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1 Preface

Cluster algebra is a commutative algebra generated by variables called cluster variables,
discovered by Fomin and Zelevinsky in the early 2000s. The original motivation for the
consideration of cluster algebra seems to be an understanding of total positivity and the
standard basis of quantum groups. Now, it is known that the structure of cluster vari-
ables and the transformations between them, the mutations, appear in various fields of
mathematics. Furthermore, the development of cluster algebra theory and its applications
is rapid and constant. For example, it is known to have applications in representation
theory of algebras [4,5], higher Teichmüller theory [13–15], and number theory (Markov’s
Diophantine equation) [7, 39].
Here, we introduce the special version of cluster algebras. Let Q be a quiver with no

loops and no 2-cycles, and n the number of vertices of Q. We take a set of n algebraically
independent elements x = (x1, . . . , xn) in the rational function field F of Q in n variables.
We call the pair (Q,x) a seed, and x a cluster, and each xi a cluster variable. For k ∈
{1, . . . , n}, we define the mutation (Q′,x′) = µk(Q,x) of a seed (Q,x) in direction k as
follows:

• Q′ is obtained from Q in the following three steps:

(1) for each subquiver i→ k → j in Q, we add a new arrow i→ j to Q,

(2) we reverse all arrows connected to k in the quiver obtained by (1),

(3) we remove all 2-cycles in the quiver obtained by (2).

• x′ = (x′1, . . . , x
′
n) is obtained from (Q,x) in the following way:

x′j =


n∏

i=1
x
max(0,qik)
i +

n∏
i=1

x
max(0,qki)
i

xk
if j = k,

xj otherwise.

where qik is the number of arrows from i to k in Q.

For example, let Q = 1 2 3oo oo and x = (x1, x2, x3). Then

(Q′,x′) := µ2(Q,x) =

(
1 2 3//yy // ,

(
x1,

x1 + x3
x2

, x3

))
.

Let X (Q,x) be the set of all cluster variables obtained by mutating (Q,x) in all directions
repeatedly. A cluster algebra A(Q,x) associated with a seed (Q,x) is the Z-subalgebra
of F generated by X (Q,x). In Chapter 2, we define them more generally by using a
skew-symmetrizable matrix B instead of Q.
A turning point in the study of cluster algebras was the advent in 2006 of the c-vectors

(C-matrices), the g-vectors (G-matrices), and the F -polynomials. The g-vectors contain
part of the information of the cluster variables, the c-vectors contain part of the information
of its coefficients, and the F -polynomials contain part of the information of both the
variables and coefficients, respectively. Fomin and Zelevinsky defined them in [20] from
a cluster variable and its coefficients, and showed that the original cluster variables and
coefficients can be reconstructed from these vectors (matrices) and polynomials. This led
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1 Preface

to the recognition of the importance of c-, g-vectors, C-, G-matrices, and F -polynomials,
and the study of these vectors, matrices and polynomials became very active. In particular,
there are many applications of g-vectors in the representation theory of algebras because
of the discovery of a correspondence between g-vectors with certain vectors determined by
the minimal projective presentations of modules over algebras. For example, Schroll and
Trefinger solved the first τ -Brauer-Thrall conjecture by using g-vectors and c-vectors in
[41]. The F -polynomials have also shown some development in recent years, for example,
methods for constructing the Alexander and Jones polynomials, which are polynomial
invariants of the knot, have been devised (see [32], for example).

In 2007, Fu and Keller defined the f -vectors1 in [22] as the maximal exponent of each
indeterminate in F -polynomials. More precisely, these vectors were given by [20, Con-
jecture 7.17] implicitly, and they were given the name “f -vectors” in [22] to solve this
conjecture negatively. The study of f -vectors began to develop in 2018 when Fujiwara
and the author defined the F -matrix with the f -vectors aligned horizontally in [23].

This thesis summarizes the author’s contributions to these studies of f -vectors and F -
matrices, and it is based on the two published papers [23, 27] and the three preprints
[21,25,26]. In this chapter, we describe the content and the organization of it.

In Chapter 2, we describe the basic properties of cluster algebras. It is based on [15,18,
20] mainly. In Section 2.1, we define the cluster algebra. We also introduce very important
elements and their transformations, the seeds and the mutations. In Sections 2.2 and 2.3,
we introduce important families of vectors and polynomials associated with cluster algebras
– d-vectors, c-vectors, g-vectors, and F -polynomials. Furthermore, we define D-matrices,
C-matrices, and G-matrices by using d-vectors, c-vectors and g-vectors, respectively. In
Section 2.4, we introduce the cluster complexes for preparation of Chapter 5. They are
simplicial complexes which represents the structure formed by seeds and their mutations.
In section 2.5, we define cluster algebras from marked surfaces. This is a class of cluster
algebras which have geometrical realizations.

In Chapter 3, we define another family of vectors, f -vectors. By using them, we also
define F -matrices. Furthermore, we introduce their important property, the self-duality.
This chapter is based on [23]. Originally, f -vectors and F -matrices were defined to rep-
resent F -polynomials, which tended to explode in number of terms due to mutations, in
the form of vectors and matrices. Furthermore, by providing F -polynomial alternatives
in the form of matrices and vectors, we can investigate F -polynomial’s properties using
transposition operations or matrix products. The self-duality is a property obtained by
this approach. This property is described by the following form:

Theorem 1.0.1 (Theorem 3.2.10). For any exchange matrix B and t0, t ∈ Tn, we have

(FB;t0
t )> = F

B⊤
t ;t

t0
.

This equation means the transposition of an F -matrix is another F -matrix in another
cluster algebra. This is an analogue of duality between C-matrices and G-matrices found
by Nakanishi and Zelevinsky [36]:

(GB;t0
t )> = C

B⊤
t ;t

t0
.

The relation between the C, G and F matrices is shown in the figure below:

1They are different from the face vectors of simplicial complexes.
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where A→ B implies that B is defined by using A, or B is restored from A.

In Chapter 4, we deal with the conjecture about the uniqueness of F -polynomials as-
sociated to f -vectors or F -matrices. It is based on [25, 27]. We consider the following
question;

Question 1.0.2. Do the f -vectors or the F -matrices restore the F -polynomials? If it is
yes, then how to do it?

Since we define f -vectors or F -matrices with the intention of “vectorizing” or “matrix-
sizing” of F -polynomials, this question is natural. In particular, the following Question is
considered:

Question 1.0.3.

(1) Does a non-zero f -vector determine cluster variables?

(2) Does an F -matrices determine a cluster?

There is a counterexample to Question 1.0.3 (1), however, we have not found a coun-
terexample to Question 1.0.3 (2) yet. We call this conjecture the uniqueness conjecture for
F -matrices. In Chapter 4, we give some answers to Question 1.0.3 in the case of certain
classes of cluster algebras:

Theorem 1.0.4 (Corollary 4.1.6, Theorem 4.4.1).

(1) For a cluster algebra of finite type or rank 2, the answer to Question 1.0.3 (1) is
yes.

(2) For a cluster algebra from a marked surface, of finite type, or of rank 2, the answer
to Question 1.0.3 (2) is yes.

Furthermore, for Question 1.0.2, we obtain the restoration formula of cluster algebras
of rank 2. This is a formula giving an F -polynomial from an f -vector. It is introduced in
Section 4.8.

In Chapter 4, we give proofs of these theorems. In particular, in the case of cluster
algebras arising from marked surfaces, we solve the problem by using coincidence of f -
vectors with intersection vectors, whose entries are the intersection numbers of two arcs.
For cluster algebras of finite type or rank 2, we solve the problem by using coincidence of
f -vectors with d-vectors of cluster variables.

In Chapters 5 and 6, we focus on applications of f -vectors or F -matrices.

In Chapter 5, we generalize the compatibility degree of cluster complexes by using f -
vectors. It is based on [21]. The classical type of compatibility degree is introduced by
Fomin and Zelevinsky in [19]. Originally, this is a function (· ‖ ·)cl on pairs in the set
Φ≥−1 of positive roots and negative simple roots in a finite root system Φ:

(· ‖ ·)cl : Φ≥−1 × Φ≥−1 → Z≥0.
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1 Preface

The generalized associahedron ∆(Φ) of Φ is given by using the compatibility degree in the
following way: the vertex set is Φ≥−1, and the simplex set is

{C ⊂ Φ≥−1 | (α ‖ β) = 0 for all α, β ∈ C}

In [18], Fomin and Zelevinsky proved this simplicial complex corresponds to a cluster
complex. In particular, they give a bijection between Φ≥−1 and the set of cluster variables.
By this identification, we regard the compatibility degree as a function on pairs of cluster
variables in a cluster algebra of finite type. Attempts to extend it to the general cluster
algebra have been made in the past, and it have been known a generalization by using
d-vectors [9, 10]. In this paper, it is denoted by (· ‖ ·)d.

As mentioned above, in the case of finite type or rank 2, f -vectors coincide with d-
vectors. These two vectors are different in general cases, but the coincidence in rank
2 or finite type implies that f -vectors are similar to d-vectors. Due to this similarity,
we consider constructing the compatibility degree (· ‖ ·) by using f -vectors instead of
d-vectors. In Chapter 5, the first main result is the following:

Theorem 1.0.5 (Theorem 5.3.10). We fix any finite root system Φ and its induced cluster
algebra A. For any cluster variable x, x′, we have

(x ‖ x′)cl = (x ‖ x′).

Moreover, we also consider the following question:

Question 1.0.6. Is (· ‖ ·) a “good” generalization of (· ‖ ·)cl?

For example, the classical one has the following properties:

(0) for any x, x′, there exists a cluster x containing x and x′ if and only if (x ‖ x′)cl =
(x′ ‖ x)cl = 0,

(1) for any x, x′, there exists a set X of cluster variables such that X ∪x and X ∪x′ are
both clusters, if and only if (x ‖ x′)cl = (x′ ‖ x)cl = 1,

(2) we have (x[α] ‖ x[β])cl = (x[β∨] ‖ x[α∨])cl for every α, β ∈ Φ≥−1.
In particular, if Φ is simply-laced, then (x[α] ‖ x[β])cl = (x[β] ‖ x[α])cl,

(3) if (x[α] ‖ x[β])cl = 0, then (x[β] ‖ x[α])cl = 0,

(4) if α and β belong to Φ(J)≥−1 for some proper subset J ⊂ I, then their compatibility
degree with respect to the root subsystem Φ(J) is equal to (x[α] ‖ x[β])cl,

where α∨ is the coroot of α, and x[α] is a cluster variable corresponding to the root α
by the canonical bijection between Φ≥−1 and cluster variables. It is desirable that these
properties be inherited to the generalized version. We have the following theorem:

Theorem 1.0.7 (Proposition 5.3.14, Theorems 5.3.17, 5.3.21). The compatibility degree
(x ‖ x′) satisfies analogies of (0), (2)–(4), and “only if” part of (1).

Theorem 1.0.8 (Theorems 5.3.23, 5.3.24, 5.3.25). The compatibility degree (x ‖ x′) sat-
isfies analogy of “if” part of (1) when the cluster algebra is one of the following:

• finite type,

• rank 2,

• acyclic type,
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• from a marked surface,

• from a weighted projective line.

In Chapter 5, we also prove Theorem 1.0.7 and the case of finite type or rank 2 in
Theorem 1.0.8.
In Chapter 6, we introduce a new application of F -matrices to number theory. We

consider two well-known trees, the Calkin-Wilf tree and the Stern-Brocot tree. It is based
on [26]. These trees are both full binary trees, and both trees have a set consisting of all
positive irreducible fractions as the vertex set. The Calkin-Wilf tree is the following tree:

1/1

1/2

2/1

1/3

3/2

2/3

1/4 · · ·

4/3 · · ·

3/5 · · ·

5/2 · · ·

2/5 · · ·

5/3 · · ·

3/4 · · ·

4/1 · · ·
3/1

.

On the other hand, the Stern-Brocot tree is the following tree:

1/1

1/2

2/1

1/3

2/3

3/2

1/4 · · ·

2/5 · · ·

3/5 · · ·

3/4 · · ·

4/3 · · ·

5/3 · · ·

5/2 · · ·

4/1 · · ·
3/1

.

For the definition of these trees, see Chapter 6. These trees are very similar, and there
are some studies about relation of them. In this paper, we find a new relation of them
in context of cluster algebra theory. As for these two trees, there has been known the
relation between the Stern-Brocot tree and a certain cluster algebra. For example, [33]
gives an explicit description of c-vectors and g-vectors of a cluster algebra arising from an
one-punctured torus. On the other hand, it has not been pointed out that relation between
the Calkin-Wilf tree and cluster algebras. In Chapter 6, we give the Calkin-Wilf tree the
structure of initial seed mutation introduced in Chapter 3, and we reveal that relation
between the Calkin-Wilf tree and the Stern-Brocot tree is a specialization of F -matrices
duality in Chapter 3.
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2 Preliminaries

In this chapter, we will discuss the basics of cluster algebra for use in the following chapters.
In Section 2.1, we define cluster patterns and cluster algebras. We define the d-vectors
in Section 2.2 and the c-, g-vectors and the F -polynomials in Section 2.3. We define in
Section 2.4 the cluster complexes needed for the discussion in Chapter 5, and we define in
Section 2.5 the cluster structure arising from marked surfaces discussed in the first half of
Chapter 4 and in Chapter 6.

2.1 Cluster algebras

We start by recalling definitions of seed mutations and cluster patterns according to [20].
A semifield P is an abelian multiplicative group equipped with an addition ⊕ which is
distributive over the multiplication. We particularly make use of the following two semi-
fields.

Let Qsf(u1, . . . , uℓ) be the set of rational functions in u1, . . . , uℓ which have subtraction-
free expressions. Then, Qsf(u1, . . . , uℓ) is a semifield by the usual multiplication and
addition. We call it the universal semifield of u1, . . . , uℓ ([20, Definition 2.1]).

Let Trop(u1, . . . , uℓ) be the abelian multiplicative group freely generated by the elements
u1, . . . , uℓ. Then, Trop(u1, . . . , uℓ) is a semifield by the following addition:

ℓ∏
j=1

u
aj
j ⊕

ℓ∏
j=1

u
bj
j =

ℓ∏
j=1

u
min(aj ,bj)
j . (2.1.1)

We call it the tropical semifield of u1, . . . , uℓ ([20, Definition 2.2]). For any semifield P and
p1, . . . , pℓ ∈ P, there exists a unique semifield homomorphism π such that

π : Qsf(y1, . . . , yℓ) −→ P (2.1.2)

yi 7−→ pi.

For F (y1, . . . , yℓ) ∈ Qsf(y1, . . . , yℓ), we denote

F |P(p1, . . . , pℓ) := π(F (y1, . . . , yℓ)). (2.1.3)

and we call it the evaluation of F at p1, . . . , pℓ. We fix a positive integer n and a semifield P.
Let ZP be the group ring of P as a multiplicative group. Since ZP is a domain ([17, Section
5]), its total quotient ring is a field Q(P). Let F be the field of the rational functions in n
indeterminates with coefficients in Q(P).

A labeled seed with coefficients in P is a triplet (x,y, B), where

• x = (x1, . . . , xn) is an n-tuple of elements of F forming a free generating set of F .

• y = (y1, . . . , yn) is an n-tuple of elements of P.

• B = (bij) is an n×n integer matrix which is skew-symmetrizable, that is, there exists
a positive integer diagonal matrix S such that SB is skew-symmetric. Also, we call
S a skew-symmetrizer of B.
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2 Preliminaries

We say that x is a cluster and refer to xi, yi and B as the cluster variables (or x-
variables), the coefficients (or y-variables) and the exchange matrix, respectively.

Throughout the paper, for an integer b, we use the notation [b]+ = max(b, 0). We note
that

b = [b]+ − [−b]+. (2.1.4)

Let (x,y, B) be a labeled seed with coefficients in P, and let k ∈ {1, . . . , n}. The seed
mutation µk in direction k transforms (x,y, B) into another labeled seed µk(x,y, B) =
(x′,y′, B′) defined as follows:

• The entries of B′ = (b′ij) are given by

b′ij =

{
−bij if i = k or j = k,

bij + [bik]+ bkj + bik [−bkj ]+ otherwise.
(2.1.5)

• The coefficients y′ = (y′1, . . . , y
′
n) are given by

y′j =

{
y−1
k if j = k,

yjy
[bkj ]+
k (yk ⊕ 1)−bkj otherwise.

(2.1.6)

• The cluster variables x′ = (x′1, . . . , x
′
n) are given by

x′j =


yk

n∏
i=1

x
[bik]+
i +

n∏
i=1

x
[−bik]+
i

(yk ⊕ 1)xk
if j = k,

xj otherwise.

(2.1.7)

We note that (2.1.6) can be also expressed as follows:

y′j =

{
y−1
k if j = k,

yjy
[−bkj ]+
k (yk

−1 ⊕ 1)−bkj otherwise.
(2.1.8)

Let Tn be the n-regular tree whose edges are labeled by the numbers 1, . . . , n such

that the n edges emanating from each vertex have different labels. We write t t′
k

to
indicate that vertices t, t′ ∈ Tn are joined by an edge labeled by k. We fix an arbitrary
vertex t0 ∈ Tn, which is called the rooted vertex.

A cluster pattern with coefficients in P is an assignment of a labeled seed Σt = (xt,yt, Bt)
with coefficients in P to every vertex t ∈ Tn such that the labeled seeds Σt and Σt′ assigned

to the endpoints of any edge t t′
k

are obtained from each other by the seed mutation
in direction k. The elements of Σt are denoted as follows:

xt = (x1;t, . . . , xn;t), yt = (y1;t, . . . , yn;t), Bt = (bij;t). (2.1.9)

In particular, at t0, we denote

x = xt0 = (x1, . . . , xn), y = yt0 = (y1, . . . , yn), B = Bt0 = (bij). (2.1.10)

Definition 2.1.1. A cluster algebra A associated with a cluster pattern v 7→ Σv is the
ZP-subalgebra of F generated by X = {xi;t}1≤i≤n,t∈Tn .

The degree n of the regular tree Tn is called the rank of A, and F is the ambient field
of A. We also denote by A(B) a cluster algebra with the initial matrix B.

14



2.1 Cluster algebras

Example 2.1.2. We give an example for mutations in the case of A2. Let n = 2, and we
consider a tree T2 whose edges are labeled as follows:

. . . t0 t1 t2 t3 t4 t5 . . .1 2 1 2 1 2 1
. (2.1.11)

We set B =

[
0 1
−1 0

]
as the initial exchange matrix at t0. Then, coefficients and cluster

variables are given by Table 2.1 [20, Example 2.10].

t yt xt

0 y1 y2 x1 x2

1 y1(y2 ⊕ 1)
1

y2
x1

x1y2 + 1

(y2 ⊕ 1)x2

2
1

y1(y2 ⊕ 1)

y1y2 ⊕ y1 ⊕ 1

y2

x1y1y2 + y1 + x2
(y1y2 ⊕ y1 ⊕ 1)x1x2

x1y2 + 1

(y2 ⊕ 1)x2

3
y1 ⊕ 1

y1y2

y2
y1y2 ⊕ y1 ⊕ 1

x1y1y2 + y1 + x2
(y1y2 ⊕ y1 ⊕ 1)x1x2

y1 + x2
x1(y1 ⊕ 1)

4
y1y2
y1 ⊕ 1

1

y1
x2

y1 + x2
x1(y1 ⊕ 1)

5 y2 y1 x2 x1

Table 2.1: Coefficients and cluster variables in type A2

Therefore, we have

A(B) = ZP
[
x1, x2,

x1y2 + 1

(y2 ⊕ 1)x2
,

x1y1y2 + y1 + x2
(y1y2 ⊕ y1 ⊕ 1)x1x2

,
y1 + x2

x1(y1 ⊕ 1)

]
.

Next, to define the class of cluster algebras of finite type, we define the non-labeled seeds
according to [20]. For a cluster pattern v 7→ Σv, we introduce the following equivalence
relations of labeled seeds: We say that

Σt = (xt,yt, Bt), xt = (x1;t, . . . , xn;t), yt = (y1;t, . . . , yn;t), Bt = (bij;t)

and

Σs = (xs,ys, Bs), xs = (x1;s, . . . , xn;s), ys = (y1;s, . . . , yn;s), Bs = (bij;s)

are equivalent if there exists a permutation σ of indices 1, . . . , n such that

xi;s = xσ(i);t, yj;s = yσ(j);t, bij;s = bσ(i),σ(j);t

for all i and j. We denote by [Σ] the equivalent classes represented by a labeled seed
Σ and call it the non-labeled seed. We define the non-labeled clusters (resp., non-labeled
coefficients) as clusters (resp., coefficients) of non-labeled seeds.

Definition 2.1.3. The exchange graph of a cluster algebra is the regular connected graph
whose vertices are the non-labeled seeds of the cluster pattern and whose edges connect
the non-labeled seeds related by a single mutation.

Using the exchange graph, we define cluster algebras of finite type.

Definition 2.1.4. A cluster algebra A is of finite type if the exchange graph of A is a
finite graph.
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2 Preliminaries

2.2 Laurent phenomenon and d-vectors

Let A be a cluster algebra. By the Laurent phenomenon [20, Theorem 3.5], every cluster
variable xj;t ∈ A can be uniquely written as

xj;t =
Nj;t(x1, . . . , xn)

x
d1j;t
1 · · ·xdnj;t

n

, dkj;t ∈ Z, (2.2.1)

where Nj;t(x1, . . . , xn) is a polynomial with coefficients in ZP which is not divisible by any
initial cluster variable xj ∈ x.

Definition 2.2.1. We define the d-vector dj;t as the degree vector of xj;t, that is,

dB;t0
j;t = dj;t =

d1j;t...
dnj;t

 , (2.2.2)

in (2.2.1). We define the D-matrix DB;t0
t as

DB;t0
t := (d1;t, . . . ,dn;t). (2.2.3)

Remark 2.2.2. We remark that dj;t is independent of the choice of the coefficient system
(see [20, Section 7]). Thus, we can also regard d-vectors as vectors associated with vertices
of Tn. They are also given by the following recursion: For any j ∈ {1, . . . , n},

dj;t0 = −ej ,

and for any t t′
k

,

dj;t′ =

dj;t if j 6= k;

−dk;t +max

(
n∑

i=1
[bik;t]+di;t, +

n∑
i=1

[−bik;t]+di;t

)
if j = k,

(2.2.4)

where ej is the jth canonical basis.

2.3 c, g-vectors, F -polynomials and Separation formulas

First, we define the c-vectors, the g-vectors and the F -polynomials according to [20]. We
introduce the principal coefficients to define them.

Definition 2.3.1. We say that a cluster pattern v 7→ Σv or a cluster algebra A of rank
n has the principal coefficients at the rooted vertex t0 if P = Trop(y1, . . . , yn) and yt0 =
(y1, . . . , yn). In this case, we denote A = A•(B).

First, we define the c-vectors. For b = (b1, . . . , bn)
>, we use the notation [b]+ =

([b1]+, . . . , [bn]+)
>, where > means transposition.

Definition 2.3.2. Let A•(B) be a cluster algebra with principal coefficients at t0. We
define the c-vector cj;t as the vector consisting of degree of yi in yj;t, that is, if yj;t =
y
c1j;t
1 · · · ycnj;t

n , then

cB;t0
j;t = cj;t =

c1j;t...
cnj;t

 . (2.3.1)

We define the C-matrix CB;t0
t as

CB;t0
t := (c1;t, . . . , cn;t). (2.3.2)
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2.3 c, g-vectors, F -polynomials and Separation formulas

Furthermore, c-vectors are the same as those defined by the following recursion: For
any j ∈ {1, . . . , n},

cj;t0 = ej (canonical basis),

and for any t t′
k

,

cj;t′ =

{
−cj;t if j = k;

cj;t + [bkj;t]+ ck;t + bkj;t[−ck;t]+ if j 6= k
(2.3.3)

(see [20]). Since the recursion formula only depends on exchange matrices, we can regard
c-vectors as vectors associated with vertices of Tn. In this way, we remark that c-vectors
are independent of the choice of the coefficient system.
Next, we define the g-vectors. We can regard cluster variables in cluster algebras with

principal coefficients as homogeneous Laurent polynomials:

Theorem 2.3.3 ([20, Proposition 6.1]). Let A•(B) be a cluster algebra with principal
coefficients at t0. Each cluster variables xi;t is a homogeneous Laurent polynomial in
x1, . . . , xn, y1, . . . , yn by the following Zn-grading:

deg xi = ei, deg yi = −bi, (2.3.4)

where ei is the ith canonical basis of Zn and bi is the ith column vector of B.

We denote by

g1j;t...
gnj;t

 the Zn-grading of xj;t.

Definition 2.3.4. Let A•(B) be a cluster algebra with principal coefficients at t0. We
define the g-vector gj;t as the degree of the homogeneous Laurent polynomial xj;t by
Zn-grading (2.3.4), that is,

gB;t0
j;t = gj;t =

g1j;t...
gnj;t

 . (2.3.5)

We define the G-matrix GB;t0
t as

GB;t0
t := (g1;t, . . . ,gn;t). (2.3.6)

Furthermore, g-vectors are the same as those defined by the following recursion: For
any j ∈ {1, . . . , n},

gj;t0 = ej (canonical basis),

and for any t t′
k

,

gj;t′ =

gj;t if j 6= k;

−gk;t +
n∑

i=1
[bik;t]+gi;t −

n∑
i=1

[cik;t]+bj if j = k
(2.3.7)

(see [20]). Since the recursion formula only depends on exchange matrices, we can regard
g-vectors as vectors associated with vertices of Tn. In this way, g-vectors are independent
of the choice of the coefficient system.
We extend the g-vectors from cluster variables to cluster monomials. Let xt be a cluster.

We consider xv
t = xv11;tx

v2
2;t · · ·x

vn
n;t, where vi ∈ Z≥0. We call it a cluster monomial. Then,

we define the g-vector g(xv
t ) of a cluster monomial xv

t as v1g1;t + · · ·+ vngn;t.
Next, we define the F -polynomials and the f -vectors.
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2 Preliminaries

Definition 2.3.5. Let A•(B) be a cluster algebra with principal coefficients at t0. We
define the F -polynomial FB;t0

i;t (y) as

FB;t0
i;t (y) = xi;t(x1, . . . , xn; y1, . . . , yn)|x1=···=xn=1, (2.3.8)

where xi;t(x1, . . . , xn; y1, . . . , yn) means the expression of xi;t by x1, . . . , xn, y1, . . . , yn. The

fact that seemingly rational functions FB;t0
j;t (y) are polynomials follows from the strongly

Laurent phenomenon of cluster variables ([20, Proposition 3.6]).

Furthermore, F -polynomials are the same as those defined by the following recursion:
For any j ∈ {1, . . . , n},

FB;t0
j;t0

= 1

and for any t t′
k

,

FB;t0
j;t′ (y) =


FB;t0
j;t (y) if j 6= k;

n∏
i=1

y
[cik]+
i

n∏
i=1

(
FB;t0
i;t (y)

)[bik]+
+

n∏
i=1

y
[−cik]+
i

n∏
i=1

(
FB;t0
i;t (y)

)[−bik]+

FB;t0
k;t (y)

if j = k.

