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ABSTRACT 

The environmental issues have gained more and more attention from people. The rising 

demand of using vehicles made the emission from transportation has increasing effect on 

environmental problems. Electric vehicles (EV) as one of the solution to lower the Greenhouse 

Gas (GHG) emission, is widely discussed by many researchers. The benefit of utilization and the 

characteristics of promotion target of EV are discussed in this dissertation. 

The first part of this dissertation discussed the substitution of EV for conventional vehicles in 

a university wide carsharing system. The daily travel distance (DTD) of shared vehicles is 

simulated by distribution functions. The normal, lognormal, gamma, exponential and Weibull 

distributions are applied to the DTD, and lognormal performed best among five alternatives. As 

an improvement of the distribution function, a mixture model consists with two lognormal 

components is also applied to the DTD, and found to be better fitted than single distribution 

functions for most of vehicles. The result of best fitted form is used to determine the list of 

replaceable vehicles. Taking two types of EV as references, the driving and purchase cost between 

EV and conventional vehicles are discussed in this part. The result shows the smaller driving cost 

of EV could make it even with the extra purchase cost of it. Moreover, the CO2 emission is 

estimated before and after substitution, the carsharing system with EV can reduce the emission. 

The amount of available electricity from EV at the peak hour is determined in this part, and is 



 

 

found out to be able to achieve peak-shaving for the electricity consumption.  

Even though the benefit of using EV is determined in the first part of this dissertation, the 

limited driving range could still prevent individual buyers from vehicle electrification. The 

variables that affect people’s driving distance should be determined, in order to understand 

people’s driving habit. 

Therefore, the second part of this study focuses on the characteristics of individual vehicle 

users. This part first examines the distribution of DTD data from private vehicles which mostly 

belong to Toyota citizens. The examination of mixture model from 2 components to 9 components 

shows the mixture model with 7 components could explain the driving pattern of the most vehicles. 

However, the effect of other explanatory variables on DTD requires further study by survival 

analysis. Both the pooled and panel survival models are tested for DTD and other explanatory 

variables with lognormal, log-logistic and Weibull durations. The significant scale parameter for 

constant in the panel model implies the existence of individual difference. The log-logistic duration 

is the best performed for both pooled and panel model. Overall, the log-logistic duration model 

with a normally distributed constant is the best fitted model here, but with less significant variables 

compared to the pooled model. The weather condition is proved to have significant effect on the 

driving distance. The better fuel efficiency vehicle owners are regarded as more adoptable for EV, 

so as for those who has a job with fixed commuting distance.  

Even though the age is proved to have a significant positive effect on the driving distance, the 



 

 

small number of elderly drivers in the second data set made this result to be less convincible. The 

driving behavior of elderly drivers could be quite different since their driving abilities are always 

questioned. 

Therefore, the last part of this dissertation examines the data collected from elderly drivers. In 

this part, we managed to focus on the psychological thinking for different age groups, and the 

effect caused by their driving attitude. As mentioned before, the driving ability would be 

questioned with the age grows. Thus, we also applied aptitude test to evaluate the drivers’ driving 

ability. Both pooled and panel models are applied to this data set, and rather than simply tried with 

normally distributed constant in panel model, we tested six distribution form for the constant. The 

result shows the lognormal duration with normally distributed constant is the best fitted form 

among all the alternatives. The model result suggests even though both variables for weather 

information are significant, but they play quite small effect on the DTD. The variables for 

psychological thinking are showing different effect among different age groups. The young-old 

drivers (aged from 65 to 74) do have the tendency toward longer DTD, but not largely affected by 

their psychological status. On the other hand, the driving attitude variables are playing significant 

positive effect on the driving distance of old-old drivers (aged over 75). The old-old drivers are 

more adoptable for EV considering their DTD, but EV with autonomous functions could be a better 

choice for them since they have more tendency toward risky driving behavior. 

The benefit of using EV identified in the first part can help vehicle manufacturers to more 



 

 

specifically understand the advantages of using EV, so that it could be easier to promote EV to the 

market. Drivers’ attitude towards EV could be various, the limited driving range of EV could be 

one man’s meat and another man’s poison. The latter part of the dissertation focuses on determining 

the characteristics of EV adopters, especially considering the limited driving range of the existing 

EV. The case study of Toyota City points out age may have strong effect on the driving distance. 

However, the finite number of elderly drivers in the Toyota case leads the result to be clarified. 

Thus, the last part focuses on the driving behavior in terms of distance of elderly drivers. The result 

of this dissertation shows the driving range of existing EV could meet about 95% of the individual 

users’ daily driving demand. However, since the old-old drivers (aged over 75) have tendency 

towards risky driving behavior, it is better to provide them the EV with autonomous functions.  
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CHAPTER 1 Introduction 

 

1.1  Background 

 The Global Energy Review 2020 reports that global electricity demand decreased by 2.5% in 

first season of 2020 compared to 2019, it was not only because of the Covid-19 but also because 

the weather in January and February was milder than in 2019. Electricity is used to support our 

daily life and is also a main resource of Greenhouse Gas (GHG) emission. The Overview of 

Greenhouse Gases and Sources of Emissions by Environmental Protection Agency (EPA) shows 

in 2018, 27% of GHG emission came from electricity generation, but it is still not the biggest 

source of GHG emission, 28% of GHG emission came from transportation. Transportation sector 

is not only the largest GHG producer, but also the largest consumer of total final commercial 

energy demand in the case of Malaysia in 2005 (Shekarchian et al., 2011). As mentioned in Joos 

et al. (2001), the carbon dioxide affects weather condition such as surface-air temperature, 

precipitation and cloud cover, this could lead to ocean thermal expansion. Thus, both electricity 

generation and transportation should be more focused out of the environmental and sustainable 

consideration. 

In the case of Japan, according to Paris Agreement, Japan is committed to reducing GHG 
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emission by 26% by 2030 for the goal of limiting global temperature rises. In order to reach this 

goal, Japanese government made a plan for energy mix, the renewable energy power source need 

to reach 22-24%, and the real energy efficiency need to be reduced by 35% based on Basic Energy 

Plan: Policy considerations to 2030. Nuclear power was another strong provider for electricity, but 

Japan has become more cautious about the use of nuclear energy in the mid- to long-term energy 

policy after the tragic loss of the Fukushima Daiichi nuclear plant accident in 2011, the direct 

economic cost estimated by Japan’s Cabinet Office is $210 billion. Japan is suffered with natural 

disasters, as mentioned in Kingston. (2012), some 20% of the world earthquakes occurred in Japan. 

The frequent disaster result in a considerable loss of the electricity dependency on nuclear power, 

and also brought more thoughts on other post-disaster safety issues such as evacuation behavior 

and emergency power resources.  

One alternative to serve as emergency power resource is electric vehicles (EV) with the help 

of Vehicle-to-Grid (V2G) system. The battery of EV can serve as a temporary storage of electricity, 

and provide the energy back to grid when necessary through the V2G system (Mets et al., 2011; 

Zhou et al., 2011). Thus, it is possible to use EV as emergency power resource, and it can also be 

a solution to cut the peak load during daily life (Kempton and Tomić, 2005; Guille and Gross, 

2009; Lee et al., 2017). Additionally, the reduction in the Global Warming Potential (GWP) is 

considered to be another benefit of using EV (Casals et al., 2016; Hawkins et al., 2012). Wu et al. 

(2018) estimated GHG emissions from battery EV and predicted the total life cycle GHG reduction 
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would reach 13.4% in 2020.  

However, the acceptance of EV needs to be considered for promoting it. Neumann et al. (2010) 

made a thorough study of the user acceptance of EV, the motivation of trying new technology as 

well as environmental protection consideration would drive them to EV, and a range of 140 to 160 

km is sufficient for more than 94% users’ daily needs. However, after considering the cost of 

electricity, Tamor et al. (2013) suggested the optimal EV range should be 240 to 320 km.  

Therefore, the optimal EV range may differ among various groups of people, and people may 

hold different acceptance of EV. The study of daily driving distance could help us in understanding 

daily driving pattern in order to determine the optimum EV range, predict the financial and 

environmental benefit of utilizing EV, and people’s acceptance towards EV.  

 

1.2  Aim of the study 

As discussed above, the promotion of EV requires various of studies, so that the limited battery 

range could fit the travel demand of consumers, especially the daily travel distance should be 

focused in order to determine the battery size. Moreover, from the perspective of EV producer, it 

is not enough to understand the customer’s attitude towards purchasing EV by simply 

understanding their daily driving demand. The other characteristics should also be focused when 

considering the suitable EV driving range for a specific consumer groups. 
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Before the promotion of EV towards individual buyers, we first determine the benefit of using 

EV in a carsharing system. The quantified benefit of using EV could help us in the promotion by 

providing real numbers of environmental and financial benefit. The original equipped internal 

combustion engine vehicles in the carsharing system could be replace by EV with a suitable driving 

range, and the list of replaceable vehicles is determined by the best fitted form of each vehicle. 

After the substitution, EV in the carsharing system can not only fulfill the driving demand of 

original vehicle, but could also provide electricity back to grid when necessary under the help of 

V2G system. The amount of CO2 reduction should be determined here to achieve the 

environmental benefit. Additionally, whether the available electricity in EV could achieve peak-

shaving should be determined here as energy consumption benefit of substitution. The travel and 

purchase cost is also discussed here as financial benefit of using EV rather than conventional 

vehicles. 

After determine the benefit of using EV based on the driving distance, we want to focus on 

not only the driving pattern of distance, but also the variables that affect driving distance. The 

study of the variables that effect on driving distance could help EV manufacturers to determine 

the characteristic of their target customer, in order to promote the suitable EV to adopters. The 

mixture distribution with more components is used here as the improvement of using distribution 

function to reveal the driving pattern in terms of distance. Additionally, the driving distance is 

examined with other explanatory variables by hazard duration model, which can reveal the drivers’ 
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preference on DTD. In this way, the target group for adopting EV could be more clarified by 

information such as their occupation type, personal situation or current vehicles. 

The attitude towards purchasing EV differs among different groups of people. In the third part 

of this study, we would like to be more focused on the different age groups. The aptitude test result 

to evaluate their driving ability, and the questionnaire for their driving attitude among different 

age groups would be more focused in this part. The driving attitude itself could result in different 

attitude towards EV. In this part, whether the elderly drivers could be EV adopter would be 

determined especially on their driving attitude. 

 

1.3  Research structure 

The structure of this dissertation is shown in Figure 1.1. This dissertation has been divided 

into six chapters. The first chapter introduces the research background and the aim of this study. 

The second chapter gives a general review of previous studies involving electric vehicles, the 

distribution of driving distance, other explanatory variables that affect driving behavior, and the 

utilization of survival analysis in the field of transportation.  

In Chapter 3, the distribution test is applied to university car fleet data in order to simulate the 

driving patterns of carsharing users. Five distribution function as well as mixture model are used 

to simulate the driving habit of carsharing system in terms of distance. This chapter mainly 
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determines the benefit of utilizing EV in carsharing system. The purchase and driving cost between 

EV and conventional vehicles are compared in this chapter. The amount of available electricity 

from EV is also determined in order to reach the goal of peak-shaving. The CO2 reduction after 

substitution is calculated as the environmental benefit of using EV in a carsharing system. 

 

Figure 1.1 Structure of the dissertation 

In Chapter 4, the distribution functions as well as survival model is applied to the data 

collected from private vehicles in Toyota City. The driving pattern in terms of distance could be 

better explained with other explanatory variables by survival analysis. Both pooled and panel 

survival model is applied to the data, the significant scale parameter for constant implies the 

Chapter 1. Introduction 
Research background, Aim of the study, Research 

structure 

Chapter 2. Literature Review 

Chapter 3. 
Characterization of 

daily travel distance of 
university carsharing 

system 
 

Chapter 4. 
Characterization of 

DTD for private 
vehicles: a case study in 

Toyota City 
 

Chapter 5. 
Characterization of 

DTD for elderly drivers 

Chapter 6. 
Conclusion and limitation 
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existence of individual difference. The significant explanatory variables could be used to 

determine the characteristics of the drivers who have tendency for shorter daily distance as EV 

adopters, since their driving demand could be easier fit with the driving range of existing EV. 

In Chapter 5, we applied a similar study as previous chapter. The hazard duration model is 

applied to the DTD data with other explanatory variables. As an improvement of previous chapter, 

six distributions are used as the assumption for constant in the panel duration model. This chapter 

applied models on the data of elderly driver, and the driving ability and psychological status are 

more focused in this chapter. The psychological status is interacted with 3 different age groups in 

order to examine the effect of driving attitude among different age groups. The result could be 

used to identify the people who are more adoptable for EV, and the suitable EV for them. 

The conclusion of this dissertation and the limitation is discussed in the last chapter. 
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CHAPTER 2 Literature Review 

 

2.1 Electric vehicles 

The electric vehicle (EV) is claimed to have the potential to reduce GHG emission (Casals et 

al., 2016; Hawkins et al., 2012; Wu et al., 2018) and peak-shaving (Kempton and Tomić, 2005; 

Guille and Gross, 2009; Lee et al., 2017). As mentioned in Smith et al. (2011), EV is seen as having 

potential for reducing oil dependency and GHG emissions in transportation use, and in Martin and 

Shaheen (2011), car-sharing is reported to have the ability to reduce GHG emissions as a whole. 

The benefit of EV could be enlarged by the combination with carsharing system or Vehicle-to-

Grid (V2G) system. Cocca et al. (2019) designed an electric free floating car sharing system, and 

the result shows few charging station are enough to make the system self-sustainable. Luè et al. 

(2012) describe the electric vehicle-sharing system as a green move. Lemme et al. (2019) also 

suggests the adoption of EV in car sharing system could play an important role in sustainability. 

Fleury et al. (2017) mentioned as carsharing allows individuals to benefit from a private car 

without all the usual constraints.  

As mentioned in Bishop et al. (2016), V2G may be used to store electricity generated off-peak, 

and it could be a great solution to cut the peak load (Lee et al., 2017). This viewpoint if supported 
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by many other researches, Mets et al. (2011) also mentioned the V2G system can provide the 

operating reserve 

However, the benefit will not be clearly expressed until EV reached a reasonable market share. 

The limited battery size restricts the promotion of EV. Many approaches have been made from 

different aspects to solve this issue.  

Hardman et al. (2018) summarized 5 key insights of consumer preference with EV, which 

includes infrastructure, the access to the charging infrastructure, the cost of charging and the 

impact of charging. Many studies focused on the influence of charging behavior and facility. 

Bailey et al. (2015) applied an analysis on Canadian new-vehicle buyers, and found out that public 

charger awareness is not a strong predictor for plug-in EV interest, other variables such as the 

availability of charging at home are more important. Franke and Krems. (2013) examined the 

charging behavior of EV users and found out they charged vehicle three times per week on average, 

drove about 38 km per day. Björnsson and Karlsson. (2015) suggests the availability of charging 

infrastructure at work places would encourage commuters to be early adopters for EV. Xi et al. 

(2013) developed a simulation-optimization model which can determine the location of EV 

chargers. Schücking et al. (2017) unlike the previous mentioned studies, focused on the different 

charging strategies for EV in Germany.  

Other studies focused on the driving distance of EV. Niklas et al. (2020) examined the usage 

data in Germany and California, and found out EV is used similar as conventional vehicles for 
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long-distance travel (>100 km). In the case of Beijing, Shi et al. (2019) suggested that with home 

charging and existing public charging infrastructure, the existing EV is feasible to replace a 

significant portion of gasoline vehicles. Similar result is also obtained in Pearre et al. (2011), the 

analysis shows even with limited range, electric vehicles could provide a large fraction of 

transportation needs. Melliger et al. (2018) conducted research to understand the impact of range 

limitations in Switzerland and Finland, the result shows the prevalent EVs in 2016 can already 

meet 85-90% of the national trips. 

Considering the environmental benefits of using EV as well as the peak-shaving potential, it 

is possible to vigorously promote the use of it to replace the conventional vehicles. However, when 

it comes to a specific user, whether the current limited battery range is enough for daily travel 

demand still requires basic analysis on the distance. 

 

2.2 Distribution of daily travel distance 

 As mentioned above, to popularize the EV against its limitation, more studies focused on 

driving pattern, especially in terms of daily travel distance for multiple purposes. Hao et al. (2016) 

studied the driving distance to optimize the charging pattern for location and type of charging 

infrastructure selection. Khan and Kockelman (2012) analyzed the Seattle household driving data, 

and compared the driving cost between conventional vehicles with plug-in EV. 
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The early study conducted by Greene (1985) estimated the daily travel distance and the 

implications for limited range vehicles, discussed thoroughly on gamma distribution. Normal 

distribution is used in Neubauer et al. (2012) and the result shows distance with a batter EV has a 

strong impact on the cost-optimal range, charge strategy and battery replacement schedule. 

