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Abstract

It is known that there are infinitely many singularities of multiple zeta functions
and almost all negative integer points are located in their singularities. This causes
an indeterminacy of the special values there. It is a fundamental problem to give a
nice definition of special values of multiple zeta functions at non-positive integers. As
one approach, Guo and Zhang (|GZ]) used the renormalization procedure which arises
from the Hopf algebraic approach to perturbative quantum field theory by Connes and
Kreimer to introduce the renormalized values as a special values of multiple zeta functions.
Other type of renormalized values were introduced by Manchon and Paycha (|[MP]) and
Ebrahimi-Fard, Manchon and Singer ([EMS16], [EMS17]).

While, Furusho, Komori, Matsumoto and Tsumura ([FKMT17a]) proposed the desin-
gularization method to resolve all singularities of multiple zeta functions, and by using
this method, they introduced the desingularized multiple zeta functions, which can be
analytically continued to the whole space as entire functions. The desingularized values
are defined to be the special values of desingularized multiple zeta functions at integer
points. They gave explicit formulae of these special values in terms of Bernoulli numbers.
The aim of this thesis is to give a concrete relationships among desingularized values and
various renormalized values.

In Chapter 1, We recall the definition of multiple zeta functions and the desingularized
multiple zeta functions introduced by Furusho, Komori, Matsumoto and Tsumura, and we
explain various properties of the desingularized multiple zeta functions. In Chapter 2, we
consider the renormalized values introduced by Ebrahimi-Fard, Manchon and Singer, and
the relationship between desingularized values in [FKMT17a] and renormalized values in
[EMS17]. In §2.1, we review the definition of the Hopf algebra Hg, which is used to define
these renormalized values in §2.2. In §2.3, we give explicit formulae for the coproduct A of
the Hopf algebra H(, which are used to prove the recurrence formulae among renormalized
values in §2.4. In §2.5, by using these recurrence formulae, we prove an equivalence
between desingularized values and renormalized ones and by using this equivalence, we
give the explicit formula of the renormalized values in terms of Bernoulli numbers. In
Chapter 3, we consider functional relations of desingularized multiple zeta functions. In
§3.1, we prove the product formulae of desingularized multiple zeta functions at non-
positive integer points. In §3.2 and §3.3, we prove functional relations of desingularized
multiple zeta functions as a generalization of that product formulae at non-positive integer
points in two different ways. Chapter 4 is on a problem posed by Singer which is on a
comparison between the renormalized values of shuffle type and of harmonic type. We
settle the problem by giving a universal presentation of the renormalized values introduced
by Ebrahimi-Fard, Manchon and Singer as finite linear combinations of any renormalized
values of harmonic type.

This doctor thesis is based on three papers [Kol9|, [Ko20a], [Ko20b], and current
research. In precise, the section Chapter 2 is based on [Kol9], and the sections §3.1
and §3.2 are based on [Ko20a], and the section §3.3 is based on [Ko20b], and the section
Chapter 4 is the ongoing research.
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Chapter 0

Introduction

In §0.1, we recall the definitions of multiple zeta values, multiple zeta functions and
their various properties and we explain the renormalization method of multiple zeta func-
tions and desingularization method of ones. In §0.2, we briefly describe our main results
in the thesis (cf. [Ko19], [Ko20a], [Ko20b]).

0.1 Multiple zeta values and multiple zeta functions

Multiple zeta values (MZVs for short) are real numbers defined by

Chrs k)= Y (0.1.1)

0<m<---<my. myt M

for k1,...,kr—1 € Nand k, € N>, (the condition k, € N> is required for the convergence
of the above series). When r = 1, the equation (0.1.1) recovers Riemann zeta values
C(k1). Tt is said that, in 1776, Euler ([Eu|) firstly introduced MZVs for r = 1,2. More
than 200 years later after Euler, these values reappeared in Ecalle’s paper [Ec| in 1981.
In 1990s, MZVs is also focused by Hoffman ([H92]) and by Zagier (|Za]). It is known that
MZVs satisty various relations ([HS], [IKZ], [Ka], [O] etc.). Especially, the double shuffle
relations are one of the most important relations among MZVs, which are obtained as
combinations of harmonic products and shuffie products. Harmonic product comes from
the decomposition of the summation of definition (0.1.1). While, MZVs have an iterated
integral representation, and shuffle product is arisen from their integral representations.
The integral expressions enable us to regard it as periods of certain motives ([DG], [Go]
and [T]). MZVs appear in calculations of the Kontsevich invariant in knot theory ([CDM]
and [LM]). MZVs are also related to mathematical physics in [BK95] and [BK97]. They
are explained in [Zh16].

Multiple zeta functions (MZFs for short) are several variables complex analytic func-
tions with si,...,s, € C in a certain region of convergence defined by

1
C(Sl,...,sr) = Z m,

0<my < ---<my 1

which recovers the Riemann zeta function when r = 1 and evaluates to MZVs at positive
integer points. In the early 2000s, Zhao ([Zh00]) and Akiyama, Egami and Tanigawa
([AET]) independently showed that MZFs can be meromorphically continued to C”. It is



shown that almost all non-positive integer points are located in the above singularities,
in particular the special values of MZFs are indeterminate in all cases except for ((—k)
with k¥ € Ny and ((—k1,—ka) with k1,ke € Ny and k1 + ko odd. It is regarded to be
a fundamental issue to find a nice definition of the special values “¢(—k1,...,—k,)” for
ki,...,k. > 0 of MZFs at negative integer points.

Connes and Kreimer ([CK]) started a Hopf algebraic approach to the renormalization
procedure in perturbative quantum field theory. A fundamental tool in their work is the
algebraic Birkhoff decomposition (cf. Theorem 2.2.1). By applying this decomposition
to a certain Hopf algebra related to the harmonic product of MZVs, Guo and Zhang
([GZ]) introduced the renormalized values which satisfy the harmonic-type product for-
mulae. Later, by Manchon and Paycha ([MP]) and by Ebrahimi-Fard, Manchon and
Singer (JEMS16]), different renormalized values which satisfy the harmonic-type product
were introduced. Ebrahimi-Fard, Manchon and Singer ([EMS17]) also introduced an-
other renormalized value (cf. Definition 2.2.4) which satisfies the “shuffle-type” product
(see Proposition 2.2.6 for detail) by using a certain Hopf algebra (cf. (2.1.3)) related to
the Q-algebra.

On the other hand, in order to resolve all infinitely many singularities of MZFs, Fu-
rusho, Komori, Matsumoto and Tsumura ([FKMT17a]) introduced the desingularized
multiple zeta functions (4°(sy,...,s,) (cf. Definition 1.2.1). They showed that these
functions can be analytically continued to C" (see Proposition 1.2.2) and can be repre-
sented by a finite linear combination of MZFs (see Proposition 1.2.3). In addition, they
showed that desingularized values ¢3°(—ky,...,—k,) for ki,...,k. > 0 (cf. Definition
1.2.7) are explicitly given by Bernoulli numbers (see Proposition 1.2.8).

0.2 Special values of MZFs at non-positive integer points

In this section, we explain our main results in this thesis. We denote the renor-

malized values in [EMS17| by Cous(—k1, ..., —k;), and we define the generating function
Zs(t1, ..., 1) of the renormalized values (pys(—Fk1, ..., —k,) and the generating function

Zearr(t1, - . -, 1) of the desingularized values (3°(—ky, ..., —k,):

e —t)kr (=) R
ZEMS(tla---atr) = Z ( 13{;1'](%‘ ) CEMS(iklv"'7ikT‘)7 (021)
K1, kir=0
I - (_tl)kl U (_tr)kr des
Ze(t1, -, tr) = Zk R ¢S (k..o k). (0.2.2)
1yeeeyop=—

Then their relationship is given as follows:

Theorem 0.2.1 (Theorem 2.5.1, [Ko19, Theorem 3.5]). Forn € N, we have

n
1 — e—tim—tn
ZEI\IS(tla N 7tn) = 11:[ ﬁ : ZFI(M‘L'(_tla R _tn)-
This theorem says that the desingularized values (3°5(—ky, ..., —k,) and the renor-
malized values (ys(—k1,...,—k,) are equivalent, that is, they can be represented by

finite linear combinations of each other. Because the desingularized values are explicitly
calculated in [FKMT17a], as a corollary of the above theorem, we obtain the following:



Corollary 0.2.2 (Corollary 2.5.5, [Kol9, Corollary 3.9]). For n € N, we have

Dt A L) — (et tte 1)
Zas(tr, s tn) = H (ti+ - +ty)(elittin —1)

i=1

In terms of Cous(—k1, ..., —kn), the above equation is reformulated to

n
k’L! Bl/++l/ “+1
Cons(—krs s —hg) = (=1t thn it i
LMS( ) ) n) ( ) 1,1,.+..Z.|_;,,-:Ic,- Z];[1 H;L:z Vij! Vig + -+ Vip + 1

1<i<n

for ky,...,k, > 0. Here, the Bernoulli number B,, (n > 0) is defined by

o=y Bn g, (0.2.3)

We note that By =1, By = —% and By = %.

By using the equivalence (Theorem 0.2.1) between the desingularized values (4% (—ky, ..., —k,)
and the renormalized values (ps(—k1,. .., —k) and by using a “shuffle-type” product of
renormalized values, we see that the desingularized values satisfy a “shuffle-type” product
which is the same as the one of the renormalized values:

Theorem 0.2.3 (Theorem 3.1.3, [Ko20a, Theorem 3.3|). For p,q € N and ki, ..., kp,
l1,...,l; € No, we have

G (=kr, ooy —kp) O (=, ., —lg)

q
SR (I
7
ipt+je=lp a=1 @
ip,J5 >0
1<b<q

) 0 =k, =k, —ky — i1 — - — g, =1, —q)-

Especially, when p = g = 1, the above equation yields the following:

es ! es . es .
b= X ()et=t-k -t
itj=1
1,§>0
for k,1 > 0. While, in [FKMT17b], the following proposition was shown:

Proposition 0.2.4 ([FKMT17b, Proposition 4.3]). For s € C and N € Ny, we have

‘ N , o
o= 3 (V)etmts o=
i+j=N
3,7>0
We generalize the above proposition to the following:
Theorem 0.2.5 (Theorem 3.2.8, [Ko20a, Proposition 4.8]). For si,...,s,—1 € C and
k € Ng, we have

k . .

¢l (51, spm1,—h) = Y (Z> 4 (51, ..., 80,801 — 1)CI (—5).
i+j=k
i,7>0



As a generalization of Theorem 0.2.3 and Theorem 0.2.5, we obtain the following
functional relations of desingularized MZFs.

Theorem 0.2.6 (Theorem 3.3.7, [Ko20b, Theorem 2.7]). Forsy,...,sp, € Candly,...,l; €

Np, we have

G (51, 8p) GG (—lay .y =)

q
- ¥ Ieve(;
)
iy +jp=Ilp a=1 @
1,55 >0
1<b<q

des . . . .
> p+q(817"'78p7178p — = _an_]17~~~a_Jq)~

In our last chapter, we will treat other type of renormalized values, that is, renormal-
ized values of harmonic type (cf. Definition 4.1.5) and consider the following problem
posed by Singer in the end of [S].

Problem 0.2.7 (Problem 4.1.6). Which renormalized value of harmonic type has an
explicit relationship with the renormalized values (uys(—k1, . . ., —k;) (defined in Definition
2.2.4)?

The following theorem settle the above problem.

Theorem 0.2.8 (Theorem 4.2.7). For r > 1, we have
ZEMS(tl, ‘e ,tr) = Z Z Z* (’U,O.—l(l), N ,u(,-l(i)) . (024)
i=1 g€P(r,i)

Here, Zyys(t1, ..., ) is defined by (0.2.1) and Z.(t1,...,t,) is defined in Definition 4.2.4,
and for r,i € N with i <r, the set P(r,i) (see §4 for detail) is defined by

P(ri) = {0 {1,...,r} = {1,....i}},

and, for o € P(r,i), the symbol u,—1(y) is defined by

forui:=t;+- -+t (1<i<r).
We denote the renormalized values introduced in [GZ] and [MP] by
CGZ(_k17'~'7_k’r’) and Cl\ll’(_k17"';_k’r)7

for ki,...,k, € Z<o, and define their generating functions by

) —t)F . —t, k.
Z(;Z(tlv'”,tr) = Z ( 13{; |](§; | ) C(;Z(_klv...,_kr)a
k1,....,kr=0 1 -

ad —t)kr (=) R
ZMP(tl,...7tr) = E ( 13{;1'.”; | ) Cl\ll’(_k17"'7_k’r‘)'
A : .

Corollary 0.2.9. The equation (0.2.4) holds for Z. = Zg, and Zyp. Hence, the renormal-
ized values Coys(—Fk, ..., —k.) can be represented by a finite linear combination of either

C(;Z(_kla RS} _kr) or C(;z(_kl, ) _kr)'

10



Chapter 1

Multiple zeta functions and
desingularization

In this section, we review the definition of multiple zeta functions in §1.1, and the
definition of the desingularized multiple zeta functions introduced in [FKMT17a| and we
also explain some properties of the desingularized MZFs in §1.2.

1.1 Multiple zeta functions and their meromorphic con-
tinuations

Multiple zeta functions (MZFs for short) are several variables complex analytic func-
tions defined by

C(stymvsr) = Y ; (1.1.1)

m‘il DRI mr
0<m<---<m.

which give MZVs at positive integer points. When r = 1, the equation (1.1.1) is nothing
but the Riemann zeta function ((s1). This functions converge absolutely in the region

{(s15---,8:) €EC" | R(sp—ppr1+ - +8) >k, 1L<k<r}.
In 2001, Akiyama, Egami and Tanigawa proved the following;:

Theorem 1.1.1 ([AET, Theorem 1]|). MZFs can be meromorphically continued to C”,
and the set of all singularities of MZF's is explicitly given by

S =1,
Spo1 4+ s, =2,1,0,-2,—4,..., (1.1.2)
Sp—ky1+ - Fspr=k—mn (3<k<r neNp).

