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1 Introduction

The inverse scattering problem is the problem to determine unknown scat-
terers by measuring scattered waves that is generated by sending incident
waves far away from scatterers. It is of importance for many applications,
for example medical imaging, nondestructive testing, remote exploration,
and geophysical prospecting. Due to many applications, the inverse scat-
tering problem has been studied in various ways. For further readings, we
refer to the following books [11, 16, 18, 52, 78], which include the summary
of classical and recent progress of the inverse scattering problem.

We begin with the mathematical formulation of the scattering problem.
Let £ > 0 be the wave number, and let # € S? ! be incident direction.
We denote the incident field u‘"¢(-, §) with incident direction by the plane
wave of the form

u'(x,0) = el g e RY (1.1)

Let © C R? (in particular we consider d = 2,3) be a bounded open set
with a smooth boundary 9§ such that the exterior R? \ € is connected.
In particular, we discuss the following two cases. The first case is that
the scatterer () is a penetrable medium, and determine the total field u =
u*°® 4 4" such that

Au+ k*(1+ q)u = 0 in R? (1.2)
lim r‘z <(9u - ik‘usca) =0, (1.3)
ri=|z|—o00 T

where ¢ € L®(R%) has a compact support such that Q = supp ¢. The
Sommerfeld radiation condition (1.3) holds uniformly in all directions & :=
Bk The second case is that 2 is an impenetrable obstacle, and determine

the total field v = u%® + 4™¢ such that

Au+ E*u=0in R\ Q, (1.4)

Bu = 0 on 02, (1.5)

lim 7T <a“ - zkua> =0, (1.6)
ri=|z|—o00 r

where (1.5) means the boundary conditions, for example, the Dirichlet bound-

ary condition Bu = u, the Neumann boundary condition Bu = %7 and so

on. In both problems (1.2)—(1.3) and (1.4)—(1.6), it is well known that there



exists a unique solution u*“* and it has the following asymptotic behaviour
(see e.g., [18]),

W (z) = S {u(@,0) + 0(1/r) ), v = 0. (1.7)
ro2
The function u* is called the far field pattern of the scattered field u®°®.
For further details of the direct scattering problem, we refer to [18]. The
inverse scattering problem we consider here is to extract information of the
unknown scatterer 2 from the far field pattern u°.

The first question of inverse problems is uniqueness. It is well known that
the far field pattern u®(&,6) for all #,0 € S%~! and fixed k > 0 uniquely
determines the unknown scatterer Q (see e.g., [77, 81, 87]). However, the
uniqueness when all directions &,0 € S*~! are not given, which is called as
the partial data problem, is still open. For further readings of uniqueness,
we refer to the following books [18, 45].

In Section 4 (original paper [25]), we discuss the direct and inverse scat-
tering problem for the semilinear Schrodinger equation,

Au + a(z,u) + k*u =0 in RY, (1.8)

where a : R? x C — C is a semilinear function under Assumption 4.1. This
type of semilinear function a(x,u) is the generalization of, in particular,
the power type q(z)u™ where m € N, and ¢ € L>®(R%) with a compact
support. The case of m = 1 corresponds to the linear Schrodinger equation
(1.2). We prove the well-posedness of the direct scattering problem (1.8) by
employing the Banach fixed point theorem, and prove the uniqueness of the
inverse problem by some linearization technique. (For main results, we see
Theorems 4.2 and 4.3.)

The second question is reconstruction, which is the problem to provide
reconstruction algorithms for the unknown scatterer 2 from far field pat-
terns. Existing methods for reconstruction can be roughly categorized into
two group: the iterative optimization method (see e.g., [5, 18, 30, 42, 51])
and the sampling method (see e.g., [17, 33, 43, 44, 58, 85]). This thesis
mainly deals with reconstruction and contributes to both groups.

In Sections 7 and 8 (original papers [27, 28]), we discuss reconstruction
schemes for inverse medium scattering problem (1.2)—(1.3) based on the
Kalman filter techniques, which is categorized into the iterative optimiza-
tion method. The Kalman filter (see e.g., [50]) is the algorithm to estimate
the unknown state in the dynamics system by employing the sequential mea-
surements observed over time. It has many applications such as navigations



and tracking objects, and for further readings, we refer to [31, 48, 50, 78].
By applying the Kalman filter to our inverse scattering problem, we provide
algorithms to estimate the unknown scatterer {2 every time to observe the
far field pattern u™(-,6,) with one incident direction 6,, € S without
waiting all data {u®(-,60,)}Y_;. (For main results, we see (7.44)—(7.46),
(8.39)—(8.43), and (8.53)—(8.57), and see Theorems 7.4 and 8.4.)

In Section 2 (original paper [22]), we discuss the factorization method,
which is categorized into the sampling method, for the case that the scatterer
consists of two components (2 = Q1 UQy) with different physical properties
(for example, €27 is an impenetrable obstacle with the Dirichlet boundary
condition, and Qs with the Neumann boundary condition). In order to
apply the factorization method to such a complicated scatterer, a lot of
a priori assumptions for the wave number & > 0 have been required (see
e.g., [58, 59]). The contribution of Section 2 is to provide the reconstruction
scheme of the factorization method without any a priori assumptions for the
wave number k£ > 0, but instead, we have to know the topological properties
of Q (see Assumption 2.1 and Figure 1). (For main results, we see Theorems
2.2 and 2.4.)

In Section 3 (original paper [24]), we discuss the monotonicity method
for the inverse crack scattering problem, which is the case when the scatterer
Q is a smooth arc, i.e Q = {y(s) : s € [-1,1]} where v : [-1,1] — R? is
smooth. The monotonicity method is a similar method to the factorization
method, and it has been originally introduced in Electrical impedance to-
mography ([40]). Recently, the monotonicity has been extended to inverse
acoustic scattering problem in the case of the impenetrable obstacle and
the penetrable medium ([2, 33]). However, it was not obvious to extend it
to crack like not having volume. In Section 3, we extend the monotonicity
method to the inverse crack scattering problem, and provide its reconstruc-
tion scheme. (For main results, we see Theorems 3.1 and 3.2.)

In Sections 5 and 6 (original papers [23, 26]), we discuss the direct and
inverse scattering by a local perturbation in an infinite medium with pe-
riodicity in the upper half space R x (0,00). In Section 5, we discuss the
well-posedness of the following direct scattering problem.

Au + k*(1 + ¢)nu = 0 in R x (0, 00), (1.9)

u=0on R x {0}, (1.10)

where n € L®(R x (0,00)) is real value, 27m-periodic with respect to x;
(that is, n(z1 + 2m,22) = n(x1,22) for all z = (z1,22) € R%), and equal
to one for xo > h where h > 0 is some positive number, and ¢ € L>(R x



(0,00)) is real valued with the compact support in R x (0,h) such that
Q = supp g. The Sommerfeld radiation condition (1.3) can not be imposed
in the case of the scattering in the half space R x (0,00), so by imposing
a suitable radiation condition recently introduced in [62], we showed the
well-posedness of this perturbed scattering problem (1.9)—(1.10). Then, we
become able to define the inverse problem of reconstruction of the support €2
of ¢ from scattered fields. In Section 6, we discuss this inverse problem, and
had two contributions. Firstly, we mention that there is a mistake in the
factorization method of the earlier paper [72], which leads to the difficulty
to apply the factorization method to our inverse problem. Secondly, we give
the reconstruction scheme by employing the monotonicity method instead
of the factorization method. (For main results, we see Theorems 5.2, 6.1,
6.2, and 6.11.)

Through our works, we conclude that the iterative optimization method
and the sampling method complement each other. The iterative method
does not need a lot of data, however it requires the initial guess which is the
starting point of the optimization. It must be appropriately chosen by a pri-
ori knowledge of true €1, otherwise, the iterative solution could not converge
to true one. On the other hand, the sampling method does not require the
initial guess, which is one of the advantages over the iterative method. How-
ever, the disadvantage is to need infinite data that can not be practically
measured. In the future, sampling methods for finite measurements should
be studied for more realistic problems, and it would be good to develop the
combination of both methods. Although our papers mostly contribute to
theoretical aspects of inverse acoustic scattering problems, Sections 3, 6, 7,
and 8 present numerical experiments for reconstruction by using the Python
programming language. (We see Figures 6, 7, 9, 11, 12, 17, and 18.)
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2 A modification of the factorization method for
scatterers with different physical properties

2.1 Introduction

Sampling methods are proposed for reconstruction of shape and location
in inverse acoustic scattering problems. In the last twenty years, sampling
methods such as the Linear Sampling method of Colton and Kress [18],
the Singular Sources Method of Potthast [85], the Factorization Method of
Kirsch [53], have been introduced and intensively studied. As an advantage
of these sampling methods, the numerical implementation are so simple and
fast. However, as disadvantage of sampling methods except the Factoriza-
tion Method, only sufficient conditions are given for the identification of
unknown scatterers. To overcome this drawback, that is, to provide neces-
sary and sufficient conditions, the Factorization Method was introduced and
developed by a lot of researchers.

However, for rigorous justification of the original Factorization Method,
we have to assume that the wave number of the incident wave is not an
eigenvalue of the Laplacian on an obstacle with respect to the boundary
condition of the scattering problem. Kirsch and Liu [63] eliminated this
problem for the case of a single obstacle by assuming that a small ball is in
the interior of the unknown obstacle. They modified the original far field
operator by adding the far field operator corresponding to a small ball so
that the Factorization Method can be applied to it. On the other hands,
in the case of a scatterer consisting of two objects with different physical
properties, this problem has been still open. For recent works discussing
this case, we refer to [3, 7, 60, 65, 97].

In this section, we study the Factorization Method for a scatterer consist-
ing of two objects with different physical properties. Especially, we consider
the following two cases: One is the case when each object has the different
boundary condition, and the other one is when different penetrability. For
recent works discussing such a scatterer, we refer to [59, 64, 74]. We remark
that these works have to assume that the wave number of the incident wave
is not an eigenvalue of the Laplacian on impenetrable obstacles included in a
scatterer. Our aim of this paper is to eliminate this restriction by developing
the idea of [63].

We begin with the formulations of the scattering problems. Let k& > 0
be the wave number and for § € S? be incident direction. Here, S? = {z €



R3 : |z| = 1} denotes the unit spherer in R3. We set
ul(z) = ek 1 e R?, (2.1)

where 7 in the left hand side stands for incident plane wave. Let © C R? be
a bounded open set and let its exterior R3\ Q be connected. We assume that
Q consists of two bounded domains, i.e., Q = Q; U such that Q;NQy = 0.
We consider the following two cases.

The first case. () is an impenetrable obstacle with Dirichlet
boundary condition, and 23 with Neumann boundary condition.
Find v® € H} (R3\ Q) such that

Au® + E*u® = 0in R?\ Q, (2.2)
u® = —u’ on 99, (2.3)
ou® ou’

= — o0 24
8VQ2 8VQQ on 2 ( )

. ou® o\
rlggl(}r( 5 iku ) =0, (2.5)
where r = |z|, and (2.5) is the Sommerfeld radiation condition. Here,

HY (R3\ Q) = {u: R*\ Q — C : u|,€ H'(B) for all open balls B} de-
notes the local Sobolev space of one order. vq,(z) denotes the unit normal
vector at x € 9Q9. We refer to Theorem 7.15 in [76] for the well posedness
of the problem (2.2)—(2.5), and refer to [59] and [74] for the factorization

method in this case.

The second case. (); is a penetrable medium modeled by a
contrast function ¢ € L*°(Q) (that is, Q; = suppg), and Q9 is an
impenetrable obstacle with Dirichlet boundary condition. Find

u® € H} (R?\ Q) such that
Au® + kX (14 ¢)u® = —k%qu’ in R®\ Qo, (2.6)
u® = —u' on 99y, (2.7)
. ou® 0\
Tlg&r( 5 iku ) =0. (2.8)

Note that we extend g by zero outside €2;. The well posedness of the problem
(2.6)—(2.8) and its factorization method was shown in [64].



In both cases, it is well known that the scattered wave u® has the fol-
lowing asymptotic behavior:
otk

u’(x,0) = Tl

1 x
u™(z,0) + O<>, |z| = 00, T :=—. (2.9)
|z[? |z
The function 4™ is called the far field pattern of w®. With the far field
pattern u™, we define the far field operator F' : L?(S?) — L?(S?) by

Fyg(#) := /Sz u™®(&,0)g(0)ds(6), & € S2. (2.10)

We write the far field operator of the problem (2.2)-(2.5) as F' = FS])\/{%Q,
and (2.6)-(2.8) as F = Fj! f;fQQ , respectively. The inverse scattering problem
we consider is to reconstruct Q from the far field pattern u*°(z, ) for all
#,0 € S?. In other words, given the far field operator F, reconstruct €.

Our contribution in this section is, in both cases, to give the characteri-
zation of £2; without a priori assumptions for the wave number £ > 0. But
we have to know the topological properties of ). More precisely, an inner
domain B of € ([63]), and an outer domain By of Q3 ([59]), have to be a
priori known. Furthermore, we take an additional domain B3 in the interior
of Bs. By adding artificial far field operators corresponding to By, Bs, and
B3, we modify the original far field operator F.

In the first case, we give the following characterization:

Assumptioﬁn 2.1. Lit boundedfdomﬁaz’n B1 and By be a prior known. As-
sume that By C 1, Q9 C Bg, 21 N By = 0.

By
o

1 Neumann
Dirichlet

Figure 1: Assumption of Theorem 2.2

Theorem 2.2. For & € S?, z € R3, define

¢ () 1= e F= T, (2.11)



Let Assumption 2.1 hold. Take a positive number Ag > 0, and a bounded
domain Bz with Bz C Ba. (See Figure 1.) Then, for z € R3\ By

0o 2
sEM = ’(@’@Z\)LQ(SQ)’ < o0, (2.12)
n=1 n

where (An, on) is a complete eigensystem of Fy given by

Fy := |ReF| + |[ImF|, (2.13)
where F := FOU'S + FR + FéTLfB;;,i)\o' Here, FE and FéTLfB:m/\o are

the far field operators for the pure Dirichlet boundary condition on Ba, and
for the pure impedance boundary condition on By U Bs with an impedance
function i\g, respectively.

Latter, we explain artificial far field operators F' ]1332 " and F glnj’ Bying 1
Section 2.2, and prove Theorem 2.2 in Section 2.3.
In the second case, we give the following characterization:

Assumption 2.3. Let a bounded domain Bs be a priori known. Assume
the following assumptions:

(1) ¢ € L>*(21) with Imqg > 0 in Q.

(ii) |q| is locally bounded below in 4, i.e., for every compact subset M C €y,
there exists ¢ > 0 (depend on M) such that |q| > ¢ in M.

(i) 0 € By, 01" By = 0.

(iv) There exists t € (7/2,3m/2) and C > 0 such that Re(e""q) > C|q| a.e.
m Ql.

. Q,

Medium

Obstacle

Figure 2: Assumption of Theorem 2.4
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Theorem 2.4. Let Assumption 2.3 hold. Take a positive number \g > 0,
and a bounded domain Bs with By C Bsy. (See Figure 2.) Then, for z €
R3\ B,

00 2
zEM =Y !((;Sz,goz\)p(gz)! < 00, (2.14)
n=1 n

where (A, n) is a complete eigensystem of Fy given by
Fy :=|Re(e™F)| + |ImF]|, (2.15)

where F = Fé‘/{éf% + FBD;’" + Fégrff)\o. Here, the function ¢, is given by
(2.11).

We prove Theorem 2.4 in Section 2.4. We can also give the characteri-
zation by replacing (iv) in Assumption 2.3 with

(iv’) There exists t € [0,7/2) U (37/2,27] and C' > 0 such that Re(e™q)
> Clq| a.e. in Q.

For details, see Assumption 2.20 and Theorem 2.21.

Let us compare our works (Theorems 2.2 and 2.4) with previous works
from the mathematical point of view of a priori assumptions. For Theorem
2.2 we refer to Theorem 2.5 of [74], and for Theorems 2.4 we refer to Theorem
3.9 (b) of [64]. These previous works also gave the characterization of {2; by
assuming the existence of outer domain By of {25 and that the wave number
k? is not an eigenvalue on an obstacle, while, in our work we can choose
arbitrary wave number k > 0 by introducing extra artificial domains such
as Bi, Bs, and Bjs, which are not so difficult topological assumptions.

This section is organized as follows. In Section 2.1, we recall a factoriza-
tion of the far field operator and its properties. In Section 2.3 and Section
2.4, we prove Theorems 2.2 and 2.4, respectively.

2.2 A factorization for the far field operator

In Section 2.2, we briefly recall a factorization for the far field operators and
its properties.

First, we consider a factorization of the far field operator for the pure
boundary condition. Let B be a bounded open set and let R3 \ B be con-
nected. Later, we will use the result of this section by regarding B as
auxiliary domains, like By, Bo, and B3 in Theorems 2.2 and 2.4. We define
G H'Y2(0B) — L*(S?) by

GBI f = 0™, (2.16)

11



where v™ is the far field pattern of a radiating solution v (that is, v satisfies
the Sommerfeld radiation condition) such that

Av+ E*v =0 in R®\ B, (2.17)

v=fon 0B. (2.18)
Let Ao > 0. We also define Ggﬁ’;o : H-Y2(0B) — L*(S?) in the same way
as GE by replacing (2.18) with

v
s +iXov = f on 0B. (2.19)

We define the boundary integral operators Sg : H='/2(dB) — H'/?(dB)
and Np : H/?2(0B) — H-'?(0B) by

Spele) == | o(w)@a.u)dsty). w € 0B, (220)
9 0% (z,y)
N = —_— B 2.21
Bw(x) 81/3(:1?) /aBlﬁ(y) aVB(y) ClS(y), r e ) ( )
ik|z—y|
where ®(z,y) = m. We also define Sp; and Np; by the boundary

integral operators (2.20) and (2.21), respectively, corresponding to the wave
number k = ¢. It is well known that Sp; is self-adjoint and positive coercive,
and Np; is self-adjoint and negative coercive. For details of the boundary
integral operators, we refer to [58] and [76].

The following properties of far field operators F£" and Fg?fo are given
by previous works in [58] and [63]:

Lemma 2.5 (Lemma 1.14 in [58], Theorem 2.1 and Lemma 2.2 in [63]).

(a) The far field operators Fg" and Fg’?fo have a factorization of the form

Dir __ Dir gx ~Dir x Imp Imp mImp * ~Imp *

(b) The operators Sg : H-*/>(0B) — HY?*(0B) and Tg:fo - H'2(0B) —
H~'2(9B) is of the form

Sp =SB+ K, Té?fo = Np; + K/, (2.23)

where K and K' are some compact operators.

12



(c) Im(yp, Spp) <0 for all p € H Y2(OB). Furthermore, if we assume
that k? is not a Dirichlet eigenvalue of —A in B, then Im(p, Spp) < 0
for all ¢ € H-Y/2(9B) with ¢ # 0.

(d) Im(Té?ZfOcp,cp) >0 for all p € HY?(OB) with ¢ # 0.

Secondly, we consider the far field operator Fé\/f ,%’2 for the problem (2.2)—
(2.5). Recall that Q = Q3 U 9, and Q; is an impenetrable obstacle with
Dirichlet boundary condition, and 29 with Neumann boundary condition.
We define G}, - HY2(90) x H™Y/2(09) — L*(S?) by

GH, < / ) = (2.24)
' g
where v is the far field pattern of a radiating solution v such that
Av+Ek*v =0in R*\ Q, (2.25)
ov
v = f on 0%, = g on 0. (2.26)
ovq,

The following properties of Fé‘{ 7’62 are given by previous works in [58]:

Lemma 2.6 (Theorem 3.4 in [58]). (a) The far field operator Févlhgb has a
factorization of the form

FYS, = —GHo, T8, G, (2.27)
(b) The middle operator Té\/fféz L H-1/2(004) x HY2(08) — HY2(00) x
H=12(0Qy) is of the form

; S0, 0
Miz Q1
TS = ( 0" Noys ) + K, (2.28)

where K s some compact operator.
(c) Im(Té‘{%zgo, ©) >0 for all ¢ € HV2(00Q)) x H'/2(0Qy).

Thirdly, we consider the far field operator Fé{éf% for the problem (2.6)—
(2.8). Here, € is a penetrable medium modeled by a contrast function
g € L>®(€), and Q9 is an impenetrable obstacle with Dirichlet boundary
condition. We define Gé‘ﬁ’;ﬁ% D L2(Q4) x HY2(099) — L*(S?) by

GQMf;QQ ( g > = 0™, (2.29)

13



where v is the far field pattern of a radiating solution v such that

Av+ k(1 + q)v = —k2\/qﬁf in R3\ 0, (2.30)
q
v = —g on 0. (2.31)
The following properties of Fé‘{ ?,CQQ are given by previous works in [64]:

Lemma 2.7 (Theorem 3.2 and Theorem 3.3 in [64]). (a) The far field op-
erator Févlléﬂfm has a factorization of the form

Fqu,Qz - GQHLQzMqu,Qz Q19,02 (2'32)

(b) The middle operator Mgﬁfm : L2() x HV2(09s) — L*(Q4) x
HY2(093) is of the form

| g
MY, = ( . ) K (239
X2

where K s some compact operator.

(c) Im(p, Myl ©) >0 for all € L*(Qn) x H-Y/2(09y).

(d) If My =0, 0= ( zl ) € L2(Q1) x H Y2(8Qy), then 1 = 0.
’ 2

Finally, we give the following functional analytic theorem behind the
factorization method. The proof is completely analogous to previous works,
e.g., Theorem 2.15 in [58].

Theorem 2.8. Let X C U C X* be a Gelfand triple with a Hilbert space
U and a reflexive Banach space X such that the imbedding is dense. Fur-
thermore, let Y be a second Hilbert space and let F:Y — Y, G: X =Y,
T: X* = X be linear bounded operators such that

F =GTG". (2.34)
We make the following assumptions:
(1) G is compact with dense range in Y.

(2) There exists t € [0,27] such that Re(e™T) has the form Re(e"'T) = C +
K with some compact operator K and some self-adjoint and positive
coercive operator C, i.e., there exists ¢ > 0 such that

(. Co) > cllpl® for all p € X*. (2.35)

14



(3) Im(p, Tp) >0 or Im(p,Te) <0 for all p € X*.
Furthermore, we assume that one of the following assumptions:

(4) T is injective.

(5) Im(p, Te) >0 or Im(p,Te) <0 for all ¢ € Ran(G*) with ¢ # 0.

Then, the operator Fy := ‘Re(eitF)’ + |ImF| is positive, and the ranges of
G:X—=Y and F;E/Q 1Y = Y coincide with each other.

Remark that, in this paper, the real part and the imaginary part of an
operator A are self-adjoint operators given by
A+ AT A— A*

and Im(A)= 5 (2.36)

Re(A)

2.3 The first case

In section 2.3, we prove Theorem 2.2. Let Assumption 2.1 hold. We define
Ry - HY2(0Q4) x H=12(09Qy) — HY2(0Q) x H'Y/?(dBs) by

W(2)-(L) e

where v is a radiating solution such that

Avy + k>0 =01in R3\ Q, (2.38)
v1 = f1 on 98, ﬂ = g1 on 0. (2.39)
dvq,

Then, from the definition of R;, we obtain
Gt = GElp, R, (2.40)

where GgffBQ : H'Y2(09) x H'/2(0By) — L?(S?) is also defined for the pure
Dirichlet boundary condition on 2; and Bs in the same way as Gé‘{l ’%22 (See
(2.16).)

Next, we define Ry : H'/?(0By) — HY/?(8Q1) x H'/?(0B,) by

Rofo = < v2]gg, > : (2.41)
P

where vy is a radiating solution such that

15



Avy + k*vy = 0 in R?\ By, (2.42)
Vo = f2 on 832, (2.43)
Then, from the definition of Ro, we obtain

GB" = G, Rs. (2.44)

Here, take a positive number \g > 0, and a bounded domain Bs with B3 C
Bs. We define Rz : H~Y/2(0B; U dB3) — H'/?(99) x HY?(0By) by

v
Rsfs = oo, ; (2.45)
U3|832
where v3 is a radiating solution such that
Aws + k?v3 = 0 in R® \ B; U Bs, (2.46)
0
_9% +iAov3 = f3 on 0B1 U 0DBs3. (2.47)
aVBluBg

Then, from the definition of R3, we obtain
I .
GpUnsine = Gy, R. (2.48)

By (2.40), (2.44), (2.48), and the factorization of the far field operator in
Section 2.2, we have

Miz Dir Imp _ Dir Dir x
FQ1,92 + FB2 + FB1UB3,1')\0 - GQ1,B2TGQ17BQ’ (2‘49)
. Mix * p* * % Imp * %
where T := |~ R\ T3 "R — RoSp, R — RsTHI%5, 0 B3 |-

The following properties of GglifBQ are given by the same argument in
Theorem 1.12 and Lemma 1.13 in [58]:

Lemma 2.9. (a) The operator GKDZfTBg C H'Y2(00) x HY?(0By) — L*(S?)
is compact with dense range in L?(S?).

(b) For z € R3\ By '
2 € < ¢. € Ran(G{'"g,), (2.50)

where the function ¢, is given by (2.11).

To prove Theorem 2.2, we apply Theorem 2.8 to this case. First of all,
we show the following lemma:

16



Lemma 2.10. (a) Ry — < é 8

H'Y2(8By) — HY2(0Q) x H'/?(8By) is defined by

Poh = ( 2 > . (2.51)

), Ro — P>, R3 are compact. Here, P; :

(b) Rj is injective.

Proof. (a) The mappings R — ( é 8
HY(0Qy) x HY(OBy), Ry — Py : HY?(0By) — H'(09) x H'(0Bs), and
Rs: H-'/2(dBy UOB3) — H'(99) x H'(dBs) are bounded since they are

0
given by < h > — ( ), for ( U2‘891 >7 and f3 — US{‘ml )
g1 v1 ‘332 0 U3 ‘BBQ

respectively. By Rellich theorem, they are compact.

(b) Let ¢ € H1/2(09Q) and v € H™1/2(0By). Assume that R < i ) =

0. Using the same argument as done in Theorem 2.5 in [75], one knows the
existence of a radiating solution w such that

) o HY2(000) x H-Y2(09) —

Aw + E*w =0 in R3\ Q1 U By, (2.52)
Aw + k*w =0in Q; \ By, in By \ B, (2.53)
owy OJw_ —
Cw — _ — Q 2.54
owy Ow— —
Cw — _ = B 2.
wy —w 0, dvm,  ovp, 1 on 0B, (2.55)
QW ixow = 0 on 9By, M ixow = 0 on 9Bs, (2.56)
81/31 8VB3

where the subscripts + and — denote the trace from the exterior and interior,
respectively. (See Figure 3).
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B;
B

Figure 3: The inclusion relation of €y, By, Bs, and Bg

By using the boundary conditions (2.47), (2.54), (2.55), (2.56), and
Green’s theorem, we have

«f ¢ V3 56, ( ¢ >
0 = , R — 1 ,
<f3 3<¢>> <<03‘BBQ (0 >
= / v3pds + / v3tpds
891 832
owy  Ow_ / Ovs
= v - ds — — (w4 —w_)ds
/391U332 3< v v ) 8Q1U0Bs 81/( " )
= / [a%w - aw_]ds—/ [8”310 - anF}ds
oowuom, L OV Ov TN R
87)3 371) :| / |:a’(}3 aw :|
= w—v ds + w—0 ds
/831 [aVBl “ovp, B3 LOVB; * o,

0B1UOB3

which proves that w = 0 in 0B; U dB3. Holmgren’s uniqueness theorem
implies that w vanishes in ©; \ By and By \ Bs. Equations (2.54) and (2.55)
yield wy = 0 on 921 U @By which implies that w vanishes also outside of
Q1 and By by the uniqueness of the exterior Dirichlet problem. Therefore,
equations (2.54) and (2.55) yield ¢ = 0 and ¢ = 0. O

By Lemma 2.10, the middle operator T of (2.49) has the following prop-
erties:

Lemma 2.11. (a) Re(e™™T) has the form Re(e™T) = C + K with some
self-adjoint and positive coercive operator C' and some compact opera-
tor K.

