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1 Introduction

The inverse scattering problem is the problem to determine unknown scat-
terers by measuring scattered waves that is generated by sending incident
waves far away from scatterers. It is of importance for many applications,
for example medical imaging, nondestructive testing, remote exploration,
and geophysical prospecting. Due to many applications, the inverse scat-
tering problem has been studied in various ways. For further readings, we
refer to the following books [11, 16, 18, 52, 78], which include the summary
of classical and recent progress of the inverse scattering problem.

We begin with the mathematical formulation of the scattering problem.
Let k > 0 be the wave number, and let θ ∈ Sd−1 be incident direction.
We denote the incident field uinc(·, θ) with incident direction θ by the plane
wave of the form

uinc(x, θ) := eikx·θ, x ∈ Rd. (1.1)

Let Ω ⊂ Rd (in particular we consider d = 2, 3) be a bounded open set
with a smooth boundary ∂Ω such that the exterior Rd \ Ω is connected.
In particular, we discuss the following two cases. The first case is that
the scatterer Ω is a penetrable medium, and determine the total field u =
usca + uinc such that

∆u+ k2(1 + q)u = 0 in R2, (1.2)

lim
r:=|x|→∞

r
d−1
2

(
∂usca

∂r
− ikusca

)
= 0, (1.3)

where q ∈ L∞(Rd) has a compact support such that Ω = supp q. The
Sommerfeld radiation condition (1.3) holds uniformly in all directions x̂ :=
x
|x| . The second case is that Ω is an impenetrable obstacle, and determine

the total field u = usca + uinc such that

∆u+ k2u = 0 in Rd \ Ω, (1.4)

Bu = 0 on ∂Ω, (1.5)

lim
r:=|x|→∞

r
d−1
2

(
∂usca

∂r
− ikusca

)
= 0, (1.6)

where (1.5) means the boundary conditions, for example, the Dirichlet bound-
ary condition Bu = u, the Neumann boundary condition Bu = ∂u

∂ν , and so
on. In both problems (1.2)–(1.3) and (1.4)–(1.6), it is well known that there
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exists a unique solution usca and it has the following asymptotic behaviour
(see e.g., [18]),

usca(x) =
eikr

r
d−1
2

{
u∞(x̂, θ) +O

(
1/r
)}
, r →∞. (1.7)

The function u∞ is called the far field pattern of the scattered field usca.
For further details of the direct scattering problem, we refer to [18]. The
inverse scattering problem we consider here is to extract information of the
unknown scatterer Ω from the far field pattern u∞.

The first question of inverse problems is uniqueness. It is well known that
the far field pattern u∞(x̂, θ) for all x̂, θ ∈ Sd−1 and fixed k > 0 uniquely
determines the unknown scatterer Ω (see e.g., [77, 81, 87]). However, the
uniqueness when all directions x̂, θ ∈ Sd−1 are not given, which is called as
the partial data problem, is still open. For further readings of uniqueness,
we refer to the following books [18, 45].

In Section 4 (original paper [25]), we discuss the direct and inverse scat-
tering problem for the semilinear Schrödinger equation,

∆u+ a(x, u) + k2u = 0 in Rd, (1.8)

where a : Rd × C→ C is a semilinear function under Assumption 4.1. This
type of semilinear function a(x, u) is the generalization of, in particular,
the power type q(x)um where m ∈ N, and q ∈ L∞(Rd) with a compact
support. The case of m = 1 corresponds to the linear Schrödinger equation
(1.2). We prove the well-posedness of the direct scattering problem (1.8) by
employing the Banach fixed point theorem, and prove the uniqueness of the
inverse problem by some linearization technique. (For main results, we see
Theorems 4.2 and 4.3.)

The second question is reconstruction, which is the problem to provide
reconstruction algorithms for the unknown scatterer Ω from far field pat-
terns. Existing methods for reconstruction can be roughly categorized into
two group: the iterative optimization method (see e.g., [5, 18, 30, 42, 51])
and the sampling method (see e.g., [17, 33, 43, 44, 58, 85]). This thesis
mainly deals with reconstruction and contributes to both groups.

In Sections 7 and 8 (original papers [27, 28]), we discuss reconstruction
schemes for inverse medium scattering problem (1.2)–(1.3) based on the
Kalman filter techniques, which is categorized into the iterative optimiza-
tion method. The Kalman filter (see e.g., [50]) is the algorithm to estimate
the unknown state in the dynamics system by employing the sequential mea-
surements observed over time. It has many applications such as navigations
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and tracking objects, and for further readings, we refer to [31, 48, 50, 78].
By applying the Kalman filter to our inverse scattering problem, we provide
algorithms to estimate the unknown scatterer Ω every time to observe the
far field pattern u∞(·, θn) with one incident direction θn ∈ Sd−1 without
waiting all data {u∞(·, θn)}Nn=1. (For main results, we see (7.44)–(7.46),
(8.39)–(8.43), and (8.53)–(8.57), and see Theorems 7.4 and 8.4.)

In Section 2 (original paper [22]), we discuss the factorization method,
which is categorized into the sampling method, for the case that the scatterer
consists of two components (Ω = Ω1 ∪Ω2) with different physical properties
(for example, Ω1 is an impenetrable obstacle with the Dirichlet boundary
condition, and Ω2 with the Neumann boundary condition). In order to
apply the factorization method to such a complicated scatterer, a lot of
a priori assumptions for the wave number k > 0 have been required (see
e.g., [58, 59]). The contribution of Section 2 is to provide the reconstruction
scheme of the factorization method without any a priori assumptions for the
wave number k > 0, but instead, we have to know the topological properties
of Ω (see Assumption 2.1 and Figure 1). (For main results, we see Theorems
2.2 and 2.4.)

In Section 3 (original paper [24]), we discuss the monotonicity method
for the inverse crack scattering problem, which is the case when the scatterer
Ω is a smooth arc, i.e Ω = {γ(s) : s ∈ [−1, 1]} where γ : [−1, 1] → R2 is
smooth. The monotonicity method is a similar method to the factorization
method, and it has been originally introduced in Electrical impedance to-
mography ([40]). Recently, the monotonicity has been extended to inverse
acoustic scattering problem in the case of the impenetrable obstacle and
the penetrable medium ([2, 33]). However, it was not obvious to extend it
to crack like not having volume. In Section 3, we extend the monotonicity
method to the inverse crack scattering problem, and provide its reconstruc-
tion scheme. (For main results, we see Theorems 3.1 and 3.2.)

In Sections 5 and 6 (original papers [23, 26]), we discuss the direct and
inverse scattering by a local perturbation in an infinite medium with pe-
riodicity in the upper half space R × (0,∞). In Section 5, we discuss the
well-posedness of the following direct scattering problem.

∆u+ k2(1 + q)nu = 0 in R× (0,∞), (1.9)

u = 0 on R× {0}, (1.10)

where n ∈ L∞(R × (0,∞)) is real value, 2π-periodic with respect to x1

(that is, n(x1 + 2π, x2) = n(x1, x2) for all x = (x1, x2) ∈ R2
+), and equal

to one for x2 > h where h > 0 is some positive number, and q ∈ L∞(R ×
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(0,∞)) is real valued with the compact support in R × (0, h) such that
Ω = supp q. The Sommerfeld radiation condition (1.3) can not be imposed
in the case of the scattering in the half space R × (0,∞), so by imposing
a suitable radiation condition recently introduced in [62], we showed the
well-posedness of this perturbed scattering problem (1.9)–(1.10). Then, we
become able to define the inverse problem of reconstruction of the support Ω
of q from scattered fields. In Section 6, we discuss this inverse problem, and
had two contributions. Firstly, we mention that there is a mistake in the
factorization method of the earlier paper [72], which leads to the difficulty
to apply the factorization method to our inverse problem. Secondly, we give
the reconstruction scheme by employing the monotonicity method instead
of the factorization method. (For main results, we see Theorems 5.2, 6.1,
6.2, and 6.11.)

Through our works, we conclude that the iterative optimization method
and the sampling method complement each other. The iterative method
does not need a lot of data, however it requires the initial guess which is the
starting point of the optimization. It must be appropriately chosen by a pri-
ori knowledge of true Ω, otherwise, the iterative solution could not converge
to true one. On the other hand, the sampling method does not require the
initial guess, which is one of the advantages over the iterative method. How-
ever, the disadvantage is to need infinite data that can not be practically
measured. In the future, sampling methods for finite measurements should
be studied for more realistic problems, and it would be good to develop the
combination of both methods. Although our papers mostly contribute to
theoretical aspects of inverse acoustic scattering problems, Sections 3, 6, 7,
and 8 present numerical experiments for reconstruction by using the Python
programming language. (We see Figures 6, 7, 9, 11, 12, 17, and 18.)
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2 A modification of the factorization method for
scatterers with different physical properties

2.1 Introduction

Sampling methods are proposed for reconstruction of shape and location
in inverse acoustic scattering problems. In the last twenty years, sampling
methods such as the Linear Sampling method of Colton and Kress [18],
the Singular Sources Method of Potthast [85], the Factorization Method of
Kirsch [53], have been introduced and intensively studied. As an advantage
of these sampling methods, the numerical implementation are so simple and
fast. However, as disadvantage of sampling methods except the Factoriza-
tion Method, only sufficient conditions are given for the identification of
unknown scatterers. To overcome this drawback, that is, to provide neces-
sary and sufficient conditions, the Factorization Method was introduced and
developed by a lot of researchers.

However, for rigorous justification of the original Factorization Method,
we have to assume that the wave number of the incident wave is not an
eigenvalue of the Laplacian on an obstacle with respect to the boundary
condition of the scattering problem. Kirsch and Liu [63] eliminated this
problem for the case of a single obstacle by assuming that a small ball is in
the interior of the unknown obstacle. They modified the original far field
operator by adding the far field operator corresponding to a small ball so
that the Factorization Method can be applied to it. On the other hands,
in the case of a scatterer consisting of two objects with different physical
properties, this problem has been still open. For recent works discussing
this case, we refer to [3, 7, 60, 65, 97].

In this section, we study the Factorization Method for a scatterer consist-
ing of two objects with different physical properties. Especially, we consider
the following two cases: One is the case when each object has the different
boundary condition, and the other one is when different penetrability. For
recent works discussing such a scatterer, we refer to [59, 64, 74]. We remark
that these works have to assume that the wave number of the incident wave
is not an eigenvalue of the Laplacian on impenetrable obstacles included in a
scatterer. Our aim of this paper is to eliminate this restriction by developing
the idea of [63].

We begin with the formulations of the scattering problems. Let k > 0
be the wave number and for θ ∈ S2 be incident direction. Here, S2 = {x ∈
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R3 : |x| = 1} denotes the unit spherer in R3. We set

ui(x) := eikθ·x, x ∈ R3, (2.1)

where i in the left hand side stands for incident plane wave. Let Ω ⊂ R3 be
a bounded open set and let its exterior R3\Ω be connected. We assume that
Ω consists of two bounded domains, i.e., Ω = Ω1∪Ω2 such that Ω1∩Ω2 = ∅.
We consider the following two cases.

The first case. Ω1 is an impenetrable obstacle with Dirichlet
boundary condition, and Ω2 with Neumann boundary condition.
Find us ∈ H1

loc(R3 \ Ω) such that

∆us + k2us = 0 in R3 \ Ω, (2.2)

us = −ui on ∂Ω1, (2.3)

∂us

∂νΩ2

= − ∂ui

∂νΩ2

on ∂Ω2, (2.4)

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0, (2.5)

where r = |x|, and (2.5) is the Sommerfeld radiation condition. Here,
H1
loc(R3 \ Ω) = {u : R3 \ Ω → C : u

∣∣
B
∈ H1(B) for all open balls B} de-

notes the local Sobolev space of one order. νΩ2(x) denotes the unit normal
vector at x ∈ ∂Ω2. We refer to Theorem 7.15 in [76] for the well posedness
of the problem (2.2)–(2.5), and refer to [59] and [74] for the factorization
method in this case.

The second case. Ω1 is a penetrable medium modeled by a
contrast function q ∈ L∞(Ω1) (that is, Ω1 = suppq), and Ω2 is an
impenetrable obstacle with Dirichlet boundary condition. Find
us ∈ H1

loc(R3 \ Ω2) such that

∆us + k2(1 + q)us = −k2qui in R3 \ Ω2, (2.6)

us = −ui on ∂Ω2, (2.7)

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0. (2.8)

Note that we extend q by zero outside Ω1. The well posedness of the problem
(2.6)–(2.8) and its factorization method was shown in [64].
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In both cases, it is well known that the scattered wave us has the fol-
lowing asymptotic behavior:

us(x, θ) =
eik|x|

4π|x|
u∞(x̂, θ) +O

(
1

|x|2

)
, |x| → ∞, x̂ :=

x

|x|
. (2.9)

The function u∞ is called the far field pattern of us. With the far field
pattern u∞, we define the far field operator F : L2(S2)→ L2(S2) by

Fg(x̂) :=

∫
S2
u∞(x̂, θ)g(θ)ds(θ), x̂ ∈ S2. (2.10)

We write the far field operator of the problem (2.2)–(2.5) as F = FMix
Ω1,Ω2

,

and (2.6)–(2.8) as F = FMix
Ω1q,Ω2

, respectively. The inverse scattering problem
we consider is to reconstruct Ω from the far field pattern u∞(x̂, θ) for all
x̂, θ ∈ S2. In other words, given the far field operator F , reconstruct Ω.

Our contribution in this section is, in both cases, to give the characteri-
zation of Ω1 without a priori assumptions for the wave number k > 0. But
we have to know the topological properties of Ω. More precisely, an inner
domain B1 of Ω1 ([63]), and an outer domain B2 of Ω2 ([59]), have to be a
priori known. Furthermore, we take an additional domain B3 in the interior
of B2. By adding artificial far field operators corresponding to B1, B2, and
B3, we modify the original far field operator F .

In the first case, we give the following characterization:

Assumption 2.1. Let bounded domain B1 and B2 be a prior known. As-
sume that B1 ⊂ Ω1, Ω2 ⊂ B2, Ω1 ∩B2 = ∅.

Ω1

Ω2

B2

Neumann
Dirichlet

B1 B3

Figure 1: Assumption of Theorem 2.2

Theorem 2.2. For x̂ ∈ S2, z ∈ R3, define

φz(x̂) := e−ikz·x̂. (2.11)
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Let Assumption 2.1 hold. Take a positive number λ0 > 0, and a bounded
domain B3 with B3 ⊂ B2. (See Figure 1.) Then, for z ∈ R3 \B2

z ∈ Ω1 ⇐⇒
∞∑
n=1

|(φz, ϕn)L2(S2)|2

λn
<∞, (2.12)

where (λn, ϕn) is a complete eigensystem of F# given by

F# :=
∣∣ReF

∣∣+
∣∣ImF ∣∣, (2.13)

where F := FMix
Ω1,Ω2

+ FDirB2
+ F ImpB1∪B3,iλ0

. Here, FDirB2
and F ImpB1∪B3,iλ0

are
the far field operators for the pure Dirichlet boundary condition on B2, and
for the pure impedance boundary condition on B1 ∪ B3 with an impedance
function iλ0, respectively.

Latter, we explain artificial far field operators FDirB2
and F ImpB1∪B3,iλ0

in
Section 2.2, and prove Theorem 2.2 in Section 2.3.

In the second case, we give the following characterization:

Assumption 2.3. Let a bounded domain B2 be a priori known. Assume
the following assumptions:

(i) q ∈ L∞(Ω1) with Imq ≥ 0 in Ω1.

(ii) |q| is locally bounded below in Ω1, i.e., for every compact subset M ⊂ Ω1,
there exists c > 0 (depend on M) such that |q| ≥ c in M .

(iii) Ω2 ⊂ B2, Ω1 ∩B2 = ∅.

(iv) There exists t ∈ (π/2, 3π/2) and C > 0 such that Re(e−itq) ≥ C|q| a.e.
in Ω1.

Ω1
Ω2

B2

Obstacle
Medium

B3

Figure 2: Assumption of Theorem 2.4
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Theorem 2.4. Let Assumption 2.3 hold. Take a positive number λ0 > 0,
and a bounded domain B3 with B3 ⊂ B2. (See Figure 2.) Then, for z ∈
R3 \B2

z ∈ Ω1 ⇐⇒
∞∑
n=1

|(φz, ϕn)L2(S2)|2

λn
<∞, (2.14)

where (λn, ϕn) is a complete eigensystem of F# given by

F# :=
∣∣Re
(
e−itF

)∣∣+
∣∣ImF ∣∣, (2.15)

where F := FMix
Ω1q,Ω2

+ FDirB2
+ F ImpB3,iλ0

. Here, the function φz is given by
(2.11).

We prove Theorem 2.4 in Section 2.4. We can also give the characteri-
zation by replacing (iv) in Assumption 2.3 with

(iv’) There exists t ∈ [0, π/2) ∪ (3π/2, 2π] and C > 0 such that Re(e−itq)
≥ C|q| a.e. in Ω1.

For details, see Assumption 2.20 and Theorem 2.21.
Let us compare our works (Theorems 2.2 and 2.4) with previous works

from the mathematical point of view of a priori assumptions. For Theorem
2.2 we refer to Theorem 2.5 of [74], and for Theorems 2.4 we refer to Theorem
3.9 (b) of [64]. These previous works also gave the characterization of Ω1 by
assuming the existence of outer domain B2 of Ω2 and that the wave number
k2 is not an eigenvalue on an obstacle, while, in our work we can choose
arbitrary wave number k > 0 by introducing extra artificial domains such
as B1, B2, and B3, which are not so difficult topological assumptions.

This section is organized as follows. In Section 2.1, we recall a factoriza-
tion of the far field operator and its properties. In Section 2.3 and Section
2.4, we prove Theorems 2.2 and 2.4, respectively.

2.2 A factorization for the far field operator

In Section 2.2, we briefly recall a factorization for the far field operators and
its properties.

First, we consider a factorization of the far field operator for the pure
boundary condition. Let B be a bounded open set and let R3 \ B be con-
nected. Later, we will use the result of this section by regarding B as
auxiliary domains, like B1, B2, and B3 in Theorems 2.2 and 2.4. We define
GDirB : H1/2(∂B)→ L2(S2) by

GDirB f := v∞, (2.16)

11



where v∞ is the far field pattern of a radiating solution v (that is, v satisfies
the Sommerfeld radiation condition) such that

∆v + k2v = 0 in R3 \B, (2.17)

v = f on ∂B. (2.18)

Let λ0 > 0. We also define GImpB,iλ0
: H−1/2(∂B) → L2(S2) in the same way

as GDirB by replacing (2.18) with

∂v

∂νB
+ iλ0v = f on ∂B. (2.19)

We define the boundary integral operators SB : H−1/2(∂B) → H1/2(∂B)
and NB : H1/2(∂B)→ H−1/2(∂B) by

SBϕ(x) :=

∫
∂B
ϕ(y)Φ(x, y)ds(y), x ∈ ∂B, (2.20)

NBψ(x) :=
∂

∂νB(x)

∫
∂B
ψ(y)

∂Φ(x, y)

∂νB(y)
ds(y), x ∈ ∂B, (2.21)

where Φ(x, y) :=
eik|x−y|

4π|x− y|
. We also define SB,i and NB,i by the boundary

integral operators (2.20) and (2.21), respectively, corresponding to the wave
number k = i. It is well known that SB,i is self-adjoint and positive coercive,
and NB,i is self-adjoint and negative coercive. For details of the boundary
integral operators, we refer to [58] and [76].

The following properties of far field operators FDirB and F ImpB,iλ0
are given

by previous works in [58] and [63]:

Lemma 2.5 (Lemma 1.14 in [58], Theorem 2.1 and Lemma 2.2 in [63]).

(a) The far field operators FDirB and F ImpB,iλ0
have a factorization of the form

FDirB = −GDirB S∗BG
Dir ∗
B , F ImpB,iλ0

= −GImpB,iλ0
T Imp ∗B,iλ0

GImp ∗B,iλ0
. (2.22)

(b) The operators SB : H−1/2(∂B) → H1/2(∂B) and T ImpB,iλ0
: H1/2(∂B) →

H−1/2(∂B) is of the form

SB = SB,i +K, T ImpB,iλ0
= NB,i +K ′, (2.23)

where K and K ′ are some compact operators.
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(c) Im〈ϕ, SBϕ〉 ≤ 0 for all ϕ ∈ H−1/2(∂B). Furthermore, if we assume
that k2 is not a Dirichlet eigenvalue of −∆ in B, then Im〈ϕ, SBϕ〉 < 0
for all ϕ ∈ H−1/2(∂B) with ϕ 6= 0.

(d) Im〈T ImpB,iλ0
ϕ,ϕ〉 > 0 for all ϕ ∈ H1/2(∂B) with ϕ 6= 0.

Secondly, we consider the far field operator FMix
Ω1,Ω2

for the problem (2.2)–
(2.5). Recall that Ω = Ω1 ∪ Ω2, and Ω1 is an impenetrable obstacle with
Dirichlet boundary condition, and Ω2 with Neumann boundary condition.
We define GMix

Ω1,Ω2
: H1/2(∂Ω1)×H−1/2(∂Ω2)→ L2(S2) by

GMix
Ω1,Ω2

(
f
g

)
:= v∞, (2.24)

where v∞ is the far field pattern of a radiating solution v such that

∆v + k2v = 0 in R3 \ Ω, (2.25)

v = f on ∂Ω1,
∂v

∂νΩ2

= g on ∂Ω2. (2.26)

The following properties of FMix
Ω1,Ω2

are given by previous works in [58]:

Lemma 2.6 (Theorem 3.4 in [58]). (a) The far field operator FMix
Ω1,Ω2

has a
factorization of the form

FMix
Ω1,Ω2

= −GMix
Ω1,Ω2

TMix ∗
Ω1,Ω2

GMix ∗
Ω1,Ω2

. (2.27)

(b) The middle operator TMix
Ω1,Ω2

: H−1/2(∂Ω1)×H1/2(∂Ω2)→ H1/2(∂Ω1)×
H−1/2(∂Ω2) is of the form

TMix
Ω1,Ω2

=

(
SΩ1,i 0

0 NΩ2,i

)
+K, (2.28)

where K is some compact operator.

(c) Im〈TMix
Ω1,Ω2

ϕ,ϕ〉 ≥ 0 for all ϕ ∈ H−1/2(∂Ω1)×H1/2(∂Ω2).

Thirdly, we consider the far field operator FMix
Ω1q,Ω2

for the problem (2.6)–
(2.8). Here, Ω1 is a penetrable medium modeled by a contrast function
q ∈ L∞(Ω1), and Ω2 is an impenetrable obstacle with Dirichlet boundary
condition. We define GMix

Ω1q,Ω2
: L2(Ω1)×H1/2(∂Ω2)→ L2(S2) by

GMix
Ω1q,Ω2

(
f
g

)
:= v∞, (2.29)
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where v∞ is the far field pattern of a radiating solution v such that

∆v + k2(1 + q)v = −k2 q√
|q|
f in R3 \ Ω2, (2.30)

v = −g on ∂Ω2. (2.31)

The following properties of FMix
Ω1q,Ω2

are given by previous works in [64]:

Lemma 2.7 (Theorem 3.2 and Theorem 3.3 in [64]). (a) The far field op-
erator FMix

Ω1q,Ω2
has a factorization of the form

FMix
Ω1q,Ω2

= GMix
Ω1q,Ω2

MMix ∗
Ω1q,Ω2

GMix ∗
Ω1q,Ω2

. (2.32)

(b) The middle operator MMix
Ω1q,Ω2

: L2(Ω1) × H−1/2(∂Ω2) → L2(Ω1) ×
H1/2(∂Ω2) is of the form

MMix
Ω1q,Ω2

=

(
|q|
k2q

0

0 −SΩ2,i

)
+K, (2.33)

where K is some compact operator.

(c) Im〈ϕ,MMix
Ω1q,Ω2

ϕ〉 ≥ 0 for all ϕ ∈ L2(Ω1)×H−1/2(∂Ω2).

(d) If MMix
Ω1q,Ω2

ϕ = 0 , ϕ =

(
ϕ1

ϕ2

)
∈ L2(Ω1)×H−1/2(∂Ω2), then ϕ1 = 0.

Finally, we give the following functional analytic theorem behind the
factorization method. The proof is completely analogous to previous works,
e.g., Theorem 2.15 in [58].

Theorem 2.8. Let X ⊂ U ⊂ X∗ be a Gelfand triple with a Hilbert space
U and a reflexive Banach space X such that the imbedding is dense. Fur-
thermore, let Y be a second Hilbert space and let F : Y → Y , G : X → Y ,
T : X∗ → X be linear bounded operators such that

F = GTG∗. (2.34)

We make the following assumptions:

(1) G is compact with dense range in Y.

(2) There exists t ∈ [0, 2π] such that Re(eitT ) has the form Re(eitT ) = C+
K with some compact operator K and some self-adjoint and positive
coercive operator C, i.e., there exists c > 0 such that

〈ϕ,Cϕ〉 ≥ c ‖ϕ‖2 for all ϕ ∈ X∗. (2.35)
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(3) Im〈ϕ, Tϕ〉 ≥ 0 or Im〈ϕ, Tϕ〉 ≤ 0 for all ϕ ∈ X∗.

Furthermore, we assume that one of the following assumptions:

(4) T is injective.

(5) Im〈ϕ, Tϕ〉 > 0 or Im〈ϕ, Tϕ〉 < 0 for all ϕ ∈ Ran(G∗) with ϕ 6= 0.

Then, the operator F# :=
∣∣Re(eitF )

∣∣+
∣∣ImF ∣∣ is positive, and the ranges of

G : X → Y and F
1/2
# : Y → Y coincide with each other.

Remark that, in this paper, the real part and the imaginary part of an
operator A are self-adjoint operators given by

Re(A) =
A+A∗

2
and Im(A) =

A−A∗

2i
. (2.36)

2.3 The first case

In section 2.3, we prove Theorem 2.2. Let Assumption 2.1 hold. We define
R1 : H1/2(∂Ω1)×H−1/2(∂Ω2)→ H1/2(∂Ω1)×H1/2(∂B2) by

R1

(
f1

g1

)
:=

(
f1

v1

∣∣
∂B2

)
, (2.37)

where v1 is a radiating solution such that

∆v1 + k2v1 = 0 in R3 \ Ω, (2.38)

v1 = f1 on ∂Ω1,
∂v1

∂νΩ2

= g1 on ∂Ω2. (2.39)

Then, from the definition of R1, we obtain

GMix
Ω1,Ω2

= GDirΩ1,B2
R1, (2.40)

where GDirΩ1,B2
: H1/2(∂Ω1)×H1/2(∂B2)→ L2(S2) is also defined for the pure

Dirichlet boundary condition on Ω1 and B2 in the same way as GMix
Ω1,Ω2

. (See
(2.16).)

Next, we define R2 : H1/2(∂B2)→ H1/2(∂Ω1)×H1/2(∂B2) by

R2f2 :=

(
v2

∣∣
∂Ω1

f2

)
, (2.41)

where v2 is a radiating solution such that
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∆v2 + k2v2 = 0 in R3 \B2, (2.42)

v2 = f2 on ∂B2, (2.43)

Then, from the definition of R2, we obtain

GDirB2
= GDirΩ1,B2

R2. (2.44)

Here, take a positive number λ0 > 0, and a bounded domain B3 with B3 ⊂
B2. We define R3 : H−1/2(∂B1 ∪ ∂B3)→ H1/2(∂Ω1)×H1/2(∂B2) by

R3f3 :=

(
v3

∣∣
∂Ω1

v3

∣∣
∂B2

)
, (2.45)

where v3 is a radiating solution such that

∆v3 + k2v3 = 0 in R3 \B1 ∪B3, (2.46)

∂v3

∂νB1∪B3

+ iλ0v3 = f3 on ∂B1 ∪ ∂B3. (2.47)

Then, from the definition of R3, we obtain

GImpB1∪B3,iλ0
= GDirΩ1,B2

R3. (2.48)

By (2.40), (2.44), (2.48), and the factorization of the far field operator in
Section 2.2, we have

FMix
Ω1,Ω2

+ FDirB2
+ F ImpB1∪B3,iλ0

= GDirΩ1,B2
TGDir ∗Ω1,B2

, (2.49)

where T :=
[
−R1T

Mix ∗
Ω1,Ω2

R∗1 −R2S
∗
B2
R∗2 −R3T

Imp ∗
B1∪B3,iλ0

R∗3

]
.

The following properties of GDirΩ1,B2
are given by the same argument in

Theorem 1.12 and Lemma 1.13 in [58]:

Lemma 2.9. (a) The operator GDirΩ1,B2
: H1/2(∂Ω1)×H1/2(∂B2)→ L2(S2)

is compact with dense range in L2(S2).

(b) For z ∈ R3 \B2

z ∈ Ω1 ⇐⇒ φz ∈ Ran(GDirΩ1,B2
), (2.50)

where the function φz is given by (2.11).

To prove Theorem 2.2, we apply Theorem 2.8 to this case. First of all,
we show the following lemma:
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Lemma 2.10. (a) R1 −
(
I 0
0 0

)
, R2 − P2, R3 are compact. Here, P2 :

H1/2(∂B2)→ H1/2(∂Ω1)×H1/2(∂B2) is defined by

P2h :=

(
0
h

)
. (2.51)

(b) R∗3 is injective.

Proof. (a) The mappings R1 −
(
I 0
0 0

)
: H1/2(∂Ω1) × H−1/2(∂Ω2) →

H1(∂Ω1) × H1(∂B2), R2 − P2 : H1/2(∂B2) → H1(∂Ω1) × H1(∂B2), and
R3 : H−1/2(∂B1 ∪ ∂B3)→ H1(∂Ω1)×H1(∂B2) are bounded since they are

given by

(
f1

g1

)
7→
(

0
v1

∣∣
∂B2

)
, f2 7→

(
v2

∣∣
∂Ω1

0

)
, and f3 7→

(
v3

∣∣
∂Ω1

v3

∣∣
∂B2

)
,

respectively. By Rellich theorem, they are compact.

(b) Let φ ∈ H−1/2(∂Ω1) and ψ ∈ H−1/2(∂B2). Assume thatR∗3

(
φ
ψ

)
=

0. Using the same argument as done in Theorem 2.5 in [75], one knows the
existence of a radiating solution w such that

∆w + k2w = 0 in R3 \ Ω1 ∪B2, (2.52)

∆w + k2w = 0 in Ω1 \B1, in B2 \B3, (2.53)

w+ − w− = 0,
∂w+

∂νΩ1

− ∂w−
∂νΩ1

= φ on ∂Ω1, (2.54)

w+ − w− = 0,
∂w+

∂νB2

− ∂w−
∂νB2

= ψ on ∂B2, (2.55)

∂w

∂νB1

+ iλ0w = 0 on ∂B1,
∂w

∂νB3

+ iλ0w = 0 on ∂B3, (2.56)

where the subscripts + and – denote the trace from the exterior and interior,
respectively. (See Figure 3).
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Ω1 B2

B1 B3

Figure 3: The inclusion relation of Ω1, B1, B2, and B3

By using the boundary conditions (2.47), (2.54), (2.55), (2.56), and
Green’s theorem, we have

0 =
〈
f3, R

∗
3

(
φ
ψ

)〉
=
〈( v3

∣∣
∂Ω1

v3

∣∣
∂B2

)
,

(
φ
ψ

)〉
=

∫
∂Ω1

v3φds+

∫
∂B2

v3ψds

=

∫
∂Ω1∪∂B2

v3

(∂w+

∂ν
− ∂w−

∂ν

)
ds−

∫
∂Ω1∪∂B2

∂v3

∂ν
(w+ − w−)ds

=

∫
∂Ω1∪∂B2

[
∂v3

∂ν
w− − v3

∂w−
∂ν

]
ds−

∫
∂Ω1∪∂B2

[
∂v3

∂ν
w+ − v3

∂w+

∂ν

]
ds

=

∫
∂B1

[
∂v3

∂νB1

w − v3
∂w

∂νB1

]
ds+

∫
∂B3

[
∂v3

∂νB3

w − v3
∂w

∂νB3

]
ds

=

∫
∂B1∪∂B3

f3wds, (2.57)

which proves that w = 0 in ∂B1 ∪ ∂B3. Holmgren’s uniqueness theorem
implies that w vanishes in Ω1 \B1 and B2 \B3. Equations (2.54) and (2.55)
yield w+ = 0 on ∂Ω1 ∪ ∂B2 which implies that w vanishes also outside of
Ω1 and B2 by the uniqueness of the exterior Dirichlet problem. Therefore,
equations (2.54) and (2.55) yield φ = 0 and ψ = 0.

By Lemma 2.10, the middle operator T of (2.49) has the following prop-
erties:

Lemma 2.11. (a) Re
(
eiπT

)
has the form Re

(
eiπT

)
= C + K with some

self-adjoint and positive coercive operator C and some compact opera-
tor K.

(b) Im〈ϕ, Tϕ〉 < 0 for all ϕ ∈ H−1/2(∂Ω1)×H−1/2(∂B2) with ϕ 6= 0.
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Proof. (a) By Lemma 2.5 (b), Lemma 2.6 (b), and Lemma 2.10 (a),

Re
(
eiπT

)
= Re

(
R1T

Mix ∗
Ω1,Ω2

R∗1 +R2S
∗
B2
R∗2 +R3T

Imp ∗
B1∪B3,iλ0

R∗3

)
= R1

(
SΩ1,i 0

0 NΩ2,i

)
R∗1 +R2SB2,iR

∗
2 +K

=

(
I 0
0 0

)(
SΩ1,i 0

0 NΩ2,i

)(
I 0
0 0

)
+ P2SB2,iP

∗
2 +K ′

=

(
SΩ1,i 0

0 SB2,i

)
+K ′, (2.58)

where K and K ′ are some compact operators. Since the boundary integral
operators SΩ1,i and SB2,i are self-adjoint and positive coercive, (a) holds.