We review other meromorphic continuation of MZFs by Matsumoto ([Mat]). His idea
is based on the Mellin-Barnes integral formula:

1
L(s)(14+XN)"° = 5 ( )F(s + 2)T'(—2)\*dz,

11



where R(s) < ¢ < 0 and the path of integration is the vertical line R(z) = ¢ (see [WW]
for detail). By this integral formula, he obtains the following formula ([Mat, (3.7)]):

Cr(S1y.00y8r)
1 D(sr + 2)['(—2)

= 5 r— sy Or—2y9r— r - da 1.1.
2ni J o sy Gr—1(s1 Sp—2,80-1+ 8 + 2)((—2)dz (1.1.3)

for R(s;) > 1 (1 <j <r), —R(s;) < ¢ < 0 and the path of integration is the same as
the one of the Mellin-Barnes integral formula. By this formula, it is shown in [Mat] that
MZFs ¢, (s1,- .., S-) can be meromorphically continued to C” by induction on 7.

Remark 1.1.2. By using (1.1.3), in §3.2 and §3.3, we consider functional relations of the
desingularized multiple zeta functions introduced in the next subsection §1.2.

Remark 1.1.3. By (1.1.2), we see that almost all non-positive integer points are located
in the above singularities, so the special values of MZFs are indeterminate in all cases
except for ((—k) for k € Ny and ((—k1,—ka) for k1,ke € Ny and k; + ko odd. It is
regarded to be a fundamental problem to give a nice definition of “{(—ky, ..., —k,)” for
k1,..., k. € Ng. Regarding this, several approaches have been proposed (for instance
[EMS16], [EMS17], [FKMT17a|, [GZ], [MP]).

1.2 Desingularized MZFs

In this subsection, we review the definition of desingularized MZF and the two prop-
erties: that the desingularized MZF can be analytically continued to C" as an entire
function (Proposition 1.2.2), and that it can be represented by a finite “linear” combina-
tion of MZFs (Proposition 1.2.3). We also explain some of its properties which are used
in our later sections.

We consider the following generating function® $,. (t1,...,t,;¢) € Cl[ts, ..., t,]] (cf.
[FKMT17a, Definition 1.9]):

1 C
o (b1, j=1 \ exp (Z};:j tk> -1 - exp (CZZ:J' tk) -1
m—1
for c € R.

Definition 1.2.1 ([FKMT17a, Definition 3.1]). For non-integral complex numbers sy, . . ., S,
desingularized MZF (3% (sy, ..., s,) is defined by

Cfes(sl, cee, s,«)

= 1 ( H eszsk _ 1 (

ceR\{l} k=1

p (. tere) T] e tae 1.2.1
Sk) CTYJ 1 H k k- ( )

Here C is the path consisting of the positive real axis (top side), a circle around the origin
of radius € (sufficiently small), and the positive real axis (bottom side).

11t is denoted by 9y, ((t;); (1);¢) in [FKMT17al.

12



One of the remarkable properties of desingularized MZF is that it is an entire func-
tion, i.e., the equation (1.2.1) is well-defined as an analytic function by the following
proposition.

Proposition 1.2.2 ([FKMT17a, Theorem 3.4]). The function (3°(si,...,s,) can be
analytically continued to C" as an entire function in (s1,...,8.) € C" by the following
integral expression:

T

des = !
CT (317 .. .,Sr) - H (627risk — 1)F(5k)

k=1

4 1 1 c .
/ I] lim : —~ 11t "t
ey - € \exp (ZZ:]. tk) -1 exp (c D k=i tk) -1/ 5

For indeterminates u; and v; (1 < j <r), we set

Gr(Ugy ooy Up U1,y ) 1= H {1 — (ujv; + -+ UTUT)(U;1 - v;}l)} (1.2.2)
j=1

with the convention v 1.= 0, and we define the set of integers {aj .} by

T
1. .
Gr(ut, .., Upj V1, ..., 0p) = Z azml_[ujjv;m. (1.2.3)
1=(1,)eNg j=1
m:(mj)EZT
|rm|=0
Here, |m| :=mq + - +m,.

Another remarkable property of desingularized MZF is that the function is given by a
finite “linear” combination of shifted MZFs, i.e.,

Proposition 1.2.3 ([FKMT17a, Theorem 3.8]). Forsi,...,s, € C, we have the following
equality between meromorphic functions of the complex variables (s1,...,58;):

T

Cﬁes(slv"'vsr) = Z a{,m H(sj)lj C(Sl +m1""’sr+m7")' (124)
l:(lJ)ENg j=1
m:(m]‘)GZT
|m|=0

Here, (s) is the Pochhammer symbol, that is, for k € N and s € C (s)g := 1 and
() :=s(s+1)---(s+k—1).

We give some example of the above proposition:
Example 1.2.4. When r = 1, we have
G (s) = (1= 8)¢(s)-

Here, ((s) is the Riemann zeta function, this function has a simple pole at s = 1. Hence,
¢des(s) is entire on C. When r = 2, we have

CSCS(Sl, 82) :(31 — 1)(52 — 1)((51, 82) + 82(82 +1-— 81)4(81 — 1,89 + 1)
— 82(s2+ 1)C(s1 — 2,82+ 2).

This summation causes cancellations of all singularities of MZFs in each terms. Hence,
¢ges(sy, 82) is entire on C2.

13



By the above example, we can determine the special values of ({°(s1, s2) at all integer
points. Actually, in [FKMT17b], the following propositions are proven

Proposition 1.2.5 ([FKMT17b, Proposition 4.3]). For s € C and N € Ny, we have

Y /N
des(s,—N) = kZ:O (k)(kj +1)(s = N+k—1)((s— N+ Ek)C(—Fk). (1.2.5)
Proposition 1.2.6 ([FKMT17b, Proposition 4.5]). For s € C and N € Ny, we have
(=N, 5)
_(s=N=-3)(s-N-2)
- (N+3)(N+2) s=N-1)
N (ks + N —k+2)(s =N+ k—1) (N+2
p 3 B AR PO MR (Y52 s - N 10

k=0
—(N4+1)(s—=1)C(s)C(—N)+s(s+ 1+ N)C(s+1){(—N —1)+ (s — N —1){(s — N).
In §3.2, §3.3, we will give a generalization of the above equation (1.2.5) by two different

methods.
We consider the special values of desingularized MZFs at non-positive integer points.

Definition 1.2.7. For ky,..., k, € Ny, the desingularized value (3°(—ky,...,—k,) € C
is defined to be the special value of desingularized MZF (4°%(sy,...,s,) at (s1,...,5,) =
(=k1y...,—k).

The generating function Zyg(t1, ..., t,) of (3(~ky, ..., —k,) is explicitly calculated
as follows.

Proposition 1.2.8 ([FKMT17a, Theorem 3.7]). We have

K
T—t;—--- —tp)etitotte
Znon(trs o tr) = H ( : (eti+~~-+ti) 1)2
i=1
In terms of (35 (—ky,...,—k,) for ky,..., k. € No, the above equation is reformulated to

CSCS(_kh ey _k’r) = (_1)k1+<~-+kr Z H H IJ”-‘r Hvir+1-

Vit tv=kg i=1 L 1J=1 ”
1<i<r

By the above proposition we have the following recurrence formula:
Corollary 1.2.9.
Ziowr (L1, ooy tr) = Ziar (B2, « -y tr) » Zpar (B2 + -+ &) (r €N). (1.2.6)
In terms of (35 (—ky, ..., —k,), the equation (1.2.6) is reformulated to

GOk =3 H( )deb (<o i) (= G = = )

l2+]2 kg a=2
'Lr“l’.]'r'*k'r'
forkl,...,kr € Ng.

In §3.1, we consider the product formulae of desingularized values (3% (—ky, ..., —k;)
based on the equivalence between this desingularized values and the renormalized values
in Definition 2.2.4.

14



Chapter 2

Renormalization

In this section, we recall the renormalization procedure to define renormalized values
which is introduced by Ebrahimi-Fard, Manchon and Singer ([EMS17]). In §2.1, we start
by recalling their framework of a Hopf algebra with the coproduct Ay generated by words
and in §2.2 we explain the algebraic Birkhoff decomposition & la Connes and Kreimer
which is required to define renormalized values. In §2.3 we show an explicit formula in
Proposition 2.3.3 to calculate the reduced coproduct Ag of the coproduct Ag. In §2.4,
we prove a recurrence formula among renormalized values (uys(—k1, ..., —k,) of MZFs
in Proposition 2.4.3 to get explicit formulae of Coys(—k1,...,—kn). In §2.5, we prove
an equivalence between desingularized values introduced in §1.2 and renormalized ones
introduced in §2.2.

2.1 Algebraic frameworks

We follow the conventions of [EMS17]. Let Xy := {j,d, y} be the set of three elements
j, d and y. Let Wy be the associative monoid, with the empty word 1 as a unit, generated
by X with the rule jd = dj = 1 (hence, we sometimes regard d as j~'). Any element
w € Wy can be uniquely represented by

w =yt

for k1,--- ,k, € Z. An element of Wy is called a word. Put Yy := Wpy U {1} and we
call an element of Yy admissible. We denote the Q-linear space Ag generated by W
by Ap := (Wy)g. The linear space Ag is naturally equipped with a structure of a non-
commutative algebra. We equip this Ay with a new product Ly :Ag ® Ag — Ag which is
a QQ-linear map recursively defined by
lupw:=wyl:=w (we W),
yu o v :=ullpyv :=y(u Wy v) (u,v € W),
JuWo ju = j(u W jv) + j(Gu e v)  (u,v € Wy),
du Wy dv = d(u Wo dv) — u Wy d*v  (u,v € Wp).
Then (Ao, Lp) forms a unitary, nonassociative, noncommutative Q-algebra. We put Aj :=

(Yo)g to be a linear subspace of the linear space Ay spanned by Y. Then (Af, W) is a
subalgebra of (Ag,Ly). We define

L= (*"d(u wo v) —du Wy v—u Wy dv} |k €Z, u,v € Wy ) (Al o) s

15



that is, to be the two-sided ideal of (Aj),LLp) algebraically generated by the above ele-
ments. We define the quotient algebra

B = A,/ L. (2.1.1)

We consider the map
G By — Q[ft]] (2.1.2)
by (1) := 1 and for k1,...,k, € Z,

GGy 3" y) = Lk ok (8):
Here Lig, ... x, (t) is the multiple polylogarithm defined by

¢

Lig, ook, (£) 1= > e

0<my<-<m,, ML 7T
Lemma 2.1.1. The map (" is well-defined and forms an algebra homomorphism.

The first half of the claim of Lemma 2.1.1 is proved in the same way as [EMS17,
Proposition 3.5] and the latter half of the claim of Lemma 2.1.1 is proved in [EMS17,
Lemma 3.6].

Remark 2.1.2. The restriction of the shuffle product Ly to admissible words at positive
arguments corresponds the usual shuffle product W as is proved in [EMS17, Lemma 3.7].
Let C := Q@ jQj,y)y and D := Q ® Q(zp,x1)x1. Then the two algebras (C, L) and
(D, ) become isomorphic under the linear map @ : (D, w) — (C,wp) by ®(1) := 1 and
for ky,...,k, €N,
®(ag' gt ) = My gy

Let L := {d, y} be the set of two elements d and y. Let L* be the free monoid of L with
empty word 1 as a unit. This L* forms a submonoid of Wy. Put Y := L*y U {1} C Yj.
So all elements of Y are admissible. The weight wt(w) of a word w € L* means the
number of letters appearing in w and the depth dp(w) of a word w € L* is given by the
number of y appearing in w. We denote the free unitary, associative, noncommutative Q-
algebra of L by Q(L). Then (Q(L), ) forms a unitary, nonassociative, noncommutative
Q-subalgebra of Ag. The algebra Q(L) also forms a counital, cocommutative coalgebra
(see [EMS17, §3.3.5]). We define

T = ({wd | w e L'})q,

that is, to be the linear subspace of Q(L) linearly generated by words ending in d. We
define

L_ = {(d"{d(u wo v) —du Wy v—u Wy dv}|k€No, u,v €Y )qr)w0)

that is, to be the two-sided ideal of (Q(L), o) algebraically generated by the above
elements. We consider the QQ-linear subspace

S_=T_+L_

of Q(L) generated by £_ and 7_. This S_ also forms a two-sided ideal.We put the
quotient

Ho = Q(LY/S_. (2.1.3)
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We note that Ho is embedding in B{. Then H, forms a connected, filtered, commutative
and cocommutative Hopf algebra (cf. [EMS17, §3.3.6]), whose product is equal to Ly and
whose coproduct is given by

AO(U}) = § ws & LLS;
SC[n]
S:admissible

for w € Y \ {1}(C Hp). In the summation, S may be empty. we put n := wt(w),
[n] == {1,...,n} and S := [n]\ S. For w := z1---m, (¥; € L*, i = 1,...,n) and
Si={i1, ..., ik ) with 1 <4y < -+ < i < n, we define wg := x;, ---x;,. We call the set
S admissible if both wg,wg € Y. See [EMS17, §3.3.8] for combinatorial method using
polygons to compute Ag(w). We define the Q-linear map Ao : Ho — Ho ® Ho by

Ao(w) == Ap(w) —1@w-—w®1 (weY), (2.1.4)

and we call Ay the reduced coproduct.

2.2 The algebraic Birkhoff decomposition and renor-
malized values

We explain the algebraic Birkhoff decomposition. This decomposition is a funda-
mental tool in a work of Connes and Kreimer [CK] on their Hopf algebraic approach to
renormalization of perturbative quantum field theory. This decomposition is necessary to
define renormalized values.

Based on [Man|, we recall the algebraic Birkhoff decomposition. We denote the prod-
uct and the unit of Q-algebra A by m 4 and uy4. For a Hopf algebra H over Q, we mean
Ay, e and Sy to be its coproduct, its counit and its antipode respectively. In this
paper, we often use Sweedler’s notation:

Ao(w) := Zw’ @w". (2.2.1)
(w)

Let H be a Hopf algebra over Q, A be a Q-algebra and £(H,.A) be the set of Q-linear
maps from H to A. We define the convolution ¢ ¢ € L(H, A) by

¢xtpi=mao(pR1)o Ay

for Q-linear maps ¢ and v € L(H,A). Let H be a Hopf algebra over Q and A be a
Q-algebra. The subset

G(H,A):={p e L(H,A) | p(1n) = 14}

endowed with the above convolution product % forms a group. The unit is given by a
map e =u4 0 Exy.

Let H be a connected filtered Hopf algebra over Q, that is, H has a filtration of
Q-linear subspace:

HoCcH c-cH'C [JH" =H
n€Ng
with #° = Q and with the conditions: H™H" C H™™™ and Sy(H") C H" and
Ay (H™) C Z HP @ H? for m,n € Np.
ptg=n
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Put K := Qor C. Let A := K[, z]] := K[[2]][] be the algebra consisting of all Laurent
series. And we decompose it as A = A_ ® A where A_ := 1K[1] and A, := K[[z]]. We
define a projection 7 : A — A_ by

o) —1
T E apz" | = E anz",
n=—k n=—k

with a, € K and k € Z. Here we use the convention the sum over empty set is zero.
The following theorem is the fundamental tool of Connes and Kreimer ([CK]) in the
renormalization procedure of perturbative quantum field theory.