(b) Im(p, Tw) <0 for all ¢ € H-'/2(Q) x H~'/2(8By) with ¢ # 0.

18



Proof. (a) By Lemma 2.5 (b), Lemma 2.6 (b), and Lemma 2.10 (a),
Re(¢"T) = Re(RiTR/%, R + RoSp, RS + RaTHIy 1y R5)

Sa.i 0 " «
= Rl < t, ) Rl + RQSBQJ'RQ + K

0  Na,i
(T 0\[(Sa: O 10 P
= (0 o)( 0 NQQ,Z-><0 o)*PQSBNP?*K
_ Sﬂl,i 0 !
_ < o s ) g (2.58)

where K and K’ are some compact operators. Since the boundary integral
operators Sq, ; and Sp,; are self-adjoint and positive coercive, (a) holds.
(b) By Lemma 2.5 (c¢) (d), Lemma 2.6 (c), and Lemma 2.10 (b), es-
pecially, by the strictly positivity of the operator ImTéTLﬁ’BS’MO, and the
injectivity of R, for all o € H~1/2(99) x H~Y/2(dBy) with ¢ # 0, we have

Im{p, Ty) = —Im(TH'S Rip, Riw) + Im (R3¢, Sp, R3p)
I * *
_Im<TBZnL§)B3,’L/\0R3QO’ R380> < 0 (259)

O]

Therefore, by Lemma 2.11, we can apply Theorem 2.8 to this case. From
Lemma 2.9 (b), and applying Theorem 2.8, we obtain Theorem 1.2.

Remark 2.12. Unknown obstacle 25 may consist of finitely many con-
nected components whose closures are mutually disjoint. Furthermore, the
boundary condition on € can not be only Neumann but also Dirichlet,
impedance, and not only impenetrable obstacles but also penetrable medi-
ums, and their mixed situations by the same argument in Theorem 2.2. In
all cases, we can choose arbitrary wave numbers k£ > 0.

Remark 2.13. If we assume that k2 is not a Dirichlet eigenvalue of —A in
artificial domains By, Bs, then we do not need to take an additional domain
Bs. In such a case, we only use F' gl 16 B, s artificial far field operators since
Fgfﬁ B, has a role to keep the strictly positivity of the imaginary part of
the middle operator of F'. (See Lemma 2.5 (c).) That is, we can give the
following characterization by the same argument in Theorem 2.2:

Theorem 2.14. In addition to Assumption 2.1, we assume that k* is not
a Dirichlet eigenvalue of —A in By, Bs. Take a positive number g > 0.
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Then, for z € R3\ By

o] 2
e =Y ’(¢z’¢’;)L2(SQ)’ < 0, (2.60)
n=1 n

where (A, n) is a complete eigensystem of Fy given by
Fy := |ReF| + |[ImF)|, (2.61)
where F' 1= Fé\/f’& + FBDfGB2. Here, the function ¢, is given by (2.11).

Remark 2.15. We can also give the characterization of the Neumann part
Qs if we assume Qy C By, By C Qo, B; Ny = () by the same argument in
Theorem 2.2 (See Figure 4).

B,

Q,

Neumann

Figure 4: Assumption of Remark 2.15

2.4 The second case

In Section 2.4, we prove Theorem 2.4. Let Assumption 2.3 hold. We define
G¥liw s+ L2(Q1) x HY2(0By) — L*(S?) by

G s, ( g > =0, (2.62)
where v™° is the far field pattern of a radiating solution v such that
Av + kv = —kz\/qﬂf in R®\ By, (2.63)
q
v =g on 0DBs. (2.64)

Note that we extend ¢ by zero outside ;. Next, we define Ry : L?(Q) x
HY2(0Qs) — L*(Q4) x H'/2(0By) by

AN [ fi++V]dn
R ( o ) = ( ol ) : (2.65)
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where v; is a radiating solution such that

Avy + K21+ q)vy = —k? ﬁfl in R3\ 0, (2.66)
q
vy = —g1 on 0. (2.67)

Then, from the definition of R;, we obtain
Goqo, = Giso.p, R (2.68)

We define Ry : H'/?(0By) — L?*(Qy) x H'/?(9Bs) by

Rofs = ( J?Z ) . (2.69)

Then, from the definition of Ro, we obtain
GBI = G g, Re. (2.70)

Here, take a positive number \g > 0, and a bounded domain Bs with B3 C
By. We define Ry : HY/?(0Bs) — HY?(0Bs) by

Rgfg = 03}832’ (2.71)

where v3 is a radiating solution such that

Avs + k*v3 = 0 in R®\ Bj, (2.72)
ovs .

+ iAgvs = f3 on OBs. (273)
ovp,

Then, from the definition of R3, and (2.70), we obtain
Gpning = GBI Ry = GY§ p, Ra R, (2.74)

By (2.68), (2.70), (2.74), and the factorization of the far field operator in
Section 2.2, we have

Mi Di I Mi Mi
Foga, + FB, + FB’;?/\O = G0,68, MGG B, (2.75)
where M := [RlMnglgﬂfQ’; t — RoSp Rj — RQRSTé;’jg;‘R;R;]
The following properties are given by the same argument in Theorem

3.2 (c) in [64]:

21



Lemma 2.16. (a) The operator Gg[lio‘f& : L2(Qy) x HY?(0By) — L3*(S?)
is compact with dense range in L?(S?).

(b) For z e R®\ By
2 € O < ¢. € Ran(GH ¢ p,), (2.76)
where the function ¢, is given by (2.11).

To prove Theorem 2.4, we apply Theorem 2.8 to this case with F =
Fé‘f gos T F 52 TrEL+F Jész:‘ First, we show the following lemma:

I 0

Lemma 2.17. (a) R — ( 0 0

), R3 are compact.

(b) Ry is injective.
(c) Rj is injective.

é 8 ) L L2(0) x HY2(90) — HY()) x

H'(8By), and R3 : H'/2(0B3) — H'(0Bs) are bounded since they are

Proof. (a) The mappings R — (

given by < h > > A ,and f3 — 03‘ ap,» respectively. By Rellich
9 u ’8B2 :
theorem, they are compact.
(b) Assume that

AN _( A+lgvr )
() -(F )0 e

Equation (2.66) yields that
Avy + k*v; = 0in R?\ By, (2.78)

vy =0 on 0Bs. (2.79)

By the uniqueness of the exterior Dirichlet problem, vy vanishes outside of
Bsy. Therefore, fi = 0. Furthermore, the analyticity of v; yields that v also
vanishes in Bs \ Q, which implies that g; = 0.

(c) The injectivity of R} follows from the same argument as done in the
proof of Lemma 3.2 in [63]. O

By Lemma 2.17, the middle operator M of (2.75) has the following prop-
erties:
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Lemma 2.18. (a) Re(e”M*) has the form Re(e"M*) = C+ K with some
self-adjoint and positive coercive operator C, and some compact oper-
ator K.

(b) Im{p, M*@) >0 for all ¢ € L*(Q1) x HY?(0By).
(c) M* is injective.

Proof. (a) By Lemma 2.5 (b), Lemma 2.7 (b), and Lemma 2.17 (a),

Re(eM*) = Re( TRIM{T R} — e RySp, Ry —e“RgRgTé?f)\oR;R;)

'Lthl
Cr(RED 0 ) R s O + K
0 cos t)Sq,.i

- (5 0)( Re(o’“ s ) (50)

—RQ(COS t)SBQ,iRS + K’

_( Re(%E 0 :
B ( ; (—cos t)SB,.i ) i (2:80)

where K and K’ are some compact operators. The first term of the right
hand side in (2.80) is self-adjoint and positive coercive since (—cos t) > 0
when t € (7/2,37/2), and Assumption 2.3 (iv) yields

e'q] sRe(e™"q)
<80,Re( 2 )<P> = \ | Wdiﬁ
C q
= 2 H‘PHL?(Ql) (2.81)

(b) By Lemma 2.5 (c), Lemma 2.7 (c) (d), for all p € L?(Qy)x H~Y/2(0By)

Im(p, M*p) = Im( ”fso,Méf?QQ T¢>— m (R3¢, Sp, R50)
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(c) Let ¢ € L?(Q4) and ¢ € H‘1/2(8B2). Assume that M* < i > =0.
Inequality (2.82) yields that

Im * % ¢ * Pk d)
Im< Baing B3I < y ) , R3 RS ( o >> =0, (2.83)
which implies that R3R5 < j; ) = 0 from Lemma 2.5 (d). By Lemma 2.17
(c), and the definition of Ry, we have ¢ = 0. Therefore,
* ¢ (29 * ¢
M < 0 ) =RiMafo, B, ) =0 (2.84)

From Lemma 2.17 (b) and Lemma 2.7 (d), we obtain

R’{<§>:<S>. (2.85)

Finally, we will show ¢ = 0. Let f; € L?(€;). Take radiating solutions vy
and w such that

Avy + K21+ q)vy = —k? \/qul in R3\ 0, (2.86)
vy = 0 on 0%, (2.87)
Aw + (1 + ¢)w = /|q|é in R\ s, (2.88)
w = 0 on 0. (2.89)
By (2.85),
_ fi 2N\ _ /[ fi+ ] ¢
o= () m (5 =) (5
= frédx + / vy \/H$dm (2.90)
0 0

y (2.86) and (2.88),

/lel\/agbdx = /

Aw + k*(1 + q)w)dz

1
(Avl + k(1 + q)v1 + k2

/Ql \/mﬁ)wdx
= / k2 q frwdx
Q1 ’CJ|
+/ (Aw)vr — w(Avy)dz (2.91)
Q1
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By using Green’s theorem, (2.87) and (2.89),

/(Aw)vl—w(Avl)dm = / ~ (Aw)vy — w(Avy)dz
o R3\(;

B _/ [8wv_w8v s
a IO 81/92 ! 81/92

= 0. (2.92)

By (2.90)-(2.92),
o=k—L win Q. (2.93)

Vldl

From (2.88), (2.89), and (2.93), we obtain
Aw + E*w = 0 in R\ O, (2.94)

w =0 on 09y, (2.95)

which proves that w vanishes in R3 \ Q5 by the uniqueness of the exterior
Dirichlet problem. Therefore, equation (2.93) yields that ¢ = 0. O

Therefore, by Lemma 2.18, we can apply Theorem 2.8 to this case with
F= FS])\{;?QZ + ng”’ *+ Fég?f)\:. From Lemma 2.16 (b), and applying Theo-
rem 2.8, we obtain Theorem 2.4.

Remark 2.19. We can also consider various situations on {2y like Remark
2.12, and replace the assumption of taking B3 with that k2 is not a Dirichlet
eigenvalue of —A in an artificial domain Bs like Remark 2.15.

We can also give the characterization by replacing (iv) in Assumption
2.3 with

(iv’) There exists t € [0,7/2) U (37/2,27] and C > 0 such that Re(e™"q)
> Clq| a.e. in .

by the same argument in Theorem 2.4:

Assumption 2.20. Let a bounded domain Bo be a priori known. Assume
the following assumptions:

(i) ¢ € L*(21) with Img > 0 in Q.
(ii) |q| is locally bounded below in Q4, i.e., for every compact subset M C €,

there exists ¢ > 0 (depend on M ) such that |q| > ¢ in M.

25



(iii) Qy C By, @1 N By = 0.

(iv’) There exists t € [0,7/2) U (37/2,27] and C > 0 such that Re(e™"q)
> Clq| a.e. in Q.

Theorem 2.21. Let Assumption 2.20 hold. Take a positive number \g > 0.
Then, for z € R3\ By

o] 2
s =Y K@’@’;)LQ(SQ)’ < 0, (2.96)
n=1 n

where (An, on) is a complete eigensystem of Fy given by

Fy = ‘Re(e_itF)} + ‘ImF

: (2.97)

where F' 1= FS]{ZTQQ + Fész)\o. Here, the function ¢, is given by (2.11).
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3 The monotonicity method for the inverse crack
scattering problem

3.1 Introduction

Let I' € R? be a smooth non-intersecting open arc, and we assume that T’
can be extended to an arbitrary smooth, simply connected, closed curve 02
enclosing a bounded domain  in R%. Let k > 0 be the wave number, and
let # € S! be incident direction, where S! = {2 € R? : |z| = 1} denotes the
unit sphere in R%. We consider the following direct scattering problem: For
6 € S' determine u*® such that

Au® + k*u® = 01in R*\ T, (3.1)
u® = —e*T on T (3.2)

: ou® o\
TIL%O \/F< 5 iku > =0, (3.3)

where r = |z|, and (3.3) is the Sommerfeld radiation condition. Precisely,
this problem is understood in the variational form, that is, determine u® €
H} (R?\T) satisfying uS‘F: —ek0* the Sommerfeld radiation condition

(1.3), and
/ [Vu® -V — k:QuSG] dx =0, (3.4)
R2\T"

for all ¢ € HY(R?\T), QO‘F: 0, with compact support. Here, H. (R*\T) =
{u:R}\T — C: u|B\f€ HY(B\T) for all open balls B including I'} denotes
the local Sobolev space of one order.

It is well known that there exists a unique solution u® and it has the
following asymptotic behaviour (see, e.g. [18]):

ei kr
\/;

The function u™ is called the far field pattern of u®. With the far field
pattern u™, we define the far field operator F : L*(S') — L%(S') by

u®(z) =

u®(2,0)+O0(1/r) ¢, r — 00, &:= . (3.5)
|z

Fg(3) = / ™ (,0)9(0)ds(6), & € SV (3.6)
St
The inverse scattering problem we consider is to reconstruct the unknown

arc I' from the far field pattern u® (&, ) for all & € S!, all 2 € S with one
k > 0. In other words, given the far field operator F', reconstruct I'.
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In order to solve such an inverse problem, we use the idea of the mono-
tonicity method. The feature of this method is to understand the inclusion
relation of an unknown object and artificial one by comparing the data oper-
ator with some operator corresponding to an artificial object. For electrical
impedance tomography (EIT) we refer to [40], for the inverse boundary
value problem for the Helmholtz equation we refer to [37, 38, 39], and for
the inverse medium scattering problem we refer to [33, 69].

Our aim in this section is to provide the following two theorems.

Theorem 3.1. Let 0 C R? be a smooth non-intersecting open arc. Then,
cCcl' <=  H;H, <4, —ReF, (3.7)

where the Herglotz operator H, : L*(S') — L?(0) is given by
H,g(x) ::/ k0 4(0)ds(6), = € o, (3.8)
St

and the inequality on the right-hand side in (3.7) denotes that —ReF —H}H,
has only finitely many negative eigenvalues, and the real part of an operator

1
A is self-adjoint operators given by Re(A) := §(A + A*).
Theorem 3.2. Let B C R? be a bounded open set. Then,
I'cB <= —ReF <g, HjzHyp, (3.9)

where Hyp : L2(SY) — H'Y/2(dB) is given by

Hopg(z) = / Mg(0)ds(0), x € 0. (3.10)
S

Theorem 3.1 determines whether an artificial open arc o is contained in
I' or not. While, Theorem 3.2 determines an artificial domain B contains I'.
In two theorems we can understand I' from the inside and outside.

This section is organized as follows. In Section 3.2, we give a rigorous
definition of the above inequality. Furthermore, we recall the properties of
the far field operator and technical lemmas which are useful to prove main
results. In Sections 3.3 and 3.4, we prove Theorems 3.1 and 3.2 respectively.
In Section 3.5, we give numerical examples based on Theorem 3.1.
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3.2 Preliminary

First, we give a rigorous definition of the inequality in Theorems 3.1 and
3.2.

Definition 3.3. Let A, B : X — X be self-adjoint compact linear operators
on a Hilbert space X. We write

A<g B, (3.11)
if B — A has only finitely many negative eigenvalues.
The following lemma was shown in Corollary 3.3 of [38].

Lemma 3.4. Let A, B : X — X be self-adjoint compact linear operators on
a Hilbert space X with an inner product (-,-). Then, the following statements
are equivalent:

(a) A<m B
(b) There ezists a finite dimensional subspace V' in X such that
(B—A)v,v) >0, (3.12)
for allv e V*L.

Secondly, we define several operators in order to mention properties of
the far field operator F. The data-to-pattern operator G : HY/?(I') — L?*(S')
is defined by

Gf :=v>, (3.13)

where v is the far field pattern of a radiating solution v (that is, v satisfies
the Sommerfeld radiation condition) such that

Av + E*v =0 in R?\ T, (3.14)

v=fonTl. (3.15)

The following lemma was given by the same argument in Lemma 1.13 of
[58].

Lemma 3.5. The data-to-pattern operator G is compact and injective.
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We define the single layer boundary operator S : H=Y/2(T') — HY*(I)
by

Sﬂ@ﬁ=£@@ﬂ&aw%@%xef, (3.16)

where ®(x,y) denotes the fundamental solution to Helmholtz equation in
R?, i.e.,

i
(e,y) = L Hy (ke —yl), « # . (3.17)

Here, we denote by
HY2(D) = {u|: w € HY2(09)}, (3.18)
HY(I) := {u € HY?(8Q) : supp(u) c T}, (3.19)

and H~Y/2(I') and H~Y/2(I') the dual spaces of H'/2(T') and HY2(T') re-
spectively. Then, we have the following inclusion relation:

HY* () ¢ HY2(T) c L*(T) c H~Y*(I') ¢ HY2(T). (3.20)

For these details, we refer to [76]. The following two Lemmas was shown in
Section 3 of [66].

Lemma 3.6. (a) S is an isomorphism from H=Y2(T') onto HY%(I).

(b) Let S; be the boundary integral operator (3.16) corresponding to the
wave number k = i. The operator S; is self-adjoint and coercive, i.e,
there exists cg > 0 such that

(0, 5i0) > co|¢l[F -2y for all o € H™A(T), (3.21)
where (-,-) denotes the duality pairing in (H—'/2(T), H'/2(T)).
(c) S—S; is compact.

(d) There ezists a self-adjoint and positive square root Sz-l/2 : LA(T) — L3(I)

of S; which can be extended such that 53/2 : H-Y2(T) — LA(T) is an
12xgl/2 _ g

isomorphism and S, i i
Lemma 3.7. The far field operator F' has the following factorization:
F=-GS*G". (3.22)
where G* = L*(SY) — HY2(T) and S* : H-Y2(T) — HY2(T) are the
adjoints of G and S, respectively.
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Thirdly, we recall the following technical lemmas which will be useful to
prove Theorems 3.1 and 3.2. We refer to Lemma 4.6 and 4.7 in [38].

Lemma 3.8. Let X, Y, and Z be Hilbert spaces, and let A : X — Y and
B : X — Z be bounded linear operators. Then,

3C >0: ||Az|? < C||Bz|* forallz e X <<= Ran(4*) C Ran(B*).
(3.23)

Lemma 3.9. Let X, Y,V C Z be subspaces of a vector space Z. If
XNY={0}, and XCY+YV, (3.24)
then dim(X) < dim(V).

3.3 Proof of Theorem 3.1

In Section 3.3, we will show Theorem 3.1. Let ¢ C I'. We denote by
R : L*(T') — L?(o) the restriction operator, J : HY*(T') — L?*(T) the
compact embedding, and H : L2(S') — L*(T), H : L*(S') — H'Y2(T') the
Herglotz operators, respectively. Since e =¥ is a far field pattern of ®(x, ),
we have by definitions of G and S

GSp(a) = [ I ()ds(y). (3.25)

The right-hand side is identical with H*p(2) (see the proof of Lemma 3.4
in [66]). Then, we have H* = G'S. By this equality we have

H, = RH
= RJH
= RJS*G™. (3.26)
Using (3.25) and Lemmas 3.6 and 3.7, —ReF' — H}H, has the following
factorization:
—ReF — Hy;H, = G[ReS—SJ*R*RJS*|G*
= GI[S;+Re(S—8;) — SJ*R*RJS*|G*

= |GW*W* 7S, +Re(S—-85;) = SJ*R*RJS*\W ™ |GW
* * —1 ( ) * % * 1 *] %

= [GW*][I2r) + K] [GW*]7,

where W := Sil/2 : H-Y2(I') — L*(I) is an extension of the square root
of 52 K := W* “L[Re(S — S) — SJ*R*RJS*|W~1 : [3(T) — L*(T) is
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self-adjoint compact, and Iy2r) is the identity operator on L3(T). Let V be
the sum of eigenspaces of K associated to eigenvalues less than —1/2. Then,
V' is a finite dimensional and

<(IL2(F) + K)U, 'l)> Z O7 (328)
for all v € V+. Since for g € L%(S)
*] % 1 * €L
[GW*|"geV = gellGwHV], (3.29)
and dim[(GW*)V] < dim(V) < oo, we have by (3.27) and Lemma 3.4 that
HXH, <g, —ReF.
Let now ¢ ¢ I' and assume on the contrary HyH, <g, —ReF’, that is,
by Lemma 3.4 there exists a finite dimensional subspace V in L%(S!) such

that
(—ReF — H;H,)v,v) >0, (3.30)

for all v € V+. Since o ¢ T, we can take a small open arc oy C o such that
oo N T = ), which implies that for all v € V-

IIHavHiz(a)

<(—R6F)U, U>L2(Sl)

((ReS™)G* v, G*v)

|ReS* || ||G* o). (3.31)

2
[Hogvll 209y <
<

IN

Before showing a contradiction with (3.31), we will show the following
lemma.

Lemma 3.10. (a) dim(Ran(H},)) = oo
(b) Ran(G) NRan(H} ) = {0}.
Proof of Lemma 3.10. (a) By the same argument in (3.25) we have

Hyy = JogHoy = Joy S5, Goy s (3.32)
where Go, : H'?(0g) — L*(SY), Sy, : H Y?(09) — H'?(0y), and J,, :
H'?(0y) = L?*(0y) are the data-to-pattern operator, the single layer bound-
ary operator, and the compact embedding, respectively, corresponding to .
Since Hy = GySs0J5,, Ran(J;, ) is dense, and G4, S, is injective, we have
dim(Ran(H},)) = dim(Ran(J;,)) = oo.

(b) By (3.7), we have Ran(H; ) C Ran(G,,). Let h € Ran(G) N
Ran(Go,), i.e. h = vp® = v5° where vp® and vy are far field patterns of
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the scattered field vr and v,, associated to scatterers I' and o, respec-
tively. Then by Rellich lemma and unique continuation we have vp =
vy, in R?\ (T'Ugp). Hence, we can define v € H} (R?) by

loc

VP = Vg, in R?\ (T'U o)
v:i=<{ op on oy (3.33)
Verg onI'

and v is a radiating solution to
Av + k*v = 0 in R?. (3.34)
Thus v = 0 in R?, which implies that h = 0. O

By the above lemma we have co = dim(Ran(H},)) £ dimV < oo and
Ran(H; ) NRan(G) = {0}. By a contraposition of Lemma 3.9, we have

Ran(H; ) Z Ran(G) + V = Ran(G, Py), (3.35)

where Py : L2(S') — L2(S') is the orthognal projection on V. Lemma 3.8
implies that for any C' > 0 there exists a v, such that

G*
(7 )
Hence, there exists a sequence (v, )men C L2(SY) such that || Hyyvm || — oo

and [|G*vpm||? + | Pyvm|| — 0 as m — co. Setting Ty, := vm — Py, € VE
we have as m — oo,

2

1Hoyve ]| > C* = C2(IG vel* + || Pyvel ). (3.36)

[ HooOm | > | Hoovm |l = [ Hoo | [| Pvvm | — oo, (3.37)

1G* 0| < (|G vl + |GEI [ Py vm | — 0. (3.38)

This contradicts (3.31). Therefore, we have H}H, €, —ReF'. Theorem 3.1
has been shown. ]

3.4 Proof of Theorem 3.2

In Section 3.4, we will show Theorem 3.2. Let I' C B. We denote by
Gop : HY?(0B) — L*(S') and Spp : H-'/?(dB) — H'Y?(OB) are the
data-to-pattern operator and the single layer boundary operator, respec-
tively corresponding to closed curve 0B. They have the same properties
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like Lemmas 3.5 and 3.6 and we have I:I§B = GypSop. (See, e.g., Lemma
1.14, Theorem 1.15 in [58].) We define T : HY/?(I') — H'/?(dB) by

Tf:=v|yp (3.39)

where v is a radiating solution such that
Av+k*v=0in R*\ T, (3.40)
v=fonl. (3.41)

T is compact since its mapping is from H'/?(T") to C*(dB). Furthermore,
by the definition of T" we have that G = GggT. Thus, we have

f{gBﬁaB + ReF = GBBSG)BSSBGBB + Gap [—TRG(S)T*]GBB
= GjnB [SaB,iSZSB,@- + K} Ghp

= [GosW*][W* ~'Sop,iShp W + K'] [GasW*]", (3.42)

where K and K’ are some self-adjoint compact operators, and W := ég ;¢

H*1/2(QB) — L?(dB) is an extension of the square root of Spp,; where
Sopi: H Y?(0B) — H'/?(8B) is the single layer boundary operator corre-
sponding to 9B and the wave number k = i. Let V be the sum of eigenspaces

-2
(S3.W71) | - Then v
is a finite dimensional, and for all g € [(G@BVV*)V]l we have

of K’ associated to eigenvalues less than —%

((HypHop + ReF)g, g)
= |[(StpW ) [GaBW*]*gHZI/Q(aB) +(K'[GoW*]"g, [GoW*]"9) 12 (o8)

v

- * 1 * —1\— - *] *
1655 N [GonW T gll” = 5 1S5, |7 (| [GonW ] |

> 0. (3.43)

Therefore, —ReF <gp ﬁ[gBﬁaB. o
Let now I' ¢ B and assume on the contrary —Rel’ <g, H3zHpp, i.e.,
by Lemma 3.4 there exists a finite dimensional subspace V in L?(S') such
that
(HjpHyp + ReF)v,v) > 0, (3.44)

for all v € V+. Since I' ¢ B, we can take a small open arc T’y C T such that
o N B = (. We define L : H/?(Ty) — H'/?(T) by

Lf:=v|p, (3.45)
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where v is a radiating solution such that
Av + k*v = 0 in R?\ T, (3.46)

v = fonTy. (3.47)

By the definition of L, we have Gr, = GL where G, : H'/?(Ty) — L*(S")
is the data-to-pattern operator corresponding to I'y. We denote by St :
HY 2(Ty) — HY?(Ty) the single layer boundary operator corresponding
to Tg, and Hr, : L*(SY) — L*(Ty), Hr, : L*(S') — H'Y?(Ty) the Herglotz
operators corresponding to I'g, respectively. By the same argument in (3.25)
we have I:Ipo = St,Gt,- Then, we have

N 2
Iy elaqy) < HFO:B’HI/Q(FO)
< |8t 1P 1GF ]I
< ISt P IE I e 2, (3.48)

for z € L%(S!). Since ReS is of the form ReS = S; + Re(S — S;), by
the similar argument in (3.26)—(3.27) and (3.42)—(3.43), there exists a finite
dimensional subspace W in L?(S') such that for z € W+

|G*z|? < C{(ReS)G*x, G*) = C({(—ReF)x, x). (3.49)

Collecting (3.48), (3.49), and fIgB = GyBSsB, we have

- 2
|Hrgzl < C((~ReF)a,2) < C||Hppa

IN

c ||S§BH2 HGBBJUH?{fW(aB) : (3.50)
for € (VUW)*L.

Lemma 3.11. (a) dim(Ran(Hf)) = oo

(b) Ran(Gop) N Ran(Hf, ) = {0}.