Weibull distribution is applied in Traut et al. (2011) to driving distance, and confirmed by Plötz et 

al. (2017) as better performed than lognormal and gamma distribution, it yields reliable estimates 

for EV applications. 

Other studies did not utilize conventional single distribution. Pearre et al. (2011) examined 

the distribution of maximum daily mileage to optimum the EV daily range needs, but didn’t use 

any distribution function as previous studies. Tamor et al. (2013) characterized the individual trip 

chain length frequency can be represented by a mixture distribution combined by an exponential 

and Gaussian distribution. A more complex mixture model is applied in Li et al. (2016), the study 

divided drivers into 9 groups so that the diversity of travel demand of different drivers can be 

examined for the design of a proper EV battery size.  

 

2.3 Explanatory variables 

The study of distributions for driving distance reveals the pattern and regularity of driving, 

but does not explain the cause of the regularity. Holz-Rau et al. (2014) studied driving distance 

along with other explanatory variables such as population density and personal information by 
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ordinary least squares (OLS) regression, the result shows the inhabitants of city with lower 

population and lower density would travel longer than the inhabitants of city with higher 

population density. In this way, the study of explanatory variables could help in understanding the 

reason of different driving distance patterns. 

Many different factors are used as explanatory variables have been discussed for better 

understanding in driving behavior. As mentioned in Manaugh et al. (2010), the socioeconomic 

factors have a statistically significant correlation with commuter distance, it could underscore the 

importance of home-work location with respect to urban form and job accessibility. Additionally, 

other factors may also play important role in travel behavior. In the early study by Niemeier and 

Morita (1996), gender is focused to distinguish the different travel behavior, women tend to spend 

more time on shopping and family support activity duration than men.  

A case study in Michigan conducted by Meinrenken et al. (2020) attempts to optimize the EV 

range by studying driving distance, the research considers the distribution of charge distance by 

different age of drivers, the result shows drivers aged over 55 have a higher peak in the distribution 

compare to other age group. Moreover, Onishi (2020) pointed out elderly drivers have unique 

driving characteristics such as physical condition and cognitive factors. Morgan and King (1995) 

pointed out that elderly are more likely to have cognitive, motor and sensory perceptual deficits 

affecting their driving performance. Thus, elements like physical condition, cognitive impairment 

and visual acuity are more focused when studying the behavior of elderly drivers.  
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The Trail Making Test (TMT) and Mini-Mental State Examination (MMSE) are widely used 

to assess the driving ability (Freund et al., 2008; Takahashi et al., 2017). TMT provides information 

on visual search, scanning, speed of processing, mental flexibility and executive functions, it is 

used to measure the cognitive processing speed and load (Arnett and Labovitz, 1995; Horikawa et 

al., 2009). TMT consists of part A (TMT-A) and part B (TMT-B), TMT-A requires individual to 

draw lines sequentially connecting 25 encircled numbers, TMT-B requires individual must 

alternate between numbers and letters (Tombaugh, 2004). Instead of directly using the score of 

TMT-A and TMT-B, many studies utilized the difference score between TMT-A and TMT-B 

(Reitan and Tarshes, 1959; Klesges, 1984), while Golden et al. (1981) utilized a ratio of TMT-B to 

TMT-A. Both difference score and ratio could be used to measure the cognitive status.  

The Mini-Mental State Examination (MMSE; Folstein et al., 1975) is another popular clinical 

screening tool for cognitive impairment, it measures orientation to time and place, immediate recall, 

short-term memory, calculation, language, and constructive ability (Molloy et al., 1991). In the 

early study of prediction and assessment of driving performance for drivers diagnosed with 

probable Alzheimer’s Disease, MMSE was found to be a significant predictor of final on-road 

result (Fox et al., 1997). Freund et al. (2005) applied MMSE to elderly drivers and compared the 

score with a self-rated driving evaluation performance.  

Visual acuity is another element to evaluate driving ability, it is required procedure to obtain 

a driver’s license (Keeffe et al., 2002). Wood et al. (2010) investigated the effects of simulated 
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visual impairment on nighttime driving performance for young participants (aged from 18 to 36), 

while McGwin et al. (2000) evaluated associations between visual function and self-reported 

difficulty with relatively elder drivers (aged from 55 to 85). 

The psychological thinking is gaining more attention as another aspect of influencing driving 

behavior. The Zuckerman’s (1994) Impulsive Sensation Seeking (ImpSS) theory is a well-known 

extensive research on the relationship of personality traits. Jack and Ronan (1998) applied ImpSS 

in order to show the personality differentiated between high- and low-risk sport participants. It is 

used in studying the behavior of gambling activities (McDaniel and Zuckerman, 2003) and other 

risk behavior such as alcohol, cigarette and drug use (Robbins and Bryan, 2004). Evans et al. (2006) 

also applied ImpSS to study the smoking and caffeine intake behavior, and it is also associated 

with Parkinson’s disease. In the field of transportation, the ImpSS, as a subscale of the Zuckerman-

Kuhlman Personality Questionnaire (ZKPQ) is applied to study eco-driving tendency behavior in 

Zuraida and Widjaja (2017), it plays an important role in confirming risky behaviors such as risky 

driving (Zuckerman and Aluja, 2015). The 19 items in ImpSS can be divided into 2 subscales as 

“Impulsive” and “Sensation Seeking” (Fernández-Artamendi et al., 2016). The Psychosocial 

Purpose of Driving Scale (PSPDS) is another measurement of psychological thinking for drivers, 

it is measured to link the young drivers’ psychosocial driving purpose with risky driving behavior 

(Scott-Parker et al., 2015). The purpose of driving has been studied by many researchers (Tseng, 

2013; Scott-Parker et al., 2015), PSPDS is evaluated with 7 driving purpose items for young 
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drivers in Scott-Parker et al. (2015). 

The explanatory variables that has been studied for driving behavior could be concluded as 

socioeconomics, aptitude test result and psychological status. 

 

2.4 Survival model 

As mentioned above, the study of DTD could be conducted by utilizing distribution functions, 

therefore, it would lack the consideration of other explanatory variables. The regression model, on 

the other hand, could help in considering the effect on DTD by other variables, but it ignores the 

regularity of DTD itself. In this way, survival model could cover both considers. 

The survival model is classified as nonparametric, semiparametric and fully parametric in 

Washington et al. (2011). The model is usually used to study the duration data, and hazard function 

could be represented as: 

ℎ(𝑡𝑡) = 𝑓𝑓(𝑡𝑡)/[1 − 𝐹𝐹(𝑡𝑡)]  (2.1) 

where, 𝑡𝑡 is a random parameter as the duration, 𝑓𝑓(𝑡𝑡) is the probability density function for 

𝑡𝑡, and 𝐹𝐹(𝑡𝑡) is the cumulative density function for 𝑡𝑡. 

The nonparametric model is distribution-free, which means it doesn’t have an assumption on 

the distribution function, and is not covariate with other explanatory variables. Therefore, the 

application of such model is very limited. The semiparametric assumes the dependent variable is 



24 

 

covariate with other explanatory variables, but not limited to the distribution function. This 

approach was developed by Cox (1972). The fully parametric model assumes both a distribution 

function on the duration data, and a parametric assumption on the covariates.  

Survival analysis has enjoyed widespread use in many fields, developing an understanding of 

the factors that determine the time that transpires until or between the occurrence of specific events 

is often an important analytic focus (Hensher and Mannering, 1994). In the field of transportation, 

both time and distance is used as study subject of survival analysis. 

Guo et al. (2012) applied survival analysis to study the influence of on-street parking on travel 

time, the variables as effective lane width and parking maneuvers have significant impact on the 

travel time. In the field of transportation, the study of time is always safety problems. Haque and 

Washington (2014) studied the reaction times of young drivers distracted by mobile phone 

conversation. Speed reduction time of drivers at bicycle crossroads is studied by Bella and Silvestri 

(2018) to avoid the occurrence of accidents and improving the cyclist safety. In Ali et al. (2019), 

the gap time for lane-changing is modelled using a survival model to examine the effects of the 

connected vehicle environment on safety during lane-changing. The study of traffic incident 

duration could help in the implementation of strategies to reduce incident duration, leading to 

reduced congestion and secondary incidents (Hojati et al., 2013). In addition to the traffic research, 

Hasan et al. (2013) examines the hurricane evacuation time with a random-parameter hazard-based 

model. 
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Compared to the massive studies of time using survival model in the field of transportation, 

the research on distance is still very limited. Anastasopoulos et al. (2012) conducted a conventional 

study to identify important factors that determine activity-based travel distance, that can help to 

better understand travel behavior in terms of trip distance. Ding et al. (2017) focused on the 

commuting distance, investigated the influences of environment characteristics and individual 

factors. As mentioned above, the electric vehicle has a limitation of driving distance due to the 

battery size. Thus, the transport habits of new energy vehicle users may also change, and it has 

been studied by Anastasopoulos et al. (2017), the study found it to be affected by variables such 

as traveler socio-economic and demographic characteristics and trip purposes. The spatial hazard 

based model used the “distance to a vehicle” as the prospective decision on choice set formation 

behavior in selecting vehicles, and provided a starting point for carsharing organizations to 

optimize their pod locations (Jian et al., 2016). 
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CHAPTER 3 Characterization of daily travel distance of university 

carsharing system 

 

The usage pattern differs from various type of users. The carsharing system hold quite unique 

pattern since the vehicle is used by more than one user. The driving habits of university members 

would be more related to the work-rest pattern, since the university usually close during weekend.  

Therefore, this chapter explains the characteristic of DTD of university carsharing system. 

Due to the environmental consider, the quantitative driving pattern in in terms of distance could 

help in determining the Electric Vehicles (EV) to replace the original vehicles in the sharing system. 

Thus, with the help of Vehicle-to-Grid (V2G) system, the peak shaving potential is also discussed 

in this chapter. Addition to the benefit of electricity, the CO2 emission reduction could also be 

achieved by EV, and the amount is also discussed in this chapter. 

 

3.1 Data descriptive analysis 

The data set is collected from Nagoya University carsharing system. The carsharing system is 

only available to university members. Nagoya University is a national university located in the 

capital of Aichi prefecture. The campus holds 3.2 km2, located in the Nagoya City 
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(35°09′17″N 136°58′01″E). The university carsharing system records the usage data of the shared 

vehicles and is used in this study. The fleet of carsharing system hold 54 general purposed vehicles, 

and are used by employees including administrative workers and researchers. The fleet include 

two diesel vehicles, five hybrid vehicles, and the rest are gasoline vehicles, and is shown in Figure 

3.1. The carsharing system would record the information of vehicles such as department, vehicle 

ID, vehicle type, and the basic usage information as the time of check-out and check-in, the 

odometer of check-out and check in. However, not all the vehicles have the information recorded. 

In this way, we can only analyze the data collect with 48 vehicles from October 2014 to September 

2015. 

 

Figure 3.1 Number of vehicles for each type 

These vehicles belong to different departments, and only department employees can use the 

vehicles in that department. Therefore, the vehicles are not completely shared by all university 

members despite their department. Table 3.1 illustrates the number of vehicles belong to each 

department. The number of vehicles is not allocated in proportion to the number of personnel in 
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the department. Even though the school of engineering holds the most employee members, but it 

only holds two vehicles. This would lead to an unbalance of usage frequency in vehicles. 

The driving distance for each data set could be very different, since the vehicle belonging and 

user are various. Figure 3.2 illustrates the average Daily Travel Distance (DTD) conducted on 

different weekdays for the first data set. The average DTD is quite similar among working days, 

but users tend to make long trips during weekends. Additionally, the difference in the use rate 

between weekdays and weekends is in line with the work-rest pattern of people. 

Table 3.1 Number of vehicles belong to each department 

Department Number of vehicles 

Secretariat 8 
Museum 1 

Faculty of Science 5 

Graduate School of Environmental Studies 12 
Research Institutes 10 

Faculty on Liberal Arts 3 
Physical Education Center 1 

School of Informatics and Science 2 

School of Agricultural Science 10 
School of Engineering 2 
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Figure 3.2 The average DTD and use rate for each vehicle by different days in a week 

Figure 3.3 illustrates the average DTD and daily use rate of each vehicle in different month of 

a year, the use rate is calculated as the number of trips divided by the number of vehicles that is 

used during that day. The use rate in January is the lowest, which is understandable because of the 

new year break. The use rate in July is the highest, but the average DTD is relatively short, which 

implies university members tend to travel frequently but short distance in July. On the contrast, the 

use rate reaches a local valley in May, but the average DTD is relatively long.  

 

Figure 3.3 The average DTD and daily use rate of each vehicle in different month 
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(a) By day of week 

 

(b) By month of year 

Figure 3.4 The average use rate for all vehicles in different time of a day 

Figure 3.4 illustrates the average use rate for all vehicles among different time of a day. It 
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counts percentile of the vehicle in use during that hour of the day in a week or a month. The use 

rate in both Figure 3.4 (a) and Figure 3.4 (b) reaches a local minimum in 12:00, this is consistent 

with people’s work-rest pattern, it is lunch time for most of people. Two peaks in the use rate are 

clear shown in both figures, 10:00 and 13:00 respectively. 

Similar as mentioned above, the use rate during weekdays is higher than in weekend. In Figure 

3.4 (b), about 7% of the trips in 13:00 are made during September, the number of vehicles in use 

is the highest for all the 24 hours.  

 

Figure 3.5 Histogram of daily travel distance during 4522 of the 4586 driving days* 

*Because only 64 driving days are distributed between a DTD of 500 and 1600 km, the figure 

only shows the DTD within 500 km. 

Figure 3.5 gives an overall image of the DTD in the carsharing system. The total driving days 

are 4586 for 48 vehicles, but since 98.6% of them are less than 500km, thus the figure only shows 

the trips within 500 km. As shown in Figure 3.5, the trips reach to a peak at 10 km, and another 

slight peak at 150 km. More than 82% of the trips are actually within 100km, which implies a 
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battery size of larger than 100 km could cover about 80% of the travel demand in this carsharing 

system. 

 

3.2 Distribution analysis 

The distribution functions used in this chapter are normal, lognormal, gamma, exponential 

and Weibull. The probability density function for each can be represented as: 

Normal: 𝑓𝑓(𝑥𝑥|𝜇𝜇,σ2) = 1
√2𝜋𝜋σ2

 𝑒𝑒−
（𝑥𝑥−𝜇𝜇）

2

2σ2   (3.1) 

Lognormal: 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥
∙ 1
σ√2𝜋𝜋

 exp (− (ln 𝑥𝑥−𝜇𝜇)2

2σ2
)  (3.2) 

Gamma: 𝑓𝑓(𝑥𝑥) =
(𝑥𝑥−𝜇𝜇𝛽𝛽 )𝑘𝑘−1exp (−𝑥𝑥−𝜇𝜇𝛽𝛽 )

𝛽𝛽𝛽𝛽(𝑘𝑘)
    𝑥𝑥 ≥ 𝜇𝜇;   𝑘𝑘,𝛽𝛽 ≥ 0  (3.3) 

Exponential: 𝑓𝑓(𝑥𝑥;  𝜆𝜆) = �𝜆𝜆𝑒𝑒
−𝜆𝜆𝑥𝑥            𝑥𝑥 ≥ 0,

0                𝑥𝑥 < 0.
  (3.4) 

Weibull: 𝑓𝑓(𝑥𝑥;  𝜆𝜆,𝑘𝑘) = �
𝑘𝑘
𝜆𝜆

(𝑥𝑥
𝜆𝜆
)𝑘𝑘−1𝑒𝑒−(𝑥𝑥/𝜆𝜆)𝑘𝑘      𝑥𝑥 ≥ 0,
0                 𝑥𝑥 < 0.

  (3.5) 

where, 

𝜇𝜇 is the location parameter; 

σ is the standard deviation; 

𝛽𝛽 is the scale parameter; 
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𝑘𝑘 > 0 is the shape parameter; 

𝜆𝜆 > 0 is the rate parameter. 

The distribution functions are used to test with the DTD data of each vehicle, each vehicle 

may fit with one or more distributions. P-value estimated by Kolmogorov-Smirnov test (K-S test) 

(Simard et al., 2011) is used here to determine whether the DTD of a certain vehicle is subject to 

a certain distribution form with a 95% confidence level. The result of all vehicles for fitting each 

distribution is shown in Table 3.2, and an example of vehicle 3810 is given in Figure 3.6.  

Table 3.2 All combinations of fitting distribution in terms of p-value* 

normal lognormal gamma exponential Weibull 
case 

8 21 13 4 20 
× × × × × 20 
○ × × × × 1 
× ○ × × × 7 
○ × × × ○ 1 
× ○ × × ○ 6 
× × ○ × ○ 2 
○ × ○ × ○ 2 
× ○ ○ × ○ 4 
× × ○ ○ ○ 1 
○ ○ ○ × ○ 1 
○ ○ ○ ○ ○ 3 

*○ represents certain vehicles can be subject to this distribution,  

× represents certain vehicles cannot be subject to this distribution. 