(2.3.9)

Exchange matrices, c-vectors, g-vectors and F -polynomials can restore the cluster vari-
ables and the coefficients:

Proposition 2.3.6 ([20, Proposition 3.13, Corollary 6.3]). Let {Σt}t∈Tn be a cluster
pattern with coefficients in P with the initial seed (2.1.10). Then, for any t ∈ Tn and
j ∈ {1, . . . , n}, we have

xj;t =

(
n∏

k=1

x
g
B;t0
kj;t

k

)
FB;t0
j;t |F (ŷ1, . . . , ŷn)

FB;t0
j;t |P(y1, . . . , yn)

, (2.3.10)

yj;t =

n∏
k=1

y
c
B;t0
kj;t

k

n∏
k=1

(FB;t0
k;t |P(y1, . . . , yn))

bkj;t , (2.3.11)

where

ŷi = yi

n∏
j=1

x
bji
j , (2.3.12)

and gB;t0
ij;t and cB;t0

ij;t are the (i, j) entry of GB;t0
t and CB;t0

t , respectively. Also, the ratio-

nal function FB;t0
j;t |F (ŷ1, . . . , ŷn) is the element of F obtained by substituting ŷi for yi in

FB;t0
j;t (y1, . . . , yn).

We call (2.3.10) and (2.3.11) the separation formulas.

Example 2.3.7. Let A(B) be the cluster algebra given in Example 2.1.2. In particular,
we take one with principal coefficients at t0, that is, we consider A•(B). Then, clusters
and coefficient tuples are given by Table 2.2 and F -polynomials and C,G-matrices are
given by Table 2.3.

Proposition 2.3.6 implies that if xi;t = xj;t′ in A•(B), then for any cluster algebra A(B)
having the same exchange matrix as A•(B) at t0, the ith cluster variable associated with
t ∈ Tn is the same as the jth one associated with t′ ∈ Tn. More generally, the following
fact is known:
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2.4 Cluster complexes

t yt xt

0 y1 y2 x1 x2

1 y1
1

y2
x1

x1y2 + 1

x2

2
1

y1

1

y2

x1y1y2 + y1 + x2
x1x2

x1y2 + 1

x2

3
1

y1y2
y2

x1y1y2 + y1 + x2
x1x2

y1 + x2
x1

4 y1y2
1

y1
x2

y1 + x2
x1

5 y2 y1 x2 x1

Table 2.2: Coefficients and cluster variables in type A2

Proposition 2.3.8 ([9, Prposition 6.1 (i)]). Let A1(B) and A2(B) be cluster algebras
having the same exchange matrix at t0. Let P1 and P2 be coefficients of A1(B) and A2(B),
respectively. Denoted by (xt(k),yt(k), Bt(k)), the seed of Ak(B) at t ∈ Tn, k = 1, 2. Then,
xi;t(1) = xj;t′(1) if and only if xi;t(2) = xj;t′(2), where t, t′ ∈ Tn and i, j ∈ {1, 2, · · · , n}.

Remark 2.3.9. By recursions (2.1.7), (2.3.7) ,(2.3.9) and Proposition 2.3.8, for any cluster
algebra A(B), if xi;t = xj;t′ then we have gi;t = gj;t′ , F

B;t0
i;t (y) = FB;t0

j;t′ (y) (we remark that
these vectors and polynomials depend only on Tn and index i ∈ {1, . . . , n}). Therefore,
we can say that gi;t, FB;t0

i;t (y) are a g-vector and an F -polynomial associated with xi;t,
respectively.

2.4 Cluster complexes

Let us introduce cluster complexes which were defined in [18].

Definition 2.4.1. Let A(B) be a cluster algebra. We define a cluster complex ∆(A(B))
as a simplicial complex whose simplexes are subsets of cluster variables which is contained
in a cluster.

Example 2.4.2. We consider the cluster algebra in Example 2.3.7. We give a cluster
complex corresponding to this cluster algebra in Figure 2.1.

By Proposition 2.3.8, a cluster complex depends only on B and does not depend on
coefficients P.

2.5 Cluster structures from marked surfaces

In this section, we introduce cluster structure from marked surfaces and their triangula-
tions along [15].

2.5.1 Tagged arcs and tagged triangulations

Let S be a connected compact oriented Riemann surface with (possibly empty) boundary
and M a non-empty finite set of marked points on S with at least one marked point on
each boundary component. We call the pair (S,M) a marked surface. Any marked point
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2 Preliminaries

t FB;t0
1;t (y) FB;t0

2;t (y) CB;t0
t GB;t0

t

0 1 1

[
1 0
0 1

] [
1 0
0 1

]

1 1 y2 + 1

[
1 0
0 −1

] [
1 0
0 −1

]

2 y1y2 + y1 + 1 y2 + 1

[
−1 0
0 −1

] [
−1 0
0 −1

]

3 y1y2 + y1 + 1 y1 + 1

[
−1 0
−1 1

] [
−1 −1
0 1

]

4 1 y1 + 1

[
1 −1
1 0

] [
0 −1
1 1

]

5 1 1

[
0 1
1 0

] [
0 1
1 0

]

Table 2.3: F -polynomials, C,G-matrices in type A2

in the interior of S is called a puncture. For technical reasons, throughout the paper we
assume (S,M) is not a monogon with at most one puncture, a digon without punctures,
a triangle without punctures, or a sphere with at most three punctures (cf. [15]).

Definition 2.5.1. A tagged arc is a curve in S, considered up to isotopy, whose endpoints
are in M and each end is tagged in one of two ways, plain or notched, such that the
following conditions are satisfied:

• it does not intersect itself except at its endpoints;

• it is disjoint from M and from the boundary of S except at its endpoints;

• it does not cut out a monogon with at most one puncture or a digon without punc-
tures;

• its endpoint lying on the boundary of S is tagged plain;

• both ends of a loop are tagged in the same way,

where a loop is a tagged arc with two identical endpoints.

In this paper, we represent tagged arcs as follows:

plain notched ▷◁

We call a tagged arc δ

• a plain arc if its both ends are tagged plain;

• a 1-notched arc if an end of δ is tagged plain and the other end is tagged notched;

• a 2-notched arc if its both ends are tagged notched.
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2.5 Cluster structures from marked surfaces

Figure 2.1: Cluster complex of A2 type

x1y1y2 + y1 + x2
x1x2

y1 + x2
x1

x2

x1

x1y2 + 1

x2

Figure 2.2: Pairs (δ, ϵ) of conjugate arcs

δ
▷◁

ϵ δ
▷◁

▷◁

▷◁
ϵ

We denote by δ the plain arc corresponding to a tagged arc δ of (S,M). For tagged arcs
δ and ϵ such that δ = ϵ, if exactly one of them is a 1-notched arc, then the pair (δ, ϵ) is
called a pair of conjugate arcs (see Figure 2.2).

For tagged arcs δ and ϵ of (S,M), the intersection number of δ and ϵ was defined in
[37, Definition 3.3] as follows: We assume that δ and ϵ intersect transversally in a minimum
number of points in S \M . Then we define the intersection number Int(δ, ϵ) = A+B+C
1,where

• A is the number of intersection points of δ and ϵ in S \M ;

• B is the number of pairs of an end of δ and an end of ϵ that are incident to a common
puncture such that their tags are different;

• C = 0 unless δ and ϵ form a pair of conjugate arcs, in which case C = −1.

Tagged arcs δ and ϵ are called compatible if Int(δ, ϵ) = 0. A tagged triangulation is a
maximal set of pairwise compatible tagged arcs.

For a tagged arc δ and a puncture p of (S,M), we define that δ(p) is the tagged arc
obtained from δ by changing its tags at p. If δ is not incident to p, then δ(p) = δ. By
definition, we have Int(δ(p), ϵ(p)) = Int(δ, ϵ) for any tagged arcs δ, ϵ and puncture p of
(S,M). Therefore, to consider intersection vectors with respect to a tagged triangulation
T of (S,M), by changing tags, we can assume that T satisfies the following condition:

(♢) The tagged triangulation T consists of plain arcs and 1-notched arcs, with at most
one 1-notched arc incident to each puncture.

1Note that this definition is slightly different from the “intersection number” (δ |ϵ) defined in [15, Defini-
tion 8.4]. The intersection numbers in this paper coincide with entries of f -vectors in cluster algebras,
and ones in [15, Definition 8.4] coincide with entries of d-vectors (see a paragraph right after Theorem
4.1.4 and [15]). They are the same if (S,M) has no puncture.
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2 Preliminaries

2.5.2 Correspondence between tagged triangulations and clusters

For a tagged triangulation T satisfying (♢), we construct an exchange matrix BT whose
vertices are arcs of T .

Definition 2.5.2. Let T be a tagged triangulation. We obtain an ideal triangulation T ◦

associated with T from T in the following way:

(1) we replace all conjugate arcs with self-folded triangles (see Figure 2.3).

(2) we replace all notched tags with plain tags.

Figure 2.3: Self-folded triangle

Definition 2.5.3. We associate to each tagged triangulation T the (generalized) signed
adjacency matrix B = BT in the following way: The rows and columns of BT are labeled by
the arcs in T ◦. For notational convenience, we arbitrarily label these arcs by the numbers
1, . . . , n, so that the rows and columns of BT are numbered from 1 to n as customary,
with the understanding that this numbering of rows and columns is temporary rather than
intrinsic. For an arc (labeled) i, let πT ◦(i) denote (the label of) the arc defined as follows:
if there is a self-folded ideal triangle in T ◦ folded along i (see Figure 2.3), then πT ◦(i) is
its remaining side (the enclosing loop); if there is no such triangle, set πT ◦(i) = i.
For each ideal triangle ∆ in T ◦ which is not self-folded, define the n× n integer matrix

B∆ = (b∆ij) by setting

b∆ij =


1 if ∆ has sides labeled πT ◦(i) and πT ◦(j),

with πT ◦(j) following πT ◦(i) in the clockwise order;

−1 if the same holds, with the counter-clockwise order;

0 otherwise.

(2.5.1)

The matrix B = BT = (bij) is then defined by

B =
∑
∆

B∆ ,

the sum over all ideal triangles ∆ in T ◦ which are not self-folded. The n× n matrix B is
skew-symmetric, and all its entries bij are equal to 0, 1, −1, 2, or −2.

Then we have a cluster algebra A(T ) := A(BT ) for any tagged triangulation T of (S,M).
This cluster algebra has the following properties.

Theorem 2.5.4 ([15, Theorem 7.11], [16, Theorem 6.1]). Let T be a tagged triangulation
of (S,M).

(1) If (S,M) is not 1-punctured closed surface, the tagged arcs δ of (S,M) correspond
bijectively with the cluster variables xδ in A(T ). This induces that the tagged trian-
gulations T ′ of (S,M) correspond bijectively with the clusters xT ′ in A(T ).

(2) If (S,M) is 1-punctured closed surface, the plain arcs δ of (S,M) correspond bi-
jectively with the cluster variables xδ in A(T ). This induces that the tagged trian-
gulations T ′ which consist of plain arcs δ of (S,M) correspond bijectively with the
clusters xT ′ in A(T ).
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3 f-vectors, F -matrices and their dualities

This chapter is based on joint work with Shogo Fujiwara [23].

We describe the duality of F -matrices, which are degree matrices of F -polynomials.
Using F -polynomials, we define the f -vectors and the F -matrices.

Definition 3.0.1 (Definition 3.1.3). Let A•(B) be a cluster algebra with the principal
coefficients at t0. We denote by fij;t the maximal degree of yi in FB;t0

j;t (y). Then, we define
the f -vector fj;t as

fB;t0
j;t = fj;t =

f1j;t...
fnj;t

 . (3.0.1)

We define the F -matrix FB;t0
t as

FB;t0
t := (f1;t, . . . , fn;t). (3.0.2)

As above, f -vectors are defined as the maximal degree vector of F -polynomials. The
most noteworthy property of the F -matrix is the following one:

Theorem 3.0.2 (Theorem 3.2.10). For any exchange matrix B and t0, t ∈ Tn, we have

(FB;t0
t )> = F

B⊤
t ;t

t0
. (3.0.3)

A similar duality was found by Nakanishi and Zelevinsky [36] between the G- and C-
matrices (3.2.23), and its analogy with the F -matrix is this theorem. This duality is
an important property that will appear in all subsequent chapters. In the rest of the
chapter, we will prove this duality. In the process of deriving this theorem, we introduce
an initial-seed mutation, which is a dual transformation with the usual mutation.

3.1 Final-seed mutations and F -matrices

3.1.1 Final-seed mutations without sign-coherence of C-matrices

We use the following notations [36]. Let Jℓ denote the n × n diagonal matrix obtained
from the identity matrix In by replacing the (ℓ, ℓ) entry with −1. For a n × n matrix
B = (bij), let [B]+ be the matrix obtained from B by replacing every entry bij with [bij ]+.
Also, let Bk• be the matrix obtained from B by replacing all entries outside of the kth
row with zeros. Similarly, let B•k be the matrix replacing all entries outside of the kth
column. Note that the maps B 7→ [B]+ and B 7→ Bk• commute with each other, and the
same is true for B 7→ [B]+ and B 7→ B•k, so that the notations [B]k•+ and [B]•k+ make
sense. Also, we have AB•k = (AB)•k and Ak•B = (AB)k•.

Let B be any initial exchange matrix at t0. Then, the families of n×n integer matrices
{CB;t0

t }t∈Tn and {GB;t0
t }t∈Tn satisfies the following recursions by (2.3.3) and (2.3.7):
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3 f -vectors, F -matrices and their dualities

(i) We set the initial condition,

CB;t0
t0

= In, (3.1.1)

and for any edge t t′
ℓ

in Tn and ε ∈ {±1}, we set the recurrence relation,

CB;t0
t′ = CB;t0

t (Jℓ + [εBt]
ℓ•
+ ) + [−εCB;t0

t ]•ℓ+Bt. (3.1.2)

(In (3.1.2), it does not make any difference whichever we choose ε = 1 or ε = −1.
See Remark 3.1.1.)

(ii) We set the initial condition,

GB;t0
t0

= In, (3.1.3)

and for any edge t t′
ℓ

in Tn and ε ∈ {±1}, we set the recurrence relation,

GB;t0
t′ = GB;t0

t (Jℓ + [εBt]
•ℓ
+ )−B[εCB;t0

t ]•ℓ+ . (3.1.4)

Remark 3.1.1. Because of (2.1.4), the right hand side of (3.1.2) does not depend on
ε. Meanwhile, the right hand side of (3.1.4) does not depend on ε due to the following
equality ([20, (6.14)]):

GB;t0
t Bt = BCB;t0

t . (3.1.5)

We have two different expressions for the recursion (3.1.2) and (3.1.4) because they will
be useful in different situations.

Recall the recursions of F -polynomials, explained in the previous chapter. We repeat this
recursion: We set the initial condition,

FB;t0
j;t0

(y) = 1 (j = 1, . . . , n), (3.1.6)

and for any edge t t′
ℓ

in Tn, we set the recurrence relation,

FB;t0
j;t′ (y) =



FB;t0
ℓ;t (y)−1

(
n∏

i=1

y
[c

B;t0
iℓ;t ]+

i

n∏
i=1

FB;t0
i;t (y)[biℓ;t]+

+

n∏
i=1

y
[−c

B;t0
iℓ;t ]+

i

n∏
i=1

FB;t0
i;t (y)[−biℓ;t]+

)
if j = ℓ,

FB;t0
j,t (y) if j 6= ℓ,

(3.1.7)

In this paper, we refer to the recurrence relations (“mutations”) (3.1.2), (3.1.4) and
(3.1.7) as the final-seed mutations in contrast to the initial-seed mutations appearing later.
Abusing of notation, we denote CB;t0

t′ = µℓ(C
B;t0
t ), GB;t0

t′ = µℓ(G
B;t0
t ), and FB;t0

j:t′ (y) =

µℓ(F
B;t0
j;t (y)).

The following fact is well-known:

Proposition 3.1.2 ([20, (5.5),(2.13)]).

(1) For any j ∈ {1, . . . , n} and t ∈ Tn, we have

FB;t0
j;t |Trop(y1,...,yn)(y1, . . . , yn) = 1. (3.1.8)
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(2) Let {Σt}t∈Tn be a cluster pattern which has principal coefficients at t0. Then, for
any j ∈ {1, . . . , n} and t ∈ Tn, we have

yj;t =
n∏

k=1

y
c
B;t0
kj;t

k . (3.1.9)

Proof. Because of (3.1.6) and (3.1.7), by using the tropicalization

π : Qsf(y1, . . . , yn) −→ Trop(y1, . . . , yn)

yi 7−→ yi,

we have (3.1.8). Moreover, setting P = Trop(y1, . . . , yn) in (2.3.11), we obtain (3.1.9) by
(3.1.8).

We introduce another family of matrices, which are the “degree matrices” of F -polynomials.

Definition 3.1.3. Let B be any initial exchange matrix at t0. For i ∈ {1, . . . , n} and
t ∈ Tn, let fB;t0

1i;t , . . . , fB;t0
ni;t be the maximal degrees of y1, . . . , yn in the ith F -polynomial

FB;t0
i;t (y1, . . . , yn), respectively. We call the non-negative integer vector fB;t0

i;t =

f
B;t0
1i;t
...

fB;t0
ni;t


the f -vector at t. We also call the non-negative integer n× n matrix FB;t0

t with columns

fB;t0
1;t , . . . , fB;t0

n;t the F -matrix at t.

Remark 3.1.4. By Remark 2.3.9 and definition of f -vectors, we can say that fi;t is the
f -vector associated with xi;t.

To avoid confusion the notation of F -matrices and F -polynomials, when we write F -
polynomials, we always write it with arguments.

We have the following description of F -matrices: Consider a semifield homomorphism

π : Qsf(y1, . . . , yn) −→ Trop(y−1
1 , . . . , y−1

n )

yi 7−→ yi.

Then, we have

π(FB;t0
ℓ;t (y1, . . . , yn)) = FB;t0

ℓ;t |Trop(y−1
1 ,...,y−1

n )(y1, . . . , yn) =

n∏
i=1

(y−1
i )−f

B;t0
iℓ;t =

n∏
i=1

y
f
B;t0
iℓ;t

i .

(3.1.10)

Moreover, F -matrices are uniquely determined by the following recurrence relations:

Proposition 3.1.5 ([23, Proposition 2.7]). Let B be any initial exchange matrix at t0.
Then, F -matrices have the following recurrence: The initial condition is

FB;t0
t0

= On, (3.1.11)

where On is the zero matrix. For any edge t t′
ℓ

in Tn, we have the recurrence relation,

FB;t0
t′ = FB;t0

t Jℓ +max([CB;t0
t ]•ℓ+ + FB;t0

t [Bt]
•ℓ
+ , [−CB;t0

t ]•ℓ+ + FB;t0
t [−Bt]

•ℓ
+ ). (3.1.12)

Proof. Clearly, (3.1.11) is obtained by (3.1.6). Moreover, applying (3.1.10) to (3.1.7), we
have (3.1.12).
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3 f -vectors, F -matrices and their dualities

We call the recurrence relation (3.1.12) the final-seed mutation for F -matrices. As with
C-, G-matrices and F -polynomials, we denote FB;t0

t′ = µℓ(F
B;t0
t ).

Under the exchange of the initial exchange matrices B and −B at t0, we have the simple
relations between C-, G- and F -matrices.

Theorem 3.1.6 ([23, Theorem 2.8]). We have the following relations:

C−B;t0
t = CB;t0

t + FB;t0
t Bt, (3.1.13)

G−B;t0
t = GB;t0

t +BFB;t0
t , (3.1.14)

F−B;t0
t = FB;t0

t . (3.1.15)

Proof. Let {ΣB
t = (xt,yt, Bt)}t∈Tn be a cluster pattern with coefficients in any semifield

P with the initial seed (x,y, B). Also, let {Σ−B
t = (x′

t,y
′
t, B

′
t)}t∈Tn be a cluster pattern

with coefficients in P with the initial seed (x,y−1,−B). Then, by the definition of the
mutation (2.1.5), (2.1.6) and (2.1.7), we have

x′
t = xt, y′

t = y−1
t , B′

t = −Bt (3.1.16)

([20, Proof of Proposition 5.3]). We also note that for the initial seed Σ−B
t0

= (x′,y′, B′) =
(x,y−1,−B), we have

ŷ′i := y′i

n∏
j=1

x′j
b′ji = y−1

i

n∏
j=1

xj
−bji = ŷ−1

i . (3.1.17)

Now we set P = Trop(y−1
1 , . . . , y−1

n ) and apply the separation formulas (2.3.10) and (2.3.11)
to (3.1.16). Then, we obtain(

n∏
k=1

x
g
−B;t0
kj;t

k

)
F−B;t0
j;t |F (ŷ−1

1 , . . . , ŷ−1
n ) =

(
n∏

k=1

x
g
B;t0
kj;t

k

)
FB;t0
j;t |F (ŷ1, . . . , ŷn)

FB;t0
j;t |Trop(y−1

1 ,...,y−1
n )(y1, . . . , yn)

,

(3.1.18)(
n∏

k=1

(y−1
k )c

−B;t0
kj;t

)−1

=
n∏

k=1

y
c
B;t0
kj;t

k

n∏
k=1

(FB;t0
k;t |Trop(y−1

1 ,...,y−1
n )(y1, . . . , yn))

bkj;t ,

(3.1.19)

by (3.1.8) and (3.1.9). Applying (3.1.10) to (3.1.19), we obtain

c−B;t0
j;t = cB;t0

j;t +

n∑
i=1

bij;tf
B;t0
i;t , (3.1.20)

thus we have (3.1.13). To show (3.1.14) from (3.1.18), let us set the Zn-gradings in
Z[x±1

1 , . . . , x±1
n , y1, . . . , yn] as follows ([20, (6.1), (6.2)]):

deg(xi) = ei, deg(yi) = −bi, (3.1.21)

where ei is the ith column vector of In and bi is the ith column vector of B. Then, we
have

deg(ŷi) = 0. (3.1.22)

Hence comparing the Zn-gradings of both sides of (3.1.18), we obtain

g−B;t0
j;t = gB;t0

j;t +

n∑
i=1

fB;t0
ij;t bi . (3.1.23)
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3.1 Final-seed mutations and F -matrices

Therefore, we have (3.1.14). Let us prove (3.1.15). Substituting xi = 1 (i = 1, . . . , n) for
(3.1.18), we have

F−B;t0
j;t (y−1

1 , . . . , y−1
n ) =

FB;t0
j;t (y1, . . . , yn)

FB;t0
j;t |Trop(y−1

1 ,...,y−1
n )(y1, . . . , yn)

(3.1.24)

([20](5.6)). Under the exchange of B and −B in (3.1.24), we also have

FB;t0
j;t (y1, . . . , yn) =

F−B;t0
j;t (y−1

1 , . . . , y−1
n )

F−B;t0
j;t |Trop(y1,...,yn)(y

−1
1 , . . . , y−1

n )
. (3.1.25)

Hence combining (3.1.24) with (3.1.25), we obtain

F−B;t0
j;t |Trop(y1,...,yn)(y

−1
1 , . . . , y−1

n )FB;t0
j;t |Trop(y−1

1 ,...,y−1
n )(y1, . . . , yn) = 1. (3.1.26)

Comparing exponents of yi of both sides of (3.1.26), we have

−f−B;t0
j;t + fB;t0

j;t = 0, (3.1.27)

thus we obtain (3.1.15).

Thanks to the relation (3.1.13), we have the following alternating expression of the
final-seed mutations of F -matrices:

Proposition 3.1.7 ([23, Proposition 2.9]). Let ε ∈ {±1}. For any edge t t′
ℓ

in Tn,

the matrices FB;t0
t and FB;t0

t′ are related by

FB;t0
t′ = FB;t0

t (Jℓ + [−εBt]
•ℓ
+ ) + [−εCB;t0

t ]•ℓ+ + [εC−B;t0
t ]•ℓ+ . (3.1.28)

Proof. Firstly, we prove the case of ε = 1 in (3.1.28). By (2.1.4), (3.1.12) and (3.1.13), we
have

FB;t0
t′ = FB;t0

t (Jℓ + [−Bt]
•ℓ
+ ) + max([CB;t0

t ]•ℓ+ + FB;t0
t B•ℓ

t , [−CB;t0
t ]•ℓ+ )

= FB;t0
t (Jℓ + [−Bt]

•ℓ
+ ) + max([CB;t0

t ]•ℓ+ + (C−B;t0
t )•ℓ − (CB;t0

t )•ℓ, [−CB;t0
t ]•ℓ+ )

= FB;t0
t (Jℓ + [−Bt]

•ℓ
+ ) + max([−CB;t0

t ]•ℓ+ + (C−B;t0
t )•ℓ, [−CB;t0

t ]•ℓ+ )

= FB;t0
t (Jℓ + [−Bt]

•ℓ
+ ) + [−CB;t0

t ]•ℓ+ + [C−B;t0
t ]•ℓ+

as desired. Secondly, we prove the case of ε = −1 in (3.1.28). In the same way as ε = 1,
we have

FB;t0
t′ = FB;t0

t (Jℓ + [Bt]
•ℓ
+ ) + max([CB;t0

t ]•ℓ+ , [−CB;t0
t ]•ℓ+ − FB;t0

t B•ℓ
t )

= FB;t0
t (Jℓ + [Bt]

•ℓ
+ ) + max([CB;t0

t ]•ℓ+ , [CB;t0
t ]•ℓ+ − (C−B;t0

t )•ℓ)

= FB;t0
t (Jℓ + [Bt]

•ℓ
+ ) + [CB;t0

t ]•ℓ+ + [−C−B;t0
t ]•ℓ+

as desired.
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3 f -vectors, F -matrices and their dualities

3.1.2 Final-seed mutations with sign-coherence of C-matrices

In this subsection, we reduce the final-seed mutation formulas by applying the sign-
coherence of C-matrices.

Definition 3.1.8. Let A be an (not necessarily square) integer matrix. We say that A
is column sign-coherent (resp. row sign-coherent) if for any column (resp. row) of A, its
entries are either all non-negative, or all nonpositive, and not all zero.

When A is column sign-coherent (resp. row sign-coherent), we can define its ℓth column
sign ε•ℓ(A) (resp. row sign εℓ•(A)) as the sign of nonzero entries of the ℓth column (resp.
row) of A. We have the following fundamental and nontrivial result:

Theorem 3.1.9. [24, Corollary 5.5] For any initial exchange matrix B, every C-matrix
CB;t0
t (t ∈ Tn) is column sign-coherent.

The column signs of a C-matrix CB;t0
t are called the tropical signs due to (3.1.9). Using

them, the following reduced expression of the final-seed mutations of C- and G-matrices
are obtained:

Proposition 3.1.10 ([36, Proposition 1.3]). For any edge t t′
ℓ

in Tn, we have

CB;t0
t′ = CB;t0

t (Jℓ + [ε•ℓ(C
B;t0
t )Bt]

ℓ•
+ ), (3.1.29)

GB;t0
t′ = GB;t0

t (Jℓ + [−ε•ℓ(CB;t0
t )Bt]

•ℓ
+ ). (3.1.30)

They are obtained from (3.1.2) and (3.1.4) by setting ε = ε•ℓ(C
B;t0
t ) and ε = −ε•ℓ(CB;t0

t ),
respectively.
The following fact is shown by [20]:

Proposition 3.1.11 ([20, Proposition 5.6]). For any initial exchange matrix B, the fol-
lowing are equivalent:

(i) The sign-coherence of C-matrices holds.

