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Chapter 1

Introduction

1.1 Background and previous studies

An interaction between a shock wave and turbulence (hereafter denoted as “a shock–

turbulence interaction”) occurs in various phenomena across a wide range of scientific

fields. Shock waves mainly appear in a supersonic flow and often interact with sur-

rounding turbulence. For example, interactions between a shock wave and a turbulent

boundary layer occur on the surface of high-speed airplanes. The interaction can induce

flow separation due to an adverse pressure gradient past the shock wave and local high

heating rates [1]. Shock waves have also been reported to interact with turbulence in

supernova explosions [2], inertial confinement fusion [3], and sonic booms associated with

supersonic flight [4].

Sonic booms present one of the biggest problems in engineering related to shock–

turbulence interaction. Induced by shock waves generated by supersonic flight, a sonic

boom is a loud noise that can adversely affect surrounding environments and ecosystems.

The discontinuous pressure jumps produced by shock waves can cause damage like

breaking glass windows. The shock waves generated by the Chelyabinsk meteor, for

example, caused the windows in houses in Russia to shatter [5]. These loud noises

can also influence the attitude and behavior of animals [6]. Therefore, it is necessary

to develop a tool to predict sonic booms for the development and operation of future

supersonic transport.
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The effects of atmospheric turbulence on shock waves further complicate the sonic

boom problem. The shock waves generated by supersonic flight interact with atmo-

spheric turbulence in the propagation process, which changes their characteristics. It

is reported that the pressure waveforms depend on the observation points in the flight

test [4], and a recent study also suggests that the effects of the interaction should be

considered for the sonic boom problem [7].

Previous studies of shock–turbulence interaction have investigated both turbulence

and shock waves. Velocity fluctuations and enstrophy have been observed to amplify

following interaction. In addition, characteristic length scales of turbulence are affected

by the interaction due to the strong compression in the shock wave. These results have

been observed in both experimental [8]–[10] and numerical [11]–[16] studies and agree well

with theoretical analyses using linear interaction analysis (LIA) [17]–[22], rapid distortion

theory (RDT) [23]–[25], and quasi-equilibrium assumption [15]. Conversely, a shock wave

is also modulated by the interaction. Characteristics of a normal shock wave interact-

ing with homogeneous isotropic turbulence (HIT) are investigated via direct numerical

simulations (DNSs) [11], [15], [26], [27]. In these DNSs, the divergence of a velocity vector

called a dilatation, which represents the strength of fluid compression, is used as a mea-

sure of the local shock strength. Shock–turbulence interactions have been reported to

cause the dilatation of the shock wave to fluctuate. Discontinuous jumps in local areas

of the shock wave disappear during the interaction in cases of high turbulent Mach

numbers Mt(≡
√
3u′

rms/a), where u′
rms is the root-mean-squared (rms) value of the

velocity fluctuations, u′, and a is the speed of sound in front of the shock wave. The

shock wave whose discontinuity locally disappears is called a broken shock wave. The

broken part of the shock wave can be observed in cases of Mt/(Ms − 1) > 0.6, where

Ms(≡ Us/a) is the shock Mach number, and Us is the propagation velocity of the shock

wave. Statistical characteristics of the fluctuations of pressure jumps across a shock

wave have been reported in experimental studies [28]–[33]. Other reports have observed

a correlation between the fluctuations of the pressure jumps and velocity fluctuations

normal to the shock wave during turbulence. Here, a time lag called a finite response
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time exists from the interaction with the velocity fluctuations until the shock wave is

modulated [30], [33]. The correlation and the finite response time are explained based on

the curvature of the shock-wave surface induced by the velocity shear [30]. However,

no direct observation has been reported for the relation between the local shock-wave

deformation and local velocity shear because of the difficulty in measuring the local

curvature of the shock-wave surface in experiments.

According to previous studies, shock-wave deformation strongly relates to a local

shock strength in a shock–turbulence interaction. Although the deformed shock wave

has been visualized in numerical simulations [11], [12], [26], [27], the statistical characteristics

of the deformation have not been investigated. Tamba et al. studied the shock-wave

deformation in the interaction between a normal shock wave and grid turbulence in a

counter-driver shock tube[34]. They reported that the shock-wave deformation started at

the beginning of the interaction and increased with propagation distance in the turbulent

region, called the interaction length. Prior numerical studies had not considered the

effects of interaction length, so this study was the first to indicate the importance of the

transient process of shock-wave deformation. However, the study did not investigate

the statistical properties of the shock-wave deformation because of the limitations of

the shadowgraph and schlieren visualizations used. This leaves a literature gap and

opportunity for new studies to investigate the statistical characteristics of the shock-

wave deformation and the effects of interaction length.

1.2 Objectives and structure of this thesis

As reported in previous studies, the shock-wave modulation induced by turbulence

should be investigated to accurately predict sonic booms. To develop a tool for sonic

boom prediction, it can be considered that local and instantaneous pressure waveform

should be predicted. However, it is difficult to investigate the interaction between a

shock wave and atmospheric turbulence because of the complexities of atmospheric tur-

bulence, such as mean velocity and density profile. In addition, it is also difficult to
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guarantee reproducibility of local and instantaneous properties of shock wave modula-

tion induced by turbulence. Therefore, statistical investigations are necessary for the

shock wave modulation at first. In this thesis, the statistical properties of pressure

jump fluctuations of a normal shock wave and shock-wave deformation induced by HIT

are investigated. In addition, intermittency of atmospheric turbulence has been investi-

gated [35]. It can be considered that shock waves propagating in the atmosphere repeat

the incident process to a turbulent region, interaction with the turbulence, and escape

process from the turbulent region. This is why the transient process of the shock wave

modulation is important for the sonic boom prediction and the effects of interaction

length are investigated in Chapter 3. These studies involve using DNSs of interac-

tions between a normal shock wave and HIT. Shock-wave and turbulence conditions are

controlled so that the results can be compared with previous experimental results. In

addition, statistical characteristics of shock-wave deformation and the effects of inter-

action length on shock-wave deformation are examined against the DNSs of a normal

shock wave propagating in a local turbulent region.

Statistical investigations on the pressure jump fluctuations across a normal shock wave

are performed in Chapter 2. DNSs of a normal shock wave interacting with HIT with a

turbulent Mach number much lower than previous studies because of the low turbulent

Mach number of atmoshperic turbulence, and pressure jump fluctuations in the shock

wave induced by HIT are investigated. At first, the local pressure jump is defined in

the case of a normal shock wave interacting with HIT, and the relations between rms

values of the fluctuations of the pressure jumps and Mt/(Ms − 1) or M2
t /(M

2
s − 1) are

confirmed. Then, some of the statistics of the fluctuations of the pressure jumps and

the correlation coefficient between the fluctuations of the pressure jumps and velocity

fluctuations of turbulence are calculated. Any relationship between the local shock-wave

deformation and local velocity shear are investigated.

In Chapter 3, the statistical properties of shock-wave deformation are investigated.

The results of effects of interaction length on the shock-wave deformation is one of the

most important results of this thesis. The results imply importance of the interaction
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length for shock-wave deformation. Here, shock-wave deformation is defined from the

local shock-wave position detected by the minimum values of pressure gradients in the

direction of the shock-wave propagation. Although shock-wave deformation has been

studied via both experiments and numerical simulations, few data can be compared.

Therefore, shadowgraph visualizations from numerical data are also performed. The re-

lations between shock-wave deformation and local shock strength are then investigated.

In Chapter 3, some of the statistics are plotted against Mt/(Ms − 1) or M2
t /(M

2
s − 1),

introduced for parameters in the shock–turbulence interaction [11], [15], [26], [27].

Statistical properties of the pressure jump fluctuations in the shock wave and shock-

wave deformation are investigated in this study. The pressure jump fluctuations are

induced by the velocity fluctuations normal to the shock wave in turbulence. In ad-

dition, the local propagation direction of the shock wave is related to velocity shear

in turbulence. This result supports the model introduced by Inokuma et al. [30]. In

addition, shock-wave deformation is statistically investigated, and the effects of the in-

teraction length are revealed. From the result, it is implied that the transient process of

the shock wave modulations is important in shock–turbulence interaction. These statis-

tical results are the first steps for the development of a tool for sonic boom prediction.
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Chapter 2

Fluctuations of pressure jumps

across a normal shock wave

caused by an interaction with

homogeneous isotropic

turbulence

2.1 Introduction

Changes in shock-wave properties due to interaction with turbulence are less un-

derstood compared with the shock-wave influences on turbulence. The fluctuations of

pressure jumps across the shock wave have hardly been discussed, even with recent

high-resolution DNSs of shock–turbulence interactions. One of the important findings

in recent experimental studies is the finite response time in the modulation of the pres-

sure jump across the shock wave due to interactions with turbulence [30]. This indicates

that the shock-wave properties possess strong memories and exhibit non-locality in

time. Inokuma et al. gave a possible explanation for this feature of shock–turbulence

interactions based on a timescale of shock-wave deformation due to a fluid-velocity

perturbation [30].
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In this chapter, DNSs of interactions between a normal shock wave and homogeneous

isotropic turbulence with a turbulent Mach number much lower than previous numerical

studies are performed. The low turbulent Mach number is similar to the turbulent Mach

number of atmospheric turbulence, which plays an important role in the sonic boom

problem. Therefore, the motivation of this study is investigating pressure jump fluctua-

tions in the shock wave induced by such turbulence with a low turbulent Mach number.

Statistical properties of the pressure jump fluctuations and relationships between the

pressure jump fluctuations and velocity fluctuations are investigated via these DNSs. In

addition, relationships between local propagation directions of the shock wave and ve-

locity shear of turbulence are investigated. These DNSs results in this chapter support

existing experimental findings regarding the finite response time in shock-wave modula-

tions induced by turbulence interactions, though the present DNSs cover a higher shock

Mach number range than the previous experiment that demonstrated finite response

time [30].

2.2 Direct numerical simulations

2.2.1 Flow field and parameters of the shock wave and turbu-

lence

In these DNSs, a normal shock wave interacts with HIT without a mean flow; the

schematic view is shown in Figure 2.1. The cubic computational domain with a side

length of 0.06 [m] is represented by N3 = 3843 or 5123 grid points. The direction of the

shock-wave propagation is denoted by x, while y and z represent the shock-tangential

directions. The normal shock wave is inserted from the y-z plane at x = 0 [m], which

is the boundary of the computational domain, by substituting the physical quantities

calculated from the mean characteristics of the HIT and a shock Mach number with

Rankine-Hugoniot relations. Hereafter, the time when the shock wave is inserted in the

computational domain is set to t = 0. Following insertion, the shock wave propagates

through the computational domain in the x direction with time advancement until it



Chapter 2 Fluctuations of pressure jumps across a normal shock wave caused by an

interaction with homogeneous isotropic turbulence 12

reaches the boundary at x = 0.06 [m].

The parameters of the shock wave and turbulence are summarized in Table 2.1. It

is expected that the effects of turbulence on the shock wave increase with a weaker

shock wave for a fixed turbulent Mach number [27]. Furthermore, LIA predicts that an

interaction between a weak shock wave and turbulence depends on shock Mach number,

such as when Ms < 1.5 [12]. For these reasons, DNSs with the shock Mach numbers

Ms = 1.1, 1.3 and 1.5 are performed, denoted by Cases 2-1, 2-2, and 2-3, respectively.

The DNS results of Case 2-3 are compared for different numbers of grid points, 3843

and 5123, so that grid convergence may be analyzed in the next section. DNSs of the

other cases are performed with 3843 grid points. The shock waves with these shock Mach

numbers interact with the same turbulence. Additional simulations are performed using

the HIT developed from two independent initial conditions generated from different sets

of random numbers. The HIT has a turbulent Mach number of Mt = 2.96× 10−4 and

turbulent Reynolds number of Reλ ≡ u′
rmsλ/⟨ν⟩ ≈ 18, where u′

rms = 0.102 [m/s] is the

rms value of velocity flutuations, λ ≡ u′
rms/(∂u/∂x)

′
rms = 2.70× 10−3 [m] is the Taylor

microscale, ⟨ν⟩ = 1.53×10−5[m2/s] is the mean kinematic viscosity, and ⟨a⟩ = 342 [m/s]

�

[m]
[m]

[m]

��������	�
����
�

[m]

x

z y

O

��������������������
���������
�

Figure 2.1. Schematic view of the DNSs of a normal shock wave interacting with homogeneous isotropic

turbulence.
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is the mean speed of sound. Mean pressure, density, and temperature are ⟨p⟩ = 101496

[Pa], ⟨ρ⟩ = 1.21 [kg/m3], and ⟨T ⟩ = 293 [K], respectively. These statistical values of

the HIT are calculated from volume averages taken in the whole computational domain,

denoted as ⟨∗⟩. Table 2.1 summarizes the parameters of the spherical shock wave and

grid turbulence [30].