Theorem 2.2.1 (|CK], [EMS17], [Man]: algebraic Birkhoff decomposition). For
¢ € G(H,A), there are unique linear maps ¢4 : H — Ay and ¢— : H - KD A_ with
¢_(1) =1 € K such that

¢=¢"" x .
Moreover the maps ¢_ and ¢4 are algebra homomorphisms if ¢ is an algebra homomor-
phism.

Remark 2.2.2. By the above theorem, the maps ¢_ and ¢, are recursively given by

¢ (z)=—m | o)+ > o (2)o") ]|, ¢i(x)=Ad—7) | d(z)+ D> o (a)p(x") ],
(z) (z)

for x € Ker ey.
We define the Q-linear map ¢ : Hg — A by ¢(1) := 1 and for kq,...,k, € Ny,
dMy - dtry e g(dMy - dPry)(2) = 05 (2052) - (20l (2(2))

_ e

where z := z(z) := € A and 0, is the derivative by z.

1—e*
Proposition 2.2.3 (|[EMS17, §4.2]). The Q-linear map ¢ : Ho — A is well-defined and
forms an algebra homomorphism. Moreover, the following diagram is commutative:

(Ho, Lulo) —— (Q[[]], )

where (Y is the map in (2.1.2) (we mention that Hy is embedding in BY).

Because the map ¢ is algebraic by the above proposition, we obtain the algebraic map:

Gp i Ho — A (2.2.2)
which is an algebra homomorphism by Theorem 2.2.1.
Definition 2.2.4 ([EMS17, §4.2]). The renormalized value * (us(—k1, ..., —k,) is defined
by
CEMS(_kla ceey _kn> = il_{% ¢+(dkny U dkly)<z)

for ki,...,kn € Ng.
LIf we follow the notations of [EMS17], it should be denoted by (4 (—kn, ..., —k1).
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It is remarkable that the renormalized values coincide with special values of the mero-
morphic continuation of MZFs at non-positive arguments which do not locate at their
singularities.

Proposition 2.2.5 ([EMS17, Theorem 4.3|). For k; € Ny, we have

CEMS(_kl) = C(_kl)
and for ky, ke € Ng with k1 + ko odd, we have

CEMS(_kly _k2) = C(_kla _kQ)'

We recall that, as seen in (1.1.2), {(s1,--- ,8,) is always irregular at (s1,---,8,) =
(—k1,---,—kyn) € 2, for n > 3.

Another remarkable property of the renormalized values is that a certain shuffle rela-
tion hold for them. Because LUy is the product of Hy and ¢4 : Ho — QJ[z]] is a unital
algebra homomorphism by Theorem 2.2.1, we obtain the following proposition:

Proposition 2.2.6 ([EMS17, §4.2] : shuffle relation). For w,w’ € Y, we have
¢4 (w Wy w') = ¢y (W) (w').
Here are examples in lower depth:

Example 2.2.7. For a,b, c € Ny, we have

a

o) Co() — S (-1 <k> Cous(—b— ky—a+ k) ifb> 1,

k=0

Geus(—a, 0) if b=0,
Z(*l)k <;)CEMS(b7 —c—k,—a+k) ife>1,
k=0

Cmr‘(_a) : Cm\r‘(_bv _C) = - c .
i ’ I;)(_l)k <k)CEMS(_b_k7_a+k7O) ifb>1,¢c=0,
CEMS(_a/7 Oa 0) ifb=c=0.

For our comparison, we remind below the usual shuffle relation for positive arguments.
For a,b € N5,

b—1

((a).g(b)zaz_:l(b_2+k>(( kb k) +Z(“ 1““) (b—k,a+ k),

k=0 =0

and for a,c € Ny; and b € N,

a—la—k—1
Z 3 (C_Hk)<b_j“)g(a—k—i,b+i,c+k)
k=0 =0

1b-—-1
+ZZ(“”’“)(""‘“1”)<(b—j,a—k+j,c+k>

k=0 j= J

c—1
+Z<“‘1+k> (byc—k,a+ k).
k=0
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2.3 An explicit formula for the reduced coproduct A,

~ We show an explicit formula (Proposition 2.3.3) to calculate the reduced coproduct
Ag in this subsection. This proposition is important to prove the recurrence formula of

Coms(—k1, ..., —kp) in §2.4.
We consider the bilinear map f : Q(L) x Q(L >®2 N Q<L>®2 defined by

/

f(Lwew

(

yi=ww,
fldwew):=dwew +wedw,

)

/

fly,w@w) :=ywuw +we yw,

and inductively

flxzg,w@w') = f(z, f(zo,w @w)),
for w,w’ € Q(L), o € L and x € L*. Then the following lemma holds:

Lemma 2.3.1. There is a map f : Q(L) x HS? — HF? which makes the following
diagram commutative:

f(z,)

QL) ®Q(L) —— QL)®Q(L)
ﬂl lﬂ
f(za)

Ho ® Ho Em— Ho ® Ho

where © € Q(L) and 7 : Q(L)Y®? — HE? is the natural projection.

Proof. 1t is sufficient to prove f(z,kerw) C kern for x € L*. Here kerm = Q(L) ® S_ +
S_ ® Q(L). We show this by induction on wt(z). Let g = d or y and put v € S_. If
v € T_, it is clear that xgv € T C S_. If v € L_, for zyp = d it is easy to see that
dv € L_ C S_ by the definition of £_. Because £_ is a two-sided ideal of (Q(L),Up),
we have y Lgv € L_ for g = y. By the definition of Ly, we get

ywov=y(lwov)=yve L_CS_.

Because S_is L_ +T_, for v € S_ and xg = d or y, we have zqv € S_.
Let we L* and v € S_. Then xgv € S_, so we have
7 (f(xo,w®0)) = T(Tow @ v+ W R Tov)
= m(zow ®v) + T(w ® zoV)

Let w e L* and v € S_. For x € L*, we get

m(f (e, flao,w@)))

= W(f(x,xow QU+ we® xov))
7(f (2, ow @) + 7(f(z, w ® TYV))
=0,

w(f(xxo,w ®v))

by our induction assumption. This also applies to the case when w € S_ and v € L*, so
the claim holds. O
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For z € L* and w,w’ € Y, we simply denote f(z,w®w') by ve(w®w') and we define
W Qgym W = w QW +w @ w € Ho ® Ho.
Then, the following equations hold in Ho ® Ho:
n n 0 j
d" e (W Qgym w') = Z <z)d W Qgym dw', (2.3.1)

i+j=n
m A n /
(d"y) ® (W @sym W) = H]Z:n <z) {u’v}_%,-y’dj} UW Rgym VW', (2.3.2)

for n € N, w, w’ € Y. These equations can be proved inductively on n € N.
Proposition 2.3.2. For w € Y \ {1},

Ao(dw) = d e Ag(w), (2.3.3)

Ay (yw) =y e Ao(w) + Y Osym W (2.3.4)
Proof. Let w be in Y \ {1}. By the definition of Ay and the equation (2.1.4), we have

Ao(dw) = Ag(dw) — 1 Reym dw
= ) (dw)s ® (dw)g — 1 eym dw

SCn+1]
S:admissible
= Z (dw)s ® (dw)g + Z (dw)s ® (dw)g — 1 Rgym dw
1eSC[n+1] 1¢SC[n+1]
S:admissible S:admissible
= Z d-ws @ wg + Z ws @ d - wg — (d Qgym W + 1 Dgym dw)
Sc(n) 5Cl[n]
S:admissible S:admissible
= Z (d-ws @wg+ws @d-wg) — (d Dsym W + 1 Dgym dw)
ScC[n]
S:admissible

=de Z ws @ wg — 1 Qgym w

ScCn]
S:admissible

=deAg(w).

We use d @gym w = 0 in Hog ® Ho at the fourth equality. The equation (2.3.4) can be
proved in the same way. O

Proposition 2.3.3. Let wy, := d™y form € Ng. Then forn € N>g and kq,...,k, € Ny,
we have

~ k . .
Ag(wg, -+ Wk, ) = Z <,1)d“y®5ymd]1wk2...wkn

. " 1
t1+j1=k1 !

n—1 P
k _ A
+ Z Z H <Z'Z) Z (u1 - Up—1dPY @gym V1 "'Up—ldjpwka Cwg).

P=2 i1+j1=k; a=1 {uq, ")q}:{diq» dqu}
o 1<g<p—1
ip+jp=Fkp
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Here {ug, vy} = {d',d/ay} means (uq,vy) = (d's, d/ay) or (diay, d').

Proof. Because we have

Ro(dyw) = d° e (y Doy W+ 7 Ao(w)) (a € No) (2.3.5)
by Proposition 2.3.2, we compute
Ao(wp, wp, -+ wy,)
= d" o (Y Daym Wk, -+ wy,) + (d*y) ® Ag(wp, -+ wy,)
= d™ o (y Qsym Wiy - Wi, ) + (A7 yd"™) o (y Quym Wy -+~ wi,)
+ (d*ryd™y) o Ag(wp, -+~ wy,).
By using the equation (2.3.5) repeatedly, we get

n—1

(d¥1y - yd™) o (y Reym Wi, ,, - Wy,

(]

1
(d™y---dFrry) o Ag(wy, ).

_|_
Because Ag(d*y) = 0 (a € Ng) by the definition of A, the second term vanishes. There-
fore by (2.3.1), we get

p

Ao(wp, wp, -+ w,)
n—1 k

:Z (dkly...dkpfly) ° Z <.p)d1py®synl djpwkp+1 C W,
p=1 ipt+ip=kp '

And by using (2.3.2) repeatedly, we have

ky\ _
= 2 (z‘l)d“y@symd“wkz"'wkn

1

i1+j1=Fk1
n—1 p k
a i i
+Z Z H (Z ) Z (ul'”ul’—ldpy(gsym v1---vp_1d]”wkp+1 "'wkn)'
p=2 1=k o=l N0 fug, wg)={d's, diry)
L 1<q<p—1
ip+ip=Fkp

2.4 Recurrence formulas among renormalized values

The goal of this subsection is to prove Proposition 2.4.3 which gives the recurrence
formula among renormalized values.

We start with the following key lemma of [EMS17] which is a method to compute
recursively the image of ¢4 (the equation (2.2.2)).

Lemma 2.4.1 ([EMS17, Corollary 4.4]). For w € Y with dp(w) > 1, we have

1
P4+ (w) = 2d0(w) — 3 (z; P+ (W) (w").
Here we use Sweedler’s notation (2.2.1).
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Proposition 2.4.2. Forn € N>y and k1, ..., k, € Ny, we have

1 kn ) .
Cmrs(_kla--~7_kn) = ﬁ Z (’L )CEMS(_’Ln)CEMS(_klv'"7_kn—1 _]n)

in"l'jn:kn "
n—1 n
ka
> > I
(3
p=2in+jn=kna=p ~ °

ipt+ip=kp

X Z CEI\IS(_ip Op * " On—1 _in)CEMS(_kla ERE) _kp—l - jp <>p cOn—1 _]n)
{og, og}t={+, bl }
p<q<n—1

(2.4.1)

Proof. By Proposition 2.3.3 and Lemma 2.4.1, for n € N>y and k1, ..., k, € Ny we get

¢+(wkn T wkl) = ; Z <k’ﬂ> ¢+(diny)¢+(djnwkn71 T wkl)

g1 1
in+in=kn "

n—1 n
+Z Z H (f:) Z G4 (Un - Up1d™Y) by (Un - V1 dPwp, W)

Pp=2 in+jn=Fkn a=p {ug, vg}={d’e, diay}
o p+1<g<n
ip+ip=Fkp

because dp(w) = n. For p < ¢ <n — 1, we define

(0g,04) = (+:9)  if (g1, vg11) = (dist, dintry),
@ ¥q) - (,,+) if (Uq+1,’l}q+1):(d]q+1y,dzq+1).

Then by the definition of (ms(—k1,- .., —ky), the equation (2.4.1) holds. O

We define the following generating functions in C[[z]] for n € N>g and k1, ..., k, € Np:

PV N G L
b:=h(x):= Z ey ! Gons(—F1),

o0 _ k‘.n
bkl,...,kn,l (33) = Z &g}zms(_kh ceey _kn)7

k,!
ky=0 n

Ekl,“,7kn (‘T) = a’;nbk‘lgu-’kn—l ({,C)

Here for n € N, we set by, g, ,(z) = h(z).
The equation (2.4.1) looks complicated. But it can be simplified to the following
recurrence formula (2.4.2).
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Proposition 2.4.3. Forn € N>y and k1, ..., k, € Ny, we have

ko, . .
CEMS(_kla ceey _kn) = Z (Z )CEI\IS(_Zn)CERIS(_kl7 ey —kn_1 — ]n); (24-2)

in+in=kn
and
Dkr ok () = (—1)FFH it (hom=1) o (5001 (p) . (2.4.3)

Proof. We prove (2.4.2) and (2.4.3) by induction on n € N>y. Let n = 2. Then by
the equation (2.4.1) of Proposition 2.4.2, the equation (2.4.2) clearly holds. And by the
equation (2.4.3) for n = 2, we have

< (o
hk‘l(x) Z oy CEI\IS( kla k2)

5 (5ol ia)anl 1 = i)

I
=
1078
|
S
S
V)

iag+ja=ka
= { CEMS( )} i ﬂCE\IS(ikl 7].2)
i2=0 J2=0 J2' E
= b { DMo; (h)}

Let n = ng > 3. We assume that (2.4.2) and (2.4.3) hold for 2 < n < ng — 1. First,
we prove the equation (2.4.2). By Lemma 2.4.4 which will be proved later, the second
term of the right hand side of the equation (2.4.1) is calculated to be

’I’L()*l

Z Z Z <kno) CEI\IS(_iTLo)CEXIS(_kly C) _kng—l - jno)

) - Un,
p=2 {og, og}={+, 9 } {ing+ing=kng °

p<g<no—1
no—1 k
= Z 2mo~P Z (Z.m)) CEBIS<_in0>CERIS(_k1; ey —knO,1 - jno)
p=2 ingFing=kng ~ °

= (2n0—1 - 2) Z <I:n0> CEI\IS(_ino)CEAIS(_klv sy _knofl - Jng)

ingFHing=kng O 0
Therefore, we have

(RHS of (2.4.1))

1 kn, . .
:m Z ( )CEx{s(_lno)CEMs(_k'la-- -7_kno—l _]no)

) - 1
ingting=kng 0

teetey Y ( )cms(—zno><ms<—kh---a—’fnoHno)
no

ino +jn0 zkno

K, . .
= Z (Z 0>CEAIS(_ZHQ)CEI\IS(_]€17"'7_kn01 _jno)o
no

ing+ing=kn
0 0 0
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So we get the equation (2.4.2) for n > 3.
Secondly, we prove the equation (2.4.3) for n = ng > 3. By using the equation (2.4.2)
for n = ny which we have proved just above, we have

(=1)F0 0 (@) (B k2 ()

in the same way to case of n = 2. By our induction hypotheses,
= (=)o (@)af o (=P HReo=e ((@)a o) - (b(@)0R) (b(a))
_ (71)k1+...+kn071 <f)(x)5'];"°71> (h(x)glgl) (h(x))

So we get the equation (2.4.3) for n > 3. O

hk‘l,"' ,kn,ofl (I)

We prove the following lemma used in the above proof.

