 
details of the aforementioned processes used to transform the original raw data to normalized 350 
data eligible for association analysis using the proposed method. 351 

In the association analysis after the preprocessing of MRI data, the summary statistic 𝑌#,;<= in 352 
Section 2.5 was calculated from a t-statistic for testing 𝛽!,# = 0 in the general linear model in 353 
Equation (13) with the gray matter intensity as the dependent variable and sex, age, and total 354 
intracranial volume as covariates. Owing to plausible heterogeneity in voxel intensity across 355 
brain regions, we divided the whole brain image into 116 sub-regions based on the AAL, and 356 
fit the model for each sub-region separately. Of note, we can consider brain sub-regions other 357 
than those based on AAL. We then obtained the effect size estimate 𝛿�# in Equation (12) and 358 
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the LIS statistic LIS� #(𝒚) in Section 2.4 for individual voxels based on the estimated model 359 
within each sub-region. We used 𝐵 = 200 as the number of mass points used to estimate the 360 
effect size distribution 𝑔. We also used a smaller number, 𝐵 = 20, for some sub-regions with 361 
small sizes, but obtained similar results for 𝛿�# and LIS� #(𝒚). We detected disease-associated 362 
voxels at FDR = 5% by applying the pooled LIS procedure [19], where all the LIS values 363 
were pooled across sub-regions and ordered to determine rejection of voxels based on the 364 
criterion in Equation (8). 365 

 366 

Figure 2: Application to Alzheimer’s disease. Panel (a) displays rejected voxels for the nominal FDR level of 367 
0.05. Panel (b) displays positive effect size estimates. 368 

Since the total sample size 𝑛 = 51 was relatively small, we provide the estimation results 369 
based on the proposed method with t-distribution for the sampling distribution of 𝑌# (see 370 
Appendix D for results based on the proposed method with normal sampling distribution). 371 
Figures 2(a) and (b) display significant voxels at FDR = 5% by the pooled LIS procedure 372 
and all positive effect size estimates 𝛿�# in Equation (12), based on the region-specific 373 
estimated models. We note that there were few voxels with negative effects; this is 374 
reasonable because brain atrophy should be linked to positive effects. In comparison with 375 
Figure 2(a), Figure 2(b) on effect size estimation apparently provides more information about 376 
the variation in the strength in disease association. As a reference, we also fit the counterpart 377 
of the proposed method based on normal distribution, but similar results were obtained 378 
(Appendix D). 379 

For each sub-region, we then calculated average effect sizes for significant voxels based on 380 
the proposed method with t-distribution. Table 1 shows 10 sub-regions with the greatest 381 
average effect sizes. As expected, the effect size estimates based on proposed method were 382 
generally smaller than those based on the naive estimation method for top voxels. See 383 

(a) Rejected voxels (b) Estimated effect size  
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Appendix E for the differences in effect size estimates for top voxels within sub-region 384 
between the proposed and naive methods. The top sub-region, corresponding to the right 385 
middle temporal pole (TPOmid.R), has been reported by a connectivity analysis to be a 386 
region in which converters exhibited a decreased short-range degree of functional 387 
connectivity [23]. The other regions have already been associated with conversion to 388 
Alzheimer’s disease. For example, the left medial occipital lobe including the left cuneus 389 
(CUN.L) has been reported to be associated with MCI conversion [24], and the fusiform 390 
gyrus (including FFG.R) and parahippocampal gyrus (including PHG.R) have been reported 391 
as the regions with reduced volume in converters [25]. The right anterior portion of the 392 
parahippocampal gyrus (part of PHG.R) and left precuneus (PCUN.L) have been used to 393 
predict conversion [26]. The amygdala (including AMYG.R) has been used as a predictor of 394 
conversion from MCI to AD in many studies [27, 28, 29]. The middle and inferior temporal 395 
gyri (including MTG.R and ITG.R) have been reported as the regions with reduced volume in 396 
converters [30]. Hypometabolism in the inferior parietal lobe (including SMG.R) has been 397 
used as a predictor of cognitive decline from MCI to AD dementia [31]. Although the right 398 
superior temporal pole (TPOsup.R) has not been examined in association studies based on the 399 
AAL, the temporal pole has been reported to be associated with disease conversion [32]. 400 

Table 1: List of the top 10 atlases with the greatest effect size estimates. 401 

Index Name 
Number 

of 
voxels 

Number 
of 

rejected 
voxels 

Proportion 
rejected 

Average of 
proposed effect 

size estimate 
for rejected 

voxels 
88 TPOmid.R 581 577 99.3% 0.540  
84 TPOsup.R 743 502 67.6% 0.464  
45 CUN.L 939 158 16.8% 0.450  
56 FFG.R 2327 708 30.4% 0.443  
40 PHG.R 1097 719 65.5% 0.415  
42 AMYG.R 248 242 97.6% 0.371  
86 MTG.R 2964 1723 58.1% 0.340  
67 PCUN.L 2380 1217 51.1% 0.340  
90 ITG.R 2368 1597 67.4% 0.339  
64 SMG.R 1326 201 15.2% 0.335  