The initial HIT is generated according to Ref. [36] by prescribing an energy spectrum of

E(k) ∼ k4exp[−2(k/k0)
2], where k is the wavenumber and E(k) peaks at k = k0 (1/k0 =

1.7×10−3 [m]). The turbulence is temporally advanced until three eddy turnover times

(= L/u′
rms : L is the integral length scale) in a periodic cube. The longitudinal integral

length scale L ≡
∫∞
0

f(r)dr is calculated from a longitudinal auto-correlation function

f(r). The Kolmogorov length scale η ≡ (⟨ν⟩3⟨ρ⟩/⟨ε⟩)1/4 of the HIT are L = 4.61×10−3

[m] and η = 3.19 × 10−4[m], respectively, where ε ≡ τijSij is the dissipation rate of

turbulent kinetic energy. Here, τij is the shear stress tensor, and Sij ≡ (∂ui/∂xj +

∂uj/∂xi)/2 is the rate-of-strain tensor. The side length of the computational domain is

about 13L, and the grid spacing is ∆ = 0.49η for 3843 grid points and ∆ = 0.37η for 5123

grid points. These grid spacings are small enough to consider small-scale fluctuations

in the HIT [37]. Although physical quantities discontinuously change across the shock

waves in real situations, the discontinuous jumps are treated with few grid points in

DNSs to suppress spurious numerical oscillations. A very high resolution is required

to prevent spatial resolution from affecting the shock-wave characteristics. Therefore,

the spatial resolution in the present DNS is very high in terms of the Kolmogorov

length scale. Figure 2.2 shows skewness at S ≡ ⟨(∂u′/∂x)3⟩/(∂u′/∂x)3rms and flatness at

F ≡ ⟨(∂u′/∂x)4⟩/(∂u′/∂x)4rms of the longitudinal velocity derivative ∂u′/∂x as functions

of Reλ. The results are in good agreement with previous studies [38]–[46], confirming

that the turbulence is developed enough to possess the well-known characteristics of

turbulence at the present value of Reλ. In addition, the Kolmogorov time scale tη ≡

(⟨ν⟩/⟨ε⟩)1/2 = 6.65× 10−3[s], the smallest HIT time scale, is much larger than the time

during which the shock wave moves from x = 0[m] to x = 0.06[m], even in the longest

case of Case 2-1 (1.59 × 10−4s). This demonstrates that the HIT is almost stationary
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Table 2.1. Parameters of the shock wave and turbulence compared with experiments of interaction

between a spherical shock wave and grid turbulence [30].

Case Ms Reλ Mt u′
rms [m/s] L [mm]

2-1 1.1 18 2.96× 10−4 0.102 4.61

2-2 1.3 18 2.96× 10−4 0.102 4.61

2-3 (N = 384) 1.5 18 2.96× 10−4 0.102 4.61

2-3 (N = 512) 1.5 18 2.96× 10−4 0.102 4.61

Ref.1 [30] 1.004 102 1.1× 10−3 0.387 27.5

Ref.2 [30] 1.004 200 2.3× 10−3 0.798 48.1

Ref.3 [30] 1.004 149 1.6× 10−3 0.568 54.3

Ref.4 [30] 1.004 296 3.4× 10−3 1.17 64.3

100 101 102 103
100

101

102

100 101 102 103
10-1

100

101

-S F

(a) (b)

Batchelor & Townsend (1947, 1949)
Kerr (1985)
Kuo & Corrsin (1971)
Kitamura et al. (2014)
current study

Batchelor & Townsend (1947, 1949)
Stewart (1951)
Kerr (1985)
Mydlarski & Warhaft (1996)
Lee et al. (2013)
Kitamura et al. (2014)
Antonia et al. (2015)
current study

Figure 2.2. (a) Skewness and (b) flatness of longitudinal velocity gradient as functions of turbulent

Reynolds number compared with previous studies using a wide range of turbulent Reynolds numbers.

during the propagation process of the shock wave in all cases.

2.2.2 Governing equations and numerical schemes

The three-dimensional, compressible Navier-Stokes equations are solved for simula-

tions of shock–turbulence interaction as follows:
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∂ρ

∂t
+

∂ρuj

∂xj
= 0, (2.1)

∂ρui

∂t
+

∂(ρuiuj + δijp)

∂xj
=

∂τij
∂xj

, (2.2)

∂e

∂t
+

∂(e+ p)uj

∂xj
=

∂τijui

∂xj
+

∂

∂xj

(
κ
∂T

∂xj

)
, (2.3)

with a constant specific heat ratio of γ = 1.4 and the equation of state for a perfect gas

as follows:

p = ρRT. (2.4)

Here, t is the time, xi is the position in i direction, ρ is the density, ui is the velocity

component in i direction, e = P/(γ−1)+ρu2
j/2 is the total energy, p is the pressure, T is

the temperature, R = 287 [J/(kgK)] is the gas constant, κ is the thermal conductivity,

and δij is the Kronecker delta. The shear stress tensor τij is represented using the

Stokes hypothesis as follows:

τij = µ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

)
, (2.5)

where µ is the viscosity coefficient calculated by Sutherland’s law.

The DNS code is based on the finite-volume method with the fourth-order Runge-

Kutta time advancement and hybrid Roe flux splitting with weighted essentially non-

oscillatory (WENO)/central difference scheme. The Roe flux splitting with the fifth-

order WENO scheme is applied to a near shock region, which suppresses numerical

oscillation caused by the discontinuity in the shock wave, whereas the sixth-order central

difference scheme is used in the region far from the shock wave [26]. Numerical dissipation

allows the Roe flux splitting to attenuate small-scale turbulence fluctuations. This is

why the hybrid scheme is used here. The shock wave is detected with a sensor defined as

ϕ = (∇·u)2/[(∇·u)2+(∇×u)2+εϕ]
[47], where u is the velocity vector and εϕ = 10−16

[1/s2] is a constant to prevent the denominator from being zero (thus, 0 ≤ ϕ < 1). ϕ

is close to 1 near the shock wave due to strong compression, while ϕ ≪ 1 in the region

far from the shock wave because the turbulence is almost incompressible in the present
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DNSs. Roe flux splitting is applied for the region with ϕ > 10−2, and the central

difference scheme is applied in the other region. Special treatments are not used in the

interface between the WENO and the central difference schemes because the difference

in density across the interface is very small due to the low turbulent Mach number.

Owing to the threshold for ϕ, Roe flux splitting is applied only in the region near

the shock wave, and numerical oscillations are not observed near the interface between

the WENO and the central difference schemes. The present code is auto-parallelized

by a FORTRAN compiler on a high-performance computing system (NEC SX-9: a

vector supercomputer) because the program can be run with large shared memory. The

present code has been validated in simulations of a laminar boundary layer, a shock tube

problem, and a shock–vortex interaction, the results of which agree well with analytical

solutions [48], [49].

The boundary condition at x = 0 determines the mean flow state behind the shock

wave. During shock wave propagation, the boundary at x = 0 [m] (behind the shock

wave) is treated with the Dirichlet boundary condition. The physical quantities behind

the shock wave are used to insert the shock wave. Conversely, the zero-gradient condition

is applied to the boundary at x = 0.06 [m]. The periodic boundary conditions are used

in y and z directions.

2.3 Results and discussion

2.3.1 Shock-wave propagation in homogeneous isotropic turbu-

lence

The shock wave and vortex structures are visualized in Figure 2.3(a) with a large

negative value of dilatation (θ < 0) and a positive value of the second invariants of

the velocity gradient tensor (Q > 0), respectively. Here, dilatation is calculated by

θ ≡ ∇ · u, and the second invariants are calculated by Q ≡ (WijWij + θ2 − SijSij)/2,

where Wij ≡ (∂ui/∂xj − ∂uj/∂xi)/2 is the rate-of-rotation tensor. The visualization

demonstrates that strong shock-wave compression squeezes the vortex structures, sim-
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Figure 2.3. (a) Visualizations of the shock wave and turbulent vortex structures visualized by the

isosurfaces of a large negative value of dilatation θ (gray) and a positive value of the second invariants

of the velocity gradient tensor Q (white), respectively. The x-y plane at z = 0 [m] and x-z plane at

y = 0.06 [m] are colored by Q with Ms = 1.5 (Case 2-3). (b) Amplification rate of the rms value of the

velocity fluctuations in x direction by the shock wave. The present DNS results are compared with a

previous DNS [26] and LIA [12].

ilar to that observed in a previous study [27]. The shock wave induces a mean flow

behind the propagating shock wave [50], and there is a laminar flow region between the

boundary at x = 0 [m] and the end of the turbulent region. The laminar flow region

is not treated in the following statistical analysis. Figure 2.3(b) shows an amplification

rate of the rms values of the velocity fluctuations in the x direction, (u′
rms,B/u

′
rms)

2,

where u′
rms,B ≡

√
⟨(u′

B)
2⟩ is the rms value of the velocity fluctuations in the x direc-

tion in the turbulent region behind the shock wave, u′
B , and u′

rms is the rms value of

velocity fluctuations of the HIT before the interaction. The Ms dependence of the am-

plification rate (u′
rms,B/u

′
rms)

2 agrees well with a previous DNS study [26] and LIA [12].

This confirms that the present DNS code can adequately simulate the shock–turbulence

interaction.

The shock-wave position xs is plotted as functions of time in Figure 2.4. The xs

can be obtained as a position where the mean dilatation θ(x; t) is the smallest. Here,

θ(x; t) is obtained by averaging in homogeneous y and z directions. The shock-wave
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Figure 2.4. The shock-wave position (xs) as a function of t, where the shock wave is inserted in a

domain at t = 0. Symbols (blue triangles, green squares, and red crosses and circles) are xs at different

time steps, which are obtained from positions where the mean dilatation profile θ(x; t) is the smallest.

Lines denote the prediction that xs = Ms⟨a⟩t with the initial values of Ms.

position calculated as xs = Ms⟨a⟩t is also shown as straight lines in Figure 2.4, where

Ms is the initial shock Mach number. Pressure waves generated by turbulent motion

can be reflected when the waves reach the boundaries at x = 0 [m] and x = 0.06 [m]

because the boundary conditions are not non-reflective. The spurious reflected pressure

waves can affect the shock wave and change its propagation velocity. As shown in

Figure 2.4, the shock-wave positions detected in the DNSs agree well with the estimation

of xs = Ms⟨a⟩t, confirming that the propagation process does not affect the shock

wave’s propagation velocity. One of the reasons for the boundary condition’s negligible

influence is the very low turbulent Mach number. Furthermore, the velocity of shock-

wave propagation for Ms = 1.5 does not depend on the number of grid points.

2.3.2 Pressure jumps across the shock wave

In this section, pressure jumps across the shock wave are defined and analyzed, and

their relationship to velocity fluctuations is discussed. The local pressure jump across

the shock wave is defined as follows: first, a non-dimensional mean pressure jump ∆pr

is calculated as

∆pr(x; t) ≡
p(x; t)− pF
pB − pF

, (2.6)
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where p(x; t) is the plane average taken in the homogeneous y and z directions, pF is

the pressure in front of the shock wave, and pB is the pressure behind the shock wave

per the Rankine-Hugoniot relation to pF . The position of xp is then determined where

the local pressure jump is evaluated. xp is chosen as the position at which ∆pr becomes

larger than the threshold pth across the shock wave from the front. The threshold pth

is defined by 1− pth = 10−4 because the results stay largely the same across the range

of 10−6 ≤ 1 − pth ≤ 10−3. xp is defined based on the mean pressure profile because

the low turbulent Mach number allows the shock wave to keep its initial flat shape,

even during the interaction [27]. Finally, the local pressure jump across the shock wave

can be calculated as ∆p(y, z; t) ≡ p(xp, y, z; t)− pF . The average of ∆p on a y-z plane

denoted by ∆p is obtained as a function of t. The fluctuations of ∆p are calculated

as ∆p′(y, z; t) ≡ ∆p(y, z; t) − ∆p(t). Figure 2.5 shows the two-dimensional profiles of

∆p′/∆p′rms when the shock wave is at the center of the computatinoal domain (x ≈ 0.03

[m]), where ∆p′rms is the rms value of ∆p′. Here, y and z are normalized by the integral

length scale of turbulence L. The turbulence change induces fluctuations of ∆p as Ms

increases. The characteristic length scale of the fluctuations increases with lower Ms.

Furthermore, ∆p′ exhibits a very similar profile for Cases 2-2 and 2-3. The effects of

grid spacing on the pressure jump fluctuations are described in the Appendix.

The values of ∆p′rms(t) are calculated in several snapshots, each of which has the

shock wave in a different position. ∆p′rms(t) is plotted against xp(t) in Figure 2.6.

