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Abstract 

 

In order to solve the environmental, resource and health problems of water, food, 

materials, and energy, which are important issues in modern society, there is a demand 

for measurement technology for molecular complex systems. Therefore, mixtures 

composed of various molecules and higher-order structures of materials development of 

measurement technology is required. Nuclear magnetic resonance (NMR) spectroscopy 

characterizes molecular complex systems by using various acquisition parameters and 

pulse sequences to provide useful data on the chemical structure and molecular motility 

of non-invasive samples at atomic resolution. With the development of information 

technology in recent years, measurement informatics approaches for effectively utilizing 

accumulated NMR data are becoming more and more important. However, NMR 

spectrum analysis of the mixture is difficult due to noise and signal overlapping, and 

requires a lot of labor. Therefore, there is a need for research on data quality control, noise 

reduction, data cleansing such as signal separation, which is the previous stage of 

spectrum analysis, and data-driven analysis that makes use of the data accumulated over 

many years. 

In this study, I first examined a signal assignment method that used a pre-

processing method to emphasize and separate peaks for a broad NMR spectrum. I also 

performed noise factor analysis to investigate the relationship between the measurement 

parameters of NMR data accumulated in the laboratory and other institutions and the 

signal-to-noise ratio (SNR). Therefore, I have developed a signal deconvolution method 

that combines short-time Fourier transform (STFT) and probabilistic sparse matrix 

factorization (PSMF) for solution NMR signals containing different motility (T2
* 

relaxation, which is referred to decay of transverse magnetization caused by a 

combination of transverse relaxation and magnetic field inhomogeneity) components and 

noise. Furthermore, based on this theory, the application of the signal deconvolution 

method was examined for solid-state NMR (ssNMR) signals of multi-component 

materials having multiple domain structures or components in the solid-state. 

Subsequently, the application of Generative Topographic Mapping Regression (GTMR) 

was examined in order to predict NMR signals and physical properties as descriptors of 

components and structures. Based on the above method, I have developed a measurement 

informatics approach useful for NMR analysis of molecular complex systems. 

Firstly, the pre-processing method and signal assignment method for low- and 

high-field NMR analysis of molecular complex systems is developed. In NMR analysis 
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of molecular complex systems, various sample preparation methods and pulse sequences 

are used due to the variety of physicochemical properties of molecules. However, NMR 

signal assignment of a mixture is difficult due to signal overlapping problems and lack of 

reference spectra and signal assignment tools. Therefore, in this study, in order to support 

signal assignment in low-resolution NMR spectra analysis of molecular complex systems 

from small molecules to macromolecules and lipids, InterSpin is developed a web tool 

consisting of wide spectrum pre-processing, signal assignment, and database (DB). I have 

developed a combined method of SENSI, which improves sensitivity by spectral 

integration, and PKSP, which separates signals, as pre-processing tools that support the 

analysis of broad spectra obtained from low-field tabletop NMR and ssNMR. PKSP has 

implemented non-negative sparse coding (NNSC) as a new NMR signal separation 

method, enabling faster and more accurate signal separation than conventional methods 

such as NMF. Furthermore, by combining the coefficient of variation (CV) of each peak 

obtained by SENSI and the separation signal obtained by PKSP, the broad spectrum 

obtained by low-field NMR of fish dishes and ssNMR of Euglena is assigned. Extensive 

research on food, materials, environment, health, etc. requires diverse standard spectra. 

However, DB or signal assignment method has not been established for solution NMR in 

solid 13C CP-MAS or DMSO-d6 solvents with similar structures. Therefore, a new 

SpinLIMS DB including various sample spectra (1H-13C correlation, 1H-J resolved, 13C 

CP-MAS) from small molecules to macromolecules and lipids in solid and solution states 

(D2O, MeOD-d4, DMSO-d6 as solvents) is developed. This DB was constructed to enable 

signal assignment in InterSpin for various samples. Based on this DB, I developed 

SpinMacro, which assigns signals of macromolecules and lipids, and automated the signal 

assignment of solid 13C peaks and 1H-13C correlation peaks in DMSO-d6 solvents. 

Furthermore, I have developed InterAnalysis that narrows down candidate molecules by 

integrating the 1H-13C correlation peaks and the 1H-J resolved peaks, and streamlined 

signal assignment. The pre-processing method and signal assignment method for NMR 

analysis of molecular complex systems have solved the problem of signal overlapping in 

low-field NMR and ssNMR, and have advanced NMR signal assignment using DB. 

Secondly, NMR signal deconvolution method and noise factor analysis method 

combining STFT and PSMF is proposed. In data-driven analysis, data quality is important 

because it affects results. However, in the field of NMR, data cleansing methods such as 

quality control, noise reduction, and signal separation of accumulated NMR data have not 

been established. Therefore, in this study, I focused on the measurement parameters and 

noise of NMR data, and developed a data cleansing method by free induction decay (FID) 

signal separation and noise factor analysis of one-dimensional NMR. In order to reduce 
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noise and separate signals, I examined the use of spectral changes at each time by dividing 

the FID at regular intervals by applying STFT. Based on the characteristics of signal 

intensity attenuation associated with T2
* relaxation on the time axis added by STFT, 

matrix factorization was able to distinguish between signals and noise at individual 

frequencies. As a matrix factorization method, PSMF was able to separate signals and 

noise better than other methods such as NMF. The new signal separation method that 

combines STFT and PSMF, unlike the conventional noise reduction method that uses only 

multivariate analysis, does not require the FID of many samples or measurement 

parameters, and enables noise reduction and signal separation. By this method, the noise 

of the FID signal was separated and the SNR of the spectrum was improved about 3 times. 

The diffusion-edited NMR spectrum could be separated into signals of macromolecules, 

lipids and small molecules due to the difference in T2
* of each frequency component. In 

order to utilize the accumulated NMR data, it is necessary to confirm the data quality. 

Therefore, as a result of noise factor analysis to investigate the relationship between the 

measurement parameters of NMR data and SNR, the number of scans was the main factor 

that reduced SNR when solvent suppression was insufficient. Signal deconvolution and 

noise factor analysis of solution NMR using STFT solved the problem of signal 

overlapping and advanced data-driven analysis of solution NMR. 

Finally, the signal deconvolution method and signal/physical property prediction 

method for ssNMR of multi-component materials is demonstrated. In recent years, due to 

global issues such as marine pollution of marine plastics, waste treatment, and global 

warming, research into a low-carbon society has been emphasized. Microbial products 

and plant biomass as alternatives to petroleum resources can be used in the production of 

materials such as plastics and raw materials. Polymers such as polylactic acid (PLA), 

poly-ε-caprolactone (PCL), and cellulose are molecular complex systems with multiple 

domains or components and are used as materials with various properties. 

Microorganisms and plant biomass need to be analyzed as a biochemical system 

composed of multiple components, including lipids and macromolecules with multiple 

domains. Therefore, it is necessary to develop an ssNMR analysis approach for multi-

component materials such as microbial products, plant biomass and plastics. Therefore, 

in this study, I developed a signal deconvolution method for ssNMR. I investigated a 

novel signal deconvolution method using STFT and non-negative tensors and matrix 

factorization (NTF, NMF). By this method, the 13C CP-MAS spectrum in the cellulose 

decomposition process could be separated into cellulose, proteins, and lipids signals by 

the difference in T2
* by STFT and NTF. In addition, the anisotropy spectrum of PCL could 

be separated into crystalline and amorphous signals by STFT and NMF. As an alternative 
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to decoupling, which is applied to remove anisotropy during measurement, signal 

deconvolution of anisotropy measurement data by computational scientific methods has 

been made possible. I also examined GTMR as a new method for visualizing and 

predicting NMR signals and physical properties using STFT data. GTMR was able to 

predict the NMR signal intensity of acetic acid and CO2 as the products in the cellulose 

degradation process. In addition, by applying GTMR to the NMR signal of plastics and 

the integrated data of each physical property, it was possible to predict the NMR signal 

with the desired physical properties (glass transition point, melting point, degradation 

temperature). The ssNMR signal deconvolution and prediction method using STFT 

solved the signal overlapping problem and enabled the characterization and design of 

multi-component materials. 

By each of the above methods, for NMR analysis of molecular complexity, the 

signal deconvolution and data-driven analysis related to signal assignment and prediction 

of higher-order structure and physical properties has been proposed. The measurement 

informatics approach developed in this research is expected to contribute to data-driven 

research, development, production, quality control, etc. of molecular complex systems in 

various fields such as health, food, materials, and the environment. 
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Chapter 1 

 

Introduction 

 

1.1 Concepts of Measurements Informatics in NMR Toward 

Molecular Complexity 

 

The development of analytical approaches for understanding complex systems 

in natural science is a pivotal challenge for finding innovative solutions in modern society. 

In chemistry, a complex system is one whose evolution is very sensitive to initial 

conditions or to small perturbations, one in which the number of independent interacting 

components is large, or one in which there are multiple pathways by which the system 

can evolve[1]. In this thesis work, “molecular complexity” means complex structure and 

various composition of natural mixtures such as crude biological extracts, geochemical 

samples, and intact cells and tissues as well as materials with multi-domain and 

component[2]. 

Until 1960, Analysis of mixtures need physical separation such as filtration, 

distillation, fractionation, recrystallization, extraction, sublimation, chromatography, 

relied on elemental analysis[3]. Those approaches were not able to evaluate natural 

structure and components of intact samples. The advent of measurement techniques such 

as ultraviolet (UV), infrared (IR), mass spectrometry (MS) and nuclear magnetic 

resonance (NMR) changed mixture analysis. Among these methods, NMR is the most 

powerful non-destructive measurements open a window into exploring intact complex 

mixtures by combining some unique data processing methods. 

Successful examples of the collaboration between natural science and 

informatics are bioinformatics and materials informatics[4]. From a different point of view, 

these successes were derived as a result of the combination of informatics and unique 

measurement techniques in each field of study. From this viewpoint, “measurement 

informatics”, which focuses on measurement and data utilization and is widely targeted 

in natural science such as food, life, environment, and materials, is a new research field. 
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This field will be formed by the fusion of analytical chemistry and informatics. This 

approach attempts to effectively utilize measurement data by circulating a series of data 

starting from the measurement of samples, rather than simply measurement and analysis 

(Figure 1). This field includes research on data management, pre-processing of data 

analysis, evaluation, prediction, and control of structure, composition, and condition in 

the molecule and natural phenomenon. 

 

 

Figure 1. Concept diagram of measurement informatics in NMR toward molecular complexity. This 

figure shows the concept of measurement informatics, which consists of a cycle of sample preparation, 

solid-state, solution and low-field NMR measurements, database construction, data preprocessing, and 

data-driven analysis. These approaches are repeated based on the evaluation and prediction. 
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1.2 Challenges of Measurements Informatics Approaches in 

NMR Toward Molecular Complexity 

 

In order to solve the environmental, resource and health problems of water, food, 

materials, and energy, which are important issues in modern society, I targeted molecular 

complex systems such as mixtures composed of various molecules and higher-order 

structures of materials. Development of measurement technology is required. Nuclear 

magnetic resonance (NMR) spectroscopy characterizes molecular complex systems by 

using various acquisition parameters and pulse sequences to provide useful data on the 

chemical structure and molecular motility of non-invasive samples at atomic resolution. 

NMR offers to deal with various and diverse samples from polar to non-polar solvent 

systems for small molecules, macromolecules and lipids, and it supports various 

physicochemical states, such as gas, sol, gel, and solid samples, enabling interaction, 

adsorption, and diffusion analyses. With the development of information technology in 

recent years, measurement informatics approaches for effectively utilizing accumulated 

NMR data are becoming more and more important. Because NMR approaches can 

produce a number of data with high reproducibility and inter-institution compatibility, 

further analysis of such data using multivariate analysis and machine learning approaches 

is often worthwhile[5]. However, NMR spectrum analysis of the mixture is difficult due 

to noise and signal duplication, and requires a lot of labor. Therefore, there is a need for 

research on data cleansing such as data quality control, noise reduction and signal 

separation, which is the previous stage of spectrum analysis, and data-driven analysis that 

makes use of the data accumulated over many years. To overcome challenges in pre-

processing and data analysis in NMR, measurement informatics is of academic and social 

importance (Figure 2). 

Part II described a low-resolution NMR signal assignment approach based on 

the database and pre-processing. The signal assignment is one of the important problems 

in NMR spectrum analysis. Standard spectra and chemical shift databases are typically 

used to assign signals. Many chemical shift databases are available on the internet, and 

using these services is simple and convenient[6]. However, if the database includes 

candidate molecules that are not present in the sample but have similar partial structures 

to sample components, false positives may arise. The applicability of this NMR approach 

has been limited to specific kinds of small molecules and high-resolution NMR 

measurements due to the molecular complexity and unmatured informatics techniques. In 
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this study, I examined a signal assignment approach that used pre-processing methods to 

enhance and separate peaks for a broad NMR spectrum. 

Part III described data cleansing approach. In this research, I propose the concept 

of a data cleansing strategy for improving the problem of data governance and noise. The 

application of NMR has spread not only to data-driven science at academia but also to 

quality control in the industry. Effective utilization of NMR data accumulated for many 

years is important for the measurement informatics field in the materials society. In 

addition, the value of raw NMR data for transparency, reproducibility, integrity, and reuse 

of research data increases in recent years[7,8]. The quality of raw data is important because 

it influences the value of knowledge gained in insight and predicrion. Recently, a database 

that associates Free Induction Decay (FID) and chemical structure has been proposed[9], 

but there is no system to associate research papers with original data, promote reuse in 

data-driven science, and support scientific discovery. Furthermore, the presence of noise 

in the raw FID is also a problem as the data quality. Previous research focused mainly on 

increasing the signal intensity or decreasing the noise and many signal processing 

methods have been proposed to improve the signal-to-noise ratio (SNR)[10]. However, 

the characteristics of the FID noise and the relationship between the parameters and the 

noise are not clear. Therefore, I performed noise factor analysis to investigate the 

relationship between the measurement parameters of NMR data accumulated in the 

laboratory and other institutions and the signal-to-noise ratio (SNR). I have developed a 

signal separation method that combines short-time Fourier transform (STFT) and 

probabilistic sparse matrix factorization (PSMF) for solution NMR signals containing 

different motility (T2
* relaxation, which is referred to decay of transverse magnetization 

caused by a combination of transverse relaxation and magnetic field inhomogeneity) 

components and noise. 

Part IV described the material development approach using solid-state NMR. 

Solid-state NMR (ssNMR) spectroscopy, especially anisotropic interactions, carries high-

order structure and dynamic information of the sample. The high-order structure of 

materials exerts a significant influence on their macroscopic properties[11]. However, 

such an analysis is difficult because of the broad and overlapping spectra of these 

materials. Therefore, the separation of ssNMR signals is an important issue for extracting 

the information hidden in the NMR spectrum of materials having diversity in high-order 

structures and components. The application of the signal deconvolution method was 

examined for ssNMR signals of multi-component materials having multiple domain 

structures or components in the solid-state. After pre-processing of data, a data mining 

step such as multivariate analysis is usually performed. The multivariate analysis enables 
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combined analysis of multiple datasets derived from various measurement conditions and 

instruments, obtaining new information by interpreting them collectively. Traditional 

material development approaches are experimentally driven and trial-and-error are facing 

significant challenges due to the vast design space of materials. To address these problems, 

machine-learning-assisted materials development is emerging as a promising tool for 

successful breakthroughs in many areas of science[12]. In this study, the application of 

Generative Topographic Mapping Regression (GTMR) was examined in order to predict 

NMR signals and physical properties as descriptors of components and structures. 

Based on the above method, I have developed a measurement informatics 

approach useful for NMR analysis of molecular complex systems. 

 

 
Figure 2. Challenges and significance of measurement informatics in this doctoral research. This 

figure shows the challenges and significances of data processing and data analysis after NMR 

measurements in measurement informatics. 
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Chapter 2 

 

InterSpin: Integrated Supportive Webtools 

for Low- and High-Field NMR Analyses 

Toward Molecular Complexity 

 

This chapter is reproduced with permission from “Yamada, S.; Ito, K.; Kurotani, 

A.; Yamada, Y.; Chikayama, E.; Kikuchi, J. InterSpin: Integrated Supportive Webtools for 

Low- and High-Field NMR Analyses Toward Molecular Complexity. Acs Omega 2019, 

4, 3361-3369”, Copyright 2019 American Chemical Society. 

 

2.1 Abstruct 

 

InterSpin (http://dmar.riken.jp/interspin/) comprises integrated, supportive, and 

freely accessible preprocessing webtools, and a database to advance signal assignment in 

low- and high-field nuclear magnetic resonance (NMR) analyses of molecular 

complexities ranging from small molecules to macromolecules and lipids for food, 

material, and environmental applications. To support handling of the broad spectra 

obtained from solid-state NMR or low-field benchtop NMR, we have developed and 

evaluated two preprocessing tools: SENSI, which enhances the signal-to-noise ratio by 

spectral integration; and PKSP, which separates overlapping peaks by several algorithms, 

such as non-negative sparse coding. In addition, the SpinLIMS database stores numerous 

standard spectra ranging from small molecules to macromolecules and lipids in solid and 

solution state (dissolved in polar/nonpolar solvents), and can be searched under various 

conditions by using the following molecular assignment tools. SpinMacro supports easy 

assignment of macromolecules and lipids in natural mixtures via solid-state 13C peaks and 

DMSO-d6 dissolved 1H-13C correlation peaks. InterAnalysis improves the accuracy of 

molecular assignment by integrated analysis of 1H-13C correlation peaks and 1H-J 

correlation peaks of small molecules dissolved in D2O or MeOD-d4, supports easy 
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narrowing down of metabolite candidates. Lastly, by enabling database interoperability, 

SpinLIMS’s client software will ultimately support scientific discovery by facilitating 

sharing and reusing of NMR data. 