The lognormal distribution performs best among 5 functions; 21 vehicles could fit this 

distribution with more than 95% of confident level. The Weibull comes the second best, only 1 
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vehicle less than lognormal. Exponential distribution fits the DTD of carsharing system the worst, 

only four vehicles are found to be suitable for this distribution. Additionally, there are three 

vehicles could fit all the distributions. However, there are 20 out of 48 vehicles cannot be fitted by 

any distribution function. Thus, the further study of distribution fitting could be conducted. 

To improve the distribution fitting of DTD for each vehicle, mixture model used in this study 

as a combination of two lognormal distribution functions, and its probability density function (PDF) 

for a certain vehicle can be explained as followed: 

𝑓𝑓(𝑟𝑟𝑡𝑡) = 𝛼𝛼 ∙
𝑒𝑒𝑥𝑥𝑒𝑒 �− [ 𝑙𝑙𝑙𝑙(𝑟𝑟𝑡𝑡) − 𝜇𝜇1]2

2𝜎𝜎12
�

𝑟𝑟𝑡𝑡�2𝜋𝜋𝜎𝜎12
+

(1 − 𝛼𝛼)𝑒𝑒𝑥𝑥𝑒𝑒 �− [ 𝑙𝑙𝑙𝑙(𝑟𝑟𝑡𝑡) − 𝜇𝜇2]2
2𝜎𝜎22

�

𝑟𝑟�2𝜋𝜋𝜎𝜎22
 (3.6) 

where 𝑟𝑟𝑡𝑡 is the daily travel distance for day t; 

α is the mixing proportion of component α∈[0,1]; 

𝜎𝜎𝑖𝑖 is the standard deviation of i-th mixture component; 

𝜇𝜇𝑖𝑖 is the mean of i-th mixture component. 

The Akaike information criterion (AIC), where AIC =－2LL+2(p+1), p is the number of the 

model parameters, and LL is the log-likelihood function, and can be delivered as follows: 

LL = � log 𝑓𝑓(𝑟𝑟𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

 (3.7) 

The best fitted form among five distribution functions is selected for each vehicle based on 
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AIC, and the result is shown in Table 3.3. The mixture model does fit better than other single 

distribution forms, 39 out of 48 vehicles are best fitted by the mixture model. Yet, there are still 6 

vehicles fit the Weibull distribution best among 6 alternatives. In this way, we could select one 

best fitted form for each vehicle, and the best fitted form is used in the following study, which can 

help in determine the suitable EV for substitution, and therefore, the emission and cost change 

could be estimated as well as the electricity saving potential.  

Table 3.3 Summary of goodness of fit according to AIC 

normal lognormal gamma exponential Weibull mixture 

0% 4.17% 0% 2.08% 12.50% 81.25% 

 

3.3 EV adoption 

The result of distribution analysis is used here to determine the travel demand for each vehicle, 

in order to select a type of EV with a suitable driving range which can satisfy the driving demand. 

This study does not require that all conventional vehicles must be replaced with EV. Taking into 

account the needs of different driving distances, some of the vehicles in the original carsharing 

system can be retained and used especially for long-distance driving.  

There is a definite difference between the observed data and best fitted form on the driving 

demand, it is shown in Figure 3.6. The best fitted form is showing a quite similar trend with 

observed data within 150 km, but the two dispersion after 200 km. As shown in Figure 3.6, an EV 
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with a 150 km driving range could meet the need of 50% vehicles according to the observed data, 

but based on the best fitted form, it requires a 165 km driving range to meet the driving need of 

50% vehicles. Therefore, the number of vehicles that can be replaced would differ based on the 

battery size of EV. 

 

Figure 3.6 The percentage of replacement by the vehicle with different driving capacity in 

95% satisfaction level according to the best fitted form and observed data 

Two different types of EV are used here, the MITSUBISHI i-MiEV (Japanese cycle) (Type 1) 

and Tesla Model 3 (Type 2). The basic information and the number of replacement is shown in 

Table 3.4. Type 1 with a 160 km driving range can replace almost 48% of the vehicles, and with 

the larger battery capacity, Type 2 can replace more than 60% of the vehicles with a 350 km driving 

range. 

However, the larger battery capacity doesn’t stand for a better performance on driving 

considering the electric consuming. As mentioned in Table 3.4, Type 1 can drive 10 km when every 
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kWh of electricity is consumed. Based on the electricity price of Nagoya University, Type 1 has 

lower driving cost than Type 2. Therefore, the cost of substitution should be re-considered based 

on not only the vehicle price, but also the driving price. 

Table 3.4 EVs as alternatives for substitution 

 Driving performance (km/kWh) Driving cost (yen/km) Substitution rate 

Type 1 10 1.690 47.92% (23) 

Type 2 7 2.414 62.50% (30) 

 

3.4 Cost change for substitution 

The two scenarios of substitution plan with Type 1 and Type 2, could lead to different cost. 

The Scenario 3 consists of 23 Type 1 EV and 7 Type 2 EV. The change of cost include the travel 

cost and purchase cost, and is shown in Table 3.5. The travel cost of EV is calculated based on the 

driving performance (km/kWh) in Table 3.4 as well as the electricity price (yen/kWh). The driving 

cost and purchase cost of EV in Scenario 3 is weighted average of 30 EV. The electricity price is 

provided on the Nagoya University’s website of energy use.  

As Table 3.5 shown, 23 conventional vehicles can be replaced by Type 1, these vehicles may 

have different fuel efficiency, thus the average travel cost of these vehicles is calculated based on 

their gasoline price and different fuel efficiency. The average travel cost of conventional vehicles 

is 10.2 yen/km, while Type 1 only cost 1.69 yen for every kilometer. 
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Table 3.5 Cost Change for Two Substitution Scenarios 

Items  Scenario 1 Scenario 2 Scenario 3 

Number of substition conventional vehicles 23 30 30 

Average travel cost of conventional vehicles (yen/km) 10.193 10.167 10.167 

Travel cost of EV (yen/km) 1.690 2.414 1.859 

Average cost of conventional vehicles (10,000 yen) 295.08 279.30 279.30 

Cost of each EV (10,000 yen) 300.03 380.00 318.69 

Average DTD on observed data (km) 27.067 36.678 36.678 

Average traveled days in a year on observed data 128.609 115.033 115.033 

However, since Type 2 could replace more conventional vehicles, the average travel cost is 

calculated based on more conventional vehicles. As shown in Table 3.5, the average travel cost in 

Scenario 2 is cheaper than Scenario 1, but the travel cost of EV is more expensive in Scenario 2, 

so as the purchase cost. Both the purchase cost of conventional vehicles and EV are listed in Table 

3.5, and the average DTD for each vehicle as well as the traveled days are also shown in the table. 

As for Scenario 3, the first 23 conventional vehicles with shorter DTD is replaced by Type 1, the 

rest 7 vehicles are replaced by Type 2. Therefore, the replaceable conventional vehicles are same 

with in Scenario 2, but the statistics for EV are calculated as weighted average of all EV. 

Even though the purchase cost for both types of EV is more expensive than conventional 

vehicles, it would only take approximately 1.67 years for the travel cost to be even with the extra 

cost for purchasing in Scenario 1. However, since the purchase for EV in Scenario 2 cost more 

than in Scenario 1, it would take 30.79 years to reach the same goal. In this way, Scenario 1 is 

commercially more benefit efficient than Scenario 2. In the case of Scenario 3, the purchase cost 
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would be higher than Scenario 1 since 7 Type 2 EV are added in this scenario. It would take 11.37 

years for the travel cost to be even with the extra purchase cost.  

 

3.5 Available electricity for peak-shaving 

As shown in Table 3.5, the vehicles that could be replaced are only in use for about 1/3 days 

in a year, the rest of time, they were just parked in university. Therefore, it is possible to use them 

as electricity supply when they are parked. The electricity for charging EV is calculated based on 

the DTD observed data of the replaceable conventional vehicles, the result is shown in Figure 3.7. 

Here, we assume every EV would be charged immediately after check-in. 

As shown in Figure 3.7, both types require the most of electricity for charging at17:00, and 

the electricity need reaches a slight peak at 12:00. From 2:00 to 7:00, the both types hardly need 

to be charged. This is because most EVs are already fully charged during this period. Both types 

require five hours to go from dead to fully charged. Once the electricity is charged to the EV, it 

could be discharged through the Vehicle-to-Grid (V2G) system. The discharging speed is 10 kWh 

per hour for both types (Erdogan et al., 2018). 

The amount of consumed electricity is recorded every half hour, and is displayed on the 

university website. We collected 20 days (from Jun 20th 2017 to Jul 9th 2017) of electricity usage 

record from the website, and took the average of each hour’s electricity consumption data for these 
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20 days as shown in Figure 3.8. The hour-average electricity consumption reached a peak at 14:00 

with 13561.25 kWh.  

 

Figure 3.7 The average electricity for charging EV after substitution in every hour of a day. 

 

Figure 3.8 Hourly average electricity consumption during observed 20 days. 

Since our goal of utilizing V2G with EV is peak-shaving, thus, we investigated the electricity 

providing potential at 14:00 and is shown in Table 3.6. Nagoya University (NU) is trying to reduce 

the electricity use, especially during the peak time, and it has made some progress. According to 

NU announcement, it has reduced 52 kWh of electricity, which is 0.3% and the 0.3% reduction of 
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electricity use is already helpful of peak-shaving. In our scenarios, both types could provide more 

than 150 kWh of electricity during the peak hour, which is a big step on peak-shaving. Even though 

only 7 Type 2 EV are added into the substitution plan, the available electricity could reach to almost 

same amount as in Scenario 2. In this way, considering the purchase cost, using both type of EV 

would be more cost-benefit than Scenario 2. 

Table 3.6 The average available electricity provided by EV at peak-hour (14:00) in each 

month (unit: kWh) 

Month Scenario 1 Scenario 2 Scenario 3 

JAN 186.76 250.97 250.95 
FEB 178.93 246.07 246.07 
MAR 179.46 241.61 241.40 

APR 175.77 238.00 237.44 
MAY 181.53 246.77 246.36 

JUN 170.52 232.00 231.86 
JUL 170.97 230.00 230.00 
AUG 183.71 243.23 242.74 

SEP 174.00 230.67 230.67 
OCT 171.61 228.39 228.39 

NOV 182.00 238.67 238.67 
DEC 186.64 247.74 247.61 

 

3.6 Reduction of carbon dioxide 

EV is not really zero emissions, it consumes electricity, and carbon dioxide emissions are 

generated during the production of electricity. As mentioned in Tettehfio et al. (2014), every liter 



42 

 

of petrol produces 2.3 kg of CO2 when burnt. Additionally, the Ministry of Environment, Chubu 

Electric Power, a Japanese electric utilities provider, for every kilowatt-hour of electricity 

produced, 0.496 kg of carbon dioxide is produced.  

In this way, the emission could be calculated based on the observed data, and could be 

compared with two scenarios. The original carsharing system emitted 46133 kg of CO2 emission 

over a year. In Scenario 1, after 23 conventional vehicles are replaced by Type 1 EV, the carsharing 

system could reduce 19% of the emission. As for the Scenario 2, it can reduce emissions by 24%. 

The Scenario 3 could reach to the highest reduction in the CO2 emission by 27.6%. This is because 

the emission of the remaining conventional vehicles is the same, so the reduction in the replaceable 

conventional vehicles is same with Scenario 2. However, the 23 vehicles with shorter DTD would 

emit lower CO2 than using Type 2 in Scenario 2, so the Scenario 3 is the most environmental 

benefit.  

 

3.7 Conclusion and limitation 

In this chapter, we first tested the DTD for each vehicle with five distribution functions, and 

determined the lognormal distribution is the best fitted among 5 alternatives. However, there are 

still 20 vehicles cannot fit with any distribution function, so we applied a mixture model with 2 

lognormal components. The result shows the mixture model performed the best overall, but it is 

not the best fitted form for all the vehicles. The result of AIC implies 39 vehicles performed the 
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best with mixture model, but there are still 9 vehicles performed better with other single 

distribution functions.  

The determined best fitted form for each vehicle is used to identify whether a conventional 

vehicle in the carsharing system could be replaced by EV. Two types of EV is used here as the 

alternative for conventional vehicles. Type 1 could replace 23 vehicles as Scenario 1, and Type 2 

could replace 30 conventional vehicles as Scenario 2. However, the Scenario 3 used both types of 

EV, and also can replace 30 vehicles. Therefore, the travel cost and purchase cost would be 

different, so as the electricity providing potential. Type 1 is found to be more cost beneficent 

compared to Type 2, it would only take approximately 1.67 years for the travel cost to be even 

with purchase cost. However, if the university wants to put more effort on environmental benefit, 

Scenario 3 can actually reach the most amount of reduction in the emission. Additionally, even 

though the Scenario 3 is not economically better than Scenario 1, the purchase cost would be made 

even by the driving cost for 11.37 years, which is 1/3 time as in Scenario 2. In this way, Scenario 

3 could be a better option if the university wish to accomplish more reduction in the emission and 

cost less in the purchase. 

Based on the electricity usage data, the electricity amount provided by EV is determined for 

both type of EV. With the help of V2G system, both type could reach the goal of peak-shaving. 

The larger amount of EV would definitely lead to more available electricity, but the amount is 

quite close to each other as in Scenario 2 and Scenario 3. 
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This chapter explores the possibility of replacing the conventional vehicles with EV in a 

carsharing system. The benefit of substitution is discussed on various aspects including cost-

benefit, peak-shaving and emission reduction. In order to better understand the reason of drivers’ 

preference toward driving distance, we also applied regression model to link the parameters of 

mixture model with other explanatory variables. However, the result didn’t reach out expectation, 

this may be due to the vehicles are shared by multiple users, the driving characteristics in terms of 

distance cannot be explained uniformly. The result of regression is shown in Appendix A. Driving 

distance is not the only factor that prevents people from using EV. The promotion of EV requires 

more studies of people’s driving behavior, and their adaptability of EV should be discussed on 

more individual level.  
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CHAPTER 4 Characterization of DTD for private vehicles: a case 

study in Toyota City 

 

4.1 Introduction 

As mentioned in the last chapter, the promotion of EV requires more understanding on driving 

behavior. The study of people’s driving habits especially in terms of distance, and the reason to 

such certain habit could help us to better promote EV. The certain type of EV with limited driving 

range could be perfectly meet the daily driving demand of some people. However, the DTD of 

shared vehicles maybe difficult to be explained uniformly since the drivers are various.  

In this way, this chapter utilized a data set collected from private vehicles, and the DTD of 

each vehicle could be better analyzed with other explanatory variables.  

This chapter first tests the DTD of private vehicles with various types of mixture model. To 

better understand the characteristics of drivers’ behavior, we applied survival model to link the 

DTD with other explanatory variables. The result shows vehicle and personal information play 

important roles in driving distance. The panel survival model is also applied to the data set in order 

to check the individual difference, and is confirmed by significant scale parameter for constant. 

The result could be utilized to determine the characteristics of target customers of EV. 
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4.2 Data descriptive analysis 

The data set is collected from individuals who work or live in Toyota City, it is the largest city 

in the Aichi prefecture in terms of area. Base on the Toyota City website, the city is located in 

Aichi prefecture (137°09′E, 35°05′N), it occupies 17.8% (918 km2) of the geographic area of Aichi 

prefecture, 70% of the city area is occupied by forest. By November 2020, Toyota City has a 

population of 422,858, of which the male to female ratio is 1.09:1, more than 20% of the population 

is elderly people (aged more than 65) the total household number is 182,600. Compare to the 

largest city Nagoya, it is the second largest in the Chukyo metropolitan area in terms of population, 

the ownership of ordinary motor cars is relatively large, and the number of the railway stations is 

relatively small (Yang et al., 2015). The city is characterized by a relatively low population density 

and highly dependent on private vehicles since the railway system is not sufficient (Yang et al., 

2018). 

This data set collected the driving record from 131 individuals who live or work in Toyota 

City. The device is equipped on their vehicle to collect the real-time GPS data. Thus, we believe 

the device would record the trip automatically during driving. Additionally, we also collected basic 

personal information and vehicle information as shown in Table 3.2. 

The data is collected from April to September in 2011, the total observation period is 183 days. 

The data holds 15,118 observed driving days for 131 individuals in total, of which 182 observation 

belong to the same individual, and the least observation for one user holds only 8 driving days. 
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The weather information is collected based on the date of GPS data, and matched with the data on 

Japan Meteorological Agency.  

Table 4.1 Descriptive statistics of the selected variables *. 