∆p′rms(t) is calculated after the shock wave propagates more than thrice the integral

length scale. In Case 2-1, ∆p′rms increases until the shock wave reaches xp ≈ 5.9L but

becomes almost stationary state when xp > 5.9L. This indicates that ∆p′rms increases

from the initial condition without fluctuations (∆p′rms = 0) until the fluctuations reach

a statistically stationary state with an almost constant ∆p′rms. The following analyses

use the data from after the shock wave reaches an almost statistically stationary state

(xp > 5.9L). ∆p′rms is smaller in Case 2-1 than in the other two cases. There is

no observable dependence on the shock Mach number for Ms ≥ 1.3, as shown in the

visualizations in Figure 2.5.
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Figure 2.5. Profiles of the fluctuations of normalized pressure jumps, ∆p′/∆p′rms, on the y-z plane at

x = xp: (a) Case 2-1, (b) Case 2-2, and (c) Case 2-3 with 3843.
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Figure 2.6. ∆p′rms(t) plotted as functions of xp(t).

Figure 2.7(a) shows pressure fluctuations p′ in the initial HIT on the y-z plane at the

center of the computational domain (x = 0.03 [m]). The rms value of the HIT pressure

fluctuations is of the order of 10−2 Pa, which is much smaller than ∆p′rms. Conversely,

Figure 2.7(b) shows p′ normalized by its rms value p′rms. The figure also visualizes small

spots with large and negative values of p′/p′rms; these spots are related to a vortex core

with Q ≫ 0, which appears around local minimum values of p′ because of the relation

of 2Q = ∇2(p/ρ) in conditions of low Mt turbulence
[51].
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Figure 2.7. Pressure fluctuations in the initial HIT on the y-z plane (x = 0.03 [m]) in (a) Pa and (b)

nondimensional form.

Table 2.2. Summary of DNS results compared with the experiments [30].

Case ∆p′rms [Pa] ∆p′rms/∆p ∆xP /L δs [mm]

2-1 14.9 0.60× 10−3 −0.64 1.1

2-2 52.6 0.63× 10−3 −1.1 0.67

2-3 (N = 384) 51.5 0.35× 10−3 −0.40 0.60

2-3 (N = 512) 57.7 0.39× 10−3 −0.58 0.43

Ref.1 [30] 38.4 2.69× 10−2 −4.8 −

Ref.2 [30] 72.1 6.20× 10−2 −2.9 −

Ref.3 [30] 46.8 3.38× 10−2 −3.5 −

Ref.4 [30] 102.2 7.03× 10−2 −1.9 −

Table 2.2 summarizes the DNS results compared with the experimental results of in-

teractions between a spherical shock wave and grid turbulence [30]. The orders of ∆p′rms

in these DNSs are the same as the ones obtained in the experiments, although the shock

Mach numbers of the present DNSs are much larger (Ms = 1.004). ∆p′rms/∆p, which

represents the relative intensity of the pressure jump fluctuations, significantly depends

on the shock Mach number Ms, where ∆p′rms/∆p tends to shrink as Ms increases.

It is expected that ∆pr in Equation (2.6) will change from 0 to 1 across the shock
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Figure 2.8. (a) PDFs of the fluctuations of normalized pressure jumps, ∆p′/∆p′rms, across the shock

wave and normalized velocity fluctuations u′/u′
rms of the HIT. (b) Energy spectra of ∆p′/∆p′rms and

u′/u′
rms in an area-preserving form. kt is the wavenumber tangential to the shock wave. The spectrum

of u′/u′
rms is computed from the HIT.

wave. Therefore, ∆pr(x) can be approximated as follows:

∆pr =
1

2
+

1

2
tanh

(
x− xs

δs/4

)
. (2.7)

Here, the thickness of the shock wave, δs, is estimated using the least squares method,

summarized in Table 2.2. The factor of 1/4 is added so that δs represents the distance

between two points where ∆pr increases from 0 and 1. In these DNSs, δs is much larger

than the mean free path of about 6.8×10−8 [m] in the atmosphere, and it is of the order

of the Kolmogorov length scale for the HIT because the shock waves in these DNSs are

treated with a Roe flux splitting.

Figure 2.8(a) shows the probability density functions (PDFs) of ∆p′ normalized by

∆p′rms, together with the Gaussian profile and the PDF of velocity fluctuations before

the interaction of u′ in the HIT. The PDFs of ∆p′ and u′ are well approximated by the

Gaussian profile, in agreement with previous experimental studies of shock–turbulence

interaction [29]. The energy spectra of ∆p′/∆p′rms and u′/u′
rms (denoted by Ep and Eu,

respectively) are computed based on the one-dimensional Fourier transform in the y (z)

direction, where kt is the wavenumber tangential to the shock wave. Figure 2.8(b) shows

Ep against ktL in an area-preserving form with Eu in the HIT. The spatial distribution



Chapter 2 Fluctuations of pressure jumps across a normal shock wave caused by an

interaction with homogeneous isotropic turbulence 23

10-8 10-6 10-4 10-2 100
10-4

10-3

10-2

10-1

100

10-4 10-3 10-2 10-1 100 101
10-4

10-3

10-2

10-1

100

 
Case 2-1

-4 -3 -2 -1 0 1

 
 
 
Inokuma et al.(2017)

Case 2-2 Case 2-3(3843) Case 2-3(5123)

Larson et al. (2013)
 
 
 Sasoh et al. (2014)
 
 

-8 -7 -6 -5 -4 -3 -2 -1

Inokuma et al. (2019)

(a) (b)

Numerical simulations

Experiments

�

�

Figure 2.9. Relative intensity of pressure jump fluctuations ∆p′rms/∆p plotted against (a) Mt/(Ms−1)

and (b) M2
t /(M

2
s − 1). The straight line in (b) represents ∆p′rms/∆p ∼ (M2

t /(M
2
s − 1))0.46 obtained

using the least squares method. DNS results are compared with those of previous experiments [29]–[31]

and numerical simulations [27].

of ∆p′ is characterized by a large scale, as attested by the peaks around ktL = 2. Ep’s

peak wavenumber is consistent with that of Eu. Further, more energy is contained in

larger scales in Case 2-1 despite the shock waves interacting with the same turbulence

in all cases.

Larsson et al. demonstrated that shock wave geometry during turbulence interaction

is characterized by Mt/(Ms − 1) [27]. Inokuma et al. assert that the pressure jump

fluctuations across a shock wave are characterized by M2
t /(M

2
s − 1) [31]. Figures 2.9(a)

and (b) show the relative intensity of the fluctuations of the pressure jumps ∆p′rms/∆p

plotted against Mt/(Ms − 1) and M2
t /(M

2
s − 1), respectively. These figures include

the data of previous experiments [29]–[31] and numerical simulations [27]. The values of

∆p′rms/∆p from the numerical simulations performed by Larsson et al. [27] are calculated

using the method proposed by Inokuma et al [31]. Figures 2.9(a) and (b) show that

∆p′rms/∆p is better characterized by M2
t /(M

2
s − 1) than Mt/(Ms − 1), as reported by

Inokuma et al. [31]. The least squares method for all data points yields ∆p′rms/∆p ∼
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Figure 2.10. Two-point correlation coefficients C∆p′,u′ (∆x,∆r) between the fluctuations of the pres-

sure jumps across the shock wave, ∆p′(y, z; t) evaluated at xp(t), and the velocity fluctuations in the x

direction of the initial HIT, u′(xp +∆; t = 0), where xp = (xp, y, z): (a) Case 2-1, (b) Case 2-2, and

(c) Case 2-3 with 3843 grid points. The separation vector ∆ is decomposed into the normal (∆x) and

tangential (∆r) distances.

[M2
t /(M

2
s − 1)]0.46.

2.3.3 Two-point correlation between pressure jumps and turbu-

lent velocity fluctuations

To calculate the two-point correlation coefficient C∆p′,u′ between ∆p′(y, z; t) at xp(t)

and u′(xp +∆; t = 0), xp = (xp, y, z) and ∆ is the separation vector. Here, an average

of C∆p′,u′ is taken for all points in the y-z plane. u′(x, y, z) at t = 0 is used because

the turbulence is frozen in the propagation process of the shock wave due to the low

turbulent Mach number. To obtain converged statistics, an ensemble average of C∆p′,u′

is calculated using six snapshots in the stationary state of xp ≥ 5.9L in two DNS

realizations.

Figure 2.10 illustrates C∆p′,u′ for all cases, where the separation vector ∆ decomposes
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into the normal and tangential directions of the shock wave represented by ∆x = ∆ ·

ex and ∆r = |∆ − ∆xex| (ex: the unit vector in the x direction). The resultant

correlation is negative; thus, the pressure jumps are amplified in the case where the

shock wave interacts with the velocity fluctuations opposed to the direction of shock-

wave propagation, creating a negative u′, and vice versa. The strong correlation appears

in the region −2 ≤ ∆x/L ≤ 0 and 0 ≤ ∆r/L ≤ 0.5. Thus, the velocity fluctuations

located in the region dominantly influences the fluctuations of the pressure jumps. In

addition, The negative correlation peaks behind the shock wave at ∆r = 0, with the

distance denoted by ∆xP , as shown in Table 2.2. |∆xP | is close to the integral length

scale L, although the exact values of ∆xP /L vary depending on the conditions. These

results are consistent with previous experimental results and hardly depend on spatial

resolution, as shown in the Appendix. The distance between the shock wave and the

peak correlation behind it suggests that the turbulence in the region where the shock

wave has already passed has a stronger influence on ∆p′ than the region where the shock

wave is currently. Simply put, turbulence has the most influence after the shock wave

propagates across ∼ L. ∆p′ evaluated at a given shock wave ray is strongly affected by

turbulence on the same ray, as shown by the strong correlation around ∆r ≈ 0. It should

be noted that the correlation coefficient does not monotonically increase with the shock

Mach number. Similar results concerning the correlation coefficient were reported in

experiments on the interaction between a spherical shock wave and grid turbulence [30].

C∆p′,u′ has a negative value even for ∆r ≈ L. This can be related to a large-scale vortex

in which ∼ L contains a large part of the turbulent kinetic energy. In Case 2-1, the

negative correlation exhibited a larger ∆r than the other two cases. This indicates that

pressure jumps can be affected by velocity fluctuations far away from the shock ray of

a weak shock wave. These velocity fluctuations can weaken the shock ray correlation

because the pressure jumps across the shock wave are affected by turbulence not only

on the shock ray but also far from it. Finally, ∆p′ does not not correlate with the other

quantities, such as fluid velocity in the shock-tangential directions (v and w), pressure

fluctuations in HIT, and enstrophy. This implies that the fluctuations pressure jumps
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across the shock wave are induced by velocity moving in a shock-normal direction in

front of the shock wave.

2.3.4 Shock wave deformation model for turbulent effects on a

shock wave

Inokuma et al. [30] proposed a physical model to explain the effects of turbulence

on a pressure jump across a shock wave based on shock-wave deformation induced

by turbulence velocity fluctuations. The conceptual picture of this model is shown in

Figure 2.11. The picuture is drawn two-dimensionally although their model is three

dimensional. The setup considered in the model is a normal shock wave interacting

with a fluid with a velocity fluctuation normal to the shock wave varying in the shock-

tangential direction. The propagation velocity of the shock wave is defined as the

relative velocity of the shock wave’s moving velocity to fluid velocity at the shock-

Shock wave Velocity fluctuations Shock wave deformed by ����

Concave

Convex

x
y

����

� � 0

�
�
+�����

�

Concave

Shock wave propagation

�

∆
 decreases

∆
 increases

(a) (b) (c)

Figure 2.11. A shock-wave-deformation model of turbulent effects on a shock wave. The red solid

line represents a shock wave, while black and broken red lines represent fluid velocity and the velocity

of shock wave’s movement, respectively. (a) A planar shock wave propagates at the speed of Us in x

direction through a fluid with x-directional velocity, with u varying in the shock-tangential direction.

(b) Non-uniform shock-wave motion velocity distribution, sum of the fluid velocity and the velocity of

the shock-wave propagation. (c) The shock-wave propagation’s direction n is tilted by the shock-wave

deformation, which results in positive and negative fluctuations of the pressure jumps for concave and

convex regions, respectively.
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wave position. Therefore, the propagation velocity becomes non-uniform due to the

profile of the fluid velocity in front of the shock wave, causing shock wave to deform.