(b) By Lemma 2.5 (c) (d), Lemma 2.6 (c), and Lemma 2.10 (b), es-
pecially, by the strictly positivity of the operator ImT ImpB1∪B3,iλ0

, and the

injectivity of R∗3, for all ϕ ∈ H−1/2(∂Ω1)×H−1/2(∂B2) with ϕ 6= 0, we have

Im〈ϕ, Tϕ〉 = −Im〈TMix
Ω1,Ω2

R∗1ϕ,R
∗
1ϕ〉+ Im〈R∗2ϕ, SB2R

∗
2ϕ〉

−Im〈T ImpB1∪B3,iλ0
R∗3ϕ,R

∗
3ϕ〉 < 0. (2.59)

Therefore, by Lemma 2.11, we can apply Theorem 2.8 to this case. From
Lemma 2.9 (b), and applying Theorem 2.8, we obtain Theorem 1.2.

Remark 2.12. Unknown obstacle Ω2 may consist of finitely many con-
nected components whose closures are mutually disjoint. Furthermore, the
boundary condition on Ω2 can not be only Neumann but also Dirichlet,
impedance, and not only impenetrable obstacles but also penetrable medi-
ums, and their mixed situations by the same argument in Theorem 2.2. In
all cases, we can choose arbitrary wave numbers k > 0.

Remark 2.13. If we assume that k2 is not a Dirichlet eigenvalue of −∆ in
artificial domains B1, B2, then we do not need to take an additional domain
B3. In such a case, we only use FDirB1∪B2

as artificial far field operators since

FDirB1∪B2
has a role to keep the strictly positivity of the imaginary part of

the middle operator of F . (See Lemma 2.5 (c).) That is, we can give the
following characterization by the same argument in Theorem 2.2:

Theorem 2.14. In addition to Assumption 2.1, we assume that k2 is not
a Dirichlet eigenvalue of −∆ in B1, B2. Take a positive number λ0 > 0.
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Then, for z ∈ R3 \B2

z ∈ Ω1 ⇐⇒
∞∑
n=1

|(φz, ϕn)L2(S2)|2

λn
<∞, (2.60)

where (λn, ϕn) is a complete eigensystem of F# given by

F# :=
∣∣ReF

∣∣+
∣∣ImF ∣∣, (2.61)

where F := FMix
Ω1,Ω2

+ FDirB1∪B2
. Here, the function φz is given by (2.11).

Remark 2.15. We can also give the characterization of the Neumann part
Ω2 if we assume Ω1 ⊂ B1, B2 ⊂ Ω2, B1 ∩ Ω2 = ∅ by the same argument in
Theorem 2.2 (See Figure 4).

Ω1
Ω2

B2

Neumann
Dirichlet

B1

Figure 4: Assumption of Remark 2.15

2.4 The second case

In Section 2.4, we prove Theorem 2.4. Let Assumption 2.3 hold. We define
GMix

Ω10,B2
: L2(Ω1)×H1/2(∂B2)→ L2(S2) by

GMix
Ω10,B2

(
f
g

)
:= v∞, (2.62)

where v∞ is the far field pattern of a radiating solution v such that

∆v + k2v = −k2 q√
|q|
f in R3 \B2, (2.63)

v = g on ∂B2. (2.64)

Note that we extend q by zero outside Ω1. Next, we define R1 : L2(Ω1) ×
H1/2(∂Ω2)→ L2(Ω1)×H1/2(∂B2) by

R1

(
f1

g1

)
:=

(
f1 +

√
|q|v1

v1

∣∣
∂B2

)
, (2.65)
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where v1 is a radiating solution such that

∆v1 + k2(1 + q)v1 = −k2 q√
|q|
f1 in R3 \ Ω2, (2.66)

v1 = −g1 on ∂Ω2. (2.67)

Then, from the definition of R1, we obtain

GMix
Ω1q,Ω2

= GMix
Ω10,B2

R1. (2.68)

We define R2 : H1/2(∂B2)→ L2(Ω1)×H1/2(∂B2) by

R2f2 :=

(
0
f2

)
. (2.69)

Then, from the definition of R2, we obtain

GDirB2
= GMix

Ω10,B2
R2. (2.70)

Here, take a positive number λ0 > 0, and a bounded domain B3 with B3 ⊂
B2. We define R3 : H−1/2(∂B3)→ H1/2(∂B2) by

R3f3 := v3

∣∣
∂B2

, (2.71)

where v3 is a radiating solution such that

∆v3 + k2v3 = 0 in R3 \B3, (2.72)

∂v3

∂νB3

+ iλ0v3 = f3 on ∂B3. (2.73)

Then, from the definition of R3, and (2.70), we obtain

GImpB3,iλ0
= GDirB2

R3 = GMix
Ω10,B2

R2R3. (2.74)

By (2.68), (2.70), (2.74), and the factorization of the far field operator in
Section 2.2, we have

FMix
Ω1q,Ω2

+ FDirB2
+ F ImpB3,iλ0

= GMix
Ω10,B2

MGMix ∗
Ω10,B2

, (2.75)

where M :=
[
R1M

Mix ∗
Ω1q,Ω2

R∗1 −R2S
∗
B2
R∗2 −R2R3T

Imp ∗
B3,iλ0

R∗3R
∗
2

]
.

The following properties are given by the same argument in Theorem
3.2 (c) in [64]:
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Lemma 2.16. (a) The operator GMix
Ω10,B2

: L2(Ω1) × H1/2(∂B2) → L2(S2)

is compact with dense range in L2(S2).

(b) For z ∈ R3 \B2

z ∈ Ω1 ⇐⇒ φz ∈ Ran(GMix
Ω10,B2

), (2.76)

where the function φz is given by (2.11).

To prove Theorem 2.4, we apply Theorem 2.8 to this case with F =
FMix ∗

Ω1q,Ω2
+ FDir ∗B2

+ F Imp ∗B3,iλ0
. First, we show the following lemma:

Lemma 2.17. (a) R1 −
(
I 0
0 0

)
, R3 are compact.

(b) R1 is injective.

(c) R∗3 is injective.

Proof. (a) The mappings R1−
(
I 0
0 0

)
: L2(Ω1)×H1/2(∂Ω2)→ H1(Ω1)×

H1(∂B2), and R3 : H−1/2(∂B3) → H1(∂B2) are bounded since they are

given by

(
f1

g1

)
7→

( √
|q|v1

v1

∣∣
∂B2

)
, and f3 7→ v3

∣∣
∂B2

, respectively. By Rellich

theorem, they are compact.
(b) Assume that

R1

(
f1

g1

)
=

(
f1 +

√
|q|v1

v1

∣∣
∂B2

)
= 0. (2.77)

Equation (2.66) yields that

∆v1 + k2v1 = 0 in R3 \B2, (2.78)

v1 = 0 on ∂B2. (2.79)

By the uniqueness of the exterior Dirichlet problem, v1 vanishes outside of
B2. Therefore, f1 = 0. Furthermore, the analyticity of v1 yields that v1 also
vanishes in B2 \ Ω2, which implies that g1 = 0.

(c) The injectivity of R∗3 follows from the same argument as done in the
proof of Lemma 3.2 in [63].

By Lemma 2.17, the middle operator M of (2.75) has the following prop-
erties:
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Lemma 2.18. (a) Re
(
eitM∗

)
has the form Re

(
eitM∗

)
= C+K with some

self-adjoint and positive coercive operator C, and some compact oper-
ator K.

(b) Im〈ϕ,M∗ϕ〉 ≥ 0 for all ϕ ∈ L2(Ω1)×H−1/2(∂B2).

(c) M∗ is injective.

Proof. (a) By Lemma 2.5 (b), Lemma 2.7 (b), and Lemma 2.17 (a),

Re
(
eitM∗

)
= Re

(
eitR1M

Mix
Ω1q,Ω2

R∗1 − eitR2SB2R
∗
2 − eitR2R3T

Imp
B3,iλ0

R∗3R
∗
2

)
= R1

(
Re( eit|q|

k2q
) 0

0 −(cos t)SΩ2,i

)
R∗1 −R2(cos t)SB2,iR

∗
2 +K

=

(
I 0
0 0

)(
Re( eit|q|

k2q
) 0

0 −(cos t)SΩ2,i

)(
I 0
0 0

)
−R2(cos t)SB2,iR

∗
2 +K ′

=

(
Re( eit|q|

k2q
) 0

0 (−cos t)SB2,i

)
+K ′, (2.80)

where K and K ′ are some compact operators. The first term of the right
hand side in (2.80) is self-adjoint and positive coercive since (−cos t) > 0
when t ∈ (π/2, 3π/2), and Assumption 2.3 (iv) yields

〈
ϕ,Re

(eit|q|
k2q

)
ϕ
〉

=

∫
Ω1

|ϕ|2 Re(e−itq)

k2|q|
dx

≥
∫

Ω1

|ϕ|2 C|q|
k2|q|

dx

=
C

k2
‖ϕ‖2L2(Ω1) . (2.81)

(b) By Lemma 2.5 (c), Lemma 2.7 (c) (d), for all ϕ ∈ L2(Ω1)×H−1/2(∂B2)

Im〈ϕ,M∗ϕ〉 = Im〈R∗1ϕ,MMix
Ω1q,Ω2

R∗1ϕ〉 − Im〈R∗2ϕ, SB2R
∗
2ϕ〉

+Im〈T ImpB3,iλ0
R∗3R

∗
2ϕ,R

∗
3R
∗
2ϕ〉 ≥ 0. (2.82)
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(c) Let φ ∈ L2(Ω1) and ψ ∈ H−1/2(∂B2). Assume that M∗
(
φ
ψ

)
= 0.

Inequality (2.82) yields that

Im
〈
T ImpB3,iλ0

R∗3R
∗
2

(
φ
ψ

)
, R∗3R

∗
2

(
φ
ψ

)〉
= 0, (2.83)

which implies that R∗3R
∗
2

(
φ
ψ

)
= 0 from Lemma 2.5 (d). By Lemma 2.17

(c), and the definition of R2, we have ψ = 0. Therefore,

M∗
(
φ
0

)
= R1M

Mix
Ω1q,Ω2

R∗1

(
φ
0

)
= 0. (2.84)

From Lemma 2.17 (b) and Lemma 2.7 (d), we obtain

R∗1

(
φ
0

)
=

(
0
∗

)
. (2.85)

Finally, we will show φ = 0. Let f1 ∈ L2(Ω1). Take radiating solutions v1

and w such that

∆v1 + k2(1 + q)v1 = −k2 q√
|q|
f1 in R3 \ Ω2, (2.86)

v1 = 0 on ∂Ω2, (2.87)

∆w + k2(1 + q)w =
√
|q|φ in R3 \ Ω2, (2.88)

w = 0 on ∂Ω2. (2.89)

By (2.85),

0 =
〈( f1

0

)
, R∗1

(
φ
0

)〉
=
〈( f1 +

√
|q|v1

v1

∣∣
∂B2

)
,

(
φ
0

)〉
=

∫
Ω1

f1φdx+

∫
Ω1

v1

√
|q|φdx. (2.90)

By (2.86) and (2.88),∫
Ω1

v1

√
|q|φdx =

∫
Ω1

v1

(
∆w + k2(1 + q)w

)
dx

−
∫

Ω1

(
∆v1 + k2(1 + q)v1 + k2 q√

|q|
f1

)
wdx

= −
∫

Ω1

k2 q√
|q|
f1wdx

+

∫
Ω1

(∆w)v1 − w(∆v1)dx. (2.91)
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By using Green’s theorem, (2.87) and (2.89),∫
Ω1

(∆w)v1 − w(∆v1)dx =

∫
R3\Ω2

(∆w)v1 − w(∆v1)dx

= −
∫
∂Ω2

[
∂w

∂νΩ2

v1 − w
∂v

∂νΩ2

]
ds

= 0. (2.92)

By (2.90)–(2.92),

φ = k2 q√
|q|
w in Ω1. (2.93)

From (2.88), (2.89), and (2.93), we obtain

∆w + k2w = 0 in R3 \ Ω2, (2.94)

w = 0 on ∂Ω2, (2.95)

which proves that w vanishes in R3 \ Ω2 by the uniqueness of the exterior
Dirichlet problem. Therefore, equation (2.93) yields that φ = 0.

Therefore, by Lemma 2.18, we can apply Theorem 2.8 to this case with
F = FMix ∗

Ω1q,Ω2
+FDir ∗B2

+F Imp ∗B3,iλ0
. From Lemma 2.16 (b), and applying Theo-

rem 2.8, we obtain Theorem 2.4.

Remark 2.19. We can also consider various situations on Ω2 like Remark
2.12, and replace the assumption of taking B3 with that k2 is not a Dirichlet
eigenvalue of −∆ in an artificial domain B2 like Remark 2.15.

We can also give the characterization by replacing (iv) in Assumption
2.3 with

(iv’) There exists t ∈ [0, π/2) ∪ (3π/2, 2π] and C > 0 such that Re(e−itq)
≥ C|q| a.e. in Ω1.

by the same argument in Theorem 2.4:

Assumption 2.20. Let a bounded domain B2 be a priori known. Assume
the following assumptions:

(i) q ∈ L∞(Ω1) with Imq ≥ 0 in Ω1.

(ii) |q| is locally bounded below in Ω1, i.e., for every compact subset M ⊂ Ω1,
there exists c > 0 (depend on M) such that |q| ≥ c in M .
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(iii) Ω2 ⊂ B2, Ω1 ∩B2 = ∅.

(iv’) There exists t ∈ [0, π/2) ∪ (3π/2, 2π] and C > 0 such that Re(e−itq)
≥ C|q| a.e. in Ω1.

Theorem 2.21. Let Assumption 2.20 hold. Take a positive number λ0 > 0.
Then, for z ∈ R3 \B2

z ∈ Ω1 ⇐⇒
∞∑
n=1

|(φz, ϕn)L2(S2)|2

λn
<∞, (2.96)

where (λn, ϕn) is a complete eigensystem of F# given by

F# :=
∣∣Re
(
e−itF

)∣∣+
∣∣ImF ∣∣, (2.97)

where F := FMix
Ω1q,Ω2

+ F ImpB2,iλ0
. Here, the function φz is given by (2.11).
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3 The monotonicity method for the inverse crack
scattering problem

3.1 Introduction

Let Γ ⊂ R2 be a smooth non-intersecting open arc, and we assume that Γ
can be extended to an arbitrary smooth, simply connected, closed curve ∂Ω
enclosing a bounded domain Ω in R2. Let k > 0 be the wave number, and
let θ ∈ S1 be incident direction, where S1 = {x ∈ R2 : |x| = 1} denotes the
unit sphere in R2. We consider the following direct scattering problem: For
θ ∈ S1 determine us such that

∆us + k2us = 0 in R2 \ Γ, (3.1)

us = −eikθ·x on Γ (3.2)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, (3.3)

where r = |x|, and (3.3) is the Sommerfeld radiation condition. Precisely,
this problem is understood in the variational form, that is, determine us ∈
H1
loc(R2 \ Γ) satisfying us

∣∣
Γ
= −eikθ·x, the Sommerfeld radiation condition

(1.3), and ∫
R2\Γ

[
∇us · ∇ϕ− k2usϕ

]
dx = 0, (3.4)

for all ϕ ∈ H1(R2 \Γ), ϕ
∣∣
Γ
= 0, with compact support. Here, H1

loc(R2 \Γ) =

{u : R2\Γ→ C : u
∣∣
B\Γ∈ H

1(B\Γ) for all open balls B including Γ} denotes

the local Sobolev space of one order.
It is well known that there exists a unique solution us and it has the

following asymptotic behaviour (see, e.g. [18]):

us(x) =
eikr√
r

{
u∞(x̂, θ) +O

(
1/r
)}
, r →∞, x̂ :=

x

|x|
. (3.5)

The function u∞ is called the far field pattern of us. With the far field
pattern u∞, we define the far field operator F : L2(S1)→ L2(S1) by

Fg(x̂) :=

∫
S1
u∞(x̂, θ)g(θ)ds(θ), x̂ ∈ S1. (3.6)

The inverse scattering problem we consider is to reconstruct the unknown
arc Γ from the far field pattern u∞(x̂, θ) for all x̂ ∈ S1, all x̂ ∈ S1 with one
k > 0. In other words, given the far field operator F , reconstruct Γ.
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In order to solve such an inverse problem, we use the idea of the mono-
tonicity method. The feature of this method is to understand the inclusion
relation of an unknown object and artificial one by comparing the data oper-
ator with some operator corresponding to an artificial object. For electrical
impedance tomography (EIT) we refer to [40], for the inverse boundary
value problem for the Helmholtz equation we refer to [37, 38, 39], and for
the inverse medium scattering problem we refer to [33, 69].

Our aim in this section is to provide the following two theorems.

Theorem 3.1. Let σ ⊂ R2 be a smooth non-intersecting open arc. Then,

σ ⊂ Γ ⇐⇒ H∗σHσ ≤fin −ReF, (3.7)

where the Herglotz operator Hσ : L2(S1)→ L2(σ) is given by

Hσg(x) :=

∫
S1

eikθ·xg(θ)ds(θ), x ∈ σ, (3.8)

and the inequality on the right-hand side in (3.7) denotes that −ReF−H∗σHσ

has only finitely many negative eigenvalues, and the real part of an operator

A is self-adjoint operators given by Re(A) :=
1

2
(A+A∗).

Theorem 3.2. Let B ⊂ R2 be a bounded open set. Then,

Γ ⊂ B ⇐⇒ −ReF ≤fin H̃
∗
∂BH̃∂B, (3.9)

where H̃∂B : L2(S1)→ H1/2(∂B) is given by

H̃∂Bg(x) :=

∫
S1

eikθ·xg(θ)ds(θ), x ∈ ∂B. (3.10)

Theorem 3.1 determines whether an artificial open arc σ is contained in
Γ or not. While, Theorem 3.2 determines an artificial domain B contains Γ.
In two theorems we can understand Γ from the inside and outside.

This section is organized as follows. In Section 3.2, we give a rigorous
definition of the above inequality. Furthermore, we recall the properties of
the far field operator and technical lemmas which are useful to prove main
results. In Sections 3.3 and 3.4, we prove Theorems 3.1 and 3.2 respectively.
In Section 3.5, we give numerical examples based on Theorem 3.1.
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3.2 Preliminary

First, we give a rigorous definition of the inequality in Theorems 3.1 and
3.2.

Definition 3.3. Let A,B : X → X be self-adjoint compact linear operators
on a Hilbert space X. We write

A ≤fin B, (3.11)

if B −A has only finitely many negative eigenvalues.

The following lemma was shown in Corollary 3.3 of [38].

Lemma 3.4. Let A,B : X → X be self-adjoint compact linear operators on
a Hilbert space X with an inner product 〈·, ·〉. Then, the following statements
are equivalent:

(a) A ≤fin B

(b) There exists a finite dimensional subspace V in X such that

〈(B −A)v, v〉 ≥ 0, (3.12)

for all v ∈ V ⊥.

Secondly, we define several operators in order to mention properties of
the far field operator F . The data-to-pattern operatorG : H1/2(Γ)→ L2(S1)
is defined by

Gf := v∞, (3.13)

where v∞ is the far field pattern of a radiating solution v (that is, v satisfies
the Sommerfeld radiation condition) such that

∆v + k2v = 0 in R2 \ Γ, (3.14)

v = f on Γ. (3.15)

The following lemma was given by the same argument in Lemma 1.13 of
[58].

Lemma 3.5. The data-to-pattern operator G is compact and injective.
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We define the single layer boundary operator S : H̃−1/2(Γ) → H1/2(Γ)
by

Sϕ(x) :=

∫
Γ
ϕ(y)Φ(x, y)ds(y), x ∈ Γ, (3.16)

where Φ(x, y) denotes the fundamental solution to Helmholtz equation in
R2, i.e.,

Φ(x, y) :=
i

4
H

(1)
0 (k|x− y|), x 6= y. (3.17)

Here, we denote by

H1/2(Γ) := {u
∣∣
Γ
: u ∈ H1/2(∂Ω)}, (3.18)

H̃1/2(Γ) := {u ∈ H1/2(∂Ω) : supp(u) ⊂ Γ}, (3.19)

and H−1/2(Γ) and H̃−1/2(Γ) the dual spaces of H̃1/2(Γ) and H1/2(Γ) re-
spectively. Then, we have the following inclusion relation:

H̃1/2(Γ) ⊂ H1/2(Γ) ⊂ L2(Γ) ⊂ H̃−1/2(Γ) ⊂ H−1/2(Γ). (3.20)

For these details, we refer to [76]. The following two Lemmas was shown in
Section 3 of [66].

Lemma 3.6. (a) S is an isomorphism from H̃−1/2(Γ) onto H1/2(Γ).

(b) Let Si be the boundary integral operator (3.16) corresponding to the
wave number k = i. The operator Si is self-adjoint and coercive, i.e,
there exists c0 > 0 such that

〈ϕ, Siϕ〉 ≥ c0 ‖ϕ‖2H̃−1/2(Γ)
for all ϕ ∈ H̃−1/2(Γ), (3.21)

where 〈·, ·〉 denotes the duality pairing in 〈H̃−1/2(Γ), H1/2(Γ)〉.

(c) S − Si is compact.

(d) There exists a self-adjoint and positive square root S
1/2
i : L2(Γ)→ L2(Γ)

of Si which can be extended such that S
1/2
i : H̃−1/2(Γ) → L2(Γ) is an

isomorphism and S
1/2 ∗
i S

1/2
i = Si.

Lemma 3.7. The far field operator F has the following factorization:

F = −GS∗G∗. (3.22)

where G∗ : L2(S1) → H̃−1/2(Γ) and S∗ : H̃−1/2(Γ) → H1/2(Γ) are the
adjoints of G and S, respectively.
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Thirdly, we recall the following technical lemmas which will be useful to
prove Theorems 3.1 and 3.2. We refer to Lemma 4.6 and 4.7 in [38].

Lemma 3.8. Let X, Y , and Z be Hilbert spaces, and let A : X → Y and
B : X → Z be bounded linear operators. Then,

∃C > 0 : ‖Ax‖2 ≤ C ‖Bx‖2 for all x ∈ X ⇐⇒ Ran(A∗) ⊆ Ran(B∗).
(3.23)

Lemma 3.9. Let X, Y , V ⊂ Z be subspaces of a vector space Z. If

X ∩ Y = {0}, and X ⊆ Y + V, (3.24)

then dim(X) ≤ dim(V ).

3.3 Proof of Theorem 3.1

In Section 3.3, we will show Theorem 3.1. Let σ ⊂ Γ. We denote by
R : L2(Γ) → L2(σ) the restriction operator, J : H1/2(Γ) → L2(Γ) the
compact embedding, and H : L2(S1) → L2(Γ), Ĥ : L2(S1) → H1/2(Γ) the
Herglotz operators, respectively. Since e−ikx̂·y is a far field pattern of Φ(x, y),
we have by definitions of G and S

GSϕ(x̂) =

∫
Γ
e−ikx̂·yϕ(y)ds(y). (3.25)

The right-hand side is identical with Ĥ∗ϕ(x̂) (see the proof of Lemma 3.4
in [66]). Then, we have Ĥ∗ = GS. By this equality we have

Hσ = RH

= RJĤ

= RJS∗G∗. (3.26)

Using (3.25) and Lemmas 3.6 and 3.7, −ReF − H∗σHσ has the following
factorization:

−ReF −H∗σHσ = G
[
ReS − SJ∗R∗RJS∗

]
G∗

= G
[
Si + Re(S − Si)− SJ∗R∗RJS∗

]
G∗

=
[
GW ∗

]
W ∗ −1

[
Si + Re(S − Si)− SJ∗R∗RJS∗

]
W−1

[
GW ∗

]∗
=

[
GW ∗

][
IL2(Γ) +K

][
GW ∗

]∗
, (3.27)

where W := S
1/2
i : H̃−1/2(Γ) → L2(Γ) is an extension of the square root

of S
1/2
i , K := W ∗ −1

[
Re(S − Si) − SJ∗R∗RJS∗

]
W−1 : L2(Γ) → L2(Γ) is
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self-adjoint compact, and IL2(Γ) is the identity operator on L2(Γ). Let V be
the sum of eigenspaces of K associated to eigenvalues less than −1/2. Then,
V is a finite dimensional and

〈(IL2(Γ) +K
)
v, v〉 ≥ 0, (3.28)

for all v ∈ V ⊥. Since for g ∈ L2(S1)[
GW ∗

]∗
g ∈ V ⊥ ⇐⇒ g ∈ [(GW ∗)V

]⊥
, (3.29)

and dim[(GW ∗)V
]
≤ dim(V ) <∞, we have by (3.27) and Lemma 3.4 that

H∗σHσ ≤fin −ReF .
Let now σ 6⊂ Γ and assume on the contrary H∗σHσ ≤fin −ReF , that is,

by Lemma 3.4 there exists a finite dimensional subspace V in L2(S1) such
that

〈(−ReF −H∗σHσ)v, v〉 ≥ 0, (3.30)

for all v ∈ V ⊥. Since σ 6⊂ Γ, we can take a small open arc σ0 ⊂ σ such that
σ0 ∩ Γ = ∅, which implies that for all v ∈ V ⊥

‖Hσ0v‖
2
L2(σ0) ≤ ‖Hσv‖2L2(σ)

≤ 〈(−ReF )v, v〉L2(S1)

= 〈(ReS∗)G∗v,G∗v〉
≤ ‖ReS∗‖ ‖G∗v‖2 . (3.31)

Before showing a contradiction with (3.31), we will show the following
lemma.

Lemma 3.10. (a) dim(Ran(H∗σ0)) =∞

(b) Ran(G) ∩ Ran(H∗σ0) = {0}.

Proof of Lemma 3.10. (a) By the same argument in (3.25) we have

Hσ0 = Jσ0Ĥσ0 = Jσ0S
∗
σ0G

∗
σ0 , (3.32)

where Gσ0 : H1/2(σ0) → L2(S1), Sσ0 : H̃−1/2(σ0) → H1/2(σ0), and Jσ0 :
H1/2(σ0)→ L2(σ0) are the data-to-pattern operator, the single layer bound-
ary operator, and the compact embedding, respectively, corresponding to σ0.
Since H∗σ0 = Gσ0Sσ0J

∗
σ0 , Ran(J∗σ0) is dense, and Gσ0Sσ0 is injective, we have

dim(Ran(H∗σ0)) = dim(Ran(J∗σ0)) =∞.
(b) By (3.7), we have Ran(H∗σ0) ⊂ Ran(Gσ0). Let h ∈ Ran(G) ∩

Ran(Gσ0), i.e. h = v∞Γ = v∞σ0 where v∞Γ and v∞σ0 are far field patterns of
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the scattered field vΓ and vσ0 associated to scatterers Γ and σ0, respec-
tively. Then by Rellich lemma and unique continuation we have vΓ =
vσ0 in R2 \ (Γ ∪ σ0). Hence, we can define v ∈ H1

loc(R2) by

v :=


vΓ = vσ0 in R2 \ (Γ ∪ σ0)
vΓ on σ0

vσ0 on Γ
(3.33)

and v is a radiating solution to

∆v + k2v = 0 in R2. (3.34)

Thus v = 0 in R2, which implies that h = 0.

By the above lemma we have ∞ = dim(Ran(H∗σ0)) � dimV < ∞ and
Ran(H∗σ0) ∩ Ran(G) = {0}. By a contraposition of Lemma 3.9, we have

Ran(H∗σ0) 6⊆ Ran(G) + V = Ran(G, PV ), (3.35)

where PV : L2(S1) → L2(S1) is the orthognal projection on V . Lemma 3.8
implies that for any C > 0 there exists a vc such that

‖Hσ0vc‖
2 > C2

∥∥∥∥( G∗

PV

)
vc

∥∥∥∥2

= C2(‖G∗vc‖2 + ‖PV vc‖2). (3.36)

Hence, there exists a sequence (vm)m∈N ⊂ L2(S1) such that ‖Hσ0vm‖ → ∞
and ‖G∗vm‖2 + ‖PV vm‖ → 0 as m → ∞. Setting ṽm := vm − PV vm ∈ V ⊥
we have as m→∞,

‖Hσ0 ṽm‖ ≥ ‖Hσ0vm‖ − ‖Hσ0‖ ‖PV vm‖ → ∞, (3.37)

‖G∗ṽm‖ ≤ ‖G∗vm‖+ ‖G∗‖ ‖PV vm‖ → 0. (3.38)

This contradicts (3.31). Therefore, we have H∗σHσ 6≤fin −ReF . Theorem 3.1
has been shown.

3.4 Proof of Theorem 3.2

In Section 3.4, we will show Theorem 3.2. Let Γ ⊂ B. We denote by
G∂B : H1/2(∂B) → L2(S1) and S∂B : H−1/2(∂B) → H1/2(∂B) are the
data-to-pattern operator and the single layer boundary operator, respec-
tively corresponding to closed curve ∂B. They have the same properties
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like Lemmas 3.5 and 3.6 and we have H̃∗∂B = G∂BS∂B. (See, e.g., Lemma
1.14, Theorem 1.15 in [58].) We define T : H1/2(Γ)→ H1/2(∂B) by

Tf := v
∣∣
∂B
, (3.39)

where v is a radiating solution such that

∆v + k2v = 0 in R2 \ Γ, (3.40)

v = f on Γ. (3.41)

T is compact since its mapping is from H1/2(Γ) to C∞(∂B). Furthermore,
by the definition of T we have that G = G∂BT . Thus, we have

H̃∗∂BH̃∂B + ReF = G∂BS∂BS
∗
∂BG

∗
∂B +G∂B

[
−TRe(S)T ∗

]
G∗∂B

= G∂B
[
S∂B,iS

∗
∂B,i +K

]
G∗∂B

=
[
G∂BW

∗][W ∗ −1S∂B,iS
∗
∂B,iW

−1 +K ′
][
G∂BW

∗]∗, (3.42)

where K and K ′ are some self-adjoint compact operators, and W := S
1/2
∂B,i :

H−1/2(∂B) → L2(∂B) is an extension of the square root of S∂B,i where
S∂B,i : H̃−1/2(∂B)→ H1/2(∂B) is the single layer boundary operator corre-
sponding to ∂B and the wave number k = i. Let V be the sum of eigenspaces

of K ′ associated to eigenvalues less than −1
2

∥∥∥∥(S∗∂B,iW−1
)−1

∥∥∥∥−2

. Then V

is a finite dimensional, and for all g ∈
[
(G∂BW

∗)V
]⊥

we have

〈(H̃∗∂BH̃∂B + ReF )g, g〉
=

∥∥(S∗∂B,iW
−1)
[
G∂BW

∗]∗g∥∥2

H1/2(∂B)
+ 〈K ′

[
G∂BW

∗]∗g, [G∂BW ∗]∗g〉L2(∂B)

≥
∥∥(S∗∂B,iW

−1)−1
∥∥−2 ∥∥[G∂BW ∗]∗g∥∥2 − 1

2

∥∥(S∗∂B,iW
−1)−1

∥∥−2 ∥∥[G∂BW ∗]∗g∥∥2

≥ 0. (3.43)

Therefore, −ReF ≤fin H̃
∗
∂BH̃∂B.

Let now Γ 6⊂ B and assume on the contrary −ReF ≤fin H̃
∗
∂BH̃∂B, i.e.,

by Lemma 3.4 there exists a finite dimensional subspace V in L2(S1) such
that

〈(H̃∗∂BH̃∂B + ReF )v, v〉 ≥ 0, (3.44)

for all v ∈ V ⊥. Since Γ 6⊂ B, we can take a small open arc Γ0 ⊂ Γ such that
Γ0 ∩B = ∅. We define L : H1/2(Γ0)→ H1/2(Γ) by

Lf := v
∣∣
Γ
, (3.45)
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where v is a radiating solution such that

∆v + k2v = 0 in R2 \ Γ0, (3.46)

v = f on Γ0. (3.47)

By the definition of L, we have GΓ0 = GL where GΓ0 : H1/2(Γ0) → L2(S1)
is the data-to-pattern operator corresponding to Γ0. We denote by SΓ0 :
H̃−1/2(Γ0) → H1/2(Γ0) the single layer boundary operator corresponding
to Γ0, and HΓ0 : L2(S1) → L2(Γ0), ĤΓ0 : L2(S1) → H1/2(Γ0) the Herglotz
operators corresponding to Γ0, respectively. By the same argument in (3.25)
we have ĤΓ0 = S∗Γ0

G∗Γ0
. Then, we have

‖HΓ0x‖
2
L2(Γ0) ≤

∥∥∥ĤΓ0x
∥∥∥2

H1/2(Γ0)

≤
∥∥S∗Γ0

∥∥2 ∥∥G∗Γ0
x
∥∥2

≤
∥∥S∗Γ0

∥∥2 ‖L∗‖2 ‖G∗x‖2 , (3.48)

for x ∈ L2(S1). Since ReS is of the form ReS = Si + Re(S − Si), by
the similar argument in (3.26)–(3.27) and (3.42)–(3.43), there exists a finite
dimensional subspace W in L2(S1) such that for x ∈W⊥

‖G∗x‖2 ≤ C〈(ReS)G∗x,G∗x〉 = C〈(−ReF )x, x〉. (3.49)

Collecting (3.48), (3.49), and H̃∗∂B = G∂BS∂B, we have

‖HΓ0x‖
2 ≤ C〈(−ReF )x, x〉 ≤ C

∥∥∥H̃∂Bx
∥∥∥2

≤ C ‖S∗∂B‖
2 ‖G∗∂Bx‖

2
H−1/2(∂B) . (3.50)

for x ∈ (V ∪W )⊥.

Lemma 3.11. (a) dim(Ran(H∗Γ0
)) =∞

(b) Ran(G∂B) ∩ Ran(H∗Γ0
) = {0}.

Proof of Lemma 3.11. (a) is given by the same argument in Lemma 3.10.
(b) Since (3.31) replacing σ0 by Γ0 holds, by taking a conjugation in

(3.31) we have Ran(H∗Γ0
) ⊂ Ran(GΓ0). Let h ∈ Ran(G∂B) ∩Ran(GΓ0), i.e.,

h = v∞B = v∞Γ0
where v∞B and v∞Γ0

are far field patterns of the scattered field
vB and vΓ0 associated to scatterers B and Γ0, respectively. Then by Rellich

35



lemma and unique continuation we have vB = vΓ0 in R2 \ (B ∪ Γ0). Hence,
we can define v ∈ H1

loc(R2) by

v :=


vB = vΓ0 in R2 \ (B ∪ Γ0)
vΓ0 on B
vB on Γ0

(3.51)

and v is a radiating solution to

∆v + k2v = 0 in R2. (3.52)

Thus v = 0 in R2, which implies that h = 0.