Proof of Lemma 3.11. (a) is given by the same argument in Lemma 3.10.

(b) Since (3.31) replacing oy by I'g holds, by taking a conjugation in
(3.31) we have Ran(Hy, ) C Ran(Gr,). Let h € Ran(Gop) N Ran(Gr,), i.e.,
h = vy = vpy, where v7 and vp; are far field patterns of the scattered field
vp and vr, associated to scatterers B and I'g, respectively. Then by Rellich
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lemma and unique continuation we have vg = vr, in R? \ (B UTy). Hence,

we can define v € H} (R?) by
vg =vr, inR?\ (BUTy)
v:i= < wr, on B (3.51)
vB on FO

and v is a radiating solution to
Av + k*v =0 in R2 (3.52)
Thus v = 0 in R?, which implies that h = 0. O

By the above lemma we have oo = dim(Ran(Hf,)) £ dim(V UW) < oo
and Ran(Hy, ) N Ran(Gap) = {0}. By a contraposition of Lemma 3.9, we
have

Ran(Hy,) € Ran(Gop) + (VUW) = Ran(Gan, Pruw), (3.53)

where Pyow @ L?(S') — L2(S!) is the orthognal projection on V U W.
Lemma 3.8 implies that for any C' > 0 there exists a x. such that

Gop )
(PVUW e

Hence, there exists a sequence (o,,)men C L?(S') such that ||Hr,zm| —
oo and ||Gpwm|® + |Prowem| — 0 as m — oco. Setting &, = @, —
Pyowrm € (VUW)L we have as m — oo,

2

| Hrozel|* > C* = C(|Ghpael® + | Prowae|®). (3.54)

|Hryimll > [ Hroml — | Hrll|Prowsm]l = 00, (3.55)

1GoTm| < [[Gapzm|l + 1Gaall | Pvuwzm|| — 0. (3.56)
This contradicts (3.50). Therefore, we have —ReF gy H ngIaB. Theorem
3.2 has been shown. ]

3.5 Numerical examples

In Section 3.5, we discuss the numerical examples based on Theorem 3.1.
The following three open arcs I'; (j = 1,2,3) are considered. (see Figure 5)

(@) Tr = {(s,5)| ~1 <5 <1}
(b) Ty = {<2sin(g +(1 +s)3§) -2 sin<g + (1+s)?;jf>‘—1 <s< 1}

36



(c) F3:{<5 sm( (1—|—8)3’T)

Based on Theorem 3.1, the indicator function in our examples is given
by

—1§5§1}

I(0) := # {negative eigenvalues of — ReF — H,H,} . (3.57)

The idea to reconstruct I'; is to plot the value of I(c) for many of small o
in the sampling region. Then, we expect from Theorem 3.1 that the value
of the function I(0) is low if o is close to I';.

Here, o is chosen in two ways; One is the vertical line segment 07" :=

i,j
zij + {0} x [~ 557, 5] where z; ; := (%,%) (i, = —M,—M +1,..,. M)
denote the center of 0,5, and ﬁ is the length of 0,5 and R > 0 is length

of sampling square region [—~R, R]?, and M € N is large to take a small
segment. The other is horizontal one thm" 1= 2 + [~ 5hr, o) % {0}
The far field operator F' is approximated by the matrix

2

F a5 (0 (i, 0m)) e CVN, (3.58)

1<l m<N

where 2; = (cos(%{}l) Sln(%(;l)) and 0, = (cos(2E2), sin(2E2)). The far field
pattern 4 of the problem (3.1)—(3.3) is computed by the Nystréom method
in [67]. The operator H}H, is approximated by

HiH, ~ 2T ( / e"’“y‘wm—@)dy) e CNVN, (3.59)
N o 1<lI;m<N

When o is given by the vertical and horizontal line segment, we can compute
the integrals

k(0. —3 R k0 —21) 2 kR /. 2mm . 2wl
/overeky(em l)dy:Mek(e 0 vﬂsmc<2M7r(sm( N )—sm(N))>,

,J

(3.60)
. R R N kR 2mm 27l
iky-(Om—12;) 2 ik(Om—21)2i 5 o o an
/Uwe Ydy Me t JSlnC<2M7r <cos( N ) cos( N )))
gV
(3.61)

In our examples we fix R = 1.5, M = 100, N = 60, and wavenumber
k = 1. Figure 6 is given by plotting the values of the vertical indicator
function

Lyer(zig) == 1(a}5"), (3.62)

for each i, j = —100, —99, ..., 100. Figure 7 is given by plotting the values of
the horizontal indicator function

Inor (2i,5) = I(a197), (3.63)
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for each i,j = —100,—99,...,100. We obverse that I'; seems to be recon-
structed independently of the direction of linear segment.

Fl FQ FS

Figure 5: The original open arc
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Fl F2 Fg

Figure 6: Reconstruction by the vertical indicator function I,

Fl FQ Fg

Figure 7: Reconstruction by the horizontal indicator function Ij,,.
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4 The direct and inverse scattering problem for
the semilinear Schrodinger equation
4.1 Introduction

In this section, we study the direct and inverse scattering problem for the
semilinear Schrodinger equation

Au + a(z,u) + k*u =0 in RY, (4.1)

where d > 2, and k > 0. Throughout this section, we make the following
assumptions for the semilinear function a : R¢ x C — C.

Assumption 4.1. We assume that
(i) a(x,0) =0 for all v € RZ.

ii) a(z,z) is holomorphic at z = 0 for each x € R?, that is, there exists
4

1
n > 0 such that a(x,z) = > ;2 Wzl for |z| <.

(iii) dla(-,0) € L>®(R?) for alll > 1. Furthermore, there exists co > 0 such
that }aia(~,0)||Loo(Rd) <ch foralll > 1.

(iv) There exists R > 0 such that suppdia(-,0) C Bg for all | > 1 where
Bgr C R is a open ball with center 0 and radius R > 0.

The inverse scattering problems for non-linear Schrodinger equations
have been studied in various ways. For the time dependent case, we refer to
[93, 94, 95], and for the stationary case, we refer to [1, 36, 47, 88, 89, 90].
In stationary case, [36, 47, 89] have studied the general non-linear function
of the form a(x, |u|)u, which does not include our no-linear function a(z, u).
The function a(z,u) which satisfies Assumption 4.1 is the generalization of,
in particular, the power type q(x)u™ where m € N where ¢ € L= (R?) with
compact support. If m = 1, the problem is for linear Schrodinger equa-
tions, which has been well understood so far by many authors. (see e.g.,
[29, 77, 81, 87])

Recently in [20, 70, 71], the generalization of a power type has been stud-
ied in inverse boundary value problems via using the Dirichlet-to-Neumann
map. [46] also has studied the similar type of this nonlinearity. However in
inverse scattering problems, only [1] has studied it in one dimension, which
the non-linear function is of the form a(z,u) = > ,7; ¢n(z)u". Motivated
by these previous studies, our aim in this section is to study the type of this

40



nonlinearity in the case of higher dimensions d > 2, and a more general form
a(z,wu) than [1].
We consider the incident field ug" as the Herglotz wave function

u(z) = /S g()as(e), v € BY, g e 13ET), (12)

which solves the free Schrédinger equation Au;” + k:2u§” = 0 in R%. The
scattered field ug® corresponding to the incident field uy" is a solution of the
following Schrédinger equation perturbed by the semilinear function a(z, 2)

Aug + a(z,uy) + k*uy = 0 in RY, (4.3)

where ug is total field that is of the form u, = ug® + u;", and the scattered
field u®¢ satisfies the Sommerfeld radiation condition

lim 72 (ag - ikusc> =0, (4.4)

r—00

where 7 = |z|.

Since support of the function a(z, z) is compact, the direct scattering
problem (4.3)-(4.4) is equivalent to the following integral equation. (see
e.g., the argument of Theorem 8.3 in [18].)

ug(r) = u;”—i—/ O(z,y)aly, ug(y))dy, x € R, (4.5)
R4

where ®(x,%) is the fundamental solution for —A —2 in R, In the following
theorem, we find a small solution ug® of (4.5) for small g € L>®(STh).

Theorem 4.2. We assume that a(z,z) satisfies Assumption 4.1. Then,
there exists 69 € (0,1) such that for all § € (0,00) and g € L>®(S41)
with [|g]l poo (gi-1) < &2, there exists a unique solution u® € L>®(RY) with

Hu < § such that

ZCHLOO(RGZ)
uita) = [ S atu ) + o0y, @ RL (49

Theorem 4.2 is proved by the Banach fixed point theorem. By the same
argument in Section 19 of [19], the solution uj® of (4.6) has the following
asymptotic behavior

etkr 1 x
sc Q[ 4, A~
ug’(z) = Ca—u,”(2) + O <d+1> , ri= x| > o0, T:= Tl (4.7)
ro2 ro2
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where Cy 1= K e‘ig(d_?’)/Q%ﬂ%. The function u° is called the scat-

g
tering amplitude, which is of the form
ugo(:i”) = /Rd e_iki'ya(y,ug(y))dy, e st (4.8)

We remark that in the standard linear case, that is, a(z,u) = ¢(z)u, the
scattering amplitude corresponding to the Herglotz wave function (4.8) can
be of the form

ue (&) = /Sd_l > (z,0)g(0)ds(0), & € ST, (4.9)
where 4°°(z,0) is the scattering amplitude corresponding to plane waves
e*70  This tells us that in standard linear case, the scattering amplitude of
the Herglotz wave function is equivalent to that of the plane wave.

Now, we are ready to consider the inverse problem to determine the
semilinear function a(z,z) from scattering amplitudes ug®(2) for all g €
L?(S*™1) with 9]l p2(sa-1) < & where § > 0 is a sufficiently small. We will
show the following theorem.

Theorem 4.3. We assume that aj(z,z) satisfies Assumption 4.1. (j =
1,2.) Let ug; be the scattering amplitude for the following problem

Auj g+ aj(x,ujy) + k2uj, = 0 in RY (4.10)

ujg = Uy +uy, (4.11)

where uj, satisfies the Sommerfeld radiation (4.4), and ufln is given by (4.2),
and we assume that
Uy, = ugy, (4.12)

for any g € L?(S?1) with 191l p2(sa-1y < & where § > 0 is sufficiently small.
Then, we have
a1(z,2) = as(x, 2), v € RY, |2| < (4.13)

The idea of the proof is the linearization, which by using sources with
several parameters we differentiate the nonlinear equation with respect to
these parameter in order to get the linear equation. (For such ideas, we refer
to [20, 70, 71].)

There are few previous studies that the general nonlinear function is
uniquely determined from the scattering amplitude with fixed k£ > 0. [47]
has shown it from behaviour of scattering amplitude corresponding to plane

42



waves Ae®®? as A — 0. [88] has done from the scattering amplitude with
fixed A = 1, but the additional assumptions are needed. Our work shows it
from the scattering amplitude corresponding to Herglotz wave functions ué"
for all small g instead of using plane waves.

This section is organized as follows. In Section 4.2, we recall the Green
function for the Helmholtz equation and its properties. We also prepare the
several lemmas required in the forthcoming argument. In Section 4.3, we
prove Theorem 4.2 based on the Banach fixed point theorem. In Section
4.4, we consider the special solution of (4.3)—(4.4) corresponding to the in-
cident field with several parameters in order to linearize problems. Finally
in Section 4.5, we prove Theorem 4.3.

4.2 Preliminary

First, we recall the Green functions for the Helmholtz equation and its prop-
erties. We denote the Green function for —A — k2 in R¢ by ®(x,y), that is,
O (z,y) satisfies

(—A = k) (z,y) = 6(z — y), (4.14)

for z,y € R% x # 3. In the case of d = 2,3, ®(x,y) is of the form

i (1
;Hél ><k||x —yl)  forz,yeR:zfy,
D(x,y) = iklz—y 4.15
(@y) e for z,y € R3, x # y, ( )
Arlz —y|
respectively. Let ¢ € L>°(RY) with compact support. We denote the Green
function for —A — k? — ¢ in R? by ®,(x,y), that is, ®,(z,y) satisfies

(—A =k = q)®y(x,y) = 6(z — y). (4.16)

for z,y € RY 2 # y. It is well known that for every fixed y, ®(z,y) and
®,(z,y) satisfy the Sommerfeld radiation condition.

We also recall the asymptotics behavior of ®(x,y) as |z| — co. In Lemma
19.3 of [19], ®(x,y) has the following asymptotics behavior for every fixed

Y,

eiklx_yl 1
O(z,y) = Ci—=+0—a7 |- |x| — oo, (4.17)
[z —y| 2 |z —y| 2

and (see the proof of Theorem 19.5 in [19])

O(—tas d=3,z#y
= lz—yl .
(@) { O((‘ln|:11/7—y)||) d=2,c#vy (4.18)
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In Theorem 19.5 of [19], for every f € L>®(R?) with compact support,
u(z) = [ga ®(2,y)f(y)dy is a unique radiating solution (that is, u satisfies
the Sommerfeld radiation condition (4.4)). Furthermore, u has the following
asymptotic behavior

eikr 1 T
u(z) = Cqg—=u™(2)+ O <d+1> , r=lr| =200, T:=—, (4.19)
rT r'z |z|
where the scattering amplitude 4> is of the form
u™® (i) = / e~ R f(y)dy, & e S4L. (4.20)
R4

The following lemma is given by the same argument as in Lemma 10.4
of [18] or Proposition 2.4 of [82].

Lemma 4.4. Let ¢ € L>®(R?) with compact support in Br C R? where some
R > 0. We define the Helglotz operator H : L>(S%~') — L?(Bg) by

Hg(x) = /Sdl_1 e*%4(9)ds(), = € Bp, (4.21)

and define the operator T, : L?>(Br) — L*(Bgr) by T,f == f +w 5 where
w 18 a radiating solution such that :

Aw + kw4 qu = —¢f in RY. (4.22)
We define the subspace V of L?(Bgr) by

Il 2
} PR (403)

V= {U}BR;U € L?(Bry1), Av+k*v+qu=0in Bry

Then, the range of the operator Ty H is dense in V with respect to the norm
Il p2(py), that is,

T,H (L2(Sd—1))”'”LQ<BR> =V. (4.24)

The following result is well known. For d = 2 we refer to [10], and for
d > 3 we refer to [91], which corresponds to real functions. For complex
functions, see Theorem 6.2 in [92].

Lemma 4.5. Let f,q1,qo € L™(R?) with compact support in Br C R?. We
assume that

fuivadx =0, (4.25)
Bgr

for all vi,vy € L?*(Bry1) with Av; + k‘QUj +qjv; =0 in Bpy1. (5 =1,2.)
Then, f =0 in Bg.
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4.3 Proof of Theorem 4.2

In Section 4.3, we will show Theorem 4.2 based on the Banach fixed point
theorem. We denote the Herglotz wave function by

vg(z) == / ek04(0)ds(), z € RY, g e LAH(ST1). (4.26)
gd-1
Let q := 0.a(-,0). We define the operator T": L=(R%) — L>®(R%) by

Tw(z) = @y (z,y) [a(y, w(y) + vy(y)) — a(y)w(y)] dy

d

T

la
2y(2,9) | 5 ZND () 10y 0)' + )y v) | dy. @ € B
>2

I
S

d

(4.27)

Let X5 := {u € L>®(R?) : l[wll oo (ray < (5}. We remark that L>®(RY) is a
Banach space, and Xj is closed subspace in L>(R?). To find an unique fixed
point of T'in X, we will show that T': X5 — X5 and T is a contraction. Let
w € X5, and let & € (0,00), and let |[g]| o0 (ga-1) < 62. Later, we will choose
a appropriate §y > 0.

By 9l oo (sa-1y < 62, we have

””g”Loo(Rd) <C HQHLOO(Sd—1) < o, (4.28)

where C' > 0 is constant only depending on g. By (iii) and (iv) of Assumption
4.1, we have

l
C,
Tw(z)| < / @) | D(C10)! + Cuo? | ay
Br >2
< 0 | 3 (Creod)! / By (z,y)ldy,  (4.29)

1>0 Br

where C; > 0 (j = 1,2) is constant independent of u and §, and so is
(leo (C’lcoé)l) when § > 0 is sufficiently small. Furthermore, by the
continuity of difference ®(x, y)—®4(x, y) in x and y (see the proof of Theorem
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31.6 in [19]), and the estimation (4.18), we have for 2 € R?

[ ity < [ (9G0)]+124(w.0) - B )y
Bpr

Br

< / (10 (x,y)| + Cs)dy < Ci, (4.30)

Br
which implies that |Tw(z)| < C§% where C,C; > 0 (j = 3,4) is constant
independent of u and §. By choosing dy € (0,1/C), we conclude that || Tw|| <
0, which means Tw € Xj.
Let wy,wy € Xg. Since we have

(wi(y) + v5(®))' = (w2y) + v4(y))’
= 2 (l_lnlb)!m!(w?(y) —wg'(y)) vy " (y)

m=1

l
< 3 g (00 (1) )

and |w;(x)| < 0, then
Twi(x) — Twa(z)]

la
| ey EY [(w1<y> Foy(0)' — (wa(a) + v(0))'] dy

>2
cl l m—1 .
S </; |<I) ('17 Y |dy> ZTO Z 'm‘ (Z 6m 1) (Cl ) ||’lU1 w2||Loo ]Rd
R 1>2 m:l
l
< Gy Z Z 0015) ||w1 - w2||L°°(Rd)
>2 1
< Z <Z ) 0015) ||w1 - w2HL<>o(Rd)
< Z c0C18) " [[wr — wall oo (eay
>2
< O3 [ D2 (0C10)" | 8 lhwr = wal ooy
>0
< 6 lur — ual oo may » © € RY. (4.32)
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where C',C; > 0 (j = 1,2,3) is constant independent of wi,ws and 4.

(We remark that (Zz>o (00015)1) is also constant when 6 > 0 is suffi-
ciently small.) By choosing 9 € (0,1/C"), we have ||Tw; — Twa|[ 100 gay <
[lwi — wa|| poo (ray- Choosing sufficiently small 6y € (0, min(1/C,1/C")) we
conclude that T has a unique fixed point in Xj.

Let w € X5 be a unique fixed point, that is, w satisfies

w(r) = /Rd Dy (z,y) [aly, w(y) +v4(y)) — a(y)w(y)] dy, € R (4.33)

Since ®4(x, y) satisfy the Sommerfeld radiation condition (e.g., see Theorem
31.6 in [19]), w is a radiating solution of Aw + a(z,w + vy) + k*w = 0 in
RY. By the same argument as in Theorem 8.3 of [18], this is equivalent to
the integral equation

w(z) = /Rd D(x, y)a(y,w(y) + vg(y))dy, r € RY, (4.34)

which means (4.6). Therefore, Theorem 4.2 has been shown.

4.4 The special solution

In Section 4.4, we consider the special solution of (4.3)—(4.4) corresponding
to the incident field with several parameters in order to linearize problems.
Let N € N be fixed and let g; € L%(S%1) be fixed (j = 1,2,..., N +1). We
set

N+1
- 2 —
Ve :—= Z Ej(s Ugj = U<62 Z;'V:ll €jg‘j)’ (4.35)
7j=1

where v, is the Herglotz wave function defined by (4.2), and ¢; € (0,0).
Later, we will choose a appropriate 6 = d,; v > 0. We remark that we can

estimate that
N+1

Vel poemay < C82 Y e, (4.36)

J=1

where C' > 0is constant only depending on g;. We denote by € = (€1, ...,en41) €

RN*1 We will find a small solution u. of (4.6) that is of the form
Ue = Te + Ve. (4.37)

This problem is equivalent to

re(r) = /Rd Dy (x,y) [a(y,re(y) +ve(y)) — a(y)re(y)] dy, v € R, (4.38)
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where ¢ := 9a(-,0).
We define the space for § > 0

N+1
R P A L e A
171l oo (e, o1 0,8y w1y <

(4:39)
where the norm ||| e ga.cn+1(g 5)v+1y is defined by
171l oo (Rt +1(0, 8y +1y 1= Z SUDc¢ (0,5)N+1€88.8UD cpa [0 7(T, €)] -
la|]<N+1
(4.40)

We remark that L>°(R% CNV+1(0,8)N*1) is a Banach space, and X; is closed
subspace in L>(R%; CV*1(0,5)N*+1). We will show that following lemma in
the same way of Theorem 4.2.

Lemma 4.6. We assume that a(z, ) satisfies Assumption 4.1. Then, there
exists 6 = do,g; N € (0,1) such that for all 6 € (0,60) there exists an unique
solution r € Xy such that

r(z,e) = /Rd Dy(z,y) [a(y,r(y,€) +ve(y)) —a(y)r(y,e)] dy, x € RY, e € (0,6)N 1.
(4.41)

Proof. We define the operator T from L>®(R%; CN+1(0,8)N*1) into itself by

Tr(z,e) = /Rd Dy(z,y) [ay,r(y.€) +ve(y)) — a(y)r(y, )] dy

la
= [ ) |5 D 1000 4 0) + o)) |
1>2

lCL ! .
= [ ot | E S )+ a0 |

1>2 ’ m=0

(4.42)
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Let 7 € Xs5. With (4.36) we have

A
VRS
S
oyl
&
<
8
&
=
<

IA
@z
™
S
—
WE
3|53
~
.~
=
J’_
k:m -
~—
+
Q
(%)
Mz
Q(T\

1>2 m=0 j=1 j=1
2 -2
N+1 N+1 N+1
< (4 E €; cé € + O30 €;
j=1 1>2 j=1 j=1
N+

IN

~ 1
0 €1,
j=1

where C, C‘j > 0 (j = 1,2) is constant independent of 7, J, € (but, depending
on g; and N). Furthermore, we consider for o« € NV with |a| < N +1

O°Tr(x,€)

1>2 0

N+1 N+1 N+1

l
) Cé Z % Z €; 6152 Z €; + 01(52 Zl €;
j=

(4.43)

l
= /Rd%(:c,y)af‘{zaay’ > l_ ,m, My v (y) + a(y)ve(y) | dy.

(4.44)
Since |0, ve(z)| < €162 and [027! =™ (z, e)v™(z)| < Ch(1—m)Imls! =™ (Ch8%)™,

we have

- el I!'m!(l —m ~
oetrwe) < ([ Imwaian) |2 02 T gty 4 Cyp?
R >2 'm 0
<y [ D ()TN (Cho)™ | + Cho® < k6%, (4.45)
1>2 m=0

where C’J' > 0 (j = 3,4,5) is also constant independent of r, 4, e (but
depending on «). Then, we have

0&Tr(x,€)

€

Z SUPcg (0,5)N+1€8S.SUP  crd < ('8, (4.46)

la|<N+1
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where C' is constant independent of r, §, e. (depending on gj and N.) By
choosing &y € (O, min(1/C, 1/0’)), we conclude that Tr € X;.
Let r1,79 € X;. By similar argument in (4.29) we have

Try (x,€) — Trg(a:, €)

la
= [ 2o S Y (1.0 + 0) ~ (raee) + )]

>2
— T aia(y,()) : ! l-m
- /BR(I)‘Z( ' ); Il mz::l(l—m)'m' W)
m—1
x> i My, by ) (rys ) — ra(y,€) dy
h=0

(4.47)

Then, we have for a € NV with |a| < N + 1

o <Tr1 (x) — Trg(at)) ‘
< /BR a:ylz ,5.2‘80”/7 ‘Z l— )im!

1>2 m:l

m—1

<D

h=0

0277 (r(y, €) = r2(y. €)) | dy.

(4.48)

o (v wr (. b (v.9))|

Since

¢ (o )T b)) | < CHa-m) (m1-myn (G e,
) (4.49)
where C7 is constant independent of r1, 72 and ¢ (depending on 3), we have
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. ! A = (1 —m)l(m — 1 — h)IA .
< Cé/ Z (64 “ Z 52l7m71(ci/)lfm Hrl _ 7,,2”
e (= B)Ip! = o s (I —m)!m!
l m—1
~ ~ m —1— h)!A!
< s [ ey Yo epaym Y I
1>2 m=1 h=0
< s [ STt 2 S (GO | Ir1 — ol < CLB s — rall ey, (450)
1>2 p=0

which implies that

E SUD e (0,5)N+1€88.SUDP cRd
|a|<N+1

o (Trl(:n, €) — Try(z, e))) <C"5||ry -7,
o (4.51)
where C7/,C" > 0 (j = 2,3,4) is constant independent of 71,72 and 6. By
choosing 8 € (o, min(1/C,1/¢7, 1/0")), we have ||T71 — Tra|| < |Ir1 — 72|,

which implies that 7" has a unique fixed point in X;. Lemma 4.6 has been
shown. O

4.5 Proof of Theorem 4.3

In Section 4.5, we will show Theorem 4.3. Since a(z, z) is holomorphic at
z =0 by (ii) of Assumption 4.1, it is sufficient to show that

dLay(x,0) = dlay(x,0), z € RY, (4.52)
for all ] € N. Let N € N and let g; € L2(S?*1) (j = 1,2,..., N +1). Let
0 € (O, min(do, SO)> be chosen as sufficiently small and depending on N and

gj- (0o, b0 are corresponding to Theorem 4.2 and Lemma 4.6, respectively.)
From Section 4.4, we obtain the unique solution 7. ; € X (j = 1,2) such
that

Arej+aj(x,7e; +ve) + k*re j = 0 in RY, (4.53)

where 7. ; satisfies the Sommerfeld radiation, and v, is given by (4.35). The
solution r, ; has the form

rese) = [ @ )as 0. res) + )iy, @ SR, c€ (0,077, (454)
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By the assumption of Theorem 4.3 we have
reS(2) =r5(d), £ €S e e (0,0)VH, (4.55)

where 7% is a scattering amplitude for r¢ ;, and it has the form

rS(2) = / e MY, (y, me i (y) +oe(y))dy, & € ST, €€ (0,6)N T (4.56)
]Rd

In order to linearize (4.54), we will differentiate it with respect to ¢ (I =
1,...,N + 1), which is possible because 7 ; € X;5. Then, we have

Oeyrre.j(2) = /R L ®(@,9)0:0(y,7¢(y) + ve(y)) (P (y) + 670y, (y))dy.