 

 
Graphical abstract 

 

2.2 Introduction 

 

Environmental problems such as marine pollution, destruction of land and fresh 

water ecosystems, depletion of resources including energy, raw materials, and food, and 

health problems are some of the global challenges of modern society. The realization of 

a materials-circulating society, including use of renewable energy and production of 

sustainable food and materials, is increasingly important. With the rapid development of 

information and communication technology in recent years, it is expected that innovations 

in environmental science, sustainable resources, materials, foods, and medicine, will be 

integrated by effectively connecting the accumulating scientific data and real-world 

information[13-15]. As a result, digital innovations in the analyses of natural mixtures, 

such as biogeochemical samples from the environment and molecular complexities from 

biological tissues, are becoming important both for a sustainable society and for 

healthcare[5,6]. 

Nuclear magnetic resonance (NMR) approaches to natural mixture analysis are 

being developed as a strategy[16] to evaluate homeostatic stages via molecular 
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compositional changes in healthcare[17-21], foods[22,23], natural materials[24-27], biomass 

utilizations[28,29], and environmental ecology[30-34]. Alongside, there have been many 

advances in NMR technology, including high-field NMR over 1 GHz using high-

temperature superconducting materials[35], hyperpolarization[36] and photodetection 

NMR using diamond nitrogen-vacancy centers[37], zero-magnetic field NMR[38], and 

compact and benchtop NMR instruments that have become highly cost-effective owing 

to the marked progress in permanent magnet materials[39,40]. These innovations in NMR 

hardware are likely to be applied not only to precise analysis by high magnetic field NMR 

in the laboratory but also to homeostatic assessments of environment and health, and 

quality control in the fields of agriculture, forestry, and fishery. 

Thus, identification of molecules contained in mixtures is an important task in 

NMR analysis. Because the physical and chemical properties of these molecules can be 

extremely diverse, various sample preparation methods and pulse sequences have been 

used for mixture analysis[5,6,41]. Depending on the target molecules under analysis, the 

sample preparation method may range from solid-state to polar and nonpolar solvent 

systems[42,43]. When targeting small molecules, for example, solution NMR in a polar or 

semipolar solvent system such as deuterated water (D2O) or deuterated methanol (MeOD-

d4) is generally used[44,45]. On the other hand, macromolecules can be evaluated by using 

a dimethyl sulfoxide (DMSO-d6) solubilized system[46] or by solid-state 13C- cross-

polarization magic-angle spinning (CP-MAS) NMR. 1D-NMR and 2D-NMR such as 1H-
13C hetero-nuclear single quantum coherence (HSQC) and 2D-1H-J resolved (2D-Jres) 

spectroscopy are also useful for applications where stable isotope labeling experiments 

cannot be applied. 

Nevertheless, such molecular assignments remain difficult owing to the problems 

of spectral overlap, and a lack of available reference spectra or convenient molecular 

assignment tools specific to the molecules and conditions of interest. Databases and 

analytical tools for traditional major metabolomics studies such as HMDB[47], BMRB[48], 

BML-NMR[49], MMCD[50], NMRShiftDB[51], TOCCATA[52], COLMAR[53], 

MetaboLights[54], MetaboAnalyst[55], SpinAssign[56], and SpinCouple[57] focus on the 

analysis of low molecular mass metabolites by high magnetic field solution NMR. For 

the analysis of macromolecular mixtures derived from environmental samples and living 

organisms, however, solid-state CP-MAS spectral can characterize insoluble samples, 

whereas HSQC spectral data in DMSO-d6 solvent are required to characterize soluble 

samples. The BMRB contains reference NMR data on biomolecules in various solvents 

such as DMSO-d6 and methanol, but it is limited to partial structural data for 

polysaccharides. In addition, Bm-Char of ECOMICS[58] can be used to characterize 
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chemical structures from the HSQC spectrum of a biomass sample. As opposed to many 

other databases of metabolites, GISSMO[59,60] offers the complete spin system for a large 

number of metabolites, making analysis possible regardless of the magnetic field. 

Nevertheless, there remain insufficient databases and analytical tools for complex 

mixtures of similarly structured macromolecules, or for solid CP-MAS NMR, which has 

typically very low resolution, or low-field benchtop NMR. 

In order to overcome these problems, here we have developed InterSpin, an 

integrated supportive webtool comprising freely accessible preprocessing tools, a 

database, and molecular assignment webtools to advance signal assignment in low- and 

high-field NMR analyses of mixtures from small molecules to macromolecules and lipids 

(Figure 1). InterSpin comprises the following three elements: 1) spectrum preprocessing 

tools; 2) molecular assignment tools; and 3) the SpinLIMS (InterSpin Laboratory 

Information Management System) database. 

 

 
Figure 1. Overview of InterSpin. InterSpin is a freely accessible integrated supportive webtool for 
advanced performance of NMR signal assignment in low- and high-field NMR analysis of mixtures 
from small molecules to macromolecules and lipids. InterSpin comprises the following three elements. 
1) Spectrum preprocessing tools. In the case of a broad spectrum obtained from low-field benchtop 
1H-NMR or solid-state 13C-CP-MAS, SENSI (SENsitivity improvement with Spectral Integration) 
helps to overcome the problem of low signal-to-noise ratio by increasing resolution through the 
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integration of multiple spectra, while PKSP supports effective peak separation by a multivariate 
spectral decomposition method. 2) Molecular assignment tools. SpinMacro supports simplifying the  
assignment of a solid CP-MAS spectrum or a DMSO-d6 solubilized 1H-13C HSQC spectrum for 
macromolecules and lipids. SpinAssign searches the SpinLIMS database for a compound 
corresponding to the HSQC NMR peaks. SpinCouple can assign 1H-J 2D-Jres NMR peaks. 
InterAnalysis is a Venn diagram-type highly accurate annotation tool that helps to narrow down 
candidate molecules by using correlation peaks from both the HSQC spectrum and the 2D-Jres 
spectrum. In the bottom right of the figure, blue, yellow, and red circles represent a set of search 
results; the green star represents the narrowed down set. 3) SpinLIMS (InterSpin Laboratory 
Information Management System) database. The database includes reference solid-state CP-MAS 
spectra and solution-state HSQC spectra (DMSO-d6) for macromolecules and lipids, and reference 
solution-state HSQC and 2D-Jres spectra (D2O and MeOD-d4) for small molecules. 

 

2.3 Results and Discussion 

3.2.1 Signal enhancement and peak separation of benchtop NMR spectra by 

SENSI and PKSP 

 

To support preprocessing of a broad spectrum, InterSpin uses PKSP (PeaKs 

SeParation) and SENSI1D, which have been newly developed as webtools (Figure 1). 

SENSI1D is intended to increase signal intensities and to overcome the problem of low 

signal-to-noise (S/N) ratio by the integration of multiple spectra without additional 

measurements. On the other hand, PKSP is a multivariate method of spectral 

decomposition that includes the algorithms non-negative sparse coding (NNSC)[61,62], 

which separates the spectrum into non-negative sparse components; multivariate curve 

resolution – alternate least squares (MCR-ALS); fast independent component analysis 

(Fast ICA); and non-negative matrix factorization (NMF). We have previously described 

the spectrum-preprocessing methods of SENSI[63], MCR-ALS[25], and NMF[26]; here, 

we have integrated them into InterSpin as a freely available webtool. 

First, we verified the effectiveness of the new function NNSC in PKSP by using 

multicomponent test data with increasing numbers of components. MCR-ALS and NMF 

required significant computing time when processing more than 100 components, 

whereas NNSC and Fast ICA were fast, maintaining speed even as the component number 

increased (Figure 2). In terms of resolving the spectrum of mixtures of 10 standard 

compounds (Supporting Information Table S1) with reference to the spectrum of each 

standard compound by PKSP, the Durbin-Watson (DW) plot approached 2 (Supporting 

Information Figure S1, white) with 10 components identified by all algorithms, the 

residual sum of squares (RSS) plot converged to 0, and the spectrum was separated into 

the correct number of components (Supporting Information Figure S1). NNSC, MCR-

ALS and NMF generally showed good separation of all components from the mixed 
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spectra (Supporting Information Figure S2). In NNSC, a sharp peak was observed in the 

broad part of the spectrum (3 to 4 ppm) for glucose. In Fast ICA, a large error in the 

original spectrum occurred for glucose and sucrose. In NNSC, NMF, and MCR-ALS, the 

ratio of components in the mixture was well estimated, but Fast ICA showed an error for 

alanine, phenylalanine, proline, valine, and glucose, although its calculation speed was 

fast (Supporting Information Figure S3). 

 

 

Figure 2. Comparison of the analysis speed of each algorithm in PKSP (PeaKs SeParation). (a) Three 

average analysis times for 25, 50, 100, and 198 components (i.e., compounds to be separated by each 

algorithm of PKSP). (b) Three average analysis speeds for 25, 50, 100, and 198 components. 

 

As a demonstration of the integrated use of SENSI and PKSP webtools, Figure 3 

shows that histidine, creatine, and lactate were well separated as major components of 

Thunnus muscle measured by benchtop 60-MHz NMR (Figure 3). For this demonstration, 

the 60-MHz NMR spectra from 51 samples of 40 fish foods (Supporting Information 

Table S2) and 11 standard compounds (Supporting Information Table S3) first showed 

that the SENSI tool strengthened 25 peaks of the 11 standards 66-fold on average and 

improved the S/N ratio 5.5-fold (Supporting Information Figure S4, Table S4). 

Subsequently, peak separation of the benchtop NMR spectrum was performed by NNSC 

of PKSP, which led to the separation of 17 components (Supporting Information Figure 

S5). Note that where there are multiple signals for the same molecule, their coefficients 

of variation (CVs) indicate that their signal intensities vary together. This information can 

support signal attribution. Thus, histidine, creatine, and lactate could be identified by 
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using the CV value of peaks detected by SENSI (Supporting Information Figure S4b) and 

the individual components obtained by PKSP (Supporting Information Figure S5d). 

 

 

Figure 3. Molecular assignment of a mixture using peaks separated by PKSP (NNSC). (a) Original 

and separated spectra of No. 33 Thunnus sample measured by benchtop 60-MHz NMR. (b–d) Original 

and separated component spectra of histidine (b), creatine (c), and lactate (d). 

 

To evaluate peak separation by the four algorithms in PKSP, here we determined 

the appropriate number of separate peaks using DW and an RSS plot, which is the sum 

of squares of the residuals of the original matrix of each model and the reconstruction 

matrix[64]. Although FastICA calculated negative values as separate matrices, it  

determined the number of components more quickly than the other algorithms (Figure 2). 

When the number of components was large, however, NNSC provided a realistic 

approximate spectrum at high speed and with nonnegative values. For the analysis of 

large numbers of components, therefore, we considered that it would be most efficient to 

determine the number of components with Fast ICA and then perform accurate spectral 

separation with NNSC. 
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For analysis in SENSI and PKSP, the peak maximum must have exactly the same 

chemical shift for each signal. Thus, peak alignment to correct chemical shifts altered due 

to pH, temperature, or magnetic field inhomogeneity caused by magnetic material in the 

sample is an important process. 

The calculation algorithm used for PKSP is multivariate analysis; therefore, it is 

essential to have M numbers of spectral data. However, because 2D-NMR has data in the 

f2 direction, PKSP can be applied to data from the 2D matrix of one or more spectra of 

2D-NMR. Therefore, if a user has difficulty with 2D-NMR peak picking of, for example, 

saccharides and lipids, our approach can support objective peak picking by helping to 

separate peaks via PKSP. As a result of peak separation in one spectrum of 2D-Jres using 

PKSP's MCR-ALS algorithm, it was separated into three components (Supporting 

Information Figure S6). 

In general, quality control is essential in modern food production. In many cases, 

however, the primary production or distribution sites (i.e., farms or fishing grounds) are 

located far from laboratories or analytical centers (i.e., food companies or facilities). In 

such cases, benchtop NMR may potentially revolutionize the quality control processes 

that identify metabolic changes in food resulting from storage and fermentation. As a 

practical tool, we previously developed FoodPro[65], a database and webtool for 

predicting the taste and longevity of foods based on the similarity of desktop NMR spectra 

of food substances. As shown in this study, SENSI and PKSP are expected to lead to 

improved cost-effectiveness of this approach by supporting the annotation of the broad 

spectra obtained from in situ low-field NMR. 

 

3.2.2 Assignment of macromolecules and lipids by SpinMacro 

 

InterSpin’s Annotation tools consist of the newly developed SpinMacro and 

InterAnalisys, and the re-implemented SpinAssign and SpinCouple, which were 

previously developed (Figure 1). SpinMacro is a webtool for supporting simplification of 

the molecular assignment of macromolecules and lipids in solid-state 13C CP-MAS 

spectra and in 1H-13C HSQC spectra recorded in DMSO-d6 solvent (Figure 4, Supporting 

Information Figure S7). As reference data for SpinMacro, solid CP-MAS peaks and 

HSQC peaks of compounds in DMSO-d6 solvent have been stored in the SpinLIMS 

(InterSpin Laboratory Information Management System; see Figure 1) database. 

The steps for using SpinMacro are as follows. 1) PHP interpretation of the user 

query for CP-MAS peaks or HSQC peaks. 2) Connect to the SpinLIMS database and 
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search for candidate molecules within the set range of 13C chemical shifts for CP-MAS, 

or 1H and 13C chemical shifts for HSQC. 3) Conversion of results to HTML and JavaScript 

for convenient and quick display. Here, the previously reported solid-state CP-MAS 

spectra of Euglena gracilis[24] and standards (paramylon, peptides, lipids) were queried 

using SpinMacro and SENSI-PKSP. First, the CV value was determined for peaks picked 

by SENSI (Figure 5) and then the components were identified by PKSP (Supporting 

Information Figure S8). As a result, paramylon, peptides, lipids were separated as the 

main three components of E. gracilis. Ultimately, as a result of retrieving the peaks picked 

by SENSI with SpinMacro, it was possible to verify their assignment (Supporting 

Information Figure S7). In a previous study of general lipids and general peptides of E. 

gracilis[66], we conducted experiments that required considerable measurement time, 

such as 2D-/ 3D-NMR pulse sequences of solid-state NMR (i.e., INADEQUATE, SHA+ 

and 3D-DARR). Because the peak separation by NNSC corresponds to 1D-CP-MAS, this 

tool supports a more rapid evaluation of mixtures including macromolecules and lipids. 

The database and mixture analysis tool for macromolecules and lipids and solid 

CP-MAS NMR of complex and similar structures have room for development. 

SpinMacro developed herein retrieves the peak of the whole structures about 

macromolecules and lipids from SpinLIMS and provides candidate molecules in analyses 

of environmental and biological macromolecules and lipids. In the future, it should be 

possible to improve assignment accuracy by discriminating macromolecules and lipids 

with similar structures through the extraction of features of chemical structures using 

machine learning algorithms based on databases of macromolecules and lipids. 
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Figure 4. How to assign macromolecules and lipids in a mixture using “SpinMacro”. Shown is the 

flow of data through SpinMacro. The user query of CP-MAS peaks or HSQC peaks are entered as 

PHP. The SpinLIMS database is then searched for candidate molecules within the set range of 13C 

chemical shifts for CP-MAS, or 1H and 13C chemical shifts for HSQC. 
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Figure 5. CV of peaks picked by SENSI from E. gracilis CP-MAS spectrum. (a) SENSI results. Red 

circles are picked peaks. The enlarged view (top left) shows the raw spectrum of paramylon from the 

data used for SENSI of sugar region. (b) CV of peaks picked by SENSI. Blue circles indicate lipids 

signals, black circles indicate peptides signals, and red circles indicate paramylon signals. 
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3.2.3 SpinLIMS (InterSpin Laboratory Information Management System) 

database 

 

Within InterSpin, SpinLIMS (Figure 1) is a relational database comprising several 

entities or “tables” developed by MySQL (Supporting Information Figs. S9a and S10a, 

Core tables). To make the database extensible, SpinLIMS client software was developed 

to incorporate a simple registration system. After registering in the user table (“limsuser”), 

the researcher can associate their NMR spectrum (“spectrum”) with the chemical shift 

(“cs”) or the J value (“jval”) tables, as well as the molecular value (“metabolite”) table 

by means of the assignment table (cs_assign, hc_pk (h_pk for 1H-1D NMR, c_pk for 13C-

1D NMR), hj_pk) via the client software. For the NMR spectrum, there is an associated 

pulse type table (“pulse”), solvent table (“solvent”), standard substance table (“stdref”). 

For chemical shifts and J values, there is an associated peak shape table (“pkshape”). 

Molecular name (“metabolitename”), atom (“atom”), nuclide (“nucleus”) tables are 

associated with the molecule. 

SpinLIMS contains numerous reference spectra of small molecules to 

macromolecules and lipids recorded in solid state and solution state (polar and nonpolar 

solvent systems) that can be used to support mixture analysis of various samples. Overall, 

there are 34 data tables in SpinLIMS, as well as tables for managing the information from 

NMR experiments (Supporting Information Figure S10b). In addition to HSQC in D2O 

(705 spectra) and 2D-Jres in D2O (623 spectra), SpinLIMS has several newly added 

spectra from CP-MAS (35 spectra), HSQC in MeOD-d4 (947 spectra) and deuterated 

DMSO-d6 (171 spectra), and 2D-Jres in MeOD-d4 (357 spectra). SpinMacro, 

InterAnalysis, SpinAssign, and SpinCouple are connected to the MySQL server via a 

local network in InterSpin (Supporting Information Figure S9b). As a result, the re-

implemented SpinAssign and SpinCouple facilitate chemical shift searches in MeOD-d4. 

SpinAssign also facilitates searches in deuterated DMSO-d6/pyridine-d5 solvent. 