By the above lemma we have ∞ = dim(Ran(H∗Γ0
)) � dim(V ∪W ) <∞

and Ran(H∗Γ0
) ∩ Ran(G∂B) = {0}. By a contraposition of Lemma 3.9, we

have

Ran(H∗Γ0
) 6⊆ Ran(G∂B) + (V ∪W ) = Ran(G∂B, PV ∪W ), (3.53)

where PV ∪W : L2(S1) → L2(S1) is the orthognal projection on V ∪ W .
Lemma 3.8 implies that for any C > 0 there exists a xc such that

‖HΓ0xc‖
2 > C2

∥∥∥∥( G∗∂B
PV ∪W

)
xc

∥∥∥∥2

= C2(‖G∗∂Bxc‖
2 + ‖PV ∪Wxc‖2). (3.54)

Hence, there exists a sequence (xm)m∈N ⊂ L2(S1) such that ‖HΓ0xm‖ →
∞ and ‖G∗∂Bxm‖

2 + ‖PV ∪Wxm‖ → 0 as m → ∞. Setting x̃m := xm −
PV ∪Wxm ∈ (V ∪W )⊥ we have as m→∞,

‖HΓ0 x̃m‖ ≥ ‖HΓ0xm‖ − ‖HΓ0‖ ‖PV ∪Wxm‖ → ∞, (3.55)

‖G∗∂Bx̃m‖ ≤ ‖G∗∂Bxm‖+ ‖G∗∂B‖ ‖PV ∪Wxm‖ → 0. (3.56)

This contradicts (3.50). Therefore, we have −ReF 6≤fin H̃
∗
∂BH̃∂B. Theorem

3.2 has been shown.

3.5 Numerical examples

In Section 3.5, we discuss the numerical examples based on Theorem 3.1.
The following three open arcs Γj (j = 1, 2, 3) are considered. (see Figure 5)

(a) Γ1 = {(s, s)| − 1 ≤ s ≤ 1}

(b) Γ2 =

{(
2sin

(
π
8 + (1 + s)3π

8

)
− 2

3 , sin
(
π
4 + (1 + s)3π

4

)∣∣∣∣−1 ≤ s ≤ 1

}
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(c) Γ3 =

{(
s, sin

(
π
4 + (1 + s)3π

4

)∣∣∣∣−1 ≤ s ≤ 1

}
Based on Theorem 3.1, the indicator function in our examples is given

by
I(σ) := # {negative eigenvalues of − ReF −H∗σHσ} . (3.57)

The idea to reconstruct Γj is to plot the value of I(σ) for many of small σ
in the sampling region. Then, we expect from Theorem 3.1 that the value
of the function I(σ) is low if σ is close to Γj .

Here, σ is chosen in two ways; One is the vertical line segment σveri,j :=

zi,j + {0} × [− R
2M ,

R
2M ] where zi,j := (RiM , RjM ) (i, j = −M,−M + 1, ...,M)

denote the center of σveri,j , and R
M is the length of σveri,j , and R > 0 is length

of sampling square region [−R,R]2, and M ∈ N is large to take a small
segment. The other is horizontal one σhori,j := zi,j + [− R

2M ,
R

2M ]× {0}.
The far field operator F is approximated by the matrix

F ≈ 2π

N

(
u∞(x̂l, θm)

)
1≤l,m≤N ∈ C

N×N , (3.58)

where x̂l =
(
cos(2πl

N ), sin(2πl
N )
)

and θm =
(
cos(2πm

N ), sin(2πm
N )

)
. The far field

pattern u∞ of the problem (3.1)–(3.3) is computed by the Nyström method
in [67]. The operator H∗σHσ is approximated by

H∗σHσ ≈
2π

N

(∫
σ
eiky·(θm−x̂l)dy

)
1≤l,m≤N

∈ CN×N . (3.59)

When σ is given by the vertical and horizontal line segment, we can compute
the integrals∫
σveri,j

eiky·(θm−x̂l)dy =
R

M
eik(θm−x̂l)·zi,j sinc

(
kR

2Mπ

(
sin
(2πm

N

)
− sin

(2πl

N

)))
,

(3.60)∫
σhori,j

eiky·(θm−x̂l)dy =
R

M
eik(θm−x̂l)·zi,j sinc

(
kR

2Mπ

(
cos
(2πm

N

)
− cos

(2πl

N

)))
.

(3.61)
In our examples we fix R = 1.5, M = 100, N = 60, and wavenumber

k = 1. Figure 6 is given by plotting the values of the vertical indicator
function

Iver(zi,j) := I(σveri,j ), (3.62)

for each i, j = −100,−99, ..., 100. Figure 7 is given by plotting the values of
the horizontal indicator function

Ihor(zi,j) := I(σhori,j ), (3.63)
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for each i, j = −100,−99, ..., 100. We obverse that Γj seems to be recon-
structed independently of the direction of linear segment.

Γ1 Γ2 Γ3

Figure 5: The original open arc
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Γ1 Γ2 Γ3

Figure 6: Reconstruction by the vertical indicator function Iver

Γ1 Γ2 Γ3

Figure 7: Reconstruction by the horizontal indicator function Ihor
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4 The direct and inverse scattering problem for
the semilinear Schrödinger equation

4.1 Introduction

In this section, we study the direct and inverse scattering problem for the
semilinear Schrödinger equation

∆u+ a(x, u) + k2u = 0 in Rd, (4.1)

where d ≥ 2, and k > 0. Throughout this section, we make the following
assumptions for the semilinear function a : Rd × C→ C.

Assumption 4.1. We assume that

(i) a(x, 0) = 0 for all x ∈ Rd.

(ii) a(x, z) is holomorphic at z = 0 for each x ∈ Rd, that is, there exists

η > 0 such that a(x, z) =
∑∞

l=1
∂lza(x,0)

l! zl for |z| < η.

(iii) ∂lza(·, 0) ∈ L∞(Rd) for all l ≥ 1. Furthermore, there exists c0 > 0 such
that

∥∥∂lza(·, 0)
∥∥
L∞(Rd)

≤ cl0 for all l ≥ 1.

(iv) There exists R > 0 such that supp∂lza(·, 0) ⊂ BR for all l ≥ 1 where
BR ⊂ Rd is a open ball with center 0 and radius R > 0.

The inverse scattering problems for non-linear Schrödinger equations
have been studied in various ways. For the time dependent case, we refer to
[93, 94, 95], and for the stationary case, we refer to [1, 36, 47, 88, 89, 90].
In stationary case, [36, 47, 89] have studied the general non-linear function
of the form a(x, |u|)u, which does not include our no-linear function a(x, u).
The function a(x, u) which satisfies Assumption 4.1 is the generalization of,
in particular, the power type q(x)um where m ∈ N where q ∈ L∞(Rd) with
compact support. If m = 1, the problem is for linear Schrödinger equa-
tions, which has been well understood so far by many authors. (see e.g.,
[29, 77, 81, 87])

Recently in [20, 70, 71], the generalization of a power type has been stud-
ied in inverse boundary value problems via using the Dirichlet-to-Neumann
map. [46] also has studied the similar type of this nonlinearity. However in
inverse scattering problems, only [1] has studied it in one dimension, which
the non-linear function is of the form a(x, u) =

∑∞
n=1 qn(x)un. Motivated

by these previous studies, our aim in this section is to study the type of this
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nonlinearity in the case of higher dimensions d ≥ 2, and a more general form
a(x, u) than [1].

We consider the incident field uing as the Herglotz wave function

uing (x) :=

∫
Sd−1

eikx·θg(θ)ds(θ), x ∈ Rd, g ∈ L2(Sd−1), (4.2)

which solves the free Schrödinger equation ∆uing + k2uing = 0 in Rd. The
scattered field uscg corresponding to the incident field uing is a solution of the
following Schrödinger equation perturbed by the semilinear function a(x, z)

∆ug + a(x, ug) + k2ug = 0 in Rd, (4.3)

where ug is total field that is of the form ug = uscg + uing , and the scattered
field usc satisfies the Sommerfeld radiation condition

lim
r→∞

r
d−1
2

(
∂usc

∂r
− ikusc

)
= 0, (4.4)

where r = |x|.
Since support of the function a(x, z) is compact, the direct scattering

problem (4.3)–(4.4) is equivalent to the following integral equation. (see
e.g., the argument of Theorem 8.3 in [18].)

ug(x) = uing +

∫
Rd

Φ(x, y)a(y, ug(y))dy, x ∈ Rd, (4.5)

where Φ(x, y) is the fundamental solution for −∆−k2 in Rd. In the following
theorem, we find a small solution uscg of (4.5) for small g ∈ L∞(Sd−1).

Theorem 4.2. We assume that a(x, z) satisfies Assumption 4.1. Then,
there exists δ0 ∈ (0, 1) such that for all δ ∈ (0, δ0) and g ∈ L∞(Sd−1)
with ‖g‖L∞(Sd−1) < δ2, there exists a unique solution uscg ∈ L∞(Rd) with∥∥uscg ∥∥L∞(Rd)

≤ δ such that

uscg (x) =

∫
Rd

Φ(x, y)a(y, uscg (y) + uing (y))dy, x ∈ Rd. (4.6)

Theorem 4.2 is proved by the Banach fixed point theorem. By the same
argument in Section 19 of [19], the solution uscg of (4.6) has the following
asymptotic behavior

uscg (x) = Cd
eikr

r
d−1
2

u∞g (x̂) +O

(
1

r
d+1
2

)
, r := |x| → ∞, x̂ :=

x

|x|
. (4.7)
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where Cd := k
d−3
2 e−i

π
4

(d−3)/2
d+1
2 π

d−1
2 . The function u∞g is called the scat-

tering amplitude, which is of the form

u∞g (x̂) =

∫
Rd
e−ikx̂·ya(y, ug(y))dy, x̂ ∈ Sd−1. (4.8)

We remark that in the standard linear case, that is, a(x, u) = q(x)u, the
scattering amplitude corresponding to the Herglotz wave function (4.8) can
be of the form

u∞g (x̂) =

∫
Sd−1

ũ∞(x̂, θ)g(θ)ds(θ), x̂ ∈ Sd−1. (4.9)

where ũ∞(x̂, θ) is the scattering amplitude corresponding to plane waves
eikx·θ. This tells us that in standard linear case, the scattering amplitude of
the Herglotz wave function is equivalent to that of the plane wave.

Now, we are ready to consider the inverse problem to determine the
semilinear function a(x, z) from scattering amplitudes u∞g (x̂) for all g ∈
L2(Sd−1) with ‖g‖L2(Sd−1) < δ where δ > 0 is a sufficiently small. We will
show the following theorem.

Theorem 4.3. We assume that aj(x, z) satisfies Assumption 4.1. (j =
1, 2.) Let u∞g,j be the scattering amplitude for the following problem

∆uj,g + aj(x, uj,g) + k2uj,g = 0 in Rd, (4.10)

uj,g = uscj,g + uing , (4.11)

where uscj,g satisfies the Sommerfeld radiation (4.4), and uing is given by (4.2),
and we assume that

u∞1,g = u∞2,g, (4.12)

for any g ∈ L2(Sd−1) with ‖g‖L2(Sd−1) < δ where δ > 0 is sufficiently small.
Then, we have

a1(x, z) = a2(x, z), x ∈ Rd, |z| < η (4.13)

The idea of the proof is the linearization, which by using sources with
several parameters we differentiate the nonlinear equation with respect to
these parameter in order to get the linear equation. (For such ideas, we refer
to [20, 70, 71].)

There are few previous studies that the general nonlinear function is
uniquely determined from the scattering amplitude with fixed k > 0. [47]
has shown it from behaviour of scattering amplitude corresponding to plane
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waves λeikxθ̇ as λ → 0. [88] has done from the scattering amplitude with
fixed λ = 1, but the additional assumptions are needed. Our work shows it
from the scattering amplitude corresponding to Herglotz wave functions uing
for all small g instead of using plane waves.

This section is organized as follows. In Section 4.2, we recall the Green
function for the Helmholtz equation and its properties. We also prepare the
several lemmas required in the forthcoming argument. In Section 4.3, we
prove Theorem 4.2 based on the Banach fixed point theorem. In Section
4.4, we consider the special solution of (4.3)–(4.4) corresponding to the in-
cident field with several parameters in order to linearize problems. Finally
in Section 4.5, we prove Theorem 4.3.

4.2 Preliminary

First, we recall the Green functions for the Helmholtz equation and its prop-
erties. We denote the Green function for −∆− k2 in Rd by Φ(x, y), that is,
Φ(x, y) satisfies

(−∆− k2)Φ(x, y) = δ(x− y), (4.14)

for x, y ∈ Rd, x 6= y. In the case of d = 2, 3, Φ(x, y) is of the form

Φ(x, y) =


i
4H

(1)
0 (k|x− y|) for x, y ∈ R2, x 6= y,

eik|x−y|

4π|x− y|
for x, y ∈ R3, x 6= y,

(4.15)

respectively. Let q ∈ L∞(Rd) with compact support. We denote the Green
function for −∆− k2 − q in Rd by Φq(x, y), that is, Φq(x, y) satisfies

(−∆− k2 − q)Φq(x, y) = δ(x− y). (4.16)

for x, y ∈ Rd, x 6= y. It is well known that for every fixed y, Φ(x, y) and
Φq(x, y) satisfy the Sommerfeld radiation condition.

We also recall the asymptotics behavior of Φ(x, y) as |x| → ∞. In Lemma
19.3 of [19], Φ(x, y) has the following asymptotics behavior for every fixed
y,

Φ(x, y) = Cd
eik|x−y|

|x− y|
d−1
2

+O

(
1

|x− y|
d+1
2

)
, |x| → ∞, (4.17)

and (see the proof of Theorem 19.5 in [19])

Φ(x, y) =

{
O
(

1
|x−y|d−2

)
d ≥ 3, x 6= y

O
(∣∣ln|x− y|∣∣) d = 2, x 6= y

(4.18)
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In Theorem 19.5 of [19], for every f ∈ L∞(Rd) with compact support,
u(x) =

∫
Rd Φ(x, y)f(y)dy is a unique radiating solution (that is, u satisfies

the Sommerfeld radiation condition (4.4)). Furthermore, u has the following
asymptotic behavior

u(x) = Cd
eikr

r
d−1
2

u∞(x̂) +O

(
1

r
d+1
2

)
, r = |x| → ∞, x̂ :=

x

|x|
, (4.19)

where the scattering amplitude u∞ is of the form

u∞(x̂) =

∫
Rd
e−ikx̂·yf(y)dy, x̂ ∈ Sd−1. (4.20)

The following lemma is given by the same argument as in Lemma 10.4
of [18] or Proposition 2.4 of [82].

Lemma 4.4. Let q ∈ L∞(Rd) with compact support in BR ⊂ Rd where some
R > 0. We define the Helglotz operator H : L2(Sd−1)→ L2(BR) by

Hg(x) :=

∫
Sd−1

eikx·θg(θ)ds(θ), x ∈ BR, (4.21)

and define the operator Tq : L2(BR) → L2(BR) by Tqf := f + w
∣∣∣
BR

where

w is a radiating solution such that

∆w + k2w + qw = −qf in Rd. (4.22)

We define the subspace V of L2(BR) by

V :=
{
v
∣∣
BR

; v ∈ L2(BR+1), ∆v + k2v + qv = 0 in BR+1

}‖·‖L2(BR)

. (4.23)

Then, the range of the operator TqH is dense in V with respect to the norm
‖·‖L2(BR), that is,

TqH (L2(Sd−1))
‖·‖L2(BR) = V. (4.24)

The following result is well known. For d = 2 we refer to [10], and for
d ≥ 3 we refer to [91], which corresponds to real functions. For complex
functions, see Theorem 6.2 in [92].

Lemma 4.5. Let f, q1, q2 ∈ L∞(Rd) with compact support in BR ⊂ Rd. We
assume that ∫

BR

fv1v2dx = 0, (4.25)

for all v1, v2 ∈ L2(BR+1) with ∆vj + k2vj + qjvj = 0 in BR+1. (j = 1, 2.)
Then, f = 0 in BR.
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4.3 Proof of Theorem 4.2

In Section 4.3, we will show Theorem 4.2 based on the Banach fixed point
theorem. We denote the Herglotz wave function by

vg(x) :=

∫
Sd−1

eikx·θg(θ)ds(θ), x ∈ Rd, g ∈ L2(Sd−1). (4.26)

Let q := ∂za(·, 0). We define the operator T : L∞(Rd)→ L∞(Rd) by

Tw(x) :=

∫
Rd

Φq(x, y)
[
a
(
y, w(y) + vg(y)

)
− q(y)w(y)

]
dy

=

∫
Rd

Φq(x, y)

∑
l≥2

∂lza(y, 0)

l!

(
w(y) + vg(y)

)l
+ q(y)vg(y)

 dy, x ∈ Rd.
(4.27)

Let Xδ :=
{
u ∈ L∞(Rd) : ‖u‖L∞(Rd) ≤ δ

}
. We remark that L∞(Rd) is a

Banach space, and Xδ is closed subspace in L∞(Rd). To find an unique fixed
point of T in X, we will show that T : Xδ → Xδ and T is a contraction. Let
w ∈ Xδ, and let δ ∈ (0, δ0), and let ‖g‖L∞(Sd−1) < δ2. Later, we will choose
a appropriate δ0 > 0.

By ‖g‖L∞(Sd−1) < δ2, we have

‖vg‖L∞(Rd) ≤ C ‖g‖L∞(Sd−1) ≤ Cδ
2, (4.28)

where C > 0 is constant only depending on g. By (iii) and (iv) of Assumption
4.1, we have

|Tw(x)| ≤
∫
BR

|Φq(x, y)|

∑
l≥2

cl0
l!

(
C1δ

)l
+ C1δ

2

 dy
≤ C2δ

2

∑
l≥0

(
C1c0δ

)l∫
BR

|Φq(x, y)|dy, (4.29)

where Cj > 0 (j = 1, 2) is constant independent of u and δ, and so is(∑
l≥0

(
C1c0δ

)l)
when δ > 0 is sufficiently small. Furthermore, by the

continuity of difference Φ(x, y)−Φq(x, y) in x and y (see the proof of Theorem
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31.6 in [19]), and the estimation (4.18), we have for x ∈ Rd∫
BR

|Φq(x, y)|dy ≤
∫
BR

(
|Φ(x, y)|+ |Φq(x, y)− Φ(x, y)|

)
dy

≤
∫
BR

(
|Φ(x, y)|+ C3

)
dy ≤ C4, (4.30)

which implies that |Tw(x)| ≤ Cδ2 where C,Cj > 0 (j = 3, 4) is constant
independent of u and δ. By choosing δ0 ∈ (0, 1/C), we conclude that ‖Tw‖ ≤
δ, which means Tw ∈ Xδ.

Let w1, w2 ∈ Xδ. Since we have(
w1(y) + vg(y)

)l − (w2(y) + vg(y)
)l

=
l∑

m=1

l!

(l −m)!m!

(
wm1 (y)− wm2 (y)

)
vl−mg (y)

≤
l∑

m=1

l!

(l −m)!m!

(
m−1∑
h=0

wm−1−h
1 (y)wh2 (y)

)(
w1(y)− w2(y)

)
vl−mg (y),

(4.31)

and |wj(x)| ≤ δ, then

|Tw1(x)− Tw2(x)|

=

∣∣∣∣∣∣
∫
BR

Φq(x, y)
∑
l≥2

∂lza(y, 0)

l!

[(
w1(y) + vg(y)

)l − (w2(y) + vg(y)
)l]

dy

∣∣∣∣∣∣
≤

(∫
BR

|Φq(x, y)| dy
)∑
l≥2

cl0
l!

l∑
m=1

l!

(l −m)!m!

(
m−1∑
h=0

δm−1

)(
C ′1δ

)l−m ‖w1 − w2‖L∞(Rd)

≤ C ′2
∑
l≥2

l∑
m=1

m

(l −m)!m!

(
c0C

′
1δ
)l−1 ‖w1 − w2‖L∞(Rd)

≤ C ′2
∑
l≥2

( ∞∑
m=1

1

(m− 1)!

)(
c0C

′
1δ
)l−1 ‖w1 − w2‖L∞(Rd)

≤ C ′3
∑
l≥2

(
c0C

′
1δ
)l−1 ‖w1 − w2‖L∞(Rd)

≤ C ′3

∑
l≥0

(
c0C

′
1δ
)l δ ‖w1 − w2‖L∞(Rd)

≤ C ′δ ‖u1 − u2‖L∞(Rd) , x ∈ R
d. (4.32)
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where C ′, C ′j > 0 (j = 1, 2, 3) is constant independent of w1, w2 and δ.

(We remark that
(∑

l≥0 (c0C
′
1δ)

l
)

is also constant when δ > 0 is suffi-

ciently small.) By choosing δ0 ∈ (0, 1/C ′), we have ‖Tw1 − Tw2‖L∞(Rd) <

‖w1 − w2‖L∞(Rd). Choosing sufficiently small δ0 ∈ (0,min(1/C, 1/C ′)) we
conclude that T has a unique fixed point in Xδ.

Let w ∈ Xδ be a unique fixed point, that is, w satisfies

w(x) =

∫
Rd

Φq(x, y)
[
a
(
y, w(y) + vg(y)

)
− q(y)w(y)

]
dy, x ∈ Rd. (4.33)

Since Φq(x, y) satisfy the Sommerfeld radiation condition (e.g., see Theorem
31.6 in [19]), w is a radiating solution of ∆w + a(x,w + vg) + k2w = 0 in
Rd. By the same argument as in Theorem 8.3 of [18], this is equivalent to
the integral equation

w(x) =

∫
Rd

Φ(x, y)a
(
y, w(y) + vg(y)

)
dy, x ∈ Rd, (4.34)

which means (4.6). Therefore, Theorem 4.2 has been shown.

4.4 The special solution

In Section 4.4, we consider the special solution of (4.3)–(4.4) corresponding
to the incident field with several parameters in order to linearize problems.
Let N ∈ N be fixed and let gj ∈ L2(Sd−1) be fixed (j = 1, 2, ..., N + 1). We
set

vε :=
N+1∑
j=1

εjδ
2vgj = v(δ2

∑N+1
j=1 εjgj), (4.35)

where vgj is the Herglotz wave function defined by (4.2), and εj ∈ (0, δ).
Later, we will choose a appropriate δ = δgj ,N > 0. We remark that we can
estimate that

‖vε‖L∞(Rd) ≤ Cδ
2
N+1∑
j=1

εj , (4.36)

where C > 0 is constant only depending on gj . We denote by ε = (ε1, ..., εN+1) ∈
RN+1. We will find a small solution uε of (4.6) that is of the form

uε = rε + vε. (4.37)

This problem is equivalent to

rε(x) =

∫
Rd

Φq(x, y)
[
a
(
y, rε(y) + vε(y)

)
− q(y)rε(y)

]
dy, x ∈ Rd, (4.38)
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where q := ∂za(·, 0).
We define the space for δ > 0

X̃δ :=

{
r ∈ L∞(Rd;CN+1(0, δ)N+1);

ess.supx∈Rd |r(x, ε)| ≤
∑N+1

j=1 εj ,

‖r‖L∞(Rd;CN+1(0,δ)N+1) ≤ δ,

}
,

(4.39)
where the norm ‖·‖L∞(Rd;CN+1(0,δ)N+1) is defined by

‖r‖L∞(Rd;CN+1(0,δ)N+1) :=
∑

|α|≤N+1

supε∈(0,δ)N+1ess.supx∈Rd |∂αε r(x, ε)| .

(4.40)
We remark that L∞(Rd;CN+1(0, δ)N+1) is a Banach space, and X̃δ is closed
subspace in L∞(Rd;CN+1(0, δ)N+1). We will show that following lemma in
the same way of Theorem 4.2.

Lemma 4.6. We assume that a(x, z) satisfies Assumption 4.1. Then, there
exists δ̃0 = δ̃0,gj ,N ∈ (0, 1) such that for all δ ∈ (0, δ̃0) there exists an unique

solution r ∈ X̃δ such that

r(x, ε) =

∫
Rd

Φq(x, y)
[
a
(
y, r(y, ε) + vε(y)

)
− q(y)r(y, ε)

]
dy, x ∈ Rd, ε ∈ (0, δ)N+1.

(4.41)

Proof. We define the operator T̃ from L∞(Rd;CN+1(0, δ)N+1) into itself by

T̃ r(x, ε) :=

∫
Rd

Φq(x, y)
[
a
(
y, r(y, ε) + vε(y)

)
− q(y)r(y, ε)

]
dy

=

∫
Rd

Φq(x, y)

∑
l≥2

∂lza(y, 0)

l!

(
r(y, ε) + vε(y)

)l
+ q(y)vε(y)

 dy
=

∫
Rd

Φq(x, y)

∑
l≥2

∂lza(y, 0)

l!

l∑
m=0

l!

(l −m)!m!
rl−m(y, ε)vmε (y) + q(y)vε(y)

 dy.
(4.42)
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Let r ∈ X̃δ. With (4.36) we have∣∣∣T̃ r(x, ε)∣∣∣
≤

(∫
BR

|Φq(x, y)| dy
)∑

l≥2

cl0

l∑
m=0

1

m!

N+1∑
j=1

εj

l−mC̃1δ
2
N+1∑
j=1

εj

m

+ C̃1δ
2
N+1∑
j=1

εj


≤ C̃2

∑
l≥2

cl0

( ∞∑
m=0

C̃m1
m!

)N+1∑
j=1

εj

l

+ C̃1δ
2
N+1∑
j=1

εj


≤ C̃3

N+1∑
j=1

εj

2∑
l≥2

cl0

N+1∑
j=1

εj

l−2

+ C̃3δ

N+1∑
j=1

εj


≤ C̃δ

N+1∑
j=1

εj

 , (4.43)

where C̃, C̃j > 0 (j = 1, 2) is constant independent of r, δ, ε (but, depending
on gj and N). Furthermore, we consider for α ∈ NN+1 with |α| ≤ N + 1

∂αε T̃ r(x, ε)

=

∫
Rd

Φq(x, y)∂αε

∑
l≥2

∂lza(y, 0)

l!

l∑
m=0

l!

(l −m)!m!
rl−m(y, ε)vmε (y) + q(y)vε(y)

 dy.
(4.44)

Since |∂εjvε(x)| ≤ C̃ ′1δ2 and |∂αε rl−m(x, ε)vmε (x)| ≤ C̃ ′2(l−m)!m!δl−m(C̃ ′2δ
2)m,

we have∣∣∣∂αε T̃ r(x, ε)∣∣∣ ≤ (∫
BR

|Φq(x, y)| dy
)∑

l≥2

cl0
l!

l∑
m=0

l!m!(l −m)!

(l −m)!m!
δl+m(C̃ ′2)m + C̃ ′3δ

2


≤ C̃ ′4δ

2

∑
l≥2

(c0δ)
(l−2)

∞∑
m=0

(C̃ ′2δ)
m

+ C̃ ′4δ
2 ≤ C̃ ′5δ2, (4.45)

where C̃ ′j > 0 (j = 3, 4, 5) is also constant independent of r, δ, ε (but
depending on α). Then, we have∑

|α|≤N+1

supε∈(0,δ)N+1ess.supx∈Rd
∣∣∣∂αε T̃ r(x, ε)∣∣∣ ≤ C̃ ′δ2, (4.46)
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where C̃ ′ is constant independent of r, δ, ε. (depending on gj and N .) By

choosing δ̃0 ∈
(

0,min(1/C̃, 1/C̃ ′)
)

, we conclude that T̃ r ∈ X̃δ.

Let r1, r2 ∈ X̃δ. By similar argument in (4.29) we have

T̃ r1(x, ε)− T̃ r2(x, ε)

=

∫
BR

Φq(x, y)
∑
l≥2

∂lza(y, 0)

l!

[(
r1(y, ε) + vε(y)

)l − (r2(y, ε) + vε(y)
)l]

dy

=

∫
BR

Φq(x, y)
∑
l≥2

∂lza(y, 0)

l!

l∑
m=1

l!

(l −m)!m!
vl−mε (y)

×
m−1∑
h=0

rm−1−h
1 (y, ε)rh2 (y, ε) (r1(y, ε)− r2(y, ε)) dy.

(4.47)

Then, we have for α ∈ NN+1 with |α| ≤ N + 1∣∣∣∂αε (T̃ r1(x)− T̃ r2(x)
)∣∣∣

≤
∫
BR

|Φq(x, y)|
∑
β≤α

α!

(α− β)!β!

∑
l≥2

∣∣∂lza(y, 0)
∣∣

l!

l∑
m=1

l!

(l −m)!m!

×
m−1∑
h=0

∣∣∣∂βε (vl−mε (y)rm−1−h
1 (y, ε)rh2 (y, ε)

)∣∣∣ ∣∣∣∂α−βε (r1(y, ε)− r2(y, ε))
∣∣∣ dy.

(4.48)

Since∣∣∣∂βε (vl−mε (y)rm−1−h
1 (y, ε)rh2 (y, ε)

)∣∣∣ ≤ C̃ ′′1 (l−m)!(m−1−h)!h!(C̃ ′′1 δ
2)l−mδm−1−hδh,

(4.49)
where C̃ ′′1 is constant independent of r1, r2 and δ (depending on β), we have
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that ∣∣∣∂αε (T̃ r1(x)− T̃ r2(x)
)∣∣∣

≤ C̃ ′′2

∑
β≤α

α!

(α− β)!β!

∑
l≥2

cl0
l!

l∑
m=1

m−1∑
h=0

l!(l −m)!(m− 1− h)!h!

(l −m)!m!
δ2l−m−1(C̃ ′′1 )l−m

 ‖r1 − r2‖

≤ C̃ ′′3 δ

∑
l≥2

(c0δ)
l−2

l∑
m=1

(C̃ ′′1 δ)
l−m

m−1∑
h=0

(m− 1− h)!h!

m!

 ‖r1 − r2‖

≤ C̃ ′′4 δ

∑
l≥2

(c0δ)
l−2

∞∑
p=0

(C̃ ′′1 δ)
p

 ‖r1 − r2‖ ≤ C̃ ′′5 δ ‖r1 − r2‖L∞(Rd;CN+1(0,δ)N+1) , (4.50)

which implies that∑
|α|≤N+1

supε∈(0,δ)N+1ess.supx∈Rd
∣∣∣∂αε (T̃ r1(x, ε)− T̃ r2(x, ε)

)∣∣∣ ≤ C̃ ′′δ ‖r1 − r2‖ ,

(4.51)
where C̃ ′′j , C̃

′′ > 0 (j = 2, 3, 4) is constant independent of r1, r2 and δ. By

choosing δ̃0 ∈
(

0,min(1/C̃, 1/C̃ ′, 1/C̃ ′′)
)

, we have ‖Tr1 − Tr2‖ < ‖r1 − r2‖,
which implies that T̃ has a unique fixed point in X̃δ. Lemma 4.6 has been
shown.

4.5 Proof of Theorem 4.3

In Section 4.5, we will show Theorem 4.3. Since a(x, z) is holomorphic at
z = 0 by (ii) of Assumption 4.1, it is sufficient to show that

∂lza1(x, 0) = ∂lza2(x, 0), x ∈ Rd, (4.52)

for all l ∈ N. Let N ∈ N and let gj ∈ L2(Sd−1) (j = 1, 2, ..., N + 1). Let

δ ∈
(

0,min(δ0, δ̃0)
)

be chosen as sufficiently small and depending on N and

gj . (δ0, δ̃0 are corresponding to Theorem 4.2 and Lemma 4.6, respectively.)
From Section 4.4, we obtain the unique solution rε,j ∈ X̃δ (j = 1, 2) such
that

∆rε,j + aj(x, rε,j + vε) + k2rε,j = 0 in Rd, (4.53)

where rε,j satisfies the Sommerfeld radiation, and vε is given by (4.35). The
solution rε,j has the form

rε,j(x) =

∫
Rd

Φ(x, y)aj(y, rε,j(y) + vε(y))dy, x ∈ Rd, ε ∈ (0, δ)N+1. (4.54)
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By the assumption of Theorem 4.3 we have

r∞ε,1(x̂) = r∞ε,2(x̂), x̂ ∈ Sd−1, ε ∈ (0, δ)N+1, (4.55)

where r∞ε,j is a scattering amplitude for rε,j , and it has the form

r∞ε,j(x̂) =

∫
Rd
e−ikx̂·yaj(y, rε,j(y)+vε(y))dy, x̂ ∈ Sd−1, ε ∈ (0, δ)N+1. (4.56)

In order to linearize (4.54), we will differentiate it with respect to εl (l =
1, ..., N + 1), which is possible because rε,j ∈ X̃δ. Then, we have

∂εlrε,j(x) =

∫
Rd

Φ(x, y)∂zaj(y, rε,j(y) + vε(y))(∂εlrε,j(y) + δ2vgl(y))dy.