(4.57)
As € — 40 we have by setting ¢; := 0.a;(y,0)

wyj(x) 1= O0gTej o

() = Ad@(x,y)Qj(y)(wz,j(y) + 6%, (y))dy,  (4.58)
which implies that
Awy j + k2w j = —q;(wyj + 6%vg,) in R (4.59)
By setting v ; = w; ; + 52“9; we have
Auyj + kupj + gjur; = 0 in RY (4.60)
By setting w; := w1 — w2(= wy1 — wy2) we have
Auy + E*u + g = (¢2 — )2 in R, (4.61)
and we also have
(g2 — q1)up w2 = up 1 Auy — wAuy,; in RY. (4.62)
Differentiating (4.54) with respect to ¢ and as € — 0 we have

e )6 s = | aa(0) w0+ 50, (1),

R4
(4.63)
which means that wp = wpy, where wlcfj? is a scattering amplitude of wy ;.
By setting w; := wy; — w; 2 we have

Aty + k% = 0 in R\ Bg, (4.64)
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where w; satisfies the Sommerfeld radiation condition, and the scattering
amplitude @ of w; vanishes. Then, we have w; = 0 (that is, v; = 0) in
R\ Bg, which implies that by the Green’s second theorem we have (I,h =
1,.,N+1)

0 = / up10,u; — w0yup, 1ds
O0BRr+1
= / uhylAul — ulAthdx
Bry1
= / (g2 — q1)un, 1w 2dx. (4.65)
Br

By (4.59), and definition of H and T}, in Section 4.2, u; ; can be of the form
w,; = 6Ty, Hy, (4.66)

and dividing by §* > 0,
0= / (g2 — )Ty, Hgn Ty, H gidx. (4.67)
Br

Combining Lemma 4.4 with Lemma 4.5, we conclude that ¢; = go.
By induction, we will show (4.53). In the first part of this section, the
case of [ = 1 has been shown. We assume that

dLai(z,0) = dlay(z,0), (4.68)

forall Il =1,2,...,N. We will show the case of | = N + 1. We alredy have
shown that q; = g2 and wli"i = wi’%, which implies that by the uniqueness of
the linear Schrodinger equation (4.53) we have

wy = w2 in R, (4.69)

foralll=1,..,N + 1.
We set ¢ := q1 = q2 and w; := w;; = w; 2. By subinduction we will show
that forall he Nwith 1 <h <N

’r'672 5 (470)

h _ nh
6611...Elhr€:1 0 - aell...elh —0

€=

where [y, ...l;, € {1,..., N + 1}. We already have shown that (4.70) holds for
h = 1. We assume that (4.70) holds for all h < K < N — 1. (If N =1, this
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subinduction is skipped.) By differentiating (4.54) with respect to 85 +1

100Gl
we have
K+1
8K+1 ) _ ) aKJrl . ) ) ) 52
ql...elK_HTGa](x) = S (@, 9)9 02" a;(y; e (y) + ve(y)) H( Elhrfa](y) + 0%y, ()
h=1

€lyClg

+02a;(y, e (y) + ve(y) 06, Te,j(y)+RK,j(y,€)}dy, (4.71)

where R j(y, €) is a polynomial of 0%a; (y, 7e ; (y)+ve(y)) and 821 e, (rej(y) + ve(y))
for 1 <h < K. As e — 0 we have

K+1
by ety Ted| () = /Rd <I>(w,y){a§+1aj(y, 0) [T (win (v) + 8%vg,, ()
h=1

:O(y) + Rk (v, 0)}dy. (4.72)

We set W1, 1= agj;ﬁ_lqKH . and set Wr41 := Wk+1,1 — Wi+12. By
€=

assumptions of induction and subinduction we have Rg 1(y,0) = Ri 2(y,0)
and 0K+ (-,0) = 0X+ay(-,0), which implies that

TE 7j

(o) = [ P a)ina )iy (1.73)
which is equivalent to
Aty 1 + kg1 + qigy = 0 in RY, (4.74)

where wg 41 satisfies Sommerfeld radiation condition. By differentiating
(4.55) with respect to 8§1J_f_16lK+1 and as € — 0 we have

WE 411 = WK 41,25 (4.75)

where w3, ; is a scattering amplitude of W 41,5. (4.75) means that wg, ;| =
0, which implies that by Rellich theorem, we conclude that W1 = 0 in R%.
(4.70) for the case of K + 1 has been shown, and the claim (4.70) holds for
all h =1,..., N by subinduction.

By differentiating (4.54) with respect to 85\1721]{“, and as € — 0 (the
same argument in (4.71)—(4.73)) we have

N+1

wnt1(x) = /Rd @(m,y){ (85“@1(:1:,0) — 85“@2(:5,0)) H (wh(y)+52vgh(y))
h=1
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+q<y>wN+1<y>}dy. (4.76)

= — AN+1 = T ~ :
where Wy == 8€1f€lN+1r6,j — and set Wy41 1= WN41,1 — WN41,2. This
is equivalent to
N+1
~ 2~ ~ 2 - md
Aty i1 + Ky + gy = —f [[ 6°T,Hgn in RY, (4.77)
h=1

where f(z) := 0N lay(x,0) — ON*Tlag(z,0). By differentiating (4.55) with
respect to 8?1[_4:;(“ and as € — 0 (the same argument in (4.75)) we have
where WRr, 1 18 a scattering amplitude of wyy1. Then, we have wy41 = 0
in R\ Bg.

Let © € L?(Bry1) be a solution of A% + k%3 + qo = 0 in Bry1. By the
Green’s second theorem and (4.77) we have

0 = / f)(?,,lDNH — f)aUII}N+1dS
O0BR+1

= / ﬁAlI)N+1 - 1DN+1AT7dSC
Bpry1

N+1
_ / 1 [ *1,Hgnide, (4.79)
L R
which implies that dividing by 6% > 0
N+1
/ f 1] TuHgnvda = 0. (4.80)
Bri1 p=1

Let v € L?(Bgy1) be a solution of Av + k*>v + qv =0 in Bry1. By Lemma
4.4 we can choose gny1 as gn41,j € L2(BR+1) such that T, Hgn41,; — v in
L?(BR) as j — co. Then, we have that

N
/ F 11 T Hgnvvda = 0. (4.81)
Bri1 g
which implies that by Lemma 4.5
N
FII THgn =o0. (4.82)
h=1
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By Theorem 5.1 of [92], we can choose a solution u; € L?*(Bgry1) (b =
1,...,N) of Auy, + k?>up, + quj, = 0 in B, 1, which is of the form

up(z) = P (1 + ¢y, pp)), (4.83)

with ]|¢h(-,ph)||L2(BR+l) < & where C' > 0 is a constant, and py, = ap, +iby,

an, by, € R such that |as| = |by| and ay, - by, = 0 (which implies that py, - pj, =

0), and ap # anr, b # by
Multiplying (4.82) by folvjll e *Pr we have

N
2T e TyHgn =0, (4.84)
h=1
which implies that
N-1
/ |f|2 (H e—rpthth) e "PNT, Hgydx = 0. (4.85)
Br h=1

By Lemma 4.4, there exists a sequence {gn;}jen C L*(S?71) such that
T,Hgn; — uny = e"PN (1 +¢n(z,pn)) in L?(Bg) , which implies that

N—-1
/ fI? (H e_x'p"Tquh> (1+¥(z,pn))dz = 0. (4.86)
Br h=1
As |an| = |bn| — oo in (4.86) we have
N—-1
/ 2 ] e ™" T, Hgnda = 0. (4.87)
Br =1

Repeating the operation (4.85)-(4.87) (/N — 1) times, we have that

/ |f|?dz = 0, (4.88)
Br

which conclude that f = 0. By induction, we conclude that (4.52) for all
[ € N. Therefore, Theorem 4.3 has been shown.
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5 Scattering by the local perturbation of an open
periodic waveguide in the half plane

5.1 Introduction

Let k > 0 be the wave number, and let R% := R x (0,00) be the upper
half plane, and let W := R x (0, h) be the waveguide in ]R%r. We denote by
I, := R x {a} for a > 0. Let n € L>°(R%) be real value, 27-periodic with
respect to z1 (that is, n(z1 + 27, x2) = n(z1,32) for all z = (21, 22) € R2),
and equal to one for zo > h. We assume that there exists a constant ng > 0
such that n > ng in R%. Let ¢ € L(R2) be real valued with the compact
support supp ¢ in W. We denote by Q) := supp ¢. In this paper, we consider
the following scattering problem: For fixed y € Ri \ W, determine the
scattered field u® € H} (R?) such that

A + K21+ q)nu® = —k*qna’ (-, y) in R2, (5.1)

u® =0 on Iy, (5.2)

Here, the incident field v’ is given by u’(z,y) = Gn(z,y), where G,, is the
Dirichlet Green’s function in the upper half plane Ri for A + k?n, that is,

Gn(z,y) = G(z,y) + a°(z,y), (5.3)

where G(z,y) := ®(z,y) — Px(z,y*) is the Dirichlet Green’s function in R?
for A + k2, and y* = (y1, —y2) is the reflected point of y at R x {0}. Here,
®.(z,y) is the fundamental solution to Helmholtz equation in R?, that is,

{
() = TH (Kz ). = £ . (5.4)

where H(()l) is the Hankel function of the first kind of order one. u° is the
scattered field of the unperturbed problem by the incident field G(z,y), that
is, u® vanishes for o = 0 and solves

AT + k*ni® = k*(1 — n)G(-,y) in R (5.5)

If we impose a suitable radiation condition introduced in [62], the unper-
turbed solution @° is uniquely determined. Later, we will explain the exact
definition of this radiation condition (see Definition 5.6).

In order to show the well-posedness of the perturbed scattering problem
(5.1)-(5.2), we make the following assumption.
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Assumption 5.1. We assume that k? is not the point spectrum of WA
in H}(R%), that is, every v € H'(R2) which satisfies

Av +E*(1+ q)nv = 0 in R, (5.6)

v =0 on Iy, (5.7)

has to vanish for xo > 0.

If we assume that ¢ and n satisfy in addition that 82 ((14¢)n) > 0in W,
then v which satisfies (5.6)—(5.7) vanishes, that is, under this assumption
1

all of k2 is not the point spectrum of WA (see Section 5.6). Our aim in

this section is to show the following theorem.

Theorem 5.2. Let Assumptions 5.1 and 5.3 hold and let k > 0 be regular
in the sense of Definition 5.5 and let f € L*(R%) such that suppf = Q.
Then, there exists a unique solution u € H} (R2) such that

Au+k*(1+ q)nu = f in R%, (5.8)

u =20 on Iy, (5.9)

and u satisfies the radiation condition in the sense of Definition 5.6.

Roughly speaking, the radiation condition of Definition 5.6 requires that
we have a decomposition of the solution u into u®) which decays in the
direction of z, and a finite combination u(® of propagative modes which
does not decay, but it exponentially decays in the direction of xs.

This section is organized as follows. In Section 5.2, we briefly recall a
radiation condition introduced in [62]. Under the radiation condition in the
sense of Definition 5.6, we show the uniqueness of u(?) and u(!) in Section
5.3 and 5.4, respectively. In Section 5.5, we show the existence of u. In
Section 5.6, we give an example of n and ¢ with respect to Assumption 5.1.

5.2 A radiation condition

In Section 5.2, we briefly recall a radiation condition introduced in [62].
Let f € L*(R?) have the compact support in W. First, we consider the
following problem: Find u € H} (R2) such that

loc
Au+ k*nu = f in Ri, (5.10)
u =0 on I'. (5.11)
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(5.10) is understood in the variational sense, that is,

J

for all ¢ € H'(R?), with compact support. In such a problem, it is natural to
impose the upward propagating radiation condition, that is, u(-,h) € L>(R)
and

[Vu- Vg — k2nu¢] dx = —/ fodx, (5.12)
w

2
+

u(z) = Q/Fh u(y)(%g(y?y)ds(y) =0, 2 > h. (5.13)

However, even with this condition we can not expect the uniqueness of this
problem. (see Example 2.3 of [62].) In order to introduce a suitable radiation
condition, [62] discussed limiting absorption solution of this problem, that is,
the limit of the solution u, of Auc+ (k+i€)?nu. = f as e — 0. For the details
of an introduction of this radiation condition, we refer to [55, 56, 61, 62].

Let us prepare for the exact definition of the radiation condition. First
we recall that the Floguet Bloch transform Tper : L*(R) — L*((0,2m) x
(—1/2,1/2)) is defined by

Toer f(t, ) = fult) := Z F(t + 2mm)eialt+2mm) (5.14)
meZ
for (t,a) € (0,27) x (—1/2,1/2). The inverse transform is given by
) 1/2 -
Tog(t) = /_ | dba)tda, 1e R (5.15)

By taking the Floquet Bloch transform with respect to x; in (5.10)—(5.11),
we have for a € (-1/2,1/2]
- . Otg 2 2\ ~ o
Ay, + 2104(9— + (k*n — a®)ty = fo in (0,27) x (0, 00). (5.16)
I
U = 0 on (0,27) x {0}. (5.17)

By taking the Floquet Bloch transform with respect to x; in (5.13), g
satisfies the Rayleigh expansion of the form

Uo(x) = Zun(a)emm”\/ RE=(nta)(@e=h) o > p, (5.18)

neL

where u,(a) := (27) 71 027r Uq (21, h)e” ™1 dz) are the Fourier coefficients of

ua(-,h), and k2 — (n+a)?2 =i/ (n+a)? —k?ifn+a>k.
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We denote by Cr := (0,27) x (0,R) for R € (0,00, and H,,.(Cg)
the subspace of the 27-periodic function in H'(Cg). We also denote by
H§ per(CR) = {u € Hp.,.(Cr) : u = 0 on (0,27) x {0}} that is equipped

with H'(Cg) norm. The space Hj e (CR) has the inner product of the

form
(u,v) = / Vu - Vodr + 27 Z Vn? + lu, oy, (5.19)
Ch nez
where u, = fo u(ry, R)e"™1dxy. The problem (5.16)—(5.18) is

equivalent to the followmg operator equation (see section 3 in [62]),
lio — Kofia = fo in H e, (Ch), (5.20)

where the operator K, : H&per(Ch) — H&peT(Ch) is defined by

B , 0v ou 9 .9\ _
(Kau,v), = /Ch {za <ua$1 vam) + (o — k*n)uv| dz
+ 2mi Z unUn (VK% — (n + a)? n?+1)
[n+a|<k
+ 27 Z unT (V2 +1—+/(n+a)?—k?). (5.21)
[nta|>k

For several o € (—1/2,1/2], the uniqueness of this problem fails. We call
these a exceptional values if the operator I — K, fails to be injective. For the
difficulty of treatment of a such that |a+1| = k for some [ € Z in an periodic
scattering problem, we set Ay :={a € (—1/2,1/2]: I € Z s.t. |a + 1| = k},
and make the following assumption:

Assumption 5.3. For every o € Ay, I — K, has to be injective.

The following properties of exceptional values was shown in Lemmas 4.2
and 5.6 of [62].

Lemma 5.4. Let Assumption 5.8 hold. Then, there exists only finitely many
exceptional values o € (—1/2,1/2]. Furthermore, if « is an exceptional
value, then so is —a.. Therefore, the set of exceptional values can be described
by {a; : j € J} where some J C Z is finite and o_j = —aj for j € J. For
each exceptional value a; we define

A¢+ 2ia; 22 + (k*n — a?)¢ = 0 in R?,

Xj=L0¢¢€ HZIOC(R%F) : ¢=0for zo0 =0, ¢ is 2r—periodic for zy,
¢ satisfies the Rayleigh expansion (5.18)
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Then, X; are finite dimensional. We set m; = dimX;. Furthermore,
¢ € Xj is evanescent, that is, there exists ¢ > 0 and 6 > 0 such that
6(z)], |Vo(z)| < ce™22l for all 2 € RZ.

Next, we consider the following eigenvalue problem in X;: Determine
d € R and ¢ € Xj such that

b

81‘1
for all 1 € X;. We denote by the eigenvalues d; ; and the eigenfunction ¢ ;
of this problem, that is,

+ ajgﬁ] Pdx = dk/ nepde, (5.22)

oo

Oy _ _
/ |:—i 01 + aj¢l7j:| Ydx = lejk/ negy jdx, (5.23)
o £9$1 Coo

for every [ = 1,...,m; and j € J. We normalize the eigenfunction {¢;; : | =
1,...,m;} such that
k/ ney o jda = oy, (5.24)
Coo

for all ,I’. We will assume that the wave number k& > 0 is regular in the
following sense.
Definition 5.5. k£ > 0 is reqular if d; ; # 0 for all [ = 1,...m; and j € J.

Now we are ready to define the radiation condition.

Definition 5.6. Let Assumptions 5.3 hold, and let k£ > 0 be regular in the
sense of Definition 5.5. We set

1/2 o
1+ 2/ Sltntdt] , 71 € R. (5.25)
0

™

P (21) =

1
2
Then, u € H} (R?) satisfies the radiation condition if u satisfies the upward

propagating radiation condition (5.13), and has a decomposition in the form
u = uM + u® where u(l)}RX(O RS HY(R x (0,R)) for all R > 0, and

u?) € L°(R%) has the following form

ul® () :¢+(1‘1)Z Z Gl,j¢z,j($)+¢_($1)z Z aijér;(x), (5.26)

jeJ dl,j>0 jeJ dlyj<0

where some a; ; € C, and {d; j,¢;; : | = 1,...,m;} are normalized eigenvalues
and eigenfunctions of the problem (5.23).
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Remark 5.7. We can replace ) by any smooth functions zﬁi such that
[ (1) = 5 (@)| = 0, and [t (@) = P H (@)] = 0 as o] > o
because (5.26) is of the form

¢+ 1’1 Z Z CLl,](ﬁl,] +¢ 331 Z Z al,](bl,j

j€J dy ;>0 j€J dy ;<0
(6 @) = @) 3D agon@)+ (07 (@) = @) Yo Y agen(a
jeJ dl,j>0 jeJ dlj<0

(5.27)
where the second term in the right-hand side of (5.27) is a H!-function,
which is the role of u(!).

The following was shown in Theorems 2.2, 6.6, and 6.8 of [62].

Theorem 5.8. Let Assumptions 5.3 hold and let k > 0 be reqular in the
sense of Definition 5.5. For every f € LZ(Ri) with the compact support in
W, there exists a unique solution uyi;c € H'(R2) of the problem (5.10)-
(5.11) replacing k by k + ie. Furthermore, uky;e converge as € — +0 in
H} (R%) to some u € H} (R%) which satisfy (5.10)-(5.11) and the radia-

tion condition in the sense of Definition 5.6. Furthermore, the solution u of
this problem is uniquely determined.

Finally in this section, we will show the following integral representation.

Lemma 5.9. Let f € L?(R2) have a compact support in W, and let u be
a solution of (5.10)—(5.11) which satisfying the radiation condition in the
sense of Definition 5.6. Then, u has an integral representation of the form

ule) = /W<n<y> 1u(y)Cle, y)dy — / f)Ce gy, =c R (5.28)

Proof of Lemma 5.9. Let € > 0 be small enough and let u. € H'(R2) be
a solution of the problem (5.10)—(5.11) replacing k by k + ie, that is, u.

satisfies
Aue + (k +i€)*nue = f in R, (5.29)

ue = 0 on Ty. (5.30)

Let G¢(x,y) be the Dirichlet Green’s function in the upper half plane Ri
for A + (k +ie)?. Let z € R% be always fixed such that x5 > R. Let r > 0
be large enough such that € B,.(0) where B,(0) C R? be a open ball with
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center 0 and radius r > 0. By Green’s representation theorem in B, (0) NR%
we have

OUe 0G.
ww = [ o Lo W) 1) G )]st

= [ )+ (b e Pu)] Gl )y
Br(0)NR?

8u6 8Ge
= s [ WG ) B st
borio? [ ) - Dudy)Geloy)dy
+(0)NR2
- / F()Ge(z, y)dy. (5.31)
B (0)NR%

Since ue € H'(R?), the first term of the right hand side converges to zero
as r — 00. Therefore, as r — oo we have for = € Ri

ue(w) = (k + i)’ /W<n<y>—1>ug< (2, y)dy — / F(y)Cel,y)dy. (5.32)

We will show that (5.32) converges as e — 0 to

u() = 2 /W<n<y> — 1)u(y)G(z, y)dy — /W f@)Cle.w)dy.  (5.33)

Indeed, by the argument in (3.8) and (3.9) of [13], Ge(x,y) is of the estima-

tion
T2Y2

Ge(z,y)| £ O,

x—y|l>1, (5.34)
where above C' is independent of ¢ > 0. Then, by Lebesgue dominated
convergence theorem we have the second integral in (5.32) converges as
e — 0 to one in (5.33). So, we will consider the convergence of the first
integral in (5.32).

By the beginning of the proof of Theorem 6.6 in [62], u. can be of the
form u, = ug ) + u£2) where ugl) converges to u®) in Hl(W), and u£2) is of
the form for z € W

1/2 iaxl

Zzyl,] /1/2 mda P15 (), (5.35)

jed =1
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which converges pointwise to u(? (x). Here, y;; € C is some constant. From
the convergence of u in H'(W) we obtain that [}, (n(y)—l)ugl) (y)Ge(z,y)dy
converges [y, (n(y) — DuM (y)G(z,y)dy as e — 0.

By the argument of (b) in Lemma 6.1 of [62] we have

1/2 eiazl
Vi je(r1) i= / ———da

1/2 1€ — dj ja
431/2) cos(temy /|d m/2 o gsint
_ ¥ cos 6331/|2 l’j’)dt B Qidu/ %dﬂ (5.36)
Idzg\ ldigl/2 Lt 0 Tt

which implies that for all z1 € R

%) dt |z1]/2
Wl,j,e(fl)‘ < C(/_Oo 112 +/0

sint

.

*©dt M sint jz1]+1
< —dt —\dt —dt
: C</_ool+t2 +/0 +/1 t )
< C(1+1log(|lz1| + 1)), (5.37)

where above C' is independent of € > 0. Then, we have that for y € W

C(1+log(ly1| + 1))
L+ |z —yp32 7

|(n(y) = Dul (1) Ge(z,y)| < (5.38)

where above C' is independent of y and e. Then, right hand side of (5.38) is
an integrable function in W with respect to y. Then, by Lebesgue dominated
convergence theorem [}, (n(y) — Dul? (y)Ge(z, y)dy converges to S (n(y) —
Du®(y)G(z,y)dy as € — 0. Therefore, (5.33) has been shown. O

5.3 TUniqueness of u(®

In Section 5.3, we will show the uniqueness of u(?) in Theorem 5.2.

Lemma 5.10. Let Assumptions 5.3 hold and let k > 0 be regular in the
sense of Definition 5.5. If u € H} (R2) such that

Au+k*(1+ q)nu =0, in R%, (5.39)

u =0 on Iy, (5.40)

and u satisfies the radiation condition in the sense of Definition 5.6, then
u® =0 in RZ.
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Proof of Lemma 5.10. By the definition of the radiation condition, u is
of the form u = v 4+ u® where u(! € H (R x (0, R)) for all R > 0,

and u(® € L®(R2) has the form

(@) =9 (@)Y Y ad@) + (@)Y Y aydi(r), (5.41)

jeJ dl,j>0 jeJ dl’j<0

)lRX(O,R)

where some a; ; € C, and {d; j,¢;; : | = 1,...,m;} are normalized eigenvalues
and eigenfunctions of the problem (5.23). Here, by Remark 5.7 the function
1T is chosen as a smooth function such that ¢*(z1) = 1 for 1 > n and
Yt (x1) =0 for 1y < —n, and ¥~ := 1 — T where > 0 is some positive
number.

Stepl (Green’s theorem in Qy): We set Qn := (=N, N) x (0,¢(N)) where
P(N) := N*. Later we will choose a appropriate s € (0,1). Let R > h
be large and always fixed, and let N be large enough such that ¢(N) > R.
We denote by I8 := {£N} x (0,R), I?M) := {£N} x (R, $(N)), and
Lynvyn = (=N, N) x {¢(N)}. (see the figure below.) We set [iy :=

N
2oy
T2
Lyvyn
d(N)
N d(N
o0 ){ Frl
R
1% 1% N
1
_N 19 N

By Green’s first theorem in Qy and u =0 on (=N, N) x {0}, we have

{—k2(1+q)n|u|2+yvu|2}dx:/ {aAu + |Vu|?}dx
Qn Qn

= / uauds—/ uauds—i—/ ﬁ%ds
Iy 81’1 I_n 6x1 F¢(N),N 8332

I ) - 9u2
= / u2) Ou ds — / u(2) Ou ds
Iy 0:1:1 I_Nn 3:r1
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— 5, - ou® — 9y
+ / u(l) Ou ds+/ u(l)au ds+/ e Ou ds
Iy 8x1 Iy 61‘1 Iy 833‘1
(1) _ - C)
— / u(l)au ds—/ (1)8u ds—/ u(2)8u ds
I_N 8£U1 I_N axl I_N 8%1

+ / 2% gs. (5.42)
Ty O%2

By the same argument in Theorem 4.6 of [61] and Lemma 6.3 of [62], we
can show that

(2) - ou?)
/ oLk ds—/ W@
Iy al‘l I_Nn 8:E1
— oy —ou@ — o)
+ /u(l)au ds—l—/ u(l)au ds+/ u(z)au ds
i Oz i Oy i Oy
— 9y —9u2) — 9y
— / u(l)au ds—/ u(l)au ds—/ u(2)8u ds
[Ij’,N 65131 II:CN 81}1 [R f‘)a:l
1 _ — 09y ;
= = D @y / b1 —dx
2 <5 di,jrdy ;>0 Comy 011

1 S— L
- Z Z ayjay /C¢(N) o1 Txldl' +o(1), (5.43)

J€J dy j,dy ;<0

and the first and second term in the right hand side converge as N —

ik
00t0 57D ey Zdu>0 |y ;?d; ; and — jeJ Zdlj<0 |l j|2d; ; respectively.
Therefore, taking an imaginary part in (5 42) yields that

1 __ — 0oy ;
0=Im [271‘ Z Z aj oy j / ¢l,j axlj dx]

GET dyjdys ;>0 Co(m)
1 78¢l’ :
= Im|=> ) @y / P L dz
[% jet dlj,d,/ <0 Con) Oz
—0ull
+ Im/ u(l) ds +Im ds +1Im u(2) ds
() 8331 8561 0r1
— 5 oul’ —y0ul? o)
— 1) — — (2
Im/ U 8:61 ds — Im /¢ U 83:1 ds — Im /(25 — 0 ds
0
+ Im Tt ds + o(1). (5.44)
o 0%2

66



We set

= 4+Im /
¢(N)

and we will show that limsupn_;eJ4(

dsiIm / ﬁﬁu ds,

(5. 45)

dsiIm /

N)>o0.

Step2 (limsupN—coJ+(N) > 0): By the Cauchy Schwarz inequality we have

(N) 12 1 rd(N) | gy (D) 2 1/2
!h(ﬂ<</ WO Pas) ([ ]G ) i)
R Z1
1/2 &(N) ) 2) 2 1/2
+ ( ’u(l) N xg)’2dl‘2> </ 8U (N, $2) dxg)
R 1
12 1 rd(N) | gy, (D) 2 1/2
+ ( ]u(2) N, z3)| dm) </ ; (N, x2) dx2>
R Z1
12 1 rd(N)| §,, (1) 2 1/2
< ( ’U(I) N, x2)| d$2> </ Ou (N, z2) dx2>
R 0z,

1/2

$(N)
+ C(¢(N) — )1/2< /R |u(1)(N,x2)|2d:n2>
ou

#(N) 2 1/2
R)l/2 </R 5 da:2> .

In order to estimate u(!), we will show the following lemma.

+ C(o(N) — (5.46)

N?‘TQ)

I

Lemma 5.11. uY) has an integral representation of the form

um@>=L/Oﬂmwaw@+ﬁjkmwu+mm—mMmeaw@
Y2 >

w

+ k‘z/Qn(y)q(y)u(2)(y)G(x,y)dy, xg >0, (5.47)

where o := Au? + k2nu(?.

