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Shōta Inoue





Abstract

In this thesis, we discuss the value distribution of 𝐿-functions from several
viewpoints. The value distribution of the Riemann zeta-function 𝜁 (𝑠) is
related to the distribution of prime numbers and therefore important in
number theory. Recently, this theme in probabilistic aspects based on limit
theorems due to Bohr-Jessen and Selberg has developed rapidly by many
mathematicians. In this thesis, we show some results related to this theme.

Chapter 1 is the introduction of this thesis, and we survey some of the
previous works on the value distribution of zeta and 𝐿-functions, and de-
scribe some of results in this thesis. In Chapter 2, we prove an approximate
formula for the Riemann zeta-function 𝜁 (𝑠) and its iterated integrals. As
applications of the formula, we also prove some results on the value dis-
tribution of 𝜁 (𝑠) and one the relation between the distribution of nontrivial
zeros of 𝜁 (𝑠) and a Dirichlet polynomial. In particular, a result for the value
distribution of 𝜁 (𝑠) contributes to Radziwiłł’s conjecture. In Chapter 3, we
discuss the large deviations for the distribution function of iterated integrals
of the logarithm of the Riemann zeta-function. In Chapter 4, we prove re-
sults on denseness of the Riemann zeta-function. In particular, we also give
an equivalence between the denseness and the Riemann Hypothesis. This
theme is related to Ramachandra’s denseness problem, which is the problem
to ask whether the values 𝜁 ( 1

2 + 𝑖𝑡), 𝑡 ∈ R is dense in C. In Chapter 5, we
prove some results for the discrepancy bounds and the large deviations for
the distribution function of 𝜁 (𝜎 + 𝑖𝑡) in the strip 1

2 < 𝜎 < 1. The result for the
large deviations is an improvement on a recent work. In Chapter 6, we dis-
cuss the independence of certain 𝐿-functions on the critical line. We in this
chapter show some results for large deviations in multidimensional central
limit theorem due to Bombieri and Hejhal. As application of the results, we
also prove results for moments of 𝐿-functions. In particular, the results for
moments include some new results for the Riemann zeta-function. Finally, in
Chapter 7, we discuss the dependence of log 𝜁 (𝜎 + 𝑖𝑡) and log 𝐿 (𝜎 + 𝑖𝑡, 𝜒) in
the strip 1

2 < 𝜎 < 1. We show that these functions have a certain dependence
property as random variables.
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Chapter 1 Introduction

In this thesis, we discuss the value distribution of zeta and 𝐿-functions
such as the Riemann zeta-function. The theme is interesting because that
is related to the distribution of zeros and some arithmetic objects involving
prime numbers. In fact, there are many studies for this theme such as mean
value estimates, limit theorems, order estimates, and omega-estimates. In
this chapter, we survey this theme and present some of our results.

1.1 Relations among distribution of values, zeros, and
primes

The distribution of prime numbers has interested many people since a long
time ago. Riemann first related the distribution of prime numbers to zeros
of the function, which is now called the Riemann zeta-function, defined by

𝜁 (𝑠) =
∞∑
𝑛=1

𝑛−𝑠 =
∏
𝑝

(1 − 𝑝−𝑠)−1 for Re 𝑠 > 1.

Throughout this paper, 𝑠 = 𝜎 + 𝑖𝑡 is a complex number with 𝜎, 𝑡 ∈ R, and
the product

∏
𝑝 runs over all prime numbers. Riemann in [101] studied the

number of prime numbers less than 𝑥 a given number. In that paper, he also
conjectured a rule of the distribution of zeros of the Riemann zeta-function.
The conjecture is called the Riemann Hypothesis today.

Conjecture (Riemann Hypothesis (RH)). All real parts of nontrivial zeros of the
Riemann zeta-function are one-half.

This conjecture is one of the most important and famous open problems
in mathematics. The Riemann Hypothesis has a consequence to the distri-
bution of prime numbers. Actually, the Riemann Hypothesis is equivalent
to that

𝜋(𝑥) =
∫ 𝑥

2

𝑑𝑢

log 𝑢 +𝑂
(
𝑥1/2 log 𝑥

)
. (1.1)

Here, 𝜋(𝑥) is the number of prime numbers less than 𝑥. In particular, this
formula implies 𝑝𝑛+1 − 𝑝𝑛 ≪ 𝑝1/2

𝑛 log 𝑝𝑛 with 𝑝𝑛 the 𝑛-th prime number.
Here, we explain some notations. For a complex-valued function 𝑓 and a
positive-valued function 𝑔(𝑥), we write 𝑓 (𝑥) = 𝑂 (𝑔(𝑥)) if there is a constant
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𝐶 > 0 such that | 𝑓 (𝑥) | ≤ 𝐶𝑔(𝑥) for all 𝑥 in the appropriate domain. The
constant 𝐶 is called the implicit constant. If 𝐶 depends on a parameter 𝛼,
we write 𝑓 (𝑥) = 𝑂𝛼 (𝑔(𝑥)). Additionally, we can also write 𝑓 (𝑥) ≪ 𝑔(𝑥),
𝑓 (𝑥) ≪𝛼 𝑔(𝑥) in the same meaning as 𝑓 (𝑥) = 𝑂 (𝑔(𝑥)), 𝑓 (𝑥) = 𝑂𝛼 (𝑔(𝑥))
respectively. We write 𝑓 (𝑥) ≍ 𝑔(𝑥) if both 𝑓 (𝑥) ≪ 𝑔(𝑥) and 𝑓 (𝑥) ≫ 𝑔(𝑥)
hold. Moreover, if lim𝑥→𝑎 𝑓 (𝑥)/𝑔(𝑥) = 0 with 𝑎 ∈ R ∪ {±∞}, then we write
𝑓 (𝑥) = 𝑜(𝑔(𝑥)) (as 𝑥 → 𝑎). Furthermore, 𝑓 (𝑥) = Ω+(𝑔(𝑥)) (as 𝑥 → 𝑎) means
that lim sup𝑥→𝑎 𝑓 (𝑥)/𝑔(𝑥) > 0, and also 𝑓 (𝑥) = Ω−(𝑔(𝑥)) (as 𝑥 → 𝑎) means
that lim inf𝑥→𝑎 𝑓 (𝑥)/𝑔(𝑥) < 0. If both 𝑓 (𝑥) = Ω+(𝑔(𝑥)) and 𝑓 (𝑥) = Ω−(𝑔(𝑥))
hold, we write 𝑓 (𝑥) = Ω±(𝑔(𝑥)). If either 𝑓 (𝑥) = Ω+(𝑔(𝑥)) or 𝑓 (𝑥) = Ω−(𝑔(𝑥))
holds, we also write 𝑓 (𝑥) = Ω(𝑔(𝑥)).

We can find that the Riemann Hypothesis implies equation (1.1) by using
the formula

𝜋(𝑥) =
∑
𝑛≤ log 𝑥

log 2

𝜇(𝑛)
𝑛

li(𝑥1/𝑛) −
∑
|𝛾 |≤𝑇

li(𝑥𝜌/𝑛) +𝑂
(
𝑥1/𝑛 (log 𝑥1/𝑛𝑇)2

𝑇 log 𝑥1/𝑛 + 1
) . (1.2)

Here, 𝜇(𝑛) is the Möbius function, and the function li(𝑒𝑥+𝑖𝑦) is defined by if
𝑦 = 0,

li(𝑒𝑥) = lim
𝜀↓0

(∫ −𝜀

−∞
+
∫ 𝑥

+𝜀

)
𝑒𝑢

𝑢
𝑑𝑢 = lim

𝜀↓0

(∫ 1−𝜀

0
+
∫ 𝑒𝑥

1+𝜀

)
𝑑𝑢

log 𝑢 ,

and if 𝑦 ≠ 0,

li(𝑒𝑥+𝑖𝑦) =
∫ 𝑥+𝑖𝑦

−∞+𝑖𝑦

𝑒𝑤

𝑤
𝑑𝑤.

Then, it holds that li(𝑥𝜌) = li(𝑥𝛽+𝑖𝛾) ≪ 𝑥𝛽

( |𝛾 |+1) log 𝑥 . By using these estimates,
we can prove (1.1) under the Riemann Hypothesis. Also, we can easily obtain
the inverse implication by using the formulas 𝜋(𝑥) = 𝜓(𝑥)

log 𝑥 +
∫ 𝑥

2
𝜓(𝑢)

𝑢(log 𝑢)2 𝑑𝑢 +
𝑂 (𝑥1/2) and − 𝜁 ′

𝜁 (𝑠) = 𝑠
∫ ∞
1

𝜓(𝑥)
𝑥𝑠+1 𝑑𝑥, where 𝜓(𝑥) :=

∑
𝑛≤𝑥 Λ(𝑛) with Λ(𝑛) the von

Mangoldt function.
We also know another conjecture having a consequence for the distribu-

tion of prime numbers. In [70], Lindelöf studied the order of magnitude of
the Riemann zeta-function and its convexity. In that paper, he also conjec-
tured the following hypothesis.

Conjecture (Lindelöf Hypothesis (LH)). For any 𝑡 ≥ 1, 𝜀 > 0,

|𝜁 ( 1
2 + 𝑖𝑡) | ≪𝜀 𝑡

𝜀 .

This hypothesis is also one of the most famous and challenging open prob-
lems in analytic number theory. The statement of this hypothesis is in terms
of the value distribution of the Riemann zeta-function, particularly for the
order of magnitude of the Riemann zeta-function. On the other hand, it is
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known that this conjecture is rewritten to a statement of the distribution of
zeros of the Riemann zeta-function. In fact, Backlund [2] showed that the
following statement (BS) is equivalent to the Lindelöf Hypothesis.

BS: for every 𝜀 > 0, the estimate 𝑁 ( 1
2 + 𝜀, 𝑇 + 1) −𝑁 ( 1

2 + 𝜀, 𝑇) = 𝑜(log𝑇) holds
as 𝑇 → +∞.

Here, 𝑁 (𝜎,𝑇) is the number of nontrivial zeros 𝜌 = 𝛽 + 𝑖𝛾 with 𝛽 ≥ 𝜎,
0 < 𝛾 < 𝑇 counted with multiplicities. From this equivalence, we see that
the Riemann Hypothesis implies the Lindelöf Hypothesis. Additionally,
assuming the Riemann Hypothesis, Littlewood [71] showed that |𝜁 (1/2 +
𝑖𝑡) | ≤ exp(𝐶 log 𝑡

log log 𝑡 ) for some constant 𝐶 > 0 that also leads the implication.
Ingham [49] showed that the Lindelöf Hypothesis implies 𝑝𝑛+1 − 𝑝𝑛 ≪𝜀

𝑝1/2+𝜀
𝑛 , which is close to the consequence of the Riemann Hypothesis. He

showed that the Lindelöf Hypothesis implies

𝑁 (𝜎,𝑇) ≪𝜀 𝑇
2(1−𝜎)+𝜀, (1.3)

and this estimate implies 𝑝𝑛+1 − 𝑝𝑛 ≪𝜀 𝑝
1/2+𝜀
𝑛 . Estimate (1.3) has not yet

proved at present and called the Density Hypothesis (DH) today. The best
unconditional result of gaps of primes is 𝑝𝑛+1 − 𝑝𝑛 ≪ 𝑝21/40

𝑛 = 𝑝
1
2+

1
40

𝑛 proved
by Baker, Harman, and Pintz [3].

On the other hand, there are many difficult open problems on the distri-
bution of prime numbers even under the Riemann Hypothesis. The follow-
ing two conjectures are typical examples.

Conjecture (Cramér’s conjecture).

𝑝𝑛+1 − 𝑝𝑛 ≪ (log 𝑝𝑛)2.

Conjecture (Twin prime conjecture).

lim inf
𝑛→+∞

(𝑝𝑛+1 − 𝑝𝑛) = 2.

Recently, the studies on these conjectures have developed by interesting
works [25], [26], [81], [82], and [124]. On the other hand, the best upper
bound of the gap of prime numbers is 𝑝𝑛+1 − 𝑝𝑛 ≪ 𝑝1/2

𝑛 log 𝑝𝑛 even under
the Riemann Hypothesis. If we would like to develop this direction of
research by theory of the zeta-function or using formula (1.2), it requires
to understand the distribution of zeros more deeply beyond the Riemann
Hypothesis. In other words, we need to understand the distribution of
imaginary parts of zeros precisely.

For the distribution of imaginary parts of zeros, the formula

𝑁 (𝑇) = 1
𝜋

argΓ

(
1
4 + 𝑖𝑇2

)
− 𝑇

2𝜋 log 𝜋 + 𝑆(𝑇) + 2 (1.4)

is useful, where 𝑁 (𝑇) is the number of zeros 𝜌 = 𝛽+ 𝑖𝛾 of 𝜁 (𝑠) with 0 < 𝛾 ≤ 𝑇
counted with multiplicities. This formula is usually called the Riemann-von
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Mangoldt formula. Here, 𝑆(𝑇) is defined as 1
𝜋 Im log 𝜁 ( 1

2 + 𝑖𝑡) = 1
𝜋 arg 𝜁 ( 1

2+𝑖𝑡),
whose branch will be described in the last of this section. By using the Stirling
formula, we can calculate terms on the right hand side of (1.4) satisfactorily
except for 𝑆(𝑇). Hence, it is desirable to understand the behavior of 𝑆(𝑇)
exactly. From this viewpoint, the function 𝑆(𝑇) is interesting, and there are
many works. For example, the estimate 𝑆(𝑇) ≪ log𝑇 was proved by von
Mangoldt1) in 1905, and Cramér [20] showed that 𝑆(𝑇) = 𝑜(log𝑇) as𝑇 → +∞
under the Lindelöf Hypothesis. Moreover, Littlewood [71] established that
the Riemann Hypothesis implies 𝑆(𝑇) ≪ log𝑇

log log𝑇 . In particular, it holds that

𝑁 (𝑇) = 𝑇

2𝜋 log 𝑇

2𝜋 +𝑂 (log𝑇)

unconditionally, and this error term comes from the estimate 𝑆(𝑇) ≪ log𝑇 .
The following is a summary of the above.

Imaginary Parts of Zeros
ee

𝐸𝑞.(1.4)

%%KK
KKK

KKK
KKK

𝑆(𝑡) ≪ log 𝑡
log log 𝑡KS

𝑆(𝑡) = 𝑜(log 𝑡)
KS

Values of Zeta 𝜁 (𝑠), 𝑆(𝑡) LHKS

�� #+N
NNN

NNN
NNN

NN

NNN
NNN

NNN
NNN

Real Parts of Zeros RH

2:mmmmmmmmmmmmmm

mmmmmmmmmmmmmm +3

��

BS +3 DH

��
Prime Numbers 𝑝𝑛+1 − 𝑝𝑛 ≪ 𝑝1/2

𝑛 log 𝑝𝑛 𝑝𝑛+1 − 𝑝𝑛 ≪𝜀 𝑝
1/2+𝜀
𝑛

Here, we describe the branch of the logarithm of zeta and 𝐿-functions
𝐹 satisfying certain suitable conditions. First, 𝑡 is equal to neither imagi-
nary parts of zeros nor poles of 𝐹, then we choose the branch by the con-
tinuation with the initial condition lim𝜎→+∞ log 𝐹 (𝜎 + 𝑖𝑡) = 0. If 𝑡 ≠ 0 is
equal to an imaginary part of a zero or a pole of 𝐹, we take log 𝐹 (𝜎 + 𝑖𝑡) =
lim𝜀↓0 log 𝐹 (𝜎 + 𝑖(𝑡 − sgn(𝑡)𝜀)), where sgn is the signum function. If there
exists a pole or a zero such that the imaginary part is zero, then we take
log 𝐹 (𝜎) = lim𝜀↓0 log 𝐹 (𝜎 − 𝑖𝜀).

1.2 The distribution function of the Riemann zeta-function

From the observation in the previous section, we are interested in the value
distribution of zeta and 𝐿-functions. For this theme, the following inter-
esting theorems are known. Throughout this thesis, meas(·) stands for the
Lebesgue measure on R.

1)The author was not able to find the original paper of this result. The source of this
information is the textbook by Davenport [21, Section 8]
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Theorem (Bohr-Jessen in [8]). Let 𝜎 > 1
2 be fixed. There exists a probability

measure 𝑃𝜎 on (R,B(R)) such that for any fixed 𝑉 ∈ R

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : log 𝜁 (𝜎 + 𝑖𝑡) > 𝑉

}
∼ 𝑃𝜎 ((𝑉, +∞)) (1.5)

as𝑇 → +∞. Moreover, the probability measure 𝑃𝜎 has a probability density function
𝐷𝜎.

Theorem (Central limit theorem). For any fixed 𝑉 ∈ R, we have

1
𝑇

meas

𝑡 ∈ [𝑇, 2𝑇] :
log |𝜁 ( 1

2 + 𝑖𝑡) |√
1
2 log log𝑇

> 𝑉

 ∼
∫ ∞

𝑉
𝑒−𝑢

2/2 𝑑𝑢√
2𝜋

(1.6)

as 𝑇 → +∞.

Note that the former theorem is a special case in the original their theorem
in [8]. From these theorems and more developed results, we can guess the
behavior of the Riemann zeta-function. Joyner [55, Theorem 4.3 in Chapter
5] showed that there exist positive constants 𝑐1, 𝑐2 such that

exp
(
−(𝑐1 + 𝑜(1))

(
𝑉 (log𝑉)𝜎

) 1
1−𝜎

)
≤ 𝑃𝜎 ((𝑉, +∞))

≤ exp
(
−(𝑐2 + 𝑜(1))

(
𝑉 (log𝑉)𝜎

) 1
1−𝜎

)
for 1

2 < 𝜎 < 1 as 𝑉 → +∞. Moreover, Hattori and Matsumoto [40] showed
that 𝑐1 = 𝑐2 = 𝐴(𝜎), that is,

𝑃𝜎 ((𝑉, +∞)) = exp
(
−(𝐴(𝜎) + 𝑜(1))

(
𝑉 (log𝑉)𝜎

) 1
1−𝜎

)
(1.7)

for 1
2 < 𝜎 < 1 as 𝑉 → +∞. Here, 𝐴(𝜎) is expressed by

𝐴(𝜎) =
(

𝜎2𝜎

(1 − 𝜎)2𝜎−1𝐺 (𝜎)𝜎

) 1
1−𝜎

, (1.8)

where 𝐺 (𝜎) =
∫ ∞
0 log 𝐼0(𝑢)𝑢−1− 1

𝜎 𝑑𝑢, and 𝐼0 is the modified 0-th order Bessel
function. By these estimates and the classical bound 𝜁 ′(𝜎 + 𝑖𝑡) ≪ (|𝑡 | + 2)𝑐
with 𝑐 a positive constant, it seems to be guessed that, for 1

2 < 𝜎 < 1,

log |𝜁 (𝜎 + 𝑖𝑡) | ≤ 𝐶 (𝜎)
(log 𝑡)1−𝜎

(log log 𝑡)𝜎 (1.9)

for any 𝑡 ≥ 3, and

log |𝜁 (𝜎 + 𝑖𝑡) | = Ω

(
(log 𝑡)1−𝜎

(log log 𝑡)𝜎

)
(1.10)
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as 𝑡 → +∞. Actually, these estimates coming from this rough observation
are believed to hold. In particular, the Ω-estimate has been proved by Mont-
gomery [86].

Similarly, when 𝜎 = 1
2 , it seems to be guessed that, from central limit

theorem (1.6), the classical bound 𝜁 ′( 1
2 + 𝑖𝑡) ≪ (|𝑡 | + 2)𝑐, and the estimate∫ ∞

𝑉
𝑒−𝑢

2/2 𝑑𝑢√
2𝜋

≍ 1
1+𝑉 𝑒

−𝑉2/2 for 𝑉 ≥ 0,

log |𝜁 ( 1
2 + 𝑖𝑡) | ≤ 𝐶

√
log 𝑡 log log 𝑡 (1.11)

for 𝑡 ≥ 3, and

log |𝜁 ( 1
2 + 𝑖𝑡) | = Ω

(√
log 𝑡 log log 𝑡

)
(1.12)

as 𝑡 → +∞. Remark that the upper bound is stronger than the bound of the
original Lindelöf Hypothesis. These estimates are also believed to hold, and
further there is an interesting work for the constant term by Farmer, Gonek,
and Hughes [24]. Moreover, we should also mention that Bondarenko and
Seip [10] made a breakthrough for the Ω-estimate of |𝜁 ( 1

2 + 𝑖𝑡) |. The above
expectations are supported from the viewpoint of large deviations in limit
theorems (1.5) and (1.6).

1.3 Moments of the Riemann zeta-function

The study of the moments plays an important role in the study of the value
distribution of zeta and 𝐿-functions. We define the 2𝑘-th moment of the
Riemann zeta-function by

𝐼𝑘 (𝑇) =
∫ 2𝑇

𝑇
|𝜁 ( 1

2 + 𝑖𝑡) |2𝑘𝑑𝑡.

It is well known that the Lindelöf Hypothesis is equivalent to, for any 𝑇 ≥ 1,
𝑘 ∈ Z≥1, 𝜀 > 0,

𝐼𝑘 (𝑇) ≪𝑘,𝜀 𝑇
1+𝜀 .

From this equivalence, we may find the importance of the work for the
moments of the Riemann zeta-function. It is natural to ask the precise order
of magnitude of moments. For this problem, Keating and Snaith suggested
the following interesting conjecture.

Conjecture (Keating and Snaith in [63]). For any 𝑘 > −1
2 ,

𝐼𝑘 (𝑇) ∼ 𝑎(𝑘) 𝑓 (𝑘)𝑇 (log𝑇)𝑘2
, (1.13)

where

𝑎(𝑘) =
∏
𝑝

{
(1 − 1/𝑝)𝑘2

( ∞∑
𝑚=0

(
Γ(𝑘 + 𝑚)
𝑚!Γ(𝑘)

)2
𝑝−𝑚

)}
,
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and

𝑓 (𝑘) = (𝐺 (1 + 𝑘))2

𝐺 (1 + 2𝑘) .

Here, 𝐺 is the Barnes 𝐺-function.

Asymptotic formula (1.13) has been proved only in the cases 𝑘 = 0, 1, 2.
The case 𝑘 = 0 is trivial. The cases 𝑘 = 1, 2 were proved by Hardy and
Littlewood [37], and by Ingham [48] respectively. However, the other cases
have not been proved yet at present. We also note that 𝐼𝑘 (𝑇) = +∞ for
𝑘 ≤ −1/2 which is proved by the existence the zeros in 1

2 + 𝑖𝑡, 𝑡 ∈ [𝑇, 2𝑇]
(see [105, Theorem A]). Therefore, it is interesting to ask whether the weaker
estimates

𝐼𝑘 (𝑇) ≫𝑘 𝑇 (log𝑇)𝑘2
, (1.14)

𝐼𝑘 (𝑇) ≪𝑘 𝑇 (log𝑇)𝑘2 (1.15)

hold for 𝑘 > −1
2 . Also for this, there are many works, and we already know

the following works.

Theorem. Estimate (1.14) holds in the following situations.

• 𝑘 ∈ Z≥0 by Ramachandra [99],

• 𝑘 ∈ Q≥0 by Heath-Brown [44],

• 𝑘 ≥ 0 under RH by Ramachandra [100], Heath-Brown [44], independently,

• 𝑘 ≤ 0 under RH by Gonek [32],

• 𝑘 ≥ 1 by Radziwiłł and Soundararajan [97],

• 𝑘 ≥ 0 by Heap and Soundararajan [43].

Theorem. Estimate (1.15) holds in the following situations.

• 𝑘 = 1
2 by Ramachandra [100],

• 𝑘 = 1
𝑛 with 𝑛 ∈ Z≥1 by Heath-Brown [44],

• 0 ≤ 𝑘 ≤ 2 under RH by Ramachandra [100], Heath-Brown [44], independently,

• 0 ≤ 𝑘 ≤ 2 + 2
11 under RH by Radziwiłł [96],

• 𝑘 ≥ 0 under RH by Harper [39],

• 𝑘 = 1 + 1
𝑛 with 𝑛 ∈ Z≥1 by Bettin, Chandee, and Radziwiłł [5],

• 0 ≤ 𝑘 ≤ 2 by Heap, Radziwiłł, and Soundararajan [42].
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By the above results, we see that the lower bound (1.14) has been proved
for every 𝑘 ≥ 0 unconditionally, and for every 𝑘 ∈ R under RH. On the other
hand, there is a gap for the dependence of 𝑘 between the implicit constants of
the above results and the constant 𝑎(𝑘) 𝑓 (𝑘) due to Keating-Snaith. In fact, we
see that 𝑎(𝑘) 𝑓 (𝑘) = 𝑒−𝑘2 log (𝑘+3)−𝑘2 log log (𝑘+3)+𝑂 (𝑘2) for any 𝑘 ≥ 0, and particu-
larly 𝑎(𝑘) 𝑓 (𝑘) ≍ 1 if 0 ≤ 𝑘 ≤ 2. By contrast, the implicit constant of Radziwiłł
and Soundararajan [97] is ≫ 𝑒−30𝑘4 , and the implicit constant of Heap and
Soundararajan [43] is ≫ 𝑘 which tends to zero as 𝑘 → 0. Hence, it would be
at present desirable to improve these. If 𝑘 is a positive integer, the implicit
constant has been improved to ≫ 𝑒−2𝑘2 log 𝑘+𝑂 (𝑘2) by Conrey and Ghosh [18],
and Soundararajan [109]. Moreover, Conrey and Ghosh [17] showed that for
any 𝑘 ≥ 0, the implicit constant is ≫ 𝑒−2𝑘2 (log(𝑘+3))+𝑂 (𝑘2) under RH. It would
be also interesting to improve the bound of their implicit constants at present.
Furthermore, the negative moment of the Riemann zeta-function has been
established by Gonek [32]. Assuming the Riemann Hypothesis, he showed
that 𝐼𝑘 (𝑇) ≫ 𝑇 (log𝑇)𝑘2 for 𝑘 ≤ 0, and the implicit constant is absolute. On
the other hand, we see that 𝑎(𝑘) 𝑓 (𝑘) ≍ (1 + 2𝑘)−1 for −1

2 < 𝑘 ≤ 0. Hence,
it seems desirable to show that 𝐼𝑘 (𝑇) ≫ (1 + 2𝑘)−1𝑇 (log𝑇)𝑘2 uniformly for
−1

2 < 𝑘 ≤ 0. Also, the magnitude of negative moments is unknown uncon-
ditionally. For this problem, we give the following unconditional result for
the lower bound of negative moments in this thesis.
Theorem 1.1 (Special case of Theorem 6.3). There exist absolute constants 𝑎 > 0,
𝐵 > 0 such that for any 0 ≤ 𝑘 ≤ 𝑎 we have

𝐼−𝑘 (𝑇) ≫ 𝑇 + 𝑇 (log𝑇)𝑘2−𝐵𝑘3
.

This implicit constant is absolute.
This lower bound is weaker than Gonek’s and the conjectural lower bound
due to the factor of (log𝑇)−𝐵𝑘3 , but unconditionally.

For the upper bound, Heap, Radziwiłł, and Soundararajan showed that
(1.15) for 0 ≤ 𝑘 ≤ 2, and the implicit constant is absolute. Hence, we have
already obtained the conjectural upper bound, if not the asymptotic formula
due to Keating-Snaith. However, the conjectural upper bound for 𝑘 > 2
has not been proved yet unconditionally. On the other hand, assuming the
RH, Harper showed (1.15) for 𝑇 ≥ exp3(𝐶𝑘), where expℓ denote the ℓ-fold
iterated exponential throughout this thesis. The implicit constant of his
result is exp2(𝑂 (𝑘)), which is so bigger than the conjectural one. Before
Harper’s work, Soundararajan [111] showed that2)

𝐼𝑘 (𝑇) ≪ 𝑘𝑇 (log𝑇)𝑘2+𝜀(𝑇)𝑘3 log log𝑇 (1.16)

for 𝑘 ≥ 2 and 𝑇 ≥ exp3(𝐶𝑘), where 𝜀(𝑇) = 𝑂
(
(log3 𝑇)−1) , and the implicit

constants are absolute. Toward the improvement for Harper’s implicit con-
stant, we in this thesis give another proof of Soundararajan’s result, and in

2)This estimate is little different from Soundararajan’s estimate, but one can obtain it just
by using his main theorem.
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Chapter 6 prove the estimate

𝐼𝑘 (𝑇) ≪ 𝑇 (log𝑇)𝑘2+𝜀(𝑇)𝑘3
.

Note that we succeed in removing the factor log log𝑇 , but our implicit con-
stant in 𝜀(𝑇) may be worse than Soundararajan’s. However, we cannot
remove the factor log log𝑇 just by using his main theorem for large devia-
tions. Additionally, one of the important points of our method is that we
do not use Soundararajan’s main proposition [111, Proposition]. Thanks to
that, it is possible to apply our method to the negative moments and to prove
Theorem 1.1 unconditionally. Moreover, our method can be also applied to
the moments of the imaginary part of the Riemann zeta-function. Precisely,
we can prove the following theorem by using our method.

Theorem 1.2 (Special case of Theorem 6.5). Assume the Riemann Hypothesis.
For any 𝑘 ∈ R, 𝜀 > 0, we have

𝑇 (log𝑇)𝑘2−𝜀 ≪𝜀,𝑘

∫ 2𝑇

𝑇
exp

(
2𝑘 arg 𝜁 ( 1

2 + 𝑖𝑡)
)
𝑑𝑡 ≪𝜀,𝑘 𝑇 (log𝑇)𝑘2+𝜀 .

As we described in Section 1.1, the function arg 𝜁 ( 1
2 + 𝑖𝑡) (= 𝜋𝑆(𝑡)) is

related to the distribution of the imaginary parts of nontrivial zeros, and so
this estimate is interesting from this viewpoint. Very recently, Najnudel [91]
showed that ∫ 2𝑇

𝑇
exp

(
2𝑘 arg 𝜁 ( 1

2 + 𝑖𝑡)
)
𝑑𝑡 ≪𝜀,𝑘 𝑇 (log𝑇)𝑘2+𝜀

for any 𝑘 ∈ R and 𝜀 > 0 under the the Riemann Hypothesis. We give another
proof of this estimate, and further the method allows us to prove the lower
bound too.

1.4 Large deviations in limit theorems for the Riemann
zeta-function

In this section, we consider large deviations in limit theorems (1.5) and (1.6).
The parameter 𝑉 in the theorems does not depend on 𝑇 , but the case when
𝑉 depends on 𝑇 has an important application. For example, we would prove
estimates (1.9), (1.10), (1.11), and (1.12) if limit theorems (1.5), (1.6) could be
true for any 𝑉 depending on 𝑇 . However, this sufficient condition would
be not correct. Therefore, we would like to know the range of 𝑉 where the
limit theorems hold, and the behavior of the distribution functions in the
case when the limit theorems do not hold.

For this problem, Lamzouri [66] showed an effective result for asymptotic
formula (1.7) due to Hattori and Matsumoto. Precisely, Lamzouri showed

9



that
1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : log |𝜁 (𝜎 + 𝑖𝑡) | > 𝑉

}
(1.17)

= exp
(
−𝐴(𝜎)𝑉 1

1−𝜎 (log𝑉) 𝜎
1−𝜎

(
1 +𝑂

(
1√

log𝑉
+

(
𝑉 log log𝑇
(log𝑇)1−𝜎

) (𝜎− 1
2 )/(1−𝜎)

)))
for any fixed 1

2 < 𝜎 < 1 and any 𝐶 (𝜎) ≤ 𝑉 ≤ 𝑐(𝜎) (log𝑇)𝜎
log log𝑇 with 𝐶 (𝜎), 𝑐(𝜎)

suitable positive constants. Moreover, Lamzouri, Lester, and Radziwiłł [67]
showed a result for large deviations in limit formula (1.5). Actually, they

proved that asymptotic formula (1.5) holds for𝑉 = 𝑜

(
(log𝑇)1−𝜎

(log log𝑇) 1
𝜎

)
. This range

is a little narrower than Lamzouri’s. In this thesis, we give a result which
extends their range.

Theorem 1.3 (Special case of Theorem 5.2). Asymptotic formula (1.5) holds for
𝑉 = 𝑜

(
(log𝑇)1−𝜎
log log𝑇

)
.

For central limit theorem (1.6), Selberg-Tsang [116, Eq. (6.11)] showed
that

1
𝑇

meas

𝑡 ∈ [𝑇, 2𝑇] :
log |𝜁 ( 1

2 + 𝑖𝑡) |√
1
2 log log𝑇

> 𝑉


=

∫ ∞

𝑉
𝑒−𝑢

2/2 𝑑𝑢√
2𝜋

+𝑂
(
(log3 𝑇)2√
log log𝑇

)
.

From this formula and the estimate
∫ ∞
𝑉
𝑒−𝑢

2/2 𝑑𝑢√
2𝜋

≍ 1
1+𝑉 exp

(
−𝑉2

2

)
for 𝑉 ≥ 0,

asymptotic formula (1.6) holds for 𝑉 ≤ (1 − 𝜀)
√

log3 𝑇 with 𝜀 any fixed
constant. Radziwiłł [95] improved this range into 𝑉 = 𝑜

(
(log log𝑇)1/10

)
3).

He discussed the large deviations of the distribution function of the Dirichlet
polynomial

∑
𝑝≤𝑋 𝑝

−1/2−𝑖𝑡 . Actually, he showed that for 𝑉 = 𝑜(
√

log log𝑇),
𝑋 = 𝑇1/(log log𝑇)2 ,

1
𝑇

meas

𝑡 ∈ [𝑇, 2𝑇] :
∑
𝑝≤𝑋 𝑝

−(1/2+𝑖𝑡)√
1
2
∑
𝑝≤𝑋 𝑝−1

> 𝑉

 ∼
∫ ∞

𝑉
𝑒−𝑢

2/2 𝑑𝑢√
2𝜋

as 𝑇 → +∞. By using this asymptotic formula and the mean value estimate
of the gap of log 𝜁 ( 1

2 + 𝑖𝑡) and
∑
𝑝≤𝑋 𝑝

−1/2−𝑖𝑡 by Selberg-Tsang, he proved the
result of large deviations. From the above result for the Dirichlet polynomial,
Radziwiłł suggested the following conjecture.

3)In Radziwiłł’s paper [95], the range is𝑉 = 𝑂
(
(log log𝑇)1/10−𝜀 ) with 𝜀 any fixed constant,

but the range can be easily improved into 𝑉 = 𝑜
(
(log log𝑇)1/10) just by following his

argument.
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Conjecture (Radziwiłł [95]). If 𝑉 = 𝑜
(√

log log𝑇
)
, asymptotic formula (1.6)

holds. Moreover, when 𝑉 ∼ 𝑘
√

log log𝑇 with 𝑘 > 0 any fixed constant, there exists
a constant 𝐶 (𝑘) such that

1
𝑇

meas

𝑡 ∈ [𝑇, 2𝑇] :
log |𝜁 ( 1

2 + 𝑖𝑡) |√
1
2 log log𝑇

> 𝑉

 ∼ 𝐶 (𝑘)
∫ ∞

𝑉
𝑒−𝑢

2/2 𝑑𝑢√
2𝜋
.

We give a result contributing to this conjecture.

Theorem 1.4 (Inequality (2.35) in Theorem 2.5). For𝑉 = 𝑜
(
(log log𝑇)1/6

)
, we

have

1
𝑇

meas

𝑡 ∈ [𝑇, 2𝑇] :
log |𝜁 ( 1

2 + 𝑖𝑡) |√
1
2 log log𝑇

> 𝑉

 ≤ (1 + 𝑜(1))
∫ ∞

𝑉
𝑒−𝑢

2/2 𝑑𝑢√
2𝜋
.

Some results weaker than such limit theorems have been already proved.
We note some of those here. We first mention the trivial upper bound of
the distribution of 𝜁 ( 1

2 + 𝑖𝑡) coming from the fourth moment due to Ingham.
Actually, from Ingham’s estimate 𝐼2(𝑇) ∼ 1

2𝜋2𝑇 (log𝑇)4, we can immediately
obtain

1
𝑇

meas

𝑡 ∈ [𝑇, 2𝑇] :
log |𝜁 ( 1

2 + 𝑖𝑡) |√
1
2 log log𝑇

> 𝑉


≤

(
1

2𝜋2 + 𝜀
)

exp
(
−4𝑉

√
1
2 log log𝑇 + 4 log log𝑇

)
for 𝑉 ≥ 0. Also, Jutila [56] showed that, for any 0 ≤ 𝑉 ≤ log log𝑇 ,

1
𝑇

meas

𝑡 ∈ [𝑇, 2𝑇] :
log |𝜁 ( 1

2 + 𝑖𝑡) |√
1
2 log log𝑇

> 𝑉

 ≪ exp
(
−𝑉

2

2 +𝑂
(

𝑉3√
log log𝑇

))
.

This upper bound is bigger than the gaussian integral
∫ ∞
𝑉
𝑒−𝑢

2/2 𝑑𝑢√
2𝜋

, but his
range is wider than Radziwiłł’s. Recently, Heap and Soundararajan [43]
showed that

1
𝑇

meas

𝑡 ∈ [𝑇, 2𝑇] :
log |𝜁 ( 1

2 + 𝑖𝑡) |√
1
2 log log𝑇

> 𝑉

 = exp
(
−𝑉

2

2 +𝑂
(
𝑉 log3 𝑇

) )
for

√
log log𝑇 log3 𝑇 ≤ 𝑉 ≤ 2 log log𝑇 − 2

√
log log𝑇 log3 𝑇 . This formula is

also weaker than Radziwiłł’s, but the range is wider than his. Moreover,
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for the lower bound, Soundararajan [110] showed that, for any 3 ≤ 𝑉 ≤
1
5
√

log𝑇/log log𝑇 ,

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : log |𝜁 ( 1

2 + 𝑖𝑡) | > 𝑉
}

(1.18)

≫ 1
(log𝑇)4 exp ©­«−10 𝑉2

log log𝑇
8𝑉2 log𝑉

ª®¬ .
Such estimates also have applications such as to the moments 𝐼𝑘 (𝑇). Actually,
Soundararajan in [111] showed an upper bound of the distribution function
of |𝜁 ( 1

2+𝑖𝑡) |, and proved (1.16) by using the bound. From this background, we
give some upper and lower bounds for distribution functions of 𝐿-functions
in Chapter 6, and show some results for moments of 𝐿-functions.

1.5 Iterated integrals of the logarithm of the Riemann
zeta-function

In this section, we discuss the iterated integrals of the logarithm of the
Riemann zeta-function. Define the functions 𝜂𝑚 (𝜎 + 𝑖𝑡) and 𝜂̃𝑚 (𝜎 + 𝑖𝑡) by the
recurrence equations

𝜂𝑚 (𝜎 + 𝑖𝑡) =
∫ 𝑡

0
𝜂𝑚−1(𝜎 + 𝑖𝑢)𝑑𝑢 + 𝑐𝑚 (𝜎),

𝜂̃𝑚 (𝜎 + 𝑖𝑡) =
∫ ∞

𝜎
𝜂̃𝑚 (𝛼 + 𝑖𝑡)𝑑𝛼,

where 𝜂0(𝑠) = 𝜂̃0(𝑠) = log 𝜁 (𝑠), and 𝑐𝑚 (𝜎) = 𝑖𝑚

(𝑚−1)!
∫ ∞
𝜎

(𝛼 − 𝜎) log 𝜁 (𝛼)𝑑𝛼.
Under this definition, the well known function 𝑆𝑚 (𝑡) is defined by 1

𝜋 Im 𝜂𝑚 ( 1
2+

𝑖𝑡).
Fujii [29] showed that the formula

Im 𝜂𝑚 ( 1
2 + 𝑖𝑡) (1.19)

= Im 𝑖𝑚𝜂̃𝑚 ( 1
2 + 𝑖𝑡) + 2𝜋 Im

𝑚−1∑
𝑘=0

𝑖𝑚−1−𝑘

(𝑚 − 𝑘)!𝑘!
∑

0<𝛾<𝑡
𝛽> 1

2

(𝛽 − 1
2 )
𝑚−𝑘 (𝑡 − 𝛾)𝑘 ,

which relates the 𝜂𝑚 to 𝜂̃𝑚. Moreover, he showed that Im 𝜂̃𝑚 ( 1
2 + 𝑖𝑡) ≪𝑚 log 𝑡

for 𝑡 ≥ 2 and consequently established that the Riemann Hypothesis is
equivalent to the estimate Im 𝜂𝑚 ( 1

2 + 𝑖𝑇) = 𝑜(𝑇𝑚−2) for every 𝑚 ∈ Z≥3. Also,
we can show the following proposition.

Proposition 1.1. Let 𝑚 ∈ Z≥1. The Lindelöf Hypothesis is equivalent to the
estimate Re 𝜂̃𝑚 ( 1

2 + 𝑖𝑡) = 𝑜(log 𝑡) as 𝑡 → +∞.

This proposition is a generalization of an unpublished work of Ghosh and
Goldston (see pp.334–335 in [114]). They showed that the Lindelöf Hypoth-
esis is equivalent to that the estimate 𝑆1(𝑡) = 𝑜(log 𝑡) as 𝑡 → +∞. We see that
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𝑆1(𝑡) = Re 𝜂̃1( 1
2 + 𝑖𝑡) from equation (1.19), and so we can regard that Proposi-

tion 1.1 is a generalization of the equivalence of Ghosh and Goldston. From
these observations, the functions 𝜂𝑚 (𝑠) and 𝜂̃𝑚 (𝑠) are interesting as well as
𝜁 (𝑠) and 𝑆(𝑡), and we discuss the value distribution of these functions as one
of the topics in this thesis.

Recently, the study Ω-estimates of 𝑆𝑚 (𝑡) have been developed by some
articles such as [11], [14], [15] under the Riemann Hypothesis. Those results
were shown by the resonance method due to Bondarenko and Seip [10], [11].
On the other hand, as Bondarenko and Seip mentioned in [11], it is desirable
that those could be shown unconditionally by proving a stronger result on
the measure of extreme values like Soundararajan’s result (1.18). Toward
this problem, we discuss the large deviations of the distribution function of
𝜂̃𝑚 (𝑠) in the critical strip. For example, we give the following theorem.

Theorem 1.5 (Theorem 3.1). Let 𝑚 ∈ Z≥1, 𝜃 ∈ R be fixed. There exists a
positive constant 𝑎1 = 𝑎1(𝑚) such that, for any large numbers 𝑇 , 𝑉 with 𝑉 ≤
𝑎1

(
log𝑇

(log log𝑇)2𝑚+2

) 𝑚
2𝑚+1 , we have

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : Re 𝑒−𝑖𝜃 𝜂̃𝑚 ( 1

2 + 𝑖𝑡) > 𝑉
}

(1.20)

= exp
(
−2𝑚4𝑚𝑉2(log𝑉)2𝑚 (1 + 𝑅)

)
,

where the error term 𝑅 satisfies

𝑅 ≪𝑚
𝑉2𝑚+1(log𝑉)2𝑚(𝑚+1)

(log𝑇)𝑚 +

√
log log𝑉

log𝑉 .

This result recovers Tsang’s Ω-estimate [117]

𝑆1(𝑇) = Ω−

(
(log𝑇)1/3

(log log𝑇)4/3

)
as 𝑇 → +∞. This is at present the best unconditional bound. On the other

hand, Tsang [118] also showed 𝑆1(𝑇) = Ω+

( √
log𝑇

(log log𝑇)3/2

)
unconditionally, and

our result cannot recover this estimate. From this problem, it is desirable to
prove (1.20) for some larger range of 𝑉 .

1.6 Ramachandra’s denseness problem

As forerunners of the limit theorem of Bohr-Jessen (1.5), Bohr and Courant
[7], and Bohr [6] showed the following interesting theorems.

Theorem (Bohr and Courant in 1914 [7]). Let 1
2 < 𝜎 ≤ 1. Then the set

{𝜁 (𝜎 + 𝑖𝑡) : 𝑡 ∈ R} is dense in the complex plane.
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Theorem (Bohr in 1916 [6]). Let 1
2 < 𝜎 ≤ 1. Then the set

{
log 𝜁 (𝜎 + 𝑖𝑡) : 𝑡 ∈ R

}
is dense in the complex plane.

Note that the latter theorem is an improvement of former one since the
former one is an immediate consequence from the latter theorem. These
results are interesting, and there are many developments inspired by these
results, such as the Bohr-Jessen limit theorem [8] and Voronin’s universality
theorem [119]. On the other hand, the value distribution of 𝜁 (𝑠) on the
critical line 𝜎 = 1

2 is more difficult, and the following problem is well known.

Problem 1.1. Is the set
{
𝜁 ( 1

2 + 𝑖𝑡) : 𝑡 ∈ R
}

dense in the complex plane?

This problem was first mentioned by Ramachandra (for the history and
the present state-of-art of this problem, see [65]). This problem is at present
open, and it is difficult to solve this even under the Riemann Hypothesis.
For Problem 1.1, there is an interesting study by Kowalski and Nikeghbali
[65]. They studied the Fourier transform of the probability measure which
represents the probability of log 𝜁 (1/2 + 𝑖𝑡) ∈ 𝐴 with 𝐴 a Borel set. In partic-
ular, they gave a sufficient condition that the values 𝜁 (1/2 + 𝑖𝑡) for 𝑡 ∈ R are
dense in the complex plane (see [65, Corollary 9]). Hence, from their study,
we might guess that the answer for Problem 1.1 could be yes. However,
as they mentioned in their paper [65], their sufficient condition is rather
strong. Therefore, it is also not strange that the answer for Problem 1.1
could be no. Moreover, Garunks̆tis and Steuding [30] showed that the set
of (𝜁 (1/2 + 𝑖𝑡), 𝜁 ′(1/2 + 𝑖𝑡)) for 𝑡 ∈ R is not dense in C2. As we can see from
these works, it seems difficult to decide clearly the answer of Problem 1.1
at present. Hence, it is desirable to obtain some new information for this
problem.

In this thesis, we consider the following problem.

Problem 1.2. Is the set
{
log 𝜁 (1/2 + 𝑖𝑡) : 𝑡 ∈ R

}
dense in the complex plane?

This problem is stronger than Problem 1.1 in the sense that if the set{
log 𝜁 ( 1

2 + 𝑖𝑡) : 𝑡 ∈ R
}

is dense in C, then
{
𝜁 ( 1

2 + 𝑖𝑡) : 𝑡 ∈ R
}

is also dense
in C. Since the function 𝜂𝑚 (𝑠) is the 𝑚-times iterated integral of log 𝜁 (𝑠)
on the vertical line, we can expect that the function contains information
related to the value distribution of log 𝜁 (𝑠). In particular, since 𝜂𝑚 (1/2 + 𝑖𝑡)
is the iterated integral on the critical line, the study of the value distribution
of this function might give new information on Problem 1.2. From this
background, we study the denseness of the function 𝜂𝑚 (𝑠) and prove the
following theorem in Chapter 4.

Theorem 1.6 (Theorem 4.1). Let 1/2 ≤ 𝜎 < 1. If the number of zeros 𝜌 = 𝛽 + 𝑖𝛾
with 𝛽 > 𝜎 is finite, then the set{∫ 𝑡

0
log 𝜁 (𝜎 + 𝑖𝑡′)𝑑𝑡′ : 𝑡 ∈ [0,∞)

}
is dense in the complex plane. Moreover, for each integer 𝑚 ≥ 2, the following
statements are equivalent.
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(I). The Riemann zeta-function does not have zeros whose real part are greater
than 𝜎.

(II). The set {𝜂𝑚 (𝜎 + 𝑖𝑡) : 𝑡 ∈ [0,∞)} is dense in the complex plane.

From this theorem, we see that the Riemann Hypothesis implies that the
set {∫ 𝑡

0
log 𝜁 (1/2 + 𝑖𝑡′)𝑑𝑡′ : 𝑡 ∈ [0,∞)

}
is dense in the complex plane. This implication seems to suggest that the
answer of Problem 1.2 is yes. Moreover, the equivalence above would be
a new type of statement which gives the relation between the denseness of
values of the Riemann zeta-function and the Riemann Hypothesis.

Furthermore, we also give a result for the denseness of Dirichlet polyno-
mial. Roughly speaking, the proofs of Bohr and Courant are mainly divided
into the following two parts.

Step 1. (Denseness lemma) The corresponding Dirichlet polynomial to 𝜁 (𝜎 + 𝑖𝑡)
and log 𝜁 (𝜎 + 𝑖𝑡) can approximate to any complex numbers.

Step 2. For “almost all" 𝑡, 𝜁 (𝜎 + 𝑖𝑡) and log 𝜁 (𝜎 + 𝑖𝑡) can be approximated by the
corresponding Dirichlet polynomial.

When 1
2 < 𝜎 ≤ 1, these assertions were shown by Bohr and Courant. Addi-

tionally, Step 1 in the case𝜎 = 1
2 was been proved by Kowalski and Nikeghbali

[65, Theorem 2] by showing a lower bound of the distribution function of
the Dirichlet polynomial

∏
𝑝≤𝑋 (1− 𝑝−1/2−𝑖𝑡)−1, which corresponds to 𝜁 ( 1

2 +𝑖𝑡).
On the other hand, we give the following theorem.

Theorem 1.7 (Special case of Corollary 6.3). Put 𝜎(𝑋) =
√

1
2
∑
𝑝≤𝑋 𝑝−1, and

define 𝑅(𝑧, 𝑟) := {𝑢 + 𝑖𝑣 ∈ C : max{| Re 𝑧 − 𝑢 |, | Im 𝑧 − 𝑣 |} < 𝑟}. For any 0 <

𝜀 ≤ 1, 𝑧 ∈ C, and any numbers 𝑇 , 𝑋 with 𝑋 (log log 𝑋)12 ≤ 𝑇 , we have

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] :

∑
𝑝≤𝑋

𝑝−1/2−𝑖𝑡 ∈ 𝑅(𝑧, 𝜀)
}
∼

∬
𝑅(𝑧/𝜎(𝑋),𝜀/𝜎(𝑋))

𝑒−
𝑢2+𝑣2

2
𝑑𝑢𝑑𝑣

2𝜋

as 𝑋 → +∞.

This theorem gives the result on the denseness of the Dirichlet polynomial
𝑃1(𝑡) =

∑
𝑝≤𝑋 𝑝

−1/2−𝑖𝑡 , and so this theorem advances Ramachandra’s problem.
On the other hand, there is a gap between this theorem and the denseness
lemma because the Dirichlet polynomial corresponding to log 𝜁 ( 1

2 + 𝑖𝑡) is
𝑃2(𝑡) = −∑

𝑝 log(1 − 𝑝−1/2−𝑖𝑡) or 𝑃3(𝑡) =
∑

2≤𝑛≤𝑋
Λ(𝑛)

𝑛1/2+𝑖𝑡 log 𝑛 . Hence, we should
consider these Dirichlet polynomials from the viewpoint of Ramachandra’s
problem. On the other hand, the contribution from the gaps between the
Dirichlet polynomials 𝑃2(𝑡), 𝑃3(𝑡) and 𝑃1(𝑡) is not big. From this fact, The-
orem 1.7 suggests that the distribution functions of 𝑃2(𝑡), 𝑃3(𝑡) have also
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similar asymptotic formulas. Actually, the author is considering whether
the asymptotic formulas can be proved by the methods in Chapters 5, 6. In
particular, such asymptotic formulas for the Distribution functions of 𝑃2(𝑡),
𝑃3(𝑡) would give an improvement of the result of Kowalski and Nikeghbali.
From these observations, the author believes it makes sense to state Theorem
1.7 here as one of the progress towards Ramachandra’s problem.

1.7 Definition of some classes of 𝐿-functions

So far, we surveyed the value distribution of the Riemann zeta-function.
Some of the results above can be extended to a certain class of 𝐿-functions.
For example, Selberg introduced a class of 𝐿-functions and gave a theorem
[108, Theorem 2] for central limit theorems of 𝐿-functions in the class. Today
this class is called the Selberg class. To define the class, we introduce some
properties for Dirichlet series 𝐹 (𝑠) = ∑∞

𝑛=1 𝑎(𝑛)𝑛−𝑠.

(S1) The series
∑∞
𝑛=1 𝑎𝐹 (𝑛)𝑛−𝑠 is convergent absolutely for 𝜎 > 1.

(S2) (Analytic continuation) There exists𝑚𝐹 ∈ Z≥0 such that (𝑠−1)𝑚𝐹𝐹 (𝑠)
is entire of finite order.

(S3) (Functional equation) 𝐹 (𝑠) satisfies the following functional equation

Φ𝐹 (𝑠) = 𝜔𝐹Φ𝐹 (1 − 𝑠),

where Φ𝐹 (𝑠) = 𝛾(𝑠)𝐹 (𝑠) and 𝛾(𝑠) = 𝑄𝑠 ∏𝑘
𝑗=1 Γ(𝜆 𝑗 𝑠 + 𝜇 𝑗 ), with 𝜆 𝑗 > 0,

𝑄 > 0, Re(𝜇 𝑗 ) ≥ 0, and |𝜔𝐹 | = 1. Here we use the notation Φ𝐹 (𝑠) =
Φ𝐹 (𝑠).

(S3’) 𝐹 (𝑠) has the same functional equation as in (S3), where the condition
Re(𝜇 𝑗 ) ≥ 0 changes to Re(𝜇 𝑗 ) ≥ −1

2 .

(S4) (Euler product) 𝐹 (𝑠) can be written as

𝐹 (𝑠) =
∏
𝑝

𝐹𝑝 (𝑠), 𝐹𝑝 (𝑠) = exp
( ∞∑
𝑘=1

𝑏𝐹
(
𝑝𝑘

)
𝑝𝑘𝑠

)
,

where 𝑏𝐹 (𝑛) = 0 unless 𝑛 = 𝑝ℓ with ℓ ∈ Z≥1, and 𝑏𝐹 (𝑛) ≪ 𝑛𝜗𝐹 for some
𝜗𝐹 <

1
2 .

(S5) For any 𝑘 ≥ 2, ∑
𝑝

|𝑏𝐹 (𝑝𝑘 )(log 𝑝𝑘 ) |2

𝑝𝑘
< +∞. (1.21)

(S6) (Ramanujan conjecture) For every 𝜀 > 0, the inequality 𝑎𝐹 (𝑛) ≪𝐹 𝑛
𝜀

holds.
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The set of 𝐿-functions satisfying (S1)–(S4) and (S6) is called the Selberg
class denoted by S, and also the set of 𝐿-functions not equaling to the
identically zero and satisfying (S1), (S2), and (S3) is called the extended
Selberg class denoted by S♯. In this thesis, we study the set S† consisting of
𝐿-functions satisfy (S1), (S2), (S3’), (S4), and (S5). We call S† the modified
Selberg class. The Ramanujan Conjecture is a strong condition, that implies
(S5) together with (S4). Actually, if 𝐹 is an 𝐿-function satisfying (S4) and
(S6), then it holds that (cf. [89, Exercise 8.2.9])

|𝑏𝐹 (𝑝ℓ) | ≪𝜀,𝐹

(
2ℓ − 1

)
𝑝𝜀ℓ/ℓ.

Hence, it holds that S ⊂ S†. Axiom (S5) is sometimes called the Hypothesis
H, which was introduced by Rudnick and Sarnak [102, equation (1.7)]. The
zeros of Φ𝐹 is called the nontrivial zeros of 𝐹. It is known that many inter-
esting 𝐿-functions belong to these classes. For example, the Riemann zeta-
function, Dirichlet 𝐿-functions, Dedekind zeta-functions, Hecke 𝐿-functions
associated with primitive Hecke characters, and 𝐿-functions associated with
holomorphic newforms of a congruence subgroup of SL2(Z) normalized
suitably belong to the Selberg class. In general, it is difficult to decide the
all of the 𝐿-functions in the Selberg class. For this direction, there are in-
teresting works such as [4], [18], [57], [59], [60], and [61]. Additionally, the
following conjecture is known (see [92]).

Conjecture (Main conjecture for the Selberg class). The Selberg class S coin-
cides with the class of the GL(𝑛) over Q automorphic 𝐿-functions.

From these observations, the Selberg class is an interesting mathematical
object.

In general, it is difficult to prove the Ramanujan conjecture for automor-
phic 𝐿-functions. Hence, we study S† in this thesis. As one of advantages of
this relaxing, it has been proved that automorphic 𝐿-functions attached to
an irreducible unitary cusp representation of GL(𝑛) over Q for 𝑛 ≤ 4 belong
to S†. This fact was proved by Rudnick and Sarnak in [102] for 𝑛 ≤ 3 and
Kim and Sarnak [64, Appendix 2] for 𝑛 = 4.

1.8 The distribution functions of 𝐿-functions

In [108], Selberg suggested some interesting conjectures, and many mathe-
maticians have worked for the conjectures. In particular, he conjectured that
the Riemann Hypothesis is generalized to the Selberg class.

Conjecture (Grand Riemann Hypothesis (GRH)). For 𝐹 ∈ S \ {1}, all non-
trivial zeros of 𝐹 lie on the critical line 𝜎 = 1

2 .

Similarly to the case of the Riemann zeta-function, this conjecture implies the
Grand Lindelöf Hypothesis, which states that 𝐹 ( 1

2 + 𝑖𝑡) ≪𝜀,𝐹 |𝑡 |𝜀 for |𝑡 | ≥ 2.
Moreover, the Grand Lindelöf Hypothesis for 𝐹 has some consequences to
the distribution of zeros of 𝐹. For example, we can generalize Backlund’s
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equivalence to the Selberg class and the modified Selberg class. Also, the
Riemann-von Mangoldt formula (1.4) is generalized to the modified Selberg
class. Let 𝑁𝐹 (𝑇) be the number of nontrivial zeros 𝜌𝐹 = 𝛽𝐹 + 𝑖𝛾𝐹 with
0 ≤ 𝛾𝐹 < 𝑇 counted with multiplicity. Then formula (1.4) is generalized to

𝑁𝐹 (𝑇) = (1.22)

1
𝜋

𝑘∑
𝑗=1

(
argΓ( 𝜆 𝑗

2 + 𝜇 𝑗 + 𝑖𝜆 𝑗𝑇) − argΓ( 𝜆 𝑗

2 + 𝜇 𝑗 )
)
+

log𝑄
𝜋

𝑇 + 𝑆𝐹 (𝑇) − 𝑆𝐹 (0) + 𝑚𝐹

for 𝐹 ∈ S† \ {1}, where 𝜆 𝑗 , 𝜇 𝑗 , and𝑚𝐹 are the numbers in (S2), (S3), and (S3’),
and 𝑆𝐹 (𝑡) is the function defined by 1

𝜋 Im log 𝐹 ( 1
2 + 𝑖𝑡) = 1

𝜋 arg 𝐹 ( 1
2 + 𝑖𝑡).

Using standard methods, we can show that 𝐹 ( 1
2 + 𝑖𝑡) ≪𝐹,𝜀 (|𝑡 | + 1)

𝑑𝐹
4 +𝜀

and 𝑆𝐹 (𝑡) ≪𝐹 log( |𝑡 | + 3) for 𝑡 ∈ R. Here, 𝑑𝐹 is the degree of 𝐹 defined by
2
∑𝑘
𝑗=1 𝜆 𝑗 which is an invariant for 𝐹, that is, the degree 𝑑𝐹 does not depend

on the form of the gamma factor 𝛾(𝑠) in (S3). In particular, substituting the
latter estimate to (1.22) and using the Stirling formula, we have

𝑁𝐹 (𝑇) =
𝑇

2𝜋 log
(
𝑞𝐹

(
𝑇

2𝜋

)𝑑𝐹 )
+𝑂𝐹 (log𝑇) (1.23)

for 𝑇 ≥ 3. Here, 𝑞𝐹 is the conductor of 𝐹 defined by (2𝜋)𝑑𝐹𝑄2 ∏𝑘
𝑗=1 𝜆

2𝜆 𝑗

𝑗 .
This number is also an invariant for 𝐹. Additionally, the estimate of 𝑆𝐹 (𝑡)
can be improved into 𝑆𝐹 (𝑡) = 𝑜(log(|𝑡 | + 3)) as |𝑡 | → +∞ under the Lindelöf
Hypothesis for 𝐹. By this improvement, we can improve the error term
of (1.23) into 𝑜(log𝑇) under the Lindelöf Hypothesis for 𝐹. From these
observation, the value distribution of 𝐿-functions is important as well as the
Riemann zeta-function.

As we mentioned above, Selberg generalized (1.6) to 𝐿-functions in the
Selberg class. Precisely, he showed that, for all 𝐹 ∈ S\{1} satisfying a certain
condition,

lim
𝑇→+∞

1
𝑇

meas

𝑡 ∈ [𝑇, 2𝑇] :
log |𝐹 ( 1

2 + 𝑖𝑡) |√
𝑛𝐹
2 log log𝑇

> 𝑉

 =
∫ ∞

𝑉
𝑒−𝑢

2/2 𝑑𝑢√
2𝜋
,

lim
𝑇→+∞

1
𝑇

meas

𝑡 ∈ [𝑇, 2𝑇] :
arg 𝐹 ( 1

2 + 𝑖𝑡)√
𝑛𝐹
2 log log𝑇

> 𝑉

 =
∫ ∞

𝑉
𝑒−𝑢

2/2 𝑑𝑢√
2𝜋
,

where 𝑛𝐹 is a positive integer. Moreover, these formulas are also generalized
to the modified Selberg class. We will see this fact in Chapter 6.

Also, the value distribution of 𝐿-function in the domain 𝜎 > 1
2 have

been studied by many mathematicians. Matsumoto [77] generalized limit
theorem (1.5) to a class of zeta or 𝐿-functions. Combing his result with
Potter’s result [94, Theorem 1], we obtain the following: if 𝐹 ∈ S \ {1} having
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the “polynomial Euler product” satisfies the estimate∫ 2𝑇

𝑇
|𝐹 (𝜎0 + 𝑖𝑡) |2𝑑𝑡 ≪ 𝑇1+𝜀

for any 𝜀 > 0 and for some 𝜎0 ≥ 1
2 , then there exists a probability measure

𝑃𝜎,𝐹 on (R,B(R)) such that

lim
𝑇→+∞

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : log 𝐹 (𝜎 + 𝑖𝑡) > 𝑉

}
= 𝑃𝜎,𝐹 ((𝑉, +∞))

for 𝜎 > 𝜎0. Thus, we have already succeeded in generalizing the limit
theorem (1.5) to a certain extent. On the other hand, there is an obstacle to
generalize the existence of the density function of 𝑃𝜎,𝐹 . The details of the
obstacle is written in [78]. Some mathematicians [79], [80], [84] have worked
this generalization, and succeeded it for some certain 𝐿-functions. However,
a more generalization, for example to all 𝐿-functions in Selberg class, would
require further works.

1.9 Independence of 𝐿-functions

We observed some properties of 𝐿-functions so far. From the results men-
tioned above, we see that many properties of the Riemann zeta-function
can be generalized to 𝐿-functions in S and S†. Therefore, we find that
𝐿-functions in these classes have many common properties. On the other
hand, in order to understand each 𝐿-function deeply, it seems to be impor-
tant to study so that the differences of distinct primitive 𝐿-functions can be
clarified. Here, we say 𝐹 ∈ S \ {1} primitive if 𝐹 = 𝐹1𝐹2 with 𝐹1, 𝐹2 ∈ S
implies 𝐹1 = 1 or 𝐹2 = 1. In the classes S♯, S†, define it in the same way.
From this perspective, we also discuss the independence of 𝐿-functions in
this thesis.

Selberg in [108] mentioned that the distinct primitive 𝐿-functions in the
Selberg class are “statistically independent” under a strong zero density
estimate and an orthonormality conjecture without any precise description
for the independence. The strong zero density estimate means that there
exists a positive constant 𝜅𝐹 such that, uniformly for any𝑇 ≥ 3 and 1

2 ≤ 𝜎 ≤ 1,

𝑁𝐹 (𝜎,𝑇) ≪𝐹 𝑇
1−(2𝜎−1)𝜅𝐹 log𝑇. (1.24)

Here, 𝑁𝐹 (𝜎,𝑇) is the number of nontrivial zeros 𝜌𝐹 = 𝛽𝐹 + 𝑖𝛾𝐹 of 𝐹 with
𝛽𝐹 ≥ 𝜎, 0 ≤ 𝛾𝐹 ≤ 𝑇 counted with multiplicities. The statement of the
orthonormality conjecture is the following.

Conjecture (Selberg Orthonormality Conjecture (SOC)). For any primitive
𝐿-function 𝐹 ∈ S, ∑

𝑝≤𝑋

|𝑎𝐹 (𝑝) |2
𝑝

= log log 𝑋 +𝑂𝐹 (1)
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for some positive integer 𝑛𝐹 and any 𝑋 ≥ 3. For any primitive 𝐿-functions 𝐹 ≠
𝐺 ∈ S, ∑

𝑝≤𝑋

𝑎𝐹 (𝑝)𝑎𝐺 (𝑝)
𝑝

= 𝑂𝐹,𝐺 (1)

for any 𝑋 ≥ 3.

Assuming (1.24), SOC, and other certain conditions, Bombieri and Hejhal
[9]4) established the statistically independence of 𝐿-functions by showing
that, for any fixed 𝑉1, . . . , 𝑉𝑟 ,𝑊1, . . . ,𝑊𝑟 ∈ R,

1
𝑇

meas
𝑁⋂
𝑗=1

𝑡 ∈ [𝑇, 2𝑇] :
log |𝐹𝑗 ( 1

2 + 𝑖𝑡) |√
𝑛𝐹𝑗

2 log log𝑇
> 𝑉 𝑗 and

arg 𝐹𝑗 ( 1
2 + 𝑖𝑡)√

𝑛𝐹𝑗

2 log log𝑇
> 𝑊 𝑗


∼

𝑁∏
𝑗=1

∫ ∞

𝑉 𝑗

∫ ∞

𝑊 𝑗

𝑒−(𝑢
2+𝑣2)/2 𝑑𝑢𝑑𝑣

2𝜋 (1.25)

as 𝑇 → +∞, where 𝐹𝑗 are 𝐿-functions satisfying certain properties, and
𝑛𝐹𝑗 are certain positive integers. In particular, this formula leads that the 𝐿-
functions normalized by the variance 𝑛𝐹

2 log log𝑇 are independent as random
variables on the critical line. To understand this independence more deeply,
we improve the limit theorem of Bombieri and Hejhal for the direction of
large deviations. Here, we omit the precise condition of the theorem which
is written in Chapter 6.

Theorem 1.8 (Special case of Theorem 6.1). Let 𝑟 ∈ Z≥1. LetF = (𝐹1, . . . , 𝐹𝑟) ∈
(S†)𝑟 , (𝜃1, . . . , 𝜃𝑟) ∈ R𝑟 satisfying suitable conditions. Then, for any (𝑉1, . . . , 𝑉𝑟) ∈
R𝑟 with max1≤ 𝑗≤𝑟 |𝑉 𝑗 | = 𝑜

(
(log log𝑇)1/10

)
, we have

1
𝑇

meas
𝑟⋂
𝑗=1

𝑡 ∈ [𝑇, 2𝑇] :
Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 ( 1

2 + 𝑖𝑡)√
𝑛𝐹𝑗

2 log log𝑇
> 𝑉 𝑗

 ∼
𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋

as 𝑇 → +∞.

Also, we can obtain an upper bound and a lower bound of the distribution
function of F = (𝐹1, . . . , 𝐹𝑟) in a wider range of V (see Theorems 6.2, 6.4).
As one of the application of the bounds, we can obtain the following mean
value theorem.

4)Bombieri and Hejhal credited Selberg in their paper. The author does not know the
meaning, but their result may be an unpublished work of Selberg.
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Theorem 1.9 (Special case of Theorems 6.3, 6.5). Let 𝜒1, . . . , 𝜒𝑟 be distinct
primitive Dirichlet characters. Then there exists some positive constant 𝐵 depending
on 𝜒 𝑗 ’s such that for any small enough positive real number 𝑘 ,∫ 2𝑇

𝑇

(
min
1≤ 𝑗≤𝑟

��𝐿 ( 1
2 + 𝑖𝑡, 𝜒 𝑗 )

��)2𝑘
𝑑𝑡 ≪ 𝑇

(log𝑇)𝑘2/𝑟+𝐵𝑘3

(log log𝑇) (𝑟−1)/2 , (1.26)∫ 2𝑇

𝑇

(
max
1≤ 𝑗≤𝑟

��𝐿 ( 1
2 + 𝑖𝑡, 𝜒 𝑗 )

��)−2𝑘
𝑑𝑡 ≫ 𝑇

(log𝑇)𝑘2/𝑟−𝐵𝑘3

(log log𝑇) (𝑟−1)/2 .

The above implicit constants depend on 𝜒 𝑗 and 𝑘 . If we assume the Riemann
Hypothesis for 𝐿 (𝑠, 𝜒 𝑗 ), then we have, for any 𝑘 ≥ 0 and 𝜀 > 0,∫ 2𝑇

𝑇

(
min
1≤ 𝑗≤𝑟

��𝐿 ( 1
2 + 𝑖𝑡, 𝜒 𝑗 )

��)2𝑘
𝑑𝑡 ≪ 𝑇 (log𝑇)𝑘2/𝑟+𝜀,∫ 2𝑇

𝑇

(
max
1≤ 𝑗≤𝑟

��𝐿 ( 1
2 + 𝑖𝑡, 𝜒 𝑗 )

��)−2𝑘
𝑑𝑡 ≫ 𝑇 (log𝑇)𝑘2/𝑟−𝜀 .

The implicit constants depend on 𝜒 𝑗 , 𝑘 , and 𝜀.

From this theorem, we find that the mean value estimate of min{|𝜁 ( 1
2 +

𝑖𝑡) |, |𝐿 ( 1
2 + 𝑖𝑡) |} is strictly smaller than just the mean value estimate |𝜁 ( 1

2 + 𝑖𝑡) |.
As we mentioned in Section 1.3, it is known unconditionally that, for 0 ≤
𝑘 ≤ 2, ∫ 2𝑇

𝑇
|𝜁 ( 1

2 + 𝑖𝑡) |2𝑘𝑑𝑡 ≍𝑘 𝑇 (log𝑇)𝑘2
.

Moreover, it is expected that
∫ 2𝑇
𝑇

|𝐿 ( 1
2 +𝑖𝑡, 𝜒) |2𝑘𝑑𝑡 ≍ 𝑇 (log𝑇)𝑘2 . Therefore, the

unconditional result (1.26) is new and interesting when 𝑘 < 𝐵−1/2. We could
regard this fact as one of the new evidence of independence of 𝐿-functions.

So far in this section, we observed independence of 𝐿-functions on the
critical line. It is a natural question to ask the independence in the other
domain, particularly in the strip 1

2 < 𝜎 < 1. One may speculate that 𝐿-
functions are independence as random variables even in this strip, but this
does not hold. This fact was informed to the author by Mine [85]. Roughly
speaking Mine’s method, we consider the characteristic functions

𝜑𝜒1,𝜒2 (𝜉1, 𝜉2)

:= lim
𝑇→+∞

1
𝑇

∫ 2𝑇

𝑇
exp

(
𝑖𝜉1 log |𝐿 (𝜎 + 𝑖𝑡, 𝜒1) | + 𝑖𝜉2 log |𝐿 (𝜎 + 𝑖𝑡, 𝜒2) |

)
𝑑𝑡,

and

𝜑𝜒 𝑗 (𝜉 𝑗 ) := lim
𝑇→+∞

1
𝑇

∫ 2𝑇

𝑇
exp

(
𝑖𝜉 𝑗 log |𝐿 (𝜎 + 𝑖𝑡, 𝜒 𝑗 ) |

)
𝑑𝑡
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with 𝜒1, 𝜒2 distinct primitive Dirichlet characters modulo 𝑞. Then we can
show that 𝜑𝜒1,𝜒2 ≠ 𝜑𝜒1 · 𝜑𝜒2 . Hence, 𝐿 (𝜎 + 𝑖𝑡, 𝜒1) and 𝐿 (𝜎 + 𝑖𝑡, 𝜒2) are not
independent as random variables, and particularly the equation

lim
𝑇→+∞

1
𝑇

meas
2⋂
𝑗=1

{
𝑡 ∈ [𝑇, 2𝑇] : log |𝐿 (𝜎 + 𝑖𝑡, 𝜒 𝑗 ) | > 𝑉 𝑗

}
= lim
𝑇→+∞

{ (
1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : log |𝐿 (𝜎 + 𝑖𝑡, 𝜒1) | > 𝑉1

})
×

(
1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : log |𝐿 (𝜎 + 𝑖𝑡, 𝜒2) | > 𝑉2

}) }
does not hold for some 𝑉1, 𝑉2 ∈ R. From this fact, it is a natural question
to ask how dependent are 𝐿-functions in the strip 1

2 < 𝜎 < 1. We give an
answer to this question by extending the results of Hattori-Matsumoto and
Lamzouri to joint value distribution of 𝜁 (𝜎 + 𝑖𝑡) and 𝐿 (𝜎 + 𝑖𝑡, 𝜒) with 𝜒 a
quadratic character.

Theorem 1.10 (Special case of Theorem 7.1). Let 1
2 < 𝜎 < 1 be fixed, and let 𝜒

be a quadratic character. There exists a positive constant 𝑎 = 𝑎(𝜎, 𝜒) such that for
any large 𝑇 , 𝑉 with 𝑉 ≤ 𝑎 (log𝑇)𝜎

log log𝑇 , we have

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : log |𝜁 (𝜎 + 𝑖𝑡) | > 𝑉 and log |𝐿 (𝜎 + 𝑖𝑡, 𝜒) | > 𝑉

}
= exp

(
−2

𝜎
1−𝜎 𝐴(𝜎)𝑉 1

1−𝜎 (log𝑉) 𝜎
1−𝜎 (1 + 𝑜(1))

)
(1.27)

as𝑉 → +∞, where 𝐴(𝜎) is the number defined by (1.8). The above implicit constant
may depend on 𝜎 and 𝜒.

For any primitive Dirichlet character 𝜒, define the distribution functions

Φ𝑇 (𝑥, 𝑦; 𝜒) :=
1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : log |𝜁 (𝜎 + 𝑖𝑡) | > 𝑥 and log |𝐿 (𝜎 + 𝑖𝑡, 𝜒) | > 𝑦

}
,

Ψ𝑇 (𝑥) := 1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : log |𝜁 (𝜎 + 𝑖𝑡) | > 𝑥

}
,

Ψ𝑇 (𝑥; 𝜒) := 1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : log |𝐿 (𝜎 + 𝑖𝑡, 𝜒) | > 𝑥

}
Then, using the method in Chapter 3, one can show that, for any 𝑉 ≤
𝑐
(log𝑇)1−𝜎
log log𝑇 with 𝑐 = 𝑐(𝜒) a small positive constant,

Ψ𝑇 (𝑉 ; 𝜒) = exp
(
−𝐴(𝜎)𝑉 1

1−𝜎 (log𝑉) 𝜎
1−𝜎 (1 + 𝑜(1))

)
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as𝑉 → +∞. From this limit formula and (1.17), if the functions log |𝜁 (𝜎 + 𝑖𝑡) |
and log |𝐿 (𝜎 + 𝑖𝑡, 𝜒) | are independent as random variables, the right hand
side of (1.27) must become

exp
(
−2𝐴(𝜎)𝑉 1

1−𝜎 (log𝑉) 𝜎
1−𝜎 (1 + 𝑜(1))

)
,

but it does not hold for any large 𝑉 when 1
2 < 𝜎 < 1. Moreover, we can

clearly understand the difference between Φ𝑇 (𝑉,𝑉 ; 𝜒) and Ψ𝑇 (𝑉) ×Ψ𝑇 (𝑉 ; 𝜒)
in the sense

Ψ𝑇 (𝑉) ×Ψ𝑇 (𝑉 ; 𝜒)
Φ𝑇 (𝑉,𝑉 ; 𝜒) = exp

(
2
(
2

2𝜎−1
1−𝜎 − 1

)
𝐴(𝜎)𝑉 1

1−𝜎 (log𝑉) 𝜎
1−𝜎 (1 + 𝑜(1))

)
when 𝜒 is a quadratic character. Hence, when 1

2 < 𝜎 < 1, the functions
log |𝜁 (𝜎 + 𝑖𝑡) | and log |𝐿 (𝜎 + 𝑖𝑡, 𝜒) | are dependent as random variables. It
would be interesting to make an arithmetic meaning for this fact. Also, this
result seems unexpected, in view of the previous work of the joint univer-
sality theorem due to Lee, Nakamura, and Pańkowski [69]. This fact would
suggest that the universality cannot give us information of independence
for random variables. From this viewpoint too, the dependence would be
interesting.
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Chapter 2 Approximate formula for log 𝜁 (𝑠),
𝜂𝑚 (𝑠), 𝜂̃𝑚 (𝑠) and its applications

In this chapter, we prove an approximate formula for the Riemann zeta-
function. The formula plays an important role throughout this thesis. The
contents in this chapter are based on the paper [50].

2.1 Approximate formula for log 𝜁 (𝑠), 𝜂𝑚 (𝑠), and 𝜂̃𝑚 (𝑠)

Throughout this chapter, we use the following notations.

Notations. Let 𝑠 = 𝜎 + 𝑖𝑡 be a complex number with 𝜎, 𝑡 real numbers, and
𝜌 = 𝛽 + 𝑖𝛾 be a nontrivial zero of 𝜁 (𝑠) with 𝛽, 𝛾 also real numbers. Let Λ(𝑛)
be the von Mangoldt function.