(4.57)
As ε→ +0 we have by setting qj := ∂zaj(y, 0)

wl,j(x) := ∂εlrε,j

∣∣∣
ε=0

(x) =

∫
Rd

Φ(x, y)qj(y)(wl,j(y) + δ2vgl(y))dy, (4.58)

which implies that

∆wl,j + k2wl,j = −qj(wl,j + δ2vgl) in Rd. (4.59)

By setting ul,j := wl,j + δ2vgl we have

∆ul,j + k2ul,j + qjul,j = 0 in Rd. (4.60)

By setting ul := ul,1 − ul,2(= wl,1 − wl,2) we have

∆ul + k2ul + q1ul = (q2 − q1)ul,2 in Rd, (4.61)

and we also have

(q2 − q1)uh,1ul,2 = uh,1∆ul − ul∆uh,1 in Rd. (4.62)

Differentiating (4.54) with respect to εl and as ε→ 0 we have∫
Rd
e−ikx̂·yq1(y)(wl,1(y)+δ2vgl(y))dy =

∫
Rd
e−ikx̂·yq2(y)(wl,2(y)+δ2vgl(y))dy,

(4.63)
which means that w∞l,1 = w∞l,2, where w∞l,j is a scattering amplitude of wl,j .
By setting ŵl := wl,1 − wl,2 we have

∆ŵl + k2ŵl = 0 in R \BR, (4.64)
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where ŵl satisfies the Sommerfeld radiation condition, and the scattering
amplitude ŵ∞l of ŵl vanishes. Then, we have ŵl = 0 (that is, ul = 0) in
R \ BR, which implies that by the Green’s second theorem we have (l, h =
1, ..., N + 1)

0 =

∫
∂BR+1

uh,1∂νul − ul∂νuh,1ds

=

∫
BR+1

uh,1∆ul − ul∆uh,1dx

=

∫
BR

(q2 − q1)uh,1ul,2dx. (4.65)

By (4.59), and definition of H and Tqj in Section 4.2, ul,j can be of the form

ul,j = δ2TqjHgl, (4.66)

and dividing by δ4 > 0,

0 =

∫
BR

(q2 − q1)Tq1HghTq2Hgldx. (4.67)

Combining Lemma 4.4 with Lemma 4.5, we conclude that q1 = q2.
By induction, we will show (4.53). In the first part of this section, the

case of l = 1 has been shown. We assume that

∂lza1(x, 0) = ∂lza2(x, 0), (4.68)

for all l = 1, 2, ..., N . We will show the case of l = N + 1. We alredy have
shown that q1 = q2 and w∞l,1 = w∞l,2, which implies that by the uniqueness of
the linear Schrödinger equation (4.53) we have

wl,1 = wl,2 in Rd, (4.69)

for all l = 1, ..., N + 1.
We set q := q1 = q2 and wl := wl,1 = wl,2. By subinduction we will show

that for all h ∈ N with 1 ≤ h ≤ N

∂hεl1 ...εlh
rε,1

∣∣∣
ε=0

= ∂hεl1 ...εlh
rε,2

∣∣∣
ε=0

, (4.70)

where l1, ...lh ∈ {1, ..., N + 1}. We already have shown that (4.70) holds for
h = 1. We assume that (4.70) holds for all h ≤ K ≤ N − 1. (If N = 1, this

53



subinduction is skipped.) By differentiating (4.54) with respect to ∂K+1
εl1 ...εlK+1

we have

∂K+1
εl1 ...εlK+1

rε,j(x) =

∫
Rd

Φ(x, y)

{
∂K+1
z aj(y, rε,j(y) + vε(y))

K+1∏
h=1

(∂εlh rε,j(y) + δ2vglh (y))

+∂zaj(y, rε,j(y) + vε(y))∂K+1
εl1 ...εlK+1

rε,j(y) +RK,j(y, ε)

}
dy, (4.71)

whereRK,j(y, ε) is a polynomial of ∂hz aj(y, rε,j(y)+vε(y)) and ∂hεl1 ...εlh
(rε,j(y) + vε(y))

for 1 ≤ h ≤ K. As ε→ 0 we have

∂K+1
εl1 ...εlK+1

rε,j

∣∣∣
ε=0

(x) =

∫
Rd

Φ(x, y)

{
∂K+1
z aj(y, 0)

K+1∏
h=1

(wlh(y) + δ2vglh (y))

+q(y)∂K+1
εl1 ...εlK+1

rε,j

∣∣∣
ε=0

(y) +RK,j(y, 0)

}
dy. (4.72)

We set w̃K+1,j := ∂K+1
εl1 ...εlK+1

rε,j

∣∣∣
ε=0

and set w̃K+1 := w̃K+1,1 − w̃K+1,2. By

assumptions of induction and subinduction we have RK,1(y, 0) = RK,2(y, 0)
and ∂K+1

z a1(·, 0) = ∂K+1
z a2(·, 0), which implies that

w̃K+1(x) =

∫
Rd

Φ(x, y)q(y)w̃K+1(y)dy, (4.73)

which is equivalent to

∆w̃K+1 + k2w̃K+1 + qw̃K+1 = 0 in Rd, (4.74)

where w̃K+1 satisfies Sommerfeld radiation condition. By differentiating
(4.55) with respect to ∂K+1

εl1 ...εlK+1
and as ε→ 0 we have

w̃∞K+1,1 = w̃∞K+1,2, (4.75)

where w̃∞K+1,j is a scattering amplitude of w̃K+1,j . (4.75) means that w̃∞K+1 =

0, which implies that by Rellich theorem, we conclude that w̃K+1 = 0 in Rd.
(4.70) for the case of K + 1 has been shown, and the claim (4.70) holds for
all h = 1, ..., N by subinduction.

By differentiating (4.54) with respect to ∂N+1
ε1...εK+1

, and as ε → 0 (the
same argument in (4.71)–(4.73)) we have

w̃N+1(x) =

∫
Rd

Φ(x, y)

{(
∂N+1
z a1(x, 0)− ∂N+1

z a2(x, 0)
)N+1∏
h=1

(wh(y)+δ2vgh(y))
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+q(y)w̃N+1(y)

}
dy. (4.76)

where w̃N+1,j := ∂N+1
ε1...εlN+1

rε,j

∣∣∣
ε=0

and set w̃N+1 := w̃N+1,1 − w̃N+1,2. This

is equivalent to

∆w̃N+1 + k2w̃N+1 + qw̃N+1 = −f
N+1∏
h=1

δ2TqHgh in Rd, (4.77)

where f(x) := ∂N+1
z a1(x, 0) − ∂N+1

z a2(x, 0). By differentiating (4.55) with
respect to ∂N+1

ε1...εK+1
and as ε→ 0 (the same argument in (4.75)) we have

w̃∞N+1 = 0, (4.78)

where w̃∞N+1 is a scattering amplitude of w̃N+1. Then, we have w̃N+1 = 0

in R \BR.
Let ṽ ∈ L2(BR+1) be a solution of ∆ṽ + k2ṽ + qṽ = 0 in BR+1. By the

Green’s second theorem and (4.77) we have

0 =

∫
∂BR+1

ṽ∂νw̃N+1 − ṽ∂νw̃N+1ds

=

∫
BR+1

ṽ∆w̃N+1 − w̃N+1∆ṽdx

=

∫
BR+1

−f
N+1∏
h=1

δ2TqHghṽdx, (4.79)

which implies that dividing by δ2 > 0∫
BR+1

f

N+1∏
h=1

TqHghṽdx = 0. (4.80)

Let v ∈ L2(BR+1) be a solution of ∆v + k2v + qv = 0 in BR+1. By Lemma
4.4 we can choose gN+1 as gN+1,j ∈ L2(BR+1) such that TqHgN+1,j → v in
L2(BR) as j →∞. Then, we have that∫

BR+1

f

N∏
h=1

TqHghvṽdx = 0. (4.81)

which implies that by Lemma 4.5

f
N∏
h=1

TqHgh = 0. (4.82)
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By Theorem 5.1 of [92], we can choose a solution uh ∈ L2(BR+1) (h =
1, ..., N) of ∆uh + k2uh + quh = 0 in BR+1, which is of the form

uh(x) = ex·ph(1 + ψh(x, ph)), (4.83)

with ‖ψh(·, ph)‖L2(BR+1) ≤
C
|ph| where C > 0 is a constant, and ph = ah+ibh,

ah, bh ∈ Rd such that |ah| = |bh| and ah · bh = 0 (which implies that ph ·ph =
0), and ah 6= ah′ , bh 6= bh′ .

Multiplying (4.82) by f
∏N+1
h=1 e

−x·ph we have

|f |2
N∏
h=1

e−x·phTqHgh = 0, (4.84)

which implies that∫
BR

|f |2
(
N−1∏
h=1

e−x·phTqHgh

)
e−x·pNTqHgNdx = 0. (4.85)

By Lemma 4.4, there exists a sequence {gN,j}j∈N ⊂ L2(Sd−1) such that
TqHgN,j → uN = ex·pN (1 + ψN (x, pN )) in L2(BR) , which implies that

∫
BR

|f |2
(
N−1∏
h=1

e−x·phTqHgh

)
(1 + ψ(x, pN ))dx = 0. (4.86)

As |aN | = |bN | → ∞ in (4.86) we have∫
BR

|f |2
N−1∏
h=1

e−x·phTqHghdx = 0. (4.87)

Repeating the operation (4.85)–(4.87) (N − 1) times, we have that∫
BR

|f |2dx = 0, (4.88)

which conclude that f = 0. By induction, we conclude that (4.52) for all
l ∈ N. Therefore, Theorem 4.3 has been shown.
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5 Scattering by the local perturbation of an open
periodic waveguide in the half plane

5.1 Introduction

Let k > 0 be the wave number, and let R2
+ := R × (0,∞) be the upper

half plane, and let W := R× (0, h) be the waveguide in R2
+. We denote by

Γa := R × {a} for a > 0. Let n ∈ L∞(R2
+) be real value, 2π-periodic with

respect to x1 (that is, n(x1 + 2π, x2) = n(x1, x2) for all x = (x1, x2) ∈ R2
+),

and equal to one for x2 > h. We assume that there exists a constant n0 > 0
such that n ≥ n0 in R2

+. Let q ∈ L∞(R2
+) be real valued with the compact

support supp q in W . We denote by Q := supp q. In this paper, we consider
the following scattering problem: For fixed y ∈ R2

+ \ W , determine the
scattered field us ∈ H1

loc(R2
+) such that

∆us + k2(1 + q)nus = −k2qnui(·, y) in R2
+, (5.1)

us = 0 on Γ0, (5.2)

Here, the incident field ui is given by ui(x, y) = Gn(x, y), where Gn is the
Dirichlet Green’s function in the upper half plane R2

+ for ∆ + k2n, that is,

Gn(x, y) := G(x, y) + ũs(x, y), (5.3)

where G(x, y) := Φk(x, y)−Φk(x, y
∗) is the Dirichlet Green’s function in R2

+

for ∆ + k2, and y∗ = (y1,−y2) is the reflected point of y at R× {0}. Here,
Φk(x, y) is the fundamental solution to Helmholtz equation in R2, that is,

Φk(x, y) :=
i

4
H

(1)
0 (k|x− y|), x 6= y, (5.4)

where H
(1)
0 is the Hankel function of the first kind of order one. ũs is the

scattered field of the unperturbed problem by the incident field G(x, y), that
is, ũs vanishes for x2 = 0 and solves

∆ũs + k2nũs = k2(1− n)G(·, y) in R2
+. (5.5)

If we impose a suitable radiation condition introduced in [62], the unper-
turbed solution ũs is uniquely determined. Later, we will explain the exact
definition of this radiation condition (see Definition 5.6).

In order to show the well-posedness of the perturbed scattering problem
(5.1)–(5.2), we make the following assumption.
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Assumption 5.1. We assume that k2 is not the point spectrum of 1
(1+q)n∆

in H1
0 (R2

+), that is, every v ∈ H1(R2
+) which satisfies

∆v + k2(1 + q)nv = 0 in R2
+, (5.6)

v = 0 on Γ0, (5.7)

has to vanish for x2 > 0.

If we assume that q and n satisfy in addition that ∂2

(
(1+q)n

)
≥ 0 in W ,

then v which satisfies (5.6)–(5.7) vanishes, that is, under this assumption
all of k2 is not the point spectrum of 1

(1+q)n∆ (see Section 5.6). Our aim in
this section is to show the following theorem.

Theorem 5.2. Let Assumptions 5.1 and 5.3 hold and let k > 0 be regular
in the sense of Definition 5.5 and let f ∈ L2(R2

+) such that suppf = Q.
Then, there exists a unique solution u ∈ H1

loc(R2
+) such that

∆u+ k2(1 + q)nu = f in R2
+, (5.8)

u = 0 on Γ0, (5.9)

and u satisfies the radiation condition in the sense of Definition 5.6.

Roughly speaking, the radiation condition of Definition 5.6 requires that
we have a decomposition of the solution u into u(1) which decays in the
direction of x1, and a finite combination u(2) of propagative modes which
does not decay, but it exponentially decays in the direction of x2.

This section is organized as follows. In Section 5.2, we briefly recall a
radiation condition introduced in [62]. Under the radiation condition in the
sense of Definition 5.6, we show the uniqueness of u(2) and u(1) in Section
5.3 and 5.4, respectively. In Section 5.5, we show the existence of u. In
Section 5.6, we give an example of n and q with respect to Assumption 5.1.

5.2 A radiation condition

In Section 5.2, we briefly recall a radiation condition introduced in [62].
Let f ∈ L2(R2

+) have the compact support in W . First, we consider the
following problem: Find u ∈ H1

loc(R2
+) such that

∆u+ k2nu = f in R2
+, (5.10)

u = 0 on Γ0. (5.11)
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(5.10) is understood in the variational sense, that is,∫
R2
+

[
∇u · ∇ϕ− k2nuϕ

]
dx = −

∫
W
fϕdx, (5.12)

for all ϕ ∈ H1(R2
+), with compact support. In such a problem, it is natural to

impose the upward propagating radiation condition, that is, u(·, h) ∈ L∞(R)
and

u(x) = 2

∫
Γh

u(y)
∂Φk(x, y)

∂y2
ds(y) = 0, x2 > h. (5.13)

However, even with this condition we can not expect the uniqueness of this
problem. (see Example 2.3 of [62].) In order to introduce a suitable radiation
condition, [62] discussed limiting absorption solution of this problem, that is,
the limit of the solution uε of ∆uε+(k+iε)2nuε = f as ε→ 0. For the details
of an introduction of this radiation condition, we refer to [55, 56, 61, 62].

Let us prepare for the exact definition of the radiation condition. First
we recall that the Floquet Bloch transform Tper : L2(R) → L2

(
(0, 2π) ×

(−1/2, 1/2)
)

is defined by

Tperf(t, α) = f̃α(t) :=
∑
m∈Z

f(t+ 2πm)e−iα(t+2πm), (5.14)

for (t, α) ∈ (0, 2π)× (−1/2, 1/2). The inverse transform is given by

T−1
perg(t) =

∫ 1/2

−1/2
g(t, α)eiαtdα, t ∈ R. (5.15)

By taking the Floquet Bloch transform with respect to x1 in (5.10)–(5.11),
we have for α ∈ (−1/2, 1/2]

∆ũα + 2iα
∂ũα
∂x1

+ (k2n− α2)ũα = f̃α in (0, 2π)× (0,∞). (5.16)

ũα = 0 on (0, 2π)× {0}. (5.17)

By taking the Floquet Bloch transform with respect to x1 in (5.13), ũα
satisfies the Rayleigh expansion of the form

ũα(x) =
∑
n∈Z

un(α)einx1+i
√
k2−(n+α)2(x2−h), x2 > h, (5.18)

where un(α) := (2π)−1
∫ 2π

0 uα(x1, h)e−inx1dx1 are the Fourier coefficients of

uα(·, h), and
√
k2 − (n+ α)2 = i

√
(n+ α)2 − k2 if n+ α > k.
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We denote by CR := (0, 2π) × (0, R) for R ∈ (0,∞], and H1
per(CR)

the subspace of the 2π-periodic function in H1(CR). We also denote by
H1

0,per(CR) := {u ∈ H1
per(CR) : u = 0 on (0, 2π) × {0}} that is equipped

with H1(CR) norm. The space H1
0,per(CR) has the inner product of the

form

〈u, v〉∗ =

∫
Ch

∇u · ∇vdx+ 2π
∑
n∈Z

√
n2 + 1unvn, (5.19)

where un = (2π)−1
∫ 2π

0 u(x1, R)e−inx1dx1. The problem (5.16)–(5.18) is
equivalent to the following operator equation (see section 3 in [62]),

ũα −Kαũα = f̃α in H1
0,per(Ch), (5.20)

where the operator Kα : H1
0,per(Ch)→ H1

0,per(Ch) is defined by

〈Kαu, v〉∗ = −
∫
Ch

[
iα

(
u
∂v

∂x1
− v ∂u

∂x1

)
+ (α2 − k2n)uv

]
dx

+ 2πi
∑

|n+α|≤k

unvn
(√

k2 − (n+ α)2 − i
√
n2 + 1

)
+ 2π

∑
|n+α|>k

unvn
(√

n2 + 1−
√

(n+ α)2 − k2
)
. (5.21)

For several α ∈ (−1/2, 1/2], the uniqueness of this problem fails. We call
these α exceptional values if the operator I−Kα fails to be injective. For the
difficulty of treatment of α such that |α+l| = k for some l ∈ Z in an periodic
scattering problem, we set Ak := {α ∈ (−1/2, 1/2] : ∃l ∈ Z s.t. |α+ l| = k},
and make the following assumption:

Assumption 5.3. For every α ∈ Ak, I −Kα has to be injective.

The following properties of exceptional values was shown in Lemmas 4.2
and 5.6 of [62].

Lemma 5.4. Let Assumption 5.3 hold. Then, there exists only finitely many
exceptional values α ∈ (−1/2, 1/2]. Furthermore, if α is an exceptional
value, then so is −α. Therefore, the set of exceptional values can be described
by {αj : j ∈ J} where some J ⊂ Z is finite and α−j = −αj for j ∈ J . For
each exceptional value αj we define

Xj :=

φ ∈ H1
loc(R2

+) :
∆φ+ 2iαj

∂φ
∂x1

+ (k2n− α2)φ = 0 in R2
+,

φ = 0 for x2 = 0, φ is 2π−periodic for x1,
φ satisfies the Rayleigh expansion (5.18)


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Then, Xj are finite dimensional. We set mj = dimXj. Furthermore,
φ ∈ Xj is evanescent, that is, there exists c > 0 and δ > 0 such that
|φ(x)|, |∇φ(x)| ≤ ce−δ|x2| for all x ∈ R2

+.

Next, we consider the following eigenvalue problem in Xj : Determine
d ∈ R and φ ∈ Xj such that∫

C∞

[
−i ∂φ
∂x1

+ αjφ

]
ψdx = dk

∫
C∞

nφψdx, (5.22)

for all ψ ∈ Xj . We denote by the eigenvalues dl,j and the eigenfunction φl,j
of this problem, that is,∫

C∞

[
−i
∂φl,j
∂x1

+ αjφl,j

]
ψdx = dl,jk

∫
C∞

nφl,jψdx, (5.23)

for every l = 1, ...,mj and j ∈ J . We normalize the eigenfunction {φl,j : l =
1, ...,mj} such that

k

∫
C∞

nφl,jφl′,jdx = δl,l′ , (5.24)

for all l, l′. We will assume that the wave number k > 0 is regular in the
following sense.

Definition 5.5. k > 0 is regular if dl,j 6= 0 for all l = 1, ...mj and j ∈ J .

Now we are ready to define the radiation condition.

Definition 5.6. Let Assumptions 5.3 hold, and let k > 0 be regular in the
sense of Definition 5.5. We set

ψ±(x1) :=
1

2

[
1± 2

π

∫ x1/2

0

sint

t
dt

]
, x1 ∈ R. (5.25)

Then, u ∈ H1
loc(R2

+) satisfies the radiation condition if u satisfies the upward
propagating radiation condition (5.13), and has a decomposition in the form
u = u(1) + u(2) where u(1)

∣∣
R×(0,R)

∈ H1(R × (0, R)) for all R > 0, and

u(2) ∈ L∞(R2
+) has the following form

u(2)(x) = ψ+(x1)
∑
j∈J

∑
dl,j>0

al,jφl,j(x) + ψ−(x1)
∑
j∈J

∑
dl,j<0

al,jφl,j(x), (5.26)

where some al,j ∈ C, and {dl,j , φl,j : l = 1, ...,mj} are normalized eigenvalues
and eigenfunctions of the problem (5.23).
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Remark 5.7. We can replace ψ± by any smooth functions ψ̃± such that∣∣∣ψ±(x1)− ψ̃±(x1)
∣∣∣ → 0, and

∣∣∣ d
dx1

ψ±(x1)− d
dx1

ψ̃±(x1)
∣∣∣ → 0 as |x1| → ∞

because (5.26) is of the form

u(2)(x) = ψ̃+(x1)
∑
j∈J

∑
dl,j>0

al,jφl,j(x) + ψ̃−(x1)
∑
j∈J

∑
dl,j<0

al,jφl,j(x)

+
(
ψ+(x1)− ψ̃+(x1)

)∑
j∈J

∑
dl,j>0

al,jφl,j(x)+
(
ψ−(x1)− ψ̃−(x1)

)∑
j∈J

∑
dl,j<0

al,jφl,j(x),

(5.27)
where the second term in the right-hand side of (5.27) is a H1-function,
which is the role of u(1).

The following was shown in Theorems 2.2, 6.6, and 6.8 of [62].

Theorem 5.8. Let Assumptions 5.3 hold and let k > 0 be regular in the
sense of Definition 5.5. For every f ∈ L2(R2

+) with the compact support in
W , there exists a unique solution uk+iε ∈ H1(R2

+) of the problem (5.10)–
(5.11) replacing k by k + iε. Furthermore, uk+iε converge as ε → +0 in
H1
loc(R2

+) to some u ∈ H1
loc(R2

+) which satisfy (5.10)–(5.11) and the radia-
tion condition in the sense of Definition 5.6. Furthermore, the solution u of
this problem is uniquely determined.

Finally in this section, we will show the following integral representation.

Lemma 5.9. Let f ∈ L2(R2
+) have a compact support in W , and let u be

a solution of (5.10)–(5.11) which satisfying the radiation condition in the
sense of Definition 5.6. Then, u has an integral representation of the form

u(x) = k2

∫
W

(n(y)− 1)u(y)G(x, y)dy−
∫
W
f(y)G(x, y)dy, x ∈ R2

+ (5.28)

Proof of Lemma 5.9. Let ε > 0 be small enough and let uε ∈ H1(R2
+) be

a solution of the problem (5.10)–(5.11) replacing k by k + iε, that is, uε
satisfies

∆uε + (k + iε)2nuε = f in R2
+, (5.29)

uε = 0 on Γ0. (5.30)

Let Gε(x, y) be the Dirichlet Green’s function in the upper half plane R2
+

for ∆ + (k + iε)2. Let x ∈ R2
+ be always fixed such that x2 > R. Let r > 0

be large enough such that x ∈ Br(0) where Br(0) ⊂ R2 be a open ball with
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center 0 and radius r > 0. By Green’s representation theorem in Br(0)∩R2
+

we have

uε(x) =

∫
∂Br(0)∩R2

+

[∂uε
∂ν

(y)Gε(x, y)− uε(y)
∂Gε
∂ν

(x, y)
]
ds(y)

−
∫
Br(0)∩R2

+

[
∆uε(y) + (k + iε)2uε(y)

]
Gε(x, y)dy

=

∫
∂Br(0)∩R2

+

[∂uε
∂ν

(y)Gε(x, y)− uε(y)
∂Gε
∂ν

(x, y)
]
ds(y)

+ (k + iε)2

∫
Br(0)∩R2

+

(n(y)− 1)uε(y)Gε(x, y)dy

−
∫
Br(0)∩R2

+

f(y)Gε(x, y)dy. (5.31)

Since uε ∈ H1(R2
+), the first term of the right hand side converges to zero

as r →∞. Therefore, as r →∞ we have for x ∈ R2
+

uε(x) = (k+ iε)2

∫
W

(n(y)− 1)uε(y)Gε(x, y)dy−
∫
W
f(y)Gε(x, y)dy. (5.32)

We will show that (5.32) converges as ε→ 0 to

u(x) = k2

∫
W

(n(y)− 1)u(y)G(x, y)dy −
∫
W
f(y)G(x, y)dy. (5.33)

Indeed, by the argument in (3.8) and (3.9) of [13], Gε(x, y) is of the estima-
tion

|Gε(x, y)| ≤ C x2y2

1 + |x− y|3/2
, |x− y| > 1, (5.34)

where above C is independent of ε > 0. Then, by Lebesgue dominated
convergence theorem we have the second integral in (5.32) converges as
ε → 0 to one in (5.33). So, we will consider the convergence of the first
integral in (5.32).

By the beginning of the proof of Theorem 6.6 in [62], uε can be of the

form uε = u
(1)
ε + u

(2)
ε where u

(1)
ε converges to u(1) in H1(W ), and u

(2)
ε is of

the form for x ∈W

u(2)
ε (x) =

∑
j∈J

mj∑
l=1

yl,j

∫ 1/2

−1/2

eiαx1

iε− dl,jα
dα φl,j(x), (5.35)
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which converges pointwise to u(2)(x). Here, yl,j ∈ C is some constant. From

the convergence of u
(1)
ε inH1(W ) we obtain that

∫
W (n(y)−1)u

(1)
ε (y)Gε(x, y)dy

converges
∫
W (n(y)− 1)u(1)(y)G(x, y)dy as ε→ 0.

By the argument of (b) in Lemma 6.1 of [62] we have

ψl,j,ε(x1) :=

∫ 1/2

−1/2

eiαx1

iε− dl,jα
dα

= − i

|dl,j |

∫ |dl,j |/(2ε)
−|dl,j |/(2ε)

cos(tεx1/|dl,j |)
1 + t2

dt− 2idl,j

∫ x1/2

0

tsint

x2
1ε

2 + d2
l,jt

2
dt, (5.36)

which implies that for all x1 ∈ R

∣∣ψl,j,ε(x1)
∣∣ ≤ C(∫ ∞

−∞

dt

1 + t2
+

∫ |x1|/2
0

∣∣∣∣sintt
∣∣∣∣dt)

≤ C

(∫ ∞
−∞

dt

1 + t2
dt+

∫ 1

0

∣∣∣∣sintt
∣∣∣∣dt+

∫ |x1|+1

1

1

t
dt

)
≤ C

(
1 + log(|x1|+ 1)

)
, (5.37)

where above C is independent of ε > 0. Then, we have that for y ∈W

∣∣(n(y)− 1)u(2)
ε (y)Gε(x, y)

∣∣ ≤ C
(
1 + log(|y1|+ 1)

)
1 + |x− y|3/2

, (5.38)

where above C is independent of y and ε. Then, right hand side of (5.38) is
an integrable function in W with respect to y. Then, by Lebesgue dominated

convergence theorem
∫
W (n(y)−1)u

(2)
ε (y)Gε(x, y)dy converges to

∫
W (n(y)−

1)u(2)(y)G(x, y)dy as ε→ 0. Therefore, (5.33) has been shown.

5.3 Uniqueness of u(2)

In Section 5.3, we will show the uniqueness of u(2) in Theorem 5.2.

Lemma 5.10. Let Assumptions 5.3 hold and let k > 0 be regular in the
sense of Definition 5.5. If u ∈ H1

loc(R2
+) such that

∆u+ k2(1 + q)nu = 0, in R2
+, (5.39)

u = 0 on Γ0, (5.40)

and u satisfies the radiation condition in the sense of Definition 5.6, then
u(2) = 0 in R2

+.
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Proof of Lemma 5.10. By the definition of the radiation condition, u is
of the form u = u(1) +u(2) where u(1)

∣∣
R×(0,R)

∈ H1(R× (0, R)) for all R > 0,

and u(2) ∈ L∞(R2
+) has the form

u(2)(x) = ψ+(x1)
∑
j∈J

∑
dl,j>0

al,jφl,j(x) + ψ−(x1)
∑
j∈J

∑
dl,j<0

al,jφl,j(x), (5.41)

where some al,j ∈ C, and {dl,j , φl,j : l = 1, ...,mj} are normalized eigenvalues
and eigenfunctions of the problem (5.23). Here, by Remark 5.7 the function
ψ+ is chosen as a smooth function such that ψ+(x1) = 1 for x1 ≥ η and
ψ+(x1) = 0 for x1 ≤ −η, and ψ− := 1 − ψ+ where η > 0 is some positive
number.

Step1 (Green’s theorem in ΩN ): We set ΩN := (−N,N)× (0, φ(N)) where
ψ(N) := N s. Later we will choose a appropriate s ∈ (0, 1). Let R > h
be large and always fixed, and let N be large enough such that φ(N) > R.

We denote by IR±N := {±N} × (0, R), I
φ(N)
±N := {±N} × (R,φ(N)), and

Γφ(N),N := (−N,N) × {φ(N)}. (see the figure below.) We set I±N :=

IR±N ∪ I
φ(N)
±N .

x1

x2

O N−N

φ(N)

R

Γφ(N),N {
{
{

}
}

IR−N

I
φ(N)
−N

IRN

I
φ(N)
N

By Green’s first theorem in ΩN and u = 0 on (−N,N)× {0}, we have∫
ΩN

{−k2(1 + q)n|u|2 + |∇u|2}dx =

∫
ΩN

{u∆u+ |∇u|2}dx

=

∫
IN

u
∂u

∂x1
ds−

∫
I−N

u
∂u

∂x1
ds+

∫
Γφ(N),N

u
∂u

∂x2
ds

=

∫
IN

u(2)
∂u(2)

∂x1
ds−

∫
I−N

u(2)
∂u(2)

∂x1
ds
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+

∫
IN

u(1)
∂u(1)

∂x1
ds+

∫
IN

u(1)
∂u(2)

∂x1
ds+

∫
IN

u(2)
∂u(1)

∂x1
ds

−
∫
I−N

u(1)
∂u(1)

∂x1
ds−

∫
I−N

u(1)
∂u(2)

∂x1
ds−

∫
I−N

u(2)
∂u(1)

∂x1
ds

+

∫
Γφ(N),N

u
∂u

∂x2
ds. (5.42)

By the same argument in Theorem 4.6 of [61] and Lemma 6.3 of [62], we
can show that∫

IN

u(2)
∂u(2)

∂x1
ds−

∫
I−N

u(2)
∂u(2)

∂x1
ds

+

∫
IRN

u(1)
∂u(1)

∂x1
ds+

∫
IRN

u(1)
∂u(2)

∂x1
ds+

∫
IRN

u(2)
∂u(1)

∂x1
ds

−
∫
IR−N

u(1)
∂u(1)

∂x1
ds−

∫
IR−N

u(1)
∂u(2)

∂x1
ds−

∫
IR−N

u(2)
∂u(1)

∂x1
ds

=
1

2π

∑
j∈J

∑
dl,j ,dl′,j>0

al,jal′,j

∫
Cφ(N)

φl,j
∂φl′,j
∂x1

dx

− 1

2π

∑
j∈J

∑
dl,j ,dl′,j<0

al,jal′,j

∫
Cφ(N)

φl,j
∂φl′,j
∂x1

dx+ o(1), (5.43)

and the first and second term in the right hand side converge as N →
∞ to ik

2π

∑
j∈J
∑

dl,j>0 |al,j |2dl,j and− ik
2π

∑
j∈J
∑

dl,j<0 |al,j |2dl,j respectively.

Therefore, taking an imaginary part in (5.42) yields that

0 = Im

[
1

2π

∑
j∈J

∑
dl,j ,dl′,j>0

al,jal′,j

∫
Cφ(N)

φl,j
∂φl′,j
∂x1

dx

]

− Im

[
1

2π

∑
j∈J

∑
dl,j ,dl′,j<0

al,jal′,j

∫
Cφ(N)

φl,j
∂φl′,j
∂x1

dx

]

+ Im

∫
I
φ(N)
N

u(1)
∂u(1)

∂x1
ds+ Im

∫
I
φ(N)
N

u(1)
∂u(2)

∂x1
ds+ Im

∫
I
φ(N)
N

u(2)
∂u(1)

∂x1
ds

− Im

∫
I
φ(N)
−N

u(1)
∂u(1)

∂x1
ds− Im

∫
I
φ(N)
−N

u(1)
∂u(2)

∂x1
ds− Im

∫
I
φ(N)
−N

u(2)
∂u(1)

∂x1
ds

+ Im

∫
Γφ(N),N

u
∂u

∂x2
ds+ o(1). (5.44)
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We set

J±(N) := ±Im

∫
I
φ(N)
±N

u(1)
∂u(1)

∂x1
ds±Im

∫
I
φ(N)
±N

u(1)
∂u(2)

∂x1
ds±Im

∫
I
φ(N)
±N

u(2)
∂u(1)

∂x1
ds,

(5.45)
and we will show that limsupN→∞J±(N) ≥ 0.

Step2 (limsupN→∞J±(N) ≥ 0): By the Cauchy Schwarz inequality we have

|J+(N)| ≤
(∫ φ(N)

R
|u(1)(N, x2)|2dx2

)1/2(∫ φ(N)

R

∣∣∣∣∂u(1)

∂x1
(N, x2)

∣∣∣∣2dx2

)1/2

+

(∫ φ(N)

R
|u(1)(N, x2)|2dx2

)1/2(∫ φ(N)

R

∣∣∣∣∂u(2)

∂x1
(N, x2)

∣∣∣∣2dx2

)1/2

+

(∫ φ(N)

R
|u(2)(N, x2)|2dx2

)1/2(∫ φ(N)

R

∣∣∣∣∂u(1)

∂x1
(N, x2)

∣∣∣∣2dx2

)1/2

≤
(∫ φ(N)

R
|u(1)(N, x2)|2dx2

)1/2(∫ φ(N)

R

∣∣∣∣∂u(1)

∂x1
(N, x2)

∣∣∣∣2dx2

)1/2

+ C(φ(N)−R)1/2

(∫ φ(N)

R
|u(1)(N, x2)|2dx2

)1/2

+ C(φ(N)−R)1/2

(∫ φ(N)

R

∣∣∣∣∂u(1)

∂x1
(N, x2)

∣∣∣∣2dx2

)1/2

. (5.46)

In order to estimate u(1), we will show the following lemma.

Lemma 5.11. u(1) has an integral representation of the form

u(1)(x) =

∫
y2>0

σ(y)G(x, y)dy + k2

∫
W

(
n(y)(1 + q(y))− 1

)
u(1)(y)G(x, y)dy

+ k2

∫
Q
n(y)q(y)u(2)(y)G(x, y)dy, x2 > 0, (5.47)

where σ := ∆u(2) + k2nu(2).