Proof of Lemma 5.11. First, we will consider an integral representation of
u®. Let N > 0 be large enough. By Green’s representation theorem in
(=N, N) x (0, N'/4), we have

oG Au?
y)2—(z,y) — G

(2) _
u'? (z) 995

/ u
(=N,N)x{N/1}
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oG ou@
+ / —/ )u(2)y:6,y—Gx,y y)|ds(y
< (N}x(0,N1/4)  J{—N}x(0,N1/4) [ )01/1( ) (@9) oy v))ds()

- (o) + k(1 — () ()]G e y)dy. (5.18)
(=N, V)X (0,N1/4)

By Lemma 3.1 of [13], the Dirichlet Green’s function G(z,y) is of the esti-
mation

L2Y2

Gz, y)l, [VyG(a,y)| <C
By Lemma 5.4 we have that |[u(®(z)|, ‘%L(I)’ < ce 2l for all z € R2,
and some ¢, > 0. Then, we obtain

oG Au?
(—=N,N)x{N1/4} Y2

o0 ()] ds(y)

—6N1/4 xQNe—aNl/‘l

S C/N |N1/4 _ x2’3/2d?/2 S Cm (550)
Furthermore,
oG ou®
@096, ]
|/{iN}X( N1/4)[u (y)Gyl (z,y) — G(z,y) Em (y)]ds(y)
N 1/2
Za2Yy2 o N

< ¢l vy 09

Therefore, as N — oo in (5.48) we get
@)=~ [ oGy + B [ () - DD )Gl p)dy. (552)
y2>0 w
By Lemma 5.9, we have (substitute —k?qnu for f in (5.28))
u(z) =k /W(n(y)—l)u(y)G(x,y)dy+k2/Qq(y)n(y)u(y)G(rcyy)dy- (5.53)
Combining (5.52) with (5.53) we have

W) = —u®(z)+ K /W(n(y)—1)U(y)G(fﬂ,y)dy+k2/QQ(y)n(y)U(y)G(:v,y)dy
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- / o (y)C . y)dy — K / (n(y) — Du® ()G (z, y)dy
y2>0 w

# 8 [ () = )u)Gle )+ | alyn(a)als)Gle. )y

-

o (y) G, y)dy + K2 / (n(@)(1 + a() — 1)uV )Gz, y)dy

2 W
+ 8 [ nwa® e vy (554
Therefore, Lemma 5.11 has been shown. O

We set ut () := dies 2od, /<0 aj¢1j(x). Then, by a simple calculation
we can show 7

_ d2¢+ (y1) +

+ ut 92—
o) = =g ()220 0 W) | v ()

2d¢f{y1)8u*(y)
dy oy dy?

dy1 Oy

(5.55)
which implies that supp o C (—n,7n) x (0,00). By Lemma 5.11 we have for
R < x9 < ¢(N)

)

u”(y)+

(1)
ou <c oy 2z _g,
Oy (=nm)%(0,00) [N =]

" S(N)h (V) u (y)|
£of <y)’<1+w—y1|>3/2dy+c/@ NP

(1)
[u' (y)| .
(L4 |N —y1])3/2

[tV (N, z2)),

(N, x2)

P(N)
= CN3/2

+ C(N) / (5.56)
W

We have to estimate the second term in right hand side. The following

lemma was shown in Lemma 4.12 of [12].

Lemma 5.12. Assume that ¢ € L? _(R) such that

loc

A

subaso{ (1 + 4% [ )Pt} < oc, (5.57)

—A

for some € > 0. Then, for every o € |0, % —€) there exists a constant C > 0
and a sequence {Ap tmen such that Ay, — o0 as m — oo and

/ lo(t)2dt < CA=2, m € N, (5.58)
Ka,,
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where Ky == K{ UKy, Ki = (AT, AT)\ (-4, A), K, = (—A4,4) \
(—A=, A7), and A* := A+ A2 for A € [1,00).

Applying Lemma 5.12 to ¢ = (f0h|u(1)(~,y2)‘2dy2)1/2 € L%*(R), there
exists a sequence { Ny, }men such that N, — oo as m — oo and

h
/ / [ (g, y2) Pdyrdys < CN7Y4, m e N, (5.59)
Kn,, Jo

Then, by the Cauchy Schwarz inequality we have

ey N, h uD(y
/ | (y)|3/2dy:</ +/ +/ >/ [ut (y)] -
w (L+ [N —wyl) Ny iy, e -nNiNE) Joo (LA [N —u1l)

IA

Nen 1/2 h 1/2
C(/ ) i ) " C(/ / [u® y2)|2dy1dy2>
v L+ N — [ ])? o Jo ,
d 1/2
+ C</ vi 3)
R\[- NN (L + [y — Nm)

Mo dy M dp \"
C +CN;V8 + C</ >
</0 (14 Ny, —y1)3> Nt (1491 — Np)3

< CN;V8 (5.60)

IN

With (5.56) we have for m € N,

duV ¢(Nm)
[u (N, 9)], ;xl (N, 22)| < CW (5.61)
Therefore, by (5.46) we have
Np)? Nm
TNl < ClolN) = BT + CloN,) ~ By 2
¢(Nm)? _ - d(Nm)®

Since ¢p(N) = N*, if we choose s € (0, 1) such that 3s < %, that is, 0 < s < 34
the right hand side in (5.62) converges to zero as m — oo. Therefore,
lmsupN_ 00+ (V) > 0. By the same argument of J;, we can show that
limsupn_,00J— (V) > 0, which yields Step 2.

Next, we discuss the last term in (5.44). By the same argument in Lemma
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5.11 that we apply Green’s representation theorem in xo > h and use the

Dirichlet Green’s function Gy, of Riph(:: R x (h,00)) instead of G, u()

can also be of another integral representation for xo > h

WDia) = / oGy +2 [ h w0 Dy

= o'(z) +*(2), (5.63)
where Gy, is defined by Gp,(x,y) := ®p(x,y) — Pi(x,y;;) where v = (y1,2h—
y2). We define approximation ug\l,) of u) by

WD) = / X oG,y + 2 /F h XN<y1>u<1><y>‘9q’f§;;y’ds<y>

= woh(z) +o¥(z), =2 >h, (5.64)
where x, is defined by for a > 0,

1 for|t|<a
Xalt) := { 0  for |t| > a. (5.65)

By Lemma 3.4 of [15] and Lemma 2.1 of [14] we can show that v} and
’UJQV satisfy the upward propagating radiation condition, which implies that

5\1,). Furthermore, by the definition of ug\l,) we can show that

u%)(-,cﬁ(N) —1) € L3*(R) N L**(R). Then, by Lemma 6.1 of [15] we have
that

so does u

S0 0uy
Im uy’ —2-ds > 0. (5.66)
() T2

Combining (5.44) with (5.66) we have

W 8u§\1,)

0> —Im N ds
() Ox2
1 __ —0¢y
= Im gz >, @gar, / PLj ax"’ dz
L™ jed dijdy ;>0 Con) L
1 - 01y |
- m TZ 2. al,jal',j/ P~ rdw| + i (N) + J-(N)
™ C ox1
L7 5T dyjody ;<0 B(N) 1
W
+ Im a2 uDEN s+ o(1). (5.67)
Poyn O%2 Lon) Ox2
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We observe the last term

(1)
Im LA . WO G LN+ M(N),  (5.68)
Tomyn 072 o) Oy
where
PG (1)
L(N) :=1Im (1)(9” ds — Im ug\lf) Ouy ds, (5.69)
Lovy.n T2 Lo Oz
—ou® — 5u —ou®
M(N) == Im W2 T W@ s W@ g
Lon),n 2 Loy, 2 Lovyn Ox2
5.70)
By Lemma 5.11 we can show |u(®(z1, ¢(N))], ]35”;; (x1,0(N))| < Co(N)
for z; € R, and by Lemma 5.4 we have [u® (21, ()], 257 (21, ¢(N))| <
Ce9¢\N) for 2y € R. Then, we have
N 2
ou?
ML < [ o) (o, 6 [da
_N €2
N AuM)
b [ o[ G e 6o
_N €r2
N 2
oul?®
b [ e o[ (o 6o
_N €2
< C(N@(N)e W) 4 Ne200(N))
< CN@(N)e oW, (5.71)

which implies that M(N)

limsupn_ 00 L(N) > 0.

Step3 (limsupn_coL(NN) > 0): First, we observe that

IL(N)] < |Im
+ |Im
+ |Im
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= o(l) as N — oo. Hence, we will show that

A1) a1
u(l)au ds — Im u(l)auN ds
Ty, L2 TNy, N Z2
9, A
u®—_ds — Im ug\l,)auNds’
Ty(n)N T2 Ty(n)N Oz
1)
u( )8u ds ’
N9
Loy \Lo(n), N L2



IN

N ou) o'V
) o _ YN
[ e 0| Gl o) = G, o)) s
auﬁ)

+ a1, 6V)) — o, SO 2 (o, ()
_N 69232

é)lt(l)

b e )| G e, 6 as. (5.72)
R\(—=N,N) T2
By Lemma 5.4, 0 has a exponential decay in ys. Then, we have for z; € R,
ov' vl
0! (21, (V)] | 5= (21, 6(N))|, [on (@1, ¢(N))], |52 (21, B(N))
0xo Oz
e 2H(N)ys P(NV)
< C/ dy < C————~, (5.73
Cnmx(00) (LF o1 =32 = 7 (U [ar])72 e
and
ov! vl
0! (21, p(N)) = v (1, B(N))], |7 (1, (V) = 52 (21, p(N))
0o Oz

—8y
< 0/ e 2¢(N)y23 :
(=nm)x (¢(N)—1,00) (14|21 —wl) /

I #(N) =39 (N) (N))
< C(A(N)e yy2dy2) T S T O

dy

Since the fundamental solution to Helmholtz equation ®(z,y) is of the fol-
lowing estimation (see e.g., [13]) for |z —y| > 1

0*®
0120y

|22 — yaf?
1+ |z —y[3/%’

|22 — y2
1+ |z —yl3/?’

(5.75)

Bl
b 5 SC ) SC
’8y2(:v y)‘ (x y)’

we can show that for 1 € R

0% (21, (V)] < CH(N)Woo(21),  [vi (21, ¢(N))| < CHN) Wi (a1),

(5.76)
and
Ov? o2
%mqﬁ(m)\ < CH(NYWa(a). a;;<x1,¢<zv>>] < CHNYWi(an),
(5.77)
and

v (21, (N)) — v} (z1, p(N))| < CH(N)(Woo(z1) — Wi (z1)),  (5.78)
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and

gf;;xwﬁ(N)) - ij(xl,qﬁw))‘ < CH(N)(Wos(a1) = Wiy (a1)), (5.79)

where Wy is defined by for N € (0, 0o]

N My, b
W, = : dyi, e R. 5.80

Using (5.73)—(5.79), we continue to estimate (5.72). By the Cauchy Schwarz
inequality we have

N
L <0 [ (G + o Wa(en)

=BV
e + 6N (Waor) — W) b

¥ G
/N{ (14 |21])3/2

_l’_

+ 6(N) (Wa (1) = Wiy (1)) }
P(NV)
X{MW n ¢(N)2WN(x1)}dx1

N N
’ /R\(N,N>{(1f)l(svll))?’/2 i d)(N)WN(“)}{(lmel\)):’»/z + BN Wi (w1) fdoy

N
< 3 VVOo ) WN(l’l))dajl

-N

Ny N
- W, d
" /N 1+!:c1| 3/2 Woo (1) = Wi (a1)) da
1

+ 2/ d:v+C’N2/ ————Whn(x1)dx

R\(— 1+| )3 o) R\(—N,N) (1 + [z1])3/2 n(z)dz
+ 3/ o W P o)

R\(

IN

/—\

3{

Finally, we will estimate (Wao(z1)—Wn (21)) and W (z1). Since uM (-, h) €
L?(R), by Lemma 5.12 there exists a sequence { N, }men such that N, — oo

WN(.’IJI)) dm1)1/2 + (/R\(—N Y WN(x1)2da:1)1/2}
o). (581)
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as m — oo and

_1
/ O (yy, 1) 2dyy < CNin?, m € N, (5.82)
KNm

where K4 == Kf UK, Ki = (AT, A")\ (-4,4), K; = (—4,4)\
(—A=, A7), and A* := A+ A2 for A € [1,00).
By the Cauchy Schwarz inequality we have for |xi| > Ny,

N uD (g1, h N 1/2 / rNp d
/ | (yl )‘3/2 dyl S (/ |U(1) (y17 h)’2dy1> </ Y1
—N; (T4 21 —1l) —Np _ng (L4 21| =

I
1—|5(51|—an’
and
W@ (g1, )| < / M ) >/</ dy,
dy, < u L h)|2d
/KN Gl -2 = g, M) G5l —a

C
N3+ |z1] — Np)

Therefore, we obtain

/ WN(xl)del
R\ (=N, Nom)

& dxq C & dxq

< C — + /
N (L= 21| = N)2  NY4 i, (L= 21| = Nip)?
C C C

(5.85)

+ < .
1+ N2 Ny T N

By the Cauchy Schwarz inequality we have for |z1| < Ny,

/ [u® (yy, h)|
R\(—Ni,NE) (1 + |21 — 1))

(1) i dy 12
< ulM (yy, h) |2dy ) (/ >
</R\(—N$,N$) oy, ) ey R\(—N, N (1 +y1 — [21])3

C
S 5.86
B 1+N$—‘{L'1‘ ( )

3/2 dyl
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and

(1) h 1/2 d 1/2
u b
[, (/ 6 (g1, 1) dyl) (/ u 3)
k.. G+fo—ul) . i (o —lad

C
N2+ Ny — | )

(5.87)

Therefore, we obtain

Now 2
/ (Woo(xl) — WN(xl)) d$1
—Np,

Nm dxl C Nm dxl
< C + + 1/4 2
N (L4 Nty = [21])? - N/t SN, (L4 Ny — |21 ])

C C C
< NI + NI < N (5.88)

Therefore, Collecting (5.81), (5.85), and (5.88) we conclude that |L(Ny,)| <
C'd’(Ai%) Since ¢(N) = N*, if we choose s € (0,1) such that 3s < %, that

is, 0 < s < 2—14, the term ¢(1\i’78) converges to zero as m — oo. Therefore,

limsupn_,00 L(N) > 0, which ylelds Step 3.

By taking limsupn_,~ in (5.67) we have that

k
%Z[ > aglPdiy = > \al,jlzdl,j]

JjeJ dlyj>0 dl,j<0

+ limsupy_ o (J+(N) +J_(N) + L(N)). (5.89)

By Steps 2 and 3 and choosing 0 < s < i the right hand side is non-
negative. Therefore, a; ; = 0 for all [, j, which yields u® = 0. Lemma 5.10
has been shown, and in next section we will show the uniqueness of u(Y). [

5.4 TUniqueness of u(!
In Section 5.4, we will show the following lemma.
Lemma 5.13. If u € H} (R2) satisfies

(i) w € HYR x (0,R)) for all R >0,
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(if) Au+k*(1+4 ¢)nu =0 in R?,
(iii) w vanishes for x9 =0,

(iv) There exists ¢ € L>®°(Ty)NHY2(T},) with u(z) = 2 th ¢(y)%§7gﬁ’y)ds(y)
for xo > h,

then, u € H} (R%).

If we can use Lemma 5.13, we have the uniqueness of the solution in
Theorem 5.2.

Theorem 5.14. Let Assumptions 5.1 and 5.3 hold and let k > 0 be regular
in the sense of Definition 5.5. If u € H} (R2) satisfies (5.39), (5.40), and
the radiation condition in the sense of Definition 5.6, then u vanishes for
xo > 0.

Proof of Theorem 5.14. Let u € H] (R?) satisfy (5.39), (5.40), and the
radiation condition in the sense of Definition 5.6. By Lemma 5.9, u(2) = 0
for x5 > 0. Then, u") satisfies the assumptions (i)-(iv) of Lemma 5.13,
which implies that u() e H}(R?%). By Assumption 5.1, 1) vanishes for

x9 > 0, which yields the uniqueness. O
Finally in this section we will show Lemma 5.13.

Proof of Lemma 5.13. Let R > h be fixed. We set Qn r := (—N,N) x
(0, R) where N > 0 is large enough. We denote by I£,, := {£N} x (0, R),
I'ry = (=N,N) x {R}, and I'g := (—o00,00) x {R}. By Green’s first
theorem in Qx r and assumptions (ii), (iii) we have

/ {=E*(1 4 ¢)n|ul®* + |Vu|*}dz = / {aAu + |Vul*}dx
QN R

QN R
_ / uaauds—/ u(f“ds+/ uaauds. (5.90)
I o011 8, 0T Fry 012

By the assumption (i), the first and second term in the right hands side of
(5.90) go to zero as N — oo. Then, by taking an imaginary part and as
N — oo in (5.90) we have

)
Im [ a——ds = 0. (5.91)
rr 0972
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By considering the Floquet Bloch transform with respect to x1, we can show

that
1/2  pr2m
/ uds-/ / o (21, R 8UO‘(%DR)CZ 1da. (5.92)
1/2 Oz

Since the upward propagating radiation condition is equivalent to the Rayleigh
expansion by the Floquet Bloch transform (see the proof of Theorem 6.8 in
[62]), we can show that

= Zun(a)em““\’ k2—(nta)(z2=h) 0 > h, (5.93)

neL

where u,(a) 1= (2m)7! fo% U (71, h)e” ™1 dzy. From (5.91)—(5.93) we ob-
tain that

12 p2n
0 = Im/ / Ua (71, R aua(zl’R)al 1da

1/2 Oxy
1/2
= Imz:/1 27 |un (o) *iv/k2 — (n + a)?, (5.94)
neL” /2

Here, we denote by k = ng +r where ng € Ng and r € [-1/2,1/2). Then by
(5.94) we have

up(a) =0 for |n| < ng, a.e. o € (-1/2,1/2),

Upg () =0 for a € (—1/2,7),
U_py(a) =0 for a € (—r,1/2). (5.95)
By (5.95) we have

1/2 21 poo
/ / / |l () |?dzada do
1/2

1/2
_ 271'/ Z ’un ‘2/ —+/(n+a)2—k2(za— hdiUQdOé

1/2 [n|>no

1/2 00
+ 27T/ ’uno(a)IQ/ e—\/(n0+a)2_k2(x2—h)dw2da
T R
+ 277/ |u_n0(a)|2/ e~V (Enote)? =k (@2=h) g0 oy
R

—-1/2
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/1/2 |un(a)‘267\/(n+a)27k2(R7h)

< 27 = = do
oy —1/2 (n+a)?—k
1/2 2 ,—+/(no+a)2—k2(R—h)
+ 27T/ 1o () e do
r (no + a)? — k2
T uy, (a)‘Qe_W(R_h)
+ 271'/ . dov
~1/2 V(=ng + @) — k2
1/2
< C ) / |up (@) 2da
[n|>ng —1/2
1/2 —r
+ C [uno (@ da+C/ [u—no da (5.96)
r Oé -Tr 1/2 —Oé -T

and

1/2 21 poo
/ / / |0y, i () |2 dzoda  dox
120  JR

~1/2 (n+a)? —k?

do

= 27

[n|>no

1+ oo / Y2 Jupg () Pnge V(o) KA (RR) do
r (no + a)? — k2
+ or /_T |ufno(04)|2n(2)€7V (—no+a)?—k?(R—h) do
~1/2 V(=no +a)? — k2
1/
<cy / () [2dax
[n|>ng —1/2
1/2 —r
+ C/ [tng (@ ., +C/ [ ()P, (5.97)
Oé - T 1/2 —Oé - T

By the same argument in (5.97) we have

1/2  p27
Oy U () |*drodrida < C / Up( 2da
/1/2/ / 19z | 2 Z 1/2’

[n|>no
1/2 —r
+C/ ’“"0 da—i—C’/ [eno(@P (5.98)
1/2 V—a—r
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It is well known that the Floquet Bloch Transform is an isomorphism be-
tween H*(R3) and L?((—1/2,1/2)a; H*((0,27) x R);) (e.g., see Theorem 4
in [73]). Therefore, we obtain from (5.96)—(5.98)

12 ron
1wl @x(roo)y < /1/2/ / 2)? + [0y o (2)[* + |0, o () [P drzdier dev
< CZ/ () Pda
In|>no 7 71/
1/2 —r
+ C’/ [ung (@)l +C’/ [uno(@)I*
Oé—'l’ 1/2 —CV—T'
12 ron
< / / a1, h)[2dz1da
1/2
1/2 —r
+ C’/ [ng (@I +C/ RGN (5.99)
O[—’r' 1/2 —Oé—?“

If we can show that
36 >0 and 3C >0 s.t. |ugp,(a)] < C for all a € (—=d£r,d£r), (5.100)

then the right hands side of (5.99) is finite, which yields Lemma 5.13.
Finally, we will show (5.100). By the same argument in section 3 of [62]
we have

(I = Ko)ia = fo in Hg e, (Ch), (5.101)

where the operator K, is defined by (5.21) and f, := —(Tperk®nqu)(-, @).
Since the function k%nqu has a compact support, || fO‘H?'Il(Ch) is bounded
with respect to a. By Assumption 5.3 and the operator K, is compact,
(I — K,) is invertible if & € Aj. Since £r € A, (I — Ky) is invertible.
Since the exceptional values are finitely many (see Lemma 5.4), (I — K,) is
also invertible if « is close to £r. Therefore, there exists § > 0 such that
(I — K, ) is invertible for all « € (=0 + 7,6 +r) U (=6 — 7,0 — 7).
The operator (I — K, ) is of the form

(I-K,) = (I—Kﬂ)(I—(I—Kﬂ)*l[I—Kir—(I—Ka)]) — (1K) (I-M,),

(5.102)
where M, = (I — K+,) (K4 — K4,). Next, we will estimate (K, — K4.).
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By the definition of K, we have for all v,w € Hg ,..(Ch),

(Ko — Kep)v,w) = —/ [i(a Fr) <v% — an> + (a? - T2)vw] dz

Ch 8$1 8331
+ 27 Z 0y (V2 — (n+ )2 — k2 — (n£7)2)
In|#no
+ 2mi Z vnwin(\/k:Qf(nqLa — k2 —(n+r) )?).
In|=no
(5.103)
Since
]\/k2—(n+a \/k2 (2| = +2nr 4+ 12 — 2na — o?

VE = (n+a)2+ k2 — (n£r)?

[n||atr|+|r2—a?|
|k2—(n+r)?|
[n||adr|+|r2—a?|

Virtallr=al

we have for all o € (=6 +r, 0 +r)U (=0 —1,0 — 1)

for |n| # ny

IN

(5.104)
for |n| = ny,

(Ko = Kxr)v,w)s| < ClaF ol ge,) lwlme,)

nfla F 7|
+ C U ||w
2 el s o
In|#no
+ C ) |oallwalnoy/]a F 7|
In|=no

IN

CVlaF rillvlg e, lwllge,) - (5:105)

(we retake very small 6 > 0 if needed.) This implies that there is a con-
stant number C' > 0 which is independent of a such that ||K, — Ki.|| <
C'\/|a Fr|. Therefore, by the property of Neumann series, there is a small
9 > 0 such that forall a € (=6 +r,d+7r)U (=6 —r,6 — 1)

(I — M,) ZM" and | M, < 1/2. (5.106)
n=0

By the Cauchy Schwarz inequality, the boundedness of trace operator, and
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(5.106) we have

IN

2
tttm (@) /0 Ta(z1, Dldz1 < C a1y

C I = Ma) ™I = Kae) " fall e

< C H(I - Ma)ilu H(I - K:I:r)ilfozH
< O IMy]" < C) (1/2) < o, (5.107)
n=0 n=0

where constant number C' > 0 is independent of a. Therefore, we have
shown (5.100). O

5.5 Existence

In previous sections we discussed the uniqueness of Theorem 5.2. In Section
5.5, we will show the existence. Let Assumptions 5.1 and 5.3 hold and
let k£ > 0 be regular in the sense of Definition 5.5. Let f € L?*(R%) such
that suppf = Q. We define the solution operator S : L?(Q) — L*(Q) by
Sg = U}Q where v satisfies the radiation condition and

Av + k*nv = g, in R%, (5.108)

v =0 on I'y. (5.109)

Remark that by Theorem 5.8 we can define such a operator S, and S is a
compact operator since the restriction to @ of the solution v is in H'(Q). We
define the multiplication operator M : L?(Q) — L*(Q) by Mh := k*ngh.
We will show the following lemma.

Lemma 5.15. I12 ) + SM is invertible.

Proof of Lemma 5.15. By the definition of operators S and M we have
SMg = U‘Q where v is a radiating solution of (5.108)—(5.109) replacing g
by k?nqgg. If we assume that (Ir2(Q) + SM)g = 0, then g = —v’Q, which
implies that v satisfies Av + k*n(1 + ¢)v = 0 in Ri. By the uniqueness we
have v = 0 in R%r, which implies that Ir2g) + SM is injective. Since the
operator SM is compact, by Fredholm theory we conclude that Iy2g)+SM
is invertible. O

We define u as the solution of

Au+ k*nu=f — M(Ir2g) + SM)™'Sf, in R} (5.110)
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satisfying the radiation condition and © = 0 on I'g. Since

ulg = S(f—M(I2q) +SM)™'Sf)
= (2 + SM)(Ir2() + SM) 'S f— SM(Irzq) + SM)™'Sf
= (Ir2q) + SM)'SY, (5.111)

we have that
Au+ kE*nu = f — k’nqu, in Ri, (5.112)

and v is a radiating solution of (5.8)—(5.9). Therefore, Theorem 5.2 has been
shown.
5.6 Example of Assumption 5.1

In Section 5.6, we will show the following lemma in order to give one of the
example of Assumption 5.1.

Lemma 5.16. Let q¢ and n satisfy that 82((1 + q)n) > 0 in W, and let
v € HY(R2) satisfy (5.6)-(5.7). Then, v vanishes for x5 > 0.

Proof of Lemma 5.16. Let R > h be fixed. For N > 0 we set Qn g :=
(=N,N) x (0,R) and I®,, := {£N} x (0,R) and Ty := (=N, N) x {R}.
By Green’s first theorem in {2y r we have

/ {—k2(1+q)nv]2+]Vv]2}dx:/ (A + |Vul?}da
QN,R

QN,R
= /U@lvds—/
I I

R

N
Since v € H'(R2) the first and second term in the right hand side of (5.6)
go to zero as N — oo. Then, by taking an imaginary part in (5.113) and as
N — oo we have

vo1vds +/ vopuds. (5.113)
Tr,~

R
—-N

Im [ wOyvds = 0. (5.114)
I'r

By the simple calculation, we have

2Re(020(Av + k(1 + q)nv))
= 2Re(V - (30Vv)) — 02(|Vo|?) + k*(1 + g)nda([v]?), (5.115)
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which implies that

0= 2Re/ ov(Av + k2(1+ q)nv))dz = 2Re V - (020Vv)dz
QN,R

QN R

— / 82(VU|2)d;E—|—/ k‘2(1—|—q)n32(|v\2)d:n
QN R

QN R

= 2Re (— Oov0ovds + Orv0 vds — O2v0vds + / 82@82vds)
To,n

IR 1B, Tr N

_ <—/ |Vv|2ds+/ |Vv|2ds>
Fo,n I'r N

_ / k(1 + q)nlo|ds +/ k(1 + q)nfo|ds —/ K205 ((1 + q)n) [o]2da
To.n T'r N QN,R
= _/ |Oav|?ds +/ (1020)* = |O1o)* + K*|v|*)ds
To,n Ir,N
- / K20,((1 + q)n) [v2da + o(1). (5.116)
QNyRﬂW
Since 82((1 + q)n) > 0in W, we have
/ 1Oy0[2ds < / (19202 — 1010 + K2 [o2)ds + o). (5.117)
Lo T'r N
By taking limit as NV — oo we have
/ |O2v|*ds < / (|02v]* = |010)* + E2|v|?)ds. (5.118)
I'r I'r
By Lemma 6.1 of [15] we have

Av|? — |01v|? + K2|v]?)ds < 2Im vO9vds. 5.119
(I

I'r I'r

From (5.114) and (5.118) we obtain that dyv = 0 on I'y. We also have
v = 0 on I'g, which implies that by the Holmgren’s theorem and the unique
continuation principle we conclude that v = 0 in Ri. O
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6 The factorization and monotonicity method for
the defect in an open periodic waveguide

6.1 Introduction

In this section, we consider the inverse scattering problem to reconstruct
the defect in an infinite medium with periodicity in the upper half space
from near field data. This scattering problem is motivated by applications
of open waveguides, e.g., optical fibers, planar waveguides, and so far, it has
been often studied from a mathematical perspective. (see e.g., [8, 14, 41,
55, 56, 62, 80]).

The contributions of this paper are followings.

e We mention that there is a mistake in factorization method of the
earlier paper [72], and give the correct one (Theorem 6.11).

e We give two reconstruction algorithms (Theorems 6.1 and 6.2) for
the unknown defect by a combination of the factorization and the
monotonicity method.