Lemma 2.4.4. Let ng > 3. We assume that (2.4.3) holds for n =1 with 2 <1 <mng — 1.
Let2<p<mng-—1 andoie{—i—,,}forpgigno—l. Then we have

ng
Z H (ia>CE-\IS(_Zp Op " Ong—1 —ing ) Cons (=K1, s —kp—1—Jpop - Ong—1 —Jno)
a

ip+jp=kp a=p

ing +ing=kng

kn , .
= Z (l )Cms(—lno)@ms(—kh ooy =kng—1 = Jng)- (2.4.5)

. . n
ng+ing=kng 0

Here o; is chosen to be with {o;, o;} = {+, 4} forp <i<mng— 1.

Proof. We get

o o kno
Z( ), (RHS of (2.4.5)) = (=1)"0= 005" ™ (B, (2) )

pno=0 no’

nQ

in the same way to the computations of by, (x) in (2.4.4). By our induction hypothesis
on (2.4.3), for ng we obtain

= (_1)k1+~.~+kn071 (halgnofl) (h8§1) (b) (246)

On the other hand, we have

|

— To*
kg =0

TR e |
- Z H <’L ) Z = CEMs(*Zp Op ** " Opg—1 7Zn0)

. Tng .
ip+ip=kp a=p a ing=0 o

o~ (—a)Fno
> 5 (LHS of (2.4.5))

inofl“!‘jno—l:knofl

© (_x)jno ) )
X E ] CEMS(_kla'~'7_kp71 —Jp©p - Onp—1 _Jn(])
g0 J70°

We also consider the following two cases:

25



Case i) : When (0,,-1,%n,-1) = (9, +), we compute

o~ (=)Fno
> (LHS of (2.4.5))

|
2y !
no—1 oo .
k (—x)tno . . )
= Z H ( ‘a> Z ) CEXIS(_Zp Op =+ Ong—2 ~lng—1, _Zno)
.~ L \ig = g,
ip+ip=Fkp a=p ing=0
in071+jn0'71:kn071
o .
(<o | -
X Z %'CEMS(_klv ceey _kp—l —JIpOp - Ong—2 —JIng—1 — .]710)
0 Ino*
g =0
p—1 when ¢; is + for all 4,
Put m := .
max{l | p<I<mng—2, oy =4} otherwise.

Then we have

no—1 o) ;
ke —x)'ro . . .
= Z H ( ; ) Z ( ; )l CERIS(_ZP Op " Ong—2 ~Ilng—1, _Zno)

. - 1 X (2%
ip+ip=kp a=p @ ing=0 o

tng—1tJng—1=kKng—1

00 )
_l‘ j’ﬂo ) -
X (_1)58555 Z ( . )' CEMS<_]€]_7~--,_I{7P7]_ —]p Op"'0m71 _jm)
A~ Ing!
Jnofo
Here S := ]?P*1 +Jp+- + Jjno—1 when % is + for all 1,
Jm+1+ -+ Jng—1 otherwise.

no—l I{)
g _
- Z (71) H <7/:) hipOme"O—Q i"o—l(x) ’ hkl:“'7kpf1+jpop"'<>"0*2 jno*l(x).
a=p

ipt+ip=kp

ing—1+JIng—1=kng—1

Here we use the definitions of bhg,, ., ,(z) and Ekl,.v.,k‘no (z). And by using our
induction hypothesis on (2.4.3), we have

no—1

- () S ) )

ip+jp=Fkp a=p

tng—1tJng—1=kKng—1

X QDT (gt o ) e (g1 00) (0057 - (00) ()

26



O ifoi:—|—7

<1< — 2.
1 ifoi:,, forp<i<ng—2

Here we put 4; := {

no—1

0= e () () 0o )

.= la
1p+]p:k;p a=p

Ing—11+JIng—1=kng—1

x {ogromt (p1Tomeg) o) e (000 (b0R) - (902) (b)

NN N Py 1:[2(’;> {oro (po=sar07") - (b7 0k ) (6) }

tptip=kp a=p

ing—24dng—2=kng—2

x {alro? (p1Pomaye ) o (017 0g) (b0k) -+ (905 (h) }

We use Leibniz rule in last equality. By using this rule repeatedly, we get

np—1

W (boxo=) - (v02) (b).

This is equal to (2.4.6).
Case i) : When (0,,-1,9n,-1) = (+, 3), it can be proved in the same way to Case 7).

O

2.5 An equivalence between desingularized values and
renormalized ones

We reveal a close relationship among desingularized values and renormalized ones in
Theorem 2.5.1. As a consequence, we get an explicit formula of renormalized values in
terms of Bernoulli numbers in Corollary 2.5.5.

Our main theorem in this subsection is the following explicit relationship between the
generating function Zy(t1,. .., t,) of the desingularized values (3 (—ky, ..., —k,) and
the generating function Zgs(t1,...,t,) of the renormalized values (us(—k1, ..., —kn).

Theorem 2.5.1. Forn € N, we have

n 1 _ e,tif.uftn

Zows(tr, - otn) = | =T Zor(—t1,. .., —tn). (2.5.1)
Pl ti+--+ty,
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Proof. By Proposition 2.4.3 and Lemma 2.4.4 we get

“r (ka : . . .
CEMS(ikh?"')ikn) = Z H <Z )CEMS(Z27"'7Z'ﬂ)CEMS(kl —J2 — *]n)-

12+J2:k§2 a=2

in+in=kn
Here, we use Lemma 2.4.4 for p = 2 and for all o, = 4 (2 < ¢ <n). It is remarkable that
the same recurrence formula holds for (3¢%(—ky, ..., —ky) of (1.2.6). Thus, we get

Zins(t1, -5 tn) = Zpus(to, .. tn) - Zoys(t1 +---+tn) (€ N). (2.5.2)

Now from [EMS17| Theorem 4.3, (uys(—k1) = ((—k1) at k1 € Ny, so we can write Zys(z)
by

1+x—¢"

x(er — 1)

We get the following equation by Zpys(x) and Zpgyr(x):

Zanis (x) =

1—e"
ZEMS(I) = - ZFKMT(*I)- (253)
By using (2.5.2), (2.5.3) and (1.2.6), we get (2.5.1). O

By Theorem 2.5.1, we find that desingularized values and renormalized ones are equiv-
alent. Namely, the renormalized values can be given as linear combinations of the desin-
gularized ones.

Example 2.5.2. The desingularized values and the renormalized values are equal at the
origin:

1 n
¢de5(0,...,0) = Cus(0,...,0) = B = ()
—— —— 2

n n

Example 2.5.3. For kq, ko, k3 € Ny, we have

Z (k1>5/0111/111 1 (—vn),

14
vo1+vi1=Fk1 ot

_1)\V11tve2
CEMS(fkl, 7]{32) _ Z <k1 ) < k2 ) 1 ( ]-) des(*l/lla 71122)7

2
_ vo1/) \Vo2 Y12/ Vo2 +1vor +v12 +1
vo1+rii=k

vo2+vi2+vaa=ka

_ k}]_ k2 kS
CEMS(_kly —k27 —kS) - Z (V01) (VOQ V12> (VOS Vis 1/23)

vo1+vi1=ki
vo2+viz+raa=ka
vo3+v13+v23+vsz=ks

1 1 (_1)”01+V12+V23

CEMS(*kl)

% éies
vo3 +1vg2 + 13+ 1vp1 +v10 + 103 + 1

(_V117 —U22, _V33)'

ko ) o ko! k3 ) R k3!
Here (V02 via) " woz2lvia!(ka—vo2—vi2)! and (Vos vig vaz/ ' voslvizlves!(kz—voz—viz—vas)!”

On the other hand, desingularized values can be also given as linear combinations of
product of renormalized ones and Bernoulli numbers (cf. (0.2.3)):
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Example 2.5.4. For ki, ko, k3 € Ny, we have

dos(hy) = (-1 S (’“)Bmlcm—un),

14
vo1+vi1=Fki ot
k k
des ki14+k 1 2
2%(*klv *kQ) = (*1) Lk E < BVOQBV01+V12CEMS(7V117 7’/22);
B vo1/) \Vo2 V12
vo1+vi1=k1
vo2+ri2trvae=ka
k k k
d _ k1+ko+ks 1 2 3
R e A D DI
_ Vo1 Vo2 V12 Vo3 V13 V23
vo1+vi1=Fk1

vo2+vi2+rea=ko
vo3+vi13+v23+v3z=ks

X BV03 BV02+V13 BV01+V12+V23 CEMS (_Vlla —U22, _V33)'
By combining Proposition 1.2.8 and Theorem 2.5.1, we obtain the following corollary.

Corollary 2.5.5. For n € N, we have

n

) — (efitttn 1)

I s AR
Zos(tr, - tn) = H (ti + - + by (eliTFtn — 1)
i=1

Therefore the renormalized values are described explicitly in terms of Bernoulli num-
bers:

Example 2.5.6. For kq, ko, k3 € Np, we have

(="
EMs\ T = B )
Gonis(—F1) AL

ko \ B, By, 1o
CEMS(_k17 _k2) = (_1)k1+k2 Z <V122> 1/222:-+i kl ]"CfiJlr/1122—+|-117

viz2+vaz=kz
k k-
k1+kot+k 2 3
Gows(—k1, —ka, —kg) = (—1)MHheths E
V12 Vi3 V23
viz+vaz=ks
vi3+ve3+raz=ks
Bl/33+1 BV22+V23+1 Bk1+V12+V13+1
v33 + 1vgg +vo3 + 1k +vip+1v13+1
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Chapter 3

Functional relations of
desingularized MZFs

In §3.1, we prove the product formulae of desingularized values at non-positive integer
points. In §3.2, by using a combinatorial method, we prove a generalization of the equation
(3.1.3) in Theorem 3.2.8 and general “shuffle product” of (3%(sy,...,s,) in Corollary
3.2.10. In §3.3, by using an analytic method, we prove a generalization (Theorem 3.3.7)
of Theorem 3.1.3 and Corollary 3.2.10.

3.1 The product formulae at non-positive integer points

In this subsection, we prove the shuffle-type product formulae of desingularized values
at non-positive integer points (Theorem 3.1.3).

Lemma 3.1.1. Forr € N, we have
ZFKA{T(ul) ce ZFKMT(ur) = ZFKMT(ul —U2,U2 — U3y ..., Ur—1 — Up, Ur)~ (311)

Proof. Let r € N. Using the equation (1.2.6) repeatedly, we get
ZFKMT(tIJ . 7tr) = H ZFKMT(ti + e + tr)~
i=1

Setting u; =t; +--- +t, for i = 1,...,r, the equation (3.1.1) follows. O
We obtain the following lemma by direct calculation.

Lemma 3.1.2. Forr €N, ay,...,a, € C and f : Ng = C, we have

= (ag + -+ ap)” = f(k) k! i i
Z A f(k‘)*z ko Z il!...iryall'”ar
k=0 k=0 i1+ +ir=k
o ail ...air ) )
_ Z .1' 'r' f(ll+"'+7’r)'
| L= i)y
81 yenstpr=0

Using the above two lemmas, we have the following theorem.

30



Theorem 3.1.3. Forp,q € N and k1,...,kp,l1,...,l; € Ny, we have

Qges(_kla ceey _kp)cges(_lla ceey _lq)

q
] la es . . . .
= Z H(il)za (Z ) §+q(7k1’ ] 7k17—1’ 7k17 S S 7/ T 5 P *]q)'
i1+j1=l1 a=1 @
quFj:q:lq
(3.1.2)

Proof. Using the equation (1.2.6) repeatedly, we get

ZFKMT(Sla ceey SP)ZFI(]\IT(t17 ey tq)
:ZFKMT(SI + -+ Sp) te ZFKI\IT(Sp)ZFKI\[T(tl +---+ tq) ce ZFKMT(tq)-

o st sy (1<i<p),
Bysettlnguz_{ti_p+...+tq (p+1§z§p+q),
to the above equation, we have

and applying the equation (3.1.1)

=Zpour (815 oy Sp—1,8p —t1 — -+ —tgyt1,.. ., tq)
_ Z (731)7“1 "'(73p*1)kp_1(78p+t1 ++tq)kp
B ... 11

k1,...,kp>0 kl- kp71.l€p.

(_tl)jl e (_t )jq des . .
Z g1l ! s Cp+q(*k1a-~-7*kp,*]1,...,f]q)
J1s-dq 20 : a:

— Z (—Sl)kl "'(—Sp_l)kP71 (_tl)jl "'(_tq)jq

E1yeeoskp—1>0 kil--kp—1! il gg!

J1,--30q 20

—8y, it b t,)Re ) )
( L 1k | q) Cgisq(_klw'-7_kp7_jla"~7_Jq)'
D!

kp>0

Using Lemma 3.1.2, we get

- Z (—Sl)kl o (_Sp_l)kp71 (—t1)j1 ... (_tq)jq

... | I
E1yeekp_120 frl - kpal Jicde
j17-~-7jq20
kp 41 iq
(—sp)™Pt" - tq" des . . . .
kolig! - ig) p+q(7k1""’7kp7“7“.7%’7‘71"”’7‘7(1)
Z plin! q!