 

3.2.4 Venn diagram-type annotation by InterAnalysis 

 

Within InterSpin, the new tool InterAnalysis is a Venn diagram-type annotation 

tool that can aid simultaneously searches of two kinds of correlation peak, 1H-13C HSQC 

and 2D-Jres, to narrow down candidate molecules (Figure 6). The flow of data through 

InterAnalysis is as follows: 1) PHP interpretation of user queries; 2) connection to the 
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SpinLIMS database and conversion to HTML; and 3) JavaScript execution for a 

convenient and rapid view. 

Here, we demonstrated the application of InterAnalysis to HSQC and 2D Jres 

peaks from Acanthogobius flavimanus (Yellowfin goby) body muscle extracts in MeOD-

d4 (Figure 6) and deuterated potassium phosphate (Supporting Information Figure S11). 

For data acquired in MeOD-d4 extract, SpinAssign and SpinCouple assigned 223 and 107 

molecules. By contrast, InterAnalysis assigned 25 molecules, narrowing down the 

molecules to 11% and 23%, respectively (Figure 6). From previous studies[25,31,33], 

seven metabolites such as L-valine, L-leucine, L-phenylalanine, L-histidine, L-proline, 

Linoleic acid and Capric acid were confirmed as well-known metabolites that should be 

present in fish. 

In the analysis of natural mixtures, molecular assignment based on two kinds of 

2D-NMR spectra, HSQC and 2D-Jres, is a powerful strategy to increase assignment 

accuracy. The previous tools, SpinAssign and SpinCouple, acquired two separate results 

of correlation peak attribution; thus, it was highly time-consuming to narrow down 

candidate molecules. The newly developed Venn diagram-type webtool, InterAnalysis, 

supports the annotation of environmentally and biologically derived small-molecule 

mixtures. 
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Figure 6. Result of InterAnalysis for 1H-13C HSQC and 1H-J 2D Jres peaks from Acanthogobius 
flavimanus body muscle extract in MeOD-d4. Summary shows the number of query peaks, the number 
of assigned molecules, and the narrowed down set of molecules. The table shows some of the 
molecular assignment results for each query peak. 

 

2.4 Materials and Methods 

2.4.1 SENSI and PKSP 

 

The SENSI and PKSP webtools were developed using the Shiny package based 

on previously reported R scripts[25,26,63]. Here, we incorporated a new method, 

NNSC[61,62], into PKSP. 

 

2.4.2 Database and client software of SpinLIMS 

 

SpinLIMS was developed in MySQL. It integrated previously reported data from 

SpinAssign[56] and SpinCouple[57]. In addition, it newly implemented NMR spectra for 

solid-state CP-MAS and solution-state in DMSO-d6/pyridine-d5 and MeOD-d4 solvents. 

The SpinLIMS client software was developed with Java. 
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2.4.3 SpinMacro, InterAnalysis, SpinAssign, and SpinCouple 

 

SpinMacro and InterAnalysis were developed in HTML, PHP, JavaScript, and 

MySQL. SpinAssign[56] and SpinCouple[57] were completely re-implemented within the 

program and were connected to the SpinLIMS database to run within InterSpin. 

 

2.4.4 Evaluation of benchtop NMR signal assignment performance by SENSI and 

PKSP 

 

To evaluate the performance of SENSI and PKSP, 1H-NMR data of 40 fish-based 

food mixtures and 22 standard compounds measured by benchtop NMR at 60 MHz were 

conducted phase and baseline correction, spectral alignment and normalization and then 

analyzed. In addition, the analysis speed of PKSP was evaluated by using similarly 

processed the 500 MHz 13C-CP-MAS spectrum of plant and algae biomass with 198 

components. 

 

2.4.5 Evaluation of assignment about macromolecules and lipids by SpinMacro 

with SENSI and PKSP 

 

To evaluate the molecular attribution strategy of SpinMacro using SENSI and 

PKSP, we used the previously reported CP-MAS spectrum of E. gracilis[24] and spectra 

of standard compounds (paramylon, peptides, and lipids). NMR spectrum were conducted 

phase and baseline correction, spectral alignment and normalization and then analyzed. 

 

2.4.6 Comparison of small-molecule assignment by InterAnalysis, SpinAssign, 

SpinCouple 

 

To evaluate the performance of InterAnalysis, HSQC and 2D-Jres peaks in a 700 

MHz NMR spectrum of body muscle extract of Acanthogobius flavimanus were assigned 

molecules by InterAnalysis, SpinAssign, and SpinCouple. 
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2.5 Conclusions 

 

As shown above, InterSpin provides free access to a suite of tools whose goal is 

to support the interpretation of low-resolution NMR spectra, similar to the spectra 

recorded for food, material, and environmental applications. Each tool of InterSpin 

supports low-resolution NMR spectrum analysis by having interoperabilty as 

demonstrated, for example, by the peak attribution of E. gracilis by NNSC of SENSI, and 

confirmation of metabolite candidates by SpinMacro. Fur-thermore, 2D-Jres and HSQC 

are pulse sequences that are frequently used in high-magnetic field NMR; conventionally, 

SpinAssign and SpinCouple have had to be applied individually, but InterAnalysis will 

aid the simultaneous application of these tools at the same time. 

NMR has the great advantage that chemical shifts and coupling constants are absolute 

physical constants that have high repeatability and interchangeability between different 

agencies. Therefore, NMR provides data that are suitable for reuse globally. For NMR 

analyses that target the molecular complexity of living bodies and environments, 

InterSpin provides an integrated supportive resource, consisting of an extensible 

SpinLIMS database and webtools that are easily accessible to varied and numerous 

researchers. SpinLIMS’s client software will ultimately promote scientific discovery 

through the open circulation of knowledge by facilitating data sharing and reusing, as 

well as the interoperability of NMR data for the achievements of re-searchers to be 

recognized fairly and with transparency. 

In conclusion, InterSpin comprises integrated supportive webtools that are 

effective not only for precision analysis in laboratories but also for on-site analysis by 

benchtop NMR. As a platform linking the laboratory and the real world, it will support 

sustainable development based on NMR data.
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Data cleansing approach 
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Chapter 3 

 

Signal Deconvolution and Noise Factor 

Analysis Based on a Combination of Time–

Frequency Analysis and Probabilistic Sparse 

Matrix Factorization 
 

This chapter is reproduced with permission from “Yamada, S.; Kurotani, A.; 

Chikayama, E.; Kikuchi, J. Signal Deconvolution and Noise Factor Analysis Based on a 

Combination of Time-Frequency Analysis and Probabilistic Sparse Matrix Factorization. 

Int. J. Mol. Sci. 2020, 21, 2978”, Copyright 2020 MDPI. 

 

3.1 Abstruct 

 

Nuclear magnetic resonance (NMR) spectroscopy is commonly used to 

characterize molecular complexity because it produces informative atomic-resolution 

data on the chemical structure and molecular mobility of samples non-invasively by 

means of various acquisition parameters and pulse programs. However, analyzing the 

accumulated NMR data of mixtures is challenging due to noise and signal overlap. 

Therefore, data-cleansing steps, such as quality checking, noise reduction, and signal 

deconvolution, are important processes before spectrum analysis. Here, we have 

developed an NMR measurement informatics tool for data cleansing (freely available at 

http://dmar.riken.jp/NMRinformatics/) that combines short-time Fourier transform 

(STFT; a time–frequency analytical method) and probabilistic sparse matrix factorization 

(PSMF) for signal deconvolution and noise factor analysis. Our tool can be applied to the 

original free induction decay (FID) signals of a one-dimensional NMR spectrum. We 

show that the signal deconvolution method reduces the noise of FID signals, increasing 

the signal-to-noise ratio (SNR) about tenfold, and its application to diffusion-edited 

spectra allows signals of macromolecules, lipids and unsuppressed small molecules to be 
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separated by the length of the T2* relaxation time. Noise factor analysis of NMR datasets 

identified correlations between SNR and acquisition parameters, identifying major 

experimental factors that can lower SNR. 

 

 
Graphical abstract 

 

3.2 Introduction 

 
NMR spectroscopy is one of the most powerful tools available for molecular 

characterization at the atomic level[67]. Because it is non-invasive, NMR has been applied 
to data-driven analyses of molecular complexity in many areas of health[68], food[65], 
materials[69], and the environment[5]. In measuring NMR signals, the main challenges 
are the sensitivity and resolution of the NMR spectrum[70]. On the one hand, various 
techniques and devices for improving sensitivity have been developed, such as high-field 
magnets[71], cryogenic detection systems[72], shimming and locking to adjust the 
magnetic field[73], and dynamic nuclear polarization[74]. In addition, pulsed field gradient 
(PFG), nonuniform sampling[75] and magnetization transfer techniques such as cross-
polarization[76] and INEPT (Insensitive nuclei enhanced by polarization transfer)[77] 
have been developed to enhance the sensitivity per unit time. On the other hand, compact 
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and benchtop NMR instruments with lower resolution have become highly cost-effective 
owing to marked progress in the materials used for the permanent magnet[78]. 

Regarding spectral resolution, many pulse sequences for the measurement of one-
dimensional (1D)-NMR with selective signal suppression, including pre-saturation, Carr–
Purcell–Meiboom–Gill (CPMG)[79], WATER suppression by GrAdient Tailored 
Excitation (WATERGATE)[80], diffusion-editing[81], double quantum filter[82], and pure 
shift NMR[83], have been developed to reduce signal overlap. However, the spectra have 
remaining overlapping signals, or the overlapping peaks themselves contain part of the 
information of the sample. In this regard, overlapping signals can be separated by two-
dimensional (2D)-NMR, in which multiple free induction decays (FIDs) are measured 
over a small change in evolution time, but this approach is time consuming[84]. 

Conventionally, methods for improving the sensitivity and resolution of FIDs are 
adjusted by pre-processing steps, such as zero filling and apodization, before Fourier 
transformation (FT) is carried out[85]. Other methods for reducing mathematical noise 
from FID signals focus on the region of interest (ROI), such as reference 
deconvolution[86], harmonic inversion noise removal (HINR)[87], and complete reduction 
to amplitude frequency table (CRAFT)[88]. In addition, STFT and wavelet transform[89] 
have been developed as alternative transformation methods to FT for analyzing the 
relationship between the time and frequency of FIDs. In principle, the exponential decay 
constant of the FID obtained by applying a 90° pulse to create transverse magnetization 
is the T2 relaxation time, a physical parameter independent of field inhomogeneity. In 
reality, however, because of the effect of magnetic field inhomogeneity, the decay 
constant of the FID is defined as T2*, an instrument-dependent parameter, rather than T2. 
STFT has the ability to extract time-varying behavior from FIDs, allowing for the analysis 
of dynamic chemical shifts of atoms in flexible proteins[90]. In addition, it has been 
reported that STFT can extract T2* information from FIDs and improve the results of 
discriminant analysis[91]. Applying the same idea to covariance NMR[92], T2*-weighted 
covariance NMR improves the sensitivity and resolution of signals based on the 
difference in T2*, determined by dividing each FID in the t1 dimension of 2D-NMR to 
create a series of sub-FIDs[93]. In an alternative approach, matrix factorization (MF) is 
commonly used to extract signal components and separate peaks in spectra[94]. For 
example, a noise reduction method using principal component analysis (PCA), which is 
one of the most commonly used multivariate analysis methods for extracting features of 
data, has been applied to solid CP-MAS NMR data measured by various parameters[95]. 
Therefore, the quality and amount of information from FIDs can be maximized by 
applying corrections based on different characteristics. Nevertheless, all these methods 
require multiple FIDs obtained by adding either spectral dimensions or multiple 
conditions of samples or parameters. There is also a computational approach such as 
CORE (COmponent-REsolved; a multi-component spectral separation approach 
previously introduced method). It focuses on diffusion coefficients to separate the NMR 
signals of different compounds in PFG-NMR[96-98]. However, this technique requires a 
specific NMR probe with a coil for generating PFG. 

In the current move toward a digital innovation society, tools for NMR 
measurement informatics are becoming increasingly important[6]. Alongside this, the 
value of raw NMR datasets for reuse in research studies is rising[9]. Although the quality 
of raw data influences the value of knowledge obtained in terms of both insight and 
prediction[99], data cleansing methods for utilizing various kinds of NMR data 
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accumulated over many years, such as data quality checks, noise reduction, and signal 
deconvolution, have not been established. 

In this study, by focusing on acquisition parameters[100-104] and noise[89], we 
have developed an NMR measurement informatics tool for data cleansing based on FID 
signal deconvolution and noise factor analysis. Our method for deconvoluting signals and 
noise factor analysis can be applied to original single FIDs from 1D-NMR and is based 
on STFT[105] and PMSF[106]. It differs from conventional noise reduction using 
multivariate analysis[98] because it does not require multiple 1D-NMR data that are 
measured on many samples or acquired with several acquisition parameters. The 
difference in T2* on the time axis determined by performing STFT for each frequency 
component is useful to separate signals based on MF instead of ROI[86-88]. Our method 
that focuses on the relaxation time utilizes the attenuation behavior of the FID signal 
without any hardware upgrade for NMR research field. Lastly, we have developed a 
function for collecting acquisition parameters as a measurement of experimental factors 
from a directory of NMR data, and investigated the relationship between signal-to-noise 
ratio (SNR) and acquisition parameters. A researcher performing NMR must select 
parameters for each experiment, and normally chooses a reasonable set of parameters 
based on their experience. We show that these parameters can be characterized in terms 
of their correlation with SNR by a statistical analysis of accumulated NMR datasets. 
Therefore, this method will be useful to determine the optimal conditions of acquisition 
parameters. 

 

3.3 Results and Discussion 

4.2.1 Signal deconvolution method 
 
In this study, signal deconvolution, based on the combined method of STFT and 

PSMF, was applied to FIDs of 1D-NMR to separate the components and improve SNR. 
The theory behind the signal deconvolution method is described in detail in the 
Supplementary Material. In brief, in FT NMR spectroscopy, the FID is the NMR signal 
generated by non-equilibrium nuclear spin magnetization precessing along the magnetic 
field. In general, this non-equilibrium magnetization can be generated by applying a pulse 
of resonant radiofrequency close to the Larmor frequency of the nuclear spins of the 
sample. Each FID is commonly a sum of multiple decayed oscillatory signals. These 
signals return to equilibrium at different rates or relaxation time constants. Thus, analysis 
of the relaxation times of an FID for a sample gives significant insight into the chemical 
composition, structure, and mobility of the sample. FIDs acquired by NMR measurement 
are composed of many signals derived from the sample, in addition to several types of 
noise, such as external noise, physical vibration, power supply, and internal noise from 
the spectrometer due to thermal noise. Therefore, an FID can be modeled as: 

𝑆ሺ𝑡ሻ ൌ 𝑆௦௜௚௡௔௟ሺ𝑡ሻ ൅ 𝑆௡௢௜௦௘ሺ𝑡ሻ (1) 
where S(t) is the measured signal, and Ssignal(t) and Snoise(t) are sets of ideal signals and 
signals from different types of noise, respectively (Equation (1) and Supplementary 
Equation (S1))[107]. The relaxation process can then be described as the exponential 
decay of the transverse magnetization 𝑆ሺ𝑡ሻ (Supplementary Equation (S2))[108]. The 
shorter the relaxation time T2*, the more rapid the decay. If an FID has more than one 
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component, it will be the sum of contributions from each component (Supplementary 
Equation (S3)). 

Whereas standard FT (Supplementary Equation (S4)) contains only the 
frequency domain, STFT contains both frequency and time domains. Because the FID 
signal decays exponentially with time, for STFT, it needs to be divided into several small 
time intervals (segments) to analyze the time–frequency feature accurately, and FT is 
used to determine the frequency feature of each segment, thereby increasing the accuracy 
of signal feature extraction. STFT uses a window function to obtain each weighted 
segment on the time axis, and then applies FT to each segment. STFT of S(t) can be 
written as: 

𝑆𝑇𝐹𝑇ௌሺ𝜏,𝜔ሻ  ൌ  න 𝑆ሺ𝑡ሻ𝑔ሺ𝑡 െ 𝜏ሻexpሺെ𝑖𝜔𝑡ሻ𝑑𝑡  
ஶ

ିஶ
 (2) 

where the window function 𝑔 is first used to intercept the progress of FT on S(t) around 
𝑡 ൌ 𝜏  locally, and then FT of the segment is performed on t (Equation (2) and 
Supplementary Equation (S5))[105]. By moving the center position of the window 
function 𝑔 sequentially, all the FTs at different times can be obtained. 
 𝑆𝑇𝐹𝑇ௌሺ𝜏,𝜔ሻ is a complex-valued function (Supplementary Equations (S6–9)) 
composed of two types of signal: real (Re, Supplementary Equation (S7)) and imaginary 
(Im, Supplementary Equation (S8)), whose phases differ from each other by 90° 
(Supplementary Figure S1). To change the complex value into an absolute value, the 
following equation is applied: 

|𝑧| ൌ ඥ𝑅𝑒ଶ ൅ 𝐼𝑚ଶ ൌ ඩ൭𝛾 cosω𝑡 expቆെ
𝑡
𝑇ଶ
∗ቇ൱

ଶ

൅ ൭𝛾 sinω𝑡 expቆെ
𝑡
𝑇ଶ
∗ቇ൱

ଶ

 (3) 

For the matrix factorization method PSMF[109], positive-valued matrices are 
needed, and the original signal values must be converted to their logarithmic form for 
optimal analysis. To convert the absolute value in Equation (3) to a positive logarithmic 
form, the following Equation (4) (Supplementary Equation (S10)) is applied: 

𝑉 ൌ logଵ଴ሺ|𝑧| ൅ 1ሻ (4) 
Signal deconvolution can be then formulated as finding the factorization of the 

data matrix V (Supplementary Equations (S11) and (S12)): 
𝑉 ൌ 𝑊 ∙ 𝐻 ൅ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 ൌ 𝑊௦௜௚௡௔௟ ∙ 𝐻௦௜௚௡௔௟ ൅𝑊௡௢௜௦௘ ∙ 𝐻௡௢௜௦௘ ൅ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 (5) 

In this method using PSMF, we focus on sparse factorizations and on properly 
accounting for uncertainties while computing the factorization. Equation (5) estimates 
that the signal component (𝑊௦௜௚௡௔௟ ∙ 𝐻௦௜௚௡௔௟) decays exponentially with time, while the 
noise component (𝑊௡௢௜௦௘ ∙ 𝐻௡௢௜௦௘) is a random or flat value. To reconstruct the FIDs, the 
absolute value within each component is converted back to a complex value 
(Supplementary Equations (S13) and (S14)). The inverse STFT is computed by overlap-
adding the inverse fast FT signals in each segment of the STFT spectrogram 
(Supplementary Equation (S15)). 