Let 𝐻 ≥ 1 be a real parameter. The function 𝑓 : R→ [0, +∞) is mass one
and supported on [0, 1], and further 𝑓 is a 𝐶1( [0, 1])-function, or for some
𝑑 ≥ 2 𝑓 belongs to 𝐶𝑑−2(R) and is a 𝐶𝑑 ([0, 1])-function. For such 𝑓 ’s, we
define the number 𝐷 ( 𝑓 ), and functions 𝑢 𝑓 ,𝐻 , 𝑣 𝑓 ,𝐻 by

𝐷 ( 𝑓 ) = max{𝑑 ∈ Z≥1 ∪ {+∞} | 𝑓 is a 𝐶𝑑 ( [0, 1])-function},

𝑢 𝑓 ,𝐻 (𝑥) = 𝐻 𝑓 (𝐻 log(𝑥/𝑒))/𝑥, and

𝑣 𝑓 ,𝐻 (𝑦) =
∫ ∞

𝑦
𝑢 𝑓 ,𝐻 (𝑥)𝑑𝑥,

respectively. Further, for each integer 𝑚 ≥ 0, the function𝑈𝑚 is defined by

𝑈𝑚 (𝑧) =
1
𝑚!

∫ ∞

0

𝑢 𝑓 ,𝐻 (𝑥)
(log 𝑥)𝑚 𝐸

∗
𝑚+1(𝑧 log 𝑥)𝑑𝑥

for Im(𝑧) ≠ 0. Here, 𝐸∗
𝑚+1(𝑧) = 𝐸

∗
𝑚+1(𝑥 + 𝑖𝑦) is the function of a little modified

𝑚-th exponential integral defined by

𝐸∗
𝑚+1(𝑧) :=

∫ +∞+𝑖𝑦

𝑥+𝑖𝑦
(𝑤 − (𝑥 + 𝑖𝑦))𝑚 𝑒

−𝑤

𝑤
𝑑𝑤 =

∫ ∞

𝑧
(𝑤 − 𝑧)𝑚 𝑒

−𝑤

𝑤
𝑑𝑤.

When Im(𝑧) = 0, then𝑈𝑚 (𝑥) = lim𝜀↑0𝑈𝑚 (𝑥 + 𝑖𝜀).
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Let 𝑋 ≥ 3 be a real parameter. The function 𝑌𝑚 (𝑠, 𝑋) is defined by

𝑌𝑚 (𝑠, 𝑋) =



∑
|𝑠−𝜌 |≤1/log 𝑋

log((𝑠 − 𝜌) log 𝑋) 𝑚 = 0,

2𝜋
𝑚−1∑
𝑘=0

𝑖𝑚−1−𝑘

(𝑚 − 𝑘)!𝑘!
∑

0<𝛾<𝑡
𝛽>𝜎

(𝛽 − 𝜎)𝑚−𝑘 (𝑡 − 𝛾)𝑘 𝑚 ≥ 1.
(2.1)

In this paper, we take the branch of log 𝑧 by −𝜋 ≤ arg(𝑧) < 𝜋. Here, we may
represent 𝑌𝑚 (𝑠, 𝑋) by 𝑌𝑚 (𝑠) in the case 𝑚 ≥ 1 since 𝑌𝑚 (𝑠, 𝑋) does not depend
on 𝑋 in this case.

Remark 1. From the above definitions, the function 𝑢 𝑓 ,𝐻 is mass one and
supported on [𝑒, 𝑒1+1/𝐻], and further 𝑢 𝑓 ,𝐻 is a 𝐶1( [𝑒, 𝑒1+1/𝐻])-function, or
𝑢 𝑓 ,𝐻 belongs to 𝐶𝑑−2(R>0) and is a 𝐶𝑑 ( [𝑒, 𝑒1+1/𝐻])-function for some integer
𝑑 ≥ 2. We also note that 𝑣 𝑓 ,𝐻 is a nonnegative continuous function on R>0
and satisfies 𝑣 𝑓 ,𝐻 (𝑦) = 0 for 𝑦 ≥ 𝑒1+1/𝐻 and 𝑣 𝑓 ,𝐻 (𝑦) = 1 for 0 < 𝑦 ≤ 𝑒.

Remark 2. Note that some remarks for 𝑌𝑚 (𝑠, 𝑋). When 𝑚 = 0, the real part of
it is always non-positive. When 𝑚 = 1, the function 𝑌1(𝑠) has the following
simple formula

𝑌1(𝑠) = 2𝜋
∑

0<𝛾<𝑡
𝛽>𝜎

(𝛽 − 𝜎),

and its value is always nonnegative and always zero for 𝜎 ≥ 1/2 under
the Riemann Hypothesis. Next, we suppose 𝑚 ≥ 2. Then if the Riemann
Hypothesis is true, 𝑌𝑚 (𝑠) is always zero for 𝜎 ≥ 1/2. On the other hand, if
the Riemann Hypothesis is false, the value of 𝑌𝑚 (𝑠) becomes big in 𝜎 close
to 1/2. Actually, there exists a nontrivial zero 𝜌0 = 𝛽0 + 𝑖𝛾0 with 𝛽0 > 1/2,
then we have

Re(𝑌𝑚 (𝑠)) ≥ (𝛽0 − 𝜎)𝑡𝑚−1 +𝑂
(
𝑡𝑚−3 log 𝑡

)
,

Im(𝑌𝑚 (𝑠)) ≥ (𝛽0 − 𝜎)𝑡𝑚−2 +𝑂
(
𝑡𝑚−4 log 𝑡

) (2.2)

for a fixed 𝜎 with 1/2 ≤ 𝜎 < 𝛽0.

Now, we state the main theorem in this chapter.

Theorem 2.1. Let 𝑚, 𝑑 be nonnegative integers with 𝑑 ≤ 𝐷 ( 𝑓 ), and 𝐻, 𝑋 real
parameters with 𝐻 ≥ 1, 𝑋 ≥ 3. Then, for any 𝜎 ∈ R, 𝑡 ≥ 1, we have

𝜂𝑚 (𝑠) = 𝑖𝑚
∑

2≤𝑛≤𝑋1+1/𝐻

Λ(𝑛)𝑣 𝑓 ,𝐻
(
𝑒log 𝑛/log 𝑋

)
𝑛𝑠 (log 𝑛)𝑚+1 + 𝑌𝑚 (𝑠, 𝑋) + 𝑅𝑚 (𝑠, 𝑋, 𝐻).
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Here the error term 𝑅𝑚 (𝑠, 𝑋, 𝐻) satisfies the estimate

𝑅𝑚 (𝑠, 𝑋, 𝐻) ≪ 𝑓 ,𝑑 (2.3)

𝑋2(1−𝜎) + 𝑋1−𝜎

𝑡 (log 𝑋)𝑚+1 min
0≤𝑙≤𝑑

{(
𝐻

𝑡 log 𝑋

) 𝑙}
+ 1
(log 𝑋)𝑚

∑
|𝑡−𝛾 |≤ 1

log 𝑋

(𝑋2(𝛽−𝜎) + 𝑋 𝛽−𝜎)

+ 1
(log 𝑋)𝑚+1

∑
|𝑡−𝛾 |> 1

log 𝑋

𝑋2(𝛽−𝜎) + 𝑋 𝛽−𝜎
|𝑡 − 𝛾 | min

0≤𝑙≤𝑑

{(
𝐻

|𝑡 − 𝛾 | log 𝑋

) 𝑙}
.

Moreover, if the Riemann Hypothesis is true, for 1 ≤ 𝐻 ≤ 𝑡/2, 3 ≤ 𝑋 ≤ 𝑡, we have

𝑅𝑚 (𝑠, 𝑋, 𝐻) ≪ 𝑓 𝑋
1/2−𝜎 log 𝑡

(log 𝑋)𝑚

(
1

log log 𝑡 +
log(𝐻 + 2)

log 𝑋

)
. (2.4)

The important point of this theorem is that, by 𝑌𝑚 (𝑠, 𝑋), we can express
explicitly the contribution of certain zeros which have big influence to 𝜂𝑚 (𝑠).
Actually, from this theorem, we can take out the information of singularities
coming from such zeros. Thanks to it, we can prove some results for the
Riemann zeta-function. For example, the results are related to the following:

1. An equivalence between the order of magnitude of 𝜂𝑚 (𝑠) and the zero-
free region of 𝜁 (𝑠),

2. A relation between the prime numbers and the distribution of zeros of
𝜁 (𝑠) under the Riemann Hypothesis,

3. The value distribution of log |𝜁 (1/2 + 𝑖𝑡) |,

4. A mean value theorem involving 𝜂𝑚 (𝑠),

5. The value distribution of 𝜂𝑚 (1/2 + 𝑖𝑡).
We will state the details and proofs of these results in the following five
sections.

Note some remarks on this theorem. First, when 𝑚 = 0, and 𝐻 is large,
for example 𝐻 = 𝑋 , this formula becomes an assertion close to the hybrid
formula of Gonek, Hughes, and Keating [33, Theorem 1]. In fact, this the-
orem is proved by calculating the contribution of nontrivial zeros which is
based on the following proposition.
Proposition 2.1. Let 𝑚 be a nonnegative integer. Then, for 𝜎 ∈ R, 𝑡 > 0 we have

𝜂𝑚 (𝑠) =𝑖𝑚
∑

2≤𝑛≤𝑋1+1/𝐻

Λ(𝑛)𝑣 𝑓 ,𝐻 (𝑒log 𝑛/log 𝑋)
𝑛𝑠 (log 𝑛)𝑚+1 + 𝑖𝑚

(log 𝑋)𝑚𝑈𝑚 ((𝑠 − 1) log 𝑋)

− 𝑖𝑚

(log 𝑋)𝑚
∑
𝜌

𝑈𝑚 ((𝑠 − 𝜌) log 𝑋) − 𝑖𝑚

(log 𝑋)𝑚
∞∑
𝑛=1

𝑈𝑚 ((𝑠 + 2𝑛) log 𝑋)

+ 2𝜋
𝑚−1∑
𝑘=0

𝑖𝑚−1−𝑘

(𝑚 − 𝑘)!𝑘!
∑

0<𝛾<𝑡
𝛽>𝜎

(𝛽 − 𝜎)𝑚−𝑘 (𝑡 − 𝛾)𝑘 .
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Here if 𝑚 = 0, then we regard that the third term on the right hand side is zero.

This proposition in the case of 𝐻 = 𝑋 , 𝑚 = 0 becomes the almost same
as their hybrid formula. On the other hand, as we can see from Theorem
2.1, it becomes difficult to obtain a good estimate for the contribution of
nontrivial zeros and mean value estimates when 𝐻 is large. From this
reason, we introduce the new parameter 𝐻 which can control the length
of “smoothing functions." Although most of discussions and results in the
following are obtained by this theorem in the case 𝐻 is small, the theorem
in the case 𝐻 is large is also useful when we discuss a Dirichlet polynomial
without smoothing functions like

∑
𝑝≤𝑋 𝑝

−1/2−𝑖𝑡 . Actually, we will mention
an estimate of this Dirichlet polynomial under the Riemann Hypothesis in
inequality (2.25) below.

2.1.1 Preliminary lemmas
Lemma 2.1. Let 𝑚 be a positive integer, and let 𝑡 > 0. Then, for any 𝜎 ≥ 1/2, we
have

𝜂𝑚 (𝜎 + 𝑖𝑡) = 𝑖𝑚𝜂̃𝑚 (𝜎 + 𝑖𝑡) + 2𝜋
𝑚−1∑
𝑘=0

𝑖𝑚−1−𝑘

(𝑚 − 𝑘)!𝑘!
∑

0<𝛾<𝑡
𝛽>𝜎

(𝛽 − 𝜎)𝑚−𝑘 (𝑡 − 𝛾)𝑘 .

Proof. In view of our choice of the branch of log 𝜁 (𝑠), it suffices to show this
lemma in the case 𝑡 is not the ordinate of zeros of 𝜁 (𝑠). We show this lemma
by induction on 𝑚. When 𝑚 = 0, by using Littlewood’s lemma (cf. (9.9.1) in
[114]), it holds that

𝑖

∫ 𝑡

0
log 𝜁 (𝜎 + 𝑖𝑡′)𝑑𝑡′ −

∫ ∞

𝜎
log 𝜁 (𝛼)𝑑𝛼

= −
∫ ∞

𝜎
log 𝜁 (𝛼 + 𝑖𝑡)𝑑𝛼 + 2𝜋𝑖

∫ ∞

𝜎
𝑁 (𝛼, 𝑡)𝑑𝛼. (2.5)

Here 𝑁 (𝜎, 𝑡) indicates the number of zeros 𝜌 = 𝛽 + 𝑖𝛾 of the Riemann zeta-
function with 𝛽 ≥ 𝜎, 0 < 𝛾 < 𝑡 counted with multiplicity. We see that∫ ∞

𝜎
𝑁 (𝛼, 𝑡)𝑑𝛼 =

∫ ∞

𝜎

∑
0<𝛾<𝑡
𝛽>𝛼

1𝑑𝛼 =
∑

0<𝛾<𝑡
𝛽>𝜎

∫ 𝛽

𝜎
𝑑𝛼 =

∑
0<𝛾<𝑡
𝛽>𝜎

(𝛽 − 𝜎).

Therefore, by this formula and the definition of 𝜂𝑚 (𝑠), we have

𝜂1(𝜎 + 𝑖𝑡) = 𝑖
∫ ∞

𝜎
log 𝜁 (𝛼 + 𝑖𝑡)𝑑𝛼 + 2𝜋

∑
0<𝛾<𝑡
𝛽>𝜎

(𝛽 − 𝜎),

which is the assertion of this lemma in the case 𝑚 = 1.
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Next we show this lemma in the case 𝑚 ≥ 2. Assume that the assertion
of this lemma is true at 𝑚 − 1. Then, we find that∫ 𝑡

0
𝜂𝑚−1(𝜎 + 𝑖𝑡′)𝑑𝑡′

=
∫ 𝑡

0

𝑖𝑚−1

(𝑚 − 2)!

∫ ∞

𝜎
(𝛼 − 𝜎)𝑚−2 log 𝜁 (𝛼 + 𝑖𝑡′)𝑑𝛼𝑑𝑡′

+ 2𝜋
𝑚−2∑
𝑘=0

𝑖𝑚−2−𝑘

(𝑚 − 1 − 𝑘)!𝑘!

∫ 𝑡

0

∑
0<𝛾<𝑡 ′
𝛽>𝜎

(𝛽 − 𝜎)𝑚−1−𝑘 (𝑡′ − 𝛾)𝑘𝑑𝑡′

=
𝑖𝑚−1

(𝑚 − 2)!

∫ ∞

𝜎
(𝛼 − 𝜎)𝑚−2

∫ 𝑡

0
log 𝜁 (𝛼 + 𝑖𝑡′)𝑑𝑡′𝑑𝛼

+ 2𝜋
𝑚−1∑
𝑘=1

𝑖𝑚−1−𝑘

(𝑚 − 𝑘)!𝑘!
∑

0<𝛾<𝑡
𝛽>𝜎

(𝛽 − 𝜎)𝑚−𝑘 (𝑡 − 𝛾)𝑘 . (2.6)

Note that the exchange of integration of the first term in the second equation
is guaranteed by the absolute convergence of the integral. Applying formula
(2.5), we find that

𝑖𝑚−1

(𝑚 − 2)!

∫ ∞

𝜎
(𝛼 − 𝜎)𝑚−2

∫ 𝑡

0
log 𝜁 (𝛼 + 𝑖𝑡′)𝑑𝑡′𝑑𝛼

=
𝑖𝑚

(𝑚 − 1)!

∫ ∞

𝜎
(𝛼 − 𝜎)𝑚−1 log 𝜁 (𝛼 + 𝑖𝑡)𝑑𝛼 − 𝑐𝑚 (𝜎)

+ 2𝜋 𝑖𝑚−1

(𝑚 − 1)!

∫ ∞

𝜎
(𝛼 − 𝜎)𝑚−1𝑁 (𝛼, 𝑡)𝑑𝛼,

and that∫ ∞

𝜎
(𝛼 − 𝜎)𝑚−1𝑁 (𝛼, 𝑡)𝑑𝛼 =

∑
0<𝛾<𝑡
𝛽>𝜎

∫ 𝛽

𝜎
(𝛼 − 𝜎)𝑚−1𝑑𝛼 =

1
𝑚

∑
0<𝛾<𝑡
𝛽>𝜎

(𝛽 − 𝜎)𝑚 .

Hence, by these formulas, (2.6), and the definition of 𝜂𝑚 (𝑠), we obtain

𝜂𝑚 (𝜎 + 𝑖𝑡) = 𝑖𝑚

(𝑚 − 1)!

∫ ∞

𝜎
(𝛼 − 𝜎)𝑚−1 log 𝜁 (𝛼 + 𝑖𝑡)𝑑𝛼

+ 2𝜋
𝑚−1∑
𝑘=0

𝑖𝑚−1−𝑘

(𝑚 − 𝑘)!𝑘!
∑

0<𝛾<𝑡
𝛽>𝜎

(𝛽 − 𝜎)𝑚−𝑘 (𝑡 − 𝛾)𝑘 ,

which completes the proof of this lemma. □

Lemma 2.2. Let 𝑚, 𝑑 be a nonnegative integers with 𝑑 ≤ 𝐷 = 𝐷 ( 𝑓 ). Let 𝑧 = 𝑎 + 𝑖𝑏
be a complex number with 𝑏 ≠ 0. Set 𝐻 ≥ 1 be a real parameter. Then we have

𝑈𝑚 (𝑧) ≪ 𝑓 ,𝑑
𝑒−(1+1/𝐻)𝑎 + 𝑒−𝑎

|𝑏 | min
0≤𝑙≤𝑑

{(
𝐻

|𝑏 |

) 𝑙}
.
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Proof. By the definition of𝑈𝑚 (𝑧), we have

𝑈𝑚 (𝑧) =
1
𝑚!

∫ ∞

𝑎

(𝛼 − 𝑎)𝑚
𝛼 + 𝑖𝑏

(∫ ∞

0
𝑢 𝑓 ,𝐻 (𝑥)𝑒−(𝛼+𝑖𝑏) log 𝑥𝑑𝑥

)
𝑑𝛼. (2.7)

Since 𝑢 𝑓 ,𝐻 belongs to 𝐶𝐷−2( [0,∞)) and is a 𝐶𝐷 ([𝑒, 𝑒1+1/𝐻])-function and
supported on [𝑒, 𝑒1+1/𝐻], for 0 ≤ 𝑑 ≤ 𝐷 − 1, we see that∫ ∞

0
𝑢 𝑓 ,𝐻 (𝑥)𝑒−(𝛼+𝑖𝑏) log 𝑥𝑑𝑥 =

∫ 𝑒1+1/𝐻

𝑒

𝑢(𝑑)𝑓 ,𝐻 (𝑥)𝑥
𝑑−(𝛼+𝑖𝑏)∏𝑑

𝑙=1{(𝛼 + 𝑖𝑏) − 𝑙}
𝑑𝑥. (2.8)

Here the estimate𝑢(𝑑)𝑓 ,𝐻 (𝑥) ≪ 𝑓 ,𝑑 𝐻
𝑑+1 holds on 𝑥 ∈ [𝑒, 𝑒1+1/𝐻] for 0 ≤ 𝑑 ≤ 𝐷.

By this estimate and (2.8), we have∫ ∞

0
𝑢 𝑓 ,𝐻 (𝑥)𝑒−(𝛼+𝑖𝑏) log 𝑥𝑑𝑥 ≪ 𝑓 ,𝑑 (𝑒−(1+ 1

𝐻 )𝛼 + 𝑒−𝛼) min
0≤𝑙≤𝑑

{(
𝐻

|𝑏 |

) 𝑙}
for 0 ≤ 𝑑 ≤ 𝐷 − 1. Moreover, by (2.8), we find that∫ ∞

0
𝑢 𝑓 ,𝐻 (𝑥)𝑒−(𝛼+𝑖𝑏) log 𝑥𝑑𝑥

=


𝑢(𝐷−1)
𝑓 ,𝐻 (𝑥)𝑥𝐷−(𝛼+𝑖𝑏)∏𝐷
𝑙=1{(𝛼 + 𝑖𝑏) − 𝑙}


𝑥=𝑒1+1/𝐻

𝑥=𝑒

+
∫ 𝑒1+1/𝐻

𝑒

𝑢(𝐷)𝑓 ,𝐻 (𝑥)𝑥
𝐷−(𝛼+𝑖𝑏)∏𝐷

𝑙=1{(𝛼 + 𝑖𝑏) − 𝑙}
𝑑𝑥

≪ 𝑓 ,𝐷 (𝑒−(1+ 1
𝐻 )𝛼 + 𝑒−𝛼)

(
𝐻

|𝑏 |

)𝐷
.

By these estimates and (2.7), for 0 ≤ 𝑑 ≤ 𝐷, we have

𝑈𝑚 (𝑧) ≪ 𝑓 ,𝑑
1

|𝑏 |𝑚! min
0≤𝑙≤𝑑

{(
𝐻

|𝑏 |

) 𝑙} ∫ ∞

𝑎
(𝛼 − 𝑎)𝑚 (𝑒−𝛼(1+1/𝐻) + 𝑒−𝛼)𝑑𝛼

≪ 𝑒−(1+1/𝐻)𝑎 + 𝑒−𝑎
|𝑏 | min

0≤𝑙≤𝑑

{(
𝐻

|𝑏 |

) 𝑙}
,

which completes the proof of this lemma. □

Lemma 2.3. Let 𝑚 be a nonnegative integer, and let 𝐻 ≥ 1. Then, for any complex
number 𝑧 = 𝑎 + 𝑖𝑏 with 𝑎 ∈ R and |𝑏 | ≤ 1, we have

𝑈𝑚 (𝑧) =


− 1
𝑚! (−𝑧)𝑚 log 𝑧 +𝑂 (1) if |𝑧 | ≤ 1,

𝑂
(
𝑒−(1+1/𝐻)𝑎 + 𝑒−𝑎

)
if |𝑧 | > 1.

(2.9)

In particular, for any positive integer 𝑚, we have

𝑈𝑚 (𝑧) ≪ 𝑒−(1+1/𝐻)𝑎 + 𝑒−𝑎 (2.10)

for any complex number 𝑧 = 𝑎 + 𝑖𝑏 with |𝑏 | ≤ 1. Here, the above implicit constants
are absolute.
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Proof. In view of our definition of 𝑈𝑚 (𝑧) and log 𝑧, it suffices to show this
lemma in the case that 𝑏 is not equal to zero. First, we consider the case
𝑎 > 1. Then we see that

𝑈𝑚 (𝑧) =
1
𝑚!

∫ ∞

0
𝑢 𝑓 ,𝐻 (𝑥)

∫ ∞

𝑎
(𝛼 − 𝑎)𝑚 𝑒

−(𝛼+𝑖𝑏) log 𝑥

𝛼 + 𝑖𝑏 𝑑𝛼𝑑𝑥

≪ 1
𝑚!

∫ 𝑒1+1/𝐻

𝑒
𝑢 𝑓 ,𝐻 (𝑥)

∫ ∞

𝑎
(𝛼 − 𝑎)𝑚−1𝑒−𝛼𝑑𝑥 ≪ 𝑒−𝑎 .

Next, we consider the case |𝑎 | ≤ 1. Then we can write

𝑈𝑚 (𝑧) =
1
𝑚!

∫ 𝑒1+1/𝐻

𝑒
𝑢 𝑓 ,𝐻 (𝑥)

∫ 1

𝑎
(𝛼 − 𝑎)𝑚 𝑒

−(𝛼+𝑖𝑏) log 𝑥

𝛼 + 𝑖𝑏 𝑑𝛼𝑑𝑥

+ 1
𝑚!

∫ 𝑒1+1/𝐻

𝑒
𝑢 𝑓 ,𝐻 (𝑥)

∫ ∞

1
(𝛼 − 𝑎)𝑚 𝑒

−(𝛼+𝑖𝑏) log 𝑥

𝛼 + 𝑖𝑏 𝑑𝛼𝑑𝑥.

We see that the absolute value of the latter term on the right hand side is

≤ 1
𝑚!

∫ 𝑒1+1/𝐻

𝑒
𝑢 𝑓 ,𝐻 (𝑥)

∫ ∞

𝑎
(𝛼 − 𝑎)𝑚𝑒−𝛼 log 𝑥𝑑𝛼𝑑𝑥 ≪ 1.

Next, we consider the former term on the right hand side. By the Taylor
expansion, it holds that∫ 1

𝑎
(𝛼 − 𝑎)𝑚 𝑒

−(𝛼+𝑖𝑡) log 𝑥

𝛼 + 𝑖𝑏 𝑑𝛼

=
∫ 1

𝑎

(𝛼 − 𝑎)𝑚
𝛼 + 𝑖𝑏 𝑑𝛼 +

∞∑
𝑛=1

(− log 𝑥)𝑛
𝑛!

∫ 1

𝑎
(𝛼 − 𝑎)𝑚 (𝛼 + 𝑖𝑏)𝑛−1𝑑𝛼.

When 𝑛 ≥ 1, we find that���� ∫ 1

𝑎
(𝛼 − 𝑎)𝑚 (𝛼 + 𝑖𝑏)𝑛−1𝑑𝛼

���� ≤ 2𝑚+𝑛,

and so
∞∑
𝑛=1

(− log 𝑥)𝑛
𝑛!

∫ 1

𝑎
(𝛼 − 𝑎)𝑚 (𝛼 + 𝑖𝑏)𝑛−1𝑑𝛼 ≪ 2𝑚 .

Using the binomial expansion, we also find that∫ 1

𝑎

(𝛼 − 𝑎)𝑚
𝛼 + 𝑖𝑏 𝑑𝛼 =

𝑚∑
𝑘=0

(
𝑚
𝑘

)
(−𝑎 − 𝑖𝑏)𝑚−𝑘

∫ 1

𝑎
(𝛼 + 𝑖𝑏)𝑘−1𝑑𝛼

= (−𝑧)𝑚
(
log(1 + 𝑖𝑏) − log 𝑧

)
+

𝑚∑
𝑘=1

(
𝑚
𝑘

)
(−𝑧)𝑚−𝑘

(
(1 + 𝑖𝑏)𝑘−1 − 𝑧𝑘−1

)
= −(−𝑧)𝑚 log(𝑧) +𝑂 (4𝑚) .
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Therefore, by the above calculations, when |𝑎 | ≤ 1, we obtain

𝑈𝑚 (𝑧) = − 1
𝑚! (−𝑧)

𝑚 log 𝑧 +𝑂 (1) .

Finally, we consider the case 𝑎 < −1. We can write

𝑈0(𝑧) =
∫ 𝑒1+1/𝐻

𝑒
𝑢 𝑓 ,𝐻 (𝑥)

∫ −1

𝑎

𝑒−(𝛼+𝑖𝑏) log 𝑥

𝛼 + 𝑖𝑏 𝑑𝛼 +𝑈0(−1 + 𝑖𝑏).

Using the result of the previous case, we have𝑈0(−1+𝑖𝑏) = −(−1+𝑖𝑏) log(−1+
𝑖𝑏) +𝑂 (1) = 𝑂 (1). Also, we can easily see that the first term is ≪ 𝑒−(1+1/𝐻)𝑎 +
𝑒−𝑎. Hence, we have

𝑈0(𝑧) ≪ 𝑒−(1+1/𝐻)𝑎 + 𝑒−𝑎

for 𝑎 < −1. When 𝑚 ∈ Z≥1, it holds that

𝑈𝑚 (𝑧) =
1
𝑚!

∫ 𝑒1+1/𝐻

𝑒
𝑢 𝑓 ,𝐻 (𝑥)

∫ ∞

𝑎
(𝛼 − 𝑎)𝑚 𝑒

−(𝛼+𝑖𝑏) log 𝑥

𝛼 + 𝑖𝑏 𝑑𝛼

=
1

(𝑚 − 1)!

∫ ∞

𝑎
(𝛼 − 𝑎)𝑚−1𝑈0(𝛼 + 𝑖𝑏)𝑑𝛼

by integration by parts and Fubini’s theorem. Applying the estimate of 𝑈0,
we find that

1
(𝑚 − 1)!

∫ ∞

1
(𝛼 − 𝑎)𝑚−1𝑈0(𝛼 + 𝑖𝑏)𝑑𝛼 ≪ 1,

1
(𝑚 − 1)!

∫ −1

𝑎
(𝛼 − 𝑎)𝑚−1𝑈0(𝛼 + 𝑖𝑏)𝑑𝛼 ≪ 𝑒−(1+1/𝐻)𝑎 + 𝑒−𝑎,

and that
1

(𝑚 − 1)!

∫ 1

−1
(𝛼 − 𝑎)𝑚−1𝑈0(𝛼 + 𝑖𝑏)𝑑𝛼

= − 1
(𝑚 − 1)!

∫ 1

−1
(𝛼 − 𝑎)𝑚−1 (

log(𝛼 + 𝑖𝑏) +𝑂 (1)
)
𝑑𝛼 ≪ (|𝑎 | + 1)𝑚−1

(𝑚 − 1)! ≤ 𝑒−𝑎+1.

Therefore, we have

𝑈𝑚 (𝑧) ≪ 𝑒−(1+1/𝐻)𝑎 + 𝑒−𝑎,

and this implicit constant is absolute.
From the above calculations, we obtain

𝑈𝑚 (𝑧) =


−(−𝑧)𝑚 log 𝑧 +𝑂 (1) if |𝑎 | ≤ 1,

𝑂
(
𝑒−(1+1/𝐻)𝑎 + 𝑒−𝑎

)
if |𝑎 | > 1.

Now, from the condition |𝑏 | ≤ 1, the formula where |𝑎 | is replaced by |𝑧 | also
holds. Hence, we complete the proof of the estimate (2.9).

Moreover, we can obtain the estimate (2.10) from (2.9) since, for 𝑚 ∈ Z≥1,
the inequality 1

𝑚! (−𝑧)𝑚 log 𝑧 ≪ 1 holds for |𝑧 | ≤ 1. Thus, we obtain this
lemma. □
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Proof of Proposition 2.1. In view of our definition of𝑈𝑚 (𝑧) and log 𝜁 (𝑠), it suf-
fices to show this lemma in the case that 𝑡 is not equal to the ordinate of zeros
of 𝜁 (𝑠). First, we prove this proposition in the case 𝑚 = 0. The proof is the
almost same as the proof of Theorem 1 in [33] (see also the proof of Lemma
1 in [9], if necessary). Hence, we only write the rough proof in this case. Let
𝑢̃(𝑠) be the Mellin transform of 𝑢 𝑓 ,𝐻 , that is, 𝑢̃(𝑠) :=

∫ ∞
0 𝑢 𝑓 ,𝐻 (𝑥)𝑥𝑠−1𝑑𝑥. Since

the functions 𝑣 𝑓 ,𝐻 (𝑥) and 𝑢̃(𝑠 + 1)/𝑠 are Mellin transforms, we find that, for
any complex number 𝑧,

∞∑
𝑛=1

Λ(𝑛)
𝑛𝑧

𝑣 𝑓 ,𝐻

(
𝑒log 𝑛/log 𝑋

)
=

1
2𝜋𝑖

∞∑
𝑛=1

Λ(𝑛)
𝑛𝑧

∫ 𝑐+𝑖∞

𝑐−𝑖∞

𝑢̃(𝑤 + 1)
𝑤

𝑛−𝑤/log 𝑋𝑑𝑤

= − 1
2𝜋𝑖

∫ (2−Re(𝑧)) log 𝑋+𝑖∞

(2−Re(𝑧)) log 𝑋−𝑖∞

𝜁 ′

𝜁

(
𝑧 + 𝑤

log 𝑋

)
𝑢̃(𝑤 + 1)

𝑤
𝑑𝑤.

By this formula, for Im(𝑧) > 0, we have∑
𝑛≤𝑋1+1/𝐻

Λ(𝑛)
𝑛𝑧

𝑣 𝑓 ,𝐻

(
𝑒log 𝑛/log 𝑋

)
= − 𝜁

′

𝜁
(𝑧) + 1

1 − 𝑧 𝑢̃(1 + (1 − 𝑧) log 𝑋) −
∑
𝜌

1
𝜌 − 𝑧 𝑢̃(1 + (𝜌 − 𝑧) log 𝑋)−

−
∞∑
𝑛=1

1
2𝑛 − 𝑧 𝑢̃(1 + (2𝑛 − 𝑧) log 𝑋).

Integrating both sides with respect to 𝑧 from ∞+ 𝑖𝑡 to 𝜎 + 𝑖𝑡 (= 𝑠) , we obtain

log 𝜁 (𝑠) (2.11)

=
∑

2≤𝑛≤𝑋1+1/𝐻

Λ(𝑛)
𝑛𝑠 log 𝑛𝑣 𝑓 ,𝐻

(
𝑒log 𝑛/log 𝑋

)
+𝑈0((𝑠 − 1) log 𝑋) −

∑
𝜌

𝑈0((𝑠 − 𝜌) log 𝑋) −
∞∑
𝑛=1

𝑈0((𝑠 − 2𝑛) log 𝑋).

Therefore, this theorem holds in the case 𝑚 = 0.
Next we show this proposition for 𝑚 ≥ 1. By Lemma 2.1, it suffices to

show that
𝑖𝑚

(𝑚 − 1)!

∫ ∞

𝜎
(𝛼 − 𝜎)𝑚−1 log 𝜁 (𝛼 + 𝑖𝑡)𝑑𝛼 = (2.12)

𝑖𝑚
∑

2≤𝑛≤𝑋1+1/𝐻

Λ(𝑛)𝑣 𝑓 ,𝐻 (𝑒log 𝑛/log 𝑋)
𝑛𝑠 (log 𝑛)𝑚+1 + 𝑖𝑚

(log 𝑋)𝑚𝑈𝑚 ((𝑠 − 1) log 𝑋)

− 𝑖𝑚

(log 𝑋)𝑚
∑
𝜌

𝑈𝑚 ((𝑠 − 𝜌) log 𝑋) − 𝑖𝑚

(log 𝑋)𝑚
∞∑
𝑛=1

𝑈𝑚 ((𝑠 − 2𝑛) log 𝑋).

33



Here, by using formula (2.11), the left hand side on the above equation is

=𝑖𝑚
∑

2≤𝑛≤𝑋1+1/𝐻

Λ(𝑛)𝑣 𝑓 ,𝐻 (𝑒log 𝑛/log 𝑋)
𝑛𝑠 (log 𝑛)𝑚+1 (2.13)

+ 𝑖𝑚

(𝑚 − 1)!

∫ ∞

𝜎
(𝛼 − 𝜎)𝑚−1𝑈0((𝛼 + 𝑖𝑡 − 1) log 𝑋)𝑑𝛼

− 𝑖𝑚

(𝑚 − 1)!

∫ ∞

𝜎

∑
𝜌

(𝛼 − 𝜎)𝑚−1𝑈0((𝛼 + 𝑖𝑡 − 𝜌) log 𝑋)𝑑𝛼

− 𝑖𝑚

(𝑚 − 1)!

∫ ∞

𝜎

∞∑
𝑛=1

(𝛼 − 𝜎)𝑚−1𝑈0((𝛼 + 𝑖𝑡 − 2𝑛) log 𝑋)𝑑𝛼.

In the following, we will change the above sum and integral, and it is guar-
anteed by ∑

𝜌

∫ ∞

𝜎
| (𝛼 − 𝜎)𝑚−1𝑈0((𝛼 + 𝑖𝑡 − 𝜌) log 𝑋) |𝑑𝛼 < +∞.

This convergence can be obtained by Lemma 2.2. Further, simple calculations
show that, for any 𝑤 ∈ C,

𝑖𝑚

(𝑚 − 1)!

∫ ∞

𝜎
(𝛼 − 𝜎)𝑚−1𝑈0((𝛼 + 𝑖𝑡 − 𝑤) log 𝑋)𝑑𝛼 (2.14)

=
𝑖𝑚

(log 𝑋)𝑚𝑈𝑚 ((𝑠 − 𝑤) log 𝑋).

Hence, by (2.13), (2.14), we obtain formula (2.12), and this completes the
proof of this proposition. □

2.1.2 Proof of the approximate formula
Proof of Theorem 2.1. We can immediately obtain estimate (2.3) by Proposi-
tion 2.1, Lemma 2.2, and Lemma 2.3. Now we prove estimate (2.4) under the
Riemann Hypothesis. It suffices to show∑

1
log 𝑋 < |𝑡−𝛾 |≤

𝐻
log 𝑋

1
|𝑡 − 𝛾 | ≪ log 𝑡

( log 𝑋
log log 𝑡 + log𝐻

)
, (2.15)

and ∑
|𝑡−𝛾 |> 𝐻

log 𝑋

𝐻

(𝑡 − 𝛾)2 log 𝑋
≪ log 𝑡 ×

( log 𝑋
𝐻 log log 𝑡 + 1

)
(2.16)

under the Riemann Hypothesis. Assuming the Riemann Hypothesis, the
following estimate (cf. Lemma 13.19 in [87])

𝑁̃

(
𝑡,

1
log log 𝑡

)
≪

log 𝑡
log log 𝑡 (2.17)

34



holds for 𝑡 ≥ 5. By this estimate, for any 1 ≤ 𝐻 ≤ 𝑡
2 , we find that

∑
1

log 𝑋 < |𝑡−𝛾 |≤
𝐻

log 𝑋

1
|𝑡 − 𝛾 | ≤

[(𝐻−1) log log 𝑡
log 𝑋 ]∑

𝑘=0

∑
1

log 𝑋 + 𝑘
log log 𝑡 < |𝑡−𝛾 |≤

1
log 𝑋 + 𝑘+1

log log 𝑡

1
|𝑡 − 𝛾 |

≪ log 𝑡
[(𝐻−1) log log 𝑡

log 𝑋 ]∑
𝑘=0

1
log log 𝑡

log 𝑋 + 𝑘
≤ log 𝑡 ©­«

log 𝑋
log log 𝑡 +

∫ (𝐻−1) log log 𝑡
log 𝑋

0

𝑑𝑢
log log 𝑡

log 𝑋 + 𝑢
ª®¬

= log 𝑡
( log 𝑋
log log 𝑡 + log𝐻

)
,

and that∑
|𝑡−𝛾 |> 𝐻

log 𝑋

𝐻

(𝑡 − 𝛾)2 log 𝑋
=

∑
𝐻

log 𝑋 < |𝑡−𝛾 |≤
𝑡
2

𝐻

(𝑡 − 𝛾)2 log 𝑋
+𝑂

(
𝐻

𝑡 log 𝑋

)

≤
[ 𝑡 log log 𝑡

2 ]∑
𝑘=0

∑
𝐻

log 𝑋 + 𝑘
log log 𝑡 < |𝑡−𝛾 |≤

𝐻
log 𝑋 + 𝑘+1

log log 𝑡

𝐻

(𝑡 − 𝛾)2 log 𝑋
+𝑂

(
𝐻

𝑡 log 𝑋

)

≪ 𝐻 log log 𝑡
log 𝑡
log 𝑋

[ 𝑡 log log 𝑡
2 ]∑
𝑘=0

1(
𝑘 + 𝐻 log log 𝑡

log 𝑋

)2 + 𝐻

𝑡 log 𝑋

≤ 𝐻 log log 𝑡
log 𝑡
log 𝑋

©­­«
( log 𝑋
𝐻 log log 𝑡

)2
+

∫ ∞

0

𝑑𝑢(
𝑢 + 𝐻 log log 𝑡

log 𝑋

)2

ª®®¬ +
𝐻

𝑡 log 𝑋

≪ log 𝑡
( log 𝑋
𝐻 log log 𝑡 + 1

)
.

Hence, we obtain estimates (2.15), (2.16). □

By Theorem 2.1 and Lemma 2.1, we also obtain an approximate formula
for 𝜂̃𝑚 (𝑠).

Theorem 2.2. Let 𝑚 ∈ Z≥1, and let 𝑑 be a nonnegative integer with 𝑑 ≤ 𝐷 ( 𝑓 ). Let
𝐻, 𝑋 real parameters with 𝐻 ≥ 1, 𝑋 ≥ 3. Then, for any 𝜎 ∈ R, 𝑡 ≥ 1, we have

𝜂̃𝑚 (𝑠) =
∑

2≤𝑛≤𝑋1+1/𝐻

Λ(𝑛)𝑣 𝑓 ,𝐻
(
𝑒log 𝑛/log 𝑋

)
𝑛𝑠 (log 𝑛)𝑚+1 + 𝐸𝑚 (𝑠, 𝑋, 𝐻).

Here the error term 𝐸𝑚 (𝑠, 𝑋, 𝐻) satisfies estimates (2.3) and (2.4) under the same
conditions as in Theorem 2.1.
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2.2 An equivalence with the zero-free region of 𝜁 (𝑠)

As the first application of the approximate formula, we state a conse-
quence which gives an equivalent condition to the zero-free region of 𝜁 (𝑠).
Corollary 2.1. Let 𝜎 ≥ 1/2. Then the following three statements (A), (B), (C) are
equivalent.
(A). The Riemann zeta-function does not have zeros whose real part are greater

than 𝜎.

(B). For a fixed integer 𝑚 ≥ 2, the estimate

Re 𝜂𝑚 (𝜎 + 𝑖𝑇) = 𝑜
(
𝑇𝑚−1

)
holds as 𝑇 → +∞.

(C). For a fixed integer 𝑚 ≥ 3, the estimate

Im 𝜂𝑚 (𝜎 + 𝑖𝑇) = 𝑜
(
𝑇𝑚−2

)
holds as 𝑇 → +∞.

In particular, for a fixed integer 𝑚 ≥ 2, the Riemann Hypothesis is equivalent to
that the estimate

𝜂𝑚 (1/2 + 𝑖𝑇) = 𝑜
(
𝑇𝑚−1

)
holds as 𝑇 → +∞.

This corollary is easily obtained from Theorem 2.1. Actually, we can
show it by the following little discussion.

Applying Theorem 2.1 as 𝑋 = 3, 𝐻 = 1, for any positive integer 𝑚, we can
obtain the formula

𝜂𝑚 (𝑠) = 𝑌𝑚 (𝑠) +𝑂𝑚

(∑
𝜌

1
1 + (𝑡 − 𝛾)2

)
.

Now, by the well known estimate (cf. p.98 [21])∑
𝜌

1
1 + (𝑡 − 𝛾)2 ≪ log 𝑡, (2.18)

the above 𝑂-term is ≪𝑚 log 𝑡. Hence, we obtain
𝜂𝑚 (𝑠) = 𝑌𝑚 (𝑠) +𝑂𝑚 (log 𝑡). (2.19)

Thus, from estimates (2.2) and (2.19), we obtain Corollary 2.1.
Fujii [29] established an equivalence for the Riemann Hypothesis and an

estimate for 𝑆𝑚 (𝑡). He discussed only the behavior of the Riemann zeta-
function on the critical line, and this corollary means that his equivalence
can be generalized to the critical strip naturally. Moreover, Fujii’s result is
an equivalence for 𝑆𝑚 (𝑡) in the case 𝑚 ≥ 3. On the other hand, thanks to the
consideration on the real part of iterated integrals of the logarithm of the
Riemann zeta-function, we also have the same type of equivalence for 𝑚 = 2.
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2.3 A Dirichlet polynomial involving prime numbers and
zeros of 𝜁 (𝑠)

In this section, we state some consequences of Theorem 2.1 for a rela-
tionship between prime numbers and the distribution of nontrivial zeros of
𝜁 (𝑠) in short intervals. These consequences are obtained from a principle
of taking out the information of singularities coming from certain zeros by
using Theorem 2.1.

We define the weighted Dirichlet polynomial 𝑃 𝑓 (𝑠, 𝑋) by

𝑃 𝑓 (𝑠, 𝑋) =
∑
𝑝≤𝑋2

𝑣 𝑓 ,1(𝑒log 𝑝/log 𝑋)
𝑝𝑠

for 𝑋 ≥ 3. Here, the sum runs over prime numbers. Moreover, the function
𝑁̃ (𝑡, ℎ) means the number of zeros 𝜌 = 𝛽 + 𝑖𝛾 of 𝜁 (𝑠) with |𝑡 − 𝛾 | ≤ ℎ counted
with multiplicity. Then we can obtain the following theorem.

Theorem 2.3. Assume the Riemann Hypothesis. Let 𝑓 be a nonnegative mass one
𝐶1( [0, 1])-function supported in [0, 1]. Then, for 𝑡 ≥ 14, log 𝑡 ≤ 𝑋 ≤ 𝑡, we have

𝑃 𝑓 (1/2 + 𝑖𝑡, 𝑋) = log
( log log 𝑡

log 𝑋

)
× 𝑁̃

(
𝑡,

1
log 𝑋

)
+

+
∑

1
log 𝑋 < |𝑡−𝛾 |≤

1
log log 𝑡

log
(
|𝑡 − 𝛾 | log log 𝑡

)
+𝑂 𝑓

( log 𝑡
log log 𝑡

)
. (2.20)

In particular, we have

max
3≤𝑋≤𝑡

Re
(
𝑃 𝑓 (1/2 + 𝑖𝑡, 𝑋)

)
≪ 𝑓

log 𝑡
log log 𝑡 , (2.21)

max
3≤𝑋≤𝑡

Re
(
−𝑃 𝑓 (1/2 + 𝑖𝑡, 𝑋)

)
≪ 𝑓 log 𝑡, (2.22)

and

max
3≤𝑋≤𝑡

��Im (
𝑃 𝑓 (1/2 + 𝑖𝑡, 𝑋)

) �� ≪ 𝑓
log 𝑡

log log 𝑡 . (2.23)

Here we focus on estimates (2.21), (2.23). From these estimates, we would
expect that it is possible to improve estimate (2.22) at log 𝑡/log log 𝑡. This ex-
pectation is coming from the following discussion. By the randomness of the
prime numbers, it is probably true that the numbers {𝑡 log 𝑝1}, . . . , {𝑡 log 𝑝𝑛}
are randomly distributed on [0, 1) for 𝑡 ≥ 1. Here, {𝑥} means the frac-
tional part of 𝑥. Hence, the author believes that there is not a big difference
among the bounds of the real and imaginary parts of a weighted Dirichlet
polynomial like 𝑃 𝑓 (𝑠, 𝑋) and their positive and negative parts. From this
observation, the author suggests the following conjecture.
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Conjecture 2.1. Let 𝜎 be a real number, and 𝑓 be a nonnegative mass one
𝐶1( [0, 1])-function supported in [0, 1]. For sufficiently large 𝑇 > 0,

max
14≤𝑡≤𝑇

max
3≤𝑋≤𝑡

Re(𝑃 𝑓 (𝜎 + 𝑖𝑡, 𝑋)) ≍ max
14≤𝑡≤𝑇

max
3≤𝑋≤𝑡

Re(−𝑃 𝑓 (𝜎 + 𝑖𝑡, 𝑋)),

max
14≤𝑡≤𝑇

max
3≤𝑋≤𝑡

Re(𝑃 𝑓 (𝜎 + 𝑖𝑡, 𝑋)) ≍ max
14≤𝑡≤𝑇

max
3≤𝑋≤𝑡

Im(𝑃 𝑓 (𝜎 + 𝑖𝑡, 𝑋)),

and

max
14≤𝑡≤𝑇

max
3≤𝑋≤𝑡

Im(𝑃 𝑓 (𝜎 + 𝑖𝑡, 𝑋)) ≍ max
14≤𝑡≤𝑇

max
3≤𝑋≤𝑡

Im(−𝑃 𝑓 (𝜎 + 𝑖𝑡, 𝑋)).

If this conjecture and the Riemann Hypothesis are true, for every certain
𝑓 , we obtain

max
3≤𝑋≤𝑡

|𝑃 𝑓 (1/2 + 𝑖𝑡, 𝑋) | ≪
log 𝑡

log log 𝑡 (2.24)

from estimates (2.21), (2.23).
Estimate (2.24) can be applied to the distribution of the ordinate of ze-

ros of 𝜁 (𝑠). If estimate (2.24) and the Riemann Hypothesis are true, by
using formula (2.20) as 𝑋 = (log 𝑡)𝐷 , we can obtain the following interesting
estimate

𝑁̃

(
𝑡,

1
𝐷 log log 𝑡

)
≪

log 𝑡
log𝐷 log log 𝑡

for any 2 ≤ 𝐷 ≤ log 𝑡/log log 𝑡. In particular, on the same condition, we
can improve the estimate of the multiplicity of zeros of the Riemann zeta-
function like the following

𝑚(𝜌) ≪
log |𝛾 |

(log log |𝛾 |)2 ,

where 𝑚(𝜌) means the multiplicity of a zero 𝜌 = 1
2 + 𝑖𝛾. This upper bound is

sharp because the following inequality (see Corollary 1 in [31])

𝑚(𝜌) ≤
(
1
2 + 𝑜(1)

) log |𝛾 |
log log |𝛾 |

is the best known upper bound under the Riemann Hypothesis at present.
From this observation, the author suggests Conjecture 2.1 as an important
open problem.

Furthermore, we will find a deeper fact from the same method as the
above discussion. We consider the following estimate

max
3≤𝑋≤𝑌 (𝑡)

�����∑
𝑝≤𝑋

1
𝑝1/2+𝑖𝑡

����� ≤ 𝑀 (𝑡), (2.25)
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where 𝑌 (𝑡), 𝑀 (𝑡) are some monotonically increasing functions with 3 ≤
𝑌 (𝑡) ≤ 𝑡, 𝑀 (𝑡) ≪

√
𝑌 (𝑡)/log𝑌 (𝑡). Note that an estimate of Dirichlet poly-

nomial without a mollifier is useful because by partial summation and as-
suming estimate (2.25), for any certain 𝑓 , we have 𝑃 𝑓 (1/2 + 𝑖𝑡) ≪ 𝑀 (𝑡) for
3 ≤ 𝑋 ≤

√
𝑌 (𝑡). This fact plays an important role in the following discussion

in this section.
From the discussion in [24, Section 2.2], we may expect that estimate

(2.25) is true with 𝑌 (𝑡) = 𝑡, 𝑀 (𝑡) ≍
√

log 𝑡 log log 𝑡. Here, we can obtain some
bounds of 𝑌 (𝑡) and 𝑀 (𝑡) under the Riemann Hypothesis. Assuming the
Riemann Hypothesis, by using estimate (2.4) as 𝐻 = 𝑋 , we can show that
estimate (2.25) is true when 𝑌 (𝑡) = 𝑡, 𝑀 (𝑡) = log 𝑡. Moreover, we can also
show the inequality 𝑀 (𝑡) ≫

√
log 𝑡 log log log 𝑡/log log 𝑡 when the inequal-

ity 𝑌 (𝑡) ≥ exp
(
𝐿
√

log 𝑡 log log 𝑡/log log log 𝑡
)

holds with 𝐿 sufficiently large
constant. This fact can be shown, for example, by the work of Bondarenko
and Seip [11, Theorem 2] and Selberg’s formula [107, Theorem 1].

Now, if estimate (2.25) and the Riemann Hypothesis are true, then we
can obtain the following theorem.

Theorem 2.4. Assume the Riemann Hypothesis and estimate (2.25). Let 𝜓(𝑡) be
a function with 3 ≤ 𝜓(𝑡) ≤

√
𝑌 (𝑡). Let 𝑓 be a nonnegative mass one 𝐶1([0, 1])-

function supported on [0, 1]. Then, for 𝑡 ≥ 14, 𝜓(𝑡) ≤ 𝑋 ≤ 𝑡, we have

𝑃 𝑓 (1/2 + 𝑖𝑡, 𝑋) = log
( log𝜓(𝑡)

log 𝑋

)
× 𝑁̃

(
𝑡,

1
log 𝑋

)
+

+
∑

1
log 𝑋 < |𝑡−𝛾 |≤

1
log 𝜓 (𝑡)

log
(
|𝑡 − 𝛾 | log𝜓(𝑡)

)
+𝑂 𝑓

(
𝑀 (𝑡) +

log 𝑡
log𝜓(𝑡) + log log 𝑋

)
.

In particular, if the Riemann Hypothesis and estimate (2.25) with 𝑌 (𝑡) = 𝑡,

𝑀 (𝑡) ≍
√

log 𝑡 log log 𝑡 are true, then by taking 𝜓(𝑡) = exp
(√

log 𝑡
log log 𝑡

)
, 𝑋 =

exp
(
𝐷

√
log 𝑡

log log 𝑡

)
, we have

𝑁̃

(
𝑡,

√
log log 𝑡
𝐷

√
log 𝑡

)
≪

√
log 𝑡 log log 𝑡

log𝐷 (2.26)

for 3 ≤ 𝐷 ≤ 1
2
√

log 𝑡 log log 𝑡.

By estimate (2.26), assuming the Riemann Hypothesis and estimate (2.25)
with 𝑌 (𝑡) = 𝑡, 𝑀 (𝑡) ≍

√
log 𝑡 log log 𝑡, we have

𝑚(𝜌) ≪

√
log |𝛾 |

log log |𝛾 | . (2.27)
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Here, we should mention that, under the same condition, the estimate
𝑚(𝜌) ≪

√
log |𝛾 | log log |𝛾 | immediately follows from Selberg’s formula [106,

Theorem 1] and the Riemann-von Mangldt formula (1.4), and inequality
(2.27) is an improvement of this estimate. Hence, from this observation, we
may expect that there is an interesting relationship between the behavior of∑
𝑝≤𝑋 𝑝

−1/2−𝑖𝑡 and the distribution of zeros of the Riemann zeta-function.

2.3.1 Preliminary lemmas and the proofs of theorems
We prove Theorems 2.3, 2.4. First, we prepare a standard lemma to prove
Theorem 2.3.
Lemma 2.4. Assume the Riemann Hypothesis. Then, for 𝑡 ≥ 14, 1

2 ≤ 𝜎 ≤
1
2 + 1

log log 𝑡 ,

𝜁 ′

𝜁
(𝑠) =

∑
|𝑡−𝛾 |≤1/log log 𝑡

1
𝑠 − 𝜌 +𝑂

(
log 𝑡

)
. (2.28)

Proof. This lemma is Lemma 13.20 in [87]. □

Proof of Theorem 2.3. Let 𝑡 ≥ 14 and 𝑋 be a real parameter with log 𝑡 ≤ 𝑋 ≤ 𝑡.
By using Theorem 2.1, we have

𝑃 𝑓 (1/2 + 𝑖𝑡, 𝑋) = log 𝜁 (1/2 + 𝑖𝑡) −
∑

|𝑡−𝛾 |≤ 1
log 𝑋

log
(
|𝑡 − 𝛾 | log 𝑋

)
+𝑂 𝑓

( log 𝑡
log log 𝑡

)
.

By integrating the both sides of (2.28), we obtain

log 𝜁
(
1
2 + 𝑖𝑡

)
− log 𝜁

(
1
2 + 1

log log 𝑡 + 𝑖𝑡
)

=
∑

|𝑡−𝛾 |≤ 1
log log 𝑡

log
(
|𝑡 − 𝛾 | log log 𝑡

)
+𝑂

( log 𝑡
log log 𝑡

)
,

and by using estimate (13.44) in [87], we obtain

log 𝜁
(
1
2 + 1

log log 𝑡 + 𝑖𝑡
)
≪

log 𝑡
log log 𝑡 .

Hence, we obtain

𝑃 𝑓 (1/2 + 𝑖𝑡, 𝑋) =∑
|𝑡−𝛾 |≤ 1

log log 𝑡

log
(
|𝑡 − 𝛾 | log log 𝑡

)
−

∑
|𝑡−𝛾 |≤ 1

log 𝑋

log
(
|𝑡 − 𝛾 | log 𝑋

)
+𝑂 𝑓

( log 𝑡
log log 𝑡

)
= log

( log log 𝑡
log 𝑋

)
×

∑
|𝑡−𝛾 |≤ 1

log 𝑋

1 +
∑

1
log 𝑋 < |𝑡−𝛾 |≤

1
log log 𝑡

log
(
|𝑡 − 𝛾 | log log 𝑡

)
+𝑂 𝑓

( log 𝑡
log log 𝑡

)
.
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Thus, we obtain formula (2.20). In particular, estimates (2.21), (2.22), (2.23)
are easily obtained by formula (2.20) and estimate (2.17). □

Next, we prepare three lemmas to prove Theorem 2.4. The method of
the proofs of these lemmas are probably standard, and so those proofs are
briefly.

Lemma 2.5. Assume the Riemann Hypothesis and (2.25). Let 𝜓(𝑡) be a monotonic
function with 3 ≤ 𝜓(𝑡) ≤

√
𝑌 (𝑡). Then we have

𝑁̃

(
𝑡,

1
log𝜓(𝑡)

)
≪ 𝑀 (𝑡) +

log 𝑡
log𝜓(𝑡)

Proof. For 𝜎 ≥ 𝜎𝑋 := 1
2 + 1

log 𝑋 , by using the following formula (cf. (2.3) in
[106])

𝜁 ′

𝜁
(𝑠) = −

∑
𝑛≤𝑋2

Λ′
𝑋 (𝑛)
𝑛𝑠

+𝑂
(
𝑋1/2−𝜎

(����� ∑
𝑛≤𝑋2

Λ′
𝑋 (𝑛)
𝑛𝜎𝑋+𝑖𝑡

����� + log 𝑡
))
, (2.29)

we have

𝜁 ′

𝜁
(𝜎𝑋 + 𝑖𝑡) ≪

����� ∑
𝑛≤𝑋2

Λ′
𝑋 (𝑛)
𝑛𝜎𝑋+𝑖𝑡

����� + log 𝑡. (2.30)

Here, the function Λ′
𝑋 (𝑛) is defined by

Λ′
𝑋 (𝑛) =


Λ(𝑛) if 1 ≤ 𝑛 ≤ 𝑋 ,

Λ(𝑛) log(𝑋2/𝑛)/log 𝑋 if 𝑋 ≤ 𝑛 ≤ 𝑋2,
0 otherwise.

By assuming estimate (2.25) and using partial summation, the right hand
side of (2.30) is

≪ 𝑀 (𝑡) log 𝑋 + log 𝑡

for 𝑋2 ≤ 𝑌 (𝑡). On the other hand, by the following formula

Re
(
𝜁 ′

𝜁
(𝜎 + 𝑖𝑡)

)
=

∑
|𝑡−𝛾 |≤1

𝜎 − 1/2
(𝜎 − 1/2)2 + (𝑡 − 𝛾)2 +𝑂 (log 𝑡),

we have ∑
|𝑡−𝛾 |≤1

1/log 𝑋
(1/log 𝑋)2 + (𝑡 − 𝛾)2 ≪ 𝑀 (𝑡) log 𝑋 + log 𝑡.

Therefore, we have ∑
|𝑡−𝛾 |≤1/log 𝑋

1 ≪ 𝑀 (𝑡) +
log 𝑡
log 𝑋

for 𝑋 ≤
√
𝑌 (𝑡). Hence by putting 𝑋 = 𝜓(𝑡), we obtain this lemma. □
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Lemma 2.6. Assume the Riemann Hypothesis and estimate (2.25). Let 𝜓(𝑡) be a
monotonic function with 3 ≤ 𝜓(𝑡) ≤

√
𝑌 (𝑡). Then we have

log 𝜁
(
1
2 + 1

log𝜓(𝑡) + 𝑖𝑡
)
≪ 𝑀 (𝑡) +

log 𝑡
log𝜓(𝑡) .

Proof. By the formula (2.29), we see that

log 𝜁 (𝜎𝑋 + 𝑖𝑡) =
∑

2≤𝑛≤𝑋2

Λ′
𝑋 (𝑛)

𝑛𝜎𝑋+𝑖𝑡 log 𝑛
+𝑂

(
1

log 𝑋

(����� ∑
𝑛≤𝑋2

Λ′
𝑋 (𝑛)
𝑛𝜎𝑋+𝑖𝑡

����� + log 𝑡
))
.

By using the partial summation, the above right hand side is

≪ 𝑀 (𝑡) +
log 𝑡
log 𝑋

for 𝑋 ≤
√
𝑌 (𝑡). Hence by putting 𝑋 = 𝜓(𝑡), we obtain this lemma. □

Lemma 2.7. Assume the Riemann Hypothesis and estimate (2.25). Let 𝜓(𝑡) be a
monotonic function with 3 ≤ 𝜓(𝑡) ≤

√
𝑌 (𝑡). Then, for 1

2 ≤ 𝜎 ≤ 1
2 +

1
log𝜓(𝑡) , 𝑡 ≥ 14,

we have
𝜁 ′

𝜁
(𝑠) =

∑
|𝑡−𝛾 |≤ 1

log 𝜓 (𝑡)

1
𝑠 − 𝜌 +𝑂 (𝑀 (𝑡) log𝜓(𝑡) + log 𝑡). (2.31)

Proof. We can obtain this lemma by using Lemma 2.5 and the same method
as in the proof of Lemma 13.20 in [87]. □

Proof of Theorem 2.4. Let 𝜓(𝑡) ≤ 𝑋 ≤ 𝑡. Using (2.18), Lemma 2.5, and Lemma
2.7, we can find that∑

|𝑡−𝛾 |> 1
log 𝜓 (𝑡)

1
(𝑡 − 𝛾)2 ≪ log𝜓(𝑡) (𝑀 (𝑡) log𝜓(𝑡) + log 𝑡).

Therefore, by using this estimate and Theorem 2.1, we have∑
2≤𝑛≤𝑋2

Λ(𝑛)𝑣 𝑓 ,1(𝑒log 𝑛/log 𝑋)
𝑛1/2+𝑖𝑡 log 𝑛

= log 𝜁
(
1
2 + 𝑖𝑡

)
−

∑
|𝑡−𝛾 |≤ 1

log 𝑋

log(|𝑡 − 𝛾 | log 𝑋) +𝑂
(
𝑀 (𝑡) +

log 𝑡
log𝜓(𝑡)

)
. (2.32)

On the other hand, by integrating the both sides of (2.31), we find that

log 𝜁
(
1
2 + 𝑖𝑡

)
− log 𝜁

(
1
2 + 1

log𝜓(𝑡) + 𝑖𝑡
)

=
∑

|𝑡−𝛾 |≤ 2
log𝑌 (𝑡)

log
(

𝑖(𝑡 − 𝛾)
1

log𝜓(𝑡) + 𝑖(𝑡 − 𝛾)

)
+𝑂

(
𝑀 (𝑡) +

log 𝑡
log𝜓(𝑡)

)
.
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Hence, using Lemma 2.5 and Lemma 2.6, we have

log 𝜁
(
1
2 + 𝑖𝑡

)
=

∑
|𝑡−𝛾 |≤ 1

log 𝜓 (𝑡)

log
(
|𝑡 − 𝛾 | log𝜓(𝑡)

)
+𝑂

(
𝑀 (𝑡) +

log 𝑡
log𝜓(𝑡)

)
.

By this formula, the right hand side of (2.32) is equal to

log
( log𝜓(𝑡)

log 𝑋

)
× 𝑁̃

(
𝑡,

1
log 𝑋

)
+

∑
1

log 𝑋 < |𝑡−𝛾 |≤
1

log 𝜓 (𝑡)

log
(
|𝑡 − 𝛾 | log𝜓(𝑡)

)
+𝑂

(
𝑀 (𝑡) +

log 𝑡
log𝜓(𝑡)

)
.

On the other hand, we see that the left hand side of (2.32) is = 𝑃 𝑓 (1/2 + 𝑖𝑡) +
𝑂 (log log 𝑋), which completes the proof of Theorem 2.4. □

2.4 On the value distribution of log |𝜁 (1/2 + 𝑖𝑡) |

In this section, we consider the value distribution of the Riemann zeta-
function. Now, we define the set 𝒮(𝑇,𝑉) by

𝒮(𝑇,𝑉) =
{
𝑡 ∈ [𝑇, 2𝑇] | log |𝜁 (1/2 + 𝑖𝑡) | > 𝑉

}
.

Here, we give a result on the value distribution of log |𝜁 (1/2 + 𝑖𝑡) |. There are
interesting studies on this theme by Soundararajan [110], [111]. He showed
a lower bound and an upper bound of the Lebesgue measure of𝒮(𝑇,𝑉), and
his result for the upper bound is under the Riemann Hypothesis. In [111], he
mentioned the question that, in how large range of𝑉 , the following estimate

1
𝑇

meas(𝒮 (𝑇,𝑉)) ≪
√

log log𝑇
𝑉

exp
(
− 𝑉2

log log𝑇

)
(2.33)

holds. Here, the symbol meas(·) stands for the Lebesgue measure. This
problem is important because there are some interesting consequences such
as the mean value estimate and the Lindelöf Hypothesis. Actually, if estimate
(2.33) holds for any large range of 𝑉 , we can obtain the conjectural estimates

max
𝑡∈[𝑇,2𝑇]

log |𝜁 (1/2 + 𝑖𝑡) | ≪
√

log𝑇 log log𝑇,∫ 2𝑇

𝑇
|𝜁 (1/2 + 𝑖𝑡) |2𝑘𝑑𝑡 ≪ 𝑇 (log𝑇)𝑘2

.

Here, we should mention Jutila’s work [56]. He showed unconditionally that
the estimate

1
𝑇

meas(𝒮(𝑇,𝑉)) ≪ exp
(
− 𝑉2

log log𝑇

(
1 +𝑂

(
𝑉

log log𝑇

)))
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holds for 0 ≤ 𝑉 ≤ log log𝑇 . In particular, as an immediate consequence of
this estimate, we have

1
𝑇

meas(𝒮(𝑇,𝑉)) ≪ exp
(
− 𝑉2

log log𝑇

)
(2.34)

for 0 ≤ 𝑉 ≪ (log log𝑇)2/3. This estimate does not slightly reach to estimate
(2.33). On the other hand, this estimate was improved by Radziwiłł [95]
in the shorter range 𝑉 = 𝑜

(
(log log𝑇)3/5−𝜀

)
. In fact, he showed that the

following conjecture is true for 𝑉 = 𝑜
(
(log log𝑇)1/10−𝜀

)
.

Conjecture (Radziwiłł, [95]). For 𝑉 = 𝑜
(√

log log𝑇
)
, as 𝑇 → +∞

1
𝑇

meas
(
𝒮

(
𝑇,𝑉

√
1
2 log log𝑇

))
∼

∫ ∞

𝑉
𝑒−𝑢

2/2 𝑑𝑢√
2𝜋
.

Hence, by his study, estimate (2.33) have been proved for
√

log log𝑇 ≪
𝑉 = 𝑜

(
(log log𝑇)3/5−𝜀

)
. In this paper, we will extend unconditionally

this range for 𝑉 to
√

log log𝑇 ≪ 𝑉 ≪ (log log𝑇)2/3. Moreover, we will
also show that the upper bound of Radziwiłł’s conjecture is true for 𝑉 =

𝑜
(
(log log𝑇)1/6

)
.

Theorem 2.5. For 1 ≪ 𝑉 ≪ (log log𝑇)1/6, we have

1
𝑇

meas
(
𝒮

(
𝑇,𝑉

√
1
2 log log𝑇

))
≤ (1 + 𝑜(1))

∫ ∞

𝑉
𝑒−𝑢

2/2 𝑑𝑢√
2𝜋

+𝑂
(

𝑉

(log log𝑇)1/3 exp
(
−𝑉

2

2

))
as 𝑇 → +∞. In particular, for 1 ≪ 𝑉 = 𝑜

(
(log log𝑇)1/6

)
, we have

1
𝑇

meas
(
𝒮

(
𝑇,𝑉

√
1
2 log log𝑇

))
≤ (1 + 𝑜(1))

∫ ∞

𝑉
𝑒−𝑢

2/2 𝑑𝑢√
2𝜋

(2.35)

as 𝑇 → +∞, and for any large 𝑇 , we have

1
𝑇

meas(𝒮 (𝑇,𝑉)) ≪
√

log log𝑇
𝑉

exp
(
− 𝑉2

log log𝑇

)
(2.36)

for
√

log log𝑇 ≪ 𝑉 ≪ (log log𝑇)2/3.

Estimate (2.36) is an improvement of estimate (2.34), and it is expected
from Radziwiłł’s conjecture that the estimate is best possible.
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This theorem will be shown by using a method of Selberg-Tsang [116] and
Radziwiłł’s method [95]. On the other hand, it would be difficult to prove
Theorem 2.5 by using their method only. Actually, the author could not
derive this theorem by a method using Lemma 5.4 in [116] which plays an
important role in their method. The reason why the author could not derive
this theorem by such a method is that the contribution of zeros close to 𝑠
cannot be well managed. On the other hand, we can ignore the contribution
of such zeros by using Theorem 2.1 while considering the upper bound of
meas𝒮(𝑇,𝑉). In fact, the important point in the proof of Theorem 2.5 is that
the real part of 𝑌0(𝑠, 𝑋) is always non-positive.

2.4.1 Preliminary lemmas

In this section, we prove Theorem 2.5. We will use the method of Selberg-
Tsang [116] in a part of the proof, where the following proposition plays an
important role there. Moreover, the proposition also plays an important role
in the proof of Theorem 2.6.

Before stating the proposition, we define 𝜎𝑋,𝑡 and Λ𝑋 (𝑛) = Λ(𝑛)𝑤𝑋 (𝑛) by

𝜎𝑋,𝑡 =
1
2 + 2 max

|𝑡−𝛾 |≤ 𝑋3(𝛽−1/2)
log 𝑋

{
𝛽 − 1

2 ,
2

log 𝑋

}
, (2.37)

𝑤𝑋 (𝑦) =


1 if 1 ≤ 𝑦 ≤ 𝑋 ,

(log(𝑋3/𝑦))2−2(log(𝑋2/𝑦))2
2(log 𝑋)2 if 𝑋 ≤ 𝑦 ≤ 𝑋2,

(log(𝑋3/𝑦))2
2(log 𝑋)2 if 𝑋2 ≤ 𝑦 ≤ 𝑋3.

(2.38)

Then, we can obtain the following proposition.

Proposition 2.2. Assume 𝐷 ( 𝑓 ) ≥ 2. Let 𝑚 be a nonnegative integer, and let 𝑋 , 𝐻
be real parameters with 𝑋 ≥ 3, 𝐻 ≥ 1. Then, for 𝑡 ≥ 14, 𝜎 ≥ 1/2, the right hand
side of (2.3) is estimated by

≪ 𝑓
𝑋2(1−𝜎) + 𝑋1−𝜎

𝑡 (log 𝑋)𝑚+1 +

+ 𝐻3𝜎𝑋,𝑡 − 1/2
(log 𝑋)𝑚 (𝑋2(𝜎𝑋,𝑡−𝜎) + 𝑋𝜎𝑋,𝑡−𝜎)

(����� ∑
𝑛≤𝑋3

Λ𝑋 (𝑛)
𝑛𝜎𝑋,𝑡+𝑖𝑡

����� + log 𝑡
)
.

Thanks to Proposition 2.2, we can combine the method of Selberg-Tsang
with Theorem 2.1.

Proof. By estimate (2.3) and the line symmetry of nontrivial zeros of 𝜁 (𝑠)
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with respect to 𝜎 = 1/2, it suffices to show that∑
|𝑡−𝛾 |≤ 1

log 𝑋

𝛽≥1/2

(𝑋2(𝛽−𝜎) + 𝑋 𝛽−𝜎) + 1
(log 𝑋)3

∑
|𝑡−𝛾 |> 1

log 𝑋

𝛽≥1/2

𝑋2(𝛽−𝜎) + 𝑋 𝛽−𝜎
|𝑡 − 𝛾 |3

≪ (𝜎𝑋,𝑡 − 1/2) (𝑋2(𝜎𝑋,𝑡−𝜎) + 𝑋𝜎𝑋,𝑡−𝜎)
(����� ∑
𝑛≤𝑋3

Λ𝑋 (𝑛)
𝑛𝜎𝑋,𝑡+𝑖𝑡

����� + log 𝑡
)
.

If 𝛽 > 𝜎𝑋,𝑡+1/2
2 , then by the definition of 𝜎𝑋,𝑡 (2.37), we have

|𝑡 − 𝛾 | > 𝑋3(𝛽−1/2)

log 𝑋 > 3(𝛽 − 1/2) > 3|𝜎𝑋,𝑡 − 𝛽 |.

By these inequalities, we find that

𝑋2(𝛽−𝜎) + 𝑋 𝛽−𝜎
|𝑡 − 𝛾 |3

≪
log 𝑋
𝑋3(𝛽−1/2)

𝑋2(𝛽−𝜎) + 𝑋 𝛽−𝜎
(𝜎𝑋,𝑡 − 𝛽)2 + (𝑡 − 𝛾)2

≪ 𝑋1/2−𝜎 (log 𝑋)2 𝜎𝑋,𝑡 − 1/2
(𝜎𝑋,𝑡 − 𝛽)2 + (𝑡 − 𝛾)2 .

Next, we suppose 1/2 ≤ 𝛽 ≤ 𝜎𝑋,𝑡+1/2
2 . Then if |𝑡 − 𝛾 | > 𝜎𝑋,𝑡 − 1/2, we find that

𝑋2(𝛽−𝜎) + 𝑋 𝛽−𝜎
|𝑡 − 𝛾 |3

≪ (𝑋2(𝜎𝑋,𝑡−𝜎) + 𝑋𝜎𝑋,𝑡−𝜎) (log 𝑋)2 𝜎𝑋,𝑡 − 1/2
(𝜎𝑋,𝑡 − 𝛽)2 + (𝑡 − 𝛾)2 ,

and if 1/log 𝑋 < |𝑡 − 𝛾 | ≤ 𝜎𝑋,𝑡 − 1/2, we find that

𝑋2(𝛽−𝜎) + 𝑋 𝛽−𝜎
|𝑡 − 𝛾 |3

≪ (𝑋2(𝜎𝑋,𝑡−𝜎) + 𝑋𝜎𝑋,𝑡−𝜎)(log 𝑋)3 (𝜎𝑋,𝑡 − 1/2)2

(𝜎𝑋,𝑡 − 𝛽)2 + (𝑡 − 𝛾)2 .

From the above estimates, we have

1
(log 𝑋)3

∑
|𝑡−𝛾 |> 1

log 𝑋

𝛽≥1/2

𝑋2(𝛽−𝜎) + 𝑋 𝛽−𝜎
|𝑡 − 𝛾 |3

≪ (𝜎𝑋,𝑡 − 1/2)(𝑋2(𝜎𝑋,𝑡−𝜎) + 𝑋𝜎𝑋,𝑡−𝜎)
∑

|𝑡−𝛾 |> 1
log 𝑋

𝜎𝑋,𝑡 − 1/2
(𝜎𝑋,𝑡 − 𝛽)2 + (𝑡 − 𝛾)2 . (2.39)

Moreover, it holds that∑
|𝑡−𝛾 |≤ 1

log 𝑋

𝛽≥1/2

(𝑋2(𝛽−𝜎) + 𝑋 𝛽−𝜎)

≪ (𝜎𝑋,𝑡 − 1/2) (𝑋2(𝜎𝑋,𝑡−𝜎) + 𝑋𝜎𝑋,𝑡−𝜎)
∑

|𝑡−𝛾 |≤ 1
log 𝑋

𝜎𝑋,𝑡 − 1/2
(𝜎𝑋,𝑡 − 𝛽)2 + (𝑡 − 𝛾)2 .
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By this estimate and (2.39), we obtain∑
|𝑡−𝛾 |≤ 1

log 𝑋

𝛽≥1/2

(𝑋2(𝛽−𝜎) + 𝑋 𝛽−𝜎) + 1
(log 𝑋)3

∑
|𝑡−𝛾 |> 1

log 𝑋

𝛽≥1/2

𝑋2(𝛽−𝜎) + 𝑋 𝛽−𝜎
|𝑡 − 𝛾 |3

≪ (𝜎𝑋,𝑡 − 1/2) (𝑋2(𝜎𝑋,𝑡−𝜎) + 𝑋𝜎𝑋,𝑡−𝜎)
∑
𝜌

𝜎𝑋,𝑡 − 1/2
(𝜎𝑋,𝑡 − 𝛽)2 + (𝑡 − 𝛾)2 .

Here, we have the following estimates (cf. (4.4) and (4.9) in [107])∑
𝜌

𝜎𝑋,𝑡 − 1/2
(𝜎𝑋,𝑡 − 𝛽)2 + (𝑡 − 𝛾)2 ≪

����� ∑
𝑛≤𝑋3

Λ𝑋 (𝑛)
𝑛𝜎𝑋,𝑡+𝑖𝑡

����� + log 𝑡.

Thus, we obtain this proposition. □

Moreover, we prepare some lemmas.

Lemma 2.8. Let 𝑇 ≥ 5, and let 3 ≤ 𝑋 ≤ 𝑇 . Let 𝑘 be a positive integer such that
𝑋 𝑘 ≤ 𝑇/log𝑇 . Then, for any complex numbers 𝑎(𝑝), we have∫ 𝑇

0

���� ∑
𝑝≤𝑋

𝑎(𝑝)
𝑝1/2+𝑖𝑡

����2𝑘𝑑𝑡 ≪ 𝑇𝑘!
(∑
𝑝≤𝑋

|𝑎(𝑝) |2
𝑝

) 𝑘
.

Here, the above sums run over prime numbers.

Proof. This lemma is a little modified assertion of Lemma 3 in [111], and the
proof of this lemma is the same as its proof. □

Lemma 2.9. Let 𝑇 ≥ 5, and let 𝑘 be a positive integer, 𝑋 ≥ 3, 𝜉 ≥ 1 be some
parameters with 𝑋15𝜉10 ≤ 𝑇 . Then, we have∫ 𝑇

0

(
𝜎𝑋,𝑡 −

1
2

) 𝑘
𝜉𝜎𝑋,𝑡−1/2𝑑𝑡 ≪ 𝑇

(
4𝑘𝜉

4
log 𝑋

(log 𝑋)𝑘
+ 8𝑘 𝑘!

log 𝑋 (log𝑇)𝑘−1

)
.