 402 

4. Discussion 403 

This research was motivated by the growing recognition of the importance of effect size 404 
estimation for detected brain areas in disease-association studies using neuroimaging data [7, 405 
8]. In order to permit flexible modelling of effect size distribution across a large number of 406 
voxels, while also incorporating the inherent spatial structure among voxels in neuroimaging 407 
data, we have integrated the frameworks of semi-parametric hierarchical mixture modelling 408 
and hidden Markov random field modelling. The integrated framework allows for more 409 
accurate effect size estimation for individual voxels, and also facilitates the accurate 410 
estimation of false discovery rates when detecting disease-associated voxels through multiple 411 
testing. With this framework, we could assess both voxel-level effect sizes and false 412 
discovery rates based on the integrated model without needing additional independent 413 
datasets. As shown in Figure 2(b), voxel-level effect size estimates can provide detailed and 414 
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unbiased information about the association between detected brain areas and the disease, 415 
which may be helpful for biological or clinical analysis of the identified areas. We stress that 416 
the effect size index in Equation (1) allows for evaluation without dependency on sample 417 
size. This feature may be particularly useful for comparing effect size estimates across 418 
different studies with distinct sample sizes. Note that our proposed framework is generally 419 
applicable to many neuroimaging analyses where general linear models have been employed. 420 

Although we have supposed a particular effect size statistic, i.e., the standardized mean 421 
difference between two groups as in Equation (1), and its sampling distributions, i.e., the 422 
normal or t-distributions as in Equations (4) and (5), we can consider another effect size 423 
statistic and its sampling distribution. With specification of the appropriate effect size statistic 424 
and its sampling distribution, our method is widely applicable to many neuroimaging 425 
association studies where general linear models have been employed, such as those with 426 
fMRI/sMRI, DTI, and so forth. Related to this point, we can accommodate unequal variances 427 
between diseased and healthy brain images, rather than equal variance represented in 428 
Equation (1). Specifically, we may define the fold change, 𝜇̅!# −	𝜇̅"#, as the effect size 429 
estimate, and assume asymptotic normality with fixed variances specified using reasonable 430 
estimators of the group-specific variances, although in our original formulation equal 431 
variance could be achieved by an adjustment for appropriate covariates in the framework of 432 
general linear models (see Section 2.5). Similarly, in fMRI analyses an absolute effect size 433 
such as percent signal change can be evaluated, and asymptotic normality is assumed for the 434 
sampling distribution (see Desmond and Glover (2002) [33] for the specification of the 435 
asymptotic variance). 436 

We have proposed two counterparts of the proposed method; one uses normal approximation 437 
and the other is based on t-distribution for the sampling distribution of the voxel-level 438 
summary statistic 𝑌# (or 𝑌#,;<=), for both null and non-null voxels (see Section 2.2). Our 439 
simulation experiments demonstrated that the proposed method with normal approximation 440 
could substantially overestimate voxel-level effect sizes when the sample size was small (𝑛 =441 
50), due to the erroneous assumption of a smaller dispersion of the sampling distribution of 442 
the statistic 𝑌# (or 𝑌#,;<=) for both null and non-null voxels, such that greater mass 443 
probabilities would be assigned for large effect sizes in estimating the effect size distribution 444 
𝑔. However, this problem disappears as the sample size becomes large, as demonstrated in 445 
our simulations. One advantage of the proposed method with normal approximation is shorter 446 
computational time for model estimation, compared with the counterpart with t-distribution 447 
and heavier tails. We recommend using the proposed method with normal approximation if 448 
the sample size is sufficiently large (say, 𝑛 > 100); otherwise, use the its counterpart with t-449 
distribution. 450 