(ii) Every polynomial FB;t0
ℓ;t (y) has constant term 1.

(iii) Every polynomial FB;t0
ℓ;t (y) has a unique monomial of maximal degree. Furthermore,

this monomial has coefficient 1, and it is divisible by all the other occurring mono-
mials.

In proposition 3.1.11, the equivalence of (ii) and (iii) is proved by [20, Proposition 5.3]
(see [20, Conjectures 5.4 and 5.5]).

Remark 3.1.12. In the definition of the (column) sign-coherence in [20], the nonzero
vector property of column vectors are not assumed. However, this property can be easily
recovered, since detCB;t0

t = ±1 due to (3.1.29).

By Theorem 3.1.9 and Proposition 3.1.11, we have the following description of f -vectors:

Corollary 3.1.13 ([23, Corollary 2.15]). An f -vector fB;t0
i;t is the exponent vector of the

unique monomial with maximal degree of FB;t0
i;t (y). In other words, the unique monomial

with maximal degree of FB;t0
i;t (y) is given by y

f
B;t0
1i;t

1 . . . y
f
B;t0
ni;t

n .

Now, let us give the reduced expression of the final-seed mutations of F -matrices by
using the tropical signs.
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3.2 Initial-seed mutations and F -matrices

Proposition 3.1.14 ([23, Proposition 2.16]). For any edge t t′
ℓ

in Tn, we have

FB;t0
t′ = FB;t0

t (Jℓ + [ε•ℓ(C
−B;t0
t )Bt]

•ℓ
+ ) + [ε•ℓ(C

−B;t0
t )CB;t0

t ]•ℓ+ (3.1.31)

= FB;t0
t (Jℓ + [−ε•ℓ(CB;t0

t )Bt]
•ℓ
+ ) + [ε•ℓ(C

B;t0
t )C−B;t0

t ]•ℓ+ .

Proof. Substituting ε = −ε•ℓ(C−B;t0
t ) or ε = ε•ℓ(C

B;t0
t ) for (3.1.28), we obtain (3.1.31).

3.2 Initial-seed mutations and F -matrices

3.2.1 Initial-seed mutations of functions Y and X

We introduce the concept of the initial-seed mutations which appears in [20,36,39] in the
following way. Let Qsf(y) be the universal semifield with formal variables y = (y1, . . . , yn)
in Section 2.1. Let {Σt}t∈Tn be the cluster pattern with coefficients in Qsf(y) where the
initial coefficients yt0 are taken as the above formal variables y. Then, recursively applying
the mutations (2.1.6) from the initial coefficients, yi;t are written as a rational function of
y:

yi;t = YB;t0
i;t (y) ∈ Qsf(y). (3.2.1)

Similarly, recursively applying the mutations (2.1.7), xi;t ∈ F are written as a rational
function of the initial cluster variables xt0 = x with coefficients in Q(Qsf(y)):

xi;t = XB;t0
i;t (x) ∈ Q(Qsf(y))(x). (3.2.2)

Then, for any cluster pattern {Σt}t∈Tn with coefficients in P, we recover xi;t and yi;t by
the specialisation π : Qsf(y) → P with yi setting to be the initial coefficients of Σt0 . Let

t1 ∈ Tn be the vertex with t0 t1
k

and let B1 = µk(B). Then, the rational functions

YB;t0
i;t (y) and YB1;t1

i;t (y) are related by

YB1;t1
i;t (y) = ρk(YB;t0

i;t (y)), (3.2.3)

where ρk is the semifield automorphism of Qsf(y) defined by

ρk : Qsf(y)→ Qsf(y)

yj 7→

{
y−1
k if j = k,

yjy
[bkj ]+
k (yk ⊕ 1)−bkj otherwise.

(3.2.4)

Similarly, the rational functions XB;t0
i;t (x) and XB1;t1

i;t (x) are related by

XB1;t1
i;t (x) = ρk(XB;t0

i;t (x)), (3.2.5)

where ρk is the field automorphism of Q(Qsf(y))(x) defined by

ρk : Q(Qsf(y))(x)→ Q(Qsf(y))(x)

yj 7→

{
y−1
k if j = k,

yjy
[bkj ]+
k (yk ⊕ 1)−bkj otherwise.

(3.2.6)

xj 7→


yk

n∏
i=1

x
[bik]+
i +

n∏
i=1

x
[−bik]+
i

(yk ⊕ 1)xk
if j = k,

xj otherwise.

(3.2.7)

We call them the initial-seed mutations of the functions Y and X .
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3.2.2 Initial-seed mutations without sign-coherence of C-matrices

We use the notations in Section 3.1 continuously. By Proposition 2.3.6, we have

XB;t0
j;t (x) =

(
n∏

k=1

x
g
B;t0
kj;t

k

)
FB;t0
j;t (ŷ1, . . . , ŷn)

FB;t0
j;t (y1, . . . , yn)

, (3.2.8)

YB;t0
j;t (y) =

n∏
k=1

y
c
B;t0
kj;t

k

n∏
k=1

(FB;t0
k;t (y1, . . . , yn))

bkj;t . (3.2.9)

As with the final-seed mutation, we will define the initial-seed mutations in direction k of
C-matrices (resp. G-matrices, F -polynomials, F -matrices) as transformations from CB;t0

t

to CB1;t1
t (resp. from GB;t0

t to GB1;t1
t , from FB;t0

j;t to FB1;t1
j;t , from FB;t0

t to FB1;t1
t ). We

will deduce the initial-seed mutations of C-, G-matrices, F -polynomials and F -matrices.
In order to describe these initial-seed mutations, we introduce the H-matrices according
to [20].

Definition 3.2.1. Let B be any initial exchange matrix at t0. Then, for any t, the (i, j)
entry of HB;t0

t = (hB;t0
ij;t ) is given by

uh
B;t0
ij;t = FB;t0

j;t |Trop(u)(u
[−bi1]+ , . . . , u−1, . . . , u[−bin]+) (u−1 in the ith position). (3.2.10)

The matrix HB;t0
t is called the H-matrix at t.

The following fact holds ([20, Proof of Proposition 6.8]).

Lemma 3.2.2 ([23, Lemma 3.2]). We have the following equality:

y′k
h
B;t0
kj;t = FB;t0

j;t |Trop(y′1,...,y′n)(y1, . . . , yn), (3.2.11)

where (y′1, . . . , y
′
n) are the coefficients at t1 connected with t0 by an edge labeled k in Tn.

Proof. Consider the cluster pattern with coefficients in Trop(y′1, . . . , y
′
n). Let y = (y1, . . . , yn)

be the coefficients at t0. Then, y and y′ have the following relation:

yi =

{
y′k

−1 if i = k,

y′iy
′
k
[−bki]+ if i 6= k.

(3.2.12)

Therefore, for any j ∈ {1, . . . , n}, we have

FB;t0
j;t |Trop(y′1,...,y′n)(y1, . . . , yn) = FB;t0

j;t |Trop(y′1,...,y′n)(y
′
1y

′
k
[−bk1]+ , . . . , y′k

−1
, . . . , y′ny

′
k
[−bkn]+)

(3.1.8)
= FB;t0

j;t |Trop(y′k)(y
′
k
[−bk1]+ , . . . , y′k

−1
, . . . , y′k

[−bkn]+)

= y′k
h
B;t0
kj;t .

The initial-seed mutations of C- and G-matrices are given as follows, where the latter
was given in [20, Proposition 6.8]:

Proposition 3.2.3 ([23, Proposition 3.3]). Let t0 t1
k

in Tn, µk(B) = B1 and ε ∈
{±1}. Then, for any t, we have

CB1;t1
t = (Jk + [−εB]k•+ )CB;t0

t +Ht(ε)
k•Bt, (3.2.13)

GB1;t1
t = (Jk + [εB]•k+ )GB;t0

t −BHt(ε)
k•, (3.2.14)

where Ht(+) = HB;t0
t ,Ht(−) = HB1;t1

t .
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3.2 Initial-seed mutations and F -matrices

Proof. We denote CB;t0
t = (cij;t), C

B1;t1
t = (c′ij;t), H

B;t0
t = (hij;t), and HB1;t1

t = (h′ij;t).
The equation (3.2.14) is just [20, Proposition 6.8], rewritten in matrix form.

Let us show (3.2.13). Consider the same cluster pattern as in the proof of Lemma 3.2.2.
Then, applying (2.3.11) and (3.1.9) to any coefficient yj;t, we have

n∏
i=1

y′i
c′ij;t =

n∏
i=1

yi
cij;t

n∏
i=1

FB;t0
i;t |Trop(y′1,...,y′n)(y1, . . . , yn)

bij;t . (3.2.15)

Substituting (3.2.12) for (3.2.15) and using (3.2.11), we have

n∏
i=1

y′i
c′ij;t =

∏
i 6=k

y′i
cij;ty′k

[−bki]+cij;t

 y′k
−ckj;t

n∏
i=1

y′k
hki;tbij;t . (3.2.16)

Comparing exponents of y′i of the both sides of (3.2.16), we obtain

c′ij;t =

−ckj;t +
n∑

ℓ=1

[−bkℓ]+cℓj;t +
n∑

ℓ=1

hkℓ;tbℓj;t if i = k,

cij;t if i 6= k.
(3.2.17)

Also, by interchanging t0 and t1, we get

c′ij;t =

−ckj;t +
n∑

ℓ=1

[bkℓ]+cℓj;t +
n∑

ℓ=1

h′kℓ;tbℓj;t if i = k,

cij;t if i 6= k.
(3.2.18)

Thus we have (3.2.13).

The initial-seed mutations of F -polynomials were given in [20, Proof of Proposition 6.8]
as follows:

Proposition 3.2.4 ([20, (6.21)]). Let t0 t1
k

in Tn and µk(B) = B1. Then, for any

j ∈ {1, . . . , n} and t ∈ Tn, the polynomials FB;t0
j;t (y) and FB1;t1

j;t (y) are related by

FB1;t1
j;t (y1, . . . , yn) = (1 + yk)

g
B;t0
kj yk

−h
B;t0
kj

× FB;t0
j;t (y1yk

[−bk1]+(yk + 1)bk1 , . . . , yk
−1, . . . , ynyk

[−bkn]+(yk + 1)bkn),

(3.2.19)

where yk
−1 is in the kth position.

The initial-seed mutation of the F -matrices are deduced from Proposition 3.2.4 as fol-
lows:

Proposition 3.2.5 ([23, Proposition 3.5]). Let t0 t1
k

in Tn, µk(B) = B1 and ε ∈
{±1}. Then for any t, the matrices FB;t0

t and FB1;t1
t are related by

FB1;t1
t = (Jk + [εB]k•+ )FB;t0

t + (εGB;t0
t )k• −H−B;t0

t (ε)k• −HB;t0
t (ε)k• (3.2.20)

= (Jk + [−εB]k•+ )FB;t0
t + (εG−B;t0

t )k• −H−B;t0
t (ε)k• −HB;t0

t (ε)k•. (3.2.21)
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Proof. Let us show (3.2.20) in case of ε = 1. Substituting (3.2.19) for yi = y′i and
evaluating (3.2.19) at Trop(y′1

−1, . . . , y′n
−1), we have

FB1;t1
j;t |Trop(y′1−1,...,y′n

−1)(y
′
1, . . . , y

′
n)

= (1⊕ y′k)
g
B;t0
kj y′k

−h
B;t0
kj

× FB;t0
j;t |Trop(y′1−1,...,y′n

−1)(y
′
1y

′
k
[−bk1]+(y′k ⊕ 1)bk1 , . . . , y′k

−1
, . . . , y′ny

′
k
[−bkn]+(y′k ⊕ 1)bkn),

(2.1.8)
= (1⊕ y′k)

g
B;t0
kj y′k

−h
B;t0
kj

× FB;t0
j;t |Trop(y′1−1,...,y′n

−1)(y
′
1y

′
k
[bk1]+(y′k

−1 ⊕ 1)bk1 , . . . , y′k
−1

, . . . , y′ny
′
k
[bkn]+(y′k

−1 ⊕ 1)bkn)

= y′k
g
B;t0
kj y′k

−h
B;t0
kj FB;t0

j;t |Trop(y′1−1,...,y′n
−1)(y

′
1y

′
k
[bk1]+ , . . . , y′k

−1
, . . . , y′ny

′
k
[bkn]+),

(3.1.25)
= y′k

g
B;t0
kj y′k

−h
B;t0
kj

F−B;t0
j;t |Trop(y′1−1,...,y′n

−1)(y
′
1
−1y′k

−[bk1]+ , . . . , y′k, . . . , y
′
n
−1y′k

−[bkn]+)

F−B;t0
j;t |Trop(y1,...,yn)(y

−1
1 , . . . , y−1

n )|
yi 7→y′iy

′
k
[bki]+ ,yk 7→y′k

−1

= y′k
g
B;t0
kj y′k

−h
B;t0
kj y′k

−h
−B;t0
kj

∏
i 6=k

(y′i
fijy′k

[bki]+fij )y′k
−fkj .

Comparing the exponent of both sides, we have

fB1;t1
ij;t =

gB;t0
kj;t − hB;t0

kj;t − h−B;t0
kj;t +

n∑
i=1

[bki]+f
B;t0
ij;t − fB;t0

kj;t if i = k,

fB;t0
ij;t if i 6= k.

(3.2.22)

Hence we obtain the desired equality (3.2.20). Also replacing B with −B in (3.2.20) and
applying (3.1.15) to it, we get (3.2.21).

3.2.3 Initial-seed mutations with sign-coherence of C-matrices

In this subsection, we reduce the initial-seed mutation formulas by applying the sign-
coherence of the C-matrices. Let us introduce a duality between C-matrices and G-
matrices, which is a result in [36], and give the reduced form of the initial-seed mutations
of C- and G-matrices.

Under the sign-coherence of C-matrices (Theorem 3.1.9), we have the following result:

Proposition 3.2.6 ([23, Proposition 3.6]).

(1) For any exchange matrix B and t0, t ∈ Tn, we have

(GB:t0
t )> = C

B⊤
t ;t

t0
. (3.2.23)

(2) Let t0 t1
k

in Tn, µk(B) = B1 and ε ∈ {±1}. Then, we have

CB1;t1
t = (Jk + [−εB]k•+ )CB;t0

t − [−εGB;t0
t ]k•+ Bt, (3.2.24)

GB1;t1
t = (Jk + [εB]•k+ )GB;t0

t +B[−εGB;t0
t ]k•+ . (3.2.25)

(3) We have the reduced forms of the initial-seed mutations as follows:

CB1;t1
t = (Jk + [−εk•(GB;t0

t )B]k•+ )CB;t0
t , (3.2.26)

GB1;t1
t = (Jk + [εk•(G

B;t0
t )B]•k+ )GB;t0

t . (3.2.27)
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Proof. Equalities (3.2.23) and (3.2.25) are the results in [36, (1.13), (4.1)]. Also, (3.2.26) is
obtained by combining (3.2.23) with [36, (1.16), (2.7)]. Using (3.2.23), we have (3.2.24) by
(3.1.4). We note that G-matrices have the row sign-coherence by (3.2.23). By substituting
ε = εk•(G

B;t0
t ) for (3.2.25), we obtain (3.2.27).

We have the following theorem by the above discussion:

Theorem 3.2.7 ([24, Corollary 5.11]). For any initial exchange matrix B, every G-matrix
GB;t0

t (t ∈ Tn) is row sign-coherent.

Through the duality (3.2.23), we can find out the dual equalities between the unre-
duced form of the final-seed and initial-seed mutations, (3.1.4) and (3.2.24), (3.1.2) and
(3.2.25), respectively. Similarly, the reduced form of the final-seed and initial-seed muta-
tions (3.1.29) and (3.2.27), (3.1.30) and (3.2.26) are dual equalities, respectively.
Using Proposition 3.2.6, we prove the conjecture [20, Conjecture 6.10], which is the

relation between H-matrices and G-matrices as follows:

Theorem 3.2.8 ([23, Theorem 3.8]). For any t ∈ Tn, we have the following relation:

HB;t0
t = −[−GB;t0

t ]+. (3.2.28)

Proof. We assume the sign-coherence of C-matrices. Then, comparing (3.2.14) with
(3.2.25) and setting ε = 1, we get

B[−GB;t0
t ]k•+ = −B(HB;t0

t )k•. (3.2.29)

Since k is arbitrary, we have

B[−GB;t0
t ]+ = −BHB;t0

t . (3.2.30)

If B have no zero column vector, then choosing i which satisfies bik 6= 0, we have [−gkj;t]+ =
−hkj;t and thus we have (3.2.28) as desired. We prove the case that B have m( 6= 0) zero
column vectors. Permuting labels of n-regular tree Tn, we can assume

B =

[
B′ O
O O

]
,

where B′ is (n−m)× (n−m) matrix without zero column vector. Under this assumption,

for t0 · · · t
i1 is

in Tn, we have

µis . . . µi2µi1(G
B;t0
t0

)|n−m =

[
µiℓ′ . . . µi′2

µi′1
(GB′;t0

t0
)

O

]
, (3.2.31)

µis . . . µi2µi1(H
B;t0
t0

)|n−m =

[
µi′ℓ

. . . µi′2
µi′1

(HB′;t0
t0

)

O

]
, (3.2.32)

where (i′1, . . . , i
′
ℓ) is a sequence which is obtained by removing n − m + 1, . . . , n from

(i1, . . . , is), and |n−m means taking the left n× (n−m) submatrix. Also about the other
diagonal entries of B, we have the similar equalities. Thus we have

GB;t0
t = GB′;t0

t′ ⊕G
(0);t0
t1

⊕ · · · ⊕G
(0);t0
tm ,

HB;t0
t = HB′;t0

t′ ⊕H
(0);t0
t1

⊕ · · · ⊕H
(0);t0
tm ,

where t′ is a vertex of Tm−n which satisfies Σt′ = µi′ℓ
. . . µi′1

(Σt0) and

tj =

{
t0 if the number of n−m+ j in (i1, . . . , is) is even,

t′0 if the number of n−m+ j in (i1, . . . , is) is odd,
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3 f -vectors, F -matrices and their dualities

in T1: t0 t′0
j

for any j ∈ {1, . . . ,m}. Explicitly, we have

GB;t0
t =


GB′;t0

t′ O
(−1)N1

. . .

O (−1)Nm

 ,

HB;t0
t =


HB′;t0

t′ O
−[(−1)N1+1]+

. . .

O −[(−1)Nm+1]+

 ,

where Nj is the number of n−m+ j in (i1, . . . , is). Since B′ has no zero column vectors
and [

B′[−GB′;t0
t′ ]+ O
O O

]
=

[
−B′HB′;t0

t′ O
O O

]
holds by (3.2.30), we have [−GB′;t0

t′ ]+ = −HB′;t0
t′ . By direct calculation, we also have

[−G(0);t0
tj

]+ = −H(0);t0
tj

for all j. Therefore, we have (3.2.28) as desired.

Using it, let us give a reduced expression of the initial-seed mutations of F -matrices.

Proposition 3.2.9 ([23, Proposition 3.9]).

(1) Let t0 t1
k

in Tn, µk(B) = B1 and ε ∈ {±1}. Then, we have

FB1;t1
t = (Jk + [εB]k•+ )FB;t0

t + [−εG−B;t0
t ]k•+ + [εGB;t0

t ]k•+ . (3.2.33)

(2) We have a reduced form of the initial-seed mutations as follows:

FB1;t1
t = (Jk + [εk(G

−B;t0
t )B]k•+ )FB;t0

t + [εk(G
−B;t0
t )GB;t0

t ]k•+ (3.2.34)

= (Jk + [−εk(GB;t0
t )B]k•+ )FB;t0

t + [εk(G
B;t0
t )G−B;t0

t ]k•+ .

Proof. (1) Thanks to Proposition 3.2.8, we can substitute HB;t0
t (ε)k• = −[−εGB;t0

t ]k•+ and

H−B;t0
t (ε)k• = −[−εG−B;t0

t ]k•+ for (3.2.20). Then, we have

FB1;t1
t = (Jk + [εB]k•+ )FB;t0

t + (εGB;t0
t )k• + [−εG−B;t0

t ]k•+ + [−εGB;t0
t ]k•+

= (Jk + [εB]k•+ )FB;t0
t + [−εG−B;t0

t ]k•+ + [εGB;t0
t ]k•+ ,

as desired.
(2) Substituting ε = εk(G

−B;t0
t ) or ε = −εk(GB;t0

t ) for (3.2.33), we obtain (3.2.34).

Like the duality between the final-seed and initial-seed mutations of C- and G-matrices,
(3.1.28) and (3.2.33), (3.1.31) and (3.2.34) are dual equalities, respectively. We show
the self-duality of F -matrices, which is analogous to the duality (3.2.23) between C- and
G-matrices.

Theorem 3.2.10 ([23, Theorem 3.10]). For any exchange matrix B and t0, t ∈ Tn, we
have

(FB;t0
t )> = F

B⊤
t ;t

t0
. (3.2.35)
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Proof. We prove (3.2.35) by the induction on the distance between t and t0 in Tn. When

t = t0, we have (F
B;t0
t )> = O = F

B⊤
t ;t

t0
as desired. We show that if (3.2.35) holds for some

t ∈ Tn, then it also holds for t′ ∈ Tn such that t t′
ℓ

. By the inductive assumption,
(3.1.31), Proposition 3.2.9 and (3.2.23), we have

(FB;t0
t′ )> = (Jℓ + [εℓ(G

−B⊤
t ;t

t0
)B>

t ]
ℓ•
+ )(FB;t0

t )> + [εℓ(G
−B⊤

t ;t
t0

)G
B⊤

t ;t
t0

]ℓ•+

= (Jℓ + [εℓ(G
−B⊤

t ;t
t0

)B>
t ]

ℓ•
+ )F

B⊤
t ;t

t0
+ [εℓ(G

−B⊤
t ;t

t0
)G

B⊤
t ;t

t0
]ℓ•+

= F
B⊤

t′ ;t
′

t0

as desired.

3.2.4 Examples

We introduce an example for the final-seed and initial-seed mutations in the case of A2.
Let n = 2, and consider a tree T2 whose edges are labeled as follows:

. . . t0 t1 t2 t3 t4 t5 . . .1 2 1 2 1 2 1
.

We set B =

[
0 1
−1 0

]
as the initial exchange matrix at t0. Then, the coefficients, the

cluster variables, C-, G- and F -matrices are given by Table 1 and Table 2 [20, Example
2.10].

t YB;t0
t XB;t0

t

0 y1 y2 x1 x2

1 y1(y2 ⊕ 1)
1

y2
x1

x1y2 + 1

(y2 ⊕ 1)x2

2
1

y1(y2 ⊕ 1)

y1y2 ⊕ y1 ⊕ 1

y2

x1y1y2 + y1 + x2
(y1y2 ⊕ y1 ⊕ 1)x1x2

x1y2 + 1

(y2 ⊕ 1)x2

3
y1 ⊕ 1

y1y2

y2
y1y2 ⊕ y1 ⊕ 1

x1y1y2 + y1 + x2
(y1y2 ⊕ y1 ⊕ 1)x1x2

y1 + x2
x1(y1 ⊕ 1)

4
y1y2
y1 ⊕ 1

1

y1
x2

y1 + x2
x1(y1 ⊕ 1)

5 y2 y1 x2 x1

Table 3.1: Coefficients and cluster variables in type A2

We show the expressions of the coefficients and the cluster variables at t0 in Type A2

in Table 3, and its counterpart C-, G- and F -matrices in Table 4.
Comparing Table 2 with Table 4, we can see the duality of C-, G- and F -matrices in

(3.2.23) and (3.2.35).

35



3 f -vectors, F -matrices and their dualities

t CB;t0
t GB;t0

t FB;t0
t

0

[
1 0
0 1

] [
1 0
0 1

] [
0 0
0 0

]

1

[
1 0
0 −1

] [
1 0
0 −1

] [
0 0
0 1

]

2

[
−1 0
0 −1

] [
−1 0
0 −1

] [
1 0
1 1

]

3

[
−1 0
−1 1

] [
−1 −1
0 1

] [
1 1
1 0

]

4

[
1 −1
1 0

] [
0 −1
1 1

] [
0 1
0 0

]

5

[
0 1
1 0

] [
0 1
1 0

] [
0 0
0 0

]

Table 3.2: C-, G- and F -matrices in type A2

t YB⊤
t ;t

t0
XB⊤

t ;t
t0

0 y1 y2 x1 x2

1 y1(y2 ⊕ 1)
1

y2
x1

y2x1 + 1

(y2 ⊕ 1)x2

2
y1y2 ⊕ y2 ⊕ 1

y1

1

y2(y1 ⊕ 1)

y1x2 + 1

(y1 ⊕ 1)x1

y1y2x2 + y2 + x1
(y1y2 ⊕ y2 ⊕ 1)x1x2

3
y1 ⊕ 1

y1y2

y2
y1y2 ⊕ y1 ⊕ 1

y1y2x1 + y1 + x2
(y1y2 ⊕ y1 ⊕ 1)x1x2

y1 + x2
(y1 ⊕ 1)x1

4
1

y2

y1y2
y2 ⊕ 1

y2 + x1
(y2 ⊕ 1)x2

x1

5 y2 y1 x2 x1

Table 3.3: Expressions of coefficients and cluster variables at t0 in type A2
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t C
B⊤

t ;t
t0

G
B⊤

t ;t
t0

F
B⊤

t ;t
t0

0

[
1 0
0 1

] [
1 0
0 1

] [
0 0
0 0

]

1

[
1 0
0 −1

] [
1 0
0 −1

] [
0 0
0 1

]

2

[
−1 0
0 −1

] [
−1 0
0 −1

] [
1 1
0 1

]

3

[
−1 0
−1 1

] [
−1 −1
0 1

] [
1 1
1 0

]

4

[
0 1
−1 1

] [
1 1
−1 0

] [
0 0
1 0

]

5

[
0 1
1 0

] [
0 1
1 0

] [
0 0
0 0

]

Table 3.4: C-, G- and F -matrices in type A2 (moving the initial vertex)
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4 Uniqueness conjecture for F -matrices

In this chapter, Sections 4.1–4.3 is based on joint work with Toshiya yurikusa [27], and
Sections 4.4–4.8 is based on [25].

As mentioned in Chapter 3, the motivation for introducing the f -vector and the F -
matrix is the study of the properties of the F -polynomial. However, when the f -vector
and F -matrix are defined from the F -polynomial, information other than the main re-
quirements are removed. Therefore, we must consider whether this vector or matrix is
intrinsic to the F -polynomial. Here, the desired result is that in one cluster algebra, the
f -vector uniquely defines the F -polynomial. Consider the next problem, which is a bit
more demanding:

Question 4.0.1. Which is a cluster algebra A(B) satisfying the following condition:
fB;t0
i;t = fB;t0

j;s 6= 0 implies that xi;t and xj;s are the same cluster variable?