We omit the proof of this lemma because this lemma is a little modified
assertion of Lemma 12 in [107], and the proof of this lemma is the same as
its proof. On the other hand, we will give the proof of a general situation
(see Lemma 6.4 and its proof).

Lemma 2.10. Let 𝑇 be large, 𝑍 ≥ 3, and 𝑘 a positive integer with 𝑘 ≤ 1
55

log𝑇
log 𝑍 .

Then we have ∫ 𝑇

0

����� ∑
𝑝≤𝑍3

Λ𝑍 (𝑝)
𝑝𝜎𝑍,𝑡+𝑖𝑡

�����2𝑘𝑑𝑡 ≪ 𝑇𝑘 𝑘 (𝐶 log 𝑍)2𝑘 ,

where 𝐶 is an absolute positive constant.
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Proof. Now, we can write∑
𝑝≤𝑍3

Λ𝑍 (𝑝)
𝑝𝜎𝑍,𝑡+𝑖𝑡 =

∑
𝑝≤𝑍3

Λ𝑍 (𝑝)
𝑝1/2+𝑖𝑡 −

∑
𝑝≤𝑍3

Λ𝑍 (𝑝)
𝑝1/2+𝑖𝑡 (1 − 𝑝1/2−𝜎𝑍,𝑡 )

=
∑
𝑝≤𝑍3

Λ𝑍 (𝑝)
𝑝1/2+𝑖𝑡 −

∫ 𝜎𝑍,𝑡

1/2

∑
𝑝≤𝑍3

Λ𝑍 (𝑝) log 𝑝
𝑝𝛼

′+𝑖𝑡 𝑑𝛼′,

and, for 1/2 ≤ 𝛼′ ≤ 𝜎𝑍,𝑡 ,���� ∑
𝑝≤𝑍3

Λ𝑍 (𝑝) log 𝑝
𝑝𝛼

′+𝑖𝑡

���� = 𝑍𝛼′−1/2

����� ∫ ∞

𝛼′
𝑍1/2−𝛼

∑
𝑝≤𝑍3

Λ𝑍 (𝑝) log (𝑍𝑝) log 𝑝
𝑝𝛼+𝑖𝑡

𝑑𝛼

�����
≤ 𝑍𝜎𝑍,𝑡−1/2

∫ ∞

1/2
𝑍1/2−𝛼

���� ∑
𝑝≤𝑍3

Λ𝑍 (𝑝) log (𝑍𝑝) log 𝑝
𝑝𝛼+𝑖𝑡

����𝑑𝛼.
Therefore, we have���� ∑

𝑝≤𝑋3

Λ𝑌 (𝑝)
𝑝𝜎𝑌 ,𝑡+𝑖𝑡

���� ≤ ���� ∑
𝑝≤𝑌3

Λ𝑌 (𝑝)
𝑝1/2+𝑖𝑡

����+
+ (𝜎𝑌,𝑡 − 1/2)𝑌𝜎𝑌 ,𝑡−1/2

∫ ∞

1/2
𝑌1/2−𝛼

���� ∑
𝑝≤𝑌3

Λ𝑌 (𝑝) log (𝑌 𝑝) log 𝑝
𝑝𝛼+𝑖𝑡

����𝑑𝛼. (2.40)

By Lemma 2.8, we have∫ 𝑇

0

���� ∑
𝑝≤𝑍3

Λ𝑍 (𝑝)
𝑝1/2+𝑖𝑡

����2𝑘𝑑𝑡 ≪ 𝑇𝑘!(𝐶 log 𝑍)2𝑘 . (2.41)

On the other hand, by the Cauchy-Schwarz inequality and Lemma 2.9, we
find that∫ 𝑇

0
(𝜎𝑍,𝑡 − 1/2)2𝑘𝑍2𝑘 (𝜎𝑍,𝑡−1/2) ©­«

∫ ∞

1/2
𝑍1/2−𝛼

���� ∑
𝑝≤𝑍3

Λ𝑍 (𝑝) log (𝑍𝑝) log 𝑝
𝑝𝛼+𝑖𝑡

����𝑑𝛼ª®¬
2𝑘

𝑑𝑡

≤
( ∫ 𝑇

0
(𝜎𝑍,𝑡 − 1/2)4𝑘𝑍4𝑘 (𝜎𝑍,𝑡−1/2)𝑑𝑡

)1/2

×

×
©­­«
∫ 𝑇

0

©­«
∫ ∞

1/2
𝑍1/2−𝛼

���� ∑
𝑝≤𝑍3

Λ𝑍 (𝑝) log (𝑍𝑝) log 𝑝
𝑝𝛼+𝑖𝑡

����𝑑𝛼ª®¬
4𝑘

𝑑𝑡
ª®®¬

1/2

≪ 𝑇1/2𝐶𝑘

(log 𝑍)2𝑘

©­­«
∫ 𝑇

0

©­«
∫ ∞

1/2
𝑍1/2−𝛼

���� ∑
𝑝≤𝑍3

Λ𝑍 (𝑝) log (𝑍𝑝) log 𝑝
𝑝𝛼+𝑖𝑡

����𝑑𝛼ª®¬
4𝑘

𝑑𝑡
ª®®¬

1/2

.
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Moreover, by Hölder’s inequality, we have

©­«
∫ ∞

1/2
𝑍1/2−𝛼

���� ∑
𝑝≤𝑍3

Λ𝑍 (𝑝) log (𝑍𝑝) log 𝑝
𝑝𝛼+𝑖𝑡

����𝑑𝛼ª®¬
4𝑘

≤
(∫ ∞

1/2
𝑍1/2−𝛼𝑑𝛼

)4𝑘−1
× ©­«

∫ ∞

1/2
𝑍1/2−𝛼

���� ∑
𝑝≤𝑍3

Λ𝑍 (𝑝) log (𝑍𝑝) log 𝑝
𝑝𝛼+𝑖𝑡

����4𝑘𝑑𝛼ª®¬
=

1
(log 𝑍)4𝑘−1

∫ ∞

1/2
𝑍1/2−𝛼

���� ∑
𝑝≤𝑍3

Λ𝑍 (𝑝) log (𝑍𝑝) log 𝑝
𝑝𝛼+𝑖𝑡

����4𝑘𝑑𝛼.
Therefore, by using Lemma 2.8, we find that

∫ 𝑇

0

©­«
∫ ∞

1/2
𝑍1/2−𝛼

���� ∑
𝑝≤𝑍3

Λ𝑍 (𝑝) log (𝑍𝑝) log 𝑝
𝑝𝛼+𝑖𝑡

����𝑑𝛼ª®¬
4𝑘

𝑑𝑡

≤ 1
(log 𝑍)4𝑘−1

∫ ∞

1/2
𝑍1/2−𝛼 ©­«

∫ 𝑇

0

���� ∑
𝑝≤𝑍3

Λ𝑍 (𝑝) log (𝑍𝑝) log 𝑝
𝑝𝛼+𝑖𝑡

����4𝑘𝑑𝑡ª®¬ 𝑑𝛼
≪ 𝑇 (2𝑘)!

(log 𝑍)4𝑘−1

∫ ∞

1/2
𝑍1/2−𝛼 ©­«

∑
𝑝≤𝑍3

(log(𝑍𝑝))2(log 𝑝)4

𝑝2𝛼
ª®¬

2𝑘

𝑑𝛼

≪ 𝑇𝑘2𝑘𝐶𝑘 (log 𝑍)8𝑘+1
∫ ∞

1/2
𝑍1/2−𝛼𝑑𝛼 ≤ 𝑇𝑘2𝑘𝐶𝑘 (log 𝑍)8𝑘 .

Hence, by estimate (2.42), we have

∫ 𝑇

0
(𝜎𝑍,𝑡 − 1/2)2𝑘𝑍2𝑘 (𝜎𝑍,𝑡−1/2) ©­«

∫ ∞

1/2
𝑍1/2−𝛼

���� ∑
𝑝≤𝑍3

Λ𝑍 (𝑝) log (𝑍𝑝) log 𝑝
𝑝𝛼+𝑖𝑡

����𝑑𝛼ª®¬
2𝑘

𝑑𝑡

≪ 𝑇𝑘 𝑘 (𝐶 log 𝑍)2𝑘 .

Thus, from this estimate and (2.40), (2.41), we obtain this lemma. □

Lemma 2.11. Let 𝑇 be large, 𝑋 = 𝑇1/(log log𝑇)2 . For 1 ≪ 𝑉 = 𝑜(
√

log log𝑇), we
have

1
𝑇

meas
𝑡 ∈ [𝑇, 2𝑇] : Re

∑
𝑝≤𝑋

1
𝑝

1
2+𝑖𝑡

> 𝑉

√
1
2

∑
𝑝≤𝑋

1
𝑝


= (1 + 𝑜(1))

∫ ∞

𝑉
𝑒−𝑢

2/2 𝑑𝑢√
2𝜋

as 𝑇 → +∞.

Proof. This lemma is Proposition 1 in [95]. □
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2.4.2 Proof of the theorem

Proof of Theorem 2.5. Let 𝑇 be large, and 𝑉 a parameter with
√

log log𝑇 ≪
𝑉 ≪ (log log𝑇)2/3. Here, we may assume the inequality 𝑉 ≤ 𝐴(log log𝑇)2/3

with 𝐴 any fixed positive constant. Then, it suffices to show that, as 𝑇 → +∞

1
𝑇

meas(𝒮(𝑇,𝑉))

≤ (1 + 𝑜(1))
∫ ∞

𝑉√
1/2 log log𝑇

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
+𝑂

(
𝑉

(log log𝑇)5/6 exp
(
− 𝑉2

log log𝑇

))
.

Let 𝑋 , 𝑌 be parameters with 𝑋 = 𝑇1/(log log𝑇)2 ≤ 𝑌 ≤ 𝑇1/100. Let 𝑓 be a fixed
function satisfying the condition of this paper and 𝐷 ( 𝑓 ) ≥ 2. By Theorem
2.1 and Proposition 2.2, for 𝑇 ≤ 𝑡 ≤ 2𝑇 , we have

log |𝜁 (1/2 + 𝑖𝑡) | ≤ Re
∑

2≤𝑛≤𝑌2

Λ(𝑛)𝑣 𝑓 ,1(𝑒log 𝑛/log𝑌 )
𝑛1/2+𝑖𝑡 log 𝑛

+ 𝐶1(𝜎𝑌,𝑡 − 1/2)𝑌2𝜎𝑌 ,𝑡−1

(����� ∑
𝑛≤𝑌3

Λ𝑌 (𝑛)
𝑛𝜎𝑌 ,𝑡+𝑖𝑡

����� + log𝑇
)
, (2.42)

where 𝐶1 is an absolute positive constant. Now, we see that

Re
∑

2≤𝑛≤𝑌2

Λ(𝑛)𝑣 𝑓 ,1(𝑒log 𝑛/log𝑌 )
𝑛1/2+𝑖𝑡 log 𝑛

= Re
∑
𝑝≤𝑋

1
𝑝1/2+𝑖𝑡 + Re

∑
𝑋<𝑝≤𝑌2

𝑣 𝑓 ,1(𝑒log 𝑝/log𝑌 )
𝑝1/2+𝑖𝑡 + Re

∑
𝑝≤𝑌

𝑣 𝑓 ,1(𝑒log 𝑝2/log𝑌 )
𝑝1+2𝑖𝑡 log 𝑝2

+ Re
∑
𝑝𝑘≤𝑌2

𝑘≥3

Λ(𝑝𝑘 )𝑣 𝑓 ,1(𝑒log 𝑝𝑘/log𝑌 )
𝑝𝑘 (1/2+𝑖𝑡) log 𝑝𝑘

,

���� ∑
𝑝𝑘≤𝑌2

𝑘≥3

Λ(𝑝𝑘 )𝑣 𝑓 ,1(𝑒log 𝑝𝑘/log𝑌 )
𝑝𝑘 (1/2+𝑖𝑡) log 𝑝𝑘

���� ≤ ∑
𝑝𝑘≤𝑌2

𝑘≥3

Λ(𝑝𝑘 )
𝑝𝑘/2 log 𝑝𝑘

≪ 1,

and that ���� ∑
𝑝𝑘≤𝑌3

𝑘≥2

Λ𝑌 (𝑝𝑘 )
𝑝𝑘 (𝜎𝑌 ,𝑡+𝑖𝑡)

���� ≤ ∑
𝑝𝑘≤𝑌3

𝑘≥2

log 𝑝
𝑝𝑘𝜎𝑌 ,𝑡

≤ log𝑌 +𝑂 (1) ≤ log𝑇.

Hence, we have

meas(𝒮(𝑇,𝑉)) ≤ meas(𝑆1) + meas(𝑆2) + meas(𝑆3) + meas(𝑆4), (2.43)
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where the sets 𝑆1, 𝑆2, 𝑆3, 𝑆4 are defined by

𝑆1 :=
{
𝑡 ∈ [𝑇, 2𝑇]

����� Re
∑
𝑝≤𝑋

1
𝑝1/2+𝑖𝑡 > 𝑉1

}
,

𝑆2 :=
𝑡 ∈ [𝑇, 2𝑇] : Re

∑
𝑋<𝑝≤𝑌2

𝑣 𝑓 ,1(𝑒log 𝑝/log𝑌 )
𝑝1/2+𝑖𝑡 > 𝑉2

 ,
𝑆3 :=

{
𝑡 ∈ [𝑇, 2𝑇]

����� Re
∑
𝑝≤𝑌

𝑣 𝑓 ,1(𝑒log 𝑝2/log𝑌 )
𝑝1+2𝑖𝑡 > 𝑉2

}
,

𝑆4 :=
𝑡 ∈ [𝑇, 2𝑇]

����� 𝐶1(𝜎𝑌,𝑡 − 1/2)𝑌2𝜎𝑌 ,𝑡−1 ©­«
����� ∑
𝑝≤𝑌3

Λ𝑌 (𝑝)
𝑝𝜎𝑌 ,𝑡+𝑖𝑡

����� + 2 log𝑇ª®¬ > 𝑉2

 ,
where 𝑉1 = 𝑉 − 3𝑉2, and 𝑉2 is a positive parameter with 𝑉2 ≤ 𝑉/4. Let 𝑘 be a
positive integer with 𝑘 ≤ 1

100
log𝑇
log𝑌 . By Lemma 2.11, we find that∫ 2𝑇

𝑇

���� ∑
𝑋<𝑝≤𝑌2

𝑣 𝑓 ,1(𝑒log 𝑝/log𝑌 )
𝑝1/2+𝑖𝑡

����2𝑘𝑑𝑡 ≪ 𝑇
(
𝐶2𝑘 log log log𝑇

) 𝑘
, (2.44)

and that ∫ 2𝑇

𝑇

���� ∑
𝑝≤𝑋

𝑣 𝑓 ,1(𝑒log 𝑝2/log 𝑋)
𝑝1+2𝑖𝑡

����2𝑘𝑑𝑡 ≪ 𝑇𝑘!𝐶𝑘3 . (2.45)

By Lemma 2.9, we have∫ 2𝑇

𝑇
(2𝐶1)𝑘 (𝜎𝑌,𝑡 − 1/2)𝑘𝑌2𝑘 (𝜎𝑌 ,𝑡−1/2) (log𝑇)𝑘𝑑𝑡 ≪ 𝑇

(
𝐶4 log𝑇

log𝑌

) 𝑘
.

Moreover, by Cauchy-Schwarz and Lemmas 2.9, 2.10, we have

1
𝑇

∫ 2𝑇

𝑇
𝐶𝑘1 (𝜎𝑌,𝑡 − 1/2)𝑘𝑌 (2𝜎𝑌 ,𝑡−1)𝑘

����� ∑
𝑝≤𝑌3

Λ𝑌 (𝑝)
𝑝𝜎𝑌 ,𝑡+𝑖𝑡

�����𝑘𝑑𝑡
≤
𝐶𝑘1
𝑇

(∫ 2𝑇

𝑇
(𝜎𝑌,𝑡 − 1/2)2𝑘𝑌4𝑘 (𝜎𝑌 ,𝑡−1/2)𝑑𝑡

)1/2
× ©­«

∫ 2𝑇

𝑇

����� ∑
𝑝≤𝑌3

Λ𝑌 (𝑝)
𝑝𝜎𝑌 ,𝑡+𝑖𝑡

�����2𝑘𝑑𝑡ª®¬
1/2

≪
(
𝐶5𝑘

1/2

log𝑌

) 𝑘
.

Hence, we have

1
𝑇

∫ 2𝑇

𝑇
𝐶𝑘1 (𝜎𝑌,𝑡 − 1/2)𝑘𝑌 (2𝜎𝑌 ,𝑡−1)𝑘 ©­«

����� ∑
𝑝≤𝑌3

Λ𝑌 (𝑝)
𝑝𝜎𝑌 ,𝑡+𝑖𝑡

����� + 2 log𝑇ª®¬
𝑘

𝑑𝑡 (2.46)

≪
(
𝐶6 log𝑇

log𝑌

) 𝑘
.
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Thus, by estimates (2.44), (2.45), (2.46), the following estimates

1
𝑇

meas(𝑆2) ≪
(
𝑘𝐶2 log log log𝑇

𝑉2
2

) 𝑘
,

1
𝑇

meas(𝑆3) ≪
(
𝑘𝐶3

𝑉2
2

) 𝑘
,

1
𝑇

meas(𝑆4) ≪
(
𝐶6 log𝑇
𝑉2 log𝑌

) 𝑘
hold for 𝑋 ≤ 𝑌 ≤ 𝑇1/100, 𝑘 ≤ 1

100
log𝑇
log𝑌 .

We put𝑌 = 𝑇 log log𝑇/(200𝐶7𝑉
2) and 𝑘 = 2

[
𝑉2

log log𝑇 + 1
]
, where𝐶7 is a constant

chosen as satisfying 𝐶7 ≥ 2 and 𝐶7𝑉
2/log log𝑇 ≥ 2. Further, we decide 𝑉2 as

200𝐶4𝐶5𝑒
2𝐴𝑉/(log log𝑇)1/3 Then we obtain

meas(𝑆2) + meas(𝑆3) + meas(𝑆4)
𝑇

≪ exp
(
− 2𝑉2

log log𝑇 log
(
𝑒𝐴(log log𝑇)2/3

𝑉

))
for

√
log log𝑇 ≪ 𝑉 ≤ 𝐴(log log𝑇)2/3. Hence, by Lemma 2.11 and inequality

(2.43), we have

1
𝑇

meas(𝒮(𝑇,𝑉)) ≤ (1 + 𝑜(1))
∫ ∞

𝑉1
𝑊 (𝑇 )

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
+ 𝑜 ©­«

∫ ∞

𝑉√
1/2 log log𝑇

𝑒−𝑢
2/2𝑑𝑢

ª®¬
for

√
log log𝑇 ≪ 𝑉 ≤ 𝐴(log log𝑇)2/3. Here,𝑊 (𝑇) indicates

𝑊 (𝑇) =
√

1
2

∑
𝑝≤𝑋

𝑝−1 =

√
1
2 log log𝑇 +𝑂

(
log log log𝑇√

log log𝑇

)
.

Here, we find that∫ ∞

𝑉1
𝑊 (𝑇 )

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
=

∫ ∞

𝑉√
1/2 log log𝑇

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
+

∫ 𝑉√
1/2 log log𝑇

𝑉1
𝑊 (𝑇 )

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
,

and that ∫ 𝑉√
1/2 log log𝑇

𝑉1
𝑊 (𝑇 )

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
≪

(
𝑉√

1/2 log log𝑇
− 𝑉1
𝑊 (𝑇)

)
𝑒
−

𝑉 2
1

2𝑊 (𝑇 )2

≪ 𝑉

(log log𝑇)5/6 𝑒
− 𝑉 2

log log𝑇 .

Thus, we have

1
𝑇

meas(𝒮(𝑇,𝑉))

≤ (1 + 𝑜(1))
∫ ∞

𝑉√
1/2 log log𝑇

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
+𝑂

(
𝑒
− 𝑉 2

log log𝑇
𝑉

(log log𝑇)5/6

)
for

√
log log𝑇 ≪ 𝑉 ≤ 𝐴(log log𝑇)2/3. This completes the proof of Theorem

2.5. □
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2.5 A mean value theorem involving 𝜂̃𝑚 (𝑠)

In this section, we state a certain mean value theorem. There are some
interesting applications of the theorem to the value distribution of 𝜂̃𝑚 (𝑠).

Theorem 2.6. Let 𝑚 be a positive integer. Let 𝑘 be a positive integer. Let 𝑇 be large,
and 𝑋 ≥ 3 with 𝑋 ≤ 𝑇 1

175𝑘 . Then, for 𝜎 ≥ 1/2, we have

1
𝑇

∫ 𝑇

14

����𝜂̃𝑚 (𝜎 + 𝑖𝑡) −
∑

2≤𝑛≤𝑋

Λ(𝑛)
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1

����2𝑘𝑑𝑡
≪ 2𝑘 𝑘!

(
2𝑚 + 1

2𝑚 + 𝐶

log 𝑋

) 𝑘
𝑋 𝑘 (1−2𝜎)

(log 𝑋)2𝑘𝑚 + 𝐶𝑘 𝑘2𝑘 (𝑚+1) 𝑇
1−2𝜎
175

(log𝑇)2𝑘𝑚 .

Here, the above 𝐶 is an absolute positive constant.

This theorem will give an answer for the question of how much of the
function 𝜂𝑚 (𝑠) can be approximated by the corresponding Dirichlet polyno-
mial. Such a study is often useful. For example, Radziwiłł [95] proved a
large deviation theorem for Selberg’s limit theorem, and he used Corollary
in [116, p.60] to prove his result. The corollary is related with the approxi-
mation of log 𝜁 (𝑠) by a certain Dirichlet polynomial, and we can regard that
Theorem 2.6 corresponds to the corollary. Hence, it is expected to be able to
show a limit theorem for 𝜂𝑚 (𝑠), which is similar to Selberg’s limit theorem
or the Bohr-Jessen limit theorem, and also its large deviation.

2.5.1 Proof of the theorem
Proof of Theorem 2.6. Let 𝑚 be a positive integer and 𝑓 be a fixed function
satisfying the condition of this paper and 𝐷 ( 𝑓 ) ≥ 2. Then, by Theorem 2.2,
for 𝑡 ≥ 14, 𝑋 ≤ 𝑇 1

175𝑘 =: 𝑌 , we obtain�����𝜂̃𝑚 (𝜎 + 𝑖𝑡) − 𝑖𝑚
∑

2≤𝑛≤𝑋

Λ(𝑛)
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1

�����2𝑘
≤ 22𝑘

����� ∑
𝑋<𝑛≤𝑌2

Λ(𝑛)𝑣 𝑓 ,1(𝑒log 𝑛/log𝑌 )
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1

�����2𝑘 + 22𝑘 |𝑅𝑚 (𝜎 + 𝑖𝑡, 𝑌 , 1) |2𝑘 . (2.47)

By using partial summation, Lemma 2.8, and the prime number theorem,
we find that∫ 𝑇

0

����� ∑
𝑋<𝑝≤𝑌2

𝑣 𝑓 ,1(𝑒log 𝑝/log𝑌 )
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

�����2𝑘𝑑𝑡 ≪ 𝑇𝑘!
( ∑
𝑝>𝑋

1
𝑝2𝜎 (log 𝑝)2𝑚

) 𝑘
≤ 𝑇𝑘!

(
2𝑚 + 1

2𝑚 + 𝐶

log 𝑋

) 𝑘
𝑋 𝑘 (1−2𝜎)

(log 𝑋)2𝑘𝑚 ,
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and that∫ 𝑇

0

����� ∑
𝑋<𝑝2≤𝑌2

𝑣 𝑓 ,1(𝑒log 𝑝2/log𝑌 )
𝑝2𝜎+2𝑖𝑡 (log 𝑝2)𝑚

�����2𝑘𝑑𝑡 ≪ 𝑇𝑘!
( ∑
𝑝>

√
𝑋

1
𝑝4𝜎 (log 𝑝2)2𝑚

) 𝑘
≤ 𝑇𝑘!𝐶𝑘 𝑋

𝑘 (1−4𝜎)/2

(log 𝑋)2𝑘𝑚 .

Set

𝜓3(𝑧, 𝑦) :=
∑

𝑦<𝑝𝑙≤𝑧
𝑙≥3

log 𝑝.

Then we can easily obtain the inequality 𝜓3(𝑧, 𝑦) ≪ 𝑧1/3. By using this
inequality and partial summation, we find that����� ∑

𝑋<𝑝𝑙≤𝑌2

𝑙≥3

𝑣 𝑓 ,1(𝑒log 𝑝𝑙/log𝑌 )
𝑙 𝑝𝑙 (𝜎+𝑖𝑡) (log 𝑝𝑙)𝑚

����� ≤ ∫ ∞

𝑋

𝜎 log 𝜉 + 𝑚
𝜉1+𝜎 (log 𝜉)𝑚+1𝜓3(𝜉, 𝑋)𝑑𝜉 ≪ 𝑋1/3−𝜎

(log 𝑋)𝑚 .

Therefore, we have∫ 𝑇

0

����� ∑
𝑋<𝑝𝑙≤𝑌2

𝑙≥3

𝑣 𝑓 ,1(𝑒log 𝑝𝑙/log𝑌 )
𝑙 𝑝𝑙 (𝜎+𝑖𝑡) (log 𝑝𝑙)𝑚

�����2𝑘𝑑𝑡 ≪ 𝑇𝐶𝑘
𝑋 𝑘 (2/3−2𝜎)

(log 𝑋)2𝑘𝑚 .

Hence it holds that∫ 𝑇

0

����� ∑
𝑋<𝑛≤𝑌2

Λ(𝑛)𝑣 𝑓 ,1(𝑒log 𝑛/log𝑌 )
𝑛1/2+𝑖𝑡 (log 𝑛)𝑚+1

�����2𝑘𝑑𝑡
≪ 𝑇𝑘!

(
2𝑚 + 1

2𝑚 + 𝐶

log 𝑋

) 𝑘
𝑋 𝑘 (1−2𝜎)

(log 𝑋)2𝑘𝑚 . (2.48)

Next, we consider the integral of 𝑅𝑚 (𝑠,𝑌 , 1). By Proposition 2.2, we have∫ 𝑇

14
|𝑅𝑚 (𝜎 + 𝑖𝑡, 𝑌 , 1) |2𝑘𝑑𝑡 ≪

(
𝐶𝑘2(𝑚+1)

) 𝑘
× 𝑇

1−𝜎 + 𝑇 (1−𝜎)/2

(log𝑇)2𝑘 (𝑚+1) +

+ (𝐶𝑘2𝑚)𝑘𝑌 (1−2𝜎)𝑘

(log𝑇)2𝑘𝑚

∫ 𝑇

14

{ (
𝜎𝑌,𝑡 −

1
2

)
𝑌2𝜎𝑌 ,𝑡−1

(���� ∑
𝑛≤𝑌3

Λ𝑌 (𝑛)
𝑛𝜎𝑌 ,𝑡+𝑖𝑡

���� + log 𝑡
)}2𝑘

𝑑𝑡,

where Λ𝑌 (𝑛) = Λ(𝑛)𝑤𝑌 (𝑛), and 𝑤𝑌 (𝑛) is given by (2.38). By Lemma 2.9, we
find that ∫ 𝑇

14

(
𝜎𝑌,𝑡 −

1
2

)2𝑘
𝑌8𝑘 (𝜎𝑌 ,𝑡−1/2) (log 𝑡)2𝑘𝑑𝑡 ≪ 𝑇 (𝐶𝑘2)𝑘 ,
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and that, by using the Cauchy-Schwarz inequality and applying Lemmas
2.9, 2.10,∫ 𝑇

14

(
𝜎𝑌,𝑡 −

1
2

)2𝑘
𝑌8𝑘 (𝜎𝑌 ,𝑡−1/2)

���� ∑
𝑛≤𝑌3

Λ𝑌 (𝑛)
𝑛𝜎𝑌 ,𝑡+𝑖𝑡

����2𝑘𝑑𝑡
≤

(∫ 𝑇

14

(
𝜎𝑌,𝑡 −

1
2

)4𝑘
𝑌16𝑘 (𝜎𝑌 ,𝑡−1/2)𝑑𝑡

)1/2

×
(∫ 𝑇

14

���� ∑
𝑛≤𝑌3

Λ𝑌 (𝑛)
𝑛𝜎𝑌 ,𝑡+𝑖𝑡

����4𝑘𝑑𝑡)1/2

≪ 𝑇 (𝐶𝑘)𝑘 .
Therefore, we obtain∫ 𝑇

0

{ (
𝜎𝑌,𝑡 −

1
2

)
𝑌2𝜎𝑌 ,𝑡−1

(���� ∑
𝑛≤𝑌3

Λ𝑌 (𝑛)
𝑛𝜎𝑌 ,𝑡+𝑖𝑡

���� + log (𝑡 + 2)
)}2𝑘

𝑑𝑡 ≪ 𝑇 (𝐶𝑘2)𝑘 .

Hence, we have∫ 𝑇

14
|𝑅𝑚 (𝜎 + 𝑖𝑡, 𝑌 , 1) |2𝑘𝑑𝑡 ≪ 𝑇1+ 1−2𝜎

175
𝐶𝑘 𝑘2𝑘 (𝑚+1)

(log𝑇)2𝑘𝑚 .

Thus, from this estimate, (2.47), and (2.48), we obtain Theorem 2.6. □

2.6 An upper bound of the distribution function of
𝜂̃𝑚 ( 1

2 + 𝑖𝑡)

In this section, we consider the value distribution of 𝜂̃𝑚 (1/2 + 𝑖𝑡). There are
many studies on the value distribution of the Riemann zeta-function and
other 𝐿-functions.

We discuss a measure for the difference between 𝜂̃𝑚 (1/2 + 𝑖𝑡) and the
corresponding Dirichlet polynomial. We are interested in the exact value
distribution of 𝜂̃𝑚 (1/2 + 𝑖𝑡) and 𝑆𝑚 (𝑡). Here our aim is to establish a theorem
for 𝜂𝑚 (1/2 + 𝑖𝑡) and 𝑆𝑚 (𝑡) similar to the results of Jutila [56], Radziwiłł [95],
and Soundararajan [111] on the large deviation of the Riemann zeta-function.
The motivation of this study in the present paper is to search for the exact
bound of 𝜂̃𝑚 (1/2 + 𝑖𝑡).

We define the set 𝒯𝑚 (𝑇, 𝑋,𝑉) by{
𝑡 ∈ [𝑇, 2𝑇] :

����𝜂̃𝑚 (1/2 + 𝑖𝑡) −
∑

2≤𝑛≤𝑋

Λ(𝑛)
𝑛

1
2+𝑖𝑡 (log 𝑛)𝑚+1

���� > 𝑉}
.

We obtain the following result which evaluates the difference between
𝜂𝑚 (1/2 + 𝑖𝑡) and the corresponding Dirichlet polynomial.
Theorem 2.7. Let 𝑚 be a positive integer, and let 𝑇 , 𝑋 be large with 𝑋135 ≤ 𝑇 . If
𝑉 satisfies the inequality 2(log 𝑋)−𝑚 ≤ 𝑉 ≤ 𝑐0(log𝑇) 𝑚

2𝑚+1 (log 𝑋)− 2𝑚2+2𝑚
2𝑚+1 , then we

have
1
𝑇

meas(𝒯𝑚 (𝑇, 𝑋,𝑉)) ≪ exp
(
− 𝑚

4(𝑚 + 1)𝑉
2(log 𝑋)2𝑚

(
1 − 𝐶

log 𝑋

))
.
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If 𝑉 satisfies 𝑐0(log𝑇) 𝑚
2𝑚+1 (log 𝑋)− 2𝑚2+2𝑚

2𝑚+1 ≤ 𝑉 ≤ log𝑇/(log 𝑋)𝑚+1, then we have

1
𝑇

meas(𝒯𝑚 (𝑇, 𝑋,𝑉)) ≪ exp
(
−𝑐1𝑉

1
𝑚+1 (log𝑇) 𝑚

𝑚+1
)
.

Moreover, if the Riemann Hypothesis is true, then we have

1
𝑇

meas(𝒯𝑚 (𝑇, 𝑋,𝑉)) (2.49)

≪ exp
(
−𝑐2𝑉

1
𝑚+1 (log𝑇) 𝑚

𝑚+1 log
(
𝑒
𝑉

2𝑚+1
2𝑚+2 (log 𝑋)𝑚

(log𝑇) 𝑚
2𝑚+2

))
for (log𝑇) 𝑚

2𝑚+1 (log 𝑋)− 2𝑚2+2𝑚
2𝑚+1 ≤ 𝑉 ≤ log𝑇/(log 𝑋)𝑚+1. Here the numbers 𝑐0, 𝑐1,

𝑐2, 𝐶 are some absolute positive constants.

This theorem can be applied to the value distribution of 𝜂𝑚 (𝑠) on the
critical line. For example, we can obtain the following results from this
theorem.

Corollary 2.2. Let 𝑇 , 𝑉 be large numbers. If 𝑉 ≤ (log𝑇) 𝑚
2𝑚+1 (log log𝑇)− 2𝑚2+2𝑚

2𝑚+1 ,
then we have

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : |𝜂̃𝑚 ( 1

2 + 𝑖𝑡) | > 𝑉
}
≪ exp

(
−𝑐5𝑉

2(log𝑉)2𝑚
)
. (2.50)

If 𝑉 ≥ (log𝑇) 𝑚
2𝑚+1 (log log𝑇)− 2𝑚2+2𝑚

2𝑚+1 , then we have

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : |𝜂̃𝑚 ( 1

2 + 𝑖𝑡) | > 𝑉
}
≪ exp

(
−𝑐6𝑉

1
𝑚+1 (log𝑇) 𝑚

𝑚+1
)
.(2.51)

Here 𝑐5, 𝑐6 are some absolute positive constants.

Corollary 2.3. Assume the Riemann Hypothesis. Let 𝑚 be a positive integer, and
let 𝑇 , 𝑉 be numbers with 𝑇,𝑉 ≥ 𝑇0(𝑚), where 𝑇0(𝑚) is a sufficiently large number
depending only on 𝑚. If 𝑉 ≥ (log𝑇) 𝑚

2𝑚+1 (log log𝑇)− 2𝑚2+2𝑚
2𝑚+1 , then we have

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] | |𝜂̃𝑚 ( 1

2 + 𝑖𝑡) | > 𝑉
}

≪ exp
(
−𝑐7𝑉

1
𝑚+1 (log𝑇) 𝑚

𝑚+1 log
(
𝑒
𝑉

2𝑚+1
2𝑚+2 (log𝑉)𝑚

(log𝑇) 𝑚
2𝑚+2

))
.

Here 𝑐7 is an absolute positive constant.

These assertions can be obtained by the following argument. Now, we
see that

∑
2≤𝑛≤𝑉

Λ(𝑛)
𝑛1/2+𝑖𝑡 (log 𝑛)𝑚+1 ≪𝑚

𝑉1/2

(log𝑉)𝑚+1 . Hence, for sufficiently large 𝑉 , we
find that

meas
{
𝑡 ∈ [𝑇, 2𝑇] | |𝜂̃𝑚 ( 1

2 + 𝑖𝑡) | > 𝑉
}
≤ meas(𝒯1(𝑇,𝑉,𝑉/2))
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unconditionally, and that

meas
{
𝑡 ∈ [𝑇, 2𝑇] | |𝜂̃𝑚 ( 1

2 + 𝑖𝑡) | > 𝑉
}
≤ meas(𝒯𝑚 (𝑇,𝑉,𝑉/2))

under the Riemann Hypothesis. Further, the estimate 𝜂̃𝑚 ( 1
2 + 𝑖𝑡) ≪𝑚 log 𝑡

holds unconditionally, and the estimate 𝜂̃𝑚 (1/2 + 𝑖𝑡) ≪𝑚 log 𝑡/(log log 𝑡)𝑚+1

holds under the Riemann Hypothesis. By these inequalities and Theorem
2.7, we can obtain Corollary 2.2 and Corollary 2.3.

It could be expected that the function
√
𝑉 log𝑇 in the exponential on the

right hand side of (2.51) is sharp as an unconditional result by the following
discussion. Actually, if there is a function 𝜔(𝑇,𝑉) with lim𝑇→+∞ 𝜔(𝑇,𝑉) =
+∞ or lim𝑉→+∞ 𝜔(𝑇,𝑉) = +∞ such that the left hand side of (2.51) is ≪
exp(−𝜔(𝑇,𝑉)

√
𝑉 log𝑇), then the Lindelöf Hypothesis holds. Moreover, esti-

mate (2.51) matches the well known inequality 𝑆1(𝑡) ≪ log 𝑡.
We are also interested in that estimate (2.50) holds in how large range

of 𝑉 . If the estimates hold for any large 𝑉 , then we have 𝜂𝑚 (1/2 + 𝑖𝑡) ≪𝑚√
log 𝑡/(log log 𝑡)𝑚. Although the necessary condition of this implication is

rather strong, the author guesses that it could be true. Hence the author
expects the inequality for 𝜂𝑚 (1/2 + 𝑖𝑡) could be also true.

2.6.1 Proof of the theorem
Proof of Theorem 2.7. Let 𝑚 be a positive integer. Let 𝑋 , 𝑇 be sufficiently large
numbers with 𝑋 ≤ 𝑇

1
175𝑘 . Set 𝑉 be any positive number. By Theorem 2.6,

there exists a positive number 𝐶1 > 3 such that

meas(𝒯𝑚 (𝑇, 𝑋,𝑉)) ≪
√
𝑘
©­«
4𝑘 (1 + 1

𝑚 + 𝐶1
log 𝑋 )

𝑒𝑉2(log 𝑋)2𝑚
ª®¬
𝑘

+
(
𝐶1𝑘

2(𝑚+1)

𝑉2(log𝑇)2𝑚

) 𝑘
. (2.52)

Here, if 𝑉 satisfies 2(log 𝑋)−𝑚 ≤ 𝑉 ≤ 𝑐0(log𝑇) 𝑚
2𝑚+1 (log 𝑋)− 2𝑚2+2𝑚

2𝑚+1 , then we
choose 𝑘 = [𝑉2(log 𝑋)2𝑚/4(1+1/𝑚)], where 𝑐0 is an absolute positive constant
satisfying 𝑐0 ≤ 𝑒−1𝐶1/(4𝑚+2)

1 . Then, by (2.52), we have

meas(𝒯𝑚 (𝑇, 𝑋,𝑉)) ≪ exp
(
− 𝑚

4(𝑚 + 1)𝑉
2(log 𝑋)2𝑚

(
1 − 𝐶′

log 𝑋

))
. (2.53)

If 𝑉 satisfies 𝑐0(log𝑇) 𝑚
2𝑚+1 (log 𝑋)− 2𝑚2+2𝑚

2𝑚+1 ≤ 𝑉 ≤ log𝑇
(log 𝑋)𝑚+1 , then we choose

𝑘 = [(𝑒𝐶1)−
1

𝑚+1𝑉
1

𝑚+1 (log𝑇) 𝑚
𝑚+1 ]. Then, by (2.52), we have

meas(𝒯𝑚 (𝑇, 𝑋,𝑉)) ≪ exp
(
−𝑐1𝑉

1
𝑚+1 (log𝑇) 𝑚

𝑚+1
)
. (2.54)

Thus, from estimates (2.53) and (2.54), we obtain this theorem.
Next, we show (2.49) under the Riemann Hypothesis. Let 𝑓 be a fixed

function satisfying the condition of this paper and 𝐷 ( 𝑓 ) ≥ 2. By Theorem
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2.1 as 𝐻 = 1, for 𝑋 ≤ 𝑍 ≤ 𝑇 , we have

𝜂𝑚 (𝜎 + 𝑖𝑡) − 𝑖𝑚
∑

2≤𝑛≤𝑋

Λ(𝑛)
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1

= 𝑖𝑚
∑

𝑋<𝑛≤𝑍2

Λ(𝑛)𝑣 𝑓 ,1(𝑒log 𝑛/log 𝑍 )
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1 + 𝑅𝑚 (𝜎 + 𝑖𝑡, 𝑍, 1). (2.55)

Since we assume the Riemann Hypothesis, by using Proposition 2.2, it holds
that there exists some constant𝐶3 > 1 such that for any 3 ≤ 𝑍 ≤ 𝑇 , 𝑡 ∈ [𝑇, 2𝑇],

|𝑅𝑚 (1/2 + 𝑖𝑡, 𝑍, 1) | ≤ 𝐶3
2

©­« 1
(log 𝑍)𝑚+1

������ ∑𝑝≤𝑍3

𝑤𝑍 (𝑝) log 𝑝

𝑝
1
2+

4
log 𝑍 +𝑖𝑡

������ + log𝑇
(log 𝑍)𝑚+1

ª®¬ ,
where 𝑤𝑍 is defined by (2.38). Therefore, by letting 𝑍 = exp

((
𝐶3

log𝑇
𝑉

) 1
𝑚+1

)
,

we have

|𝑅𝑚 (1/2 + 𝑖𝑡, 𝑍 ; 𝑢) | ≤ 𝑉

2 log𝑇

������ ∑𝑝≤𝑍2

𝑤𝑍 (𝑝) log 𝑝

𝑝
1
2+

4
log 𝑍 +𝑖𝑡

������ + 𝑉2
for 𝑡 ∈ [𝑇, 2𝑇]. Note that the inequality 𝑉 ≤ log𝑇

(log 𝑋)𝑚+1 implies 𝑋 ≤ 𝑍 . Hence,

by formula (2.55), when 𝑉 ≤ log𝑇
(log 𝑋)𝑚+1 , we have

meas(𝒯𝑚 (𝑇, 𝑋,𝑉)) ≤ meas(𝑆1) + meas(𝑆2). (2.56)

Here, the sets 𝑆1 and 𝑆2 are defined by

𝑆1 :=
{
𝑡 ∈ [𝑇, 2𝑇]

����� ���� ∑
𝑋<𝑛≤𝑍2

Λ(𝑛)𝑣 𝑓 ,1(𝑒log 𝑛/log 𝑍 )
𝑛1/2+𝑖𝑡 (log 𝑛)𝑚+1

���� > 𝑉4
}
,

𝑆2 :=
𝑡 ∈ [𝑇, 2𝑇]

����� 𝑉

2 log𝑇

���� ∑
𝑝≤𝑍3

𝑤𝑍 (𝑝) log 𝑝

𝑝
1
2+

4
log 𝑍 +𝑖𝑡

���� > 𝑉4  .
By the same calculation as (2.48), we obtain

1
𝑇

∫ 2𝑇

𝑇

����� ∑
𝑋<𝑛≤𝑍2

Λ(𝑛)𝑣 𝑓 ,1(𝑒log 𝑛/log 𝑍 )
𝑛1/2+𝑖𝑡 (log 𝑛)𝑚+1

�����2𝑘𝑑𝑡 ≪ 𝐶𝑘 𝑘!
(log 𝑋)2𝑚𝑘 . (2.57)

On the other hand, by Lemma 2.8 and the prime number theorem, we
find that

1
𝑇

∫ 2𝑇

𝑇

©­« 𝑉

2 log𝑇

������ ∑𝑝≤𝑍3

𝑤𝑍 (𝑝) log 𝑝

𝑝
1
2+

4
log 𝑍 +𝑖𝑡

������ª®¬
2𝑘

𝑑𝑡 ≪ 𝐶𝑘 𝑘!
(
𝑉

log𝑇

) 2𝑚
𝑚+1 𝑘
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for 𝑘 ≤ 𝑐0𝑉
1

𝑚+1 (log𝑇) 𝑚
𝑚+1 . Here 𝑐0 is a small positive constant. Therefore, by

this estimate and (2.57), we obtain the following estimates

meas(𝑆1) + meas(𝑆2)
𝑇

≪
(
𝐶4𝑘

1/2

𝑉 (log 𝑋)𝑚

)2𝑘

+
(
𝐶4𝑘

1/2

𝑉

(
𝑉

log𝑇

)𝑚/(𝑚+1))2𝑘

,

where 𝐶4 is a sufficiently large positive constant. Hence, by these esitmates
and (2.56), when 𝑉 ≤ log𝑇

(log 𝑋)𝑚+1 , we have

meas(𝒯𝑚 (𝑇, 𝑋,𝑉)) ≪
(
𝐶4𝑘

1/2

𝑉 (log 𝑋)𝑚

)2𝑘

.

Since 𝑉 satisfies (log𝑇) 𝑚
2𝑚+1 (log 𝑋)− 2𝑚2+2𝑚

2𝑚+1 ≤ 𝑉 ≤ 𝐶0 log𝑇
(log 𝑋)𝑚+1 , we have, by choos-

ing 𝑘 = [(𝑒𝐶4)−2𝑉
1

𝑚+1 (log𝑇) 𝑚
𝑚+1 ],

meas(𝒯𝑚 (𝑇, 𝑋,𝑉)) ≪ exp
(
−𝑐4𝑉

1
𝑚+1 (log𝑇) 𝑚

𝑚+1 log
(
𝑒
𝑉

2𝑚+1
2𝑚+2 (log 𝑋)𝑚

(log𝑇) 𝑚
2𝑚+2

))
.

Thus, we obtain estimate (2.49) under the Riemann Hypothesis. □
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Chapter 3 On the value distribution of 𝜂̃𝑚 (𝑠) in
the critical strip

In this chapter, we discuss the value distribution of 𝜂̃𝑚 (𝑠) in the critical strip.
The contents in this chapter are based on the paper [51].

3.1 Results of large deviations of the distribution function
of 𝜂̃𝑚 (𝑠)

Now, we define the set 𝒮𝑚,𝜃 (𝑇,𝑉 ;𝜎) by

𝒮𝑚,𝜃 (𝑇,𝑉 ;𝜎) :=
{
𝑡 ∈ [𝑇, 2𝑇] : Re 𝑒−𝑖𝜃 𝜂̃𝑚 (𝜎 + 𝑖𝑡) > 𝑉

}
.

Then we show the following theorem.

Theorem 3.1. Let 𝑚 ∈ Z≥1, 𝜃 ∈ R be fixed. There exists a positive constant

𝑎1 = 𝑎1(𝑚) such that, for any large numbers 𝑇 , 𝑉 with 𝑉 ≤ 𝑎1
(

log𝑇
(log log𝑇)2𝑚+2

) 𝑚
2𝑚+1 ,

we have

1
𝑇

meas(𝒮𝑚,𝜃 (𝑇,𝑉 ; 1/2)) = exp
(
−2𝑚4𝑚𝑉2(log𝑉)2𝑚 (1 + 𝑅)

)
,

where the error term 𝑅 satisfies

𝑅 ≪𝑚
𝑉2𝑚+1(log𝑉)2𝑚(𝑚+1)

(log𝑇)𝑚 +

√
log log𝑉

log𝑉 .

Theorem 3.1 contains the unconditional best result 𝑆1(𝑡) = Ω−
(

(log 𝑡)1/3
(log log 𝑡)4/3

)
due to Tsang [117]. Actually, we can immediately obtain the following
corollary.

Corollary 3.1. Let 𝑚 ∈ Z≥1, 𝜃 ∈ R be fixed. Then we have

Re 𝑒−𝑖𝜃 𝜂̃𝑚 (1/2 + 𝑖𝑡) = Ω±
©­«

(log 𝑡) 𝑚
2𝑚+1

(log log 𝑡) 2𝑚2+2𝑚
2𝑚+1

ª®¬ .
To prove Theorem 3.1, we show the result for the value distribution of

the Dirichlet polynomial.
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Proposition 3.1. Let 𝑚 ∈ Z≥1, 𝜃 ∈ R be fixed. There exist positive constants 𝑎2 =

𝑎2(𝑚), 𝑎3 = 𝑎3(𝑚) such that for large numbers 𝑇,𝑉, 𝑋 with 𝑉 ≤ 𝑎2

√
log𝑇

(log log𝑇)𝑚+1/2 ,

and 𝑉4 ≤ 𝑋 ≤ 𝑇𝑎3/𝑉2 (log𝑉)2𝑚 , we have

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : Re 𝑒−𝑖𝜃

∑
𝑝≤𝑋

1
𝑝1/2+𝑖𝑡 (log 𝑝)𝑚

> 𝑉

}

= exp
©­­«−

2𝑚4𝑚𝑉2(log𝑉)2𝑚

1 −
(

log𝑉2

log 𝑋

)𝑚 (
1 +𝑂𝑚

(√
log log𝑉

log𝑉

))ª®®¬ .
Moreover, our method of the proof of the above assertions can be also

applied to the case 1
2 < 𝜎 < 1. Actually, we can obtain the theorem which is

an analogue of the works due to Lamzouri [66]. We define 𝐴𝑚 (𝜎) by

𝐴𝑚 (𝜎) =
(

𝜎2𝜎

(1 − 𝜎)2𝜎−1+𝑚𝐺 (𝜎)𝜎

) 1
1−𝜎

. (3.1)

Here, 𝐺 (𝜎) =
∫ ∞
0 log 𝐼0(𝑢)𝑢−1− 1

𝜎 𝑑𝑢, and 𝐼0 is the modified 0-th Bessel func-
tion defined by 𝐼0(𝑧) = 1

2𝜋
∫ 𝜋

−𝜋 exp(𝑧 cos 𝜃)𝑑𝜃 = ∑∞
𝑛=0(𝑧/2)2𝑛/(𝑛!)2.

Theorem 3.2. Let 𝑚 ∈ Z≥0, 1
2 < 𝜎 < 1, and 𝜃 ∈ R be fixed. There exists

a positive constant 𝑎4 = 𝑎4(𝜎, 𝑚) such that, for any large numbers 𝑇 , 𝑉 with
𝑉 ≤ 𝑎4

(log𝑇)1−𝜎
(log log𝑇)𝑚+1 , we have

1
𝑇

meas(𝒮𝑚,𝜃 (𝑇,𝑉 ;𝜎)) = exp
(
−𝐴𝑚 (𝜎)𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎 (1 + 𝑅)
)
,

where the error term 𝑅 satisfies the estimate

𝑅 ≪𝜎,𝑚

√
1 + 𝑚 log log𝑉

log𝑉 . (3.2)

When 𝑚 = 0, the asymptotic formula of this type was firstly proved by
Hattori and Matsumoto1) [40]. They showed that, for 1

2 < 𝜎 < 1,

lim
𝑇→+∞

1
𝑇

meas ©­«
3⋃
𝑗=0

𝒮0, 𝜋2 𝑗 (𝑇,𝑉 ;𝜎)ª®¬ (3.3)

= exp
(
−𝐴0(𝜎)𝑉

1
1−𝜎 (log𝑉) 𝜎

1−𝜎 (1 + 𝑜(1))
)

as 𝑉 → +∞. Note that the parameter 𝑉 in their asymptotic formula is not
effective with respect to 𝑇 . Theorem 3.2 can recover this asymptotic formula

1)There is a difference of the range of 𝑡 between ours and theirs, but it seems not essential.
Precisely, our range of 𝑡 is 𝑡 ∈ [𝑇, 2𝑇], and theirs is 𝑡 ∈ [−𝑇,𝑇].
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effectively. Actually, we see that

1
𝑇

meas
(
𝒮0,0(𝑇,𝑉 ;𝜎)

)
≤ 1
𝑇

meas ©­«
3⋃
𝑗=0

𝒮0, 𝜋2 𝑗 (𝑇,𝑉 ;𝜎)ª®¬
≤ 1
𝑇

3∑
𝑗=0

meas
(
𝒮0, 𝜋2 𝑗 (𝑇,𝑉 ;𝜎)

)
,

and both sides are equal to exp
(
−𝐴0(𝜎)𝑉

1
1−𝜎 (log𝑉) 𝜎

1−𝜎 (1 + 𝑅)
)

from The-
orem 3.2. Here, the error term 𝑅 satisfies (3.2). Hence, we can improve
(3.3) to the effective form. On the other hand, it seems this improvement
has been essentially obtained by Lamzouri’s work [66]. After the study of
Hattori-Matsumoto, Lamzouri [66] showed an effective asymptotic formula
in the case 𝜃 = 0 only. Though he did not mention, we can also prove his
theorem for any 𝜃 ∈ R by just using his method. Therefore, we may say that
the above improvement has been already given by Lamzouri.

Now, we state the proposition corresponding to Proposition 3.1, which
plays an important role in Theorem 3.2.
Proposition 3.2. Let 𝑚 ∈ Z≥0, 1

2 < 𝜎 < 1, and 𝜃 ∈ R be fixed. There exist positive
constants 𝑎5 = 𝑎5(𝜎, 𝑚), 𝑎6 = 𝑎6(𝜎, 𝑚) such that for large numbers 𝑇, 𝑋,𝑉 with
𝑉 ≤ 𝑎5

(log𝑇)1−𝜎
(log log𝑇)𝑚+1 and 𝑉 4𝜎

1−𝜎 ≤ 𝑋 ≤ 𝑇𝑎6/𝑉
1

1−𝜎 (log𝑉)
𝑚+𝜎
1−𝜎 , we have

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : Re 𝑒−𝑖𝜃

∑
𝑝≤𝑋

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚 > 𝑉

}
= exp

(
−𝐴𝑚 (𝜎)𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎

(
1 +𝑂𝜎,𝑚

(√
1 + 𝑚 log log𝑉

log𝑉

)))
.

Here, we describe the method of the proofs of Theorem 3.1 and Theo-
rem 3.2 roughly. These theorems are analogues of Lamzouri’s result, but
we cannot adopt directly his method. He used the Euler product of the
Riemann zeta-function and the generalized divisor function to estimate a
Dirichlet polynomial. However, 𝜂̃𝑚 (𝑠) does not have the representation of
Euler product when 𝑚 ≥ 1, and so we cannot apply directly his method. To
avoid this obstacle the author uses Radziwiłł’s method [95] to estimate the
Dirichlet polynomial.

3.2 Preliminaries

In this section, we prepare some lemmas.
Lemma 3.1. Let 𝜃 ∈ R be fixed. For any 𝑛 ∈ Z≥2, we write 𝑛 = 𝑞𝛼1

1 . . . 𝑞𝛼𝑟𝑟 , where
𝑞 𝑗 are distinct prime numbers. Then we have

1
𝑇

∫ 2𝑇

𝑇

𝑟∏
𝑗=1

(
cos(𝑡 log 𝑞 𝑗 + 𝜃)

)𝛼 𝑗 𝑑𝑡 = 𝑓 (𝑛) +𝑂
( 𝑛
𝑇

)
63



for any 𝑇 > 0. Here, 𝑓 is the multiplicative function defined by 𝑓 (𝑝𝛼) = 2−𝛼
(
𝛼
𝛼/2

)
for a prime power 𝑝𝛼, and we regard that

(
𝛼
𝛼/2

)
= 0 if 𝛼 is odd.

Proof. This lemma is a special case of Lemma 6.7, and so we omit this proof.
□

Lemma 3.2. Let 𝑚 ∈ Z≥0, 1
2 ≤ 𝜎 < 1 be fixed. Let 𝑋 ≥ 3, and 𝑇 be large. Then,

for any positive integer 𝑘 , we have

1
𝑇

∫ 2𝑇

𝑇

(
Re

(
𝑒−𝑖𝜃

∑
𝑝≤𝑋

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

)) 𝑘
𝑑𝑡

=
𝑘!

2𝜋𝑖

∮
|𝑤 |=𝑅

1
𝑤𝑘+1

∏
𝑝≤𝑋

𝐼0

(
𝑤

𝑝𝜎 (log 𝑝)𝑚

)
𝑑𝑤 +𝑂

(
𝑋2𝑘

𝑇

)
.

Here, 𝑅 is any positive number, and 𝐼0 is the modified 0-th order Bessel function.
Proof. Define the multiplicative function 𝑔𝑋 (𝑛) as, for every prime number
𝑝 and 𝛼 ∈ Z≥1, 𝑔𝑋 (𝑝𝛼) = 1/𝛼!(log 𝑝)𝛼𝑚 if 𝑝 ≤ 𝑋 , and 𝑔𝑋 (𝑝𝛼) = 0 otherwise.
By Lemma 3.1, we find that

1
𝑇

∫ 2𝑇

𝑇

(
Re

(
𝑒−𝑖𝜃

∑
𝑝≤𝑋

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

)) 𝑘
𝑑𝑡

=
1
𝑇

∑
𝑝1,...,𝑝𝑘≤𝑋

∫ 2𝑇
𝑇

cos(𝑡 log 𝑝1 + 𝜃) · · · cos(𝑡 log 𝑝𝑘 + 𝜃)𝑑𝑡
(𝑝1 · · · 𝑝𝑘 )𝜎 (log 𝑝1 · · · log 𝑝𝑘 )𝑚

=
∑

𝑝1,...,𝑝𝑘≤𝑋

𝑓 (𝑝1 · · · 𝑝𝑘 )
(𝑝1 · · · 𝑝𝑘 )𝜎 (log 𝑝1 · · · log 𝑝𝑘 )𝑚

+𝑂
(
𝑋2𝑘

𝑇

)
.

From this equation and the definition of 𝑔𝑋 , we have

1
𝑇

∫ 2𝑇

𝑇

(
Re

∑
𝑝≤𝑋

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

) 𝑘
𝑑𝑡 = 𝑘!

∑
Ω(𝑛)=𝑘

𝑓 (𝑛)
𝑛𝜎

𝑔𝑋 (𝑛) +𝑂
(
𝑋2𝑘

𝑇

)
.

By Cauchy’s integral formula, the above is equal to

𝑘!
2𝜋𝑖

∮
|𝑤 |=𝑅

∞∑
𝑛=1

𝑓 (𝑛)
𝑛𝜎

𝑔𝑋 (𝑛)𝑤Ω(𝑛) 𝑑𝑤

𝑤𝑘+1 +𝑂
(
𝑋2𝑘

𝑇

)
.

Since the functions 𝑓 , 𝑔𝑋 , and 𝑤Ω(𝑛) are multiplicative, this main term is

=
𝑘!

2𝜋𝑖

∮
|𝑤 |=𝑅

1
𝑤𝑘+1

∏
𝑝≤𝑋

( ∞∑
𝑙=0

(
(𝑤/2𝑝𝜎 (log 𝑝)𝑚)2𝑙

(𝑙!)2

))
𝑑𝑤

=
𝑘!

2𝜋𝑖

∮
|𝑤 |=𝑅

1
𝑤𝑘+1

∏
𝑝≤𝑋

𝐼0

(
𝑤

𝑝𝜎 (log 𝑝)𝑚

)
𝑑𝑤,

which completes the proof of this lemma. □
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Lemma 3.3. Let 𝑚 be a fixed positive interger. For 𝑥 ≥ 3, 𝑋 ≥ 𝑥3, we have∏
𝑝≤𝑋

𝐼0

(
𝑥

√
𝑝(log 𝑝)𝑚

)
= exp ©­« 𝑥2

8𝑚(2 log 𝑥)2𝑚
©­«1 −

(
log 𝑥2

log 𝑋

)2𝑚

+𝑂
( log log 𝑥

log 𝑥

)ª®¬ª®¬ .
Proof. By the Taylor expansion of 𝐼0 and the prime number theorem, we find
that ∏

𝑥2
(log 𝑥)2𝑚

<𝑝≤𝑋

𝐼0

(
𝑥

√
𝑝(log 𝑝)𝑚

)

= exp
©­­­«

∑
𝑥2

(log 𝑥)2𝑚
<𝑝≤𝑋

(
𝑥2

4𝑝(log 𝑝)2𝑚 +𝑂𝑚

(
𝑥4

𝑝2(log 𝑝)4𝑚

))ª®®®¬
= exp ©­« 𝑥2

8𝑚(2 log 𝑥)2𝑚
©­«1 −

(
log 𝑥2

log 𝑋

)2𝑚

+𝑂𝑚

( log log 𝑥
log 𝑥

)ª®¬ª®¬ . (3.4)

On the other hand, by using the inequality 𝐼0(𝑥) ≤ exp(𝑥) and the prime
number theorem, it holds that

∏
𝑝≤ 𝑥2

(log 𝑥)2𝑚

𝐼0

(
𝑥

√
𝑝(log 𝑝)𝑚

)
≤ exp

©­­­«𝑥
∑

𝑝≤ 𝑥2
(log 𝑥)2𝑚

1
√
𝑝(log 𝑝)𝑚

ª®®®¬
≤ exp

(
𝑂𝑚

(
𝑥2

(log 𝑥)2𝑚+1

))
.

From this estimate and equation (3.4), we obtain this lemma. □

Lemma 3.4. Let 1
2 < 𝜎 < 1, 𝑚 ∈ Z≥0 be fixed. Then, for large 𝑥, 𝑋 ≥ 𝑥3, we have∏

𝑝≤𝑋
𝐼0

(
𝑥

𝑝𝜎 (log 𝑝)𝑚

)
= exp

(
𝜎

𝑚
𝜎𝐺 (𝜎)𝑥 1

𝜎

(log 𝑥) 𝑚
𝜎 +1

(
1 +𝑂

(1 + 𝑚 log log 𝑥
log 𝑥

)))
.

Proof. We take the numbers 𝑦0, 𝑦1 as satisfying the equations 𝑦𝜎0 (log 𝑦0)𝑚 =

𝑥1/2, 𝑦𝜎1 (log 𝑦1)𝑚 = 𝑥3/2, respectively. Then, it holds that 𝑦0 ≍𝑚 𝑥
1

2𝜎 (log 𝑥)−𝑚
𝜎 ,

𝑦1 ≍𝑚 𝑥
3

2𝜎 (log 𝑥)−𝑚
𝜎 , and the estimate 𝑋 ≫ 𝑦1 also holds. By the Taylor

expansion of 𝐼0 and the prime number theorem, we find that∑
𝑝≤𝑋

log 𝐼0
(

𝑥

𝑝𝜎 (log 𝑝)𝑚

)
=

∑
𝑝≤𝑦1

log 𝐼0
(

𝑥

𝑝𝜎 (log 𝑝)𝑚

)
+𝑂𝑚,𝜎

(
𝑥

3−2𝜎
2𝜎

(log 𝑥) 𝑚
𝜎 +1

)
.

65



By the inequality 𝐼0(𝑥) ≤ exp(𝑥), it holds that∑
𝑝≤𝑦0

log 𝐼0
(

𝑥

𝑝𝜎 (log 𝑝)𝑚

)
≤

∑
𝑝≤𝑦0

𝑥

𝑝𝜎 (log 𝑝)𝑚 ≪𝑚,𝜎
𝑥

1−𝜎
2𝜎

(log 𝑥) 𝑚
𝜎 +1 .

From these estimates, one has∑
𝑝≤𝑋

log 𝐼0
(

𝑥

𝑝𝜎 (log 𝑝)𝑚

)
(3.5)

=
∑

𝑦0<𝑝≤𝑦1

log 𝐼0
(

𝑥

𝑝𝜎 (log 𝑝)𝑚

)
+𝑂𝑚,𝜎

(
1

(log 𝑥) 𝑚
𝜎 +1

(
𝑥

3−2𝜎
2𝜎 + 𝑥 1+𝜎

2𝜎
))
.

By using partial summation and estimates of 𝐼0, we obtain∑
𝑦0<𝑝≤𝑦1

log 𝐼0
(

𝑥

𝑝𝜎 (log 𝑝)𝑚

)
(3.6)

= −
∫ 𝑦1+

𝑦0+
𝜋(𝜉)

(
𝑑

𝑑𝜉
log 𝐼0

(
𝑥

𝜉𝜎 (log 𝜉)𝑚

))
𝑑𝜉 +𝑂𝑚

(
𝑥

1+𝜎
2𝜎 + 𝑥 3−2𝜎

2𝜎

(log 𝑥) 𝑚
𝜎 +1

)
.

Applying the basic formula 𝜋(𝜉) =
∫ 𝜉

2
𝑑𝑢

log 𝑢 + 𝑂 (𝜉𝑒−𝑐
√

log 𝜉), we find that the
first term on the right hand side is equal to∫ 𝑦1

𝑦0

log 𝐼0
(

𝑥
𝜉𝜎 (log 𝜉)𝑚

)
log 𝜉 𝑑𝜉 +𝑂

(∫ 𝑦1

𝑦0

𝑒−𝑐
√

log 𝜉 log 𝐼0
(

𝑥

𝜉𝜎 (log 𝜉)𝑚

)
𝑑𝜉

)
. (3.7)

Note that we used the monotonicity of 𝐼0 in the above deforming. By the
estimate 𝐼0(𝑥) ≤ exp(𝑥) and the Taylor expansion of 𝐼0(𝑧), we find that∫ 𝑦1

𝑦0

𝑒−𝑐
√

log 𝜉 log 𝐼0
(

𝑥

𝜉𝜎 (log 𝜉)𝑚

)
𝑑𝜉

≪𝑚 𝑥

∫ 𝑥1/𝜎
(log 𝑥)𝑚/𝜎

𝑦0

𝑑𝜉

𝜉𝜎 (log 𝜉)2𝑚+3 + 𝑥2
∫ ∞

𝑥1/𝜎
(log 𝑥)𝑚/𝜎

𝑑𝜉

𝜉2𝜎 (log 𝜉)2𝑚+3

≪ 𝑥
1
𝜎

(log 𝑥) 𝑚
𝜎 +2 .

Finally, we consider the first term of (3.7). By making the change of variables
𝑢 = 𝑥

𝜉𝜎 (log 𝜉)𝑚 , hard but not difficult calculations can lead that the first term
of (3.7) is equal to

𝜎𝑚/𝜎𝑥1/𝜎
∫ 𝑥1/2

𝑥−1/2

(1 +𝑂𝑚 (𝑚 log log 𝑥
log 𝑥 )) log 𝐼0(𝑢)

𝑢1+ 1
𝜎 (log (𝑥/𝑢)) 𝑚

𝜎 +1
𝑑𝑢

= 𝜎𝑚/𝜎𝑥1/𝜎
∫ 𝑥1/2

𝑥−1/2

log 𝐼0(𝑢)
𝑢1+ 1

𝜎 (log (𝑥/𝑢)) 𝑚
𝜎 +1

𝑑𝑢 +𝑂𝑚,𝜎

(
𝑚𝑥1/𝜎 log log 𝑥

(log 𝑥) 𝑚
𝜎 +2

)
.
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Since 1
(log (𝑥/𝑢))𝑚/𝜎+1 = 1+𝑂𝑚 ( | log 𝑢 |/log 𝑥)

(log 𝑥)𝑚/𝜎+1 for 𝑥−1/2 ≤ 𝑢 ≤ 𝑥1/2, we find that∫ 𝑥1/2

𝑥−1/2

log 𝐼0(𝑢)
𝑢1+ 1

𝜎 (log (𝑥/𝑢)) 𝑚
𝜎 +1

𝑑𝑢

=
1

(log 𝑥) 𝑚
𝜎 +1

∫ 𝑥1/2

𝑥−1/2

log 𝐼0(𝑢)
𝑢1+ 1

𝜎

𝑑𝑢 +𝑂𝑚

(
1

(log 𝑥) 𝑚
𝜎 +2

∫ 𝑥1/2

𝑥−1/2

log 𝐼0(𝑢) | log 𝑢 |
𝑢1+ 1

𝜎

𝑑𝑢

)
.

Moreover, by 𝐼0(𝑥) ≤ exp(𝑥) and the Taylor expansion of 𝐼0, it holds that∫ 𝑥1/2

𝑥−1/2

log 𝐼0(𝑢)
𝑢1+ 1

𝜎

𝑑𝑢 =
∫ ∞

0

log 𝐼0(𝑢)
𝑢1+ 1

𝜎

𝑑𝑢 +𝑂𝜎

(
𝑥

1−2𝜎
2𝜎 + 𝑥 𝜎−1

2𝜎
)
,

and that ∫ 𝑥1/2

𝑥−1/2

log 𝐼0(𝑢) | log 𝑢 |
𝑢1+ 1

𝜎

𝑑𝑢 ≪𝜎 1

for 1
2 < 𝜎 < 1. From the above calculations, equation (3.6) is

=
𝜎

𝑚
𝜎𝐺 (𝜎)𝑥 1

𝜎

(log 𝑥) 𝑚
𝜎 +1

(
1 +𝑂

(1 + 𝑚 log log 𝑥
log 𝑥

))
.

Hence, by estimates (3.5), (3.6), (3.7), we obtain this lemma. □

Lemma 3.5. Let 𝑚 ∈ Z≥0, 1
2 ≤ 𝜎 < 1 be fixed with (𝑚, 𝜎) ≠ (0, 1/2). Let 𝑇 , 𝑊

be large numbers. Put 𝜅(𝜎) = 0 if 𝜎 = 1/2, 𝜅(𝜎) = 𝜎 otherwise. Define the set
A = A(𝑇, 𝑋,𝑊 ;𝜎, 𝑚) by

A =

{
𝑡 ∈ [𝑇, 2𝑇] :

���� ∑
𝑝≤𝑋

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

���� ≤ 𝑊}
. (3.8)

Then, there exists a small positive constant 𝑏1 = 𝑏1(𝜎, 𝑚) ≤ 1 such that for any

3 ≤ 𝑋 ≤ 𝑇1/𝑊
1

1−𝜎 (log𝑊)
𝑚+𝜅 (𝜎)

1−𝜎 ,
1
𝑇

meas( [𝑇, 2𝑇] \ A) ≪ exp
(
−𝑏1𝑊

1
1−𝜎 (log𝑊)

𝑚+𝜅 (𝜎)
1−𝜎

)
.

Proof. Using the prime number theorem, we can obtain∑
𝑝≤𝑘 (log 𝑘)2−𝜅 (𝜎)

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚 ≪𝑚

𝑘1−𝜎

(log 𝑘)𝑚+𝜅(𝜎)
.

By Lemma 2.8, we have

1
𝑇

∫ 2𝑇

𝑇

���� ∑
𝑘 (log 𝑘)2−𝜅 (𝜎)<𝑝≤𝑋

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

����2𝑘𝑑𝑡
≪ 𝑘! ©­«

∑
𝑝>𝑘 (log 𝑘)2−𝜅 (𝜎)

1
𝑝2𝜎 (log 𝑝)2𝑚

ª®¬
𝑘

≤
(
𝐶1

𝑘1−𝜎

(log 𝑘)𝑚+𝜅(𝜎)

)2𝑘
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for 𝑋 𝑘 ≤ 𝑇1/2, where 𝐶1 = 𝐶1(𝜎, 𝑚) is a positive constant. Therefore, when
𝑋 𝑘 ≤ 𝑇1/2 it holds that

1
𝑇

∫ 2𝑇

𝑇

���� ∑
𝑝≤𝑋

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

����2𝑘𝑑𝑡 ≤ (
𝐶2

𝑘1−𝜎

(log 𝑘)𝑚+𝜅(𝜎)

)2𝑘
(3.9)

for some constant 𝐶2 = 𝐶2(𝜎, 𝑚) > 0. Hence, we have

1
𝑇

meas( [𝑇, 2𝑇] \ A) ≤
(
𝐶2

𝑘1−𝜎

𝑊 (log 𝑘)𝑚+𝜅(𝜎)

)2𝑘
.

Choosing 𝑘 = [𝑐𝑊 1
1−𝜎 (log𝑊)

𝑚+𝜅 (𝜎)
1−𝜎 ] with 𝑐 = 𝑐(𝜎, 𝑚) a suitably small con-

stant, we obtain this lemma. □

Lemma 3.6. Assume the same situation as in Lemma 3.5. There exists a small
positive constant 𝑏2 = 𝑏2(𝜎, 𝑚) such that for 3 ≤ 𝑥 ≤ 𝑏2𝑊

𝜎
1−𝜎 (log𝑊)

𝑚+𝜅 (𝜎)
1−𝜎 ,

𝑥3 ≤ 𝑋 ≤ 𝑇1/𝑊
1

1−𝜎 (log𝑊)
𝑚+𝜅 (𝜎)

1−𝜎 , we have

1
𝑇

∫
A

exp
(
𝑥 Re 𝑒−𝑖𝜃

∑
𝑝≤𝑋

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

)
𝑑𝑡

=
∏
𝑝≤𝑋

𝐼0

(
𝑥

𝑝𝜎 (log 𝑝)𝑚

)
+𝑂

(
exp (−𝑥𝑊)

)
.

Proof. By the definition of A and the Stirling formula, we have∫
𝐴

exp
(
𝑥 Re 𝑒−𝑖𝜃

∑
𝑝≤𝑋

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

)
𝑑𝑡 (3.10)

=
∑
𝑘≤𝑌

𝑥𝑘

𝑘!

∫
𝐴

(
Re

∑
𝑝≤𝑋

𝑒−𝑖𝜃

𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

) 𝑘
𝑑𝑡 +𝑂

(
𝑇

∑
𝑘>𝑌

1
√
𝑘

(
𝑒𝑥𝑊

𝑘

) 𝑘 )
,

where 𝑌 = 𝑒2𝑥𝑊 . Here, an easy calculation for geometric sequence shows
that the above 𝑂-term is ≪ 𝑇 exp

(
−𝑒2𝑥𝑊

)
. By using the Cauchy-Schwarz

inequality, we find that∫
𝐴

(
Re

∑
𝑝≤𝑋

𝑒−𝑖𝜃

𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

) 𝑘
𝑑𝑡 =

∫ 2𝑇

𝑇

(
Re

∑
𝑝≤𝑋

𝑒−𝑖𝜃

𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

) 𝑘
𝑑𝑡+

+𝑂 ©­«(meas([𝑇, 2𝑇] \ A))1/2
(∫ 2𝑇

𝑇

���� ∑
𝑝≤𝑋

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

����2𝑘𝑑𝑡)1/2ª®¬ .
When 𝑏2 ≤ 𝑒−2, from estimate (3.9) and Lemma 3.5, this 𝑂-term is

≪ 𝑇 exp
(
−𝑏1

2 𝑊
1

1−𝜎 (log𝑊)
𝑚+𝜅 (𝜎)

1−𝜎

) (
𝐶2

𝑘1−𝜎

(log 𝑘)𝑚+𝜅(𝜎)

) 𝑘
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for 𝑘 ≤ 𝑌 , where 𝐶2 = 𝐶2(𝜎, 𝑚) is a positive constant. Also, it holds that∑
0≤𝑘≤𝑌

𝑥𝑘

𝑘!

(
𝐶2

𝑘1−𝜎

(log 𝑘)𝑚+𝜅(𝜎)

) 𝑘
≤

∞∑
𝑘=0

1
𝑘!

(
𝐶2

𝑥𝑌1−𝜎

(log𝑌 )𝑚+𝜅(𝜎)

) 𝑘
≤ exp

(
2𝑏2−𝜎

2 𝐶2𝑊
1

1−𝜎 (log𝑊)
𝑚+𝜅 (𝜎)

1−𝜎
)

for any sufficiently large 𝑊 . Therefore, choosing 𝑏2 suitably small, we find
that the right hand side is ≤ exp

(
𝑏1
6 𝑊

1
1−𝜎 (log𝑊)

𝑚+𝜅 (𝜎)
1−𝜎

)
. Hence, we obtain

∑
𝑘≤𝑌

𝑥𝑘

𝑘!

∫
𝐴

(
Re

∑
𝑝≤𝑋

𝑒−𝑖𝜃

𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

) 𝑘
𝑑𝑡

=
∑
𝑘≤𝑌

𝑥𝑘

𝑘!

∫ 2𝑇

𝑇

(
Re

∑
𝑝≤𝑋

𝑒−𝑖𝜃

𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

) 𝑘
𝑑𝑡+

+𝑂
(
𝑇 exp

(
−𝑏1

3 𝑊
1

1−𝜎 (log𝑊)
𝑚+𝜅 (𝜎)

1−𝜎

))
.

From these estimates, the left hand side of (3.10) is equal to∑
𝑘≤𝑌

𝑥𝑘

𝑘!

∫ 2𝑇

𝑇

(
Re

∑
𝑝≤𝑋

𝑒−𝑖𝜃

𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

) 𝑘
𝑑𝑡 +𝑂

(
𝑇 exp

(
−𝑒2𝑥𝑊

))
(3.11)

for any sufficiently large 𝑊 when 𝑏2 is suitably small. By Lemma 3.2, this
main term is equal to

𝑇

2𝜋𝑖

∮
|𝑤 |=𝑒𝑥

∑
𝑘≤𝑌

𝑥𝑘

𝑤𝑘+1

∏
𝑝≤𝑋

𝐼0

(
𝑤

𝑝𝜎 (log 𝑝)𝑚

)
𝑑𝑤. (3.12)

By Lemmas 3.3 and 3.4, there exists a constant 𝐶4 = 𝐶4(𝜎, 𝑚) > 0 such that�����∏
𝑝≤𝑋

𝐼0(𝑤/𝑝𝜎 (log 𝑝)𝑚)
����� ≤ 𝐼0(𝑅/𝑝𝜎 (log 𝑝)𝑚) ≤ exp

(
𝐶4

𝑥
1
𝜎

(log 𝑥)
𝑚+𝜅 (𝜎)

𝜎

)
.

Choosing 𝑏2 as a suitably small constant, the right hand side is ≪ exp(𝑥𝑊).
Moreover, since we see that�����∑

𝑘>𝑌

𝑥𝑘

𝑤𝑘+1

����� ≪ exp
(
−𝑒2𝑥𝑊

)
,

it holds that �����∑
𝑘>𝑌

𝑥𝑘

𝑤𝑘+1

∏
𝑝≤𝑋

𝐼0

(
𝑤

√
𝑝(log 𝑝)𝑚

)����� ≤ exp (−𝑥𝑊)
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for |𝑤 | = 𝑒𝑥. Hence, (3.12) is equal to

𝑇

2𝜋𝑖

∮
|𝑤 |=𝑒𝑥

∑
𝑘≤𝑌

1
𝑤 − 𝑥

∏
𝑝≤𝑋

𝐼0

(
𝑤

𝑝𝜎 (log 𝑝)𝑚

)
𝑑𝑤 +𝑂

(
𝑇 exp (−𝑥𝑊)

)
.