When the shock wave is observed from the front, concave and convex shapes appear

for the regions with negative and positive u, respectively, as shown in Figure 2.11. The

shock wave’s local propagation direction is normal to the local element of the shock

wave. Thus, as the shock wave with the concave shape propagates, the concave region

(u < 0), represented by a circle in Figure 2.11(c), becomes narrower, reducing the

concave area projected on a plane perpendicular to the x direction. This decrease in

area causes an increase in the local shock Mach number, along with an increase in

the local pressure jump across the shock wave (∆p′ > 0) [52]. Conversely, the convex

region (u > 0) widens as the shock wave propagates, reducing the local pressure jump

across the shock wave (∆p′ < 0). These findings demonstrate that the local shock-

wave motion induces pressure jump fluctuations across the shock wave, and the relation

between u and the pressure jumps through the local shock-wave motion create the

negative correlation shown in Figure 2.10. It should be noted that the initial values of

the pressure jumps across the shock wave change as the shock wave deforms. Even if

the velocity of the shock-wave movement is non-uniform, the pressure jump fluctuations

shown in Figure 2.11(b) are not induced if the shock-wave surface is flat. The shock-wave

deformation may advance depending on the turbulence’s shearing motion, expressed by

the velocity gradient (∂u/∂y in Figure 2.11). Therefore, the shock-wave deformation

becomes non-negligible for the direction of the local shock-wave propagation n after

the shock wave undergoes the turbulent shear for a certain time period, causing the

pressure jump fluctuations across the shock wave. This explains why the peak negative

correlation is located behind the shock wave in Figure 2.10 rather than at the shock-

wave position. Although this model explains some of the experimental results reported

by Inokuma et al. [30], the correlation between local shock-wave deformation and local

turbulence shear have not been confirmed.

In the present DNSs, the direction of a local shock-wave propagation is defined using

the pressure gradient ∇p in the shock wave. The angle between ∇p and the y direction,
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Figure 2.12. PDFs of cosθy .

θy, is evaluated via

cosθy =
∂p/∂y

|∇p|
, (2.8)

at the shock-wave position xs. Although the angle between ∇p and y is used in the

present analysis, the same analysis can be applied to arbitrary directions perpendicular

to x. The choice of the direction does not affect the statistical results because the

problem considered here is statistically inhomogeneous only in the x direction. The

y- and z-directional components of ∇p have non-zero values in case the shock wave

deforms. Here, the pressure gradients in the initial HIT are neglected because the HIT

pressure fluctuations are much weaker than the pressure jumps across the shock wave.

Figure 2.12 shows the PDF of cosθy. Its profile of cosθy ̸= 0 indicates that the interaction

slightly deforms the shock wave. The probability with a large |cosθy| increases as the

shock wave weakens, suggesting that weaker shock waves undergo more deformation.

This result supports those of the previous DNSs, where shock waves interact most with

turbulence with a higher turbulent Mach number [27].

The local shear that deforms the shock wave in the model is represented by the

gradient of u in y and z directions. In the present DNSs, the local shear concerning

cosθy is calculated using ∂u/∂y because the shock wave is normal to the x direction.

Figure 2.13 shows the joint PDF of cosθy(y, z; t) and ∂u/∂y(xs, y, z; t = 0), where

cosθy(y, z; t) is calculated in the shock wave at x = xs(t), and ∂u/∂y is taken from the
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Figure 2.13. Joint PDFs between cosθy and ∂u/∂y for (a) Case 2-1, (b) Case 2-2, and (c) Case 2-3

with 3843 grid points. ∂u/∂y is normalized by the eddy turnover time te = L/u′
rms of HIT.

HIT (t = 0). In all cases, |cosθy| tends to increase with |∂u/∂y|, indicating that the

degree of shock-wave deformation is related to the magnitude of ∂u/∂y. This positive

correlation between cosθy and ∂u/∂y is consistent with the physical model presented in

Figure 2.11.

The present model relates ∆p′ to the spatial distribution of velocity with a large

amplitude, where a large part of turbulent kinetic energy occurs. This explains why the

pressure jump fluctuations are concentrated in large scales, as shown in Figure 2.8(b).

Therefore, ∆p′ is expected to be characterized by large scales. Scale dependence of the

correlation between fluid velocity was investigated in an experimental study that used

Reλ = 100−300. The results showed that turbulent motions in the order of the integral

length scale are important for the pressure jump fluctuations [30].

2.4 Conclusions

The fluctuations of local pressure jumps, ∆p′, across the normal shock wave propa-

gating through the HIT at a low turbulent Mach number are investigated via DNSs.

Because of the low turbulent Mach number, the turbulence evolves much more slowly

than the time scale of the shock-wave propagation. Here, the turbulent Mach number
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Mt = 2.96 × 10−4 is fixed, while the shock Mach number Ms ranges between 1.1 and

1.5. The turbulent Reynolds number is 18 in all simulations.

Important characteristics of the pressure jumps across the shock wave are as follows:

• The PDF of ∆p′ is well approximated by the Gaussian distribution.

• ∆p′’s dependence on Ms is clearly observed at a Ms: ∆p′ has a smaller rms value

at lower Ms.

• Larger characteristic length scale is observed in the profile of ∆p′ on the shock

wave at lower Ms.

The correlations between pressure jump fluctuations across the shock wave and turbu-

lence velocity fluctuations are as follows:

• ∆p′ on a given shock ray is strongly affected by the turbulent velocity fluctuations

near the same shock ray, but a weaker shock wave tends to be more influenced

by turbulence far from the shock ray.

• The effects of velocity fluctuations at a given position become most significant in

∆p′ after the shock wave propagates for a distance equal to the integral length

scale.

These results resemble those of a previous experiment that studied the interaction be-

tween a spherical shock wave and grid turbulence [30].

Turbulence-induced shock-wave deformation is used to examine the effects of turbu-

lence on ∆p′, in which ∆p′ relates to the curvature of the shock wave and the curvature

locally alters the shock-wave propagation’s direction. The model explains the relation

between shock wave amplification or attenuation and the direction of fluid velocity in

front of the shock wave. The joint PDF between the pressure gradient on the shock

wave and the velocity gradient during turbulence indicates that turbulent shearing mo-

tions can tilt the shock wave’s propagation direction. These results support the recent

experimental findings concerning the finite response time within a turbulence-induced

shock-wave modulation, confirmed for a weak spherical shock wave interacting with
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grid turbulence at Reλ ≈ 100-300 [30]. Although the present DNS is limited to the

low turbulent Reynolds number Reλ = 18, it demonstrates that the turbulence-induced

shock-wave modulation’s response time is finite (non-zero) even with higher shock Mach

numbers.
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Chapter 3

Statisitical characteristics of

deformation of a normal shock

wave propagating in a local

turbulent region

3.1 Introduction

The DNSs of a normal shock wave propagating through a local turbulent region are

used in this chapter to investigate shock-wave deformation and the effects of propaga-

tion distance. In the present DNSs, the turbulent region is localized in a quiescent fluid,

and the interaction between the shock wave and turbulence occurs once the shock wave

enters the turbulent region. This local turbulent region is generated by inserting HIT in

the middle of the quiescent fluid. An initial transient process of the shock-wave modu-

lation can be investigated by this setup. This is one of the unique points of the present

DNSs because previous studies focused on the statistically stationary state of the in-

teraction. In the present DNSs, both the initial transient process and the statistically

stationary state of the shock-wave deformation induced by turbulence are investigated.

The shock-wave deformation is defined as fluctuations of local shock-wave positions,

which can provide quantitative properties. It should be noted that there is no mean
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velocity in the turbulent region as there was for the DNSs in Chapter 2. Therefore,

the effects of a mean velocity gradient on the mean shock Mach number, as reported in

previous studies [33], [53], need not be considered. The analyses in this chapter rely on

statistics concerning turbulence and the shock wave. Although the statistical approach

is useful in understanding phenomena related to turbulence, turbulence statistics some-

times veil important characteristics of the instantaneous flow field. The present DNSs

are used to investigate the statistical properties of the shock–turbulence interaction in a

systematic manner by presenting the results as functions of important parameters; i.e.,

the turbulent Mach number and the shock Mach number.

3.2 Direct numerical simulations

3.2.1 Flow field and parameters of the shock wave and turbu-

lence

Figure 3.1 shows a schematic view of the DNS of a normal shock wave propagating

from a quiescent fluid to the turbulent region. The computational domain is a rect-

angular shape. Its size is (Lx, Ly, Lz) = (32L0, 4L0, 4L0), where the reference length

�

��

Initial normal shock wave Turbulent region

x

z y

O
Quiescent fluidQuiescent fluid

Figure 3.1. Schematic view of DNSs of a shock wave propagating from a quiescent fluid into a turbulent

region.
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scale L0, defined later in Equation (3.1), is related to the integral length scale of turbu-

lence, and the number of computational grid points is (Nx, Ny, Nz) = (2048, 256, 256)

in all simulations of the shock–turbulence interaction in this chapter. The values of the

reference length scale L0 are shown in Table 3.1. The definition of the coordinate is

similar to the DNSs in Chapter 2. In the initial condition, the shock wave is located at

x = 1.5L0, while the turbulent region is between 2.5L0 ≤ x ≤ 22.5L0. Therefore, there

are interfaces between the turbulent region and the quiescent fluids on both sides of the

turbulent region. This setup of the local turbulent region is the same as that considered

in previous studies for a turbulent/non-turbulent interface [54]–[56]. After the start of

the DNSs, the shock wave propagates in the quiescent fluid with time advancement.

Then, the shock wave enters the turbulent region, and shock–turbulence interaction

occurs. In the DNSs, time is advanced until the shock wave reaches the far side of the

local turbulent region. The DNS methodology and subsequent analyses are summarized

below.

1. Run a DNS of HIT with linear forcing and store the instantaneous flow field at

various time steps.

2. Run a DNS of the shock wave propagating in a quiescent fluid and store the flow

variables around the shock wave.

3. Generate the initial condition for the DNS of the shock–turbulence interaction

from the simulations in steps 1 and 2.

4. Run the DNS of the shock–turbulence interaction. Repeat this DNS for different

realizations of HIT using the instantaneous flow field at different time steps as

shown in step 3.

5. Perform statistical analysis on the instantaneous flow fields saved in the DNS of

the shock–turbulence interaction.

Details of steps 1 and 2 are explained in Sections 3.2.3 and 3.2.4, respectively. The

flow considered in step 4 is described below, and the detailed numerical method is pre-

sented in Section 3.2.2. The method to calculate the statistics of the shock–turbulence
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Table 3.1. Parameters of the simulations of the shock–turbulence interaction.

Case Ms Mt Mt/(Ms − 1) M2
t /(M

2
s − 1) Reλ L/L0 λ/L0 η/L0 L0[m]

3-1 1.3 0.13 4.2× 10−1 2.3× 10−2 64 0.56 0.18 0.011 2.4× 10−4

3-2 1.3 0.063 2.1× 10−1 5.7× 10−3 71 0.70 0.19 0.012 4.8× 10−4

3-3 1.3 0.011 3.7× 10−2 1.8× 10−4 59 0.74 0.17 0.012 2.4× 10−3

3-4 1.1 0.011 1.1× 10−1 6.0× 10−4 59 0.74 0.17 0.012 2.4× 10−3

3-5 1.01 0.011 1.1× 100 6.2× 10−3 60 0.74 0.17 0.012 2.4× 10−3

interaction is presented in Section 3.3.

Table 3.1 summarizes the parameters of the shock wave and turbulence. The turbu-

lence characteristics are calculated from volume averages in the turbulent region. The

DNSs are performed for five cases with different sets of a shock Mach number Ms and

a turbulent Mach number Mt. Cases 3-1 to 3-3 are conducted for Mt = 0.13, 0.063 and

0.011 with a constant shock Mach number Ms = 1.3, which are used to investigate tur-

bulent Mach number dependence. The effects of the shock Mach numbers are observed

for Cases 3-3 to 3-5 at Ms = 1.01, 1.1, and 1.3, with a constant turbulent Mach number

of Mt = 0.011. Previous DNS studies have shown that interaction with turbulence

causes the shock wave to break [15], [26], [27]. However, with the setup shown in Table 3.1,

it is expected that the shock wave will retain its surface without any breakage.

In Section 3.3, statistics of the shock wave are often presented against Mt/(Ms − 1)

and M2
t /(M

2
s − 1), the values of which are shown in Table 3.1. The table also presents

the turbulent Reynolds number Reλ, the integral length scale L, the Taylor microscale

λ, and the Kolmogorov length scale η. These statistics are obtained in HIT before the

interaction, and the quiescent fluid surrounding the turbulent region in Figure 3.1 is not

used as a statistical sample. All simulations are conducted for the turbulent Reynolds

number Reλ of 60-70. The results indicate that dependence on Reλ is weak compared

the dependence on Ms and Mt. The computational grid size ∆ is 0.016L0, which is

equivalent to 1.4η. The grid spacing is uniform in the entire computational domain.