Proof of Lemma 5.11. First, we will consider an integral representation of
u(2). Let N > 0 be large enough. By Green’s representation theorem in
(−N,N)× (0, N1/4), we have

u(2)(x) =

∫
(−N,N)×{N1/4}

[
u(2)(y)

∂G

∂y2
(x, y)−G(x, y)

∂u(2)

∂y2
(y)
]
ds(y)
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+

(∫
{N}×(0,N1/4)

−
∫
{−N}×(0,N1/4)

)[
u(2)(y)

∂G

∂y1
(x, y)−G(x, y)

∂u(2)

∂y1
(y)
]
ds(y)

−
∫

(−N,N)×(0,N1/4)

[
σ(y) + k2(1− n(y))u(2)(y)

]
G(x, y)dy. (5.48)

By Lemma 3.1 of [13], the Dirichlet Green’s function G(x, y) is of the esti-
mation

|G(x, y)|, |∇yG(x, y)| ≤ C x2y2

1 + |x− y|3/2
, |x− y| > 1. (5.49)

By Lemma 5.4 we have that |u(2)(x)|,
∣∣∂u(2)(x)

∂x2

∣∣ ≤ ce−δ|x2| for all x ∈ R2
+,

and some c, δ > 0. Then, we obtain∣∣∣∣∣
∫

(−N,N)×{N1/4}

[
u(2)(y)

∂G

∂y2
(x, y)−G(x, y)

∂u(2)

∂y2
(y)
]
ds(y)

∣∣∣∣∣
≤ C

∫ N

−N

x2e
−δN1/4

|N1/4 − x2|3/2
dy2 ≤ C

x2Ne
−δN1/4

|N1/4 − x2|3/2
. (5.50)

Furthermore,∣∣∣∣∣
∫
{±N}×(0,N1/4)

[
u(2)(y)

∂G

∂y1
(x, y)−G(x, y)

∂u(2)

∂y1
(y)
]
ds(y)

∣∣∣∣∣
≤ C

∫ N1/4

0

x2y2

| ±N − x1|3/2
dy2 ≤ C

x2N
1/2

| ±N − x1|3/2
. (5.51)

Therefore, as N →∞ in (5.48) we get

u(2)(x) = −
∫
y2>0

σ(y)G(x, y)dy + k2

∫
W

(n(y)− 1)u(2)(y)G(x, y)dy. (5.52)

By Lemma 5.9, we have (substitute −k2qnu for f in (5.28))

u(x) = k2

∫
W

(
n(y)−1

)
u(y)G(x, y)dy+k2

∫
Q
q(y)n(y)u(y)G(x, y)dy. (5.53)

Combining (5.52) with (5.53) we have

u(1)(x) = −u(2)(x) + k2

∫
W

(
n(y)− 1

)
u(y)G(x, y)dy + k2

∫
Q
q(y)n(y)u(y)G(x, y)dy
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=

∫
y2>0

σ(y)G(x, y)dy − k2

∫
W

(n(y)− 1)u(2)(y)G(x, y)dy

+ k2

∫
W

(
n(y)− 1

)
u(y)G(x, y)dy + k2

∫
Q
q(y)n(y)u(y)G(x, y)dy

=

∫
R2
+

σ(y)G(x, y)dy + k2

∫
W

(
n(y)(1 + q(y))− 1

)
u(1)(y)G(x, y)dy

+ k2

∫
Q
n(y)q(y)u(2)(y)G(x, y)dy. (5.54)

Therefore, Lemma 5.11 has been shown.

We set u±(x) :=
∑

j∈J
∑

dl,j≶0 al,jφl,j(x). Then, by a simple calculation
we can show

σ(y) =
d2ψ+(y1)

dy2
1

u+(y)+2
dψ+(y1)

dy1

∂u+(y)

∂y1
+
d2ψ−(y1)

dy2
1

u−(y)+2
dψ−(y1)

dy1

∂u−(y)

∂y1
,

(5.55)
which implies that supp σ ⊂ (−η, η)× (0,∞). By Lemma 5.11 we have for
R < x2 < φ(N)

|u(1)(N, x2)|,
∣∣∣∣∂u(1)

∂x1
(N, x2)

∣∣∣∣ ≤ C ∫
(−η,η)×(0,∞)

|σ(y)| φ(N)y2

|N − η|3/2
dy

+ C

∫
W
|u(1)(y)| φ(N)h

(1 + |N − y1|)3/2
dy + C

∫
Q

φ(N)|u(2)(y)|
|N − y1|3/2

dy

≤ C
φ(N)

N3/2
+ Cφ(N)

∫
W

|u(1)(y)|
(1 + |N − y1|)3/2

dy. (5.56)

We have to estimate the second term in right hand side. The following
lemma was shown in Lemma 4.12 of [12].

Lemma 5.12. Assume that ϕ ∈ L2
loc(R) such that

supA>0

{
(1 +A2)−ε

∫ A

−A
|ϕ(t)|2dt

}
<∞, (5.57)

for some ε > 0. Then, for every α ∈ [0, 1
2 − ε) there exists a constant C > 0

and a sequence {Am}m∈N such that Am →∞ as m→∞ and∫
KAm

|ϕ(t)|2dt ≤ CA−αm , m ∈ N, (5.58)
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where KA := K+
A ∪ K

−
A , K+

A := (−A+, A+) \ (−A,A), K−A := (−A,A) \
(−A−, A−), and A± := A±A1/2 for A ∈ [1,∞).

Applying Lemma 5.12 to ϕ =
(∫ h

0

∣∣u(1)(·, y2)
∣∣2dy2

)1/2 ∈ L2(R), there
exists a sequence {Nm}m∈N such that Nm →∞ as m→∞ and∫

KNm

∫ h

0
|u(1)(y1, y2)|2dy1dy2 ≤ CN−1/4

m , m ∈ N. (5.59)

Then, by the Cauchy Schwarz inequality we have∫
W

|u(1)(y)|
(1 + |N − y1|)3/2

dy =

(∫ N−m

−N−m
+

∫
KNm

+

∫
R\[−N+

m,N
+
m]

)∫ h

0

|u(1)(y)|
(1 + |Nm − y1|)3/2

dy

≤ C

(∫ N−m

−N−m

dy1

(1 +Nm − |y1|)3

)1/2

+ C

(∫
KNm

∫ h

0
|u(1)(y1, y2)|2dy1dy2

)1/2

+ C

(∫
R\[−N+

m,N
+
m]

dy1

(1 + |y1| −Nm)3

)1/2

≤ C

(∫ N−m

0

dy1

(1 +Nm − y1)3

)1/2

+ CN−1/8
m + C

(∫ ∞
N+
m

dy1

(1 + y1 −Nm)3

)1/2

≤ CN−1/8
m . (5.60)

With (5.56) we have for m ∈ N,

|u(1)(Nm, x2)|,
∣∣∣∣∂u(1)

∂x1
(Nm, x2)

∣∣∣∣ ≤ Cφ(Nm)

N
1/8
m

. (5.61)

Therefore, by (5.46) we have

|J+(Nm)| ≤ C(φ(Nm)−R)
φ(Nm)2

N
1/4
m

+ C(φ(Nm)−R)
φ(Nm)

N
1/8
m

≤ C(φ(Nm)−R)
φ(Nm)2

N
1/8
m

≤ Cφ(Nm)3

N
1/8
m

. (5.62)

Since φ(N) = N s, if we choose s ∈ (0, 1) such that 3s < 1
8 , that is, 0 < s < 1

24
the right hand side in (5.62) converges to zero as m → ∞. Therefore,
limsupN→∞J+(N) ≥ 0. By the same argument of J+, we can show that
limsupN→∞J−(N) ≥ 0, which yields Step 2.

Next, we discuss the last term in (5.44). By the same argument in Lemma
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5.11 that we apply Green’s representation theorem in x2 > h and use the
Dirichlet Green’s function Gh of R2

x2>h
(:= R × (h,∞)) instead of G, u(1)

can also be of another integral representation for x2 > h

u(1)(x) =

∫
y2>h

σ(y)Gh(x, y)dy + 2

∫
Γh

u(1)(y)
∂Φk(x, y)

∂y2
ds(y)

=: v1(x) + v2(x), (5.63)

where Gh is defined by Gh(x, y) := Φk(x, y)−Φk(x, y
∗
h) where y∗h = (y1, 2h−

y2). We define approximation u
(1)
N of u(1) by

u
(1)
N (x) :=

∫
y2>0

χφ(N)−1(y2)σ(y)G(x, y)dy + 2

∫
Γh

χN (y1)u(1)(y)
∂Φk(x, y)

∂y2
ds(y)

=: v1
N (x) + v2

N (x), x2 > h, (5.64)

where χa is defined by for a > 0,

χa(t) :=

{
1 for |t| ≤ a
0 for |t| > a.

(5.65)

By Lemma 3.4 of [15] and Lemma 2.1 of [14] we can show that v1
N and

v2
N satisfy the upward propagating radiation condition, which implies that

so does u
(1)
N . Furthermore, by the definition of u

(1)
N we can show that

u
(1)
N (·, φ(N) − 1) ∈ L2(R) ∩ L∞(R). Then, by Lemma 6.1 of [15] we have

that

Im

∫
Γφ(N)

u
(1)
N

∂u
(1)
N

∂x2
ds ≥ 0. (5.66)

Combining (5.44) with (5.66) we have

0 ≥ −Im

∫
Γφ(N)

u
(1)
N

∂u
(1)
N

∂x2
ds

= Im

[
1

2π

∑
j∈J

∑
dl,j ,dl′,j>0

al,jal′,j

∫
Cφ(N)

φl,j
∂φl,j
∂x1

dx

]

− Im

[
1

2π

∑
j∈J

∑
dl,j ,dl′,j<0

al,jal′,j

∫
Cφ(N)

φl,j
∂φl,j
∂x1

dx

]
+ J+(N) + J−(N)

+ Im

∫
Γφ(N),N

u
∂u

∂x2
− Im

∫
Γφ(N)

u
(1)
N

∂u
(1)
N

∂x2
ds+ o(1). (5.67)

71



We observe the last term

Im

∫
Γφ(N),N

u
∂u

∂x2
− Im

∫
Γφ(N)

u
(1)
N

∂u
(1)
N

∂x2
ds =: L(N) +M(N), (5.68)

where

L(N) := Im

∫
Γφ(N),N

u(1)
∂u(1)

∂x2
ds− Im

∫
Γφ(N)

u
(1)
N

∂u
(1)
N

∂x2
ds, (5.69)

M(N) := Im

∫
Γφ(N),N

u(1)
∂u(2)

∂x2
ds+Im

∫
Γφ(N),N

u(2)
∂u(1)

∂x2
ds+Im

∫
Γφ(N),N

u(2)
∂u(2)

∂x2
ds.

(5.70)

By Lemma 5.11 we can show |u(1)(x1, φ(N))|, |∂u(1)∂x2
(x1, φ(N))| ≤ Cφ(N)

for x1 ∈ R, and by Lemma 5.4 we have |u(2)(x1, φ(N))|, |∂u(2)∂x2
(x1, φ(N))| ≤

Ce−δφ(N) for x1 ∈ R. Then, we have

|M(N)| ≤
∫ N

−N
|u(1)(x1, φ(N))|

∣∣∣∂u(2)

∂x2
(x1, φ(N))

∣∣∣dx1

+

∫ N

−N
|u(2)(x1, φ(N))|

∣∣∣∂u(1)

∂x2
(x1, φ(N))

∣∣∣dx1

+

∫ N

−N
|u(2)(x1, φ(N))|

∣∣∣∂u(2)

∂x2
(x1, φ(N))

∣∣∣dx1

≤ C(Nφ(N)e−δφ(N) +Ne−2δφ(N))

≤ CNφ(N)e−δφ(N), (5.71)

which implies that M(N) = o(1) as N → ∞. Hence, we will show that
limsupN→∞L(N) ≥ 0.

Step3 (limsupN→∞L(N) ≥ 0): First, we observe that

|L(N)| ≤
∣∣∣∣Im ∫

Γφ(N),N

u(1)
∂u(1)

∂x2
ds− Im

∫
Γφ(N),N

u(1)
∂u

(1)
N

∂x2
ds

∣∣∣∣
+

∣∣∣∣Im ∫
Γφ(N),N

u(1)
∂u

(1)
N

∂x2
ds− Im

∫
Γφ(N),N

u
(1)
N

∂u
(1)
N

∂x2
ds

∣∣∣∣
+

∣∣∣∣Im ∫
Γφ(N)\Γφ(N),N

u
(1)
N

∂u
(1)
N

∂x2
ds

∣∣∣∣
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≤
∫ N

−N
|u(1)(x1, φ(N))|

∣∣∣∂u(1)

∂x2
(x1, φ(N))−

∂u
(1)
N

∂x2
(x1, φ(N))

∣∣∣ds
+

∫ N

−N
|u(1)(x1, φ(N))− u(1)

N (x1, φ(N))|
∣∣∣∂u(1)

N

∂x2
(x1, φ(N))

∣∣∣ds
+

∫
R\(−N,N)

|u(1)
N (x1, φ(N))|

∣∣∣∂u(1)
N

∂x2
(x1, φ(N))

∣∣∣ds. (5.72)

By Lemma 5.4, σ has a exponential decay in y2. Then, we have for x1 ∈ R,

|v1(x1, φ(N))|,
∣∣∣∣∂v1

∂x2
(x1, φ(N))

∣∣∣∣, |v1
N (x1, φ(N))|,

∣∣∣∣∂v1
N

∂x2
(x1, φ(N))

∣∣∣∣
≤ C

∫
(−η,η)×(0,∞)

e−δy2φ(N)y2

(1 + |x1 − y1|)3/2
dy ≤ C φ(N)

(1 + |x1|)3/2
, (5.73)

and

|v1(x1, φ(N))− v1
N (x1, φ(N))|,

∣∣∣∣∂v1

∂x2
(x1, φ(N))−

∂v1
N

∂x2
(x1, φ(N))

∣∣∣∣
≤ C

∫
(−η,η)×(φ(N)−1,∞)

e−δy2φ(N)y2

(1 + |x1 − y1|)3/2
dy

≤ C

(∫ ∞
φ(N)

e−δy2y2dy2

)
φ(N)

(1 + |x1|)3/2
dy ≤ e−δφ(N)φ(N)

(1 + |x1|)3/2
. (5.74)

Since the fundamental solution to Helmholtz equation Φ(x, y) is of the fol-
lowing estimation (see e.g., [13]) for |x− y| ≥ 1∣∣∣∣ ∂Φ

∂y2
(x, y)

∣∣∣∣ ≤ C |x2 − y2|
1 + |x− y|3/2

,

∣∣∣∣ ∂2Φ

∂x2∂y2
(x, y)

∣∣∣∣ ≤ C |x2 − y2|2

1 + |x− y|3/2
, (5.75)

we can show that for x1 ∈ R

|v2(x1, φ(N))| ≤ Cφ(N)W∞(x1), |v2
N (x1, φ(N))| ≤ Cφ(N)WN (x1),

(5.76)
and∣∣∣∣∂v2

∂x2
(x1, φ(N))

∣∣∣∣ ≤ Cφ(N)2W∞(x1),

∣∣∣∣∂v2
N

∂x2
(x1, φ(N))

∣∣∣∣ ≤ Cφ(N)2WN (x1),

(5.77)
and

|v2(x1, φ(N))− v2
N (x1, φ(N))| ≤ Cφ(N)

(
W∞(x1)−WN (x1)

)
, (5.78)
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and∣∣∣∣∂v2

∂x2
(x1, φ(N))−

∂v2
N

∂x2
(x1, φ(N))

∣∣∣∣ ≤ Cφ(N)2(W∞(x1)−WN (x1)
)
, (5.79)

where WN is defined by for N ∈ (0,∞]

WN (x1) :=

∫ N

−N

|u(1)(y1, h)|
(1 + |x1 − y1|)3/2

dy1, x1 ∈ R. (5.80)

Using (5.73)–(5.79), we continue to estimate (5.72). By the Cauchy Schwarz
inequality we have

|L(N)| ≤ C
∫ N

−N

{ φ(N)

(1 + |x1|)3/2
+ φ(N)W∞(x1)

}
×
{φ(N)e−σφ(N)

(1 + |x1|)3/2
+ φ(N)2

(
W∞(x1)−WN (x1)

)}
dx1

+

∫ N

−N

{φ(N)e−σφ(N)

(1 + |x1|)3/2
+ φ(N)

(
W∞(x1)−WN (x1)

)}
×
{ φ(N)

(1 + |x1|)3/2
+ φ(N)2WN (x1)

}
dx1

+

∫
R\(−N,N)

{ φ(N)

(1 + |x1|)3/2
+ φ(N)WN (x1)

}{ φ(N)

(1 + |x1|)3/2
+ φ(N)2WN (x1)

}
dx1

≤ Cφ(N)3

∫ N

−N
W∞(x1)

(
W∞(x1)−WN (x1)

)
dx1

+ Cφ(N)3

∫ N

−N

1

(1 + |x1|)3/2

(
W∞(x1)−WN (x1)

)
dx1

+ Cφ(N)2

∫
R\(−N,N)

1

(1 + |x1|)3
dx1 + Cφ(N)2

∫
R\(−N,N)

1

(1 + |x1|)3/2
WN (x1)dx1

+ Cφ(N)3

∫
R\(−N,N)

|WN (x1)|2dx1 + o(1)

≤ Cφ(N)3

{(∫ N

−N

(
W∞(x1)−WN (x1)

)2
dx1

)1/2
+
(∫

R\(−N,N)
WN (x1)2dx1

)1/2
}

+o(1). (5.81)

Finally, we will estimate
(
W∞(x1)−WN (x1)

)
and WN (x1). Since u(1)(·, h) ∈

L2(R), by Lemma 5.12 there exists a sequence {Nm}m∈N such that Nm →∞
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as m→∞ and ∫
KNm

|u(1)(y1, h)|2dy1 ≤ CN
− 1

4
m , m ∈ N, (5.82)

where KA := K+
A ∪ K

−
A , K+

A := (−A+, A+) \ (−A,A), K−A := (−A,A) \
(−A−, A−), and A± := A±A1/2 for A ∈ [1,∞).

By the Cauchy Schwarz inequality we have for |x1| > Nm,∫ N−m

−N−m

|u(1)(y1, h)|
(1 + |x1 − y1|)3/2

dy1 ≤
(∫ N−m

−N−m
|u(1)(y1, h)|2dy1

)1/2(∫ N−m

−N−m

dy1

(1 + |x1| − y1)3

)1/2

≤ C

1− |x1| −N−m
, (5.83)

and∫
K
N−m

|u(1)(y1, h)|
(1 + |x1 − y1|)3/2

dy1 ≤
(∫

KNm

|u(1)(y1, h)|2dy1

)1/2(∫
K−Nm

dy1

(1 + |x1| − y1)3

)1/2

≤ C

N
1/8
m (1 + |x1| −Nm)

. (5.84)

Therefore, we obtain∫
R\(−Nm,Nm)

WN (x1)2dx1

≤ C

∫ ∞
Nm

dx1

(1− |x1| −N−m)2
+

C

N
1/4
m

∫ ∞
Nm

dx1

(1− |x1| −Nm)2

≤ C

1 +N
1/2
m

+
C

N
1/4
m

≤ C

N
1/4
m

. (5.85)

By the Cauchy Schwarz inequality we have for |x1| < Nm,∫
R\(−N+

m,N
+
m)

|u(1)(y1, h)|
(1 + |x1 − y1|)3/2

dy1

≤
(∫

R\(−N+
m,N

+
m)
|u(1)(y1, h)|2dy1

)1/2(∫
R\(−N+

m,N
+
m)

dy1

(1 + y1 − |x1|)3

)1/2

≤ C

1 +N+
m − |x1|

, (5.86)
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and∫
K
N+
m

|u(1)(y1, h)|
(1 + |x1 − y1|)3/2

dy1 ≤
(∫

KNm

|u(1)(y1, h)|2dy1

)1/2(∫
K+
Nm

dy1

(1 + y1 − |x1|)3

)1/2

≤ C

N
1/8
m (1 +Nm − |x1|)

. (5.87)

Therefore, we obtain∫ Nm

−Nm

(
W∞(x1)−WN (x1)

)2
dx1

≤ C

∫ Nm

−Nm

dx1

(1 +N+
m − |x1|)2

+
C

N
1/4
m

∫ Nm

−Nm

dx1

(1 +Nm − |x1|)2

≤ C

1 +N
1/2
m

+
C

N
1/4
m

≤ C

N
1/4
m

. (5.88)

Therefore, Collecting (5.81), (5.85), and (5.88) we conclude that |L(Nm)| ≤
C φ(Nm)3

N
1/8
m

. Since φ(N) = N s, if we choose s ∈ (0, 1) such that 3s < 1
8 , that

is, 0 < s < 1
24 , the term φ(Nm)3

N
1/8
m

converges to zero as m → ∞. Therefore,

limsupN→∞L(N) ≥ 0, which yields Step 3.

By taking limsupN→∞ in (5.67) we have that

0 ≥ k

2π

∑
j∈J

[ ∑
dl,j>0

|al,j |2dl,j −
∑
dl,j<0

|al,j |2dl,j

]

+ limsupN→∞

(
J+(N) + J−(N) + L(N)

)
. (5.89)

By Steps 2 and 3 and choosing 0 < s < 1
24 the right hand side is non-

negative. Therefore, al,j = 0 for all l, j, which yields u(2) = 0. Lemma 5.10
has been shown, and in next section we will show the uniqueness of u(1).

5.4 Uniqueness of u(1)

In Section 5.4, we will show the following lemma.

Lemma 5.13. If u ∈ H1
loc(R2

+) satisfies

(i) u ∈ H1(R× (0, R)) for all R > 0,
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(ii) ∆u+ k2(1 + q)nu = 0 in R2
+,

(iii) u vanishes for x2 = 0,

(iv) There exists φ ∈ L∞(Γh)∩H1/2(Γh) with u(x) = 2
∫

Γh
φ(y)∂Φk(x,y)

∂y2
ds(y)

for x2 > h,

then, u ∈ H1
0 (R2

+).

If we can use Lemma 5.13, we have the uniqueness of the solution in
Theorem 5.2.

Theorem 5.14. Let Assumptions 5.1 and 5.3 hold and let k > 0 be regular
in the sense of Definition 5.5. If u ∈ H1

loc(R2
+) satisfies (5.39), (5.40), and

the radiation condition in the sense of Definition 5.6, then u vanishes for
x2 > 0.

Proof of Theorem 5.14. Let u ∈ H1
loc(R2

+) satisfy (5.39), (5.40), and the
radiation condition in the sense of Definition 5.6. By Lemma 5.9, u(2) = 0
for x2 > 0. Then, u(1) satisfies the assumptions (i)–(iv) of Lemma 5.13,
which implies that u(1) ∈ H1

0 (R2
+). By Assumption 5.1, u(1) vanishes for

x2 > 0, which yields the uniqueness.

Finally in this section we will show Lemma 5.13.

Proof of Lemma 5.13. Let R > h be fixed. We set ΩN,R := (−N,N) ×
(0, R) where N > 0 is large enough. We denote by IR±N := {±N} × (0, R),
ΓR,N := (−N,N) × {R}, and ΓR := (−∞,∞) × {R}. By Green’s first
theorem in ΩN,R and assumptions (ii), (iii) we have∫

ΩN,R

{−k2(1 + q)n|u|2 + |∇u|2}dx =

∫
ΩN,R

{u∆u+ |∇u|2}dx

=

∫
IRN

u
∂u

∂x1
ds−

∫
IR−N

u
∂u

∂x1
ds+

∫
ΓR,N

u
∂u

∂x2
ds. (5.90)

By the assumption (i), the first and second term in the right hands side of
(5.90) go to zero as N → ∞. Then, by taking an imaginary part and as
N →∞ in (5.90) we have

Im

∫
ΓR

u
∂u

∂x2
ds = 0. (5.91)
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By considering the Floquet Bloch transform with respect to x1, we can show
that ∫

ΓR

u
∂u

∂x2
ds =

∫ 1/2

−1/2

∫ 2π

0
ũα(x1, R)

∂ũα(x1, R)

∂x2
dx1dα. (5.92)

Since the upward propagating radiation condition is equivalent to the Rayleigh
expansion by the Floquet Bloch transform (see the proof of Theorem 6.8 in
[62]), we can show that

ũα(x) =
∑
n∈Z

un(α)einx1+i
√
k2−(n+α)2(x2−h), x2 > h, (5.93)

where un(α) := (2π)−1
∫ 2π

0 uα(x1, h)e−inx1dx1. From (5.91)–(5.93) we ob-
tain that

0 = Im

∫ 1/2

−1/2

∫ 2π

0
ũα(x1, R)

∂ũα(x1, R)

∂x2
dx1dα

= Im
∑
n∈Z

∫ 1/2

−1/2
2π|un(α)|2i

√
k2 − (n+ α)2, (5.94)

Here, we denote by k = n0 + r where n0 ∈ N0 and r ∈ [−1/2, 1/2). Then by
(5.94) we have

un(α) = 0 for |n| < n0, a.e. α ∈ (−1/2, 1/2),

un0(α) = 0 for α ∈ (−1/2, r),

u−n0(α) = 0 for α ∈ (−r, 1/2). (5.95)

By (5.95) we have∫ 1/2

−1/2

∫ 2π

0

∫ ∞
R
|ũα(x)|2dx2dx1dα

= 2π

∫ 1/2

−1/2

∑
|n|>n0

|un(α)|2
∫ ∞
R

e−
√

(n+α)2−k2(x2−h)dx2dα

+ 2π

∫ 1/2

r
|un0(α)|2

∫ ∞
R

e−
√

(n0+α)2−k2(x2−h)dx2dα

+ 2π

∫ −r
−1/2
|u−n0(α)|2

∫ ∞
R

e−
√

(−n0+α)2−k2(x2−h)dx2dα
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≤ 2π
∑
|n|>n0

∫ 1/2

−1/2

|un(α)|2e−
√

(n+α)2−k2(R−h)√
(n+ α)2 − k2

dα

+ 2π

∫ 1/2

r

|un0(α)|2e−
√

(n0+α)2−k2(R−h)√
(n0 + α)2 − k2

dα

+ 2π

∫ −r
−1/2

|u−n0(α)|2e−
√

(−n0+α)2−k2(R−h)√
(−n0 + α)2 − k2

dα

≤ C
∑
|n|>n0

∫ 1/2

−1/2
|un(α)|2dα

+ C

∫ 1/2

r

|un0(α)|2√
α− r

dα+ C

∫ −r
−1/2

|u−n0(α)|2√
−α− r

dα, (5.96)

and ∫ 1/2

−1/2

∫ 2π

0

∫ ∞
R
|∂x1 ũα(x)|2dx2dx1dα

= 2π
∑
|n|>n0

∫ 1/2

−1/2

|un(α)|2n2e−
√

(n+α)2−k2(R−h)√
(n+ α)2 − k2

dα

+ 2π

∫ 1/2

r

|un0(α)|2n2
0e
−
√

(n0+α)2−k2(R−h)√
(n0 + α)2 − k2

dα

+ 2π

∫ −r
−1/2

|u−n0(α)|2n2
0e
−
√

(−n0+α)2−k2(R−h)√
(−n0 + α)2 − k2

dα

≤ C
∑
|n|>n0

∫ 1/2

−1/2
|un(α)|2dα

+ C

∫ 1/2

r

|un0(α)|2√
α− r

dα+ C

∫ −r
−1/2

|u−n0(α)|2√
−α− r

dα. (5.97)

By the same argument in (5.97) we have∫ 1/2

−1/2

∫ 2π

0

∫ ∞
R
|∂x2 ũα(x)|2dx2dx1dα ≤ C

∑
|n|>n0

∫ 1/2

−1/2
|un(α)|2dα

+C

∫ 1/2

r

|un0(α)|2√
α− r

dα+ C

∫ −r
−1/2

|u−n0(α)|2√
−α− r

dα. (5.98)
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It is well known that the Floquet Bloch Transform is an isomorphism be-
tween H1(R2

+) and L2
(
(−1/2, 1/2)α;H1((0, 2π)×R)x

)
(e.g., see Theorem 4

in [73]). Therefore, we obtain from (5.96)–(5.98)

‖u‖2H1(R×(R,∞)) ≤ C

∫ 1/2

−1/2

∫ 2π

0

∫ ∞
R
|ũα(x)|2 + |∂x1 ũα(x)|2 + |∂x2 ũα(x)|2dx2dx1dα

≤ C
∑
|n|>n0

∫ 1/2

−1/2
|un(α)|2dα

+ C

∫ 1/2

r

|un0(α)|2√
α− r

dα+ C

∫ −r
−1/2

|u−n0(α)|2√
−α− r

dα.

≤ C

∫ 1/2

−1/2

∫ 2π

0
|ũα(x1, h)|2dx1dα

+ C

∫ 1/2

r

|un0(α)|2√
α− r

dα+ C

∫ −r
−1/2

|u−n0(α)|2√
−α− r

dα. (5.99)

If we can show that

∃δ > 0 and ∃C > 0 s.t. |u±n0(α)| ≤ C for all α ∈ (−δ±r, δ±r), (5.100)

then the right hands side of (5.99) is finite, which yields Lemma 5.13.
Finally, we will show (5.100). By the same argument in section 3 of [62]

we have
(I −Kα)ũα = fα in H1

0,per(Ch), (5.101)

where the operator Kα is defined by (5.21) and fα := −(Tperk
2nqu)(·, α).

Since the function k2nqu has a compact support, ‖fα‖2H1(Ch) is bounded
with respect to α. By Assumption 5.3 and the operator Kα is compact,
(I − Kα) is invertible if α ∈ Ak. Since ±r ∈ Ak, (I − K±) is invertible.
Since the exceptional values are finitely many (see Lemma 5.4), (I −Kα) is
also invertible if α is close to ±r. Therefore, there exists δ > 0 such that
(I −Kα) is invertible for all α ∈ (−δ + r, δ + r) ∪ (−δ − r, δ − r).

The operator (I −Kα) is of the form

(I−Kα) = (I−K±r)
(
I−(I−K±r)−1[I−K±r−(I−Kα)]

)
= (I−K±r)(I−Mα),

(5.102)
where Mα := (I −K±r)−1(Kα −K±r). Next, we will estimate (Kα −K±r).
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By the definition of Kα we have for all v, w ∈ H1
0,per(Ch),

〈(Kα −K±r)v, w〉∗ = −
∫
Ch

[
i(α∓ r)

(
v
∂w

∂x1
− v ∂w

∂x1

)
+ (α2 − r2)vw

]
dx

+ 2πi
∑
|n|6=n0

vnwn
(√

k2 − (n+ α)2 −
√
k2 − (n± r)2

)
+ 2πi

∑
|n|=n0

vnwn
(√

k2 − (n+ α)2 −
√
k2 − (n± r)2

)
.

(5.103)

Since

|
√
k2 − (n+ α)2 −

√
k2 − (n± r)2| =

∣∣∣∣ ±2nr + r2 − 2nα− α2√
k2 − (n+ α)2 +

√
k2 − (n± r)2

∣∣∣∣

≤


|n||α±r|+|r2−α2|√
|k2−(n±r)2|

for |n| 6= n0

|n||α±r|+|r2−α2|√
|r+α||r−α|

for |n| = n0,
(5.104)

we have for all α ∈ (−δ + r, δ + r) ∪ (−δ − r, δ − r)

|〈(Kα −K±r)v, w〉∗| ≤ C|α∓ r| ‖v‖H1(Ch) ‖w‖H1(Ch)

+ C
∑
|n|6=n0

|vn||wn|
|n||α∓ r|√
|k2 − (n± r)2|

+ C
∑
|n|=n0

|vn||wn|n0

√
|α∓ r|

≤ C
√
|α∓ r| ‖v‖H1(Ch) ‖w‖H1(Ch) . (5.105)

(we retake very small δ > 0 if needed.) This implies that there is a con-
stant number C > 0 which is independent of α such that ‖Kα −K±r‖ ≤
C
√
|α∓ r|. Therefore, by the property of Neumann series, there is a small

δ > 0 such that for all α ∈ (−δ + r, δ + r) ∪ (−δ − r, δ − r)

(I −Mα)−1 =

∞∑
n=0

Mn
α and ‖Mα‖ ≤ 1/2. (5.106)

By the Cauchy Schwarz inequality, the boundedness of trace operator, and
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(5.106) we have

|u±n0(α)| ≤
∫ 2π

0
|ũα(x1, h)|dx1 ≤ C ‖ũα‖H1(Ch)

= C
∥∥(I −Mα)−1(I −K±r)−1fα

∥∥
H1(Ch)

≤ C
∥∥(I −Mα)−1

∥∥∥∥(I −K±r)−1fα
∥∥

≤ C

∞∑
n=0

‖Mα‖n < C

∞∑
n=0

(1/2)j <∞, (5.107)

where constant number C > 0 is independent of α. Therefore, we have
shown (5.100).

5.5 Existence

In previous sections we discussed the uniqueness of Theorem 5.2. In Section
5.5, we will show the existence. Let Assumptions 5.1 and 5.3 hold and
let k > 0 be regular in the sense of Definition 5.5. Let f ∈ L2(R2

+) such
that suppf = Q. We define the solution operator S : L2(Q) → L2(Q) by
Sg := v

∣∣
Q

where v satisfies the radiation condition and

∆v + k2nv = g, in R2
+, (5.108)

v = 0 on Γ0. (5.109)

Remark that by Theorem 5.8 we can define such a operator S, and S is a
compact operator since the restriction to Q of the solution v is in H1(Q). We
define the multiplication operator M : L2(Q) → L2(Q) by Mh := k2nqh.
We will show the following lemma.

Lemma 5.15. IL2(Q) + SM is invertible.

Proof of Lemma 5.15. By the definition of operators S and M we have
SMg = v

∣∣
Q

where v is a radiating solution of (5.108)–(5.109) replacing g

by k2nqg. If we assume that (IL2(Q) + SM)g = 0, then g = −v
∣∣
Q

, which

implies that v satisfies ∆v + k2n(1 + q)v = 0 in R2
+. By the uniqueness we

have v = 0 in R2
+, which implies that IL2(Q) + SM is injective. Since the

operator SM is compact, by Fredholm theory we conclude that IL2(Q) +SM
is invertible.

We define u as the solution of

∆u+ k2nu = f −M(IL2(Q) + SM)−1Sf, in R2
+. (5.110)
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satisfying the radiation condition and u = 0 on Γ0. Since

u
∣∣
Q

= S(f −M(IL2(Q) + SM)−1Sf)

= (IL2(Q) + SM)(IL2(Q) + SM)−1Sf − SM(IL2(Q) + SM)−1Sf

= (IL2(Q) + SM)−1Sf, (5.111)

we have that
∆u+ k2nu = f − k2nqu, in R2

+, (5.112)

and u is a radiating solution of (5.8)–(5.9). Therefore, Theorem 5.2 has been
shown.