To evaluate SNR, both noise-removed and noise-only FIDs are converted to 
signal and noise spectra, respectively, by applying standard FT. SNR is calculated as the 
ratio of the signal peak intensity to the noise value by using the method of Mnova 
(Supplementary Equation (S16))[110]. The noise value is calculated by using the standard 
deviation of the signals-free region (Supplementary Equation (S17)). Finally, the relative 
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SNR is the ratio of the SNR after denoising (SNRdenoised) to the original SNR (SNRoriginal), 
which is calculated as follows (Equation (6) and Supplementary Equation (S18)): 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑆𝑁𝑅 ൌ  
𝑆𝑁𝑅ௗ௘௡௢௜௦௘ௗ
𝑆𝑁𝑅௢௥௜௚௜௡௔௟

 (6) 

Figure 1 shows an example of application of our signal deconvolution process to 
sucrose 1H-NMR. STFT of the original FID adds a time axis to the frequency axis of the 
conventional FT spectrum (Figure 1a). The STFT spectrogram is three-dimensional, 
showing the frequency, time, and intensity of signal and noise. The matrix of the 
spectrogram was separated into signal and noise components based on the patterns of 
relaxation time using PSMF (Figure 1b). Each component was then converted into a 
signal FID and time-domain noise data by using inverse STFT (Figure 1c). Lastly, the 
time-region data were converted into the denoised spectrum and noise by using standard 
FT (Figure 1d). Regarding the noise reduction of the sucrose data, SNR of the denoised 
spectrum was improved about tenfold relative to the original data. In other words, for the 
sucrose sample, a 100-fold longer acquisition time would be required to obtain the same 
SNR without denoising. We compared signal and spectral quality between the original 
FT and noise reduction data (Supplementary Figure S2 and Table S1). There was almost 
no difference between them. 

 

 

Figure 1. The free induction decay (FID) signal deconvolution method and its application to 1H-NMR 
data for sucrose. (a) The spectrogram was obtained by applying short-time Fourier transform (STFT) 
to the original FID. (b) The matrix obtained after STFT was applied to probabilistic sparse matrix 
factorization (PSMF), which separated it into signal and noise components. (c) The signal and noise 
components were converted into a noise-removed FID signal (orange) and a time-domain noise signal 
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(blue) by using inverse short-time Fourier transform. (d) Finally, the noise-removed FID and the time-
domain noise signal were converted to a frequency-domain spectrum by applying standard Fourier 
transform. As compared with the original FID, the signal-to-noise ratio of the denoised FID was 
improved about tenfold. 

 
In STFT, the size of a window function 𝑔ሺ𝑡 െ 𝜏ሻ  is important. We define the 

percentage of the time width as the percentage of the window size to FID length. After 
examining different percentages of the time widths, we found that signal components 
could be properly extracted in 1.5% and 3.1% (512 and 1024 points for 33280 points), 
but not 6.2% (2048 points for 33280 points) (Supplementary Figure S3). This is because 
the larger time width does not improve spectra since STFT becomes standard FT. 
Consequently, the percentage against the effective average region of FIDs is important 
for this method. Based on this result, the percentage of the time width was set to 3.1% for 
data analyzed in Figure 1. When using this method for data with short effective regions 
(fast relaxation systems such as solid-state NMR and quadrupole nucleus), data 
processing must be adjusted to maintain the shorter percentage of the time width. In 
addition, if an FID consists of a number of signals with differing T2*, it will not be 
possible to choose an optimal filter for all lines simultaneously by applying commonly 
used apodization. The apodization such as exponential filtering decreases both signal and 
noise. In contrast, the method that we propose enables signal and noise to be extracted 
from an FID based on each pattern of T2* relaxation time. 

We compared the performance of PSMF with that of three other MF methods, namely 
standard nonnegative matrix factorization (NMF), sparse nonnegative matrix 
factorization (SNMF), and probabilistic nonnegative matrix factorization (PMF) (Figure 
2). For PSMF, the noise region was successfully removed from the signal component 
(Figure 2a). For the other three methods, by contrast, the noise component remained in 
the signal component (Figure 2b–d). Regarding the PSMF time-varying coefficients, the 
signal component attenuated gradually over time, whereas the noise component 
attenuated sharply in the first segment and then became flat from the second segment 
(Supplementary Figure S4a). This observation suggests that part of the signal component 
may be included in the initial stage of the noise component. Therefore, for the optimal 
result in Figure 1, the initial value of the noise component is added as a signal component. 
The time-varying coefficients of the other three methods were characterized by 
containing mostly noisy components in the signal components, suggesting that the signal 
components were not properly extracted (Supplementary Figure S4b–d). The signal 
component is theoretically considered to be sparse data that comprise only specific 
frequency components. PSMF is a method that considers noise and uncertainty under the 
sparseness constraint, which suggests that it is suitable for removing noise from 1H-NMR 
data. We also examined the effect of the number of components in PMSF on signal 
deconvolution, which showed that it was possible to properly extract signal components 
when there were two components (Supplementary Figure S5). When the number of 
components was increased, only noise components were separated more finely. Based on 
this result, the number of components was set to 2 in the signal deconvolution method for 
noise reduction. In the case of more complex data, such as the NMR signal of a mixture, 
it may be possible to apply the method to the characterization of multiple components by 
separating them with an arbitrary number of components. 
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Figure 2. Comparison of four matrix factorization (MF) methods in signal deconvolution. Shown are 
spectral patterns of signal deconvolution for sucrose 1H-NMR data using (a) PSMF, (b) NMF, (c) 
PMF, and (d) SNMF. The signal components are shown in orange and the noise components are shown 
in blue. 

 

4.2.2 Noise reduction in NMR data measured by various pulse sequences 
 
The improvement in the relative SNR achieved by the noise reduction method was 

investigated by using large-scale data measured by various pulse sequences (Figure 3). 
Here, we analyzed the following three pulse sequences, which are generally used 
depending on the target of analysis: CPMG, which detects small molecules with long T2*, 
diffusion-edited, which detects proteins and lipids with relatively short T2*, and 
WATERGATE, which detects both of these. For the analysis of extensive data, 
percentages of the time width to FID lengths were set to 6.3% for CPMG and 
WATERGATE, 12.5% for diffusion-edited (1024 points for 16384 and 8192 points), and 
the initial three values of the noise component were added as a signal component. For 
CPMG and WATERGATE, the improvement rate was 3.7-fold and 3.3-fold, respectively. 
On the other hand, it was only 2.2-fold for diffusion-edited NMR data (Figure 3a). As a 
result of comparing the relative SNRs of three typical pulse sequences for 10 
representative samples, the data of diffusion-edited tended to be lower than those of 
CPMG and WATERGATE as in the case of large-scale data (Figure 3b, Supplementary 
Table S2) since the time width for diffusion-edited (12.5%) is higher than that of the other 
two pulse sequences (6.3%). The SNR of any NMR data set is related to the acquisition 
parameters (Supplementary Figures S6–8). In NMR data using CPMG and 
WATERGATE, the SNR is related to several acquisition parameters, such as receiver 
gain (RG), number of scans (NS), relaxation delay time (D1), spectral width (SW), and 
offset of the transmitter frequency (O1), whereas in diffusion-edited NMR, the SNR is 



34 
 

particularly related to the gradient pulse in the z-axis (GPZ). In diffusion-edited NMR, 
signals from small molecules with long T2* relaxation times are suppressed. We therefore 
considered that, if the GPZ setting was insufficient, signals of small molecules would 
remain, resulting in a difference in relative SNR. As expressed, the peak SNR depends 
on T2* because an FID with large T2* yields a sharp line with higher SNR at the peak[100]. 
Thus, it seems likely that the diffusion-edited NMR data contain a lot of broad signals 
derived from macromolecules and lipids, resulting in less improvement as compared with 
CPMG and WATERGATE which have many sharp signals. 

 

 
Figure 3. Relative SNR in data measured by three pulse sequences. (a) Shown is the relationship 
between the relative SNR after application of the noise reduction method to large-scale data measured 
by three pulse sequences: CPMG (blue), WATERGATE (red), and diffusion-edited (yellow), and its 
acquisition time. The upper part of the figure shows the number of spectra and the average relative 
SNR for each pulse sequence. (b) Comparison of the efficiency for improvement of the SNR measured 
by three pulse sequences: CPMG (blue), WATERGATE (red), and diffusion-edited (yellow), among 
NMR spectra derived from sample ID of 1 to 10. The acquisition time and the average relative SNR 
for each pulse sequence are shown in the upper part of the figure. 

 
4.2.3 Application of signal deconvolution method in diffusion-edited NMR 

 
We further examined the application of our signal deconvolution method to 

diffusion-edited NMR data. For the optimal analysis of these data, the percentage of the 
time width to FID length was set to 6.3% (512 points for 8192 points), and the initial 
value of the noise component was added as a signal component. The original FID was 
separated into three components, including noise and the long and short components of 
T2* (Figure 4a,b). By extracting each component and performing standard FT, the SNR 
of the denoised spectrum was improved about threefold as compared with the original 
data. In addition, we obtained individual spectra for the short and long components of T2* 
(Figure 4c,d). Thus, the diffusion-edited spectrum was separated into signals from 
macromolecules and lipids and small molecules by the length of the T2* relaxation time. 
The composition of molecules in these signals is related to the GPZ value of the 
acquisition parameters (Supplementary Figures S8 and S9). We consider that insufficient 
GPZ is the main factor affecting the relative SNR of diffusion-edited NMR data because, 
if GPZ is insufficient, relatively more signals from small molecules are contained in the 
measured signals. Knowing this composition will help to evaluate the data quality of 
diffusion-edited NMR. 
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Figure 4. Application of the signal deconvolution method to diffusion-edited spectra. (a) Spectral 
patterns showing signals from small molecules (orange) and macromolecules and lipids (olive) 
separated by the length of the T2* relaxation time, and noise (blue). (b) Time-varying coefficients of 
each component in MF. (c) Denoised spectrum (gray), and spectrum of the short T2* component (olive). 
(d) Denoised spectrum (gray), and spectrum of the long T2* component (orange). 

 

4.2.4 Noise factor analysis in data measured by low- and high-field NMR at 

multiple institutions 
 
To investigate the comprehensive relationship between noise and several 

acquisition parameters, we analyzed noise factors in data acquired by low- and high-field 
NMR at multiple institutions. We collected NMR data for four compounds (glucose, 
sucrose, citric acid, and lactic acid) measured by benchtop NMR (60 MHz) and high-field 
NMR (500, 600, and 700 MHz) from five institutions/data repositories (RIKEN, NUIS 
(Niigata University of International and Information Studies), BMRB[48], BML[49], and 
HMDB[47]) (Supplementary Table S3). The results of correlation analysis between noise 
and experimental parameters were first summarized as a heatmap (Supplementary Figure 
S10). With a specific focus on the experimental parameters that affect the SNR, we then 
derived a network of experimental factors affecting noise based on the correlation 
coefficients between SNR and experimental parameters (Figure 5). Here, in addition to 
the SNR calculated using Mnova, we calculated a theoretical SNR value (calcSNR) using 
a previously described SNR formula (Supplementary Equation (S19))[111] in order to 
obtain a theoretical SNR index based on acquisition parameters. Figure 5 shows that, 
based on the correlation between SNR and, for example, number of scans (NS) and signal 
intensity (e.g., standard, sample, and solvent), the integration of strong signals will 
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increase noise and reduce SNR. Therefore, the suppression of water signals and sample 
concentration will be important factors to obtain NMR data with a good SNR. 

In situations where longer NMR measurements are needed owing to poor signals 
(e.g., for nuclei of low sensitivity and/or low natural abundance, and samples of low 
concentration), paying attention to the certain factors, as discussed here, may provide 
significant improvements in SNR[100], or even more marked savings in measurement 
time for a given SNR. For example, too long an acquisition time is not beneficial for SNR. 
An FID of the time constant T2* gives, on Fourier transformation, a line width of 1/πT2* 
or approximately 1/3T2*. Thus, data acquisition beyond about 3T2* provides little gain in 
resolution, but causes a considerable deterioration in SNR. In addition, the spectral width 
may be set high enough to prevent aliasing of NMR signals. If not, there may be still other 
signals that fold, namely noise, meaning that the final SNR in the spectrum deteriorates. 

Receiving efficiency (R) has been proposed as a way to characterize how 
efficiently the NMR signal can be observed after a unit transverse magnetization in a 
sample under optimal probe tuning and matching conditions[101]. In that study, the NMR 
signal amplitude was described as a function of the instrument constant, receiver gain, 
excitation angle θ, inhomogeneity factor I(θ), concentration of the observed nucleus, and 
sample volume. Modern NMR spectrometers require receivers to work within their linear 
ranges to maintain high-fidelity line shapes and peak integration[102]. The NMR receiver 
gain is a parameter that is often chosen to maximize SNR. For example, for optimal 
sensitivity, a dilute analyte needs to be observed with high NMR receiver gain, while the 
strong, interfering solvent signal must be suppressed[103]. In this case, the dependence of 
I(θ) on θ becomes more significant because homogeneity is typically lower for a 
cryoprobe than for its conventional counterpart[104], and failing to recognize the 
dependence of I(θ) on θ alone may potentially lead to errors in quantification as large as 
5%. Other factors that we have discussed have less effect on SNR, but are significant in 
terms of line shape. 
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Figure 5. Analysis of experimental factors based on a correlation network of SNR and experimental 
parameters. The network diagram was drawn by setting positive correlations to red, negative 
correlations to blue, and the magnitude of the correlation coefficient to the edge thickness. 
Abbreviations: SNR, signal-to-noise ratio; calcSNR, calculated SNR; Cstd, concentration of standard 
compound; Ccomp, concentration of compound; Water+, positive intensity of water signal peak to 
standard peak; Water–, negative intensity of water signal peak to standard peak; Intensity, intensity of 
standard signal; FWHM, full width at half maximum; Area, area of standard signal; RG, receiver gain; 
NS, number of scans; D1, relaxation delay time; SW, spectral width; AT, acquisition time; TD, time-
domain data size; O1, offset of transmitter frequency; TE, temperature; BF1, basic transmitter 
frequency for channel F1 in Hertz; PROBHD, if cryoprobe, value is 4, if not, value is 0. 

 

3.4 Materials and Methods 

4.3.1 Signal deconvolution method 
 
The signal deconvolution method was developed in python 3, and built as a 

graphical user interface (GUI) tool using Tkinter. The tool is available on 
http://dmar.riken.jp/NMRinformatics/. The processing of NMR data was implemented by 
using the nmrglue[112] package in Python. PSMF[109], PMF[113], SNMF[114], and 
standard NMF[115] were calculated based on the NIMFA Python library for nonnegative 
matrix factorization[106]. 
 

4.3.2 Noise factor analysis method 
 
The noise factor analysis consisted of four steps implemented in python 3, 

namely: (1) Collecting acquisition parameters of NMR data: FID and acquisition 
parameters were searched from the selected NMR data directory and written to CSV files. 
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(2) Calculating SNR: each FID was usually processed to an FT spectrum and denoised 
spectrum, and the SNR and its improvement ratio were calculated. In the noise factor 
analysis of data collected from multiple databases, SNR was calculated by using Mnova. 
(3) Calculating the correlation coefficient between SNR and each parameter by Pearson’s 
correlation coefficient. (4) Visualizing experimental factors: the nodes, edges, and widths 
of networks based on the correlation coefficient were transformed in GML format by 
using the Networkx package in Python. Lastly, the network figure was drawn by using 
Cytoscape[116]. 
 

4.3.3 NMR data acquisition 
 
Briefly, 1H-NMR data were by recorded using an Avance II 700 Bruker 

spectrometer equipped with a 5-mm inverse CryoProbe operating at 700.153 MHz for 1H. 
In the 1H -NMR data, the number of data using CPMG pulse sequence was 2386, the 
number of data using WATERGATE pulse sequence was 2760, and the number of data 
in the 1D LED experiment using bipolar gradients (diffusion-edited) pulse sequence was 
975 [33,117-119]. Regarding these large data sets, a summary of information on the sample 
and acquisition parameters (the sample title, solvent, acquisition time, acquisition point, 
and the original SNR) is available at http://dmar.riken.jp/NMRinformatics/. Data sets for 
comparing the relative SNRs of three typical pulse sequences for 10 representative 
samples are shown in Supplementary Table S2. To demonstrate the denoising method, 
data for sucrose and citric acid were acquired by using the presaturation (program name; 
“zgpr“) pulse sequence. To demonstrate the method of separating signals in the diffusion-
edited spectrum, 1H-NMR data for fish muscle were measured by a diffusion-edited pulse 
sequence. Lastly, 48 sets of 1H-NMR data (glucose, sucrose, citric acid, and lactic acid) 
were collected from the following five sites; RIKEN, NUIS, BMRB, BML, and HMDB. 
The data were measured with NMR spectrometers of 60, 500, 600, and 700 MHz 
manufactured by Bruker, Varian, and Nanalysis (Supplementary Table S3). 
 