Prior DNS studies on turbulence have used computational grids of similar sizes [57]–[60].
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A widely used criterion for evaluating the spatial resolution of DNS with a spectral

method is ∆/η ≤ 2.1 [37]. A resolution better than ∆/η = 2.1 is used in the present

DNSs because the DNS code is based on the high-order finite volume method, which

does not have a spectral resolution. However, the spatial resolution is lower than the

DNSs in Chapter 2. Therefore, it is necessary to verify this chapter’s results concerning

grid spacing dependence. The effects of grid spacing are discussed in the Appendix.

The local turbulent region is generated using HIT obtained via additional DNSs, as

explained in Section 3.2.3. For each condition, the simulations of the shock–turbulence

interaction are repeated five times using instantaneous HIT flow data at different time

steps. An additional five simulations are performed only for Case 3-1 to check statistical

convergence. The statistics in Case 3-1 are calculated using 10 simulations. For assessing

statistical errors, results from two independent sets of five simulations are presented.

The degree of statistical convergence is similar in all cases because the computational

domain size is the same in all simulations. Therefore, the statistical errors in Cases 3-2

to 3-5 are estimated from Case 3-1 by assuming that the fractional error is the same in

all cases. Here, the fractional error in Case 3-1 is defined as the difference in statistics

between the five and ten simulations. The estimated errors are shown with error bars in

figures in Section 3.3. As shown in Section 3.3, the error due to statistical convergence

is minor and does not affect this chapter’s results. Simulations with a lower turbulent

Reynolds number using a single snapshot of turbulence are also conducted, wherein

the effects of the spatial resolution are evaluated for the statistics of the shock-wave

positions. Issuees of statistical convergence and spatial resolution are also discussed in

the Appendix.

3.2.2 Governing equations and numerical schemes

The governing equations and numerical schemes observed here are similar to the DNSs

in Chapter 2. The governing equations are three-dimensional, compressible Navier–

Stokes equations represented by Equations (2.1) to (2.3), with the equation of state

for a perfect gas Equation (2.4) and the Stokes hypothesis is Equation (2.5). The
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DNS code is parallelized with the message passing interface (MPI). The computational

domain is divided into y and z directions. The subdomains elongated in the x direction

are treated in each MPI process. The validations of the DNS code are explained in

Section 2.3.1. DNSs of the shock–turbulence interaction are performed using a high-

performance computing system at Nagoya University. The code is based on the finite-

volume method with a shock-capturing scheme. Spatial discretization of inviscid terms is

based on the Roe flux difference splitting with a 5th-order WENO scheme [26]. The other

terms are calculated using the 6th-order central difference scheme. Time advancement

is based on the 4-stage, 4th-order Runge–Kutta method.

Numerical dissipation caused by the Roe flux splitting may dump small-scale fluctua-

tions during turbulence. The statistics in front of the shock wave during the shock-wave

propagation are monitored; the effects of numerical dissipation are negligible for the

statistics of turbulence during shock-wave propagation. This is confirmed by the skew-

ness of the velocity derivative, as described in Chapter 2. The skewness hardly changes

with time, and the present numerical scheme does not cause artificial decay of turbu-

lence during shock-wave propagation. Note that the propagation time is longer than

those in Chapter 2. Artificial decay likely does not occur because the spatial resolution,

∆/η = 1.4, is better than the widely used criterion of ∆/η = 2.1 [37].

The Dirichlet boundary condition is applied to the physical variables behind the shock

wave at x = 0, and the boundary at x = 32L0 is treated with the zero-gradient condition.

As mentioned in Chapter 2, once the shock Mach number is specified as a computational

parameter, physical variables behind the shock wave can be calculated via Rankine-

Hugoniot relations using the shock Mach number and corresponding variables in front

of the shock wave. Here, the initial flow state in front of the shock wave is specified as an

initial condition explained in Section 3.2.3. It is also mentioned in Chapter 2 that these

conditions are not non-reflecting boundary conditions. Therefore, sponge zones with

a 2nd-order low-pass filter are employed near the boundaries in the x direction. The

filter dumps the pressure waves toward the boundaries, thereby preventing the reflected

waves from affecting the shock–turbulence interaction. Periodic boundary conditions
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are used for y and z directions.

3.2.3 Initial conditions of turbulence

The local turbulent region is generated by performing additional DNSs of compress-

ible HIT with linear forcing [61], which only forces solenoidal components of the velocity

vector. The initial conditions are divergence-free, random velocity fields. The density

field is uniform with a value of ρ = ρ0 = 1.17 [kg/m3]. Volume-averaged pressure and

temperature taken in the whole HIT are ⟨p⟩ = 1.013 × 105 [Pa] and ⟨T ⟩ = 300 [K],

respectively. The random velocity field in the physical space can be obtained by ap-

plying inverse Fourier transform to velocity vectors in the wavenumber space with a

random phase. Here, the divergence-free condition is enforced in the phase space. Pres-

sure fluctuations are calculated from the velocity fluctuations by solving the Poisson

equation for pressure under the divergence-free condition in the velocity field [61], and

then temperature fluctuations are calculated using the equation of state. The velocity

in the wavenumber space is assumed to have a turbulent kinetic energy spectrum of

E(k), given in Ref. [37] :

E(k) = Cε
2/3
0 k−2/3fL(kL0)fη(kη0), (3.1)

fL(kL0) =

(
kL0

[(kL0)2 + cL]1/2

) 5
3+A

, (3.2)

fη(kη0) = exp{−β([(kη0)
4 + c4η]

1
4 − cη)}, (3.3)

where C = 1.5, β = 5.2, A = 2, cL = 6.78, and cη = 0.4. Here, k is the wavenumber, ε0 is

the turbulent kinetic energy dissipation rate used as a parameter in the model spectrum,

L0 = (
√

3/2u0)
3/ε0 is related to the integral length scale, u0 is the initial rms value

of velocity fluctuations, and η0 = (⟨ν⟩3⟨ρ⟩/ε0)1/4 is the initial Kolmogorov length scale

(⟨ν⟩ in which kinematic viscosity is determined by ⟨T ⟩ and ⟨ρ⟩(= ρ0)). The parameters

are calculated from the given turbulent Mach number and turbulent Reynolds number,

which can be written as Mt =
√
3u0/

√
γR⟨T ⟩ and Reλ =

√
15u2

0(⟨ν⟩ε0)−1/2 in HIT,

respectively. L0 and u0 are used as reference length and velocity scales, respectively, in

the simulations of the shock–turbulence interaction.
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DNSs of HIT are performed using a modified version of the DNS code that was pre-

viously used for supersonic turbulent boundary layers and planar jets [62]–[64]. Here, the

8th-order central difference scheme and the 5-stage, 4th-order Runge–Kutta scheme are

adapted for spatial and temporal discretization. Following Wang et al. [65], the 10th-

order low-pass filter [66] is applied to simulated variables at the end of each time step to

prevent the growth of unphysical fluctuations inherently arising from the central differ-

ence scheme. The computational domain size is (4L0)
3, and the number of grid points

is 2563, where the grid spacing is uniform. From the initial condition, time is advanced

until the turbulence reaches a statistically stationary state. The turbulent Mach num-

ber, turbulent Reynolds number, mean temperature, and mean pressure hardly change

from the initial condition, whereas compressibility effects, such as density fluctuations

and dilatation, emerge with time and the initial velocity field is purely solenoidal.

The local turbulent region in Figure 3.1 is generated by the method proposed by

Teixeira et al. [54], which inserts HIT in the middle of a quiescent fluid whose pressure

and temperature are 1.013 × 105 Pa and 300 K, respectively. The length of the local

turbulent region is 20L0. DNSs of HIT are conducted using a periodic box. Therefore,

the turbulent region with a length of 20L0 is generated from a single snapshot of the HIT

using the periodicity. Periodic effects on the statistics related to the shock–turbulence

interaction do not appear because ensemble averages are taken for the simulations with

different turbulence snapshots. The boundaries between the turbulent region and the

quiescent fluids appear at x = 2.5L0 and 22.5L0, as shown in Figure 3.1. Variables Q =

ρ, ρui, and e are smoothly adjusted between the two regions by applying a smoothing

function as follows:

F [Q(x, y, z)] = QL + [Q(x, y, z)−QL]g1(x)g2(x), (3.4)

g1(x) =
1

2
+

1

2
tanh

(
x− xt1

δt

)
, (3.5)

g2(x) =
1

2
− 1

2
tanh

(
x− xt2

δt

)
, (3.6)

where QL is a constant value of the variable in the quiescent fluid, xt1 = 2.5L0 + δt/2

and xt2 = 22.5L0−δt/2 define the regions where the smoothing function is applied, and
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δt = 10∆ is the thickness of the buffer regions. g1(x)g2(x) is equal to 1 in most parts of

the turbulent region and decreases to 0 at the edges of the turbulent region. Therefore,

the smoothing function ensures that the variables smoothly vary between the turbulence

and the quiescent fluid, while the turbulent region retains the original flow field obtained

in the DNSs of HIT. Once the DNSs of the shock–turbulence interaction begin, the buffer

regions also evolve with time. As temporal evolution obeys the compressible Navier–

Stokes equations, the mass, momentum, and energy conservations are still held in the

buffer regions.

3.2.4 Initial conditions of shock waves

In numerical simulations of the shock–turbulence interaction, profiles of conservative

variables of the shock wave are inserted at around x = 1.5L0, and the numerical solution

for the shock wave is obtained by simulating the normal shock wave propagating in the

quiescent fluid. Here, the computational domain size is (Lx, Ly, Lz) = (16L0, 4L0, 4L0),

and the number of grid points is (Nx, Ny, Nz) = (1024, 256, 256). Grid spacing is uni-

form. Spatial resolution, numerical schemes, and boundary conditions are the same as

those used in the DNSs of the shock–turbulence interaction. The simulations of the

shock wave are initialized with the profiles of variables Q = ρ, ρui, and e, as shown

Q(x, y, z) = QF + (QB −QF )

[
1

2
− 1

2
tanh

(
x− xs0

δs

)]
, (3.7)

where the subscripts F and B represent values in front of and behind the shock wave,

respectively. The flow state in front of the shock wave, QF , is the same as that in

the quiescent fluid in the simulations of the shock–turbulence interaction. Then, QB

is calculated from QF and Ms using Rankine-Hugoniot relations. The position of the

shock wave is xs0 = 1.5L0, and the initial thickness of the shock wave is δs = 10∆.

Equation (3.7) represents a compression wave without discontinuity. The smoothed

profile given by Equation (3.7) is used as the initial condition because numerical oscil-

lations can occur behind the shock wave if variables discontinuously change over one

computational grid point. The density profiles on the centerline of the computational
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Figure 3.2. Density profiles on the center line of the computational domain at three different time

steps in the propagation process.

domain in the case of Ms = 1.3 at the three different time steps are shown in Fig-

ure 3.2. The initial density profile is represented by a black line in Figure 3.2. As

time advances in the simulation, the compression wave propagates in the x direction.

The numerical oscillations are caused by the initial condition in the early propagation

process, as represented by a blue line in Figure 3.2. Conversely, the gradient of the

variables across the wave becomes steeper during the propagation process. Then, the

compression wave converges to a normal shock wave that can be treated using numeri-

cal schemes. Time advances until the jumps of physical variables across the shock wave

become independent of time. The red line in Figure 3.2 represents the density profile

after time advancement. Profiles of the variables around the shock wave are taken from

the simulation and inserted at around x = 1.5L0 as the initial DNS condition for the

shock–turbulence interaction.

3.3 Results and discussion

3.3.1 Shock wave propagation from quiescent fluid to local tur-

bulent region

Figure 3.3 visualizes of velocity in the x direction on the x-y plane at five different
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time steps in Case 3-1. Here, time is normalized by the reference time scale of the sim-

ulations t0(= L0/u0). The shock wave is represented by the velocity discontinuity. The

shock-wave deformation occurs after the shock wave enters the local turbulent region.

The small deformation is observed at the beginning of the interaction, as shown in Fig-

ure 3.3(b). The deformation grows in Figures. 3.3(c-e) after the shock wave propagates

during turbulence. This tendency has been reported in previous experimental studies on

a normal shock wave interacting with grid turbulence, wherein shock-surface deforma-

tion increases with interaction length [34]. Figure 3.4 shows the density (ρ) profile on the

same x-y plane as in Figure 3.3. The shock wave is observed as a density-discontinuous

-2.5 10
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Figure 3.3. Two-dimensional profiles of velocity in x direction, u/u0, on an x-y plane of z = 2L0 in

Case 3-1 at (a) t/t0 = 0, (b) t/t0 = 0.05, (c) t/t0 = 0.31, (d) t/t0 = 0.52, and (e) t/t0 = 0.78.
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Figure 3.4. Two-dimensional profiles of density, ρ [kg/m3], on the same x-y plane as in Figure 3.3 at

(a) t/t0 = 0, (b) t/t0 = 0.05, (c) t/t0 = 0.31, (d) t/t0 = 0.52, and (e) t/t0 = 0.78.

jump. There are density fluctuations during turbulence in Case 3-1 because of the rela-

tively high turbulent Mach number. These density fluctuations are still weak compared

with the density jump of the shock wave, and the broken part of the shock wave cannot

be seen in the visualizations as expected.