5.6 Example of Assumption 5.1

In Section 5.6, we will show the following lemma in order to give one of the
example of Assumption 5.1.

Lemma 5.16. Let q and n satisfy that ∂2

(
(1 + q)n

)
≥ 0 in W , and let

v ∈ H1(R2
+) satisfy (5.6)–(5.7). Then, v vanishes for x2 > 0.

Proof of Lemma 5.16. Let R > h be fixed. For N > 0 we set ΩN,R :=
(−N,N)× (0, R) and IR±N := {±N} × (0, R) and ΓR,N := (−N,N)× {R}.
By Green’s first theorem in ΩN,R we have∫

ΩN,R

{−k2(1 + q)n|v|2 + |∇v|2}dx =

∫
ΩN,R

{v∆v + |∇u|2}dx

=

∫
IRN

v∂1vds−
∫
IR−N

v∂1vds+

∫
ΓR,N

v∂2vds. (5.113)

Since v ∈ H1(R2
+) the first and second term in the right hand side of (5.6)

go to zero as N →∞. Then, by taking an imaginary part in (5.113) and as
N →∞ we have

Im

∫
ΓR

v∂2vds = 0. (5.114)

By the simple calculation, we have

2Re
(
∂2v(∆v + k2(1 + q)nv)

)
= 2Re

(
∇ · (∂2v∇v)

)
− ∂2(|∇v|2) + k2(1 + q)n∂2(|v|2), (5.115)
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which implies that

0 = 2Re

∫
ΩN,R

∂2v
(
∆v + k2(1 + q)nv)

)
dx = 2Re

∫
ΩN,R

∇ · (∂2v∇v)dx

−
∫

ΩN,R

∂2(|∇v|2)dx+

∫
ΩN,R

k2(1 + q)n∂2(|v|2)dx

= 2Re

(
−
∫

Γ0,N

∂2v∂2vds+

∫
IRN

∂2v∂1vds−
∫
IR−N

∂2v∂1vds+

∫
ΓR,N

∂2v∂2vds

)
−

(
−
∫

Γ0,N

|∇v|2ds+

∫
ΓR,N

|∇v|2ds
)

−
∫

Γ0,N

k2(1 + q)n|v|2ds+

∫
ΓR,N

k2(1 + q)n|v|2ds−
∫

ΩN,R

k2∂2

(
(1 + q)n

)
|v|2dx

= −
∫

Γ0,N

|∂2v|2ds+

∫
ΓR,N

(
|∂2v|2 − |∂1v|2 + k2|v|2

)
ds

−
∫

ΩN,R∩W
k2∂2

(
(1 + q)n

)
|v|2dx+ o(1). (5.116)

Since ∂2

(
(1 + q)n

)
≥ 0 in W , we have∫

Γ0,N

|∂2v|2ds ≤
∫

ΓR,N

(
|∂2v|2 − |∂1v|2 + k2|v|2

)
ds+ o(1). (5.117)

By taking limit as N →∞ we have∫
ΓR

|∂2v|2ds ≤
∫

ΓR

(
|∂2v|2 − |∂1v|2 + k2|v|2

)
ds. (5.118)

By Lemma 6.1 of [15] we have∫
ΓR

(
|∂2v|2 − |∂1v|2 + k2|v|2

)
ds ≤ 2Im

∫
ΓR

v∂2vds. (5.119)

From (5.114) and (5.118) we obtain that ∂2v = 0 on Γ0. We also have
v = 0 on Γ0, which implies that by the Holmgren’s theorem and the unique
continuation principle we conclude that v = 0 in R2

+.
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6 The factorization and monotonicity method for
the defect in an open periodic waveguide

6.1 Introduction

In this section, we consider the inverse scattering problem to reconstruct
the defect in an infinite medium with periodicity in the upper half space
from near field data. This scattering problem is motivated by applications
of open waveguides, e.g., optical fibers, planar waveguides, and so far, it has
been often studied from a mathematical perspective. (see e.g., [8, 14, 41,
55, 56, 62, 80]).

The contributions of this paper are followings.

• We mention that there is a mistake in factorization method of the
earlier paper [72], and give the correct one (Theorem 6.11).

• We give two reconstruction algorithms (Theorems 6.1 and 6.2) for
the unknown defect by a combination of the factorization and the
monotonicity method.

[72] has provided the general functional analysis theorem for the factoriza-
tion method (Theorem 2.1 of [72]) under weaker assumptions than previous
ones (Theorem 2.15 of [58]), and mentioned that by this relaxation one can
avoid the assumption corresponding to transmission eigenvalue in the case of
inverse medium scattering problems. This general theorem of [72] has been
mainly used when the factorization method has been discussed. (see e.g.,
[3, 9, 7, 22, 64]) However, there is a mistake in this theorem, which leads to
the difficulty to apply the factorization method to inverse medium scatter-
ing problems without the assumption of transmission eigenvalue. (Remark
6.12). Firstly in this paper, we give the correct functional analysis theorem
with its proof.

A new functional analysis theorem (Theorem 6.11) needs the assumption
that an imaginary part of the middle operator T of the data operator F is
strictly positive. However, the middle operator T corresponding to our case
does not have such a property. (see Lemma 6.15 and Remark 6.16). Due
to this failure of factorization method, we give alternative reconstruction
algorithms (Theorems 6.1 and 6.2) by employing the idea of monotonicity
method. Recently in [23, 33, 37, 38, 39, 40, 69], the monotonicity method
has been studied by many authrs, and it has advantage over the factorization
method that reconstruction algorithms are given under weaker assumptions.
For example, [33] has studied the inverse medium scattering problems with-
out the assumption of transmission eigenvalues. Theorems 6.1 and 6.2 are
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proved by a combination of techniques of the factorization and monotonic-
ity method. Very recently, [23] has employed such an idea in the study of
inverse crack scattering problem.

We begin with formulation of our scattering problem. Let k > 0 be the
wave number, and let R2

+ := R × (0,∞) be the upper half plane, and let
W := R × (0, h) be the waveguide in R2

+. We denote by Γa := R × {a} for
a ≥ 0. Let n ∈ L∞(R2

+) be real valued, 2π-periodic with respect to x1 (that
is, n(x1 + 2π, x2) = n(x1, x2) for all x = (x1, x2) ∈ R2

+), and equal to one
for x2 > h. We assume that there exists a constant nmax > 0 and nmin > 0
such that nmin ≤ n ≤ nmax in R2

+. Let q ∈ L∞(R2
+) be real valued with the

compact support supp q in W . We denote by Q := supp q, and assume that
R2

+ \Q is connected. First of all, we consider the following direct scattering
problem: For fixed y ∈ R2

+ \W , determine the scattered field us ∈ H1
loc(R2

+)
such that

∆us + k2(1 + q)nus = −k2qnui(·, y) in R2
+, (6.1)

us = 0 on Γ0, (6.2)

where the incident field ui is given by ui(x, y) = Gn(x, y), where Gn is the
Dirichlet Green’s function in the upper half plane R2

+ for ∆ + k2n, that is,

Gn(x, y) := G(x, y) + ũs(x, y), (6.3)

where G(x, y) := Φk(x, y) − Φk(x, y
∗) is the Dirichlet Green’s function for

∆ + k2, and y∗ = (y1,−y2) is the reflected point of y at R × {0}. Here,
Φk(x, y) is the fundamental solution to Helmholtz equation in R2, that is,

Φk(x, y) :=
i

4
H

(1)
0 (k|x− y|), x 6= y, (6.4)

where H
(1)
0 is the Hankel function of the first kind of order one. ũs is the

scattered field of the unperturbed problem by the incident field G(x, y), that
is, ũs vanishes for x2 = 0 and solves

∆ũs + k2nũs = k2(1− n)G(·, y) in R2
+. (6.5)

If we impose a suitable radiation condition introduced in [62], the unper-
turbed solution ũs is uniquely determined. Later, we will explain the exact
definition of this radiation condition (Definition 6.6). Furthermore, with
this radiation condition and an additional assumption (Assumption 6.9) the
well-posedness of the problem (6.1)–(6.2) was show in [23].

By the well-posedness of this perturbed scattering problem, we are able
to consider the inverse problem of determining the support of q from the
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measured scattered field us by the incident field ui. Let M := {(x1,m) :
a < x1 < b} for a < b and m > h. With the scattered field us, we define the
near field operator N : L2(M)→ L2(M) by

Ng(x) :=

∫
M
us(x, y)g(y)ds(y), x ∈M. (6.6)

The inverse problem we consider in this section is to determine the support
Q of q from the scattered field us(x, y) for all x and y in M with one k > 0.
In other words, given the near field operator N , determine Q. Accordingly,
we will prove the following two theorems.

Theorem 6.1. Let B ⊂ R2 be a bounded open set. We assume that there
exists qmin > 0 such that q ≥ qmin a.e. in Q. Then, for 0 < α < k2nminqmin,

B ⊂ Q ⇐⇒ αH∗BHB ≤fin ReN, (6.7)

where the operator HB : L2(M)→ L2(B) is given by

HBg(x) :=

∫
M
Gn(x, y)g(y)ds(y), x ∈ B, (6.8)

and the inequality on the right hand side in (6.7) denotes that ReN−αH∗BHB

has only finitely many negative eigenvalues, and the real part of an operator

A is self-adjoint operators given by ReA :=
1

2
(A+A∗).

Theorem 6.2. Let B ⊂ R2 be a bounded open set. We assume that there
exists qmin > 0 and qmax > 0 such that qmin ≤ q ≤ qmax a.e. in Q. Then,
for α > k2nmaxqmax,

Q ⊂ B ⇐⇒ ReN ≤fin αH
∗
BHB, (6.9)

This section is organized as follows. In Section 6.2, we recall a radiation
condition introduced in [62], and the well-posedness of the problem (6.1)–
(6.2). In Section 6.3, we give the correct functional analysis theorem for
the factorization method. In Section 6.4, we study a factorization of the
near field operator N and its properties. In Sections 6.5 and 6.6, we prove
Theorems 6.1 and 6.2, respectively. Finally in Section 6.7, we give numerical
examples based on Theorem 6.1.
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6.2 A radiation condition

In Section 6.2, we recall a radiation condition introduced in [62]. Let f ∈
L2(R2

+) have the compact support suppf in W . First, we consider the follow-
ing direct scattering problem: Determine the scattered field u ∈ H1

loc(R2
+)

such that
∆u+ k2nu = f in R2

+, (6.10)

u = 0 on Γ0. (6.11)

(6.10) is understood in the variational sense, that is,∫
R2
+

[
∇u · ∇ϕ− k2nuϕ

]
dx = −

∫
W
fϕdx, (6.12)

for all ϕ ∈ H1(R2
+), with compact support. In such a problem, it is natural to

impose the upward propagating radiation condition, that is, u(·, h) ∈ L∞(R)
and

u(x) = 2

∫
Γh

u(y)
∂Φk(x, y)

∂y2
ds(y), x2 > h. (6.13)

However, even with this condition we can not expect the uniqueness of this
problem. (see Example 2.3 of [62].) In order to introduce a suitable radiation
condition, [62] discussed limiting absorption solution of this problem, that is,
the limit of the solution uε of ∆uε+(k+iε)2nuε = f as ε→ 0. For the details
of an introduction of this radiation condition, we refer to [55, 56, 61, 62].

Let us prepare for the exact definition of the radiation condition in this
problem. We denote by CR := (0, 2π)× (0, R) for R ∈ (0,∞]. The function
u ∈ H1(CR) is called α-quasi periodic if u(2π, x2) = e2πiαu(0, x2). We de-
note by H1

α(CR) the subspace of the α-quasi periodic function in H1(CR),
and denote byH1

α,loc(C∞) := {u ∈ H1
loc(C∞) : u

∣∣
CR
∈ H1

α(CR) for all R > 0}.
Then, we consider the following problem, which arises from taking the quasi-
periodic Floquet Bloch transform (see, e.g., [73].) in (6.10)–(6.13): For
α ∈ (−1/2, 1/2], determine uα ∈ H1

α,loc(C∞) such that

∆uα + k2nuα = fα in C∞, (6.14)

uα = 0 on (0, 2π)× {0}, (6.15)

uα(x) =
∑
n∈Z

un(α)einx1+i
√
k2−(n+α)2(x2−h), x2 > h, (6.16)

where un(α) := (2π)−1
∫ 2π

0 uα(x1, h)e−inx1dx1 are the Fourier coefficients of

uα(·, h), and
√
k2 − (n+ α)2 = i

√
(n+ α)2 − k2 if n+α > k. (6.16) is called
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the Rayleigh expansion. But even with this condition the uniqueness of this
problem fails for some α ∈ (−1/2, 1/2]. Then, we call these α exceptional
values if there exists non-trivial solutions uα ∈ H1

α,loc(C∞) of (6.14)–(6.16)
with fα = 0. We set Ak := {α ∈ (−1/2, 1/2] : ∃l ∈ Z s.t. |α + l| = k}, and
make the following assumption:

Assumption 6.3. For every α ∈ Ak the solution of uα ∈ H1
α,loc(C∞) of

(6.14)–(6.16) with fα = 0 has to be zero.

The following properties of exceptional values was shown in Lemmas 4.2
and 5.6 of [62].

Lemma 6.4. Let Assumption 6.3 hold. Then, there exists only finitely many
exceptional values α ∈ (−1/2, 1/2]. Furthermore, if α is an exceptional
value, then so is −α. Therefore, the set of exceptional values can be described
by {αj : j ∈ J} where some J ⊂ Z is finite and α−j = −αj for j ∈ J . For
each exceptional value αj we define

Xj :=

{
φ ∈ H1

αj ,loc
(C∞) :

∆φ+ k2nφ = 0 in C∞, φ = 0 for x2 = 0,
φ satisfies the Rayleigh expansion (6.16)

}
Then, Xj are finite dimensional. We set mj = dimXj. Furthermore,
φ ∈ Xj is evanescent, that is, there exists c > 0 and δ > 0 such that
|φ(x)|, |∇φ(x)| ≤ ce−δ|x2| for all x ∈ C∞.

Next, we consider the following eigenvalue problem in Xj : Determine
d ∈ R and φ ∈ Xj such that

−i
∫
C∞

∂φ

∂x1
ψdx = dk

∫
C∞

nφψdx, (6.17)

for all ψ ∈ Xj . We denote by the eigenvalues dl,j and eigenfunction φl,j of
this problem, that is,

−i
∫
C∞

∂φl,j
∂x1

ψdx = dl,jk

∫
C∞

nφl,jψdx, (6.18)

for every l = 1, ...,mj and j ∈ J . We normalize the eigenfunction {φl,j : l =
1, ...,mj} such that

k

∫
C∞

nφl,jφl′,jdx = δl,l′ , (6.19)

for all l, l′. We assume that the wave number k > 0 is regular in the following
sense.

89



Definition 6.5. k > 0 is regular if dl,j 6= 0 for all l = 1, ...mj and j ∈ J .

Now we are ready to define the radiation condition.

Definition 6.6. Let Assumption 6.3 hold, and let k > 0 be regular in the
sense of Definition 6.5. We set

ψ±(x1) :=
1

2

[
1± 2

π

∫ x1/2

0

sint

t
dt

]
, x1 ∈ R. (6.20)

Then, u ∈ H1
loc(R2

+) satisfies the radiation condition if u satisfies the upward
propagating radiation condition (6.13), and has a decomposition in the form
u = u(1) + u(2) where u(1)

∣∣
R×(0,R)

∈ H1(R × (0, R)) for all R > 0, and

u(2) ∈ L∞(R2
+) has the following form

u(2)(x) = ψ+(x1)
∑
j∈J

∑
dl,j>0

al,jφl,j(x) + ψ−(x1)
∑
j∈J

∑
dl,j<0

al,jφl,j(x), (6.21)

where some al,j ∈ C, and {dl,j , φl,j : l = 1, ...,mj} are normalized eigenvalues
and eigenfunctions of the problem (6.18).

Remark 6.7. We can replace ψ± by any smooth functions ψ̃± such that∣∣∣ψ±(x1)− ψ̃±(x1)
∣∣∣ → 0, and

∣∣∣ d
dx1

ψ±(x1)− d
dx1

ψ̃±(x1)
∣∣∣ → 0 as |x1| → ∞

because (6.21) is of the form

u(2)(x) = ψ̃+(x1)
∑
j∈J

∑
dl,j>0

al,jφl,j(x) + ψ̃−(x1)
∑
j∈J

∑
dl,j<0

al,jφl,j(x)

+
(
ψ+(x1)− ψ̃+(x1)

)∑
j∈J

∑
dl,j>0

al,jφl,j(x)+
(
ψ−(x1)− ψ̃−(x1)

)∑
j∈J

∑
dl,j<0

al,jφl,j(x),

(6.22)
where the second term in the right-hand side of (6.22) is a H1-function,
which is the role of u(1).

The following was shown in Theorems 2.2, 6.6, and 6.8 of [62].

Theorem 6.8. For every f ∈ L2(R2
+) with the compact support suppf in W ,

there exists a unique solution uk+iε ∈ H1(R2
+) of the problem (6.10)–(6.11)

replacing k by k+iε. Furthermore, uk+iε converge as ε→ +0 in H1
loc(R2

+) to
some u ∈ H1

loc(R2
+) which satisfy (6.10)–(6.11) and the radiation condition

in the sense of Definition 6.6. Furthermore, the solution u of this problem
is uniquely determined.
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Furthermore, with the same radiation condition and the following addi-
tional assumption, the well-posedness of the perturbed scattering problem
of (6.10)–(6.11) was show in [23].

Assumption 6.9. We assume that k2 is not the point spectrum of 1
(1+q)n∆

in H1
0 (R2

+), that is, every v ∈ H1(R2
+) which satisfies

∆v + k2(1 + q)nv = 0 in R2
+, (6.23)

v = 0 on Γ0, (6.24)

has to vanishes for x2 > 0.

Theorem 6.10. Let Assumption 6.9 hold and let f ∈ L2(R2
+) such that

suppf = Q. Then, there exists a unique solution u ∈ H1
loc(R2

+) such that

∆u+ k2(1 + q)nu = f in R2
+, (6.25)

u = 0 on Γ0, (6.26)

and u satisfies the radiation condition in the sense of Definition 6.6.

By Theorem 6.10, the well-posedness of the perturbed scattering prob-
lem (6.1)–(6.2) with the radiation condition follows. Then, we are able to
consider the inverse problem of determining the support of q from the mea-
sured scattered field us by the incident field ui(x, y) = Gn(x, y). In the
following sections, we will discuss the inverse problem.

6.3 The factorization method

In Section 6.3, we mention the correct functional analysis theorem for the
factorization method. The following functional analytic theorem is given by
the almost same argument in Theorem 2.15 of [58].

Theorem 6.11. Let X ⊂ U ⊂ X∗ be a Gelfand triple with a Hilbert space
U and a reflexive Banach space X such that the imbedding is dense. Fur-
thermore, let Y be a second Hilbert space and let F : Y → Y , G : X → Y ,
T : X∗ → X be linear bounded operators such that

F = GTG∗. (6.27)

We make the following assumptions:

(1) G is compact with dense range in Y .
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(2) There exists t ∈ [0, 2π] such that Re(eitT ) has the form Re(eitT ) = C+
K with some compact operator K and some self-adjoint and positive
coercive operator C, i.e., there exists c > 0 such that

〈ϕ,Cϕ〉 ≥ c ‖ϕ‖2 for all ϕ ∈ X∗. (6.28)

(3) Im〈ϕ, Tϕ〉 > 0 for all ϕ ∈ Ran(G∗) with ϕ 6= 0.

Then, the operator F# :=
∣∣Re(eitF )

∣∣+ ImF is non-negative, and the ranges

of G : X → Y and F
1/2
# : Y → Y coincide with each other, that is, we have

the following range identity;

Ran(G) = Ran(F
1/2
# ). (6.29)

Here, the real part and the imaginary part of an operator A are self-
adjoint operators given by

ReA =
A+A∗

2
and ImA =

A−A∗

2i
. (6.30)

Remark 6.12. Here, we will mention a mistake in Theorem 2.1 of [72]. It
was claimed that one can replace the assumption for strongly positivity of
ImT by that for the injectivity of T , which is related to the independence of
transmission eigenvalues in inverse medium scattering problem. However,
this relacement of assumptions is not correct.

Here, we observe the following counterexample for Theorem 2.1 of [72].

Let G =

(
1 0 0 0
0 1 0 0

)
be a 2 × 4 matrix, and let T =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


be a 4× 4 matrix. Then, T is injective, but ImT = 0. We calculate

F = GTG∗ =

(
1 0 0 0
0 1 0 0

)
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




1 0
0 1
0 0
0 0

 =

(
0 0
0 0

)
,

(6.31)
which leads to

Ran(G) = Ran

(
1 0 0 0
0 1 0 0

)
6= Ran

(
0 0
0 0

)
= Ran(F

1/2
# ). (6.32)

In this section, we will prove Theorem 6.11 based on Theorem 2.15 of [58].
We also remark that Theorem 2.15 of [58] assumes the compactness of ImT ,
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while Theorem 6.11 of this section do not assume its compactness. The
independence of its compactness is important because the operator ImT is
not always compact in the case of inverse medium scattering problem with
complex valued contrast function. (See Theorem 4.5 of [58])

Before the proof of Theorem 6.11, we show the following lemma.

Lemma 6.13. Let X be a Hilbert space, and let T : X → X be linear
bounded, and let K : X → X be linear bounded injective. We assume that

Ran(T ) is closed subspace in X, and dimKer(T ) <∞. (6.33)

Then, there is a constant C > 0 such that

‖u‖2X ≤ C(‖Tu‖2X + ‖Ku‖2X) for all u ∈ X. (6.34)

Proof of Lemma 6.13. Assume that on contrary for any C > 0, there
exists a uc ∈ X such that

‖uc‖2X > C(‖Tuc‖2X + ‖Kuc‖2X). (6.35)

Then, we can choose a sequence (um)m∈N in X such that ‖um‖2 = 1 and
‖Tum‖2 + ‖Kum‖2 converges to zero as m → ∞. Since Ker(T ) is a finite
dimensional subspace in X, there exists an orthogonal complement Ker(T )⊥

of Ker(T ) such that X = Ker(T )⊕Ker(T )⊥. We denote P by an orthogonal
projection onto Ker(T )⊥. Since Ker(T )⊥ and Ran(T ) are closed subspaces
in X, the restrict operator T

∣∣
Ker(T )⊥

is injective and surjective from the

Banach space Ker(T )⊥ to the Banach space Ran(T ). Then by the closed
graph theorem, T

∣∣
Ker(T )⊥

is invertible bounded, which implies that there is

a constant C > 0 such that

‖Pum‖2 ≤ C
∥∥∥T ∣∣Ker(T )⊥

Pum

∥∥∥2
= C ‖Tum‖2 . (6.36)

Since K is injective and Ker(T ) is a finite dimensional subspace in X, there
is a constant C > 0 such that

‖v‖ ≤ C ‖Kv‖ for all v ∈ Ker(T ). (6.37)

Then, there is a constant C > 0 such that

‖(I − P )um‖2 ≤ C ‖K(I − P )um‖2 ≤ 2(C ‖Kum‖2 + ‖KPum‖2)

≤ 2C(‖Kum‖2 + ‖K‖2 ‖Pum‖2). (6.38)
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Therefore, by (6.36) and (6.38) there exists a constant C ′ > 0 such that

1 = ‖Pum‖2 + ‖(I − P )um‖2 ≤ C ′(‖Tum‖2 + ‖Kum‖2). (6.39)

As m→∞, the right-hand side of above inequality converges to zero, which
is a contradiction.

We will show Theorem 6.11.

Proof of Theorem 6.11. By the same argument of Part A (Reduction)
in the proof of Theorem 2.15 of [58], we can restrict ourselves to the case
X = U and C = I. Furthermore, we can also restrict ourselves to the case
G is injective. Indeed, let P : U → U be the orthogonal projection onto
Û := Ran(G∗). Then, PG∗ = G∗ and G = GP . By this, we can have the
factorization of the form

F = GPTPG∗ = ĜT̂ Ĝ∗, (6.40)

where Ĝ
∣∣
Û

: Û → Y and T̂ = PT
∣∣
Û

: Û → Û . Therefore, all of assumptions

(1)–(3) are satisfied. We remark that T̂ is not injective even if T is injective,
which leads to error in Theorem 2.1 of [72].

By the same argument in Part B, C, and D in the proof of Theorem 2.15
of [58], we can show that

F# = GT#G
∗, (6.41)

where T# = Re(eitT )D + ImT and D is some isomorphism from U onto
itself. It was also shown that the operator T# is non-negative on U in its
proof. By applying the inequality (4.5) of [57] to the non-negative operators
Re(eitT )D and ImT , there is a constant C > 0 such that

〈ϕ, T#ϕ〉 = 〈ϕ,Re(eitT )Dϕ〉+ 〈ϕ, ImTϕ〉

≥ C(
∥∥Re(eitT )Dϕ

∥∥2
+ ‖ImTϕ‖2) for all ϕ ∈ U.(6.42)

By assumption (2), Re(eitT )D is a Fredholm operator, and by assumption
(3), ImT is injective. Therefore by applying Lemma 6.13 to our operators,
there is a constant C ′ > 0 such that

C ′(
∥∥Re(eitT )Dϕ

∥∥2
+ ‖ImTϕ‖2) ≥ ‖ϕ‖2 for all ϕ ∈ U, (6.43)

which implies that the operator T# : U → U is positive coercive. Since we
can write

F# = F
1/2
# (F

1/2
# )∗ = GT#G

∗, (6.44)

then by applying Theorem 1.21 of [58], we conclude (6.29). We have shown
Theorem 6.11.
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6.4 A factorization of the near field operator

In Section 6.4, we discuss a factorization of the near field operator N . We
define the operator L : L2(Q)→ L2(M) by Lf := v

∣∣
M

where v is a radiating
solution (that is, v satisfies the radiation condition in the sense of Definition
6.6) such that

∆v + k2(1 + q)nv = −k2qnf, in R2
+, (6.45)

v = 0 on R× {0}. (6.46)

We define HQ : L2(M)→ L2(Q) by

HQg(x) :=

∫
M
Gn(x, y)g(y)ds(y), x ∈ Q. (6.47)

Then, by these we have N = LHQ. In order to obtain a symmetric factor-
ization of the near field operator N , we show the following symmetry of the
Green’s function Gn.

Lemma 6.14.
Gn(x, y) = Gn(y, x), x 6= y. (6.48)

Proof of Lemma 6.14. We take a small η > 0 such that B2η(x)∩B2η(y) =
∅ where Bε(z) ⊂ R2 is some open ball with center z and radius ε > 0. We
recall that Gn(z, y) = G(z, y)+ ũs(z, y) where G(z, y) = Φk(z, y)−Φk(z, y

∗)
and ũs(z, y) is a radiating solution of the problem (6.5) such that ũs(z, y) = 0
for z2 = 0. In the introduction of [62] ũs is given by ũs(z, y) = u(z, y) −
χ(|z−y|)G(z, y) where χ ∈ C∞(R+) satisfying χ(t) = 0 for 0 ≤ t ≤ η/2 and
χ(t) = 1 for t ≥ η, and u is a radiating solution such that u = 0 on R× {0}
and

∆u+ k2nu = f(·, y) in R2
+, (6.49)

u = 0 on R× {0}, (6.50)

where

f(·, y) :=
[
k2
(
1−n

)(
1−χ(|·−y|)

)
+∆χ(|·−y|)

]
G(·, y)+2∇χ(|·−y|)·∇G(·, y).

(6.51)
Then, we have Gn(z, y) = u(z, y) + (1− χ(|z− y|))G(z, y). By Theorem 6.8
we can take an solution uε ∈ H1(R2

+) of the problem (6.49)–(6.50) replacing
k by (k + iε) satisfying uε converges as ε → +0 in H1

loc(R2
+) to u. We set

Gn,ε(z, y) := uε(z, y) + (1 − χ(|z − y|))G(z, y), and Gn,ε(·, y) converges as
ε→ +0 to Gn(·, y) in H1

loc(R2
+). By a simple calculation, we have[

∆z+(k+iε)2n(z)
]
Gn,ε(z, y) = −δ(z, y)+(2kεi−ε2)n(z)

(
1−χ(|z−y|)

)
G(z, y).
(6.52)
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Let r > 0 be large enough such that x, y ∈ Br(0). By Green’s second
theorem with Gn,ε(·, x) and Gn,ε(·, y) in Br(0) ∩ R2

+ we have

−Gn,ε(y, x) + (2kεi− ε2)

∫
B2η(y)

uε(z, x)n(z)(1− χ(|z − y|))G(z, y)dz

+ Gn,ε(x, y)− (2kεi− ε2)

∫
B2η(x)

uε(z, y)n(z)(1− χ(|z − x|))G(z, x)dz

=

∫
Br(0)∩R2

+

Gn,ε(z, x)
[
∆z + (k + iε)2n(z)

]
Gn,ε(z, y)dz

−
∫
Br(0)∩R2

+

Gn,ε(z, y)
[
∆z + (k + iε)2n(z)

]
Gn,ε(z, x)dz

=

∫
∂Br(0)∩R2

+

uε(z, x)
∂uε(z, y)

∂νz
− uε(z, y)

∂uε(z, x)

∂νz
ds(z). (6.53)

Since uε ∈ H1(R2
+), the right hand side of (6.53) converges as r → ∞ to

zero. Then, as r →∞ in (6.53) we have

Gn,ε(x, y)−Gn,ε(y, x)

= (2kεi− ε2)

∫
B2η(x)

uε(z, y)n(z)(1− χ(|z − x|))G(z, x)dz

− (2kεi− ε2)

∫
B2η(y)

uε(z, x)n(z)(1− χ(|z − y|))G(z, y)dz (6.54)

Since uε converges as ε → +0 in H1
loc(R2

+) to u, the right hand side of
(6.54) converges to zero as ε→ +0. Therefore, we conclude that Gn(x, y) =
Gn(y, x) for x 6= y.

By the symmetricity of Gn,

〈HQg, f〉 =

∫
Q

{∫
M
Gn(x, y)g(y)ds(y)

}
f(x)dx

=

∫
M
g(y)

{∫
Q
Gn(x, y)f(x)dx

}
ds(y)

=

∫
M
g(y)

{∫
Q
Gn(y, x)f(x)dx

}
ds(y), (6.55)

which implies that

H∗Qf(x) =

∫
Q
Gn(x, y)f(y)dy, x ∈M. (6.56)
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We define T : L2(Q)→ L2(Q) by

Tf := k2qnf + k2qnv
∣∣
Q
, (6.57)

where v is a radiating solution of (6.45)–(6.46). Since Lf(x) is of the form

Lf(x) = v(x) =

∫
Q
Gn(x, y)k2q(y)n(y) (f(y) + v(y)) dy, (6.58)

we have
L = H∗QT. (6.59)

Therefore, we have the following symmetric factorization of N :

N = H∗QTHQ. (6.60)

We show the following lemma corresponding to assumptions of Theorem
6.11.

Lemma 6.15. (a) HQ is compact and injective.

(b) If there exists a constant qmin > 0 such that qmin ≤ q a.e. in Q, then T
has the form T = C+K where C is a self-adjoint and positive coercive
operator of the form Cf := k2qnf , and K is a compact operator of the
form Kf := k2qnv

∣∣
Q

.

(c) Im〈f, Tf〉 ≥ 0 for all f ∈ L2(Q).

(d) T is injective.

Proof of Lemma 6.15. (d) Let f ∈ L2(Q) and assume that Tf = 0,
i.e., k2qnf + k2qnv = 0 in Q. By this and (6.45), ∆v + k2nv = 0. By the
uniqueness (Theorem 6.8), v = 0 in R2

+ which implies that f = 0. Therefore,
T is injective.

(b) By the definition of T , it is obvious that T has such a form. Since n
and q are bounded below (that is, n ≥ nmin > 0 and q ≥ qmin > 0), C is a
self-adjoint and positive coercive operator. The compactness of the operator
K : L2(Q)→ L2(Q) arises from v

∣∣
Q
∈ H1(Q).

(a) From (d), (b), and the Fredholm theorem, we obtain that T is
bounded invertible. By this, it is sufficient to show that the operator L
is compact. By the trace theorem and v ∈ H1

loc(R2
+), Lf = v

∣∣
M
∈ H1/2(M),

which implies that the operator L : L2(Q)→ L2(M) is compact.
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To show the injectivity of HQ, let g ∈ L2(M) and assume that HQg(x) =∫
M Gn(x, y)g(y)ds(y) = 0 for x ∈ Q. We set w(x) :=

∫
M Gn(x, y)g(y)ds(y).

By the definition of w we have

∆w + k2nw = 0, in R2
+ \M, (6.61)

By unique continuation principle we have w = 0 in R2
+ \M . By the jump

relation (see e.g., Theorem 6.11 of [76]) we have 0 = ∂w+

∂ν −
∂w−
∂ν = g, which

conclude that the operator HQ is injective.
(c) For the proof of (c) we refer to Theorem 3.1 of [23]. By the definition

of T we have

Im〈f, Tf〉 = Im

∫
Q
fk2qnvdx = Im

∫
Q
v[∆ + k2n]vdx, (6.62)

where v is a radiating solution of the problem (6.45)–(6.46). We set ΩN :=
(−N,N)× (0, N s) where s > 0 is small enough and N > 0 is large enough.
By the same argument in Theorem 3.1 of [23] we have

Im〈f, Tf〉 = Im

∫
ΩN

v[∆ + k2n]vdx = Im

∫
ΩN

v∆vdx

≥

[
1

2π

∑
j∈J

∑
dl,j ,dl′,j>0

al,jal′,j

∫
Cφ(N)

φl,j
∂φl′,j
∂x1

dx

]

− Im

[
1

2π

∑
j∈J

∑
dl,j ,dl′,j<0

al,jal′,j

∫
Cφ(N)

φl,j
∂φl′,j
∂x1

dx

]
+ o(1), (6.63)

where some al,j ∈ C, and {dl,j , φl,j : l = 1, ...,mj} are normalized eigenvalues
and eigenfunctions of the problem (6.18). By Lemmas 6.3 and 6.4 of [62],
as N →∞ in (6.63) we have

Im〈f, Tf〉 ≥ k

2π

∑
j∈J

[ ∑
dl,j>0

|al,j |2dl,j −
∑
dl,j<0

|al,j |2dl,j

]
≥ 0, (6.64)

which concludes (c).