If A(B) satisfies the condition in Question 4.0.1, we say that initial seed (x,y, B) (or
initial triangulation (S,M)) detects cluster variables by f -vectors. There exist cluster
algebras not satisfying the condition (see Remark 4.2.3). Therefore, the goal is to give
a classification theorem. We obtain the answer to the question when a cluster algebra is
of marked surface type, finite type, or rank 2. When a cluster algebra is marked surface
type, we have the following:

Theorem 4.0.2 (Corollary 4.1.10). Let A(B) be a cluster algebra arising from (S,M).
We denote by g and p the genus of S and the cardinaly of M , respectively.

(1) If S is not closed, then there is at least one tagged triangulation of (S,M) detecting
cluster variables by f -vectors.

(2) If S is closed, then there is at least one tagged triangulation of (S,M) detecting
cluster variables by f -vectors if and only if (S,M) is a 1-punctured closed surface or
the following inequality holds:

p ≥


10 if g = 2,

7 +
√
1 + 48g

2
if g 6= 2,

(3) All tagged triangulation of (S,M) detect cluster variables by f -vectors if and only if
(S,M) is one of the followings:

• a 1-punctured closed surface;

• a marked surface with no punctures;

• a marked surface of genus 0 with exactly 1 boundary component and at most 2
punctures;

• a marked surface of genus 0 with exactly 2 boundary components and a 1 punc-
ture.

When a cluster algebra is of finite type or rank 2, we have the following:
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4 Uniqueness conjecture for F -matrices

Theorem 4.0.3 (Propositions 4.6.6, 4.7.4). Let A(B) be a cluster algebra of finite type
or rank 2. Then, the initial seed detects cluster variables by f -vectors.

Let us consider another question. The f -vector does not uniquely determine the cluster
variables, but does the F -matrix uniquely determine the clusters? We have not find a
counterexample of this problem yet. That is, the following are conjectured:

Conjecture 4.0.4 ([27, Conjecture 4.4]). In a cluster algebra A(B), for t, s ∈ Tn, F
B;t0
t =

FB;t0
s implies that xt and xs are the same non-labeled cluster.

Note that satisfying the conditions in the Question 4.0.1 does not necessarily implies
that the conditions of the Conjecture 4.0.4 are satisfied because Conjecture 4.0.4 is meant
to be uniquely determined even when the cluster contains initial cluster variables.

About this question, we solved positively when a cluster algebra is of marked surface
type, finite type, or rank 2:

Theorem 4.0.5 (Corollary 4.1.6). Let T be a tagged triangulation of (S,M). In a cluster
algebra A(T ), if tagged triangulations T ′ and T ′′ of (S,M) satisfy FxT ′ = FxT ′′ , then
xT ′ = xT ′′.

Theorem 4.0.6 (Theorem 4.4.1).

(1) In a cluster algebra of finite type, for any t, s ∈ Tn, if (f1;t, . . . , fn;t) corresponds with
(f1;s, . . . , fn;s) up to order, then xt and xs are the same non-labeled cluster.

(2) In a cluster algebra of rank 2, for t, s ∈ T2, if (f1;t, f2;t) corresponds with (f1;s, f2;s)
up to order, then xt and xs are the same non-labeled cluster.

Remark 4.0.7. Analogues of Conjecture 4.0.4 for d-vectors, g-vectors and c-vectors have
proved already in the case of general cluster algebras. About d-vectors, see [8, Theorem
4.22 (i)], and about c-vectors and g-vectors, see [34, Corollary 4.5, Theorem 4.8].

In this chapter, our goal is to give proofs of the above theorems. We consider the case
of marked surface type in Sections 4.1–4.3, and the case of finite type or rank 2 in Sections
4.4–4.7. Moreover, in Section 4.8, we give a way to recover F -polynomials from f -vectors
when A(B) is of rank 2.

4.1 Part 1: Case of Marked surface type

In Sections 4.1–4.3, we consider cluster algebras from marked surfaces. As for definition
of cluster algebras from marked surfaces, see Section 2.5. Forthcoming Theorems 4.1.1,
4.1.3, 4.1.4 are proved in Sections 4.2 and 4.3. The number of tagged arcs in a tagged
triangulation of (S,M) is constant [15, Theorem 7.9]. Fix a tagged triangulation T of
(S,M) with n tagged arcs. For a tagged arc δ of (S,M), we define

Int(T, δ) := (Int(t, δ))t∈T ∈ Zn
≥0,

called an intersection vector of δ with respect to T . For a tagged triangulation T ′ =
{δ1, . . . , δn} of (S,M), we denote by Int(T, T ′) the non-negative integer matrix with
columns Int(T, δ1), . . . , Int(T, δn). We are ready to state the key result of this section.

Theorem 4.1.1 ([27, Theorem 1.1]). Let T be a tagged triangulation of (S,M). If tagged
triangulations T ′ and T ′′ of (S,M) have Int(T, T ′) = Int(T, T ′′) up to permutations of
columns, then T ′ = T ′′.
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We consider whether a tagged arc δ /∈ T is determined by its intersection vector with T .
Note that when δ ∈ T , then clearly we have Int(T, δ) = 0, so that arcs in T are clearly not
determined by their intersection number with T . Thus we study the following property.

Definition 4.1.2. For a tagged triangulation T of (S,M), we say that T detects tagged
arcs if it satisfies the following condition:

• If tagged arcs δ and ϵ of (S,M) have a common non-zero intersection vector Int(T, δ) =
Int(T, ϵ), then δ = ϵ.

We give a characterization of this property. In particular, a tagged triangulation does
not detect tagged arcs generally.

Theorem 4.1.3 ([27, Theorem 1.3]). Let T be a tagged triangulation of (S,M). Then
T detects tagged arcs if and only if there are no tagged arcs δ and ϵ of T connecting two
(possibly same) common punctures such that δ 6= ϵ.

Next, we give a complete list of marked surfaces which have tagged triangulations de-
tecting tagged arcs.

Theorem 4.1.4 ([27, Theorem 1.4]).

(1) If S is not closed, then there is at least one tagged triangulation of (S,M) detecting
tagged arcs.

(2) If S is closed, then there is at least one tagged triangulation of (S,M) detecting
tagged arcs if and only if the inequality

p ≥


10 if g = 2,

7 +
√
1 + 48g

2
if g 6= 2,

(4.1.1)

holds where p is the number of punctures of (S,M) and g is the genus of S.1

(3) All tagged triangulation of (S,M) detect tagged arcs if and only if (S,M) is one of
the followings:

• a marked surface with no punctures;

• a marked surface of genus 0 with exactly 1 boundary component and at most 2
punctures;

• a marked surface of genus 0 with exactly 2 boundary components and a 1 punc-
ture.

We apply previous results in this section to a cluster algebra A(T ) associated with a
tagged triangulation T by using Theorem 2.5.4. Then each tagged arc δ of (S,M) gives
rise to the cluster variables xδ in A(T ).

Theorem 4.1.5 ([44, Theorem 1.8]). Let T be a tagged triangulation of (S,M). If (S,M)
is a 1-punctured closed surface, for any plain arc δ of (S,M), we have fxδ

= Int(T, δ). If
not, for any tagged arc δ of (S,M), we have fxδ

= Int(T, δ).

Thanks to Theorem 4.1.5, we can apply the results in the previous to the theory of
cluster algebras.

1The lower part of the right hand side of (4.1.1) is known as the Heawood number. This number appears
in the version of the four-color theorem for higher genus surface [40].
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4 Uniqueness conjecture for F -matrices

Corollary 4.1.6 ([27, Corollary 1.5]). Let T be a tagged triangulation of (S,M). If tagged
triangulations T ′ and T ′′ of (S,M) satisfy FxT ′ = FxT ′′ , then xT ′ = xT ′′.

Proof. The assertion follows immediately from Theorems 4.1.1 and 4.1.5.

Remark 4.1.7. In cluster algebras defined from marked surfaces, they are given by
Int(·, ·), (·|·) and shear coordinates [12,16,38].

Cluster algebras f -vectors d-vectors g-vectors, c-vectors

Marked surfaces Int(·, ·) (·|·) shear coordinates

In particular, also according a footnote of the definition of intersection number in Chapter
2, when (S,M) has no punctures, f -vectors coincide with d-vectors, and thus Corollary
4.1.6 follows from [8, Theorem 4.22 (i)] in this case.

Definition 4.1.8. For a cluster algebra A, we say that A detects cluster variables by
f -vectors if it satisfies the following condition:

• For non-initial cluster variables z and z′ of A, if fx = fx′ , then x = x′.

Proposition 4.1.9 ([27, Proposition 4.10]). Let T be a tagged triangulation of (S,M).
Then T detects cluster variables by f -vectors if and only if either of the following conditions
holds:

• (S,M) is a 1-punctured closed surface;

• there are no tagged arcs δ and ϵ of T connecting two (possibly same) common punc-
tures such that δ 6= ϵ.

Proof. If (S,M) is not a 1-punctured closed surface, the assertion follows from Theorems
4.1.3, 2.5.4 (1) and 4.1.5. If (S,M) is a 1-punctured closed surface, there are no 2-notched
arcs corresponding to cluster variables by Theorem 2.5.4(2). Therefore, the assertion
follows from Corollary 4.2.5 and Theorem 4.1.5.

Corollary 4.1.10 ([27, Corollary 4.11]). Let A(B) be a cluster algebra arising from
(S,M).

(1) If S is not closed, then there is at least one tagged triangulation of (S,M) detecting
cluster variables by f -vectors.

(2) If S is closed, then there is at least one tagged triangulation of (S,M) detecting
cluster variables by f -vectors if and only if (S,M) is a 1-punctured closed surface or
the inequality (4.1.1) holds.

(3) All tagged triangulation of (S,M) detect cluster variables by f -vectors if and only if
(S,M) is one of the followings:

• a 1-punctured closed surface;

• a marked surface with no punctures;

• a marked surface of genus 0 with exactly 1 boundary component and at most 2
punctures;

• a marked surface of genus 0 with exactly 2 boundary components and a 1 punc-
ture.

Proof. The assertion follows immediately from Theorem 4.1.4 and Proposition 4.1.9.
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4.2 Modifications of tagged arcs

4.2 Modifications of tagged arcs

4.2.1 Puzzle pieces

A key of many proofs in this section is a puzzle piece decomposition of tagged triangulations
studied in [15]. We denote by T3 a tagged triangulation satisfying (♢) of a 4-punctured
sphere consisting of three pairs of conjugate arcs (see the right diagram of Figure 4.1).
Any tagged triangulation satisfying (♢) which is not T3 is obtained by gluing together a
number of puzzle pieces in Figure 4.1 (see [15, Remark 4.2]). We say that a puzzle piece
in the first (resp., second, third) diagram from the left on Figure 4.1 is a triangle piece
(resp., a 1-puncture piece, a 2-puncture piece).

Figure 4.1: The three puzzle pieces (triangle piece, 1-puncture piece, 2-puncture piece)
and the tagged triangulation T3

▷◁

▷◁ ▷◁ T3 =

▷◁

▷◁

▷◁

4.2.2 Modifications of tagged arcs

In this subsection, unless otherwise noted, let T be a tagged triangulation of (S,M)
satisfying (♢). To prove Theorems 4.1.1 and 4.1.3, we define modifications of tagged arcs
with respect to T .

Let δ /∈ T be a tagged arc of (S,M). First, we change tags of δ at a puncture p if δ and
a tagged arc of T are tagged notched at p, and denote it by δ̂ (see Figure 4.2). Note that
a notched arc of T is a 1-notched arc inside a pair of conjugate arcs of T by (♢). Second,
we construct a deformed curve M′

T (δ̂) as follows: for δ /∈ T ,

• if δ̂ is a plain arc, M′
T (δ̂) = δ̂;

• if δ̂ is a notched arc and is not a loop, M′
T (δ̂) is obtained from δ̂ by replacing its ends

tagged notched as in the left diagram of Figure 4.3;

• if δ̂ is a 2-notched loop and there are both sides of δ̂ in the same puzzle piece divided by
T , M′

T (δ̂) is obtained from δ̂ by replacing its ends as in the middle diagram of Figure
4.3;

• otherwise, M′
T (δ̂) is obtained from δ̂ by replacing its ends as in the right diagram of

Figure 4.3;

for δ ∈ T , in particular, δ is a notched arc since δ /∈ T ,

• if δ̂ is a 1-notched arc, M′
T (δ̂) is a 1-punctured loop corresponding to δ̂;

• if δ̂ is a 2-notched arc, M′
T (δ̂) is a pair of cycles which surround each endpoint of δ̂ and

do not include any punctures in their curves (we call this circle a 1-punctured cycle).

Finally, we change tags of M′
T (δ̂) at p again if δ and a tagged arc of T are tagged notched

at p. We say that the result is a modified tagged arc of δ with respect to T , and denote it
by MT (δ) (see Figure 4.2 and Example 4.2.1).
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4 Uniqueness conjecture for F -matrices

Figure 4.2: From δ to δ̂ and MT (δ)

▷◁

δ
▷◁

in T →
δ̂

▷◁ →

▷◁

MT (δ)

▷◁

Figure 4.3: Modifications M′
T (δ̂) of δ̂

▷◁

→
▷◁▷◁

→ ▷◁

▷◁
→

Example 4.2.1. We consider the following tagged triangulation T and tagged arcs δ1, δ2
and δ3:

T =

▷◁

▷◁

δ1
▷◁

▷◁ ▷◁δ3

▷◁

▷◁

δ2

Then the corresponding modified tagged arcsMT (δi) with respect to T are given as follows:

MT (δ1) ▷◁

MT (δ2) MT (δ3)

We can define the intersection number of a modified tagged arc m and a tagged arc δ
in the same way as of tagged arcs, denote by Int(m, δ). Although the map MT may seem
strange, it is defined so as to satisfy the following properties.

Proposition 4.2.2 ([27, Proposition 2.3]).

(1) For a tagged arc δ of (S,M), we have Int(T, δ) = Int(T,MT (δ)).

(2) The map MT restricting to the set

A := {tagged arcs δ of (S,M) | δ /∈ T and MT (δ) is not a pair of 1-punctured cycles}

is injective. Moreover, if MT (δ) = MT (ϵ) for δ ∈ A and any tagged arc ϵ /∈ T , then
δ = ϵ holds.

Proof. The assertions follow from the definition of intersection numbers and the map
MT .

Remark 4.2.3. For a tagged arc δ /∈ T ∪ A of (S,M), M(δ) does not always correspond
to δ bijectively. Indeed, we consider the following tagged triangulation T and tagged arcs
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δ, ϵ:

T =

▷◁▷◁

▷◁▷◁

ϵ

δ

Then the corresponding modified tagged arcs MT (δ) and MT (ϵ) with respect to T are
given as follows:

MT (δ) = MT (ϵ)

The following theorem is a key of the proofs of Theorems 4.1.1 and 4.1.3.

Theorem 4.2.4 ([27, Theorem 2.5]). If modified tagged arcs m and m′ with respect to T
have Int(T,m) = Int(T,m′), then m = m′.

This proof is based on a detailed case-by-case analysis and will be omitted here due to
space limitations.See [27, Sections 5 and 6].

Corollary 4.2.5 ([27, Corollary 2.6]). If tagged arcs δ and ϵ in A have Int(T, δ) = Int(T, ϵ),
then δ = ϵ.

Proof. Proposition 4.2.2(1) implies that Int(T,MT (δ)) = Int(T,MT (ϵ)). By Theorem 4.2.4
and Proposition 4.2.2(2), we have δ = ϵ.

These results provide the proofs of Theorems 4.1.1 and 4.1.3.

Proof of Theorem 4.1.1. By changing tags, we can assume that T satisfies (♢). Let T ′ =
{δ1, . . . , δn} and T ′′ = {ϵ1, . . . , ϵn} be tagged triangulations of (S,M) such that Int(T, δi) =
Int(T, ϵi) for any i. We set V = (v1 · · · vn) = Int(T, T ′), where vi = Int(T, δi) ∈ Zn

≥0.
Without loss of generality, we assume that δi ∈ A for i ∈ {1, . . . , k} and δj /∈ A for
j ∈ {k + 1, . . . , n}, that is, either δj , ϵj ∈ T or MT (δj) = MT (ϵj) is a pair of 1-punctured
cycles by Theorem 4.2.4. Corollary 4.2.5 implies that δi = ϵi for i ∈ {1, . . . , k}.
If T ′ 6= T ′′, then there exist f, g ∈ {k+1, . . . , n} such that Int(δf , ϵg) 6= 0. Otherwise, it

conflicts with the maximality of T ′. Since δf and ϵg are contained in T , δf and ϵg must
have different tags at the common endpoint. Without loss of generality, we assume that
δf is contained in T and MT (δg) = MT (ϵg) is a pair of 1-punctured cycles. Since δf and
δg have the common endpoint and Int(δf , δg) = 0, δf is a 1-notched arc of T by (♢). Then
δ̂g is not a 2-notched arc, thus it is contradictory to the fact that MT (ϵg) is a pair of
1-punctured cycles. This finishes the proof.

Proof of Theorem 4.1.3. By changing tags, we can assume that T satisfies (♢). First, we
prove “if” part. Let δ and ϵ be tagged arcs with a common non-zero intersection vector
Int(T, δ) = Int(T, ϵ) with respect to T . Then δ and ϵ are not contained in T by definition
of intersection vectors. By Corollary 4.2.5, it suffice to show that if MT (δ) is a pair of 1-
punctured cycles, then δ = ϵ. In this case, δ and ϵ are 2-notched arcs such that δ and ϵ are
plain arcs of T such that both endpoints of δ correspond to ones of ϵ since MT (δ) = MT (ϵ)
by Theorem 4.2.4. Therefore, we have δ = ϵ by the assumption.
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4 Uniqueness conjecture for F -matrices

Second, we prove “only if” part. Suppose that T has a pair of different plain arcs γ and
γ′ such that both endpoints of γ correspond to ones of γ′ which are punctures. Let δ and ϵ
be 2-notched arcs such that δ = γ and ϵ = γ′. Then we have δ 6= ϵ and Int(T, δ) = Int(T, ϵ)
which is not zero, that is, T does not detect tagged arcs.

4.3 Proof of Theorem 4.1.4

First of all, we prove Theorem 4.1.4(3).

Proof of Theorem 4.1.4(3). It is easy to show that for (S,M) as in Theorem 4.1.4(3), any
tagged triangulation of (S,M) detects tagged arcs by Theorem 4.1.3. Conversely, if (S,M)
is not one of the above cases, a part of (S,M) must have one of the pairs of plain arcs δ
and ϵ as in Table 4.1. Then a tagged triangulation T of (S,M) including δ and ϵ does not
detect tagged arcs by Theorem 4.1.3.

g 0 ≥ 1

b 0 1 2 ≥ 3 any

p ≥ 4 ≥ 3 ≥ 2 ≥ 1 ≥ 1

δ, ϵ ϵ

δ δ

ϵ

δ

ϵ

δ ϵ

ϵ

δ

Table 4.1: Tagged arcs δ and ϵ connecting two (possibly same) common punctures such

that δ 6= ϵ, where g is the genus, b is the number of components of the boundary
and p is the number of punctures in (S,M)

We consider the case that S is not closed. The following lemma is basic.

Lemma 4.3.1 ([27, Lemma 3.1]). If S is not closed, then there is a tagged triangulation of
(S,M) whose any tagged arc is a plain arc with at least one marked point on the boundary
of S as its endpoints.

Proof. For a puncture p of (S,M), we can construct triangles with p and two marked
points l and r (possibly l = r) on the boundary of S as follows:

p

l r

boundary

Then, for another puncture q of (S,M), it is easy to construct triangles with q, l and
r in the same way. We have the set of triangles containing all punctures of (S,M) by
the inductive construction. There is a tagged triangulation of (S,M) containing these
triangles, thus it is what is desired.

Proof of Theorem 4.1.4(1). The assertion follows from Theorem 4.1.3 and Lemma 4.3.1.

Next, we consider the case that S is closed. In the rest of this section, let g be the genus
of S and p be the number of punctures of (S,M). To prove Theorem 4.1.4(2), we need
some preparations.
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4.3 Proof of Theorem 4.1.4

Lemma 4.3.2 ([27, Lemma 3.2]). We assume that S is closed and g > 0. If a tagged
triangulation T of (S,M) has loops, then T does not detect tagged arcs.

Proof. A puzzle piece with loops is one of the followings:

▷◁ ▷◁ ▷◁ ▷◁

In these puzzle pieces, only the 2-punctured piece does not have a pairs of different plain
arcs connecting two (possibly same) common punctures. Therefore, by Theorem 4.1.3, if
a tagged triangulation T with loops of (S,M) detects tagged arcs, then T is obtained by
gluing two 2-punctured pieces and by changing tags if necessary. This is in conflict with
g > 0.

Lemma 4.3.3 ([27, Lemma 3.3]). We assume that S is closed and g > 0. If a tagged
triangulation T of (S,M) satisfies (♢) and has 1-notched arcs, then T does not detect
tagged arcs.

Proof. A puzzle piece with 1-notched arcs is one of the followings:

▷◁

▷◁ ▷◁ ▷◁ ▷◁

In these puzzle pieces, only the 2-punctured piece does not have a pairs of different plain
arcs connecting two (possibly same) common punctures. Therefore, the assertion follows
in the same way as Lemma 4.3.2.

Theorem 4.3.4. [28, Theorem 1.1] We assume that S is closed. If p is the minimal
integer to satisfy (4.1.1), then there is a tagged triangulation T of (S,M) satisfying the
following conditions:

(T1) any tagged arc of T is a plain arc;

(T2) any triangle of T has three distinct vertices;

(T3) the intersection of two distinct triangles of T is either empty, a single vertex, or a
single edge.

Conversely, if there is a tagged triangulation of (S,M) satisfying (T1)-(T3), then (4.1.1)
holds.

Proposition 4.3.5 ([27, Proposition 3.5]). We assume that S is closed and g > 0. Then
a tagged triangulation T of (S,M) satisfies (T1)-(T3) if and only if T detects tagged arcs.

Proof. We assume that T satisfies (T1)-(T3) and does not detect tagged arcs. By Theorem
4.1.3, there are tagged arcs δ and ϵ of T connecting two common punctures such that δ 6= ϵ.
Then they are not contained in a single triangle of T by (T2). The intersection of a triangle
with δ and a triangle with ϵ has two vertices and does not have an edge connecting them.
It conflicts with (T3).

Conversely, we assume that T detects tagged arcs. By Lemma 4.3.3, we can also assume
that T satisfies (T1). By Lemma 4.3.2, T satisfies (T2). It is easy to show that if the
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4 Uniqueness conjecture for F -matrices

intersection of two distinct triangles of T is either two vertices, three vertices, or two edges,
then there are tagged arcs δ and ϵ of T connecting two common punctures such that δ 6= ϵ.
Thus it is a contradiction by Theorem 4.1.3. If the intersection of two distinct triangles
of T is three edges, then (S,M) must be a sphere with exactly three punctures, thus it
conflicts with our assumption. Therefore, T satisfies (T3).

Proof of Theorem 4.1.4(2). When g = 0, we have p ≥ 4 by our assumption, in which case
(4.1.1) holds. We consider the tagged triangulation

T =

on the 2-dimensional sphere S. The tagged triangulation T does not have different plain
arcs connecting two common punctures. We add a puncture and arcs to a triangle of T
as follows:

→

Then we have inductively a tagged triangulation without different plain arcs connecting
two common punctures for any p. By Theorem 4.1.3, it detects tagged arcs.

We assume that g > 0. By Theorem 4.3.4 and Proposition 4.3.5, if there is a tagged
triangulation of (S,M) detecting tagged arcs, then (4.1.1) holds. Conversely, if p is the
minimal integer to satisfy (4.1.1), then there is a tagged triangulation T of (S,M) de-
tecting tagged arcs. In the same way as the case of g = 0, we have inductively a tagged
triangulation without different plain arcs connecting two common punctures for any p
satisfying (4.1.1). By Theorem 4.1.3, it detects tagged arcs.

Example 4.3.6. When g = 1, (4.1.1) means that p ≥ 7. We consider the tagged triangu-
lation

T =

1

2

3

1

4 5 1

2

3

14 5

6

7

on the torus S with 7 punctures, where we identify each of two vertical lines and two
horizontal lines2. Then T does not have different plain arcs connecting two common
punctures. Thus T detects tagged arcs by Theorem 4.1.3.

4.4 Part 2: Case of finite type or rank 2 type

In Sections 4.4–4.8, we consider cluster algebras of finite type or rank 2.

Our goal in these sections is to prove Conjecture 4.0.4 by showing the following state-
ment:

Theorem 4.4.1 ([25, Theorem 1.11]).

2This example is also related to coloring problems of closed surfaces. It is the example that proves that
we need at least 7 colors to properly cover a graph on the torus.
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4.5 Proof of Theorem 4.4.3

(1) In a cluster algebra of finite type, for any t, s ∈ Tn, if (f1;t, . . . , fn;t) corresponds with
(f1;s, . . . , fn;s) up to order, then xt and xs are the same non-labeled cluster.

(2) In a cluster algebra of rank 2, for t, s ∈ T2, if (f1;t, f2;t) corresponds with (f1;s, f2;s)
up to order, then xt and xs are the same non-labeled cluster.

the detectivity in Theorem 4.0.3 is shown in the process of proving the above theorem.

Remark 4.4.2. In the case of cluster algebras of An or Dn type, Theorem 4.4.1 has
already been proved by using marked surfaces (Section 4.1–4.3).

The key lemma in these sections is the following one:

Theorem 4.4.3 ([25, Theorem 1.8]). In a cluster algebra A(B) of finite type, for any
i ∈ {1, . . . , n} and t ∈ Tn, we have the following relation:

fi;t = [di;t]+. (4.4.1)

It is known that Theorem 4.4.3 holds under the condition that the initial matrix B is
bipartite by combining Corollary 10.10 and Proposition 11.1 (1) in [20]. When B is a skew-
symmetric matrix, Theorem 4.4.3 has already proved by using 2-Carabi-Yau categories (see
[22, Proposition 6.6]). We remove these conditions.
By using Theorem 4.4.3, The consideration of f -vectos comes down to the consideration

of d-vectors.

Remark 4.4.4. In the case that A(B) is of rank 2, we have (4.4.1) by combining Corollary
10.10 and Proposition 11.1 (1) in [20]. If A is of neither finite type nor rank 2, Theorem
4.4.3 does not hold generally. A counterexample is given by [22, Section 6.4] .

4.5 Proof of Theorem 4.4.3

In this section, we will prove Theorem 4.4.3. We say that B is bipartite if there is a
function ε : {1, . . . , n} → {1,−1} such that for all i and j,

b′ij > 0⇒

{
ε(i) = 1,

ε(j) = −1.
(4.5.1)

.
For an exchange matrix B, we define A(B) = (aij) as

aij =

{
2 if i = j;

−|b′ij | if i 6= j.

If A(B) is a Cartan matrix, then we say that B is of finite Cartan type.