Variables Mean (or %) Minimu
m Maximum 

Daily average temperature (°C) 22.05 7.7 29.9 

Daily precipitation (mm) 6.78 0 97 

Daily average wind speed (m/s) 1.56 0.6 3.8 

Weekday dummy (1 if weekday, 0 otherwise) 69.95% 0 1 

Engine size (100 cc) 19.19 9.9 34.5 

Fuel efficiency (jc08-mode, km/L) 18.53 8.8 29.6 

Price of vehicle (100,000 yen) 23.42 10.6 33.5 

Vehicle type (1 if hybrid vehicle, 0 otherwise) 32.37% 0 1 

Driver’s age 45.70 23 72 

Gender (1 if male, 0 otherwise) 90.84% 0 1 

Job description (1 if working in Toyota City government, 
0 otherwise) 55.73% 0 1 

Job description (1 if working for car manufacturer, 0 
otherwise) 20.61% 0 1 

Job description (1 if working for public facility, 0 
otherwise) 8.40% 0 1 

Job description (1 if working as company staff, 0 
otherwise) 6.11% 0 1 

Job description (1 if working for driving school, 0 
otherwise) 3.82% 0 1 

Job description (1 if working as association staff, 0 
otherwise) 3.82% 0 1 

Job description (1 if unemployed, 0 otherwise) 1.53% 0 1 

* The weather information and weekday dummy are based on 183 observation days; others are 

based on 131 individuals. 

The personal information includes age, gender and occupation. The ages of the participants 

range from 23 to 67, and only 12 are female. Among the participants, 98.5% had a fixed job, and 
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70.8% of the trips were during the weekday and usually considered as commuting trips. Thus, 

unlike the vehicles in the first data set, which are shared by multiple users, we believe the trips in 

the second data set are made by themselves. As the trips made during weekdays are considered 

roughly as commuting, and the weekend trips are considered as leisure trips. Additionally, more 

than half of the participants work for government office, and other 8% participants work for public 

facilities, which implies their driving pattern especially during the weekdays are quite fixed. Even 

though the commuting trips could be fixed since they have certain origin and destination, but small 

changes in the route choice during to the traffic and weather condition are very common.  

The vehicles used in this data set includes hybrid and conventional gasoline vehicle. There are 

only 7 different engine sizes in this data set, and ranged from 990 to 3450 cc. The fuel efficiency 

for each vehicle is measured by the Japanese Fuel Economy Standard JC08 test. 

 

Figure 4.1 Daily weather information during the observation period. 

The weather information is shown in Figure 4.1. As shown in Figure 4.1, the wind speed is 
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generally quite stable during the observation period, but there is an obvious growing up in the daily 

average temperature, the daily total precipitation is quite scattered. Toyota City has four distinct 

seasons and obvious weather changes. Based on the weather data (from 1981 to 2010) released by 

the Japan Meteorology Agency (JMA), September is both the second hottest and the wettest month 

of a year. The observation period spans the spring and summer, and includes September. This could 

help us in determining the impact of hot and humid weather on driving habits. 

 

4.3 Mixture model of DTD 

The mixture model in the last chapter is proved to be better performed for the DTD than other 

single distributions. Here, we still apply the mixture lognormal model first to the DTD data. 

However, the number of component is of limited to two components. The number of component 

is 𝑙𝑙, and the probability density function can be represented as: 

𝑓𝑓(𝑑𝑑𝑡𝑡) = �𝛼𝛼𝑖𝑖𝑒𝑒𝑥𝑥𝑒𝑒 �−
[ 𝑙𝑙𝑙𝑙(𝑑𝑑𝑡𝑡) − 𝜇𝜇𝑖𝑖]2

2𝜎𝜎𝑖𝑖2
� /𝑑𝑑𝑡𝑡�2𝜋𝜋𝜎𝜎𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

 (4.1) 

where,  

𝑑𝑑𝑡𝑡 is the daily travel distance for day t; 

𝛼𝛼𝑖𝑖 is the mixing coefficient, ∑𝛼𝛼𝑖𝑖 = 1, and 𝛼𝛼𝑖𝑖𝜖𝜖(0,1); 

𝜇𝜇𝑖𝑖1 is the mean of i-th mixture component; 
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𝜎𝜎𝑖𝑖 is the standard deviation of i-th mixture component; 

In order to evaluate the goodness of fit, the Akaike information criterion (AIC) is used here, 

where AIC =－2LL+2(p+1), p is the number of the model parameters, and LL is the log-likelihood 

function, and can be delivered as follows: 

LL = � log 𝑓𝑓(𝑑𝑑𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

 (4.2) 

We tested the data with mixture model from 2 components to 9 components, the total AIC for 

131 vehicles is keep decreasing until the model with 7 components, the AIC for all vehicles with 

8 and 9 components became larger than 7 components. Based on the AIC, the best fitted form 

could be selected for each vehicle. The result is show in Figure 4.2. Both 5 and 6 components share 

18% (23 vehicles) as the best fitted form. There are 28 out of 131 vehicles fit the mixture model 

with 7 components best, which made the mixture model as the best fitted form. One reasonable 

explanation is that people’s driving pattern may differ with the different day in a week.  

 

Figure 4.2 The percentile of best fitted form for each vehicle 
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The result implies the driving habit may be quite mixture on the distance, but it fails to give 

more detail information on the reason simply by the analysis of distribution. To look into the reason 

of different driving pattern, we must link the DTD with other explanatory variables. 

 

4.4 Survival model 

As we tried with regression model in Chapter 4 to link the DTD with explanatory variables, 

but the result shows the model is not working efficiently on the data. Therefore, we applied survival 

model in this chapter.  

As mentioned in Chapter 2, the survival model can be classified as nonparametric, 

semiparametric and fully parametric. Here, in order to link the distribution of DTD with other 

explanatory variables, fully parametric duration model is applied. However, as mentioned in Qi 

(2009), the fully parametric model has two different ways to link the explanatory variables with 

the dependent variable, one is the fully parametric proportional hazard (PH) model, and the other 

is the accelerate failure time (AFT) model. The former measures the effect of explanatory variables 

on the hazard, while the latter utilizes a log-linear form to measure the direct effect on the distance 

in our case. The log-linear form of the AFT model could be represented as: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑) = 𝜇𝜇 + 𝜶𝜶𝜶𝜶 + 𝜎𝜎𝜎𝜎 (4.3) 

where 𝑑𝑑  is the daily travel distance (DTD) in our study, 𝜇𝜇  is constant, 𝜶𝜶  is a vector of 
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estimable parameters, 𝜶𝜶  is a vector of explanatory variables, 𝜎𝜎  is scale parameter, 𝜎𝜎  is a 

random variable and assumed to be distributed with a certain distribution. Here, if 𝜎𝜎 is normally 

distributed, which means 𝑑𝑑 is log-normally distributed. The relationship of distribution of 𝜎𝜎 and 

𝑑𝑑 is shown in Table 4.2. 

Table 4.2 The distribution of 𝜺𝜺 and 𝒅𝒅 

The distribution of 𝜎𝜎 The distribution of 𝑑𝑑 

Logistic Log-logistic 

Normal Lognormal 

Extreme value (2 parameters) Weibull 

In this study, we applied log-logistic, lognormal and Weibull duration model to the DTD data, 

and since the data is collected from multiple users, which made it possible to test the individual 

difference as panel model. The intercept 𝜇𝜇 as mentioned in equation 5.2 is assumed to be normally 

distributed in the panel model to simulate the individual difference.  

 

4.5 Model result and discussion 

The model is conducted by NLOGIT 6.0 (Econometric Software, Inc.) is used in this study. 

To measure the goodness of fit, here we applied AIC and likelihood ratio (𝑋𝑋2), and the likelihood 

ratio can be expressed as: 
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𝑋𝑋2  =  −2[𝐿𝐿𝐿𝐿(𝜶𝜶) − 𝐿𝐿𝐿𝐿(0)] (4.4) 

where, 𝜶𝜶  is a vector of estimable variables, 𝐿𝐿𝐿𝐿(𝜶𝜶)  is the log-likelihood of the model at 

convergence, and 𝐿𝐿𝐿𝐿(0) is the log-likelihood of the model when all the estimable coefficient 𝜶𝜶 

is equal to 0. 

The Akaike Information Criterion (AIC) is used here, and can be expressed as 𝐴𝐴𝐴𝐴𝐴𝐴 =  2𝑘𝑘 −

2𝐿𝐿𝐿𝐿(𝜶𝜶), where k is the number of parameters. 

We first tested the DTD data with log-logistic, lognormal and Weibull distribution function. 

The parameters of distributions are shown in Table 4.3, and Figure 4.2 illustrates the shape of 

probability density function of three distributions. 

Table 4.3 Estimated parameters for the three distributions. 

Dependent Variable Logarithm of Daily Travel Distance 

Distribution Location Parameter Scale Parameter (𝜎𝜎) Log-Likelihood 𝐿𝐿𝐿𝐿(0) 

Lognormal 3.06 1.130 −23,322.8 

Log-logistic 3.12 0.580 −22,154.5 

Weibull 3.57 0.965 −22,539.7 

As shown in Table 4.3, the log-logistic model fit the DTD best among three distributions. In 

Figure 4.3, the distance within 200 km contains 98.62% of the total DTD data. The log-normal has 

the highest peak while Weibull model has the lowest. From the diagram, log-logistic also seems to 

be better fitted with the observed DTD data. 
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Figure 4.3 The probability density for the three distributions. 

The 95% quantile of DTD for each distribution is 90 km for Weibull, 103 km for log-logistic, 

and 129 km for lognormal. Both types of EV mentioned in last chapter could meet the need of 95% 

of the driving demand for this data set, which makes it possible to promote EV to the citizen of 

Toyota City. 

However, the adaptability could be different among various groups of people. The preference 

towards EV adaptable driving distance requires further study with other explanatory variables.  

Table 4.4 illustrates the result of pooled survival model with log-logistic, lognormal and 

Weibull duration. The pooled survival model results follow the same pattern of distribution result. 

The log-logistic duration model performed the best, followed by Weibull duration model. All the 

variables in log-logistic duration model reach 95% of confident level. However, there are four 

insignificant variables in the lognormal duration model, and five in the Weibull duration model.  

All of the variables for weather condition are significant in three duration models. The 



55 

 

consistent positive daily average temperature implies the higher temperature could drive people to 

longer distance trips. On the contrary, the daily precipitation and daily average wind speed are 

playing consistent negative effect on the DTD, which implies drivers in Toyota City tend to drive 

less during the heavy rain and wind condition. This is understandable since people may cancel 

their driving plan during terrible weather, or switch to an alternative destination nearby. The 

weekday dummy is another variable with negative effect on the DTD, and is significant in three 

pooled models. It indicates the drivers’ preference for longer distance trip during weekend, since 

the commuting trips during weekday are quite fixed, the weekend trip could be widely spread not 

only limited in Toyota City. 

Engine size and vehicle price are also significant in all three distribution duration models. The 

larger engine size lead to shorter DTD may due to the consideration of environment and driving 

cost. On the other hand, people who drive more expensive vehicles tend to driving longer distance 

based on the result in Table 4.4. Both fuel efficiency and vehicle type are insignificant in one of 

the three distribution duration models. Fuel efficiency is insignificant only in lognormal duration 

model, while vehicle type is insignificant only in Weibull duration model. The positive effect of 

fuel efficiency in the other two duration models implies Toyota citizen do consider the 

environmental effect when driving, people tend to drive longer if their vehicles have better 

efficiency. So as the vehicle type, hybrid users would drive longer than other vehicle types users.  
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Table 4.4 Estimation results for pooled survival model 

Dependent Variable: Natural Logarithm of 

Daily Travel Distance (km) 
Lognormal Weibull Log-Logistic 

Explanatory Variables Coef. P-value Coef. P-value Coef. P-value 

Constant 3.143 0.000 3.321 0.000 3.289 0.000 

Daily average temperature (°C) 0.004 0.014 0.003 0.002 0.004 0.002 

Daily precipitation (mm) −0.002 0.002 −0.003 0.000 −0.002 0.002 

Daily average wind speed (m/s) −0.060 0.003 −0.058 0.000 −0.041 0.041 

Weekday dummy (1 if weekday, 0 otherwise) −0.053 0.004 −0.255 0.000 −0.093 0.000 

Engine size (100 cc) −0.021 0.000 −0.019 0.000 −0.027 0.000 

Fuel efficiency (jc08-mode, km/L) 0.009 0.084 0.021 0.000 0.010 0.027 

Price of vehicle (100,000 yen) 0.015 0.000 0.027 0.000 0.017 0.000 

Vehicle type (1 if hybrid vehicle, 0 otherwise) 0.221 0.001 0.037 0.448 0.236 0.000 

Age −0.006 0.000 −0.008 0.000 −0.007 0.000 

Gender (1 if male, 0 otherwise) 0.098 0.005 0.177 0.000 0.082 0.012 

Job description (1 if working for car 
manufacturer, 0 otherwise) −0.091 0.000 −0.002 0.900 −0.123 0.000 

Job description (1 if working for public 
facility, 0 otherwise) −0.031 0.353 0.090 0.000 −0.096 0.001 

Job description (1 if working as company 
staff, 0 otherwise) 0.210 0.000 0.180 0.000 0.215 0.000 

Job description (1 if working for driving 
school, 0 otherwise) 0.053 0.259 −0.030 0.526 0.101 0.028 

Job description (1 if working as association 
staff, 0 otherwise) −0.087 0.104 0.020 0.618 −0.137 0.002 

Job description (1 if unemployed, 0 
otherwise) −0.252 0.000 0.033 0.385 −0.343 0.000 

Scale parameter for survival distribution (𝑒𝑒) 1.112 0.000 0.935 0.000 0.563 0.000 

Initial log-likelihood LL(0) −23,322.81 −22,539.75 −22,154.52 

Log-likelihood at convergence LL(𝛽𝛽) −23,090.43 −22,129.83 −21,785.89 

Likelihood ratios 464.76 819.84 737.26 

Akaike Information Criterion (AIC) 46,216.86 44,295.66 43,607.78 

Both age and gender is significant in three distribution duration models. Elder drivers would 

drive shorter than young drivers. This could be caused by the decreasing in the driving performance 
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as well as driving inclination. The positive effect of gender implies male tend to drive longer 

distance than female, considering more than 90% of the participants are male, whether this is a 

regular pattern requires more studies.  

As for the job description, people who work for private company and driving school tend to 

make longer trip than other occupations. This may due to the location of driving school is usually 

remote. The job for private company may requires more trip to visit their clients. However, the job 

description for driving school plays different effect among three distribution duration models. 

The pooled duration model could partially explain the relationship between explanatory 

variables with DTD. However, it didn’t consider the individual difference. Therefore, the following 

part explained the result of panel duration model with three distribution assumptions. The 

individual difference is simulated by the normally distributed constant in the model. The result is 

shown in Table 4.5. 

As mentioned above, in the pooled duration model, log-logistic distribution performed best 

and have the most number of significant variables. However, in the panel duration model, all the 

variables are significant in both lognormal and Weibull models. The panel log-logistic duration 

model is still the best fitted based on the AIC and log-likelihood, but five variables are insignificant 

in the model. The insignificant variables in panel log-logistic model are daily average temperature, 

vehicle type and three occupation dummy.  
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Table 4.5 Estimation results for panel survival model 

Dependent Variable: Natural Logarithm of 

Daily Travel Distance (km) 
Lognormal Weibull Log-Logistic 

Explanatory Variables Coef. P-value Coef. P-value Coef. P-value 

Daily average temperature (°C) 0.004  0.001  0.001  0.045  0.000  0.986  

Daily precipitation (mm) −0.002 0.005  −0.003 0.000  −0.001 0.001  

Daily average wind speed (m/s) −0.059 0.015  −0.053 0.000  −0.042 0.018  

Weekday dummy (1 if weekday, 0 otherwise) −0.052 0.000  −0.287 0.000  −0.115 0.000  

Engine size (100 cc) −0.020 0.000  0.020  0.000  −0.020 0.000  

Fuel efficiency (jc08-mode, km/L) 0.009  0.000  0.064  0.000  0.034  0.000  

Price of vehicle (100,000 yen) 0.015  0.000  0.033  0.000  0.031  0.000  

Vehicle type (1 if hybrid vehicle, 0 otherwise) 0.218  0.000  −0.593 0.000  −0.070 0.147  

Age −0.005 0.000  −0.005 0.000  −0.008 0.000  

Gender (1 if male, 0 otherwise) 0.097  0.000  0.197  0.000  0.285  0.000  

Job description (1 if working for car 
manufacturer, 0 otherwise) −0.090 0.000  0.211  0.000  −0.002 0.921  

Job description (1 if working for public 
facility, 0 otherwise) −0.030 0.000  0.165  0.000  −0.290 0.000  

Job description (1 if working as company 
staff, 0 otherwise) 0.207  0.000  0.107  0.001  −0.036 0.254  

Job description (1 if working for driving 
school, 0 otherwise) 0.052  0.000  0.395  0.000  0.037  0.302  

Job description (1 if working as association 
staff, 0 otherwise) −0.085 0.000  0.145  0.001  0.459  0.000  

Job description (1 if unemployed, 0 
otherwise) −0.245 0.000  0.559  0.000  0.721  0.000  

Constant (means for random parameters) 3.100  0.000  1.611  0.000  2.317  0.000  
Constant (scale parameter for random 

parameters) 0.009  0.000  0.505  0.000  0.683  0.000  

Scale parameter for survival distribution (𝑒𝑒) 1.111  0.000  0.848  0.000  0.454  0.000  

Initial log-likelihood LL(0) −23,322.81 −22,539.75 −22,154.52 

Log-likelihood at convergence LL(𝛽𝛽) −23,077.00 −20,714.03 −19,353.08 

Likelihood ratios 491.62  3651.44  5602.88 

Akaike Information Criterion (AIC) 46192.00  41466.06  38744.16 

Similar as pooled duration model, daily precipitation, daily average wind speed and weekday 
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dummy are significant and play negative effect on DTD in three panel distribution duration models. 