Thus, by this formula and equation (3.11) and using Cauchy’s integral for-
mula, we obtain

1
𝑇

∫
𝐴

exp
(
𝑥 Re 𝑒−𝑖𝜃

∑
𝑝≤𝑋

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

)
𝑑𝑡

=
∏
𝑝≤𝑋

𝐼0

(
𝑥

𝑝𝜎 (log 𝑝)𝑚

)
+𝑂

(
exp (−𝑥𝑊)

)
,

which completes the proof of this lemma. □

Lemma 3.7. Let 𝑚 ∈ Z≥1, 1
2 ≤ 𝜎 < 1 be fixed. Let 𝑇 be large, 𝑋 ≥ 3, and Δ > 0.

Define the set B = B(𝑇, 𝑋,Δ;𝜎) by

B =

{
𝑡 ∈ [𝑇, 2𝑇] :

�����𝜂̃𝑚 (𝜎 + 𝑖𝑡) −
∑

2≤𝑛≤𝑋

Λ(𝑛)
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1

����� ≤ Δ𝑋1/2−𝜎
}
.

Then, for 0 < Δ ≤
(

log𝑇
(log 𝑋)2(𝑚+1)

) 𝑚
2𝑚+1 , we have

1
𝑇

meas([𝑇, 2𝑇] \ B) ≤ exp
(
−𝑏3Δ

2(log 𝑋)2𝑚
)
,

and for
(

log𝑇
(log 𝑋)2(𝑚+1)

) 𝑚
2𝑚+1 ≤ Δ ≤ log𝑇

(log 𝑋)𝑚+1 , we have

1
𝑇

meas([𝑇, 2𝑇] \ B) ≤ exp
(
−𝑏4(Δ(log𝑇)𝑚)1/(𝑚+1)

)
.

Here, 𝑏3, 𝑏4 are absolute positive constants.

Proof. By Lemma 2.1 and Theorem 2.6, we have

1
𝑇

∫ 2𝑇

𝑇

�����𝜂̃𝑚 (𝜎 + 𝑖𝑡) −
∑

2≤𝑛≤𝑋

Λ(𝑛)
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1

�����2𝑘 𝑑𝑡
≪ 𝐶𝑘 𝑘! 𝑋 𝑘 (1−2𝜎)

(log 𝑋)2𝑘𝑚 + 𝐶𝑘 𝑘2𝑘 (𝑚+1) 𝑇
1−2𝜎
135

(log𝑇)2𝑘𝑚

for 3 ≤ 𝑋 ≤ 𝑇
1

135𝑘 , where 𝐶 is an absolute positive constant. Therefore, we
obtain

1
𝑇

meas([𝑇, 2𝑇] \ B) ≪
(

𝐶𝑘1/2

Δ(log 𝑋)𝑚

)2𝑘

+
(
𝐶𝑘𝑚+1

Δ(log𝑇)𝑚

)2𝑘
.
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When Δ ≤
(

log𝑇
(log 𝑋)2(𝑚+1)

) 𝑚
2𝑚+1 , putting 𝑘 = [𝑐Δ2(log 𝑋)2𝑚] + 1 with 𝑐 a suitably

small constant, we have
1
𝑇

meas([𝑇, 2𝑇] \ B) ≤ exp
(
−𝑏3Δ

2(log 𝑋)2𝑚
)

for some absolute constant 𝑏3 > 0. When the inequality
(

log𝑇
(log 𝑋)2(𝑚+1)

) 𝑚
2𝑚+1 ≤

Δ ≤ log𝑇
(log 𝑋)𝑚+1 holds, by choosing 𝑘 =

[
𝑐(Δ(log𝑇)𝑚) 1

𝑚+1

]
+ 1 with 𝑐 a suitably

small constant, we have
1
𝑇

meas([𝑇, 2𝑇] \ B) ≤ exp
(
−𝑏4(Δ(log𝑇)𝑚)1/(𝑚+1)

)
for some absolute constant 𝑏4 > 0. Thus, we obtain this lemma. □

3.3 Proofs of Proposition 3.1 and Theorem 3.1

In this section, we prove Proposition 3.1 and Theorem 3.1.

Proof of Proposition 3.1. Let𝑚 ∈ Z≥1, 𝜃 ∈ R be fixed. Let𝑇 ,𝑉 be large numbers

with 𝑉 ≤ 𝑎2

√
log𝑇

(log log𝑇)𝑚+ 1
2
, and let 𝑋 be a real parameter with 𝑉4 ≤ 𝑋 ≤

𝑇𝑎3/𝑉2 (log𝑉)2𝑚 . Here, 𝑎2 = 𝑎2(𝑚), 𝑎3 = 𝑎3(𝑚) are positive constants to be
chosen later. Moreover, let 𝑊 > 0, 3 ≤ 𝑥 ≤ 𝑏2𝑊 (log𝑊)2𝑚 be numbers to be
chosen later, where 𝑏2 = 𝑏2(1/2, 𝑚) is the same constant as in Lemma 3.6.
Put

𝒮∗(𝑇,𝑉) :=
{
𝑡 ∈ A : Re 𝑒−𝑖𝜃

∑
𝑝≤𝑋

1
𝑝1/2+𝑖𝑡 (log 𝑝)𝑚

> 𝑉

}
.

Here, the set A = A(𝑇, 𝑋,𝑊 ; 1/2, 𝑚) is defined by (3.8). Then, for 𝑥 > 0, we
have∫

𝐴
exp

(
𝑥 Re 𝑒−𝑖𝜃

∑
𝑝≤𝑋

1
𝑝1/2+𝑖𝑡 (log 𝑝)𝑚

)
𝑑𝑡 = 𝑥

∫ ∞

−∞
𝑒𝑥𝑣 meas(𝒮∗(𝑇, 𝑣))𝑑𝑣.

By this equation and Lemma 3.6, it holds that

1
𝑇

∫ ∞

−∞
𝑒𝑥𝑣 meas(𝒮∗(𝑇, 𝑣))𝑑𝑣 = 1

𝑥

∏
𝑝≤𝑋

𝐼0

(
𝑥

𝑝𝜎 (log 𝑝)𝑚

)
+𝑂

(
1
𝑥

exp (−𝑥𝑊)
)

when 𝑥3 ≤ 𝑋 ≤ 𝑇1/𝑊2 (log𝑊)2𝑚 . Therefore, by Lemma 3.3, we obtain

1
𝑇

∫ ∞

−∞
𝑒𝑥𝑣 meas(𝒮∗(𝑇, 𝑣))𝑑𝑣 (3.13)

= exp ©­« 𝑥2

8𝑚(2 log 𝑥)2𝑚
©­«1 −

(
log 𝑥2

log 𝑋

)2𝑚

+𝑂𝑚

( log log 𝑥
log 𝑥

)ª®¬ª®¬
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for 𝑥3 ≤ 𝑋 ≤ 𝑇1/𝑊2 (log𝑊)2𝑚 . Now, we decide the parameters 𝑥,𝑊 as satisfying
the equations

𝑉 =
2𝑥

8𝑚(2 log 𝑥)2𝑚
©­«1 −

(
log 𝑥2

log 𝑋

)2𝑚ª®¬ ,
and 𝑊 = 8𝑚4𝑚𝐾1𝑉 , respectively. The constant 𝐾1 = 𝐾1(𝑚) is defined as
𝐾1 = max{𝑏−1

1 , 𝑏
−1
2 }, and 𝑏1 is the same constant as in Lemma 3.5. Then, this

𝑥 satisfies

𝑥 =
4𝑚4𝑚

1 − (log𝑉2/log 𝑋)2𝑚𝑉 (log𝑉)2𝑚 (
1 +𝑂𝑚 (log log𝑉/log𝑉)

)
,

and hence we can take out 𝑥 from the range 3 ≤ 𝑥 ≤ 𝑏2𝑊 (log𝑊)2𝑚 for
any large 𝑉 . Also, when 𝑎2, 𝑎3 are suitably small, the inequalities 𝑥3 ≤
𝑇1/𝑊2 (log𝑊)2𝑚 and 𝑥3 ≤ 𝑋 ≤ 𝑇1/𝑊2 (log𝑊)2𝑚 hold for any large 𝑉 . Moreover,
by using Lemma 3.5, meas( [𝑇, 2𝑇] \ A) ≤ 𝑇 exp

(
−8𝑚4𝑚𝑉2(log𝑉)2𝑚 )

holds.
Therefore, we obtain

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : Re 𝑒−𝑖𝜃

∑
𝑝≤𝑋

1
𝑝1/2+𝑖𝑡 (log 𝑝)𝑚

> 𝑉

}
=

1
𝑇

meas(𝒮∗(𝑇,𝑉)) +𝑂
(
1
𝑇

meas( [𝑇, 2𝑇] \ A)
)

=
1
𝑇

meas(𝒮∗(𝑇,𝑉)) +𝑂
(
exp

(
−8𝑚4𝑚𝑉2(log𝑉)2𝑚

))
. (3.14)

Put 𝜀 = 𝐾2
√

log log 𝑥/log 𝑥 with 𝐾2 = 𝐾2(𝑚) a sufficiently large constant.
Then, by using equation (3.13), we find that∫ 𝑉 (1−𝜀)

−∞
𝑒𝑥𝑣 meas(𝒮∗(𝑇, 𝑣))𝑑𝑣 ≤ 𝑒𝜀𝑥𝑉 (1−𝜀)

∫ ∞

−∞
𝑒𝑥(1−𝜀)𝑣 meas(𝒮∗(𝑇, 𝑣))𝑑𝑣

= 𝑇 exp ©­« 𝑥2

8𝑚(2 log 𝑥)2𝑚
©­«1 −

(
log 𝑥2

log 𝑋

)2𝑚

− 𝜀2

3 +𝑂𝑚

( log log 𝑥
log 𝑥

)ª®¬ª®¬
≤ 1

3

∫ ∞

−∞
𝑒𝑥𝑣 meas(𝒮∗(𝑇, 𝑣))𝑑𝑣.

Similarly, we find that∫ ∞

𝑉 (1+𝜀)
𝑒𝑥𝑣 meas(𝒮∗(𝑇, 𝑣))𝑑𝑣 ≤ 𝑒−𝜀𝑥𝑉 (1+𝜀)

∫ ∞

−∞
𝑒𝑥(1+𝜀)𝑣 meas(𝒮∗(𝑇, 𝑣))𝑑𝑣

= 𝑇 exp ©­« 𝑥2

8𝑚(2 log 𝑥)2𝑚
©­«1 −

(
log 𝑥2

log 𝑋

)2𝑚

− 𝜀2

3 +𝑂𝑚

( log log 𝑥
log 𝑥

)ª®¬ª®¬
≤ 1

3

∫ ∞

−∞
𝑒𝑥𝑣 meas(𝒮∗(𝑇, 𝑣))𝑑𝑣.
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Hence, we have

1
𝑇

∫ 𝑉 (1+𝜀)

𝑉 (1−𝜀)
𝑒𝑥𝑣 meas(𝒮∗(𝑇, 𝑣))𝑑𝑣

= exp ©­« 𝑥2

8𝑚(2 log 𝑥)2𝑚
©­«1 −

(
log 𝑥2

log 𝑋

)2𝑚

+𝑂𝑚

( log log 𝑥
log 𝑥

)ª®¬ª®¬ .
Moreover, since meas(𝒮∗(𝑇, 𝑣)) is a nonincreasing function with respect to
𝑣 and

∫ 𝑉 (1+𝜀)
𝑉 (1−𝜀) 𝑒

𝑥𝑣𝑑𝑣 = exp(𝑥𝑉 (1 +𝑂 (𝜀))), it holds that

1
𝑇

meas(𝒮∗(𝑇,𝑉 (1 + 𝜀)))

≤ exp ©­«− 𝑥2

8𝑚(2 log 𝑥)2𝑚
©­«1 −

(
log 𝑥2

log 𝑋

)2𝑚

+𝑂𝑚

(√
log log 𝑥

log 𝑥

)ª®¬ª®¬
≤ 1
𝑇

meas(𝒮∗(𝑇,𝑉 (1 − 𝜀))).

In particular, since 𝑥 satisfies

𝑥 = 4𝑚𝑉 (2 log𝑉)2𝑚
{(

1 + (log 𝑥2/log 𝑋)2𝑚
)−1

+𝑂𝑚 (log log𝑉/log𝑉)
}
,

the second term of the above inequalities is equal to

exp
©­­«−

2𝑚4𝑚

1 −
(

log𝑉2

log 𝑋

)𝑚𝑉2(log𝑉)2𝑚

(
1 +𝑂𝑚

(√
log log𝑉

log𝑉

))ª®®¬ .
Additionally, if we change the above 𝑉 to 𝑉 (1 + 𝑂 (𝜀)), the above form does
not change. Hence, we obtain

1
𝑇

meas(𝒮∗(𝑇,𝑉)) = exp
©­­«−

2𝑚4𝑚𝑉2(log𝑉)2𝑚

1 −
(

log𝑉2

log 𝑋

)𝑚 (
1 +𝑂𝑚

(√
log log𝑉

log𝑉

))ª®®¬ .
By this equation and (3.14), we complete the proof of Proposition 3.1. □

Proof of Theorem 3.1. Let 𝑇 , 𝑉 be sufficiently large parameters satisfying 𝑉 ≤

𝑎1

( log𝑇
(log log𝑇)2𝑚+2

) 𝑚
2𝑚+1

, where 𝑎1 = 𝑎1(𝑚) is a suitably small constant to be

chosen later. Let 𝑎3, 𝑏4 be the same constants as in Proposition 3.1 and
Lemma 3.7. Put 𝑋 = 𝑇 𝑏5/𝑉2 (log𝑉)2𝑚 with 𝑏5 = min{𝑎3, 𝑏4(4𝑚4𝑚)−1}. Note
that this 𝑋 satisfies the inequality 𝑋 ≥ exp

(
(log𝑇) 1

2𝑚+1−𝜀
)
≥ 𝑉4 when 𝑇

is large. Then, applying Lemma 3.7 as Δ = log𝑇
(log 𝑋)𝑚+1 = 𝑉2𝑚+2 (log𝑉)2𝑚(𝑚+1)

𝑏𝑚+1
5 (log𝑇)𝑚 ,
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we find that there exists a set B ⊂ [𝑇, 2𝑇] such that meas([𝑇, 2𝑇] \ B) ≤
𝑇 exp

(
−4𝑚4𝑚𝑉2(log𝑉)2𝑚 )

, and for all 𝑡 ∈ B�����𝜂̃𝑚 (1/2 + 𝑖𝑡) −
∑
𝑝≤𝑋

1
𝑝1/2+𝑖𝑡 (log 𝑝)𝑚

����� ≤
(
𝑉2𝑚+1(log𝑉)2𝑚(𝑚+1)

𝑏𝑚+1
6 (log𝑇)𝑚

+ 𝑐

𝑉

)
𝑉

=: 𝛿𝑚𝑉,

say. Here the constant 𝑐 indicates the value
∑
𝑝𝑘 ,𝑘≥2

1
𝑝𝑘/2 (log 𝑝𝑘 )𝑚 . Now, we

decide the number 𝑎1 such that 𝛿𝑚 ≤ 1/2. Then, it holds that

meas
{
𝑡 ∈ B : Re 𝑒−𝑖𝜃

∑
𝑝≤𝑋

1
𝑝1/2+𝑖𝑡 (log 𝑝)𝑚

> 𝑉 (1 + 𝛿𝑚)
}

≤ meas
{
𝑡 ∈ B : Re 𝑒−𝑖𝜃 𝜂̃𝑚 (1/2 + 𝑖𝑡) > 𝑉

}
≤ meas

{
𝑡 ∈ B : Re 𝑒−𝑖𝜃

∑
𝑝≤𝑋

1
𝑝1/2+𝑖𝑡 (log 𝑝)𝑚

> 𝑉 (1 − 𝛿𝑚)
}
.

Hence, by these inequalities and Proposition 3.1, we have
1
𝑇

meas
{
𝑡 ∈ B : Re 𝑒−𝑖𝜃 𝜂̃𝑚 (1/2 + 𝑖𝑡) > 𝑉

}
=

exp
(
−2𝑚4𝑚𝑉2(log𝑉)2𝑚

(
1 +𝑂𝑚

(
𝑉2𝑚+1(log𝑉)2𝑚(𝑚+1)

(log𝑇)𝑚 +

√
log log𝑉

log𝑉

)))
.

Thus, by this equation and meas([𝑇, 2𝑇] \ B) ≤ 𝑇 exp
(
−4𝑚4𝑚𝑉2(log𝑉)2𝑚 )

,
we complete the proof of Theorem 3.1. □

3.4 Proofs of Proposition 3.2 and Theorem 3.2

Some parts in the proof of Proposition 3.2 are written briefly because many
points are similar to the proof of Proposition 3.1.

Proof of Proposition 3.2. Let 𝑚 ∈ Z≥0, 1
2 < 𝜎 < 1 be fixed. Let 𝑇 , 𝑉 be

large numbers with 𝑉 ≤ 𝑎5
(log𝑇)1−𝜎

(log log𝑇)𝑚+1 , and let 𝑋 be a real parameter with

𝑉
4

1−𝜎 ≤ 𝑋 ≤ 𝑇𝑎6/𝑉
1

1−𝜎 (log𝑉)
𝑚+𝜎
1−𝜎 . Here 𝑎5 = 𝑎5(𝜎, 𝑚), 𝑎6 = 𝑎6(𝜎, 𝑚) are positive

constants to be chosen later. Moreover, let𝑊 > 0, 3 ≤ 𝑥 ≤ 𝑏2𝑊
𝜎

1−𝜎 (log𝑊) 𝑚+𝜎
1−𝜎

be numbers to be chosen later. Here, 𝑏2 = 𝑏2(𝜎, 𝑚) is the same constant as
in Lemma 3.6. Put

𝒮∗
𝜎 (𝑇,𝑉) :=

{
𝑡 ∈ A : Re 𝑒−𝑖𝜃

∑
𝑝≤𝑋

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚 > 𝑉

}
,

where A = A(𝑇, 𝑋,𝑉 ;𝜎, 𝑚) is the set defined by (3.8). Using Lemmas 3.4,
3.6, and the equation∫

A
exp

(
𝑥 Re 𝑒−𝑖𝜃

∑
𝑝≤𝑋

1
𝑝𝜎 (log 𝑝)𝑚

)
= 𝑥

∫ ∞

−∞
𝑒𝑥𝑣 meas(𝒮∗

𝜎 (𝑇, 𝑣))𝑑𝑣,
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we obtain
1
𝑇

∫ ∞

−∞
𝑒𝑥𝑣 meas(𝒮∗

𝜎 (𝑇, 𝑣))𝑑𝑣 (3.15)

= exp
(
𝜎

𝑚
𝜎𝐺 (𝜎)𝑥 1

𝜎

(log 𝑥) 𝑚
𝜎 +1

(
1 +𝑂

(1 + 𝑚 log log 𝑥
log 𝑥

)))
for 𝑥3 ≤ 𝑋 ≤ 𝑇1/𝑊

1
1−𝜎 (log𝑊)

𝑚+𝜎
1−𝜎 . Here, we decide the parameters 𝑥, 𝑊 as the

numbers satisfying the equations

𝑉 =
𝜎

𝑚
𝜎𝐺 (𝜎)𝑥 1

𝜎−1

𝜎(log 𝑥) 𝑚
𝜎 +1 ,

and 𝑊 =
(
2 𝐴𝑚 (𝜎)

1−𝜎 𝐾3
) 1−𝜎

𝜎
𝑉 , respectively. The constant 𝐾3 = 𝐾3(𝜎, 𝑚) is de-

fined as 𝐾3 = max{𝑏−1
1 , 𝑏

−1
2 }, where 𝑏1 is the same constant as in Lemma 3.5.

Then, this 𝑥 satisfies 𝑥 = 𝐴𝑚 (𝜎)
1−𝜎 𝑉

𝜎
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎 (1 + 𝑂 (log log𝑉/log𝑉)) , and
so we can pick up this 𝑥 from the range 3 ≤ 𝑥 ≤ 𝑏2𝑊

𝜎
1−𝜎 (log𝑊) 𝑚+𝜎

1−𝜎 for any
large 𝑉 . Also, choosing 𝑎5, 𝑎6 as suitably small constants, we find that the
inequalities 𝑥3 ≤ 𝑇1/𝑊

1
1−𝜎 (log𝑊)

𝑚+𝜎
1−𝜎 and 𝑥3 ≤ 𝑋 ≤ 𝑇1/𝑊

1
1−𝜎 (log𝑊)

𝑚+𝜎
1−𝜎 hold for

any large 𝑉 . Moreover, by Lemma 3.5, the inequality meas( [𝑇, 2𝑇] \ A) ≤
𝑇 exp

(
−2𝐴𝑚 (𝜎)𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎

)
holds.

Putting 𝜀 = 𝐾4

√
1+𝑚 log log 𝑥

log 𝑥 with 𝐾4 = 𝐾4(𝜎, 𝑚) a suitably large constant
and using equation (3.15), we have∫ 𝑉 (1−𝜀)

−∞
𝑒𝑥𝑣 meas(𝒮∗

𝜎 (𝑇, 𝑣; 𝑋))𝑑𝑣 ≤ 1
3

∫ ∞

−∞
𝑒𝑥𝑣 meas(𝒮∗

𝜎 (𝑇, 𝑣; 𝑋))𝑑𝑣,

and ∫ ∞

𝑉 (1+𝜀)
𝑒𝑥𝑣 meas(𝒮∗

𝜎 (𝑇, 𝑣; 𝑋))𝑑𝑣 ≤ 1
3

∫ ∞

−∞
𝑒𝑥𝑣 meas(𝒮∗

𝜎 (𝑇, 𝑣; 𝑋))𝑑𝑣.

Therefore, we obtain
1
𝑇

∫ (1+𝜀)𝑉

(1−𝜀)𝑉
𝑒𝑥𝑣 meas(𝒮∗

𝜎 (𝑇, 𝑣))𝑑𝑣

= exp
(
𝜎

𝑚
𝜎𝐺 (𝜎)𝑥 1

𝜎

(log 𝑥) 𝑚
𝜎 +1

(
1 +𝑂

(1 + 𝑚 log log 𝑥
log 𝑥

)))
.

Moreover, since meas(𝒮∗(𝑇, 𝑣)) is a nonincreasing function, and the equation∫ 𝑉 (1+𝜀)
𝑉 (1−𝜀) 𝑒

𝑥𝑣𝑑𝑣 = exp(𝑥𝑉 (1 +𝑂 (𝜀))) holds, we have

1
𝑇

meas(𝒮∗(𝑇,𝑉 (1 + 𝜀); 𝑋))

≤ exp
(
−1 − 𝜎

𝜎

𝜎
𝑚
𝜎𝐺 (𝜎)𝑥 1

𝜎

(log 𝑥) 𝑚
𝜎 +1 (1 +𝑂 (𝜀))

)
≤ 1
𝑇

meas(𝒮∗(𝑇,𝑉 (1 − 𝜀); 𝑋)).
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In particular, as 𝑥 is the solution of equation (3.15), the above second term is
equal to

exp
(
−𝐴𝑚 (𝜎)𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎 (1 + 𝑅)
)
,

where

𝑅 ≪

√
1 + 𝑚 log log 𝑥

log 𝑥 ≪

√
1 + 𝑚 log log𝑉

log𝑉 .

Additionally, if we change the above 𝑉 to 𝑉 (1 + 𝑂 (𝜀)), the above form does
not change. Thus, we obtain

1
𝑇

meas(𝒮∗(𝑇,𝑉 ; 𝑋))

= exp
(
−𝐴𝑚 (𝜎)𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎

(
1 +𝑂

(√
1 + 𝑚 log log𝑉

log𝑉

)))
.

By this equation and meas([𝑇, 2𝑇] \ A) ≤ 𝑇 exp
(
−2𝐴𝑚 (𝜎)𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎

)
,

we obtain Proposition 3.2. □

Proof of Theorem 3.2. We show only the case 𝑚 ≥ 1 because the case 𝑚 = 0
can be shown similarly by use of Lemma 2.2 in [36] instead of Lemma 3.7.

Let 𝑚 ∈ Z≥1, 1/2 < 𝜎 < 1. Let 𝑎5, 𝑎6, and 𝑏4 be the same con-
stants as in Proposition 3.2 and Lemma 3.7. Let 𝑇 , 𝑉 be sufficiently large
positive numbers satisfying the inequality 𝑉 ≤ 𝑎4

(log𝑇)1−𝜎
(log log𝑇)𝑚+1 , where 𝑎4 =

𝑎4(𝜎, 𝑚) is a suitably small constant less than 𝑎5 to be chosen later. Put
𝑋 = 𝑇 𝑏6/𝑉

1
1−𝜎 (log𝑉)

𝑚+𝜎
1−𝜎 with 𝑏6 = min{𝑎6, 𝑏4(2𝐴𝑚 (𝜎))−1}. Then we decide

the number 𝑎4 as satisfying 𝑋𝜎−1/2 ≥ (log𝑇)6. Applying Lemma 3.7 as

Δ = log𝑇
(log 𝑋)𝑚+1 =

(
𝑉

1
1−𝜎 (log𝑉)

𝑚+𝜎
1−𝜎

)𝑚+1

𝑏𝑚+1
6 (log𝑇)𝑚 , we find that there exists a set B ⊂ [𝑇, 2𝑇]

such that meas( [𝑇, 2𝑇] \ B) ≤ 𝑇 exp
(
−2𝐴𝑚 (𝜎)𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎

)
, and for all

𝑡 ∈ B �����𝜂̃𝑚 (𝜎 + 𝑖𝑡) −
∑
𝑝≤𝑋

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

����� ≤
(
𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎

)𝑚+1

𝑋𝜎−1/2𝑏𝑚+1
6 (log𝑇)𝑚

+ 𝑐.

Here, 𝑐 =
∑
𝑝𝑘 ,𝑘≥2

Λ(𝑝𝑘 )
𝑝𝑘𝜎 (log 𝑝𝑘 )𝑚+1 . Therefore, the right hand side is ≤ 𝐾4 with

𝐾4 = 𝐾4(𝑚, 𝜎) a positive constant. Then, it holds that

meas
{
𝑡 ∈ B : Re 𝑒−𝑖𝜃

∑
𝑝≤𝑋

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚 > 𝑉 (1 + 𝐾4𝑉

−1)
}

≤ meas
{
𝑡 ∈ B : Re 𝑒−𝑖𝜃 𝜂̃𝑚 (𝜎 + 𝑖𝑡) > 𝑉

}
≤ meas

{
𝑡 ∈ B : Re 𝑒−𝑖𝜃

∑
𝑝≤𝑋

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚 > 𝑉 (1 − 𝐾4𝑉

−1)
}
.
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Hence, by these inequalities and Proposition 3.1, we have

1
𝑇

meas
{
𝑡 ∈ B : Re 𝑒−𝑖𝜃 𝜂̃𝑚 (𝜎 + 𝑖𝑡) > 𝑉

}
= exp

(
−𝐴𝑚 (𝜎)𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎

(
1 +𝑂

(√
1 + 𝑚 log log𝑉

log𝑉

)))
.

By this equation and meas([𝑇, 2𝑇] \ B) ≤ 𝑇 exp
(
−2𝐴𝑚 (𝜎)𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎

)
,

we complete the proof of Theorem 3.2. □
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Chapter 4 Denseness of 𝜂𝑚 (𝑠) and 𝜂̃𝑚 (𝑠)

In this chapter, we prove some results for the denseness of 𝜂𝑚 (𝑠) and 𝜂̃𝑚 (𝑠).
The contents in this chapter are based on the paper [22].

4.1 Results

The main results in this chapter is the following.

Theorem 4.1. Let 1/2 ≤ 𝜎 < 1. If the number of zeros 𝜌 = 𝛽 + 𝑖𝛾 of 𝜁 (𝑠) with
𝛽 > 𝜎 is finite, then the set{∫ 𝑡

0
log 𝜁 (𝜎 + 𝑖𝑡′)𝑑𝑡′ : 𝑡 ∈ [0,∞)

}
is dense in the complex plane. Moreover, for each integer 𝑚 ≥ 2, the following
statements are equivalent.

(I) The Riemann zeta-function does not have any zero whose real part is greater
than 𝜎.

(II) The set {𝜂𝑚 (𝜎 + 𝑖𝑡) : 𝑡 ∈ [0,∞)} is dense in the complex plane.

From this theorem, we see that the Riemann Hypothesis implies that the
set {∫ 𝑡

0
log 𝜁 (1/2 + 𝑖𝑡′)𝑑𝑡′ : 𝑡 ∈ [0,∞)

}
is dense in the complex plane. This implication seems to suggest that the val-
ues 𝜁 ( 1

2 + 𝑖𝑡) in 𝑡 ∈ R are dense in C. Moreover, the equivalence above would
be a new type of statement which gives the relation between the denseness
of values of the Riemann zeta-function and the Riemann Hypothesis.

Here, we mention the plan of the proof of Theorem 4.1 briefly. Recall
that the function 𝜂𝑚 (𝜎 + 𝑖𝑡) is defined by the recurrence equation

𝜂𝑚 (𝜎 + 𝑖𝑡) =
∫ ∞

𝜎
𝜂𝑚−1(𝛼 + 𝑖𝑡)𝑑𝛼,

where 𝜂0(𝜎+ 𝑖𝑡) = log 𝜁 (𝜎 + 𝑖𝑡). This function is the𝑚-times iterated integral
of log 𝜁 (𝜎 + 𝑖𝑡) on the horizontal line. Our main focus in this paper is
better understanding of Ramachanra’s denseness problem, and the value-
distribution of 𝜂𝑚 (1/2+𝑖𝑡). However, the function 𝜂̃𝑚 (𝑠) is regular in the same
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region as in the case of log 𝜁 (𝑠), and also some properties of this function
are similar to log 𝜁 (𝑠). Additionally, by Proposition 1.1, the behavior 𝜂̃𝑚 (𝑠)
on the critical line is directly related to the Lindelöf Hypothesis. From this
observation, this function would be an interesting object itself, and we obtain
the following theorem unconditionally.

Theorem 4.2. Let 1/2 ≤ 𝜎 < 1, and 𝑚 be a positive integer. Let 𝑇0 be any positive
number. Then the set {

𝜂̃𝑚 (𝜎 + 𝑖𝑡) : 𝑡 ∈ [𝑇0,∞)
}

is dense in the complex plane.

Theorem 4.1 can be obtained from Theorem 4.2 and Lemma 2.1. Hence,
our first purpose is to show Theorem 4.2. In the proof of Theorem 4.2, the
following two propositions play an important role.

The function Li𝑚 (𝑧) indicates the polylogarithmic function defined as∑∞
𝑛=1

𝑧𝑛

𝑛𝑚 for |𝑧 | < 1.

Proposition 4.1. Let 𝑚 be a positive integer. Then for any 𝜎 ≥ 1/2, 𝑇 ≥ 𝑋135,
𝜀 > 0, we have

lim
𝑋→+∞

1
𝑇

meas
{
𝑡 ∈ [0, 𝑇] :

����𝜂̃𝑚 (𝜎 + 𝑖𝑡) −
∑
𝑝≤𝑋

Li𝑚+1(𝑝−𝜎−𝑖𝑡)
(log 𝑝)𝑚

���� < 𝜀} = 1.

The important point of this proposition is that 𝜂̃𝑚 (𝑠) can be approximated
by the Dirichlet polynomial even on the critical line. To prove this propo-
sition, we must control exactly the contribution of nontrivial zeros of 𝜁 (𝑠),
and we therefore need a strong zero density estimate of the Riemann zeta-
function like Selberg’s result [107, Theorem 1]. More precisely, we require
that there exist numbers 𝑐 > 0, 𝐴 < 2𝑚 + 1 such that

𝑁 (𝜎,𝑇) ≪ 𝑇1−𝑐(𝜎−1/2) (log𝑇)𝐴

uniformly for 1
2 ≤ 𝜎 ≤ 1. Here, 𝑁 (𝜎,𝑇) is the number of zeros of 𝜁 (𝑠) with

multiplicity satisfying 𝛽 > 𝜎 and 0 < 𝛾 ≤ 𝑇 . Therefore, to prove Proposition
4.1, we need a strong zero density estimate comparable to the assumption by
Bombieri and Hejhal [9]. On the other hand, when we discuss the denseness
of 𝜂̃𝑚 (𝑠) for fixed 1

2 < 𝜎 < 1, it suffices to use the weaker estimate

𝑁 (𝜎,𝑇) ≪ 𝑇1−𝑐(𝜎−1/2)+𝜀

for every 𝜀 > 0. Hence, there is an essential difference of the depth between
the discussion in the case 1

2 < 𝜎 < 1 and that in the case 𝜎 = 1
2 in Proposition

4.1. We will explain this discussion more closely later.
In contrast, we can prove the following proposition by almost the same

method as in [6], [7].
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Proposition 4.2. Let m be a positive integer, 1/2 ≤ 𝜎 < 1. Let 𝑎 be any complex
number, and 𝜀 be any positive number. If we take a sufficiently large number
𝑁0 = 𝑁0(𝑚, 𝜎, 𝑎, 𝜀), then, for any integer 𝑁 ≥ 𝑁0, there exists some Jordan
measurable set Θ0 = Θ0(𝑚, 𝜎, 𝑎, 𝜀, 𝑁) ⊂ [0, 1)𝜋(𝑁) with meas(Θ0) > 0 such that�����∑

𝑝≤𝑁

Li𝑚+1(𝑝−𝜎 exp(−2𝜋𝑖𝜃𝑝))
(log 𝑝)𝑚 − 𝑎

����� < 𝜀.
for any 𝜃 =

(
𝜃𝑝𝑛

)𝜋(𝑁)
𝑛=1 ∈ Θ0.

Roughly speaking, Proposition 4.1 means that 𝜂̃𝑚 (𝜎 + 𝑖𝑡) “almost" equals
the finite sum of polylogarithmic functions when the number of the terms of
the sum is sufficiently large, and Proposition 4.2 that any complex number
can be approximated by the finite sum of polylogarithmic functions when
the number of the terms of the sum is sufficiently large.

Bohr developed his denseness results with Jessen from the viewpoint of
probability theory in [8]. Following their method, the author will continue
our study in the next chapter. They will give deeper results such as an analog
of Lamzouri’s study [66] and the study of Lamzouri, Lester, and Radziwiłł
[67].

4.2 Approximation of 𝜂𝑚 (𝑠) and 𝜂̃𝑚 (𝑠) by Dirichlet
polynomials

In this section, we prove Proposition 4.1. In order to prove it, we prepare
two lemmas.

Lemma 4.1. Let 𝑚 be a positive integer, and 𝜎 ≥ 1/2. Let 𝑇 be large. Then, for
3 ≤ 𝑋 ≤ 𝑇 1

135 , we have

1
𝑇

∫ 𝑇

14

����𝜂̃𝑚 (𝜎 + 𝑖𝑡) −
∑

2≤𝑛≤𝑋

Λ(𝑛)
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1

����2𝑑𝑡 ≪ 𝑋1−2𝜎

(log 𝑋)2𝑚 .

This lemma is a special case the following lemma.

Lemma 4.2. Let𝑚, 𝑘 be positive integers. Let𝑇 be large, and 𝑋 ≥ 3 with 𝑋 ≤ 𝑇 1
135𝑘 .

Then, for 𝜎 ≥ 1/2, we have∫ 𝑇

14

����𝜂̃𝑚 (𝜎 + 𝑖𝑡) −
∑

2≤𝑛≤𝑋

Λ(𝑛)
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1

����2𝑘𝑑𝑡
≪ 2𝑘 𝑘!

(
2𝑚 + 1

2𝑚 + 𝐶

log 𝑋

) 𝑘
𝑋 𝑘 (1−2𝜎)

(log 𝑋)2𝑘𝑚 + 𝐶𝑘 𝑘2𝑘 (𝑚+1) 𝑇
1−2𝜎
135

(log𝑇)2𝑘𝑚 . (4.1)

This lemma is Theorem 2.6. As we mentioned in the previous section,
the proof of this lemma requires a strong zero density estimate like Selberg’s
result. In fact, if we only knew the estimate

𝑁 (𝜎,𝑇) ≪ 𝑇1−𝑐(𝜎−1/2) (log𝑇)𝐴
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for some 𝑐 > 0, 𝐴 ≥ 1, then the right hand side of (4.1) in the case 𝑘 = 1
becomes

𝑂

(
𝑋1−2𝜎

(log 𝑋)2𝑚 + 𝑇
1−2𝜎
135

(log𝑇)2𝑚+1−𝐴

)
.

Hence, the power of the logarithmic factor of the zero density estimate plays
an important role in the case 𝜎 = 1/2.

Lemma 4.3. Let 𝑚 be an integer, 𝜎 ≥ 1/2. Let 𝑇 be large. Then for 3 ≤ 𝑋 ≤ 𝑇1/4,
we have

1
𝑇

∫ 𝑇

0

���� ∑
𝑝≤𝑋

Li𝑚+1(𝑝−𝜎−𝑖𝑡)
(log 𝑝)𝑚 −

∑
2≤𝑛≤𝑋

Λ(𝑛)
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1

����2𝑑𝑡 ≪ 𝑋1−2𝜎

(log 𝑋)2𝑚+1 ,

where the function Λ(𝑛) is the von Mangoldt function.

Proof. By definitions of the polylogarithmic function and the von Mangoldt
function, we find that

∑
𝑝≤𝑋

Li𝑚+1(𝑝−𝜎−𝑖𝑡)
(log 𝑝)𝑚 −

∑
2≤𝑛≤𝑋

Λ(𝑛)
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1 =

∑
𝑝≤𝑋

∑
𝑘>

log 𝑋
log 𝑝

𝑝−𝑘 (𝜎+𝑖𝑡)

𝑘𝑚+1(log 𝑝)𝑚

=
∑
𝑝≤𝑋

∑
log 𝑋
log 𝑝 <𝑘≤3 log 𝑋

log 𝑝

𝑝−𝑘 (𝜎+𝑖𝑡)

𝑘𝑚+1(log 𝑝)𝑚
+𝑂

(
𝑋1−3𝜎

(log 𝑋)𝑚

)
.

Here, we can write

���� ∑
𝑝≤𝑋

∑
log 𝑋
log 𝑝 <𝑘≤3 log 𝑋

log 𝑝

𝑝−𝑘 (𝜎+𝑖𝑡)

𝑘𝑚+1(log 𝑝)𝑚

����2
=

∑
𝑝≤𝑋

∑
log 𝑋
log 𝑝 <𝑘≤3 log 𝑋

log 𝑝

𝑝−2𝑘𝜎

𝑘2(𝑚+1) (log 𝑝)2𝑚 +

+
∑
𝑝1≤𝑋

∑
𝑝2≤𝑋

∑
log 𝑋
log 𝑝1

<𝑘1≤3 log 𝑋
log 𝑝1

∑
log 𝑋
log 𝑝2

<𝑘2≤3 log 𝑋
log 𝑝2

(𝑝1,𝑘1)≠(𝑝2,𝑘2)

(𝑝𝑘1
1 𝑝

𝑘2
2 )−𝜎 (𝑝𝑘1

1 /𝑝𝑘2
2 )−𝑖𝑡

(𝑘1𝑘2)𝑚+1(log 𝑝1 log 𝑝2)𝑚
.
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Therefore, it holds that∫ 𝑇

0

���� ∑
𝑝≤𝑋

∑
log 𝑋
log 𝑝 <𝑘≤3 log 𝑋

log 𝑝

𝑝−𝑘 (𝜎+𝑖𝑡)

𝑘𝑚+1(log 𝑝)𝑚

����2𝑑𝑡
= 𝑇

∑
𝑝≤𝑋

∑
log 𝑋
log 𝑝 <𝑘≤3 log 𝑋

log 𝑝

𝑝−2𝑘𝜎

𝑘2(𝑚+1) (log 𝑝)2𝑚 +

+𝑂
©­­­­«
𝑋3

©­­­«
∑
𝑝≤𝑋

∑
log 𝑋
log 𝑝 <𝑘≤3 log 𝑋

log 𝑝

1
𝑝𝑘𝜎𝑘𝑚+1(log 𝑝)𝑚

ª®®®¬
2ª®®®®¬

≪ 𝑇
𝑋1−2𝜎

(log 𝑋)2𝑚+1 + 𝑋5−2𝜎

(log 𝑋)2(𝑚+1) ≪ 𝑇
𝑋1−2𝜎

(log 𝑋)2𝑚+1 .

Hence we have∫ 𝑇

0

���� ∑
𝑝≤𝑋

Li𝑚+1(𝑝−𝜎−𝑖𝑡)
(log 𝑝)𝑚 −

∑
2≤𝑛≤𝑋

Λ(𝑛)
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1

����2𝑑𝑡
≪

∫ 𝑇

0

���� ∑
𝑝≤𝑋

∑
log 𝑋
log 𝑝 <𝑘≤3 log 𝑋

log 𝑝

𝑝−𝑘 (𝜎+𝑖𝑡)

𝑘𝑚+1(log 𝑝)𝑚

����2𝑑𝑡 + 𝑇 𝑋2−6𝜎

(log 𝑋)2𝑚 ≪ 𝑇
𝑋1−2𝜎

(log 𝑋)2𝑚+1 ,

which completes the proof of this lemma. □

Proof of Proposition 4.1. By Lemma 4.1 and Lemma 4.3, for 𝑋 ≤ 𝑇1/135, we
find that

1
𝑇

∫ 𝑇

14

����𝜂𝑚 (𝜎 + 𝑖𝑡) −
∑
𝑝≤𝑋

Li𝑚+1(𝑝−𝜎−𝑖𝑡)
(log 𝑝)𝑚

����2𝑑𝑡
≪ 1
𝑇

∫ 𝑇

14

����𝜂𝑚 (𝜎 + 𝑖𝑡) −
∑

2≤𝑛≤𝑋

Λ(𝑛)
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1

����2𝑑𝑡
+ 1
𝑇

∫ 𝑇

14

���� ∑
𝑝≤𝑋

Li𝑚+1(𝑝−𝜎−𝑖𝑡)
(log 𝑝)𝑚 −

∑
2≤𝑛≤𝑋

Λ(𝑛)
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1

����2𝑑𝑡
≪ 𝑋1−2𝜎

(log 𝑋)2𝑚 .

By using this estimate, for any fixed 𝜀 > 0, we have

1
𝑇

meas
{
𝑡 ∈ [0, 𝑇] :

����𝜂𝑚 (𝜎 + 𝑖𝑡) −
∑
𝑝≤𝑋

Li𝑚+1(𝑝−𝜎−𝑖𝑡)
(log 𝑝)𝑚

���� ≥ 𝜀}
≪ 𝑋1−2𝜎

𝜀2(log 𝑋)2𝑚 + 1
𝑇
.
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Hence, for any 𝑇 ≥ 𝑋135, it holds that

1
𝑇

meas
{
𝑡 ∈ [0, 𝑇] :

����𝜂𝑚 (𝜎 + 𝑖𝑡) −
∑
𝑝≤𝑋

Li𝑚+1(𝑝−𝜎−𝑖𝑡)
(log 𝑝)𝑚

���� ≥ 𝜀} → 0

as 𝑋 → +∞. Thus, we obtain Proposition 4.1. □

4.3 Proof of the denseness lemma for corresponding to
𝜂̃𝑚 (𝑠)

In this section, we prove Proposition 4.2 by the method of [62, VIII.3], [120].
First of all, we will show the following elementary geometric lemma.

Lemma 4.4. Let 𝑁 be a positive integer larger than two. Suppose that the positive
numbers 𝑟1, 𝑟2, . . . , 𝑟𝑁 satisfy the condition

𝑟𝑛0 ≤
𝑁∑
𝑛=1
𝑛≠𝑛0

𝑟𝑛, (4.2)

where 𝑟𝑛0 = max{𝑟𝑛 | 𝑛 = 1, 2, . . . , 𝑁}. Then we have{
𝑁∑
𝑛=1

𝑟𝑛 exp(−2𝜋𝑖𝜃𝑛) ∈ C : 𝜃𝑛 ∈ [0, 1)
}
=

{
𝑧 ∈ C : |𝑧 | ≤

𝑁∑
𝑛=1

𝑟𝑛

}
.

Proof. By Proposition 3.3 in [13], it immediately follows that{
𝑁∑
𝑛=1

𝑟𝑛 exp(−2𝜋𝑖𝜃𝑛) ∈ C : 𝜃𝑛 ∈ [0, 1)
}

is the closed circle with center origin and radius
∑𝑁
𝑛=1 𝑟𝑛. Note that their 𝑇𝑛

becomes zero under assumption (4.2). □

Next, we introduce the following definitions.

Definition 1. Let 𝑚 be a positive integer and M a finite subset of the set
of prime numbers. For 𝜎 ≥ 1/2 and 𝜃 = (𝜃𝑝)𝑝∈M ∈ [0, 1)M , we define the
functions

𝜙𝑚,M (𝜎, 𝜃) :=
∑
𝑝∈M

exp(−2𝜋𝑖𝜃𝑝)
𝑝𝜎 (log 𝑝)𝑚 ,

𝜂̃𝑚,M (𝜎, 𝜃) :=
∑
𝑝∈M

Li𝑚+1(𝑝−𝜎 exp(−2𝜋𝑖𝜃𝑝))
(log 𝑝)𝑚 =

∑
𝑝∈M

∞∑
𝑘=1

exp(−2𝜋𝑖𝑘𝜃𝑝)
𝑘𝑚+1𝑝𝑘𝜎 (log 𝑝)𝑚

,

respectively.

84



Definition 2. Let 𝑝𝑛 be the 𝑛-th prime number. Put

𝜃 (0) =
(
𝜃 (0)𝑝𝑛

)
𝑛∈N

= (0, 1/2, 0, 1/2, . . .) ∈ [0, 1)N,

and

𝛾𝑚,𝜎 =
∑
𝑝

∞∑
𝑘=1

exp(−2𝜋𝑖𝑘𝜃 (0)𝑝 )
𝑘𝑚+1𝑝𝑘𝜎 (log 𝑝)𝑚

.

Note that the series for 𝛾𝑚,𝜎 is convergent for 𝜎 ≥ 1/2.

Proof of Proposition 4.2. Fix a complex number 𝑎 and 1/2 ≤ 𝜎 < 1. Let
𝑈 be a positive real parameter. We take a sufficiently large number 𝑁 =
𝑁 (𝑈, 𝑚, 𝜎, 𝑎) for which the estimates

|𝑎 − 𝛾𝑚,𝜎 | ≤
∑
𝑝∈M

1
𝑝𝜎 (log 𝑝)𝑚 ,

1
𝑝𝜎min(log 𝑝min)𝑚

≤
∑

𝑝∈M\{𝑝min}

1
𝑝𝜎 (log 𝑝)𝑚

are satisfied, whereM = M(𝑈, 𝑁) is defined as
{
𝑝 : 𝑝 is prime,𝑈 < 𝑝 ≤ 𝑁

}
,

and 𝑝min is the minimum of M. Note that the existence of such 𝑁 is guaran-
teed by

∑
𝑝

1
𝑝𝜎 (log 𝑝)𝑚 = ∞. Then, by Lemma 4.4, the function

𝜑𝑚,M (𝜎, ·) : [0, 1)M ∋ 𝜃 ↦−→ 𝜑𝑚,M (𝜎, 𝜃) ∈
𝑧 ∈ C : |𝑧 | ≤

∑
𝑝∈M

1
𝑝𝜎 (log 𝑝)𝑚


is surjective. Hence, there exists some 𝜃 (1) = 𝜃 (𝑚, 𝜎,𝑈, 𝑁) (1) = (𝜃 (1)𝑝 )𝑝∈M ∈
[0, 1)M such that

𝜙𝑚,M (𝜎, 𝜃 (1)) = 𝑎 − 𝛾𝑚,𝜎 .

By using the prime number theorem, we find that

𝜂̃𝑚,M (𝜎, 𝜃 (1)) = 𝜙𝑚,M (𝜎, 𝜃 (1)) +
∑
𝑝∈M

∞∑
𝑘=2

exp(−2𝜋𝑖𝑘𝜃 (1)𝑝 )
𝑘𝑚+1𝑝𝑘𝜎 (log 𝑝)𝑚

= 𝑎 − 𝛾𝑚,𝜎 +𝑂
(

1
(log𝑈)𝑚

)
.

For any prime number 𝑝, we put

𝜃 (2)𝑝 =

{
𝜃 (0)𝑝 if 𝑝 ∉ M,

𝜃 (1)𝑝 if 𝑝 ∈ M .
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Then it holds that∑
𝑝≤𝑁

Li𝑚+1(𝑝−𝜎 exp(−2𝜋𝑖𝜃 (2)𝑝 ))
(log 𝑝)𝑚

=
∑
𝑝∈M

Li𝑚+1(𝑝−𝜎 exp(−2𝜋𝑖𝜃 (1)𝑝 ))
(log 𝑝)𝑚 +

∑
𝑝≤𝑈

Li𝑚+1(𝑝−𝜎 exp(−2𝜋𝑖𝜃 (0)𝑝 ))
(log 𝑝)𝑚

=𝜂̃𝑚,M (𝜎, 𝜃 (1)) + 𝛾𝑚,𝜎 +
∑
𝑝>𝑈

Li𝑚+1(𝑝−𝜎 exp(−2𝜋𝑖𝜃 (0)𝑝 ))
(log 𝑝)𝑚 ,

and additionally, by using the prime number theorem and simple calcula-
tions of alternating series,∑
𝑝>𝑈

Li𝑚+1(𝑝−𝜎 exp(−2𝜋𝑖𝜃 (0)𝑝 ))
(log 𝑝)𝑚 =

∑
𝑝>𝑈

exp(−2𝜋𝑖𝜃 (0)𝑝 ))
𝑝𝜎 (log 𝑝)𝑚 +𝑂

(∑
𝑝>𝑈

1
𝑝2𝜎 (log 𝑝)𝑚

)
≪ 1

(log𝑈)𝑚 .

Hence, by taking a sufficiently large 𝑈 = 𝑈 (𝜀) and noting the continuity of
the function

∑
𝑝≤𝑁

Li𝑚+1 (𝑝𝜎 exp(−2𝜋𝑖𝜃𝑝))
(log 𝑝)𝑚 with respect to (𝜃𝑝)𝑝≤𝑁 ∈ [0, 1)𝜋(𝑁) , we

obtain this proposition. □

4.4 Proof of the denseness of 𝜂̃𝑚 (𝑠)

In this section, we prove Theorem 4.2. Here, we use the following lemma
related with Kronecker’s approximation theorem.
Lemma 4.5. Let 𝐴 be a Jordan measurable subregion of [0, 1)𝑁 , and 𝑎1, . . . , 𝑎𝑁 be
real numbers linearly independent over Q. Set, for any 𝑇 > 0,

𝐼 (𝑇, 𝐴) = {𝑡 ∈ [0, 𝑇] : ({𝑎1𝑡}, . . . , {𝑎𝑁 𝑡}) ∈ 𝐴} .

Then we have

lim
𝑇→+∞

meas(𝐼 (𝑇, 𝐴))
𝑇

= meas(𝐴).

Proof. This lemma is Theorem 1 of Appendix 8 in [62] □

Let us start the proof of Theorem 4.2.

Proof of Theorem 4.2. Let 𝜀 > 0 be any small number, 𝑎 any fixed com-
plex number, 1

2 ≤ 𝜎 < 1, and let 𝑇0 be any positive number. Define
𝑆𝑀 (𝜃1, . . . , 𝜃𝑀 ;𝜎, 𝑚) and 𝑆𝑀,𝑁 (𝜃𝑀+1, . . . , 𝜃𝑁 ;𝜎, 𝑚) by

𝑆𝑀 (𝜃1, . . . , 𝜃𝑀 ;𝜎, 𝑚) =
∑
𝑛≤𝑀

Li𝑚+1(𝑝−𝜎𝑛 𝑒−2𝜋𝑖𝜃𝑛)
(log 𝑝𝑛)𝑚

,

𝑆𝑀,𝑁 (𝜃𝑀+1, . . . , 𝜃𝑁 ;𝜎, 𝑚) =
∑

𝑀<𝑛≤𝑁

Li𝑚+1(𝑝−𝜎𝑛 𝑒−2𝜋𝑖𝜃𝑛)
(log 𝑝𝑛)𝑚

.
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Then, by Proposition 4.2, we can take a sufficiently large 𝑀0 = 𝑀0(𝑚, 𝜎, 𝑎, 𝜀)
so that for any 𝑀 ≥ 𝑀0, there exists some Jordan measurable subset Θ(𝑀)

1 =

Θ(𝑀)
1 (𝑚, 𝜎, 𝑎, 𝜀, 𝑀) of [0, 1)𝑀 such that 𝛿𝑀 := meas(Θ(𝑀)

1 ) > 0 and

|𝑆𝑀 (𝜃1, . . . , 𝜃𝑀 ;𝜎, 𝑚) − 𝑎 | < 𝜀

for any (𝜃1, . . . , 𝜃𝑀) ∈ Θ(𝑀)
1 . We also find that∫ 1

0
· · ·

∫ 1

0
|𝑆𝑀,𝑁 (𝜃𝑀+1, . . . , 𝜃𝑁 ;𝜎, 𝑚) |2𝑑𝜃𝑀+1 · · · 𝑑𝜃𝑁

=
∫ 1

0
· · ·

∫ 1

0

����� ∑
𝑀<𝑛≤𝑁

∞∑
𝑘=1

𝑝−𝜎𝑘𝑛 𝑒−2𝜋𝑖𝑘𝜃𝑛

𝑘𝑚+1(log 𝑝𝑛)𝑚

�����2 𝑑𝜃𝑀+1 · · · 𝑑𝜃𝑁

=
∑

𝑀<𝑛1≤𝑁

∑
𝑀<𝑛2≤𝑁

∞∑
𝑘1=1

∞∑
𝑘2=1

{
(𝑝𝑛1 𝑝𝑛2)−𝜎𝑘

(𝑘1𝑘2)𝑚+1(log 𝑝𝑛1 log 𝑝𝑛2)𝑚
×

×
∫ 1

0
· · ·

∫ 1

0
𝑒−2𝜋𝑖(𝑘1𝜃𝑛1−𝑘2𝜃𝑛2 )𝑑𝜃𝑀+1 · · · 𝑑𝜃𝑁

}
=

∑
𝑀<𝑛≤𝑁

∞∑
𝑘=1

1
𝑘2(𝑚+1) 𝑝2𝜎𝑘

𝑛 (log 𝑝𝑛)2𝑚
≪

∑
𝑀<𝑛≤𝑁

1
𝑝𝑛 (log 𝑝𝑛)2𝑚 .

Note that the last sum tends to zero as 𝑀 → +∞. Therefore, there exists
some large number 𝑀1 = 𝑀1(𝑚, 𝜀) such that, for any 𝑁 > 𝑀 ≥ 𝑀1, it holds
that

meas
({
(𝜃𝑀+1, . . . , 𝜃𝑁 ) ∈ [0, 1)𝑁−𝑀 : |𝑆𝑀,𝑁 (𝜃𝑀+1, . . . , 𝜃𝑁 ;𝜎, 𝑚) | < 𝜀

})
>

1
2 .

Here we denote the set of the content of meas(·) in the above inequality by
Θ(𝑀,𝑁)

2 = Θ(𝑀,𝑁)
2 (𝑀, 𝑁, 𝜀).

We put 𝑀2 = max{𝑀0, 𝑀1} and Θ3 = Θ(𝑀2)
1 × Θ(𝑀2,𝑁)

2 for any 𝑁 > 𝑀2.
Then Θ3 is a subset of [0, 1)𝑁 satisfying meas(Θ3) > 𝛿𝑀2/2. Hence, putting

I(𝑇) =
{
𝑡 ∈ [𝑇0, 𝑇] :

({ 𝑡
2𝜋 log 𝑝1

}
, . . . ,

{ 𝑡
2𝜋 log 𝑝𝑁

})
∈ Θ3

}
and applying Lemma 4.5, for any positive integer 𝑁 > 𝑀2, there exists
some large number 𝑇𝑁 > 𝑇0 such that meas(I(𝑇)) > 𝛿𝑀2𝑇/2 holds for any
𝑇 ≥ 𝑇𝑁 . On the other hand, by Proposition 4.1, there exists a large number
𝑁0 = 𝑁0(𝜀, 𝛿𝑀2) such that

meas
{
𝑡 ∈ [𝑇0, 𝑇] :

����𝜂̃𝑚 (𝜎 + 𝑖𝑡) −
∑
𝑛≤𝑁

Li𝑚+1(𝑝−𝜎−𝑖𝑡𝑛 )
(log 𝑝𝑛)𝑚

���� < 𝜀} > (1 − 𝛿𝑀2/4)𝑇

for any 𝑁 ≥ 𝑁0, 𝑇 ≥ 𝑝135
𝑁 .
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Therefore, for any 𝑁 ≥ max{𝑁0, 𝑀2 + 1}, 𝑇 ≥ max{𝑇𝑁 , 𝑝135
𝑁 }, there exists

some 𝑡0 ∈ [𝑇0, 𝑇] such that({ 𝑡0
2𝜋 log 𝑝1

}
, . . . ,

{ 𝑡0
2𝜋 log 𝑝𝑁

})
∈ Θ3,

and �����𝜂̃𝑚 (𝜎 + 𝑖𝑡0) −
∑
𝑛≤𝑁

Li𝑚+1(𝑝−𝜎−𝑖𝑡0𝑛 )
(log 𝑝𝑛)𝑚

����� < 𝜀.
Then we have

|𝜂̃𝑚 (𝜎 + 𝑖𝑡0) − 𝑎 |

≤
����𝜂̃𝑚 (𝜎 + 𝑖𝑡0) −

∑
𝑛≤𝑁

Li𝑚+1(𝑝−𝜎𝑛 𝑒−𝑖𝑡0 log 𝑝𝑛)
(log 𝑝𝑛)𝑚

���� + ����� ∑
𝑛≤𝑀2

Li𝑚+1(𝑝−𝜎𝑛 𝑒−𝑖𝑡0 log 𝑝𝑛)
(log 𝑝𝑛)𝑚

− 𝑎
�����

+
����� ∑
𝑀2<𝑛≤𝑁

Li𝑚+1(𝑝−𝜎𝑛 𝑒−𝑖𝑡0 log 𝑝𝑛)
(log 𝑝𝑛)𝑚

����� < 3𝜀.

This completes the proof of Theorem 4.2. □

4.5 Proof of the denseness of 𝜂𝑚 (𝑠)

In this section, we prove Theorem 4.1. Here, we prepare the following
lemma.

Lemma 4.6. Let 𝜎 ≥ 1/2 and 𝑚 be a positive integer. Then we have

𝜂𝑚 (𝑠) = 𝑌𝑚 (𝑠) +𝑂𝑚 (log 𝑡),

where 𝑌𝑚 is defined by (2.1).

Proof. This lemma is equation (2.2). □

Proof of Theorem 4.1. First, we show Theorem 4.1 in the case 𝑚 = 1. If the
number of zeros 𝜌 = 𝛽 + 𝑖𝛾 of 𝜁 (𝑠) with 𝛽 > 𝜎 is finite, then there exists a
sufficiently large 𝑇0 such that 𝑌1(𝜎 + 𝑖𝑡) ≡ 𝑏 for 𝑡 ≥ 𝑇0, where 𝑏 is a positive
real number. Therefore, by Lemma 2.1, we have∫ 𝑡

0
log 𝜁 (𝜎 + 𝑖𝑡′)𝑑𝑡′ = 𝑖𝜂̃1(𝜎 + 𝑖𝑡) + 𝑏

for any 𝑡 ≥ 𝑇0. By this formula, we obtain{∫ 𝑡

0
log 𝜁 (𝜎 + 𝑖𝑡′)𝑑𝑡′ : 𝑡 ∈ [0,∞)

}
⊃

{∫ 𝑡

0
log 𝜁 (𝜎 + 𝑖𝑡′)𝑑𝑡′ : 𝑡 ∈ [𝑇0,∞)

}
=

{
𝑖𝜂̃1(𝜎 + 𝑖𝑡) + 𝑏 : 𝑡 ∈ [𝑇0,∞)

}
.
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If a set 𝐴 ⊂ C is dense inC, then for any 𝑐1 ∈ C\{0} and 𝑐2 ∈ C, the set {𝑐1𝑎+𝑐2 |
𝑎 ∈ 𝐴} is also dense inC. By this fact and Theorem 4.2, the set {𝑖𝜂̃1(𝜎+𝑖𝑡) +𝑏 |
𝑡 ∈ [𝑇0,∞)} is dense in C. Thus, the set

{∫ 𝑡

0 log 𝜁 (𝜎 + 𝑖𝑡′)𝑑𝑡′ | 𝑡 ∈ [0,∞)
}

is
dense in C under this assumption.

Next, for𝑚 ∈ Z≥2, we show the equivalence of (I) and (II). The implication
(I)⇒ (II) is clear since the equation 𝜂𝑚 (𝜎+𝑖𝑡) = 𝑖𝑚𝜂̃𝑚 (𝜎+𝑖𝑡) holds by assuming
(I).

In the following, we show the inverse implication (II) ⇒ (I). By Lemma
4.6, if (I) is false, then the estimate |𝜂𝑚 (𝜎 + 𝑖𝑡) | ≫𝑚 𝑡

𝑚−1 holds. Therefore, for
some 𝑇2 > 0, we have

{𝜂𝑚 (𝜎 + 𝑖𝑡) : 𝑡 ∈ [𝑇2,∞)} ⊂ C \ {𝑧 ∈ C : |𝑧 | ≤ 1} .

Here, 𝐴̄ means the closure of the set 𝐴. Since {𝜂𝑚 (𝜎 + 𝑖𝑡) | 𝑡 ∈ [0, 𝑇2]} is a
piecewise smooth curve of finite length, 𝜇

(
{𝜂𝑚 (𝜎 + 𝑖𝑡) : 𝑡 ∈ [0, 𝑇2]}

)
= 0.

Here 𝜇 is the Lebesgue measure in C. Therefore, we obtain

{𝑧 ∈ C : |𝑧 | ≤ 1} ⊄ {𝜂𝑚 (𝜎 + 𝑖𝑡) : 𝑡 ∈ [0, 𝑇2]}.

Hence, if (I) is false, then the set {𝜂𝑚 (𝜎 + 𝑖𝑡) : 𝑡 ∈ [0,∞)} is not dense in C.
Thus, we obtain the implication (II) ⇒ (I). □
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Chapter 5 Discrepancy estimate and Large
deviations for the Riemann

zeta-function

The purpose of this chapter is to study the distribution of values 𝜂̃𝑚 (𝜎 + 𝑖𝑡)
as 𝑡 ∈ R varies. The contents in this chapter are based on the paper [23].

5.1 Results

For a Lebesgue measurable function 𝑓 : R→ C, define

P𝑇 ( 𝑓 (𝑡) ∈ 𝐴) := 1
𝑇

meas {𝑡 ∈ [𝑇, 2𝑇] : 𝑓 (𝑡) ∈ 𝐴} ,

where 𝑇 > 0 and 𝐴 ∈ B(C). We consider the probability measure P𝑇 (𝜂̃𝑚 (𝜎 +
𝑖𝑡) ∈ 𝐴). Let P be the set of prime numbers. Let {𝑋 (𝑝)}𝑝∈P be a sequence
of independent random variables on a probability space (Ω,𝒜, P) uniformly
distributed on the unit circle in the complex plane. Define

𝜂̃𝑚 (𝜎, 𝑋) =
∑
𝑝

𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)), (5.1)

where

𝜂̃𝑚,𝑝 (𝜎, 𝑤) =
Li𝑚+1(𝑝−𝜎𝑤)
(log 𝑝)𝑚 =

∞∑
𝑘=1

𝑤𝑘

𝑘 𝑝𝑘𝜎 (log 𝑝𝑘 )𝑚
(5.2)

for 𝑤 ∈ C with |𝑤 | = 1. One can show that (5.1) converges almost surely if
𝜎 > 1/2 and 𝑚 ∈ Z≥0; see Lemma 5.1. The first main result of this chapter
presents a discrepancy bound for the value distribution of 𝜂̃𝑚 (𝜎 + 𝑖𝑡), that is,
an upper bound for the quantity

𝐷𝜎,𝑚 (𝑇) = sup
R

��P𝑇 (𝜂̃𝑚 (𝜎 + 𝑖𝑡) ∈ R) − P(𝜂̃𝑚 (𝜎, 𝑋) ∈ R)
�� ,

where R runs through all rectangle in Cwith edges parallel to the axes.

Theorem 5.1. Let 1/2 < 𝜎 < 1 and 𝑚 ∈ Z≥0. Then we have

𝐷𝜎,𝑚 (𝑇) ≪𝜎,𝑚
1

(log𝑇)𝜎 (log log𝑇)𝑚 .
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Next, we consider the large deviation for the values Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎+𝑖𝑡) with
any angle 𝛼 ∈ R.

Theorem 5.2. Let 1/2 < 𝜎 < 1 and 𝑚 ∈ Z≥0. There exists a positive constant
𝑎 = 𝑎(𝜎, 𝑚) such that for large 𝑇 , 𝜏 with 𝜏 ≤ 𝑎(log𝑇)1−𝜎 (log log𝑇)−𝑚−1 we have

P𝑇
(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎 + 𝑖𝑡) > 𝜏

)
= P

(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) > 𝜏

) (
1 +𝑂

(
𝜏

𝜎
1−𝜎 (log 𝜏) 𝜎+𝑚

1−𝜎

(log𝑇)𝜎 (log log𝑇)𝑚

))
for any 𝛼 ∈ R. Here, the implicit constant depends on 𝜎 and 𝑚.

5.2 Mean value results

Denote by A the set of pairs (𝜎, 𝑚) such that

A = {(𝜎, 𝑚) : 𝜎 ≥ 1/2 and 𝑚 ∈ Z≥0} \ {( 1
2 , 0)}

For 1/2 ≤ 𝜎 < 1, we put

𝜏(𝜎) =
{
𝜎 if 1/2 < 𝜎 < 1,
0 if 𝜎 = 1/2.

We define

𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) =
∑
𝑝𝑘≤𝑌

𝑝−𝑖𝑡𝑘

𝑘 𝑝𝑘𝜎 (log 𝑝𝑘 )𝑚
,

𝑃𝑚,𝑌 (𝜎, 𝑋) =
∑
𝑝𝑘≤𝑌

𝑋 (𝑝)𝑘
𝑘 𝑝𝑘𝜎 (log 𝑝𝑘 )𝑚

for (𝜎, 𝑚) ∈ A and 𝑌 ≥ 3. The following mean value result for 𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)
and 𝑃𝑚,𝑌 (𝜎, 𝑋) is useful to study the value distribution of 𝜂̃𝑚 (𝜎 + 𝑖𝑡).
Proposition 5.1. Let (𝜎, 𝑚) ∈ A with 𝜎 < 1. Let 𝑇,𝑉 > 0 be large. Denote by
𝐴𝑇 = 𝐴𝑇 (𝑉,𝑌 ;𝜎, 𝑚) the set

𝐴𝑇 =
{
𝑡 ∈ [0, 𝑇] : |𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) | ≤ 𝑉

}
(5.3)

for 𝑌 ≥ 3. If we further suppose that

3 ≤ 𝑌 ≤ exp
(

log𝑇

𝑉
1

1−𝜎 (log𝑉)
𝑚+𝜏 (𝜎)

1−𝜎

)
(5.4)

holds, then there exist positive constants 𝑏1 = 𝑏1(𝜎, 𝑚) and 𝑏2 = 𝑏2(𝜎, 𝑚) such
that for any complex numbers 𝑧1, 𝑧2 with |𝑧1 |, |𝑧2 | ≤ 𝑏1𝑉

𝜎
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎 we have

1
𝑇

∫
𝐴𝑇

exp
(
𝑧1𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) + 𝑧2𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)

)
𝑑𝑡

= E
[
exp

(
𝑧1𝑃𝑚,𝑌 (𝜎, 𝑋) + 𝑧2𝑃𝑚,𝑌 (𝜎, 𝑋)

)]
+ 𝐸,
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where 𝐸 is estimated as

𝐸 ≪ 1
𝑇

(
𝑉

𝜎
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎 𝑌

)𝑉 1
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎

+ exp
(
−𝑏2𝑉

1
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎

)
.

After showing some preliminary lemmas in Section 5.2.1, we derive an-
other mean value result which plays a key role in the proof of Theorem
5.1.

Proposition 5.2. Let 1/2 < 𝜎 < 1 and 𝑚 ∈ Z≥0. For 𝐴 ≥ 1, there exists
a positive constant 𝑏 = 𝑏(𝜎, 𝑚, 𝐴) such that for any complex number 𝑤 with
|𝑤 | ≤ 𝑏(log𝑇)𝜎 (log log𝑇)𝑚 we have

1
𝑇

∫ 𝑇

0
exp(𝑖⟨𝜂̃𝑚 (𝜎 + 𝑖𝑡), 𝑤⟩)𝑑𝑡 = E

[
exp(𝑖⟨𝜂̃𝑚 (𝜎, 𝑋), 𝑤⟩)

]
+𝑂

(
1

(log𝑇)𝐴

)
,

where the inner product ⟨·, ·⟩ is defined by ⟨𝑧, 𝑤⟩ = Re 𝑧Re𝑤 + Im 𝑧 Im𝑤 for
𝑧, 𝑤 ∈ C.

5.2.1 Preliminaries
Lemma 5.1. Let (𝜎, 𝑚) ∈ A. Then the series of (5.1) converges almost surely.

Proof. For any prime number 𝑝, we have

E
[
𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))

]
=

∞∑
𝑘=1

E
[
𝑋 (𝑝)𝑘

]
𝑘 𝑝𝑘𝜎 (log 𝑝𝑘 )𝑚

= 0,

where the change of the sum and expectation is justified by Fubini’s theorem.
By the prime number theorem, we further obtain∑

𝑝

E
[��𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))��2] ≪

∑
𝑝

1
𝑝2𝜎 (log 𝑝)2𝑚 < ∞

since (𝜎, 𝑚) ∈ A. Thus the assertion follows from [75, Theorem 17.3.I]. □

Lemma 5.2. Let (𝜎, 𝑚) ∈ A with𝜎 < 1. Let𝑇 ≥ 5 and𝑌 ≥ 3. For any 𝑘, ℓ ∈ Z≥1,
we have

1
𝑇

∫ 𝑇

0
(𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡))𝑘

(
𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)

)ℓ
𝑑𝑡

= E

[ (
𝑃𝑚,𝑌 (𝜎, 𝑋)

) 𝑘 (
𝑃𝑚,𝑌 (𝜎, 𝑋)

)ℓ]
+𝑂

(
𝑌2(𝑘+ℓ)

𝑇

)
.

93



Proof. We see that∫ 𝑇

0
(𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡))𝑘

(
𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)

)ℓ
𝑑𝑡

=
∑

𝑝
𝑎1
1 ,...,𝑝

𝑎𝑘
𝑘

≤𝑌
𝑞
𝑏1
1 ,...,𝑞

𝑏ℓ
ℓ
≤𝑌

1
𝑎1𝑝

𝑎1𝜎
1 (log 𝑝𝑎𝑘1 )𝑚 · · · 𝑎𝑘 𝑝𝑎𝑘𝜎𝑘 (log 𝑝𝑎𝑘𝑘 )𝑚

× 1
𝑏1𝑞

𝑏1𝜎
1 (log 𝑞𝑏1

1 )𝑚 · · · 𝑏ℓ𝑞𝑏ℓ𝜎ℓ (log 𝑞𝑏ℓℓ )𝑚

∫ 𝑇

0

(
𝑞𝑏1

1 · · · 𝑞𝑏ℓℓ
𝑝𝑎1

1 · · · 𝑝𝑎𝑘𝑘

) 𝑖𝑡
𝑑𝑡

= 𝑆1 + 𝑆2,

where 𝑆1 is the sum over the terms with 𝑝𝑎1
1 · · · 𝑝𝑎𝑘𝑘 = 𝑞𝑏1

1 · · · 𝑞𝑏ℓℓ , and 𝑆2 is the
sum over the other terms. Here, for 𝑝𝑎1

1 · · · 𝑝𝑎𝑘𝑘 ≠ 𝑞𝑏1
1 · · · 𝑞𝑏ℓℓ , it holds that∫ 𝑇

0

(
𝑞𝑏1

1 · · · 𝑞𝑏ℓℓ
𝑝𝑎1

1 · · · 𝑝𝑎𝑘𝑘

) 𝑖𝑡
𝑑𝑡 ≪ 𝑌 𝑘+ℓ,

and hence we have

𝑆2 ≪ 𝑌 𝑘+ℓ
( ∑
𝑝𝑎≤𝑌

1
𝑎𝑝𝑎𝜎 (log 𝑝𝑎)𝑚

) 𝑘+ℓ
≪𝑚 𝑌

2(𝑘+ℓ) .

We can also write
1
𝑇
𝑆1 =

∑
𝑝
𝑎1
1 ,...,𝑝

𝑎𝑘
𝑘

≤𝑌
𝑞
𝑏1
1 ,...,𝑞

𝑏ℓ
ℓ
≤𝑌

𝑝
𝑎1
1 ···𝑝𝑎𝑘

𝑘
=𝑞

𝑏1
1 ···𝑞𝑏ℓ

ℓ

1
𝑎1𝑝

𝑎1𝜎
1 (log 𝑝𝑎𝑘1 )𝑚 · · · 𝑎𝑘 𝑝𝑎𝑘𝜎𝑘 (log 𝑝𝑎𝑘𝑘 )𝑚

(5.5)

× 1
𝑏1𝑞

𝑏1𝜎
1 (log 𝑞𝑏1

1 )𝑚 · · · 𝑏ℓ𝑞𝑏ℓ𝜎ℓ (log 𝑞𝑏ℓℓ )𝑚
.

On the other hand, it holds that

E

[ (
𝑃𝑚,𝑌 (𝜎, 𝑋)

) 𝑘 (
𝑃𝑚,𝑌 (𝜎, 𝑋)

)ℓ]
=

∑
𝑝
𝑎1
1 ,...,𝑝

𝑎𝑘
𝑘

≤𝑌
𝑞
𝑏1
1 ,...,𝑞

𝑏ℓ
ℓ
≤𝑌

1
𝑎1𝑝

𝑎1𝜎
1 (log 𝑝𝑎𝑘1 )𝑚 · · · 𝑎𝑘 𝑝𝑎𝑘𝜎𝑘 (log 𝑝𝑎𝑘𝑘 )𝑚

× 1
𝑏1𝑞

𝑏1𝜎
1 (log 𝑞𝑏1

1 )𝑚 · · · 𝑏ℓ𝑞𝑏ℓ𝜎ℓ (log 𝑞𝑏ℓℓ )𝑚
E

[
𝑋 (𝑝1)𝑎1 · · · 𝑋 (𝑝𝑘 )𝑎𝑘
𝑋 (𝑞1)𝑏1 · · · 𝑋 (𝑞ℓ)𝑏ℓ

]
.

Since 𝑋 (𝑝)’s are independent and uniformly distribution on the unit circle
in C, it holds that

E

[
𝑋 (𝑝1)𝑎1 · · · 𝑋 (𝑝𝑘 )𝑎𝑘
𝑋 (𝑞1)𝑏1 · · · 𝑋 (𝑞ℓ)𝑏ℓ

]
=

{
1 if 𝑝𝑎1

1 · · · 𝑝𝑎𝑘𝑘 = 𝑞𝑏1
1 · · · 𝑞𝑏ℓℓ ,

0 if 𝑝𝑎1
1 · · · 𝑝𝑎𝑘𝑘 ≠ 𝑞𝑏1

1 · · · 𝑞𝑏ℓℓ .
(5.6)
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Therefore, we deduce from (5.5) the equation

E

[ (
𝑃𝑚,𝑌 (𝜎, 𝑋)

) 𝑘 (
𝑃𝑚,𝑌 (𝜎, 𝑋)

)ℓ]
= 𝑇𝑆1,

which completes the proof of the lemma. □

Lemma 5.3. Let {𝑎(𝑝)}𝑝∈P be any complex sequence. Let 𝑇 ≥ 5 and 𝑌 ≥ 3. For
𝑘 ∈ Z≥1 with 𝑌 𝑘 ≤ 𝑇 (log𝑇)−1, we have

1
𝑇

∫ 𝑇

0

���� ∑
𝑝≤𝑌

𝑎(𝑝)𝑝−𝑖𝑡
����2𝑘𝑑𝑡 ≪ 𝑘!

(∑
𝑝≤𝑌

|𝑎(𝑝) |2
) 𝑘
.

Additionally, for any 𝑘 ∈ Z≥1, we have

E

[���� ∑
𝑝≤𝑌

𝑎(𝑝)𝑋 (𝑝)
����2𝑘 ] ≤ 𝑘!

(∑
𝑝≤𝑌

|𝑎(𝑝) |2
) 𝑘
.

Proof. The former assertion is Lemma 2.8. We prove the latter assertion. By
equation (5.6), we see that

E

[���� ∑
𝑝≤𝑌

𝑎(𝑝)𝑋 (𝑝)
����2𝑘 ]

=
∑

𝑝1,...,𝑝𝑘≤𝑌
𝑞1,...,𝑞𝑘≤𝑌

𝑎(𝑝1) · · · 𝑎(𝑝𝑘 )𝑎(𝑞1) · · · 𝑎(𝑞𝑘 )E
[
𝑋 (𝑝1) · · · 𝑋 (𝑝𝑘 )
𝑋 (𝑞1) · · · 𝑋 (𝑞𝑘 )

]

≤ 𝑘!
∑

𝑝1,...,𝑝𝑘≤𝑌
|𝑎(𝑝1) |2 · · · |𝑎(𝑝𝑘 ) |2 ≤ 𝑘!