Figure 3.5 shows 3D visualization of the deformed shock wave surface located at

x ≈ 19L0 in Case 3-1. The shock wave is visualized with large negative pressure gradient

of ∂p/∂x. 3D visualization is widely used in previous numeircal studies. Conversely,

most experimental studies observe shock-wave deformation via shadowgraph or schlieren

visualizations [28], [34], [67]. Information acquired this way is integrated along a light path,
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Figure 3.5. 3D visualization of the deformed shock wave located at x ≈ 19L0 in Case 3-1.

and it is difficult to relate the visualizations to the local geometry of the shock surface.

Reproducing the shadowgraph visualizations using numerical spatial data can aid future

experimental studies of the shock-turbulence interaction. Shadowgraph visualizations

can be constructed from the three-dimensional instantaneous flow fields in DNSs. The

numerical shadowgraph visualizations assume a paraxial hypothesis and a perfectly

parallel incident light ray, whose intensity is denoted by I0
[68]. The incident light ray is

parallel to the z direction and passes through the computational domain from z = 0 to

Lz. Diffraction of the light ray induced by density fluctuations results in light intensity

fluctuations, ∆I(x, y) = I(x, y) − I0. Numerical shadowgraph visualizations can be

obtained by visualizing ∆I(x, y)/I0, calculated as

∆I

I0
= −l

(
∂εx
∂x

+
∂εy
∂y

)
, (3.8)

εi(x, y) =
G

n0

∫ Lz

0

∂ρ

∂xi
dz, (3.9)

where εi is the deviation of the light ray in the i-direction (i = x, y), G = 2.3 ×

10−4[m3/kg] is the Gladstone–Dale constant, n0 = 1 + ρ0G is the refraction index for

air with ρ0 = 1.17 [kg/m3], and l is the distance between the end of the computational

domain and a virtual screen on which the shadowgraph visualization is projected. Fig-

ure 3.6 shows the results of numerical shadowgraph reproductions, in which shock waves

are located at x ≈ 3.3L0, 9.0L0, or 19.0L0. The shock waves are observed as a pair
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Figure 3.6. Numerical shadowgraph visualizations for the shock wave located at x ≈ 3.3L0, x ≈ 9.0L0,

and x ≈ 19L0 from left to right in each figure (a) Case 3-1 (l/L0 = 1), (b) Case 3-2 (l/L0 = 1), (c)

Case 3-3 (l/L0 = 1), (d) Case 3-4 (l/L0 = 5), and (e) Case 3-5 (l/L0 = 100).

of black and white vertical lines. Comparing Figures 3.6(a-c), it is evident that the

shock-wave deformation grows as Mt increases from (c) to (a). This Mt dependence is

consistent with previous DNS studies on the shock–turbulence interaction [26], [27]. The

largest deformation appears at x ≈ 19L0 in Figure 3.6(a), where the deformed shock

wave appears as multiple dark and white lines. Similar observations are reported in ex-

perimental shadowgraph visualizations taken for a normal shock wave interacting with

grid turbulence [34]. Turbulence in Figures 3.6(c-e) has Mt = 0.011 with different values

of Ms. Shock-wave deformation increases with lower shock Mach numbers. Although

the shock wave is largely deformed by the interaction, the broken part of the shock wave

does not appear in the shadowgraph visualizations.
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Figure 3.7. Relation between mean shock-wave positions xs and time t: (a) Case 3-1 (Mt = 0.13); (b)

Case 3-2 (Mt = 0.063); (c) Cases 3-3, 3-4, and 3-5 (Mt = 0.011).

3.3.2 Statistics of the local shock-wave position

In this chapter, the local shock-wave position xs is detected using a local pressure

gradient in x direction as per ∂p/∂x, which is largely negative. Hereafter, px(x) is the

profile of px ≡ ∂p/∂x along the x direction for each (y, z) position. The xs is defined

as the position where px(x) attains its largest negative value. Practically, the 2nd-

order Lagrange interpolation is applied to ∂p/∂x around the computational grid points,

where ∂p/∂x takes the largest negative value to obtain the minimum value of px(x) in

its continuous profile. The minimum value in the continuous profile is used to identify

xs, which is obtained as a function of y, z, and t by repeatedly applying this procedure

for all (y, z) positions in each snapshot with different time steps. The present definition
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of the local shock-wave position is related to that with a local dilatation of θ used in

previous studies [26], [27]. It is expected that either quantity will be able to detect the

shock wave because both have a large negative shock wave peak. Statistics of xs(y, z; t)

are calculated as functions of t by taking averages in the y and z directions as well as

ensemble averages of the simulations.

Figure 3.7 shows the relation between the mean shock-wave position xs(t) and time t,

whose reference values are L0 and t0(= L0/u0). Here, t0 is the time scale of turbulence,

which depends on Mt. The plots of xs/L0 against t/t0 are different even for the same

shock Mach number in Cases 3-1 and 3-2 because the reference time scale t0 differs

depending on Mt. The figure also shows a linear relation, xs = Ust+ xs0, considering a

constant propagation velocity of the shock wave, Us. The difference between the results

of the DNSs and the linear relation is smaller than 0.5 % in all cases. Therefore, Us is

hardly changed with time from the initial propagation velocity, and the mean position

of the shock wave is well-predicted by the linear relation xs = Ust + xs0 for all cases.

The mean propagation velocity is hardly affected by the interaction.

The shock-surface deformation is defined as the fluctuations of the local shock-wave

positions x′
s(y, z; t) = xs(y, z; t) − xs(t) in this chapter. Figures 3.8(a) and (b) show

the rms values of x′
s, x

′
s,rms, normalized by η, plotted against the mean shock-wave

position xs/L0. Here, η is the Kolmogorov length scale of intial turbulence. Cases

3-1 to 3-3 with Ms = 1.3 are compared in Figure 3.8(a), whereas Cases 3-3 to 3-5

with Mt = 0.011 are compared in Figure 3.8(b). The shock wave at xs/L0 ≥ 2.5

is located within the turbulent region. x′
s,rms starts increasing once the shock wave

enters the turbulent region at xs ≈ 2.5L0 in all cases. However, x′
s,rms becomes almost

independent from the propagation distance (time) for xs ≥ 12L0, with a peak value

around xs = 7.5L0, except in Case 3-5. For Case 3-5, whose shock Mach number is

smallest, x′
s,rms slowly increases with time until the end of the simulation; however,

the increase rate for xs ≥ 15L0 is very small. Normalized values of x′
s,rms/η in the

stationary state depend on the shock and turbulent Mach numbers. The results for

Cases 3-1 to 3-3 with Ms = 1.3 suggest that x′
s,rms increases with the turbulent Mach
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Figure 3.8. The rms values of the fluctuations of the shock-wave positions, x′
s,rms, plotted against

(a,b) the mean position xs/L0 and (c) the interaction time ti/t0. Here, x′
s,rms is normalized by the

Kolmogorov length scale η during turbulence under the initial condition: (a) Turbulent Mach number

dependence for Ms = 1.3 (Cases 3-1 to 3-3); (b) Shock Mach number dependence for Mt = 0.011

(Cases 3-3 to 3-5).

number. For Cases 3-3 to 3-5 with Mt = 0.011, x′
s,rms decreases with the shock Mach

number. x′
s,rms has a tendency to attain the stationary state late in the interaction in

all cases, suggesting that the stationary state might be caused by the stability of the

shock-wave surface against small deformation [69]. The statistical convergence and the

effects of spatial resolution are mentioned in the Appendix. Figure 3.8(c) plots x′
s,rms/η

against normalized interaction time ti/t0, defined as the time over which the shock wave

propagates in the turbulent region ti = (xs−2.5L0)/Us. The relation between x′
s,rms/η

and ti/t0 confirms that the time it takes for the shock wave to reach the stationary



Chapter 3 Statisitical characteristics of deformation of a normal shock wave

propagating in a local turbulent region 49

�

 
 Gaussian

(a) (b)

Case 3-1�
Case 3-2�
Case 3-3�

Case 3-4�
Case 3-5�

100 101 102
0

0.2

0.4

0.6

0.8

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

Figure 3.9. (a) Probability density functions (PDFs) of x′
s normalized by x′

s,rms. (b) Energy spectra

of x′
s, Ex′

s
(kt), in an area-preserving form, where kt is a wavenumber in the transverse direction of the

shock wave. Grey lines are obtained via two independent sets of five simulations in Case 3-1.

state differs in each case. However, the initial non-dimensional growth rate of x′
s,rms/η

is similar in all cases. These results imply the importance of the interaction length

on shock-wave deformation similar to the experimental results reported by Tamba et

al. [34]. However, these results cannot be quantitatively compared with experimental

results because there are no quantitative data about the effects of interaction length on

shock-wave deformation. Comparison between numerical simulations and experiments

is one of the biggest problems of studies of shock–turbulence interaction.

Hereafter, the time average is applied to improve statistical convergence because

x′
s,rms becomes almost independent of time after the shock wave propagates for a long

period. The average is taken over time periods for which the mean shock-wave position

xs is located between 13L0 and 19L0. Figure 3.9(a) shows PDFs of x′
s normalized by

x′
s,rms, which agrees well with the Gaussian profile in all cases similar to the PDFs

of ∆p′ discussed in Section 2.3.2. Previous studies have reported that various quan-

tities of PDFs concerning shock-wave characteristics, such as fluctuations in pressure

and density jumps across the shock wave, exhibit good agreement with the Gaussian
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Figure 3.10. x′
s,rms/η plotted against (a) Mt/ (Ms − 1) and (b) M2

t /
(
M2

s − 1
)
. A solid line in (b)

represents a power law obtained using the least squares method. Gray “+” symbols are obtained by

two independent sets of five simulations for Case 3-1. Error bars for Cases 3-2 to 3-5 represent 3.3% of

the fractional error in x′
s,rms.

profile [26], [27], [31], [33]. The energy spectrum Ex′
s
is calculated using one-dimensional

Fourier transform in the y or z direction, applied to xs(y, z; t). As xs is statistically

homogeneous on a y-z plane, the spectrum of xs is expressed as a function of the trans-

verse wavenumber kt, whose direction is perpendicular to the x direction. Figure 3.9(b)

shows the spectra of x′
s in the area-preserving form, ktEx′

s
(kt). Here, kt is normalized by

the integral length scale of turbulence L. The profiles of ktEx′
s
have a peak value around

ktL = 2, and fluctuations in xs are characterized by large scales. These energy spectra

are similar to the pressure-jump-fluctuation spectra shown in Section 2.3.2. This indi-

cates that large-scale turbulence motions affect the shock wave because of the dominant

contribution of large scales to fluctuations in the shock wave.

All simulations are conducted using Reλ of 60-70, and the differences between each

case should be attributed to Mt and Ms. Previous studies characterized the shock–

turbulence interaction using Mt/(Ms − 1) and M2
t /(M

2
s − 1) [11], [26], [27], [31], [70]. Fig-

ure 3.10 plots x′
s,rms/η against Mt/(Ms − 1) or M2

t /(M
2
s − 1). All cases have η/L0 ≈



Chapter 3 Statisitical characteristics of deformation of a normal shock wave

propagating in a local turbulent region 51

0.012 because of the similar turbulent Reynolds number, and x′
s,rms is divided by an al-

most constant value. Therefore, the figures are used to assess the relation between x′
s,rms

and Mt/(Ms−1) or M2
t /(M

2
s −1), but not to assess the dependence on η. As mentined

above, x′
s,rms/η increases with Mt and decreases with Ms, and both Mt/(Ms − 1) and

M2
t /(M

2
s − 1) similarly change with Mt and Ms. However, the function M2

t /(M
2
s − 1)

better characterizes x′
s,rms/η than Mt/(Ms − 1), as shown in Figure 3.10. In addition,

x′
s,rms/η exhibits a power law behavior of M2

t /(M
2
s − 1), and the relation is obtained

via the least squares method:

x′
s,rms/η ∼

(
M2

t

M2
s − 1

)0.46

. (3.10)

For this relation, x′
s,rms is almost proportional to Mt for fixed Ms; this is confirmed in

Figure 3.10(a). As disscussed in Section 2.3.2, the rms values of the fluctuations of the

pressure jumps, ∆p′rms, normalized by the mean pressure jump, ∆p, across the shock

wave change with ∆p′rms/∆p ∼ [M2
t /(M

2
s − 1)]0.46, whose exponent is same as Equa-

tion (3.10). A simplified argument of the shock-wave deformation [31], which successfully

predicts power law behavior ∆p′rms/∆p, shows that shock-wave deformation can cause

pressure jump fluctuations. Shock-wave deformation is an appropriate measure of fluc-

tuation in shock-wave strength because scaling exponents of the rms values of pressure

jump fluctuations and shock-wave positions are very close. The power law of ∆p′rms

described in Section 2.3.2 and Ref. [31] is obtained from experimental and numerical

data for both normal and spherical shock waves, and these shock waves rely similarly

on ∆p′rms on M2
t /(M

2
s − 1). Considering the relation between shock-wave deformation

and pressure jump fluctuations [31], the scaling law of x′
s,rms is also expected to be valid

in spherical shock waves with a large curvature.