Fopyityeeeyiq>0

—81 ki, .. —Sp kp
Ly s

N
k1, kp>0 fal -kl
Gl () () L
D e B P L Al LI e )

ki,..kp>0
(7t1)il+j1 . (7t )iq+jq bty d . . ) )
Z Z‘l...il'l...q'l (=" qupisq(_klv~~~,_kp_zl_"'—an—]17---7—1q)
i1,..0,0g >0 v @ gt Ja
Tlseeos 7q=>0
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q
la ia ~des . S .
> H<i)<—1> 95 (ko —hy == = g o)

i1+j1=l1 a=1

igt+iq=lq

On the other hand, by the definition of Zpaw(t1,...,tq), we have

ZFKMT(Sl, ey sp)ZFKMT(t17 cee 7tq)

—51 k1., —Sp kp os

E1yeeskip>0 4
I1,eelg>0
Therefore, we obtain the equation (3.1.2). O

Here are examples for (p,q) = (1,1), (1,2).

Example 3.1.4. For a,b,c € Ny, we have

(o (—a)cies(—b) = ‘ (.b )cseS<—a i),

|
—
I
—
~—
<
oy

i1+71=b &
i (O) [ € L
ileS(ia) éies(ib’ 76) — Z (71)114*22 < ) < ) ?c)les(ia — i1 — i, —J1, 7]2).
i1+j1=b “ ‘2
i2t+j2=c

Remark 3.1.5. The above recurrence formula (3.1.2) also yields

kT des - es -
C;‘ies(_kla...,_k'r) = Z < 1 ) Tl;l(_kla"'a_k’r“f??_k’rfl _Z)Ci(li ‘(_-7) (313)

4,520

3.2 Combinatorial proof

We prove generalizations of (3.1.3) in Theorem 3.2.8. We assume r € N>, in this
subsection. We start with the following lemma on the property of the Pochhammer
symbol.

Lemma 3.2.1. Fora,b € C and n € Ny, we have

(@+bn= Y <T;>(a)i(b)j.

i+j=n
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Proof. We prove this claim by the induction on n. When n = 0, this claim holds clearly.

Let n € Ng. We have

(a + b)n+1 = (a + b)n( +o+ ”)

=n i+j=n
= 3 () @b+ 3 (’Z)(a)i(b)m
“Hi=n itj=n
-2 @it + 3y (1) @)

Il
(]
N

The above lemma is used in the proof of Proposition 3.2.7.
Next, we prove a property of G,((u;); (v;)) defined by the equation (1.2.2).

Proposition 3.2.2. We have

Uy + 2
Gr |l Uty Uy U1y e e Uy, ———— U1

r

=(z+1)Gr—1(u1, .., Up_2, Up_1 + Up + 2501, .., Vp_1).

Proof. By the definition of G, ((u;); (v;)), we have

Ur + 2
Gl ur, ... up vy, .o U, ————Vp 1

T

r—1
Up + 2 _ _
= H {1 — (ujvj o U1V Uy " vr1> (Uj 1_ vj_ll)}
j=1

T

{ ur+z <<ur+z )1 1>}
-1 —u, Vp_1 Vp_1 Y
U [

33
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= H {1 = (ujvj+ -+ up—2v,—9 + (Up—1 + up + 2)v,_1) (vj_l - vj_fl)}

AL = (ur = (ur +2))}

:(Z + ]-)grfl(ulv coy Up—2, Up—1 + Up + 2501, ... 7’07’71)'

It is easy to prove the following lemma by comparing coefficients aj . of the equations
(1.2.2) and (1.2.3).

Lemma 3.2.3. Let l := (I;) € Nj and m := (m;) € Z". If m, # I, — 1,1, or m, <0,
then we have
apm = 0.
For our simplicities, we employ the following symbols:

Notation 3.2.4. Let s1,...,s,. and z be indeterminates. For r-tuple symbol s :=
(s1,-..,8r), the symbols s’ and s~ are defined by

s = (51, ey Sp—2,S8p—1 t ST)a

s i =(81,--,8—1),
[s| :=s1 4+ s,

and we define z := (0,...,0, 2).

Lemma 3.2.5. For the functions f :Z" — C and g : Ng“ — C with
#{neZ | f(n)#0} < oo and #{a € Ng*' | g(a) # 0} < oo,

we have

Z f(n) - Z Z f( D q )7 (322)

n=(n;)ez"” m 77— ptq=m,_
|§L|J:)O ™ ?mjl)eo paci
Z g(l/alr—lalr) = Z Z k P, q (323)
I=(1;)eNg k=(k;)eNy ! pra=k,—1
p,9€No

Proof. We only prove the equation (3.2.2), because the proof of the equation (3.2.3) can
be done in the same way to that of the equation (3.2.2). We have

Z f(n): Z f(nla"'anT—QanT‘—ly_nl_"'_nT—Q_n'r—l)

n=(n;)€L" N1,z Mp_1€Z

[n]=0
= E E f(mla---;mrf%nrfl;_ml_"'_mr72_nr71)~
MyeeeyMp_2€LN,_1E€EL
When we put m,_q := —my — -+ —m,_o, then m,_; can run over all integers. So we get

= Z Z f(mla“-amrf%nrflymrfl_nrfl)-

m:(mj)EZT71 ny_1€Z
|m|=0
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When we put p :=n,—; and q := m;_1 — n,—1, then p and ¢ run over all integers with
P+ ¢ =m,_1. So we obtain

= Z >, fm .pa).

=(m;)ez "t ptq=mr_1
|m|=0 P,qE€ZL

Using Lemma 3.2.3 and Lemma 3.2.5, we get the following corollary.

Corollary 3.2.6. Forl := (l1,...,l,) € N} and m = (mq,...,m,_1) € Z"~ with
|m| =0, we have

l —1 +1
r r r T r—1
al,(m*,mr,l—lT,lT) a’l,(m*,mr,l—lﬁ-l,lr—l) ( l,_q a‘l’;m
r

) ety (3:24)
Proof. Let r € N. By the equation (3.2.1) and the equation (1.2.3) (the definition of the
coefficient a;, . of the function G,), we have

LHS of 321)= Y af, <Hu )(H )(“Tufzv”)nr.

l (1;)eNg Jj=1
(n7)€Zr
|1 |=0

By using the equation (3.2.2) of Lemma 3.2.5, we have

2 q
Z Z ay (M= ,p,q) (Hu > <H m,) vy <UTU+ZUT—1>
l=(1;)eng  prg=mr_1 j=1 r

m=(m;)ez 1 P,qE€L
\m\ 0

S e ()5 i)

l=(;)eNy Pra=mr_1
m=(mj;)ezr—1 PIeE
- J

[m|=0

By Lemma 3.2.3, we get a; (m-pa) = 0 for ¢ # 1. — 1,1,. So we have

r—1 r—1
1% Ip—1 m.
= Z {a{,(m,mr_lzr+1,lr1) <H “j]) ur (ur + 2) (H Uj J)

I=(1;)eng Jj=1 j=1
m=(m;)ez" 1
| |=0
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r—1 r—1
2] lp—1 m;
= Z {alr,(m,mr_lzrﬂ,zrl) (H “jj> (=2)(ur + 2) (H Yj J)
I=(1)enNg Jj=1 Jj=1
m:('mj)EZ’ﬁfl
| |=0

r—1 r—1
r 17 Iy mj
T m—m, 41,01 <H uf) (ur +2) (H v; 7>
j=1

j=1

r—1 r—1
T lj Iy m;j
T om— im0 (H “f) (ur +2) (H Yj ]) } :
j=1 j=1

By Lemma 3.2.3, we get aj (i.e. the case of I, = 0). By replacing

m- me_1+1,-1) 0
l, — 1 with [,., we have

r—1 r—1
_ r L L m;
=7 Z {a(l,lTJrl),(m—,m,.llr,lr) (H “J‘J> (ur +2) <H Yy J) }
i=1

l=(1,)eNg Jj=1
m=(m;)ez "}
|m|=0

+ Z { (a;,(m*,m,.,l—u,l,,,) + a;‘,(m*,nL,,.,l7l,,v+l,l,,.71))
I=(1;)eNg

m=(m;)ez" !
| |=0

On the other hand, we have

R.H.S. of (3.2.1)

=+1) > a N TTey | @ees +ur + 2)f [ T o5
k:(kj)EN671 Jj=1 Jj=1
m:(mj)EZT_l
|m|=0
r—2 k r—1
SCEE D SR § | () B DR G T § )
k=(k;)eN; ! Jj=1 pHa=kr_1 p j=1
m=(m;)ez" ! P,2€No
|m|=0

By using the equation (3.2.3) of Lemma 3.2.5, we have

lr— + lr B r—1 . r—1 -
=(z+1) > ( ! >a;ﬂ; [T ) e+ | T - (3.2.6)
j=1 j=1

lrfl
l:(l]‘)GNS
m:(n]‘)GZT71
|m|=0
We compare the coefficients of (3.2.5) and (3.2.6), then we obtain (3.2.4). O

By tracing proof of Corollary 3.2.6 inversely, we get the following proposition.
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Proposition 3.2.7. For sy,...,s,,2 € C,

T

Z a H(Sj)lj F(ST+m+Z)F(_Z)Cr—1(8/+n’+zl)

I=(i;)ENy j=1 (e +n2)
n=(n;)eL"
|n|=0
F(ST + Z)F(_Z) es
=(1+ Z)T des (s + 2') (3.2.7)

holds except for singularities.

Proof. Let s1,...,s,,z € C. Using Corollary 3.2.6, we have

r—1
Grn T (zT_1+zT)a;,J; TLG | s+ 20,

1=(1;)eNg br-1 j=1
r—1
=—z ) U 1), (m= 1)) [1G, | (e + 20,
l:(l]‘)GNS J=1
r—1
D DI (Y ya—————r N | (517 NCE
I=(1;)eNg j=1

(3.2.8)

By multiplying the function ¢,._1(s’ + m + 2’) and taking summation over m € Z" !
with |m| = 0, we have

Z (R.H.S. of (3.2.8)) Cro1(8' +m+ 2)

m=(m;)ez" 1
|m|=0

r—1
- 2 {a&—,zr+1>,(m,mr_1zr,lr) (H(Sj)lj) (S’""'Z)lrcrl(s/"'m“'z/)}
l:(lJ)ENg j=1

m=(m;)ez" "}
|m|=0

s T
+ Z { (“l,(m*,mpl—lr,zr) + “l,<mam7~71—zT+1,lT—1)>
l=(1;)enNg
m=(m; )627471
|m|=0

r—1
’ (H (Sj)lj) (sr + Z)ly»CT‘—l(S/ +m + Zl)}

j=1

r—1
= Z {a’iv(m’mr—l—lr“'lylr—l) (H(Sj)lj> (=2)(sr +2)1,—1Gr—1 (s +m + 2)

l=(1,)eNg Jj=1
m:(m]‘)GZT71
|m|=0

r—1

Y eyt 100 1) (H (sg-)zj) (sr +2)1,¢r—1(8' + m + 2')
j=1

1

r—

s (H@m) (504 2, G (8 +m +z'>}

Jj=1
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1

—
= > {alr,<m,mr1lr+1,z,,'1) (H(Sj)lj) (sr 4l = D(sr +2)1,-1Gr—1(s' + m+ 2)

I=(1,)enNg Jj=
m=(m;)ez 1
|m|=0

o

r—1
Lm0 (H (Sj)lj) (sr+2)1,Gro1 (s +m + z/)} :
=1

By Lemma 3.2.3, we get a; (M- pa) = 0 for ¢ # 1, — 1,1,. So we have

T
(8r + 2)q ’ /
T
- > . mepo | LTG0 (s1) Cro1(s” +m 4 27).
l:(l]‘)GNS PHg=my_1 j=1 ra
m:(m]‘)GZT_l P,q€Z
|m|=0

By using the equation (3.2.2) of Lemma 3.2.5, we have

” Sr + 2)n,
= > dn |6 Wcr-—1<s’+n’+z’>- (3.29)
I=(1;)€Ny j=1 e
n=(n;)ez"
In|=0

We have I'(s +n) = (s),I'(s) for s € C and n € Ny, by the relation I'(s + 1) = sI'(s). By
multiplying the equation (3.2.9) with I'(s, + z)I'(—z)/T'(s,), we obtain

Dlsr £ 202 | (the equation (3.2.9))

L(sr)
i
, I'(sp +n. + 2)I'(—2
= Y ain | [I6) ( TF(STHJ)( )Cr_l(s’+n’+z’). (3.2.10)
I=(1;)eNg J=1 " "
n=(n;)€L"
| |=0

On the other hand, we have
Z (L.H.S. of (3.2.8)) - p—1(s' + m + 2')

m=(m,)ez "

|m|=0
r—1
=(z+1) Z b1t b a ! H(s) (8r +2)1,.Cr1(8" + M+ 2)
= I ) 'm 7)1 T 1r6r—1 .
I=(1;)eNy T j=1
’rn:(mjj)EZ(’)ﬂfl
|m|=0

By using the equation (3.2.3) of Lemma 3.2.5, we have

krfl r—
SCRVNED SIS D (e
k:(kj)€N6‘71 p+q=kr—1

m=(m;)ez" ! P,a€No
|m|=0

r—2
: H(Sj)kj (sr—1)p(sr + 2)gGro1(s’ + m + 2).
j=1
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Using Lemma 3.2.1, we have

r—2
=(z+1) Z a’,;,rln (H(Sj)kj> (sr—1+ 8p + 2)k.—1Cr—1(8' + M+ 2'). (3.2.11)
k=(k;)eNg?
m:(mj)le*l
[m|=0
By multiplying the equation (3.2.11) with I'(s, 4+ 2)I'(—z)/I'(s,) and by the equation
(1.2.4) of the desingularized function (°(s), we obtain

L(s, + 2)['(—2)
I'(s,)

T(sy + 2)T'(—2)

- (the equation (3.2.11)) = (1 + z) (o)

Gl (s + 2).
(3.2.12)

So we obtain the equation (3.2.7), by combining the equations (3.2.10) and (3.2.12) be-
cause we have (3.2.9) = (3.2.11). O

Theorem 3.2.8. For si,...,s,—1 € C and k € Ny, we have
des k des -\ ~des .
G (1, Sty —k) = Y )G 82y 51 — ) (). (3.2.13)
it+j=k
,§>0
Proof. Let s :=(s1,...,8;) € C". We recall the equation (1.1.3):

=5 Rt e -

for R(s;) >1 (1 <j<r), —R(s,) < ¢ <0 and the path of integration is the vertical line
R(2) = c. By this formula and the definition of (4°(s), we have

r

C;Aies(s) = Z alr,’n H(sj)lj C(S + n)

l=(1;)eNg Jj=1
n:(n_,»)GZT
n|=0
1 / Z - 4 L(sy +nr + 2)['(—2)
=5 apn | [T,
211 (¢) 1=(,)eN; i1 F(ST + TLT)
n=(n;)eL"
|n|=0