(∑
𝑝≤𝑌

|𝑎(𝑝) |2
) 𝑘
,

which completes the proof of the lemma. □

Lemma 5.4. Let (𝜎, 𝑚) ∈ A with 𝜎 < 1. Let 𝑇 > 0 be large and 𝑌 ≥ 3. There
exists a positive constant 𝐶 = 𝐶 (𝜎, 𝑚) such that

1
𝑇

∫ 𝑇

0
|𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) |2𝑘𝑑𝑡 ≪

(
𝐶𝑘1−𝜎

(log 2𝑘)𝑚+𝜏(𝜎)

)2𝑘
(5.7)

for 𝑘 ∈ Z≥1 with 𝑌 𝑘 ≤ 𝑇 (log𝑇)−1. Additionally, we have

E
[
|𝑃𝑚,𝑌 (𝜎, 𝑋) |2𝑘

]
≪

(
𝐶𝑘1−𝜎

(log 2𝑘)𝑚+𝜏(𝜎)

)2𝑘
(5.8)

for any 𝑘 ∈ Z≥1.
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Proof. Suppose that the inequality 𝑘 log 2𝑘 < 𝑌 holds. Then we see that∫ 𝑇

0
|𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) |2𝑘𝑑𝑡

≤ 9𝑘
( ∫ 𝑇

0

���� ∑
𝑝≤𝑘 log 2𝑘

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

����2𝑘𝑑𝑡
+

∫ 𝑇

0

���� ∑
𝑘 log 2𝑘<𝑝≤𝑌

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

����2𝑘𝑑𝑡 + 𝐶2𝑘𝑇

)
,

where 𝐶 is an absolute positive constant. By Lemma 5.3 and the prime
number theorem, it holds that

1
𝑇

∫ 𝑇

0

���� ∑
𝑘 log 2𝑘<𝑝≤𝑌

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

����2𝑘𝑑𝑡 ≪ 𝑘! ©­«
∑

𝑘 log 2𝑘<𝑝≤𝑌

1
𝑝2𝜎 (log 𝑝)2𝑚

ª®¬
𝑘

≪
(

𝐶1𝑘
1−𝜎

(log 2𝑘)𝑚+𝜏(𝜎)

)2𝑘
,

where𝐶1 is a positive constant which may depend on𝜎 and𝑚. Furthermore,
by the prime number theorem it follows that

1
𝑇

∫ 𝑇

0

���� ∑
𝑝≤𝑘 log 2𝑘

1
𝑝𝜎+𝑖𝑡 (log 𝑝)𝑚

����2𝑘𝑑𝑡 ≪ ©­«
∑

𝑝≤𝑘 log 2𝑘

1
𝑝𝜎 (log 𝑝)𝑚

ª®¬
2𝑘

≪
(

𝐶2𝑘
1−𝜎

(log 2𝑘)𝑚+𝜎

)2𝑘
,

where 𝐶2 is also a positive constant which may depend on 𝜎 and 𝑚. From
the above estimates, we obtain estimate (5.7). If the inequality 𝑌 ≤ 𝑘 log 2𝑘
holds, then we have

𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) ≪
∑
𝑝≤𝑌

1
𝑝𝜎 (log 𝑝)𝑚 ≪ 𝐶2𝑘

1−𝜎

(log 2𝑘)𝑚+𝜎

by the prime number theorem. Hence, estimate (5.7) follows in this case.
Similarly, we can prove estimate (5.8). □

Lemma 5.5. Let (𝜎, 𝑚) ∈ A with 𝜎 < 1. Let 𝑇,𝑉 > 0 be large. There exists a
small positive constant 𝑐 = 𝑐(𝜎, 𝑚) such that

P𝑇
(
|𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) | > 𝑉

)
≤ exp

(
−𝑐𝑉 1

1−𝜎 (log𝑉)
𝑚+𝜏 (𝜎)

1−𝜎
)

(5.9)

if 𝑌 ≥ 3 satisfies (5.4). Additionally, we have

P
(
|𝑃𝑚,𝑌 (𝜎, 𝑋) | > 𝑉

)
≤ exp

(
−𝑐𝑉 1

1−𝜎 (log𝑉)
𝑚+𝜏 (𝜎)

1−𝜎
)

(5.10)

for any 𝑌 ≥ 3.
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Proof. Note that (5.4) implies the condition 𝑌 𝑘 ≤ 𝑇 (log𝑇)−1. Then we derive
from (5.7) the estimate

P𝑇
(
|𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) | > 𝑉

)
≤ 1
𝑉2𝑘

1
𝑇

∫ 𝑇

0
|𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) |2𝑘𝑑𝑡

≪ 1
𝑉2𝑘

(
𝐶 (𝜎, 𝑚)𝑘1−𝜎

(log 2𝑘)𝑚+𝜏(𝜎)

)2𝑘
.

Hence, choosing 𝑘 =
[
𝑐1𝑉

1
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎

]
with 𝑐1 a suitably small constant

depending on 𝜎 and 𝑚, we obtain inequality (5.9). Similarly, by using (5.8),
we see that

P
(
|𝑃𝑚,𝑌 (𝜎, 𝑋) | > 𝑉

)
≤ 1
𝑉2𝑘 E

[
|𝑃𝑚,𝑌 (𝜎, 𝑋) |2𝑘

]
≪ 1
𝑉2𝑘

(
𝐶 (𝜎, 𝑚)𝑘1−𝜎

(log 2𝑘)𝑚+𝜏(𝜎)

)2𝑘

holds for any 𝑌 ≥ 3. Thus again choosing 𝑘 =
[
𝑐1𝑉

1
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎

]
, we

obtain inequality (5.10). □

Lemma 5.6. Let (𝜎, 𝑚) ∈ A, and let 𝑇 > 0 be large. For 𝑌 ≥ 3 and 𝑊 > 0, we
denote by 𝐵𝑇 = 𝐵𝑇 (𝑌,𝑊 ;𝜎, 𝑚) the set

𝐵𝑇 =
{
𝑡 ∈ [14, 𝑇] : |𝜂̃𝑚 (𝜎 + 𝑖𝑡) − 𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) | ≤ 𝑊𝑌 1

2−𝜎
}
. (5.11)

There exists a small positive constant 𝑐 such that

1
𝑇

meas( [14, 𝑇] \ 𝐵𝑇 ) ≪ exp
(
−𝑐𝑊2(log𝑌 )2𝑚

)
for 0 < 𝑊 ≤

(
(log𝑇) (log𝑌 )−2(𝑚+1)

) 𝑚
2𝑚+1 . Moreover, we have

1
𝑇

meas( [14, 𝑇] \ 𝐵𝑇 ) ≪ exp
(
−𝑐(𝑊 (log𝑇)𝑚) 1

𝑚+1
)

(5.12)

for
(
(log𝑇) (log𝑌 )−2(𝑚+1)

) 𝑚
2𝑚+1 ≤ 𝑊 ≤ (log𝑇)(log𝑌 )−(𝑚+1) .

Proof. When 𝑚 ∈ Z≥1, this lemma is a little modification of Lemma 5.6, and
the proof is the same as that for Lemma 5.6. When 𝑚 = 0, this can be also
proved similarly by using [116, Corollary in page 60] or Proposition 6.6 in
Chapter 6. □

Lemma 5.7. Let (𝜎, 𝑚) ∈ A. Let 𝑌 ≥ 3 and 𝑊 > 0. There exists a small positive
constant 𝑐 such that

P
(
|𝜂̃𝑚 (𝜎, 𝑋) − 𝑃𝑚,𝑌 (𝜎, 𝑋) | > 𝑊𝑌

1
2−𝜎

)
≤ exp

(
−𝑐𝑊2(log𝑌 )2𝑚

)
.
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Proof. We see that

E
[
|𝜂̃𝑚 (𝜎, 𝑋) − 𝑃𝑚,𝑌 (𝜎, 𝑋) |2𝑘

]
= E


���� ∑
𝑝ℓ>𝑌

𝑋 (𝑝)ℓ
ℓ𝑝ℓ𝜎 (log 𝑝ℓ)𝑚

����2𝑘 .
Additionally, we find that∑

𝑝ℓ>𝑌
ℓ≥2

𝑋 (𝑝)ℓ
ℓ𝑝ℓ𝜎 (log 𝑝ℓ)𝑚

≪ 1
𝑌𝜎−

1
2 (log𝑌 )𝑚

.

Therefore, it holds that

E
[
|𝜂̃𝑚 (𝜎, 𝑋) − 𝑃𝑚,𝑌 (𝜎, 𝑋) |2𝑘

]
= E

[���� ∑
𝑝>𝑌

𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚

����2𝑘 ] +𝑂 ((
𝐶𝑘

𝑌2𝜎−1(log𝑌 )2𝑚

) 𝑘 )
for some constant 𝐶 > 0. Similarly to the proof of Lemma 5.3, we obtain

E

[���� ∑
𝑝>𝑌

𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚

����2𝑘 ] ≤ 𝑘!
(∑
𝑝>𝑌

1
𝑝2𝜎 (log 𝑝)2𝑚

) 𝑘
≤

(
𝑘𝐶

𝑌2𝜎−1(log𝑌 )2𝑚

) 𝑘
.

Hence, it follows that

E
[
|𝜂̃𝑚 (𝜎, 𝑋) − 𝑃𝑚,𝑌 (𝜎, 𝑋) |2𝑘

]
≤

(
𝑘𝐶

𝑌2𝜎−1(log𝑌 )2𝑚

) 𝑘
.

This inequality leads that

P
(
|𝜂̃𝑚 (𝜎, 𝑋) − 𝑃𝑚,𝑌 (𝜎, 𝑋) | > 𝑊𝑌

1
2−𝜎

)
≤ 1

(𝑊𝑌 1
2−𝜎)2𝑘

E
[
|𝜂̃𝑚 (𝜎, 𝑋) − 𝑃𝑚,𝑌 (𝜎, 𝑋) |2𝑘

]
≤

(
𝑘𝐶

𝑊2(log𝑌 )2𝑚

) 𝑘
.

Choosing 𝑘 = [𝑒−1𝐶−1𝑊2(log𝑌 )2𝑚], we obtain this lemma. □

Lemma 5.8. Let (𝜎, 𝑚) ∈ A. For 𝑌 ≥ 3 and 𝑤 ∈ C, we have

E
[
exp(𝑖⟨𝜂̃𝑚 (𝜎, 𝑋), 𝑤⟩)

]
= E

[
exp

(
𝑖⟨𝑃𝑚,𝑌 (𝜎, 𝑋), 𝑤⟩

) ]
+𝑂

(
|𝑤 |

𝑌𝜎−
1
2 (log𝑌 )𝑚

)
.

Proof. By the definition of 𝜂̃𝑚 (𝜎, 𝑋), we see that

E
[
exp(𝑖⟨𝜂̃𝑚 (𝜎, 𝑋), 𝑤⟩)

]
= E

exp ©­«𝑖⟨𝑃𝑚,𝑌 (𝜎, 𝑋), 𝑤⟩ + 𝑖⟨
∑
𝑝𝑘>𝑌

𝑋 (𝑝)𝑘
𝑘 𝑝𝑘𝜎 (log 𝑝𝑘 )𝑚

, 𝑤⟩ª®¬
 .

(5.13)
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Since the estimate ∑
𝑝𝑘>𝑌
𝑘≥2

𝑋 (𝑝)𝑘
𝑘 𝑝𝑘𝜎 (log 𝑝𝑘 )𝑚

≪ 1
𝑌2𝜎−1(log𝑌 )𝑚

holds, we have

⟨
∑
𝑝𝑘>𝑌

𝑋 (𝑝)𝑘
𝑘 𝑝𝑘𝜎 (log 𝑝𝑘 )𝑚

, 𝑤⟩ = ⟨
∑
𝑝>𝑌

𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚 , 𝑤⟩ +𝑂

(
|𝑤 |

𝑌2𝜎−1(log𝑌 )𝑚

)
by applying the Cauchy-Schwarz inequality |⟨𝑧, 𝑤⟩| ≤ |𝑧 | |𝑤 |. Furthermore,
by the inequality |𝑒𝑖𝑏 − 𝑒𝑖𝑎 | ≤ |𝑏 − 𝑎 | for 𝑎, 𝑏 ∈ R, the left hand side of (5.13)
is equal to

E

[
exp

(
𝑖⟨𝑃𝑚,𝑌 (𝜎, 𝑋), 𝑤⟩ + 𝑖⟨

∑
𝑝>𝑌

𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚 , 𝑤⟩

)]
+𝑂

(
|𝑤 |

𝑌2𝜎−1(log𝑌 )𝑚

)
.

From the independence of 𝑋 (𝑝)’s, we see that the above expectation is equal
to

E
[
exp

(
𝑖⟨𝑃𝑚,𝑌 (𝜎, 𝑋), 𝑤⟩

) ]
× E

[
exp

(
𝑖⟨
∑
𝑝>𝑌

𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚 , 𝑤⟩

)]
. (5.14)

Moreover, by the Cauchy-Schwarz inequality and the inequality |𝑒𝑖𝑥−1| ≤ |𝑥 |
for 𝑥 ∈ R, we find that�����E

[
exp

(
𝑖⟨

∑
𝑌<𝑝≤𝑍

𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚 , 𝑤⟩

)]
− 1

�����
≤ |𝑤 |E

[���� ∑
𝑌<𝑝≤𝑍

𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚

����] ≤ |𝑤 |
(
E

[���� ∑
𝑌<𝑝≤𝑍

𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚

����2])1/2

for any 𝑍 > 𝑌 . Applying Lemma 5.3, the last is

≤ |𝑤 |
( ∑
𝑌<𝑝≤𝑍

1
𝑝2𝜎 (log 𝑝)2𝑚

)1/2

≪ |𝑤 |
𝑌𝜎−

1
2 (log𝑌 )𝑚

.

Therefore, by Lebesgue’s dominated convergence theorem, it holds that

E

[
exp

(
𝑖⟨
∑
𝑝>𝑌

𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚 , 𝑤⟩

)]
= lim
𝑍→∞

E

[
exp

(
𝑖⟨

∑
𝑌<𝑝≤𝑍

𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚 , 𝑤⟩

)]
= 1 +𝑂

(
|𝑤 |

𝑌𝜎−
1
2 (log𝑌 )𝑚

)
,

and hence, (5.14) is equal to

E
[
exp

(
𝑖⟨𝑃𝑚,𝑌 (𝜎, 𝑋), 𝑤⟩

) ]
+𝑂

(
|𝑤 |

𝑌𝜎−
1
2 (log𝑌 )𝑚

)
.

Thus, the left hand side of (5.13) is also equal to the above. □
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5.2.2 Proofs of mean value results

Proof of Proposition 5.1. Let (𝜎, 𝑚) ∈ A be fixed. Suppose that 𝑌 satisfies
inequality (5.4). By the definition of the set 𝐴𝑇 = 𝐴𝑇 (𝑉,𝑌 ;𝜎, 𝑚), we find that

∫
𝐴𝑇

exp
(
𝑧1𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) + 𝑧2𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)

)
𝑑𝑡 (5.15)

=
∑
𝑘+ℓ≤𝑍
𝑘,ℓ∈Z≥0

𝑧𝑘1𝑧
ℓ
2

𝑘!ℓ!

∫
𝐴𝑇

𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)𝑘𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)ℓ𝑑𝑡 +𝑂
©­­­«𝑇

∑
𝑘+ℓ>𝑍
𝑘,ℓ∈Z≥0

|𝑧1 |𝑘 |𝑧2 |ℓ
𝑘!ℓ! 𝑉 𝑘+ℓ

ª®®®¬ ,
where 𝑍 = 𝑐3𝑉

1
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎 , and 𝑐3 is a small constant decided later. For

|𝑧1 |, |𝑧2 | ≤ 2−1𝑒−2𝑐3𝑉
𝜎

1−𝜎 (log𝑉)
𝑚+𝜏 (𝜎)

1−𝜎 = 2−1𝑒−2𝑉−1𝑍 , it holds that

∑
𝑘+ℓ>𝑍
𝑘,ℓ∈Z≥0

|𝑧1 |𝑘 |𝑧2 |ℓ
𝑘!𝑙! 𝑉 𝑘+ℓ ≤

∑
𝑛>𝑍

1
𝑛!

𝑛∑
𝑘=0

(
𝑛

𝑘

) (
2−1𝑒−2𝑍

)𝑛
=

∑
𝑛>𝑍

1
𝑛!

(
𝑒−2𝑍

)𝑛
≪

∑
𝑛>𝑍

𝑒−𝑛 ≪ exp
(
−𝑐3𝑉

1
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎

)
(5.16)

by the Stirling formula. On the other hand, we can write

∫
𝐴𝑇

𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)𝑘𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)ℓ𝑑𝑡

=
∫ 𝑇

0
𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)𝑘𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)ℓ𝑑𝑡 −

∫
[0,𝑇]\𝐴𝑇

𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)𝑘𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)ℓ𝑑𝑡.

Recall that𝑌 𝑘+ℓ ≤ 𝑇 (log𝑇)−1 is satisfied for 𝑘 +ℓ ≤ 𝑍 if 𝑐3 is sufficiently small.
By using the Cauchy-Schwarz inequality and estimates (5.7), (5.9), we have

1
𝑇

∫
[0,𝑇]\𝐴𝑇

𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)𝑘𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)ℓ𝑑𝑡

≤
(
1
𝑇

meas([0, 𝑇] \ 𝐴𝑇 )
)1/2 (

1
𝑇

∫ 𝑇

0

��𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)
��2(𝑘+ℓ) 𝑑𝑡)1/2

≪ exp
(
−𝑐1

2 𝑉
1

1−𝜎 (log𝑉)
𝑚+𝜏 (𝜎)

1−𝜎
) (

𝐶 (𝑚, 𝜎) (𝑘 + ℓ)1−𝜎

(log 2(𝑘 + ℓ))𝑚+𝜏(𝜎)

) 𝑘+ℓ
≪ exp

(
−𝑐1

2 𝑉
1

1−𝜎 (log𝑉)
𝑚+𝜏 (𝜎)

1−𝜎
) (

𝐶 (𝑚, 𝜎)𝑍1−𝜎

(log 2𝑍)𝑚+𝜏(𝜎)

) 𝑘+ℓ
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for 1 ≤ 𝑘 + ℓ ≤ 𝑍 . We note that the same is true for 𝑘 = ℓ = 0 by estimate
(5.9). Therefore, we have

1
𝑇

∑
𝑘+ℓ≤𝑍
𝑘,ℓ∈Z≥0

𝑧𝑘1𝑧
ℓ
2

𝑘!ℓ!

∫
[0,𝑇]\𝐴𝑇

𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)𝑘𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)ℓ𝑑𝑡

≪ exp
(
−𝑐1

2 𝑉
1

1−𝜎 (log𝑉)
𝑚+𝜏 (𝜎)

1−𝜎
) ∑

0≤𝑘+ℓ≤𝑍
𝑘,ℓ∈Z≥0

1
𝑘!ℓ!

(
2−1𝐶′𝑐3𝑉

1
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎

) 𝑘+ℓ
≪ exp

(
−𝑐1

2 𝑉
1

1−𝜎 (log𝑉)
𝑚+𝜏 (𝜎)

1−𝜎
)

exp
(
𝐶′𝑐3𝑉

1
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎

)
,

where 𝐶′ > 𝐶 (𝑚, 𝜎) + 1 is a positive constant not depending on 𝑉 and 𝑐3.
Hence, choosing 𝑐3 = 𝑐1/4𝐶′, we obtain

1
𝑇

∑
𝑘+ℓ≤𝑍
𝑘,ℓ∈Z≥0

𝑧𝑘1𝑧
ℓ
2

𝑘!ℓ!

∫
[0,𝑇]\𝐴𝑇

𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)𝑘𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)ℓ𝑑𝑡

≪ exp
(
−𝑐1

4 𝑉
1

1−𝜎 (log𝑉)
𝑚+𝜏 (𝜎)

1−𝜎
)
≪ exp

(
−𝑐3𝑉

1
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎

)
. (5.17)

Thus, by (5.15), (5.16), and (5.17), we have

1
𝑇

∫
𝐴𝑇

exp
(
𝑧1𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) + 𝑧2𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)

)
𝑑𝑡 (5.18)

=
1
𝑇

∑
𝑘+ℓ≤𝑍
𝑘,ℓ∈Z≥0

𝑧𝑘1𝑧
ℓ
2

𝑘!ℓ!

∫ 𝑇

0
𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)𝑘𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡)ℓ𝑑𝑡

+𝑂
(
exp

(
−𝑐3𝑉

1
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎

))
.

Applying Lemma 5.2 to the integral on the right hand side, we see that its
first term is equal to∑

𝑘+ℓ≤𝑍
𝑘,ℓ∈Z≥0

E

[
𝑧𝑘1𝑧

ℓ
2

𝑘!ℓ! 𝑃𝑚,𝑌 (𝜎, 𝑋)
𝑘𝑃𝑚,𝑌 (𝜎, 𝑋)

ℓ

]
+𝑂

(
1
𝑇

(
𝑉

𝜎
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎 𝑌

)2𝑍
)

= E
[
exp

(
𝑧1𝑃𝑚,𝑌 (𝜎, 𝑋) + 𝑧2𝑃𝑚,𝑌 (𝜎, 𝑋)

)]
−

∑
𝑘+ℓ>𝑍
𝑘,ℓ∈Z≥0

𝑧𝑘1𝑧
ℓ
2

𝑘!ℓ! E
[
𝑃𝑚,𝑌 (𝜎, 𝑋)𝑘𝑃𝑚,𝑌 (𝜎, 𝑋)

ℓ
]

+𝑂
(
1
𝑇

(
𝑉

𝜎
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎 𝑌

)2𝑍
)
.

By using the Cauchy-Schwarz inequality and estimate (5.8), we obtain

E
[
𝑃𝑚,𝑌 (𝜎, 𝑋)𝑘𝑃𝑚,𝑌 (𝜎, 𝑋)

ℓ
]
≪

(
𝐶 (𝜎, 𝑚)(𝑘 + ℓ)1−𝜎

(log 2(𝑘 + ℓ))𝑚+𝜏(𝜎)

) 𝑘+ℓ
.
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By this estimate, a calculation similar to (5.16) shows that∑
𝑘+ℓ>𝑍
𝑘,ℓ∈Z≥0

𝑧𝑘1𝑧
ℓ
2

𝑘!ℓ! E
[
𝑃𝑚,𝑌 (𝜎, 𝑋)𝑘𝑃𝑚,𝑌 (𝜎, 𝑋)

ℓ
]
≪ exp

(
−𝑐3𝑉

1
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎

)
.

Hence, the left hand side of (5.18) is equal to

E
[
exp

(
𝑧1𝑃𝑚,𝑌 (𝜎, 𝑋) + 𝑧2𝑃𝑚,𝑌 (𝜎, 𝑋)

)]
+𝑂

(
1
𝑇

(
𝑉

𝜎
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎 𝑌

)2𝑍
+ exp

(
−𝑐3𝑉

1
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎

))
,

which completes the proof of Proposition 5.1. □

Proof of Proposition 5.2. Suppose that 𝑌 satisfies (5.4), and let 𝑤 = 𝑢 + 𝑖𝑣 be
a complex number with 𝑢, 𝑣 ∈ R. Let 0 < 𝑊 ≤ (|𝑤 | + 1)−1 be a parameter
chosen later. Then we see that

1
𝑇

∫ 𝑇

0
exp

(
𝑖⟨𝜂̃𝑚 (𝜎 + 𝑖𝑡), 𝑤⟩

)
𝑑𝑡 (5.19)

=
1
𝑇

∫
𝐵𝑇

exp
(
𝑖⟨𝜂̃𝑚 (𝜎 + 𝑖𝑡), 𝑤⟩

)
𝑑𝑡 +𝑂

(
1
𝑇
(meas( [0, 𝑇] \ 𝐵𝑇 )

)
.

From the definition of the set 𝐵𝑇 = 𝐵𝑇 (𝑌,𝑊 ;𝜎, 𝑚), we can write

exp
(
𝑖⟨𝜂̃𝑚 (𝜎 + 𝑖𝑡), 𝑤⟩

)
= exp

(
𝑖⟨𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡), 𝑤⟩

)
+𝑂

(
|𝑤 |𝑊𝑌 1

2−𝜎
)

for all 𝑡 ∈ 𝐵𝑇 by using the inequality |𝑒𝑖𝑏 − 𝑒𝑖𝑎 | ≤ |𝑏 − 𝑎 |. By this formula, the
integral on the right hand side of (5.19) is equal to

1
𝑇

∫
𝐵𝑇

exp
(
𝑖⟨𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡), 𝑤⟩

)
𝑑𝑡 +𝑂

(
|𝑤 |𝑊𝑌 1

2−𝜎
)

=
1
𝑇

∫
𝐴𝑇

exp
(
𝑖⟨𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡), 𝑤⟩

)
𝑑𝑡

+𝑂
(
|𝑤 |𝑊𝑌 1

2−𝜎 + 1
𝑇
{meas( [0, 𝑇] \ 𝐴𝑇 ) + meas([0, 𝑇] \ 𝐵𝑇 )}

)
.

Therefore, by this formula and Lemma 5.5, the left hand side of (5.19) is

=
1
𝑇

∫
𝐴𝑇

exp
(
𝑖⟨𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡), 𝑤⟩

)
𝑑𝑡

+𝑂
(
|𝑤 |𝑊𝑌 1

2−𝜎 + exp
(
−𝑐𝑉 1

1−𝜎 (log𝑉)
𝑚+𝜏 (𝜎)

1−𝜎
)
+ 1
𝑇

meas( [0, 𝑇] \ 𝐵𝑇 )
)
.

Here, applying Proposition 5.1 to the integral on the right hand side with
𝑧1 = 𝑖

2 (𝑢 − 𝑖𝑣), 𝑧2 = 𝑖
2 (𝑢 + 𝑖𝑣), the above integral is equal to

E
[
exp(𝑖⟨𝑃𝑚,𝑌 (𝜎, 𝑋), 𝑤⟩)

]
+𝑂

(
1
𝑇

(
𝑉

𝜎
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎 𝑌

)𝑉 1
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎

+ exp
(
−𝑐𝑉 1

1−𝜎 (log𝑉)
𝑚+𝜏 (𝜎)

1−𝜎
) )
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for |𝑤 | ≤ 𝑐𝑉 𝜎
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎 . Moreover, applying Lemma 5.8, we find that

E
[
exp(𝑖⟨𝑃𝑚,𝑌 (𝜎, 𝑋), 𝑤⟩)

]
= E

[
exp(𝑖⟨𝜂̃𝑚 (𝜎, 𝑋), 𝑤⟩)

]
+𝑂

(
|𝑤 |

𝑌𝜎−
1
2 (log𝑌 )𝑚

)
.

Hence, for |𝑤 | ≤ 𝑐𝑉 𝜎
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎 , we obtain

1
𝑇

∫ 𝑇

0
exp

(
𝑖⟨𝜂̃𝑚 (𝜎 + 𝑖𝑡), 𝑤⟩

)
𝑑𝑡 − E

[
exp(𝑖⟨𝜂̃𝑚 (𝜎, 𝑋), 𝑤⟩)

]
≪ |𝑤 |𝑊𝑌 1

2−𝜎 + exp
(
−𝑐𝑉 1

1−𝜎 (log𝑉)
𝑚+𝜏 (𝜎)

1−𝜎
)

+ 1
𝑇

meas( [0, 𝑇] \ 𝐵𝑌 (𝑇,𝑊))

+ 1
𝑇

(
𝑉

𝜎
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎 𝑌

)𝑉 1
1−𝜎 (log𝑉)

𝑚+𝜏 (𝜎)
1−𝜎

+ |𝑤 |
𝑌𝜎−

1
2 (log𝑌 )𝑚

.

Choosing 𝑊 = (log𝑇)1/2, 𝑌 = (log𝑇)
𝐴+2

𝜎−1/2 , and 𝑉 = 𝑐3
(log𝑇)

1
1−𝜎

(log log𝑇)𝑚+1 with 𝑐3 a
small constant depending on 𝜎, 𝑚, and 𝐴, we have

1
𝑇

∫ 𝑇

0
exp

(
𝑖⟨𝜂̃𝑚 (𝜎 + 𝑖𝑡), 𝑤⟩

)
𝑑𝑡 = E

[
exp(𝑖⟨𝜂̃𝑚 (𝜎, 𝑋), 𝑤⟩)

]
+𝑂

(
1

(log𝑇)𝐴

)
for |𝑤 | ≤ 𝑐4(log𝑇)𝜎 (log log𝑇)𝑚 from estimate (5.12). Here, 𝑐4 is a small
constant determined from 𝑐3. Thus, we complete the proof of Proposition
5.2. □

5.3 Probability density function for 𝜂̃𝑚 (𝜎, 𝑋)

The goal of this section is the following proposition.

Proposition 5.3. Let (𝜎, 𝑚) ∈ A. There exists a continuous function 𝐷𝜎,𝑚 : C→
R≥0 such that

P(𝜂̃𝑚 (𝜎, 𝑋) ∈ 𝐴) =
∫
𝐴
𝐷𝜎,𝑚 (𝑧) |𝑑𝑧 |,

for all 𝐴 ∈ B(C), where |𝑑𝑧 | = (2𝜋)−1𝑑𝑥𝑑𝑦 for 𝑧 = 𝑥 + 𝑖𝑦. Furthermore, the
following properties hold.

(i) Let 𝑚 ≥ 1. If 1/2 ≤ 𝜎 < 1, then 𝐷𝜎,𝑚 (𝑧) > 0 for all 𝑧 ∈ C. If 𝜎 ≥ 1, then
𝐷𝜎,𝑚 is compactly supported.

(ii) Let 𝑚 = 0. If 1/2 < 𝜎 ≤ 1, then 𝐷𝜎,𝑚 (𝑧) > 0 for all 𝑧 ∈ C. If 𝜎 > 1, then
𝐷𝜎,𝑚 is compactly supported.

(iii) Let (𝜎, 𝑚) ∈ A. For any 𝑎 > 0, we have∫
C
𝑒𝑎 |𝑧 |𝐷𝜎,𝑚 (𝑧) |𝑑𝑧 | < ∞.
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The distribution of 𝜂̃𝑚 (𝜎, 𝑋) is the probabilistic measure defined as

𝜇𝜎,𝑚 (𝐴) = P(𝜂̃𝑚 (𝜎, 𝑋) ∈ 𝐴) (5.20)

for 𝐴 ∈ B(C). Let 𝑝 be a prime number. We also define

𝜇𝜎,𝑚,𝑝 (𝐴) = P(𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)) ∈ 𝐴)

for 𝐴 ∈ B(C), where 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)) is defined from (5.2).

Lemma 5.9. Let (𝜎, 𝑚) ∈ A. The convolution measure

𝜈𝜎,𝑚,𝑁 = 𝜇𝜎,𝑚,𝑝1 ∗ · · · ∗ 𝜇𝜎,𝑚,𝑝𝑁 (5.21)

converges weakly to 𝜇𝜎,𝑚 as 𝑁 → ∞, where 𝑝𝑛 indicates the 𝑛-th prime number.
Furthermore, the convergence is absolute in the sense that it converges to 𝜇𝜎,𝑚 in
any order of terms of the convolution.

Proof. Recall that 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)) and 𝜂̃𝑚,𝑞 (𝜎, 𝑋 (𝑞)) are independent if 𝑝 and
𝑞 are distinct prime numbers. Hence, the distribution of 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)) +
𝜂̃𝑚,𝑞 (𝜎, 𝑋 (𝑞)) equals to 𝜇𝜎,𝑚,𝑝 ∗ 𝜇𝜎,𝑚,𝑞. More generally, we see that

𝜈𝜎,𝑚,𝑁 (𝐴) = P
(∑
𝑛≤𝑁

𝜂̃𝑚,𝑝𝑛 (𝜎, 𝑋 (𝑝𝑛)) ∈ 𝐴
)

for all 𝐴 ∈ B(C). By Lemma 5.1,
∑
𝑛≤𝑁 𝜂̃𝑚,𝑝𝑛 (𝜎, 𝑋 (𝑝𝑛)) → 𝜂̃𝑚 (𝜎, 𝑋) in law

as 𝑁 → ∞, i.e. 𝜈𝜎,𝑚,𝑁 → 𝜇𝜎,𝑚 weakly. The absoluteness of the convergence
follows from Jessen-Wintner [54, Theorem 6]. □

In general, the support of a probability measure 𝑃 on (C,B(C)) is defined
as

supp(𝑃) =
{
𝑧 ∈ C : 𝑃(𝐴) > 0 for any 𝐴 ∈ B(C) with 𝑧 ∈ 𝐴𝑖

}
,

where 𝐴𝑖 is the interior of 𝐴. We know that supp(𝑃) is a non-empty closed
subset of C. Applying Lemma 5.9, we can study the support of 𝜇𝜎,𝑚.

Lemma 5.10. Let (𝜎, 𝑚) ∈ A and 𝜇𝜎,𝑚 be the probability measure defined as
(5.20).

(i) Let 𝑚 ≥ 1. If 1/2 ≤ 𝜎 < 1, then supp(𝜇𝜎,𝑚) = C. If 𝜎 ≥ 1, then
supp(𝜇𝜎,𝑚) is a compact subset of C.

(ii) Let𝑚 = 0. If 1/2 < 𝜎 ≤ 1, then supp(𝜇𝜎,𝑚) = C. If𝜎 > 1, then supp(𝜇𝜎,𝑚)
is a compact subset of C.

Proof. Let {𝐴𝑁 }𝑁∈N be a sequence of subsets of C. We denote by lim𝑁→∞ 𝐴𝑁
the set of all points in C that may be represented in at least one way as
the limit of a sequence of points 𝑎𝑛 ∈ 𝐴𝑛. For 𝐴, 𝐵 ⊂ C, define 𝐴 + 𝐵 by
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{𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. Then Jessen and Wintner [54, Theorem 3] proved
that

supp(𝑃) = lim
𝑁→∞

(
supp(𝑃1) + · · · + supp(𝑃𝑁 )

)
if the convolution measure 𝑃1 ∗ · · · ∗ 𝑃𝑁 converges weakly to 𝑃 as 𝑁 → ∞.
Applying further [54, Theorem 14] with 𝑃𝑛 = 𝜇𝜎,𝑚,𝑝𝑛 for 𝑚 = 0, we obtain
assertion (ii). Now, we consider the case 𝑚 ≥ 1. By Lemma 5.9, we have

supp(𝜇𝜎,𝑚) = lim
𝑁→∞

(
supp(𝜇𝜎,𝑚,𝑝1) + · · · + supp(𝜇𝜎,𝑚,𝑝𝑁 )

)
.

Note that the support of every 𝜇𝜎,𝑚,𝑝 is determined as

supp(𝜇𝜎,𝑚,𝑝) =
{
𝜂̃𝑚,𝑝 (𝜎, 𝑒𝑖𝜃) : 𝜃 ∈ [0, 2𝜋)

}
by the definition. First, we let 1/2 ≤ 𝜎 < 1. In this case we apply [112,
Theorem 5.4] to deduce that for any 𝑧 ∈ C, 𝑁0 ≥ 1, and 𝜀 > 0, we have�����

(
𝑧 −

∑
𝑛<𝑁0

Li𝑚+1(𝑝−𝜎𝑛 )
(log 𝑝𝑛)𝑚

)
−

∑
𝑁0<𝑛≤𝑁

𝑝−𝜎𝑛 𝑒𝑖𝜃𝑛

(log 𝑝𝑛)𝑚

����� < 𝜀
with some 𝑁 = 𝑁 (𝑧, 𝑁0, 𝜀) > 𝑁0 and {𝜃𝑛}𝑁0<𝑛≤𝑁 ∈ [0, 2𝜋)𝑁−𝑁0 . We also derive����� ∑

𝑁0<𝑛≤𝑁

Li𝑚+1(𝑝−𝜎𝑛 𝑒𝑖𝜃𝑛)
(log 𝑝𝑛)𝑚

−
∑

𝑁0<𝑛≤𝑁

𝑝−𝜎𝑛 𝑒𝑖𝜃𝑛

(log 𝑝𝑛)𝑚

����� < 𝜀
if 𝑁0 is sufficiently large. These imply supp(𝜇𝜎,𝑚) = C for 1/2 ≤ 𝜎 < 1. Next,
we let 𝜎 ≥ 1. Then we have

∞∑
𝑛=1

𝜂̃𝑚,𝑝𝑛 (𝜎, 𝑒
𝑖𝜃𝑛) ≪

∞∑
𝑛=1

1
𝑝𝑛 log 𝑝𝑛

< ∞

for any {𝜃𝑛}𝑛∈N ∈ [0, 2𝜋)N in this case. Hence, supp(𝜇𝜎,𝑚) is included in a
bounded disk, which completes the proof. □

Lemma 5.11. Let (𝜎, 𝑚) ∈ A. Then the expected value E
[
exp

(
𝑎 |𝜂̃𝑚 (𝜎, 𝑋) |

) ]
is

finite for all 𝑎 > 0.

Proof. Since
∑
𝑝<𝑦 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)) → 𝜂̃𝑚 (𝜎, 𝑋) in law as 𝑦 → ∞, we have, by

Fatou’s lemma,

E
[
Φ(𝜂̃𝑚 (𝜎, 𝑋))

]
≤ lim inf

𝑦→∞
E

[
Φ

(∑
𝑝<𝑦

𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))
)]

(5.22)

for any continuous function Φ : C → R≥0. In particular, we can take the
function Φ(𝑧) = exp(±𝑎 Re 𝑧). In this case, we have Φ(𝑧 + 𝑤) = Φ(𝑧)Φ(𝑤),
and therefore the equation

E

[
Φ

(∑
𝑝<𝑦

𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))
)]

=
∏
𝑝<𝑦

E
[
Φ

(
𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))

)]
(5.23)
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holds since {𝑋 (𝑝)}𝑝∈P is a set of independent variables. If we suppose
𝑝 ≥ 𝑎1/𝜎, then the estimate

Φ
(
𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))

)
= 1 ± 𝑎 Re 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)) +𝑂

(
𝑎2

𝑝2𝜎 (log 𝑝)2𝑚

)
follows by the Taylor expansion. This implies

E
[
Φ

(
𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))

)]
= 1 +𝑂

(
𝑎2

𝑝2𝜎 (log 𝑝)2𝑚

)
since E

[
Re 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))

]
vanishes. Recall that

∑
𝑝 𝑝

−2𝜎 (log 𝑝)−2𝑚 is finite if
(𝜎, 𝑚) ∈ A. Hence, we conclude that the infinite product∏

𝑝

E
[
Φ

(
𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))

)]
converges, and that E

[
Φ(𝜂̃𝑚 (𝜎, 𝑋))

]
is finite by (5.22) and (5.23). From the

above, we deduce

E
[
exp(𝑎 | Re 𝜂̃𝑚 (𝜎, 𝑋) |)

]
≤ E

[
exp(𝑎 Re 𝜂̃𝑚 (𝜎, 𝑋))

]
+ E

[
exp(−𝑎 Re 𝜂̃𝑚 (𝜎, 𝑋))

]
< ∞.

One can prove thatE
[
exp(𝑎 | Im 𝜂̃𝑚 (𝜎, 𝑋) |)

]
is finite by replacing the function

Φ by Φ(𝑧) = exp(±𝑎 Im 𝑧). By the Cauchy-Schwarz inequality, we conclude
that

E
[
exp

(
𝑎 |𝜂̃𝑚 (𝜎, 𝑋) |

) ]
≤

√
E

[
exp

(
2𝑎 | Re 𝜂̃𝑚 (𝜎, 𝑋) |

) ]√
E

[
exp

(
2𝑎 | Im 𝜂̃𝑚 (𝜎, 𝑋) |

) ]
< ∞

as desired. □

The characteristic function of 𝜇𝜎,𝑚 of (5.20) is represented as

Λ(𝑤; 𝜇𝜎,𝑚) := E
[
exp(𝑖𝑢 Re 𝜂̃𝑚 (𝜎, 𝑋) + 𝑖𝑣 Im 𝜂̃𝑚 (𝜎, 𝑋))

]
=

∏
𝑝

E
[
exp(𝑖𝑢 Re 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)) + 𝑖𝑣 Im 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)))

]
=

∏
𝑝

Λ(𝑤; 𝜇𝜎,𝑚,𝑝)

for 𝑤 = 𝑢 + 𝑖𝑣 since 𝜇𝜎,𝑚,𝑝1 ∗ · · · ∗ 𝜇𝜎,𝑚,𝑝𝑁 → 𝜇𝜎,𝑚 weakly as 𝑁 → ∞. Applying
this infinite product expression, we prove the following result.

Lemma 5.12. Let (𝜎, 𝑚) ∈ A. Suppose that |𝑤 | ≥ 𝑐(𝜎, 𝑚) with a large constant
𝑐(𝜎, 𝑚) > 0. Then we have

|Λ(𝑤; 𝜇𝜎,𝑚) | ≤ exp
(
−|𝑤 |1/(2𝜎)

)
.
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Proof. Since |Λ(𝑤; 𝜇𝜎,𝑚,𝑝) | ≤ 1 for every 𝑝, the inequality��Λ(𝑤; 𝜇𝜎,𝑚)
�� ≤ ∏

𝑝∈𝒫

��Λ(𝑤; 𝜇𝜎,𝑚,𝑝)
�� (5.24)

holds for any subset 𝒫 ⊂ P. Put 𝑃(𝑀) = 𝑀 |𝑤 |1/𝜎 for 𝑀 ≥ 1. By the Taylor
expansion of exp(𝑧), we obtain

exp(𝑖𝑢 Re 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)) + 𝑖𝑣 Im 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)))
= 1 + 𝑖𝑢 Re 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)) + 𝑖𝑣 Im 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))

+ 1
2 {𝑖𝑢 Re 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)) + 𝑖𝑣 Im 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))}2 +𝑂

(
( |𝑢 | + |𝑣 |)3

𝑝3𝜎 (log 𝑝)3𝑚

)
for 𝑝 > 𝑃(𝑀1) with some 𝑀1 ≥ 1. We have

E
[
Re 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))

]
= E

[
Im 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))

]
= 0,

E
[
Re 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)) Im 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))

]
= 0,

and

E

[(
Re 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))

)2
]
= E

[(
Im 𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))

)2
]
=

1
2

Li2𝑚+2(𝑝−2𝜎)
(log 𝑝)2𝑚 .

Therefore, the characteristic function Λ(𝑤; 𝜇𝜎,𝑚,𝑝) is evaluated as

Λ(𝑤; 𝜇𝜎,𝑚,𝑝) = 1 − |𝑤 |2
4

Li2𝑚+2(𝑝−2𝜎)
(log 𝑝)2𝑚 +𝑂

(
|𝑤 |3

𝑝3𝜎 (log 𝑝)3𝑚

)
.

Hence, we deduce the asymptotic formula

log
��Λ(𝑤; 𝜇𝜎,𝑚,𝑝)

�� = − |𝑤 |2
4

Li2𝑚+2(𝑝−2𝜎)
(log 𝑝)2𝑚 +𝑂

(
|𝑤 |3

𝑝3𝜎 (log 𝑝)3𝑚

)
if 𝑝 > 𝑃(𝑀2) with some 𝑀2 ≥ 𝑀1. We notice that the inequalities

|𝑤 |2
4

Li2𝑚+2(𝑝−2𝜎)
(log 𝑝)2𝑚 ≥ 1

4
|𝑤 |2

𝑝2𝜎 (log 𝑝)2𝑚 ,

|𝑤 |3
𝑝3𝜎 (log 𝑝)3𝑚 ≤ 1

𝑀

|𝑤 |2
𝑝2𝜎 (log 𝑝)2𝑚

are satisfied for 𝑝 > 𝑃(𝑀) with any 𝑀 ≥ 1. Hence, there exists an absolute
constant 𝑀3 ≥ 𝑀2 such that the inequality

log
��Λ(𝑤; 𝜇𝜎,𝑚,𝑝)

�� ≤ −1
8

|𝑤 |2
𝑝2𝜎 (log 𝑝)2𝑚

holds for 𝑝 > 𝑃(𝑀3). Therefore, taking 𝒫 = P>𝑃(𝑀3) in (5.24), we deduce��Λ(𝑤; 𝜇𝜎,𝑚)
�� ≤ exp ©­«− |𝑤 |2

8
∑

𝑝>𝑃(𝑀3)

1
𝑝2𝜎 (log 𝑝)2𝑚

ª®¬ ≤ exp
(
−|𝑤 |1/(2𝜎)

)
if |𝑤 | > 𝑐(𝜎, 𝑚) with some large constant 𝑐(𝜎, 𝑚) > 0. □
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Proof of Proposition 5.3. By Lemma 5.12, we see that∫
C
|Λ(𝑤; 𝜇𝜎,𝑚) | |𝑑𝑤 | < ∞.

Therefore the probability measure 𝜇𝜎,𝑚 is absolutely continuous in the sense
that it is represented as

𝜇𝜎,𝑚 (𝐴) =
∫
𝐴
𝐷𝜎,𝑚 (𝑧) |𝑑𝑧 |

for all 𝐴 ∈ B(C) with some non-negative Lebesgue measurable function
𝐷𝜎,𝑚. By Levy’s inversion formula, we can determine one of such functions
as

𝐷𝜎,𝑚 (𝑧) =
∫
C
Λ(𝑤; 𝜇𝜎,𝑚) exp(−𝑖⟨𝑧, 𝑤⟩) |𝑑𝑤 |, (5.25)

which is a continuous function. We prove properties (i)–(iii). Remark that
the support of the function 𝐷𝜎,𝑚 is equal to supp(𝜇𝜎,𝑚) studied in Lemma
5.10. Let 𝑚 ≥ 1. Then the fact that 𝐷𝜎,𝑚 is compactly supported for 𝜎 ≥ 1 is
a direct consequence of the lemma. Let 1/2 ≤ 𝜎 < 1. To prove the positivity
of 𝐷𝜎,𝑚 (𝑧), we define two probabilistic measures

𝜈♭𝜎,𝑚,𝑁 = 𝜇𝜎,𝑚,2 ∗ 𝜇𝜎,𝑚,𝑝♭1 ∗ · · · ∗ 𝜇𝜎,𝑚,𝑝♭𝑁 and 𝜈#
𝜎,𝑚,𝑁 = 𝜇𝜎,𝑚,𝑝#

1
∗ · · · ∗ 𝜇𝜎,𝑚,𝑝#

𝑁

as analogues of (5.21), where 𝑝♭𝑛 is the 𝑛-th prime number congruent to 1
(mod 4), and 𝑝#

𝑛 is the 𝑛-th prime number congruent to −1 (mod 4). Then
it can be proved that 𝜈♭𝜎,𝑚,𝑁 and 𝜈#

𝜎,𝑚,𝑁 converge weakly to some probability
measures 𝜇♭𝜎,𝑚 and 𝜇#

𝜎,𝑚 as 𝑁 → ∞, respectively. One can check that the
limit measures 𝜇♭𝜎,𝑚 and 𝜇#

𝜎,𝑚 satisfy many of the same properties as 𝜇𝜎,𝑚
described above. In particular, we have

supp(𝜇♭𝜎,𝑚) = supp(𝜇#
𝜎,𝑚) = C

for 1/2 ≤ 𝜎 < 1 along the same line of Lemma 5.10. Furthermore, we obtain

|Λ(𝑤; 𝜇♭𝜎,𝑚) |, |Λ(𝑤; 𝜇#
𝜎,𝑚) | ≤ exp

(
−|𝑤 |1/(2𝜎)

)
as analogues of Lemma 5.12. Therefore, there exist non-negative continuous
functions 𝐷♭𝜎,𝑚 and 𝐷#

𝜎,𝑚 such that

𝜇♭𝜎,𝑚 (𝐴) =
∫
𝐴
𝐷♭𝜎,𝑚 (𝑧) |𝑑𝑧 | and 𝜇#

𝜎,𝑚 (𝐴) =
∫
𝐴
𝐷#
𝜎,𝑚 (𝑧) |𝑑𝑧 |

for all 𝐴 ∈ B(C), whose supports are equal to C if 1/2 ≤ 𝜎 < 1. Recall that
𝜈♭𝜎,𝑚,𝑁 ∗ 𝜈#

𝜎,𝑚,𝑁 converges weakly to 𝜇𝜎,𝑚 as 𝑁 → ∞ by Lemma 5.9. Hence,
we deduce the equation

𝐷𝜎,𝑚 (𝑧) =
∫
C
𝐷♭𝜎,𝑚 (𝑧 − 𝑤)𝐷#

𝜎,𝑚 (𝑤) |𝑑𝑤 |
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for any 𝑧 ∈ C. Since the functions 𝐷♭𝜎,𝑚 and 𝐷#
𝜎,𝑚 are continuous and are

non-zeros on every disk on C, we see that 𝐷𝜎,𝑚 (𝑧) > 0 for any 𝑧 ∈ C. Hence,
the proof of assertion (i) is completed. We note that assertion (ii) is just a
consequence of [54, Theorem 14]. Finally, we have∫

C
𝑒𝑎 |𝑧 |𝐷𝜎,𝑚 (𝑧) |𝑑𝑧 | = E

[
exp

(
𝑎 |𝜂̃𝑚 (𝜎, 𝑋) |

) ]
< ∞

for any 𝑎 > 0 by Lemma 5.11. Thus, we complete the proof of assertion
(iii). □

Let (𝜎, 𝑚) ∈ A. By Lemma 5.11, we see that the moment-generating
function

E
[
exp(𝑠Re(𝑒−𝑖𝛼, 𝜂̃𝑚 (𝜎, 𝑋)))

]
exists for any 𝑠 ∈ C. The following lemma is used in the proof of Theorem
5.2.

Lemma 5.13. Let (𝜎, 𝑚) ∈ A. For 𝑌 ≥ 3 and 𝑠 = 𝜅 + 𝑖𝑡 with |𝑠 | ≤ 𝑌𝜎− 1
2 (log𝑌 )𝑚,

we have

E
[
exp(𝑠Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋))

]
= E

[
exp

(
𝑠Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎, 𝑋)

) ]
+𝑂

(
E

[
exp(𝜅 Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋))

] |𝑠 |
𝑌𝜎−

1
2 (log𝑌 )𝑚

)
.

Proof. Since the estimate∑
𝑝𝑘>𝑌
𝑘≥2

𝑋 (𝑝)𝑘
𝑘 𝑝𝑘𝜎 (log 𝑝𝑘 )𝑚

≪ 1
𝑌2𝜎−1(log𝑌 )𝑚

holds, we have

E
[
exp(𝑠Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋))

]
= E

[
exp

(
𝑠Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎, 𝑋) + 𝑠

∑
𝑝>𝑌

Re 𝑒−𝑖𝛼𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚

+𝑂
(

|𝑠 |
𝑌2𝜎−1(log𝑌 )𝑚

) )]
= E

[
exp

(
𝑠Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎, 𝑋) + 𝑠

∑
𝑝>𝑌

Re 𝑒−𝑖𝛼𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚

)]
+𝑂

(
E

[
𝜅 Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎, 𝑋) + 𝜅

∑
𝑝>𝑌

Re 𝑒−𝑖𝛼𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚

]
|𝑠 |

𝑌2𝜎−1(log𝑌 )𝑚

)
.

(5.26)
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Note that the independence of 𝑋 (𝑝)’s yields

E

[
exp

(
𝑠Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎, 𝑋) + 𝑠

∑
𝑝>𝑌

Re 𝑒−𝑖𝛼𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚

)]
= E

[
exp

(
𝑠Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎, 𝑋)

) ]
×

∏
𝑝>𝑌

E

[
exp

(
𝑠
Re 𝑒−𝑖𝛼𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚

)]
. (5.27)

Furthermore, if 𝑝 > 𝑌 , we find that the inequality����𝑠Re 𝑒−𝑖𝛼𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚

���� ≤ |𝑠 |
𝑝𝜎 (log 𝑝)𝑚 < 1

holds for |𝑠 | ≤ 𝑌𝜎− 1
2 (log𝑌 )𝑚. From the Taylor expansion of exp(𝑧) we deduce

E

[
exp

(
𝑠
Re 𝑒−𝑖𝛼𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚

)]
= E

[
1 + 𝑠Re 𝑒−𝑖𝛼𝑋 (𝑝)

𝑝𝜎 (log 𝑝)𝑚 +𝑂
(

|𝑠 |2
𝑝2𝜎 (log 𝑝)2𝑚

)]
= 1 +𝑂

(
|𝑠 |2

𝑝2𝜎 (log 𝑝)2𝑚

)
since the expected value E

[
Re(𝑒−𝑖𝛼𝑋 (𝑝))

]
vanishes. Therefore, by equation

(5.27), the formula

E

[
exp

(
𝑠Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎, 𝑋) + 𝑠

∑
𝑝>𝑌

Re 𝑒−𝑖𝛼𝑋 (𝑝)
𝑝𝜎 (log 𝑝)𝑚

)]
= E

[
exp

(
𝑠Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎, 𝑋)

) ]
+𝑂

(
E

[
exp

(
𝜅 Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎, 𝑋)

) ] |𝑠 |
𝑌𝜎−

1
2 (log𝑌 )𝑚

)
holds for |𝑠 | ≤ 𝑌𝜎− 1

2 (log𝑌 )𝑚. Inserting this to (5.26), we finally obtain

E
[
exp(𝑠Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋))

]
= E

[
exp

(
𝑠Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎, 𝑋)

) ] (
1 +𝑂

(
|𝑠 |

𝑌𝜎−
1
2 (log𝑌 )𝑚

))
,

which yields the result. □

5.4 Discrepancy bounds: Proof of Theorem 5.1

In this paper, we derive discrepancy bounds by applying Esseen’s inequality.

Lemma 5.14 (Sadikova [103]). Let 𝑃,𝑄 be probabilistic measures on (R2,B(R2))
with the distribution functions

𝐹 (𝑠, 𝑡) = 𝑃((−∞, 𝑠] × (−∞, 𝑡]) and 𝐺 (𝑠, 𝑡) = 𝑄((−∞, 𝑠] × (−∞, 𝑡]).
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Denote by 𝑓 (𝑢, 𝑣) and 𝑔(𝑢, 𝑣) the characteristic functions of 𝑃 and 𝑄, that is,

𝑓 (𝑢, 𝑣) =
∫
R2
𝑒𝑖(𝑢𝑥+𝑣𝑦) 𝑑𝑃(𝑥, 𝑦) and 𝑔(𝑢, 𝑣) =

∫
R2
𝑒𝑖(𝑢𝑥+𝑣𝑦) 𝑑𝑄(𝑥, 𝑦).

Furthermore, we put

𝑓 (𝑢, 𝑣) = 𝑓 (𝑢, 𝑣) − 𝑓 (𝑢, 0) 𝑓 (0, 𝑣) and 𝑔̂(𝑢, 𝑣) = 𝑔(𝑢, 𝑣) − 𝑔(𝑢, 0)𝑔(0, 𝑣).

Suppose that 𝐺 (𝑠, 𝑡) is partially differentiable and that 𝐺𝑠 (𝑠, 𝑡) and 𝐺 𝑡 (𝑠, 𝑡) are
bounded on R2. Then we have

sup
(𝑠,𝑡)∈R2

|𝐹 (𝑠, 𝑡) − 𝐺 (𝑠, 𝑡) | ≤ 2
(2𝜋)2

∬
[−𝑅,𝑅]2

���� 𝑓 (𝑢, 𝑣) − 𝑔̂(𝑢, 𝑣)𝑢𝑣

���� 𝑑𝑢𝑑𝑣
+ 2
𝜋

∫ 𝑅

−𝑅

���� 𝑓 (𝑢, 0) − 𝑔(𝑢, 0)𝑢

���� 𝑑𝑢 + 2
𝜋

∫ 𝑅

−𝑅

���� 𝑓 (0, 𝑣) − 𝑔(0, 𝑣)𝑣

���� 𝑑𝑣
+

(
6
√

2 + 8
√

3 + 48
𝜋

)
(𝐴1 + 𝐴2)𝑅−1 (5.28)

for all 𝑅 > 0, where 𝐴1 = sup(𝑠,𝑡)∈R2 |𝐺𝑠 (𝑠, 𝑡) | and 𝐴2 = sup(𝑠,𝑡)∈R2 |𝐺 𝑡 (𝑠, 𝑡) |.
To begin with, we prepare the following result.

Lemma 5.15. Let (𝜎, 𝑚) ∈ A, and let 𝑇 > 0 be large. We have

1
𝑇

∫ 𝑇

0
|𝜂̃𝑚 (𝜎 + 𝑖𝑡) |2𝑑𝑡 ≪𝜎,𝑚 1.

Proof. Let 𝑋 = 𝑇1/135, and put

𝑅𝑚 (𝜎 + 𝑖𝑡; 𝑋) = 𝜂̃𝑚 (𝜎 + 𝑖𝑡) −
∑

2≤𝑛≤𝑋

Λ(𝑛)
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1 .

Then we see that

|𝜂̃𝑚 (𝜎 + 𝑖𝑡) |2 ≤ 4
���� ∑
2≤𝑛≤𝑋

Λ(𝑛)
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1

����2 + 4|𝑅𝑚 (𝜎 + 𝑖𝑡; 𝑋) |2.

By Lemma 2.1 and Theorem 2.6, we have

1
𝑇

∫ 𝑇

0
|𝑅𝑚 (𝜎 + 𝑖𝑡; 𝑋) |2𝑑𝑡 ≪ 𝑇

1−2𝜎
135

(log𝑇)2𝑚 .

Also, we can write���� ∑
2≤𝑛≤𝑋

Λ(𝑛)
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1

����2
=

∑
𝑝𝑘≤𝑋

1
𝑘2(𝑚+1) 𝑝2𝑘𝜎 (log 𝑝)2𝑚

+
∑

𝑝𝑘 ,𝑞ℓ≤𝑋
(𝑝,𝑘)≠(𝑞,ℓ)

1
𝑘𝑚+1𝑝𝑘𝜎 (log 𝑝)𝑚

1
ℓ𝑚+1𝑞ℓ𝜎 (log 𝑞)𝑚

(
𝑝𝑘𝑞−ℓ

) 𝑖𝑡
.
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Therefore, we obtain∫ 𝑇

0

���� ∑
2≤𝑛≤𝑋

Λ(𝑛)
𝑛𝜎+𝑖𝑡 (log 𝑛)𝑚+1

����2𝑑𝑡
= 𝑇

∑
𝑝𝑘≤𝑋

1
𝑘2(𝑚+1) 𝑝2𝑘𝜎 (log 𝑝)2𝑚

+
∑

𝑝𝑘 ,𝑞𝑙≤𝑋
(𝑝,𝑘)≠(𝑞,𝑙)

1
(𝑘ℓ)𝑚+1(𝑝𝑘𝑞ℓ)𝜎 (log 𝑝 log 𝑞)𝑚

𝑂
(��log(𝑝𝑘𝑞−ℓ)

��−1)
.

The first sum on the right hand side is = 𝑂𝜎,𝑚 (1). Next, it holds that��log(𝑝𝑘𝑞−ℓ)
��−1 ≪ 𝑋 when 𝑝𝑘 , 𝑞𝑙 ≤ 𝑋 and 𝑝𝑘 ≠ 𝑞𝑙 . Hence, the second sum is

≪ 𝑋
©­«
∑
𝑝𝑘≤𝑋

1
𝑘2(𝑚+1) 𝑝2𝑘𝜎 (log 𝑝)2𝑚

ª®¬
2

≪ 𝑋2.

From the above estimates, we obtain this lemma. □

Proof of Theorem 5.1. Identifying Cwith R2, we apply Lemma 5.14 with

𝑃(𝐴) = P𝑇 (𝜂̃𝑚 (𝜎 + 𝑖𝑡) ∈ 𝐴) and 𝑄(𝐴) = P(𝜂̃𝑚 (𝜎, 𝑋) ∈ 𝐴).

In this case, the distribution function of 𝑄 is given by

𝐺 (𝑠, 𝑡) =
∫ 𝑠

−∞

∫ 𝑡

−∞
𝐷𝜎,𝑚 (𝑥 + 𝑖𝑦) |𝑑𝑧 |

by Proposition 5.3. Hence, it is partially differentiable, and we have

sup
(𝑠,𝑡)∈R2

|𝐺𝑠 (𝑠, 𝑡) | ≤ sup
𝑠∈R

∫ ∞

−∞
𝐷𝜎,𝑚 (𝑠 + 𝑖𝑦) 𝑑𝑦 < ∞,

sup
(𝑠,𝑡)∈R2

|𝐺 𝑡 (𝑠, 𝑡) | ≤ sup
𝑡∈R

∫ ∞

−∞
𝐷𝜎,𝑚 (𝑥 + 𝑖𝑡) 𝑑𝑥 < ∞.

Furthermore, the characteristic functions of 𝑃 and 𝑄 are given by

𝑓 (𝑢, 𝑣) = 1
𝑇

∫ 𝑇

0
exp

(
𝑖⟨𝜂̃𝑚 (𝜎 + 𝑖𝑡), 𝑢 + 𝑖𝑣⟩

)
𝑑𝑡,

𝑔(𝑢, 𝑣) = E
[
exp(𝑖⟨𝜂̃𝑚 (𝜎, 𝑋), 𝑢 + 𝑖𝑣⟩)

]
.

We begin by considering the estimate of the first integral on the right hand
side of (5.28). Let 𝑟 = (log𝑇)−2 and define

𝑈 =
{
(𝑢, 𝑣) ∈ [−𝑅, 𝑅]2 : |𝑢 | > 𝑟 and |𝑣 | > 𝑟

}
.
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Then we have ∬
𝑈

���� 𝑓 (𝑢, 𝑣) − 𝑔̂(𝑢, 𝑣)𝑢𝑣

���� 𝑑𝑢𝑑𝑣
≪

(
log 𝑅

𝑟

)2
sup

(𝑢,𝑣)∈[−𝑅,𝑅]2
| 𝑓 (𝑢, 𝑣) − 𝑔̂(𝑢, 𝑣) |. (5.29)

We estimate the difference | 𝑓 (𝑢, 𝑣) − 𝑔̂(𝑢, 𝑣) | as follows. First, we have

| 𝑓 (𝑢, 𝑣) − 𝑔̂(𝑢, 𝑣) | ≤ | 𝑓 (𝑢, 𝑣) − 𝑔(𝑢, 𝑣) | + | 𝑓 (𝑢, 0) − 𝑔(𝑢, 0) | + | 𝑓 (0, 𝑣) − 𝑔(0, 𝑣) |

by the definition. Then Proposition 5.2 yields

| 𝑓 (𝑢, 𝑣) − 𝑔(𝑢, 𝑣) | ≪ (log𝑇)−𝐴

for (𝑢, 𝑣) ∈ 𝑈 if we take 𝑅 = 1√
2
𝑏(log𝑇)𝜎 (log log𝑇)𝑚. One can prove the same

estimate for | 𝑓 (𝑢, 0) −𝑔(𝑢, 0) | and | 𝑓 (0, 𝑣) −𝑔(0, 𝑣) |. Inserting these estimates
to (5.29), we obtain∬

𝑈

���� 𝑓 (𝑢, 𝑣) − 𝑔̂(𝑢, 𝑣)𝑢𝑣

���� 𝑑𝑢𝑑𝑣 ≪ (log𝑇)−𝐴 (log log𝑇)2. (5.30)

Next, we consider the case (𝑢, 𝑣) ∉ 𝑈. We have

𝑓 (𝑢, 𝑣) = { 𝑓 (𝑢, 𝑣) − 𝑓 (𝑢, 0) − 𝑓 (0, 𝑣) + 1} − ( 𝑓 (𝑢, 0) − 1)( 𝑓 (0, 𝑣) − 1)

=
∫
R2
(𝑒𝑖𝑥𝑢 − 1) (𝑒𝑖𝑦𝑣 − 1) 𝑑𝑃(𝑥, 𝑦)

−
∫
R2
(𝑒𝑖𝑥𝑢 − 1) 𝑑𝑃(𝑥, 𝑦) ·

∫
R2
(𝑒𝑖𝑦𝑣 − 1) 𝑑𝑃(𝑥, 𝑦).

Recall that 𝑒𝑖𝜃 − 1 ≪ |𝜃 | holds for any 𝜃 ∈ R. Then we deduce

𝑓 (𝑢, 𝑣) ≪ |𝑢𝑣 |
∫
R2
(𝑥2 + 𝑦2) 𝑑𝑃(𝑥, 𝑦) ≪𝜎,𝑚 |𝑢𝑣 | (5.31)

by Lemma 5.15. Furthermore, we see that

𝑔̂(𝑢, 𝑣) ≪ |𝑢𝑣 |
∫
R2
(𝑥2 + 𝑦2) 𝑑𝑄(𝑥, 𝑦) = |𝑢𝑣 |

∫
C
|𝑧 |2𝐷𝜎,𝑚 (𝑧) |𝑑𝑧 | (5.32)

holds similarly. Recall that the integral

𝐼 =
∫
C
|𝑧 |2𝐷𝜎,𝑚 (𝑧) |𝑑𝑧 |

is finite by Proposition 5.3 (iii). As a result, the estimate∬
[−𝑅,𝑅]2\𝑈

���� 𝑓 (𝑢, 𝑣) − 𝑔̂(𝑢, 𝑣)𝑢𝑣

���� 𝑑𝑢𝑑𝑣 ≪𝜎,𝑚

∬
[−𝑅,𝑅]2\𝑈

1 𝑑𝑢𝑑𝑣

≪ (log𝑇)𝜎−2(log log𝑇)𝑚 (5.33)
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holds. We proceed to the second integral on the right hand side of (5.28).
We divide the integral as∫ 𝑅

−𝑅

���� 𝑓 (𝑢, 0) − 𝑔(𝑢, 0)𝑢

���� 𝑑𝑢 =

(∫ −𝑟

−𝑅
+
∫ 𝑟

−𝑟
+
∫ 𝑅

𝑟

) ���� 𝑓 (𝑢, 0) − 𝑔(𝑢, 0)𝑢

���� 𝑑𝑢.
By an argument similar to (5.30), we obtain(∫ −𝑟

−𝑅
+
∫ 𝑅

𝑟

) ���� 𝑓 (𝑢, 0) − 𝑔(𝑢, 0)𝑢

���� 𝑑𝑢 ≪ (log𝑇)−𝐴 (log log𝑇).

For the integral over [−𝑟, 𝑟], we use the estimate

𝑓 (𝑢, 0) − 𝑔(𝑢, 0) =
∫
R2
(𝑒𝑖𝑥𝑢 − 1) 𝑑𝑃(𝑥, 𝑦) −

∫
R2
(𝑒𝑖𝑥𝑢 − 1) 𝑑𝑄(𝑥, 𝑦) ≪𝜎,𝑚 |𝑢 |

similarly to (5.31) and (5.32). It yields∫ −𝑟

−𝑟

���� 𝑓 (𝑢, 0) − 𝑔(𝑢, 0)𝑢

���� 𝑑𝑢 ≪𝜎,𝑚 (log𝑇)−2.

Note that the same estimates are valid for 𝑓 (0, 𝑣) − 𝑔(0, 𝑣). Therefore, we
obtain ∫ 𝑅

−𝑅

���� 𝑓 (𝑢, 0) − 𝑔(𝑢, 0)𝑢

���� 𝑑𝑢 + ∫ 𝑅

−𝑅

���� 𝑓 (0, 𝑣) − 𝑔(0, 𝑣)𝑣

���� 𝑑𝑣 (5.34)

≪ (log𝑇)−𝐴 (log log𝑇) + (log𝑇)−2.

Combining (5.30), (5.33), and (5.34), we conclude

sup
(𝑠,𝑡)∈R2

|𝐹 (𝑠, 𝑡) − 𝐺 (𝑠, 𝑡) | ≪𝜎,𝑚 (log𝑇)−𝐴 (log log𝑇)2

+ (log𝑇)𝜎−2(log log𝑇)𝑚 + (log𝑇)−𝜎 (log log𝑇)−𝑚

≪ (log𝑇)−𝜎 (log log𝑇)−𝑚

by Lemma 5.14. Finally, using the inequality

sup
R

��P𝑇 (𝜂̃𝑚 (𝜎 + 𝑖𝑡) ∈ R) − P(𝜂̃𝑚 (𝜎, 𝑋) ∈ R)
�� ≤ 4 sup

(𝑠,𝑡)∈R2
|𝐹 (𝑠, 𝑡) − 𝐺 (𝑠, 𝑡) | ,

we obtain the desired upper bound for 𝐷𝜎,𝑚 (𝑇).
□

5.5 Preliminaries for the results on large deviations

5.5.1 Results on polylogarithms
Let 𝑚 ∈ Z and 𝛼 ∈ R. We define

𝜆𝑟 (𝜃;𝑚, 𝛼) = Re 𝑒−𝑖𝛼 Li𝑚 (𝑟𝑒𝑖𝜃) =
∞∑
𝑘=1

𝑟 𝑘

𝑘𝑚
cos(𝑘𝜃 − 𝛼)
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for 𝜃 ∈ R, where 0 < 𝑟 ≤ 1/
√

2 is a real number. By the definition, the
function 𝜆𝑟 (𝜃;𝑚, 𝛼) satisfies the differential relation

𝜆′𝑟 (𝜃;𝑚, 𝛼) = 𝜆𝑟 (𝜃;𝑚 − 1, 𝛼 − 𝜋/2). (5.35)

We begin with the following lemma on zeros of 𝜆𝑟 (𝜃;𝑚, 𝛼).

Lemma 5.16. Let 𝑚 ≥ 0 and 𝛼 ∈ R. For any fixed real number 0 < 𝑟 ≤ 1/
√

2, the
function 𝜆𝑟 (𝜃;𝑚, 𝛼) has exactly two zeros in the interval [0, 2𝜋).

Proof. We prove this lemma by induction on 𝑚. Note that Li0(𝑧) = 𝑧/(1 − 𝑧).
Therefore, we see that 𝜆𝑟 (𝜃; 0, 𝛼) = 0 if and only if cos(𝜃 − 𝛼) = 𝑟 cos𝛼. There
exist only two such 𝜃’s. Let 𝑚 ∈ Z≥1. We assume that 𝜆𝑟 (𝜃;𝑚, 𝛼) has exactly
two zeros in the interval [0, 2𝜋) for any 𝛼 ∈ R, 0 < 𝑟 ≤ 1/

√
2. We have

𝜆𝑟 (𝜃;𝑚, 𝛼) = 𝜆′𝑟 (𝜃;𝑚 + 1, 𝛼 + 𝜋/2) by relation (5.35). Note that the function
𝜆𝑟 (𝜃;𝑚+1, 𝛼+𝜋/2) is smooth and periodic. Thus 𝜆′𝑟 (𝜃;𝑚+1, 𝛼+𝜋/2) vanishes
at least twice in the period. Hence, there exist at least two zeros of 𝜆𝑟 (𝜃;𝑚, 𝛼)
in [0, 2𝜋). If there were three zeros of 𝜆𝑟 (𝜃;𝑚, 𝛼) in [0, 2𝜋), then we saw that
𝜆′𝑟 (𝜃;𝑚, 𝛼) has also three zeros in [0, 2𝜋) by Rolle’s theorem. However, it
implies that the function 𝜆𝑟 (𝜃;𝑚 − 1, 𝛼 − 𝜋/2) has three zeros in [0, 2𝜋) by
(5.35), which contradicts the assumption of induction. □

Let 𝑚 ∈ Z≥1 and 𝛼 ∈ R. Denote by 𝜃1 and 𝜃2 the zeros of 𝜆′𝑟 (𝜃;𝑚, 𝛼) with
0 ≤ 𝜃1 < 𝜃2 < 2𝜋. Then we have 𝜆𝑟 (𝜃1;𝑚, 𝛼) ≠ 𝜆𝑟 (𝜃2;𝑚, 𝛼); otherwise we
have the third zero of 𝜆′𝑟 (𝜃;𝑚, 𝛼) between 𝜃1 and 𝜃2. Furthermore, we obtain
the following result as a consequence of Lemma 5.16.

Lemma 5.17. Let 𝑚 ≥ 1 and 𝛼 ∈ R. For 0 < 𝑟 ≤ 1/
√

2, there exist real numbers
𝜃1 = 𝜃1(𝑚, 𝛼, 𝑟) and 𝜃2 = 𝜃2(𝑚, 𝛼, 𝑟) with 𝜃1 < 𝜃2 < 𝜃1 + 2𝜋 such that the function
𝜆𝑟 (𝜃;𝑚, 𝛼) is decreasing for 𝜃1 ≤ 𝜃 ≤ 𝜃2 and is increasing for 𝜃2 ≤ 𝜃 ≤ 𝜃1 + 2𝜋.

Proof. Let 0 ≤ 𝜃1 < 𝜃2 < 2𝜋 be the zeros of 𝜆′𝑟 (𝜃;𝑚, 𝛼). If 𝜆𝑟 (𝜃1;𝑚, 𝛼) >
𝜆𝑟 (𝜃2;𝑚, 𝛼), then we have

𝜆′𝑟 (𝜃;𝑚, 𝛼)
{
< 0 for 𝜃1 < 𝜃 < 𝜃2,
> 0 for 𝜃2 < 𝜃 < 𝜃1 + 2𝜋

since there exists no zero except for 𝜃1 and 𝜃2 by Lemma 5.16. Then the result
follows by taking 𝜃 𝑗 = 𝜃 𝑗 . In the case of 𝜆𝑟 (𝜃1;𝑚, 𝛼) < 𝜆𝑟 (𝜃2;𝑚, 𝛼), we take
𝜃1 = 𝜃2 and 𝜃2 = 𝜃1 + 2𝜋. Then we obtain the desired result similarly. □

Lemma 5.18. Let 𝑚 ≥ 0 and 𝛼 ∈ R. We have

𝜆(𝑛)𝑟 (𝜃;𝑚, 𝛼) ≪ 𝑛! 𝑟

uniformly for 0 < 𝑟 ≤ 1/
√

2, 𝑛 ≥ 0, and 𝜃 ∈ R.
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Proof. By (5.35) and the definition of 𝜆𝑟 (𝜃;𝑚, 𝛼), we have

𝜆(𝑛)𝑟 (𝜃;𝑚, 𝛼) = 𝜆𝑟 (𝜃;𝑚 − 𝑛, 𝛼 − 𝑛/2) ≪
∞∑
𝑘=1

𝑘𝑛𝑟 𝑘 =: 𝑆𝑛 (𝑟).

We prove the upper bound 𝑆𝑛 (𝑟) ≪ 𝑛! 𝑟 by induction on 𝑛. The bound is
elementary for 𝑛 = 0. If 𝑛 ≥ 1, we have

(1 − 𝑟)𝑆𝑛 (𝑟) = 𝑟 +
∞∑
𝑘=1

{(𝑘 + 1)𝑛 − 𝑘𝑛} 𝑟 𝑘+1 = 𝑟
©­«1 +

𝑛−1∑
𝑗=0

(
𝑛

𝑗

)
𝑆 𝑗 (𝑟)

ª®¬ .
Hence, the desired estimate on 𝑆𝑛 (𝑟) holds by the assumption of induction.

□

Let B denote

B =
{(
𝑚, (0, 1/

√
2]

)
: 𝑚 ∈ Z𝑚≥4

}
∪ {(𝑚, (0, 0.15]) : 𝑚 = 0, 1, 2, 3} .

Lemma 5.19. Let 𝑚 ≥ 0 and 𝛼 ∈ R. Denote by 𝜃1 = 𝜃1(𝑚, 𝛼, 𝑟) and 𝜃2 =
𝜃2(𝑚, 𝛼, 𝑟) the real numbers of Proposition 5.17 for 0 < 𝑟 ≤ 1/

√
2.

(i) We have |𝜆′′𝑟 (𝜃1;𝑚, 𝛼) | ≫ 𝑟 for (𝑚, 𝐼) ∈ B and 𝑟 ∈ 𝐼.

(ii) There exists an absolute constant 𝑑 > 0 such that 𝜃2 − 𝜃1 > 𝑑 for (𝑚, 𝐼) ∈ B
and 𝑟 ∈ 𝐼.

(iii) For any 0.15 < 𝑟 ≤ 1/
√

2 and 𝑚 = 0, 1, 2, 3, there exists a positive integer
𝑛1 = 𝑛1(𝑚, 𝛼, 𝑟) such that 𝜆(𝑛)𝑟 (𝜃1;𝑚, 𝛼) = 0 for 1 ≤ 𝑛 ≤ 2𝑛1 − 1 and
𝜆(2𝑛1)
𝑟 (𝜃1;𝑚, 𝛼) < 0.