The engine size, fuel efficiency and vehicle price are also all significant in all the panel models. 

Both age and gender are significant in all panel duration models, and they play similar effect as 

pooled model.  

The only two occupation dummies with positive effect in pooled log-logistic duration model, 

are both insignificant here in panel log-logistic model. Additionally, except for the occupation 

dummy for driving school, all the dummy variables for job description are playing the opposite 

effect in different panel distribution duration models. 

The log-likelihood and AIC for panel model is improved compare to pooled model for all three 

distribution assumptions. The significant scale parameter of constant implies the existence of 

individual difference, and is simulated by the random variable.  

 

4.6 Conclusion and limitation 

The mixture model provided information about various driving pattern maybe formed into the 

DTD, the detailed reason for different driving pattern requires consideration with other explanatory 

variables. 

The AIC of single distribution, pooled duration model and panel model illustrates the best 

fitted form for this data set is log-logistic model. The EV types used in previous chapter could fit 
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with more than 95% of the demand in this data set, which made it possible for the promotion of 

EV to individual buyers.  

The significant scale parameter of constant and smaller AIC indicate the consideration of 

individual difference could help in improving the duration model. The significant variables of 

weather condition in both pooled and panel model imply people’s preference of driving during 

different weather condition. Drivers would search for alternative destination nearby during the 

terrible weather, especially for leisure trips since the destination is more flexible. Those people 

who live in a city with frequent rainy weather could be more adoptable for EV. The effect of fuel 

efficiency and vehicle type indicate the drivers’ consideration on the environmental factors. These 

drivers maybe could be more prefer with EV since the driving cost is less than gasoline vehicles. 

The elderly female drivers could be more focus as the target customers of EV based on the result. 

Here, as an improvement to last chapter, we utilized duration model to link the DTD with 

other explanatory variables, which makes it more detailed about the characteristics of potential 

users for EV. However, the explanatory variables are very limited in this study. The participants 

have a large age span, and the ratio of men to women is very imbalanced.  
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CHAPTER 5 Characterization of DTD for elderly drivers 

 

This chapter still utilize the duration model to test DTD data with other explanatory variables. 

However, here we focused on the elderly drivers. The elderly drivers, as mentioned in the Chapter 

2, is a serious problem considering traffic safety, since their driving ability is decreasing with their 

age. As the world’s population is aging rapidly, elderly drivers are getting more and more attention 

on the driving safety issues. The survival analysis applied in this chapter considers not only the 

personal information and weather condition, but also the psychological factors in the model as well 

as the aptitude test for driving performance.  

 

5.1 Data description 

The third data set is collected from the elderly drivers’ data base of Nagoya University Center 

Of Innovation (COI) project, it is supported by the Ministry of Education, Culture, Sports, Science 

and Technology (MEXT), Japan and Japan Science and Technology Agency (JST). The 

participants mainly live around Nagoya City. The city is located in the northwest of Aichi 

prefecture, shown in Figure 3.1. It is the 4th largest city in terms of population and 27th in terms of 

area in Achi prefecture. More than 300 drivers aged from 50s to 80s joined this project since 2014, 



62 

 

and the driving record is also collected from 85 participants. The device is equipped to their vehicle 

to collect the real-time Global Positioning System (GPS) data. Additionally, the participants are 

required to join the aptitude test every year to evaluate their driving ability. The psychological 

questionnaire survey is conducted to the participants in 2020. Both the aptitude test result and 

survey data are used in the study. 

The observation period is different for each individual, some may quit the project less than 

one year, and some may continue for 4 years. The GPS record can trace back as early as 2015, and 

the latest is in 2019. The data for 2019 only records January and February, so we used the data 

ranged from 2015 to 2018. In this study, we used the most recent two years’ data for the participants 

who join the project for more than two years, and all data for the rest. In addition to collecting 

basic personal information, the project managed to apply the aptitude test to the participants, so 

that we could evaluate their performance of driving. Additionally, when conducting the 

questionnaire survey to the participants in 2020, some may quit the project already. Thus, the total 

observation in terms of the driving days is 21839, belong to 73 participants. 

The personal information used in this study includes gender, age, driving experience and 

education experience. The study divided the participants into 3 age group, young drivers (aged less 

than 65), young-old drivers (aged from 65 to 74), and old-old drivers (aged from 75). Only 14 

participants aged less than 65, 80.8% of the participants could be referred as elderly driver.  

Similar as in the second data set, the weather information is also collected from Japan 
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Meteorological Agency, the weather data is matched based on the start GPS of that day, and it 

includes the minimum temperature and total precipitation of that day.  

Table 5.1 Descriptive statistics of the selected variables 

Variables Mean (or %) Minimum Maximum 

Driving experience (year) 46.9 22 59 

Education experience (year) 13.5 8 18 

Gender (1 for male, 0 for otherwise) 63% 0 1 

Young-old group (1 for aged from 65 to 74, 0 for 

otherwise) 
61.6% 0 1 

Old-old group (1 for aged from 75, 0 for 

otherwise) 
19.2% 0 1 

Minimum temperature (°C) 13.0 -4.8 29 

Precipitation (mm) 4.4 0 170 

Trail Making Test Score 2.8 1.2 5.5 

Mini-Mental State Examination 28.6 22 30 

Visual acuity during daytime 0.8 0.1 1.6 

The aptitude test is applied to all the participants every year during the observation period. It 

contains Trail Making Test (TMT), Mini-Mental State Examination (MMSE) and Visual Acuity 

during the daytime. Visual acuity test, as mentioned in the previous chapter, is commonly used 

when obtaining the driving license. The TMT-test include part A and B, here we used the ratio of 

TMT-B to TMT-A as the Trail Making Test Score(TMTS). In the previous study of MMSE, the 

score of 23 or less is used to distinguish the person who has cognitive impairment (DePaulo et al., 

1980), but here we used the MMSE score as a continuous variable. 

As mentioned above, the questionnaire survey is conducted in the third data set. The 
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questionnaire mainly consists of two parts, the Impulsive Sensation Seeking (ImpSS) and the 

Psychosocial Purpose of Driving Scale (PSPDS).  

The questionnaire is applied in Japanese, the English translation of question items of ImpSS 

is shown in Table 5.2, the answer type is scaled from 1 to 4 (1 for strongly disagree, 4 for strongly 

agree). The Parallel Analysis is applied to the ImpSS, and the 19 question items are divided into 2 

groups, the Impulsive group (Imp) and Sensation Seeking group (SS). As the previous study 

explained, the Imp scale evaluates the preference for change and uncertainty, while the SS 

evaluates the tendency to act without thinking or planning (Fernández-Artamendi et al., 2016). 

The coefficients of each question item is estimated by principle component analysis with varimax 

rotation. As shown in Table 5.2, only five question items belong to the Imp, and two of them play 

negative role in the sub-scale. Compared to other study, items 10 and 18 belong to the Imp group 

in Fernández-Artamendi et al. (2016), but they are recognized as SS group in our study. This may 

due to the different answer type, since in previous study the questionnaire uses a Y/N answer, but 

we use a 4 level scale answer. Additionally, the coefficients and classification may change among 

different groups of respondent. Fernández-Artamendi et al. (2016) applied the questionnaire to 

teenagers aged from 12 to 14, but our respondents are mainly elderly drivers. 

The second part of the questionnaire is used here to summarize the driving purpose. The 

PSPDS in this study used a scale (1 strongly disagree, 4 strongly agree) consistent with 

contemporary psychological practice. The Parallel Analysis is also applied to the questionnaire 
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which extracted only one component, and then the coefficient of each item is estimated. As shown 

in Table 5.3, both item 2 and 5 have the largest coefficient, indicate the elderly drivers driving 

purpose have a tendency towards the feeling of independent and powerful. 

Table 5.2 Summary of the Impulsive Sensation Seeking Survey 

Questions items SS/Imp mean Std. coefficient 

(1) I tend to begin a new job without much advance planning on how I will do 
it 

Imp 1.97 0.67 0.71 

(2) I usually think about what I am going to do before doing it Imp 2.88 0.64 -0.70 

(3) I often do things on impulse Imp 2.29 0.70 0.72 

(4) I very seldom spend much time on the details of planning ahead Imp 2.49 0.63 0.42 

(5) I like to have new and exciting experiences and sensations even if they are 
a little frightening 

SS 2.55 0.65 0.56 

(6) Before I begin a complicated job, I make careful plans Imp 2.68 0.70 -0.62 

(7) I would like to take off on a trip with no preplanned or defining routes or 
timetable 

SS 2.11 0.79 0.48 

(8) I enjoy getting into new situations where you can’t predict how things will 
turn out 

SS 1.85 0.54 0.64 

(9) I like doing things just for the thrill of it SS 1.99 0.66 0.77 

(10) I tend to change interests frequently SS 1.96 0.73 0.54 

(11) I sometimes like to do things that are a little frightening SS 1.88 0.64 0.65 

(12) I’ll try anything once SS 2.49 0.75 0.66 

(13) I would like the kind of life where one is on the move and traveling a lot 
with lots of change and excitement 

SS 2.33 0.78 0.64 

(14) I sometimes do ‘crazy’ things just for fun SS 1.77 0.70 0.71 

(15) I like to explore a strange city or section of town by myself, even if it means 
getting lost 

SS 1.99 0.79 0.70 

(16) I prefer friends who are excitingly unpredictable SS 1.88 0.69 0.60 

(17) I often get so carried away by new and exciting things and ideas that I never 
think of possible complications 

SS 2.10 0.65 0.61 

(18) I am an impulsive person SS 2.10 0.65 0.54 
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(19) I like ‘wild’ uninhibited parties SS 1.74 0.75 0.54 

 

Table 5.3 Summary of the Psychosocial Purpose of Driving Scale 

Question items (you drove) mean Std. coefficient 

(1) For a sense of freedom 2.56 0.78 0.77 

(2) So you could feel independent 2.38 0.72 0.80 

(3) To show you are still young 2.25 0.68 0.75 

(4) To relax 2.59 0.74 0.77 

(5) To feel powerful 2.71 0.68 0.80 

(6) So you could gain status amongst your friends 2.12 0.69 0.65 

(7) So you could see your friends easily 3.14 0.67 0.23 

 

5.2 Basic analysis 

As the participants are divided into three groups by age, the driving distance for each age 

group could be different. Figure 5.1 illustrates the daily driving distance within 100 km for 

different age groups. The old-old group (aged from 75) has an obvious higher peak compared to 

other 2 groups, and the percentile of this group also fades quickly within 30 to 40 km. In general, 

96.2% of the total observation on DTD is within 100 km, and this distance can be easily covered 

with EVs such as Nissan Leaf. Male participants accounted for 62% of the total.  

As mentioned in last chapter, the unbalanced and the ratio of men to women in previous data 

set, made us question about the female’s preference on the driving distance. Here, in this data set, 
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28 female driver made it possible to compare the driving distance between genders.  

 

Figure 5.1 The daily driving distance within 100 km for different age groups (100 km 

covers 94.1% of the daily driving distance of drivers aged up to 64, 96.9% of the drivers 

aged from 65 to 74, 96.5% of the drivers aged from 75). 

 

Figure 5.2 The daily driving distance within 100 km for male and female (100 km covers 

95.6% of male drivers’ daily driving distance, 97.2% of female drivers). 

Figure 5.2 illustrates the percentile of daily driving distance for male and female drivers within 
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100 km. Even though the first peak of male and female drivers is different, the shape of percentile 

shows consistency over all. 

Table 5.4 The average score for SS and Imp in each age group 

The subscale Young driver Young-old Old-old 

Sensation seeking 18.44 17.92 18.08 

Impulsive -0.30 0.37 -0.05 

The average score for SS and Imp subscale in different age groups is shown in Table 5.4. The 

young age group gets the highest average score in SS, which implies they may tend to act without 

thinking or planning. The young-old group has the highest average score in Imp, which implies 

they may prefer in changes and uncertainty. Even though the driving safety issue with elderly 

drivers has been discussed in many studies (Skyving et al., 2009; Jian and Shi., 2020). However, 

compare to other age groups, the ImpSS score shows the old-old drivers are less psychologically 

dangerous toward risky driving behavior.  

The average score of each item in PSPDS for different age groups is shown in Table 5.5. As 

can be seen, the most driving purpose for all the age groups is the same, which is to meet friends 

easily. The average score over all is 2.5. For young-old drivers, they also have the driving purpose 

as for a sense of freedom, to relax, and to feel powerful that are beyond the average score. As for 

the old-old divers, they are also reported with the driving purpose of for a sense of freedom, feel 

independent, to feel powerful which are beyond the average score. In general, the driving purpose 
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of elderly drivers is often determined by their psychological needs, and they hope to gain a sense 

of ability through driving. 

Table 5.5 The average score of items in PSPDS in each age group 

Question items (you drove) Young driver Young-old Old-old 

(1) For a sense of freedom 2.28 2.64 2.57 

(2) So you could feel independent 2.14 2.38 2.64 

(3) To show you are still young 2.00 2.31 2.29 

(4) To relax 2.50 2.64 2.50 

(5) To feel powerful 2.36 2.76 2.93 

(6) So you could gain status amongst your friends 2.14 2.11 2.14 

(7) So you could see your friends easily 3.21 3.08 3.21 

 

5.3 Survival model result 

To evaluate the goodness of fit, the Akaike Information Criterion (AIC) is used here, and can 

be expressed as 𝐴𝐴𝐴𝐴𝐴𝐴 =  2𝑘𝑘 − 2𝐿𝐿𝐿𝐿(𝜶𝜶), where k is the number of parameters，𝐿𝐿𝐿𝐿(𝜶𝜶) is the log-

likelihood of the model at convergence, 𝜶𝜶 is a vector of estimable variables. In our assumption, 

it is believed that the different age group may result in different attitude towards driving distance. 

This is interpreted by interaction terms of age groups and psychosocial scales in the regression 

model. The confident level is 95% in this study. Table 5.6 illustrates the result of pooled survival 

model.  
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Table 5.6 Model estimation results for pooled regression 

Distribution assumptions for duration model Log-logistic Log-normal Weibull 

Explanatory variables Coef. P-value Coef. P-value Coef. P-value 

Driving experience -0.0240  0.00  -0.0228  0.00  -0.0173  0.00  
Education experience -0.0061  0.14  0.0009  0.83  0.0025  0.46  

Gender 0.0858  0.00  0.0974  0.00  0.0541  0.00  

Young-old group (aged from 65 to 74) 0.9217  0.00  0.8639  0.00  0.2213  0.04  

Old-old group (aged above 75) -1.1838  0.00  -1.2073  0.00  -1.0352  0.00  

Trail Making Test Score (TMTS) -0.0488  0.00  -0.0452  0.00  -0.0564  0.00  

Mini-Mental State Examination score (MMSE) 0.0898  0.00  0.0890  0.00  0.0767  0.00  

Visual acuity during daytime 0.2053  0.00  0.2718  0.00  0.3019  0.00  

Minimum temperature 0.0029  0.00  0.0029  0.00  0.0052  0.00  

Precipitation -0.0017  0.00  -0.0019  0.00  -0.0022  0.00  

SS for young (aged less than 65) -0.0565  0.00  -0.0594  0.00  -0.0643  0.00  

IMP for young (aged less than 65) -0.1513  0.00  -0.1390  0.00  -0.1348  0.00  

PSPDS for young (aged less than 65) 0.1149  0.00  0.1169  0.00  0.1198  0.00  

SS for young-old -0.0017  0.60  0.0006  0.86  0.0128  0.00  

IMP for young-old 0.0467  0.00  0.0435  0.00  0.0029  0.61  

PSPDS for young-old -0.0186  0.00  -0.0217  0.00  -0.0054  0.26  

SS for old-old 0.0345  0.00  0.0368  0.00  0.0039  0.46  

IMP for old-old 0.1286  0.00  0.1331  0.00  0.1213  0.00  

PSPDS for old-old 0.1015  0.00  0.0966  0.00  0.1156  0.00  

Constant (mean) 0.6254  0.01  0.4521  0.07  1.2884  0.00  

Scale parameter for survival distribution (𝜎𝜎) 0.6388  0.00  1.1352  0.00  1.0982  0.00  

Log-likelihood at convergence 𝐿𝐿𝐿𝐿(𝛼𝛼) -33732.5 -33758.0 -34995.7 

Akaike Information Criterion (AIC) 67507.0 67557.9 70033.5 
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The pooled log-logistic survival model performed the best based on the log-likelihood and 

AIC among the three alternative distribution assumptions. The result of pooled models shows a 

consistency on many explanatory variables, the education experience is insignificant in all pooled 

models, and interaction item of SS and young-old group is insignificant for both log-logistic and 

lognormal model. The pooled Weibull model holds the largest AIC and least number of significant 

variables, which made it as the least fitted model among three distribution assumptions for pooled 

model. The scale parameter for pooled Weibull model and is larger than 1, which states that the 

hazard increases with the DTD. 