Remark 4.5.1. If A = A(x,y, B) is of finite type, then the initial matrix B is mutation
equivalent to a bipartite matrix B′. Furthermore, by permuting their indices appropriately,
we can choose B′ as one of finite Cartan type (see [18, Theorem 1.8, Theorem 7.1]). If the
initial matrix B of A is mutation equivalent to B′ which is finite Cartan Xn type, then
there exists a bijection between almost positive roots of Xn type and cluster variables of
A (see [18, Theorem 1.9]).

We start with proving the special case. For any cluster pattern v 7→ Σv, we fix a seed
Σs such that Bs is bipartite. We define the source mutation µ+ and the sink mutation µ−
as

µ+ =
∏

ε(k)=1

µk, µ− =
∏

ε(k)=−1

µk, (4.5.2)
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where ε is the sign induced by the bipartite matrix Bs (see (4.5.1)). The bipartite belt in-
duced by Σs consists of seeds Σt satisfying the following condition: there exists a mutation
sequence µ consisting of µ+ and µ− such that Σt = µ(Σs).

Remark 4.5.2. Definition of a bipartite belt in this paper is a generalised version of
[20, Definition 8.2]. We do not assume that the initial exchange matrix B is bipartite. A
bipartite belt in [20] corresponds with that induced by the initial bipartite seed Σt0 in this
paper.

Lemma 4.5.3 ([20, Corollary 10.10]). In any cluster algebra, if the initial matrix B is
bipartite and Σt belongs to the bipartite belt induced by Σt0, then we have (4.4.1).

By Remark 4.5.1, if A is of finite type, then A has a seed whose exchange matrix is
bipartite. We prove the case that the initial matrix B is bipartite.

Lemma 4.5.4 ([20, Proposition 11.1 (1)]). In a cluster algebra of finite type, for a bipartite
seed Σs, every cluster variable belongs to a seed lying on the bipartite belt induced by Σs.

Proposition 4.5.5 ([25, Proposition 2.4]). We fix a cluster algebra of finite type whose
initial matrix B is bipartite. For any i ∈ {1, . . . , n} and t ∈ Tn, we have (4.4.1).

Proof. It follows from Lemmas 4.5.3 and 4.5.4.

Let us generalize Proposition 4.5.5 to the case that the initial matrix B is non-bipartite.
The next lemma is a generalization of Lemma 4.5.4.

Lemma 4.5.6 ([27, Lemma 2.5]). In a cluster algebra of finite type, for a seed Σs, every
cluster variable belongs to seeds lying on the bipartite belt induced by Σs.

Proof. Let ΣB
t be a seed and ΣB′

s a bipartite seed. By regarding a change of the initial
seed from ΣB

t to ΣB′
s as a change from the expression of cluster variables and coefficients

by ΣB
t to that by ΣB′

s , the general cases follows from the bipartite cases.

We introduce a key lemma.

Lemma 4.5.7 ([39, Theorem 2.2]). In a cluster algebra A(B) of finite type, for t ∈ Tn,
we have

DB;t0
t = (D

B⊤
t ;t

t0
)>. (4.5.3)

Remark 4.5.8. In [39, Theorem 2.2], the duality for D-matrices is given by

DB;t0
t = (D

−B⊤
t ;t

t0
)>. (4.5.4)

The equation (4.5.3) derives from (4.5.4). In fact, by symmetry of the recursion (2.2.4) of

d-vectors, we have D
−B⊤

t ;t
t0

= D
B⊤

t ;t
t0

.

We are ready to prove Theorem 4.4.3.

Proof of Theorem 4.4.3. We fix a bipartite seed Σ in A(B). Note that A(B) is of finite
type if and only if A(B>) is also. Moreover, B>

t is bipartite if and only if Bt is bipartite.
Therefore, A(B>) is of finite type, and for any t in a bipartite belt induced by Σ, B>

t is
bipartite. Thus, we have

F
B⊤

t ;t
t0

=
[
D

B⊤
t ;t

t0

]
+
, (4.5.5)
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by Proposition 4.5.5 (the operation [ ]+ on matrices are performed component-wise).
Therefore, we have

FB;t0
t =

[
DB;t0

t

]
+
, (4.5.6)

by Proposition 4.5.7 and Theorem 3.2.10. By Lemma 4.5.6, for a cluster variable xj;s,
there exist i ∈ {1, . . . , n} and a vertex t of the bipartite belt induced by a seed Σ such
that xj;s = xi;t. Thus, fj;s = fi;t = di;t = dj;s by (4.5.6), and we have (4.4.1) for any initial
vertex t0.

4.6 Proof of Theorem 4.4.1 (1)

In this section, we prove Theorem 4.4.1 (1). We fix any A(B) of finite type. Through
this section, unless otherwise noted, we assume that seeds, cluster variables, clusters, f -
vectors, d-vectors, F -matrices, and D-matrices are those of A(B). We start with proving
the special case. We say that a vector b is positive (resp. negative) if b 6= 0 and all entries
of b is non-negative (resp. non-positive). Due to Theorem 4.4.3, we can use the properties
of d-vectors to prove Theorem 4.4.1 (1).

Lemma 4.6.1 ([10, Corollary 3.5]). A cluster variable xi;t is not in the initial cluster if
and only if di;t is positive.

By this lemma, we have the following corollary:

Corollary 4.6.2 ([25, Corollary 3.2]). An f-vector fi;t is the zero-vector if and only if xi;t
is in the initial cluster.

Proof. The “if” part is clear. We prove the “only if” part. By Theorem 4.4.3, fi;t = 0
implies that di;t is negative or 0. By Lemma 4.6.1, xi;t is in the initial cluster.

The following propositions and corollary are essential for proving Theorem 4.4.1:

Proposition 4.6.3 ([20, Theorem 11.1 (2)]). We fix a cluster algebra A(B) of finite type
such that B is bipartite and Cartan finite Xn type. Then d-vectors establish a bijection
between cluster variables and the set of all almost positive roots Φ≥−1 = Φ+ ∪ −∆ of Xn

Dynkin type, where Φ+ is the set of all positive roots and −∆ is the set of negative simple
roots.

Let D(B) be the set of all d-vectors in A(B).

Proposition 4.6.4 ([35, Theorem 1.3.3]). We fix a cluster algebra A(B) of finite type.
Then the cardinality |D(B)| depends only on the Dynkin type Xn of A(B).

Corollary 4.6.5 ([25, Corollary 3.5]). If di;t = dj;s holds, then we have xi;t = xj;s.

Proof. Let B′ be a bipartite matrix of finite Cartan Xn type which is mutation equivalent
to B. Then by Proposition 4.6.3 and Proposition 4.6.4, we have

|D(B)| = |D(B′)| = |Φ≥−1|. (4.6.1)

Let X (B) be the set of all cluster variables of A(B). By Remark 4.5.1 and Proposition
4.6.3, we have

|X (B)| = |X (B′)| = |Φ≥−1|. (4.6.2)

Therefore, we have

|D(B)| = |X (B)|. (4.6.3)

If there exist d-vectors di;t and dj;s such that di;t = dj;s and xi;t 6= xj;s, then we have
|D(B)| < |X (B)|. This conflicts with (4.6.3).
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By Corollary 4.6.2 and Corollary 4.6.5, we have the following proposition:

Proposition 4.6.6 ([25, Proposition 3.6]). If fi;t = fj;s 6= 0, then we have xi;t = xj;s.

Proof. Let f be an f -vector which is not equal to 0. We assume that f = fi;t = fj;s. Since
all entries of f are non-negative, and the f -vector is not equal to 0, we have f = di;t = dj;s

by Theorem 4.4.3 and Lemma 4.6.1. By Proposition 4.6.5, we have xi;t = xj;s.

While d-vectors can distinguish the initial clusters, f -vectors cannot. Thus, we can-
not detect the initial cluster variables contained in a cluster by their f -vectors directly.
However, using the property of d-vectors, we can detect them.

Proposition 4.6.7 ([25, Proposition 3.7]). For a D-matrix DB;t0
t , negative column vectors

of DB;t0
t are uniquely determined by positive column vectors of DB;t0

t .

Proof. By (4.5.3), the transposition of a D-matrix in a cluster algebra of finite type is
another D-matrix in a cluster algebra of finite type because A(B) is of finite type if and
only if A(B>

t ) is of finite type. Since negative d-vectors have the form of −ei, if the (i, j)
entry of DB;t0

t is −1, then entries of the ith row and the jth column of DB;t0
t are all 0

except for the (i, j)-entry. Since DB;t0
t do not have the zero column vector by Lemma 4.6.1,

if a D-matrix has just m positive columns, then we have just n −m indices i1, . . . , in−m

such that the ik(k ∈ {1, . . . , n −m})th entry of all positive d-vectors is 0, and DB;t0
t has

column vectors −eik(k ∈ {1, . . . , n−m}). This finishes the proof.

We are ready to prove Theorem 4.4.1 (1).

Proof of Theorem 4.4.1 (1). If fi;t = fj;s 6= 0, then we have xi;t = xj;s by Proposition
4.6.6. We assume that there are m zero-vectors in (f1;t, . . . , fn;t) (or (f1;s, . . . , fn;s)). By
regarding positive f -vectors as d-vectors by Theorem 4.4.3, we detect the rest of d-vectors
in xt and xs by Proposition 4.6.7. Since positive d-vectors in xt corresponds with that of
xs, we have xt = xs by Corollary 4.6.5.

4.7 Proof of Theorem 4.4.1 (2)

We prove Theorem 4.4.1 (2). The strategy of this proof is almost the same as Theorem
4.4.1 (1), but we sometimes use the special properties of cluster algebras of rank 2.
For a cluster algebra of rank 2, we may assume that the initial matrix B has the following

form without loss of generality:

B =

[
0 b
−c 0

]
, b, c ∈ Z≥0, bc ≥ 4, (4.7.1)

because when bc ≤ 3, this cluster algebra is of finite type. We name vertices of T2 by
the rule of (2.1.11) and consider a cluster pattern tn 7→ (xtn ,ytn , Btn). We abbreviate xtn

(resp., ytn , Btn ,Σtn) to xn (resp., yn, Bn, Σn). We also abbreviate d-vectors, D-matrices,
f -vectors, and F -matrices in the same way.

We consider a description of D-matrices in the case n ≥ 0. First, we have

DB;t0
0 =

[
−1 0
0 −1

]
, DB;t0

1 =

[
−1 0
0 1

]
(4.7.2)

by direct calculation. By [29, (1.13)], if n > 0 is even, then we can denote

DB;t0
n =

[
Sn−2

2
(u) + Sn−4

2
(u) bSn−4

2
(u)

cSn−2
2
(u) Sn−2

2
(u) + Sn−4

2
(u)

]
, (4.7.3)
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and if n > 1 is odd, then we can denote

DB;t0
n =

[
Sn−3

2
(u) + Sn−5

2
(u) bSn−3

2
(u)

cSn−3
2
(u) Sn−1

2
(u) + Sn−3

2
(u)

]
, (4.7.4)

where u = bc − 2 and Sp(u) is a (normalized) Chebyshev polynomial of the second kind,
that is,

S−1(u) = 0, S0(u) = 1, Sp(u) = uSp−1(t)− Sp−2(u) (p ∈ N). (4.7.5)

When n < 0, DB;t0
n is the following matrix:

DB;t0
n =

[
d−B⊤

22;−n d−B⊤

21;−n

d−B⊤

12;−n d−B⊤

11;−n

]
, (4.7.6)

where d−B⊤

ij;−n is the (i, j) entry of D−B⊤;t0
−n .

We fix any A(B) of rank 2. Through the rest of this section, unless otherwise noted,
we assume that seeds, cluster variables, clusters, f -vectors, d-vectors, F -matrices, and
D-matrices are those of A(B). Using the above descriptions, we prove some properties for
d-vectors.

Lemma 4.7.1 ([25, Lemma 4.1]). The initial cluster variables belong to Σ0 or Σ±1. Fur-
thermore, xi;t is not in the initial cluster if and only if di;t is positive.

Proof. We prove it in the case n > 0. It suffices to show that for any u ≥ 2 and p ≥ −1,
Sp(u) ≥ 0 holds and Sp(u) = 0 if and only if p = −1. The general term of Sp(u) is

Sp(u) =


p+ 1 if u = 2;

1√
u2 − 4

(u+
√
u2 − 4

2

)p+1

−

(
u−
√
u2 − 4

2

)p+1
 if u 6= 2.

(4.7.7)

By direct calculation, we have Sp(u) ≥ 0. Also, Sp(u) = 0 holds if and only if p = −1
holds. In the case n < 0, we can use the result of the case n > 0 by (4.7.6).

The following corollary is analogous to Corollary 4.6.2:

Corollary 4.7.2 ([25, Lemma 4.2]). An f -vector fi;t is the zero-vector if and only if xi;t
is in the initial cluster.

Proof. We can prove it in the same way as Corollary 4.6.2: we use Lemma 4.7.1 instead
of Lemma 4.6.1.

The following lemma is analogous to Corollary 4.6.5:

Lemma 4.7.3 ([25, Lemma 4.3]). If di;t = dj;s, then we have xi;t = xj;s.

Proof. Since d-vectors are independent of the choice of P, we can assume P = {1}. Then
using [29, (1.15)] (cf. Section 4.8), we have the expressions of cluster variables induced by
d-vectors.

The following proposition is analogous to Corollary 4.6.6:

Proposition 4.7.4 ([25, Proposition 4.4]). If fi;t = fj;s 6= 0, then we have xi;t = xj;s.

Proof. We can prove it in the same way as Corollary 4.6.6: we use Corollary 4.7.2 and
Lemma 4.7.3 instead of Corollary 4.6.2 and Corollary 4.6.5 respectively.
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The following proposition is analogous to Proposition 4.6.7. Unlike Proposition 4.6.7,
we do not need to use the duality for D-matrices.

Proposition 4.7.5 ([25, Proposition 4.5]). For a D-matrix DB;t0
n , negative column vectors

of DB;t0
n are uniquely determined by positive column vectors of DB;t0

n .

Proof. When both d-vectors in DB;t0
n are negative vectors, it is clear. Therefore, we can

assume that only one d-vector is negative. By Lemma 4.7.1, the initial cluster variables
only appear in Σ0 or Σ±1. Therefore, if d1;0 = d1;−1 = −e1 is contained in two d-vectors
associated with a cluster, then the other is always d2:−1. Similarly, if d2;0 = d2;1 = −e2 is
contained in two d-vectors, then the other is always d1:1. By this observation, it suffices

to show d2;−1 6= d1;1. We have d2;−1 =

[
0
1

]
, and d1;1 =

[
1
0

]
by direct calculation. This

finishes the proof.

We are ready to prove Theorem 4.4.1 (2).

Proof of Theorem 4.4.1 (2). We can prove it in the same way as Theorem 4.4.1 (1): we
use Lemma 4.7.3, Proposition 4.7.4, and Proposition 4.7.5 instead of Corollary 4.6.5,
Proposition 4.6.6, and Proposition 4.6.7 respectively.

4.8 Restoration formula of cluster algebras of rank 2

We proved that cluster variables are uniquely determined by their f -vectors for cluster
algebras of rank 2 in the previous section. In this section, we describe these cluster
variables explicitly in the case that coefficients are the principal ones. By this descriptions,
we establish a way to restore F -polynomials from f -vectors. Throughout this section, we
assume that A(B) has the following initial matrix:

B =

[
0 b
−c 0

]
, b, c ∈ Z≥0. (4.8.1)

We do not assume bc ≥ 4, thus cluster algebras of finite type and rank 2 (A2, B2, G2 Dynkin
types) are contained. Unless otherwise noted, we assume that seeds, cluster variables,
clusters, f -vectors, d-vectors, F -matrices, and D-matrices are those of A(B).

A previous work [29] has given a cluster expansions formula in the case that P = {1}.
This formula restores the expressions of cluster variables by the initial ones from their
d-vectors. We start with an explanation of this formula.
We define Dyck Paths and some notations along [29, Section 1]. Let (a1, a2) be a pair of

non-negative integers. A Dyck path of type a1 × a2 is a lattice path from (0, 0) to (a1, a2)
and it does not go above the diagonal combining (0, 0) with (a1, a2). For the Dyck paths
of a1 × a2 type, there is the maximal one Da1×a2 . It is defined by the following property:
for any lattice point A on D, there is no lattice points between A and the crosspoint of a
vertical line including A and the diagonal combining (0, 0) with (a1, a2).

For D = Da1×a2 , let D1 = {u1, . . . , ua1} be the set of horizontal edges of D indexed from
left to right, and D2 = {v1, . . . , va2} be the set of vertical edges of D indexed from bottom
to top.

For any lattice points A and B on D, let AB be the subpath of D that starts at A and
goes along D in the upper right direction until it reaches B. If (a1, a2) is reached before B
is reached, it starts over at (0, 0). Now, (0, 0) and (a1, a2) are considered to be the same
point, thus if A = (a1, a2), then AA corresponds to the maximal Dyck path. We will call
(AB)1 the set of horizontal edges of AB and (AB)2 the set of vertical edges of AB. Let
AB◦ be the set of lattice points on the subpath AB except for the endpoints A and B.
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Figure 4.4: A maximal Dyck path ((a1, a2) = (5, 3)).

u1 u2

u3 u4

u5

v3

v2

v1

A

B

Example 4.8.1. We fix (a1, a2) = (5, 3), and let A = (2, 1), B = (4, 2). Then

(AB)1 = {u3, u4}, (AB)2 = {v2}, (BA)1 = {u5, u1, u2}, (BA)2 = {v3, v1},

and the subpath AA has length 8 (see Figure 4.4).

Next, we define the compatibility in D:

Definition 4.8.2 ([29, Definition 1.10]). For S1 ⊆ D1, S2 ⊆ D2, we say that the pair
(S1, S2) is compatible if for every u ∈ S1 and v ∈ S2, denoting by E the left endpoint of u
and F the upper endpoint of v, there exists a lattice point A ∈ EF ◦ such that

|(AF )1| = b|(AF )2 ∩ S2| or |(EA)2| = c|(EA)1 ∩ S1|. (4.8.2)

We are ready to describe a cluster expansion formula for cluster algebras of rank 2.

Theorem 4.8.3 ([29, Theorem 1.11]). For every d-vector d =

[
d1
d2

]
, the cluster variable

xd corresponding to d is given by the following equation:

xd = x−d1
1 x−d2

2

∑
(S1,S2)

x
b|S2|
1 x

c|S1|
2 , (4.8.3)

where the sum is over all compatible pairs (S1, S2) in D[d1]+×[d2]+.

Remark 4.8.4. In [29, Theorem 1.11], (4.8.3) is defined for any (a1, a2) ∈ Z2 and is called
a greedy element.

We generalize this formula to the principal coefficients version in a way which is analo-
gous to [30]. When a cluster algebra is of rank 2, g-vectors are obtained from d-vectors:

Theorem 4.8.5 ([25, Theorem 5.5]). For a g-vector g =

[
g1
g2

]
and a d-vector d =

[
d1
d2

]
of a cluster variable, we have the following equation:[

g1
g2

]
=

[
−d1

cd1 − d2

]
. (4.8.4)

Proof. This is the spacial case of [20, Theorem 10.12].

Using g-vectors, we have the following generalization of Theorem 4.8.3:

Theorem 4.8.6 ([25, Theorem 5.6]). For a d-vector d =

[
d1
d2

]
, the cluster variable xd

with the principal coefficients corresponding to d is given by the following equation:

xd = x−d1
1 x−d2

2

∑
(S1,S2)

y
[d1]+−|S1|
1 y

|S2|
2 x

b|S2|
1 x

c|S1|
2 , (4.8.5)

where the sum is over all compatible pairs (S1, S2) in D[d1]+×[d2]+.
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Proof. When a d-vector is the negative, we have (4.8.5) by direct calculation. We assume
that a d-vector is positive. For any compatible pair (S1, S2) ∈ Dd1×d2 , let a1(S1, S2) and
a2(S1, S2) be integers satisfying

xd = x−d1
1 x−d2

2

∑
(S1,S2)

y
a1(S1,S2)
1 y

a2(S1,S2)
2 x

b|S2|
1 x

c|S1|
2 . (4.8.6)

Since xd is homogeneous by the grading (2.3.4), and its degree is g =

[
g1
g2

]
=

[
−d1

cd1 − d2

]
by Theorem 4.8.5, the following equation holds for any compatible pair (S1, S2):[

−d1
cd1 − d2

]
= −

[
d1
d2

]
+ a1(S1, S2)

[
0
c

]
+ a2(S1, S2)

[
−b
0

]
+

[
b|S2|
c|S1|

]
. (4.8.7)

By solving the equation, we have

a1(S1, S2) = d1 − |S1|, a2(S1, S2) = |S2|. (4.8.8)

By Theorem 4.8.6, definition of F -polynomials, and Remark 4.4.4, we have the following
restoration formula of F -polynomials from f -vectors:

Corollary 4.8.7 ([25, Corollary 5.7]). For a f -vector f =

[
f1
f2

]
, the F -polynomial Ff (y)

whose maximal degree vector is f is given by the following formula:

Ff (y1, y2) =
∑

(S1,S2)

y
f1−|S1|
1 y

|S2|
2 , (4.8.9)

where the sum is over all compatible pairs (S1, S2) in Df1×f2.

Example 4.8.8. Let B =

[
0 4
−1 0

]
and d = f =

[
3
2

]
. If (S1, S2) ∈ D3×2 is compatible,

then at least one of the sets S1 and S2 is empty, or (S1, S2) is one of pairs in the following
list:

({u1}, {v2}), ({u2}, {v2}), ({u3}, {v1}). (4.8.10)

Then we have an expression of the cluster variable xd corresponding to d-vector d in
A•(B) as follows:

xd =
x81y

3
1y

2
2 + 2x41y

3
1y2 + y31 + 3x41x2y

2
1y2 + 3x2y

2
1 + 3x22y1 + x32

x31x
2
2

. (4.8.11)

Also we have the F -polynomial Ff (y) corresponding to the f -vector f as follows:

Ff (y) = y31y
2
2 + y31y2 + y31 + y21y2 + y21 + y1 + 1. (4.8.12)
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This chapter is based on joint work with Changjian Fu [21]. In this chapter, we consider a
generalization of the compatibility degree of cluster complexes. The compatibility degree
(· ‖ ·) is function on pairs of cluster variables, and originally introduced by Fomin and
Zelevinsky. In [18, 19], the compatibility degree is defined in cluster algebra of finite type
by using finite root systems. Fomin and Zelevinsky classify cluster algebras of finite type
by using this degree. We call it the classical compatibility (See Section 5.3.1). The classical
compatibility degree has the following properties:

(1) There is a cluster x containing both x and x′ if and only if (x ‖ x′) = (x′ ‖ x) = 0.

(2) There is a mutation µk exchanging x for x′ (or x′ for x) if and only if (x ‖ x′) =
(x′ ‖ x) = 1.

After Fomin and Zelevinsky’s work, Ceballos and Pilaud found that the classical compat-
ibility degree can be also defined by using d-vectors in [10], and Cao and Li generalized it
in [9] from cluster algebras of finite type to general cluster algebras.

On the other hand, as we see in Section 4.4, in cluster algebra of finite type, d-vectors
and f -vectors are coincide. Therefore, the classical compatibility degree can be also defined
by using f -vectors. In this chapter, we introduce a generalization of the classical one from
from cluster algebras of finite type to general cluster algebras by using f -vectors (Section
5.3.2).

We consider comparing compatibility degree derived from f -vectors with that from d-
vectors. For example, both compatibility degree derived from f -vectors and d-vectors
satisfy the condition (1) above (Theorems 5.3.17 and 5.3.18), however d-vector’s one does
not satisfy the condition (2) (See Examples 5.3.26, 5.3.27). On the other hand, we can find
that f -vector’s one satisfies the condition (2) in many cluster algebras and counterexamples
have not been obtained yet (See Theorems 5.3.23, 5.3.24, and 5.3.25).

Moreover, we will see in this chapter that the compatibility degree derived from the
f -vector inherit various properties of the classical one.

5.1 Scattering diagrams and enough g-pairs property

As preparation, we introduce Scattering diagrams and enough g-pairs property.

5.1.1 Scattering diagrams

The scattering diagrams were introduced in [24] to study the canonical basis of cluster
algebras. In this paper, we give only a few definitions and properties used in proofs along
[9, 31].

Definition 5.1.1. We fix a skew-symmetrizable matrix B whose order is n, and let S be
a skew-symmetrizer of B. For the matrix B, We call the pair (v,W ) a wall associated
with B, where v ∈ Zn

≥0 is a non-zero vector, and W is a convex cone spanning v⊥ :=

{m ∈ Rn | v>Sm = 0}. We say that a set D(B) of walls associated with B is a scattering
diagram of B, and each connected compartment of Rn −D(B) is a chamber of D(B).
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5 Compatibility degree of cluster complexes

The open half space {m ∈ Rn | v>Sm > 0} is the green side of W , and {m ∈ Rn |
v>Sm < 0} is the red side of W .

Definition 5.1.2. Let D(B) be a scattering diagram in Rn. We say that a continued
path ρ : [0, 1]→ Rn is finite transverse at D(B) if ρ satisfies the following conditions:

• Neither ρ(0) or ρ(1) is in any wall W of D(B).

• The image of ρ crosses each wall W of D(B) transversely.

• The image of ρ crosses finitely many walls of D(B) and it does not cross the bound-
aries of walls or intersection of walls spanning two distinct hyperplanes.

We fix a skew-symmetrizable matrix B of order n. We take a skew-symmetrizer S =
diag(s1, . . . , sn) of B so that s1, . . . , sn are relatively prime. We consider

R = Q[x±1
1 , . . . , x±1

n ][[y1, . . . , yn]],

that is, formal power series in the variables y1, . . . , yn with coefficients in Q[x±1
1 , . . . , x±1

n ].
For v = (v1, . . . , vn)

> ∈ Zn
≥0, we define the formal elementary transformation Ev ∈

Aut(R) as

Ev(x
w) = (1 + xBvyv)

v⊤Sm
gcd(s1v1,...,snvn) , Ev(y

w′
) = yw′

with the inverse

E−1
v (xw) = (1 + xBvyv)

− v⊤Sm
gcd(s1v1,...,snvn) , E−1

v (yw′
) = yw′

.

Let ρ be a finite transverse path of a scattering diagram D(B), and we assume that ρ
crosses walls of D(B) in the following order:

(v1,W1), . . . , (vn,Wn).

We define the path-ordered product of elementary transformations of ρ as

Eρ = Eεs
vs
◦ · · · ◦ Eε1

v1
∈ Aut(R),

where εi = 1 (resp., εi = −1) if ρ crosses Wi from its green side to its red side (resp.,
from its red side to its green side). A scattering diagram D(B) which has finitely many
walls is consistent if for any finite transverse path ρ whose starting point coincides with
terminal point, Eρ = 1 holds. Moreover, it is generalized to scattering diagrams which
have infinitely many walls. Let I be a monomial ideal of Q[[y1, . . . , yn]]. For each v ∈ Zn

0 ,
Ev and E−1

v induce automorphisms of R/I. A finite scattering diagram is consistent mod I
if the path-ordered product associated to every transverse loop is a trivial automorphism
of R/I. The reduction D/I of a scattering diagram D is obtained by deleting any wall of
the form (v,W ) with yn ∈ I. A scattering diagram D(B) which has infinitely many walls
is consistent if for any monomial ideal I of Q[[y1, . . . , yn]]with finite dimensional quotient,
the reduction D/I is finite and consistent mod I.