Proof. The third assertion follows from Lemma 5.17. Since 𝜆′𝑟 (𝜃1;𝑚, 𝛼) = 0,
we have

|sin(𝜃1 − 𝛼) | =
�����− ∞∑

𝑘=2

𝑟 𝑘−1

𝑘𝑚−1 sin(𝑘𝜃1 − 𝛼)
����� ≤ ∞∑

𝑘=2

𝑟 𝑘−1

𝑘𝑚−1 ≤ 𝑓𝑚 (𝑟),

and

𝑓𝑚 (𝑟) =


√

2
8 = 0.176... if 𝑚 ∈ Z≥4,

2𝑟 − 𝑟2

(1 − 𝑟)2 if 𝑚 = 0, 1, 2, 3

for 𝑟 ∈ 𝐼 due to 0 < 𝜁 (3) − 1 < 1/4. Since 𝑓𝑚 (0.15) = 0.384... holds for
𝑚 = 0, 1, 2, 3, we have

|cos(𝜃1 − 𝛼) | =
√

1 − sin(𝜃1 − 𝛼)2 ≥
√

1 − 𝑓𝑚 (𝑟)2 ≥
√

1 − (0.39)2 =: 𝑐1
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holds for 𝑟 ∈ 𝐼. Furthermore, we obtain��𝜆′′𝑟 (𝜃1;𝑚, 𝛼) + 𝑟 cos(𝜃1 − 𝛼)
�� ≤ ∞∑

𝑘=2

𝑟 𝑘

𝑘𝑚−2 ≤ 𝑟𝑔𝑚 (𝑟),

𝑔𝑚 (𝑟) =


√

2
3 if 𝑚 ∈ Z≥4,

4𝑟 − 3𝑟2 + 𝑟3

(1 − 𝑟)3 if 𝑚 = 0, 1, 2, 3

for 𝑟 ∈ 𝐼 due to 0 < 𝜁 (2) − 1 < 2/3. If we suppose cos(𝜃1 −𝛼) ≤ −
√

1 − 𝑓𝑚 (𝑟)2,
then we have

𝜆′′𝑟 (𝜃1;𝑚, 𝛼) >
(√

1 − 𝑓𝑚 (𝑟)2 − 𝑔𝑚 (𝑟)
)
𝑟 =: ℎ𝑚 (𝑟)𝑟,

ℎ𝑚 (𝑟) ≥
{

1/2 if 𝑚 ∈ Z≥4,

ℎ𝑚 (0.15) = 0.0507 . . . if 𝑚 = 0, 1, 2, 3.
for 𝑟 ∈ 𝐼, which contradicts with the fact that 𝜆𝑟 (𝜃;𝑚, 𝛼) takes the maximum
value at 𝜃 = 𝜃1. Thus we have cos(𝜃1 − 𝛼) >

√
1 − 𝑓𝑚 (𝑟)2 ≥ 𝑐1, and therefore

𝜆′′𝑟 (𝜃1;𝑚, 𝛼) < −
(√

1 − 𝑓𝑚 (𝑟)2 − 𝑔𝑚 (𝑟)
)
𝑟 = −ℎ𝑚 (𝑟)𝑟 ≤ −0.0507 · · · × 𝑟.

Since
��𝜆′′𝑟 (𝜃1;𝑚, 𝛼)

�� = −𝜆′′𝑟 (𝜃1;𝑚, 𝛼), we obtain the first assertion.
On the other hand, we have cos(𝜃2 − 𝛼) < −

√
1 − 𝑓𝑚 (𝑟)2 ≤ −𝑐1 by similar

calculations. Putting
𝑑 = inf

{
|𝜔1 − 𝜔2 | : 𝜔1 ∈ cos−1 ( [𝑐1, 1]) , 𝜔2 ∈ cos−1([−1,−𝑐1])

}
> 0,

we have the second assertion. □

In what follows, we take 𝑟 = 𝑝−𝜎 with 𝑝 ≥ 2 and 𝜎 ≥ 1/2. We study the
function

𝐹𝜎,𝑚,𝑝 (𝑠;𝛼) =
1

2𝜋

∫ 2𝜋

0
exp

(
𝑠

(log 𝑝)𝑚 𝜆𝑝
−𝜎 (𝜃;𝑚 + 1, 𝛼)

)
𝑑𝜃. (5.36)

Proposition 5.4. Let (𝜎, 𝑚) ∈ A and 𝛼 ∈ R. We take 𝑠 = 𝜅 + 𝑖𝑡 ∈ C with 𝜅 > 𝑐
and |𝑡 | ≤ 𝜅, where 𝑐 > 0 is sufficiently large. Then we have the followings;
(i) Suppose that (𝑚, 𝐼) ∈ B, 𝑝−𝜎 ∈ 𝐼, and 𝑝𝜎 (log 𝑝)𝑚 ≤ 𝜅(log 𝜅)−6 are satisfied.
Then we have
𝐹𝜎,𝑚,𝑝 (𝑠;𝛼)

= exp
(

𝑠

(log 𝑝)𝑚 𝜆𝑝
−𝜎 (𝜃1;𝑚 + 1, 𝛼)

) √
(log 𝑝)𝑚

2𝜋𝑠 |𝜆′′𝑝−𝜎 (𝜃1;𝑚 + 1, 𝛼) |

×
{

1 +
2𝑁−1∑
ℓ=1

2(𝑁+𝑙)−1∑
𝑘=3ℓ

𝐴ℓ,𝑘 (𝜆𝑚+1,𝛼, 𝑁)
(
𝑝𝜎 (log 𝑝)𝑚

𝑠

) (𝑘/2)−ℓ
+𝑂𝑁

((
𝑝𝜎 (log 𝑝)𝑚

𝜅

)𝑁 (
log 𝜅

)6𝑁
) }
,
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where

𝐴ℓ,𝑘 (𝜆𝑚+1,𝛼, 𝑁)

=
2𝑔𝑘
ℓ!
√
𝜋

(
2𝑝−𝜎

|𝜆′′𝑝−𝜎 (𝜃1;𝑚 + 1, 𝛼) |

) 𝑘/2
×

∑
3≤ 𝑗1,..., 𝑗ℓ≤2𝑁+1;

𝑗1+···+ 𝑗ℓ=𝑘

𝜆
( 𝑗1)
𝑝−𝜎 (𝜃1;𝑚 + 1, 𝛼) · · · 𝜆( 𝑗ℓ )𝑝−𝜎 (𝜃1;𝑚 + 1, 𝛼)

𝑗1! · · · 𝑗ℓ!
𝑝ℓ𝜎

and 𝑔𝑘 =
∫ ∞
0 𝑥𝑘 exp(−𝑥2)𝑑𝑥. In addition, we have 𝐴ℓ,𝑘 (𝜆𝑚+1,𝛼, 𝑁) ≪𝑁 1.

(ii) Suppose that 𝑝−𝜎 ∈ (0.15, 1/
√

2] and 𝑚 = 0, 1, 2, 3 are satisfied. Then we have

𝐹𝜎,𝑚,𝑝 (𝑠;𝛼)

=
𝑔0,𝑛1

𝜋
exp

(
𝑠

(log 𝑝)𝑚 𝜆𝑝
−𝜎 (𝜃1;𝑚 + 1, 𝛼)

) ©­«
(2𝑛1!)(log 𝑝)𝑚

𝑠 |𝜆(2𝑛1)
𝑝−𝜎 (𝜃1;𝑚 + 1, 𝛼) |

ª®¬
1

2𝑛1

×

×
{

1 +
2𝑛1𝑁−1∑
ℓ=1

2𝑛1 (𝑁+ℓ)−1∑
𝑘=(2𝑛1+1)ℓ

𝐵ℓ,𝑘 (𝜆𝑚+1,𝛼, 𝑁)𝑠ℓ−
𝑘

2𝑛1 +

+𝑂𝑚,𝜎,𝑁

(
𝜅−𝑁 (log 𝜅)2𝑛1 (2𝑛1+1)𝑁

) }
,

where

𝐵ℓ,𝑘 (𝜆𝑚+1,𝛼, 𝑁)

=
𝑔𝑘,𝑛1

ℓ!𝑔0,𝑛1 (log 𝑝)𝑚ℓ
©­«

(2𝑛1)!(log 𝑝)𝑚

|𝜆(2𝑛1)
𝑝−𝜎 (𝜃1;𝑚 + 1, 𝛼) |

ª®¬
𝑘

2𝑛1

×

×
∑

2𝑛1+1≤ 𝑗1,..., 𝑗ℓ≤2𝑛1 (𝑁+1)−1;
𝑗1+···+ 𝑗ℓ=𝑘

𝜆
( 𝑗1)
𝑝−𝜎 (𝜃1;𝑚 + 1, 𝛼) · · · 𝜆( 𝑗ℓ )𝑝−𝜎 (𝜃1;𝑚 + 1, 𝛼)

𝑗1! · · · 𝑗ℓ!
,

and 𝑔𝑘,𝑛1 =
∫ ∞
0 𝑥𝑘 exp(−𝑥2𝑛1)𝑑𝑥. In addition, we have 𝐵ℓ,𝑘 (𝜆𝑚+1,𝛼, 𝑁) ≪𝑚,𝜎,𝑁 1.

Proof. We will use the saddle point method of asymptotic expansions. First,
we prove the case (𝑚, 𝐼) ∈ B and 𝑝−𝜎 ∈ 𝐼. For simplicity, we write

𝜆(𝜃) = 𝜆𝑝−𝜎 (𝜃;𝑚 + 1, 𝛼).

By the periodicity of 𝜆(𝜃), we have 𝐹𝜎,𝑚,𝑝 (𝑠;𝛼) = 𝐼1 + 𝐼2, where

𝐼1 =
1

2𝜋

∫ 𝜃2

𝜃1

exp
(

𝑠

(log 𝑝)𝑚 𝜆(𝜃)
)
𝑑𝜃
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and

𝐼2 =
1

2𝜋

∫ 𝜃1+2𝜋

𝜃2

exp
(

𝑠

(log 𝑝)𝑚 𝜆(𝜃)
)
𝑑𝜃.

We start with the estimate of 𝐼1. Put

𝜀 = (log 𝜅)

√
2(log 𝑝)𝑚
𝜅 |𝜆′′(𝜃1) |

and divide the integral 𝐼1 into two parts:

𝐼1 =
1

2𝜋

(∫ 𝜃1+𝜀

𝜃1

+
∫ 𝜃2

𝜃1+𝜀

)
exp

(
𝑠

(log 𝑝)𝑚 𝜆(𝜃)
)
𝑑𝜃

Note that we have 𝜀 < 𝑑 when 𝜅 is large, where 𝑑 is the absolute constant in
Lemma 5.19. Since 𝜆′𝑝−𝜎 (𝜃1;𝑚 + 1, 𝛼) = 0, we obtain∫ 𝜃1+𝜀

𝜃1

exp
(

𝑠

(log 𝑝)𝑚 𝜆(𝜃)
)
𝑑𝜃

= exp
(

𝑠

(log 𝑝)𝑚 𝜆(𝜃1)
) √

2(log 𝑝)𝑚
𝜅 |𝜆′′(𝜃1) |

×

×
∫ log 𝜅

0
exp

©­­«
𝑠

(log 𝑝)𝑚
∞∑
𝑘=3

𝜆(𝑘) (𝜃1)
𝑘!

©­«
√

2(log 𝑝)𝑚
𝜅 |𝜆′′(𝜃1) |

𝑥
ª®¬
𝑘ª®®¬ exp

(
− 𝑠
𝜅
𝑥2

)
𝑑𝑥

by making change of variables. By Lemmas 5.18 and 5.19, we have

exp
©­­«

𝑠

(log 𝑝)𝑚
∞∑
𝑘=3

𝜆(𝑘) (𝜃1)
𝑘!

©­«
√

2(log 𝑝)𝑚
𝜅 |𝜆′′(𝜃1) |

𝑥
ª®¬
𝑘ª®®¬

= exp
©­­«

𝑠

(log 𝑝)𝑚
2𝑁+1∑
𝑘=3

𝜆(𝑘) (𝜃1)
𝑘!

©­«
√

2(log 𝑝)𝑚
𝜅 |𝜆′′(𝜃1) |

𝑥
ª®¬
𝑘ª®®¬×

×
(
1 +𝑂𝑁

((
𝑝𝑠 (log 𝑝)𝑚

𝜅

)𝑁
(log 𝜅)2𝑁+2

))
for 0 ≤ 𝑥 ≤ log 𝜅 since we have the estimate

𝑠

(log 𝑝)𝑚
∞∑

𝑘=2𝑁+2

𝜆(𝑘) (𝜃1)
𝑘!

©­«
√

2(log 𝑝)𝑚
𝜅 |𝜆′′(𝜃1) |

𝑥
ª®¬
𝑘

≪ 𝜅

𝑝𝜎 (log 𝑝)𝑚
∞∑

𝑘=2𝑁+2

(
𝐶
𝑝𝜎 (log 𝑝)𝑚

𝜅

) 𝑘/2
𝑥𝑘 ≪𝑁

(
𝑝𝜎 (log 𝑝)𝑚

𝜅

)𝑁
(log 𝜅)2𝑁+2,
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where𝐶 is a some positive absolute constant. By the Taylor series expansion,
we have

exp
©­­«

𝑠

(log 𝑝)𝑚
2𝑁+1∑
𝑘=3

𝜆(𝑘) (𝜃1)
𝑘!

©­«
√

2(log 𝑝)𝑚
𝜅 |𝜆′′(𝜃1) |

𝑥
ª®¬
𝑘ª®®¬

= 1 +
2𝑁−1∑
𝑙=1

1
𝑙!

(
𝑠

(log 𝑝)𝑚

) 𝑙 ©­­«
2𝑁+1∑
𝑘=3

𝜆(𝑘) (𝜃1)
𝑘!

©­«
√

2(log 𝑝)𝑚
𝜅 |𝜆′′(𝜃1) |

𝑥
ª®¬
𝑘ª®®¬
𝑙

+𝑂𝑁

((
𝑝𝜎 (log 𝑝)𝑚

𝜅

)𝑁
(log 𝜅)6𝑁

)
for 0 ≤ 𝑥 ≤ log 𝜅. The above second sum is equal to

2𝑁−1∑
ℓ=1

2(𝑁+ℓ)−1∑
𝑘=3

𝑎ℓ,𝑘 (𝑝, 𝜆𝑚+1,𝛼, 𝑁)
ℓ!

(
𝑠

(log 𝑝)𝑚

)ℓ (2(log 𝑝)𝑚
𝜅 |𝜆′′(𝜃1) |

) 𝑘/2
𝑥𝑘

+𝑂𝑁

((
𝑝𝜎 (log 𝑝)𝑚

𝜅

)𝑁
(log 𝜅)6𝑁−2

)
by Lemma 5.18, where

𝑎ℓ,𝑘 (𝜆𝑚+1,𝛼, 𝑁) =
∑

3≤ 𝑗1,..., 𝑗ℓ≤2𝑁+1;
𝑗1+···+ 𝑗ℓ=𝑘

𝜆( 𝑗1) (𝜃1) · · · 𝜆( 𝑗ℓ ) (𝜃1)
𝑗1! · · · 𝑗ℓ!

.

Therefore we obtain∫ log 𝜅

0
exp

©­­«
𝑠

(log 𝑝)𝑚
∞∑
𝑘=3

𝜆(𝑘) (𝜃1)
𝑘!

©­«
√

2(log 𝑝)𝑚
𝜅 |𝜆′′(𝜃1) |

𝑥
ª®¬
𝑘ª®®¬ exp

(
− 𝑠
𝜅
𝑥2

)
𝑑𝑥

= 𝑔0(𝑠, 𝜅)+

+
2𝑁−1∑
ℓ=1

2(𝑁+ℓ)−1∑
𝑘=3

𝑎ℓ,𝑘 (𝑝, 𝜆𝑚+1,𝛼, 𝑁)
ℓ!

(
𝑠

(log 𝑝)𝑚

)ℓ (2(log 𝑝)𝑚
𝜅 |𝜆′′(𝜃1) |

) 𝑘/2
𝑔𝑘 (𝑠, 𝜅)

+𝑂𝑁

((
𝑝𝜎 (log 𝑝)𝑚

𝜅

)𝑁
(log 𝜅)6𝑁

)
+ 𝐸1,

where 𝑔𝑘 (𝑠, 𝜅) is defined by

𝑔𝑘 (𝑠, 𝜅) =
∫ ∞

0
𝑥𝑘 exp

(
− 𝑠
𝜅
𝑥2

)
𝑑𝑥,

and the error term 𝐸1 is estimated as 𝐸1 ≪𝑁 exp
(
−(log 𝜅)2/2

)
by using

Lemma 5.18 and the bound∫ ∞

log 𝜅
𝑥𝑘 exp

(
−𝑥2

)
≪𝑘 exp

(
−3

4 (log 𝜅)2
)
.
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By using the equation 𝑔𝑘 (𝑠, 𝜅) = (𝜅/𝑠) (𝑘+1)/2𝑔𝑘 with 𝑔𝑘 =
∫ ∞
0 𝑥𝑘 exp(−𝑥2)𝑑𝑥,

we obtain∫ log 𝜅

0
exp

©­­«
𝑠

(log 𝑝)𝑚
∞∑
𝑘=3

𝜆(𝑘) (𝜃1)
𝑘!

©­«
√

2(log 𝑝)𝑚
𝜅 |𝜆′′(𝜃1) |

𝑥
ª®¬
𝑘ª®®¬ exp

(
− 𝑠
𝜅
𝑥2

)
𝑑𝑥

=

√
𝜋

2

√
𝜅

𝑠

(
1 +

2𝑁−1∑
ℓ=1

2(𝑁+ℓ)−1∑
𝑘=3ℓ

𝐴ℓ,𝑘 (𝑝, 𝜆𝑚+1,𝛼, 𝑁)
(
𝑝𝜎 (log 𝑝)𝑚

𝑠

) (𝑘/2)−ℓ
+

+𝑂𝑁

((
𝑝𝜎 (log 𝑝)𝑚

𝜅

)𝑁 (
log 𝜅

)6𝑁
) )
,

where
𝐴ℓ,𝑘 (𝑝, 𝜆𝑚+1,𝛼, 𝑁)

=
2𝑔𝑘
ℓ!
√
𝜋

(
2𝑝−𝜎

|𝜆′′(𝜃1) |

) 𝑘/2 ∑
3≤ 𝑗1,..., 𝑗ℓ≤2𝑁+1;

𝑗1+···+ 𝑗ℓ=𝑘

𝜆( 𝑗1) (𝜃1) · · · 𝜆( 𝑗ℓ ) (𝜃1)
𝑗1! · · · 𝑗ℓ!

𝑝ℓ𝜎 .

Therefore we deduce the asymptotic formula
1

2𝜋

∫ 𝜃1+𝜀

𝜃1

exp
(

𝑠

(log 𝑝)𝑚 𝜆(𝜃)
)
𝑑𝜃

=
1
2 exp

(
𝑠

(log 𝑝)𝑚 𝜆(𝜃1)
) √

(log 𝑝)𝑚
2𝜋𝑠 |𝜆′′(𝜃1) |

×

×
{

1 +
2𝑁−1∑
ℓ=1

2(𝑁+ℓ)−1∑
𝑘=3ℓ

𝐴ℓ,𝑘 (𝑝, 𝜆𝑚+1,𝛼, 𝑁)
(
𝑝𝜎 (log 𝑝)𝑚

𝑠

) (𝑘/2)−ℓ
+

+𝑂𝑁

((
𝑝𝜎 (log 𝑝)𝑚

𝜅

)𝑁 (
log 𝜅

)6𝑁
) }
.

We estimate the integral 𝐼1 whose integral interval is restricted to [𝜃1 + 𝜀, 𝜃2].
We can write∫ 𝜃2

𝜃1+𝜀
exp

(
𝑠

(log 𝑝)𝑚 𝜆(𝜃)
)
𝑑𝜃

= exp
(

𝑠

(log 𝑝)𝑚 𝜆(𝜃1)
) ∫ 𝜃2

𝜃1+𝜀
exp

(
𝑠

(log 𝑝)𝑚 (𝜆(𝜃) − 𝜆(𝜃1))
)
𝑑𝜃.

Since 𝜆(𝜃) is decreasing for 𝜃1 + 𝜀 ≤ 𝜃 ≤ 𝜃2, we find that

𝜆(𝜃) − 𝜆(𝜃1) ≤ 𝜆(𝜃1 + 𝜀) − 𝜆(𝜃1) ≤ − |𝜆′′(𝜃1) |
4 𝜀2.

Therefore we obtain∫ 𝜃2

𝜃1+𝜀
exp

(
𝑠

(log 𝑝)𝑚 (𝜆(𝜃) − 𝜆(𝜃1))
)
𝑑𝜃 ≪ exp

(
− |𝜆′′(𝜃1) |

4 𝜀2
)

= exp
(
−
(log 𝜅)2

2

)
.
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Thus, we have the asymptotic formula for 𝐼1. Applying the same calculations
to the integral 𝐼2, we have the asymptotic formula for 𝐹𝜎,𝑚,𝑝 (𝑠;𝛼) in this case.
The estimate 𝐴ℓ,𝑘 (𝜆𝑚+1,𝛼, 𝑁) ≪𝑁 1 follows from Lemma 5.18.

Next, we will prove the second assertion. Let 𝑝−𝜎 ∈ (0.15, 1/
√

2] and
𝑚 = 0, 1, 2, 3. Note that 1/√𝑝 ≤ 0.15 implies 1/0.152 = 44.444.. ≤ 𝑝. Thus
it is enough to prove the case 𝑚 = 0, 1, 2, 3 and 2 ≤ 𝑝 ≤ 44 to complete the
proof. Since the patterns we should consider are finite, the implicit constant
appearing in the error term depend only on 𝑚, 𝜎, 𝑁 when we carry out
similar calculations to the above. Therefore we obtain the second assertion.

□

We see that 𝐹𝜎,𝑚,𝑝 (𝑠, 𝛼) is holomorphic and non-zero on the region

Δ𝑐 = {𝑠 = 𝜅 + 𝑖𝑡 : 𝜅 > 𝑐, |𝑡 | ≤ 𝜅}

under the assumption on Proposition 5.4. Therefore, we may define

𝑓𝜎,𝑚,𝑝 (𝑠, 𝛼) = log 𝐹𝜎,𝑚,𝑝 (𝑠, 𝛼)

for 𝑠 ∈ Δ𝑐, where the branch is taken so that 𝑓𝜎,𝑚,𝑝 (𝑠, 𝛼) is real valued on the
positive real axis. The function 𝑓𝜎,𝑚,𝑝 (𝑠, 𝛼) is holomorphic on Δ𝑐, and we
obtain the following result.

Corollary 5.1. Let (𝜎, 𝑚) ∈ A and 𝛼 ∈ R. We take 𝑠 = 𝜅 + 𝑖𝑡 ∈ C with 𝜅 > 𝑐 and
|𝑡 | ≤ 𝜅, where 𝑐 > 0 is sufficiently large. Suppose that 𝑝𝜎 (log 𝑝)𝑚 ≤ 𝜅(log 𝜅)−6 is
satisfied. Then we have

𝑓𝜎,𝑚,𝑝 (𝑠;𝛼) ≪
𝜅

𝑝𝜎 (log 𝑝)𝑚 , 𝑓 ′𝜎,𝑚,𝑝 (𝑠;𝛼) ≪
1

𝑝𝜎 (log 𝑝)𝑚 ,

and for all 𝑛 ≥ 2,

𝑓 (𝑛)𝜎,𝑚,𝑝 (𝑠;𝛼) ≪
2𝑛𝑛!
𝜅𝑛

.

Proof. We only prove the case (𝑚, 𝐼) ∈ B and 𝑝−𝜎 ∈ 𝐼. We have

𝑓𝜎,𝑚,𝑝 (𝑠;𝛼) =
𝑠

(log 𝑝)𝑚 𝜆𝑝
−𝜎 (𝜃1;𝑚 + 1, 𝛼)

− 1
2 log

(
𝑠 |𝜆′′𝑝−𝜎 (𝜃1;𝑚 + 1, 𝛼) |

(log 𝑝)𝑚

)
+ 𝐶 + ℎ𝜎,𝑚,𝑝 (𝑠;𝛼),

for 𝑠 ∈ Δ, where 𝐶 is a real number, and

ℎ𝜎,𝑚,𝑝 (𝑠;𝛼) ≪
1

(log 𝜅)5/2 .

By the Cauchy integral formula, we have

ℎ(𝑛)𝜎,𝑚,𝑝 (𝜅;𝛼) =
1

2𝜋𝑖

∫
|𝑧−𝜅 |=𝜅/2

ℎ𝜎,𝑚,𝑝 (𝑧;𝛼)
(𝑧 − 𝜅)𝑛+1 𝑑𝑧 ≪ 2𝑛𝑛!

𝜅𝑛 (log 𝜅)5/2

for 𝜅 > 𝑐. By differentiating ℎ𝜎,𝑚,𝑝 (𝑠;𝛼) and substituting 𝑠 = 𝜅, we have the
conclusion. The other cases can be obtained by a similar argument. □
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5.5.2 Basic properties of the Bessel function 𝐼0
We further prepare some lemmas on Bessel functions. Put

Δ = {𝑧 = 𝑥 + 𝑖𝑦 : 𝑥 ≥ 0, |𝑦 | ≤ 𝑥} . (5.37)

Lemma 5.20. We have |𝐼0(𝑧) | ≍ 𝐼0(𝑥) for all 𝑧 ∈ Δ.

Proof. The inequality |𝐼0(𝑧) | ≤ 𝐼0(𝑥) is deduced from the definition. We
prove that |𝐼0(𝑥)/𝐼0(𝑧) | is bounded if 𝑥 ≥ 0 and |𝑦 | ≤ 𝑥. Recall that the
asymptotic formula (see [121, pp. 74, 198])

𝐼0(𝑧) =
𝑒𝑧

√
2𝜋𝑧

(
1 +𝑂

(
|𝑧 |−1

))
(5.38)

holds if Re 𝑧 > 0. Hence, we see that there exists an absolute constant 𝑅 > 0
such that ���� 𝐼0(𝑥)𝐼0(𝑧)

���� ≤ 2
√

|𝑧 |
𝑥

≤ 2
√

2

if |𝑧 | > 𝑅 and 𝑧 ∈ Δ. Since |𝐼0(𝑥)/𝐼0(𝑧) | is bounded if |𝑧 | ≤ 𝑅 and 𝑧 ∈ Δ, we
complete the proof. □

Recall that the modified Bessel function 𝐼0(𝑧) is non-zero and holomor-
phic for Re 𝑧 > 0. Therefore, we may define

𝑔(𝑧) = log 𝐼0(𝑧)

as a holomorphic function on Re 𝑧 > 0, whose values are real on the real axis.

Lemma 5.21. We have the following statements;

(i) We have 𝑔(𝑧) = 𝑧2/4 +𝑂
(
|𝑧 |4

)
for |𝑧 | ≤ 1.

(ii) Let 𝛿 be a positive number. We have 𝑔(𝑧) ≪𝛿 |𝑧 | for Re(𝑧) > 𝛿 and 𝑧 ∈ Δ.

Proof. By the Taylor expansion of exp(𝑧),

𝐼0(𝑧) = 1 + 𝐸 (𝑧)𝑧2, 𝐸 (𝑧) = 1
4 +

∞∑
𝑛=2

1
𝑛!

( 𝑧
2

)2(𝑛−1)

holds. Since the estimate |𝐸 (𝑧) | < 1 holds for |𝑧 | ≤ 1, we have

log 𝐼0(𝑧) =
∞∑
𝑘=1

(−1)𝑘−1

𝑘
𝐸 (𝑧)𝑘 = 𝑧2

4 +𝑂
(
|𝑧 |4

)
for |𝑧 | ≤ 1. Hence, we have the first assertion. The second assertion im-
mediately follows from the asymptotic formula (5.38). This completes the
proof. □
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Lemma 5.22. For any 𝑧 ∈ C, we have

𝑔(𝑧) ≪
{
|𝑧 |2 if 0 ≤ |𝑧 | ≤ 1,
|𝑧 | if |𝑧 | ≥ 1,

𝑔′(𝑧) ≪
{
|𝑧 | if 0 ≤ |𝑧 | ≤ 1,
1 if |𝑧 | ≥ 1,

and for 𝑛 ≥ 2,

𝑔(𝑛) (𝑧) ≪
{
𝑛! if 0 ≤ |𝑧 | ≤ 1,
2𝑛𝑛!|𝑧 |1−𝑛 if |𝑧 | ≥ 1.

Proof. The first and the second estimates follow from [67, Lemma 7.4]. We
also know that 𝑔(𝑧) ≪ |𝑧 | holds. Hence, the third estimate follows by
Cauchy’s integral formula. □

5.6 Cumulant-generating functions

Let (𝜎, 𝑚) ∈ A and 𝛼 ∈ R. We consider the moment-generating function

𝐹𝜎,𝑚 (𝑠;𝛼) = E
[
exp(𝑠Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋))

]
(5.39)

for 𝑠 = 𝜅 + 𝑖𝑡 ∈ C. Note that 𝐹𝜎,𝑚 (𝜅;𝛼) > 0 if 𝜅 ∈ R by the definition. We
define the cumulant-generating function

𝑓𝜎,𝑚 (𝜅;𝛼) = log 𝐹𝜎,𝑚 (𝜅;𝛼)

for 𝜅 ∈ R, which is a real analytic function. In this section, we will show the
asymptotic formulas for 𝑓 (𝑛)𝜎,𝑚 (𝜅;𝛼) for 1/2 < 𝜎 < 1 and 𝑚 ∈ Z≥0.

Proposition 5.5. Let 1/2 < 𝜎 < 1 and 𝑚 ∈ Z≥0. There exists a small constant
𝑐𝑚 > 0 such that for 𝑛 ∈ Z≥0 we have

𝑓 (𝑛)𝜎,𝑚 (𝜅;𝛼) = 𝜎
𝑚
𝜎 𝑔𝑛 (𝜎)

𝜅
1
𝜎−𝑛

(log 𝜅) 𝑚
𝜎 +1

(
1 +𝑂

(
2𝑛 (𝑛 + 1)3 log log 𝜅

log 𝜅

))
if 𝜅 ≥ 𝜅0(𝜎, 𝑚), where 𝜅0(𝜎, 𝑚) > 0 is a large constant, and

𝑔𝑛 (𝜎) =
∫ ∞

0

𝑔(𝑛) (𝑢)
𝑢(1/𝜎)+1−𝑛 𝑑𝑢

with 𝑔(𝑧) = log 𝐼0(𝑧) as above. The implicit constant depends only on 𝜎 and 𝑚.

Let (𝜎, 𝑚) ∈ A and 𝛼 ∈ R. Note that the the function 𝐹𝜎,𝑚 (𝑠;𝛼) of (5.39)
satisfies

𝐹𝜎,𝑚 (𝑠;𝛼) =
∏
𝑝

𝐹𝜎,𝑚,𝑝 (𝑠;𝛼) (5.40)

by the independence of 𝑋 (𝑝)’s, where 𝐹𝜎,𝑚,𝑝 (𝑠;𝛼) is the function of (5.36).
Put

Δ𝑚,𝜎 =
{
𝑠 = 𝜅 + 𝑖𝑡 : 𝜅 > 𝐿𝑚,𝜎, |𝑡 | ≤ 𝜅

}
,

where 𝐿𝑚,𝜎 is a sufficiently large constant depending on 𝑚 and 𝜎.
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Lemma 5.23. Let (𝜎, 𝑚) ∈ A and 𝛼 ∈ R. Suppose that 𝜅𝑝−2𝜎 (log 𝑝)−𝑚 ≤ 𝛿 is
satisfied with a positive small absolute constant 𝛿. Then we have

𝑓𝜎,𝑚,𝑝 (𝑠;𝛼) = 𝑔
(

𝑠

𝑝𝜎 (log 𝑝)𝑚

)
+𝑂

(
𝜅

𝑝2𝜎 (log 𝑝)𝑚

)
for 𝑠 = 𝜅 + 𝑖𝑡 ∈ Δ. Here, the region Δ is given by (5.37).

Proof. We can write

𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)) =
𝑋 (𝑝)

𝑝𝜎 (log 𝑝)𝑚 + 𝐸𝜎,𝑚 (𝑝), 𝐸𝜎,𝑚 (𝑝) ≪
1

𝑝2𝜎 (log 𝑝)𝑚
.

Recalling that |𝑠 | ≤ 2𝜅 holds for every 𝑠 = 𝜅 + 𝑖𝑡 ∈ Δ, we have

exp
(
𝑠Re(𝑒−𝑖𝛼𝐸𝜎,𝑚 (𝑝))

)
= 1 +𝑂

(
𝜅

𝑝2𝜎 (log 𝑝)𝑚

)
for 𝑠 ∈ Δ if 𝑝 satisfies 𝜅𝑝−2𝜎 (log 𝑝)−𝑚 ≤ 𝛿. Hence, 𝐹𝜎,𝑚,𝑝 (𝑠;𝛼) can be calcu-
lated as

𝐹𝜎,𝑚,𝑝 (𝑠;𝛼) = E
[
exp

(
𝑠
Re(𝑒−𝑖𝛼𝑋 (𝑝))
𝑝𝜎 (log 𝑝)𝑚

)]
+ E

[
exp

(
𝑠
Re(𝑒−𝑖𝛼𝑋 (𝑝))
𝑝𝜎 (log 𝑝)𝑚

)
𝑂

(
𝜅

𝑝2𝜎 (log 𝑝)𝑚

)]
= 𝐼0

(
𝑠

𝑝𝜎 (log 𝑝)𝑚

)
+𝑂

(
𝐼0

(
𝜅

𝑝𝜎 (log 𝑝)𝑚

)
𝜅

𝑝2𝜎 (log 𝑝)𝑚

)
.

By Lemma 5.20, we have

𝐹𝜎,𝑚,𝑝 (𝑠;𝛼) = 𝐼0
(

𝑠

𝑝𝜎 (log 𝑝)𝑚

) (
1 +𝑂

(
𝜅

𝑝2𝜎 (log 𝑝)𝑚

))
. (5.41)

Therefore, if 𝛿 is sufficiently small, 𝐹𝜎,𝑚,𝑝 (𝑠;𝛼) ≠ 0 for 𝑠 ∈ Δ. Hence, we
define 𝑓𝜎,𝑚,𝑝 (𝑠;𝛼) = log 𝐹𝜎,𝑚,𝑝 (𝑠;𝛼) as before. We have by (5.41) the formula

𝑓𝜎,𝑚,𝑝 (𝑠;𝛼) = 𝑔
(

𝑠

𝑝𝜎 (log 𝑝)𝑚

)
+𝑂

(
𝜅

𝑝2𝜎 (log 𝑝)𝑚

)
.

This completes the proof. □

Proof of Proposition 5.5. First, we will show the asymptotic formula

𝑓𝜎,𝑚 (𝑠;𝛼) = 𝜎
𝑚
𝜎 𝑔0(𝜎)

𝑠
1
𝜎

(log 𝜅) 𝑚
𝜎 +1

(
1 +𝑂

( log log 𝜅
log 𝜅

))
(5.42)

for 𝑠 = 𝜅 + 𝑖𝑡 ∈ Δ𝑚,𝜎 and 𝛼 ∈ R. Let 𝑦1 and 𝑦2 be the parameters determined
by

𝜅

𝑦2𝜎
1

= 𝛿 and 𝜅

𝑦𝜎2
=

(
1

log 𝜅

) 𝜎
2𝜎−1

,
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where 𝛿 > 0 is the constant in Lemma 5.23. Using formula (5.40) along with
Corollary 5.1, Lemmas 5.22 and 5.23, we have

𝑓𝜎,𝑚 (𝑠;𝛼) =
∑

𝑦1<𝑝≤𝑦2

𝑔

(
𝑠

𝑝𝜎 (log 𝑝)𝑚

)
+ 𝐸1, (5.43)

where

𝐸1 ≪
∑
𝑝≤𝑦1

𝜅

𝑝𝜎 (log 𝑝)𝑚 +
∑
𝑝>𝑦1

𝜅

𝑝2𝜎 (log 𝑝)𝑚
+

∑
𝑝>𝑦2

𝜅2

𝑝2𝜎 (log 𝑝)2𝑚

≪𝑚,𝜎
𝜅𝑦1

1−𝜎

(log 𝑦1)𝑚+1 + 𝜅2𝑦2
1−2𝜎

(log 𝑦2)2𝑚+1 .

Since 𝑦1 ≍𝜎 𝜅
1

2𝜎 and 𝑦2 = 𝜅
1
𝜎 (log 𝜅) 1

2𝜎−1 , we obtain

𝐸1 ≪𝜎,𝑚
𝜅

1
2𝜎 + 1

2

(log 𝜅)𝑚+1 + 𝜅
1
𝜎

(log 𝜅)2𝑚+2 ≪ 𝜅
1
𝜎

(log 𝜅) 𝑚
𝜎 +2 (5.44)

if 𝜅 is large enough.
The main term comes from the terms for 𝑦1 < 𝑝 ≤ 𝑦2. Recall that the

asymptotic formula

𝜋(𝑦) =
∫ 𝑦

2

𝑑𝑡

log 𝑡 +𝑂
(
𝑦𝑒−8

√
log 𝑦

)
holds. Then, by partial summation, we have∑

𝑦1<𝑝≤𝑦2

𝑔

(
𝑠

𝑝𝜎 (log 𝑝)𝑚

)
=

∫ 𝑦2

𝑦1

𝑔

(
𝑠

𝑦𝜎 (log 𝑦)𝑚

)
𝑑𝑦

log 𝑦 + 𝐸2,

where

𝐸2 ≪
����𝑔 (

𝑠

𝑦1𝜎 (log 𝑦1)𝑚

)���� 𝑦1𝑒
−8
√

log 𝑦1 +
����𝑔 (

𝑠

𝑦2𝜎 (log 𝑦2)𝑚

)���� 𝑦2𝑒
−8
√

log 𝑦2

+ 𝜅
∫ 𝑦2

𝑦1

����𝑔′ ( 𝑠

𝑦1𝜎 (log 𝑦1)𝑚

)���� 𝑒−8
√

log 𝑦

𝑦𝜎 (log 𝑦)𝑚 𝑑𝑦.

Recall further that we have |𝑠𝑦2
−𝜎 (log 𝑦2)−𝑚 | ≤ 1, and that

��𝑠𝑦1
−𝜎 (log 𝑦1)−𝑚

�� ≤
1 is sufficiently large. Hence, estimate (5.38) and Lemma 5.21 give����𝑔 (

𝑠

𝑦1𝜎 (log 𝑦1)𝑚

)���� 𝑦1𝑒
−8
√

log 𝑦1 ≪ 𝜅𝑒−8
√

log 𝑦1

𝑦1𝜎−1(log 𝑦1)𝑚
≪𝜎,𝑚

𝜅
1

2𝜎 + 1
2

(log 𝜅)𝑚 𝑒
−4
√

log 𝜅

and����𝑔 (
𝑠

𝑦2𝜎 (log 𝑦2)𝑚

)���� 𝑦2𝑒
−8
√

log 𝑦2 ≪ 𝜅2𝑒−8
√

log 𝑦2

𝑦22𝜎−1(log 𝑦2)𝑚
≪𝜎,𝑚

𝜅
1
𝜎

(log 𝜅)2𝑚+1 𝑒
−8
√

log 𝜅 .
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The third term is estimated as

𝜅

∫ 𝑦2

𝑦1

����𝑔′ ( 𝑠

𝑦1𝜎 (log 𝑦1)𝑚

)���� 𝑒−8
√

log 𝑦

𝑦𝜎 (log 𝑦)𝑚 𝑑𝑦

≪ 𝜅𝑒−8
√

log 𝑦1

∫ 𝑦2

1

𝑑𝑦

𝑦𝜎 (log 𝑦)𝑚 ≪𝜎,𝑚
𝜅

1
𝜎

(log 𝜅) 𝑚
𝜎

𝑒−4
√

log 𝜅

by Lemma 5.22. As a result, the error term 𝐸2 is estimated as

𝐸2 ≪𝜎,𝑚
𝜅

1
𝜎

(log 𝜅) 𝑚
𝜎 +2 .

Next, making change of variables, we obtain∫ 𝑦2

𝑦1

𝑔

(
𝑠

𝑝𝜎 (log 𝑝)𝑚

)
𝑑𝑦

log 𝑦

= 𝜎
𝑚
𝜎 𝜅

1
𝜎

∫ 𝑢1

𝑢2

𝑔
(
𝑠𝑢
𝜅

)
𝑢

1
𝜎 +1(log( 𝜅𝑢 ))

𝑚
𝜎 +1

𝑑𝑢

(
1 +𝑂𝑚

( log log 𝜅
log 𝜅

))
,

where we put

𝑢1 =
𝜅

𝑦𝜎1 (log 𝑦1)𝑚
and 𝑢2 =

𝜅

𝑦𝜎2 (log 𝑦2)𝑚
.

Since it holds that(
log

( 𝜅
𝑢

)) 𝑚
𝜎 +1

=
1

(log 𝜅) 𝑚
𝜎 +1

(
1 +𝑂𝜎,𝑚

( | log 𝑢 |
log 𝜅

))
for 𝑢1 ≤ 𝑢 ≤ 𝑢2, and the estimate∫ ∞

0

��𝑔 (
𝑠𝑢
𝜅

)
log 𝑢

��
𝑢

1
𝜎 +1

𝑑𝑢 ≪𝜎 1

also holds, the integral is calculated as∫ 𝑦2

𝑦1

𝑔

(
𝑠

𝑝𝜎 (log 𝑝)𝑚

)
𝑑𝑦

log 𝑦

= 𝜎
𝑚
𝜎

𝜅
1
𝜎

(log 𝜅) 𝑚
𝜎 +1

∫ 𝑢1

𝑢2

𝑔
(
𝑠𝑢
𝜅

)
𝑢

1
𝜎 +1

𝑑𝑢

(
1 +𝑂𝜎,𝑚

( log log 𝜅
log 𝜅

))
.

Finally, we see that the estimates∫ 𝑢2

0

𝑔
(
𝑠𝑢
𝜅

)
𝑢

1
𝜎 +1

𝑑𝑢 ≪𝜎 𝑢
2− 1

𝜎

2 ≪𝜎,𝑚
1

log 𝜅 ,∫ ∞

𝑢1

𝑔
(
𝑠𝑢
𝜅

)
𝑢

1
𝜎 +1

𝑑𝑢 ≪𝜎 𝑢
1− 1

𝜎

1 ≪𝜎,𝑚 𝜅
1
2−

1
2𝜎
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hold by Lemma 5.22, and therefore, the asymptotic formula∫ 𝑢1

𝑢2

𝑔
(
𝑠𝑢
𝜅

)
𝑢

1
𝜎 +1

𝑑𝑢 =
∫ ∞

0

𝑔
(
𝑠𝑢
𝜅

)
𝑢

1
𝜎 +1

𝑑𝑢 +𝑂𝜎,𝑚

(
1

log 𝜅

)
follows. From the above, and by using the equation∫ ∞

0

𝑔
(
𝑠𝑢
𝜅

)
𝑢

1
𝜎 +1

𝑑𝑢 =
𝑠

1
𝜎

𝜅
1
𝜎

∫ ∞

0

𝑔 (𝑢)
𝑢

1
𝜎 +1

𝑑𝑢,

we conclude∑
𝑦1<𝑝≤𝑦2

𝑔

(
𝑠

𝑝𝜎 (log 𝑝)𝑚

)
=𝜎

𝑚
𝜎 𝑔0(𝜎)

𝑠
1
𝜎

(log 𝜅) 𝑚
𝜎 +1

(
1 +𝑂𝜎,𝑚

( log log 𝜅
log 𝜅

))
. (5.45)

Combining (5.43), (5.44), and (5.45), we obtain the asymptotic formula (5.42).
Let 𝜅 be large enough depending on 𝜎 and 𝑚. Then we have

𝑓𝜎,𝑚 (𝑧;𝛼) = 𝜎
𝑚
𝜎 𝑔0(𝜎)

𝑧
1
𝜎

(log 𝜅) 𝑚
𝜎 +1 + ℎ𝜎,𝑚 (𝑧;𝛼),

where

ℎ𝜎,𝑚 (𝑧;𝛼) ≪𝜎,𝑚
𝜅

1
𝜎

(log 𝜅) 𝑚
𝜎 +1

log log 𝜅
log 𝜅

for |𝑧 − 𝜅 | ≤ 𝜅/2 by the asymptotic formula (5.42). By Cauchy’s integral
formula, we have

ℎ(𝑛)𝜎,𝑚 (𝜅;𝛼) = 𝑓 (𝑛)𝜎,𝑚 (𝜅;𝛼) − 𝜎
𝑚
𝜎𝐺𝑛 (𝜎)𝑔0(𝜎)

𝜅
1
𝜎−𝑛

(log 𝜅) 𝑚
𝜎 +1

=
𝑛!

2𝜋𝑖

∫
|𝑧−𝜅 |=𝜅/2

ℎ𝜎,𝑚 (𝑧;𝛼)
(𝑧 − 𝜅)𝑛+1 𝑑𝑧

≪𝜎,𝑚
2𝑛𝑛!𝜅 1

𝜎−𝑛

(log 𝜅) 𝑚
𝜎 +1

log log 𝜅
log 𝜅 ,

where 𝐺𝑛 (𝜎) =
∏𝑛−1

𝑗=0 ( 1
𝜎 − 𝑗). Using the equation 𝑔𝑛 (𝜎) = 𝐺𝑛 (𝜎)𝑔0(𝜎) and

the estimate |𝑔𝑛 (𝜎) | ≫𝜎 (𝑛 − 3)! for 𝑛 ≥ 3, we have the conclusion. □

5.7 Further results on probability density functions

5.7.1 Preliminaries
Lemma 5.24. Let (𝜎, 𝑚) ∈ A and 𝛼 ∈ R. Suppose that 𝑠 = 𝜅 + 𝑖𝑡 satisfies
𝜅 > 𝑐(𝜎, 𝑚) with a large constant 𝑐(𝜎, 𝑚) > 0. Then we have

|𝐹𝜎,𝑚 (𝑠;𝛼) |
𝐹𝜎,𝑚 (𝜅;𝛼)

≤ exp
(
−|𝑡 |1/(2𝜎)

)
for |𝑡 | ≥ 𝜅/3.
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Proof. We see that

|𝐹𝜎,𝑚 (𝑠;𝛼) |
𝐹𝜎,𝑚 (𝜅;𝛼)

≤
∏

𝑀1 |𝑡 |1/𝜎≤𝑝≤|𝑡 |2/𝜎

��E [
exp(𝑠Re 𝑒−𝑖𝛼𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)))

] ��
E

[
exp(𝜅 Re 𝑒−𝑖𝛼𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)))

] . (5.46)

If we suppose that 𝑠 = 𝜅 + 𝑖𝑡 satisfies 𝜅 > 𝑐(𝜎, 𝑚) and |𝑡 | ≥ 𝜅/3, then |𝑠 | ≤ 4|𝑡 |.
By the Taylor expansion of exp(𝑧), we obtain

exp(𝑠Re 𝑒−𝑖𝛼𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)))

= 1 + 𝑠Re 𝑒−𝑖𝛼𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)) +
1
2

(
𝑠Re 𝑒−𝑖𝛼𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))

)2

+𝑂
(

|𝑡 |3
𝑝3𝜎 (log 𝑝)3𝑚

)
for 𝑝 > 𝑀1 |𝑡 |1/𝜎 with suitably large 𝑀1. It holds that

E
[
Re 𝑒−𝑖𝛼𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))

]
= 0,

and

E

[(
Re 𝑒−𝑖𝛼𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))

)2
]
=

1
2

∞∑
𝑘=1

1
(𝑘 𝑝𝑘𝜎 (log 𝑝𝑘 )𝑚)2 .

By these formulas, it follows that

E
[
exp(𝑠Re 𝑒−𝑖𝛼𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)))

]
= 1 + 𝑠

2

4

∞∑
𝑘=1

1
(𝑘 𝑝𝑘𝜎 (log 𝑝𝑘 )𝑚)2 +𝑂

(
|𝑡 |3

𝑝3𝜎 (log 𝑝)3𝑚

)
.

Therefore, we have��E [
exp(𝑠Re 𝑒−𝑖𝛼𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)))

] ��
E

[
exp(𝜅 Re 𝑒−𝑖𝛼𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝)))

]
=

����1 + 2𝑖𝜅𝑡 − 𝑡2
4

∞∑
𝑘=1

1
(𝑘 𝑝𝑘𝜎 (log 𝑝𝑘 )𝑚)2 +𝑂

(
|𝑡 |3

𝑝3𝜎 (log 𝑝)3𝑚

) ����
for 𝑀1 |𝑡 |1/𝜎 ≤ 𝑝 ≤ |𝑡 |2/𝜎. In particular, when 𝑀1 is sufficiently large, it also
holds that�����2𝑖𝜅𝑡 − 𝑡24

∞∑
𝑘=1

1
(𝑘 𝑝𝑘𝜎 (log 𝑝𝑘 )𝑚)2 +𝑂

(
|𝑡 |3

𝑝3𝜎 (log 𝑝)3𝑚

)����� ≤ 1
2 .
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From these results and inequality (5.46), we obtain
|𝐹𝜎,𝑚 (𝑠;𝛼) |
𝐹𝜎,𝑚 (𝜅;𝛼)

≤ exp
( ∑
𝑀1 |𝑡 |1/𝜎≤𝑝≤|𝑡 |2/𝜎

Re log
(
1 + 2𝑖𝜅𝑡 − 𝑡2

4

∞∑
𝑘=1

1
(𝑘 𝑝𝑘𝜎 (log 𝑝𝑘 )𝑚)2

+𝑂
(

|𝑡 |3
𝑝3𝜎 (log 𝑝)3𝑚

) ))
= exp

( ∑
𝑀1 |𝑡 |1/𝜎≤𝑝≤|𝑡 |2/𝜎

Re
(
2𝑖𝜅𝑡 − 𝑡2

4

∞∑
𝑘=1

1
(𝑘 𝑝𝑘𝜎 (log 𝑝𝑘 )𝑚)2

+𝑂
(

|𝑡 |3
𝑝3𝜎 (log 𝑝)3𝑚

) ))
≤ exp ©­«

∑
𝑀1 |𝑡 |1/𝜎≤𝑝≤|𝑡 |2/𝜎

(
−𝑡2

2𝑝2𝜎 (log 𝑝)2𝑚 +𝑂
(

|𝑡 |3
𝑝3𝜎 (log 𝑝)3𝑚

))ª®¬
≤ exp ©­«−𝑡2

∑
𝑀1 |𝑡 |1/𝜎≤𝑝≤|𝑡 |2/𝜎

1
4𝑝2𝜎 (log 𝑝)2𝑚

ª®¬ ≤ exp
(
−|𝑡 |1/2𝜎

)
when 𝑀1 is sufficiently large. Thus, we obtain this lemma. □

As a final preliminary lemma, we prove the following result.
Lemma 5.25. Let (𝜎, 𝑚) ∈ A and 𝛼 ∈ R. For each 𝜏 > 0, there exists a unique
real number 𝜅 = 𝜅(𝜏;𝜎, 𝑚, 𝛼) > 0 such that

𝑓 ′𝜎,𝑚 (𝜅;𝛼) = 𝜏. (5.47)

Furthermore, we have 𝜅 → ∞ as 𝜏 → ∞.
Proof. Since 𝑓𝜎,𝑚 (𝜅;𝛼) = log 𝐹𝜎,𝑚 (𝜅;𝛼), we have

𝑓 ′𝜎,𝑚 (𝜅;𝛼) =
𝐹′
𝜎,𝑚 (𝜅;𝛼)
𝐹𝜎,𝑚 (𝜅;𝛼)

.

In particular, we obtain

𝑓 ′𝜎,𝑚 (0;𝛼) =
𝐹′
𝜎,𝑚 (0;𝛼)
𝐹𝜎,𝑚 (0;𝛼) = E [𝑌 ] = 0,

where we define𝑌 = Re(𝑒−𝑖𝛼𝜂̃𝑚,𝑝 (𝜎, 𝑋 (𝑝))). Therefore it is sufficient to show
that 𝑓 ′′𝜎,𝑚 (𝜅;𝛼) > 0 for 𝜅 > 0 for the proof of the result. Note that we have

𝑓 ′′𝜎,𝑚 (𝜅;𝛼) =
𝐹′′
𝜎,𝑚 (𝜅;𝛼)𝐹𝜎,𝑚 (𝜅;𝛼) − 𝐹′

𝜎,𝑚 (𝜅;𝛼)2

𝐹𝜎,𝑚 (𝜅;𝛼)2

=
1

𝐹𝜎,𝑚 (𝜅;𝛼)
E

[ (
𝑌 − 𝑓 ′𝜎,𝑚 (𝜅;𝛼)

)2 exp(𝜅𝑌 )
]
> 0.

Hence, the result follows. □
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5.7.2 A transformation of the density function
Let (𝜎, 𝑚) ∈ A and 𝛼 ∈ R. We define a non-negative continuous function
𝐷𝜎,𝑚 (𝑥;𝛼) as

𝐷𝜎,𝑚 (𝑥;𝛼) =
∫
R
𝐷𝜎,𝑚 (𝑒𝑖𝛼 (𝑥 + 𝑖𝑦))

𝑑𝑦
√

2𝜋
,

where𝐷𝜎,𝑚 (𝑧) is the probability density function determined by (5.25). Then
the function 𝐷𝜎,𝑚 (𝑥;𝛼) satisfies

E
[
Φ

(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋)

) ]
=

∫
C
Φ

(
Re 𝑒−𝑖𝛼𝑧

)
𝐷𝜎,𝑚 (𝑧) |𝑑𝑧 |

=
∫
R
Φ(𝑥)𝐷𝜎,𝑚 (𝑥;𝛼) |𝑑𝑥 |

for all Lebesgue measurable functions Φ(𝑥), where |𝑑𝑥 | = (2𝜋)−1/2𝑑𝑥. Hence,
𝐷𝜎,𝑚 (𝑥;𝛼) is again a probability density function, whose moment-generating
function is given by

𝐹𝜎,𝑚 (𝑠;𝛼) =
∫
R
𝑒𝑠𝑥𝐷𝜎,𝑚 (𝑥;𝛼) |𝑑𝑥 | (5.48)

which agrees with (5.39). In this section, we study the function

𝐷𝜏
𝜎,𝑚 (𝑥;𝛼) =

𝑒𝜅𝜏

𝐹𝜎,𝑚 (𝜅;𝛼)
𝑒𝜅𝑥𝐷𝜎,𝑚 (𝑥 + 𝜏;𝛼),

where 𝜏 > 0 and 𝜅 = 𝜅(𝜏;𝜎, 𝑚, 𝛼) is a positive real number satisfying (5.47).

Lemma 5.26. Let (𝜎, 𝑚) ∈ A and 𝛼 ∈ R. For 𝜏 > 0, the function 𝐷𝜏
𝜎,𝑚 (𝑥;𝛼) is a

probability density function, whose Fourier transform is given by

𝐷𝜏
𝜎,𝑚 (𝑡;𝛼) :=

∫
R
𝑒𝑖𝑡𝑥𝐷𝜏

𝜎,𝑚 (𝑥;𝛼) |𝑑𝑥 | = 𝑒−𝑖𝑡𝜏
𝐹𝜎,𝑚 (𝜅 + 𝑖𝑡;𝛼)
𝐹𝜎,𝑚 (𝜅;𝛼)

.

Proof. By the definition, we have∫
R
𝐷𝜏
𝜎,𝑚 (𝑥;𝛼) |𝑑𝑥 | =

1
𝐹𝜎,𝑚 (𝜅;𝛼)

∫ ∞

−∞
𝑒𝜅(𝑥+𝜏)𝐷𝜎,𝑚 (𝑥 + 𝜏;𝛼) |𝑑𝑥 | = 1

due to (5.48). Similarly, the Fourier transform of 𝐷𝜏
𝜎,𝑚 (𝑥;𝛼) is calculated as

𝐷𝜏
𝜎,𝑚 (𝑡;𝛼) =

1
𝐹𝜎,𝑚 (𝜅;𝛼)

∫ ∞

−∞
𝑒𝜅(𝑥+𝜏)+𝑖𝑡𝑥𝐷𝜎,𝑚 (𝑥 + 𝜏;𝛼) |𝑑𝑥 |

=
1

𝐹𝜎,𝑚 (𝜅;𝛼)

∫ ∞

−∞
𝑒𝜅𝑥+𝑖𝑡 (𝑥−𝜏)𝐷𝜎,𝑚 (𝑥;𝛼) |𝑑𝑥 |

= 𝑒−𝑖𝑡𝜏
𝐹𝜎,𝑚 (𝜅 + 𝑖𝑡;𝛼)
𝐹𝜎,𝑚 (𝜅;𝛼)

,

which completes the proof. □
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By Lemma 5.24, we find that 𝐷𝜏
𝜎,𝑚 (𝑡;𝛼) is absolutely integrable over R.

Hence, the function 𝐷𝜏
𝜎,𝑚 (𝑥;𝛼) can be recovered by the inversion formula

𝐷𝜏
𝜎,𝑚 (𝑥;𝛼) =

∫
R
𝐷𝜏
𝜎,𝑚 (𝑡;𝛼)𝑒−𝑖𝑡𝑥 |𝑑𝑡 |. (5.49)

Next, we apply (5.49) to obtain an asymptotic formula for 𝐷𝜏
𝜎,𝑚 (𝑥;𝛼).

Proposition 5.6. Let 1/2 < 𝜎 < 1, 𝑚 ∈ Z≥0, and 𝛼 ∈ R. For 𝜏 > 0, we take
𝜅 = 𝜅(𝜏;𝜎, 𝑚, 𝛼) > 0 satisfying (5.47). Then we have

𝐷𝜏
𝜎,𝑚 (𝑥;𝛼) =

1√
2𝜋 𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

{
exp

(
− 𝑥2

2 𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

)
+𝑂

(
𝜅−

1
2𝜎 (log 𝜅) 1

2 (
𝑚
𝜎 +1)

)}
for all 𝑥 ∈ R if 𝜏 > 0 is large enough. The implicit constant depends only on 𝜎 and
𝑚.

Proof. First, applying formula (5.49), we deduce

𝐷𝜏
𝜎,𝑚 (𝑥;𝛼) =

∫ 𝜅/3

−𝜅/3
𝐷𝜏
𝜎,𝑚 (𝑡;𝛼)𝑒−𝑖𝑡𝑥 |𝑑𝑡 | + 𝐸1, (5.50)

where 𝐸1 ≪ √
𝜅 exp(−

√
𝜅/3) by Lemmas 5.24 and 5.26. In order to estimate

the integral in (5.50), we define a holomorphic function 𝐺 (𝑧) as

𝐺 (𝑧) = exp
(
−𝜏𝑧 −

𝑓 ′′𝜎,𝑚,𝑌 (𝜅;𝛼)
2 𝑧2

)
𝐹𝜎,𝑚,𝑌 (𝑧 + 𝜅;𝛼)
𝐹𝜎,𝑚,𝑌 (𝜅;𝛼)

(5.51)

= 1 +
∞∑
𝑛=3

𝑎𝑛
𝑛! 𝑧

𝑛.

Note that the coefficients 𝑎𝑛 are calculated as

𝑎𝑛 =
⌊𝑛/3⌋∑
𝑘=1

1
𝑘!

∑
𝑛1+···𝑛𝑘=𝑛
∀ 𝑗 , 𝑛 𝑗≥3

(
𝑛

𝑛1, . . . , 𝑛𝑘

)
𝑓 (𝑛1)
𝜎,𝑚 (𝜅;𝛼) · · · 𝑓 (𝑛𝑘 )𝜎,𝑚 (𝜅;𝛼)

since 𝐺 (𝑧) is also expressed as

𝐺 (𝑧) = exp
(
𝑓𝜎,𝑚 (𝑧 + 𝜅;𝛼) − 𝑓𝜎,𝑚 (𝜅;𝛼) − 𝑓 ′𝜎,𝑚 (𝜅;𝛼)𝑧 −

𝑓 ′′𝜎,𝑚 (𝜅;𝛼)
2 𝑧2

)
= exp

( ∞∑
𝑛=3

𝑓 (𝑛)𝜎,𝑚 (𝜅;𝛼)
𝑛! 𝑧𝑛

)
near the origin. Then, by Lemma 5.26, we have

𝐷𝜏
𝜎,𝑚 (𝑡;𝛼) = exp

(
−
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

2 𝑡2
)
𝐺 (𝑖𝑡).
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Hence, we obtain∫ 𝜅/3

−𝜅/3
𝐷̃𝜏
𝜎,𝑚 (𝑡;𝛼)𝑒−𝑖𝑡𝑥 |𝑑𝑡 | =

∫ 𝜅/3

−𝜅/3
exp

(
−
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

2 𝑡2
)
𝑒−𝑖𝑡𝑥 |𝑑𝑡 | + 𝐸2, (5.52)

where

𝐸2 =
∫ 𝜅/3

−𝜅/3
exp

(
−
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

2 𝑡2
)
(𝐺 (𝑖𝑡) − 1) 𝑒−𝑖𝑡𝑥 |𝑑𝑡 |

≪
∫ 𝜅/3

0
exp

(
−
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

2 𝑡2
) ( ∞∑

𝑛=3

|𝑎𝑛 |
𝑛! 𝑡

𝑛

)
𝑑𝑡.

We further evaluate the error term 𝐸2 as follows. Notice that we have

∞∑
𝑛=3

|𝑎𝑛 |
𝑛! 𝑡

𝑛 ≤ exp
©­­«

∞∑
𝑛=3

��� 𝑓 (𝑛)𝜎,𝑚 (𝜅;𝛼)
���

𝑛! 𝑡𝑛
ª®®¬ − 1

for 0 ≤ 𝑡 ≤ 𝜅/3. Furthermore, it is deduced from Proposition 5.5 that

∞∑
𝑛=3

��� 𝑓 (𝑛)𝜎,𝑚 (𝜅;𝛼)
���

𝑛! 𝑡𝑛 ≪𝜎,𝑚
𝜅

1
𝜎

(log 𝜅) 𝑚
𝜎 +1

∞∑
𝑛=3

(
2𝑡
𝜅

)𝑛
≪ 𝜅

1
𝜎−3

(log 𝜅) 𝑚
𝜎 +1 𝑡

3.

Hence, there exists a constant 𝐶𝜎,𝑚 > 0 such that

∞∑
𝑛=3

|𝑎𝑛 |
𝑛! 𝑡

𝑛 ≤
∞∑
𝑛=1

1
𝑛!

(
𝐶𝜎,𝑚

𝜅
1
𝜎−3

(log 𝜅) 𝑚
𝜎 +1 𝑡

3

)𝑛
, (5.53)

which deduces

𝐸2 ≪
∞∑
𝑛=1

1
𝑛!

(
𝐶𝜎,𝑚

𝜅
1
𝜎−3

(log 𝜅) 𝑚
𝜎 +1 𝑡

3

)𝑛 ∫ 𝜅/3

0
exp

(
−
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

2 𝑡2
)
𝑡3𝑛 𝑑𝑡

≪ 1√
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

∞∑
𝑛=1

Γ( 3𝑛+1
2 )
𝑛!

©­«2
√

2𝐶𝜎,𝑚
𝜅

1
𝜎−3√

𝑓 ′′𝜎,𝑚 (𝜅;𝛼)
3(log 𝜅) 𝑚

𝜎 +1

ª®¬
𝑛

.

By Proposition 5.5, we see that

𝜅
1
𝜎−3√

𝑓 ′′𝜎,𝑚 (𝜅;𝛼)
3(log 𝜅) 𝑚

𝜎 +1
≪𝜎,𝑚 𝜅

− 1
2𝜎 (log 𝜅) 1

2 (
𝑚
𝜎 +1)

holds. Therefore we arrive at the estimate

𝐸2 ≪𝜎,𝑚
1√

𝑓 ′′𝜎,𝑚 (𝜅;𝛼)
𝜅−

1
2𝜎 (log 𝜅) 1

2 (
𝑚
𝜎 +1)

133



if 𝜅 > 0 is large enough. Finally, we obtain∫ 𝜅/3

−𝜅/3
exp

(
−
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

2 𝑡2
)
𝑒−𝑖𝑡𝑥 |𝑑𝑡 | (5.54)

=
∫ ∞

−∞
exp

(
−
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

2 𝑡2
)
𝑒−𝑖𝑡𝑥 |𝑑𝑡 | + 𝐸3

=
1√

2𝜋 𝑓 ′′𝜎,𝑚 (𝜅;𝛼)
exp

(
− 𝑥2

2 𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

)
+ 𝐸3,

where

𝐸3 ≪
∫ ∞

𝜅/3
exp

(
−
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

2 𝑡2
)
𝑑𝑡 ≪ exp

(
−
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

18 𝜅2
)
.

Since 𝑓 ′′𝜎,𝑚 (𝜅;𝛼) ≪𝜎,𝑚 𝜅
1
𝜎−2(log 𝜅)−𝑚

𝜎 due to Proposition 5.5, we obtain the
result by combining (5.50), (5.52), and (5.54). □

5.8 Large deviations: Proof of Theorem 5.2

5.8.1 Preliminaries
In this section, we prove the following proposition.
Proposition 5.7. Let 1/2 < 𝜎 < 1, 𝑚 ∈ Z≥0, and 𝛼 ∈ R. For 𝜏 > 0, we take
𝜅 = 𝜅(𝜏;𝜎, 𝑚, 𝛼) > 0 satisfying (5.47). Then we have

P
(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) > 𝜏

)
(5.55)

=
𝐹𝜎,𝑚 (𝜅;𝛼)𝑒−𝜏𝜅

𝜅
√

2𝜋 𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

{
1 +𝑂

(
𝜅−

1
2𝜎 (log 𝜅) 1

2 (
𝑚
𝜎 +1)

)}
if 𝜏 > 0 is large enough. The implicit constant depends only on 𝜎 and 𝑚.

We prepare some lemmas toward the proof of Proposition 5.7.
Lemma 5.27 (Granville–Soundararajan [35]). Let 𝜆 > 0 be a real number . For
𝑦 > 0 and 𝑐 > 0, we have

0 ≤ 1
2𝜋𝑖

∫ 𝑐+𝑖∞

𝑐−𝑖∞
𝑦𝑠

(
𝑒𝜆𝑠 − 1
𝜆𝑠

)
𝑑𝑠

𝑠
− 𝜒(𝑦)

≤ 1
2𝜋𝑖

∫ 𝑐+𝑖∞

𝑐−𝑖∞
𝑦𝑠

(
𝑒𝜆𝑠 − 1
𝜆𝑠

) (
1 − 𝑒−𝜆𝑠

𝑠

)
𝑑𝑠,

where 𝜒(𝑦) = 1 if 𝑦 > 1 and 𝜒(𝑦) = 0 otherwise.
By Lemma 5.27, we obtain

0 ≤ 1
2𝜋𝑖

∫ 𝑐+𝑖∞

𝑐−𝑖∞
𝐹𝜎,𝑚 (𝑠;𝛼)𝑒−𝜏𝑠

(
𝑒𝜆𝑠 − 1
𝜆𝑠2

)
𝑑𝑠 − P

(
Re(𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋)) > 𝜏

)
≤ 1

2𝜋𝑖

∫ 𝑐+𝑖∞

𝑐−𝑖∞
𝐹𝜎,𝑚 (𝑠;𝛼)𝑒−𝜏𝑠

(
𝑒𝜆𝑠 − 1
𝜆𝑠

) (
1 − 𝑒−𝜆𝑠

𝑠

)
𝑑𝑠.

Then the main term in (5.55) comes from the following integral.
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Lemma 5.28. With the assumptions of Proposition 5.7, we have

1
2𝜋𝑖

∫ 𝜅+𝑖𝜅/3

𝜅−𝑖𝜅/3
𝐹𝜎,𝑚 (𝑠;𝛼)𝑒−𝜏𝑠

(
𝑒𝜆𝑠 − 1
𝜆𝑠2

)
𝑑𝑠

=
𝐹𝜎,𝑚 (𝜅;𝛼)𝑒−𝜏𝜅

𝜅
√

2𝜋 𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

{
1 +𝑂

(
𝜅−

1
2𝜎 (log 𝜅) 1

2 (
𝑚
𝜎 +1)

)}
,

where we take 𝜆 = 𝜅−3, and the implicit constant depends only on 𝜎 and 𝑚.

Proof. Let 𝐺 (𝑧) be the function defined as (5.51). Then we see that

𝐹𝜎,𝑚 (𝜅 + 𝑖𝑡;𝛼)𝑒−𝜏(𝜅+𝑖𝑡) = 𝐹𝜎,𝑚 (𝜅;𝛼)𝑒−𝜏𝜅 exp
(
−
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

2 𝑡2
)
𝐺 (𝑖𝑡)

by definition. Furthermore, we obtain

𝑒𝜆(𝜅+𝑖𝑡) − 1
𝜆(𝜅 + 𝑖𝑡)2 =

1
𝜅

(
1 − 𝑖 𝑡

𝜅
+𝑂

(
𝜆𝜅 + 𝑡2

𝜅2

))
for |𝑡 | ≤ 𝜅/3. Hence, the integral is calculated as

1
2𝜋𝑖

∫ 𝜅+𝑖𝜅/3

𝜅−𝑖𝜅/3
𝐹𝜎,𝑚 (𝑠;𝛼)𝑒−𝜏𝑠

(
𝑒𝜆𝑠 − 1
𝜆𝑠2

)
𝑑𝑠

=
𝐹𝜎,𝑚 (𝜅;𝛼)𝑒−𝜏𝜅

𝜅

1
2𝜋𝑖

∫ 𝜅/3

−𝜅/3
exp

(
−
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

2 𝑡2
)

× 𝐺 (𝑖𝑡)
(
1 − 𝑖 𝑡

𝜅
+𝑂

(
𝜆𝜅 + 𝑡2

𝜅2

))
𝑑𝑡

=
𝐹𝜎,𝑚 (𝜅;𝛼)𝑒−𝜏𝜅

𝜅

{
1

2𝜋

∫ 𝜅/3

−𝜅/3
exp

(
−
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

2 𝑡2
)
𝑑𝑡

+ 1
2𝜋

∫ 𝜅/3

−𝜅/3
exp

(
−
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

2 𝑡2
) (

−𝑖 𝑡
𝜅
+𝑂

(
𝜆𝜅 + 𝑡2

𝜅2

))
𝑑𝑡

+ 1
2𝜋

∫ 𝜅/3

−𝜅/3
exp

(
−
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

2 𝑡2
) ( ∞∑

𝑛=3

𝑎𝑛
𝑛! (𝑖𝑡)

𝑛

)
×

(
1 − 𝑖 𝑡

𝜅
+𝑂

(
𝜆𝜅 + 𝑡2

𝜅2

))
𝑑𝑡

}
=
𝐹𝜎,𝑚 (𝜅;𝛼)𝑒−𝜏𝜅

𝜅
(𝐼1 + 𝐼2 + 𝐼3),

say. We have

𝐼1 =
1√

2𝜋 𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

{
1 +𝑂

(
exp

(
−
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

18 𝜅2
))}

and

𝐼2 ≪ 1√
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

(
𝜆𝜅 + 1

𝜅2 𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

)
.
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Since 𝜆 = 𝜅−3, the contributions of 𝐼1 and 𝐼2 are evaluated as

𝐹𝜎,𝑚 (𝜅;𝛼)𝑒−𝜏𝜅
𝜅

(𝐼1 + 𝐼2) =
𝐹𝜎,𝑚 (𝜅;𝛼)𝑒−𝜅𝜏

𝜅
√

2𝜋 𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

{
1 +𝑂

(
𝜅−

1
𝜎 (log 𝜅) 1

2 (
𝑚
𝜎 +1)

)}
by using Proposition 5.5. As for 𝐼3, we use inequality (5.53) to derive

𝐼3 ≪
∞∑
𝑛=1

1
𝑛!

(
𝐶𝜎,𝑚

𝜅
1
𝜎−3

(log 𝜅) 𝑚
𝜎 +1

)𝑛 ∫ 𝜅/3

0
exp

(
−
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

2 𝑡2
)
𝑡3𝑛 𝑑𝑡

≪ 1√
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

∞∑
𝑛=1

Γ( 3𝑛+1
2 )
𝑛!

©­«2
√

2𝐶𝜎,𝑚
𝜅

1
𝜎−3√

𝑓 ′′𝜎,𝑚 (𝜅;𝛼)
3(log 𝜅) 𝑚

𝜎 +1

ª®¬
𝑛

.

By Proposition 5.5, we see that

𝜅
1
𝜎−3√

𝑓 ′′𝜎,𝑚 (𝜅;𝛼)
3(log 𝜅) 𝑚

𝜎 +1
≪𝜎,𝑚 𝜅

− 1
2𝜎 (log 𝜅) 1

2 (
𝑚
𝜎 +1)

holds. Therefore we arrive at the estimate

𝐼3 ≪𝜎,𝑚
1√

𝑓 ′′𝜎,𝑚 (𝜅;𝛼)
𝜅−

1
2𝜎 (log 𝜅) 1

2 (
𝑚
𝜎 +1)

if 𝜅 > 0 is large enough, which yields the result. □

Proof of Proposition 5.7. The remaining work is to evaluate the integrals

𝐸1 =
1

2𝜋𝑖

∫ 𝜅±𝑖∞

𝜅±𝑖𝜅/3
𝐹𝜎,𝑚 (𝑠;𝛼)𝑒−𝜏𝑠

(
𝑒𝜆𝑠 − 1
𝜆𝑠2

)
𝑑𝑠

and

𝐸2 =
1

2𝜋𝑖

∫ 𝜅+𝑖∞

𝜅−𝑖∞
𝐹𝜎,𝑚 (𝑠;𝛼)𝑒−𝜏𝑠

(
𝑒𝜆𝑠 − 1
𝜆𝑠

) (
1 − 𝑒−𝜆𝑠

𝑠

)
𝑑𝑠. (5.56)

Since we take 𝜆 = 𝜅−3, we obtain

𝑒𝜆𝑠 − 1
𝜆𝑠2

≪ 𝜅3

𝑡2
and

(
𝑒𝜆𝑠 − 1
𝜆𝑠

) (
1 − 𝑒−𝜆𝑠

𝑠

)
≪

{
𝜅−3 if |𝑡 | ≤ 𝜅/3,
𝜅3𝑡−2 if |𝑡 | > 𝜅/3.

For the integral 𝐸1, we apply Lemma 5.24 to derive

𝐸1 ≪ 𝐹𝜎,𝑚 (𝜅;𝛼)𝑒−𝜏𝜅
∫ ∞

𝜅/3
exp(−𝑡1/(2𝜎)) 𝜅

3

𝑡2
𝑑𝑡

≪ 𝐹𝜎,𝑚 (𝜅;𝛼)𝑒−𝜏𝜅 exp
(
−1

2𝜅
1/(2𝜎)

)
.
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Hence, Proposition 5.5 yields

𝐸1 ≪ 𝐹𝜎,𝑚 (𝜅;𝛼)𝑒−𝜅𝜏

𝜅
√
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

𝜅−
1

2𝜎 (log 𝜅) 1
2 (

𝑚
𝜎 +1) .

Next, we split the integral of the right hand side of (5.56) as

𝐸2 =
1

2𝜋𝑖

(∫ 𝜅+𝑖𝜅/3

𝜅−𝑖𝜅/3
+
∫ 𝜅±𝑖∞

𝜅±𝑖𝜅/3

)
= 𝐸21 + 𝐸22.

Then we have

𝐸21 ≪ 𝐹𝜎,𝑚 (𝜅;𝛼)𝑒−𝜏𝜅
∫ 𝜅/3

−𝜅/3
𝜅−3 𝑑𝑡 ≪ 𝐹𝜎,𝑚 (𝜅;𝛼)𝑒−𝜏𝜅𝜅−2.

The integral 𝐸22 can be estimated along the same lines as in the case of 𝐸1.
Hence, we deduce

𝐸2 ≪ 𝐹𝜎,𝑚 (𝜅;𝛼)𝑒−𝜅𝜏

𝜅
√
𝑓 ′′𝜎,𝑚 (𝜅;𝛼)

𝜅−
1

2𝜎 (log 𝜅) 1
2 (

𝑚
𝜎 +1)

by Proposition 5.5. The conclusion follows from the above estimates on 𝐸1
and 𝐸2 together with Lemma 5.28. □

Corollary 5.2. Let 1/2 < 𝜎 < 1, 𝑚 ∈ Z≥0, and 𝛼 ∈ R. For large 𝜏 > 0, we have

P
(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) > 𝜏

)
= exp

(
−𝐴𝑚 (𝜎)𝜏

1
1−𝜎 (log 𝜏) 𝑚+𝜎

1−𝜎

(
1 +𝑂

( log log 𝜏
log 𝜏

)))
,

where 𝐴𝑚 (𝜎) is defined as (3.1).

Proof. By Proposition 5.5, one can estimate 𝜅 = 𝜅(𝜏;𝜎, 𝑚, 𝛼) of Lemma 5.25
as

𝜅 = 𝐶𝑚 (𝜎)𝜏
𝜎

1−𝜎 (log 𝜏) 𝑚+𝜎
1−𝜎

(
1 +𝑂

( log log 𝜏
log 𝜏

))
if 𝜏 > 0 is large enough, where

𝐶𝑚 (𝜎) =
(

𝜎

(1 − 𝜎) 𝑚
𝜎 +1𝑔1(𝜎)

) 𝜎
1−𝜎

.

Inserting it and 𝑔1(𝜎) = 𝜎−1(1−𝜎)1−1/𝜎𝐺 (𝜎) to (5.55), we obtain the corollary.
□
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5.8.2 Proof of the result for large deviations
Define

𝐺 (𝑢) = 2𝑢
𝜋

+ 2(1 − 𝑢)𝑢
tan(𝜋𝑢) and 𝑓𝑐,𝑑 (𝑢) =

1
2 (𝑒

−2𝜋𝑖𝑢𝑐 − 𝑒−2𝜋𝑖𝑢𝑑)

with 𝑐, 𝑑 ∈ R. For a set 𝐴, we denote the indicator function of 𝐴 by 1𝐴.