As mentioned above, x′
s,rms/η gradually increases with shock-wave propagation dur-

ing turbulence. x
(α)
s is defined as the shock-wave position at which x′

s,rms reaches α%

of the maximum value of x′
s,rms. The order of the time scale for the growth of x′

s,rms

can be roughly estimated as t
(α)
s = (x

(α)
s − xs0)/Us. Although the present definition of

t
(α)
s does not provide an exact time for the shock wave to be in a statistically stationary
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Figure 3.11. Time scales t
(α)
s of the growth of x′

s,rms divided by t0, plotted against M2
t /(M

2
s − 1).

Broken lines represent t
(α)
s /t0 = At[M2

t /(M
2
s − 1)]n obtained using the least squares method.

state, t
(α)
s is still useful when observing how the shock-wave deformation’s time scale

depends on Ms and Mt. t
(α)
s /t0 is plotted against M2

t /(M
2
s − 1) for 50% ≤ α ≤ 90%

for all cases, as shown in Figure 3.11. Although t
(α)
s /t0 depends on α because of the

definition, it generally increases with M2
t /(M

2
s − 1). This trend may be explained by

a time scale of the shock-wave deformation induced by velocity fluctuations, which can

be estimated as ts = x′
s,rms/u0. The power law of x′

s,rms, Equation (3.10), can be read

as x′
s,rms ∼ L0[M

2
t /(M

2
s − 1)]0.46 because L0/η is almost constant due to the similar

turbulent Reynolds number in all cases. Then, the following scaling law of a normalized

time scale ts/t0 is obtained from an empirical relation of Equation (3.10):

ts/t0 ∼
(

M2
t

M2
s − 1

)0.46

. (3.11)

This relation holds for the present DNS data in Figure 3.11: the least squares method

yields exponents of the power law, written as t
(α)
s /t0 = At[M

2
t /(M

2
s − 1)]n, where

n = 0.46, 0.44, 0.44, and 0.45 are obtained for α = 90%, 80%, 70%, and 50%, respectively.

These values are close to 0.46, and Equation (3.11) is an adequate approximation of the

time scale of shock-wave deformation at the interaction’s initial transient process.
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Figure 3.12. Joint PDFs between x′
s and θ′s in (a) Case 3-1 and (b) Case 3-5.

3.3.3 Relation between local shock-wave characteristics and

shock-wave position

Relations between local shock-wave characteristics and shock-wave deformation are

investigated, where time instances with 13L0 ≤ xs ≤ 19L0 are used in the same manner

as with shock-wave deformation statistics. Dilatation, θ, evaluated at the shock-wave

position, xs, is denoted by θs(y, z; t) ≡ θ(xs, y, z; t). Figure 3.12 shows joint PDFs

between x′
s and θ′s ≡ θs − θs in Cases 3-1 and 3-5, where θs is the mean dilatation

averaged in y and z directions. These quantities are positively correlated; that is, θ′s

tends to be positive when the shock wave is located in front of the mean shock-wave

position, and vice versa. From the equation of mass conservation, the dilatation can

also be represented as θ = −(1/ρ)(Dρ/Dt). The positive correlation between x′
s and

θ′s suggests that the shock wave with x′
s < 0 tends to have a stronger compression

with a larger local shock Mach number. Because of the larger shock Mach number, the

area of the shock wave behind the mean shock-wave position has a large propagation

velocity, and x′
s approaches zero. Similarly, a shock wave area with x′

s > 0 has a smaller
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Figure 3.13. Conceptual picuture of the focusing and defocusing effects of the shock wave surface.

The red solid line represents the deformed shock wave, while the black broken line represents the mean

shock wave position.

propagation velocity than its average, and positive x′
s tends to decrease to 0. The

stability of the shock surface against turbulence is explained by these relations between

the shock-wave deformation and the local shock Mach number, whose conceptual picture

is shown in Figure 3.13. The correlation between x′
s and θ′s can be better explained by

the relation between the curvature of the shock wave and the local strength of the shock

wave, as also explained by Larsson et al. [27]. The focusing effect on a concave region

amplifies the local shock Mach number [71], and the concave region is most likely to

have a negative x′
s. A convex shape with the defocusing effect that weakens the shock

wave is also likely to appear with x′
s > 0. These relations between the geometry of the

shock-wave surface and the local shock-wave strength result in the positive correlation

between x′
s and θ′s.

The correlation coefficient between x′
s and θ′s is calculated in all cases. Figure 3.14

plots the correlation coefficient RC = x′
sθ

′
s/

(
x′
s,rmsθ

′
s,rms

)
against Mt/(Ms − 1) or

M2
t /(M

2
s − 1). The influence of statistical convergence on RC is discussed in the Ap-

pendix. The correlation coeffcients are positive in all cases and better characterized by

Mt/(Ms − 1) unlike the case of x′
s,rms. In Cases 3-1 to 3-3, the correlation coefficients
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Figure 3.14. Correlation coefficients RC between x′
s and θ′s plotted against (a) Mt/ (Ms − 1) and (b)

M2
t /

(
M2

s − 1
)
. Gray “+” symbols are obtained by two independent sets of five simulations of Case

3-1. Error bars for Cases 3-2 to 3-5 represent 1.2% of the fractional error in RC .

increase as the turbulent Mach number increases. Conversely, the correlation coeffi-

cients in Cases 3-3 to 3-5 increase in the presence of a smaller shock Mach number. In

addition, the maximum and minimum correlations are observed in Cases 3-5 and 3-3,

respectively. One of the possible reasons for dependence of RC on the turbulent and

shock Mach numbers is time lag effect of shock wave modulation descriebed in Sec-

tion 2.3.4. Dilatation fluctuations at xs are caused by turbulence that interacts with

the shock wave before it reaches xs. For a small Mt or a large Ms, the interaction

that occurs before the shock wave reaches xs rapidly affects the dilatation of the shock

wave, and the correlation between x′
s and θ′s can be weakened. In addition, a reason

why the correlation coefficient RC is maximized in Case 3-5 is its low turbulent Mach

number. In Cases 3-3 to 3-5, dilatation is hardly fluctuated in turbulence because of

the low turbulent Mach numbers. θs is hardly affected by the dilatation fluctuations

of turbulence and dominated by compression in the shock wave in the cases. However,

the turbulence effects on shock waves in Cases 3-3 and 3-4 relatively weaken because of

high shock Mach numbers. Moreover, dilatation is fluctuated in turbulence in Cases 3-1
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Figure 3.15. Mean pressure jumps ∆pm, (∆pm)+
x′
s
, and (∆pm)−

x′
s
in Case 3-1. (∆pm)+

x′
s
and (∆pm)−
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s

are calculated for x′
s > 0 and x′

s < 0, respectively.
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Figure 3.16. Mean pressure jumps obtained separately for x′
s > 0 and x′

s < 0, which are denoted by

(∆pm)+
x′
s
and (∆pm)−

x′
s
, respectively: (a) Cases 3-1 to 3-3; (b) Cases 3-3 to 3-5.

and 3-2 because their turbulent Mach numbers are relatively high. θs is affected by the

dilatation fluctuations generated independently from the shock wave compression, and

thus the correlation coefficient RC shrinks in Cases 3-1 and 3-2. Note that these reasons

why RC is maximized in Case 3-5 can be applied to only the Cases 3-1 to 3-5. Further

investigations are necessary to reveal the dependence of RC on shock and turbulent

Mach numbers.
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The mean pressure jump across the shock wave is investigated, conditioned per the

local distance from the shock wave in the x direction and defined as ∆xs = x − xs.

Its average conditioned on ∆xs is denoted by f |∆xs, which is calculated using a time

average, averages in the y and z directions, and ensemble averages of five independent

simulations. Here, the time average is taken for a time period with 13L0 ≤ xs ≤ 19L0.

The normalized mean pressure jump is defined as ∆pm = (p|∆xs − pF )/(pB − pF ),

similar to the local pressure jumps in Section 2.3.2, where pB and pF are the initial

mean pressure behind and in front of the shock wave, respectively. With this definition,

∆pm is expected to change from 0 to 1 across the shock wave when an interaction does

not occur. Dilatation within the shock wave represents the strength of the compression

by the shock wave; therefore, x′
s should also be correlated with the pressure jumps

across the shock wave. The relation between x′
s and the pressure jumps is assesed using

the ∆pm, calculated separately for the shock-wave positions with x′
s > 0 and x′

s < 0,

where the ∆pm calculated for x′
s > 0 and x′

s < 0 are denoted by (∆pm)+x′
s
and (∆pm)−x′

s
,

respectively. Figure 3.15 shows ∆pm, (∆pm)+x′
s
, and (∆pm)−x′

s
in Case 3-1. As expected,

the large pressure jumps for x′
s < 0 and the small pressure jumps for x′

s > 0 are found.

Figures 3.16(a) and (b) show (∆pm)+x′
s
and (∆pm)−x′

s
in all cases, confirming the similar

dependence of the mean pressure jump on x′
s. The difference between (∆pm)+x′

s
and

(∆pm)−x′
s
grows as Mt increases in Figure 3.16(a) and Ms decreases in Figure 3.16(b).

Figure 3.16 shows that because the pressure jump amplifies when the shock wave is

located behind the mean position, the profiles of (∆pm)−x′
s
have a peak. The pressure-

jump difference between x′
s < 0 and x′

s > 0 is evaluated as (∆pm)−x′
s
− (∆pm)+x′

s
at the

peak position of (∆pm)−x′
s
. As the shock wave tends to be strong and weak for x′

s < 0

and x′
s > 0, respectively, the difference in (∆pm)−x′

s
− (∆pm)+x′

s
is a measure of the

pressure-jump fluctuations normalized by the mean pressure jump. Figure 3.17(a) plots

(∆pm)−x′
s
− (∆pm)+x′

s
against x′

s,rms. The increase of (∆pm)−x′
s
− (∆pm)+x′

s
with x′

s,rms

indicates that the pressure jump fluctuations become stronger with the shock-wave

deformation. Figure 3.17(b) shows (∆pm)−x′
s
− (∆pm)+x′

s
plotted against M2

t /(M
2
s − 1).

(∆pm)−x′
s
− (∆pm)+x′

s
seems to be well characterized by M2

t /(M
2
s −1), similar to the case
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Figure 3.17. Difference between mean pressure jumps (∆pm)+
x′
s
and (∆pm)−

x′
s
, which are calculated

for x′
s > 0 and x′

s < 0, respectively. (∆pm)−
x′
s
− (∆pm)+

x′
s
is evaluated at the position where (∆pm)−

x′
s

reaches a peak. The results are presented against (a) x′
s,rms/η and (b) M2

t /(M
2
s −1). Gray + symbols

are obtained by two independent sets of five simulations for Case 3-1. Error bars for Cases 3-2 to 3-5

represent 3.9% of the fractional error in (∆pm)−
x′
s
− (∆pm)+

x′
s
.

of x′
s. This result is consistent with the results disscussed in Chapter 2 and experimental

studies [31], confirming that the rms value of the pressure jump fluctuations divided by

the mean pressure jump rises with a power law of M2
t /(M

2
s − 1).

Past experiments that assessed the interaction between a spherical shock wave and

a turbulent jet used schlieren visualizations and pressure measurements to examine the

link relationship between shock wave pressure jumps and geometry [28]. These studies

showed that a shock wave with a concave shape in the propagation direction tends to

have a large pressure jump. The concave shape forms when the shock-wave position

is locally behind the mean shock-wave position; this experimental result is consistent

with the present DNSs. In addition, a positive correlation was observed between the

local shock-wave positions and the density jumps obtained via DNSs [27]. Previous

experimental studies [30], [33] and the DNSs in Chapter 2 support the finding that velocity

fluctuations during turbulence in the shock normal direction correlate with the pressure

jump fluctuations. The fact that both turbulence velocity and the local shock-wave
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positions are correlate with the pressure jumps suggests that shock-wave deformation

is mainly caused by turbulence velocity fluctuations. The velocity of the shock-wave

movement is defined as the sum of the velocity of the shock propagation and the flow

velocity at local shock-wave positions, as explained in Section 2.3.4. The velocity of

shock movements becomes non-uniform because of the turbulent velocity field. For

example, velocity fluctuations in the opposite direction of the shock-wave propagation

decrease the shock propagation velocity, resulting in a negative x′
s. Conversely, a positive

x′
s is obtained via velocity fluctuations in the propagation direction. This relation

between x′
s and velocity fluctuations can explain the correlation among x′

s, velocity,

and jumps of pressure and density, as well as negative peak dilatation observed in

experiments and numerical simulations. Shock-wave deformation can be also induced

by temperature fluctuations during turbulence which in turn cause the speed of sound

to fluctuate. This effect may be significant at very high turbulent Mach numbers, which

are not considered in present DNSs.