Cro1 (8 + '+ 2')¢(—2)dz.
Using Proposition 3.2.7, we get

— 1 F(ST + Z)F(_Z) es (o I

By Proposition 1.2.3, we have the formula ({*(s) = (1 — 5)((s), so we obtain

_ 1 F(ST+’2)F(7Z) des / N ~des
=5 " Ts) 28"+ 2)(GF(—2)dz.
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For M € N and sufficiently small € > 0, we set D := {2 € C | ¢ < R(2) < M —¢}. For
z € D, we have (s, + z) > 0 by —R(s,) < ¢ < 0. So singularities of the above integrand,
which lie on D, are only at z =0,1,2,..., M — 1. By using the residue theorem, we get

- Z Res [ *;1?( D s (o 4 )G (), = 5

i F(ST+Z)F( ) des o des 2)dz
" omi (M—¢) L'(sy) (e )2

(By the same arguments as in [Mat], the second term above converge). By using the fact
(71)71
n!

that the residue of gamma function I'(s) at s = —j is , we get

_z( B T L]

1

T o S T (—2)¢des (s 2Nedes( s
T ot (sr) /(M E)F(r+ )0 (=2)¢r (8" + 2')¢T (—2)d

Setting s, = —k and M =k + 1 for k € Ny, we obtain

k
k .
Cges(slﬂ"'7sr—1’k)z<3) gesl(slv" y Sr—2, Sr— 1*k+]) des( ])7

§=0
because 1/I'(—k) = 0 for k € Ny. O
Remark 3.2.9. In case of r = 2, the above theorem recovers the equation
o) = 5 (7 )etts - i)
i+j=N
which is equivalent to (1.2.5) in the paper [FKMT17b, Proposition 4.3].
By Theorem 3.2.8, we obtain the following corollary.
Corollary 3.2.10. For s1,...,8.—1 € C andl € Ny, we have

: (1 : o
des (51,000, 871)CPS(—1) = Z (1)1<Z> Ca (51, vy Spmny8pm1 — i, —5).  (3.2.14)

itj=l

Proof. We prove this claim by induction on [. It is clear that the case of | = 0 follows
from the case of k = 0 of Theorem 3.2.8. By putting k =l (> 1) in the equation (3.2.13),
we get

2 (51, -+ 57—1)CE (<o)

lo—1
] l . o
= Cg%(sl, ey S, —lo) — Z (;) 3951(81, ey Sp—2,8p—1 — l() + ])Cldes(—]).
7=0

In the second term of the right hand side of this equation, we obtain the equation (3.2.14)
of I = ly by using our induction hypothesis (i.e. the equation (3.2.14) in the case of
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3.3 Analytic proof

As a generalization of Corollary 3.2.10 in §3.2, we give an analytic proof of shuffle-
type product formulae between Cges(sl, ..., Sp) and Cges(—ll, ..., —lg) in Theorem 3.3.7.
We assume 7 € N>q in this section. In [FKMT17a|, the multiple zeta-function of the
generalized Euler-Zagier type is defined by

r
CT'(817"'787';715'"”YT') = Z H(71m1+"'+7kmk)_8ka

my,...,m.>1k=1

for y1,...,7 € C with the condition R(y;) > 0 (1 < j < r). This series absolutely
converges in the region

(51, .8) €ECT | R(sp_psr++5) >k (L<k <)) (3.3.1)

In [Mat], it is proved that the function (.(s1,...,Sr;71,- .-, ) can be meromorphically
continued to C". For simplicity, we sometimes denote it by ¢ ((s5); (95))-

Lemma 3.3.1. For sq,...,s,. € C, we have

es . 1 r
G (51,0, 80) = lim d—or Z (=) T (1, s ) (3.3.2)
ceR\{1} 81,00 €40,1}

Proof. Let ¢ > 0 such that |¢ — 1| is sufficiently small. We assume (si,...,s,) € C"
satisfies
R(sp—pr1+-+s) >k 1<k<r).

Then, we have

e D DI GO AMRCIC IR
ceR\{1} O1,eens 6,-€{0,1}

o =D VNG L T (oot ) ™

€R\{1} -0 81,...,6r€{0,1} >1k=1
c Lyeens r Ay mq,..., my>
Because we have
s 1 /OO tmys 1dt
m ° = — e "ttt
L'(s) Jo

by using the Mellin transformation, we get

. 1

il—% m Z (_C)él+ +5TCT'(817"'787';0617"'acér)
ceR\{1} 61,..,0,€{0,1}

o 1 1t 0
= lim T o Z (=)™

CE?R_\>~‘%1} (L—oyr 61,.-,6,€{0,1}

5 et o)

yme>1 k=1
— T 1 O1+-+6r
= 213{ 1—or Z (=) Z
ceR\{1} 01,50-,6-€{0,1} mi,...,mp>1
i 1 T s T
—tpn >0 c%im; H s;—1
11 [[em==cm ] du.
iy Flsw) /(0700 " =1 =1
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s T
. _ n 3 . o 55 r
By using | I e tn i cImy H e~ ™i¢ X t", we have

n=1

1
= lim

Z (_0)51+~~+6r Z

c—1 ( —c)’”
ceR\{1} 51,...,6 e{0,1} mi,...,mp>1
e~ Mic Sj S 't 15 ldtl
Sk /Ooc H H

Because (((s;); (c’)) converges absolutely, the integral |, (0,00) and the sum >
can be interchanged. So we have

k 1

mi,...,my>1

1
=0 Z (=) T H0r e (81,000,800, )
4

1,..,0,€{0,1}

1 —
- 1
el (1—C)T]£[1F(sk)

lim
c—1
ceR\{1}

ceR\{1}
/ Z (_C)5l+"-+5r Z H —m;c 5 Zn ]tn Htsl 1dtl
(0,00)" 5. .. 5,€{0,1} miyeme>1 =1
i 1 Tl
= lim
ceﬁ{ll} (1-c¢) P I'(sk)
/ [ S (oo 3 eme St L T an.
(0.00)7 =1 | 5;€{0,1} m;>1 =1
By using the definition of $, and the following formula
1 c _ _ 5 6
e =S SLLLET) SR DL S

m>1 m>1 6e{0,1} m>1

for y > 0, we get

lim

Z (—0)61+"'+6*Cr(31,...,sr;c‘sl,...7c‘”)

cE?R_\>{11}( —) 61,0,0-€{0,1}

1 —
= lim / Oy (1, tee) [T at
c—1 (1 — C)T kl;[l F(Sk) (0,00)" ! H t !

ceR\{1}

=9 (sq,. .., 8,).

Therefore, we get the claim for (sq,...,s,) € C" with
R(sp—pq1+--+sr) >k Q1<E<r).

Because (3%(s1,...,s,) and ¢.-((s;); (7;)) are meromorphic on C" and the limit of mero-

morphic functions is also meromorphic, the equation (3.3.2) holds for (s1,...,s,) €
Cr. O
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Lemma 3.3.2. Let v1,...,7 > 0, s1,...,8 € C with RN(s;) > 1 (1 < j < r). Put
1<t <r—1 and take az41,...,a, € R with —R(si) < ap, <0 (t+1 <k <r). Then, we

have
<r<<sj>;<vj>>=( ! ) /() [ Dot 20tz

X (ay) k=t+1 F(Sk)

-
e | sty 801,88+ E (5j+25);71, -Vt
j=t+1

: Crft(_zt+17 sy TRP Yty e aWT) H dz. (333)
I=t+1

Here, the symbol (ay) is the path of integration on the vertical line R(zr) = ai from
ar — 100 to ap + 100, fort+1 <k <r.

Proof. Consider Mellin-Barnes integral formula

_ 1 [(s+ 2)T'(—2)
1+N) = — — "2\
N =i S~ T09) -
where A\, s € C, A # 0, |arg A| < 7, R(s) >0, —R(s) < a < 0.
For mq,...,m, > 1, by putting A = Wtfyiztlil++,:::é:q1]
j=t+1,....,r (1 <t<r—1), we have

and s = s; and a = a; for

<"Ylm1 + -+ AU > i _ L F(Sj + Zj)F(*Zj) <7t+1mt+1 + -+ ’Yj’fﬂj)zj dz
Y e Yy 27 J(a;) I'(s;) mma s ey !

So we get

(yamq 4 -+ yymy) =
1 / D(sj + 2;)T'(=2;)
(aj)

(yima 4 ) T T (e + -+ yymy) 7 e

T 2mi T(s;)
Taking product over j = ¢+ 1,...,r and taking summation over m;4+1,...,m, > 1, we
have

Z H ('Vlml +"-+fyjmj)_sj

Mpp1,...,mp>1 j=t+1

_(271”>r_t 2 /(at+1)><--~><(ar) ﬁ e +F?;z)§(2k)

Mgt 1yeee, M > 1 k=t+1

(yama - A my) T T a2 H (Ver1mugr + -+ yymy)~ H dz. (3.3.4)
j=t+1 I=t+1

By multiplying Equation (3.3.4) by H;:1(71m1+~ --+7;m;) % and taking summation

over my,...,my > 1, we see that the left hand side becomes (.((s;); (7;)). The series
Gr((s5); (775)) converges absolutely in the region (3.3.1) and we have R(s;) > 1 (1 < j <r),
so we get the equation (3.3.3). O
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We set (—21,. . .,—Zt) = (81, ey 8¢—1,8¢ + Z;:t-i—l(sj + Z])>

Lemma 3.3.3. Let ¢ € R\{1} satisfying that |c—1| is sufficiently small. Let s,...,s, € C
with R(sg) > 1 and let a; € R with —RN(s;) < aj < —1 (t+1 < 5 <r). Then, the integral

- F(Sk + Zk)F(—Zk) 1
/(at+1)><"'><(ar) {k:_lg_l F(Sk) } (1 - C)T Z

51,...,5T€{O,1}
-(70)51"'"'*’6%} (le, e —z e c‘st) cGrot(=2Zeg1y oy — 2 C k1 H dz;.
I=t+1
(3.3.5)

converges uniformly.

Proof. We have

ﬁ 1 7 c
j=1 | exp (Zzzj uk) -1 exp (CZZ:j uk) -1

r

1 c

Ao (o) 1w (i) 1

[
:N
Pﬁ

(=) _ H 3 (—c)%
Jj=1 ie{0,1} €Xp (C‘S Zk =5 U ) -1 j=t+1 | §;€{0,1} €XP (C‘sf Z;:j Uk) -1

t T

1 1
SR i i
81,es0,-€{0,1} j=1 €Xp (65-7 ZZ:]‘ Uk) -1 j=t+1 €Xp (05-7 P Uk) -1

By using this and the following integral expression of (-((s;); (7))

- 1 - 1 s;—1
G () 000 = [T 555 /(Om)rj_nlexp ( T due

k=1 Vi Z;:j uk) —1;5
we have
1 R
a—a Z (=) TG (—2yy e —z L )
61,..,0,€{0,1}
Gt (=2 ey =2 O 0T

¢
1 c
(I—c)r H /(O,w)r 7:1_[1 exp (Zzzj uk> -1 exp (CZZ:J' uk) -1

— ¢ Hufzhldu
r l I
j= t+1 eXp Zk =5 U ) -1 exp (Czk:j Uk:) —17] =
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By [FKMT17a, Lemma 3.6], for ¢ € R\ {1} such that |¢ — 1] is sufficiently small, we have
a constant A > 0 independent of ¢ such that
1 1 c

_ Ae~ /2
c—1||e¥ =1 e¥ -1 =4

holds for any y > 0. Therefore, we get

1
m Z (_C)E1+-..+5r<t (_Zl,--.7_Zt;c51,-~.,(36t)

01,...,6-€{0,1}
' Cr—t(_zt+l7 ceey TR CJH—lv s 7c(sr)
T t t
1 1
< Aexp | —= Zuk
Lol Jowr (1 2 &
I 1 T I
Aexp _izuk ;%(zz)fldul
j=t+1 k=j =1

|
<
=
|
o | =
Z
¢]
”
o)
|
N |
S
ES
o
"
T
|
|
<
ES
2
N
T
IS
<

Because we have -
n°T'(s) :/ exp(—nu)u® " du
0

for R(s) > 0 and n € Ry and we get R(z) > 0 for 1 < k < r, we obtain the following
inequality on the formula (3.3.5):

- F(Sk + zk)I‘(—zk) 1
/<><>{H ey }u—cv 2

81,.,0r€{0,1}

T
(=)hrttorg, (—21, e —2 ,65‘) ot (=Zeg 1y ey =z O OT) H dz

I=t+1
. IT(sk + zk)D(—2g)] r L
o L)
t R(zk) r B R(2) .

k=1 k=t+1 I=t+1
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On the above integral paths, we have R(zx) = ar (t+1 < k < r) and —zr = si
(1<k<t—1)and —2 =5+ ;_, (55 +2). So we put

C:—A’"{k_ﬁHJ( }{H'F Zk'}
g{(];)m() } { )ﬂ(Zk)r(ace(Zk))}.

Then this symbol C' is independent on 2411, ..., 2,.. Therefore, we get

/ { H T (s + 2)T(—21) } 1 5

(aer1)x-x(ar) | p=t41 [(sr) (L—e)r 51,...,6,€{0,1}
'(_6)61+“‘+6Tct <_Zlv ceey TRt 061 PR 7C§t) : C’r'—t(_zt-‘rlv sy T2 65t+17 e 7C§T) H dzl
I=t+1
T 1 T
<C II Tk + 20l - IT Idl.
(@r1)xx(ar) ppyq ‘F (St + 2= (85 + ZJ‘))’ =i+l

We have

Do +ir)| = Varlr7 2 E 1+ O(717Y)  (Ir] = o),
for |7] > 1, where O is the Landau symbol. So by using this equation, we get

T

1 T
/ IT sk + 20)] I Izl < o
(at41)

XX (ar) k=t+1 ’F (St + Z;:H-l(’sj + Zj)>’ I=t+1
‘We obtain the claim. O

The equation (3.3.3) holds not only for ¢ ((s;); (v;)) but also for (3% (sq, ..., s,).