Lemma 5.29. Let 𝐿 > 0. Let 𝑐, 𝑑 ∈ R with 𝑐 < 𝑑. For any 𝑥 ∈ R, we have

1(𝑐,𝑑) (𝑥) = Im
∫ 𝐿

0
𝐺

( 𝑢
𝐿

)
𝑒2𝜋𝑖𝑢𝑥 𝑓𝑐,𝑑 (𝑢)

𝑑𝑢

𝑢

+𝑂
((

sin(𝜋𝐿 (𝑥 − 𝑐))
𝜋𝐿 (𝑥 − 𝑐)

)2
+

(
sin(𝜋𝐿 (𝑥 − 𝑑))
𝜋𝐿 (𝑥 − 𝑑)

)2
)
.

Proof. This lemma is equation (6.1) in [67], which is proved essentially in
[116]. □

Let X ⊂ [0, 𝑇] be a Lebesgue measurable set. We define

PX𝑇 ( 𝑓 (𝑡) ∈ 𝐴) =
1
𝑇

meas {𝑡 ∈ X : 𝑓 (𝑡) ∈ 𝐴}

for 𝐴 ∈ B(R), where 𝑓 : R → R is a Lebesgue measurable function. Denote
by 𝜇 and 𝜈 the measures on (R,B(R)) such that

𝜇(𝐴) = P𝐴𝑇𝑇
(
Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) ∈ 𝐴

)
,

𝜈(𝐴) = P
(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) ∈ 𝐴

)
,

respectively, where 𝐴𝑇 = 𝐴𝑇 (𝑉,𝑌 ;𝜎, 𝑚) is given by (5.3), and 𝑌,𝑉 are func-
tions of 𝑇 determined later. Towards the proof of Theorem 5.2, we further
define the measures 𝑃 and 𝑄 as

𝑃(𝐴) =
∫
𝐴
𝑒𝜅𝑢 𝑑𝜇(𝑢), 𝑄(𝐴) =

∫
𝐴
𝑒𝜅𝑢 𝑑𝜈(𝑢)

for 𝐴 ∈ B(R), where 𝜅 is a real number chosen later. Then, for any 𝜏 > 0, we
obtain

𝜇((𝜏,∞)) =
∫ ∞

𝜏
𝑒−𝜅𝑢 𝑑𝑃(𝑢) =

∫ ∞

𝜅𝜏
𝑒−𝑥𝑃((𝜏, 𝑥/𝜅))𝑑𝑥, (5.57)

and

𝜈((𝜏,∞)) =
∫ ∞

𝜏
𝑒−𝜅𝑢 𝑑𝑄(𝑢) =

∫ ∞

𝜅𝜏
𝑒−𝑥𝑄((𝜏, 𝑥/𝜅))𝑑𝑥. (5.58)

We begin with estimating the difference between 𝑃 and 𝑄.
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Lemma 5.30. Let 1/2 < 𝜎 < 1, 𝑚 ∈ Z≥0, and 𝛼 ∈ R. Suppose that we have

𝑉
1

1−𝜎 (log𝑉) 𝑚+𝜎
1−𝜎 ≤ 𝜀𝑌𝜎− 1

2 (log𝑌 )𝑚

with a small constant 𝜀 > 0. There exists a positive constant 𝑏2 = 𝑏2(𝜎, 𝑚) such
that for any |𝜅 | ≤ 𝑏2𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎 we have

𝑃((𝑐, 𝑑)) = 𝑄((𝑐, 𝑑)) + 𝐸,

for any 𝑐, 𝑑 ∈ R with 𝑐 < 𝑑, where

𝐸 ≪𝜎,𝑚

(
1 + 𝜅

𝑉
𝜎

1−𝜎 (log𝑉) 𝑚+𝜎
1−𝜎

+ 𝜅2

𝑉
2𝜎

1−𝜎 (log𝑉)
2(𝑚+𝜎)

1−𝜎
+
𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎

𝑌𝜎−
1
2 (log𝑌 )𝑚

)
𝐹𝜎,𝑚 (𝜅;𝛼)

+
(
𝑉

𝜎
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎 𝑌
)𝑉 1

1−𝜎 (log𝑉)
𝑚+𝜎
1−𝜎

+ exp
(
−𝑏2𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎
)
. (5.59)

Proof. Let 𝐿 = 𝑏2𝑉
𝜎

1−𝜎 (log𝑉) 𝑚+𝜎
1−𝜎 . By Lemma 5.29 and the definition of 𝑃, we

can write

𝑃((𝑐, 𝑑)) =
∫ ∞

−∞
𝑒𝜅𝑥 Im

∫ 𝐿

0
𝐺

( 𝑢
𝐿

)
𝑒2𝜋𝑖𝑢𝑥 𝑓𝑐,𝑑 (𝑢)

𝑑𝑢

𝑢
𝑑𝜇(𝑥) + 𝐸1, (5.60)

where

𝐸1 ≪
∫
R

{(
sin(𝜋𝐿 (𝑢 − 𝑐))
𝜋𝐿 (𝑢 − 𝑐)

)2
+

(
sin(𝜋𝐿 (𝑢 − 𝑑))
𝜋𝐿 (𝑢 − 𝑑)

)2
}
𝑒𝜅𝑢𝑑𝜇(𝑢).

First, we estimate 𝐸1. For 𝑧 ∈ C, we define

𝑀 (𝑧) =
∫
R
𝑒𝑧𝑢𝑑𝜇(𝑢).

Then it holds that

𝑀 (𝑧) = 1
𝑇

∫
𝐴𝑇

exp
(
𝑧Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎 + 𝑖𝑡)

)
𝑑𝑡

=
1
𝑇

∫
𝐴𝑇

exp
( 𝑧
2𝑒

−𝑖𝛼𝜂̃𝑚 (𝜎 + 𝑖𝑡) + 𝑧2𝑒
𝑖𝛼𝜂̃𝑚 (𝜎 + 𝑖𝑡)

)
𝑑𝑡.

For any ℓ, 𝑥 ∈ R, we can write(
sin(𝜋𝐿 (𝑢 − ℓ))
𝜋𝐿 (𝑢 − ℓ)

)2
=

2
𝐿2

∫ 𝐿

0
(𝐿 − 𝜉) cos(2𝜋(𝑢 − ℓ)𝜉)𝑑𝜉

=
2
𝐿2 Re

∫ 𝐿

0
(𝐿 − 𝜉)𝑒2𝜋𝑖(𝑢−ℓ)𝜉𝑑𝜉,
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and therefore we have∫
R2

(
sin(𝜋𝐿 (𝑢 − ℓ))
𝜋𝐿 (𝑢 − ℓ)

)2
𝑒𝜅𝑢𝑑𝜇(𝑢)

=
2
𝐿2

∫ 𝐿

0
(𝐿 − 𝜉)

∫
R
𝑒𝜅𝑢+2𝜋𝑖(𝑢−ℓ)𝜉𝑑𝜇(𝑢)𝑑𝜉

=
2
𝐿2

∫ 𝐿

0
(𝐿 − 𝜉)𝑒−2𝜋𝑖ℓ𝜉𝑀 (𝜅 + 2𝜋𝑖𝜉)𝑑𝜉. (5.61)

Here, we decide 𝑏2 as 𝑏1/4, where 𝑏1 is the same constant as in Proposition
5.1. We can apply Proposition 5.1, and obtain

𝑀 (𝜅 + 2𝜋𝑖𝜉) = E
[
exp

(
(𝜅 + 2𝜋𝑖𝜉) Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎, 𝑋)

) ]
+𝑂 (𝐸2)

for |𝜉 | ≤ 𝐿, where

𝐸2 =
1
𝑇

(
𝑉

𝜎
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎 𝑌
)𝑉 1

1−𝜎 (log𝑉)
𝑚+𝜎
1−𝜎

+ exp
(
−𝑏2𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎
)
.

Applying further Lemma 5.13, we derive

𝑀 (𝜅 + 2𝜋𝑖𝜉) = 𝐹𝜎,𝑚 (𝜅 + 2𝜋𝑖𝜉;𝛼) +𝑂 (𝐸2 + 𝐸3), (5.62)

where

𝐸3 = 𝐹𝜎,𝑚 (𝜅;𝛼)
|𝜅 + 2𝜋𝑖𝜉 |

𝑌𝜎−
1
2 (log𝑌 )𝑚

≤ 𝐹𝜎,𝑚 (𝜅;𝛼)
𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎

𝑌𝜎−
1
2 (log𝑌 )𝑚

.

By this formula, Lemma 5.24, and the inequality

|𝐹𝜎,𝑚 (𝜅 + 2𝜋𝑖𝜉;𝛼) | ≤ 𝐹𝜎,𝑚 (𝜅;𝛼),

we find that

2
𝐿2

∫ 𝐿

0
(𝐿 − 𝜉)𝑒−2𝜋𝑖ℓ𝜉𝑀 (𝜅 + 2𝜋𝑖𝜉)𝑑𝜉

≪ 𝐹𝜎,𝑚 (𝜅;𝛼)
𝐿2

(∫ 𝜅

0
(𝐿 − 𝜉)𝑑𝜉 + 1

𝐿2

∫ 𝐿

𝜅
(𝐿 − 𝜉) exp(−𝜉1/(2𝜎))𝑑𝜉

)
+ 𝐸2 + 𝐸3

≪
(
1 + 𝜅
𝐿

+ 𝜅2

𝐿2

)
𝐹𝜎,𝑚 (𝜅;𝛼) + 𝐸2 + 𝐸3.

From this estimate and equation (5.61), we obtain∫
R

(
sin(𝜋𝐿 (𝑢 − 𝑐))
𝜋𝐿 (𝑢 − 𝑐)

)2
𝑒𝜅𝑢𝑑𝜇(𝑢) ≪

(
1 + 𝜅
𝐿

+ 𝜅2

𝐿2

)
𝐹𝜎,𝑚 (𝜅;𝛼) + 𝐸2 + 𝐸3,

and ∫
R

(
sin(𝜋𝐿 (𝑣 − 𝑑))
𝜋𝐿 (𝑣 − 𝑑)

)2
𝑒𝜅𝑢𝑑𝜇(𝑢) ≪

(
1 + 𝜅
𝐿

+ 𝜅2

𝐿2

)
𝐹𝜎,𝑚 (𝜅;𝛼) + 𝐸2 + 𝐸3.
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Thus, we can estimate the error term 𝐸1 on the right hand side of equation
(5.60) by

𝐸1 ≪
(
1 + 𝜅
𝐿

+ 𝜅2

𝐿2

)
𝐹𝜎,𝑚 (𝜅;𝛼) + 𝐸2 + 𝐸3. (5.63)

Next, we calculate the main term of (5.60). Using Fubini’s theorem, we
find that the main term is equal to

Im
∫ 𝐿

0
𝐺

( 𝑢
𝐿

) 𝑓𝑐,𝑑 (𝑢)
𝑢

𝑀 (𝜅 + 2𝜋𝑖𝑢)𝑑𝑢.

By equation (5.62) and the estimates𝐺 (𝑥) ≪ 1 for 0 ≤ 𝑥 ≤ 1 and | 𝑓𝑐,𝑑 (𝑢)/𝑢 | ≤
|𝑑 − 𝑐 |, this is further equal to

Im
∫ 𝐿

0
𝐺

( 𝑢
𝐿

) 𝑓𝑐,𝑑 (𝑢)
𝑢

𝐹𝜎,𝑚 (𝜅 + 2𝜋𝑖𝑢;𝛼)𝑑𝑢 +𝑂 (𝐿 (𝑑 − 𝑐) (𝐸2 + 𝐸3)). (5.64)

Since we can write

𝐹𝜎,𝑚 (𝜅 + 2𝜋𝑖𝑢;𝛼) =
∫
R
𝑒(𝜅+2𝜋𝑖𝑢)𝜉𝑑𝜈(𝜉),

we find that, by using Fubini’s theorem, (5.64) equals to

Im
∫
R

∫ 𝐿

0
𝐺

( 𝑢
𝐿

)
𝑒2𝜋𝑖𝑢𝜉 𝑓𝑐,𝑑 (𝑢)

𝑑𝑢

𝑢
𝑒𝜅𝜉𝑑𝜈(𝜉) +𝑂 (𝐿 (𝑑 − 𝑐) (𝐸2 + 𝐸3)).

Applying Lemma 5.29 again, this is equal to

𝑄(ℛ) +𝑂 (𝐿 (𝑑 − 𝑐) (𝐸2 + 𝐸3) + 𝐸4) ,

where

𝐸4 ≪
∫
R

{(
sin(𝜋𝐿 (𝑢 − 𝑐))
𝜋𝐿 (𝑢 − 𝑐)

)2
+

(
sin(𝜋𝐿 (𝑢 − 𝑑))
𝜋𝐿 (𝑢 − 𝑑)

)2
}
𝑒𝜅𝑢𝑑𝜈(𝑢).

Similarly to the proof of (5.63), we can obtain

𝐸4 ≪
(
1 + 𝜅1
𝐿

+
𝜅2

1
𝐿2

)
𝐹𝜎,𝑚 (𝜅;𝛼).

Thus, we obtain this lemma. □

Proposition 5.8. Let 1/2 < 𝜎 < 1, 𝑚 ∈ Z≥0, and 𝛼 ∈ R. Let 𝑇 > 0 be large
enough. We take the functions 𝑌 and 𝑉 as

𝑌 = (log𝑇)𝐵,
𝑉 = (log𝑇)1−𝜎 (log log𝑇)−𝑚−1 (5.65)
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with 𝐵 = 6
𝜎−1/2 . Then there exists a constant 𝑏𝑚 (𝜎) > 0 such that

P𝐴𝑇𝑇
(
Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) > 𝜏

)
= P

(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) > 𝜏

) (
1 +𝑂

(
𝜏

𝜎
1−𝜎 (log 𝜏) 𝑚+𝜎

1−𝜎

𝑉
𝜎

1−𝜎 (log𝑉) 𝑚+𝜎
1−𝜎

))
in the range 1 ≪ 𝜏 ≤ 𝑏𝑚 (𝜎)𝑉 .

Proof. By equation (5.57), we have

P𝐴𝑇𝑇
(
Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) > 𝜏

)
=

∫ ∞

𝜅𝜏
𝑒−𝑥𝑃((𝜏, 𝑥/𝜅))𝑑𝑥.

Hence, by Lemma 5.30, this is equal to∫ ∞

𝜅𝜏
𝑒−𝑥𝑄((𝜏, 𝑥/𝜅))𝑑𝑥 +𝑂 (𝑒−𝜅𝜏𝐸) ,

where 𝐸 satisfies estimate (5.59). By equation (5.58), this main term is equal
to P

(
Re(𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋)) > 𝜏

)
. Thus, we complete the proof. □

Proof of Theorem 5.2. Define 𝑌 , 𝑉 by (5.65). Let 𝐵𝑇 = 𝐵𝑇 (𝑌,𝑊 ;𝜎, 𝑚) be the set
given by (5.11). Then we have

P𝑇
(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎 + 𝑖𝑡) > 𝜏

)
= P𝐵𝑇𝑇

(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎 + 𝑖𝑡) > 𝜏

)
+𝑂

(
1
𝑇

meas([0, 𝑇] \ 𝐵𝑇 )
)

≤ P𝐵𝑇𝑇
(
Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) > 𝜏 − 𝜀

)
+𝑂

(
1
𝑇

meas([0, 𝑇] \ 𝐵𝑇 )
)

by the definition of 𝐵𝑇 , where we put 𝜀 = 𝑊𝑌
1
2−𝜎. Furthermore, we obtain

P𝐵𝑇𝑇
(
Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) > 𝜏 − 𝜀

)
= P𝐴𝑇𝑇

(
Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) > 𝜏 − 𝜀

)
+𝑂

(
1
𝑇

meas( [0, 𝑇] \ 𝐴𝑇 ) +
1
𝑇

meas([0, 𝑇] \ 𝐵𝑇 )
)
.

Then, the asymptotic formula

P𝐴𝑇𝑇
(
Re 𝑒−𝑖𝛼𝑃𝑚,𝑌 (𝜎 + 𝑖𝑡) > 𝜏 − 𝜀

)
= P

(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) > 𝜏 − 𝜀

) (
1 +𝑂

(
𝜏

𝜎
1−𝜎 (log 𝜏) 𝑚+𝜎

1−𝜎

𝑉
𝜎

1−𝜎 (log𝑉) 𝑚+𝜎
1−𝜎

))
follows from Proposition 5.8. Recall that P

(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) > 𝜏 + 𝛾

)
is rep-

resented as

P
(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) > 𝜏 + 𝛾

)
= 𝐹𝜎,𝑚 (𝜅;𝛼)𝑒−𝜅𝜏

∫ ∞

𝛾
𝑒−𝜅𝑥𝐷𝜏

𝜎,𝑚 (𝑥;𝛼) |𝑑𝑥 |
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for all 𝛾 ∈ R, which implies

P
(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) > 𝜏 − 𝜀

)
− P

(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) > 𝜏

)
= 𝐹𝜎,𝑚 (𝜅;𝛼)𝑒−𝜅𝜏

∫ 0

−𝜀
𝑒−𝜅𝑥𝐸𝜎,𝑚 (𝑥;𝛼) |𝑑𝑥 |

≪ P
(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) > 𝜏

)
· 𝜅𝜀𝑒𝜅𝜀

by Propositions 5.6 and 5.7. Therefore we deduce

P𝑇
(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎 + 𝑖𝑡) > 𝜏

)
≤ P

(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) > 𝜏

) (
1 +𝑂

(
𝜏

𝜎
1−𝜎 (log 𝜏) 𝑚+𝜎

1−𝜎

𝑉
𝜎

1−𝜎 (log𝑉) 𝑚+𝜎
1−𝜎

+ 𝜅𝜀𝑒𝜅𝜀
))

+𝑂
(
1
𝑇

meas( [0, 𝑇] \ 𝐴𝑇 ) +
1
𝑇

meas([0, 𝑇] \ 𝐵𝑇 )
)
.

Similarly one can obtain

P𝑇
(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎 + 𝑖𝑡) > 𝜏

)
≥ P

(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) > 𝜏

) (
1 +𝑂

(
𝜏

𝜎
1−𝜎 (log 𝜏) 𝑚+𝜎

1−𝜎

𝑉
𝜎

1−𝜎 (log𝑉) 𝑚+𝜎
1−𝜎

+ 𝜅𝜀𝑒𝜅𝜀
))

+𝑂
(
1
𝑇

meas( [0, 𝑇] \ 𝐴𝑇 ) +
1
𝑇

meas([0, 𝑇] \ 𝐵𝑇 )
)
,

and therefore,

P𝑇
(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎 + 𝑖𝑡) > 𝜏

)
= P

(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) > 𝜏

) (
1 +𝑂

(
𝜏

𝜎
1−𝜎 (log 𝜏) 𝑚+𝜎

1−𝜎

𝑉
𝜎

1−𝜎 (log𝑉) 𝑚+𝜎
1−𝜎

+ 𝜅𝜀𝑒𝜅𝜀
))

+𝑂
(
1
𝑇

meas( [0, 𝑇] \ 𝐴𝑇 ) +
1
𝑇

meas([0, 𝑇] \ 𝐵𝑇 )
)
.

We choose the function𝑊 as

𝑊 = (log𝑇) (log log𝑇)−𝑚−1.

Then we find 𝜅𝜀𝑒𝜅𝜀 ≪ (log𝑇)−2 for 1 ≪ 𝜏 ≤ 𝑏𝑚 (𝜎, 𝐴)𝑉 . Let 𝑐 = 𝑐(𝜎, 𝑚) be a
small positive constant for which both (5.10) and (5.12) are valid. Then, by
Corollary 5.2, we have

P
(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) > 𝜏

)−1 ≪ exp
( 𝑐
2𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎
)

in the range 1 ≪ 𝜏 ≤ 𝑏𝑚 (𝜎)𝑉 with 𝑏𝑚 (𝜎) > 0 small enough. By this estimate
and Lemmas 5.5, 5.6, we obtain

1
𝑇

meas( [0, 𝑇] \ 𝐴𝑇 ) ≪ P
(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) > 𝜏

)
exp

(
−𝑐2𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎
)
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and

1
𝑇

meas([0, 𝑇] \ 𝐵𝑇 ) ≪ P
(
Re 𝑒−𝑖𝛼𝜂̃𝑚 (𝜎, 𝑋) > 𝜏

)
exp

(
−𝑐2𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎
)
.

Since we have

exp
(
−𝑐2𝑉

1
1−𝜎 (log𝑉) 𝑚+𝜎

1−𝜎
)
≪ (log𝑇)−𝐴,

the desired result follows. □
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Chapter 6 Joint value distributions of
𝐿-functions on the critical line

𝜎 = 1/2

In this chapter, we discuss the joint value distribution of 𝐿-functions. The
contents in this chapter are based on the paper [52]. We consider the 𝐿-
functions belonging to the modified Selberg class S†. Additionally, to study
the joint value distribution of functions in S†, we need the following as-
sumption 𝒜.

Assumption (𝒜). An 𝑟-tuple of 𝐿-functions F = (𝐹1, . . . , 𝐹𝑟) with 𝐹𝑗 ∈ S† and
an 𝑟 of the numbers θ = (𝜃1, . . . , 𝜃𝑟) ∈ R𝑟 satisfy 𝒜 if and only if F , θ satisfy the
following properties.

(A1) (Selberg Orthonormality Conjecture) For any 𝐹𝑗 , we have∑
𝑝≤𝑥

|𝑎𝐹𝑗 (𝑝) |2

𝑝
= 𝑛𝐹𝑗 log log 𝑥 +𝑂𝐹𝑗 (1), (6.1)

for some positive constant 𝑛𝐹𝑗 and 𝑥 ≥ 3. For any pair 𝐹𝑖 ≠ 𝐹𝑗 ,∑
𝑝≤𝑥

𝑎𝐹𝑖 (𝑝)𝑎𝐹𝑗 (𝑝)
𝑝

= 𝑂𝐹𝑖 ,𝐹 𝑗 (1).

(A2) For every component 𝐹𝑖, there is at most one 𝐿-function such that 𝐹𝑖 = 𝐹𝑗
with 𝑖 ≠ 𝑗 , and then |𝜃𝑖 − 𝜃 𝑗 | = 𝜋

2 .

(A3) (Zero Density Estimate) For every 𝐹𝑗 , there exists a positive constant 𝜅𝐹𝑗 such
that, uniformly for any 𝑇 ≥ 3 and 1/2 ≤ 𝜎 ≤ 1,

𝑁𝐹𝑗 (𝜎,𝑇) ≪𝐹𝑗 𝑇
1−𝜅𝐹𝑗 (𝜎−1/2) log𝑇, (6.2)

where 𝑁𝐹 (𝜎,𝑇) is the number of nontrivial zeros 𝜌𝐹 = 𝛽𝐹 + 𝑖𝛾𝐹 of 𝐹 ∈ S†

with 𝛽𝐹 ≥ 𝜎 and 0 ≤ 𝛾𝐹 ≤ 𝑇 .

Remark 3. The Selberg Orthonormality Conjecture has been proved for 𝐿-
functions associated with cuspidal automorphic representations of 𝐺𝐿 (𝑛)
unconditionally for 𝑛 ≤ 4 by Liu and Ye in [73], (see [1, 72]) and in full
generality in [74].
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Remark 4. The zero density estimate like (6.2) for the Riemann zeta function
and Dirichlet 𝐿-functions was established by Selberg [107] and Fujii [28]
respectively. For GL(2) 𝐿-functions, (A3) has been established by Luo [76]
for holomorphic cusp forms of the full modular group. Also, some weaker
estimates have been proved by Ford and Zaharescu [27, Section 7] for other
congruence subgroups of GL(2), and further by Sankaranarayanan and Sen-
gupta [104] for Maaß cusp forms. If we assume the Riemann Hypothesis for
𝐹, then (A3) holds for any 𝜅𝐹 > 0.
Remark 5. It is natural to assume (A2). This allows us to consider the joint
distribution of log |𝐹 (𝑠) | and Im log 𝐹 (𝑠). It can be seen that Re 𝑒−𝑖𝜃1 log 𝐹 (𝑠)
and Re 𝑒−𝑖𝜃2 log 𝐹 (𝑠) can not be independent when 𝜃1 − 𝜃2 . 𝜋

2 (mod 2𝜋).

6.1 Results

Before we state our theorems, we need some notation. Let 𝑟 be a fixed
positive integer. For V = (𝑉1, . . . , 𝑉𝑟) ∈ R𝑟 , θ = (𝜃1, . . . , 𝜃𝑟) ∈ [0, 2𝜋]𝑟 , and
F = (𝐹1, . . . , 𝐹𝑟) ∈ (S†)𝑟 satisfying assumption 𝒜, we define

𝒮(𝑇,V ;F , θ) :=

𝑡 ∈ [𝑇, 2𝑇] :
Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 ( 1

2 + 𝑖𝑡)√
𝑛𝐹𝑗

2 log log𝑇
≥ 𝑉 𝑗 for 𝑗 = 1, . . . , 𝑟

 ,
where the constants 𝑛𝐹𝑗 are defined in (6.1). Let 𝛼F := min{2𝑟, 1−2𝜗F

2𝜗F }, where
𝜗F = max1≤ 𝑗≤𝑟 𝜗𝐹𝑗 as defined in (S4). Here 𝛼F = 2𝑟 if 𝜗F = 0. We denote
∥z∥ = max1≤ 𝑗≤𝑟 |𝑧 𝑗 |. Throughout this paper, we write log3 𝑥 for log log log𝑥.

The following theorem extends the result of Bombieri and Hejhal [9],
where we show (1.25) holds for a larger range of 𝑉 .

Theorem 6.1. Let θ = (𝜃1, . . . , 𝜃𝑟) ∈ R𝑟 , F = (𝐹1, . . . , 𝐹𝑟) ∈ (S†)𝑟 satisfying
assumption 𝒜. Let 𝐴 ≥ 1 be a fixed constant. For any large 𝑇 and any V =
(𝑉1, . . . , 𝑉𝑟) ∈ R𝑟 with ∥V ∥ ≤ 𝐴(log log𝑇)1/10, we have

1
𝑇

meas(𝒮(𝑇,V ;F , θ)) = (1 + 𝑅1)
𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−
𝑢2
2
𝑑𝑢
√

2𝜋
, (6.3)

where

𝑅1 ≪F ,𝐴

(∥V ∥4 + (log3 𝑇)2)(∥V ∥ + 1)√
log log𝑇

+
∏𝑟
𝑘=1(1 + |𝑉𝑘 |)

(log log𝑇)𝛼F + 1
2

Moreover, if 𝜃1, . . . , 𝜃𝑟 ∈ [− 𝜋
2 ,

𝜋
2 ] and ∥V ∥ ≤ 𝐴(log log𝑇)1/6 we have

1
𝑇

meas(𝒮(𝑇,V ;F , θ)) ≤ (1 + 𝑅2)
𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−
𝑢2
2
𝑑𝑢
√

2𝜋
, (6.4)

146



and

𝑅2 ≪F ,𝐴

(∥V ∥2 + (log3 𝑇)2)(∥V ∥ + 1)√
log log𝑇

+
∏𝑟
𝑘=1(1 + |𝑉𝑘 |)

(log log𝑇)𝛼F + 1
2

(6.5)

Furthermore, if 𝜃1, . . . , 𝜃𝑟 ∈ [ 𝜋2 ,
3𝜋
2 ], ∥V ∥ ≤ 𝑐(log log𝑇)1/6, and

∏𝑟
𝑗=1(1 + |𝑉 𝑗 |) ≤

𝑐(log log𝑇)𝛼F + 1
2 with 𝑐 = 𝑐(F ) > 0 small enough, we have

1
𝑇

meas(𝒮(𝑇,V ;F , θ)) ≥ (1 − 𝑅3)
𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−
𝑢2
2
𝑑𝑢
√

2𝜋
. (6.6)

Here, the error term 𝑅3 is ≪F the right hand side of (6.5).

Remark 6. For 𝑟 = 1, 𝐹1 = 𝜁 , and 𝜃1 = 0, the asymptotic for ∥V ∥ ≪
(log log𝑇)10 in (6.3) was obtained by Radziwiłł [95], and the bound for
∥V ∥ ≪ (log log𝑇)1/6 in (6.4) was obtained in Theorem 2.5.

It is reasonable to conjecture that the asymptotic in (6.3) holds for ∥V ∥ =
𝑜(

√
log log𝑇) as speculated in [95] for 𝜁 (𝑠). If we are only concerned with

upper and lower bounds, we could extend the range of ∥V ∥ further.

Theorem 6.2. LetF = (𝐹1, . . . , 𝐹𝑟) ∈ (S† \{1})𝑟 and θ = (𝜃1, . . . , 𝜃𝑟) ∈ [− 𝜋
2 ,

3𝜋
2 ]

satisfying assumption 𝒜. Let 𝑇 be large. There exist some positive constants
𝑎1 = 𝑎1(F ), 𝑎2 = 𝑎2(F ) such that if θ ∈ [− 𝜋

2 ,
𝜋
2 ], we have

1
𝑇

meas(𝒮(𝑇,V ;F , θ)) ≪F©­«
𝑟∏
𝑗=1

1
1 +𝑉 𝑗

ª®¬ + 1
(log log𝑇)𝛼F + 1

2

 exp
(
−
𝑉2

1 + · · · +𝑉2
𝑟

2 +𝑂F

(
∥V ∥3√

log log𝑇

))

for any V = (𝑉1, . . . , 𝑉𝑟) ∈ (R≥0)𝑟 satisfying ∥V ∥ ≤ 𝑎1(1 + 𝑉1/2
𝑚 )(log log𝑇)1/4

with 𝑉𝑚 = min1≤ 𝑗≤𝑟 𝑉 𝑗 , and if θ ∈
[
𝜋
2 ,

3𝜋
2
]𝑟 , we have

1
𝑇

meas(𝒮(𝑇,V ;F , θ))

≫F
©­«
𝑟∏
𝑗=1

1
1 +𝑉 𝑗

ª®¬ exp
(
−
𝑉2

1 + · · · +𝑉2
𝑟

2 +𝑂F

(
∥V ∥3√

log log𝑇

))

for ∥V ∥ ≤ 𝑎1(1 +𝑉1/2
𝑚 ) (log log𝑇)1/4 with

∏𝑟
𝑗=1(1 +𝑉 𝑗 ) ≤ 𝑎2(log log𝑇)𝛼F + 1

2 .

Substituting V =

(
𝑉√

𝑛𝐹1
2 log log𝑇

, . . . , 𝑉√
𝑛𝐹𝑟

2 log log𝑇

)
to Theorem 6.2, we ob-

tain the following corollary.
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Corollary 6.1. LetF = (𝐹1, . . . , 𝐹𝑟) ∈ (S†\{1})𝑟 andθ = (𝜃1, . . . , 𝜃𝑟) ∈ [− 𝜋
2 ,

3𝜋
2 ]

satisfying assumption 𝒜. Put ℎF = 𝑛−1
𝐹1

+ · · · + 𝑛−1
𝐹𝑟

. There exists a small constant
𝑎3 = 𝑎3(F ) such that if θ ∈

[
− 𝜋

2 ,
𝜋
2
]𝑟 , we have

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : min

1≤ 𝑗≤𝑟
Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 ( 1

2 + 𝑖𝑡) > 𝑉
}

≪F

(
1

(1 +𝑉/
√

log log𝑇)𝑟
+ 1
(log log𝑇)𝛼F + 1

2

)
× exp

(
−ℎF

𝑉2

log log𝑇

(
1 +𝑂F

(
𝑉

log log𝑇

)))

for any 0 ≤ 𝑉 ≤ 𝑎3 log log𝑇 , and if θ ∈
[
𝜋
2 ,

3𝜋
2
]𝑟 , we have

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : min

1≤ 𝑗≤𝑟
Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 ( 1

2 + 𝑖𝑡) > 𝑉
}

(6.7)

≫F
1

(1 +𝑉/
√

log log𝑇)𝑟
exp

(
−ℎF

𝑉2

log log𝑇

(
1 +𝑂F

(
𝑉

log log𝑇

)))
for any 0 ≤ 𝑉 ≤ 𝑎3 min{log log𝑇, (log log𝑇)

𝛼F
𝑟 + 1

2+
1
2𝑟 }.

Remark 7. When 𝑟 = 1, 𝐹1 = 𝜁 , and 𝜃1 = 0, Jutila [56], using bounds on
moments of 𝜁 (𝑠), has proved

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : log |𝜁 ( 1

2 + 𝑖𝑡) | > 𝑉
}

≪ exp
(
− 𝑉2

log log𝑇

(
1 +𝑂

(
𝑉

log log𝑇

)))
uniformly for 0 ≤ 𝑉 ≤ log log𝑇 . Our Theorem 6.2 slightly improves this

bound by a factor of
√

log log𝑇
𝑉 when

√
log log𝑇 ≤ 𝑉 ≤ 𝑎3 log log𝑇 for some

small constant 𝑎3.
The extended range of 𝑉 allows us to prove the following mean value

theorem.

Theorem 6.3. Let F = (𝐹1, . . . , 𝐹𝑟) ∈ (S†)𝑟 satisfying assumption 𝒜. Let ℎF =
𝑛−1
𝐹1

+ · · · + 𝑛−1
𝐹𝑟

. Then there exist some positive constants 𝑎4 = 𝑎4(F ) and 𝐵 = 𝐵(F )
such that for any 0 < 𝑘 ≤ 𝑎4, we have∫ 2𝑇

𝑇
exp

(
2𝑘 min

1≤ 𝑗≤𝑟
Re 𝑒−𝜃 𝑗 log 𝐹𝑗 ( 1

2 + 𝑖𝑡)
)
𝑑𝑡

≪F 𝑇 (log𝑇)𝑘2/ℎF +𝐵𝑘3

(
𝑘
√

log log𝑇
1 + (𝑘

√
log log𝑇)𝑟

+ 1
(log log𝑇)𝛼F + 1

2

)
(6.8)
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when θ = (𝜃1, . . . , 𝜃𝑟) ∈
[
− 𝜋

2 ,
𝜋
2
]𝑟 , and if 𝜗F ≤ 1

𝑟+1 , we have∫ 2𝑇

𝑇
exp

(
2𝑘 min

1≤ 𝑗≤𝑟
Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 ( 1

2 + 𝑖𝑡)
)
𝑑𝑡

≫F 𝑇 (log𝑇)
𝑘2
ℎF

−𝐵𝑘3 𝑘
√

log log𝑇
1 + (𝑘

√
log log𝑇)𝑟

(6.9)

when θ = (𝜃1, . . . , 𝜃𝑟) ∈
[
𝜋
2 ,

3𝜋
2
]𝑟 . Here, the above implicit constants depend only

on F . In particular, if 𝜗F ≤ 1
𝑟+1 , it holds that, for any 0 < 𝑘 ≤ 𝑎4,∫ 2𝑇

𝑇

(
min
1≤ 𝑗≤𝑟

|𝐹𝑗 ( 1
2 + 𝑖𝑡) |

)2𝑘
𝑑𝑡 ≪𝑘,F 𝑇

(log𝑇)
𝑘2
ℎF

+𝐵𝑘3

(log log𝑇) (𝑟−1)/2 ,

∫ 2𝑇

𝑇

(
max
1≤ 𝑗≤𝑟

|𝐹𝑗 ( 1
2 + 𝑖𝑡) |

)−2𝑘
𝑑𝑡 ≫F 𝑇

(log𝑇)
𝑘2
ℎF

−𝐵𝑘3

(log log𝑇) (𝑟−1)/2 ,

𝑇
(log𝑇)

𝑘2
ℎF

−𝐵𝑘3

(log log𝑇) (𝑟−1)/2 ≪𝑘,F

∫ 2𝑇

𝑇
exp

(
2𝑘 min

1≤ 𝑗≤𝑟
Im log 𝐹𝑗 ( 1

2 + 𝑖𝑡)
)
𝑑𝑡

≪𝑘,F 𝑇
(log𝑇)

𝑘2
ℎF

+𝐵𝑘3

(log log𝑇) (𝑟−1)/2 ,

and

𝑇
(log𝑇)

𝑘2
ℎF

−𝐵𝑘3

(log log𝑇) (𝑟−1)/2 ≪𝑘,F

∫ 2𝑇

𝑇
exp

(
−2𝑘 max

1≤ 𝑗≤𝑟
Im log 𝐹𝑗 ( 1

2 + 𝑖𝑡)
)
𝑑𝑡

≪𝑘,F 𝑇
(log𝑇)

𝑘2
ℎF

+𝐵𝑘3

(log log𝑇) (𝑟−1)/2 .

Remark 8. It is conjectured that∫ 𝑇

0
|𝐹 ( 1

2 + 𝑖𝑡) |2𝑘𝑑𝑡 ∼ 𝐶 (𝐹, 𝑘)𝑇 (log𝑇)𝑘2

for some constant 𝐶 (𝐹, 𝑘) as 𝑇 → ∞, see [16]. It is also expected that the
values of distinct primitive 𝐿-functions are uncorrelated, which leads to the
conjecture∫ 𝑇

0
|𝐹1( 1

2 + 𝑖𝑡) |2𝑘1 · · · |𝐹𝑟 ( 1
2 + 𝑖𝑡) |2𝑘𝑟 𝑑𝑡 ∼ 𝐶 (F ,k)𝑇 (log𝑇)𝑘2

1+···+𝑘
2
𝑟

for some constant 𝐶 (F ,k) as 𝑇 → ∞. This has be established for product
of two Dirichlet 𝐿-functions for 𝑘1 = 𝑘2 = 1 (see [41, 88, 115] and for some
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degree two 𝐿-functions when 𝑘 = 1 and 𝑟 = 1 (see [34, 122, 123]). For higher
degree 𝐿-functions and higher values of 𝑘 , obtaining the asymptotic formula
seems to be beyond the scope of current techniques. But an upper bound of
this kind has been established by by Milinovich and Turnage-Butterbaugh
[83] for automorphic 𝐿-functions of 𝐺𝐿 (𝑛) under the Riemann Hypothesis
for these 𝐿-functions. Our result give some further evidence that distinct
primitive 𝐿-functions are “statistically independent".

The range for 𝑘 in Theorem 6.3 is small due to the fact that ∥V ∥ in
Theorem 6.2 is only allowed to be a small multiple of log log𝑇 . However, if
we assume the Riemann Hypothesis for the corresponding 𝐿-functions, then
we can improve the upper bound for ∥V ∥ in Theorem 6.2 and thus obtain
better bound for Theorem 6.3 for all 𝑘 .

Theorem 6.4. Let F = (𝐹1, . . . , 𝐹𝑟) ∈ (S†)𝑟 and θ = (𝜃1, . . . , 𝜃𝑟) ∈ R𝑟 satisfying
assumption 𝒜, and additionally assume that the Riemann Hypothesis is true for
𝐹1, . . . , 𝐹𝑟 . Let 𝑇 be large, and V = (𝑉1, . . . , 𝑉𝑟) ∈ (R≥3)𝑟 satisfying ∥V ∥ ≤
𝑎5𝑉

1/2
𝑚 (log log𝑇)1/4(log3 𝑇)1/2 with 𝑉𝑚 = min1≤ 𝑗≤𝑟 𝑉 𝑗 , where 𝑎5 = 𝑎5(F ) is a

small constant. If θ ∈ [− 𝜋
2 ,

𝜋
2 ]𝑟 , we have

1
𝑇

meas(𝒮(𝑇,V ;F , θ)) (6.10)

≪F

(
1

𝑉1 · · ·𝑉𝑟
+ 1
(log log𝑇)𝛼F + 1

2

)
× exp

(
−
𝑉2

1 + · · · +𝑉2
𝑟

2 +𝑂F

(
∥V ∥3√

log log𝑇 log ∥V ∥

))
,

and if θ ∈
[
𝜋
2 ,

3𝜋
2
]𝑟 and

∏𝑟
𝑗=1𝑉 𝑗 ≤ 𝑎6(log log𝑇)𝛼F + 1

2 with 𝑎6 = 𝑎6(F ) a suitably
small constant, we have

1
𝑇

meas(𝒮(𝑇,V ;F , θ)) (6.11)

≫F
1

𝑉1 · · ·𝑉𝑟
exp

(
−
𝑉2

1 + · · · +𝑉2
𝑟

2 −𝑂F

(
∥V ∥3√

log log𝑇 log ∥V ∥

))
.

Moreover, there exist some positive constants 𝑎7 = 𝑎7(F ), 𝑎8 = 𝑎8(F ) such that for
any V ∈ (R≥3)𝑟 with ∥V ∥ ≥

√
log log𝑇 and θ = (𝜃1, . . . , 𝜃𝑟) ∈

[
− 𝜋

2 ,
𝜋
2
]
,

1
𝑇

meas(𝒮(𝑇,V ;F , θ)) (6.12)

≪F exp
(
−𝑎7∥V ∥2

)
+ exp

(
−𝑎8∥V ∥

√
log log𝑇 log ∥V ∥

)
.

With 𝑟 = 1, Theorem 6.4 slightly improves the bound in [83, Proposition
4.1] in the range of the following corollary.
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Corollary 6.2. Let 𝐹 ∈ S†, and assume the Riemann Hypothesis for 𝐹. Let
𝐴 ≥ 1, 𝜃 ∈

[
− 𝜋

2 ,
𝜋
2
]
. Then, for any real number 𝑉 with

√
log log𝑇 ≤ 𝑉 ≤

𝐴(log log𝑇)2/3(log3 𝑇)1/3, we have
1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : Re 𝑒−𝑖𝜃 log 𝐹 ( 1

2 + 𝑖𝑡) | > 𝑉
}

≪𝐴,𝐹

√
log log𝑇
𝑉

exp
(
− 𝑉2

𝑛𝐹 log log𝑇

)
.

as 𝑇 → ∞.
An application of Theorem 6.4 yields the following mean value theorem.

Theorem 6.5. Let F = (𝐹1, . . . , 𝐹𝑟) ∈ (S†)𝑟 and θ = (𝜃1, . . . , 𝜃) ∈ [− 𝜋
2 ,

3𝜋
2 ]

satisfying assumption 𝒜, and additionally assume that the Riemann Hypothesis is
true for 𝐹1, . . . , 𝐹𝑟 . Then, there exists some positive constant 𝐵 = 𝐵(F ) such that
for any 𝑘 ≥ 0, and any 𝑇 ≥ exp exp exp(𝐶𝑘) with 𝐶 = 𝐶 (F ) a large constant, if
θ ∈

[
− 𝜋

2 ,
𝜋
2
]
, we have∫ 2𝑇

𝑇
exp

(
2𝑘 min

1≤ 𝑗≤𝑟
Re 𝑒−𝜃 𝑗 log 𝐹𝑗 ( 1

2 + 𝑖𝑡)
)
𝑑𝑡 (6.13)

≪𝑘,F 𝑇 + 𝑇 (log𝑇)𝑘2/ℎF +𝐵𝑘3𝜀(𝑇)
(

𝑘
√

log log𝑇
1 + (𝑘

√
log log𝑇)𝑟

+ 1
(log log𝑇)𝛼F + 1

2

)
,

and if θ ∈
[
𝜋
2 ,

3𝜋
2
]

and 𝜗F < 1
𝑟+1 , we have∫ 2𝑇

𝑇
exp

(
2𝑘 min

1≤ 𝑗≤𝑟
Re 𝑒−𝜃 𝑗 log 𝐹𝑗 ( 1

2 + 𝑖𝑡)
)
𝑑𝑡

≫𝑘,F 𝑇 + 𝑇 (log𝑇)𝑘2/ℎF −𝐵𝑘3𝜀(𝑇) 𝑘
√

log log𝑇
1 + (𝑘

√
log log𝑇)𝑟

. (6.14)

Here, 𝜀(𝑇) = (log3 𝑇)−1. In particular, if 𝜗F < 1
𝑟+1 , it holds that, for any 𝑘 ≥ 0,

𝜀 > 0, ∫ 2𝑇

𝑇

(
min
1≤ 𝑗≤𝑟

|𝐹𝑗 ( 1
2 + 𝑖𝑡) |

)2𝑘
𝑑𝑡 ≪𝜀,𝑘,F 𝑇 (log𝑇)𝑘2/ℎF +𝜀,

∫ 2𝑇

𝑇

(
max
1≤ 𝑗≤𝑟

|𝐹𝑗 ( 1
2 + 𝑖𝑡) |

)−2𝑘
𝑑𝑡 ≫𝜀,𝑘,F 𝑇 (log𝑇)𝑘2/ℎF −𝜀,

𝑇 (log𝑇)𝑘2/ℎF −𝜀 ≪𝜀,𝑘,F

∫ 2𝑇

𝑇
exp

(
2𝑘 min

1≤ 𝑗≤𝑟
Im log 𝐹𝑗 ( 1

2 + 𝑖𝑡)
)
𝑑𝑡

≪𝜀,𝑘,F 𝑇 (log𝑇)𝑘2/ℎF +𝜀,

and

𝑇 (log𝑇)𝑘2/ℎF −𝜀 ≪𝜀,𝑘,F

∫ 2𝑇

𝑇
exp

(
−2𝑘 max

1≤ 𝑗≤𝑟
Im log 𝐹𝑗 ( 1

2 + 𝑖𝑡)
)
𝑑𝑡

≪𝜀,𝑘,F 𝑇 (log𝑇)𝑘2/ℎF +𝜀 .
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To prove the above theorems, we consider the Dirichlet polynomials
associated with 𝐹. Let x = (𝑥1, . . . , 𝑥𝑟) ∈ R𝑟 , z = (𝑧1, . . . , 𝑧𝑟) ∈ C𝑟 , and
F = (𝐹1, . . . , 𝐹𝑟) ∈ (S†)𝑟 satisfying assumption 𝒜. We define

𝑃𝐹 (𝑠, 𝑋) :=
∑
𝑝≤𝑋

𝑎𝐹 (𝑝)
𝑝𝑠

,

𝜎𝐹 (𝑋) :=
√√

1
2

∑
𝑝≤𝑋

|𝑎𝐹 (𝑝) |2
𝑝

, (6.15)

𝜏𝑖, 𝑗 (𝑋) = 𝜏𝑖, 𝑗 (𝑋 ;F , θ) := 1
2 Re

(
𝑒−𝑖(𝜃𝑖−𝜃 𝑗 )

∑
𝑝≤𝑋

𝑎𝐹𝑖 (𝑝)𝑎𝐹𝑗 (𝑝)
𝑝

)
, (6.16)

𝐾F ,θ (𝑝, z) :=
𝑟∑
𝑗=1

𝑧 𝑗𝑎𝐹𝑗 (𝑝)𝑒−𝑖𝜃 𝑗
𝑟∑
𝑘=1

𝑧𝑘𝑎𝐹𝑘 (𝑝)𝑒−𝑖𝜃𝑘 , (6.17)

Ξ𝑋 (x) = Ξ𝑋 (x;F , θ) (6.18)

:= exp
( ∑
1≤𝑙1<𝑙2≤𝑟

𝑥𝑙1𝑥𝑙2𝜏𝑙1,𝑙2 (𝑋)
) ∏

𝑝

𝐼0
(√
𝐾F ,θ (𝑝,x)/𝑝

)
exp

(
𝐾F ,θ (𝑝,x)/4𝑝

) ,
and

𝒮𝑋 (𝑇,V ;F , θ) :=
{
𝑡 ∈ [𝑇, 2𝑇] :

Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋)

𝜎𝐹𝑗 (𝑋)
> 𝑉 𝑗 for 𝑗 = 1, . . . , 𝑟

}
.

Here, 𝐼0(𝑧) = 1
2𝜋

∫ 𝜋

−𝜋 exp(𝑧 cos 𝜃)𝑑𝜃 =
∑∞
𝑛=0(𝑧/2)2𝑛/(𝑛!)2 is the modified 0-th

order Bessel function. The convergence of the infinite product of (6.18) is
shown in Lemma 6.10.

We have the following the joint large deviations results for Dirichlet
polynomials.

Proposition 6.1. Assume F = (𝐹1, . . . , 𝐹𝑟) be an 𝑟-tuple of 𝐿-functions and
θ ∈ [0, 2𝜋]𝑟 satisfy (S4), (A1), and (A2). Let 𝑇 , 𝑋 be large numbers with
𝑋 (log log 𝑋)4(𝑟+1) ≤ 𝑇 . Then, there exists some positive constant 𝑎9 = 𝑎9(F ) such that
for V = (𝑉1, . . . , 𝑉𝑟) ∈ R𝑟 with |𝑉 𝑗 | ≤ 𝑎9𝜎𝐹𝑗 (𝑋),

1
𝑇

meas(𝒮𝑋 (𝑇,V ;F , θ))

=

(
1 +𝑂F

( ∏𝑟
𝑘=1(1 + |𝑉𝑘 |)

(log log 𝑋)𝛼F + 1
2
+ 1 + ∥V ∥2

log log 𝑋

))
𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
.
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We could improve the range 𝑉 𝑗 in Propositions 6.1 with a weaker error
term.

Proposition 6.2. Assume F = (𝐹1, . . . , 𝐹𝑟) be an 𝑟-tuple of 𝐿-functions and
θ ∈ [0, 2𝜋]𝑟 satisfying (S4), (A1), and (A2). Let 𝑇 , 𝑋 be large numbers satisfying
𝑋 (log log 𝑋)4(𝑟+1) ≤ 𝑇 . Then for any V = (𝑉1, . . . , 𝑉𝑟) ∈ (R≥0)𝑟 with ∥V ∥ ≤
(log log 𝑋)2𝑟 , we have

1
𝑇

meas(𝒮𝑋 (𝑇,V ;F , θ)) (6.19)

= (1 + 𝐸) × Ξ𝑋
(

𝑉1
𝜎𝐹1 (𝑋)

, . . . , 𝑉𝑟
𝜎𝐹𝑟 (𝑋)

) 𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
,

where 𝐸 satisfies

𝐸 ≪F exp
©­­«𝐶

(
∥V ∥√

log log 𝑋

) 2−2𝜗F
1−2𝜗F ª®®¬

{ ∏𝑟
𝑘=1(1 +𝑉𝑘 )

(log log 𝑋)𝛼F + 1
2
+ 1√

log log 𝑋

}
.

Remark 9. In contrast to Proposition 6.1, we allow𝑉 𝑗 to be of size𝐶
√

log log 𝑋
for arbitrarily large 𝐶, which is important in the proof of Theorem 6.5. We
can prove an estimate similar to (6.19) for larger𝑉 𝑗 , where we need to change
the value of 𝑋 suitably in this case. However, our main purpose is to prove
Theorems 6.1, 6.2, and 6.4, and the case of larger 𝑉 𝑗 is not required in the
their proofs. For this reason, we give only the case ∥V ∥ ≤ (log log 𝑋)2𝑟 for
simplicity.

When 𝑟 = 2 and 𝐹1 = 𝐹2, we can improve the error term in Proposition 6.1
slightly, which has a consequence for Ramachandra’s denseness problem.

Proposition 6.3. Let F = (𝐹, 𝐹) and θ = (𝜃1, 𝜃2) ∈ R2 satisfy (S4), (A1), and
(A2). Let 𝑇 , 𝑋 be large numbers with 𝑋 (log log 𝑋)12 ≤ 𝑇 . Then, there exists some
positive constant 𝑎10 = 𝑎10(𝐹) such that for V = (𝑉1, 𝑉2) ∈ R𝑟 with |𝑉 𝑗 | ≤
𝑎10𝜎𝐹 (𝑋),

1
𝑇

meas(𝒮𝑋 (𝑇,V ;F , θ))

=

(
1 +𝑂𝐹

(
(1 + |𝑉1 |) (1 + |𝑉2 |)
(log log 𝑋)𝛼F + 1

2
+ 1 + ∥V ∥4

(log log 𝑋)2

)) ∫ ∞

𝑉2

∫ ∞

𝑉1

𝑒−
𝑢2+𝑣2

2
𝑑𝑢𝑑𝑣

2𝜋 .

Corollary 6.3. Let 𝐹 ∈ S† satisfying (A1), (A2), and the estimate |𝑎𝐹 (𝑝) | ≪𝐹 𝑝
𝜗𝐹

for some 𝜗𝐹 ∈ [0, 1
3 ). For any 0 < 𝜀 ≤ 1, 𝑧 ∈ C, and any large numbers 𝑇 , 𝑋 with

𝑋 (log log 𝑋)12 ≤ 𝑇 , we have
1
𝑇

meas {𝑡 ∈ [𝑇, 2𝑇] : 𝑃𝐹 (1/2 + 𝑖𝑡, 𝑋) ∈ 𝑅(𝑧, 𝜀)}

∼
∬

𝑅(𝑧/𝜎𝐹 (𝑋),𝜀/𝜎𝐹 (𝑋))
𝑒−

𝑢2+𝑣2
2
𝑑𝑢𝑑𝑣

2𝜋

as 𝑋 → +∞. Recall that 𝑅(𝑧, 𝑟) := {𝑢 + 𝑖𝑣 ∈ C : max{| Re 𝑧 − 𝑢 |, | Im 𝑧 − 𝑣 |} < 𝑟}.
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6.2 Approximate formulas for 𝐿-functions

In this section, we give an approximate formula for log 𝐹 (𝑠). In the following,
we use the same notation as in Chapter 2. We also define Λ𝐹 (𝑛) as the
von Mangoldt function associated with 𝐹 defined by Λ𝐹 (𝑛) = 𝑏𝐹 (𝑛) log 𝑛.
Additionally, define 𝜎𝑋,𝑡 (𝐹) for 𝐹 ≠ 1 and 𝑤𝑋 (𝑛) by

𝜎𝑋,𝑡 (𝐹) =
1
2 + 2 max

|𝑡−𝛾𝐹 |≤ 𝑋3 |𝛽𝐹−1/2 |
log 𝑋

{
𝛽𝐹 − 1

2 ,
2

log 𝑋

}
. (6.20)

Then we have the following theorem, which is a generalization of Theorem
2.1 in the case when 𝐹 is the Riemann zeta function 𝜁 (𝑠) and 𝑚 = 0.

Theorem 6.6. Let 𝐹 ∈ S†. Let 𝑑 be a nonnegative integer with 𝑑 ≤ 𝐷 ( 𝑓 ), and 𝐻,
𝑋 real parameters with 𝐻 ≥ 1, 𝑋 ≥ 3. Then, for any 𝜎 ≥ 1/2, 𝑡 ≥ 14, we have

log 𝐹 (𝑠) =
∑

2≤𝑛≤𝑋1+1/𝐻

Λ𝐹 (𝑛)𝑣 𝑓 ,𝐻
(
𝑒log 𝑛/log 𝑋

)
𝑛𝑠 log 𝑛 (6.21)

+
∑

|𝑠−𝜌𝐹 |≤ 1
log 𝑋

log((𝑠 − 𝜌𝐹) log 𝑋) + 𝑅𝐹 (𝑠, 𝑋, 𝐻).

Here, the error term 𝑅𝐹 (𝑠, 𝑋, 𝐻) satisfies the estimate

𝑅𝐹 (𝑠, 𝑋, 𝐻) ≪ 𝑓 ,𝑑
𝑚𝐹 (𝑋2(1−𝜎) + 𝑋1−𝜎)

𝑡 log 𝑋 +
∑

|𝑡−𝛾𝐹 |≤ 1
log 𝑋

(𝑋2(𝛽𝐹−𝜎) + 𝑋 𝛽𝐹−𝜎)

+ 1
log 𝑋

∑
|𝑡−𝛾𝐹 |> 1

log 𝑋

𝑋2(𝛽𝐹−𝜎) + 𝑋 𝛽𝐹−𝜎
|𝑡 − 𝛾𝐹 |

min
0≤𝑙≤𝑑

{(
𝐻

|𝑡 − 𝛾𝐹 | log 𝑋

) 𝑙}
, (6.22)

where the number𝑚𝐹 is the nonnegative integer such that the function (𝑠−1)𝑚𝐹𝐹 (𝑠)
is entire. Moreover, when 𝐷 ( 𝑓 ) ≥ 2, we also have

𝑅𝐹 (𝑠, 𝑋, 𝐻) ≪ 𝑓 𝑚𝐹
𝑋2(1−𝜎) + 𝑋1−𝜎

𝑡 log 𝑋 + (6.23)

𝐻3(𝜎𝑋,𝑡 (𝐹) − 1/2)(𝑋2(𝜎𝑋,𝑡 (𝐹)−𝜎) + 𝑋𝜎𝑋,𝑡 (𝐹)−𝜎)
(����� ∑
𝑛≤𝑋3

Λ𝐹 (𝑛)𝑤𝑋 (𝑛)
𝑛𝜎𝑋,𝑡 (𝐹)+𝑖𝑡

����� + 𝑑𝐹 log 𝑡
)

for |𝑡 | ≥ 𝑡0(𝐹) with 𝑡0(𝐹) a sufficiently large constant depending on 𝐹.

Remark 10. Note that we choose the branch of log (𝑠 − 𝜌𝐹) as follows. If
𝑡 ≠ 𝛾𝐹 , then −𝜋 < arg (𝑠 − 𝜌𝐹) < 𝜋, and if 𝑡 = 𝛾𝐹 , then arg (𝑠 − 𝜌𝐹) =
lim𝜀↑0 arg (𝜎 − 𝛽𝐹 + 𝑖𝜀).
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Remark 11. Theorem 6.6 is a modification and generalization of the hybrid
formula by Gonek, Hughes, and Keating [33] to apply the method of Selberg-
Tsang [116]. Our formula has the advantage of being able to estimate to
contribution from zeros close to 𝑠 over the original their formula [116, Lemma
5.4]. Actually, we can find the sign of the contribution from zeros to 𝑠 by the
form

∑
|𝑠−𝜌𝐹 |≤ 1

log 𝑋
log((𝑠 − 𝜌𝐹) log 𝑋). This fact plays an important role in the

proof of theorems in Section 6.1.
Theorem 6.6 can be obtained by the same method as the proof of Theorem

2.1, where we need the following proposition instead of Proposition 2.1.

Proposition 6.4. Let 𝐹 ∈ S†. Let 𝑋 ≥ 3, 𝐻 ≥ 1 be real parameters. Then, for any
𝑠 ∈ C, we have

log 𝐹 (𝑠) =∑
2≤𝑛≤𝑋1+1/𝐻

Λ𝐹 (𝑛)𝑣 𝑓 ,𝐻 (𝑒log 𝑛/log 𝑋)
𝑛𝑠 log 𝑛 + 𝑚∗

𝐹 (𝑈0((𝑠 − 1) log 𝑋) +𝑈0(𝑠 log 𝑋))

−
∑
𝜌𝐹

𝜌𝐹≠0,1

𝑈0((𝑠 − 𝜌𝐹) log 𝑋) −
∞∑
𝑛=0

𝑘∑
𝑗=1
𝑈0((𝑠 + (𝑛 + 𝜇 𝑗 )/𝜆 𝑗 ) log 𝑋),

where the number 𝑚∗
𝐹 is the integer such that the function (𝑠 − 1)𝑚∗

𝐹𝐹 (𝑠) is entire
and not equal to zero at 𝑠 = 1.

Using Theorem 6.6, we obtain the following propositions.

Proposition 6.5. Let 𝐹 ∈ S† satisfying (6.1) and (A3). Put 𝛿𝐹 = min{ 1
4 ,

𝜅𝐹
20 } with

𝜅𝐹 the positive constant in (6.2). Let 𝜎 ≥ 1/2, and 𝑇 be large. Let 0 < 𝜀 < 1/2 be
given. Then, there exist positive constants 𝐴1 = 𝐴1(𝐹) such that for any 𝑘 ∈ Z≥1,
3 ≤ 𝑋 ≤ 𝑌 := 𝑇 𝛿𝐹/𝑘 ,

1
𝑇

∫ 2𝑇

𝑇

���� log 𝐹 (𝜎 + 𝑖𝑡) −
∑

2≤𝑛≤𝑋

Λ𝐹 (𝑛)
𝑛𝜎+𝑖𝑡 log 𝑛

−
∑

|𝜎+𝑖𝑡−𝜌𝐹 | ≤ 1
log𝑌

log((𝜎 + 𝑖𝑡 − 𝜌𝐹 ) log𝑌 )
����2𝑘𝑑𝑡

≤ 𝐴𝑘
1 𝑘

2𝑘𝑇 (1−2𝜎) 𝛿𝐹 + 𝐴𝑘
1 𝑘!𝑋 𝑘 (1−2𝜎) + 𝐴𝑘

1 𝑘! ©­«
∑

𝑋<𝑝≤𝑌 2

|𝑎𝐹 (𝑝) |2
𝑝2𝜎

ª®¬
𝑘

.

Proposition 6.6. Suppose the same situation as Proposition 6.5. Then, there exists
a positive constant 𝐴2 = 𝐴2(𝐹) such that for any 𝑘 ∈ Z≥1, 3 ≤ 𝑋 ≤ 𝑌 := 𝑇 𝛿𝐹/𝑘 ,

1
𝑇

∫ 2𝑇

𝑇

���� log 𝐹 (𝜎 + 𝑖𝑡) −
∑

2≤𝑛≤𝑋

Λ𝐹 (𝑛)
𝑛𝜎+𝑖𝑡 log 𝑛

����2𝑘𝑑𝑡
≤ 𝐴𝑘2 𝑘

4𝑘𝑇 (1−2𝜎)𝛿𝐹 + 𝐴𝑘2 𝑘!𝑋 𝑘 (1−2𝜎) + 𝐴𝑘2 𝑘! ©­«
∑

𝑋<𝑝≤𝑌2

|𝑎𝐹 (𝑝) |2
𝑝2𝜎

ª®¬
𝑘

.

Proposition 6.6 has been essentially proved by Selberg [108, Theorem
1]. However, there are some differences from his, so we give the proof of
Proposition 6.6 for completeness.
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6.2.1 Proof of the approximate formula for 𝐿-functions
We give the proofs of Proposition 6.4 and Theorem 6.6, but the proofs are
almost the same as the proofs of Proposition 2.1 and Theorem 2.1. Therefore,
we give the sketches only.

Lemma 6.1. Let 𝐹 ∈ S♯ \ {1}. For all 𝑠 ∈ C neither equaling to pole nor a zero of
𝐹, we have

𝐹′

𝐹
(𝜎 + 𝑖𝑡) =

∑
𝜌𝐹

𝜌𝐹≠0,1

(
1

𝑠 − 𝜌𝐹
+ 1
𝜌𝐹

)
+ 𝛾𝐹 − 𝑚𝐹

(
1

𝑠 − 1 + 1
𝑠

)
− log𝑄 (6.24)

−
∞∑
𝑛=0

𝑘∑
𝑗=1
𝜆 𝑗

Γ′

Γ

(
𝜆 𝑗 𝑠 + 𝜇 𝑗

)
,

where 𝛾𝐹 is a complex number and satisfies Re(𝛾𝐹) = −Re
∑
𝜌𝐹 (1/𝜌𝐹). In partic-

ular, for |𝑡 | ≥ 𝑡0(𝐹), we have

𝐹′

𝐹
(𝜎 + 𝑖𝑡) =

∑
𝜌𝐹

𝜌𝐹≠0,1

(
1

𝑠 − 𝜌𝐹
+ 1
𝜌𝐹

)
+𝑂 (𝑑𝐹 log |𝑡 |). (6.25)

Proof. We obtain equation (6.24) by the same method as the proof of [87, eq.
(10.29)]. Moreover, by applying the Stirling formula to equation (6.24), we
can also obtain equation (6.25). □

Lemma 6.2. Let 𝐹 ∈ S†. For |𝑡 | ≥ 𝑡0(𝐹), 1 ≤ 𝐻 ≤ |𝑡 |
2 , we have∑

|𝑡−𝛾𝐹 |≤𝐻
1 ≪ 𝑑𝐹𝐻 log |𝑡 |, (6.26)

∑
|𝑡−𝛾𝐹 |≥𝐻

1
(𝑡 − 𝛾𝐹)2 ≪

𝑑𝐹 log |𝑡 |
𝐻

. (6.27)

Proof. Applying the Stirling formula to Lemma 6.1, for |𝑡 | ≥ 𝑡0(𝐹), we have

Re
(
𝐹′

𝐹
(𝐻 + 𝑖𝑡)

)
=

∑
𝜌

𝐻 − 𝛽𝐹
(𝐻 − 𝛽𝐹)2 + (𝑡 − 𝛾𝐹)2 +𝑂

(
𝑑𝐹 log |𝑡 |

)
.

On the other hand, it holds that∑
𝜌𝐹

𝐻 − 𝛽𝐹
(𝐻 − 𝛽𝐹)2 + (𝑡 − 𝛾𝐹)2 ≫

∑
|𝑡−𝛾𝐹 |≤𝐻

1
𝐻
,∑

𝜌𝐹

𝐻 − 𝛽𝐹
(𝐻 − 𝛽𝐹)2 + (𝑡 − 𝛾𝐹)2 ≫

∑
|𝑡−𝛾𝐹 |≥𝐻

𝐻

(𝑡 − 𝛾𝐹)2 .

Since 𝑏𝐹 (𝑛) log 𝑛 ≪𝐹 𝑛
1/2 from (S4), we find that

| (𝐹′/𝐹) (𝐻 + 𝑖𝑡) | =
���� ∞∑
𝑛=2

𝑏𝐹 (𝑛) log 𝑛/𝑛𝐻+𝑖𝑡
���� ≪𝐹 𝜁 (𝐻 − 1/2) − 1 ≪ 2−𝐻 .
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Hence we obtain (6.26) and (6.27) for 𝐻 ≥ 2. In addition, we immediately
obtain these inequality the case 1 ≤ 𝐻 ≤ 2 from (6.26) and (6.27) in the case
𝐻 = 2. □

Lemma 6.3. Let 𝐹 ∈ S†. For any 𝑇 ≥ 𝑡0(𝐹), there exists some 𝑡 ∈ [𝑇,𝑇 + 1] such
that, uniformly for 1/2 ≤ 𝜎 ≤ 2,

𝐹′

𝐹
(𝜎 + 𝑖𝑡) ≪𝐹 (log𝑇)2.

Proof. Using Lemma 6.2, we obtain this lemma by the same argument as the
proof of [87, Lemma 12.2]. □

Proof of Proposition 6.4. By using Lemma 6.3, we obtain Proposition 6.4 in the
same method as the proof of Proposition 2.1. □

Proof of Theorem 6.6. Equation (6.21) and estimate (6.22) are immediately ob-
tained from Lemmas 2.2, 2.3 in the case 𝑚 = 0 and Proposition 6.4. Hence, it
suffices to show estimate (6.23) on the range |𝑡 | ≥ 𝑡0(𝐹). Following the proof
of Proposition 2.1, we see that it suffices to check∑

𝜌𝐹

𝜎𝑋,𝑡 (𝐹) − 1/2
(𝜎𝑋,𝑡 (𝐹) − 𝛽𝐹)2 + (𝑡 − 𝛾𝐹)2 ≪

����� ∑
𝑛≤𝑋3

Λ𝐹 (𝑛)𝑤𝑋 (𝑛)
𝑛𝜎𝑋,𝑡 (𝐹)+𝑖𝑡

����� + 𝑑𝐹 log |𝑡 |, (6.28)

which can be shown by the same proofs as in [107, eq. (4.4); eq. (4.7)] by
using equation (6.25) instead of [107, Lemma 11]. □

6.2.2 Proofs of mean value results for 𝐿-functions
The next lemma is an analogue and a generalization of [116, Lemma 5.2].

Lemma 6.4. Let 𝐹 ∈ S† \ {1} be an 𝐿-function satisfying (A3). Let 𝑇 be large,
and 𝜅𝐹 be the positive constant in (6.2). For 𝑘 ∈ Z≥1, 3 ≤ 𝑋 ≤ 𝑇2/3, 𝜉 ≥ 1 with
𝑋𝜉 ≤ 𝑇 𝜅𝐹/4, we have∫ 2𝑇

𝑇

(
𝜎𝑋,𝑡 (𝐹) −

1
2

) 𝑘
𝜉𝜎𝑋,𝑡 (𝐹)−1/2𝑑𝑡 ≪𝐹 𝑇

(
4𝑘𝜉

4
log 𝑋

(log 𝑋)𝑘
+ 𝐶𝑘 𝑘!

log 𝑋 (log𝑇)𝑘−1

)
,

where 𝐶 = 𝐶 (𝐹) is a positive constant.

Proof. By definition (6.20) of 𝜎𝑋,𝑡 (𝐹), we obtain∫ 2𝑇

𝑇

(
𝜎𝑋,𝑡 (𝐹) −

1
2

) 𝑘
𝜉𝜎𝑋,𝑡 (𝐹)−1/2𝑑𝑡 (6.29)

≤ 𝑇𝜉
4

log 𝑋

(
4

log 𝑋

) 𝑘
+ 2𝑘

log 𝑋
∑

𝑇− 𝑋3 |𝛽𝐹−1/2 |
log 𝑋 ≤𝛾𝐹≤2𝑇+ 𝑋

3 |𝛽𝐹− 1
2 |

log 𝑋

𝛽𝐹≥1/2

(
𝛽𝐹 − 1

2

) 𝑘
(𝑋3𝜉2)𝛽𝐹− 1

2 .
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From the equation(
𝛽𝐹 − 1

2

) 𝑘
(𝑋3𝜉2)𝛽𝐹− 1

2

=
∫ 𝛽𝐹

1
2

{
(𝜎 − 1/2)𝑘 log (𝑋3𝜉2) + 𝑘 (𝜎 − 1/2)𝑘−1

}
(𝑋3𝜉2)𝜎− 1

2 𝑑𝜎,

we find that ∑
𝑇− 𝑋3 |𝛽𝐹−1/2 |

log 𝑋 ≤𝛾𝐹≤2𝑇+ 𝑋
3 |𝛽𝐹− 1

2 |
log 𝑋

𝛽𝐹≥1/2

(
𝛽𝐹 − 1

2

) 𝑘
(𝑋3𝜉2)𝛽𝐹− 1

2

≤
∑

0≤𝛾𝐹≤3𝑇
𝛽𝐹≥1/2

∫ 𝛽𝐹

1
2

{
(𝜎 − 1/2)𝑘 log (𝑋3𝜉2) + 𝑘 (𝜎 − 1/2)𝑘−1

}
(𝑋3𝜉2)𝜎− 1

2 𝑑𝜎

≤
∫ 1

1
2

{
(𝜎 − 1/2)𝑘 log (𝑋3𝜉2) + 𝑘 (𝜎 − 1/2)𝑘−1

}
(𝑋3𝜉2)𝜎− 1

2
∑

0≤𝛾𝐹≤3𝑇
𝛽𝐹≥𝜎

1𝑑𝜎

=
∫ 1

1
2

{
(𝜎 − 1/2)𝑘 log (𝑋3𝜉2) + 𝑘 (𝜎 − 1/2)𝑘−1

}
(𝑋3𝜉2)𝜎− 1

2𝑁𝐹 (𝜎, 3𝑇)𝑑𝜎.

By assumption (A3), we can use the estimate 𝑁𝐹 (𝜎,𝑇) ≪𝐹 𝑇
1−𝜅𝐹 (𝜎−1/2) log𝑇 ,

and so, for 𝑋𝜉 ≤ 𝑇 𝜅𝐹/4, the above most right hand side is

≪𝐹 𝑇 log𝑇
∫ 1

1
2

{
(𝜎 − 1/2)𝑘 log (𝑋3𝜉2) + 𝑘 (𝜎 − 1/2)𝑘−1

} (
𝑋3𝜉2

𝑇 𝜅𝐹

)𝜎− 1
2

𝑑𝜎

≪ 𝑇
𝐶𝑘 𝑘!

(log𝑇)𝑘−1

for some 𝐶 = 𝐶 (𝐹) > 0. Hence, by this estimate and inequality (6.29), we
obtain this lemma. □

Lemma 6.5. Let 𝐹 ∈ S† be an 𝐿-function satisfying (6.1) and (A3). Let 𝑇 be large.
Put 𝛿𝐹 = min{ 1

4 ,
𝜅𝐹
20 } with 𝜅𝐹 the positive constant in (6.2). For any 𝑘 ∈ Z≥1,

𝑋 ≥ 3 with 𝑋 ≤ 𝑇 𝛿𝐹/𝑘 , we have∫ 2𝑇

𝑇

����� ∑
𝑛≤𝑋3

Λ𝐹 (𝑛)𝑤𝑋 (𝑛)
𝑛𝜎𝑋,𝑡 (𝐹)+𝑖𝑡

�����2𝑘𝑑𝑡 ≪ 𝑇𝐶𝑘 𝑘 𝑘 (log 𝑋)2𝑘 ,

where 𝑤𝑋 is the smoothing function defined by (2.38), and 𝐶 = 𝐶 (𝐹) is a positive
constant.

Proof. For brevity, we write 𝜎𝑋,𝑡 (𝐹) as 𝜎𝑋,𝑡 in this proof. We see that∑
𝑛≤𝑋3

Λ𝐹 (𝑛)𝑤𝑋 (𝑛)
𝑛𝜎𝑋,𝑡+𝑖𝑡 =

∑
ℓ≥1

∑
𝑝≤𝑋3/ℓ

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ)
𝑝ℓ(𝜎𝑋,𝑡+𝑖𝑡)
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Let 𝛿1 = 𝛿1(𝐹) > 0 be a positive constant for which the estimate

Λ𝐹 (𝑝ℓ) ≪𝐹 𝑝
ℓ(1/2−𝛿1) (6.30)

holds. The existence of such a constant is guaranteed by condition (S4). Put
𝐾1 = 2𝛿−1

1 . Using the inequality 0 ≤ 𝑤𝑋 (𝑛) ≤ 1, we find that for any 𝜎 ≥ 1
2����� ∑

ℓ>𝐾1

∑
𝑝ℓ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ)
𝑝ℓ(𝜎+𝑖𝑡)

����� ≤ ∑
ℓ>𝐾1

∑
𝑝

|Λ𝐹 (𝑝ℓ) |
𝑝ℓ/2

≪𝐹

∑
𝑝

∑
ℓ>𝐾1

1
𝑝𝛿1ℓ

≪𝐹

∑
𝑝

1
𝑝2 ≪ 1.