Remark 6.16. The strictly positivity of ImT is missing in Lemma 6.15
although we have the injectivity of T . From the viewpoint of Section 6.3,
we have to show the strictly positivity of ImT if we use the factorization
method, and we would expect the assumption of transmission eigenvalue for
Q in this case. However, even with its assumption the author of this paper
do not understand how to prove ImT > 0.
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We will show the following lemma.

Lemma 6.17. Let B and Q be bounded open sets in R2
+ such that R2

+ \ B
and R2

+ \Q is connected. Then,

(a) dim(Ran(H∗B)) =∞.

(b) If B ∩Q = ∅, then Ran(H∗B) ∩ Ran(H∗Q) = {0}.

Proof of Lemma 6.17. (a) By the same argument of the injectivity of
HQ in (a) of Lemma 6.15, one can show that H∗B is injective for general B.
Therefore, H∗B has dense range in L2(M).

(b) Let h ∈ Ran(H∗B) ∩ Ran(H∗Q). Then, there exists fB, fQ such that
h = H∗BfB = H∗QfQ. We set

vB(x) :=

∫
B
Gn(x, y)fB(y)dy, x ∈ R2

+ (6.65)

vQ(x) :=

∫
Q
Gn(x, y)fQ(y)dy, x ∈ R2

+ (6.66)

then, vB and vQ satisfies ∆vB + k2nvB = −fB, and ∆vQ + k2nvQ = −fQ,
respectively, and vB = vQ on M . By the unique continuation we have
vB = vQ in R2

+ \ (B ∩Q). Hence, we can define v ∈ H1
loc(R2

+) by

v :=


vB = vQ in R2

+ \ (B ∩Q)
vB in Q
vQ in B

(6.67)

and v is a radiating solution such that v = 0 for x2 = 0 and

∆v + k2nv = 0 in R2
+. (6.68)

By the uniqueness (Theorem 6.8), we have v = 0 in R2
+, which implies that

h = 0.

In the following sections, we will show Theorems 6.1 and 6.2 by using
these properties of the factorization of the near field operator N .

6.5 Proof of Theorem 6.1

In Section 6.5, we will show Theorem 6.1. Let B ⊂ Q, and let K :
L2(Q) → L2(Q) be a compact operator defined in (b) of Lemma 6.15. Let
V be the sum of eigenspaces of ReK associated to eigenvalues less than
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α − k2nminqmin. Since α − k2nminqmin < 0, V is a finite dimensional sub-
space, and for HQg ∈ V ⊥

〈ReNg, g〉 =

∫
Q
k2nq|HQg|2dx+ 〈(ReK)HQg,HQg〉

≥ k2nminqmin ‖HQg‖2 + (α− k2nminqmin) ‖HQg‖2

≥ α ‖HQg‖2 ≥ α ‖HBg‖2 . (6.69)

Since for g ∈ L2(M)

HQg ∈ V ⊥ ⇐⇒ g ∈ (H∗QV )⊥, (6.70)

and dim(H∗QV ) ≤ dim(V ) < ∞, we have by Corollary 3.3 of [38] that
αH∗BHB ≤fin ReN .

Let now B 6⊂ Q and assume on the contrary αH∗BHB ≤fin ReN , that
is, by Corollary 3.3 of [38] there exists a finite dimensional subspace W in
L2(M) such that

〈(ReN − αH∗BHB)w,w〉 ≥ 0, (6.71)

for all w ∈ W⊥. Since B 6⊂ Q, we can take a small open domain B0 ⊂ B
such that B0 ∩Q = ∅, which implies that for all w ∈W⊥

α ‖HB0w‖
2 ≤ α ‖HBw‖2

≤ 〈(ReN)w,w〉
= 〈(ReT )HQw,HQw〉
≤ ‖ReT‖ ‖HQw‖2 . (6.72)

By (a) of Lemma 4.7 in [38], we have

Ran(H∗B0
) 6⊆ Ran(H∗Q) +W = Ran(H∗Q, PW ), (6.73)

where the operator (H∗Q, PW ) : L2(Q) × L2(M) → L2(M) is defined by

(H∗Q, PW )

(
f
g

)
:= H∗Qf +PW g, and PW : L2(M)→ L2(M) is the orthog-

onal projection onto W . Lemma 4.6 of [38] implies that for any C > 0 there
exists a wc such that

‖HB0wc‖
2 > C2

∥∥∥∥( HQ

PV

)
wc

∥∥∥∥2

= C2(‖HQwc‖2 + ‖PWwc‖2). (6.74)

Hence, there exists a sequence (wm)m∈N in L2(M) such that ‖HB0wm‖ → ∞
and ‖HQwm‖+‖PV wm‖ → 0 as m→∞. Setting w̃m := wm−PWwm ∈W⊥
we have as m→∞,

‖HB0w̃m‖ ≥ ‖HB0wm‖ − ‖HB0‖ ‖PWwm‖ → ∞, (6.75)
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‖HQw̃m‖ ≤ ‖HQwm‖+ ‖HQ‖ ‖PWwm‖ → 0. (6.76)

This contradicts (6.72). Therefore, we have αH∗BHB 6≤fin ReN . Theorem
6.1 has been shown.

By the same argument in Theorem 6.1 we can show the following.

Corollary 6.18. Let B ⊂ R2 be a bounded open set. We assume that
there exists qmax < 0 such that q ≤ qmax a.e. in Q. Then for 0 < α <
k2nmin|qmax|,

B ⊂ Q ⇐⇒ αH∗BHB ≤fin −ReN, (6.77)

6.6 Proof of Theorem 6.2

In Section 6.6, we will show Theorem 6.2. Let Q ⊂ B. Let V be the sum of
eigenspaces of ReK associated to eigenvalues larger than α − k2nmaxqmax.
Since α−k2nmaxqmax > 0, V is a finite dimensional subspace and for HQg ∈
V ⊥

〈ReNg, g〉 =

∫
Q
k2nq|HQg|2dx+ 〈(ReK)HQg,HQg〉

≤ k2nmaxqmax ‖HQg‖2 + (α− k2nmaxqmax) ‖HQg‖2

≤ α ‖HQg‖2 ≤ α ‖HBg‖2 . (6.78)

Since for g ∈ L2(M)

HQg ∈ V ⊥ ⇐⇒ g ∈ (H∗QV )⊥, (6.79)

and dim(H∗QV ) ≤ dim(V ) < ∞, we have by Corollary 3.3 of [38] that
ReN ≤fin αH

∗
BHB.

Let now Q 6⊂ B and assume on the contrary ReN ≤fin αH∗BHB, that
is, by Corollary 3.3 of [38] there exists a finite dimensional subspace W in
L2(M) such that

〈(αH∗BHB − ReN)w,w〉 ≥ 0, (6.80)

for all w ∈ W⊥. Since Q 6⊂ B, we can take a small open domain Q0 ⊂ Q
such that Q0 ∩ B = ∅. Let V be the sum of eigenspaces of ReK associated
to eigenvalues less than −(k2nminqmin/2). Then, V is a finite dimensional
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subspace and for w ∈ (H∗QV )⊥ ∩W⊥ = (H∗QV ∪W )⊥ we have

α ‖HBw‖2

≥ 〈(ReN)w,w〉

=

∫
Q
k2nq|HQw|2dx+ 〈(ReK)HQw,HQw〉

≥ k2nminqmin ‖HQw‖2 − (k2nminqmin/2) ‖HQw‖2

= (k2nminqmin/2) ‖HQw‖2

≥ (k2nminqmin/2) ‖HQ0w‖
2 , (6.81)

and dim(H∗QV ∪W ) <∞. By the same argument replacing Q, B0, and W
in the proof of Theorem 6.1 by B, Q0, and (H∗QV ∪W ), respectively, there

exists a sequence (w̃m)m∈N in (H∗QV ∪W )⊥ such that ‖HQ0w̃m‖ → ∞ and
‖HBw̃m‖ → 0 as m → ∞, which contradicts (6.81). Therefore, we have
ReN 6≤fin αH

∗
BHB. Theorem 6.2 has been shown.

By the same argument in Theorem 6.2 we can show the following.

Corollary 6.19. Let B ⊂ R2 be a bounded open set. We assume that there
exists qmin < 0 and qmax < 0 such that qmin ≤ q ≤ qmax a.e. in Q. Then
for α > k2nmax|qmin|,

Q ⊂ B ⇐⇒ −ReN ≤fin αH
∗
BHB, (6.82)

6.7 Numerical examples

In Section 6.7, we give the numerical examples based on Theorem 6.1. We
consider the following two supports Q1 and Q2 of functions q1, q2 (see Figure
8):

(1) Q1 =
{

(x1, x2)|(x1 − 0.5)2 + (x2 − 0.5)2 < (0.2)2
}

(2) Q2 =
{

(x1, x2)| ((x1 − 0.5)/0.15)2 + ((x2 − 0.6)/0.3)2 < 1
}

where q1 and q2 are defined by

qj(x) :=

{
1 for x ∈ Qj
0 for x /∈ Qj

(6.83)

Based on Theorem 6.1, the indicator function in our examples is given
by

I(B) := # {negative eigenvalues of ReN − αH∗BHB} (6.84)
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We consider the sampling region by [0, R] × [0, R] with some R > 0. The
test domain B is given by the small square Bi,j := zi,j + [−R/2M,R/2M ]2

where the location zi,j = (Ri/M,Rj/M) (i, j = 1, ...,M) and M is some
large number.

The near field operator N is discretized by the matrix

N ≈ b− a
d

(
us(xl, xp)

)
1≤l,p≤d ∈ C

d×d (6.85)

where xl =
(
a+ (b−a)l

d ,m
)
, and xp =

(
a+ (b−a)p

d ,m
)
, and the scattered field

us is given by solving the following integral equation

us(x, z) = k2

∫
Q
q(y)n(y)us(y, z)Gn(x, y)dy+k2

∫
Q
q(y)n(y)Gn(y, z)Gn(x, y)dy.

(6.86)
In our examples we fix R = 1, M = 100, d = 30, a = −25, b = 25, m = 20,
and n ≡ 1. Figure 9 is given by plotting the values of the indicator function

Isquare(zi,j) := I(Bi,j), i, j = 1, ..., 100, (6.87)

for two different supports Q1 and Q2 of true functions q1 and q2, and for
two different parameters α = 10, 20 in the case of wavenumber k = 5.

Q1 Q2

Figure 8: The original shape
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Q1, α = 10 Q1, α = 20

Q2, α = 10 Q2, α = 20

Figure 9: Reconstruction by the indicator function Isquare in the case of
wavenumber k = 5

104



7 Inverse medium scattering problems with Kalman
filter techniques I. Linear case

7.1 Introduction

The inverse scattering problem is the problem to determine unknown scat-
terers by measuring scattered waves that is generated by sending incident
waves far away from scatterers. It is of importance for many applications,
for example medical imaging, nondestructive testing, remote exploration,
and geophysical prospecting. Due to many applications, the inverse scat-
tering problem has been studied in various ways. For further readings, we
refer to the following books [11, 16, 18, 52, 78], which include the summary
of classical and recent progress of the inverse scattering problem.

We begin with the mathematical formulation of the scattering problem.
Let k > 0 be the wave number, and let θ ∈ S1 be incident direction. We
denote the incident field uinc(·, θ) with the direction θ by the plane wave of
the form

uinc(x, θ) := eikx·θ, x ∈ R2. (7.1)

Let Q be a bounded open set and let its exterior R2\Q be connected. Let q ∈
L∞(Rd) be real valued with a compact support such that Q = supp q. Then,
the direct scattering problem is to determine the total field u = usca + uinc

such that
∆u+ k2(1 + q)u = 0 in R2, (7.2)

lim
r→∞

√
r

(
∂usca

∂r
− ikusca

)
= 0, (7.3)

where r = |x|. The Sommerfeld radiation condition (7.3) holds uniformly in
all directions x̂ := x

|x| . Furthermore, the problem (7.2)–(7.3) is equivalent to
the Lippmann-Schwinger integral equation

u(x, θ) = uinc(x) + k2

∫
Q
q(y)u(y)Φ(x, y)dy, (7.4)

where Φ(x, y) denotes the fundamental solution to Helmholtz equation in
R2, that is,

Φ(x, y) :=
i

4
H

(1)
0 (k|x− y|), x 6= y, (7.5)

where H
(1)
0 is the Hankel function of the first kind of order one. It is well

known that there exists a unique solution usca of the problem (7.2)–(7.3),
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and it has the following asymptotic behaviour (see e.g., Chapter 8 of [18]),

usca(x) =
eikr√
r

{
u∞(x̂, θ) +O

(
1/r
)}
, r →∞, x̂ :=

x

|x|
. (7.6)

The function u∞ is called the far field pattern of usca, and it has the form

u∞(x̂, θ) =
k2

4π

∫
Q

e−ikx̂·yu(y, θ)q(y)dy =: Fq(x̂, θ), (7.7)

where the far field mapping F : L2(Q) → L2(S1 × S1) is defined in the
second equality. For further details of these direct scattering problems, we
refer to Chapter 8 of [18]. The inverse scattering problem we consider here
is to reconstruct the function q from the far field pattern u∞(x̂, θn) for all
x̂ ∈ S1, several incident directions {θn}Nn=1 ⊂ S1 with some N ∈ N, and one
fixed wave number k > 0.

The equation (7.7) is nonlinear, that is, the far field mappings F is non-
linear because the function u(y, θ) depends on q. Existing methods for solv-
ing nonlinear inverse problem can be roughly categorized into two groups:
iterative optimization methods and qualitative methods. The iterative op-
timization method (see e.g., [5, 18, 30, 42, 51]) does not require a lot of
data, however it require the initial guess which is the starting point of op-
timization. It must be appropriately chosen by a priori knowledge of the
unknown function q, otherwise, the iterative solution could not converge
to the true function. On the other hand, the qualitative method (see e.g.,
[17, 33, 43, 44, 58, 78, 85]) such as the linear sampling method, the mono-
tonicity method, the no-response test, the probe method, the factorization
method, and the singular sources method, does not require the initial guess
and it is computationally faster than the iterative method. However, the
disadvantage of the qualitative method is to require a lot of data and to
have difficulty in the case of the scatterer consisting of several components
with different physical properties (see e.g., [22, 64]).

If the total field u in (7.7) is replaced by the incident field uinc, the
nonlinear equation (7.7) is transformed into the linear equation

u∞B (x̂, θ) =
k2

4π

∫
Q

e−ikx̂·yuinc(y, θ)q(y)dy =: FBq(x̂, θ), (7.8)

which is known as the Born approximation. The function u∞B is a good
approximation of the far field pattern u∞ when k > 0 and the value of q are
very small. Another interpretation is that the Born approximation is the
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Fréchet derivative of the far field mapping F at q = 0. For further readings
of the inverse scattering problem with the Born approximation, we refer to
[5, 6, 18, 54, 83]. In this section, we study the linear integral equation (7.8)
instead of the nonlinear one (7.7).

Although the inverse scattering problem became linear by the Born ap-
proximation, the linear equation (7.8) is ill-posed, which means there does
not exist the inverse F−1

B of the operator FB. A common technique to
solve linear and ill-posed inverse problems is the Tikhonov regularization
method (see e.g., [11, 35, 67, 78]). A natural approach applying regulariza-
tion method to our situation is to put all available measurements {u∞B,n}Nn=1

and all far field mappings {FB,n}Nn=1, where the index n corresponds to some

incident direction θn, into one long vector ~u∞ and ~FB, respectively, and to
apply the Tikhonov regularization method to the big system ~u∞ = ~FBq.
We shall call this way the Full data Tikhonov.

In this section, we propose the reconstruction scheme based on Kalman
filter techniques. The Kalman filter (see the original paper [50]) is the algo-
rithm to estimate the unknown state in the dynamics system by using the
sequential measurements observed over time. It has many applications such
as navigations and tracking objects, and for further readings, we refer to
[31, 48, 50, 78].

The contributions of this section are followings.

(A) We propose the reconstruction algorithm for solving the linear in-
verse scattering problem (7.8) based on the Kalman Filter (see (7.44)–
(7.46)).

(B) We show that in the linear problem, the Full data Tikhonov is equiv-
alent to the Kalman Filter (see Theorem 7.4).

(A) means that we can estimate the unknown function q every time to
observe the far field pattern u∞B,n with one incident direction θn without

waiting for all data {u∞B,n}Nn=1. Furthermore, (B) means that the solution

qKFN of the Kalman filter after giving all data coincides with the solution
qFTN of the Full data Tikhonov with the same initial guess. The advantage
of the Kalman Filter over the Full data Tikhonov is that we do not require
to construct the big system ~u∞ = ~FBq, which reduces computational costs.
Instead of the big system, we update not only state, but also the norm of the
state space, which is associated with the update of the covariance matrices
of the state in the statistical viewpoint (see e.g., Chapter 5 of [21]).

This section is organized as follows. In Section 7.2, we briefly recall the
Tikhonov regularization theory. In Sections 7.3, we give the algorithm of
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the Full data Tikhonov. In Section 7.4, we give the algorithm of the Kalman
filter, and show that it is equivalent to the Full data Tikhonov discussed in
the previous section. Finally in Section 7.5, we give numerical examples to
demonstrate our theoretical results.

7.2 Tikhonov regularization method

Tikhonov regularization is the method to provide the stable approximate
solution for linear and ill-posed inverse problem. In this section, we briefly
recall the regularized approach. For further readings, we refer to [11, 35, 67,
78]. In Sections 7.2–7.5, we consider the general functional analytic situation
of our inverse scattering problem.

Let X and Y be Hilbert spaces over complex variables C, which are as-
sociated with the state space L2(Q) of the inhomogeneous medium function
q, and the observation space L2(S1) of the far field pattern u∞, respectively,
and let A : X → Y be a compact linear operator from X to Y , which is
the observation operator FB : L2(Q) → L2(S1) defined in (7.8) as the far
field mapping. We consider the following problem to determine ϕ ∈ X given
f ∈ Y .

Aϕ = f. (7.9)

Since the observation operator A is not generally invertible, the equation
(7.9) is replaced by

αϕ+A∗Aϕ = A∗f, (7.10)

which was derived from the multiplication with the adjoint A∗ of the oper-
ator A and the addition of αϕ where the regularization parameter α > 0
in (7.9). We call the solution ϕα of the equation (7.10) the regularized so-
lution of (7.9). The following lemma is well known as the properties of the
regularized solution ϕα (see e.g., Chapter 4 of [18] and Chapter 3 of [78]).

Lemma 7.1. Let X and Y be Hilbert spaces and let A : X → Y be a compact
linear operator from X to Y . Then, followings hold.

(i) The operator (αI +A∗A) is bounded invertible, and

ϕα := (αI +A∗A)−1A∗f, (7.11)

is the unique solution of (7.10).

(ii) The solution ϕα defined in (7.11) is the unique solution of the following
minimization problem.

minϕ∈X

{
α ‖ϕ‖2X + ‖f −Aϕ‖2Y

}
. (7.12)
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(iii) If f ∈ R(A), then there exists C = Cf such that

‖ϕα‖ ≤ C, α > 0, (7.13)

and if f /∈ R(A), then ‖ϕα‖X →∞ as α→ 0.

We observe the above Lemma in the case when X is finite-dimensional
and f is of the form f = Aϕtrue where ϕtrue is the true solution of the
problem (7.9). In this case, the regularized solution ϕα of (7.9) converges
as α→ 0 to ϕleast defined by

ϕleast := A†Aϕtrue, (7.14)

where the operator A† is the pseudo inverse of the operator A defined by
A† := (A∗A)−1A∗. In finite-dimensional case of the space X, the operator
(A∗A)−1A∗ : Y → R(A∗) is well defined since A∗A : R(A∗) → R(A∗) is
bijective. ϕleast is known as the least squares solution, that is, it satisfies∥∥∥Aϕleast − f∥∥∥ = minϕ∈X {‖Aϕ− f‖Y } , (7.15)

which means that in the ill-posed problem of (7.9), ϕleast is the best possible
solution in the sense of a taking a smallest norm of ‖Aϕ− f‖Y . Furthermore,
if the operator A is injective, then the least squares solution ϕleast coincides
with the true solution ϕtrue because A†A is an identity operator. For details
of the least squares solution, we refer to Section 4.3 of [34] and Section 3.2
of [78].

7.3 Full data Tikhonov

The natural approach for solving the equation (7.8) is to put all available
measurements {u∞B,n}Nn=1 and all far field mappings {FB,n}Nn=1, where the

index n is associated with some incident angle θn ∈ S1, into one long vector
~u∞B and ~FB, respectively, and to employ the regularized approach. In order
to study the above general situation, let f1, ..., fN ∈ Y be measurements,
let A1, ..., AN be observation operators, and let us consider the problem to
determine ϕ ∈ X such that

Anϕ = fn, (7.16)

for all n = 1, ..., N . Now, we assume that we have the initial guess ϕ0 ∈
X, which is the starting point of the algorithm, and is usually determined
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by a priori information of the true solution ϕtrue. Then, we consider the
minimization problem of the following functional.

JFull,N (ϕ) := α ‖ϕ− ϕ0‖2X +
∥∥∥~f − ~Aϕ

∥∥∥2

Y N ,R−1

= α ‖ϕ− ϕ0‖2X +

N∑
n=1

‖fn −Anϕ‖2Y,R−1 , (7.17)

where ~f :=

 f1
...
fN

, and ~A :=

 A1
...
AN

. The norm ‖·‖2Y,R−1 := 〈·, R−1·〉Y

is a weighted norm with a positive definite symmetric invertible operator
R : Y → Y , which is interpreted as the error covariance matrices of the
observation distribution from a statistical viewpoint in the case when Y is
the Euclidean space (see e.g., Chapter 5 of [21]). With ϕ̃ = ϕ − ϕ0, the
problem (7.17) is transformed into

J̃Full,N (ϕ̃) := α ‖ϕ̃‖2X +
∥∥∥(~f − ~Aϕ0)− ~Aϕ̃

∥∥∥2

Y N
. (7.18)

By Lemma 7.1, the minimizer ϕ̃α of (7.18) is given by

ϕ̃α = (αI + ~A∗ ~A)−1 ~A∗
(
~f − ~Aϕ0

)
, (7.19)

which implies that

ϕFTN := ϕ0 + (αI + ~A∗ ~A)−1 ~A∗
(
~f − ~Aϕ0

)
, (7.20)

is the minimizer of (7.17). We call this the Full data Tikhonov. Here, ~A∗ is
the adjoint operator with respect to 〈·, ·〉X and 〈·, ·〉Y N ,R−1 . We calculate

〈~f, ~Aϕ〉Y N ,R−1 =

N∑
n=1

〈fn, R−1Anϕ〉Y

=

N∑
n=1

〈AHn R−1fn, ϕ〉X , (7.21)

which implies that
~A∗ =

(
AH1 R

−1, ..., AHNR
−1
)
. (7.22)

where AHn is the adjoint operator with respect to usual scalar products 〈·, ·〉X
and 〈·, ·〉Y . Then, the Full data Tikhonov solution in (7.20) is of the form

ϕFTN = ϕ0 +

(
αI +

N∑
n=1

AHn R
−1An

)−1( N∑
n=1

AHn R
−1 (fn −Anϕ0)

)
. (7.23)
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7.4 Kalman filter

The Kalman filter is the algorithm to estimate the unknown state in the
dynamics system by using the sequential measurements observed over time.
In the usual Kalman filter, the model operator to describe the process of the
state in the dynamics system is defined (see e.g., Chapter 5 of [78]). In our
problem, it corresponds to the identity mapping because unknown function
q does not develop over time.

Let us formulate the Kalman filter algorithm based on the functional
analytic situation using the same notation described in Sections 7.2 and
7.3. In [21], the similar argument of followings was discussed in the special
case when X and Y are the Euclidean spaces. In this section, we discuss
more general situation, that is, the Hilbert space over complex variables C,
which is applicable to our inverse scattering problem. First, we consider the
following minimization problem when one measurement f1 ∈ Y , observation
operator A1, and the initial guess ϕ0 ∈ X are given.

J1(ϕ) := α ‖ϕ− ϕ0‖2X + ‖f1 −A1ϕ‖2Y,R−1 . (7.24)

By using a weighted norm ‖·‖2
X,B−1

0
:= 〈·, B−1

0 ·〉X where B0 := 1
αI, the

functional J1 can be of the form

J1(ϕ) = ‖ϕ− ϕ0‖2X,B−1
0

+ ‖f1 −A1ϕ‖2Y,R−1 , (7.25)

and its unique minimizer ϕ1 is given by

ϕ1 := ϕ0 + (I +A∗1A1)−1A∗1 (f −A1ϕ0) , (7.26)

where A∗1 is the adjoint operator with respect to weighted scalar products
〈·, ·〉X,B−1

0
and 〈·, ·〉Y,R−1 . We calculate

〈f,A1ϕ〉Y,R−1 = 〈f,R−1A1ϕ〉Y
= 〈AH1 R−1f, ϕ〉X
= 〈B0A

H
1 R
−1f, ϕ〉X,B−1

0
, (7.27)

which implies that
A∗1 = B0A

H
1 R
−1, (7.28)

where AH1 is the adjoint operator with respect to usual scalar products 〈·, ·〉X
and 〈·, ·〉Y . Then, we have

ϕ1 = ϕ0 + (I +B0A
H
1 R
−1A1)−1B0A

H
1 R
−1 (f −A1ϕ0)

= ϕ0 + (B−1
0 +AH1 R

−1A1)−1AH1 R
−1 (f1 −A1ϕ0) . (7.29)
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Next, we assume that one more measurement f2 ∈ Y and observation oper-
ator H2 are given. The functional for two measurements is given by

JFull,2(ϕ) := ‖ϕ− ϕ0‖2X,B−1
0

+ ‖f1 −A1ϕ‖2Y,R−1 + ‖f2 −A2ϕ‖2Y,R−1 .

= J1(ϕ) + ‖f2 −A2ϕ‖2Y,R−1 . (7.30)

The question is whether we can find B1 such that JFull,2(ϕ) = J2(ϕ) + c
where c is a constant number independently of ϕ, and the functional J2(ϕ)
is defined by

J2(ϕ) = ‖ϕ− ϕ1‖2X,B1
+ ‖f2 −A2ϕ‖2Y,R−1 , (7.31)

where ϕ1 is defined by (7.29). To answer this question, we show the following
lemma.

Lemma 7.2. Set B1 :=
(
B−1

0 +AH1 R
−1A1

)−1
. Then,

J1(ϕ) = ‖ϕ− ϕ1‖2X,B−1
1

+ c, (7.32)

where c is some constant independently of ϕ.

Proof. We calculate

J1(ϕ) =
〈
ϕ− ϕ0, B

−1
0 (ϕ− ϕ0)

〉
X

+
〈
f1 −A1ϕ,R

−1 (f1 −A1ϕ)
〉
Y

=
〈
ϕ,B−1

0 ϕ
〉
X
− 2Re

〈
ϕ,B−1

0 ϕ0

〉
X

+
〈
ϕ0, B

−1
0 ϕ0

〉
X

+
〈
f1, R

−1f1

〉
Y
− 2Re

〈
ϕ,AH1 R

−1f1

〉
X

+
〈
ϕ,AH1 R

−1A1ϕ
〉
X
.

=
〈
ϕ,B−1

0 ϕ
〉
X
− 2Re

〈
ϕ,B−1

0 ϕ0

〉
X
− 2Re

〈
ϕ,AH1 R

−1f1

〉
X

+
〈
ϕ,AH1 R

−1A1ϕ
〉
X

+ c0

=
〈
ϕ,B−1

1 ϕ
〉
X
− 2Re

〈
ϕ,B−1

0 ϕ0

〉
X
− 2Re

〈
ϕ,AH1 R

−1f1

〉
X

+ c0,

(7.33)

where we used B−1
1 =

(
B−1

0 +AH1 R
−1A1

)
. By (7.29), we have

B−1
1 (ϕ− ϕ1) = B−1

1 ϕ−B−1
1 ϕ1

= B−1
1 ϕ−

(
B−1

0 +AH1 R
−1A1

)
ϕ0 −AH1 R−1 (f −A1ϕ0)

= B−1
1 ϕ−B−1

0 ϕ0 −AH1 R−1f1. (7.34)
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By using (7.34) and the self-adjointness of B−1
1 , we have〈

ϕ− ϕ1, B
−1
1 (ϕ− ϕ1)

〉
X

=
〈
ϕ− ϕ1, B

−1
1 ϕ−B−1

0 ϕ0 −AH1 R−1f1

〉
X

=
〈
B−1

1 (ϕ− ϕ1) , ϕ
〉
X
−
〈
ϕ,B−1

0 ϕ0

〉
X
−
〈
ϕ,AH1 R

−1f
〉
X

+ c1

=
〈
B−1

1 ϕ−B−1
0 ϕ0 −AH1 R−1f, ϕ

〉
X

−
〈
ϕ,B−1

0 ϕ0

〉
X
−
〈
ϕ,AH1 R

−1f
〉
X

+ c1

=
〈
ϕ,B−1

1 ϕ
〉
X
− 2Re

〈
ϕ,B−1

0 ϕ0

〉
X
− 2Re

〈
ϕ,AH1 R

−1f1

〉
X

+ c1.

(7.35)

With (7.33) and (7.35), J1(ϕ) is of the form

J1(ϕ) =
〈
ϕ− ϕ1, B

−1
1 (ϕ− ϕ1)

〉
X

+ c2. (7.36)

where c0, c1, and c2 are some constant numbers independently of ϕ. Lemma
7.2 has been shown.

This lemma tells us that JFull,2(ϕ) is equivalent to J2(ϕ) in the sense of
minimization with respect to ϕ. By the same argument in (7.25)–(7.29), its
unique minimizer ϕ2 is given by

ϕ2 := ϕ1 + (B−1
1 +AH2 R

−1A2)−1AH2 R
−1 (f2 −A2ϕ1) . (7.37)

We can repeat the above argument (7.24)–(7.37) until measurements f1, ..., fn
and observation operators A1, ..., An are given. Then, we have following al-
gorithms

ϕn := ϕn−1 +Kn (fn −Anϕn−1) , (7.38)

where the operator

Kn :=
(
B−1
n−1 +AHn R

−1An
)−1

AHn R
−1, (7.39)

is called the Kalman gain matrix, and Bn is defined by

Bn :=
(
B−1
n−1 +AHn R

−1An
)−1

. (7.40)

Since we have(
B−1
n−1 +AHn R

−1An
)
Bn−1A

H
n = AHn +AHn R

−1AnBn−1A
H
n

= AHn R
−1
(
R+AnBn−1A

H
n

)
,

the Kalman gain matrix Kn can be of the form

Kn = Bn−1A
H
n

(
R+AnBn−1A

H
n

)−1
.

Here, we show the following lemma that the operator Bn has another form.
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Lemma 7.3. Let Kn be the Kalman gain matrix defined in (7.39). Then,
the operator Bn has the following form

Bn = (I −KnAn)Bn−1. (7.41)

Proof. By multiplying (7.39) by
(
B−1
n−1 +AHn R

−1An
)

from the left hand
side, and by An from right hand side, we have(

B−1
n−1 +AHn R

−1An
)
KnAn = AHn R

−1An, (7.42)

which implies that by using (7.40)

B−1
n (I −KnAn) =

(
B−1
n−1 +AHn R

−1An
)

(I −KnAn)

=
(
B−1
n−1 +AHn R

−1An
)
−AHn R−1An

= B−1
n−1. (7.43)

Multiplying (7.43) by Bn from the left hand side, and by Bn−1 from the
right hand side, we finally get (7.41).

We summarize the update formula in the following.

ϕKFn := ϕKFn−1 +Kn

(
fn −AnϕKFn−1

)
, (7.44)

Kn := Bn−1A
H
n

(
R+AnBn−1A

H
n

)−1
, (7.45)

Bn :=
(
I −KnA

H
n

)
Bn−1, (7.46)

for n = 1, ..., N , where ϕKF0 := ϕ0 and B0 := 1
αI. We call this the Kalman

filter.
We observe the above algorithm. It means that we can estimate the

state ϕ every time n to observe one measurement fn without waiting all
measurements {fn}Nn=1. It includes not only the update (7.44) of the state
ϕ, but also the update (7.46) of the weight B of the norm, which plays the
role of keeping the information of the previous state. The weight B is also
interpreted as the error covariance matrices of the state distribution from
statistical viewpoint (see e.g., Chapter 5 of [21]).

Finally in this section, we show the equivalence of Full data Tikhonov
and Kalman filter when all observation operators An are linear.

Theorem 7.4. For measurements f1, ..., fN , linear operators A1, ..., AN ,
and the initial guess ϕ0 ∈ X, the final sate of the Kalman filter given by
(7.44)–(7.46) is equivalent to the state of the Full data Tikhonov given by
(7.23), that is

ϕKFN = ϕFTN . (7.47)

114



Proof. It is sufficient to show that

JFull,N (ϕ) =
∥∥ϕ− ϕKFN ∥∥2

X,B−1
N

+ cN , (7.48)

where cN is some constant independently of ϕ. We will prove (7.48) by the
induction. The case of N = 1 has already been shown in Lemma 7.2.

We assume that (7.48) in the case of n ∈ N with 1 ≤ n ≤ N − 1 holds,
that is,

JFull,n(ϕ) =
∥∥ϕ− ϕKFn ∥∥2

X,B−1
n

+ cn, (7.49)

where cN−1 is some constant. Then, we have

JFull,n+1(ϕ) = JFull,n(ϕ) + ‖fn+1 −An+1ϕ‖2Y,R−1

=
∥∥ϕ− ϕKFn ∥∥2

X,B−1
n

+ ‖fn+1 −An+1ϕ‖2Y,R−1 + cn.(7.50)

By the same argument in Lemma 7.2 replacing B0, ϕ0, f1, A1 by Bn, ϕn,
fn+1, An+1, respectively, we have that JFull,n+1(ϕ) =

∥∥ϕ− ϕKFn+1

∥∥2

X,B−1
n+1

+

cn+1. Theorem 7.4 has been shown.