3.5 Conclusions 

 
We have developed a measurement informatics tool for NMR signal 

deconvolution and noise factor analysis and used it to investigate the relationship between 
noise and acquisition parameters in accumulated NMR datasets. This method enables 1D-
NMR spectra to be evaluated with a high SNR, and residual signals from small molecules 
to be removed from diffusion-edited spectra. This method can be adjustable to any T2* 
length, recycle delay, sample molecular weight, or measurement temperature. The 
percentage of the time width against the effective average signal region of FIDs must be 
adjusted according to T2* length. Therefore, when using this method for fast relaxation 
systems such as solid-state NMR and quadrupole nucleus, additional efforts are needed. 
In the case of 2D-NMR, it is necessary to use this method by splitting each t1-dimensional 
FID and creating a series of sub-FIDs. Noise factor analysis of accumulated NMR 
datasets might facilitate the investigation of experimental factors related to a lower SNR. 
Therefore, these methods will help to determine optimal acquisition parameters, to 
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cleanse data, including data management and noise reduction in accumulated NMR 
datasets, and to promote data-driven studies of molecular complexity using NMR. 
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Material development approach using 

solid-state NMR 
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Chapter 4 

 

Signal Deconvolution and Generative 

Topographic Mapping Regression for Solid-

State NMR of Multi-Component Materials 
 

This chapter is reproduced with permission from “Yamada, S.; Chikayama, E.; 

Kikuchi, J. Signal Deconvolution and Generative Topographic Mapping Regression for 

Solid-State NMR of Multi-Component Materials. Int. J. Mol. Sci. 2021, 22, 1086”, 

Copyright 2021 MDPI. 

 

4.1 Abstruct 

 

Solid-state nuclear magnetic resonance (ssNMR) spectroscopy provides 

information on native structures and the dynamics for predicting and designing the 

physical properties of multi-component solid materials. However, such an analysis is 

difficult because of the broad and overlapping spectra of these materials. Therefore, signal 

deconvolution and prediction are great challenges for their ssNMR analysis. We examined 

signal deconvolution methods using a short-time Fourier transform (STFT) and a non-

negative tensor/matrix factorization (NTF, NMF), and methods for predicting NMR 

signals and physical properties using generative topographic mapping regression 

(GTMR). We demonstrated the applications for samples involved in cellulose degradation, 

plastics, and microalgae such as Euglena gracilis. During cellulose degradation, 13C 

cross-polarization (CP)–magic angle spinning spectra were separated into signals of 

cellulose, proteins, and lipids by STFT and NTF. GTMR accurately predicted cellulose 

degradation for catabolic products such as acetate and CO2. Using these methods, the 1H 

anisotropic spectrum of poly-ε-caprolactone was separated into the signals of crystalline 

and amorphous solids. Forward prediction and inverse prediction of GTMR were used to 

compute STFT-processed NMR signals from the physical properties of polylactic acid. 

These signal deconvolution and prediction methods for ssNMR spectra of 
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macromolecules and lipids can resolve the problem of overlapping spectra and support 

the characterization and design of materials. 

 

 
Graphical abstract 

 

4.2 Introduction 

 
Recently, research for a low-carbon society has gained importance from the 

viewpoints of global challenges such as the marine pollution of marine plastics, waste 

disposal, and global warming[120]. Microbial products and plant biomass as alternatives 

to petroleum resources can be used to produce macromolecular materials such as plastics 

and feedstock[121]. Polymers such as polylactic acid (PLA)[122], poly-ε-caprolactone 

(PCL)[123], and cellulose[124-131] are multiple domain/component systems and are often 

employed as high-performance materials with various properties. Microbial and plant 

biomass should be analyzed as a biochemical system composed of multiple components 

containing macromolecules and lipids with multiple domains. Solid-state nuclear 

magnetic resonance (ssNMR) spectroscopy is a powerful tool for characterizing the 

native structure, components, and dynamics of solid-state samples at the atomic level. It 

is being increasingly applied in material/life sciences[5,132]. Therefore, an advanced 

ssNMR analytical approach must be developed for products such as microbial products, 

plant biomass, and plastics. 

Various techniques that use high-field magnets, cryogenic detection systems, 

indirect detection[133], nonuniform sampling[134], and dynamic nuclear polarization 

methods[135,136] have been developed for realizing increased sensitivity. From the aspect 
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of NMR measurement, various solid-state NMR methods have been used. Typical 

methods are cross-polarization (CP)–magic-angle spinning (MAS) methods, static 

multiple-quantum (MQ) NMR, static 1H NMR[137], direct polarization (DP), high-

resolution (HR)-MAS[29,45,66], magic-and-polarization echo (MAPE) filtering[138], 

double-quantum (DQ) filtering[139], and combined rotation and multiple-pulse 

techniques (CRAMPS)[140]. MAS probes are capable of spinning frequencies much 

greater than 100 kHz[141]. Other advanced techniques are spin diffusion 

measurements[11], pulsed field gradient (PFG) NMR, diffusion-ordered spectroscopy 

(DOSY), and time-domain NMR/relaxometry[142]. In addition, multi-dimensional NMR 

was applied for separating overlapping spectra; examples of such techniques are wide-

line separation (WISE) and heteronuclear correlation (HETCOR)[143,144], three-

dimensional (3D) dipolar-assisted rotational resonance, double-cross-polarization 1H-13C 

correlation spectroscopy, and 1H–13C solid-state heteronuclear single-quantum 

correlation spectroscopy[66]. 

In the characterization of solid-state samples with crystal, interphase, and 

amorphous domains, the anisotropy detected by static measurement is useful, but its 

analysis is difficult because the spectra are broad and overlapping[145]. Therefore, the 

application of signal deconvolution to measure solid-state NMR data is an important 

challenge to extract hidden information in the NMR spectra of samples with multiple 

phases and components. Several methods for spectral separation [94], apodization, zero 

filling, linear prediction, fitting and numerical simulation[146], such as covariance 

analysis[147], SIMPSON[148], SPINEVOLUTION[149], dmfit[150], EASY-GOING 

deconvolution[151], INFOS[152], Fityk[153], ssNake[154], the noise reduction method 

based on principal component analysis[95], and the signal deconvolution method that 

combines short-time Fourier transform (STFT, a time–frequency analytical method), and 

probabilistic sparse matrix factorization (PSMF which is one of the non-negative matrix 

factorizations)[155] were developed as computational approaches to measured data. 

In this study, we propose signal deconvolution methods using STFT and non-

negative tensor/matrix factorization (NTF, NMF) optimized to characterizing the solid-

state NMR spectra of samples with multiple domains and components such as cellulose, 

plastics, and Euglena gracilis. Using generative topographic mapping regression (GTMR, 

the regression method using GTM)[156], we mutually predicted higher-order structure 

descriptors of STFT-processed NMR signals (STFT–NMR signals) and physical 

properties of the material. To the best of our knowledge, this is the first reported 

application on the prediction of NMR signals from the thermal properties of plastics using 

GTMR. 
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4.3 Results and Discussion 

5.2.1 Signal deconvolution and prediction for solid-state NMR of multi-component 

materials 
 
In this study, from a practical point of view, we focused on a signal deconvolution 

method for one-dimensional (1D) ssNMR data suitable for high-throughput multi-sample 
measurement. In particular, static 1H anisotropic spectra can be used as an index of the 
motility of higher-order structures, but these spectra are broad and show overlapping. 
Even extremely sharp spectra such as 13C CP-MAS show overlaps, especially in the case 
of signals with different mobility derived from the same atom. Therefore, those data must 
be separate signals. In principle, the exponential decay constant of the free induction 
decay (FID) obtained by applying a 90° pulse to create transverse magnetization is the T2 
relaxation time. In reality, however, because of the effect of magnetic field inhomogeneity, 
the decay constant of the FID is defined as T2

*, an instrument-dependent parameter, rather 
than T2. In this paper, we report a signal deconvolution method to separate the broadening 
spectra derived from cellulose and plastics with multiple phases and components based 
on the T2

* relaxation pattern. The short-time Fourier transform (STFT) method is used to 
convert an FID into frequency domain data at short time intervals to generate a matrix of 
time and frequency axes (Figure 1a). As algorithms of factorization, in addition to the 
traditional NMF for analysis of the two-dimensional (2D) dataset, we investigated the 
application of NTF (non-negative Tucker decomposition (NTD)[157] and non-negative 
canonical polyadic decomposition (NCPD)[158,159]), which is a factorization algorithm 
useful for the analysis of the 3D dataset of multiple samples and parameters. By applying 
NTF/NMF (Figure S1) to the dataset, the signal components were separated based on the 
T2

* relaxation pattern of the components indicated in the multi-phase and multi-
component spectra (Figure 1b,c). Furthermore, the high-order structure of materials 
exerts a significant influence on their macroscopic properties[11]. Traditional design 
approaches for materials are experimentally driven and trial-and-error are facing 
significant challenges due to the vast design space of materials. In addition, computational 
technologies such as density functional theory (DFT)[160] and molecular dynamics 
(MD)[126] are usually computationally expensive and are difficult to calculate molecular 
structures from material properties. To address these problems, machine-learning-assisted 
materials design is emerging as a promising tool for successful breakthroughs in many 
areas of science[12]. In addition, NMR measurement, especially a low magnetic field 
NMR, is a method for routine material evaluations, which produce a lot of NMR 
datasets[94]. Against this background, in the cycle of developing materials using NMR 
and other measurements, the prediction of the NMR signal using the accumulated data is 
necessary to find a structure with the desired properties. In this study, prediction of the 
NMR data and sample properties was calculated using GTMR (Figure 1d,e and Figure 
S2)[156]. For cellulose degradation samples, our previous study reported that solution 1H 
and 13C NMR data were used for evaluating the concentration of catabolic products. In 
this study, we examined the use of pseudodata as a method of predicting data without 
experiments. Pseudodata are a dataset with the same distribution as the original dataset 
generated using Gaussian mixture models (GMM) (Figure S3)[161]. Randomly generating 
data based on means and covariances using GMM produces new pseudodata. By 
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performing GTMR calculation from these pseudodata as input data, a spectrum as output 
can be predicted without preparing new materials. The STFT–NMR signals were 
predicted as a higher-order structure descriptor and were transformed to predicted NMR 
properties. This method can be applied to various sample systems for pursuing structure–
property correlation. In this study, we demonstrate the application of cellulose 
degradation and plastic for evaluating our method. Here, in cellulose degradation, the 
word “higher-order structure” means the crystalline and amorphous structure of cellulose, 
and the word “property” means the quantity of catabolic products. In addition, with 
plastics such as PCL, it is difficult to design those having both high degradability and 
toughness. In the PCL, multiple domain structures with different degrees of entanglement 
of molecular chains are referred to as “higher-order structures”, and thermal and 
mechanical properties are referred to as “property”. This analytical flow is useful for the 
research and development of macromolecules and related products. 

 

 

Figure 1. Concept diagram of a material development cycle based on signal deconvolution and 
prediction for the solid-state nuclear magnetic resonance (ssNMR) of multi-component materials. (a) 
Free induction decay (FID) is transformed into a dataset with time and frequency axes by short-time 
Fourier transform (STFT). (b) In the case of a three-dimensional dataset such as one with multiple 
samples and conditions, the FID is separated into each component based on the factors of time, 
frequency, and samples (or condition) by tensor factorization. (c) In the case of two-dimensional 
datasets such as a matrix with time and frequency axes, the FID is separated into each component 
based on factors of time and frequency by matrix factorization. (d) The generative topographic 
mapping regression (GTMR) accurately predicted the cellulose degradation process shown by 
catabolic products such as acetate and CO2. (e) Forward prediction and inverse prediction of GTMR 
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were used to compute the STFT-processed NMR (STFT–NMR) signals from the physical properties 
of the plastics. This approach is an iterative procedure to achieve convergence between experimental 
and predicted spectra. 

 

5.2.2 Non-negative Tucker decomposition to 13C CP-MAS in cellulose degradation 

process 
 
Solid and solution NMR methods can monitor higher-order structural 

changes and catabolic products during the degradation of cellulose by 
microorganisms[129,131]. The dataset used in Figure 2 is a time-dependent dataset of 
13C solid-state CP-MAS signals of the cellulose degradation process and also 
contains signals of catabolic products (proteins and lipids). The 13C ssNMR spectra 
detect cellulose, proteins and lipids. This dataset is a set of data with frequency and 
intensity in 16 time points from 0 to 120 h (Figure 2a). This dataset was processed 
by STFT (Figure S4). We demonstrated the application of NTD (Figures 1b and 2b), 
which is one of the tensor factorizations for multi-sample data. By separating the 
spectrum into four components, it was possible to visualize the spectral patterns 
(Figure 2c–f), time change of each component (Figure 2g), and the composition 
(Figure 2h). The word “Time change” in Figure 2g means the change in acquisition 
time of the separated signal components. In addition, the word “Composition” in 
Figure 2h means the change in the 16 samples from 0 to 120 h of 13C CP-MAS NMR 
spectra. As a result, the four signals (the cellulose, proteins, and lipids-like signals) 
were clearly separated as intense signals, while the noise was relatively low. In the 
calculation scheme of NTD, the convergence tolerance of calculation error was less 
than 0.001. The cellulose-like spectrum had a short relaxation time (Figure 2c,g 
(orange)), the protein-like spectrum had a long relaxation time (Figure 2d,g (green)), 
and the lipid-like spectrum had the longest relaxation time (Figure 2e,g (red)); the 
noise did not change. It was possible to evaluate the concentration of each component 
among samples (Figure 2h). As a result of separating the spectrum of the cellulose 
C4 region (Figure S5a) into six components, it was possible to visualize the spectral 
patterns (Figure S5b), time change of each component (Figure S5c), and the 
composition in each sample (Figure S5d). So far, tensor factorizations have been 
reported for the application of NCPD to solution NMR of carbohydrate mixtures[158] 
and high-dimensional NMR of protein structures[159]. As a result of separating the 
spectrum into four components using NCPD, it was not as good as NTD because of 
unclear spectral patterns for assigning compounds (Figure S6). NCPD is different 
from the algorithm of NTD used in this work. NTD separates the tensor into a small 
core tensor and factor matrices. NCPD separates the tensor into factor matrices 
without a core tensor. This study shows that the NTD is also effective for analyzing 
time-series ssNMR data such as those of the cellulose degradation process. 
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Figure 2. Application of non-negative Tucker decomposition (NTD) to 13C cross-polarization–magic-
angle spinning (CP-MAS) in the cellulose degradation process. (a) Original spectra of 13C CP-MAS 
in cellulose degradation process. (b) Tensor factorization of STFT–NMR signals. (c–f) Spectral 
patterns (cellulose, lipids, proteins, and noise) when signals were separated into four components. (g) 
Time change of separated components. (h) Composition of separated components. 

 
5.2.3 Non-negative matrix factorization to static 1H ssNMR in PCL and E. gracilis 

Samples 

 
PCL has a high-order structure of mobile, rigid, and interphase[142,146]. 

Evaluating the structure, motility, and proportion of multiple domains is important for 
material development including such as the optimization of physical properties. In the 
development of plastics especially, evaluation of higher-order structures is useful for the 
static 1H anisotropic spectrum in solid states. From the aspect of the pulse program, by 
using a DQ filter or MAPE filter, components with different motilities can be extracted. 
In this study, we demonstrated the application of NMF to a 2D dataset created from the 
single data of PCL using STFT. Unlike NTF for a 3D dataset mentioned above, NMF is 
a method for a 2D dataset. NMF discovers hidden patterns in the axes of both time and 
frequency created by STFT, which is able to separate NMR signals to multiple 
components with different T2

*. It was shown that by using NMF, rigid and mobile phases 
can be extracted from a broad static 1H anisotropic spectrum of PCL as the components 
related to different physical properties (Figures 1c and 3). We resolved the linear 
macromolecular structure as a mobile domain and the branched macromolecular structure 
due to strong anisotropic 1H-1H dipolar coupling as a rigid domain in solid material such 
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as PCL. Furthermore, we demonstrated this method for 1H, 13C, 15N and 31P spectra of 
microalgae such as E. gracilis in a multi-component system (Figure S7). 1H high-speed 
magic-angle spinning (MAS) spectrum was separated into signals of amide protons and 
fatty acids in lipids, and the 13C CP-MAS spectrum was separated into signals of 
paramylon, lipids, and proteins. To overcome the limitation of sensitivity in NMR, 
various techniques were developed using high-field magnets, cryogenic detection systems, 
indirect detection[133], nonuniform sampling[134], and dynamic nuclear polarization 
methods[135]. We previously demonstrated that the STFT can be used for signal 
improvement of the solution diffusion-edited NMR spectra, including broad signals and 
sharp signals[155]; in this study, we demonstrated signal deconvolution using the STFT 
in the solid-state NMR. When using this method for NMR data with low digital resolution 
such as solid-state NMR and quadrupole nucleus, this signal deconvolution method needs 
additional efforts. We demonstrated some interpolation methods for increasing data 
points (Figure S8). The Fourier interpolation method provides an interpolated spectrum 
without artifact signals. Spectra interpolated by other methods have artifacts in the 
extended region. 

 

 
Figure 3. Application of non-negative matrix factorization (NMF) to static 1H solid-state NMR of 
poly-ε-caprolactone (PCL). (a) Experimental anisotropic spectrum (gray) and spectra of rigid (green) 
and mobile (orange) components separated by NMF. (b) Experimental spectra of double-quantum 
(DQ) filtered ssNMR (green) and magic-and-polarization echo (MAPE) filtered ssNMR (orange). 