Table 5.7 The log-likelihood of different assumptions with model and constant 

Distribution assumptions for 
constant 

Lognormal 
duration 

Log-logistic 
duration 

Weibull duration 

Normal -27970.9 -28511.4 -28917.1 

Uniform -28484.0 -28511.4 -28917.1 

Triangular -28586.0 (𝜎𝜎𝜇𝜇 = 0) -28511.5 -28917.1 (𝜎𝜎𝜇𝜇 = 0) 

Negative half normal -28586.0 (𝜎𝜎𝜇𝜇 = 0) -28511.6 -28917.0 

Centered lognormal -28129.5 -28035.8 -28917.1 

Lognormal -28679.8 -28082.3 -28988.5 

As previously discussed in Chapter 5, the individual difference could be represented by the 

normally distributed constant 𝜇𝜇. Here, we also analyzed different distributions of constant 𝜇𝜇, in 

order to check not only the better distribution for DTD, but also the better distribution for constant. 

The result is shown in Table 5.7. The scale parameter for constant (𝜎𝜎𝜇𝜇) in Weibull duration with 

uniformly distributed constant, lognormal duration with triangularly or negative half normally 
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distributed constant are equal to zero. This implies these three assumptions do not fit with the panel 

duration model. The log-likelihood values of log-logistic duration model with different distribution 

assumptions of constant are quite stable, except for centered lognormal and lognormal. The 

Weibull duration model with different distribution assumptions of constant is also quite stabilized 

in the log-likelihood function except for the lognormal assumption for the constant. Unlike pooled 

model, the log-likelihood of panel duration model implies the best fitted form is the lognormal 

duration model with normally distributed constant, and the result is shown in Table 5.8. 

The education experience, different from pooled model, is significant in the lognormal panel 

model. The insignificant scale parameter for random effect of constant, 𝜎𝜎𝜇𝜇 in other panel models 

demonstrates that it is not effective to consider the individual difference when considering log-

logistic or Weibull duration. In lognormal panel model, the interaction item of IMP and young-old 

group is the only insignificant variable, but it still reached 85% of confident level. The marginal 

effect is calculated as 𝑒𝑒𝛼𝛼 − 1, could be referred in Koop and Christopher (1993), the result is 

shown in Table 5.8. 
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Table 5.8. Model estimation results for lognormal panel regression 

Explanatory variables Coef. P-value Marginal effect 

Driving experience -0.0264 0.00 -2.61% 

Education experience -0.0077 0.00 -0.77% 

Gender 0.0970 0.00 10.19% 

Young-old group 0.8350 0.00 130.48% 

Old-old group -1.1677 0.00 -68.89% 

Trail Making Test Score (TMTS) -0.0567 0.00 -5.51% 

Mini-Mental State Examination score (MMSE) 0.1021 0.00 10.75% 

Visual acuity during daytime 0.2671 0.00 30.62% 

Minimum temperature 0.0027 0.00 0.27% 

Precipitation -0.0019 0.00 -0.19% 

SS for young -0.0656 0.00 -6.35% 

IMP for young -0.1301 0.00 -12.20% 

PSPD for young 0.1170 0.00 12.41% 

SS for young-old 0.0040 0.00 0.40% 

IMP for young-old -0.0033 0.15 -0.33% 

PSPD for young-old -0.0237 0.00 -2.34% 

SS for old-old 0.0324 0.00 3.29% 

IMP for old-old 0.1435 0.00 15.43% 

PSPD for old-old 0.1002 0.00 10.54% 

Constant (mean) 0.4379 0.00 - 

Constant (standard deviation) 0.2072 0.00 - 

Scale parameter for survival distribution (𝜎𝜎) 1.0987 0.00 - 

Log-likelihood at convergence 𝐿𝐿𝐿𝐿(𝛼𝛼) -27970.9 

Akaike Information Criterion (AIC) 55985.8 
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5.4 Discussion 

The coefficients of explanatory variables for weather condition are consistent with last chapter. 

The minimum temperature has a positive effect on the DTD, which means people may prefer 

warmer weather for trips. The negative effect caused by precipitation proves that rain prevents 

people from traveling.  

The individual information does affect the driving distance. Both the driving and education 

experience are showing significant negative effect on DTD, but compare to other variables, the 

marginal effect of driving and education experience played relatively small influence on the DTD, 

especially the education experience. The driving distance maybe affected by other personal 

information, but the education background plays a minor effect on it. Even though Figure 5.2 

demonstrates a similar driving distance percentile for male and female, the results of model shows 

male drivers tend to drive longer than female and this result is consistent with both pooled and 

panel model with all distributions as well as previous study (Hakamies-Blomqvist and Wahlström, 

1998). 

Based on the marginal effect, the indicator variable for young-old group is playing the most 

positive effect on the DTD. On the contrary, the indicator variable for old-old group is playing the 

most negative effect on DTD. This indicates people’s driving distance are largely affected by 

different age groups. The previous studies divided drivers into 2 age groups as over or under 65 

years old (Anastasopoulos et al., 2012, Yee et al., 2006). However, as the division of people older 
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than 65 into young-old and old-old group, we found out the elderly drivers are not showing 

consistent tendency on shorter driving distance. The driving pattern of elderly drivers is consistent 

with Figure 5.1, the old-old group has an obvious preference for shorter distance, while the young-

old group prefer longer driving distance. The young-old group tend to travel longer than others, 

which may be because the retirement allows them to have more spare time to travel, and compared 

to the old-old group, they are in general physically supported for longer distance driving. The old-

old group plays a significant negative effect on DTD for all the models, since the decreasing 

physical abilities with increasing age could affect the driving performance (Delhomme et al., 2013). 

However, as mentioned in Table 5.4, the old-old drivers are not psychologically dangerous, this 

may because that they are aware of the changes in the driving ability. Similar idea is mentioned in 

Milleville-Pennel and Marquez (2020), although young drivers may perform better on driving, 

elderly drivers have other compensatory strategies for safety consideration. Overall, the indicator 

variables for different age group played the most effect on the DTD than any other explanatory 

variables.  

The lower TMT score implies better performance on visual search, scanning, mental flexibility, 

executive functions and faster speed of processing. Thus, the negative coefficient of TMT score in 

model suggests the fading abilities with age could prevent drivers from longer driving. On the 

contrast, the higher MMSE score indicates the better performance of cognitive mental status. The 

coefficient of MMSE remains positive among all duration models for both pooled and panel, which 
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may indicate the better cognitive metal status gives driver confidence on long-distance driving. 

Visual acuity is a significant variable in both pooled and panel model, it shows a positive relation 

on DTD. Changes in visual acuity are easily noticeable by drivers themselves, since it not only has 

effect on driving performance, but also affects other aspects of life. The confidence in their visual 

acuity could lead to more willing to drive. The comparison among three aptitude variables implies 

the TMT score has the least influence on the driving distance, while visual acuity has the most. 

This confirmed the importance of visual acuity test when obtaining or renew the driving license 

for elderly. As reported in Onishi (2020), the decline in visual functions and cognitive abilities are 

related with age. This could confirm the earlier mentioned idea that the old-old drivers are aware 

of their decline in driving abilities, they tend to drive less because of their awareness for declining 

driving abilities. To drive less could be one of their compensatory strategies of avoiding risky 

driving behavior.  

Even though both variables for weather condition are showing significant in the model, but 

the marginal effect implies they have very little effect on the DTD compare to other variables. The 

variables for weather information have the least marginal effect, which implies even they are 

significant in the model, but people’s driving distance does not affect by weather condition as we 

expected.  

The explanatory variables for psychological understanding of driving are almost all significant 

in the lognormal panel model. As mentioned above, IMP for young-old group as the only 
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insignificant variable reached 85% of confident level. The SS, IMP and PSPDS played different 

effect among different age groups. Comparing the marginal effect of the interaction items in each 

age group, the driving distance of young-old group is not largely affected by their psychology 

status. On the other hand, both young and the old-old drivers are largely affected by the psychology 

elements.  

The SS scale evaluates the preference for change and uncertainty, while the Imp scale 

evaluates the tendency to act without thinking or planning. For the young drivers (aged less than 

65), both SS and IMP are showing negative effect, but they played both positive effect for old-old 

drivers. 

As mentioned in table 5.4, young drivers would be more exposed to risky driving behavior 

based on the highest average SS score compare to other age groups. However, their tendency 

towards risky driving behavior actually may lead them to shorter distance, since they may be aware 

of their risky tendency. On the other hand, the old-old drivers are proved to be more cautious based 

on the scores of ImpSS, they are more willing to travel longer.   

The PSPDS was related with risky driving behavior in Scott-Parker et al. (2015), and is also 

significantly related with driving distance for all age groups, but still with the least effect for 

young-old drivers. The PSPDS showed positive effect for both the young and old-old drivers, their 

psychosocial purposes drive them to longer distance, but PSPDS played a negative effect for 

young-old drivers. As shown in Table 5.5, the most driving purpose of young drivers is visiting 
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their friends, but the old-old drivers have various driving purposes higher than average score and 

most are related with psychology thinking. Their psychological need to prove their ability urge 

them to travel more. 

In general, the variables for psychological considering are not playing strong effect among the 

young-old drivers compare to other age groups. Even though the young-old drivers have fairy 

strong tendency to driver longer distance than any other age group, but they don’t have strong 

preference for driving without planning or seeking for changes. On the contrary, the young drivers 

are psychologically riskier in this way.  

 

5.5 Conclusion and limitation 

This study applies both pooled and panel hazard duration model with log-logistic, log-normal 

and Weibull distributions to reveal the influence of various variables on daily travel distance 

conducted by elderly drivers. Aptitude test result as TMT score, MMSE and visual acuity are 

considered to be factors that affect the driving performance of elderly people. Even though the 

existing EV has enough driving range to cover most daily driving demand of our participants. EV 

with longer driving range would be preferred for those who have better performance in their 

aptitude test especially for the young-old drivers.  

Different from last chapter, as the elderly driver divided into 2 groups, only the old-old drivers 
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have strong tendency of shorter distance. The young-old drivers, on the contrary has the most 

positive effect on the driving distance. Compared to other variables such as gender or 

psychological elements, the situation naturally brought by age would cause more spare time for 

driving.  

The psychological understanding of drivers is also believed to be affective on driving behavior, 

but has not been tested on elderly driver yet. This study applied ImpSS and PSPDS on the elderly 

drivers, and made it as interaction item with different age groups. The result shows the interaction 

item of different age groups with same psychological considering is showing different effect on 

DTD, and the difference is more clearly displayed by the age groups at both ends. Even though the 

old-old group are identified as easier adopter for EV considering their tendency towards shorter 

DTD, but it would be better to provide them EV with autonomous function considering the decline 

in driving ability may cause safety issues. 

The proposed study may contribute to the driving evaluation of elderly drivers, the 

psychological understanding of elderly driving behavior, especially considering driving safety for 

elderly drivers.  

However, the evaluation of elderly drivers’ driving ability and driving psychology is 

incomplete, especially the understanding of driving psychology is very superficial. The utilization 

of the ImpSS and PSPDS questionnaire could be improved.  
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CHAPTER 6 Conclusion and limitation 

 

6.1 Conclusion 

This dissertation mainly focuses on the study of daily travel distance (DTD). The distribution 

functions are used here to simulate the driving pattern for both carsharing users and private vehicle 

users. However, the more understanding of driving habits requires studies that could link the DTD 

with other explanatory variables. In this way, we applied Accelerate Failure Time (AFT) model 

which retains the distribution assumptions for DTD along with a parametric assumption on the 

covariates which have direct effect on the DTD. The determined characteristic of DTD with 

distribution functions could be used to identify the suitable battery size for EV. The AFT model 

results help the EV manufacturer to understand the features of their potential target customer. 

Besides, the AFT model applied to the elderly drivers could also contribute the driving safety 

problems with elderly people, especially in the psychological understanding.  

The first part of this study utilized the five single distribution functions and a mixture model 

with 2 lognormal components to test the DTD of a sharing system. The test of different distribution 

functions implied the driving pattern in terms of distance cannot be simulated simply by the single 

distribution function. The mixture distribution with two lognormal components is the best fitted 
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among all the alternatives. In this way, the driving pattern in terms of distance could be determined 

with each vehicle by its best fitted form, and is used here to quantify the benefit of vehicle 

electrification. Two types of EV are used here as reference, to evaluate the emission reduction and 

available electricity amount. The two EV types could replace 23 and 30 conventional vehicles 

respectively, and the emission could be reduced by 19% and 24% respectively. The driving cost 

could make even with the purchase cost of EV after 1.67 years for Type 1 but it’s more than 30 

years for Type 2. However, if we use both type in the substitution plan, the 30 replaced EV could 

reach the emission reduction by 27.6%, and the purchase cost would be made even by the driving 

cost for 11.37 years. This scenario could be adopted if the university wish to accomplish more 

reduction in the emission.  

Even though it might be difficult for each household to have a V2G system, the electrification 

of private vehicles could still lead to environmental benefit by individually. However, not every 

driver would be willing to use EV since they have their own preference on their driving habit. 

Additionally, the existing EV with limited driving range may not be suitable for all the drivers.  

In this way, the second part of this study focused on the driving behavior in terms of daily 

driving distance of private vehicles, the hazard duration model made it possible to consider the 

effect of other explanatory variables on the driving distance. The driving preference, and the reason 

of that preference is revealed in this part. The drivers in this part mainly live in Toyota City, and 

most of them have fixed job, which implies their driving pattern could be quite fixed. However, 
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the result shows they still have their own preference such as turn to alternative destination nearby 

due to the terrible weather.  

The expanded mixture model from 2 components to 7 components implies the complicated 

driving behavior. These complicated driving habit could not be explained simply by the 

distribution function of driving distance. In this way, AFT model is here to measure the effect of 

variables on driving distance. Compared to the pooled model, the panel AFT model considers the 

individual difference by using a normally distributed constant. The log-logistic assumption for 

duration data is the best fitted model among alternatives.  

The result determined the factors that affect daily driving distance. As the results suggest that 

the travel distances achieved by people in Toyota City, Japan, is highly dependent on the weather 

conditions, specifically the precipitation and wind speed. Drivers in Toyota City would prefer an 

alternative destination nearby during the terrible weather. Socioeconomic indicators, such as age 

and gender, and vehicle characteristics, such as engine size and vehicle price, also significantly 

affect the car travel distance. For those who are currently using vehicles with less fuel consumption, 

they may become the earlier adopter for EV.  

Male drivers tend to drive longer than female drivers, and this could be explained by the 

traditional Japanese family style as women are required to be more focused on families. However, 

since less than 10% of the participants are female, which made it difficult to be a universal pattern. 

The situation is same for age difference, even though the result implies elderly drivers may tend 
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to drive less, but the data set only contains 2 elderly drivers (aged over 65), which made it difficult 

to summarized the different driving habits between different age groups. 

Therefore, the third part of this study mainly focus on the driving behavior of elderly drivers. 

The data set is divided into 3 different age group as young drivers (aged less than 65), young-old 

drivers (aged from 65 to 74), and the old-old drivers (aged from 75). The aptitude test result is 

used to evaluate the driving ability, and the variables for psychological consider are used as 

interaction items with different age group. In this way, the interaction items could help us in 

understanding their driving attitude among different age groups. The application of panel survival 

model with log-logistic, log-normal and Weibull duration on daily travel distance (DTD) and 

different distribution assumptions on the constant shows the lognormal duration model with 

normally distributed constant is the best fitted form.  

The result implies young-old driver (aged from 65 to 74) and old-old drivers (aged from 75) 

hold opposite effect on DTD. The young-old group shows the largest positive marginal effect on 

the DTD while the old-old groups shows the largest negative effect, which implies the driving 

distance is largely dependent on the driver’s age. The effect of gender is similar with in the second 

part, female drivers who prefer less driving distance could be more adoptable for EV.  