Proposition 3.3.4. Let s1,...,s, € C with R(s;) >1 (1 < j <r). Then, for —R(s) <
ap < —-1({t+1<k<r)andl<t<r-—1, we have

1\ L D(sp + 21)0(—25)
des Y v
T (317-..387‘) - <27TZ> /(at+1)><--~><(ar) H F(Sk)

k=t+1
r T
GO s sse Y (554 2) | Gz -2 T da
j=t+1 I=t+1
Proof. We set (—z1,...,—2¢) := (sl, ceySt-1,8t + Z;=t+1(sj + zj)) and oy := —R(zk)

for 1 < k <r. By using Lemma 3.3.1 and the above equation (3.3.3), we get

4-305(817 . '557‘)

= Im oo X TG )

cGCIR*\>{11} -0 51,...,61€{0,1}

. 1 sidess, [ 1 H/ T D(sk + zi)T(—21)
= 1 —c)%t rl Z\Ok T oR)- AT AR
CL’H} 1 Z ( C) (27ri (aty1) H F(Sk)

ceR\{1} 1=c)r 61,..,8,-€{0,1} xeox(ar) pZpq1

s
5 s 5 5
e (—zl,...,—zt;c 1,...7ct> Cret(=ze41, oy —zey LT H dz.

I=t+1
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— lim (i)m/ ﬁ Dsk A+ zi)l'(=2k)
ceeR_\){ll} 2mi (apy1) X x(ar) p=yp1 [(sk)

1 S14tt6p 5 5
— Z (=)t +rCt<—Z1,...7—Zt;C1,...7Ct>'Crft(—Zt+17... —zp H dz;.
l=t+1

By Lemma 3.3.3 and Lebesgue’s dominated convergence theorem, we can commute the

limit hm with the integral / . Therefore we have
CGR\{l} (at41) %X (ar)
Cges(sh ey Sr)

- L(sj + 2)I(=2)

1 )'r—t/ X X
(27T’i (at,+1)><“‘><(a7‘)]':U+1 F(Sj)

. 1 S14-+6 .6 S
{ ELH} (lfc)té Z (=o)? tQ(—zl,...7—zt,c1,..A7ct)

ceR\{1} 1,.-.-,6¢.€{0,1}

c—1 ( — C)T_t
ceR\{1} Stq1,.--,0r€{0,1} l=t+1

1\ T Tk + 20T (—21) cdes e -
:(7) /(GHI)X H WC? (=21, —20) G (201, o —2r) H dz.

21 wox(ar) i1 I=t+1

1 :
. { lim @ ———— Z (—c)‘;“r1+ H"'CT,t(—th, ey — 2 c‘st“, e c5")} H dz

So we obtain the claim. O
Proposition 3.3.5. Let 1 <t <r. For sy,...,s; € C and kyy1,..., k. € Ny, we have

des
r (51, ceey Sty —kt+1, ey —kr)

. . d . .
Z H ( ) dCS 81""7St—175t — 41 — '”_ZT')CTESt(_jt-‘rl?'"7_.]7')'

iy +jp= kp a=t+1
ip,56 >0
t+1<b<r

Proof. Let s1,...,8, € Cwith R(s;) >1 (1<j<r),1<t<r-—1and ay1,...,a, €R
with —R(sg) < ap < =1 (t+1 <k <r). Weassume 1 <t <r— 1. To save space, we put
F(S1ye ey Srs 2ttty 2r) 1= CES <s1,...,st_1,st + Z (s; +Zj)> G (= 2ig1, -, —2r).

j=t+1

By using Proposition 3.3.4, we have

1\t "L (s 4 2 ) (—2;
CSES(SD'"’ST)(Q') / H ( J F]) ( J)
T (1) XX (an 1)j:t+1 (SJ>
1 L(sr + 2-)'(=2)
NS e sy 20)d a
{2m, /(GT) T(s) f(s1, 00805 241, Zr ll;[rl 2.

For M, € N and sufficiently small &, > 0, we set D, := {z, € C | a, < R(2,) < M, — &, }.
For z. € D,, we have R(s, + z) > 0 by —R(s,) < a, < 0. So singularities of the above
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integrand, which lie on D,., are only 2z, = 0,1,..., M, — 1. By using the residue theorem,
we get

Cfes(sh ey Sp)
r—t—1 r—1
_ (1) ! / 11 D(sj + 2;)T'(=2)
2mi (@) xx(ar1) jof4 I'(s)

M,—1
- T(s, + 2.)T (=2, .
- § Res[ (s +Z) ( Z)f(Sh'-~7ST;Zt+1;-~-azr);Z7‘:JT]

J(81,0 80 204150005 21 dzr} H dz.

I=t+1

(By the same arguments as in [Mat], the second term above converges). By using the fact

that the residue of gamma function I'(s) at s = —j is (7].1!)'7 , we have
L(sp + z)I'(=2r) , ] . (—1)dr (—sr>
Res 2 =Jr| = (8r+Jr—1) 50 : = . .
[ L(sy) ( ) Jr! Jr
So we obtain
Cdeb(sh N
r—t—1 r—1
_ ( ) / II [(sj + 2)I'(=2))
27(-2 at+1 ><(a, 1 j= —t+1 F(Sj)
M, —
Z ) Sla--'7s’r;zt+17'"7ZT—17jT)
—~ \ Jr
+7/ T(sy + 20)T(=2r) f(S1y ooy Sp3 2ttty - oy 20 )d2r dz.
QWZF(ST) (My—evr) ' ' 11}*1
By setting s, = —k,- and M, = k,. + 1 for k, € Ny, because of ﬁ =0, we get
os 1 r—t—1 r—1 F ) ) F .
(% (sn, . se1, k) = (T) / ] Dotz
e (ag41)x-x(ar—1) j—¢y1 (SJ)

ko, 3 r—1
. {Z <jr>f(81,,,.7s,~1,kr;zt+1,...,271,jr)} H dzy.

Jr=0 I=t+1

In the same way, we have

CSes(gl’ ey Sp—2, 7]{5,”_17 7]{17,)
L r—t 2/ r—2 F(Sj n Zj)r(—zj)
2 (ac41) XX (ar—2) j2¢i I'(s;)
kr  Kr_1 .
. Z Z ( )( )f(sly...73r727_kr717_kr§2«'t+1»~..7Zy~727j1°717j’r‘) H dzy.
3r=0jr-1=0 Jr-1 AL
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By repeating the above computation, we get

Cﬁics(sl, oy Strt, —keya, - —ky)
_ L/ D(se1 4+ z0)0(=2041)
21 (ars1) F(8t+1)

N UNE (R (R . .
XY F(s1yssepn, —kepa, oo =k Zep1, s - ) dzesr

Ji=0  jira=0 Jr Jt+2

By carrying out the above computation again, lastly we obtain

des
r (31,. . .,St,—kH_l,. . .7—I€r)

k, ki1 k L
:Z Z <'T>.”(-t+1)f(817'"astv_kt+17"',_k’r‘;jt+1,"'aj’l“)'
jr=0 Jep1=0 Jr Jt+1

Therefore, we get the proposition for (s1,...,s,) € C” with R(s;) > 1. Because the
function (4°(sy,...,s,) is analytic on C" we get the claim for (sq,...,s,) € C". O

Lemma 3.3.6. Let f,g: C x Z% — C be maps (¢ € N). We assume that

glsi—li, ..., =l = > {H(Z)}-f(sil~-iq;j1,...,jq) (3.3.6)

74b+]b:lb a=1
ip,J >0
152

fors € C andly,...,l; € Ng. Then we have

flss=la, =l = > {H(—l)i“<§a>}-g(s—i1—--~—iq;—j1,...,—jq) (3.3.7)
. lb a

fors e Candly,...,l; € Np.

Proof. Firstly, we prove this claim in the case of ¢ = 1 by induction on ;. The case of
Iy = 0 is obvious. We assume the equation (3.3.7) for ¢ = land {; <I—-1 (I € N).
When [; =, from the equation (3.3.6), we have

-1

s =) =tsi—1) = 3 ()7t =14 300

=0

By using the equation (3.3.7), we get

~os 03 (1) {ki()(l)k (§)ats =1+ -k~ + k)}
ot~ S S () (D)ot 15
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By puttingi =j—k (0<4i<1[l—1), we have

—(s; 1) —lf}f(—l)j—i(l.)( S Jats i

= i)\ —i
—g(s5 1) —Z ;HW ()() - o= (0) fats—1+is-
=gt )+ S (Dot 150

=
:i(—l)l—i (Dg(s — 1 +i;—1i).

Secondly, we prove the claim for ¢ > 2. From the equation (3.3.6), we have

g(S, _l17 .. '7_ZQ)

P o ——— |
i1+j1=l iotja=la iqtiq=lq

By using Lemma 3.3.6 as ¢ = 1, we get

Z (71)11 <§1)g(3i1;j1,12...,lq)

i1+j1=l

= Z <12) Z (l.q>f(3i2"'iq;llv.jQ:"ij) A
ig+ja=l2 "2 iqt+iq=lq be

By using Lemma 3.3.6 as ¢ = 1 again, we have

Z (_1)12<Z>[ E (_1)2'1(ii)g(s—il—iz;—jl,—jg,—lg...,—lq)]

i2+j2=l2 i1+j1=l1

2 l ) ) . .
= Z (;}) [[ Z <iz>f(8—’b3—...—’Lq§_l17—12_]37-..7_.711)]-..:|.
iz+jz=l3 iqt+iq=lq

Therefore, by using Lemma 3.3.6 repeatedly, we obtain the claim.
By Proposition 3.3.5 and Lemma 3.3.6, we obtain the following theorem.

Theorem 3.3.7. For si,...,s, € C andly,...,l; € Ny, we have

G (51, oy 8p) G (=, =)

Z l
= Y TIee ()
& iq
ip+je=lp a=1
1,75 >0
1<b<q

des . . . .
> ot (S1y ooy Sp—1,8p — 01—+ =g, =1, -+, —Jq)-
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Proof. By putting r = p+g¢, t =p and (kit1,..., k) == (l1,...,l;) in Proposition 3.3.5,
we have

des
p+q(51, <oy Spy 7[17 ey 7lq)
e
_ E a des . . des . .
— H<Z>p (817--~75p—178p_11_"'_Zq)q (_.]17"'?_.](])'
iptgp=lp a=1 %
ip,J5>0
1<b<q

By applying Lemma 3.3.6 to the above equation with

g(S, —ll, ey _lq) = Cgisq(sl, ey Sp_l, S, —ll, ey —lq),
f(S;—ll,...,—lq): Ses(Sl,...7SP_1,S) ges(—ll,...,—lq),
we get the theorem. O
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Chapter 4

Comparison problem

In §4.1, we treat the problem posed by Singer ([S]) which is on a comparison problem
between the renormalized values of shuffle type and harmonic type. In §4.2, we settle
the problem by giving a universal presentation of the renormalized values of [EMS17] as
finite linear combinations of any renormalized values of harmonic type (Theorem 4.2.7).

4.1 Renormalized values of harmonic type

In this section, we reformulate a certain problem between renormalized values posed
in the final line of [S] as Problem 4.1.6. We start with the following problem.

Problem 4.1.1 (Renormalization problem of MZVs (cf. [S, Problem 1])). Extend MZVs
to all integer points such that

(A). the values coincide with the special values of analytic continuation of MZFs,
(B). the harmonic relations are preserved.

Based on [EMSZ], we recall the solutions of this problem. Let H := Q(z; | k € Z) be
the non-commutative polynomial algebra with the empty word 1 generated by the letters
zg. Then (H,*,A) is a Hopf algebra. Here, the product x is the harmonic product, which
is given by w* 1 :=1 % w := w and

zrw * 7w’ = 2z (w x zpw') + 21 (2w x W) + 2 (w x W), (4.1.1)

for k,l € Z and words w,w’ in H, and the coproduct A is the deconcatenation coproduct.

Definition 4.1.2 (J[EMSZ, Definition 4.2]). We call a word w = z, - - 2, in H non-
singular if all of the following conditions hold:

k. #1,
kr—1+kr#27170a72774a"'7
Ep—izi+ - +hke#£i—n (3<i<r neNp).

We denote N C H to be the C-vector space spanned by all non-singular words.
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We define the C-linear map ¢* : N — C by
C*(Zkl cee Zkr) = C(kl, ey kT),

for zi, - - -z, € N, where the right hand side is the special values of analytic continuation
of MZF. We put G¢ to be the set of all algebra homomorphisms from H to C, and put
the convolution product * : Gc ® G¢ — G¢ by

frg=mo(f®g)oA,
for any f,g € G¢, where m is the ordinary product of C. Then (G¢,*) forms a group.

Definition 4.1.3 ([EMSZ, Definition 4.5]). We define the set X¢ ¢- of all solutions of
Problem 4.1.1 by

Xegri={o€Ge | dln =
and we define the set Tt called the renormalization group by
Te:= {6 €Ge | éln =0},
Theorem 4.1.4 ([EMSZ] (cf. [S, Theorem 16])). We have:
(a). The set Tc forms a subgroup of (Gg,*).
(b). The left group action
Te x Xeoo — Xeeo,
(@, @) — axo
is free and transitive.
(c). The cardinality of the set Xc ¢~ is infinite.

We put H<o to be the subalgebra of H generated by {z; | k¥ € Z<o}. Then it is
immediate that H<( forms a Hopf subalgebra of (H,*, A). We define G<¢ to be the set
of all restrictions of elements in G¢ to H<g.

Definition 4.1.5. We define the set X<( of renormalized values (at non-positive integer
points) of harmonic type by

X<o={deGeo | o, =}
By using this, we reformulate the problem which is mentioned in [S] as follows.

Problem 4.1.6 (The final line of [S]). Which renormalized value of harmonic type have
an explicit relationship with the renormalized values (us(—k1, ..., —k;) (defined in Defi-
nition 2.2.4)?

Remark 4.1.7. We recall that the renormalized values (denoted by (g, (k1,. .., k) in
[GZ] are defined for kq,...,k, € Z<g, and the ones (denoted by (p(k1, ..., %)) in [MP]
are defined on kq,..., k. € Z. Hence, (p(k1,..., k) can be regarded as an element of
Xc,¢c+ but it is not clear whether there is an element ¢ of X¢ ¢+ such that

¢(zk‘1 e Zk?r) = CGZ(k17 <. '7kT)7

for k1,...,k, € Z<p. In any case, we have elements 3, and 3y, of X<¢ which satisfy

3Gz(Zk1 ce Z;%,) = CGZ(kla ceey k’l‘)7 3MP(zk1 ce Zk:r) = CMP(k17 ceey kr)v
for ki,..., k. € Zgo.
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4.2 Explicit relationship

In this section, we settle Problem 4.1.6 in Theorem 4.2.7. From now on, we assume
that 3 is an element of X<, that is, 3 is an algebra homomorphism from H<o to C and ;
satisfies

3INnre, = (4.2.1)
By extension of scalars C[[t1, ..., &, }] ®c H = H<ol[t1, - -, tr]], we sometimes regard 3 as
a map from H<o[[t1, ..., t]] to C[[t1,...,t]]-

0
Remark 4.2.1. Because z_j (k > 0) is an element of the vector space N (introduced in
Definition 4.1.2), we have

3(z—k) = C(—k),
for k> 0.