Lemma 5.1.3 ([24, Theorem 1.12]). Let B be a skew-symmetrizable matrix of order n.
There exists a unique consistent diagram D0(B) satisfying the following conditions:

• For any i ∈ {1, . . . , n}, (ei, e⊥i ) are walls of D0(B).

• For any else walls (v,W ) of D0(B), Bv /∈W holds.
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We note that since v ∈ Z≥0, we have W ∩ (R>0)
n = W ∩ (R<0)

n = ∅. Therefore, (R>0)
n

and (R<0)
n are chambers of D0(B), and we call them all positive chamber and all negative

chamber respectively. If there exists a path which is finitely transverse from all positive
chamber to a chamber C, then we call C a reachable chamber.

Lemma 5.1.4 ([24, Lemma 2.10]). Let A(B) be a cluster algebra of rank n whose initial
matrix is B. Each reachable chamber of D0(B) is expressed by the following form:

R>0g1 + · · ·+ R>0gn, (5.1.1)

where G = (g1, . . . ,gn) is one of G-matrices of A(B).

5.1.2 Enough g-pairs property

The definition of g-pairs was introduced in [9] for cluster algebras with principal coefficients
with the aim to study d-vectors. By our convention of g-vectors and Proposition 2.3.8, it
generalizes to cluster algebras with arbitrary coefficients directly.

Definition 5.1.5. Let A(B) be a cluster algebra of rank n with the rooted vertex t0, and
I = {i1, · · · , ip} be a subset of {1, 2, · · · , n}.

(1) We say that a seed Σt = (xt,yt, Bt) of A(B) is connected with (x,y, B) by an I-
sequence, if there exists a composition of mutations µks · · ·µk2µk1 , such that (xt,yt, Bt) =
µks · · ·µk2µk1(x,y, B), where k1, . . . , ks ∈ I.

(2) We say that a cluster xt of A(B) is connected with x by an I-sequence, if there
exists a seed containing the cluster xt such that this seed is connected with a seed
containing the cluster x by an I-sequence.

Definition 5.1.6. Let A(B) be a cluster algebra of rank n with rooted vertex t0, and
I = {i1, . . . , im} be a subset of {1, . . . , n}. For any two cluster xt and x′

t, the pair (xt,x
′
t)

is called a g-pair along I if it satisfies the following conditions:

• xt′ is connected with xt0 by an I-sequence,

• for any cluster monomial xv
t in xt, there exists a cluster monomial xv′

t′ with v′i = 0
for i 6∈ I such that

πI(g(x
v
t )) = πI(g(x

v′
t′ )) (5.1.2)

where g(xv
t ) and g(xv′

t′ ) are g-vectors of the cluster monomials xv
t and xv′

t′ and πI is
a canonical projection from Rn to R|I|.

Theorem 5.1.7 ([9, Theorems 4.8, 5.5]). Let A(B) be a cluster algebra of rank n with
arbitrary coefficients. For any subset I ⊂ {1, . . . , n} and any cluster xt, there exists a
cluster xt′ such that (xt,xt′) is a g-pair along I. Furthermore, if (xt,xs) is also a g-pair
along I, then we have xt′ = xs.

We often refer to Theorem 5.1.7 the enough g-pairs property of A(B).

5.2 d-vectors versus f-vectors

Today, it is known that d-vectors and f -vectors are different vectors essentially, but it
was pointed out that these two classes of vectors have similarities. Fomin and Zelevinsky
expected that d-vectors of non-initial cluster variables coincide with f -vectors of them
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in any cluster algebras [20, Conjecture 7.17]. A counterexample of it was given by [22,
Example 6.7], but it is known that this conjecture is true in cluster algebras of rank 2
and of finite type (Theorem 4.4.3 and Remark 4.4.4). In this section, we show a weaker
similarity of these two families of vectors than (4.4.1) in general cluster algebras.
Fomin and Zelevinsky conjectured the following properties about d-vectors in [20, Con-

jecture 7.4], which was proved in [9]:

Theorem 5.2.1 ([9, Theorem 6.3]). Let A(B) be any cluster algebra. The following
statements hold:

(1) A cluster variable xi;t is not one of the initial cluster variables if and only if di;t is
a non-negative vector.

(2) The (i, j)th entry d
Bt′ ;t

′

ij;t of D
Bt′ ;t

′

t equals the (k, ℓ)th entry dBs;s
kℓ;s′ of D

Bs;s
s′ if xi;t′ = xk;s′

and xj;t = xℓ:s′.

(3) There is a cluster containing xi;t( 6= xk) and xk if and only if dki;t = 0.

We prove the similar theorem of it about f -vectors:

Theorem 5.2.2 ([21, Theorem 3.3]). Let A(B) be any cluster algebra. The following
statements hold:

(1) A cluster variable xi;t is not one of the initial cluster variables if and only if fi;t is a
non-zero vector.

(2) The (i, j)th entry fBt;t
ij;t′ of FBt;t

t′ equals the (k, ℓ)th entry fBs;s
kℓ;s′ of FBs;s

s′ if xi;t = xk;s
and xj;t′ = xℓ:s′.

(3) There is a cluster containing xi;t and xk if and only if fki;t = 0.

(4) A cluster xt contains xk if and only if entries of the kth row of FB:t0
t are all 0.

Remark 5.2.3. Because of Proposition 2.3.8, it suffices to show Theorem 5.2.2 in the
case of cluster algebras with principal coefficients. In fact, for example, we assume that
Theorem 5.2.2 (1) holds in principal coefficient cases and there is a cluster algebra A1(B)
with coefficients in P1 which does not satisfy Theorem 5.2.2 (1). Then, there is a non
initial cluster variable x(1) whose f -vector is zero. Then, for any i, we have x(1) 6= xi(1)
in A1(B). Since f -vectors are independent of coefficients, we have a cluster variable x
whose f -vector is zero in A•(B) such that for any i, we have x 6= xi by Proposition 2.3.8.
This is a contradiction. Therefore, we assume A(B) = A•(B) in the proof of Theorem
5.2.2.

The first statement implies there are no cluster variables whose expansions in the initial
cluster variables are Laurent monomials except for the initial cluster variables, and this
is a generalization of Corollaries 4.6.2 and 4.7.2. The second statement is important for
defining the compatibility degree in the next section. We prove Theorem 5.2.2 in the rest
of this section.

To prove Theorem 5.2.2 (1), we use the following two lemmas.

Lemma 5.2.4 ([9, Lemma 7.3]). Let A(B) be any cluster algebra, and we fix any cluster
variable x of A(B). If, for all i ∈ {p + 1, . . . , n}, there exists a cluster containing x and
xi, then there exists a cluster containing x and initial cluster variables xp+1, . . . , xn.

Lemma 5.2.5 ([9, Lemma 6.2]). Let A(B) be any cluster algebra. We fix any subset X of
a cluster. Then, all seeds which have a cluster containing X form a connected component
of exchange graph of A(B).
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Proof of Theorem 5.2.2 (1). “If” part is clear. We prove “Only if ”part by proving the
contraposition of the statement. Since fi;t = 0 and by (3.1.8), we have Fi;t(y) = 1. Then
we have xi;t =

∏
j x

gji
j by the separation formula (2.3.10). We note that di;t coincides

with −gi;t. According to Theorem 5.2.1 (1), we have gi;t ∈ Zn
≤0 or gi;t = el. We assume

gi;t ∈ Zn
≤0. Without loss of generality, we can assume that

gi;t = (a1, · · · , ak, 0, · · · , 0)> ∈ Zn
≤0, a1, . . . , ak < 0.

By Theorem 5.2.1 (3) and Lemma 5.2.4, there exists a cluster x such that x contains xi;t
and initial cluster variables xk+1, . . . , xn. We set x = {xi;t, z2, · · · , zk, xk+1, · · · , xn}. By
the sign-coherence of G-matrices (Theorem 3.2.7), the first k components of g-vectors of

z2, . . . , zk lie in Z≤0. Then G-matrix associated with x is a partition matrix

[
G O
X En−k

]
,

where each column of G lies in Zk
≤0. We consider the cluster algebra A′ by freezing

the initial cluster variables xk+1, · · · , xn of A(B). One can show that the G-matrix of
the cluster x̃ = {xi;t, z2, · · · , zk} of A′ is G. We note that columns of G are linearly
independent because of detG = ±1. Then, according to Lemma 5.1.4, the chamber
induced by G coincides with the all negative chamber. Therefore, each column of G is a
scalar multiplication of a unit vector and we have k = 1. Thus we have detG = −1, gi;t =
−e1 and xi;t = 1/x1. We note that di;t = e1 and thus there exists a cluster x′ such that
x′ = {1/x1, x2. . . . , xn} by Theorem 5.2.1 (1) again. However, by Lemma 5.2.5, clusters
containing {x2, . . . , xn} are the initial cluster or a cluster which is obtained by mutating
the initial cluster in direction 1. Clearly, x′ is not the initial cluster. Since the numerator
of x′ does not have any initial cluster variables, the entries of first column and the first
row of B are all 0. In this case, µ1(x1) = (y1 + 1)/x1. Thus x′ 6= µ1(xt0). This is a
contradiction. Therefore, we have gi;t = −di;t = el. Because of Theorem 5.2.1 (1), we
have xi;t = xl. This finishes the proof.

Next, we prove Theorem 5.2.2 (2). This statement follows from the fact that the (i, j)
entry of a F -matrix is invariant by mutations in direction k such that k 6= j and by
initial-seed mutations in direction ℓ such that ℓ 6= i. We prepare a lemma. This gives an
recursion of the F -matrices by an initial-seed mutation.

Proof of Theorem 5.2.2 (2). Since xi;t = xk;s, according to Lemma 5.2.5, there exists a
permutation σ of indices such that σ(k) = i and a vertex s0 ∈ Tn such that the seed Σs0

is the permutation of Σt by the permutation σ, that is

xu;s = xσ(u);s0 , yu;s = yσ(u);s0 , buv;s = bσ(u),σ(v);s0

for all u and v. Moreover, the seed Σs0 is connected with Σt by a {1, . . . , n}\{i}-sequence.
By definition of f -vectors, for any cluster variable z, the f -vector of z with respect to

the seed Σs0 is the permutation of the f -vector of z with respect to the seed Σs by σ. In

particular, fBs;s
kℓ;s′ = f

Bs0 ;s0
iℓ;s′ . On the other hand, since xj;t′ = xℓ;s′ , we have fBt;t

iℓ;s′ = fBt;t
ij;t′ .

By Theorem 3.2.9, the initial-seed mutation at m only change the mth row of F -matrices.

Therefore, we have f
Bs0 ;s0
iℓ;s′ = fBt;t

iℓ;s′ . Putting all of these together, we obtain

fBt;t
ij;t′ = fBs;s

kℓ;s′ .

Let us prove Theorem 5.2.2 (3). The following fact is known.

Lemma 5.2.6 ([9, Lemma 5.2]). Suppose that A(B) is an arbitrary cluster algebra of

rank n, and (xt,xt′) is a g-pair along I = {1, · · · , n}\{k}. Let G
Bt′ ;t

′

t = (g′ij) and d
Bt′ ;t

′

i;t =

(d′1, · · · , d′n)> be the d-vector of xi;t with respect to xt′. We have that

61



5 Compatibility degree of cluster complexes

(1) g′ki > 0 if and only if d′k = −1, and if only if xi;t ∈ xt′ and xi;t = xk;t′.

(2) g′ki = 0 if and only if d′k = 0, and if only if xi;t ∈ xt′ and xi;t 6= xk;t′.

(3) g′ki < 0 if and only if d′k > 0, and if only if xi;t /∈ xt′.

We consider a similar lemma to Lemma 5.2.6 for the f -vectors:

Lemma 5.2.7 ([21, Lemma 3.9]). Suppose that A(B) is an arbitrary cluster algebra of

rank n, and (xt,xt′) is a g-pair along I = {1, · · · , n}\{k}. Let f
Bt′ ;t

′

i;t = (f ′
1, · · · , f ′

n)
> be

the f -vector of xi;t with respect to xt′. We have that

(1) g′ki ≥ 0 if and only if f ′
k = 0, and if only if xi;t ∈ xt′.

(2) g′ki < 0 if and only if f ′
k > 0, and if only if xi;t /∈ xt′.

Proof of Lemma 5.2.7. By Lemma 5.2.6, it suffices to show that g′ki < 0 implies f ′
k > 0.

By Lemma 3.2.8, g′ki < 0 implies hB
′;t′

ki;t < 0. Then, we have f ′
k > 0 by definition of the

H-matrix.

Proof of Theorem 5.2.2 (3). We set I = {1, . . . , n}\{k}. First, we prove “only if” part.
Let xt′ be a cluster such that xt′ contains both xi;t and xk. Then, according to Lemma
5.2.5, xt′ is connected with xt0 by an I-sequence. We set xt′ = µ(xt0). If we regard

xt′ as the initial cluster, then f
Bt′ ;t

′

ki;t = 0. We can change the initial cluster from xt′

to xt0 by initial-seed mutation induced by µ−1. Then, by Theorem 5.2.2 (2), we have

fki;t = f
Bt′ ;t

′

ki;t = 0. Second, we prove “if” part. Let xs be a cluster containing the cluster
variable xi;t. By Lemma 5.1.7, there is a cluster xs′ such that (xs,xs′) is a g-pair along I.
Then xk;s′ = xk holds because xs′ is connected with xt0 by an I-sequence. Since fki;t = 0

implies f
Bs′ ;s

′

ki;t = 0 by Theorem 5.2.2 (2), we have xi;t ∈ xs′ by Lemma 5.2.7. This finishes
the proof.

Proof of Theorem 5.2.2 (4). “Only if” part follows from “Only if” part of Theorem 5.2.2
(3). We prove “if” part. By Theorem 3.2.10, the transposition of F -matrix FB;t0

t is

another F -matrix F
B⊤

t ;t
t0

. By assumption, the kth column of F
B⊤

t ;t
t0

is the zero vector. By
Theorem 5.2.2 (1), a cluster variable of A(B>

t ) associated with this column is an initial
cluster variable. Then, by Theorem 5.2.2 (3), there is a j ∈ {1, . . . , n} such that all entries

of the jth row of F
B⊤

t ;t
t0

are 0. This implies the jth column of FB;t0
t is the zero vector.

Therefore, all entries of jth column and kth row of FB;t0
t are all 0. By Theorem 5.2.2

(1), xt has at least one initial cluster variable. We show that one of these initial cluster
variable is xk. We assume that xk 6∈ xt. Then, xt has an initial cluster variable which
is not xk. We assume that this cluster variable is xk′ . Then by Theorem 5.2.2 (3), the

k′th column of F
B⊤

t ;t
t0

is the zero vector. In the same way as the previous argument, there

exists a j′ ∈ {1, . . . , n} such that the j′ column of FB;t0
t is the zero vector. Since cluster

variables in a cluster are algebraically independent, we note that j 6= j′. Therefore, all
entries of the j, j′th columns and the k, k′th rows of FB;t0

t are all 0. By Theorem 5.2.2 (1)
again, xt has at least two initial cluster variables. By assumption, xt has a cluster variable
which is neither xk nor xk′ . By repeating this argument, we have FB;t0

t = O. Therefore
by Theorem 5.2.2 (1), xt = xt0 . This conflicts with the assumption.

In particular, Theorem 5.2.2 (2) admits the compatibility degree between two cluster
variables, and Theorem 5.2.2 (3) implies that the compatibility property holds. See Section
5.3.2.
By these theorems, we have the following corollary:
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Corollary 5.2.8 ([21, Corollary 3.13]). For any cluster algebra A(B), fij;t = 0 if and
only if dij;t = 0 or −1.

Proof. It follows from Theorem 5.2.1 (1),(3) and Theorem 5.2.2 (3).

The property of d-vectors corresponding to Theorem 5.2.2 (4) had not been known.
However, we obtain it by using Theorem 5.2.2 (4) and Corollary 5.2.8.

Corollary 5.2.9 ([21, Corollary 3.14]). For any cluster algebra A(B), all entries of the
kth row of DB;t0

t are all non-positive if and only if xt contains xk.

Proof. “If” part follows from Theorem 5.2.1 (3). We show “only if” part. By Corollary
5.2.8, the kth row of FB;t0

t are all 0. By Theorem 5.2.2 (4), xt contains xk. This finishes
the proof.

5.3 Compatibility degree and its properties

The classical compatibility degree was introduced to define the generalized associahedron.
This is a function on the set of pairs of roots, and the generalized associahedra are sim-
plicial complexes whose simplexes are sets consisting of roots such that each classical
compatibility degree of a pair of roots is 0. In this section, we generalize it to a function
on pairs of cluster variables in a different way from [9] by using f -vectors and give some
properties of the generalized one, the compatibility degree.

5.3.1 Classical compatibility degree and generalized associahedra

In this subsection, we explain the classical compatibility degree and the generalized asso-
ciahedra introduced by [19]. Let Φ be a root system of finite type. We denote by Φ≥−1

the set of almost positive roots, that is, the union of all negative simple roots and all
positive roots. Let CΦ be a Cartan matrix corresponding to Φ and ΓΦ be a Dynkin graph
corresponding to Φ. Denote by I the set of vertices of ΓΦ. Let I+ be a maximal set of
vertices such that each two vertices in I+ are not neighbors on ΓΦ, and we also define I−
as I− = I − I+. We remark that I− is also the maximal set of vertices such that each two
vertices in I− are not neighbors on ΓΦ because ΓΦ is a bipartite graph. The sign function
ε : I → {±1} is defined by

ε(i) =

{
1 if i ∈ I+

−1 if i ∈ I−
(5.3.1)

Next, we define t± which are compositions of simple reflections as follows:

t+ =
∏

ε(i)=1

si, t− =
∏

ε(i)=−1

si. (5.3.2)

We define transformations τ± : Φ≥−1 → Φ≥−1 as follows:

τ+(α) =

{
α if α = −αj , ε(j) = −1;
t+ (α) otherwise,

(5.3.3)

τ−(α) =

{
α if α = −αj , ε(j) = 1;

t− (α) otherwise.
(5.3.4)

For k ∈ Z and i ∈ I, we abbreviate

α(k; i) = (τ−τ+)
k(−αi). (5.3.5)
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In particular, α(0; i) = −αi for all i and α(±1; i) = αi for i ∈ I∓ .
Let h be the Coxeter number of Φ and w◦ be the longest element of the Weyl group of

Φ. Let i 7→ i∗ denote the involution on I defined by −αi∗ := w◦(αi). It is known that this
involution preserves each of the sets I+ and I− when h is even, and interchanges them
when h is odd.

Proposition 5.3.1 ([19, Proposition 2.5]).

(1) Suppose h = 2e is even. Then the map (k, i) 7→ α(k; i) restricts to a bijection

[0, e]× I → Φ≥−1. (5.3.6)

Furthermore, α(e+ 1; i) = −αi∗ for any i.

(2) Suppose h = 2e+ 1 is odd. Then the map (k, i) 7→ α(k; i) restricts to a bijection

([0, e+ 1]× I−) ∪ ([0, e]× I+)→ Φ≥−1. (5.3.7)

Furthermore, α(e+ 2; i) = −αi∗ for i ∈ I−, and α(e+ 1; i) = −αi∗ for i ∈ I+.

By this proposition, we can express any root β ∈ Φ≥−1 with β = τ(−αi), where τ is
a composition of τ+ and τ−, and −αi is a negative simple root. We consider a function
(· ‖ ·)cl : Φ≥−1 × Φ≥−1 → Z≥0 characterized by the following property: For any negative
simple root −αi and any root β, we have

(−αi ‖ β)cl = [(β : αi)]+, (5.3.8)

and for any roots α, β, we have

(α ‖ β)cl = (τε(α) ‖ τε(β))cl, (5.3.9)

where(β : αi) is the coefficient integer of αi in the expansion of β in simple roots, and
ε ∈ {±1}. This function is well-defined by Proposition 5.3.1. We call it the classical
compatibility degree. In [19], the classical compatibility degree is called simply the com-
patibility degree, but we adopt this name in imitation of [10] to distinguish between it
and forthcoming other degrees. For α, β ∈ Φ≥−1, we say that α and β are compatible if
(α ‖ β)cl = (β ‖ α)cl = 0.

By using the classical compatibility degree, we define the generalized associahedra.

Definition 5.3.2. For a root system Φ, we define the generalized associahedron ∆(Φ) as
a simplicial complex whose simplexes are subsets of almost positive roots such that their
elements are pairwise compatible.

Example 5.3.3. We consider the root system of A2 type. We give a generalized asso-
ciahedron of A2 type in Figure 5.1. We remark that this complex are the same as the
cluster complex given in Example 2.4.2. We introduce the correspondence between cluster
complexes and generalized associahedra in Theorems 5.3.4 and 5.3.5.

The function (· ‖ ·)cl can be regarded as a function on cluster variables of a cluster
algebra in the following way: We fix a root system Φ and the sign of vertices I = I+ ∪ I−
of ΓΦ. We denote by B(CΦ) = (bij) a skew-symmetrizable matrix obtained from the
Cartan matrix CΦ = (Cij) by the following equation:

bij =

{
0 if i = j,

−εCij if i 6= j and i ∈ Iε.

We call A(B(CΦ)) a cluster algebra induced by Φ.
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Figure 5.1: Generalized associahedron of A2 type

α1 + α2

α1

−α2

−α1

α2

Theorem 5.3.4 ([18, Theorem 1.9]). For a root system Φ, there is a unique bijection
α 7→ x[α] from Φ≥−1 to the set X of all cluster variables in A(B(CΦ)), such that, for any
α =

∑
i aiαi ∈ Φ≥−1, the cluster variable x[α] is expressed in terms of the initial cluster

x1, . . . , xn as

x[α] =
P (x1, . . . , xn)

xa11 · · ·x
an
n

, (5.3.10)

where P (x1, . . . , xn)is a polynomial over ZP with nonzero constant term. Under this bi-
jection, x[−αi] = xi.

The bijection in Theorem 5.3.4 is natural in the sense of the following.

Theorem 5.3.5 ([18, Theorem 1.12]). Under the bijection of Theorem 5.3.4, the cluster
complex ∆(A(B(CΦ))) is identified with the simplicial complex ∆(Φ).

By Theorems 5.3.4 and 5.3.5, we can identify almost positive roots in Φ≥−1 with the
d-vectors of cluster variables of A(B(CΦ)). By abusing notation, we use (· ‖ ·)cl as
a function on X × X . We denote by Φ∨ a dual root system of Φ, and for any α ∈
Φ, we denote by α∨ ∈ Φ∨ the coroot of α. By definition, it is clear that A(B(CΦ∨))
is A(B(CΦ)

>) or A(−B(CΦ)
>) (depending on the choice of I+). We remark that the

classical compatibility on X × X depends only on root systems, therefore we can assume
A(B(CΦ∨)) = A(−B(CΦ)

>) without loss of generality.
The classical compatibility degree satisfies the following property:

Proposition 5.3.6 ([19, Proposition 3.3]). We fix Φ and an induced cluster algebra
A(B(CΦ)).

(1) We have (x[α] ‖ x[β])cl = (x[β∨] ‖ x[α∨])cl for every α, β ∈ Φ≥−1.
In particular, if Φ is simply-laced, then (x[α] ‖ x[β])cl = (x[β] ‖ x[α])cl.

(2) If (x[α] ‖ x[β])cl = 0, then (x[β] ‖ x[α])cl = 0.

(3) If α and β belong to Φ(J)≥−1 for some proper subset J ⊂ I then their compatibility
degree with respect to the root subsystem Φ(J) is equal to (x[α] ‖ x[β])cl.

We call (1) the duality property, (2) the symmetry property, and (3) the embedding
property respectively. Moreover, the classical compatibility degree satisfies the following
two property, the compatibility property and the exchangeability property :
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Proposition 5.3.7 ([21, Proposition 4.7]). Let Φ be a root system and A(B(CΦ)) be an
induced cluster algebra by Φ. For any set of cluster variables X, there exists a cluster x
such that x contains X if and only if the classical compatibility degrees of any pairs of
cluster variables in X are 0.

Proof. It follows from Theorem 5.3.5 immediately.

Proposition 5.3.8 ([21, Proposition 4.8]). Let Φ be a root system and A(B(CΦ)) be the
induced cluster algebra by Φ. For any x[α], x[β], there exists a set X of cluster variables
such that X ∪ x[α] and X ∪ x[β] are both clusters, if and only if (x[α] ‖ x[β])cl = (x[β] ‖
x[α])cl = 1.

Proof. The exchangeability of almost positive roots is proved by [11, Lemma 2.2] and
[18, Corollary 4.4]. The proposition is shown by combining it with Theorem 5.3.5.

We consider a natural generalization of the classical compatibility degree keeping these
properties in the next subsection.

5.3.2 Compatibility degree

We introduce the compatibility degree. This is defined by using components of f -vectors.
In this subsection, we prove that compatibility degree keeps Proposition 5.3.6 and Propo-
sition 5.3.7.

Definition 5.3.9. Let A(B) be a cluster algebra. We define the compatibility degree
(· ‖ ·) : X × X → Z≥0 of A(B) as follows: For any two cluster variables x and x′, if
x = xi;t, x

′ = xj;t′ , then

(x ‖ x′) = fBt;t
ij;t′ . (5.3.11)

When we want to emphasize that this function is defined by f -vector, we use (x ‖ x′)f as
the notation.

We remark that the choice of i, j, t, t′ satisfying x = xi;t and x′ = xj;t′ is not unique,
but the compatibility degree is well-defined by Theorem 5.2.2 (2). This function is a
generalization of the classical compatibility degree.

Theorem 5.3.10 ([21, Theorem 4.10]). We fix any root system Φ and its induced cluster
algebra A(B(CΦ)). For any cluster variable x, x′, we have

(x ‖ x′)cl = (x ‖ x′). (5.3.12)

To prove the theorem, we introduce d-compatibility degree defined by [9].

Definition 5.3.11. Let A(B) be a cluster algebra. We define the d-compatibility degree
(· ‖ ·)d : X × X → Z≥0 of A(B) as follows: For any two cluster variables x and x′, if
x = xi;t, x

′ = xj;t′ , then

(x ‖ x′)d =
[
dBt;t
ij;t′

]
+
. (5.3.13)

In [9], the compatibility degree is not defined by
[
dBt;t
ij;t′

]
+

but dBt;t
ij;t′ . We adopt this

definition for simplicity of the notation. The following theorem is essential for Theorem
5.3.10:
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Theorem 5.3.12 ([10, Corollary 3.2]). We fix any root system Φ and its induced cluster
algebra A(B(CΦ)). For any cluster variable x, x′ we have

(x ‖ x′)cl = (x ‖ x′)d. (5.3.14)

Proof of Theorem 5.3.10. Since A(B(CΦ)) is of finite type, it follows from Theorem 4.4.3
and Theorem 5.3.12.