3.3.4 Dissucussion about functions of Mt/(Ms−1) and M2
t /(M

2
s −

1)

The functions of Mt/(Ms − 1) and M2
t /(M

2
s − 1) are proposed independently to

characterize the changes in physical quantities caused by a shock-turbulence interaction.

Lee et al. introduced the fucntion of M2
t /(M

2
s − 1) as a dominant parameter of broken

shock wave [11]. They argued that the shock wave is broken when M2
t /(M

2
s − 1) > 0.1.

Larsson et al. also explained that pressure fluctuations of turbulence is large compared

to pressure jumps across a shock wave when M2
t /(M

2
s − 1) is large [27]. Conversely,

Mt/(Ms − 1) is introduced by Larsson et al. as a controlling parameter concerning

the broken shock wave [27]. They defined a broken part of the shock wave as a part

where a relative velocity of the fluid with respect to the shock wave on the shock wave

surface is subsonic, and derived the function of Mt/(Ms − 1) based on the relative

velocity. Therefore, the function of Mt/(Ms − 1) is related to momentum of turbulence

and mean flow behind a shock wave, whereas the fucntion of M2
t /(M

2
s − 1) is related to
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Figure 3.18. (a)∆p′rms/∆p and (b)x′
s,rms/η plotted against M2

t /(Ms − 1).

energy of the turbulence and the flow induced by a shock wave. Figures 2.9 and 3.17

show that the pressure jump fluctuations are characterized by M2
t /(M

2
s −1) better than

Mt/(Ms−1). This implies that the pressrue jump fluctuations are directly influenced by

dynamic pressure of turbulence in front of a shock wave. Similarly, the fluctuations of

the shock-wave positions are also characterized by M2
t /(M

2
s −1) better than Mt/(Ms−

1). Therefore, the shock-wave deformation is also induced by dynamic pressure in

turbulence. In addition, another possible function is M2
t /(Ms − 1). Figures 3.18(a)

and (b) plot ∆p′rms/∆p and x′
s,rms/η against M2

t /(Ms − 1), respectively. As a result,

∆p′rms/∆p and x′
s,rms/η can be characterized by M2

t /(Ms − 1) similar to M2
t /(M

2
s −
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1). This result also implies that the influences of dynamic pressure in turbulence are

important for pressure jump fluctuations and shock-wave deformation.

3.4 Conclusions

The deformation of a normal shock wave from the transient process toward the sta-

tionary state of the shock–turbulence interaction is investigated via DNSs. The shock

wave propagates from an initial quiescent region to a turbulent region, which is gen-

erated using HIT. Here, the shock Mach number Ms and turbulent Mach number Mt

range between 1.01 and 1.3 and between 0.011 and 0.13, respectively, whereas the tur-

bulent Reynolds number is 60 to 70 in all simulations. Most previous numerical studies

on the shock–turbulence interaction have investigated a statistically stationary state of

the interaction, which is achieved after the shock wave has propagated for a sufficiently

long time. In this chapter’s DNSs, the interaction’s initial transition process can be

investigated due to the setup, where the effects of the interaction gradually emerge on

the shock wave. The local shock-wave position is identified by a local peak of the pres-

sure gradient in the propagation direction. The shock-wave deformation’s statistical

properties are studied using the local shock-wave positions.

The following important characteristics of the shock-wave deformation are observed:

• The shock wave gradually deforms once it enters the turbulent region. Here,

the rms value of the fluctuations of the shock-wave positions, x′
s,rms, increases

with time, and it reaches a stationary state after the shock wave propagates in

turbulence for a long time interval.

• The time scale of the shock-wave deformation’s initial growth is well-characterized

by the integral time scale t0 of turbulence.

In the statistically stationary state of the interaction, the DNSs explained in this chapter

revealed the following characteristics of the shock wave:

• x′
s,rms increases with a power law of M2

t /(M
2
s − 1), where the exponent of the
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power law is 0.46 in the DNS used herein. This scaling exponent is similar to that

obtained for the rms value of the fluctuations of the pressure jumps divided by

the mean pressure jump obtained in Chapter 2 and an experimental study [31],

which also increase with a power law of M2
t /(M

2
s − 1).

• The Gaussian profile can be used effectively to approximate PDF fluctuations in

the shock-wave position.

• The fluctuations in the shock-wave position are dominated by large-scale fluctu-

ations , the length scale of which is similar to the turbulence’s integral length

scale.

The scaling of x′
s,rms and the time scale of the shock-wave deformation’s initial

growth indicate that the duration of the initial transition process is proportional to

t0[M
2
t /(M

2
s − 1)]0.46.

The effects of shock-wave deformation on local shock-wave properties are investi-

gated using dilatation and shock-wave pressure jumps. Dilatation, which represents the

strength of compression, correlates with the fluctuations of the shock-wave positions;

the correlation strengthens as Mt/(Ms − 1) increases. The sign of the correlation indi-

cates that a backward-deforming shock wave tends to be strong, and vice versa. The

mean pressure jump across the shock wave is calculated based on whether the shock

wave deforms forward or backward. As expected from the correlation, an area with

backward deformation tends to have a large pressure jump, whereas a smaller pressure

jump appears for shock waves with forward deformation. The difference between the

conditional mean pressure jumps under these two conditions increases with the rms

value of the shock-wave position fluctuations and is represented well as a function of

M2
t /(M

2
s − 1).
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Chapter 4

Conclusions

Shock-wave modulations induced by interactions with turbulence are investigated via

DNSs of interaction between a normal shock wave and HIT. In the first simulations in

Chapter 2, a normal shock wave interacts with HIT at a low turbulent Mach number,

and the shock wave is hardly deformed. Conversely, a normal shock wave interacts with

a local turbulent region in the second simulations in Chapter 3. This setup enables

investigations of the transient process of shock-wave deformation. This was the first

DNS study to examine this transient process.

In Chapter 2, DNSs of interactions between a normal shock wave and homogeneous

isotropic turbulence whose turbulent Mach number is much lower than previous numer-

ical simulations are performed, and statistical properties of pressure jump fluctuations

in the shock wave and relationships between the pressure jump fluctuations and velocity

fluctuations of turbulence normal to the shock wave are investigated. In addition, rela-

tionships between propagation directions of the local shock wave elements and velocity

shear in turbulence are similar to the model introduced by Inokuma et al. [30]. The

initial pressure jumps across the shock wave are defined based on Rankine-Hugoniot

relations, and the interaction causes the local pressure jumps to fluctuate. The rms

values of the pressure jump fluctuations are characterized by M2
t /(M

2
s −1). These fluc-

tuations are negatively correlated with velocity fluctuations in the shock wave’s normal

direction. The negative correlation means that a pressure jump is amplified when the

shock wave interacts with a velocity fluctuation opposite to the shock wave. The largest
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negative correlation is located behind the shock wave, with the distance close to the

longitudinal integral length scale of the turbulence. The location of the peak negative

correlation implies the existence of a time lag until the shock wave is affected by the

turbulence from the interaction. The time lag is explained by a model based on the

shock-wave deformation induced by velocity fluctuations opposite to the shock wave [30].

Joint PDFs between the local propagation directions of the shock wave and the local

velocity shear show positive correlations. Therefore, the local propagation direction of

the shock wave is affected by turbulent shearing motions; those results are consistent

with the model (Figure 2.11).

DNSs of a normal shock wave interacting with a local homogeneous isotropic tur-

bulence are performed in Chapter 3. The initial transient process and statistically

stationary state of shock-wave deformation are investigated via the DNSs. The tran-

sient process has been reported by Tamba et al. via only experiments of shadowgraph

visualizations. Therefore, the quantitative investigation of the transient process is the

most important originality of this study. Statistical properties of shock-wave defor-

mation are investigated via the second DNS in Chapter 3. Shock-wave deformation is

defined as fluctuations of local shock-wave positions. It begins once the shock wave

enters the local turbulent region. The deformation reaches a stationary state after the

shock wave propagates in the turbulent region for a long time interval. The time scale

of the initial growth of the shock-wave deformation is characterized by the turbulence’s

eddy turnover time. The rms values of the fluctuations of the shock-wave positions

x′
s,rms are well characterized by M2

t /(M
2
s − 1). The shock-wave positions are positively

correlated with the dilatation in the shock wave, which represents the local strength of

shock-wave compression. The correlation coefficient is characterized by Mt/(Ms − 1).

The mean pressure jump across the shock wave is calculated conditioned on x′
s > 0 or

x′
s < 0 as a function of distance from the local shock-wave position. The mean pressure

jump with the condition x′
s > 0 shrinks, and vice versa. The difference between the

conditional mean pressure jump under these two conditions increases with the rms val-

ues of the fluctuations of the shock-wave positions and is represented well as functions
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of M2
t /(M

2
s − 1).
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Appendix : Effects of

statistical convergence and

spatial resolution

The effects of spatial resolution on the fluctuations of pressure jumps ∆p′ and two-

point correlation coefficients C∆p′,u′ shown in Chapter 2 are investigated using Case

2-3 with 3843 and 5123 grid points. It can be concluded that the grid spacing in

the case of 3843 is small enough to consider the pressure jumps because the profiles

shown in Figures A.1(a) and A.1(b) are almost the same. This is why the results with

3843 grid points are used in the DNSs of Chapter 2. In addition, spatial resolution

hardly influences the results of C∆p′,u′ , as demonstrated by the comparison between

Figure A.2(a) and Figure A.2(b).

The effects of statistical convergence and spatial resolution on x′
s,rms in Chapter 3

are investigated. The effects of the number of statistical samples are investigated for

Case 3-1, for which 10 independent simulations are conducted using different snapshots

of homogeneous isotropic turbulence. These 10 simulations are divided into two sets of

five simulations, for which x′
s,rms is calculated separately. Figure A.3(a) shows x′

s,rms

calculated from each set of all simulations. Three lines of x′
s,rms are very similar. At

the end of the simulation, the difference in x′
s,rms between two sets of five simulations is

0.11η, which is much smaller than x′
s,rms. Therefore, the number of the samples does not

affect the discussion on x′
s,rms. The statistical convergence of RC is also checked using

two independent sets of five simulations used in Figure A.3(a), for which RC = 0.65 and
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Figure A.1. Profiles of the fluctuations of normalized pressure jumps, ∆p′/∆p′rms, on the y-z plane

at x = xp: (a) Case 2-3 with 3843 grid points, and (b) Case 2-3 with 5123 grid points.
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Figure A.2. Two-point correlation coefficients C∆p′,u′ (∆x,∆r) between the fluctuations of the pressure

jumps across the shock wave, ∆p′(y, z; t), evaluated at xp(t), and the velocity fluctuations in the x

direction of the initial HIT, u′(xp +∆; t = 0), where xp = (xp, y, z): (a) Case 2-3 (3843 grid points),

and (b) Case 2-3 (5123 grid points).

0.64 are obtained. These results demonstrate that the number of samples barely affects

the results of RC presented in Figure 3.14. Conversely, the effects of spatial resolution on

the analysis of x′
s,rms are examined with additional simulations of the shock–turbulence

interaction for (Ms,Mt, Reλ) = (1.3, 0.13, 20), whose Reλ is smaller than that in the
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Figure A.3. (a) x′
s,rms is calculated via two independent sets of five simulations of Case 3-1, where

x′
s,rms obtained from the 10 simulations is shown for comparison. (b) x′

s,rms obtained from simulations

with different spatial resolutions, where the fine and coarse cases have ∆/η = 0.34 and 1.3, respectively.

other simulations. Simulations with a low Reλ are performed with two grid settings.

One uses fine grids with (Nx, Ny, Nz) = (2048, 256, 256), while another uses coarse grids

with (Nx, Ny, Nz) = (512, 64, 64). For this Reynolds number, the grid sizes ∆/η are 0.34

and 1.3 for the fine and coarse grid settings, respectively. Here, the initial conditions

are identical for the two simulations. Figure A.3(b) shows x′
s,rms obtained using the

fine and coarse grids. x′
s,rms is hardly affected by the spatial resolution, confirming that

the grid size ∆/η ≈ 1.4 is small enough to investigate statistics of xs.
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