[72] has provided the general functional analysis theorem for the factoriza-
tion method (Theorem 2.1 of [72]) under weaker assumptions than previous
ones (Theorem 2.15 of [58]), and mentioned that by this relaxation one can
avoid the assumption corresponding to transmission eigenvalue in the case of
inverse medium scattering problems. This general theorem of [72] has been
mainly used when the factorization method has been discussed. (see e.g.,
[3, 9, 7, 22, 64]) However, there is a mistake in this theorem, which leads to
the difficulty to apply the factorization method to inverse medium scatter-
ing problems without the assumption of transmission eigenvalue. (Remark
6.12). Firstly in this paper, we give the correct functional analysis theorem
with its proof.

A new functional analysis theorem (Theorem 6.11) needs the assumption
that an imaginary part of the middle operator T of the data operator F' is
strictly positive. However, the middle operator 1" corresponding to our case
does not have such a property. (see Lemma 6.15 and Remark 6.16). Due
to this failure of factorization method, we give alternative reconstruction
algorithms (Theorems 6.1 and 6.2) by employing the idea of monotonicity
method. Recently in [23, 33, 37, 38, 39, 40, 69], the monotonicity method
has been studied by many authrs, and it has advantage over the factorization
method that reconstruction algorithms are given under weaker assumptions.
For example, [33] has studied the inverse medium scattering problems with-
out the assumption of transmission eigenvalues. Theorems 6.1 and 6.2 are
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proved by a combination of techniques of the factorization and monotonic-
ity method. Very recently, [23] has employed such an idea in the study of
inverse crack scattering problem.

We begin with formulation of our scattering problem. Let k > 0 be the
wave number, and let Ri := R x (0,00) be the upper half plane, and let
W =R x (0,h) be the waveguide in R%. We denote by 'y :== R x {a} for
a > 0. Let n € L°(R?%) be real valued, 27-periodic with respect to z1 (that
is, n(z1 + 2m,m2) = n(z1,22) for all z = (z1,22) € R%), and equal to one
for 9 > h. We assume that there exists a constant 1,4 > 0 and n,,;, > 0
such that n,m < 1 < Nypgge 10 ]Ri. Let g € Lm(Ri) be real valued with the
compact support supp ¢ in W. We denote by () := supp ¢, and assume that
Ri \ @ is connected. First of all, we consider the following direct scattering
problem: For fixed y € R% \ W, determine the scattered field u® € H} (R?)
such that

A + E*(1 + ¢)nu® = —k?qnu’(-,y) in R2, (6.1)

u® =0 on Iy, (6.2)

where the incident field u® is given by u’(x,y) = G, (x,y), where G, is the
Dirichlet Green’s function in the upper half plane Ri for A + k?n, that is,

Gn(,y) = G(z,y) +0*(z,y), (6.3)

where G(z,y) = ®r(z,y) — Pr(x,y*) is the Dirichlet Green’s function for
A + k2, and y* = (y1, —y2) is the reflected point of y at R x {0}. Here,
®.(z,y) is the fundamental solution to Helmholtz equation in R?, that is,

1
i(a,y) = LHy (Kl —y)), @ £y, (6.4)

where H(()l) is the Hankel function of the first kind of order one. u° is the
scattered field of the unperturbed problem by the incident field G(z,y), that
is, u® vanishes for o = 0 and solves

AT + E*ni® = k*(1 — n)G(-,y) in R (6.5)

If we impose a suitable radiation condition introduced in [62], the unper-
turbed solution @° is uniquely determined. Later, we will explain the exact
definition of this radiation condition (Definition 6.6). Furthermore, with
this radiation condition and an additional assumption (Assumption 6.9) the
well-posedness of the problem (6.1)—(6.2) was show in [23].

By the well-posedness of this perturbed scattering problem, we are able
to consider the inverse problem of determining the support of ¢ from the
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measured scattered field u® by the incident field u’. Let M := {(x1,m) :
a < x1 < b} for a < band m > h. With the scattered field u*, we define the
near field operator N : L>(M) — L*(M) by

No(a) = /M w2, )g()ds(y), = € M. (6.6)

The inverse problem we consider in this section is to determine the support
Q of g from the scattered field u®(z,y) for all  and y in M with one k > 0.
In other words, given the near field operator N, determine (). Accordingly,
we will prove the following two theorems.

Theorem 6.1. Let B C R? be a bounded open set. We assume that there
exists Gmin > 0 such that ¢ > qmin a.e. in Q. Then, for0 < a < k*NminGmin,

BcCdqQ < QHEHB <gan ReN, (67)

where the operator Hg : L*>(M) — L?(B) is given by

Hpg(z) = /MGm,y)g(y)ds(y), reB, (6.8)

and the inequality on the right hand side in (6.7) denotes that ReN —aH 5z Hp
has only finitely many negative eigenvalues, and the real part of an operator

1
A is self-adjoint operators given by ReA := §(A + AY).

Theorem 6.2. Let B C R? be a bounded open set. We assume that there
exists qmin > 0 and gmaz > 0 such that gmin < ¢ < @maz a.€. i Q. Then,
fO?” o > kznmameax7

QCB <= ReN <g, aHpHp, (6.9)

This section is organized as follows. In Section 6.2, we recall a radiation
condition introduced in [62], and the well-posedness of the problem (6.1)-
(6.2). In Section 6.3, we give the correct functional analysis theorem for
the factorization method. In Section 6.4, we study a factorization of the
near field operator N and its properties. In Sections 6.5 and 6.6, we prove
Theorems 6.1 and 6.2, respectively. Finally in Section 6.7, we give numerical
examples based on Theorem 6.1.
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6.2 A radiation condition

In Section 6.2, we recall a radiation condition introduced in [62]. Let f €
L%(R?) have the compact support suppf in W. First, we consider the follow-
ing direct scattering problem: Determine the scattered field u € H}. (R%)
such that

Au+ k*nu = f in Ri, (6.10)

u=0on I'y. (6.11)

(6.10) is understood in the variational sense, that is,

J

for all p € H! (]R%_), with compact support. In such a problem, it is natural to
impose the upward propagating radiation condition, that is, u(-,h) € L>®(R)
and

[Vu -V — anuE] de = —/ fodr, (6.12)
w

2
+

u(z) = 2/1“h u(y)%g(?f;y)ds(y), x2 > h. (6.13)

However, even with this condition we can not expect the uniqueness of this
problem. (see Example 2.3 of [62].) In order to introduce a suitable radiation
condition, [62] discussed limiting absorption solution of this problem, that is,
the limit of the solution u, of Auc+ (k+i€)?nu. = f as e — 0. For the details
of an introduction of this radiation condition, we refer to [55, 56, 61, 62].

Let us prepare for the exact definition of the radiation condition in this
problem. We denote by Cr := (0,27) x (0, R) for R € (0,00]. The function
u € HY(CR) is called a-quasi periodic if u(2m, z2) = €™y (0, z2). We de-
note by H}(CR) the subspace of the a-quasi periodic function in H'(Cg),
and denote by Hé,zoc(cm) ={u e H} (Cx): U‘CRE H}(Cg) for all R > 0}.
Then, we consider the following problem, which arises from taking the quasi-
periodic Floquet Bloch transform (see, e.g., [73].) in (6.10)—(6.13): For
a € (—1/2,1/2], determine u, € Hl,loc(coo) such that

[0}

Aug + E*nug = fo in Cso, (6.14)

uq = 0 on (0,27) x {0}, (6.15)

uq(x) = Zun(a)emxl“\/ R=(nta)(@2=h) g > p, (6.16)
nez

where u,(a) := (27) 71 027r Uq (21, h)e” ™1 dz) are the Fourier coefficients of

ua (-, h), and \/k? — (n + a)? = iy/(n + a)? — k2 if n+a > k. (6.16) is called
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the Rayleigh expansion. But even with this condition the uniqueness of this
problem fails for some o € (—1/2,1/2]. Then, we call these o exceptional
values if there exists non-trivial solutions u, € H}LZOC(COO) of (6.14)—(6.16)

with fo, = 0. We set Ay :={a € (—1/2,1/2]: Al € Z s.t. |a + 1| = k}, and
make the following assumption:

Assumption 6.3. For every a € Ay the solution of ua € H}, (Cx) of
(6.14)-(6.16) with fo =0 has to be zero.

The following properties of exceptional values was shown in Lemmas 4.2
and 5.6 of [62].

Lemma 6.4. Let Assumption 6.3 hold. Then, there exists only finitely many
exceptional values o € (—1/2,1/2]. Furthermore, if a is an exceptional
value, then so is —a.. Therefore, the set of exceptional values can be described
by {o : j € J} where some J C Z is finite and a—_; = —a; for j € J. For
each exceptional value aj we define

Ap+Ek*ng=01in Cs, ¢ =0 for z9 =0, }

o 1 :
Xi: {¢ € Hajt0e(Coo) : ¢ satisfies the Rayleigh expansion (6.16)

Then, X; are finite dimensional. We set m; = dimX;. Furthermore,
¢ € X; is evanescent, that is, there exists ¢ > 0 and & > 0 such that
|o(x)], |Vp(z)| < ce®1%2 for all z € Cp.

Next, we consider the following eigenvalue problem in X;: Determine
d € R and ¢ € X; such that

—i %Ed:r:dk / nopde, (6.17)
Coo

Coo axl

for all ¢ € X;. We denote by the eigenvalues d; ; and eigenfunction ¢; ; of
this problem, that is,

—i/ %@daz = dl’jk/ n¢l7j@dx, (6'18)
Co O Coo

T

for every [ = 1,...,m; and j € J. We normalize the eigenfunction {¢;; : | =
1,...,m;} such that

k/c nqbl’jqujda: = 6l,l’7 (619)

for all I,1’. We assume that the wave number k > 0 is reqular in the following
sense.
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Definition 6.5. k£ > 0 is reqular if d; ; # 0 for all [ = 1,...m; and j € J.
Now we are ready to define the radiation condition.

Definition 6.6. Let Assumption 6.3 hold, and let k > 0 be regular in the
sense of Definition 6.5. We set

1 2 ["1/2 sint
14 / ‘”t”dt] , 71 € R. (6.20)
0

(1) = 5

™

Then, u € H} (R?) satisfies the radiation condition if u satisfies the upward
propagating radiation condition (6.13), and has a decomposition in the form
u = u + u® where u(l)}RX(O R E HY(R x (0,R)) for all R > 0, and

u?® ¢ Lw(Ri) has the following form

=yt (@)Y ) aydn @)+ (@)Y Y aidn(x), (6.21)

jeJ di ;>0 jeJ di ;<0

where some a; ; € C, and {d; j,¢;; : | = 1,...,m;} are normalized eigenvalues
and eigenfunctions of the problem (6.18).

Remark 6.7. We can replace 1)+ by any smooth functions 1/;i such that
[ (@1) = ()| v (@) = ZL 0 ()| = 0 as [a] = oo
because (6.21) is of the form

=T (@)Y D adn(@) + 9 (@0)d Y ade

j€J dy ;>0 j€J dy ;<0
(0 @) =0 @) Yo Y aysrg @+ (0 @) — 9 @) D Y aydnga
jeJ dl,j>0 JjeJ dl]<0

(6.22)
where the second term in the right-hand side of (6.22) is a H!-function,
which is the role of u().

The following was shown in Theorems 2.2, 6.6, and 6.8 of [62].

Theorem 6.8. For every f € L?(R2) with the compact support suppf in W,
there exists a unique solution uyy;c € H'(R%) of the problem (6.10)-(6.11)
replacing k by k+26 Furthermore, ugy;c converge as e — 40 in loc(RQ ) to
some u € H} (R2) which satisfy (6.10)-(6.11) and the radiation condition
in the sense of Definition 6.6. Furthermore, the solution u of this problem
18 uniquely determined.
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Furthermore, with the same radiation condition and the following addi-
tional assumption, the well-posedness of the perturbed scattering problem
of (6.10)—(6.11) was show in [23].

Assumption 6.9. We assume that k? is not the point spectrum of mA
in HY(R2), that is, every v € HY(R?) which satisfies

Av + E*(1+ q)nv = 0 in R, (6.23)

v =0 on Iy, (6.24)

has to vanishes for xo > 0.

Theorem 6.10. Let Assumption 6.9 hold and let f € L*(R%) such that
suppf = Q. Then, there exists a unique solution u € Hlloc(]Ri) such that

Au+k*(1+ q)nu = f in R%, (6.25)

u =20 on Iy, (6.26)

and u satisfies the radiation condition in the sense of Definition 6.6.

By Theorem 6.10, the well-posedness of the perturbed scattering prob-
lem (6.1)-(6.2) with the radiation condition follows. Then, we are able to
consider the inverse problem of determining the support of ¢ from the mea-

sured scattered field u® by the incident field u'(x,y) = Gn(z,y). In the
following sections, we will discuss the inverse problem.
6.3 The factorization method

In Section 6.3, we mention the correct functional analysis theorem for the
factorization method. The following functional analytic theorem is given by
the almost same argument in Theorem 2.15 of [58].

Theorem 6.11. Let X C U C X* be a Gelfand triple with a Hilbert space
U and a reflexive Banach space X such that the imbedding is dense. Fur-
thermore, let Y be a second Hilbert space and let F:Y —Y, G: X =Y,
T:X* — X be linear bounded operators such that

F =GTG". (6.27)
We make the following assumptions:

(1) G is compact with dense range in'Y .
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(2) There exists t € [0,2n] such that Re(e®T) has the form Re(e®'T) = C +
K with some compact operator K and some self-adjoint and positive
coercive operator C, i.e., there exists ¢ > 0 such that

(0, Co) > c|ol for all ¢ € X*. (6.28)

(3) Im(p, Tp) >0 for all ¢ € Ran(G*) with ¢ # 0.

Then, the operator Fly := |Re(eitF)‘ + ImF' is non-negative, and the ranges

of G: X =Y and F#l&/2 1Y = Y coincide with each other, that is, we have
the following range identity;

Ran(G) = Ran(F;/z). (6.29)

Here, the real part and the imaginary part of an operator A are self-
adjoint operators given by

A+ A and ImA:A;_A.
7

ReA = (6.30)

Remark 6.12. Here, we will mention a mistake in Theorem 2.1 of [72]. It
was claimed that one can replace the assumption for strongly positivity of
ImT by that for the injectivity of T', which is related to the independence of
transmission eigenvalues in inverse medium scattering problem. However,
this relacement of assumptions is not correct.

Here, we observe the following counterexample for Theorem 2.1 of [72].

LetG:<1 00 0>bea2x4matrix,andletT:

0100

— o O O

210
00
0 1
1 0
0 0

be a 4 x 4 matrix. Then, T is injective, but ImT = 0. We calculate

(5 0):

(6.31)

0

1 1

. (1000 00 10 0
F_Gﬂ;_<01 oo> 0100 0
1000 0

O O =

which leads to

_ 1000 0 0\ 1/2
Ran(G)Ran(O 1 0 O)#Ran<0 O)Ran(F# ). (6.32)

In this section, we will prove Theorem 6.11 based on Theorem 2.15 of [58].
We also remark that Theorem 2.15 of [58] assumes the compactness of ImT',

92



while Theorem 6.11 of this section do not assume its compactness. The
independence of its compactness is important because the operator Im7 is
not always compact in the case of inverse medium scattering problem with
complex valued contrast function. (See Theorem 4.5 of [58])

Before the proof of Theorem 6.11, we show the following lemma.

Lemma 6.13. Let X be a Hilbert space, and let T : X — X be linear
bounded, and let K : X — X be linear bounded injective. We assume that

Ran(T) is closed subspace in X, and dimKer(7) < oo. (6.33)
Then, there is a constant C' > 0 such that
Jull% < C(|Tull% + | Kull%) for all u € X. (6.34)

Proof of Lemma 6.13. Assume that on contrary for any C > 0, there
exists a u. € X such that

lucll% > C(|Tucl% + | Kuc||%)- (6.35)

Then, we can choose a sequence (um)men in X such that [Jup,||* = 1 and
| Tt ||* + || K um]||* converges to zero as m — oo. Since Ker(T') is a finite
dimensional subspace in X, there exists an orthogonal complement Ker(T)l
of Ker(T) such that X = Ker(T) @ Ker(T)*. We denote P by an orthogonal
projection onto Ker(7T)*. Since Ker(T)* and Ran(T) are closed subspaces
in X, the restrict operator T‘Ker(T) . is injective and surjective from the

Banach space Ker(T)* to the Banach space Ran(T). Then by the closed
graph theorem, T‘Ker(T) | is invertible bounded, which implies that there is
a constant C' > 0 such that

2
1Pl < C [Tl gy Pt = € [T, (6.36)

T)+-

Since K is injective and Ker(7') is a finite dimensional subspace in X, there
is a constant C' > 0 such that

vl < C||Kv|  for all v e Ker(T). (6.37)
Then, there is a constant C' > 0 such that

17 = Pum|® CIE(I = Pum|* < 2(C||Kum||* + | K Pum|*)

<
< 20(|Kum|® + | K[ | Puml|*)- (6.38)
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Therefore, by (6.36) and (6.38) there exists a constant C’ > 0 such that
L= [|Pun|* + (I = P)um|* < (| Tum|® + | Kum?). (6.39)

As m — oo, the right-hand side of above inequality converges to zero, which
is a contradiction. O

‘We will show Theorem 6.11.

Proof of Theorem 6.11. By the same argument of Part A (Reduction)
in the proof of Theorem 2.15 of [58], we can restrict ourselves to the case
X =U and C = I. Furthermore, we can also restrict ourselves to the case
G is injective. Indeed, let P : U — U be the orthogonal projection onto
U= Ran(G*). Then, PG* = G* and G = GP. By this, we can have the
factorization of the form

F = GPTPG* = GTG~, (6.40)

where G ‘U: U—Y and T = PT ’U: U — U. Therefore, all of assumptions
(1)-(3) are satisfied. We remark that 7" is not injective even if T is injective,
which leads to error in Theorem 2.1 of [72].

By the same argument in Part B, C, and D in the proof of Theorem 2.15

of [58], we can show that
Fu = GTuG", (6.41)

where T = Re(e"T)D + ImT and D is some isomorphism from U onto
itself. It was also shown that the operator T is non-negative on U in its
proof. By applying the inequality (4.5) of [57] to the non-negative operators
Re(e®®T)D and ImT, there is a constant C' > 0 such that

(¢, Tgw) = (p,Re(e"T)Dy) + (o, ImTy)
> C’(HRe(eitT)Dng2 + [ImTe|*)  for all ¢ € U.(6.42)

By assumption (2), Re(eT)D is a Fredholm operator, and by assumption
(3), ImT is injective. Therefore by applying Lemma 6.13 to our operators,
there is a constant C’ > 0 such that

C'(|Re(e"T) Dy ||” + [ImT|*) > |¢l*  forall pe U,  (6.43)

which implies that the operator T : U — U is positive coercive. Since we
can write

1/2, 21/21 .
Fy = B2 (F)/*) = GTyG", (6.44)
then by applying Theorem 1.21 of [58], we conclude (6.29). We have shown
Theorem 6.11. ]
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6.4 A factorization of the near field operator

In Section 6.4, we discuss a factorization of the near field operator N. We
define the operator L : L?(Q) — L*(M) by Lf := v’M where v is a radiating
solution (that is, v satisfies the radiation condition in the sense of Definition
6.6) such that

Av +k2(1+ q¢)nv = —k%qnf, in Ri, (6.45)

v=0onR x {0}. (6.46)
We define Hg : L*(M) — L*(Q) by

Hog(x) = /Mcm,y)g(y)ds(m, req. (6.47)

Then, by these we have N = LHg. In order to obtain a symmetric factor-
ization of the near field operator NV, we show the following symmetry of the
Green’s function G,.

Lemma 6.14.
Gn(z,y) = Gu(y,2), = #y. (6.48)

Proof of Lemma 6.14. We take a small > 0 such that By, ()N Bay,(y) =
() where B(z) C R? is some open ball with center z and radius e > 0. We
recall that G, (z,y) = G(z,y) +a°(z,y) where G(z,y) = Pr(z,y) — Pr(2,y")
and u°(z,y) is a radiating solution of the problem (6.5) such that @°(z,y) = 0
for zo = 0. In the introduction of [62] u° is given by @°(z,y) = u(z,y) —
x(|z—y|)G(z,y) where x € C*(Ry) satisfying x(t) = 0 for 0 < ¢ <n/2 and
x(t) =1 for t > n, and u is a radiating solution such that u =0 on R x {0}
and

Au+ k*nu = f(-,y) in R, (6.49)
u=0on R x {0}, (6.50)

where
F) = [ (1=n) (1=x(-=yD) +Ax(- =) |G, y) +2V x(|-~y])- VG (-, y).
(6.51)

Then, we have Gy, (z,y) = u(z,y) + (1 — x(|z — y|))G(z,y). By Theorem 6.8
we can take an solution ue € H'(R?) of the problem (6.49)-(6.50) replacing
k by (k + ie) satisfying u. converges as e — +0 in H} (R2) to u. We set

Gne(z,y) == uc(z,y) + (1 — x(|]z — y]))G(2,y), and Gp (-, y) converges as
€ = +0 to Gu(-,y) in H. (R?). By a simple calculation, we have

loc

[Az—f—(kz—l—ie)2n(z)] Ghe(z,y) = —0(z, y)+(2kei—62)n(2) (l—x(|z—y|))G(z7 Y).
(6.52)
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Let 7 > 0 be large enough such that z,y € B,(0). By Green’s second
theorem with Gy, ¢(-, ) and Gp.e(-,y) in B,(0) NR? we have

—Gne(y, @) + (2kei — 62)/ ue(z, 2)n(2)(1 = x(|z = y))G(2,y)d=
Ban(y)
£ Gy - <%a—e>/ uelz ()1 = x(17 — 2l))G (2, 2)dz
Ban ()
(z,2)[A; + (k+ ie)Qn(z)] Ghe(z,y)dz

Gre(2,9)[A; + (k +i€)*n(2)| Gpe(z, 2)d2

/ (0)0R2

+(0)NR3.

= / ue(z,x)M - ue(z,y)wds(z). (6.53)
8B, (0)NR?. v, ov,

Since u. € H'(R%), the right hand side of (6.53) converges as r — oo to
zero. Then, as 7 — oo in (6.53) we have

Gn,e(my y) - Gn,e(yv {B)
= (2kei — 62)/ ue(z,y)n(2)(1 — x(|z — z|))G(z,x)dz
B2n($)

— (2ker — 62)/ ue(z,z)n(2)(1 — x(|z — y|))G(z,y)dz (6.54)
Ban(y)

Since u, converges as € — +0 in H} (R%) to u, the right hand side of

(6.54) converges to zero as € — +0. Therefore, we conclude that G, (z,y) =
Gn(y,z) for x # y. O

By the symmetricity of G,,,

tigo.s) = [ {[ Glemawastn} s
_ / {/G 5y f d:z;}ds
- oo [l

H,f(x) / Gn(z,y)f(y)dy, x € M. (6.56)

ds(y (6.55)

which implies that
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We define T : L?(Q) — L?*(Q) by
Tf:=kqnf + k2qm;\Q, (6.57)

where v is a radiating solution of (6.45)—(6.46). Since Lf(z) is of the form
L) = vle) = | Galo i alyn) () + o) dy. (659)

we have
L= HEQT. (6.59)

Therefore, we have the following symmetric factorization of IV:
N =HyTHg. (6.60)

We show the following lemma corresponding to assumptions of Theorem
6.11.

Lemma 6.15. (a) Hq is compact and injective.

(b) If there exists a constant qmin > 0 such that ¢min < q a.e. in Q, then T
has the form T' = C'+ K where C' is a self-adjoint and positive coercive
operator of the form Cf = k?qnf, and K is a compact operator of the
form Kf := qunv‘Q.

(c) Im{f,Tf) >0 for all f € L*(Q).
(d) T is injective.

Proof of Lemma 6.15. (d) Let f € L%*(Q) and assume that T'f = 0,
i.e., k®qnf + k*qnv = 0 in Q. By this and (6.45), Av + k*>nv = 0. By the
uniqueness (Theorem 6.8), v = 0 in ]R%_ which implies that f = 0. Therefore,
T is injective.

(b) By the definition of T', it is obvious that 7" has such a form. Since n
and ¢ are bounded below (that is, n > n, > 0 and ¢ > ¢nin, > 0), C is a
self-adjoint and positive coercive operator. The compactness of the operator
K : L*(Q) — L*(Q) arises from U‘QE HY(Q).

(a) From (d), (b), and the Fredholm theorem, we obtain that T is
bounded invertible. By this, it is sufficient to show that the operator L
is compact. By the trace theorem and v € H. (R?%), Lf = U‘ME HY?(M),

loc

which implies that the operator L : L?(Q) — L?(M) is compact.
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To show the injectivity of Hg, let g € L*(M) and assume that HQg( )=

Jur Gn(2,9)9(y)ds(y) = 0 for = € Q. We set w(z) := [,,Gn (y)ds(y).
By the deﬁmtlon of w we have

Aw + k*nw = 0, in R%\ M, (6.61)
By unique continuation principle we have w = 0 in Ri \ M. By the jump
relation (see e.g., Theorem 6.11 of [76]) we have 0 = Bg; 81”* = g, which

conclude that the operator Hy is injective.
(c¢) For the proof of (c) we refer to Theorem 3.1 of [23]. By the definition
of T" we have

m(f,Tf) =Im /Q fk?qnodz = Im /Q T[A + k*n)vdz, (6.62)

where v is a radiating solution of the problem (6.45)—(6.46). We set Qy :=
(=N, N) x (0, N®) where s > 0 is small enough and N > 0 is large enough.
By the same argument in Theorem 3.1 of [23] we have

m(f,Tf) =Im T[A + E*njude = Im vAvdx
QN QN

1 . / 8¢l ver.g
- ap jay ; ¢l, = dx
T Z Z J J Cotm) J oz 71

JEJ dyjudy ;>0

1 _ / —0dp
m|— agjar,; brj—dx
[%Z Z T Co(n) ! 0w

jeJ dl,j7dl/7j<0

+o(1), (6.63)

where some q; ; € C, and {d; j, ¢;; : | = 1,...,m;} are normalized eigenvalues
and eigenfunctions of the problem (6.18). By Lemmas 6.3 and 6.4 of [62],
as N — oo in (6.63) we have

Im(f,Tf) > Z[Z lar Py — > |al,j|2dl,j] >0,  (6.64)

JjeJ Ld;, ;>0 d; ;<0
which concludes (c). O

Remark 6.16. The strictly positivity of Im7T' is missing in Lemma 6.15
although we have the injectivity of T. From the viewpoint of Section 6.3,
we have to show the strictly positivity of Im7T" if we use the factorization
method, and we would expect the assumption of transmission eigenvalue for
(@ in this case. However, even with its assumption the author of this paper
do not understand how to prove Im7T > 0.

98



We will show the following lemma.

Lemma 6.17. Let B and () be bounded open sets in ]R%_ such that Ri \ B
and R% \ Q is connected. Then,

(a) dim(Ran(H})) = oo.
(b) If BNQ =0, then Ran(Hp) N Ran(Hg) = {0}.

Proof of Lemma 6.17. (a) By the same argument of the injectivity of
Hg in (a) of Lemma 6.15, one can show that HJ, is injective for general B.
Therefore, Hj has dense range in L?(M).