Remark 5.3.13. Theorem 5.3.10 can be generalized from the classical compatibility de-
gree to c-compatiblity degree, which is a function of the set of pairs of cluster variables of
any cluster algebras of finite type, defined by [10, Definition 2.8]. This fact follows from
[10, Corollary 3.3] and Theorem 4.4.3.

We will show that the compatibility degree satisfies properties which are analogous
to Proposition 5.3.6 and Proposition 5.3.7. First, we consider the following proposition,
which is a generalization of Proposition 5.3.6.

Proposition 5.3.14 ([21, Proposition 4.14]). We fix any cluster algebra A(B). For any
x = xi;t, we denote by x∨ the ith cluster variable in the cluster at t of A(−B>).

(1) For any two cluster variables x, x′, we have (x ‖ x′) = ((x′)∨ ‖ x∨). In particular, if
B is skew-symmetric, then (x ‖ x′) = (x′ ‖ x).

(2) If x = xi;t, x
′ = xj;t′, we have (x ‖ x′) = s−1

i sj(x
′ ‖ x), where si is the (i, i)th entry of

skew-symmetrizer S of B. In particular, if (x ‖ x′) = 0, then we have (x′ ‖ x) = 0.

(3) For skew-symmetrizable matrix B and the index set I, let J = {k1, . . . km} ⊂ I and
BJ be submatrix of B such that BJ = (bkikj ). For any pair of cluster variables
x, x′ of A(BJ), which we regard as a pair of cluster variables of A(B) by embedding,
(x ‖ x′) on A(BJ) equals to (x ‖ x′) on A(B).

To prove Proposition 5.3.14, we prepare a lemma:

Lemma 5.3.15 ([21, Lemma 4.16]). For any exchange matrix B and t0, t ∈ Tn, we have

FB;t0
t = S−1F−B⊤;t0

t S. (5.3.15)

Proof. By (3.1.7), [36, (2.7)] and definition of S, for any t, we have

CB;t0
t = S−1C−B⊤;t0

t S, (5.3.16)

Bt = S−1(−B>
t )S. (5.3.17)

We prove (5.3.15) by induction on distances of t from t0. If t = t0, then (5.3.15) holds
clearly because FB;t0

t0
is the zero matrix. When we assume (5.3.15) holds at t, we have

(5.3.15) holds at t′ by substituting (3.1.12) with (5.3.16) and (5.3.17).

Proof of Proposition 5.3.14. First, we prove (1). By Theorem 3.2.10 and (3.1.15), for any
t and t′, we have

FBt;t
t′ =

(
F

−B⊤
t′ ;t

′

t

)>
. (5.3.18)

Thus, we have

fBt;t
ij;t′ = f

−B⊤
t′ ;t

′

ji;t . (5.3.19)
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5 Compatibility degree of cluster complexes

This implies the first statement of (1). Furthermore, if B is skew-symmetric, then we have
Bt′ = −B>

t′ . This implies the second statement of (1). Second, we prove (2). By (1) and
Lemma 5.3.15, for any t and t′, we have

FBt;t
t′ =

(
F

−B⊤
t′ ;t

′

t

)>
=
(
SF

Bt′ ;t
′

t S−1
)>

= S−1
(
F

Bt′ ;t
′

t

)>
S. (5.3.20)

Thus, we have

fBt;t
ij;t′ = s−1

i sjf
Bt′ ;t

′

ji;t . (5.3.21)

This implies (2). Finally, we prove (3). Without loss of generality, we can assume J =
{1, . . . ,m}. It suffice to show that FBJ ;t0

t equals the m×m principal submatrix of FB;t0
t for

any t0 ∈ Tn and t ∈ Tm, where Tm is m-regular graph whose labels of edges are 1, . . . ,m
and which is a connected component of Tn containing t0. We prove (3) by induction on
distances of t from t0. The base case t = t0 is immediate as FB;t0

t0
= On and FBJ ;t0

t0
= Om.

Let CBJ ;t0
t = (cij;t) and we abbreviate FB;t0

i;t (y) = Fi;t and FBJ ;t0
i;t (y) = F i;t. We have the

following fact by directly calculation: BJ t equals the m×m principal matrix Bt, Fi;t = 1

for all i ∈ {m+1, . . . , n}, and the left side m×n submatrix of CB;t0
t is

[
CBJ ;t0
t

O

]
. By these

facts and inductive assumption, for t t′
ℓ

, we have

F i;t′ = F i;t = Fi;t = Fi;t′ if i 6= ℓ,

F ℓ;t′ =

m∏
j=1

y
[cjℓ;t]+
j

m∏
i=1

F
[biℓ;t]+
i;t +

m∏
j=1

y
[−cjℓ;t]+
j

m∏
i=1

F
[−biℓ;t]+
i;t

F ℓ;t

=

n∏
j=1

y
[cjℓ;t]+
j

n∏
i=1

F
[biℓ;t]+
i;t +

n∏
j=1

y
[cjℓ;t]+
j

n∏
i=1

F
[−biℓ;t]+
i;t

Fℓ;t

= Fℓ;t′ .

Therefore, FBJ ;t0
t equals the m×m principal submatrix of FB;t0

t .

Remark 5.3.16. We can prove the second statement of (1) by using the first statement
of (2) because when B is skew-symmetric, s−1

i sj is always 1.

Next, we consider the compatibility property, which is a generalization of Proposition
5.3.7.

Theorem 5.3.17 ([21, Theorem 4.18]). For any cluster algebra A(B) and any set X
of cluster variables, there exists a cluster x such that x contains X if and only if the
compatibility degrees of any pairs of cluster variables in X are 0.

Proof. It follows from Theorem 5.2.2 (3) and Lemma 5.2.4 immediately.

Let us compare the compatibility degree with the d-compatibility degree. It is proved
by [9] that d-compatibility degree also has the similar property of Theorem 5.3.17.

Theorem 5.3.18 ([9, Theorem 7.4]). For any cluster algebra A(B) and any set X of
cluster variables, there exists a cluster x such that x contains X if and only if the d-
compatibility degrees of any pairs of cluster variables in X are either 0 or −1.
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5.3 Compatibility degree and its properties

However, the d-compatibility degree does not satisfy the similar property of the duality
and symmetry properties (Proposition 5.3.14 (1),(2)). Actually, if these properties hold for
d-vectors, the D-matrices must satisfy the following equation when B is skew-symmetric:(

DB;t0
t

)>
= D

−B⊤
t ;t

t0
= DBt;t

t0
. (5.3.22)

However, this equation does not hold generally unlike the F -matrices. For the class of
cluster algebras arising from the marked surface, [39] gave the complete classification of
marked surfaces whose corresponding cluster algebras satisfy (5.3.22).

Theorem 5.3.19 ([39, Theorem 2.4]). The equation (5.3.22) hold for a cluster algebra
arising from a marked surface if and only if the marked surface is one of the following.

(1) A disk with at most one puncture (finite types A and D).

(2) An annulus with no punctures and one or two marked points on each boundary
component (affine types Ã1,1, Ã2,1, and Ã2,2).

(3) A disk with two punctures and one or two marked points on the boundary component
(affine types D̃3 and D̃4).

(4) A sphere with four punctures and no boundary components.

(5) A torus with exactly one marked point (either one puncture or one boundary com-
ponent containing one marked point).

According to Theorem 5.3.19, for example, cluster algebras arising from a disk with three
punctures and one marked point on the boundary component do not satisfy (5.3.22). Let
us see a concrete example.

Example 5.3.20. We set P = {1} the trivial semifield and consider a seed (x, B), where

x = (x1, x2, x3, x4, x5, x6, x7), B =



0 0 −1 0 1 0 0
0 0 −1 0 1 0 0
1 1 0 −1 −1 1 0
0 0 1 0 0 −1 1
−1 −1 1 0 0 −1 1
0 0 −1 1 1 0 −1
0 0 0 −1 −1 1 0


.

Then A(B) is a cluster algebra arising from the marked surface in Figure 5.2. Moreover,
we set

x′ = (x1, x
′
2, x

′
3, x

′
4, x

′
5, x6, x

′
7) = µ7µ5µ4µ3µ2(x).

Then, we have (x2 ‖ x′7)d = 2, (x
′∨
7 ‖ x∨2 )d = (x′7 ‖ x2)d = 1. We consider flipping the

Figure 5.2: Marked surface corresponding to B

1

▷◁

2

3

4 5

6 7
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5 Compatibility degree of cluster complexes

Figure 5.3: Relative position of arc corresponding to x2 and x′7

▷◁

x2

x′7

marked surface in Figure 5.2 at 2,3,4,5,7. The relative position of arc corresponding to x2
and x′7 is as in Figure 5.3.

As mentioned in [15, Example 8.5], considering the intersection number([15, Definition
8.4]), we have (x2 ‖ x′7)d = 2, (x′7 ‖ x2)d = 1. This example implies (· ‖ ·)d does not satisfy
the similar property of Proposition 5.3.14 (1),(2).

Next, we consider a generalization of Proposition 5.3.8. The following statement is clear:

Theorem 5.3.21 ([21, Theorem 4.22]). For any cluster algebra A(B) and any pair of its
cluster variables x, x′, if there exists a set X of cluster variables such that X∪x and X∪x′
are both clusters, then (x ‖ x′) = (x′ ‖ x) = 1.

Proof. We take a seed whose cluster is X ∪ x as the initial seed and consider a mutation
such that it changes cluster from X ∪ x to X ∪ x′. By Lemma 5.2.5, there is a mutation
satisfying this condition. The statement is followed by definition of the cluster mutation
(2.1.7) and of the f -vectors (Definition 3.1.3).

The converse of Theorem 5.3.21 is still open:

Conjecture 5.3.22. For any cluster algebra A(B) and any pair of its cluster variables
x, x′, if (x ‖ x′) = (x′ ‖ x) = 1, then there exists a set X of cluster variables such that
X ∪ x and X ∪ x′ are both clusters.

We call Theorem 5.3.21 and Conjecture 5.3.22 the exchangeability property. In the case
of finite type, Conjecture 5.3.22 is correct:

Theorem 5.3.23 ([21, Theorem 4.24]). For any cluster algebra A(B) of finite type and
any pair of its cluster variables x, x′, if (x ‖ x′) = (x′ ‖ x) = 1, then there exists a set X
of cluster variables such that X ∪ x and X ∪ x′ are both clusters.

Proof. It follows from Proposition 5.3.8 and Theorem 5.3.10.

Also in the case of rank 2, we can prove Conjecture 5.3.22 by using descriptions of the
F -matrices.

Theorem 5.3.24 ([21, Theorem 4.25]). For any cluster algebra A of rank 2 and any pair
of its cluster variables x, x′, if (x ‖ x′) = (x′ ‖ x) = 1, then there exists a set X of cluster
variables such that X ∪ x and X ∪ x′ are both clusters.

Proof. If A is of finite type, the result follows from Theorem 5.3.23. We assume that
A is not of finite type. Let Σ = (x,y, B) be a labeled seed of A which contains the

cluster variable x. Without loss of generality, we may assume that B =

[
0 b
−c 0

]
for some

b, c ∈ Z≥0 such that bc ≥ 4.

We name vertices of T2 by the rule of (2.1.11) and fix a cluster pattern tn 7→ (xtn ,ytn , Btn)
by assigning the seed Σ to the vertex t0. We abbreviate xtn (resp., ytn , Btn ,Σtn) to xn
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(resp., yn, Bn, Σn). We also abbreviate cluster variables, f -vectors and F -matrices in
the same way.
Let us consider the case x = x1;0, the case x = x2;0 can be proved similarly. In this

case, it suffices to prove that x′ ∈ {x1;2, x1;−1}.
A direct computation show that

FB;t0
0 =

[
0 0
0 0

]
, FB;t0

1 =

[
0 0
0 1

]
. (5.3.23)

By descriptions of D-matrices of rank 2, that is (4.7.3) and (4.7.4), and Remark 4.4.4, if
n > 0 is even, then we have

FB;t0
n =

[
Sn−2

2
(u) + Sn−4

2
(u) bSn−4

2
(u)

cSn−2
2
(u) Sn−2

2
(u) + Sn−4

2
(u)

]
, (5.3.24)

and if n > 1 is odd, then we have

FB;t0
n =

[
Sn−3

2
(u) + Sn−5

2
(u) bSn−3

2
(u)

cSn−3
2
(u) Sn−1

2
(u) + Sn−3

2
(u)

]
, (5.3.25)

where u = bc − 2 and Sp(u) is a (normalized) Chebyshev polynomial of the second kind

(See (4.7.5)). When n < 0, FB;t0
n is the following matrix:

FB;t0
n =

[
f−B⊤

22;−n f−B⊤

21;−n

f−B⊤

12;−n f−B⊤

11;−n

]
, (5.3.26)

where f−B⊤

ij;−n is the (i, j) entry of F−B⊤;t0
−n . For any p ≥ 0, we have Sp(u) − Sp−1(u) > 0.

Indeed, we have S0(u) − S−1(u) = 1 > 0. Assume that Sq(u) − Sq−1(u) > 0, then
Sq+1(u)− Sq(u) = (u− 1)Sq(u)− Sq−1(u) > 0. In particular, for any p ∈ Z≥−1, we have

· · · > Sp+1(u) > Sp(u) > · · · > S0(u) = 1 > S−1(u) = 0. (5.3.27)

We claim that (x1;0 ‖ xi;n)(xi;n ‖ x1;0) > 1 for i ∈ {1, 2} whenever n ≥ 4 or n ≤ −3.
As a consequence, x′ 6= xi;n for any n ≥ 4 and n ≤ −3 and x′ ∈

∪
−2≤n≤3

xn. Recall that

according to Proposition 5.3.14 (2), (x1;0 ‖ xi;n) = 0 if and only if (xi;n ‖ x1;0) = 0. For
i = 1 and n ≥ 4,

(x1;0 ‖ x1;n)(x1;n ‖ x1;0) = fB;t0
11;n (x1;n ‖ x1;0)

≥ (S1(u) + S0(u))(x1;n ‖ x1;0) by (5.3.24)(5.3.25)

> 1. by (5.3.27)

For i = 2 and n ≥ 4,

(x1;0 ‖ x2;n)(x2;n ‖ x1;0) = fB;t0
12;n (x2;n ‖ x1;0)

≥ b(x2;n ‖ x1;0) by (5.3.24)(5.3.25)

= b(x∨1;0 ‖ x∨2;n) by Propostion 5.3.14(1)

= bf−B⊤;t0
12;n

≥ bc ≥ 4. by (5.3.24)(5.3.25)

This completes the proof of the claim for n ≥ 4. For n ≤ −3, one can prove the statement
by using (4.7.6) similarly and we omit the proof.
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5 Compatibility degree of cluster complexes

According to the cluster pattern, we have

x2;−2 = x2;−3, x1;−2 = x1;−1, x2;−1 = x2;0, x1;0 = x1;1, x2;1 = x2;2, x1;2 = x1;3, x2;3 = x2;4.

By the above claim, we conclude that x′ 6= x2;−2 and x′ 6= x2;3. By Theorem 5.3.17, we
have

(x1;0 ‖ x1;0) = (x1;0 ‖ x2;0) = (x1;0 ‖ x2;1) = 0

since there is a cluster contains x1;0 and xi;n for (i, n) ∈ {(1, 0), (2, 0), (2, 1)}. It follows
that x′ ∈ {x1;−1, x1;2}. This finishes the proof.

It is known that Conjecture 5.3.22 holds in some classes of cluster algebras:

Theorem 5.3.25 ([21, Theorems 6.3, 6.6, 6.11]). Conjecture 5.3.22 holds if A(B) is

• an acyclic cluster algebra of skew-symmetric type,

• a cluster algebra arising from weighted projective lines, or

• a cluster algebra arising from marked surfaces.

Since we need to use 2-Carabi-Yau categorification, we omit the proof of this statement.
See [21, Sections 5 and 6].
In the case of finite type or rank 2, the d-compatibility degree also has the exchange-

ability property. However, it is not correct in general. Let us see some examples.

Example 5.3.26. We set P = {1} the trivial semifield and consider a seed (x, B), where

x = (x1, x2, x3, x4, x5), B =


0 1 0 −1 0
−1 0 1 1 −1
0 −1 0 1 0
1 −1 −1 0 1
0 1 0 −1 0

 .

This is of D̂4 type. Moreover, we set

x′ = (x′1, x
′
2, x

′
3, x

′
4, x5) = µ4µ3µ2µ1(x).

Then, we have (x1 ‖ x′4)d = (x′4 ‖ x1)d = 1 and (x1 ‖ x′4) = (x′4 ‖ x1) = 2. Let us see
this fact by using marked surface and their flips. A(B) is a cluster algebra arising from
the marked surface in Figure 5.4. We consider flipping the marked surface in figure 5.4 at

Figure 5.4: Marked surface corresponding to B

3 4

5

1

2

1,2,3,4. The relative position of arc corresponding to x1 and x′4 is as in Figure 5.5.
Considering the intersection number induced by the d-vector ([15, Definition 8.4]), we

have (x1 ‖ x′4)d = (x′4 ‖ x1)d = 1. On the other hand, considering the intersection number
induced by the f -vector ([44, Section 1]), we have (x1 ‖ x′4) = (x′4 ‖ x1) = 2. Therefore,
by Corollary 5.3.25, x1 and x′4 are not exchangeable. This example implies (· ‖ ·)d does
not satisfy the similar property of Conjecture 5.3.22. We remark that A(B) satisfies the
similar property to Proposition 5.3.14 for the d-vectors because of Theorem 5.3.19 (3).
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Figure 5.5: Relative position of arc corresponding to x1 and x′4

x1

x′4

Example 5.3.27. We set P = {1} and consider a seed (x, B), where

x = (x1.x2.x3), B =

 0 2 −1
−2 0 1
1 −1 0

 .

We fix a cluster pattern by assigning Σt0 = (x, B) to the rooted vertex t0 of T3. The
cluster algebra A(B) is acyclic (type Â2). Let

t0
3

t1
2

t2
1

t3

be a subgraph of T3. According to [22, Example 6.7], we have

fB,t0
1,t3

=

11
2

 , dB,t0
1;t3

=

11
1

 .

Therefore (x3 ‖ x1;t3) = (x1;t3 ‖ x3) = 2 by Proposition 5.3.14 (2). Hence x3 and x1;t3
are not exchangeable by Theorem 5.3.25. On the other hand, a direct computation shows
that

d
Bt3 ;t3
3,t0

=

11
1

 .

Hence (x3 ‖ x1;t3)d = (x1,t3 ‖ x3)d = 1. In particular, (· ‖ ·)d does not satisfy the similar
property of Conjecture 5.3.22.
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6 Cluster duality between Calkin-Wilf tree
and Stern-Brocot tree

In this chapter, we give an application of f -vectors and F -matrices to number theory. We
introduce two cluster structures, which are dual to each other, into the Calkin-Wilf tree
and the Stern-Brocot tree. This chapter is based on [26].

The Calkin-Wilf tree, whose vertex set has a bijection with the set of positive rational
numbers Q+, is introduced by Neil Calkin and Herbert S. Wilf [6] to count all positive
rational numbers efficiently. This is a full binary tree whose vertices are positive fractions

given by the following way: the root is
1

1
, and the generation rule is that a parent

x

y
has

the following two children:

x

y

x

x+ y

x+ y

y

.

The first few terms are as follows:

1/1

1/2

2/1

1/3

3/2

2/3

1/4 · · ·

4/3 · · ·

3/5 · · ·

5/2 · · ·

2/5 · · ·

5/3 · · ·

3/4 · · ·

4/1 · · ·
3/1

.

We can easily verify that all fractions appearing in the Calkin-Wilf tree is irreducible.

On the other hand, the Stern-Brocot tree1 is named after Moritz Stern, Achille Brocot,
and their researches in 1800’s [3, 43]. The vertex set of the Stern-Brocot tree also has
a bijection with Q+. This tree is given as follows: first, we consider the Farey triple

tree. This is a full binary tree given in the following way: the root is

(
0

1
,
1

0
,
1

1

)
, and the

generation rule is that a parent

(
a

b
,
c

d
,
e

f

)
has the following two children: if the second

1It is also called the Farey tree.
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largest fraction is (i)
a

b
, (ii)

c

d
, (iii)

d

e
, then

(i) (
a

b
,
c

d
,
e

f

)
(
a

b
,
a+ e

b+ f
,
e

f

)(
a

b
,
c

d
,
a+ c

b+ d

)

(ii) (
a

b
,
c

d
,
e

f

)
(
c+ e

d+ f
,
c

d
,
e

f

)(
a

b
,
c

d
,
a+ c

b+ d

)

(iii) (
a

b
,
c

d
,
e

f

)
(
c+ e

d+ f
,
c

d
,
e

f

)(
a

b
,
a+ e

b+ f
,
e

f

)
.

The Stern-Brocot tree is a full binary tree obtained from the Farey triple tree by replacing
each vertex with the second largest fraction of it. The first few terms are as follows:

1/1

1/2

2/1

1/3

2/3

3/2

1/4 · · ·

2/5 · · ·

3/5 · · ·

3/4 · · ·

4/3 · · ·

5/3 · · ·

5/2 · · ·

4/1 · · ·
3/1

.

Like the Calkin-Wilf tree, all fractions appearing this tree is irreducible.
So far, it is pointed out that there are some relations of these two trees. For example,

Backhouse and Ferreira found relation of these two and the matrix tree [1, 2, 42]. In this
chapter, we introduce a new relation between these trees derived from cluster algebra
theory.
Now, we consider a one-punctured torus and their triangulations (See Figure 6.1).

Figure 6.1: Triangulation of one-punctured torus

We fix a triangulation L = (ℓ1, ℓ2, ℓ3). For another triangulationM and an arc ℓ included

in M , we define the intersection vector Int(L, ℓ) =

f1f2
f3

, where fi is the intersection

number of ℓ and ℓi.
Next, we consider the operation called flip, defined in Chapter 2. We can apply flip to

a triangulation M and obtain a new triangulation M ′, and also, we can apply flip to an
arc l and obtain a new arc l′. See an example in Figure 6.2.
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Figure 6.2: Flip of triangulation

←→

There are 3 ways to flip per triangulation. By applying flips to triangulations again and
again, we can obtain a full binary tree called the intersection vector tree:

00
1



10
2



01
2



21
4

 · · ·
20
3

 · · ·
12
4

 · · ·
02
3

 · · ·

.

The first main theorem presents a relation between the intersection vector tree and the
Stern-Brocot tree:

Theorem 6.0.1 (Theorem 6.2.1). We consider a map

g : Z3
≥0 → Q,

f1f2
f3

 7→ f1 + 1

f2 + 1
.

The Stern-Brocot tree is obtained by replacing each vertex v of the intersection vector tree
with g(v).

Next, we introduce a counterpart of the Calkin-Wilf tree. In contrast to the previous,
we fix an arc ℓ and consider changing triangulations from L to L′ by a flip. In parallel
with change of triangulations, we obtain another intersection vector Int(L′, ℓ). By doing
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6 Cluster duality between Calkin-Wilf tree and Stern-Brocot tree

it repeatedly, we define another tree, the initial intersection vector tree:

00
1



20
1



02
1



24
1

 . . .

20
3

 . . .

42
1

 . . .

02
3

 . . .

1

2

2

3

1

3

, (6.0.1)

where numbers on edges are the positions of a exchanged arc in the triangulation. The
second main theorem presents a relation between the initial intersection vector tree and
the Calkin-Wilf tree:

Theorem 6.0.2 (Theorem 6.3.3). We define a map h from vertices of the initial inter-

section vector tree to Q inductively as follows: we assign the leftmost vertex

f1f2
f3

 =

00
1


to

f1 + 1

f2 + 1
=

1

1
. Let {a, b, c} = {1, 2, 3}. When Int(Lt, ℓ) =

f1;tf2;t
f3;t

 7→ fa;t + 1

fb;t + 1
, and

Int(Lt, ℓ) Int(Lt′ , ℓ)
k

as in (6.0.1),

• if k = a, then we assign Int(Lt′ , ℓ) 7→
fc;t + 1

fb;t + 1
,

• if k = b, then we assign Int(Lt′ , ℓ) 7→
fa;t + 1

fc;t + 1
.

The Calkin-Wilf tree is obtained by replacing each vertex v of the initial intersection vector
tree with h(v).

In the context of cluster algebra theory, we can regard the relation between Theorem
6.0.1 and Theorem 6.0.2 as a specialization of the F -matrix duality (Theorem 3.2.10).

6.1 Cluster pattern from one-punctured torus

In this section, we introduce the cluster pattern from a one-punctured torus. This is the
special case of the cluster structure from marked surfaces introduced by [15]. Let S be a
one-punctured torus. We denote by p the puncture of S. We consider a triangulation of S
by (homotopy equivalence classes of) arcs whose both endpoints are p. On the universal
covering of S, a triangulation of S is given as in Figure 6.3. Clearly, a triangulation of
S consists of 3 arcs. Hereinafter, arcs constructing a triangulation is referred to as a
triangulation simply. In this chapter, we define a triangulation as an ordered set. Let L =
(ℓ1, ℓ2, ℓ3) be a triangulation. Due to symmetry, we can assume ℓ1 is the horizontal line, ℓ2
is the vertical line, and ℓ3 is the diagonal line in Figure 6.3 without loss of generality. For
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6.1 Cluster pattern from one-punctured torus

Figure 6.3: Triangulation of one-punctured torus (universal covering)

k ∈ {1, 2, 3}, we define a flip φk(L) of L in direction k as the operation that obtains another
triangulation from L by exchanging ℓk for another arc. Figure 6.4 shows triangulations
of S flipped from L in directions 1,2,3, respectively. Let T3 be the 3-regular tree whose

Figure 6.4: flipped Triangulation of one-punctured torus

edges are labeled by the numbers 1,2,3 such that the 3 edges emanating from each vertex

have different labels. We use the notation t t′
k

to indicate that vertices t, t′ ∈ T3 are
joined by an edge labeled by k. We fix an arbitrary vertex t0 ∈ T3, which is called the
rooted vertex, and a triangulation L. A cluster pattern with the initial triangulation L
is an assignment of a triangulation Lt = (ℓ1;t, ℓ2;t, ℓ3;t) to every vertex t ∈ Tn such that
L are assigned t0 and triangulations Lt and Lt′ assigned to the endpoints of any edge

t t′
k

are obtained from each other by a flip in direction k. We denote by PL : t 7→ Lt

this assigment. For a cluster pattern PL, when ℓi;t intersects with ℓ1, ℓ2 and ℓ3 at least
fi1, fi2 and fi3 times on S \ {p} respectively, we define the intersection vector Int(L, ℓi;t)
associate with ℓi;t as

Int(L, ℓi;t) =

fi1fi2
fi3

 .

We regard the intersection number of the same arc as 0. Furthermore, we define the
intersection matrix Int(L,Lt) associate with Lt as

Int(L,Lt) =

f11 f12 f13
f21 f22 f23
f31 f32 f33

 .