The variables of aptitude test affect the driving distance especially the visual acuity. The 

shorter DTD conducted by old-old drivers could be caused by the decline in their driving ability. 

The result of psychology survey implies that they become cautious driver than other age groups. 
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The old-old drivers may not perform as well as young drivers considering their decreasing driving 

ability, but they will consciously avoid dangerous behavior compare to other age groups. On the 

contrary, the younger drivers have higher tendency towards risky driving behavior and more 

willing to drive.  

In general, the promotion of EV, especially for the EV producer, it requires them to understand 

their potential customers. The characterization of daily travel distance could clarify the market 

direction for EV manufacturers. As determined in this study, for individual customers, the existing 

EV already has a driving range which can meet about 95% of their daily travel demand, especially 

for elderly drivers. Considering the decline in their driving ability, the EV with more autonomous 

functions could be more preferred for safety reason.  

 

6.2 Limitation and future works 

The personal characteristics of drivers are determined in this study, but as mentioned in 

Chapter 3, if the vehicle is shared by multiple users, the daily driving distance of a certain vehicle 

could be difficult to be determined simply by some explanatory variables. The utilization of EV in 

carsharing system could be better studied if the system is open up to the public. The data of 

university wide sharing system is very limited. Additionally, the basic analysis of the data shows 

there are at most 21 vehicles are in use at the same time, which implies the fleet number could be 

reduced. The optimization of the fleet size for the car sharing system could be one of the future 
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topics. 

The Chapter 4 and 5 determined the characteristics of driver that affects driving distance, but 

there are many other variables that have not been considered in the model. The impact of residential 

situation such as population density was not tested in the model. Both chapter utilized mixture 

model with multiple lognormal components, but the mixture model is not applied as the 

distribution assumption for duration data in the hazard model. 

The substitution of EV for conventional vehicles in a carsharing system would be more 

dependent simply on the driving range, since users don’t own the vehicle. They only need to 

consider whether the EV they choose from the carsharing system can meet their needs for this trip. 

However, to cater the driving demand of various users, it requires more flexibility in the carsharing 

system. The use of charging facility or provide another EV at a location midway could encourage 

users to use the EV despite the limited driving range. This could be another future research topic 

when considering using EV in a carsharing system. 

As a matter of fact, the individual consumers would not only consider the most situation of 

their driving demand when purchasing an EV. Individual buyers would still tend to choose the EV 

with larger battery capacity in order to deal with infrequent situation of longer driving demand. 

Their acceptance towards EV cannot be simply summarized by daily travel distance, other features 

such as the size of vehicle and purchase cost. 
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APPENDIX A Regression model for parameters in mixture model 

Table A.1 Regression model of 𝜶𝜶 (the mixing coefficient) 

Adjusted R-squared: -0.08763, Sample size: 48 

Coefficient 
 Estimate Std. Error t value Pr(>|t|) 

Intercept 0.8434 0.405 2.084 0.044 

Vehicle 
type 
(truck as 
base) 

SUV 0.0048 0.418 0.012 0.991 

Sedan -0.0166 0.352 -0.047 0.963 

Van 0.0034 0.364 0.009 0.993 

Minivan -0.0875 0.343 -0.255 0.800 

Engine size (cc) -0.0135 0.011 -1.193 0.240 

Faculty members per 
vehicle 

0.0009 0.001 0.632 0.531 

Engine 
type 

Diesel -0.2473 0.488 -0.506 0.615 

Hybrid 0.1841 0.195 0.942 0.352 

Table A.2 Regression model of 𝝁𝝁𝟏𝟏 (the first peak) 

Adjusted R-squared: -0.04972, Sample size: 48 

Coefficient 
 Estimate Std. Error t value Pr(>|t|) 

Intercept 4.1331 1.526 2.709 0.010 

Vehicle 
type 
(truck as 
base) 

SUV 0.4267 1.577 0.271 0.788 

Sedan -1.4005 1.326 -1.056 0.297 

Van -0.9410 1.373 -0.685 0.497 

Minivan -1.3193 1.293 -1.020 0.314 

Engine size (cc) -0.0188 0.043 -0.442 0.661 

Faculty members per 
vehicle 

-0.0013 0.005 -0.247 0.806 

Engine 
type 

Diesel -1.3314 1.841 -0.723 0.474 

Hybrid -0.1773 0.737 -0.241 0.811 
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Table A.3 Regression model of 𝝈𝝈𝟏𝟏 (the first standard deviation) 

Adjusted R-squared: -0.1578, Sample size: 48 

Coefficient: 
 Estimate Std. Error t value Pr(>|t|) 

Intercept 0.8374 0.551 1.519 0.137 

Vehicle 
type 
(truck as 
base) 

SUV -0.2534 0.570 -0.445 0.659 

Sedan -0.0046 0.479 -0.010 0.992 

Van 0.0057 0.496 0.012 0.991 

Minivan -0.1122 0.467 -0.240 0.812 

Engine size (cc) -0.0005 0.015 -0.032 0.975 

Faculty members per 
vehicle 

0.0012 0.002 0.629 0.533 

Engine 
type 

Diesel -0.0856 0.665 -0.129 0.898 

Hybrid 0.0679 0.266 0.255 0.800 

 

Table A.4 Regression model of 𝝁𝝁𝟐𝟐 (the second peak) 

Adjusted R-squared: -0.005368, Sample size: 48 

Coefficient: 
 Estimate Std. Error t value Pr(>|t|) 

Intercept -0.1707 1.700 -0.100 0.921 

Vehicle 
type 
(truck as 
base) 

SUV 2.8436 1.757 1.618 0.114 

Sedan 2.9682 1.477 2.010 0.051 

Van* 3.2960 1.530 2.155 0.037 

Minivan* 3.2815 1.441 2.278 0.028 

Engine size (cc) 0.0521 0.047 1.101 0.278 

Faculty members per 
vehicle 

0.0041 0.006 0.707 0.484 

Engine 
type 

Diesel 1.2259 2.051 0.598 0.553 

Hybrid -0.6502 0.821 -0.792 0.433 
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Table A.5 Regression model of 𝝈𝝈𝟐𝟐 (the second standard deviation) 

Adjusted R-squared: 0.005851, Sample size: 48 

Coefficient: 
 Estimate Std. Error t value Pr(>|t|) 

Intercept 0.8631 0.576 1.498 0.142 

Vehicle 
type 
(truck as 
base) 

SUV 0.0507 0.595 0.085 0.933 

Sedan -0.2838 0.500 -0.567 0.574 

Van -0.4096 0.518 -0.790 0.434 

Minivan 0.0506 0.488 0.104 0.918 

Engine size (cc) -0.0036 0.016 -0.227 0.822 

Faculty members per 
vehicle 

-0.0004 0.002 -0.211 0.834 

Engine 
type 

Diesel -0.5292 0.695 -0.761 0.451 

Hybrid -0.0877 0.278 -0.315 0.754 
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APPENDIX B The result of distribution panel duration model with 

different distribution assumptions for constant 

Table B.1 The lognormal duration with uniformly distributed constant 

Model: Lognormal Constant: Uniform Log-likelihood: -28484.0 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.021 0.000 -0.022 -0.021 

Education experience 0.001 0.231 -0.001 0.003 

Gender 0.095 0.000 0.086 0.104 

Young-old group 0.840 0.000 0.763 0.918 

Old-old group -1.175 0.000 -1.281 -1.068 

Trail Making Test Score (TMTS) -0.044 0.000 -0.049 -0.039 

Mini-Mental State Examination score (MMSE) 0.087 0.000 0.083 0.091 

Visual acuity during daytime 0.264 0.000 0.251 0.278 

Minimum temperature 0.003 0.000 0.002 0.004 

Precipitation -0.002 0.016 -0.003 0.000 

SS for young -0.058 0.000 -0.063 -0.052 

IMP for young -0.135 0.000 -0.142 -0.128 

PSPD for young 0.114 0.000 0.108 0.119 

SS for young-old 0.001 0.115 0.000 0.002 

IMP for young-old 0.042 0.000 0.039 0.046 

PSPD for young-old -0.021 0.000 -0.023 -0.019 

SS for old-old 0.036 0.000 0.031 0.041 

IMP for old-old 0.130 0.000 0.117 0.142 

PSPD for old-old 0.094 0.000 0.088 0.100 

Constant (mean) 0.440 0.000 0.302 0.578 

Constant (standard deviation) 0.064 0.000 0.061 0.068 

Scale parameter for survival distribution (𝜎𝜎) 1.105 0.000 1.102 1.108 
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Table B.2 The lognormal duration with triangularly distributed constant 

Model: Lognormal Constant: Triangular Log-likelihood: -28586.0 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.023 0.000 -0.024 -0.022 

Education experience 0.001 0.340 -0.001 0.003 

Gender 0.097 0.000 0.088 0.107 

Young-old group 0.864 0.000 0.785 0.943 

Old-old group -1.207 0.000 -1.314 -1.101 

Trail Making Test Score (TMTS) -0.045 0.000 -0.050 -0.040 

Mini-Mental State Examination score (MMSE) 0.089 0.000 0.085 0.093 

Visual acuity during daytime 0.272 0.000 0.258 0.285 

Minimum temperature 0.003 0.000 0.002 0.004 

Precipitation -0.002 0.013 -0.003 0.000 

SS for young -0.059 0.000 -0.066 -0.053 

IMP for young -0.139 0.000 -0.146 -0.132 

PSPD for young 0.117 0.000 0.111 0.123 

SS for young-old 0.001 0.211 0.000 0.002 

IMP for young-old 0.044 0.000 0.040 0.047 

PSPD for young-old -0.022 0.000 -0.024 -0.020 

SS for old-old 0.037 0.000 0.031 0.042 

IMP for old-old 0.133 0.000 0.120 0.146 

PSPD for old-old 0.097 0.000 0.091 0.103 

Constant (mean) 0.452 0.000 0.314 0.590 

Constant (standard deviation) 0.000 -1.000 0.000 0.000 

Scale parameter for survival distribution (𝜎𝜎) 1.136 0.000 1.133 1.139 
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Table B.3 The lognormal duration with negative half normally distributed constant 

Model: Lognormal 
Constant: Negative half 

normal 
Log-likelihood: -28586.0 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.023 0.000 -0.024 -0.022 

Education experience 0.001 0.340 -0.001 0.003 

Gender 0.097 0.000 0.088 0.107 

Young-old group 0.864 0.000 0.785 0.943 

Old-old group -1.207 0.000 -1.314 -1.101 

Trail Making Test Score (TMTS) -0.045 0.000 -0.050 -0.040 

Mini-Mental State Examination score (MMSE) 0.089 0.000 0.085 0.093 

Visual acuity during daytime 0.272 0.000 0.258 0.285 

Minimum temperature 0.003 0.000 0.002 0.004 

Precipitation -0.002 0.013 -0.003 0.000 

SS for young -0.059 0.000 -0.066 -0.053 

IMP for young -0.139 0.000 -0.146 -0.132 

PSPD for young 0.117 0.000 0.111 0.123 

SS for young-old 0.001 0.211 0.000 0.002 

IMP for young-old 0.044 0.000 0.040 0.047 

PSPD for young-old -0.022 0.000 -0.024 -0.020 

SS for old-old 0.037 0.000 0.031 0.042 

IMP for old-old 0.133 0.000 0.120 0.146 

PSPD for old-old 0.097 0.000 0.091 0.103 

Constant (mean) 0.452 0.000 0.314 0.590 

Constant (standard deviation) 0.000 -1.000 0.000 0.000 

Scale parameter for survival distribution (𝜎𝜎) 1.136 0.000 1.133 1.139 
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Table B.4 The lognormal duration with centered log-normally distributed constant 

Model: Lognormal 
Constant: Centered 

lognormal 
Log-likelihood: -28129.5 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.023 0.000 -0.024 -0.023 

Education experience 0.001 0.426 -0.001 0.003 

Gender 0.097 0.000 0.084 0.110 

Young-old group 0.858 0.000 0.769 0.946 

Old-old group -1.199 0.000 -1.310 -1.087 

Trail Making Test Score (TMTS) -0.045 0.000 -0.051 -0.039 

Mini-Mental State Examination score (MMSE) 0.088 0.000 0.083 0.093 

Visual acuity during daytime 0.270 0.000 0.249 0.291 

Minimum temperature 0.003 0.000 0.001 0.004 

Precipitation -0.002 0.007 -0.003 -0.001 

SS for young -0.059 0.000 -0.063 -0.055 

IMP for young -0.138 0.000 -0.146 -0.130 

PSPD for young 0.116 0.000 0.111 0.121 

SS for young-old 0.000 0.587 -0.001 0.002 

IMP for young-old 0.043 0.000 0.039 0.047 

PSPD for young-old -0.022 0.000 -0.025 -0.019 

SS for old-old 0.037 0.000 0.031 0.042 

IMP for old-old 0.132 0.000 0.119 0.146 

PSPD for old-old 0.096 0.000 0.089 0.103 

Constant (mean) 0.449 0.000 0.282 0.616 

Constant (standard deviation) 0.061 0.000 0.061 0.062 

Scale parameter for survival distribution (𝜎𝜎) 1.128 0.000 1.125 1.130 
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Table B.5 The lognormal duration with log-normally distributed constant 

Model: Lognormal Constant: Lognormal Log-likelihood: -28679.8 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.038 0.000 -0.039 -0.038 

Education experience -0.004 0.000 -0.005 -0.002 

Gender 0.097 0.000 0.089 0.105 

Young-old group 0.863 0.000 0.800 0.926 

Old-old group -1.206 0.000 -1.275 -1.137 

Trail Making Test Score (TMTS) -0.046 0.000 -0.051 -0.041 

Mini-Mental State Examination score (MMSE) 0.079 0.000 0.076 0.083 

Visual acuity during daytime 0.271 0.000 0.259 0.283 

Minimum temperature -0.001 0.107 -0.002 0.000 

Precipitation -0.003 0.000 -0.005 -0.002 

SS for young -0.061 0.000 -0.065 -0.057 

IMP for young -0.139 0.000 -0.143 -0.135 

PSPD for young 0.116 0.000 0.111 0.120 

SS for young-old -0.002 0.000 -0.003 -0.001 

IMP for young-old 0.043 0.000 0.040 0.047 

PSPD for young-old -0.023 0.000 -0.025 -0.021 

SS for old-old 0.035 0.000 0.030 0.040 

IMP for old-old 0.133 0.000 0.123 0.143 

PSPD for old-old 0.096 0.000 0.090 0.101 

Constant (mean) 0.451 0.000 0.366 0.536 

Constant (standard deviation) 0.000 -0.976 0.000 0.000 

Scale parameter for survival distribution (𝜎𝜎) 1.135 0.000 1.132 1.138 
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Table B.6 The log-logistic duration with normally distributed constant 

Model: Log-logistic Constant: Normal Log-likelihood: -28511.4 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.013 0.000 -0.014 -0.013 

Education experience 0.009 0.000 0.007 0.011 

Gender 0.057 0.000 0.048 0.067 

Young-old group 0.512 0.000 0.435 0.590 

Old-old group -0.715 0.000 -0.813 -0.617 

Trail Making Test Score (TMTS) -0.025 0.000 -0.029 -0.021 

Mini-Mental State Examination score (MMSE) 0.084 0.000 0.081 0.087 

Visual acuity during daytime 0.161 0.000 0.147 0.175 

Minimum temperature 0.003 0.000 0.001 0.004 

Precipitation -0.003 0.000 -0.004 -0.001 

SS for young -0.030 0.000 -0.035 -0.024 

IMP for young -0.083 0.000 -0.089 -0.076 

PSPD for young 0.073 0.000 0.068 0.078 

SS for young-old 0.006 0.000 0.005 0.007 

IMP for young-old 0.030 0.000 0.026 0.033 

PSPD for young-old -0.005 0.000 -0.007 -0.003 

SS for old-old 0.023 0.000 0.018 0.027 

IMP for old-old 0.079 0.000 0.070 0.088 

PSPD for old-old 0.059 0.000 0.053 0.064 

Constant (mean) 0.269 0.000 0.143 0.394 

Constant (standard deviation) 0.001 0.258 -0.001 0.003 

Scale parameter for survival distribution (𝜎𝜎) 0.672 0.000 0.670 0.675 
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Table B.7 The log-logistic duration with uniformly distributed constant 

Model: Log-logistic Constant: Uniform Log-likelihood: -28511.4 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.013 0.000 -0.014 -0.013 