 
5.2.4 Prediction of concentration of products in the cellulose degradation process 

 
Thus far, GTM has been applied to characterize NMR data[162]. Recently, 

computational approaches for predicting NMR signals[160], chemical structures[163], and 
physical properties[164-168] were developed. Chemical shifts of NMR are rich in chemical 
information and enable encoding the structural features of the molecules contributing to 
their physical/chemical/biological properties. Thus, it has potential for use as a descriptor 
in quantitative structure–activity/property relationship (QSAR/QSPR) modeling 
studies[169]. GTMR was applied for analyzing these studies[156]. Therefore, the 
prediction of NMR signals is important for developing materials. This study is the first 
application of GTMR for the prediction of NMR signals (Figure 1d). In the degradation 
of cellulose, cellulose is metabolized into microbial cell components such as proteins and 
lipids, and then catabolized into short-chain fatty acids. In Figure 2, cellulose, proteins 
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and lipids were detected using the solid 13C spectrum. In addition, to track the process of 
material degradation, solution NMR spectra were used to detect small molecules such as 
propionate and acetate. Therefore, the catabolic products were captured by solution  
NMR (the final products are CO2 and CH4 with one carbon atom (Figure S9)). During 
GTMR, multi-dimensional and multi-component data (in this case, CP-MAS data of 
macromolecules and lipids and small-molecule solution NMR data) can be mapped into 
the reduced dimensional space (Figure 4a,b left). When cellulose is finally catabolized to 
CO2 by the catabolism of microorganisms, it is metabolized into acetate with two carbon 
atoms and CO2 with one carbon atom via propionate with three carbon atoms. When the 
signal intensity of propionate is used as the input data of GTMR, it is possible to predict 
both the properties (scaled signal intensities in these results) of acetate (Figure 4a right; 
R2 = 0.976) with the two carbon in the previous stage of the final product and CO2 (Figure 
4b right; R2 = 0.967) with one carbon in the final product. GTMR thus provides 
information about the predicted NMR scaled signals of products in cellulose degradation. 
This information is important for monitoring the degradation process due to a key in 
compound production using cellulose. 

 

 

Figure 4. Application of GTMR to NMR data in the cellulose degradation process. (a) Visualization 

and prediction of the concentration of acetate. (b) Visualization and prediction of the concentration of 

CO2. 
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5.2.5 Prediction of NMR signals from thermal properties in plastics 

 
This study is the first application to predict NMR signals from the thermal 

properties of plastics using GTMR. The design method for higher-order structures of 
plastics should control the glass transition, melting, and degradation temperature (Tg, Tm, 
and Td) as thermal properties. The GTMR was first applied for the inverse analysis of the 
CP-MAS spectra (Figure S10) from the thermal properties (Figure S11) of PLA in the 
solid state (Figure 1e). Therefore, Tg (Figure 5a), Tm (Figure 5b), and Td (Figure 5c) were 
mapped into a reduced 2D space. We focused on the prediction of the intended thermal 
property (Figure 5d; red cross) using the three GTMR maps (Tg, Tm, and Td). Hence, the 
STFT–NMR signals, i.e., the predicted spectrum, corresponded to the red cross and were 
predicted as higher-order structure descriptors (Figure 5e). Moreover, as a result of 
predicting the thermal properties from pseudo-CP-MAS spectra of PCL using GMM, it 
was possible to predict thermal properties (Figure S12). 

Recently, the materials informatics (MI) approach was considered for material 
design[170] because the intended physicochemical property is really hard to identify in 
the material development process. Therefore, the MI approach uses “big-data” such as 
deposited database, as well as monitoring and analyzing higher-order structural data 
during the materials production process[171,172]. When developing a material with the 
desired physical properties, the molding conditions of the material with the predicted 
structure play an important role. 

 

 
Figure 5. Application of GTMR for predicting NMR data from thermal properties in PLA. (a–c) Tg, 
Tm, and Td in data map. (d) Coordinates corresponding to the target thermal properties in data map. 
(e) Predicted 13C CP-MAS spectrum using GTMR. 
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4.4 Materials and Methods 

4.4.1 NMR analysis 

 

The ssNMR data were acquired using an Avance III HD-500 spectrometer (Bruker Corp., 
Billerica, MA, USA) equipped with a double-resonance 4.0 mm MAS probe. The solution NMR data 
were acquired using an Avance III HD-700 spectrometer (Bruker Corp., Billerica, MA, USA). The 1H 
and 13C CP-MAS spectra and solution 1H and 13C NMR spectra of cellulose previously reported by 
Yamazawa et al. were used[129]. The multiple phases polymer such as PCL, were measured using 
static, MAPE-filtered and DQ-filtered ssNMR. The 1H, 13C, 15N, and 31P spectra of E. gracilis cell 
previously reported by Komatsu et al. were used[66]. 

 

4.4.2 Thermal analysis of plastics 

 

Thermogravimetry (TG) and differential thermal analysis (DTA) measurements were 
conducted using an EXSTAR TG/DTA 6300 (SII NanoTechnology Inc., Tokyo, Japan) 
instrument[26,143]. Approximately 10 mg of samples was individually vaporized at  5 °C/min from 40 
to 500 °C in a nitrogen atmosphere. The Tm and Td were determined as the endothermic peak in DTA 
curves and the peak of weight loss in Derivative Thermogravimetry (DTG) curves. Differential scanning 
calorimetry (DSC) was conducted using a DSC3500A (NETZSCH Geratebau GmbH, Selb, 
Germany)[173]. Approximately 1.5 mg of samples was individually measured at the following steps at 
10 °C/min from 25 to −30 °C, at 10 °C/min from −30 to 200 °C, and at 20 °C/min from 200 to 25 °C in 
a nitrogen atmosphere. The Tg was determined as an endothermic peak during heating. 

 

4.4.3 Signal deconvolution methods 

 
The signal deconvolution method was developed in Python 3. The processing of NMR data was 

implemented by using the nmrglue[112] package in Python. Tensor factorization methods of NTD and 
NCPD were calculated using TensorLy Python library for tensor methods[157], and NMF was calculated 
based on the NIMFA Python library for non-negative matrix factorization[106]. NMR data with 
interpolated data points were created using “signal” and “interpolate” in “scipy”. 

 

4.4.4 Prediction methods 

 

Predictions of NMR signals and properties were calculated using GTMR[156]. In the analysis 
of cellulose degradation, a regression model was created using STFT–NMR signals, and product peak 
intensities were determined by solution NMR. As input data to analyze in GTMR, pseudodata were 
generated using GMM[161]. In the case of GTMR in the data of cellulose degradation process, the peak 
of propionate as input data was used, and the peaks of CO2 and acetate were predicted as the 
concentration of production. For plastics analysis, a regression model was created using the STFT–NMR 
signals and thermal properties. In the case of inverse GTMR, the desired thermal properties were used 
as input data, and NMR signals were predicted as the higher-order structure descriptors. 
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4.5 Conclusions 

 
We have developed a solid-state NMR signal deconvolution method using STFT 

and NTF/NMF, and a prediction method using GTMR. These methods enable 1D solid-
state NMR spectra to provide separate signals of multiple phases and components from 
solid-state NMR spectra. Further, macromolecular samples were characterized, and 
higher-order structures and thermal properties were predicted. As a new alternative to 
applying the decoupling to remove anisotropy as unnecessary information in the 
measurement of ssNMR with a broad line width, signal separation by computational 
science methods will expand the applicability of low-field 1H ssNMR and anisotropic 
NMR. In the case of NMR data with low digital resolution such as the solid-state NMR 
and quadrupole nucleus the number of data points can be increased by applying 
interpolation. In the case of 2D-NMR, it is necessary to use this method by splitting each 
t1-dimensional FID and creating a series of sub-FIDs. Therefore, these methods will 
promote data-driven research and development in fields such as machine learning and 
simulation using ssNMR on macromolecular complexity in materials and foods. 
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General Discussion 
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Chapter 5 

 

Summary and Prospects 

 

5.1 Summary 

 

Currently, data-driven science is drawing attention. Therefore, I focused on the 

quality of data in data-driven science (Figure 1). Although NMR analysis of molecular 

complex systems can be applied to various fields, its use has been limited in terms of 

sensitivity and resolution. In this study, I tried to overcome these problems in NMR 

measurement by utilizing informatics. 

 

<Originality of this work> 

Chapter 2: 

 Signal assignment by combined use of peak enhancement and matrix factorization 

 NNSC as a new NMR signal separation method 

 Database integration of 1H-13C and 1H-J correlation, 13C CP-MAS spectra 

 13C CP-MAS spectrum assignment tool for macromolecules and lipids 

 Signal assignment tool for two spectra of 1H-13C and 1H-J correlations 

 

Chapter 3: 

 Signal deconvolution method that combines STFT and PSMF 

 Visualization of quality and factors focusing on parameters and noise in NMR data 

 

Chapter 4: 

 Signal deconvolution method using STFT and NTF 

 Application of GTMR in NMR 
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<Conceptual progress> 

 Data management 

Identification of factors that affect individual data quality is possible by focusing 

on measurement parameters and noise. 

 Signal assignment of low-resolution NMR spectra 

Assignment of overlapping peaks is possible by utilizing peak enhancement, 

spectral separation, signal deconvolution, and assignment tools. 

 Signal deconvolution based on STFT and matrix and tensor factorization 

Signal deconvolution of measurement data by computational scientific methods 

is possible as an alternative to physical separation and various pulse sequence such 

as decoupling and diffusion-edited, which is applied to remove unnecessary signals 

before or during measurement. 

 Prediction method for NMR signals and physical properties of materials 

Efficient material development is possible by computationally predicting NMR 

signals of materials with the desired properties (metabolic products and physical 

properties). 

 

 
Figure 1. Summary of measurement informatics approaches in this doctoral research. This figure 

shows the position of the contents of chapters 2-4 in the measurement informatics flow of NMR. 
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5.2 Prospects 

 

NMR data is becoming more and more important in social innovation. Large-scale 

data may be accumulated from high-field or low-field NMR (Figure 2). The data 

circulation system that organizes and effectively utilizes such data is immature. It is 

expected to support research by data-driven science such as simulation and machine 

learning by effectively connecting data and recommending data that is needed, and by 

combining noise reduction that enhances the quality of data. It is expected to develop a 

research approach that utilizes not only individual research but also research accumulated 

all over the world. 

 

 
Figure 2. Concept diagram of future plan based on measurement informatics in NMR toward 

molecular complexity. This figure shows the concept of data lake toward NMR data science. Data 

lake means the database of NMR data from high-field, low-field, and time-domain NMR. For 

utilizing NMR data, data cleansing such as noise reduction and signal deconvolution is important 

toward data-driven analysis.  
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InterSpin: Integrated Supportive Webtools for Low- and High-

Field NMR Analyses Toward Molecular Complexity 

 
This chapter is reproduced with permission from “Yamada, S.; Ito, K.; Kurotani, A.; 

Yamada, Y.; Chikayama, E.; Kikuchi, J. InterSpin: Integrated Supportive Webtools for 

Low- and High-Field NMR Analyses Toward Molecular Complexity. Acs Omega 2019, 
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InterSpin is available at http://dmar.riken.jp/interspin/ 
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Figure S1. Determining the number of components by RSS and DW plots. (a) Fast ICA, and (b) 

MCR-ALS.   

a) Fast ICA 

b) MCR-ALS 
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Figure S1. Determining the number of components by RSS and DW plots (continuation). (c) NMF, 

and (d) NNSC.  

c) NMF 

d) NNSC 
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Figure S2. Comparison of the component spectrum separated by different algorithms and the standard 

spectrum. (a) Alanine, (b) leucine, (c) lysine, and (d) phenylalanine.  

a) 

b) 

c) 

d) 
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Figure S2. Comparison of the component spectrum separated by different algorithms and the standard 

spectrum (continuation). (e) Proline, (f) threonine, (g) valine, and (h) malate. 

e) 

f) 

g) 

h) 
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Figure S2. Comparison of the component spectrum separated by different algorithms and the standard 

spectrum (continuation). (i) Glucose, and (j) sucrose. 

 

  

i) 

j) 
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Figure S3. Comparison of concentration ratios and separated spectral score ratios of mixtures 1 and 

2. Shown are the concentration ratio of mixtures 1 and 2, and the score ratio of the spectrum separated 

by each algorithm (NNSC, NMF, MCR-ALS, and Fast ICA). 
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Figure S4. SENSI (SENsitivity improvement with Spectral Integration) result for integrated 51 fish 

spectra of fish extracts obtained by benchtop 60 MHz NMR. (a) Picked peaks, and (b) CV. 
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a) 

 
b) 

 
Figure S5. PKSP results of 51 fish spectra using the NNSC method. (a) RSS plot, and (b) DW plot. 
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c)  

 

Figure S5. PKSP results of 51 fish spectra using the NNSC method (continuation). (c) Plot of scores 

for different components. 
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d) 

 

Figure S5. PKSP results of 51 fish spectra using the NNSC method (continuation). (d) Plot of loadings 

for different components. 
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Figure S6. The result of separating one spectrum of 2D-Jres from Acanthogobius flavimanus 

(Yellowfin goby) body muscle extracts in D2O by PKSP. As a result of peak separation using 

PKSP's MCR-ALS algorithm, it was separated into three components of singlet (red), doublet 

(black) and triplet (multiplet, green). As shown in figure S6, 8 compounds (Valine, Lactate, Alanine, 

Creatine, Trimethylamine N-oxide, Betaine, Glycine and Glucose) were assigned. 
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Figure S7. SpinMacro assignment results of peaks picked by SENSI of the previously reported solid-

state CP-MAS spectra of Euglena gracilis and standards (paramylon, peptides, lipids). Regarding the 

assigned chemical shift, paramylon is indicated by the red frame, peptides by the black frame, and 

lipids by the blue frame. The 13C tolerance is 1 ppm. 
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a) 

 
Figure S8. Signal separattion by NNSC of PKSP from E. gracilis CP-MAS spectrum. (a) RSS plot 

shows that there are three main components. 
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b)  

 

Figure S8. Signal separation by NNSC of PKSP from E. gracilis CP-MAS spectrum (continuation). 

(b) Separated spectra of paramylon, peptides, and lipids. Component 1 was identified as peptides (b-

1), component 2 was identified as lipids (b-2), and component 3 was identified as paramylon (b-3). 

The E. gracilis sample was separated into 3 components (b-4, b-5). The variation in paramylon and 

peptides components indicates metabolic fluctuation of E. gracilis. 

  

(1) (2) 

(3) (4) 

(5) 
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Figure S9. Schematic diagram of SpinLIMS.  

(a) SpinLIMS is a relational database based on NMR spectra and molecular information. Thirty-four 

tables store a variety of information: for example, “metabolitename” is compound name, “metabolite” 

is compound, “atom” is atom, “nucleus” is nuclide, “cs_assign” is assignment of chemical shift, “cs” 

is chemical shift, “Jval” is J values, “hc_pk” is HSQC peaks (“h_pk” for 1H-1D NMR, “c_pk” for 13C-

1D NMR), “pkshape” is peak linear type, “hj_pk” is 2D-Jres peak, “spectrum” is spectrum, “pulse” is 

NMR pulse sequence type, “solvent” is solvent (register as “none” in case of solid), “stdref” is 

reference compound. (b) SpinLIMS services are provided to users from the MySQL server via 

InterSpin (http://dmar.riken.jp/interspin/). 
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a)  

 
Figure S10. Diagram showing the relationship among different entities on the SpinLIMS database. 

(a) Core entities or “tables” within the relational database. 
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b) 

 

Figure S10. Diagram showing the relationship among different entities on the SpinLIMS database 

(continuation). (b) The complete relationship among all entities (tables). For a given query, each table 

contains the following data: “hc_pk” is HSQC peaks; “hj_pk” is 2D-Jres peaks; “h_pk” is 1H-1D NMR 

peaks; “c_pk” is 13C-1D NMR peaks; “spectrum” is the spectrum; “spectrum_type” is the type of 

spectrum; “pulse” is the NMR pulse sequence; “solvent” is the solvent; “stdref” is the standard 

compound; “baseurl” is the base URL for raw spectrum; “pkshape” is the peak shape; “pktype” is the 

type of peak; “cs” is chemical shifts; “jval” is J values; “cs_assign” is one-atom assignment for one 

chemical shift; “support” is evidence of assignment; “metabolite” is metabolite; “atom” is atom; 

“nucleus” is nucleus; “metabolitename” is the name of metabolite; “shiyaku” is the compound number; 

“Shiyakubasyo” is the storage location of compound; “organization” is the organization who measured 

the data; “limsuser” is the user who registered the data; “reserve” is the measuring reservation; “tag” 

is the tag for clustering compound, metabolite, and spectrum; “tag_met” is the tag for metabolite; 

“tag_cs” is the tag for chemical shift; “tag_jval” is the tag for J value; “limsuserref” is the reference 

user for sampled_by, nmr_by, processed_by of spectrum table, and reserved_by of reserve table; 

“tag_feature” is a feature to tag related spectra, for example, for tasting data, etc.; “bin” is the bin for 

spectrum; “bspectrum” is the binning spectrum; and “tag_spc” is the tag for spectrum. The complete 

entity relationship diagram is published at http://dmar.riken.jp/interspin/ 
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Figure S11. Result of InterAnalysis for HSQC and 2D Jres peaks from Acanthogobius flavimanus 

body muscle extracted in deuterated potassium phosphate (KPi). The summary shows the number of 

query peaks, the number of assigned molecules, and the narrowed down set of molecules. The table 

shows some of the molecular assignment results for each query peak. For data acquired in KPi extract, 

the original webtools SpinAssign and SpinCouple assigned 182 and 232 molecules, respectively. By 

contrast, InterAnalysis assigned 87 molecules, thereby narrowing the down molecules to 48% and 

38%, respectively. 
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Table S1. List of compounds in mixtures 1 and 2. 