(b) Let h € Ran(Hp) N Ran(H(). Then, there exists fp, fq such that
h=Hgfp = Han We set

0p(a) = [ Gl folu)dy, o € RE (6.65)

vQ(z) = /QGn(w,y)fQ(y)dy, z € RY (6.66)

then, vp and vg satisfies Avp + k’nvg = —fg, and Avg + k:Qm)Q = —fo,
respectively, and vp = vg on M. By the unique continuation we have
v =vg in R2 \ (BN Q). Hence, we can define v € H. (R2) by

vg=vg nR2\(BNQ)
V= VB in Q (667)
vQ in B

and v is a radiating solution such that v = 0 for 9 = 0 and
Av + k*nv =0 in R2. (6.68)

By the uniqueness (Theorem 6.8), we have v = 0 in Ri, which implies that
h = 0. O

In the following sections, we will show Theorems 6.1 and 6.2 by using
these properties of the factorization of the near field operator V.
6.5 Proof of Theorem 6.1

In Section 6.5, we will show Theorem 6.1. Let B C @, and let K :
L?*(Q) — L?*(Q) be a compact operator defined in (b) of Lemma 6.15. Let
V' be the sum of eigenspaces of ReK associated to eigenvalues less than
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a — E*NoninGmin. Since & — k*npmingmin < 0, V' is a finite dimensional sub-
space, and for Hog € V+

(ReNg,g) = /QkZHQ|HQ9’2d$+<(RGK)HQ9,HQQ>

k2nmianin HHQ9”2 + (a — anmemm) HHQ9H2

>
> a|Hggl® > | Hggl?. (6.69)

Since for g € L?(M)
HogeV*: <« ge(HHV)", (6.70)

and dim(HgV) < dim(V) < oo, we have by Corollary 3.3 of [38] that
OzHEHB Sﬁn ReN.

Let now B ¢ @ and assume on the contrary aH;Hp <g, RelN, that
is, by Corollary 3.3 of [38] there exists a finite dimensional subspace W in
L*(M) such that

(ReN — aHpHp)w,w) > 0, (6.71)

for all w € W. Since B ¢ Q, we can take a small open domain By C B
such that By N Q = (), which implies that for all w € W+

a|Hpw|? < o|Hpw|?
< ((ReN)w, w)
= ((ReT)Hquw, Hqw)
< |[ReT|| [ Hou]*. (6.72)

By (a) of Lemma 4.7 in [38], we have

Ran(Hp ) € Ran(H()) + W = Ran(H(,, Pw), (6.73)
where the operator (Hp, Pw) : L?(Q) x L>(M) — L?*(M) is defined by
(Hp, Pw) < g ) = Hf+Pwyg, and Py : L*(M) — L%*(M) is the orthog-
onal projection onto W. Lemma 4.6 of [38] implies that for any C' > 0 there

exists a w, such that
Hq
< Py > e

Hence, there exists a sequence (W, )men in L?(M) such that || Hpywy,|| — oo
and || Howm || + || Pvwm|| — 0 as m — oco. Setting @y, := wm — Py wy, € W+
we have as m — oo,

2

1H pywel® > C? = C*(| Houel* + | Pwwe|*).  (6.74)

1H By Wmll = [[Hpywm|| — [ Hpoll | Pwwm || — oo, (6.75)
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[HQum| < [[Hqumll + [[Ho|l [|Pwwm|| — 0. (6.76)

This contradicts (6.72). Therefore, we have aH3;Hp £, ReN. Theorem
6.1 has been shown. ]

By the same argument in Theorem 6.1 we can show the following.

Corollary 6.18. Let B C R? be a bounded open set. We assume that
there exists Qmaz < 0 such that ¢ < Gmaz a-e. n Q. Then for 0 < a <

anmin|qm(w | ;

BCQ <= aHLHp <g, —ReN, (6.77)

6.6 Proof of Theorem 6.2

In Section 6.6, we will show Theorem 6.2. Let Q C B. Let V' be the sum of
eigenspaces of ReK associated to eigenvalues larger than o — k®nmazGmaz-
Since a— k*NmazGmaz > 0, V is a finite dimensional subspace and for Hgpg €

VL
(ReNg,g) = /QkQWIHQg\de + ((ReK)Hgqg, Hog)
< Enumacmar [ Hogll* + (o = k*NinazGmasz) | Hogll
< alHgyl® < o Hag|?. (6.78)
Since for g € L?(M)
Hoge VY <« ge(HHV),, (6.79)

and dim(HV) < dim(V) < oo, we have by Corollary 3.3 of [38] that
ReN Sﬁn OZHEHB.

Let now ) ¢ B and assume on the contrary ReN <g, aH5Hpg, that
is, by Corollary 3.3 of [38] there exists a finite dimensional subspace W in
L?(M) such that

((«HpHp — ReN)w,w) > 0, (6.80)

for all w € W+. Since Q ¢ B, we can take a small open domain Qp C Q
such that Qo N B = 0. Let V be the sum of eigenspaces of ReK associated
to eigenvalues less than — (k214 qmin/2). Then, V is a finite dimensional
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subspace and for w € (HéV)J- NWt = (HyV U W)L we have

a||Hpw|?
> {(ReN)w, w)
= / k*ng|How|*dz + ((ReK)How, How)
Q
2 anmianin ||HQW||2 - (anmanmm/Q) ||HQwH2
= (anmianin/Q) ”HQwH2
> (kgnmianm/Q) ”HQow||2 ) (6.81)

and dim(H 5‘/ UW) < co. By the same argument replacing @, By, and W
in the proof of Theorem 6.1 by B, Qq, and (H, oV u W), respectively, there

exists a sequence (W, )men in (HHV U W)+ such that ||Hg,wy,| — oo and
|Hpwm| — 0 as m — oo, which contradicts (6.81). Therefore, we have
ReN £g, aHpHp. Theorem 6.2 has been shown. ]

By the same argument in Theorem 6.2 we can show the following.

Corollary 6.19. Let B C R? be a bounded open set. We assume that there
exists Qmin < 0 and Gmar < 0 such that ¢min < ¢ < Gmaz a.€. 1 Q. Then
fOT’ a > k2”max|Qmin’;

QCB <= —ReN <g aHgHp, (6.82)

6.7 Numerical examples

In Section 6.7, we give the numerical examples based on Theorem 6.1. We
consider the following two supports @1 and @2 of functions g1, g2 (see Figure
8):

(1) Q1 = {(z1,22)|(x1 — 0.5)% + (x5 — 0.5)% < (0.2)%}
(2) Qs = {(xl,:@)\ ((z1 — 0.5)/0.15)2 + ((x2 — 0.6)/0.3)% < 1}

where ¢; and g9 are defined by

1 f ;
0)(@) = { S (6.83)

Based on Theorem 6.1, the indicator function in our examples is given
by
I(B) := # {negative eigenvalues of ReN — aHgpHp} (6.84)
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We consider the sampling region by [0, R] x [0, R] with some R > 0. The
test domain B is given by the small square B; j := z;; + [~ R/2M, R/2M?
where the location z;; = (Ri/M,Rj/M) (i,j = 1,..., M) and M is some
large number.

The near field operator N is discretized by the matrix

b—a
d

N ~ (u® (21, xi’))lgl,pgd e ¢ixd (6.85)

where z; = (a + (b_da)l,m), and z, = (a+ (b_da)p, m), and the scattered field

u® is given by solving the following integral equation

w2 = [ o, GG vyt | )Gt )
(6.86)

In our examples we fix R =1, M = 100, d = 30, a = —25, b = 25, m = 20,

and n = 1. Figure 9 is given by plotting the values of the indicator function

Isquare(zi,j) = I(Bi7j)7 Z7] = 17 ceey 1007 (687)

for two different supports ()1 and @2 of true functions ¢; and g2, and for
two different parameters v = 10, 20 in the case of wavenumber k£ = 5.

Q1 Q2

Figure 8: The original shape
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Q1, a =10 Q1, =20

QQ,Oézlo QQ,QZQO

Figure 9: Reconstruction by the indicator function Isgyqre in the case of
wavenumber k = 5
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7 Inverse medium scattering problems with Kalman
filter techniques I. Linear case

7.1 Introduction

The inverse scattering problem is the problem to determine unknown scat-
terers by measuring scattered waves that is generated by sending incident
waves far away from scatterers. It is of importance for many applications,
for example medical imaging, nondestructive testing, remote exploration,
and geophysical prospecting. Due to many applications, the inverse scat-
tering problem has been studied in various ways. For further readings, we
refer to the following books [11, 16, 18, 52, 78], which include the summary
of classical and recent progress of the inverse scattering problem.

We begin with the mathematical formulation of the scattering problem.
Let k& > 0 be the wave number, and let # € S' be incident direction. We
denote the incident field u""(-, #) with the direction @ by the plane wave of

the form ' '
U (x,0) == e*? e R2 (7.1)

Let @ be a bounded open set and let its exterior R?\ @ be connected. Let ¢ €
L“(Rd) be real valued with a compact support such that () = supp q. Then,
the direct scattering problem is to determine the total field u = u*¢® + "¢
such that

Au+ k*(1 + q)u = 0 in R?, (7.2)
. ausca ) sca B
rll)rglo \/77< 5 iku ) =0, (7.3)

where r = |z|. The Sommerfeld radiation condition (7.3) holds uniformly in
all directions & := I%\ Furthermore, the problem (7.2)—(7.3) is equivalent to
the Lippmann-Schwinger integral equation

wam=nﬂww+k{é«wmw@@ww% (7.4)

where ®(z,y) denotes the fundamental solution to Helmholtz equation in

R2, that is, '
(4
(z,y) = JHy (Kl ), = # v, (7.5)

where Hél) is the Hankel function of the first kind of order one. It is well
known that there exists a unique solution u*“® of the problem (7.2)—(7.3),
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and it has the following asymptotic behaviour (see e.g., Chapter 8 of [18]),
eikr
NG

The function u° is called the far field pattern of u*®, and it has the form

usca(x) —

u™®(2,0)+O(1/r) ¢, r =00, &:i= . (7.6)
]

k2

[t 0wy = Faw0). @
where the far field mapping F : L?(Q) — L?(S! x S!) is defined in the
second equality. For further details of these direct scattering problems, we
refer to Chapter 8 of [18]. The inverse scattering problem we consider here
is to reconstruct the function ¢ from the far field pattern u®(z, 6, ) for all
# € S!, several incident directions {6,}_, C S! with some N € N, and one
fixed wave number k > 0.

The equation (7.7) is nonlinear, that is, the far field mappings F is non-
linear because the function u(y, #) depends on ¢. Existing methods for solv-
ing nonlinear inverse problem can be roughly categorized into two groups:
iterative optimization methods and qualitative methods. The iterative op-
timization method (see e.g., [5, 18, 30, 42, 51]) does not require a lot of
data, however it require the initial guess which is the starting point of op-
timization. It must be appropriately chosen by a priori knowledge of the
unknown function ¢, otherwise, the iterative solution could not converge
to the true function. On the other hand, the qualitative method (see e.g.,
[17, 33, 43, 44, 58, 78, 85]) such as the linear sampling method, the mono-
tonicity method, the no-response test, the probe method, the factorization
method, and the singular sources method, does not require the initial guess
and it is computationally faster than the iterative method. However, the
disadvantage of the qualitative method is to require a lot of data and to
have difficulty in the case of the scatterer consisting of several components
with different physical properties (see e.g., [22, 64]).

If the total field u in (7.7) is replaced by the incident field u®™, the
nonlinear equation (7.7) is transformed into the linear equation

k‘2

uF(E,0) =

/Qe_z‘kj-yuinC(y’ 0)q(y)dy =: Fpq(z,0), (7.8)

which is known as the Born approrimation. The function u% is a good
approximation of the far field pattern u°° when k > 0 and the value of ¢ are
very small. Another interpretation is that the Born approximation is the
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Fréchet derivative of the far field mapping F at ¢ = 0. For further readings
of the inverse scattering problem with the Born approximation, we refer to
[5, 6, 18, 54, 83]. In this section, we study the linear integral equation (7.8)
instead of the nonlinear one (7.7).

Although the inverse scattering problem became linear by the Born ap-
proximation, the linear equation (7.8) is ill-posed, which means there does
not exist the inverse .7-";1 of the operator Fg. A common technique to
solve linear and ill-posed inverse problems is the Tikhonov regularization
method (see e.g., [11, 35, 67, 78]). A natural approach applying regulariza-

tion method to our situation is to put all available measurements {u%, N
N

n=1»

and all far field mappings {Fp n } where the index n corresponds to some
incident direction 6,,, into one long vector > and F B, respectively, and to
apply the Tikhonov regularization method to the big system 4> = ]-_"Bq.
We shall call this way the Full data Tikhonov.

In this section, we propose the reconstruction scheme based on Kalman
filter techniques. The Kalman filter (see the original paper [50]) is the algo-
rithm to estimate the unknown state in the dynamics system by using the
sequential measurements observed over time. It has many applications such
as navigations and tracking objects, and for further readings, we refer to
[31, 48, 50, 78].

The contributions of this section are followings.

(A) We propose the reconstruction algorithm for solving the linear in-
verse scattering problem (7.8) based on the Kalman Filter (see (7.44)—
(7.46)).

(B) We show that in the linear problem, the Full data Tikhonov is equiv-
alent to the Kalman Filter (see Theorem 7.4).

(A) means that we can estimate the unknown function ¢ every time to
observe the far field pattern ug, with one incident direction 6,, without

waiting for all data {uOB‘in}N Furthermore, (B) means that the solution

n=1"
qﬁF of the Kalman filter after giving all data coincides with the solution
q]FVT of the Full data Tikhonov with the same initial guess. The advantage
of the Kalman Filter over the Full data Tikhonov is that we do not require
to construct the big system u> = F B¢, which reduces computational costs.
Instead of the big system, we update not only state, but also the norm of the
state space, which is associated with the update of the covariance matrices
of the state in the statistical viewpoint (see e.g., Chapter 5 of [21]).
This section is organized as follows. In Section 7.2, we briefly recall the
Tikhonov regularization theory. In Sections 7.3, we give the algorithm of
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the Full data Tikhonov. In Section 7.4, we give the algorithm of the Kalman
filter, and show that it is equivalent to the Full data Tikhonov discussed in
the previous section. Finally in Section 7.5, we give numerical examples to
demonstrate our theoretical results.

7.2 Tikhonov regularization method

Tikhonov regularization is the method to provide the stable approximate
solution for linear and ill-posed inverse problem. In this section, we briefly
recall the regularized approach. For further readings, we refer to [11, 35, 67,
78]. In Sections 7.2-7.5, we consider the general functional analytic situation
of our inverse scattering problem.

Let X and Y be Hilbert spaces over complex variables C, which are as-
sociated with the state space L?(Q) of the inhomogeneous medium function
q, and the observation space L?(S') of the far field pattern u*, respectively,
and let A : X — Y be a compact linear operator from X to Y, which is
the observation operator Fp : L%(Q) — L*(S!) defined in (7.8) as the far
field mapping. We consider the following problem to determine ¢ € X given
fey.

Ap = f. (7.9)

Since the observation operator A is not generally invertible, the equation
(7.9) is replaced by

ap+ ATAp = A*f, (7.10)

which was derived from the multiplication with the adjoint A* of the oper-
ator A and the addition of agp where the regularization parameter o > 0
in (7.9). We call the solution ¢, of the equation (7.10) the regularized so-
lution of (7.9). The following lemma is well known as the properties of the
regularized solution ¢, (see e.g., Chapter 4 of [18] and Chapter 3 of [78]).

Lemma 7.1. Let X and Y be Hilbert spaces and let A : X — Y be a compact
linear operator from X toY. Then, followings hold.

(i) The operator (al + A*A) is bounded invertible, and
Qo = (al + A*A) LA™ f, (7.11)
is the unique solution of (7.10).

(ii) The solution po defined in (7.11) is the unique solution of the following
minimization problem.

mingex {a el +1f = Agl} } - (7.12)
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and if f ¢ R(A), then ||pq|lx — 00 as a — 0.

We observe the above Lemma in the case when X is finite-dimensional
and f is of the form f = Ap"™“® where ¢'“¢ is the true solution of the
problem (7.9). In this case, the regularized solution ¢, of (7.9) converges
as a — 0 to ¢t defined by

Soleast — ATAQOtTue, (714)

where the operator A is the pseudo inverse of the operator A defined by
AT := (A*A)~1A*. In finite-dimensional case of the space X, the operator
(A*A)~'A* . Y — R(A*) is well defined since A*A : R(A*) — R(A*) is

bijective. ¢!t is known as the least squares solution, that is, it satisfies

| et — 1| = mingex {lae - Flly} (7.15)

which means that in the ill-posed problem of (7.9), pleest is the best possible
solution in the sense of a taking a smallest norm of || Ay — f||y. Furthermore,
if the operator A is injective, then the least squares solution ¢'**$! coincides
with the true solution "¢ because AfA is an identity operator. For details
of the least squares solution, we refer to Section 4.3 of [34] and Section 3.2
of [78].

7.3 Full data Tikhonov

The natural approach for solving the equation (7.8) is to put all available
measurements {u"B‘”n}ivzl and all far field mappings {Fp,}Y |, where the
index n is associated with some incident angle #,, € S', into one long vector
Uy and F B, respectively, and to employ the regularized approach. In order
to study the above general situation, let fi,..., fy € Y be measurements,
let Ay, ..., Ay be observation operators, and let us consider the problem to
determine ¢ € X such that

An@ = fn, (716)

for all n = 1,..., N. Now, we assume that we have the initial guess @y €
X, which is the starting point of the algorithm, and is usually determined
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true

by a priori information of the true solution ¢""“¢. Then, we consider the

minimization problem of the following functional.

Jrain(p) = allp— 900||X+ Hf_ (PHYNR 1

= al!so—sooH?(+Z||fn—AnsoH2y,Rﬂ7 (7.17)
n=1
fi Ay
where f:= © |, and A := : . The norm ||-H§,7R_1 = (R 1)y
I AN
is a weighted norm with a positive definite symmetric invertible operator
R :'Y — Y, which is interpreted as the error covariance matrices of the
observation distribution from a statistical viewpoint in the case when Y is
the Euclidean space (see e.g., Chapter 5 of [21]). With ¢ = ¢ — g, the
problem (7.17) is transformed into

- Lo L2
Trui N (@) = a|||% + H(f — Agpo) — A<pHYN : (7.18)
By Lemma 7.1, the minimizer @, of (7.18) is given by
Go = (ol + A Ay A* (F = Apy ), (7.19)

which implies that
oA = o + (af + A*A) L A* (f— fﬂpg) , (7.20)
is the minimizer of (7.17). We call this the Full data Tikhonov. Here, A* is

the adjoint operator with respect to (-,-)x and (-, )y~ p-1. We calculate

N
(f,Ap)yn g1 = an, “Anp)y

N
= Z (AHR=Lf, o) x, (7.21)
which implies that
A* = (AR, . ARRTY). (7.22)

where Ag is the adjoint operator with respect to usual scalar products (-, -) x
and (-,-)y. Then, the Full data Tikhonov solution in (7.20) is of the form

N /N
o = o + <a1 +Y° AnHRlAn> (Z AR (fo - Anwo)> - (7.23)
n=1

n=1
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7.4 Kalman filter

The Kalman filter is the algorithm to estimate the unknown state in the
dynamics system by using the sequential measurements observed over time.
In the usual Kalman filter, the model operator to describe the process of the
state in the dynamics system is defined (see e.g., Chapter 5 of [78]). In our
problem, it corresponds to the identity mapping because unknown function
q does not develop over time.

Let us formulate the Kalman filter algorithm based on the functional
analytic situation using the same notation described in Sections 7.2 and
7.3. In [21], the similar argument of followings was discussed in the special
case when X and Y are the Euclidean spaces. In this section, we discuss
more general situation, that is, the Hilbert space over complex variables C,
which is applicable to our inverse scattering problem. First, we consider the
following minimization problem when one measurement f; € Y, observation
operator Aj, and the initial guess pg € X are given.

Ji(p) = allo = wolx + /1 = Avglly g1 - (7.24)

By using a weighted norm H-||§(B_1 = (-, By')x where By := LI, the
B
functional J; can be of the form

Ji(p) =l — 900||§(730—1 + A = Aol g (7.25)
and its unique minimizer ¢; is given by
1= o + (I + ATA) AT (f = Argo) (7.26)

where A7 is the adjoint operator with respect to weighted scalar products
(s '>X By and (-, ->ny—1. We calculate

(f,A19)yr1 = (f.R'A1p)y
= (AR 'f.o)x
= (BoATR™'f, ) x -1, (7.27)
which implies that
A} = ByAT R, (7.28)

where A{{ is the adjoint operator with respect to usual scalar products (-, -) x
and (-,-)y. Then, we have

01 = 9o+ I+ BoAFRYA) I ByATR™ (f — A1)
= wo+ (By'+ AR A)TTAT R (fL — Argo) . (7.29)
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Next, we assume that one more measurement fo € Y and observation oper-
ator Hy are given. The functional for two measurements is given by
2 2 2
Tran2(p) = o= olx por + [1fr = Arglly, g1 + 1 f2 = A2eplly g1 -
2
= Ji(p) +lf2 - AZSOHY,R*1 . (7.30)
The question is whether we can find By such that Jpu2(e) = Jo(@) + ¢

where ¢ is a constant number independently of ¢, and the functional Ja(y)
is defined by

Ta(9) = llo = ¢1lx,p, + I1f2 = A2lly g1 (7.31)

where @1 is defined by (7.29). To answer this question, we show the following
lemma.

Lemma 7.2. Set By := (By' + A R"1A,) ™", Then,
Ji) = llo —enllx g1+ (7.32)

where ¢ is some constant independently of ¢.

Proof. We calculate

Jip) = (p—00, By (0 —00))y + (fi — A1, RV (f1 — A1),
= (¢, By'e)y — 2Re(p, By 'po)x + (0, By 'po)
+(fi, R fi)y —2Re(p, ATR™ 1) ¢ + (9, AT R Arp) .
= (. By'e)x —2Re(p. By lwo)y — 2Re(p, AR fi) ¢
+{p, A R A1) + co
= (¢, Br'p)y —2Re(p, By 'po) y — 2Re (9, AR f1) « + co,

(7.33)
where we used By ! = (BO*1 + AR Ay). By (7.29), we have
Bi'(p—w1) = Bi'e—Bi'er
= Brle— (B! + ATRT A wo — AVRTH(f = Aveo)
= Bile—By'vo— AR f1 (7.34)
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By using (7.34) and the self-adjointness of By!, we have
(p =91, Bi (0 — 1))y
= (p—¢1,Bi'o—Byleo— AR f1)
= (Bi' (¢ —1),9)x — (0 By o)y — (9, AR f)  + 1
= (Bile—Byleo— AR [ )y
— (e, BO_I‘PO>X - <¢>A{{R_1f>x +a
= <<p,Bl_1<p>X — 2Re <<p, Bo_lcpo>x — 2Re <¢,A{{R_1fl>x + .

(7.35)

With (7.33) and (7.35), Ji(¢p) is of the form
Jl((p) = <90_§017B1_1 (SO_SOI)>X+CQ (736)
where cq, c1, and ¢y are some constant numbers independently of . Lemma
7.2 has been shown. d

This lemma tells us that Jpu2(p) is equivalent to Ja(p) in the sense of
minimization with respect to ¢. By the same argument in (7.25)—(7.29), its
unique minimizer 9 is given by

w2 =1+ (By '+ AY R A) AT R (f2 — Aspr) . (7.37)

We can repeat the above argument (7.24)—(7.37) until measurements f1, ..., f,
and observation operators Ay, ..., A, are given. Then, we have following al-
gorithms

on = on-1+ Kn (fn — Anpn-1) (7.38)
where the operator
K, = (B!, + AR '4,) AHR, (7.39)
is called the Kalman gain matriz, and B, is defined by
B,:=(B;',+AfR4,)"". (7.40)
Since we have
(B}, +AMR'A,) B, A = AN+ ATRT'A,B, AN
= AlR'(R+ A,B,1A]l),
the Kalman gain matrix K, can be of the form
Ky, = By 1AY (R+ A,B, 1 AT) ™.

Here, we show the following lemma that the operator B,, has another form.
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Lemma 7.3. Let K,, be the Kalman gain matriz defined in (7.39). Then,
the operator B,, has the following form

By = (I — KuAy) By (7.41)

Proof. By multiplying (7.39) by (B;}l —|—A£{R_1An) from the left hand
side, and by A, from right hand side, we have

(B, + AFR™'A,) K, A, = ATR™ A, (7.42)
which implies that by using (7.40)
B'(I-K,A,) = (B +AYR™'4,) (I - K,A,)
= (B +AFR'A,) - ATR'4,
Bl (7.43)

Multiplying (7.43) by B, from the left hand side, and by B,_; from the
right hand side, we finally get (7.41). O

We summarize the update formula in the following.

R F = ol E + Ko (fo — Anpl ), (7.44)
K, =By 1 A" (R+ A,B, 1AT) ™", (7.45)
By, = (I — K,Al) B4, (7.46)

forn=1,..., N, where ¢5<F = o and By 1= é]. We call this the Kalman
filter.

We observe the above algorithm. It means that we can estimate the
state ¢ every time m to observe one measurement f, without waiting all
measurements {f,,}_;. It includes not only the update (7.44) of the state
©, but also the update (7.46) of the weight B of the norm, which plays the
role of keeping the information of the previous state. The weight B is also
interpreted as the error covariance matrices of the state distribution from
statistical viewpoint (see e.g., Chapter 5 of [21]).

Finally in this section, we show the equivalence of Full data Tikhonov
and Kalman filter when all observation operators A,, are linear.

Theorem 7.4. For measurements fi,..., fn, linear operators Ai,..., An,
and the initial guess g € X, the final sate of the Kalman filter given by

(7.44)-(7.46) is equivalent to the state of the Full data Tikhonov given by
(7.23), that is

e = oN. (7.47)
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Proof. Tt is sufficient to show that
2
Jrunn(p) = HSO - @IJ\(rFHXB]—Vl +cn, (7.48)

where ¢y is some constant independently of ¢. We will prove (7.48) by the
induction. The case of N =1 has already been shown in Lemma 7.2.

We assume that (7.48) in the case of n € N with 1 <n < N — 1 holds,
that is,

2
JFull,n(‘p) - HSO - (PTIL(FHX’Bgl + Cn, (749)
where cpn_q is some constant. Then, we have
Jrutn+1(9) = Jrun(e) + | fot1 — An+1@||?/7R*1
2 2
= H@ - SDrIz(FHx,BgI + || frs1 — AnJA‘PHY,R—l + ¢n(7.50)

By the same argument in Lemma 7.2 replacing By, @o, fi1, A1 by2Bn, On,
Jnt1, Ant1, respectively, we have that Jpyynt1(p) = ng — Qofl{JﬂHX,le +
Cn+1. Theorem 7.4 has been shown.

7.5 Numerical examples

In this section, we give numerical examples of the algorithm which have been
discussed in above sections. We recall that our inverse scattering problem
is to solve the linear integral equation (7.8) with respect to ¢ when the
measurements uOBO’n =u% (-, 0y) forn=1,...,N are given.

FBng =u(-,0n), (7.51)
where the operator Fg,, : L?(Q) — L>(S!) is defined by

N ~ k2 —ikZy  inc
Fpnq(2) = Fpq(z,0,) ::M/Qe KU (y, 0,)q(y) dy. (7.52)

Here, the incident direction is given by 6, := (cos(2nrn/N),sin(27n/N)) for
each n =1, ..., N. The following discretizations are employed.

ug (-, 0) ~ (uf (25,0)),_, 5 €R’, (7.53)
where & := (cos(2mj/J),sin(27j/J)), and J € N, and

2
q= (q(zi:l))—Mgi,lgM—l € RCM) ) (7.54)
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(2i+1)R (21+1)R
2M ° 2M

[0, R], and [~ R, R)? is a square with some R > 0, in which support @ of the
function ¢ is included, and

where z;; := ( ), and M € N is a number of the division of

2

k G o 2
]:B o A — (e_lka.ZZ’lq(Zh i)elkz“lﬂ") € RJX(QM) ]
’ 47 ’ j=1,...,J, —M<il<M—-1
(7.55)

Here, we always fix discretization parameters as J =20, M =6, R = 3,
N =15, and consider true functions as the characteristic function

true; ) 1 for x € B;
q;" () .—{ 0 fora¢B, (7.56)

where the support B; of the true function is considered as the following two
types.