As for the specification of the null distribution 𝑓-(𝑦#) in Equation (3), we have specified the 451 
theoretical null, represented by	𝑁(0, 𝑐.") or central t-distribution, with the Ising model to 452 
incorporate spatial dependency in the association status across voxels. To accommodate 453 
residual dependency, we could assume the empirical null, say 𝑁(𝜇, 𝜏"), and estimate the null 454 
parameters using the central matching method that fits an estimated curve ℎ(𝑦#) for the 455 
frequency distribution of 𝑦#, such that we obtain an estimate 𝜇̂ = argmax{ℎ(𝑦#)} [34]. 456 
However, for many neuroimaging data, the central peak may not pertain to a “null” 457 
distribution, rather a “non-null” distribution, because moderate to large non-null effects can 458 
dominate over small null effects, especially when the estimation is performed within 459 
subregion, as seen in our application example in Section 3.2. 460 
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With respect to specification of the effect size distribution 𝑔, we have employed a flexible, 461 
non-parametric specification because the information about the distributional form of 𝑔 is 462 
generally limited in exploratory disease-association studies. Other flexible specifications may 463 
include the use of a parametric effect size distribution with several components, such as finite 464 
normal mixture models. When this type of model is assumed, the marginal distribution of 𝑌# 465 
may also have a finite normal mixture form when the sampling distribution of 𝑌# is normal, as 466 
in Equation (4). In this case, the model parameters can be estimated using the method 467 
described by Shu et al. (2015) [4], where a penalized likelihood is used to avoid an 468 
unbounded likelihood function (or non-identifiability of the variances of the individual 469 
normal components) and Bayesian information criteria are used for selecting the number of 470 
components. However, a fundamental problem with this approach is that it lacks a natural 471 
constraint preventing the variance of the particular normal component in the marginal 472 
distribution of 𝑌# from becoming no smaller than the variance of the sampling distribution of 473 
𝑌# (i.e., 𝑐." in Equation (4)). By contrast, the non-parametric specification incorporates this 474 
constraint in principle; each of a large number of mass points corresponds to a “component”, 475 
as seen in Equation (7), and the variance of the marginal distribution corresponding to each 476 
component is specified as the variance of the sampling distribution (𝑐."). In addition, the non-477 
parametric specification does not need a penalized likelihood maximization or repeated 478 
model fitting to select the number of components based on a model selection criterion, and 479 
thus the computational burden is much lower.  480 

Our method with a non-parametric effect size distribution, in principle, can capture any forms 481 
of the effect size distribution, and voxel-level effect sizes will be estimated based on the 482 
fitted effect size distribution. In practice, however, it is reasonable to consider estimation 483 
within sub-regions (e.g., those based on the AAL in Section 3.2) to take account of a large 484 
heterogeneity in the effect size distribution across sub-regions or to avoid influence of the 485 
heterogeneity on the estimation of voxel-level effect sizes in a particular sub-region. 486 
Although our model could be extended to incorporate the heterogeneity, e.g., by introducing 487 
a hidden structure on the effect size distribution across sub-regions, estimation results may 488 
become difficult to interpret. We therefore simply recommend sub-region analysis based on 489 
biologically relevant and interpretable brain parcellations in which effect sizes within sub-490 
region are deemed relatively homogeneous.  491 

One inherent feature of the Ising model is that there is a critical value for the spatial 492 
interaction term 𝛾!, beyond which the model has a so-called phase transition, in which almost 493 
all binary (null or non-null) indicators will have the same value. Thus the algorithm for 494 
estimating 𝜸 does not converge, while the parameters 𝒑 in the hierarchical mixture model 495 
converge since the plug-in estimate LIS� #(𝒚) assumes values close to 0 or 1 in such a 496 
situation. In implementing our algorithm, for the samples of 𝚯 under candidate new values of 497 
𝜸, we reject the values of 𝜸 if all the samples of 𝚯 are equal. Details of the algorithm and its 498 
implementation, including specification of the number of iterations, are provided in 499 
Appendix A. 500 

It is interesting to discuss different approaches to modelling the association status (null/non-501 
null) and effect size distribution. Brown et al. (2014) [6] considered a parametric model 502 
where the association status and effect size follow a Bernoulli distribution and a conditional 503 
normal distribution, respectively, independently across voxels, but the mean of the 504 
conditional distribution is a weighted mean or smoothed across adjacent voxels, like the 505 
misspecified model investigated in our simulation (see Appendix C). On the other hand, our 506 
proposed model incorporates spatial dependency in the association status, but not the effect 507 
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size, using the Ising model. Further, for effect sizes, a non-parametric marginal distribution is 508 
specified as in Equations (3) or (4). Even under the absence of the specification of 509 
dependence in effect sizes across voxels, our method worked well under various simulation 510 
models in Section 3.1. This could be explained by the feature of our method that it can yield 511 
similar effect size estimates for similar values of the observed association statistic 𝑌 from 512 
relatively adjacent voxels. However, integration of different modelling approaches for more 513 
efficient estimation is an interesting area for future study. 514 

Lastly, another important aspect of the proposed framework for disease-association studies 515 
with neuroimaging data is that it can provide a flexible statistical model for the distribution of 516 
all neuroimaging data with a large number of voxels. Based on such a whole-brain, voxel-517 
based model, it is appropriate to make a formal inference for a particular group of brain areas 518 
or contiguous voxels. In addition, power and sample size calculations of disease-association 519 
studies involving neuroimaging are another important direction based on whole-brain 520 
modelling. 521 

5. Conclusions 522 

The proposed method allows for accurate estimation of voxel-level effect sizes, as well as 523 
detection of significant voxels with disease association, based on the flexible, hierarchical 524 
semi-parametric model incorporating spatial dependency across voxels. Our method can be 525 
generally applicable for many neuroimaging disease-association studies where general linear 526 
models can be assumed for voxel-level intensity values.   527 
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