No. Compound Mixture 1 (mM) Mixture 2 (mM) 

1 Alanine 5 2 

2 Leucine 5 5 

3 Lysine 2 2 

4 Phenylalanine 3 5 

5 Proline 5 5 

6 Threonine 3 5 

7 Valine 2 2 

8 Malate 5 10 

9 Glucose 10 3 

10 Sucrose 5 5 
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Table S2. List of 40 fish samples. 

No. Scientific name Recipe Storage time 
1 Auxis rochei rochei Soy marinated, Fried ― 
2 Auxis rochei rochei Grilled ― 
3 Branchiostegus japonicus Fried ― 
4 Epinephelus areolatus Fried 1day 
5 Epinephelus areolatus Fried 2day 
6 Epinephelus septemfasciatus Raw ― 
7 Lateolabrax japonicus Raw ― 
8 Lateolabrax japonicus Raw ― 
9 Lateolabrax japonicus Steamed rice wine ― 

10 Lateolabrax japonicus Steaming ― 
11 Nemipterus virgatus Fried ― 
12 Nemipterus virgatus Mayonnaise ― 
13 Pagrus major Soy marinated 1day 
14 Pagrus major Fried ― 
15 Pagrus major Grilled ― 
16 Pagrus major Raw ― 
17 Pagrus major Mayonnaise ― 
18 Paralichthys olivaceus Soy marinated, Fried 1day 
19 Paralichthys olivaceus Raw ― 
20 Paralichthys olivaceus Marinated kelp 1hour 
21 Paralichthys olivaceus Kelp, Salt, Citrus depressa 4day 
22 Paralichthys olivaceus Raw ― 
23 Paralichthys olivaceus Yuzu, Salt, Grilled ― 
24 Sardinops melanostictus Raw ― 
25 Scombrops gilberti Soy marinated ― 
26 Scombrops gilberti Raw ― 
27 Scombrops gilberti Steaming 2day 
28 Scorpaenopsis cirrhosa Fried ― 
29 Scorpaenopsis cirrosa Raw ― 
30 Sepia esculenta Raw ― 
31 Seriola quinqueradiata Grilled miso 1hour 
32 Seriola quinqueradiata Grilled miso 2hour 
33 Thunnus Raw ― 
34 Thunnus Raw 1day 
35 Thunnus orientalis Soy marinated ― 
36 Thunnus orientalis Grilled ― 
37 Todarodes pacificus Dried ― 
38 Todarodes pacificus Dried 1day 
39 Todarodes pacificus Dried 3day 
40 Zeus faber Raw ― 
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Table S3. List of standard compounds. 

No. Compound 

41 Alanine 

42 Histidine 

43 Leucine 

44 Proline 

45 Glucose 

46 Sucrose 

47 Betaine 

48 Choline 

49 Creatine 

50 Lactate 

51 Trimethylamine N-oxide 
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Table S4. Improvement of signal-to-noise ratio by SENSI. 

1H chemical 

shift of picked 

peaks [ppm] 

Intensity of 

picked peaks 

by SENSI 

Average 

intensity of 

original 

spectrum 

S/N after 

SENSI 

S/N before 

SENSI 

Sensitivity 

improvement 

rate 

Peaks 

enhancement 

rate 

8.35 980.1 12.3 16.0 2.4 6.7 79.9 

7.27 1063.5 13.9 17.3 2.7 6.5 76.5 

5.36 788.8 8.5 12.9 1.6 7.8 92.6 

5.19 947.8 11.6 15.4 2.2 6.9 81.4 

4.27 1162.9 15.9 19.0 3.1 6.2 73.3 

4.15 1770.3 27.8 28.8 5.4 5.4 63.8 

4.03 2241.1 37.0 36.5 7.1 5.1 60.6 

3.91 4606.0 83.4 75.1 16.1 4.7 55.2 

3.78 3318.3 58.1 54.1 11.2 4.8 57.1 

3.61 2302.3 38.2 37.5 7.4 5.1 60.3 

3.57 1979.2 31.9 32.3 6.1 5.3 62.1 

3.41 2211.9 36.4 36.0 7.0 5.1 60.7 

3.33 3409.6 59.9 55.6 11.5 4.8 56.9 

3.26 13649.8 260.7 222.4 50.3 4.4 52.4 

3.25 14525.5 277.9 236.7 53.6 4.4 52.3 

3.20 4585.9 83.0 74.7 16.0 4.7 55.3 

3.02 4268.6 76.8 69.6 14.8 4.7 55.6 

2.19 1028.2 13.2 16.8 2.5 6.6 77.8 

2.12 1149.3 15.6 18.7 3.0 6.2 73.7 

2.02 1087.3 14.4 17.7 2.8 6.4 75.6 

1.52 1602.3 24.5 26.1 4.7 5.5 65.5 

1.37 4897.7 89.1 79.8 17.2 4.6 55.0 

1.25 4397.1 79.3 71.7 15.3 4.7 55.5 

0.99 1340.2 19.3 21.8 3.7 5.9 69.3 

0.92 1357.9 19.7 22.1 3.8 5.8 69.0 

Average 3226.9 56.3 52.6 10.9 5.5 65.5 

Signal-to-noise (max–min, 9–10 ppm) is 5.2 before SENSI and 61.4 after SENSI. 
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Appendix B 

Supplementary material for 

Signal Deconvolution and Noise Factor Analysis based on a 

Combination of Time–Frequency Analysis and Probabilistic 

Sparse Matrix Factorization 

 
This chapter is reproduced with permission from “Yamada, S.; Kurotani, A.; Chikayama, 

E.; Kikuchi, J. Signal Deconvolution and Noise Factor Analysis Based on a Combination 

of Time-Frequency Analysis and Probabilistic Sparse Matrix Factorization. Int. J. Mol. 

Sci. 2020, 21, 2978”, Copyright 2020 MDPI. 

 

Supplementary material 

 

1. The mathematical theory of signal deconvolution 

2. Supplementary figures and tables 

3. References 

 

An NMR measurement informatics tool is available at 

http://dmar.riken.jp/NMRinformatics/. 

 

  



   

98 
 

1. The Mathematical Theory of Signal Deconvolution 
 
In this study, signal deconvolution was applied to free induction decays (FIDs) of 

one-dimensional (1D) nuclear magnetic resonance (NMR) to separate components and 
improve the signal-to-noise ratio (SNR). The mathematical theory underlying this signal 
deconvolution is based on the combined methods of short-time Fourier transform (STFT) 
and probabilistic sparse matrix factorization (PSMF). 

In Fourier transform (FT) NMR spectroscopy, an FID is the NMR signal generated 
by non-equilibrium nuclear spin magnetization precessing along the magnetic field. This 
non-equilibrium magnetization can be generated by applying a pulse of resonant 
radiofrequency close to the Larmor frequency of the nuclear spins in the sample. An FID 
is usually a sum of multiple decayed oscillatory signals. These signals return to 
equilibrium at different rates or relaxation time constants. Analysis of the relaxation times 
of an FID for a sample gives significant insight into the chemical composition, structure, 
and mobility of that sample. FIDs acquired by NMR measurement are composed of many 
signals derived from the sample and several types of noise, such as external noise, 
physical vibration, power supply, and internal noise of the spectrometer due to thermal 
noise. Therefore, an FID signal can be modeled as: 
 𝑆ሺ𝑡ሻ ൌ 𝑆௦௜௚௡௔௟ሺ𝑡ሻ ൅ 𝑆௡௢௜௦௘ሺ𝑡ሻ. (S1) 

where 𝑆ሺ𝑡ሻ is the measured signal, and 𝑆ୱ୧୥୬ୟ୪ሺ𝑡ሻ and 𝑆୬୭୧ୱୣሺ𝑡ሻ represent a set of ideal 
signals and a set of signals from different types of noise (Equation (S1)) [1]. Suppose that 
a 90° pulse is applied to an equilibrium magnetization along the z-axis, resulting in 
magnetization of the x–y plane, which then precesses in the transverse plane with angular 
frequency Ω. The corresponding time-domain signal that decays with time t is the FID 
S(t). In principle, the exponential decay constant of the FID is the T2 relaxation time, 
which is a physically parameter independent of field inhomogeneity. In reality, however, 
because of the effect of magnetic field homogeneity, the decay constant of the FID is 
called T2*, an instrument-dependent parameter, rather than T2. S(t) is given by the 
relaxation time constant 𝑇ଶ

∗ [2]: 

 𝑆ሺ𝑡ሻ ൌ 𝑆଴ expሺ𝑖Ω𝑡ሻ expቆെ
𝑡
𝑇ଶ
∗ቇ, (S2) 

where 𝑆଴ is the initial transverse magnetization at t = 0 immediately after the 90° pulse 
(Equation (S2)). The relaxation process can be described by saying that the transverse 
magnetization 𝑆ሺ𝑡ሻ decays exponentially according to Equation (S2). The shorter the 
relaxation time 𝑇ଶ

∗, the more rapid the decay.  
If an FID has more than one component, the FID will be the sum of contributions 

from each component (Equation (S3)): 

 𝑆ሺ𝑡ሻ ൌ෍ 𝑆଴௞ expሺ𝑖Ω௞𝑡ሻ expቆെ
𝑡
𝑇ଶ௞
∗ ቇ

௡

௞ୀଵ
. (S3) 

When there are two or more types of component (i.e., k > 1) in the FID signal, it is difficult 
to determine the individual signals from the time-domain signal 𝑆ሺ𝑡ሻ. Therefore, we 
apply FT to 𝑆ሺ𝑡ሻ to yield a frequency-domain spectrum 𝑆ሺ𝜔ሻ with an angular frequency 
variable ω on the horizontal axis and k peaks at Ω௞ (Equation (S4)): 

 𝑆ሺ𝜔ሻ  ൌ  න 𝑆ሺ𝑡ሻexpሺെ𝑖𝜔𝑡ሻ𝑑𝑡.
∞

ିஶ
 (S4) 
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Standard FT (Equation (S4)) has only has the frequency domain; therefore, we apply 
STFT, which has both frequency and time domains. Because the FID signal decays 
exponentially with time, for STFT, it needs to be divided into several small time intervals 
(i.e., segments) to analyze the time–frequency feature accurately, and FT is used to 
determine the frequency feature of each segment, thereby increasing the accuracy of 
signal feature extraction. STFT uses a window function to obtain each weighted segment 
on the time axis and then applies FT to the segment. STFT of 𝑆ሺ𝑡ሻ can be written as:  

  𝑆𝑇𝐹𝑇ௌሺ𝜏,𝜔ሻ  ൌ  න 𝑆ሺ𝑡ሻ𝑔ሺ𝑡 െ 𝜏ሻexpሺെ𝑖𝜔𝑡ሻ𝑑𝑡,
∞

ିஶ
 (S5) 

where the window function 𝑔  is first used to intercept the progress of FT on 𝑆ሺ𝑡ሻ 
around 𝑡 ൌ 𝜏 locally, and then FT of the segment is performed on t (Equation (S5)) [3]. 
By moving the center position of the window function 𝑔 sequentially, all of the FTs at 
different times can be obtained.  

Applying Euler's formula (Equation (S6)), 
 expሺെ𝑖𝜔𝑡ሻ  ൌ  cos𝜔𝑡 െ 𝑖 sin𝜔𝑡, (S6) 

shows that the value of 𝑆𝑇𝐹𝑇ௌሺ𝜏,𝜔ሻ is complex and composed of two signals, a real part 
(𝑅𝑒) and an imaginary part (𝐼𝑚), whose phases differ by 90° from each other (Figure S1, 
Equation (S7) and (S8)): 
 𝑅𝑒 ൌ 𝛾 cos𝜔𝜏, (S7) 

 𝐼𝑚 ൌ  𝛾 sin𝜔𝜏 . (S8) 
To change a complex value into an absolute value, the following equation is applied 
(Equation (S9)): 
 |𝑧| ൌ ඥ𝑅𝑒ଶ ൅ 𝐼𝑚ଶ. (S9) 

For PSMF [4], positive-valued matrices are needed and the original signal values 
must be converted to their logarithmic form for optimal analysis. To convert Equation 
(S9) to a positive logarithmic form, the following equation is applied (Equation (S10)): 
 𝑉 ൌ logଵ଴ሺ|𝑧| ൅ 1ሻ. (S10) 

In our method using PSMF, we focus on sparse factorizations and on properly accounting 
for uncertainties while computing the factorization. Thus, signal deconvolution is 
formulated as finding the factorization of the data matrix 𝑉 (Equation (S11)):  
 𝑉 ൌ 𝑊 ∙ 𝐻 ൅ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠.  (S11) 

When considering the separation of signal and noise, Equation (S11) can be described as 
the sum of a signal component, a noise component, and residuals (Equation (S12)): 
 𝑉 ൌ 𝑊௦௜௚௡௔௟ ∙ 𝐻௦௜௚௡௔௟ ൅𝑊௡௢௜௦௘ ∙ 𝐻௡௢௜௦௘ ൅ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠.  (S12) 

Equation (S12) estimates that the signal component ( 𝑊௦௜௚௡௔௟ ∙ 𝐻௦௜௚௡௔௟ ) decays 
exponentially with time, while the noise component (𝑊௡௢௜௦௘ ∙ 𝐻௡௢௜௦௘) is a random or flat 
value. To reconstruct the FIDs, the absolute value within each component is converted 
back to a complex value using the following equations (Equation (S13) and (S14)): 
 𝑅𝑒 ൌ ሺ10୪୭୥భబ|௭ାଵ| െ 1ሻ cos𝜃, (S13) 

 𝐼𝑚 ൌ  ሺ10୪୭୥భబ|௭ାଵ| െ 1ሻ sin𝜃 . (S14) 
The inverse short-time Fourier transform (ISTFT), Sinv(t), is computed by overlap-adding 
the inverse fast Fourier transform signals in each segment of the STFT spectrogram as 
follows (Equation (S15)) [5]: 
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 𝑆௜௡௩ሺ𝑡ሻ  ൌ  න ෍ 𝑉ሺ𝜔ሻexpሺ𝑖𝜔𝑡ሻ𝑑𝜔
ஶ

௠ୀିஶ

ஶ

ିஶ
. (S15) 

To evaluate SNR, both noise-removed and noise-only FIDs are converted to signal 
and noise spectra, respectively, by applying standard FT. SNR is calculated as the ratio 
of the signal peak intensity to the noise value by using the method of Mnova (Equation 
(S16)) [6]: 

 𝑆𝑁𝑅 ൌ  
𝑆𝑖𝑔𝑛𝑎𝑙 𝑝𝑒𝑎𝑘 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑁𝑜𝑖𝑠𝑒 𝑣𝑎𝑙𝑢𝑒
.  (S16) 

The noise value is calculated by using the standard deviation of the signals-free region 
(Equation (S17)): 

 𝑁𝑜𝑖𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 ൌ  ඨ
∑ ሺ𝑆ሺ𝑡ሻ௜ െ 𝑆ሺ𝑡ሻ௠ሻଶே
௜ୀଵ

𝑁 െ 1
, (S17) 

where 𝑁 is number of points in the signal-free region, 𝑆ሺ𝑡ሻ௜ is the value of each digital 
point in that region, and 𝑆ሺ𝑡ሻ௠ is average of the digital points in that region. 
Finally, the relative SNR is the ratio of the SNR after denoising (𝑆𝑁𝑅ௗ௘௡௢௜௦௘ௗ) to the 
original SNR (𝑆𝑁𝑅௢௥௜௚௜௡௔௟), which is calculated as follows (Equation (S18)): 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑆𝑁𝑅 ൌ  
𝑆𝑁𝑅ௗ௘௡௢௜௦௘ௗ
𝑆𝑁𝑅௢௥௜௚௜௡௔௟

. (S18) 

In order to obtain a theoretical SNR index based on acquisition parameters, the 

theoretical SNR value (calcSNR) was calculated by using a previously described 

formula (Equation (S19)) [7]: 

 𝑐𝑎𝑙𝑐𝑆𝑁𝑅 ൌ  
𝐶𝛾௘௫௖𝑇ଶሺ𝛾ௗ௘௧𝐵ሻ

ଷ
ଶൗ √𝑁𝑆

𝑇𝐸
∝  
𝐶ሺ𝐵ሻ

ଷ
ଶൗ √𝑁𝑆

𝑇𝐸𝜈ଵ
ଶൗ

. (S19) 

where, C is the number of spins in the system (sample concentration/number of 

protons), 𝛾௘௫௖ is the gyromagnetic ratio of the excited nucleus, 𝛾ௗ௘௧ is the 

gyromagnetic ratio of the detected nucleus, NS is the number of scans, B is the external 

magnetic field, 𝑇ଶ is the transverse relaxation time (the reciprocal of π times the line 

width at half height), TE is the sample temperature, and 𝜈ଵ
ଶൗ
 is the full width at half 

maximum. 
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2. Supplementary figures and tables 

 

Figure S1. Schematic diagram showing the steps in the signal deconvolution method, including 

absolute value conversion and complex value conversion of the matrix. The original FID is subjected 

to STFT. The matrix of STFT is converted to an absolute value. This nonnegative value is separated 

to components of signal and noise by PMSF. The separated components are then converted to a 

complex value, from which denoised FIDs and time-domain noise data are extracted. The right 

image shows the relationship among the real part, imaginary part, absolute value, and argument in 

the complex plane. 
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Figure S2. Original spectra and denoised spectra in 1H-NMR data of citric acid. To demonstrate the 

denoising method, data for citric acid were acquired by using the pre-saturation (program name; 

“zgpr “) pulse sequence. The original spectrum (grey, solid line), denoised spectrum (orange, dashed 

line) and noise (blue, solid line) are shown. The chemical structure, peaks and J value of citric acid 

are shown in the figure. Information on the spectral values is shown in Table S1. Relative SNR of 

this spectra is 1.14-fold. 
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Figure S3. Effect of STFT time width on PSMF. STFT was performed using three different time 

widths, 512 points (1), 1024 points (2), and 2048 points (3), and the effect on separated components 

was investigated. a) Spectrogram obtained by STFT. b) Spectral patterns of PSMF. c) Time-varying 

coefficient of each component in PSMF. 
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Figure S4. Comparison of four types of matrix factorization (MF) for signal deconvolution. MF was 

performed using four different methods, PSMF (a), NMF (b), PMF (c), and SNMF (d), and the effect 

on separated components was investigated. i) Spectral patterns of each MF method. ii) Time-varying 

coefficient of each component in each MF method.  
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Figure S5. Effect of the number of components in PSMF. PSMF was performed using different 

numbers of components, two components (1), three components (2), and four components (3), and 

the effect on separated components was investigated. a) Spectral patterns of PSMF. b) Time-varying 

coefficient of each component in PSMF.  
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a) Heatmap of NMR data using CPMG 

 

Figure S6a. Relationship between SNR and acquisition parameters of NMR data using CPMG. a) 

Heatmap. In the network diagram, positive correlations are red; negative correlations are blue; and 

the magnitude of the correlation coefficient is indicated by edge thickness. Abbreviations: SNR-raw, 

SNR of raw data; SNR-denoised, SNR of denoised data; RelativeSNR, relative SNR; RG, receiver 

gain; NS, number of scans; D1, relaxation delay time; SW, spectral width; O1, the offset of the 

transmitter frequency; LOCKED, if LOCK is on, value is 1, if not, value is 0. 
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b) Network diagram of NMR data using CPMG 

 

Figure S6b. Relationship between SNR and acquisition parameters of NMR data using CPMG. b) 

Network diagram. In the network diagram, positive correlations are red; negative correlations are 

blue; and the magnitude of the correlation coefficient is indicated by edge thickness. Abbreviations: 

SNR-raw, SNR of raw data; SNR-denoised, SNR of denoised data; RelativeSNR, relative SNR; RG, 

receiver gain; NS, number of scans; D1, relaxation delay time; SW, spectral width; O1, the offset of 

the transmitter frequency; LOCKED, if LOCK is on, value is 1, if not, value is 0. 
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a) Heatmap of NMR data using WATERGATE 

 

Figure S7a. Relationship between SNR and acquisition parameters of NMR data using 

WATERGATE. a) Heatmap. In the network diagram, positive correlations are red; negative 

correlations are blue; and the magnitude of the correlation coefficient is indicated by edge thickness. 