By = {(21,29) : 2] + 23 < 1.5}, (7.57)
(w1 + 1.5)% + (22 + 1.5)2 < (1.0)2 or
By :=( (x1,2) : 1< <2, "2<ax9<2o0r ) (7.58)

—2<x1 <2, 20<29<—-1.0
In Figure 10, the blue closed curve is the boundary 0B, of the support B; of

the true function q;ﬁme, and the green brightness indicates the value of the
true function on each cell divided into (2M)? = 144 in the sampling domain

[-R, R]? = [-3, 3]2. Here, we always employ the initial guess qq as

Figure 11 shows the reconstruction by the Kalman filter (KF) and the
Full data Tikhonov (FT) discussed in (7.44)—(7.46) and (7.23), respectively.
The first and second column correspond to visualization of the state g in
the case when four measurements {u%(-,6,)}2_; and full (fifteen) measure-
ments {u% (-, 0r) N=15 are given, respectively, for different methods KF and
FT, and for two different shapes B; and Bs. The wavenumber and the reg-
ularization parameter are fixed as k = 5 and « = 1, respectively. The third
column corresponds to the graph of the Mean Square Error (MSE) defined

by

true 2

€n 1= Hq - Qn’ ) (7.60)
where ¢, is associated with nth state reconstructed by some method. The
horizontal axis is with respect to number of given measurements, and the
vertical axis is the value of MSE. Motivated by Theorem 7.4, we can observe

that in Figure 11, KF and FT are also numerically equivalent.
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Figure 12 shows the reconstruction by the Kalman filter (KF) for two
different wave numbers k = 3 and k£ = 0.5, and for two different shape B;
and By. The first and second columns correspond to visualization of the final
state given full measurement for different regularization parameters @ = 1
and 1le—8. The third column corresponds to graphs of MSE, which have four
evaluation with respect to a = 1,1e — 2,1e — 8, and o = 0. We can observe
that the error graph converges as @ — 0 to the red curve, which corresponds
to the error of the least square solution. It agrees with theoretical viewpoints
of the least square solution (see Section 7.2). The case of k = 0.5 is severely
ill-posed because red curve in the case of & = 0 does not converge to zero
even if the number of measurements increases. This is because the rank

FB.1
of the full far field mapping Fp = : degenerates when the wave
FB.N
number k decreases. Figure 13 shows its degeneracy. The horizontal axis
is with respect to wave numbers, and the vertical axis is the number of the
rank of full far field mappings Fa.

true true

q1 a3

Figure 10: true functions
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KF, Bi,n=4 KF, By, n=15 KF, By, error graph

FT, By,n=14 FT, B;,n=15 FT, By, error graph
KF, By, n =14 KF, By, n =15 KF, Bs, error graph
FT, By, n=14 FT, By, n=15 FT, Bs, error graph

Figure 11: the comparison of KF and FT, k=5, a=1
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Bi,k=3,a=1,n=15 Bi,k=3,a=1e—8 n=15 B, k =3, error graph

By, k=05, a=1,n=15 B, k=05, a=1e—8,n=15 B, k= 0.5, error graph

By, k=3, a=1,n=15 By, k=3, a=1le—8, n=15 B, k = 3, error graph

By, k=05, a=1,n=15 By, k=05, a=1le—8 n=15 By, k = 0.5, error graph

Figure 12: KF reconstruction for different k£ and «
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Figure 13: the graph of the rank of Fg
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8 Inverse medium scattering problems with Kalman
filter techniques II. Nonlinear case

8.1 Introduction

Let k > 0 be the wave number, and let # € S! be incident direction. We
denote the incident field u"(-, #) with the direction @ by the plane wave of

the form ' '
' (x,0) = e* 0 1 e R2, (8.1)

Let Q be a bounded open set and let its exterior R?\ @ be connected. Let ¢ €
L>(R%) be real valued with a compact support such that @ = supp ¢q. Then,
the direct scattering problem is to determine the total field u = u®¢® + "¢
such that

Au+k*(1+ q)u =0 in R?, (8.2)
) ausca ] sca _
Tll)rgo \/;< 5 " iku ) =0, (8.3)

where r = |z|. The Sommerfeld radiation condition (8.3) holds uniformly in
all directions & := (f;. Furthermore, the problem (8.2)—(8.3) is equivalent to
the Lippmann-Schuinger integral equation

) =" (@) + 4 | a(o)un) o)y (84)
where ®(x,y) denotes the fundamental solution to Helmholtz equation in
R2, that is, _
? 1

JH (Kl —yl), @ # . (8.5)
where H(()l) is the Hankel function of the first kind of order one. It is well
known that there exists a unique solution u*“® of the problem (8.2)—(8.3),
and it has the following asymptotic behaviour (see e.g., Chapter 8 of [18]),

O(z,y) =

sca eikT o0 A A z
u(x) = \/;{u (m,@)—i—O(l/r)}, r— 00, &:= Tl (8.6)

The function u° is called the far field pattern of u*®, and it has the form

]{22

" ar

u(2,0) /Q e~V (y, B)q(y)dy =: Fq(i,6), (8.7)

where the far field mapping F : L?(Q) — L2(S! x S!) is defined in the
second equality. For further details of these direct scattering problems, we
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refer to Chapter 8 of [18]. The inverse scattering problem we consider here
is to reconstruct the function ¢ from the far field pattern u®(z,6;) for all
& € S!, several incident directions {#;}Y, C S! with some N € N, and one
fixed wave number k > 0.

The equation (8.7) is nonlinear, that is, the far field mappings F is
nonlinear because the function u(y, ) depends on ¢q. The well known method
to solve the nonlinear problem is the Newton Method (see e.g., [5, 18, 51, 52,
67, 78]), which is a classical method to construct an iterative solution based
on the first-order linearization. A natural approach applying the Newton
method to our situation is to put all available measurements {ufo}fi , and
all far field mappings {F;}#,, where the index [ corresponds to the incident
direction 6;, into one long vector #> and F , respectively, and to apply
the regularized Newton method to the big system 4> = .fq, that is, in
each iteration step we apply the linear regularization method to linearized
system of 4> = .7?q at the current state. We shall call this way the Full
data Tikhonov Newton. However, this is computationally expensive because
the more available measurement there are, the bigger system we have to
construct.

In this section, we propose the reconstruction scheme based on the
Kalman filter (see the original paper [50]). The Kalman filter is the linear
estimation for the unknown state by the update of the state and its norm
using the sequential measurements observed over time. The contributions
of this paper are followings.

(A) We propose the reconstruction algorithm, which is equivalent to the
Full Tikhonov data Newton (see (8.39)—(8.43)).

(B) We also propose the reconstruction algorithm based on the Eztended
Kalman Filter (see (8.53)—(8.57)).

The advantages of using Kalman Filter over the Newton approach is that
we can estimate the unknown function ¢ every time to observe the far field
pattern uf® with one incident direction 6; without waiting all available mea-
surements {ufo}{i ;- Furthermore, we do not need to construct the big sys-
tem using all measurements, which reduce the computational cost. (A) is
derived from the Kalman filter which has been discussed in the first part
of our works (see Section 4 in [27]), and we call the reconstruction scheme
of (A) the Kalman filter Newton. (B) is the different approach from (A).
The Extended Kalman filter (see e.g., [31, 32, 48]) is the nonlinear version
of the Kalman filter. For every time to observe one measurement, the state
is updated by applying the linear Kalman filter to linearized problem at the
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current state. The figure 14 provides an illustration for the differences of
(A) and (B) in the way to use measurements.

This section is organized as follows. In Section 8.2, we recall the Fréchet
derivative of the far field mapping F and its properties. In Section 8.3,
we consider the linearization of nonlinear inverse problem, and study the
error of the linearized solution. In Section 8.4, we propose two reconstruc-
tion algorithms of the Full data Tikhonov Newton and the Kalman filter
Newton, and show that they are equivalent. In Section 8.5, we propose the
reconstruction algorithm of the iterative Extended Kalman filter. Finally in
Section 8.6, we give numerical examples to demonstrate our algorithms.

8.2 Fréchet derivative of the far field mapping

The approach for solving the nonlinear equation (8.7) often requires the
linearization by the Fréchet derivative. In this section, we briefly recall the
Fréchet derivative of the far field mapping and its properties. The following
argument is a brief summary of Section 11.3 of [18].
We denote the far field mappings associated with the incident angle
6 c S! by
k‘2

Foq(2) = Fq(2,0) = 47T/Qe’4"”%%(@/79)(1(1/)dy, & e st (8.8)

where the total field u = ug4(+, 0) is given by the solving the integral equation
of (8.4). First, we review the following lemma described in Theorem 11.6 of
[18].

Lemma 8.1. The nonlinear operator Fy is Fréche differentiable, and its
deriwative Fylq] at q is given by

Folalm = v, (8.9)
where v™° is the far field pattern of the radiating solution
Av + k(14 q)v = —k*muy(-, ) in R% (8.10)

We observe the integral form of the linear operator Fy[g]. The far field
pattern v>° = v°°(+, ) is of the form

k2

Uoo(jf, 9) = E

/Qe_iki‘y [m(y)uq(y, 0) + a(y)v(y, 0)] dy. (8.11)
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Here, we denote the fundamental solution for —A — k%(1 + q) by ®4(z,y),
which is of the form

(I)Q(xay) = (I)(xay) + U}(l‘,y), x 75 Y, (812)

where w = w(+,y) is the unique solution of the following integral equation
w(z,y) = k:2/ ®(z,2)q(2) (w(z,y) + ®(2,y))dz, = € R (8.13)
Q

By using the fundamental solution ®,, the radiating solution v = v(+, ) can
be of the form

v(z,0) = k? /Q O, (z, y)m(y)uq(y, 0)dy, x € R2. (8.14)

By combining (8.11) and (8.14), and using the Fubini’s theorem, we conclude
that

. k2 . .
Folglm(z) = 47T/QKq(q:,y)u(y,6’)m(y)dy, & e St (8.15)
where the function K, is defined by
K, (&,y) == e ¥ 4 k2/ e k82 g (2 uy(y, 0)®y(2, y)dz. (8.16)
Q

Finally in this section, we also review the following properites of the deriva-
tive F'[q] of the mapping F : L?(Q) — L*(S? x S?) described in Theorem
11.7 of [18].

Lemma 8.2. For piecewise continuous q, the operator F'[q] : L*(Q) —
L?(S? x S?) is injective.

8.3 Linearized problems

In this section, we consider the linearization of the nonlinear inverse prob-
lem in the general functional analytic situation, and study the error of the
linearized solution. Let X and Y be Hilbert spaces over complex variables
C which correspond to the state space L?(Q) of the inhomogeneous medium
function ¢, and the observation space L2(S!) of the far field pattern u>,
respectively. Let A : X — Y be a nonlinear observation operator which
corresponds to the far field mapping F.
For give f € Y, we seek the solution ¢ € X such that

Alg) = f. (8.17)



We assume that we have an initial guess ¢g € X, which is a starting point
of the algorithm, and is usually determined by a priori information of the
true solution !¢ of (8.17). We also assume that the nonlinear mapping A
is Fréchet differentiable at ¢, which implies that

A(p) = A(po) + A'lol (v — po) + (v — @), (8.18)

where the linear bounded operator A’[pg] : X — Y is the Fréchet deriva-
tive of the nonlinear mapping A at g, and r : X — Y is some mapping
corresponding to the remainder term such that r(h) = o(h) as ||h| — 0. In
the case to seek the solution ¢ close to the initial guess g, we can omit the
remainder term r because its influence is small. Then, we have the following
linearized problem of (8.17).

Allpo] (¢ — o) = f — Algo). (8.19)

Although the problem became linear, the equation (8.19) is ill-posed because
the Fréchet derivative A’[¢g] of A is not generally invertible. Then, the reg-
ularization method must be applied. Here, we briefly recall the Tikhonov
regularization method in the following (see e.g., Chapter 4 of [18] and Chap-
ter 3 of [78]).

Lemma 8.3. Let X andY be Hilbert space and let H : X —'Y be a compact
linear operator from X toY. Then, followings holds.

(i) For a >0, the operator (ol + H*H ) is bounded invertible, and
To = (al + H*H) ' H*y, (8.20)

is a unique reqularized solution of the problem Hx =y giveny € Y,
that is, xo € X is the unique solution of the problem

ax + H*"Hx = H"y. (8.21)

(ii) The solution xo defined by (8.20) is the unique solution of the mini-
mization problem

allzalll +lly = Heally = mingex {allolf + Iy — Hol} } . (5:22)

(iii) Ify € R(H), then there exists C' = C,, such that
lzall < C, a >0, (8.23)

and if y ¢ R(H), then ||zo| x — 00 as a — 0.
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By applying the above Lemma as H = A'[¢g] and y = f — A(pp), we
have the regularized solution ¢, of (8.19)

Yo = Qo + (Oz[ -+ A/[(po]*A/[(P()Dil A/[QDO]* (f - A(@O)) ) (824)

where a > 0 is a regularization parameter, which is appropriately chosen.
Furthermore, we have iterative algorithm for n € Ny

Pnt1 = o+ (and + Alon] Alpa]) " Alpn]” (f = Algn)) . (8:25)

This is known as the regularized Newton method (see e.g., [18, 78]). So far,
many type of the Newton method have been studied, for example, the reg-
ularized Gauss—Newton method (see e.g.,[4]) and the Quasi—-Newton method
(see e.g., [79]), and for any other, we refer to [42, 51, 84, 96]. We remark
that the regularization parameter oy, > 0 in (8.25) is chosen dependently on
each iteration step n € N. For example in [4], the regularization parameter
ay, is chosen by

i1 < ap <Napt1, and  limg, ooy, = 0, (8.26)

for some constant n > 1.

Next, we observe the error of the solution ¢, defined by (8.24). Let
f €Y be of the form f = H("“¢). By substituting ©"“¢ for ¢ in (8.18),
we have

f = Alpo) = Al ("™ = o) + ("™ — 0), (8.27)

which implies that the error is estimated by

lleo — "+ Ra (f — A(po))||
(1 = RaA'lpo]) (w0 — ) || + | Rall ("™ = w0)||,
(8.28)

true H

[0 — ¢

IN

where the operator Ry is denoted by R := (o + A'[po]*A'[po]) " A'[po]*.
Here, we assume that A’[po] is injective, then R, describes the regularization
scheme, which satisfies

Ro Aol = ¢, a =0, (8.29)

for all ¢ € X. The first term in (8.28) is the regularization error, which
arises from the approximation of the inverse operator of A’[pg] by the regu-
larization scheme R,. Since R, is the regularization scheme, the first term
converges to zero as @ — (0. The second term is the nonlinearity error,
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which arises from the approximation by the linearization. Since we have
|Ra|l < 1/24/c, the second term diverges as aw — 0. Therefore, the regular-
ization error and the nonlinearity error are in the trade-off relationship, and
the regularization parameter o has to be chosen such that the total error,
which is sum of two errors, is small.

8.4 Full data Newton iteration

The natural approach for solving the equation (8.7) is to put all available
measurements {u®}  and all far field mappings {F;}, where the index
[ is associated with the incident direction §; € S' into one long vector @™
and F , respectively, and to employ the regularized Newton method (8.25)
discussed in the Section 8.3. In order to study the above general situation,
let fi,..., fv € Y be measurements, let A1, ..., Ay be nonlinear observation
operators, and let us consider the problem to determine ¢ € X such that

Alp)=F. (8.30)
fi Ai(p)

where [ := : , and ff((p) = : . By applying the regular-
fn An(p)

ized Newton method (8.25) to the above system (8.30), we have iterative
solution

P = T (ol + AT RN AT (7 - Ae™)).
(8.31)
Ally)
where pf TN := g, and A'[y] is denoted by A’[¢] = : , and the
Ayl
regularization parameters «;, > 0 is chosen dependently on each iteration
step n, like (8.26). We call this the Full data Tikhonov Newton. Here, A'[¢]*
is a adjoint operator of A [po] with respect to the usual scalar product
(-,)x and the weighted scalar product (-,-)y~ g1 := (-, R™*:)y~ where
R :Y — Y is the positive definite symmetric invertible operator, which is
interpreted as the error covariance matrices of the observation distribution
from a statistical viewpoint in the case when Y is the Euclidean space (see
e.g., Chapter 5 of [21]). By the same calculation in (3.6) of [27], we have

Al = (Al "R, . ANl RTY) (8.32)
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where A/ [o]? is a adjoint operator of A’ [p] with respect to usual scalar

products (-,-)x and (-, -)y. Then, (8.31) can be of the form

N -1
A = o7 (ot 3 AT 1o )
=1

N
x (Z Allen ™R (i - AZ(SDO))) : (8.33)
=1

However, the algorithm (8.31) of the Full data Tikhonov Newton is com-
putationally expensive since the more available measurement there are, the
bigger system we have to construct. So, let us consider the alternative ap-
proach based on the Kalman filter. The Kalman filter is the linear estimation
for the unknown state by the update of the state and its norm using the
sequential measurements observed over time. For details of the following
derivation, we refer to the first part of our works [27].

We consider the following problem for [ =1,..., N

Ajlpole = fi — Ai(po) + Ajlpo)po, (8.34)

which arises from the linearization of the problem A;(¢) = f; at the initial
guess ¢g. The above problem (8.34) can be applied to the Kalman filter
algorithm (see (4.21)—(4.23) in [27]), then we obtain the following algorithm
forl=1,...,N.

@0, = poi-1+ Koy (fi — Ai(o) + Ajlpoleo — Ajleo)poi—1) .  (8.35)

—1
Ko == Boy—14[o)™ (R + Aj[o)Boy—1Ajleol™) ", (8.36)

By, = (I — Ko 4][po]™) Bo-1, (8.37)

where g0 := o, and By := C%OI, and some oy > 0. We denote the final
state in the algorithm (8.35) by ¢1,0 := o n, which is the initial guess of
the next iteration step. Next, we consider the following problem

Allprole = fi — Ai(p10) + Ajler0]ero, (8.38)

which arises from the linearization of the problem A;(¢) = f; at ¢10. The
above problem (8.38) can be applied to the Kalman filter algorithm as well,
and we obtain the similar algorithm to (8.35)-(8.37). We can repeat these
procedure, then we obtain the following algorithm for [ =1, ..., N.

KFN KFN KFN KFNy, KFN KFNy,_ KFN
Pl T Pni-1 +Kn, (fl - Al(sﬁn,o )+ AE [Sﬂn,o ]Sﬁn,o - AE [Sﬁn,o ]‘Pn,l—l) )
(8.39)
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-1
K= B Ailons "1 (R + Allen V1Bai1Allong M), (8.40)
By = (I — Ko Ak TN Boyoa. (8.41)
When the iteration time n is raised by one, the final state is renamed as

Pno = Pnl i (8.42)

and the weight is initialized as

Br o = Lr (8.43)
Qo
We call this the Kalman Filter Newton. We remark that it has two indexes
n and [, where n is associated with the iteration step, and ! the Kalman
filter step, respectively.
Finally in this section, we show the following equivalent theorem, which
is the nonlinear iteration version of Theorem 4.3 in [27].

Theorem 8.4. For measurements f1, ..., fn, nonlinear mappings A1, ..., An,
and the initial guess g € X, the final state of the Kalman filter Newton
given by (8.89)—(8.43) is equivalent to the Full data Tikhonov Newton given
by (8.33), that is, we have

PN = Ph s (8.44)

for all n € Np.

Proof. We will prove (8.44) by the induction. By applying Theorem 4.3 of
[27] to the linearized problem A;j[pole = fi—Ai(po)+A[polpo forl =1,..., N
with the initial guess ¢g and the regularization parameter o > 0, we have

@é(}\:,N = I"TN which is the case of n = 0.

"Let us assume that (8.44) in the case of n — 1 holds, that is, we have
et (= @f,é”v) = oI'TN —=: ,. Again, we apply Theorem 4.3 of [27]
to the linearized problem Allenle = fi — Ailen) + Ajlpnlon for 1 =1,..., N
with the initial guess ¢, = gonKyg N = oF'TN and the regularization parameter
oy > 0, then we have 4,051 N = oF'TN . Theorem 8.4 has been shown. O

8.5 Iterative Extended Kalman filter

The usual Kalman filter is the linear optimal estimation for solving the
linear system. However in realistic applications, most systems are nonlinear,
so many studies of the nonlinear estimation have been done. The Extended
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Kalman filter, which is one of the nonlinear version of the Kalman filter, is to
apply the linear Kalman filter to the linearized equation at the current state
for every time to observe one measurement. In this section, we introduce
the iterative Extended Kalman filter. For further readings of the Extended
Kalman filter, we refer to [31, 32, 48], and there also exists other types of the
nonlinear Kalman filter such as the Unscented Kalman Filter ([49]) which
based on the Monte Carlo sampling without employing the linearization
approximation.
First, let us start with the linearized problem of A;(p) = fi at the initial
guess ©g.
Allpole = f1 — Alpo) + Allpo]po. (8.45)

By the same argument in Section 4 of [27] replacing Ay and f1 by A}[¢o]
and f1 — H(vo) + H{[po]po, respectively, we have the following solution of
(8.45).

¢1 1= o + K1 (fi — A1(»0)) (8.46)
K1 := BoAllpol™ (R + Atlo) BoAl o)), (8.47)
By = (I — K1 A}[po]") By, (8.48)

where By := O%OI and ag > 0 is regularization parameter. Next, we consider
linearized problem of As(y) = fo at ¢ defined by (8.46).

AS[prlp = fo — Aa(1) + As[pr]en, (8.49)

Then, by the same argument in Section 4 of [27], we have the solution of
(8.49). We can repeat them, then we have the following algorithm.

o1 =11 + K (fi = Ai(gi-1)) » (8.50)
K, = B Al )" (R+ Ajlor1]Ba 1 Aflor117) 7 (8.51)
Bl — ([ — KIA;[QDZ_l]H) Bl—l) (8.52)

for I =1,...,N. In order to obtain the iterative algorithm, we discuss (8.45)—
(8.52) again as the initial guess is ¢n, and we repeat them. Finally, we
obtain the following iterative algorithm for [ =1,..., N.

Pt = ot K (fi = Ai(oRE) (8.53)

—1
Ky o= B Aol 5 (R+ Al ) B 1 Alleh B517) . (8.54)
By = (I — K, A [wﬁfiﬁ’]ff ) Bni—1- (8.55)

130



When the iteration time n is raised by one, the final state is renamed as

pE&E = EEE (8.56)

and the weight is initialized as

Buo = —1, (8.57)
Qp,

where the regularization parameters «, > 0 is chosen dependently on each
iteration step n, like (8.26). We call this the iteratively Extended Kalman
Filter. We remark that it has two indexes n and [, where n is associated
with the iteration step, and [ the Kalman filter step, respectively. The figure
14 provide an illustration for the difference of Kalman filter Newton (KFN,
left) and iterative Extended Kalman filter (EKF, right). When the state
moves horizontally, measurements are used, and when it moves vertically,
linearization are done.

Figure 14: difference of KFN (left) and EKF (right)

8.6 Numerical examples

In this section, we consider numerical studies of the algorithm which have
been discussed in above sections. We recall that our inverse scattering prob-
lem is to solve the nonlinear integral equation (8.7) with respect to ¢ when
the measurements u® := u®(-,6;) for [ =1,..., N are given.

Fig =u>(-,00), (8.58)
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where the operator Fj : L2(Q) — L>®(S!) is defined by

. . k? ki
Ful@) = Fala.0) = | i oads, 659)
where u = 4 is the total field given by solving Lippmann—Schwinger integral
equation (8.4). Here, the incident direction is given by ; := (cos(27l/N), sin(27l/N))
for each [ =1, ..., N. The following discretizations are employed.

u™(-,0) ~ (u™(2,0)),_, ;€ R/, (8.60)

where Z; := (cos(27j/J),sin(27j/J)), and J € N, and

2
q~ (Q(Zivm))—Mgi,mgM—l c R(M ) (8.61)

(2i+1)R (2m+1)R
oM 0 2M

[0, R], and [~ R, R]? is a square with some R > 0, in which support @ of the
function ¢ is included. The Fréchet derivative F[q] of F; at ¢ is discretized
by

where z; ,, = ), and M € N is a number of division of

2
Flal ' (Ko s uCim: 00) yrcimen s, jor,..s € BXOW,
(8.62)
where the function K, is defined by (8.16).
In this numerical study, we always fix the discretized parameter as J =
20, M =6, R =3, N = 15, and consider true functions as the characteristic
function

true; ) 1 for x € B;

where the support B; of the true function is considered as the following two
types.

By = {(z1,22) : 2] + 23 < 1.5}, (8.64)
(r1 4+ 1.5)% + (22 + 1.5)% < (1.0)? or
By := < (21, 29) : 1<z <2, —2<z9<2o0r , (8.65)

—2< <2, —20<x9 < —1.0

In Figure 15, the blue closed curve is the boundary 0B; of the support B;

of the true function ¢/"“¢, and the green brightness indicates values of the

J
true function on each cell divided into (2M)? = 144 in the sampling domain

[-3,3]2. Here, we always employ the initial guess g as

90 =0, (8.66)
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and employ the sequence {ay, }nen of regularization parameters as
an =n""ag, (8.67)

which satisfies the condition (8.26). A positive constant ag is the starting
parameter and n > 1 is the decreasing factor. Here, we choose it as n = 2.

Figure 16 shows the graph of the error of the solution (8.18) linearized at
go = 0 when the wavenumber k£ = 3 is fixed, and the regularization paramters
a > 0 are changed, for two different true functions ¢{"™“¢, ¢i"“¢. The blue
curve corresponds to the regularization error, the yellow one corresponds to
the nonlinearity error, and the green one correponds to total error, which
is the sum of two errors. We can observe that it would be good to choose
the regularization parameter o around one hundred seventy such that the
total error decreased significantly in both cases. From this point of view, we
choose the starting parameter ag as ag = 175.

Figures 17, 18 show the reconstruction by the Kalman filter Newton
(KFN), and the iterative Extended Kalman filter (EKF) discussed in (8.39)—
(8.43), and (8.53)—(8.57), respectively. The first and second column corre-
sponds to visualization of the state in 4th and 15th iteration step, respec-
tively, for different two shapes By and Bs, and for different two wavenumbers
k =1 and k = 3. The third column corresponds to the graph of the Mean
Square Error (MSE) defined by

true

en = Hq —an2, (8.68)
where ¢, is associated with the state of nth iteration step by some recon-
struction method. The horizontal axis is with respect to number of iter-
ations, and the vertical axis is the value of MSE. In both cases, the true
functions are successfully reconstructed. The iterative Extended Kalman
filter requires more calculations of the derivative than the Kalman filter
Newton because we have to linearize the nonlinear problem for every time
to observe one measurement, but instead, we can observe that in the third
column of Figures 17 and 18, the convergence of the Extended Kalman filter
to the true function is faster than that of the Kalman filter Newton.
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Figure 15: true functions
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Figure 16: error graphs, k=3, go =0
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B, k=1,n=4

Bl,k‘=3,n:4

Bo,k=1n=4

Bg,k:3,n:4

Bi,k=1,n=15 Bi, k=1, error graph
B, k=3, n=15 By, k = 3, error graph
By, k=1,n=15 By, k =1, error graph
By, k=3, n=15 By, k = 3, error graph

Figure 17: KFN
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B, k=1,n=4

Bl,k‘=3,n:4

Bo,k=1n=4

Bg,k:3,n:4

Bi,k=1,n=15 Bi, k=1, error graph
B, k=3, n=15 By, k = 3, error graph
By, k=1,n=15 By, k =1, error graph
By, k=3, n=15 By, k = 3, error graph

Figure 18: EKF
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