Let T := {t;};en. We put Tz to be the free Z-module generated by all elements of T,
that is, Ty, is defined by

n
TZ = {Z Cl,'tz'
=1

We define 77} to be the non-commutative free monoid generated by all elements of 77
with the empty word (). We denote each element w = uy - - u, € Ty with us,...,u, € Ty
by w = [u1,...,u,] as a sequence and we denote the concatenation wv with u,v € Ty by
[w,v]. The length of w = [uq, ..., u,] is defined to be I(w) = r. We set Ay := C(T%) to be
the non-commutative polynomial ring generated by 71z. We define the harmonic product
*:A%QH.AT by @ w:= w0 := w and

nEN,aiEZ}.

[ur, wi] * [ug, wa] := [ug, wy * [ug, wa]] + [uz, [u1, w1] * wa] + [ug + ug, wy *wsy], (4.2.2)

for w, w1, ws € T} and uq,ug € Tz. Then the pair (Ar,*) is a commutative, associative,
unital C-algebra. We define ! the family {QSh(*") Ywmaery in Z by

wxn = Z QSh(iﬁ)a.

aeTy
Example 4.2.2. For r > 1, we have
r+1
[tr+1] * [tl, ce ,tr} = Z[tl, ce ,tjfl, tr+1,tj, ce ,tr]
j=1
+Zt1,.. bty tegr + bttty (4.2.3)

Definition 4.2.3. For r» > 1, we define the generating functions Z,(ty,...,t,) of the
tamily {3(zx, -~ 21,.) € C | k1,...,kr € Z<o} by

Zo(ty,..ote) = Y Ct)" Y ) el b (4.24)

il !
ki yee ey >0 ! r

IThe harmonic product is sometimes called the quasi-shuffle product. The symbol QSh comes from
this name.
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We put g : Ap — U,>1C[[t1,. .., t.]] to be the C-linear map defined by g(0) := 1 and

g([ul, . ,ur]) = Z (U1, .., U,
for r > 1 and uy,...,u, € Ty. Then the following lemma holds.

Lemma 4.2.4. The map g is an algebra homomorphism, that is, we have

9(w=n) = g(w)g(n) (4.2.5)
for any w,n €T7.
Proof. For r > 1, we put

Zo(tr, o ote) = Y k':::k' Z gy 2ok, € Heolltsy ot
Kryeo k>0 L T

Because we have 3 (Z(tl, . ,tr)> = Z.(t1,...,t-) and 3 is an algebra homomorphism,
we have

3 (Z*(tla cee 7tr) * Z*(trJrla cee 7t’l"+s)> = Z*(tlv e vtr)Z*(tr+17 cee atr+s)
= g([th U 7t7’])g([tr+17 o 7tr+s])7
for r,s > 1. Hence, it is sufficient to prove

— ty e bl [brats o s trgs] =
Z*(tlw"vtr) *Z*(tTJrlv"'vt?”Jrs) = Z QSh([ b ’ ] [a+1 * ]>Z*(a),
a€Ty

(4.2.6)

for r,s > 1. We have

Z*(tla N atr) * ZN*(t'r+17 s atrJrs)
oy Gt

- il k!
Kt yeeeskirs >0 ! s

(Z—kl T Bk ¥ 2k Z—kr+s)'

Here, by definition (4.1.1), we calculate

= E : {Z*kl (z*kz TRk ¥Rk z*kwrs) T 2k (Z*kl TRk ¥ Bk Z*kr+s)
k11-<~7kr+520

(*tl)kl s (*tr+5)kr+s
kl! M kr+5!

:ZN*(tl) {ZN*(t27 e atr) * ZN*(tr+17 e 7tr+s)} + ZN*(tr+1) {ZN*(tly e atr> * ZN*(tTJrZa e 7t7‘+s)}

T2ty ks (Fmky 2y K kg 2kl )

—t; ki(_¢ 1kr+1 e P
oy G {Z e ) 5 et 1)
F1ky1>0 k1!
1,Rr4+12

=Zu(t) {Zulte, -t * Zultrgn, o o tri) p+ Zalte) {2t 0) % Zaltegay - o) |

+ Zu(tr + tr) {Zaltay o 1) % Zeltyia o o tris) |
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By induction hypothesis, we get

=Z.(11) Z Qsh([t%” il - ’t7-+s]>Z(a)

«
aeTy
A [tla"'7t7'];[t7“+27"'7t7"+3] a
+ Zultrir) D QSh< N Zy(o)
a€eTy
A [to, s teli[trga, o s trrs]\ 5
+ Zu(tr + 1) Y QSh( N Z. ().

aeTy

Here, by the definition of Z,, we see that Z(t)Z(a) = Z(t,a) holds for ¢t € Ty and
a € T . Therefore, we have

_ Z QSh<[t2v 7tr]§ [trJrla"' >tr+s])’2:([tha])

aeTy @
t7"'atr§tr 7"'7trs >
+ Z QSh<[ 1 ] [a+2 + ]) Z*([tr+1,a]>
aeTy
t,”',t,.;t,. 7"'7t7's >
+ 3 QSh([2 ] [a“ * ]>Z*([t1+tr+1,a]>-
aeTy

By using the definition (4.2.2), we get
by, tr;tr 7"'7t7's >
= Z Qsh<[17 ) ] [ +1 + ])Z*(a)
a€eTy o
Hence, we obtain (4.2.6). O

In order to prove Proposition 4.2.6, we prepare Lemma 4.2.5. For r,;i € N with ¢ < r,
we define P(r, %) to be the set of all surjective maps from {1,...,7} to {1,...,i}. For any
element o € P(r,i) and 1 < k < ¢, we put

tofl(k) = Z tn

n€o—1(k)

We note that P(r,r) is equal to the symmetric group of degree r, and we note that
#P(r,1) = 1, that is, the only element o € P(r, 1) is given by o(k) :=1for 1 <k <r. ?

Lemma 4.2.5. Letr > 1. Then, for 1 <i<r+1, the summation

Z [to-—l(l),...,to-—l(i)]

c€P(r+1,i)

2In example 4.2.8, we explicitly compute P(r, ) for r = 2,3.
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s equal to

%

Z Z [t‘r_l(l)a"'7t‘r_1(j71),tr+17t‘r_1(j)>'"7t‘r_1(i71)]

j=1 \ 7€P(r,i—-1)

+ Z tT*1(1 T*l(jfl)vtr—‘rl +t‘r*1(j)7t‘r*1(j+1)a'"7t‘r*1(i)]
TEP(r,i)

Here, for i =0 and r + 1, we put P(r,i) to be the empty set.
Proof. When i = 1, we have
S =ittt = 3 bl
oc€P(r+1,1) TEP(r,1)

Hence, we get the claim for ¢ = 1. When 2 < ¢ < r, take an element o € P(r + 1,1).
Then there uniquely exists j € {1,...,4} such that o(r + 1) = j. If #07!(j) = 1, there
uniquely exists 7 € P(r,i — 1) which satisfies

1 771(k) 1<k<j-1),
w={ Ty GERE)

On the other hand, if #0~1(j) > 2, there uniquely exists 7 € P(r,i) which satisfies
- R)U{r+1} (k=)
1 k) = { 7'7 ( '/
R el (k #9)

Hence, we get the claim for 2 < ¢ <r. When i = r+1, take an element o € P(r+1,7+1) =
S;41. Then there uniquely exists j € {1,...,r 4+ 1} such that o(r + 1) = j, and for any
1 <k <r+1, we have #0(k) = 1, that is, we get

{o7'(1),...,0c' G- 1), 07 ' G+1),...,0 ' (r+ 1)} ={1,...,7}.
So there uniquely exists 7 € &, = P(r,r) such that
('), o G =107 G+ 1), 0 4+ 1) = (71, .., ().
Therefore, we get the claim for ¢ = r 4+ 1. Hence, we finish the proof. O
Proposition 4.2.6 ([H00, Lemma 5.2; ¢ = 1]). Forr > 1, we have

Z.(th) - Z Y Zi(ter)s- s to13)) - (4.2.7)

1=1 o€P(r,i)

Proof. We prove this claim by induction on r. When r = 1, the element o € P(1,1) is
only the identity map, i.e., c~1(1) = {1}. Hence, the right hand side of (4.2.7) is equal
to Z.(t1). Assume that the equation (4.2.7) holds for r = ro > 1. When r = ro + 1, by
multiplying Z, (t,,+1) to the both sides of (4.2.7) for r = rg, we have

T0
Z (tToJrl)Z Z Zy (to'_l(l)v"'ata—l(i))

=1 UG'P(TO %)

—Z Z [trot1] * [to-1(1)s - - - to—1(i)]) -

i=1 0€P(ro,i)
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By Example 4.2.2, we calculate

+1

= Z S gDttty te1Go1) ot to-1(G)s - tam1 ()]

i=1 o€P(ro,i) Jj=1
[

+Z[t071(1), ce ,to-—l(jfl),tro_l'_l + to-fl(j),to-fl(j+1), .. ,to-—l(i)]

By decomposing each summations, we have

ro+1
= Z g Z[ta_1(1)7"‘7ta—l(j—l)atro+17to_1(j)7"'7t0_1(7'0)]
UGP(T(),’I"()) j=1
ro—1 i+1

+ Z Z g Z[to—l(1)7...,to-—l(j_l),tr0+17to-—l(j),...,to-—l(i)]

=1 oc€P(ro,i) Jj=1

70 7
-I-Z Z q Z[ta_1(1)7'"7to'_1(j—1)7tro+1 +ta—1(j)7ta—1(j+1)a~~~7to—1(i)]

i=2 0€P(ro,i) \Jj=1

+ Z 9 ([t7'0+1 +t0’1(1)]> '

o€P(ro,1)

By applying Lemma 4.2.5 for r = 79 and ¢ = 79 + 1 (resp. ¢ = 1) to the first term (resp.
the fourth term), we get

=9 Z [t0*1(1)7~-- ata'*l(ro—i-l)]
oc€P(ro+1,r0+1)

T Zg Z Do Moty torGonytrottstomi(gys - tomigion)]

j=1 \0€P(ro,i—1)

+ Z [ta'*l(l)a"'7ta'*1(j—l)at7’o+1 +t0*1(j)at0*1(j+1)7"'atafl(i)]

O'GP(T(),i)
+ g Z [tafl(l)]
oc€P(r+1,1)

By applying Lemma 4.2.5 for r = rg and 2 < i < r( to the second term, we get

ro+1
7“0+1 Z Z to-—l . ,ta-—l(i)) = Z g Z [ta-—l(l), “ee ,ta-—l(i)]
=1 c€P(ro,i) i=1 oc€P(ro+1,i)
ro+1

=3 Y Zi(terye s temie) -

i=1 c€P(ro+1,i)

Hence, we obtain the claim. O
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By using above proposition, we get a universal presentation of Zg(t1,. .., t,) (defined
by (0.2.1)) by any generating functions of renormalized values of harmonic type.

Theorem 4.2.7. Let 3 be a renormalized values of harmonic type (cf. Definition 4.1.5),
and let Z, be the generating function of 3 given by (4.2.4). Then for r > 1, we have

Zr\[s tl, ce , Z Z ug 1(1)s ,ugfl(i)) . (428)

i=1 c€P(r,i)

Here, ug-1(y) is defined by

uga(k) = Z Unp,,

foru;:=ti+-+t. (1<i<r).
Proof. By Remark 4.2.1, we have

ZEMS (tl) = Z* (tl)-

Therefore, by the equation (2.5.2); we have

Zpns(tr, -0t HZEms ):HZ*(tiJr"'+tr).

Therefore, by putting u; :=t; +---+ ¢, (1 <i <r) and by using the equation (4.2.7), we

obtain
ZE\IS tla"'a Z Z a'*l(l)7"',u17*1(i)>'

=1 oeP(r,i)

Hence, we finish the proof. O

In the following example, we denote o € P(r,4) by

Example 4.2.8. When r = 2, we have

e {(1 )4 1)) ren={(1 1))

ZE.\IS(tlth) = Z*(tl + t27t2) + Z*(tz,tl + t2) + Z*(tl + 2t2).
When r = 3, we have P(3,1) = {( L2 )} and P(3,2) is given by

i) Gi)Ge)Gi)0e:))h

and P(3,3) is given by

Gea)iz) i) Gii)Gi)Gan)

so we get



Hence, we get

Zous(t1,to, t3) = Zu(t1 + to + t3,to + t3,t3) + Zu(t1 + to + t3, b3, ta + t3)
+ Z(ta +ts, t1 +to +t3, t3) + Zi(to + ts, 3, t1 + t2 + t3)
F Z(ts,t1 +ta +ts, to +t3) + Zu(ts, to + ts, b1 + to + t3)
F Zo(ty + to + 2ts, to + t3) + Zu(ts + t3, b1 + ta + 2t3)

+ Z(ta + 2t3, t1 +to +t3) + Zu(t1 + to + t3, to + 2t3)

 Z,(ty + 2ty + 23, t3) + Zu(ts, 1 + 2ty + 2t3)

+ Z.(ty + 2ty + 3t3).

Corollary 4.2.9. The equation (4.2.8) holds for Z, = Zg, and Z\p defined by

S () ()t
Zcz(tlaou,tr) = Z k’llk}T' C(}Z(_kla"'a_k’r)a
ki,...,kr=0
R R e
Zl\ll’(t17"'7t’r‘) o Z kllkT' Cl\l[’(_k17"'7_k’r‘)'
ki,...,kr=0
Hence, the renormalized values (os(—k1,...,—k.) can be represented by a finite linear
combination of either (o, (—ki1,...,—ky) or Ceu(—k1, ..., k).

Proof. We recall elements 3¢, and 3y of X<g in Remark 4.1.7. These elements satisfy

3GZ(Zk1 o 'Zkr) = CGZ(kla .- 'akr)7 5MP(Zk1 "'Zkr) = CMP(k17 .- 'akr)v

for ki,...,kr € Z<p. Hence, we get the claim. O
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