Abbreviations: SNR-raw, SNR of raw data; SNR-denoised, SNR of denoised data; RelativeSNR, 

relative SNR; RG, receiver gain; NS, number of scans; D1, relaxation delay time; SW, spectral 

width; O1, the offset of the transmitter frequency; LOCKED, if LOCK is on, value is 1, if not, value 

is 0. 
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b) Network diagram of NMR data using WATERGATE 

 

Figure S7b. Relationship between SNR and acquisition parameters of NMR data using 

WATERGATE. b) Network diagram. In the network diagram, positive correlations are red; negative 

correlations are blue; and the magnitude of the correlation coefficient is indicated by edge thickness. 

Abbreviations: SNR-raw, SNR of raw data; SNR-denoised, SNR of denoised data; RelativeSNR, 

relative SNR; RG, receiver gain; NS, number of scans; D1, relaxation delay time; SW, spectral 

width; O1, the offset of the transmitter frequency; LOCKED, if LOCK is on, value is 1, if not, value 

is 0. 
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a) Heatmap of diffusion-edited NMR 

 

Figure S8a. Relationship between the data quality (SNR and the composition of the separated 

signal) and acquisition parameters of diffusion-edited NMR. a) Heatmap. In the network diagram, 

positive correlations are red; negative correlations are blue; and the magnitude of the correlation 

coefficient is indicated by edge thickness. Abbreviations: SNR-raw, SNR of raw data; SNR-

denoised, SNR of denoised data; RelativeSNR, relative SNR; Total-int, total intensity; ShortT2*-int, 

intensity of short T2
* signal; LongT2*-int, intensity of long T2

* signal; ShortT2*/Total, ratio of 

intensity of long T2
* signal to total intensity; Noise-raw, noise of raw data; Noise-denoised, noise of 

denoised data; GPZ, gradient pulse in the z-axis; RG, receiver gain; NS, number of scans; DE, pre-

scan delay; SW, spectral width; O1, the offset of the transmitter frequency ; LOCKED, if LOCK is 

on, value is 1, if not, value is 0.  
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b) Network diagram of diffusion-edited NMR 

 

Figure S8b. Relationship between the data quality (SNR and the composition of the separated 

signal) and acquisition parameters of diffusion-edited NMR. b) Network diagram. In the network 

diagram, positive correlations are red; negative correlations are blue; and the magnitude of the 

correlation coefficient is indicated by edge thickness. Abbreviations: SNR-raw, SNR of raw data; 

SNR-denoised, SNR of denoised data; RelativeSNR, relative SNR; Total-int, total intensity; 

ShortT2*-int, intensity of short T2* signal; LongT2*-int, intensity of long T2* signal; 

ShortT2*/Total, ratio of intensity of long T2* signal to total intensity; Noise-raw, noise of raw data; 

Noise-denoised, noise of denoised data; GPZ, gradient pulse in the z-axis; RG, receiver gain; NS, 

number of scans; DE, pre-scan delay; SW, spectral width; O1, the offset of the transmitter 

frequency ; LOCKED, if LOCK is on, value is 1, if not, value is 0. 
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Figure S9. Histogram of the composition of the separated signal in diffusion-edited NMR data. We 

investigated the relationship between the composition of the separated signal and the gradient pulse 

in the z-axis (GPZ) parameter of diffusion-edited NMR. The histogram shows the relative SNR in 

NMR data measured using two different GPZ values. Shown is the ratio of the sum of short T2 

intensity to total intensity for GPZ = 36.6% (blue) and for GPZ = 80% (red). The average value in 

each pulse sequence is indicated. 
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Figure S10. Heatmap summarizing correlation analysis between the data quality (SNR and signal 

values) and experimental parameters. Positive correlations are red; negative correlations are blue; 

and the magnitude of the correlation coefficient is shown as a color gradient. The parameters are 

clustered according to the similarity of their correlation coefficient as determined by hierarchical 

cluster analysis. Abbreviations: SNR, signal to noise ratio; calcSNR, calculated SNR; Cstd, 

concentration of standard compound; Ccomp, concentration of compound; Water+, positive intensity 

of water signal peak to standard peak; Water-, negative intensity of water signal peak to standard 

peak; Intensity, intensity of standard signal; FWHM, full width at half maximum; Area, area of 

standard signal; RG, receiver gain; NS, number of scans; D1, relaxation delay time; SW, spectral 

width; AT, acquisition time; TD, time-domain data size; O1, offset of transmitter frequency; TE, 

temperature; BF1, basic transmitter frequency for channel F1 in Hertz; PROBHD, if cryoprobe, 

value is 4, if not, value is 0. 
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Table S1. Original and denoised parameters and spectral values in citric acid data 
1H Chemical shift (ppm) 2.67 2.64 2.55 2.53 0 

J value (Hz) 15.0 15.0 ― 

Original 
Peak intensity 134991427  195407552  214161581  147849699  107410280  

FWHM (Hz) 2.40 2.48 2.31 2.26 2.13 

Denoised 
Peak intensity 134842313 194951941 213631581 147369942 107465227 

FWHM (Hz) 2.40 2.48 2.32 2.27 2.13 

Error 
Peak intensity (%) 0.11 0.23 0.25 0.32 -0.05 

FWHM (%) 0.02 -0.05 -0.52 -0.02 -0.04 
1H chemical shift, J value, peak intensity, and full width at half maximum (FWHM) are shown as the values of the original spectrum and the denoised 

spectrum in citric acid. Errors were calculated the difference between the original spectral value and the denoised spectral value. Relative SNR of this 

spectra is 1.14-fold.  
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Table S2. Summary of NMR spectra derived from sample ID of 1 to 10 

Sample ID PULPROG D1 DE NS O1 RG SW TD SNR-denoised SNR-raw Relative SNR AT 

1 

CPMG 2 10 32 3457 108 14 32768 38229.09 14033.33 2.72 1.67 

Diffusion-edited 2 10 128 3291 388 16 16384 667.75 323.26 2.07 0.73 

Watergate 2.5 10 32 3295 108 14 32768 22718.07 5850.79 3.88 1.67 

2 

CPMG 2 10 32 3457 108 14 32768 1517567.61 504865.23 3.01 1.67 

Diffusion-edited 2 10 128 3291 388 16 16384 397.92 456.65 0.87 0.73 

Watergate 2.5 10 32 3295 108 14 32768 34829.85 8669.44 4.02 1.67 

3 

CPMG 2 10 32 3457 108 14 32768 1262994.59 443656.14 2.85 1.67 

Diffusion-edited 2 10 128 3291 388 16 16384 137.17 194.33 0.71 0.73 

Watergate 2.5 10 32 3295 108 14 32768 11642.91 4351.65 2.68 1.67 

4 

CPMG 2 10 32 3457 108 14 32768 102173.72 34671.49 2.95 1.67 

Diffusion-edited 2 10 128 3291 388 16 16384 679.61 246.47 2.76 0.73 

Watergate 2.5 10 32 3295 108 14 32768 15930.79 4331.21 3.68 1.67 

5 

CPMG 2 10 32 3457 108 14 32768 174450.86 77819.70 2.24 1.67 

Diffusion-edited 2 10 128 3291 388 16 16384 263.71 254.43 1.04 0.73 

Watergate 2.5 10 32 3295 108 14 32768 27185.68 6901.45 3.94 1.67 

6 

CPMG 2 10 32 3457 108 14 32768 155495.88 42460.54 3.66 1.67 

Diffusion-edited 2 10 128 3291 388 16 16384 617.51 306.23 2.02 0.73 

Watergate 2.5 10 32 3295 108 14 32768 15631.96 4608.96 3.39 1.67 

7 

CPMG 2 10 32 3457 108 14 32768 62782.12 29865.18 2.10 1.67 

Diffusion-edited 2 10 128 3291 388 16 16384 270.25 261.18 1.03 0.73 

Watergate 2.5 10 32 3295 108 14 32768 33748.08 7605.11 4.44 1.67 
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Sample ID PULPROG D1 DE NS O1 RG SW TD SNR-denoised SNR-raw Relative SNR AT 

8 

CPMG 2 10 32 3457 108 14 32768 100221.74 19528.38 5.13 1.67 

Diffusion-edited 2 10 128 3291 388 16 16384 1121.33 406.83 2.76 0.73 

Watergate 2.5 10 32 3295 108 14 32768 38506.44 7167.94 5.37 1.67 

9 

CPMG 2 10 32 3457 108 14 32768 54878.55 22587.59 2.43 1.67 

Diffusion-edited 2 10 128 3291 388 16 16384 1158.86 581.15 1.99 0.73 

Watergate 2.5 10 32 3295 108 14 32768 18295.45 7211.20 2.54 1.67 

10 

CPMG 2 10 32 3457 108 14 32768 58250.19 18693.05 3.12 1.67 

Diffusion-edited 2 10 128 3291 388 16 16384 271.59 265.08 1.02 0.73 

Watergate 2.5 10 32 3295 108 14 32768 32553.16 10245.24 3.18 1.67 

Table S2 provides sample title, solvent and acquisition time, acquisition point, and original SNR as information about the sample and acquisition 

parameters. All data is available at http://dmar.riken.jp/NMRinformatics/SIforDCTN.zip. Abbreviations: PULPROG, pulse program used for the 

acquisition; D1, relaxation delay time; DE, pre-scan delay; NS, number of scans; O1, offset of transmitter frequency; RG, receiver gain; SW, spectral width; 

TD, time-domain data size; SNR-denoised, SNR of denoised data; SNR-raw, SNR of raw data; RelativeSNR, relative SNR; AT, acquisition time. 
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Table S3. FID datasets used for noise factor analysis 

NMR 
Benchtop NMR High-field NMR 

60 MHz 500 MHz 600 MHz 700 MHz 

Source RIKEN NUIS RIKEN BMRB BML HMDB RIKEN BMRB HMDB RIKEN BMRB 

Glucose 
nanalysis 

(NMReady60PRO) 

nanalysis 

(NMReady60PRO) 

Bruker 

(c6-500c) 

Bruker 

(MMC) 

[3] 

Bruker 

(BML) 
― ― 

Bruker 

(MMC) 

Varian 

(HMDB) 

Bruker 

(c6-700b) 

[2] 

Bruker 

(NIST) 

Sucrose 
nanalysis 

(NMReady60PRO) 

nanalysis 

(NMReady60PRO) 

Bruker 

(c6-500c) 

Bruker 

(MMC) 

[2] 

Bruker 

(BML) 

[2] 

Varian 

(HMDB) 
― 

Bruker 

(MMC) 
― 

Bruker 

(c6-700b) 

[2] 

Bruker 

(NIST) 

Citric 

acid 

nanalysis 

(NMReady60PRO) 

nanalysis 

(NMReady60PRO) 

Bruker 

(c6-500c) 

Bruker 

(MMC) 

[3] 

Bruker 

(BML) 

Varian 

(HMDB) 
― ― ― 

Bruker 

(c6-700b) 

[2] 

ー 

Lactic 

acid 

nanalysis 

(NMReady60PRO) 

nanalysis 

(NMReady60PRO) 

Bruker 

(c6-500c) 

Bruker 

(MMC) 

[3] 

Bruker 

(BML) 

Varian 

(HMDB) 

[2] 

Bruker 

(c5-600c) 

[1] 

Bruker 

(MMC) 
― 

Bruker 

(c6-700b) 

Bruker 

(NIST) 

We collected 48 sets of NMR data measured by low- and high-field NMR at multiple institutions to investigate the comprehensive relationship between 

noise and several acquisition parameters. Abbreviations: RIKEN, RIKEN Yokohama Campus; NUIS, Niigata University of International and Information 

Studies; BMRB, Biological Magnetic Resonance Data Bank; BML, Birmingham Metabolite Library; HMDB, Human Metabolome Database; MMC, 

Madison Metabolomics Consortium; NIST, National Institute of Standards and Technology. The NMR spectrometer manufacturer is listed; the product 

name, organization who generated the dataset, or control number is shown in parentheses. In the case of multiple data, the number of data used is indicated 

in square brackets. 
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Appendix C 

Supplementary Materials for 

Signal Deconvolution and Generative Topographic Mapping 

Regression for Solid-state NMR of Multi-component Materials 

 

This chapter is reproduced with permission from “Yamada, S.; Chikayama, E.; Kikuchi, 

J. Signal Deconvolution and Generative Topographic Mapping Regression for Solid-State 

NMR of Multi-Component Materials. Int. J. Mol. Sci. 2021, 22, 1086”, Copyright 2021 

MDPI. 

 

Python tools developed in this study are available at 

http://dmar.riken.jp/NMRinformatics/. 
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Supplementary figures 

 

Figure S1. Algorithms of non-negative tensor/matrix factorization (NTF, NMF). (a) Non-negative 

matrix factorization (NMF). (b) Non-negative Tucker decomposition (NTD). (c) Non-negative 

canonical polyadic decomposition (NCPD). In the case of two-dimensional datasets such as a matrix 

with time and frequency axes, the FID is separated into each component based on factors of time and 

frequency by matrix factorization. For analysis of the three-dimensional dataset of multiple samples 

and parameters, tensor methods such as NTD and NCPD can be used. 
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Figure S2. Algorithm of generative topographic mapping regression (GTMR). Using the GTMR, 

multi-dimensional and multi-component data can be mapped into the reduced dimensional space. 
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Figure S3. Algorithm of generating data using Gaussian mixture models (GMM). (a) GMM 

estimates the distribution of the dataset. (b) Draw random samples based on distribution estimated 

by GMM. 
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Figure S4. Short-time Fourier transform processed NMR (STFT-NMR) signals in 13C CP-MAS of 

the cellulose degradation process. These figures show STFT processed NMR data for each time of 

the cellulose degradation process. 
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Figure S5. Signal deconvolution of cellulose C4 region using non-negative Tucker decomposition 

(NTD) in 13C CP-MAS of cellulose degradation process. (a) These figures show cellulose C4 region 

STFT processed NMR data for each time of the cellulose degradation process. The figures (b-d) 

show spectral patterns (b), time change of separated components (5c), and composition of separated 

components (d) as results of separating the spectrum of cellulose C4 region into six components. 
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Figure S6. Signal deconvolution using non-negative canonical polyadic decomposition (NCPD) in 
13C CP-MAS of the cellulose degradation process. These figures show spectral patterns (a-d), time 

change of separated components (e), and composition of separated components (f) as results of 

separating the spectrum of cellulose using NCPD. 
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Figure S7. Signal deconvolution using MF to various NMR spectra in E.graclis samples. These 

figures show results of the signal deconvolution method using NMF for 1H (a), 13C (b), 15N (c) and 
31P (d) spectra of microalgae such as E. gracilis in a multi-component system. 
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Figure S8. Application of interpolation methods for signal deconvolution of NMR data with 

insufficient data points. These figures show results of the resampling method using Fourier method 

(a) and other interpolation methods such as Akima, PCHIP (Piecewise Cubic Hermite Interpolating 

Polynomial), quadratic, cubic and linear (b-f). 
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Figure S9. Summary of NMR signals for prediction in the cellulose degradation process. This figure 

shows the cellulose degradation process such as CO2 (13C chemical shift is 130.75 ppm), acetate (1H 

chemical shift is 1.92 ppm), propionate (1H chemical shift is 2.16 and 1.04 ppm) was captured by 

solution NMR. 
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Figure S10. Summary of NMR data for prediction in polylactic acid (PLA). This figure shows 13C 

CP-MAS spectra of 22 plastics. 
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Figure S11. Summary of thermal analysis data for prediction in PLA. These figures show thermal 

analysis data of Tg (a), Tm (b), Td (c) in 22 plastics. 
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Figure S12. Prediction to thermal properties from NMR signals generated Gaussian mixture models 

(GMM) in poly-ε-caprolactone. This figure shows a scheme and result of predicting the thermal 

properties such as the degradation temperature (Td)from pseudo 13C CP-MAS spectra using GMM. 

 

 