They are specialization of intersection vectors and intersection matrices in Section 4.1.
Therefore, they correspond with f -vectors and F -polynomials by Theorem 4.1.5.
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6 Cluster duality between Calkin-Wilf tree and Stern-Brocot tree

6.2 Intersection vector tree and Stern-Brocot tree

Let t1 be a vertex of T3 connected with t0 by an edge labeled 3, and T′
3 a full subtree

whose vertex set is the union of t0 and all vertices which are reachable to t1 without going
through t0:

t0 t1

t2

t3

t4

t5

t6

t8 · · ·

t9 · · ·

t10 · · ·

t11 · · ·

t12 · · ·

t13 · · ·

t14 · · ·

t15 · · ·
t7

1

2

2

3

1

3

3

1

3

1

2

2

3

1

2

. (6.2.1)

Let T′′
3 be a full subtree of T′

3 whose vertex set consists of all vertices of T′
3 except for t0.

We correspond the intersection vectors to vertices of T′′
3 as

Int(L, ℓ3;t1)

Int(L, ℓ1;t2)

Int(L, ℓ2;t3)

Int(L, ℓ2;t4)

Int(L, ℓ3;t5)

Int(L, ℓ1;t6)

Int(L, ℓ1;t8) · · ·

Int(L, ℓ3;t9) · · ·

Int(L, ℓ1;t10) · · ·

Int(L, ℓ2;t11) · · ·

Int(L, ℓ2;t12) · · ·

Int(L, ℓ3;t13) · · ·

Int(L, ℓ1;t14) · · ·

Int(L, ℓ2;t15) · · ·
Int(L, ℓ3;t7)

1

2

2

3

1

3

1

3

1

2

2

3

1

2

. (6.2.2)

That is, if an edge labeled k emanates from the left side of ti in (6.2.1), we assign Int(L, ℓk;ti)
to ti. The first seven vertices of it is as follows:

00
1



10
2



01
2



21
4


20
3


12
4


02
3



1

2

2

3

1

3

.
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6.2 Intersection vector tree and Stern-Brocot tree

We denote by Tree(F ) this tree, and we call Tree(F ) the intersection vector tree. In this
section, we prove the following theorem:

Theorem 6.2.1 ([26, Theorem 3.1]). We consider a map

g : Z3
≥0 → Q,

f1f2
f3

 7→ f1 + 1

f2 + 1
.

The Stern-Brocot tree is obtained by replacing each vertex v of Tree(F ) with g(v).

For k ∈ {1, 2, 3}, we define the intersection matrix flip Φk of Int(L,Lt) in direction k as

Φk(Int(L,Lt)) = Int(L,φk(Lt)). (6.2.3)

By regarding punctures on the universal cover of S as lattice points on R2 with the
coordinate axis ℓ1 = ℓ1;t0 and ℓ2 = ℓ2;t0 , we consider the gradient of arcs of Lt. We denote
by gradL(ℓ) the gradient of ℓ. We assume gradL(ℓ1) = 0, gradL(ℓ2) =∞, gradL(ℓ3) = −1.

Example 6.2.2. We consider an arc ℓ in Figure 6.5. Then we have

gradL(ℓ) =
3

2
, and Int(L, ℓ) =

21
4

 .

Figure 6.5: Arc ℓ

Definition 6.2.3. For q ∈ Q ∪ {∞}, if n(q), d(q) ∈ Z satisfy the following conditions, we

say that
n(q)

d(q)
is the reduced expression of q:

• q =
n(q)

d(q)
,

• gcd(n(q), d(q)) = 1,

• d(q) ≥ 0.

Moreover, for a fraction
a

b
, if there exists q ∈ Q∪{∞} such that

a

b
is the reduced expression

of q, then we say that
a

b
is irreducible.

This expression is determined uniquely. In particular,
0

1
,
1

0
are reduced expressions of

0,∞ respectively.
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6 Cluster duality between Calkin-Wilf tree and Stern-Brocot tree

Lemma 6.2.4 ([26, Lemma 3.4]). Let M = (m1,m2,m3) a triangulation and {i, j, k} =
{1, 2, 3}. The following two conditions are equivalent:

(1) Either of the following two inequalities holds:

gradL(mi) < gradL(mj) < gradL(mk) or gradL(mk) < gradL(mj) < gradL(mi).
(6.2.4)

(2) We assume that
a

b
and

c

d
are irreducible fractions. If gradL(mi) =

a

b
and gradL(mk) =

c

d
, then gradL(mj) =

a+ c

b+ d
.

In particular, for any triangulation M , there exists a, c ∈ Z and b, d ∈ Z≥0 such that
a

b

and
c

d
are irreducible and {gradL(m1), gradL(m2), gradL(m3)} =

{
a

b
,
c

d
,
a+ c

b+ d

}
.

Proof. We prove that (1) implies (2). We note that b, d ≥ 0 and therefore (b, a) and (d, c)
are in the first or the forth quadrant. Since M is a triangulation, mi,mj ,mk is as in Figure
6.6 on the universal covering of S. When the coordinate of a point shared by 3 arcs is
(0, 0), then the coordinate of the other endpoint of mi is (b, a), and that of mk is (d, c).

Therefore, that of mj is (b+ d, a+ c) and gradL(mj) =
a+ c

b+ d
. It is clear that (2) implies

(1).

Figure 6.6: Triangulation under the assumption (6.2.4)

mi or mkmi or mk

mj

Remark 6.2.5. We note that if (2) in Lamma 6.2.4 holds, then gradL(mj) =
a+ c

b+ d
is irre-

ducible. Indeed, it is shown in the following way: we assume that
a+ c

b+ d
is not irreducible.

Then mj passes through a lattice point in the section between (0, 0) and (a + c, b + d).
Since all lattice points are a point on S, mi intersects with mj at non-lattice points. This
conflicts that M is a triangulation. Moreover, if {gradL(m1), gradL(m2), gradL(m3)} ={
a

b
,
c

d
,
c− a

d− b

}
and

a

b
,
c

d
are irreducible, then the reduced expression of

c− a

d− b
is

c− a

d− b
or

a− c

b− d
. This fact is proved in the same way as the above.

By using the above lemma, we obtain a property for magnitude relation of the gradients
of triangulation.
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6.2 Intersection vector tree and Stern-Brocot tree

Lemma 6.2.6 ([26, Lemma 3.6]). Let t ∈ T3, Lt = (ℓ1;t, ℓ2;t, ℓ3;t) a triangulation and
{i, j, k} = {1, 2, 3}. We assume that

gradL(ℓi;t) < gradL(ℓj;t) < gradL(ℓk;t). (6.2.5)

(1) Let Lt′ = {ℓi;t, ℓj;t′ , ℓk;t} be a triangulation of S obtained from Lt by a flip in direction
j. Then we have

gradL(ℓj;t′) < gradL(ℓi;t) < gradL(ℓk;t) or gradL(ℓi;t) < gradL(ℓk;t) < gradL(ℓj;t′),

(2) Let Lt′′ = {ℓi;t′′ , ℓj;t, ℓk;t} be a triangulation of S obtained from Lt by a flip in direc-
tion i. Then we have

gradL(ℓj;t) < gradL(ℓi;t′′) < gradL(ℓk;t)

(3) Let Lt′′′ = {ℓi;t, ℓj;t, ℓk;t′′′} be a triangulation of S obtained from Lt by a flip in
direction k. Then we have

gradL(ℓi;t) < gradL(ℓk;t′′′) < gradL(ℓj;t).

Proof. We prove (1). By flipping the triangulation in Figure 6.6 in direction j, we have

a triangulation in Figure 6.7. If gradL(ℓi;t) =
a

b
and gradL(ℓk;t) =

c

d
, then gradL(ℓj;t) =

Figure 6.7: Flipped triangulation

ℓi;tℓk;t

ℓj;t′

c− a

d− b
. If the reduced expression of gradL(ℓj;t) is

c− a

d− b
, then by Lemma 6.2.4 and (6.2.5),

we have gradL(ℓi;t) < gradL(ℓk;t) < gradL(ℓj;t′). On the other hand, if the reduced

expression is
a− c

b− d
, then we have gradL(ℓj;t′) < gradL(ℓi;t) < gradL(ℓk;t). The case (2),(3)

is also proved in the same way.

We note that if t ∈ T′′
3, then the gradient of arcs of Lt are 0 or more by Lemma 6.2.6.

Let us consider relation between the gradient and the intersection vector of an arc ℓ of Lt.
The following fact is useful:

Lemma 6.2.7 ([26, Lemma 3.7]). Let ℓ ∈ Lt be an edge satisfying t ∈ T′′
3 and Int(L, ℓ) 6= 0.

Then, gradL(ℓ) =
a

b
holds and

a

b
is irreducible if and only if Int(L, ℓ) =

 a− 1
b− 1

a+ b− 1

 holds.
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6 Cluster duality between Calkin-Wilf tree and Stern-Brocot tree

Remark 6.2.8. By Lemma 6.2.7, for ℓ ∈ Lt satisfying t ∈ T′′
3 and Int(L, ℓt) =

ab
c

 6= 0,

a+ 1

b+ 1
and

b+ 1

a+ 1
are irreducible.

We define the non-middle gradient flip as a flip that removes an arc whose gradient is
the smallest or the largest in the three arcs and adds another arc. We are ready to prove
the first main theorem.

Proof of Theorem 6.2.1. Let t ∈ T3. For Lt = (ℓ1;t, ℓ2;t, ℓ3;t), we consider the triple

gradL(Lt) = (gradL(ℓ1;t), gradL(ℓ2;t), gradL(ℓ3;t)),

where all entries are irreducible. According to Lemma 6.2.7, a restriction of g to {Int(L, ℓi;t)}t∈T′′
3 ,i∈{1,2,3}\

{0} is given by Int(L, ℓ) 7→ (the reduced expression of) gradL(ℓ). Therefore, it suffices to
show that a tree

gradL(ℓ3;t1)

gradL(ℓ1;t2)

gradL(ℓ2;t3)

gradL(ℓ2;t4)

gradL(ℓ3;t5)

gradL(ℓ1;t6)

gradL(ℓ1;t8) · · ·

gradL(ℓ3;t9) · · ·

gradL(ℓ1;t10) · · ·

gradL(ℓ2;t11) · · ·

gradL(ℓ2;t12) · · ·

gradL(ℓ3;t13) · · ·

gradL(ℓ1;t14) · · ·

gradL(ℓ2;t15) · · ·
gradL(ℓ3;t7)

1

2

2

3

1

3

1

3

1

2

2

3

1

2

. (6.2.6)

is the Stern-Brocot tree. Flips in direction 1 and 2 at t1 are non-middle gradient flips, and
we find that flips from left to right in (6.2.1) are all non-middle gradient flips inductively
by Lemma 6.2.6. Furthermore, gradL(ℓk;t) lying in (6.2.6) is the second largest number in
gradL(Lt). Therefore, it suffice to show that a tree

gradL(Lt1)

gradL(Lt2)

gradL(Lt3)

gradL(Lt4)

gradL(Lt5)

gradL(Lt6)

gradL(Lt8) · · ·

gradL(Lt9) · · ·

gradL(Lt10) · · ·

gradL(Lt11) · · ·

gradL(Lt12) · · ·

gradL(Lt13) · · ·

gradL(Lt14) · · ·

gradL(Lt15) · · ·
gradL(Lt7)

1

2

2

3

1

3

1

3

1

2

2

3

1

2

. (6.2.7)

is the Farey triple tree. We have gradL(Lt1) =

(
0

1
,
1

0
,
1

1

)
. We assume gradL(Lt) =(

a

b
,
c

d
,
e

f

)
. Because of Lemma 6.2.6 and Lemma 6.2.4, if

a

b
is the smallest or largest in
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6.2 Intersection vector tree and Stern-Brocot tree

those three, then there exists an edge labeled by 1 on the right of gradL(Lt) in (6.2.7),

and we have

(
a

b
,
c

d
,
e

f

)
7→ gradL(Lt′) =

(
c+ e

d+ f
,
c

d
,
e

f

)
by a flip in direction 1 (we note

that all of
c+ e

d+ f
,
c

d
,
e

f
are irreducible again by Remark 6.2.5). Similarly, if

c

d
or

e

f
is the

smallest or largest in those three, we have the desired triple. Therefore, (6.2.7) corresponds
with the Farey triple tree, and this finishes the proof.

For the sake of discussion in Section 6.3, we give the explicit description of intersection
matrices. First, we consider intersection matrices not containing zero vectors.

Corollary 6.2.9 ([26, Corollary 3.9]). Let t ∈ T′′
3 and Lt = (ℓ1;t, ℓ2;t, ℓ3;t) a triangulation.

For all i ∈ {1, 2, 3}, if Int(L, ℓi;t) 6= 0, then Int(L,Lt) = (fij) satisfies just one of the
followings:

(i)

 f11 f12 f11 + f12 + 1
f21 f22 f21 + f22 + 1

f11 + f21 + 1 f12 + f22 + 1 f11 + f12 + f21 + f22 + 3



(ii)

 f12 + f13 + 1 f12 f13
f22 + f23 + 1 f22 f23

f12 + f13 + f22 + f23 + 3 f12 + f22 + 1 f13 + f23 + 1



(iii)

 f11 f11 + f13 + 1 f13
f21 f21 + f23 + 1 f23

f11 + f21 + 1 f11 + f21 + f13 + f23 + 3 f13 + f23 + 1


Proof. It follows from Lemmas 6.2.7 and 6.2.4.

The following is the key lemma in Section 6.3.

Lemma 6.2.10 ([26, Lemma 3.10]). We fix t ∈ T′′
3. The intersection matrix Int(L,Lt) =

(fij) satisfies just one of the followings:

(i)

0 0 0
0 0 0
0 0 1



(ii)

0 0 0
0 f22 f22 + 1
0 f22 + 1 f22 + 2



(iii)

0 0 0
0 f23 + 1 f23
0 f23 + 2 f23 + 1



(iv)

 f11 0 f11 + 1
0 0 0

f11 + 1 0 f11 + 2



(v)

f13 + 1 0 f13
0 0 0

f13 + 2 0 f13 + 1


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6 Cluster duality between Calkin-Wilf tree and Stern-Brocot tree

(vi)

 f11 f12 f11 + f12 + 1
f21 f22 f21 + f22 + 1

f11 + f21 + 1 f12 + f22 + 1 f11 + f12 + f21 + f22 + 3



(vii)

 f12 + f13 + 1 f12 f13
f22 + f23 + 1 f22 f23

f12 + f13 + f22 + f23 + 3 f12 + f22 + 1 f13 + f23 + 1



(viii)

 f11 f11 + f13 + 1 f13
f21 f21 + f23 + 1 f23

f11 + f21 + 1 f11 + f21 + f13 + f23 + 3 f13 + f23 + 1


Moreover, we have the following diagram:

(i)

(v) (iv)

(iii) (ii)

(viii) (vii) (vi)

1

AA

3 //

2

�� 3 //

1
oo

2
oo

2

��

2

��

1

AA

1

OO

1 //
2

oo
3 //
1

oo

3

))2tt
,

where (n) (m)
k // implies that Int(Lt, L) satisfying (m) is obtained from (n) by Φk.

Proof. When t = t1, Int(L,Lt) satisfies (i). Since each intersection matrix flip is an
involution, it suffices to consider flips from left to right on (6.2.2), that is, the diagram in
the lemma. First, we prove a part of the diagram between (vi)–(viii). We note that an
arc of S which is flipped by a flip in the above diagram between (vi)–(viii) has the second
largest gradient in the flipped triangulation because of Lemmas 6.2.7, 6.2.6. Therefore,
it follows from Corollary 6.2.9. Next, we prove a part of the diagram between (ii) and
(iii). We will show the following statement inductively: when Int(L,Lt) satisfies (ii) or

(iii), gradL(ℓ1;t) = 0 and (iii) (ii)
3 //
2

oo holds. If Int(L,Lt) = Φ2(Int(L,Lt1)), Int(L,Lt)

satisfies (iii) and gradL(ℓ1;t) = 0. Under the assumption, when Int(L,Lt) satisfies (ii), we
have gradL(ℓ1;t) < gradL(ℓ3:t) < gradL(ℓ2;t) by Lemma 6.2.7. Therefore, by Lemmas 6.2.6,

6.2.4 and 6.2.7, we have (ii) (iii)//2
. We denote by Int(L,Lt′) = Φ2(Int(L,Lt)). Since

ℓ1;t = ℓ1;t′ , we have gradL(ℓ1;t′) = 0. When Int(L,Lt′) satisfies (iii), it follows from the same

argument as the above. Moreover, (iii) (iv)//1
and (ii) (iv)//1

follows from

the fact that gradL(ℓ1;t) = 0 and Lemmas 6.2.6, 6.2.4, and 6.2.7. The diagram between

(iv),(v),(viii) is proved in the same way as the above. Finally, we have (i) (iii)//2
and

(i) (v)//1
because Int(L,Lt) satisfies (i) if and only if Int(L,Lt) = Int(L,Lt1).
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6.3 Initial intersection vector tree and Calkin-Wilf tree

6.3 Initial intersection vector tree and Calkin-Wilf tree

In contrast to the previous section, We correspond the intersection vectors to vertices of
a subtree T′′

3 of (6.2.1) as

Int(Lt1 , ℓ3)

Int(Lt2 , ℓ3)

Int(Lt3 , ℓ3)

Int(Lt4 , ℓ3)

Int(Lt5 , ℓ3)

Int(Lt6 , ℓ3)

Int(Lt8 , ℓ3) · · ·

Int(Lt9 , ℓ3) · · ·

Int(Lt10 , ℓ3) · · ·

F (Lt11 , ℓ3) · · ·

Int(Lt12 , ℓ3) · · ·

Int(Lt13 , ℓ3) · · ·

Int(Lt14 , ℓ3) · · ·

Int(Lt15 , ℓ3) · · ·
Int(Lt7 , ℓ3)

1

2

2

3

1

3

1

3

1

2

2

3

1

2

. (6.3.1)

That is, we assign Int(Lti , ℓ3) to ti. The first seven vertices of it is as follows:

00
1



20
1



02
1



24
1


20
3


42
1


02
3



1

2

2

3

1

3

.

We denote by Tree(F †) and we call it the initial intersection vector tree. We make a
preparation for describing the main theorem of this section. In this section, we regard Lt

as the initial triangulation. We define the initial intersection matrix flip Ψk of Int(Lt, L)
in direction k as

Ψk(Int(Lt, L)) = Int(φk(Lt), L). (6.3.2)

The following proposition is clear:

Proposition 6.3.1 ([26, Proposition 4.1]). We have

Int(Lt, L) = (Int(L,Lt))
>,

Proof. It follows from Theorem 4.1.5 and Theorem 3.2.35.

By using this duality, we have the following property:

Proposition 6.3.2 ([26, Proposition 4.2]). For t t′
k ∈ T′′

3, let

Int(Lt, ℓ3) =

f1f2
f3

 6= 0 and Int(Lt′ , ℓ3) =

f ′
1

f ′
2

f ′
3

 6= 0.
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(1) If i 6= k, then we have fi = f ′
i .

(2) The integer fk is not maximal in {f1, f2, f3} if and only if f ′
k is maximal in {f ′

1, f
′
2, f

′
3}.

Proof. The statement (1) follows from Proposition 6.3.1. We prove “if” part of (2). Since
if f ′

k = 0, then this is not the maximal in {f ′
1, f

′
2, f

′
3} clearly, we assume that f ′

k 6= 0. If f ′
k

is the maximal in {f ′
1, f

′
2, f

′
3}, the gradient of an arc corresponding to kth row of Int(L,Lt′)

is the second largest in three arcs because of Proposition 6.3.1 and Lemmas 6.2.7, 6.2.4.
By Lemma 6.2.6, the gradient of an arc corresponding to kth row of Int(L,Lt) is not the
second largest in three arcs. By Lemma Proposition 6.3.1 and Lemmas 6.2.7, 6.2.4 again,
fk is not maximal in {f1, f2, f3}. We prove “only if” part of (2). We assume that fk = 0.
Then by Proposition 6.3.1 and Lemma 6.2.6, Int(L,Lt) = 0 and the gradient of an arc
corresponding to kth row of Int(L,Lt) is 0 or ∞. Thus by Lemma 6.2.6, the gradient
of an arc corresponding to kth row of Int(L,Lt′) is the second largest in three arcs. By
Proposition 6.3.1 and Lemmas 6.2.7, 6.2.4, f ′

k is the maximal in {f ′
1, f

′
2, f

′
3}. In the case

of fk 6= 0, it is proved by considering the inverse of “if” part with f ′
k 6= 0.

By Proposition 6.3.2, if Int(Lt, ℓ3) lies on the right endpoint of an edge labeled by k in
the tree of (6.3.1), then the kth element of Int(Lt, ℓ3) is the maximal in those three. In
the rest of this section, we prove the following theorem:

Theorem 6.3.3 ([26, Theorem 4.3]). We define a map

h : {Int(Lt, ℓ3)}t∈T ′′
3
→ Q

inductively as follows: we assign

Int(Lt1 , ℓ3) 7→
f13;t1 + 1

f23;t1 + 1
=

1

1
.

Let {a, b, c} = {1, 2, 3}. When Int(Lt, ℓ3) 7→
fa3;t + 1

fb3;t + 1
, and Int(Lt, ℓ3) Int(Lt′ , ℓ3)

k
as in

(6.3.1),

• if k = a, then we assign Int(Lt′ , ℓ3) 7→
fc3;t + 1

fb3;t + 1
,

• if k = b, then we assign Int(Lt′ , ℓ3) 7→
fa3;t + 1

fc3;t + 1
.

The Calkin-Wilf tree is obtained by replacing each vertex v of Tree(F †) with h(v).

In the rest of this chapter, we prove Theorem 6.3.3. The following lemma is duality of
Lemma 6.2.10:

Lemma 6.3.4 ([26, Lemma 4.4]). We fix t ∈ T′′
3. The intersection matrix Int(Lt, L) =

(fij) satisfies just one of the following:

(i)

0 0 0
0 0 0
0 0 1



(ii)

0 0 0
0 f22 f22 + 1
0 f22 + 1 f22 + 2


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6.3 Initial intersection vector tree and Calkin-Wilf tree

(iii)

0 0 0
0 f32 + 1 f32 + 2
0 f32 f32 + 1



(iv)

 f11 0 f11 + 1
0 0 0

f11 + 1 0 f11 + 2



(v)

f31 + 1 0 f31 + 2
0 0 0
f31 0 f31 + 1



(vi)

 f11 f12 f11 + f12 + 1
f21 f22 f21 + f22 + 1

f11 + f21 + 1 f12 + f22 + 1 f11 + f12 + f21 + f22 + 3



(vii)

f21 + f31 + 1 f22 + f32 + 1 f21 + f31 + f22 + f32 + 3
f21 f22 f21 + f22 + 1
f31 f32 f31 + f32 + 1



(viii)

 f11 f12 f11 + f12 + 1
f11 + f31 + 1 f12 + f32 + 1 f11 + f12 + f31 + f32 + 3

f31 f32 f31 + f32 + 1

.
Moreover, we have the following diagram:

(i)

(v) (iv)

(iii) (ii)

(viii) (vii) (vi)

1

AA

3 //

2

�� 3 //

1
oo

2
oo

2

��

2

��

1

AA

1

OO

1 //
2

oo
3 //
1

oo

3

))2tt
,

where (n) (m)
k // implies that Int(Lt, L) satisfying (m) is obtained from (n) by Ψk.

Proof. It follows from Lemma 6.2.10 and Proposition 6.3.1.

Let us prove the main theorem in this section. For a fraction q, we denote by qn, qd the
numerator and denominator of q, respectively.
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Proof of Theorem 6.3.3. It suffice to show the following: for any (n) in (i)–(viii) in the
diagram of Lemma 6.3.4 and Int(Lt, ℓ3) satisfying (n), if

h(Int(Lt, ℓ3))n = x h(Int(Lt, ℓ3))d = y,

then we have

h(Ψa(Int(Lt), ℓ3))n = x+ y, h(Ψa(Int(Lt), ℓ3))d = y,

h(Ψb(Int(Lt), ℓ3))n = x, h(Ψb(Int(Lt), ℓ3))d = x+ y.

In the case that Int(Lt, ℓ3) satisfies (i), we can check them by direct calculation. We prove
the case that Int(Lt, ℓ3) satisfies (iii). Then we have

h(Int(Lt, ℓ3)) =
f13;t1 + 1

f33;t + 1
=

1

f33;t + 1

by inductive argument. By Lemma 6.3.4 and definition of h, for t t′
3

,

h(Int(Lt, ℓ3)) =
f13;t1 + 1

f33;t + 1
=

1

f33;t + 1
=

1

f32;t + 2
,

h(Int(Lt′ , ℓ3)) =
1

f23;t + 1
=

1

f32;t + 3
=

1

(f32;t + 2) + 1
.

On the other hand, for t t′′
1

, we have

h(Int(Lt′′ , ℓ3)) =
f23;t + 1

f33;t + 1
=

f32:t + 3

f32;t + 2
=

(f32:t + 2) + 1

f32;t + 2
.

Therefore, in (iii), Int(Lt, ℓ3) satisfies the desired condition. Next, we prove the case that
Int(Lt, ℓ3) satisfies (ii). We have

h(Int(Lt, ℓ3)) =
f13;t1 + 1

f23;t + 1
=

1

f23;t + 1

by inductive argument. By Lemma 6.3.4 and definition of h, for t t′
2

and t t′′
1

,
we have

h(Int(Lt, ℓ3)) =
1

f23;t + 1
=

1

f22;t + 2
,

h(Int(Lt′ , ℓ3)) =
1

f33;t + 1
=

1

f22;t + 3
=

1

(f22;t + 2) + 1
,

h(Int(Lt′′ , ℓ3)) =
f33;t + 1

f23;t + 1
=

f22:t + 3

f22;t + 2
=

(f22:t + 2) + 1

f22;t + 2
.

Therefore, in (ii), Int(Lt, ℓ3) satisfies the desired condition. By symmetry, we can also
prove the case that Int(Lt, ℓ3) satisfies (iv) or (v). Next, we prove the case that Int(Lt, ℓ3)
satisfies (vi). First, we assume that

h(Int(Lt, ℓ3)) =
f13;t + 1

f23;t + 1
.
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6.3 Initial intersection vector tree and Calkin-Wilf tree

By Lemma 6.3.4 and definition of h, for t t′
1

and t t′′
2

, we have

h(Int(Lt, ℓ3)) =
f13;t + 1

f23;t + 1
=

f11;t + f12;t + 2

f21;t + f22;t + 2
,

h(Int(Lt′ , ℓ3)) =
f33;t + 1

f23;t + 1
=

f11;t + f12;t + f21;t + f22;t + 4

f21;t + f22;t + 2

=
(f11;t + f12;t + 2) + (f21;t + f22;t + 2)

f21;t + f22;t + 2
,

h(Int(Lt′′ , ℓ3)) =
f13;t + 1

f33;t + 1
=

f11;t + f12;t + 2

f11;t + f12;t + f21;t + f22;t + 4

=
f11;t + f12;t + 2

(f11;t + f12;t + 2) + (f21;t + f22;t + 2)
.

Second, in the case that

h(Int(Lt, ℓ3)) =
f23;t + 1

f13;t + 1
,

we can prove in the same way as the first case. Therefore, in (vi), Int(Lt, ℓ3) satisfies the
desired condition. By symmetry, we can also prove the case that Int(Lt, ℓ3) satisfies (vii)
or (viii).
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