Education experience 0.009 0.000 0.007 0.011 

Gender 0.057 0.000 0.048 0.067 

Young-old group 0.512 0.000 0.435 0.590 

Old-old group -0.715 0.000 -0.813 -0.617 

Trail Making Test Score (TMTS) -0.025 0.000 -0.029 -0.021 

Mini-Mental State Examination score (MMSE) 0.084 0.000 0.081 0.087 

Visual acuity during daytime 0.161 0.000 0.147 0.175 

Minimum temperature 0.003 0.000 0.001 0.004 

Precipitation -0.003 0.000 -0.004 -0.001 

SS for young -0.030 0.000 -0.035 -0.024 

IMP for young -0.083 0.000 -0.089 -0.077 

PSPD for young 0.073 0.000 0.068 0.078 

SS for young-old 0.006 0.000 0.005 0.007 

IMP for young-old 0.030 0.000 0.026 0.033 

PSPD for young-old -0.005 0.000 -0.007 -0.003 

SS for old-old 0.023 0.000 0.018 0.027 

IMP for old-old 0.079 0.000 0.070 0.088 

PSPD for old-old 0.059 0.000 0.053 0.064 

Constant (mean) 0.269 0.000 0.143 0.394 

Constant (standard deviation) 0.002 0.307 -0.002 0.005 

Scale parameter for survival distribution (𝜎𝜎) 0.672 0.000 0.670 0.675 
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Table B.8 The log-logistic duration with triangularly distributed constant 

Model: Log-logistic Constant: Triangular Log-likelihood: -28511.5 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.013 0.000 -0.014 -0.013 

Education experience 0.009 0.000 0.007 0.011 

Gender 0.057 0.000 0.048 0.067 

Young-old group 0.512 0.000 0.435 0.590 

Old-old group -0.715 0.000 -0.813 -0.617 

Trail Making Test Score (TMTS) -0.025 0.000 -0.029 -0.021 

Mini-Mental State Examination score (MMSE) 0.084 0.000 0.081 0.087 

Visual acuity during daytime 0.161 0.000 0.147 0.175 

Minimum temperature 0.003 0.000 0.001 0.004 

Precipitation -0.003 0.000 -0.004 -0.001 

SS for young -0.030 0.000 -0.035 -0.024 

IMP for young -0.083 0.000 -0.089 -0.077 

PSPD for young 0.073 0.000 0.068 0.078 

SS for young-old 0.006 0.000 0.005 0.007 

IMP for young-old 0.030 0.000 0.026 0.033 

PSPD for young-old -0.005 0.000 -0.007 -0.003 

SS for old-old 0.023 0.000 0.018 0.027 

IMP for old-old 0.079 0.000 0.070 0.088 

PSPD for old-old 0.059 0.000 0.053 0.064 

Constant (mean) 0.269 0.000 0.143 0.394 

Constant (standard deviation) 0.001 0.692 -0.004 0.006 

Scale parameter for survival distribution (𝜎𝜎) 0.672 0.000 0.670 0.675 
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Table B.9 The log-logistic duration with negative half normally distributed constant 

Model: Log-logistic 
Constant: Negative half 

normal 
Log-likelihood: -28511.6 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.013 0.000 -0.014 -0.013 

Education experience 0.009 0.000 0.007 0.011 

Gender 0.057 0.000 0.048 0.067 

Young-old group 0.512 0.000 0.435 0.590 

Old-old group -0.715 0.000 -0.813 -0.617 

Trail Making Test Score (TMTS) -0.025 0.000 -0.029 -0.021 

Mini-Mental State Examination score (MMSE) 0.084 0.000 0.081 0.087 

Visual acuity during daytime 0.161 0.000 0.147 0.175 

Minimum temperature 0.003 0.000 0.001 0.004 

Precipitation -0.003 0.000 -0.004 -0.001 

SS for young -0.030 0.000 -0.035 -0.024 

IMP for young -0.083 0.000 -0.089 -0.076 

PSPD for young 0.073 0.000 0.068 0.078 

SS for young-old 0.006 0.000 0.005 0.007 

IMP for young-old 0.030 0.000 0.026 0.033 

PSPD for young-old -0.005 0.000 -0.007 -0.003 

SS for old-old 0.022 0.000 0.018 0.027 

IMP for old-old 0.079 0.000 0.070 0.088 

PSPD for old-old 0.059 0.000 0.053 0.064 

Constant (mean) 0.269 0.000 0.143 0.394 

Constant (standard deviation) 0.000 -0.997 0.000 0.000 

Scale parameter for survival distribution (𝜎𝜎) 0.672 0.000 0.670 0.675 
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Table B.10 The log-logistic duration with centered log-normally distributed constant 

Model: Log-logistic 
Constant: Centered 

lognormal 
Log-likelihood: -28035.8 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.035 0.000 -0.036 -0.035 

Education experience 0.013 0.000 0.011 0.014 

Gender 0.057 0.000 0.047 0.066 

Young-old group 0.496 0.000 0.428 0.563 

Old-old group -0.691 0.000 -0.786 -0.595 

Trail Making Test Score (TMTS) -0.023 0.000 -0.028 -0.018 

Mini-Mental State Examination score (MMSE) 0.117 0.000 0.113 0.121 

Visual acuity during daytime 0.157 0.000 0.143 0.172 

Minimum temperature 0.000 0.660 -0.001 0.002 

Precipitation -0.004 0.000 -0.005 -0.003 

SS for young -0.028 0.000 -0.033 -0.024 

IMP for young -0.086 0.000 -0.091 -0.081 

PSPD for young 0.073 0.000 0.067 0.078 

SS for young-old 0.006 0.000 0.006 0.007 

IMP for young-old 0.031 0.000 0.027 0.034 

PSPD for young-old 0.001 0.447 -0.002 0.004 

SS for old-old 0.033 0.000 0.027 0.039 

IMP for old-old 0.079 0.000 0.067 0.091 

PSPD for old-old 0.065 0.000 0.057 0.072 

Constant (mean) 0.261 0.000 0.139 0.383 

Constant (standard deviation) 0.075 0.000 0.075 0.076 

Scale parameter for survival distribution (𝜎𝜎) 0.650 0.000 0.648 0.652 
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Table B.11 The log-logistic duration with log-normally constant 

Model: Log-logistic Constant: Lognormal Log-likelihood: -28082.3 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.047 0.000 -0.047 -0.046 

Education experience 0.011 0.000 0.010 0.013 

Gender 0.059 0.000 0.049 0.069 

Young-old group 0.506 0.000 0.436 0.576 

Old-old group -0.705 0.000 -0.778 -0.631 

Trail Making Test Score (TMTS) -0.030 0.000 -0.035 -0.025 

Mini-Mental State Examination score (MMSE) 0.107 0.000 0.104 0.110 

Visual acuity during daytime 0.160 0.000 0.143 0.176 

Minimum temperature 0.001 0.415 -0.001 0.002 

Precipitation -0.006 0.000 -0.007 -0.005 

SS for young -0.043 0.000 -0.048 -0.039 

IMP for young -0.089 0.000 -0.095 -0.084 

PSPD for young 0.076 0.000 0.070 0.082 

SS for young-old 0.015 0.000 0.014 0.017 

IMP for young-old 0.036 0.000 0.032 0.040 

PSPD for young-old -0.004 0.003 -0.007 -0.002 

SS for old-old 0.035 0.000 0.030 0.040 

IMP for old-old 0.086 0.000 0.076 0.096 

PSPD for old-old 0.069 0.000 0.061 0.077 

Constant (mean) 0.271 0.000 0.220 0.321 

Constant (standard deviation) 0.107 0.000 0.099 0.114 

Scale parameter for survival distribution (𝜎𝜎) 0.662 0.000 0.660 0.664 
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Table B.12 The Weibull duration with normally distributed constant 

Model: Weibull Constant: Normal Log-likelihood: -28917.5 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.015 0.000 -0.016 -0.015 

Education experience 0.003 0.008 0.001 0.005 

Gender 0.098 0.000 0.089 0.107 

Young-old group 0.864 0.000 0.787 0.942 

Old-old group 1.208 0.000 -1.288 -1.127 

Trail Making Test Score (TMTS) -0.045 0.000 -0.050 -0.040 

Mini-Mental State Examination score (MMSE) 0.093 0.000 0.090 0.096 

Visual acuity during daytime 0.272 0.000 0.257 0.287 

Minimum temperature 0.005 0.000 0.004 0.006 

Precipitation -0.001 0.007 -0.002 0.000 

SS for young -0.059 0.000 -0.064 -0.054 

IMP for young -0.139 0.000 -0.144 -0.134 

PSPD for young 0.117 0.000 0.112 0.122 

SS for young-old 0.002 0.004 0.001 0.003 

IMP for young-old 0.044 0.000 0.040 0.047 

PSPD for young-old -0.021 0.000 -0.023 -0.019 

SS for old-old 0.038 0.000 0.035 0.041 

IMP for old-old 0.133 0.000 0.123 0.144 

PSPD for old-old 0.097 0.000 0.094 0.101 

Constant (mean) 0.452 0.000 0.345 0.560 

Constant (standard deviation) 0.000 -0.996 0.000 0.000 

Scale parameter for survival distribution (𝜎𝜎) 1.136 0.000 1.134 1.139 
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Table B.13 The Weibull duration with uniformly distributed constant 

Model: Weibull Constant: Uniform Log-likelihood: -28917.5 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.015 0.000 -0.016 -0.015 

Education experience 0.003 0.008 0.001 0.005 

Gender 0.098 0.000 0.089 0.107 

Young-old group 0.864 0.000 0.787 0.942 

Old-old group 1.208 0.000 -1.288 -1.127 

Trail Making Test Score (TMTS) -0.045 0.000 -0.050 -0.040 

Mini-Mental State Examination score (MMSE) 0.093 0.000 0.090 0.096 

Visual acuity during daytime 0.272 0.000 0.257 0.287 

Minimum temperature 0.005 0.000 0.004 0.006 

Precipitation -0.001 0.007 -0.002 0.000 

SS for young -0.059 0.000 -0.064 -0.054 

IMP for young -0.139 0.000 -0.144 -0.134 

PSPD for young 0.117 0.000 0.112 0.122 

SS for young-old 0.002 0.004 0.001 0.003 

IMP for young-old 0.044 0.000 0.040 0.047 

PSPD for young-old -0.021 0.000 -0.023 -0.019 

SS for old-old 0.038 0.000 0.035 0.041 

IMP for old-old 0.133 0.000 0.123 0.144 

PSPD for old-old 0.097 0.000 0.094 0.101 

Constant (mean) 0.452 0.000 0.345 0.560 

Constant (standard deviation) 0.000 -0.999 0.000 0.000 

Scale parameter for survival distribution (𝜎𝜎) 1.136 0.000 1.134 1.139 
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Table B.14 The Weibull duration with triangularly distributed constant 

Model: Weibull Constant: Triangular Log-likelihood: -28917.5 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.015 0.000 -0.016 -0.015 

Education experience 0.003 0.008 0.001 0.005 

Gender 0.098 0.000 0.089 0.107 

Young-old group 0.864 0.000 0.787 0.942 

Old-old group 1.208 0.000 -1.288 -1.127 

Trail Making Test Score (TMTS) -0.045 0.000 -0.050 -0.040 

Mini-Mental State Examination score (MMSE) 0.093 0.000 0.090 0.096 

Visual acuity during daytime 0.272 0.000 0.257 0.287 

Minimum temperature 0.005 0.000 0.004 0.006 

Precipitation -0.001 0.007 -0.002 0.000 

SS for young -0.059 0.000 -0.064 -0.054 

IMP for young -0.139 0.000 -0.144 -0.134 

PSPD for young 0.117 0.000 0.112 0.122 

SS for young-old 0.002 0.004 0.001 0.003 

IMP for young-old 0.044 0.000 0.040 0.047 

PSPD for young-old -0.021 0.000 -0.023 -0.019 

SS for old-old 0.038 0.000 0.035 0.041 

IMP for old-old 0.133 0.000 0.123 0.144 

PSPD for old-old 0.097 0.000 0.094 0.101 

Constant (mean) 0.452 0.000 0.345 0.560 

Constant (standard deviation) 0.000 -1.000 0.000 0.000 

Scale parameter for survival distribution (𝜎𝜎) 1.136 0.000 1.134 1.139 

 



103 

 

Table B.15 The Weibull duration with negative half normally distributed constant 

Model: Weibull 
Constant: Negative half 

normal 
Log-likelihood: -28917.5 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.015 0.000 -0.016 -0.015 

Education experience 0.003 0.008 0.001 0.005 

Gender 0.098 0.000 0.089 0.107 

Young-old group 0.864 0.000 0.787 0.942 

Old-old group 1.208 0.000 -1.288 -1.127 

Trail Making Test Score (TMTS) -0.045 0.000 -0.050 -0.040 

Mini-Mental State Examination score (MMSE) 0.093 0.000 0.090 0.096 

Visual acuity during daytime 0.272 0.000 0.257 0.287 

Minimum temperature 0.005 0.000 0.004 0.006 

Precipitation -0.001 0.007 -0.002 0.000 

SS for young -0.059 0.000 -0.064 -0.054 

IMP for young -0.139 0.000 -0.144 -0.134 

PSPD for young 0.117 0.000 0.112 0.122 

SS for young-old 0.002 0.004 0.001 0.003 

IMP for young-old 0.044 0.000 0.040 0.047 

PSPD for young-old -0.021 0.000 -0.023 -0.019 

SS for old-old 0.038 0.000 0.035 0.041 

IMP for old-old 0.133 0.000 0.123 0.144 

PSPD for old-old 0.097 0.000 0.094 0.101 

Constant (mean) 0.452 0.000 0.345 0.560 

Constant (standard deviation) 0.000 0.950 -0.004 0.004 

Scale parameter for survival distribution (𝜎𝜎) 1.136 0.000 1.134 1.139 
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Table B.16 The Weibull duration with centered log-normally distributed constant 

Model: Weibull 
Constant: Centered 

lognormal 
Log-likelihood: -28917.5 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.015 0.000 -0.016 -0.015 

Education experience 0.003 0.008 0.001 0.005 

Gender 0.098 0.000 0.089 0.107 

Young-old group 0.864 0.000 0.787 0.942 

Old-old group 1.208 0.000 -1.288 -1.127 

Trail Making Test Score (TMTS) -0.045 0.000 -0.050 -0.040 

Mini-Mental State Examination score (MMSE) 0.093 0.000 0.090 0.096 

Visual acuity during daytime 0.272 0.000 0.257 0.287 

Minimum temperature 0.005 0.000 0.004 0.006 

Precipitation -0.001 0.007 -0.002 0.000 

SS for young -0.059 0.000 -0.064 -0.054 

IMP for young -0.139 0.000 -0.144 -0.134 

PSPD for young 0.117 0.000 0.112 0.122 

SS for young-old 0.002 0.004 0.001 0.003 

IMP for young-old 0.044 0.000 0.040 0.047 

PSPD for young-old -0.021 0.000 -0.023 -0.019 

SS for old-old 0.038 0.000 0.035 0.041 

IMP for old-old 0.133 0.000 0.123 0.144 

PSPD for old-old 0.097 0.000 0.094 0.101 

Constant (mean) 0.452 0.000 0.345 0.560 

Constant (standard deviation) 0.000 -0.997 0.000 0.000 

Scale parameter for survival distribution (𝜎𝜎) 1.136 0.000 1.134 1.139 
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Table B.17 The Weibull duration with log-normally distributed constant 

Model: Weibull Constant: Lognormal Log-likelihood: -28988.5 

Variables Coefficient Prob |z|>Z 95% Confidence Interval 

Driving experience -0.031 0.000 -0.032 -0.031 

Education experience -0.001 0.151 -0.003 0.001 

Gender 0.097 0.000 0.089 0.106 

Young-old group 0.863 0.000 0.799 0.928 

Old-old group 1.207 0.000 -1.272 -1.141 

Trail Making Test Score (TMTS) -0.046 0.000 -0.051 -0.041 

Mini-Mental State Examination score (MMSE) 0.084 0.000 0.081 0.087 

Visual acuity during daytime 0.271 0.000 0.258 0.285 

Minimum temperature 0.001 0.210 0.000 0.002 

Precipitation -0.003 0.000 -0.004 -0.002 

SS for young -0.060 0.000 -0.065 -0.055 

IMP for young -0.139 0.000 -0.148 -0.130 

PSPD for young 0.116 0.000 0.110 0.123 

SS for young-old -0.001 0.095 -0.002 0.000 

IMP for young-old 0.043 0.000 0.041 0.046 

PSPD for young-old -0.023 0.000 -0.025 -0.021 

SS for old-old 0.036 0.000 0.033 0.038 

IMP for old-old 0.133 0.000 0.124 0.142 

PSPD for old-old 0.096 0.000 0.093 0.099 

Constant (mean) 0.452 0.000 0.379 0.524 

Constant (standard deviation) 0.000 -0.996 0.000 0.000 

Scale parameter for survival distribution (𝜎𝜎) 1.135 0.000 1.133 1.137 
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