7.5 Numerical examples

In this section, we give numerical examples of the algorithm which have been
discussed in above sections. We recall that our inverse scattering problem
is to solve the linear integral equation (7.8) with respect to q when the
measurements u∞B,n := u∞B (·, θn) for n = 1, ..., N are given.

FB,nq = u∞(·, θn), (7.51)

where the operator FB,n : L2(Q)→ L∞(S1) is defined by

FB,nq(x̂) = FBq(x̂, θn) :=
k2

4π

∫
Q

e−ikx̂·yuinc(y, θn)q(y)dy. (7.52)

Here, the incident direction is given by θn := (cos(2πn/N), sin(2πn/N)) for
each n = 1, ..., N . The following discretizations are employed.

u∞B (·, θ) ≈ (u∞B (x̂j , θ))j=1,...,J ∈ R
J , (7.53)

where x̂j := (cos(2πj/J), sin(2πj/J)), and J ∈ N, and

q ≈ (q(zi,l))−M≤i,l≤M−1 ∈ R
(2M)2 , (7.54)
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where zi,l :=
(

(2i+1)R
2M , (2l+1)R

2M

)
, and M ∈ N is a number of the division of

[0, R], and [−R,R]2 is a square with some R > 0, in which support Q of the
function q is included, and

FB,n ≈
k2

4π

(
e−ikx̂j ·zi,lq(zh,i)e

ikzi,l·θn
)
j=1,...,J, −M≤i,l≤M−1

∈ RJ×(2M)2 .

(7.55)
Here, we always fix discretization parameters as J = 20, M = 6, R = 3,

N = 15, and consider true functions as the characteristic function

qtruej (x) :=

{
1 for x ∈ Bj
0 for x /∈ Bj

, (7.56)

where the support Bj of the true function is considered as the following two
types.

B1 :=
{

(x1, x2) : x2
1 + x2

2 < 1.5
}
, (7.57)

B2 :=

(x1, x2) :
(x1 + 1.5)2 + (x2 + 1.5)2 < (1.0)2 or

1 < x1 < 2, −2 < x2 < 2 or
−2 < x1 < 2, −2.0 < x2 < −1.0

 . (7.58)

In Figure 10, the blue closed curve is the boundary ∂Bj of the support Bj of
the true function qtruej , and the green brightness indicates the value of the

true function on each cell divided into (2M)2 = 144 in the sampling domain
[−R,R]2 = [−3, 3]2. Here, we always employ the initial guess q0 as

q0 ≡ 0. (7.59)

Figure 11 shows the reconstruction by the Kalman filter (KF) and the
Full data Tikhonov (FT) discussed in (7.44)–(7.46) and (7.23), respectively.
The first and second column correspond to visualization of the state q in
the case when four measurements {u∞B (·, θn)}4n=1 and full (fifteen) measure-
ments {u∞B (·, θn)}N=15

n=1 are given, respectively, for different methods KF and
FT, and for two different shapes B1 and B2. The wavenumber and the reg-
ularization parameter are fixed as k = 5 and α = 1, respectively. The third
column corresponds to the graph of the Mean Square Error (MSE) defined
by

en :=
∥∥qtrue − qn∥∥2

, (7.60)

where qn is associated with nth state reconstructed by some method. The
horizontal axis is with respect to number of given measurements, and the
vertical axis is the value of MSE. Motivated by Theorem 7.4, we can observe
that in Figure 11, KF and FT are also numerically equivalent.
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Figure 12 shows the reconstruction by the Kalman filter (KF) for two
different wave numbers k = 3 and k = 0.5, and for two different shape B1

and B2. The first and second columns correspond to visualization of the final
state given full measurement for different regularization parameters α = 1
and 1e−8. The third column corresponds to graphs of MSE, which have four
evaluation with respect to α = 1, 1e− 2, 1e− 8, and α = 0. We can observe
that the error graph converges as α→ 0 to the red curve, which corresponds
to the error of the least square solution. It agrees with theoretical viewpoints
of the least square solution (see Section 7.2). The case of k = 0.5 is severely
ill-posed because red curve in the case of α = 0 does not converge to zero
even if the number of measurements increases. This is because the rank

of the full far field mapping ~FB :=

 FB,1
...

FB,N

 degenerates when the wave

number k decreases. Figure 13 shows its degeneracy. The horizontal axis
is with respect to wave numbers, and the vertical axis is the number of the
rank of full far field mappings ~FB.

qtrue1 qtrue2

Figure 10: true functions
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KF, B1, n = 4 KF, B1, n = 15 KF, B1, error graph

FT, B1, n = 4 FT, B1, n = 15 FT, B1, error graph

KF, B2, n = 4 KF, B2, n = 15 KF, B2, error graph

FT, B2, n = 4 FT, B2, n = 15 FT, B2, error graph

Figure 11: the comparison of KF and FT, k = 5, α = 1
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B1, k = 3, α = 1, n = 15 B1, k = 3, α = 1e− 8, n = 15 B1, k = 3, error graph

B1, k = 0.5, α = 1, n = 15 B1, k = 0.5, α = 1e− 8, n = 15 B1, k = 0.5, error graph

B2, k = 3, α = 1, n = 15 B2, k = 3, α = 1e− 8, n = 15 B2, k = 3, error graph

B2, k = 0.5, α = 1, n = 15 B2, k = 0.5, α = 1e− 8, n = 15 B2, k = 0.5, error graph

Figure 12: KF reconstruction for different k and α
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Figure 13: the graph of the rank of ~FB
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8 Inverse medium scattering problems with Kalman
filter techniques II. Nonlinear case

8.1 Introduction

Let k > 0 be the wave number, and let θ ∈ S1 be incident direction. We
denote the incident field uinc(·, θ) with the direction θ by the plane wave of
the form

uinc(x, θ) := eikx·θ, x ∈ R2. (8.1)

Let Q be a bounded open set and let its exterior R2\Q be connected. Let q ∈
L∞(Rd) be real valued with a compact support such that Q = supp q. Then,
the direct scattering problem is to determine the total field u = usca + uinc

such that
∆u+ k2(1 + q)u = 0 in R2, (8.2)

lim
r→∞

√
r

(
∂usca

∂r
− ikusca

)
= 0, (8.3)

where r = |x|. The Sommerfeld radiation condition (8.3) holds uniformly in
all directions x̂ := x

|x| . Furthermore, the problem (8.2)–(8.3) is equivalent to
the Lippmann-Schwinger integral equation

u(x, θ) = uinc(x) + k2

∫
Q
q(y)u(y)Φ(x, y)dy, (8.4)

where Φ(x, y) denotes the fundamental solution to Helmholtz equation in
R2, that is,

Φ(x, y) :=
i

4
H

(1)
0 (k|x− y|), x 6= y, (8.5)

where H
(1)
0 is the Hankel function of the first kind of order one. It is well

known that there exists a unique solution usca of the problem (8.2)–(8.3),
and it has the following asymptotic behaviour (see e.g., Chapter 8 of [18]),

usca(x) =
eikr√
r

{
u∞(x̂, θ) +O

(
1/r
)}
, r →∞, x̂ :=

x

|x|
. (8.6)

The function u∞ is called the far field pattern of usca, and it has the form

u∞(x̂, θ) =
k2

4π

∫
Q

e−ikx̂·yu(y, θ)q(y)dy =: Fq(x̂, θ), (8.7)

where the far field mapping F : L2(Q) → L2(S1 × S1) is defined in the
second equality. For further details of these direct scattering problems, we
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refer to Chapter 8 of [18]. The inverse scattering problem we consider here
is to reconstruct the function q from the far field pattern u∞(x̂, θl) for all
x̂ ∈ S1, several incident directions {θl}Nl=1 ⊂ S1 with some N ∈ N, and one
fixed wave number k > 0.

The equation (8.7) is nonlinear, that is, the far field mappings F is
nonlinear because the function u(y, θ) depends on q. The well known method
to solve the nonlinear problem is the Newton Method (see e.g., [5, 18, 51, 52,
67, 78]), which is a classical method to construct an iterative solution based
on the first-order linearization. A natural approach applying the Newton
method to our situation is to put all available measurements {u∞l }Nl=1 and
all far field mappings {Fl}Nl=1, where the index l corresponds to the incident

direction θl, into one long vector ~u∞ and ~F , respectively, and to apply
the regularized Newton method to the big system ~u∞ = ~Fq, that is, in
each iteration step we apply the linear regularization method to linearized
system of ~u∞ = ~Fq at the current state. We shall call this way the Full
data Tikhonov Newton. However, this is computationally expensive because
the more available measurement there are, the bigger system we have to
construct.

In this section, we propose the reconstruction scheme based on the
Kalman filter (see the original paper [50]). The Kalman filter is the linear
estimation for the unknown state by the update of the state and its norm
using the sequential measurements observed over time. The contributions
of this paper are followings.

(A) We propose the reconstruction algorithm, which is equivalent to the
Full Tikhonov data Newton (see (8.39)–(8.43)).

(B) We also propose the reconstruction algorithm based on the Extended
Kalman Filter (see (8.53)–(8.57)).

The advantages of using Kalman Filter over the Newton approach is that
we can estimate the unknown function q every time to observe the far field
pattern u∞l with one incident direction θl without waiting all available mea-
surements {u∞l }Nl=1. Furthermore, we do not need to construct the big sys-
tem using all measurements, which reduce the computational cost. (A) is
derived from the Kalman filter which has been discussed in the first part
of our works (see Section 4 in [27]), and we call the reconstruction scheme
of (A) the Kalman filter Newton. (B) is the different approach from (A).
The Extended Kalman filter (see e.g., [31, 32, 48]) is the nonlinear version
of the Kalman filter. For every time to observe one measurement, the state
is updated by applying the linear Kalman filter to linearized problem at the
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current state. The figure 14 provides an illustration for the differences of
(A) and (B) in the way to use measurements.

This section is organized as follows. In Section 8.2, we recall the Fréchet
derivative of the far field mapping F and its properties. In Section 8.3,
we consider the linearization of nonlinear inverse problem, and study the
error of the linearized solution. In Section 8.4, we propose two reconstruc-
tion algorithms of the Full data Tikhonov Newton and the Kalman filter
Newton, and show that they are equivalent. In Section 8.5, we propose the
reconstruction algorithm of the iterative Extended Kalman filter. Finally in
Section 8.6, we give numerical examples to demonstrate our algorithms.

8.2 Fréchet derivative of the far field mapping

The approach for solving the nonlinear equation (8.7) often requires the
linearization by the Fréchet derivative. In this section, we briefly recall the
Fréchet derivative of the far field mapping and its properties. The following
argument is a brief summary of Section 11.3 of [18].

We denote the far field mappings associated with the incident angle
θ ∈ S1 by

Fθq(x̂) := Fq(x̂, θ) =
k2

4π

∫
Q

e−ikx̂·yu(y, θ)q(y)dy, x̂ ∈ S1, (8.8)

where the total field u = uq(·, θ) is given by the solving the integral equation
of (8.4). First, we review the following lemma described in Theorem 11.6 of
[18].

Lemma 8.1. The nonlinear operator Fθ is Fréche differentiable, and its
derivative F ′θ[q] at q is given by

F ′θ[q]m = v∞, (8.9)

where v∞ is the far field pattern of the radiating solution

∆v + k2(1 + q)v = −k2muq(·, θ) in R2. (8.10)

We observe the integral form of the linear operator F ′θ[q]. The far field
pattern v∞ = v∞(·, θ) is of the form

v∞(x̂, θ) =
k2

4π

∫
Q

e−ikx̂·y [m(y)uq(y, θ) + q(y)v(y, θ)] dy. (8.11)
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Here, we denote the fundamental solution for −∆ − k2(1 + q) by Φq(x, y),
which is of the form

Φq(x, y) = Φ(x, y) + w(x, y), x 6= y, (8.12)

where w = w(·, y) is the unique solution of the following integral equation

w(x, y) = k2

∫
Q

Φ(x, z)q(z) (w(z, y) + Φ(z, y)) dz, x ∈ R2. (8.13)

By using the fundamental solution Φq, the radiating solution v = v(·, θ) can
be of the form

v(x, θ) = k2

∫
Q

Φq(x, y)m(y)uq(y, θ)dy, x ∈ R2. (8.14)

By combining (8.11) and (8.14), and using the Fubini’s theorem, we conclude
that

F ′θ[q]m(x̂) =
k2

4π

∫
Q
Kq(x̂, y)u(y, θ)m(y)dy, x̂ ∈ S1, (8.15)

where the function Kq is defined by

Kq(x̂, y) := e−ikx̂·y + k2

∫
Q

e−ikx̂·zq(z)uq(y, θ)Φq(z, y)dz. (8.16)

Finally in this section, we also review the following properites of the deriva-
tive F ′[q] of the mapping F : L2(Q) → L2(S2 × S2) described in Theorem
11.7 of [18].

Lemma 8.2. For piecewise continuous q, the operator F ′[q] : L2(Q) →
L2(S2 × S2) is injective.

8.3 Linearized problems

In this section, we consider the linearization of the nonlinear inverse prob-
lem in the general functional analytic situation, and study the error of the
linearized solution. Let X and Y be Hilbert spaces over complex variables
C which correspond to the state space L2(Q) of the inhomogeneous medium
function q, and the observation space L2(S1) of the far field pattern u∞,
respectively. Let A : X → Y be a nonlinear observation operator which
corresponds to the far field mapping F .

For give f ∈ Y , we seek the solution ϕ ∈ X such that

A(ϕ) = f. (8.17)
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We assume that we have an initial guess ϕ0 ∈ X, which is a starting point
of the algorithm, and is usually determined by a priori information of the
true solution ϕtrue of (8.17). We also assume that the nonlinear mapping A
is Fréchet differentiable at ϕ0, which implies that

A(ϕ) = A(ϕ0) +A′[ϕ0](ϕ− ϕ0) + r(ϕ− ϕ0), (8.18)

where the linear bounded operator A′[ϕ0] : X → Y is the Fréchet deriva-
tive of the nonlinear mapping A at ϕ0, and r : X → Y is some mapping
corresponding to the remainder term such that r(h) = o(h) as ‖h‖ → 0. In
the case to seek the solution ϕ close to the initial guess ϕ0, we can omit the
remainder term r because its influence is small. Then, we have the following
linearized problem of (8.17).

A′[ϕ0](ϕ− ϕ0) = f −A(ϕ0). (8.19)

Although the problem became linear, the equation (8.19) is ill-posed because
the Fréchet derivative A′[ϕ0] of A is not generally invertible. Then, the reg-
ularization method must be applied. Here, we briefly recall the Tikhonov
regularization method in the following (see e.g., Chapter 4 of [18] and Chap-
ter 3 of [78]).

Lemma 8.3. Let X and Y be Hilbert space and let H : X → Y be a compact
linear operator from X to Y . Then, followings holds.

(i) For α > 0, the operator (αI +H∗H) is bounded invertible, and

xα := (αI +H∗H)−1H∗y, (8.20)

is a unique regularized solution of the problem Hx = y given y ∈ Y ,
that is, xα ∈ X is the unique solution of the problem

αx+H∗Hx = H∗y. (8.21)

(ii) The solution xα defined by (8.20) is the unique solution of the mini-
mization problem

α ‖xα‖2X + ‖y −Hxα‖2Y = minx∈X

{
α ‖x‖2X + ‖y −Hx‖2Y

}
. (8.22)

(iii) If y ∈ R(H), then there exists C = Cy such that

‖xα‖ ≤ C, α > 0, (8.23)

and if y /∈ R(H), then ‖xα‖X →∞ as α→ 0.
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By applying the above Lemma as H = A′[ϕ0] and y = f − A(ϕ0), we
have the regularized solution ϕα of (8.19)

ϕα := ϕ0 +
(
αI +A′[ϕ0]∗A′[ϕ0]

)−1
A′[ϕ0]∗ (f −A(ϕ0)) , (8.24)

where α > 0 is a regularization parameter, which is appropriately chosen.
Furthermore, we have iterative algorithm for n ∈ N0

ϕn+1 = ϕn +
(
αnI +A′[ϕn]∗A′[ϕn]

)−1
A′[ϕn]∗ (f −A(ϕn)) . (8.25)

This is known as the regularized Newton method (see e.g., [18, 78]). So far,
many type of the Newton method have been studied, for example, the reg-
ularized Gauss–Newton method (see e.g.,[4]) and the Quasi–Newton method
(see e.g., [79]), and for any other, we refer to [42, 51, 84, 96]. We remark
that the regularization parameter αn > 0 in (8.25) is chosen dependently on
each iteration step n ∈ N. For example in [4], the regularization parameter
αn is chosen by

αn+1 ≤ αn ≤ ηαn+1, and limn→∞αn = 0, (8.26)

for some constant η > 1.
Next, we observe the error of the solution ϕα defined by (8.24). Let

f ∈ Y be of the form f = H(ϕtrue). By substituting ϕtrue for ϕ in (8.18),
we have

f −A(ϕ0) = A′[ϕ0](ϕtrue − ϕ0) + r(ϕtrue − ϕ0), (8.27)

which implies that the error is estimated by∥∥ϕα − ϕtrue∥∥ =
∥∥ϕ0 − ϕtrue +Rα (f −A(ϕ0))

∥∥
≤

∥∥(I −RαA′[ϕ0]
) (
ϕ0 − ϕtrue

)∥∥+ ‖Rα‖
∥∥r(ϕtrue − ϕ0)

∥∥ ,
(8.28)

where the operator Rα is denoted by Rα := (αI +A′[ϕ0]∗A′[ϕ0])−1A′[ϕ0]∗.
Here, we assume that A′[ϕ0] is injective, then Rα describes the regularization
scheme, which satisfies

RαA
′[ϕ0]ϕ→ ϕ, α→ 0, (8.29)

for all ϕ ∈ X. The first term in (8.28) is the regularization error, which
arises from the approximation of the inverse operator of A′[ϕ0] by the regu-
larization scheme Rα. Since Rα is the regularization scheme, the first term
converges to zero as α → 0. The second term is the nonlinearity error,
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which arises from the approximation by the linearization. Since we have
‖Rα‖ ≤ 1/2

√
α, the second term diverges as α→ 0. Therefore, the regular-

ization error and the nonlinearity error are in the trade-off relationship, and
the regularization parameter α has to be chosen such that the total error,
which is sum of two errors, is small.

8.4 Full data Newton iteration

The natural approach for solving the equation (8.7) is to put all available
measurements {u∞l }Nl=1 and all far field mappings {Fl}Nl=1 where the index
l is associated with the incident direction θl ∈ S1 into one long vector ~u∞

and ~F , respectively, and to employ the regularized Newton method (8.25)
discussed in the Section 8.3. In order to study the above general situation,
let f1, ..., fN ∈ Y be measurements, let A1, ..., AN be nonlinear observation
operators, and let us consider the problem to determine ϕ ∈ X such that

~A(ϕ) = ~f, (8.30)

where ~f :=

 f1
...
fN

, and ~A(ϕ) :=

 A1(ϕ)
...

AN (ϕ)

. By applying the regular-

ized Newton method (8.25) to the above system (8.30), we have iterative
solution

ϕFTNn+1 := ϕFTNn +
(
αnI + ~A′[ϕFTNn ]∗ ~A′[ϕFTNn ]

)−1
~A′[ϕFTNn ]∗

(
~f − ~A(ϕFTNn )

)
,

(8.31)

where ϕFTN0 := ϕ0, and ~A′[ϕ] is denoted by ~A′[ϕ] =

 A′1[ϕ]
...

A′N [ϕ]

, and the

regularization parameters αn > 0 is chosen dependently on each iteration
step n, like (8.26). We call this the Full data Tikhonov Newton. Here, ~A′[ϕ0]∗

is a adjoint operator of ~A′[ϕ0] with respect to the usual scalar product
〈·, ·〉X and the weighted scalar product 〈·, ·〉Y N ,R−1 := 〈·, R−1·〉Y N where
R : Y → Y is the positive definite symmetric invertible operator, which is
interpreted as the error covariance matrices of the observation distribution
from a statistical viewpoint in the case when Y is the Euclidean space (see
e.g., Chapter 5 of [21]). By the same calculation in (3.6) of [27], we have

~A′[ϕ]∗ =
(
A′1[ϕ]HR−1, ..., A′N [ϕ]HR−1

)
, (8.32)
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where A′n[ϕ]H is a adjoint operator of A′n[ϕ] with respect to usual scalar
products 〈·, ·〉X and 〈·, ·〉Y . Then, (8.31) can be of the form

ϕFTNn+1 = ϕFTNn +

(
αnI +

N∑
l=1

A′l[ϕ
FTN
n ]HR−1A′l[ϕ

FTN
n ]

)−1

×

(
N∑
l=1

A′l[ϕ
FTN
n ]HR−1 (fl −Al(ϕ0))

)
. (8.33)

However, the algorithm (8.31) of the Full data Tikhonov Newton is com-
putationally expensive since the more available measurement there are, the
bigger system we have to construct. So, let us consider the alternative ap-
proach based on the Kalman filter. The Kalman filter is the linear estimation
for the unknown state by the update of the state and its norm using the
sequential measurements observed over time. For details of the following
derivation, we refer to the first part of our works [27].

We consider the following problem for l = 1, ..., N

A′l[ϕ0]ϕ = fl −Al(ϕ0) +A′l[ϕ0]ϕ0, (8.34)

which arises from the linearization of the problem Al(ϕ) = fl at the initial
guess ϕ0. The above problem (8.34) can be applied to the Kalman filter
algorithm (see (4.21)–(4.23) in [27]), then we obtain the following algorithm
for l = 1, ..., N .

ϕ0,l := ϕ0,l−1 +K0,l

(
fl −Al(ϕ0) +A′l[ϕ0]ϕ0 −A′l[ϕ0]ϕ0,l−1

)
, (8.35)

K0,l := B0,l−1A
′
l[ϕ0]H

(
R+A′l[ϕ0]B0,l−1A

′
l[ϕ0]H

)−1
, (8.36)

B0,l :=
(
I −K0,lA

′
l[ϕ0]H

)
B0,l−1, (8.37)

where ϕ0,0 := ϕ0, and B0,0 := 1
α0
I, and some α0 > 0. We denote the final

state in the algorithm (8.35) by ϕ1,0 := ϕ0,N , which is the initial guess of
the next iteration step. Next, we consider the following problem

A′l[ϕ1,0]ϕ = fl −Al(ϕ1,0) +A′l[ϕ1,0]ϕ1,0, (8.38)

which arises from the linearization of the problem Al(ϕ) = fl at ϕ1,0. The
above problem (8.38) can be applied to the Kalman filter algorithm as well,
and we obtain the similar algorithm to (8.35)–(8.37). We can repeat these
procedure, then we obtain the following algorithm for l = 1, ..., N .

ϕKFNn,l := ϕKFNn,l−1 +Kn,l

(
fl −Al(ϕKFNn,0 ) +A′l[ϕ

KFN
n,0 ]ϕKFNn,0 −A′l[ϕKFNn,0 ]ϕKFNn,l−1

)
,

(8.39)
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Kn,l := Bn,l−1A
′
l[ϕ

KFN
n,0 ]H

(
R+A′l[ϕ

KFN
n,0 ]Bn,l−1A

′
l[ϕ

KFN
n,0 ]H

)−1
, (8.40)

Bn,l :=
(
I −Kn,lA

′
l[ϕ

KFN
n,0 ]H

)
Bn,l−1. (8.41)

When the iteration time n is raised by one, the final state is renamed as

ϕKFNn,0 := ϕKFNn−1,N , (8.42)

and the weight is initialized as

Bn,0 :=
1

αn
I. (8.43)

We call this the Kalman Filter Newton. We remark that it has two indexes
n and l, where n is associated with the iteration step, and l the Kalman
filter step, respectively.

Finally in this section, we show the following equivalent theorem, which
is the nonlinear iteration version of Theorem 4.3 in [27].

Theorem 8.4. For measurements f1, ..., fN , nonlinear mappings A1, ..., AN ,
and the initial guess ϕ0 ∈ X, the final state of the Kalman filter Newton
given by (8.39)–(8.43) is equivalent to the Full data Tikhonov Newton given
by (8.33), that is, we have

ϕKFNn,N = ϕFTNn+1 , (8.44)

for all n ∈ N0.

Proof. We will prove (8.44) by the induction. By applying Theorem 4.3 of
[27] to the linearized problem A′l[ϕ0]ϕ = fl−Al(ϕ0)+A′l[ϕ0]ϕ0 for l = 1, ..., N
with the initial guess ϕ0 and the regularization parameter α0 > 0, we have
ϕKFN0,N = ϕFTN1 , which is the case of n = 0.

Let us assume that (8.44) in the case of n − 1 holds, that is, we have
ϕKFNn−1,N (= ϕKFNn,0 ) = ϕFTNn =: ϕn. Again, we apply Theorem 4.3 of [27]
to the linearized problem A′l[ϕn]ϕ = fl −Al(ϕn) +A′l[ϕn]ϕn for l = 1, ..., N
with the initial guess ϕn = ϕKFNn,0 = ϕFTNn and the regularization parameter

αn > 0, then we have ϕKFNn,N = ϕFTNn+1 . Theorem 8.4 has been shown.

8.5 Iterative Extended Kalman filter

The usual Kalman filter is the linear optimal estimation for solving the
linear system. However in realistic applications, most systems are nonlinear,
so many studies of the nonlinear estimation have been done. The Extended
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Kalman filter, which is one of the nonlinear version of the Kalman filter, is to
apply the linear Kalman filter to the linearized equation at the current state
for every time to observe one measurement. In this section, we introduce
the iterative Extended Kalman filter. For further readings of the Extended
Kalman filter, we refer to [31, 32, 48], and there also exists other types of the
nonlinear Kalman filter such as the Unscented Kalman Filter ([49]) which
based on the Monte Carlo sampling without employing the linearization
approximation.

First, let us start with the linearized problem of A1(ϕ) = f1 at the initial
guess ϕ0.

A′1[ϕ0]ϕ = f1 −A(ϕ0) +A′1[ϕ0]ϕ0. (8.45)

By the same argument in Section 4 of [27] replacing A1 and f1 by A′1[ϕ0]
and f1 −H(ϕ0) + H ′1[ϕ0]ϕ0, respectively, we have the following solution of
(8.45).

ϕ1 := ϕ0 +K1 (f1 −A1(ϕ0)) , (8.46)

K1 := B0A
′
1[ϕ0]H

(
R+A′1[ϕ0]B0A

′
1[ϕ0]H

)−1
, (8.47)

B1 :=
(
I −K1A

′
1[ϕ0]H

)
B0, (8.48)

where B0 := 1
α0
I and α0 > 0 is regularization parameter. Next, we consider

linearized problem of A2(ϕ) = f2 at ϕ1 defined by (8.46).

A′2[ϕ1]ϕ = f2 −A2(ϕ1) +A′2[ϕ1]ϕ1, (8.49)

Then, by the same argument in Section 4 of [27], we have the solution of
(8.49). We can repeat them, then we have the following algorithm.

ϕl := ϕl−1 +Kl (fl −Al(ϕl−1)) , (8.50)

Kl := Bl−1A
′
l[ϕl−1]H

(
R+A′l[ϕl−1]Bn−1A

′
l[ϕl−1]H

)−1
, (8.51)

Bl :=
(
I −KlA

′
l[ϕl−1]H

)
Bl−1, (8.52)

for l = 1, ..., N . In order to obtain the iterative algorithm, we discuss (8.45)–
(8.52) again as the initial guess is ϕN , and we repeat them. Finally, we
obtain the following iterative algorithm for l = 1, ..., N .

ϕEKFn,l := ϕEKFn,l−1 +Kn,l

(
fl −Al(ϕEKFn,l−1)

)
, (8.53)

Kn,l := Bn,l−1A
′
l[ϕ

EKF
n,l−1]H

(
R+A′l[ϕ

EKF
n,l−1]Bn,l−1A

′
l[ϕ

EKF
n,l−1]H

)−1
, (8.54)

Bn,l :=
(
I −Kn,lA

′
l[ϕ

EKF
n,l−1]H

)
Bn,l−1. (8.55)
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When the iteration time n is raised by one, the final state is renamed as

ϕEKFn,0 := ϕEKFn−1,N , (8.56)

and the weight is initialized as

Bn,0 :=
1

αn
I, (8.57)

where the regularization parameters αn > 0 is chosen dependently on each
iteration step n, like (8.26). We call this the iteratively Extended Kalman
Filter. We remark that it has two indexes n and l, where n is associated
with the iteration step, and l the Kalman filter step, respectively. The figure
14 provide an illustration for the difference of Kalman filter Newton (KFN,
left) and iterative Extended Kalman filter (EKF, right). When the state
moves horizontally, measurements are used, and when it moves vertically,
linearization are done.

Figure 14: difference of KFN (left) and EKF (right)

8.6 Numerical examples

In this section, we consider numerical studies of the algorithm which have
been discussed in above sections. We recall that our inverse scattering prob-
lem is to solve the nonlinear integral equation (8.7) with respect to q when
the measurements u∞l := u∞(·, θl) for l = 1, ..., N are given.

Flq = u∞(·, θl), (8.58)
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where the operator Fl : L2(Q)→ L∞(S1) is defined by

Flq(x̂) = Fq(x̂, θl) :=
k2

4π

∫
Q

e−ikx̂·yu(y, θl)q(y)dy, (8.59)

where u = uq is the total field given by solving Lippmann–Schwinger integral
equation (8.4). Here, the incident direction is given by θl := (cos(2πl/N), sin(2πl/N))
for each l = 1, ..., N . The following discretizations are employed.

u∞(·, θ) ≈ (u∞(x̂j , θ))j=1,...,J ∈ R
J , (8.60)

where x̂j := (cos(2πj/J), sin(2πj/J)), and J ∈ N, and

q ≈ (q(zi,m))−M≤i,m≤M−1 ∈ R
(2M)2 , (8.61)

where zi,m :=
(

(2i+1)R
2M , (2m+1)R

2M

)
, and M ∈ N is a number of division of

[0, R], and [−R,R]2 is a square with some R > 0, in which support Q of the
function q is included. The Fréchet derivative F ′l [q] of Fl at q is discretized
by

F ′l [q] ≈
k2

4π
(Kq(x̂j , zi,m)u(zi,m, θl))−M≤i,m≤M−1, j=1,...,J ∈ R

J×(2M)2 ,

(8.62)
where the function Kq is defined by (8.16).

In this numerical study, we always fix the discretized parameter as J =
20, M = 6, R = 3, N = 15, and consider true functions as the characteristic
function

qtruej (x) :=

{
1 for x ∈ Bj
0 for x /∈ Bj

, (8.63)

where the support Bj of the true function is considered as the following two
types.

B1 :=
{

(x1, x2) : x2
1 + x2

2 < 1.5
}
, (8.64)

B2 :=

(x1, x2) :
(x1 + 1.5)2 + (x2 + 1.5)2 < (1.0)2 or

1 < x1 < 2, −2 < x2 < 2 or
−2 < x1 < 2, −2.0 < x2 < −1.0

 , (8.65)

In Figure 15, the blue closed curve is the boundary ∂Bj of the support Bj
of the true function qtruej , and the green brightness indicates values of the

true function on each cell divided into (2M)2 = 144 in the sampling domain
[−3, 3]2. Here, we always employ the initial guess q0 as

q0 ≡ 0, (8.66)
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and employ the sequence {αn}n∈N of regularization parameters as

αn := η−n+1α0, (8.67)

which satisfies the condition (8.26). A positive constant α0 is the starting
parameter and η > 1 is the decreasing factor. Here, we choose it as η = 2.

Figure 16 shows the graph of the error of the solution (8.18) linearized at
q0 ≡ 0 when the wavenumber k = 3 is fixed, and the regularization paramters
α > 0 are changed, for two different true functions qtrue1 , qtrue2 . The blue
curve corresponds to the regularization error, the yellow one corresponds to
the nonlinearity error, and the green one correponds to total error, which
is the sum of two errors. We can observe that it would be good to choose
the regularization parameter α around one hundred seventy such that the
total error decreased significantly in both cases. From this point of view, we
choose the starting parameter α0 as α0 = 175.

Figures 17, 18 show the reconstruction by the Kalman filter Newton
(KFN), and the iterative Extended Kalman filter (EKF) discussed in (8.39)–
(8.43), and (8.53)–(8.57), respectively. The first and second column corre-
sponds to visualization of the state in 4th and 15th iteration step, respec-
tively, for different two shapes B1 and B2, and for different two wavenumbers
k = 1 and k = 3. The third column corresponds to the graph of the Mean
Square Error (MSE) defined by

en :=
∥∥qtrue − qn∥∥2

, (8.68)

where qn is associated with the state of nth iteration step by some recon-
struction method. The horizontal axis is with respect to number of iter-
ations, and the vertical axis is the value of MSE. In both cases, the true
functions are successfully reconstructed. The iterative Extended Kalman
filter requires more calculations of the derivative than the Kalman filter
Newton because we have to linearize the nonlinear problem for every time
to observe one measurement, but instead, we can observe that in the third
column of Figures 17 and 18, the convergence of the Extended Kalman filter
to the true function is faster than that of the Kalman filter Newton.
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qtrue1 qtrue2

Figure 15: true functions

qtrue1 qtrue1

qtrue2 qtrue2

Figure 16: error graphs, k = 3, q0 = 0
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B1, k = 1, n = 4 B1, k = 1, n = 15 B1, k = 1, error graph

B1, k = 3, n = 4 B1, k = 3, n = 15 B1, k = 3, error graph

B2, k = 1, n = 4 B2, k = 1, n = 15 B2, k = 1, error graph

B2, k = 3, n = 4 B2, k = 3, n = 15 B2, k = 3, error graph

Figure 17: KFN
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B1, k = 1, n = 4 B1, k = 1, n = 15 B1, k = 1, error graph

B1, k = 3, n = 4 B1, k = 3, n = 15 B1, k = 3, error graph

B2, k = 1, n = 4 B2, k = 1, n = 15 B2, k = 1, error graph

B2, k = 3, n = 4 B2, k = 3, n = 15 B2, k = 3, error graph

Figure 18: EKF
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