Hence, it holds that for any 𝜎 ≥ 1
2∑

𝑛≤𝑋3

Λ𝐹 (𝑛)𝑤𝑋 (𝑛)
𝑛𝜎+𝑖𝑡

=
∑

1≤ℓ≤𝐾1

∑
𝑝ℓ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ)
𝑝ℓ(𝜎+𝑖𝑡)

+𝑂𝐹 (1). (6.31)

For the inner sum, we write∑
𝑝ℓ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ)
𝑝ℓ(𝜎𝑋,𝑡+𝑖𝑡)

=
∑
𝑝ℓ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ)
𝑝ℓ(1/2+𝑖𝑡)

−
∑
𝑝ℓ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ)
𝑝ℓ(1/2+𝑖𝑡)

(1 − 𝑝ℓ(1/2−𝜎𝑋,𝑡 ))

=
∑
𝑝ℓ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ)
𝑝ℓ(1/2+𝑖𝑡)

−
∫ 𝜎𝑋,𝑡

1/2

∑
𝑝ℓ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ) log 𝑝ℓ

𝑝ℓ(𝛼′+𝑖𝑡) 𝑑𝛼′,

and, for 1/2 ≤ 𝛼′ ≤ 𝜎𝑋,𝑡 ,���� ∑
𝑝ℓ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ) log 𝑝ℓ

𝑝ℓ(𝛼′+𝑖𝑡)

����
=

�����𝑋𝛼′−1/2
∫ ∞

𝛼′
𝑋1/2−𝛼

∑
𝑝ℓ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ) log (𝑋𝑝ℓ) log 𝑝ℓ

𝑝ℓ(𝛼+𝑖𝑡)
𝑑𝛼

�����
≤ 𝑋𝜎𝑋,𝑡−1/2

∫ ∞

1/2
𝑋1/2−𝛼

���� ∑
𝑝ℓ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ) log (𝑋𝑝ℓ) log 𝑝ℓ

𝑝ℓ(𝛼+𝑖𝑡)

����𝑑𝛼.
Therefore, we have���� ∑
𝑝ℓ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ)
𝑝ℓ(𝜎𝑋,𝑡+𝑖𝑡)

����
≤

���� ∑
𝑝ℓ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ)
𝑝ℓ(1/2+𝑖𝑡)

����
+ (𝜎𝑋,𝑡 − 1

2 )𝑋
𝜎𝑋,𝑡−1/2

∫ ∞

1/2
𝑋1/2−𝛼

���� ∑
𝑝ℓ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ) log (𝑋𝑝ℓ) log 𝑝ℓ

𝑝ℓ(𝛼+𝑖𝑡)

����𝑑𝛼,
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which together with equation (6.31) yields���� ∑
𝑛≤𝑋3

Λ𝐹 (𝑛)𝑤𝑋 (𝑛)
𝑛𝜎𝑋,𝑡+𝑖𝑡

����2𝑘 (6.32)

≤ 𝐶𝑘1 + (2𝐾1)2𝑘
∑

1≤ℓ≤𝐾1

{���� ∑
𝑝≤𝑋3/ℓ

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ)
𝑝ℓ(1/2+𝑖𝑡)

����2𝑘
+

(
(𝜎𝑋,𝑡 − 1

2 )𝑋
𝜎𝑋,𝑡− 1

2

∫ ∞

1
2

𝑋
1
2−𝛼

���� ∑
𝑝≤𝑋3/ℓ

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ) log (𝑋𝑝ℓ) log 𝑝ℓ

𝑝ℓ(𝛼+𝑖𝑡)

����𝑑𝛼)2𝑘
}

for some constant 𝐶1 = 𝐶1(𝐹) > 0. By Lemma 2.8, it holds that

∑
1≤ℓ≤𝐾1

∫ 2𝑇

𝑇

���� ∑
𝑝≤𝑋3/ℓ

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ)
𝑝ℓ(1/2+𝑖𝑡)

����2𝑘𝑑𝑡 ≪ 𝑇𝑘!
∑

1≤ℓ≤𝐾1

©­«
∑
𝑝≤𝑋3/ℓ

|Λ𝐹 (𝑝ℓ) |2
𝑝ℓ

ª®¬
𝑘

for 𝑋 ≤ 𝑇 𝛿𝐹/𝑘 ≤ 𝑇1/4𝑘 . By the definition of the von Mangoldt function Λ𝐹 (𝑛),
we can rewrite (1.21) to ∑

𝑝

|Λ𝐹 (𝑝ℓ) |2
𝑝ℓ

≪𝐹 1 (6.33)

for every ℓ ≥ 2. Hence, we obtain

∑
2≤ℓ≤𝐾1

©­«
∑
𝑝≤𝑋3/ℓ

|Λ𝐹 (𝑝ℓ) |2
𝑝ℓ

ª®¬
𝑘

≤ 𝐶𝑘2

for some constant 𝐶2 = 𝐶2(𝐹) > 0. Additionally, by using (6.1), partial
summation, and applying the fact Λ𝐹 (𝑝) = 𝑎𝐹 (𝑝) log 𝑝, we find that∑

𝑝≤𝑋3

|Λ𝐹 (𝑝) |2
𝑝

= (log 𝑋3)2
∑
𝑝≤𝑋3

|𝑎𝐹 (𝑝) |2
𝑝

−
∫ 𝑋3

2

2 log 𝜉
𝜉

∑
𝑝≤𝜉

|𝑎𝐹 (𝑝) |2
𝑝

𝑑𝜉

= 𝑛𝐹 (log 𝑋3)2 log log 𝑋3 − 2𝑛𝐹
∫ 𝑋3

2

log 𝜉 × log log 𝜉
𝜉

𝑑𝜉 +𝑂𝐹

(
(log 𝑋)2

)
= 𝑛𝐹 (log 𝑋3)2 log log 𝑋3 − 𝑛𝐹 (log 𝑋3)2 log log 𝑋3 +𝑂𝐹

(
(log 𝑋)2

)
≪𝐹 (log 𝑋)2. (6.34)

Hence, we have∑
1≤ℓ≤𝐾1

∫ 2𝑇

𝑇

���� ∑
𝑝≤𝑋3/ℓ

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ)
𝑝ℓ(1/2+𝑖𝑡)

����2𝑘𝑑𝑡 ≪ 𝑇𝐶𝑘3 𝑘
𝑘 (log 𝑋)2𝑘 (6.35)
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for some constant 𝐶3 = 𝐶3(𝐹) > 0.
Next, we estimate the integral of the last term on the right hand side of

(6.32). By the Cauchy-Schwarz inequality and Lemma 6.4, when 𝛿𝐹 ≤ 𝜅𝐹/20,
it holds that∫ 2𝑇

𝑇

(
(𝜎𝑋,𝑡 − 1/2)𝑋𝜎𝑋,𝑡− 1

2

∫ ∞

1
2

𝑋
1
2−𝛼

���� ∑
𝑝ℓ ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ) log (𝑋𝑝ℓ) log 𝑝ℓ

𝑝ℓ (𝛼+𝑖𝑡)

����𝑑𝛼)2𝑘
𝑑𝑡

≤
( ∫ 2𝑇

𝑇
(𝜎𝑋,𝑡 − 1/2)4𝑘𝑋4𝑘 (𝜎𝑋,𝑡−1/2)𝑑𝑡

)1/2

×

×
©­­«
∫ 2𝑇

𝑇

©­«
∫ ∞

1/2
𝑋1/2−𝛼

���� ∑
𝑝ℓ ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ) log (𝑋𝑝ℓ) log 𝑝ℓ

𝑝ℓ (𝛼+𝑖𝑡)

����𝑑𝛼ª®¬
4𝑘

𝑑𝑡
ª®®¬

1
2

≪
𝑇

1
2𝐶𝑘

4
(log 𝑋)2𝑘

©­­«
∫ 2𝑇

𝑇

©­«
∫ ∞

1/2
𝑋1/2−𝛼

���� ∑
𝑝ℓ ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ) log (𝑋𝑝ℓ) log 𝑝ℓ

𝑝ℓ (𝛼+𝑖𝑡)

����𝑑𝛼ª®¬
4𝑘

𝑑𝑡
ª®®¬

1
2

,

(6.36)

for some constant 𝐶4 = 𝐶4(𝐹) > 0. Moreover, by Hölder’s inequality, we
have

©­«
∫ ∞

1/2
𝑋

1
2−𝛼

���� ∑
𝑝ℓ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ) log (𝑋𝑝ℓ) log 𝑝ℓ

𝑝ℓ(𝛼+𝑖𝑡)

����𝑑𝛼ª®¬
4𝑘

≤
(∫ ∞

1/2
𝑋

1
2−𝛼𝑑𝛼

)4𝑘−1
×

∫ ∞

1/2
𝑋

1
2−𝛼

���� ∑
𝑝ℓ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ) log (𝑋𝑝ℓ) log 𝑝ℓ

𝑝ℓ(𝛼+𝑖𝑡)

����4𝑘𝑑𝛼
=

1
(log 𝑋)4𝑘−1

∫ ∞

1/2
𝑋1/2−𝛼

���� ∑
𝑝ℓ≤𝑋3

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ) log (𝑋𝑝ℓ) log 𝑝ℓ

𝑝ℓ(𝛼+𝑖𝑡)

����4𝑘𝑑𝛼.
Therefore, by using Lemma 2.8, we find that

∫ 2𝑇

𝑇

©­«
∫ ∞

1/2
𝑋

1
2−𝛼

���� ∑
𝑝≤𝑋3/ℓ

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ) log (𝑋𝑝ℓ) log 𝑝ℓ

𝑝ℓ(𝛼+𝑖𝑡)

����𝑑𝛼ª®¬
4𝑘

𝑑𝑡

≤ 1
(log 𝑋)4𝑘−1

∫ ∞

1/2
𝑋1/2−𝛼 ©­«

∫ 2𝑇

𝑇

���� ∑
𝑝≤𝑋3/ℓ

Λ𝐹 (𝑝ℓ) log (𝑋𝑝ℓ) log 𝑝ℓ

𝑝ℓ(𝛼+𝑖𝑡)

����4𝑘𝑑𝑡ª®¬ 𝑑𝛼
≪ 𝑇 (2𝑘)!

(log 𝑋)4𝑘−1

∫ ∞

1/2
𝑋1/2−𝛼 ©­«

∑
𝑝≤𝑋3/ℓ

|Λ𝐹 (𝑝ℓ) |2(log (𝑋𝑝ℓ))2(log 𝑝ℓ)2

𝑝2ℓ𝛼
ª®¬

2𝑘

𝑑𝛼

≪ 𝑇 (2𝑘!)
(log 𝑋)4𝑘

©­«
∑
𝑝≤𝑋3/ℓ

|Λ𝐹 (𝑝ℓ) |2(log (𝑋𝑝ℓ))2(log 𝑝ℓ)2

𝑝ℓ
ª®¬

2𝑘

.
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From (6.34) we see that∑
𝑝≤𝑋3

|Λ𝐹 (𝑝) |2(log (𝑋𝑝))2(log 𝑝)2

𝑝
≪𝐹 (log 𝑋)6.

Also by (6.33), we have∑
𝑝≤𝑋3/ℓ

|Λ𝐹 (𝑝ℓ) |2(log (𝑋𝑝ℓ))2(log 𝑝ℓ)2

𝑝ℓ
≪𝐹 (log 𝑋)4

for every ℓ ≥ 2. Therefore, we obtain

∫ 2𝑇

𝑇

©­«
∫ ∞

1/2
𝑋

1
2−𝛼

���� ∑
𝑝≤𝑋3/ℓ

Λ𝐹 (𝑝ℓ)𝑤𝑋 (𝑝ℓ) log (𝑋𝑝ℓ) log 𝑝ℓ

𝑝ℓ(𝛼+𝑖𝑡)

����𝑑𝛼ª®¬
4𝑘

𝑑𝑡

≪ 𝑇 (2𝑘)!𝐶𝑘5 (log 𝑋)8𝑘

for some 𝐶5 = 𝐶5(𝐹) > 0. By this estimate and (6.36), we have∑
1≤ℓ≤𝐾1

∫ 2𝑇

𝑇

(
(𝜎𝑋,𝑡 − 1/2)𝑋𝜎𝑋,𝑡− 1

2

×
∫ ∞

1
2

𝑋
1
2−𝛼

���� ∑
𝑝≤𝑋3/𝑙

Λ𝐹 (𝑝𝑙)𝑤𝑋 (𝑝𝑙) log (𝑋𝑝𝑙) log 𝑝𝑙

𝑝𝑙 (𝛼+𝑖𝑡)

����𝑑𝛼)2𝑘
𝑑𝑡

≪ 𝑇𝐶𝑘6 𝑘
𝑘 (log 𝑋)2𝑘

for some constant 𝐶6 = 𝐶6(𝐹) > 0. Combining this with (6.32) and (6.35), we
complete the proof of Lemma 6.5. □

Lemma 6.6. Let 𝐹 ∈ S† be an 𝐿-function satisfying (6.1) and (A3). Let 𝜎 ≥ 1/2,
𝑇 be large. Let 𝜅𝐹 , 𝛿𝐹 be the same constants as in Lemma 6.5. There exists a positive
constant 𝐶 = 𝐶 (𝐹) such that for any 𝑘 ∈ Z≥1, 3 ≤ 𝑋 ≤ 𝑇 𝛿𝐹/𝑘 ,

∫ 2𝑇

𝑇

©­­«
∑

|𝜎+𝑖𝑡−𝜌𝐹 |≤ 1
log 𝑋

1
ª®®¬

2𝑘

𝑑𝑡 ≤ 𝐶𝑘𝑇1−(2𝜎−1)𝛿𝐹+ 8𝛿𝐹
log 𝑋

( log𝑇
log 𝑋

)2𝑘
, (6.37)

and ∫ 2𝑇

𝑇

����� ∑
|𝜎+𝑖𝑡−𝜌𝐹 |≤ 1

log 𝑋

log((𝜎 + 𝑖𝑡 − 𝜌𝐹) log 𝑋)
�����𝑘𝑑𝑡

≤ (𝐶𝑘)𝑘𝑇1−(𝜎−1/2)𝛿𝐹+ 4𝛿𝐹
log 𝑋

( log𝑇
log 𝑋

) 𝑘+ 1
2
.

(6.38)
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Proof. From (6.20), there are no zeros of 𝐹 with |𝜎 + 𝑖𝑡 − 𝜌𝐹 | ≤ 1
log 𝑋 when

𝜎 ≥ 𝜎𝑋,𝑡 (𝐹). Put 𝜉 := 𝑇 𝛿𝐹/𝑘 . Note that 𝜉 ≥ 1 because we suppose that
3 ≤ 𝑋 ≤ 𝑇 𝛿𝐹/𝑘 = 𝜉. From these facts, we have∑

|𝜎+𝑖𝑡−𝜌𝐹 |≤ 1
log 𝑋

1 ≤ 𝜉𝜎𝑋,𝑡 (𝐹)−𝜎
∑

|𝑡−𝛾𝐹 |≤ 1
log 𝑋

1

for 𝜎 ≥ 1/2. By definition (6.20) and the line symmetry of nontrivial zeros
of 𝐹, we find that∑

|𝑡−𝛾𝐹 |≤ 1
log 𝑋

1 ≤ 2
∑

|𝑡−𝛾𝐹 |≤ 1
log 𝑋

𝛽𝐹≥1/2

1 ≪
∑

|𝑡−𝛾𝐹 |≤ 1
log 𝑋

𝛽𝐹≥1/2

(𝜎𝑋,𝑡 (𝐹) − 1/2)2

(𝜎𝑋,𝑡 (𝐹) − 𝛽𝐹)2 + (𝑡 − 𝛾𝐹)2 .

Applying estimate (6.28) to the above right hand side, we obtain∑
|𝑡−𝛾𝐹 |≤ 1

log 𝑋

1 ≪ (𝜎𝑋,𝑡 (𝐹) − 1/2)
(���� ∑
𝑛≤𝑋3

Λ𝐹 (𝑛)𝑤𝑋 (𝑛)
𝑛𝜎𝑋,𝑡 (𝐹)+𝑖𝑡

���� + 𝑑𝐹 log𝑇
)

(6.39)

for 𝑡 ∈ [𝑇, 2𝑇]. Noting 𝑋𝜉2𝑘 ≤ 𝑇 𝜅𝐹/4 and using Lemmas 6.4, 6.5, we have∫ 2𝑇

𝑇
(𝜎𝑋,𝑡 (𝐹) − 1/2)2𝑘𝜉2𝑘 (𝜎𝑋,𝑡 (𝐹)−𝜎)

(���� ∑
𝑛≤𝑋3

Λ𝐹 (𝑛)𝑤𝑋 (𝑛)
𝑛𝜎𝑋,𝑡 (𝐹)+𝑖𝑡

����2𝑘 + (log𝑇)2𝑘

)
𝑑𝑡

≤ 𝜉2𝑘 (1/2−𝜎)
{
(log𝑇)2𝑘

∫ 2𝑇

𝑇
(𝜎𝑋,𝑡 (𝐹) − 1/2)2𝑘𝜉2𝑘 (𝜎𝑋,𝑡 (𝐹)−1/2)𝑑𝑡+(∫ 2𝑇

𝑇
(𝜎𝑋,𝑡 (𝐹) − 1/2)2𝑘𝜉2𝑘 (𝜎𝑋,𝑡 (𝐹)−1/2)𝑑𝑡

)1/2(∫ 2𝑇

𝑇

���� ∑
𝑛≤𝑋3

Λ𝐹 (𝑛)𝑤𝑋 (𝑛)
𝑛𝜎𝑋,𝑡 (𝐹)+𝑖𝑡

����2𝑘𝑑𝑡)1/2 }

≤ 𝐶𝑘𝜉2𝑘 (1/2−𝜎)
(
𝑇𝜉

8𝑘
log 𝑋

( log𝑇
log 𝑋

)2𝑘
+ 𝑇𝜉

4𝑘
log 𝑋 𝑘 𝑘/2

)
≤ 𝐶𝑘2𝑇

1−(2𝜎−1)𝛿𝐹+ 8𝛿𝐹
log 𝑋

( log𝑇
log 𝑋

)2𝑘
(6.40)

for some constant 𝐶2 = 𝐶2(𝐹) > 0. Hence, we obtain estimate (6.37).
Next, we show estimate (6.38). We find that����� ∑

|𝜎+𝑖𝑡−𝜌𝐹 |≤ 1
log 𝑋

log
(
(𝜎 + 𝑖𝑡 − 𝜌𝐹) log 𝑋

) ����� ≤ (𝑔𝑋 (𝑠) + 𝜋) ×
∑

|𝜎+𝑖𝑡−𝜌𝐹 |≤ 1
log 𝑋

1,

where 𝑔𝑋 (𝑠) = 𝑔𝑋 (𝜎 + 𝑖𝑡) is the function defined by

𝑔𝑋 (𝑠)

=

{
log

(
1

| (𝜎+𝑖𝑡−𝜌𝑠) log 𝑋 |

)
if there exists a zero 𝜌𝐹 with |𝜎 + 𝑖𝑡 − 𝜌𝐹 | ≤ 1

log 𝑋 ,
0 otherwise.
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Here, 𝜌𝑠 indicates the zero of 𝐹 nearest from 𝑠 = 𝜎 + 𝑖𝑡. By using the
Cauchy-Schwarz inequality and estimate (6.37), we obtain∫ 2𝑇

𝑇

����� ∑
|𝜎+𝑖𝑡−𝜌𝐹 |≤ 1

log 𝑋

log((𝜎 + 𝑖𝑡 − 𝜌𝐹) log 𝑋)
�����𝑘𝑑𝑡 (6.41)

≤ 𝐶𝑘3
(∫ 2𝑇

𝑇
𝑔𝑋 (𝜎 + 𝑖𝑡)2𝑘𝑑𝑡 + 𝜋2𝑘𝑇

)1/2
× 𝑇

1
2−(𝜎−1/2)𝛿𝐹+ 4𝛿𝐹

log 𝑋

( log𝑇
log 𝑋

) 𝑘
for some constant 𝐶3 = 𝐶3(𝐹) > 0. Moreover, we find that∫ 2𝑇

𝑇
𝑔𝑋 (𝑠)2𝑘𝑑𝑡 ≤

∫ 2𝑇

𝑇

∑
|𝜎+𝑖𝑡−𝜌𝐹 |≤ 1

log 𝑋

(
log

(
1

|𝜎 + 𝑖𝑡 − 𝜌𝐹 | log 𝑋

))2𝑘
𝑑𝑡

≤
∑

𝑇− 1
log 𝑋 ≤𝛾𝐹≤2𝑇+ 1

log 𝑋

∫ 𝛾𝐹+ 1
log 𝑋

𝛾𝐹− 1
log 𝑋

(
log

(
1

|𝑡 − 𝛾𝐹 | log 𝑋

))2𝑘
𝑑𝑡

≪ 1
log 𝑋

∑
𝑇−1≤𝛾𝐹≤2𝑇+1

∫ 1

0

(
log

(
1
ℓ

))2𝑘
𝑑ℓ

≪𝐹 𝑇
log𝑇
log 𝑋

∫ 1

0

(
log

(
1
ℓ

))2𝑘
𝑑ℓ.

By induction, we can easily confirm that the last integral is equal to (2𝑘)!.
Hence, we obtain ∫ 2𝑇

𝑇
𝑔𝑋 (𝑠)2𝑘𝑑𝑡 ≪𝐹 (2𝑘)!𝑇

log𝑇
log 𝑋 .

By substituting this estimate to inequality (6.41), we obtain this lemma. □

Proof of Proposition 6.5. Let 𝑓 be a fixed function satisfying the condition of
this paper (see Notation) and 𝐷 ( 𝑓 ) ≥ 2. Let 𝜎 ≥ 1/2, 𝑇 be large, 𝑘 ∈ Z≥1, and
𝑋 , 𝑌 be parameters with 3 ≤ 𝑋 ≤ 𝑌 := 𝑇 𝛿𝐹/𝑘 , where 𝛿𝐹 = min{ 𝜅𝐹20 ,

1
4 }. It holds

that 𝑌2(𝜎𝑌 ,𝑡 (𝐹)−𝜎) +𝑌𝜎𝑌 ,𝑡 (𝐹)−𝜎 = 𝑌2(1/2−𝜎) · 𝑌2(𝜎𝑌 ,𝑡 (𝐹)−1/2) +𝑌1/2−𝜎 · 𝑌𝜎𝑌 ,𝑡 (𝐹)−1/2 ≤
2𝑌1/2−𝜎 · 𝑌2(𝜎𝑌 ,𝑡 (𝐹)−1/2) for 𝜎 ≥ 1/2. Using this inequality and estimate (6.23)
as 𝐻 = 1, we find that there exists a positive constant 𝐶1 = 𝐶1(𝐹) such that���� log 𝐹 (𝜎 + 𝑖𝑡) −

∑
2≤𝑛≤𝑋

Λ𝐹 (𝑛)
𝑛𝜎+𝑖𝑡 log 𝑛

−
∑

|𝜎+𝑖𝑡−𝜌𝐹 |≤ 1
log𝑌

log((𝜎 + 𝑖𝑡 − 𝜌𝐹) log𝑌 )
����2𝑘(6.42)

≤ 𝐶𝑘1
���� ∑
𝑋<𝑛≤𝑌2

Λ𝐹 (𝑛)𝑣 𝑓 ,1(𝑒log 𝑛/log𝑌 )
𝑛𝜎+𝑖𝑡 log 𝑛

����2𝑘
+ 𝐶𝑘1𝑌

2𝑘 (1/2−𝜎) (𝜎𝑌,𝑡 (𝐹) − 1/2)2𝑘𝑌4𝑘 (𝜎𝑌 ,𝑡 (𝐹)−1/2)
(���� ∑
𝑛≤𝑌3

Λ𝐹 (𝑛)𝑤𝑌 (𝑛)
𝑛𝜎𝑌 ,𝑡 (𝐹)+𝑖𝑡

���� + log𝑇
)2𝑘
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for 𝑡 ∈ [𝑇, 2𝑇]. Following the proof of estimate (6.40), we obtain

𝑌 𝑘 (1−2𝜎)
∫ 2𝑇

𝑇
(𝜎𝑌,𝑡 (𝐹) − 1/2)2𝑘𝑌4𝑘 (𝜎𝑌 ,𝑡 (𝐹)−1/2)

(���� ∑
𝑛≤𝑌3

Λ𝐹 (𝑛)𝑤𝑌 (𝑛)
𝑛𝜎𝑌 ,𝑡 (𝐹)+𝑖𝑡

���� + log𝑇
)2𝑘

𝑑𝑡

≪ 𝐶𝑘𝑇
1−(2𝜎−1)𝛿𝐹+ 16𝛿𝐹

log𝑌

( log𝑇
log𝑌

)2𝑘
≪ 𝑇1−(2𝜎−1)𝛿𝐹𝐶𝑘2 𝑘

2𝑘 (6.43)

for some positive constant 𝐶2 = 𝐶2(𝐹). Similarly to the proof of (6.31), we
have ∑

𝑋<𝑝ℓ≤𝑌2

ℓ>𝐾1

Λ𝐹 (𝑝ℓ)𝑣 𝑓 ,1(𝑒log 𝑝ℓ/log𝑌 )
𝑝ℓ(𝜎+𝑖𝑡) log 𝑝ℓ

≪𝐹 𝑋
1/2−𝜎,

where 𝐾1 is the same constant as in the proof of Lemma 6.5. Here, we used
the inequality |𝑣 𝑓 ,1(𝑒log 𝑝ℓ/log𝑌 ) | ≤ 1. Therefore,���� ∑

𝑋<𝑛≤𝑌2

Λ𝐹 (𝑛)𝑣 𝑓 ,1(𝑒log 𝑛/log𝑌 )
𝑛𝜎+𝑖𝑡 log 𝑛

����2𝑘
≤ 𝐾2𝑘

1

∑
ℓ≤𝐾1

���� ∑
𝑋1/ℓ≤𝑝≤𝑌2/ℓ

Λ𝐹 (𝑝ℓ)𝑣 𝑓 ,1(𝑒log 𝑝ℓ/log𝑌 )
𝑝ℓ(𝜎+𝑖𝑡) log 𝑝ℓ

����2𝑘 + 𝐶𝑘3 𝑋 (1−2𝜎)𝑘

for some positive constant 𝐶3 = 𝐶3(𝐹). Using Lemma 2.8, we have

1
𝑇

∫ 2𝑇

𝑇

���� ∑
𝑋<𝑛≤𝑌2

Λ𝐹 (𝑛)𝑣 𝑓 ,1(𝑒log 𝑛/log𝑌 )
𝑛𝜎+𝑖𝑡 log 𝑛

����2𝑘𝑑𝑡
≪ 𝐾2𝑘

1 𝑘!
∑

1≤ℓ≤𝐾1

©­«
∑

𝑋1/ℓ<𝑝≤𝑌2/ℓ

|Λ𝐹 (𝑝ℓ) |2
𝑝2𝜎ℓ (log 𝑝ℓ)2

ª®¬
𝑘

+ 𝐶𝑘3 𝑋
−(2𝜎−1)𝑘 . (6.44)

Moreover, by estimate (6.30), it holds that
∑
𝑝

|Λ𝐹 (𝑝ℓ ) |2
𝑝ℓ (log 𝑝ℓ )2 ≪ 1 for ℓ ≥ 2, and

thus we obtain∑
𝑋1/ℓ<𝑝≤𝑌2/ℓ

|Λ𝐹 (𝑝ℓ) |2
𝑝2𝜎ℓ (log 𝑝ℓ)2 ≤ 𝑋1−2𝜎

∑
𝑝

|Λ𝐹 (𝑝ℓ) |2
𝑝ℓ (log 𝑝ℓ)2 ≪𝐹 𝑋

1−2𝜎 . (6.45)

Combining (6.45), (6.42), and (6.43), we obtain Proposition 6.5. □

Proof of Proposition 6.6. By Proposition 6.5, it suffices to show that there exists
a positive constant 𝐴3 = 𝐴3(𝐹) such that∫ 2𝑇

𝑇

����� ∑
|𝜎+𝑖𝑡−𝜌𝐹 |≤ 1

log𝑌

log((𝜎 + 𝑖𝑡 − 𝜌𝐹) log𝑌 )
�����2𝑘 ≤ 𝑇1−(2𝜎−1)𝛿𝐹 𝐴𝑘3 𝑘

4𝑘

with 𝑌 = 𝑇 𝛿𝐹/𝑘 , and this estimate can be obtained by Lemma 6.6. □
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6.3 Distribution functions of Dirichlet polynomials on the
critical line

In this section, we assume that F = (𝐹1, . . . , 𝐹𝑟) is an 𝑟-tuple of 𝐿-functions,
and that θ = (𝜃1, . . . , 𝜃𝑟) ∈ R𝑟 .

6.3.1 Approximate formulas for moment generating
functions I

We first show the following proposition, which gives formulas for moment
generating functions.

Proposition 6.7. Assume that F , θ satisfy (S4), (A1), and (A2). Let 𝑇 , 𝑋 be
large numbers with 𝑋 (log log 𝑋)4(𝑟+1) ≤ 𝑇 . For any z = (𝑧1, . . . , 𝑧𝑟) ∈ C𝑟 with
∥z∥ ≤ 2(log log 𝑋)2𝑟 ,

1
𝑇

∫
A

exp ©­«
𝑟∑
𝑗=1

𝑧 𝑗 Re
(
𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1

2 + 𝑖𝑡, 𝑋)
)ª®¬ 𝑑𝑡

=
∏
𝑝≤𝑋

𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

)
+𝑂

(
exp

(
−6−1(log log 𝑋)4(𝑟+1)

))
,

where 𝐾F ,θ (𝑝, z) is define by (6.17), and A is a subset of [𝑇, 2𝑇] defined by (6.49)
satisfying meas([𝑇, 2𝑇] \ A) ≪ 𝑇 exp

(
−𝑒−1(log log 𝑋)4(𝑟+1)

)
.

We prepare the proof this Proposition 6.7 with some lemmas.

Lemma 6.7. Let w = {𝑤 𝑗 ,𝑝}1≤ 𝑗≤𝑟,𝑝∈P be a complex sequence, where P is the set
of all prime numbers, and ψ = {𝜓 𝑗 ,𝑝}1≤ 𝑗≤𝑟,𝑝∈P a real sequence. For all 𝑛 ∈ Z≥2
written as 𝑛 = 𝑞𝛼1

1 · · · 𝑞𝛼𝑠𝑠 with 𝑞 𝑗 distinct prime numbers, we have

1
𝑇

∫ 2𝑇

𝑇

𝑠∏
𝑚=1

©­«
𝑟∑
𝑗=1
𝑤 𝑗 ,𝑞𝑚 cos(𝑡 log 𝑞𝑚 + 𝜓 𝑗 ,𝑞𝑚)

ª®¬
𝛼𝑚

𝑑𝑡

= 𝑓w,ψ (𝑛) +𝑂
(
𝑟Ω(𝑛)𝑛

𝑇

𝑠∏
𝑚=1

(|𝑤1,𝑞𝑚 | + · · · + |𝑤𝑟,𝑞𝑚 |)𝛼𝑚
)
.

Here, Ω(𝑛) is the number of the prime factors of 𝑛, and 𝑓w,ψ is the multiplicative
function defined by

𝑓w,ψ (𝑝𝛼) =
1
2𝛼

(
𝛼
𝛼/2

) ©­«
𝑟∑
𝑗=1
𝑤 𝑗 ,𝑝𝑒

𝑖𝜓 𝑗 , 𝑝ª®¬
𝛼
2 ©­«

𝑟∑
𝑗=1
𝑤 𝑗 ,𝑝𝑒𝑖𝜓 𝑗 , 𝑝

ª®¬
𝛼
2

.

The number
(
𝛼
𝛼/2

)
is the binomial coefficient, and we define

(
𝛼
𝛼/2

)
= 0 if 𝛼 is odd.
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Proof. Let 𝑝 be a prime number, and 𝛼 a positive integer. Then we find that

©­«
𝑟∑
𝑗=1
𝑤 𝑗 ,𝑝 cos(𝑡 log 𝑝 + 𝜓 𝑗 ,𝑝)

ª®¬
𝛼

=
∑

1≤ 𝑗1,..., 𝑗𝛼≤𝑟
𝑤 𝑗1,𝑝 · · ·𝑤 𝑗𝛼,𝑝

𝛼∏
𝑘=1

cos(𝑡 log 𝑝 + 𝜓 𝑗𝑘 ,𝑝),

and that
𝛼∏
𝑘=1

cos(𝑡 log 𝑝 + 𝜓 𝑗𝑘 ,𝑝) =
1
2𝛼

𝛼∏
𝑘=1

(
𝑒𝑖(𝑡 log 𝑝+𝜓 𝑗𝑘 , 𝑝

) + 𝑒−𝑖(𝑡 log 𝑝+𝜓 𝑗𝑘 , 𝑝
)
)

=
1
2𝛼

∑
𝜀1,...,𝜀𝛼∈{−1,1}

𝑒𝑖𝜀1 (𝑡 log 𝑝+𝜓 𝑗1 , 𝑝)+···+𝑖𝜀𝛼 (𝑡 log 𝑝+𝜓 𝑗𝛼, 𝑝)

=
1
2𝛼

∑
𝜀1,...,𝜀𝛼∈{−1,1}
𝜀1+···+𝜀𝛼=0

𝑒𝑖(𝜀1𝜓 𝑗1 , 𝑝+···+𝜀𝛼𝜓 𝑗𝛼, 𝑝) + 𝐸1,

where 𝐸1 is the sum whose the number of terms is less than 2𝛼, and the form
of each term is 𝛿𝑒𝑖𝑡𝛽 log 𝑝 with |𝛿 | ≤ 2−𝛼 and 1 ≤ |𝛽 | ≤ 𝛼. We define that the
first sum on the right hand side is zero if 𝛼 is odd. Therefore, we can write

©­«
𝑟∑
𝑗=1
𝑤 𝑗 ,𝑝 cos(𝑡 log 𝑝 + 𝜓 𝑗 ,𝑝)

ª®¬
𝛼

=
1
2𝛼

∑
1≤ 𝑗1,..., 𝑗𝛼≤𝑟

𝑤 𝑗1,𝑝 · · ·𝑤 𝑗𝛼,𝑝

∑
𝜀1,...,𝜀𝛼∈{−1,1}
𝜀1+···+𝜀𝛼=0

𝑒𝑖(𝜀1𝜓 𝑗1 , 𝑝+···+𝜀𝛼𝜓 𝑗𝛼, 𝑝) + 𝐸2.

Here, 𝐸2 is the sum of which the number of terms is less than (2𝑟)𝛼, and the
form of each term is 𝛿′𝑒𝑖𝑡𝛽 log 𝑝 with |𝛿′| ≤ 2−𝛼 (∑𝑟

𝑗=1 |𝑤 𝑗 ,𝑝 |)𝛼 and 1 ≤ |𝛽 | ≤ 𝛼.
Moreover, the first term on the right hand side is rewritten as

1
2𝛼

∑
𝜀1,...,𝜀𝛼∈{−1,1}
𝜀1+···+𝜀𝛼=0

∑
1≤ 𝑗1,..., 𝑗𝛼≤𝑟

(
𝑤 𝑗1,𝑝𝑒

𝑖𝜀1𝜓 𝑗1 , 𝑝
)
· · ·

(
𝑤 𝑗𝛼,𝑝𝑒

𝑖𝜀𝛼𝜓 𝑗𝛼, 𝑝
)

=
1
2𝛼

∑
𝜀1,...,𝜀𝛼∈{−1,1}
𝜀1+···+𝜀𝛼=0

©­«
𝑟∑
𝑗=1
𝑤 𝑗 ,𝑝𝑒

𝑖𝜓 𝑗 , 𝑝ª®¬
𝛼
2 ©­«

𝑟∑
𝑗=1
𝑤 𝑗 ,𝑝𝑒𝑖𝜓 𝑗 , 𝑝

ª®¬
𝛼
2

=
1
2𝛼

(
𝛼
𝛼/2

) ©­«
𝑟∑
𝑗=1
𝑤 𝑗 ,𝑝𝑒

𝑖𝜓 𝑗 , 𝑝ª®¬
𝛼
2 ©­«

𝑟∑
𝑗=1
𝑤 𝑗 ,𝑝𝑒𝑖𝜓 𝑗 , 𝑝

ª®¬
𝛼
2

= 𝑓w,ψ (𝑝𝛼).

Thus, we obtain
𝑠∏

𝑚=1

©­«
𝑟∑
𝑗=1
𝑤 𝑗 ,𝑞𝑚 cos(𝑡 log 𝑞𝑚 + 𝜓 𝑗 ,𝑞𝑚)

ª®¬
𝛼𝑚

= 𝑓w,ψ (𝑛) + 𝐸3,
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where 𝐸3 is the sum whose the number of terms is less than
∏𝑠
𝑚=1(2𝑟)𝛼𝑚 ,

and the form of each term is 𝛿′′𝑒𝑖𝑡 (𝛽1 log 𝑞1+···+𝛽𝑠 log 𝑞𝑠) with 0 ≤ |𝛽 𝑗 | ≤ 𝛼 𝑗 and
𝛽𝑢 ≠ 0 for some 1 ≤ 𝑢 ≤ 𝑠. Here, 𝛿′′ is a complex number independent of
𝑡, and satisfies |𝛿′′| ≤ 𝑊 :=

∏𝑠
𝑚=1 2−𝛼𝑚 (∑𝑟

𝑗=1 |𝑤 𝑗 ,𝑞𝑚 |)𝛼𝑚 . Since |𝛽1 log 𝑞1 + · · · +
𝛽𝑠 log 𝑞𝑠 | ≫ 𝑛−1, the integral of each term of 𝐸3 is bounded by 𝑊𝑛. Hence,
by this bound of 𝐸3 and the bound for the number of terms of 𝐸3, we have∫ 2𝑇

𝑇
𝐸3𝑑𝑡 ≪ 𝑊𝑛

𝑠∏
𝑚=1

(2𝑟)𝛼𝑚 = 𝑟Ω(𝑛)𝑛
𝑠∏

𝑚=1
(
𝑟∑
𝑗=1

|𝑤 𝑗 ,𝑞𝑚 |)𝛼𝑚 ,

which completes the proof of the lemma. □

Lemma 6.8. Let a(𝑝) = (𝑎1(𝑝), . . . , 𝑎𝑟 (𝑝)) be an 𝑟-tuple of sequences with
{𝑎 𝑗 (𝑝)} a complex sequence over prime numbers. Let 𝑋 ≥ 3, and 𝑇 be large.
Let z = (𝑧1, . . . , 𝑧𝑟) ∈ C𝑟 . Put

𝐾a(𝑝, z) =
𝑟∑
𝑗=1

𝑧 𝑗𝑎 𝑗 (𝑝)
𝑟∑
𝑘=1

𝑧𝑘𝑎𝑘 (𝑝). (6.46)

Then, for 𝑘 ∈ Z≥1, 𝑅 > 0, we have

1
𝑇

∫ 2𝑇

𝑇

©­«
𝑟∑
𝑗=1

𝑧 𝑗 Re
∑
𝑝≤𝑋

𝑎 𝑗 (𝑝)
𝑝1/2+𝑖𝑡

ª®¬
𝑘

𝑑𝑡 =

𝑘!
2𝜋𝑖

∮
|𝑤 |=𝑅

1
𝑤𝑘+1

∏
𝑝≤𝑋

𝐼0
(
𝑤
√
𝐾a(𝑝, z)/𝑝

)
𝑑𝑤 +𝑂 ©­« 1

𝑇

(
𝑟 ∥z∥

∑
𝑝≤𝑋

∥a(𝑝)∥1
√
𝑝

) 𝑘ª®¬ .
Here, the symbol ∥ · ∥1 means the 𝐿1-norm, that is, ∥a(𝑝)∥1 = |𝑎1(𝑝) | +· · ·+ |𝑎𝑟 (𝑝) |.

Note that we do not need to consider the branch of 𝐼0(
√
𝑧) since the

function is an entire function on the complex plane.

Proof. We write

1
𝑇

∫ 2𝑇

𝑇

©­«
𝑟∑
𝑗=1

𝑧 𝑗 Re
∑
𝑝≤𝑋

𝑎 𝑗 (𝑝)
𝑝1/2+𝑖𝑡

ª®¬
𝑘

𝑑𝑡 (6.47)

=
1
𝑇

∫ 2𝑇

𝑇

©­«
∑
𝑝≤𝑋

1
√
𝑝

𝑟∑
𝑗=1

𝑧 𝑗 |𝑎 𝑗 (𝑝) | cos(𝑡 log 𝑝 − arg 𝑎 𝑗 (𝑝))
ª®¬
𝑘

𝑑𝑡

=
1
𝑇

∑
𝑝1,...,𝑝𝑘≤𝑋

1
√
𝑝1 · · · 𝑝𝑘

∫ 2𝑇

𝑇

𝑘∏
𝑙=1

𝑟∑
𝑗=1

𝑧 𝑗 |𝑎 𝑗 (𝑝𝑙) | cos(𝑡 log 𝑝𝑙 − arg 𝑎 𝑗 (𝑝𝑙))𝑑𝑡.

In order to use Lemma 6.7, we putw = {𝑤 𝑗 ,𝑝}1≤ 𝑗≤𝑟,𝑝∈P where𝑤 𝑗 ,𝑝 = 𝑧 𝑗 |𝑎 𝑗 (𝑝) |,
andψ = {𝜓 𝑗 ,𝑝}1≤ 𝑗≤𝑟,𝑝∈P with 𝜓 𝑗 ,𝑝 = − arg 𝑎 𝑗 (𝑝). For 𝑛 = 𝑝1 · · · 𝑝𝑘 = 𝑞𝛼1

1 · · · 𝑞𝛼𝑠𝑠
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with 𝑞𝑚’s being distinct prime numbers, we find that

𝑟Ω(𝑛)
𝑠∏

𝑚=1
(|𝑤1,𝑞𝑚 | + · · · + |𝑤𝑟,𝑞𝑚 |)𝛼𝑚 = 𝑟 𝑘

𝑠∏
𝑚=1

(|𝑧1𝑎1(𝑞𝑚) | + · · · + |𝑧𝑟𝑎𝑟 (𝑞𝑚) |)𝛼𝑚

≤ 𝑟 𝑘
𝑠∏

𝑚=1
(∥z∥ · ∥a(𝑞𝑚)∥1)𝛼𝑚

= (𝑟 ∥z∥)𝑘
𝑘∏
𝑙=1

∥a(𝑝𝑙)∥1.

Therefore, by Lemma 6.7, integral (6.47) becomes

=
∑

𝑝1,...,𝑝𝑘≤𝑋

𝑓w,ψ (𝑝1 · · · 𝑝𝑘 )√
𝑝1 · · · 𝑝𝑘

+𝑂
(
(𝑟 ∥z∥)𝑘
𝑇

𝑘∏
𝑙=1

∑
𝑝𝑙≤𝑋

∥a(𝑝𝑙)∥1
√
𝑝𝑙

)
=

∑
𝑝1,...,𝑝𝑘≤𝑋

𝑓w,ψ (𝑝1 · · · 𝑝𝑘 )√
𝑝1 · · · 𝑝𝑘

+𝑂 ©­« 1
𝑇

(
𝑟 ∥z∥

∑
𝑝≤𝑋

∥a(𝑝)∥1
√
𝑝

) 𝑘ª®¬ .
This gives

1
𝑇

∫ 2𝑇

𝑇

©­«
𝑟∑
𝑗=1

𝑧 𝑗 Re
∑
𝑝≤𝑋

𝑎 𝑗 (𝑝)
𝑝1/2+𝑖𝑡

ª®¬
𝑘

𝑑𝑡 (6.48)

= 𝑘!
∑

Ω(𝑛)=𝑘

𝑓w,ψ (𝑛)√
𝑛

𝑔𝑋 (𝑛) +𝑂
©­« 1
𝑇

(
𝑟 ∥z∥

∑
𝑝≤𝑋

∥a(𝑝)∥1
√
𝑝

) 𝑘ª®¬ ,
where 𝑔𝑋 (𝑛) is the multiplicative function defined as 𝑔𝑋 (𝑝𝛼) = 1/𝛼! for 𝑝 ≤ 𝑋
and 0 otherwise. By Cauchy’s integral formula, the right hand side of (6.48)
becomes

𝑘!
2𝜋𝑖

∮
|𝑤 |=𝑅

∞∑
𝑛=1

𝑓w,ψ (𝑛)√
𝑛

𝑔𝑋 (𝑛)𝑤Ω(𝑛) 𝑑𝑤

𝑤𝑘+1 +𝑂 ©­« 1
𝑇

(
𝑟 ∥z∥

∑
𝑝≤𝑋

∥a(𝑝)∥1
√
𝑝

) 𝑘ª®¬ .
Note that we exchanged the order of the integral and the series in the above
deformation, but it is guaranteed by their absolute convergence. Since the
functions 𝑓w,ψ, 𝑔𝑋 , and 𝑤Ω(𝑛) are multiplicative, we find that

∞∑
𝑛=1

𝑓w,ψ (𝑛)√
𝑛

𝑔𝑋 (𝑛)𝑤Ω(𝑛) =
∏
𝑝≤𝑋

∞∑
𝛼=0

𝑓w,ψ (𝑝𝛼)
𝑝𝛼/2𝛼!

𝑤𝛼 =
∏
𝑝≤𝑋

∞∑
𝛼=0

𝑓w,ψ (𝑝2𝛼)
(2𝛼)!𝑝𝛼 𝑤2𝛼 .

Using the definition of 𝑓w,ψ (𝑛), we can write

∞∑
𝛼=0

𝑓w,ψ (𝑝2𝛼)
(2𝛼)!𝑝𝛼 𝑤2𝛼 =

∞∑
𝛼=0

1
(𝛼!)2

©­«𝑤
2

4𝑝

𝑟∑
𝑗=1

𝑧 𝑗𝑎𝐹𝑗 (𝑝)𝑒−𝑖𝜃 𝑗
𝑟∑
𝑘=1

𝑧𝑘𝑎𝐹𝑘 (𝑝)𝑒−𝑖𝜃𝑘
ª®¬
𝛼

= 𝐼0
(
𝑤
√
𝐾a(𝑝, z)/𝑝

)
,

which completes the lemma. □
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Lemma 6.9. Let 𝑇 , 𝑋 be large with 𝑋 (log log 𝑋)4(𝑟+1) ≤ 𝑇 . Define the set A =
A(𝑇, 𝑋,F ) by

A =
𝑟⋂
𝑗=1

𝑡 ∈ [𝑇, 2𝑇] :

����𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋)

����
𝜎𝐹𝑗 (𝑋)

≤ (log log 𝑋)2(𝑟+1)

 . (6.49)

Then we have

1
𝑇

meas( [𝑇, 2𝑇] \ A) ≪F exp
(
−𝑒−1(log log 𝑋)4(𝑟+1)

)
.

Proof. By Lemma 2.8, we have

1
𝑇

∫ 2𝑇

𝑇

����𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋)

����2𝑘𝑑𝑡 ≪ 𝑘!
(∑
𝑝≤𝑋

|𝑎𝐹𝑗 (𝑝) |2

𝑝

) 𝑘
= (𝑘𝜎𝐹𝑗 (𝑋)2)𝑘 (6.50)

for 3 ≤ 𝑋 ≤ 𝑇1/2𝑘 . Therefore, it holds that

1
𝑇

meas

𝑡 ∈ [𝑇, 2𝑇] :

����𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋)

����
𝜎𝐹𝑗 (𝑋)

> (log log 𝑋)2(𝑟+1)


≪

(
𝑘

(log log 𝑋)4(𝑟+1)

) 𝑘
.

Hence, we obtain

1
𝑇

meas([𝑇, 2𝑇] \ A) ≪ 𝑟 ×
(

𝑘

(log log 𝑋)4(𝑟+1)

) 𝑘
.

Choosing 𝑘 = ⌊𝑒−1(log log 𝑋)4(𝑟+1)⌋, we obtain this lemma. □

Proof of Proposition 6.7. Let 𝑇 , 𝑋 be large numbers such that 𝑋 (log log 𝑋)4(𝑟+1) ≤
𝑇 . Let z = (𝑧1, . . . , 𝑧𝑟) ∈ C𝑟 with ∥z∥ ≤ 2(log log 𝑋)2𝑟 . From (6.49), we have

1
𝑇

∫
A

exp ©­«
𝑟∑
𝑗=1

𝑧 𝑗 Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋)ª®¬ 𝑑𝑡

=
1
𝑇

∑
0≤𝑘≤𝑌

1
𝑘!

∫
A

( 𝑟∑
𝑗=1

𝑧 𝑗 Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋)

) 𝑘
𝑑𝑡

+𝑂
(∑
𝑘>𝑌

1
𝑘!

(
𝐶 (log log 𝑋)2𝑟+5/2∥z∥

) 𝑘 )
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with 𝑌 = 1
4 (log log 𝑋)4(𝑟+1) . Here, 𝐶 = 𝐶 (F ) is some positive constant. We

see that this 𝑂-term is ≪ exp
(
−(log log 𝑋)4(𝑟+1)

)
. By the Cauchy-Schwarz

inequality, we find that

1
𝑇

∫
A

( 𝑟∑
𝑗=1

𝑧 𝑗 Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋)

) 𝑘
𝑑𝑡

=
1
𝑇

∫ 2𝑇

𝑇

( 𝑟∑
𝑗=1

𝑧 𝑗 Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋)

) 𝑘
𝑑𝑡

+𝑂
©­­«

1
𝑇
(meas( [𝑇, 2𝑇] \ A))1/2 ©­«

∫ 2𝑇

𝑇

���� 𝑟∑
𝑗=1

𝑧 𝑗 Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋)

����2𝑘𝑑𝑡ª®¬
1/2ª®®¬ .

By Lemma 6.9, estimate (6.50), and bounds for ∥z∥, this 𝑂-term is

≪ exp
(
−(2𝑒)−1(log log 𝑋)4(𝑟+1)

) (
𝐶1𝑘

1/2(log log 𝑋)2𝑟+1/2
) 𝑘

for 0 ≤ 𝑘 ≤ 𝑌 , where 𝐶1 = 𝐶1(F ) > 0 is a positive constant. Therefore, it
holds that

1
𝑇

∫
A

exp ©­«
𝑟∑
𝑗=1

𝑧 𝑗 Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋)ª®¬ 𝑑𝑡 (6.51)

=
1
𝑇

∑
0≤𝑘≤𝑌

1
𝑘!

∫ 2𝑇

𝑇

( 𝑟∑
𝑗=1

𝑧 𝑗 Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋)

) 𝑘
𝑑𝑡

+𝑂
(
exp

(
−(2𝑒)−1(log log 𝑋)4(𝑟+1)

) ∑
0≤𝑘≤𝑌

(𝐶1𝑒(log log 𝑋)2𝑟+1/2)𝑘

𝑘 𝑘/2

)
.

When 𝑋 is sufficiently large, it follows that∑
0≤𝑘≤𝑌

(𝐶1𝑒(log log 𝑋)2𝑟+1/2)𝑘

𝑘 𝑘/2
=

∑
0≤𝑘≤(log log 𝑋)4𝑟+2

(𝐶1𝑒(log log 𝑋)2𝑟+1/2)𝑘

𝑘 𝑘/2
+𝑂 (1)

≪ exp
(
(log log 𝑋)4𝑟+3

)
.

Hence, the 𝑂-term of (6.51) is ≪ exp
(
−1

6 (log log 𝑋)4(𝑟+1)
)
. Moreover, apply-

ing Lemma 6.8 as 𝑎 𝑗 (𝑝) = 𝑎𝐹𝑗 (𝑝)𝑒−𝑖𝜃 𝑗 , we find that

1
𝑇

∑
0≤𝑘≤𝑌

1
𝑘!

∫ 2𝑇

𝑇

( 𝑟∑
𝑗=1

𝑧 𝑗 Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋)

) 𝑘
𝑑𝑡 =

1
2𝜋𝑖

∫
|𝑤 |=𝑒

∑
0≤𝑘≤𝑌

1
𝑤𝑘+1

∏
𝑝≤𝑋

𝐼0
(
𝑤
√
𝐾F ,θ (𝑝, z)/𝑝

)
𝑑𝑤 +𝑂F

(
1
𝑇

∑
0≤𝑘≤𝑌

1
𝑘!

(
𝐶2𝑋

2
) 𝑘 )
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for some 𝐶2 = 𝐶2(F ) > 0. Note that we in this deformation of the 𝑂-term
used the estimate |𝑎𝐹𝑗 (𝑝) | ≪𝐹𝑗 𝑝

1/2 which is deduced from the equation
𝑎𝐹𝑗 (𝑝) = 𝑏𝐹𝑗 (𝑝) and axiom (S4). By noting the range of 𝑋 , the 𝑂-term is
≪F 𝑇−1/2. Hence, by substituting these estimations to equation (6.51), we
obtain

1
𝑇

∫
A

exp ©­«
𝑟∑
𝑗=1

𝑧 𝑗 Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋)ª®¬ 𝑑𝑡 (6.52)

=
1

2𝜋𝑖

∫
|𝑤 |=𝑒

∑
0≤𝑘≤𝑌

1
𝑤𝑘+1

∏
𝑝≤𝑋

𝐼0
(
𝑤
√
𝐾F ,θ (𝑝, z)/𝑝

)
𝑑𝑤

+𝑂
(
exp

(
−6−1(log log 𝑋)4(𝑟+1)

))
.

By inequality (6.67) and noting the range of ∥z∥ , we find that�����∏
𝑝≤𝑋

𝐼0
(
𝑤
√
𝐾F ,θ (𝑝, z)/𝑝

)����� ≤ exp
(
(log log 𝑋)4𝑟+2

)
for |𝑤 | = 𝑒. Additionally, for |𝑤 | = 𝑒, we have�����∑

𝑘>𝑌

1
𝑤𝑘+1

����� ≪ exp
(
−4−1(log log 𝑋)4(𝑟+1)

)
.

Therefore, we obtain∑
𝑘>𝑌

1
𝑤𝑘+1

∏
𝑝≤𝑋

𝐼0
(
𝑤
√
𝐾F ,θ (𝑝, z)/𝑝

)
𝑑𝑤 ≪ exp

(
−6−1(log log 𝑋)4(𝑟+1)

)
.

By this inequality, the right hand side of equation (6.52) is equal to

1
2𝜋𝑖

∮
|𝑤 |=𝑒

∏
𝑝≤𝑋

𝐼0
(
𝑤
√
𝐾F ,θ (𝑝, z)/𝑝

) 𝑑𝑤

𝑤 − 1 +𝑂
(
exp

(
−6−1(log log 𝑋)2(𝑟+1)

))
.

In particular, since the function
∏

𝑝≤𝑋 𝐼0
(
𝑤
√
𝐾F ,θ (𝑝, z)/𝑝

)
is entire with

respect to 𝑤, this is equal to∏
𝑝≤𝑋

𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

)
+𝑂

(
exp

(
−6−1(log log 𝑋)2(𝑟+1)

))
,

completes the proof of Proposition 6.7. □

Next, we give some lemmas to help estimate the main term in Proposition
6.7.

Lemma 6.10. Assume that F satisfies (S4), (A1), and (A2). Put

Ψ(z) = Ψ(z;F , θ) :=
∏
𝑝

𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

)
exp

(
𝐾F ,θ (𝑝, z)/4𝑝

) .
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Then, Ψ is analytic on C𝑟 , and satisfies

|Ψ(z) | ≤
���� 𝑟∏
𝑗=1

exp
(
−
𝑧2𝑗

2 𝜎𝐹𝑗

(
|𝑧 𝑗 |

)2 +𝑂F
(
|𝑧 𝑗 |2 + |𝑧 𝑗 |

2−2𝜗F
1−2𝜗F

)) ���� (6.53)

for any z = (𝑧1, . . . , 𝑧𝑟) ∈ C, and

Ψ(x) =
𝑟∏
𝑗=1

exp
(
−
𝑥2
𝑗

2 𝜎𝐹𝑗

(
𝑥 𝑗

)2 +𝑂F

(
𝑥2
𝑗 + 𝑥

2−2𝜗F
1−2𝜗F
𝑗

))
(6.54)

forx ∈ (R≥0)𝑟 . Moreover, for any z = (𝑥1+𝑖𝑢1, . . . , 𝑥𝑟 +𝑖𝑢𝑟) ∈ C𝑟 satisfying 𝑥 𝑗 ≥ 0
and 𝑢 𝑗 ∈ R with ∥u∥ ≤ 1, we have

Ψ(z) = Ψ(𝑥1, . . . , 𝑥𝑟)
𝑟∏
𝑗=1

(
1 +𝑂F

(
|𝑢 𝑗 | exp

(
𝐷1∥x∥

2−2𝜗F
1−2𝜗F

)))
. (6.55)

Here, 𝐷1 = 𝐷1(F ) is a positive constant.

Proof. First, we show that Ψ is analytic on C𝑟 . It suffices to show that, for
every compact set 𝐷 ⊂ C𝑟 , the infinite product is convergent uniformly for
z ∈ 𝐷. By the definitions of 𝐾F ,θ and 𝜗F , it holds that, for any z ∈ 𝐷,

|𝐾F ,θ (𝑝, z) | ≤ 𝐶2∥z∥2∥𝑎F (𝑝)∥2
1 ≪𝐷,F 𝑝2𝜗F , (6.56)

for some positive constant 𝐶 = 𝐶 (F ) > 0. Therefore, for any prime 𝑝 >
𝑝0(𝐷,F ) with 𝑝0(𝐷,F ) sufficiently large depending on 𝐷, we can write

𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

)
exp(𝐾F ,θ (𝑝, z)/4𝑝)

=
∞∑
𝑚=0

𝐾F ,θ (𝑝, 𝑧)𝑚

4𝑚𝑝𝑚 (𝑚!)2 ×
( ∞∑
𝑛=0

𝐾F ,θ (𝑝, 𝑧)𝑛
4𝑛𝑝𝑛𝑛!

)−1

(6.57)

= 1 +𝑂𝐷,F

(
∥𝑎F (𝑝)∥2

1
𝑝2−2𝜗F

)
uniformly for z ∈ 𝐷. Since we assume (A1) for F , it holds that

∑
𝑝

∥𝑎F (𝑝)∥2
1

𝑝2−2𝜗F
<

+∞. Hence, the infinity product is convergent uniformly for z ∈ 𝐷.
Next, we prove (6.53). Put 𝑀 = (𝐶∥z∥)

2
1−2𝜗F . Here,𝐶 is the same constant

as in (6.56). Then we divide the range of the product as

∏
𝑝

𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

)
exp

(
𝐾F ,θ (𝑝, z)/4𝑝

) =

(∏
𝑝≤𝑀

×
∏
𝑝>𝑀

)
𝐼0

(√
𝐾F ,θ (𝑝, z)/𝑝

)
exp

(
𝐾F ,θ (𝑝, z)/4𝑝

) .
Using the Taylor expansion of 𝐼0, we see that����𝐼0 (√

𝐾F ,θ (𝑝, z)/𝑝
) ���� ≤ 𝐼0

(√
|𝐾F ,θ (𝑝, z) |/𝑝

)
.
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From this inequality, (6.56), and the inequality |𝐼0(𝑧) | ≤ exp( |𝑧 |), it holds that�����∏
𝑝≤𝑀

𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

)����� ≤ exp ©­«𝐶∥z∥
𝑟∑
𝑗=1

∑
𝑝≤𝑀

|𝑎𝐹𝑗 (𝑝) |√
𝑝

ª®¬ .
Using assumption (A1) and the Cauchy-Schwarz inequality, we find that

∑
𝑝≤𝑀

|𝑎𝐹𝑗 (𝑝) |√
𝑝

≤
(∑
𝑝≤𝑀

1
)1/2 (∑

𝑝≤𝑀

|𝑎𝐹𝑗 (𝑝) |2

𝑝

)1/2

≪F ∥z∥
1

1−2𝜗F , (6.58)

and thus �����∏
𝑝≤𝑀

𝐼0
(
𝑤
√
𝐾F ,θ (𝑝, z)/𝑝

)����� ≤ exp
(
𝑂F

(
∥z∥

2−2𝜗F
1−2𝜗F

))
≤

𝑟∏
𝑗=1

exp
(
𝑂F

(
|𝑧 𝑗 |

2−2𝜗F
1−2𝜗F

))
.

Additionally, since

𝐾F ,θ (𝑝, z)

=
𝑟∑
𝑗=1

𝑧 𝑗𝑎𝐹𝑗 (𝑝)𝑒−𝑖𝜃 𝑗
𝑟∑
𝑘=1

𝑧𝑘𝑎𝐹𝑘 (𝑝)𝑒−𝑖𝜃𝑘

=
𝑟∑
𝑗=1

𝑧2𝑗 |𝑎𝐹𝑗 (𝑝) |2 + 2
∑

1≤𝑙1<𝑙2≤𝑟
𝑧𝑙1𝑧𝑙2 Re

(
𝑒−𝑖(𝜃𝑙1−𝜃𝑙2 )𝑎𝐹𝑙1 (𝑝)𝑎𝐹𝑙2 (𝑝)

)
, (6.59)

we see that, using (A1) and (A2),

∏
𝑝≤𝑀

exp
(
−𝐾F ,θ (𝑝, z)/4𝑝

)
= exp ©­«−

𝑟∑
𝑗=1

𝑧2𝑗

2 𝜎𝐹𝑗 (𝑀)2 +𝑂F (∥z∥2)ª®¬ . (6.60)

If |𝑧 𝑗 | ≤ ∥z∥1/2, then 𝑧2𝑗𝜎𝐹𝑗 (𝑀)2 ≪F ∥z∥2. If |𝑧 𝑗 | > ∥z∥1/2, then we use (A1)
to obtain

𝑧2𝑗

2 𝜎𝐹𝑗 (𝑀)2 =
𝑧2𝑗

2 𝜎𝐹𝑗 (|𝑧 𝑗 |)2 +
𝑧2𝑗

4
∑

|𝑧 𝑗 |<𝑝≤𝑀

|𝑎𝐹𝑗 |2

𝑝
=
𝑧2𝑗

2 𝜎𝐹𝑗 (|𝑧 𝑗 |)2 +𝑂F
(
∥z∥2

)
.

From this observation and (6.60), we find that

∏
𝑝≤𝑀

exp
(
−𝐾F ,θ (𝑝, z)/4𝑝

)
=

𝑟∏
𝑗=1

exp
(
−
𝑧2𝑗

2 𝜎𝐹𝑗 ( |𝑧 𝑗 |)2 +𝑂F (|𝑧 𝑗 |2)
)
. (6.61)
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Hence, we obtain���� ∏
𝑝≤𝑀

𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

)
exp

(
𝐾F ,θ (𝑝, z)/4𝑝

) ���� (6.62)

≤
���� 𝑟∏
𝑗=1

exp
(
−
𝑧2𝑗

2 𝜎𝐹𝑗

(
|𝑧 𝑗 |

)2 +𝑂F
(
|𝑧 𝑗 |2 + |𝑧 𝑗 |

2−2𝜗F
1−2𝜗F

)) ����.
When 𝑝 > 𝑀 and 𝐶 is sufficiently large, it holds from the Taylor expansion
that �������

𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

)
exp

(
𝐾F ,θ (𝑝, z)/4𝑝

) − 1

������� ≤ 1
2 ,

and that

𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

)
exp

(
𝐾F ,θ (𝑝, z)/4𝑝

) = 1 +𝑂F
©­« ∥z∥

4

𝑝2

𝑟∑
𝑗=1

|𝑎𝐹𝑗 (𝑝) |4
ª®¬ .

Therefore, we have

∑
𝑝>𝑀

log

����� 𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

)
exp

(
𝐾F ,θ (𝑝, z)/4𝑝

) �����
= Re

∑
𝑝>𝑀

log
𝐼0

(√
𝐾F ,θ (𝑝, z)/𝑝

)
exp

(
𝐾F ,θ (𝑝, z)/4𝑝

) ≪F

∑
𝑝>𝑀

∥z∥4

𝑝2

𝑟∑
𝑗=1

|𝑎𝐹𝑗 (𝑝) |4.

By (6.1), we find that∑
𝑝>𝑀

|𝑎𝐹𝑗 (𝑝) |4

𝑝2 ≪F

∑
𝑝>𝑀

|𝑎𝐹𝑗 (𝑝) |2

𝑝
· 𝑝2𝜗F −1

=
∑

𝑀<𝑝≤𝑀2

|𝑎𝐹𝑗 (𝑝) |2

𝑝
· 𝑝2𝜗F −1 +𝑂 ©­«

∑
𝑝>𝑀2

|𝑎𝐹𝑗 (𝑝) |2

𝑝
· 𝑝2𝜗F −1ª®¬

≤ 𝑀2𝜗F −1
∑

𝑀<𝑝≤𝑀2

|𝑎𝐹𝑗 (𝑝) |2

𝑝
+𝑂F

(
𝑀2(2𝜗F −1) log log𝑀

)
≪F 𝑀2𝜗F −1. (6.63)

Hence, we obtain

∏
𝑝>𝑀

𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

)
exp

(
𝐾F ,θ (𝑝, z)/4𝑝

) = exp
(
𝑂F

(
∥z∥2

))
=

𝑟∏
𝑗=1

exp
(
𝑂F

(
|𝑧 𝑗 |2

))
. (6.64)
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Combing this estimate and (6.62), we obtain estimate (6.53).
Next, we show (6.54). We see that exp (𝑥/2) ≪ 𝐼0(𝑥) ≤ exp(𝑥) for 𝑥 ≥ 0

since exp(𝑥/2) ≪ 1
2𝜋

∫ 𝜋/4
−𝜋/4 exp(𝑥 cos 𝜃)𝑑𝜃 ≤ 𝐼0(𝑥) ≤ exp(𝑥). It follows from

this inequality and (6.56) that, for 𝑀 = (𝐶∥x∥)
2

1−2𝜗F ,

∏
𝑝≤𝑀

𝐼0
(√
𝐾F ,θ (𝑝,x)/𝑝

)
= exp ©­«𝑂F ©­«∥x∥

𝑟∑
𝑗=1

∑
𝑝≤𝑀

|𝑎𝐹𝑗 (𝑝) |√
𝑝

ª®¬ª®¬ .
Similarly to (6.58) and by this equation, we have∏

𝑝≤𝑀
𝐼0

(√
𝐾F ,θ (𝑝,x)/𝑝

)
=

𝑟∏
𝑗=1

exp
(
𝑂F

(
|𝑥 𝑗 |

2−2𝜗F
1−2𝜗F

))
.

We can calculate the other parts similarly to the proof of (6.53), and obtain
(6.54).

Finally, we prove equation (6.55). Since Ψ is analytic on C𝑟 , we can write

Ψ(𝑥1 + 𝑖𝑢1, . . . , 𝑥𝑟 + 𝑖𝑢𝑟)

=
∞∑
𝑛=0

∑
𝑘1+···+𝑘𝑟=𝑛
𝑘1,...,𝑘𝑟≥0

1
𝑘1! · · · 𝑘𝑟 !

𝜕𝑛Ψ(𝑥1, . . . , 𝑥𝑟)
𝜕𝑧𝑘1

1 · · · 𝜕𝑧𝑘𝑟𝑟
(𝑖𝑢1)𝑘1 · · · (𝑖𝑢𝑟)𝑘𝑟 .

It follows from estimates (6.53) and (6.54) that

|Ψ(𝑧1, . . . , 𝑧𝑟) | ≪F Ψ(𝑥1, . . . , 𝑥𝑟) exp
(
𝐶∥x∥

2−2𝜗F
1−2𝜗F

)
for some 𝐶 = 𝐶 (F ) > 0 when |𝑧1 − 𝑥1 | = · · · |𝑧𝑟 − 𝑥𝑟 | = 2. Using this estimate
and Cauchy’s integral formula, we find that

𝜕𝑛Ψ(𝑥1, . . . , 𝑥𝑟)
𝜕𝑧𝑘1

1 · · · 𝜕𝑧𝑘𝑟𝑟

=
𝑘1! · · · 𝑘𝑟 !
(2𝜋𝑖)𝑟

∫
|𝑧𝑟−𝑥𝑟 |=2

· · ·
∫
|𝑧1−𝑥1 |=2

Ψ(𝑧1, . . . , 𝑧𝑟)
(𝑧1 − 𝑥1)𝑘1 · · · (𝑧𝑟 − 𝑥𝑟)𝑘𝑟

𝑑𝑧1 · · · 𝑑𝑧𝑟

≪F 2−(𝑘1+···+𝑘𝑟 )𝑘1! · · · 𝑘𝑟 !Ψ(𝑥1, . . . , 𝑥𝑟) exp
(
𝐶∥x∥

2−2𝜗F
1−2𝜗F

)
,

where 𝐶 is a positive constant depending only on F . Hence, when ∥u∥ ≤ 1,
we have

Ψ(𝑥1 + 𝑖𝑢1, . . . , 𝑥𝑟 + 𝑖𝑢𝑟) = Ψ(𝑥1, . . . , 𝑥𝑟)
(
1 +𝑂F

(
∥u∥ exp

(
𝐶∥x∥

2−2𝜗F
1−2𝜃F

)))
= Ψ(𝑥1, . . . , 𝑥𝑟)

𝑟∏
𝑗=1

(
1 +𝑂F

(
|𝑢 𝑗 | exp

(
𝐶∥x∥

2−2𝜗F
1−2𝜃F

)))
,

which completes the proof of (6.55). □
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Lemma 6.11. For x = (𝑥1, . . . , 𝑥𝑟) ∈ (R≥0)𝑟 , we have

Ξ𝑋 (x) =
𝑟∏
𝑗=1

exp
(
−
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑥 𝑗 )2 +𝑂F

(
𝑥2
𝑗 + 𝑥

2−2𝜗F
1−2𝜗F
𝑗

))
, (6.65)

and

Ξ𝑋 (x) ≥
𝑟∏
𝑗=1

exp
(
−
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑥 𝑗 )2 −𝑂F
(
𝑥2
𝑗

))
. (6.66)

Proof. By formula (6.54) and the boundedness of 𝜏𝑖, 𝑗 (𝑋), we find that

Ξ𝑋 (x) =
𝑟∏
𝑗=1

exp
(
−
𝑥2
𝑗

2 𝜎𝐹𝑗 (|𝑥 𝑗 |)2 +𝑂F

(
∥x∥2 + 𝑥2

𝑗 + 𝑥
2−2𝜗F
1−2𝜗F
𝑗

))
=

𝑟∏
𝑗=1

exp
(
−
𝑥2
𝑗

2 𝜎𝐹𝑗 (|𝑥 𝑗 |)2 +𝑂F

(
𝑥2
𝑗 + 𝑥

2−2𝜗F
1−2𝜗F
𝑗

))
,

which completes the proof of (6.65).
Next, we consider estimate (6.66). By (6.64), we obtain

∏
𝑝>𝑀

𝐼0
(√
𝐾F ,θ (𝑝,x)/𝑝

)
exp

(
𝐾F ,θ (𝑝,x)/4𝑝

) =
𝑟∏
𝑗=1

exp
(
𝑂F

(
|𝑥 𝑗 |2

))
,

where𝑀 = (𝐶∥x∥)
2

1−2𝜗F . Using this equation and the boundedness of 𝜏𝑖, 𝑗 (𝑋),
we have

Ξ𝑋 (x) =
∏
𝑝≤𝑀

𝐼0
(√
𝐾F ,θ (𝑝,x)/𝑝

)
exp

(
𝐾F ,θ (𝑝,x)/4𝑝

) × 𝑟∏
𝑗=1

exp
(
𝑂F

(
|𝑥 𝑗 |2

))
.

Additionally, it follows from estimate (6.61) that∏
𝑝≤𝑀

exp
(
−𝐾F ,θ (𝑝,x)/4𝑝

)
=

𝑟∏
𝑗=1

exp
(
−
𝑥2
𝑗

2 𝜎𝐹𝑗 (|𝑥 𝑗 |)2 +𝑂F
(
|𝑥 𝑗 |2

))
.

Hence, using the above equations and the inequality 𝐼0(𝑥) ≥ 1 for 𝑥 ∈ R, we
complete the proof of (6.66). □

Lemma 6.12. Assume that F satisfies (S4), (A1), and (A2). For z = (𝑧1, . . . , 𝑧𝑟) ∈
C𝑟 , 𝑋 ≥ 𝐶 (∥z∥ + 3)

2
1−2𝜗F with 𝐶 = 𝐶 (F ) a sufficiently large positive constant, we

have ���� ∏
𝑝≤𝑋

𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

) ���� (6.67)

≤
���� 𝑟∏
𝑗=1

exp
(
𝑧2𝑗

2

(
𝜎𝐹𝑗 (𝑋)2 − 𝜎𝐹𝑗 ( |𝑧 𝑗 |

)2
+𝑂F

(
|𝑧 𝑗 |2 + |𝑧 𝑗 |

2−2𝜗F
1−2𝜗F

)) ����,
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where 𝜎𝐹𝑗 (𝑋) is defined by (6.15). Moreover, there exists a positive constant 𝑏2 =
𝑏2(F ) such that, for any 𝑋 ≥ 3 and any z = (𝑧1, . . . , 𝑧𝑟) ∈ C𝑟 with ∥z∥ ≤ 𝑏2, we
have ∏

𝑝≤𝑋
𝐼0

(√
𝐾F ,θ (𝑝, z)/𝑝

)
=

𝑟∏
𝑗=1

(
1 +𝑂F

(
|𝑧 𝑗 |2

))
exp

(
𝑧2𝑗

2 𝜎𝐹𝑗 (𝑋)2

)
. (6.68)

Furthermore, for any z = (𝑥1 + 𝑖𝑢1, . . . , 𝑥𝑟 + 𝑖𝑢𝑟) ∈ C𝑟 with 𝑥 𝑗 , 𝑢 𝑗 ∈ R and ∥u∥ ≤ 1,
and any 𝑋 ≥ 𝐶 (∥x∥ +3)

2
1−2𝜗F with𝐶 = 𝐶 (F ) a sufficiently large positive constant,

we have∏
𝑝≤𝑋

𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

)
(6.69)

= Ξ𝑋 (x)
𝑟∏
𝑗=1

(
1 +𝑂F

(
|𝑢 𝑗 | exp

(
𝐷1∥x∥

2−2𝜗F
1−2𝜗F

)
+

|𝑧 𝑗 |4

log 𝑋

))
exp

(
𝑧2𝑗

2 𝜎𝐹𝑗 (𝑋)2

)
,

where Ξ𝑋 is the function defined by (6.18), and 𝐷1 is the same constant as in Lemma
6.10.

Proof. First, we prove (6.67). It holds that∏
𝑝≤𝑋

𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

)
= Ψ(z)

∏
𝑝≤𝑋

exp
(
𝐾F ,θ (𝑝, z)/4𝑝

)
×

∏
𝑝>𝑋

exp
(
𝐾F ,θ (𝑝, z)/4𝑝

)
𝐼0

(√
𝐾F ,θ (𝑝, z)/𝑝

) .
By (6.64), we have∏

𝑝>𝑋

exp
(
𝐾F ,θ (𝑝, z)/4𝑝

)
𝐼0

(√
𝐾F ,θ (𝑝, z)/𝑝

) =
𝑟∏
𝑗=1

exp
(
𝑂F

(
|𝑧 𝑗 |2

))
when 𝑋 ≥ 𝐶 (∥z∥ + 3)

2
1−2𝜗F with 𝐶 a suitably large constant. Also, as in the

proof of (6.60), we find that∏
𝑝≤𝑋

exp
(
𝐾F ,θ (𝑝, z)/4𝑝

)
=

𝑟∏
𝑗=1

exp
(
𝑧2𝑗

2 𝜎𝐹𝑗 (𝑋)2 +𝑂F
(
|𝑧 𝑗 |2

))
.

Combing the above two estimates and Lemma 6.10, we have estimate (6.67).
Next, we prove (6.68). From the estimate 𝑎𝐹𝑗 (𝑝) ≪ 𝑝𝜗F for some

𝜗F ∈ [0, 1/2), there exists a positive constant 𝑏1 = 𝑏1(F ) such that for
any 𝑧1, . . . , 𝑧𝑟 ∈ C with |𝑧1 |, . . . , |𝑧𝑟 | ≤ 𝑏1, the inequality |

√
𝐾F ,θ (𝑝, z)/𝑝 | ≤ 1

holds for all primes 𝑝. Then, we find that����𝐼0 (√
𝐾F ,θ (𝑝, z)/𝑝

)
− 1

���� ≤ 1
2 ,
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and that, from the Taylor expansion of 𝐼0,

𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

)
=1 + 1

4𝑝𝐾F ,θ (𝑝, z) +𝑂F
©­«
∥z∥4

1
𝑝2

𝑟∑
𝑗=1

|𝑎𝐹𝑗 (𝑝) |4
ª®¬ .

Similarly to the proof of estimate (6.63), we see that
∑
𝑝≤𝑋

|𝑎𝐹𝑗 (𝑝) |
4

𝑝2 ≪F 1.
Therefore, we obtain∑
𝑝≤𝑋

log 𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

)
=

∑
𝑝≤𝑋

©­« 1
4𝑝𝐾F ,θ (𝑝, z) +𝑂F

©­«
∥z∥4

1
𝑝2

𝑟∑
𝑗=1

|𝑎𝐹𝑗 (𝑝) |4
ª®¬ª®¬

=
∑
𝑝≤𝑋

1
4𝑝𝐾F ,θ (𝑝, z) +𝑂F

(
∥z∥4

1

)
.

Using equation (6.59), we also have∑
𝑝≤𝑋

1
4𝑝𝐾F ,θ (𝑝, z) =

𝑟∑
𝑗=1

𝑧2𝑗

2 𝜎𝐹𝑗 (𝑋)2 +
∑

1≤𝑙1<𝑙2≤𝑟
𝑧𝑙1𝑧𝑙2𝜏𝑙1,𝑙2 (𝑋), (6.70)

where 𝜏𝑖, 𝑗 (𝑋) is defined by (6.16). By Assumptions (A1) and (A2), it holds
that 𝜏𝑙1,𝑙2 (𝑋) ≪F 1 for all 1 ≤ 𝑙1 < 𝑙2 ≤ 𝑟, and so we obtain∑

1≤𝑙1<𝑙2≤𝑟
𝑧𝑙1𝑧𝑙2𝜏𝑙1,𝑙2 (𝑋) ≪F ∥z∥2

1.

Hence, we have∑
𝑝≤𝑋

log 𝐼0
(√
𝐾F ,θ (𝑝, z)/𝑝

)
=

𝑟∑
𝑗=1

𝑧2𝑗

2 𝜎𝐹𝑗 (𝑋)2 +𝑂F
(
∥z∥2

1

)
=

𝑟∑
𝑗=1

𝑧2𝑗

2

(
𝜎𝐹𝑗 (𝑋)2 +𝑂F (1)

)
,

which completes the proof of (6.68).
Finally, we prove (6.69). The left hand side of (6.69) can be written as

Ψ(z) exp
(∑
𝑝≤𝑋

1
4𝑝𝐾F ,θ (𝑝, z)

) ∏
𝑝>𝑋

exp
(
𝐾F ,θ (𝑝, z)/4𝑝

)
𝐼0

(√
𝐾F ,θ (𝑝, z)/𝑝

) .
Similarly to (6.57), we find that

∏
𝑝>𝑋

exp
(
𝐾F ,θ (𝑝, z)/4𝑝

)
𝐼0

(√
𝐾F ,θ (𝑝, z)/𝑝

) = exp
©­­«
∑
𝑝>𝑋

log
©­­«
exp

(
𝐾F ,θ (𝑝, z)/4𝑝

)
𝐼0

(√
𝐾F ,θ (𝑝, z)/𝑝

) ª®®¬
ª®®¬

= exp
(
𝑂

(∑
𝑝>𝑋

∥z∥4
1∥𝑎F (𝑝)∥

2
1

𝑝2−2𝜗F

))
.
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for 𝑋 ≥ 𝐶 (∥x∥+3)
2

1−2𝜗F with𝐶 = 𝐶 (F ) sufficiently large. By assumption (A1)

and partial summation, the last is = 1 + 𝑂F
(
∥z∥4

1 log log 𝑋
𝑋1−2𝜗F

)
= 1 + 𝑂F

(
∥z∥4

log 𝑋

)
=∏𝑟

𝑗=1

(
1 +𝑂F

(
|𝑧 𝑗 |4
log 𝑋

))
. Moreover, by equation (6.70), we see that

exp
(∑
𝑝≤𝑋

1
4𝑝𝐾F ,θ (𝑝, z)

)
= exp ©­«

𝑟∑
𝑗=1

𝑧2𝑗

2 𝜎𝐹𝑗 (𝑋) +
∑

1≤𝑙1<𝑙2≤𝑟
𝑧𝑙1𝑧𝑙2𝜏𝑙1,𝑙2 (𝑋)

ª®¬ .
In particular, by assumptions (A1) and (A2), the estimate 𝜏𝑙1,𝑙2 (𝑋) ≪F 1 holds
for all 1 ≤ 𝑙1 < 𝑙2 ≤ 𝑟, and so the above is equal to

exp
( ∑
1≤𝑙1<𝑙2≤𝑟

𝑥𝑙1𝑥𝑙2𝜏𝑙1,𝑙2 (𝑋)
)

𝑟∏
𝑗=1

(1 +𝑂F (|𝑢 𝑗 | · ∥x∥ + 𝑢2
𝑗 )) exp

(
𝑧2𝑗

2 𝜎𝐹𝑗 (𝑋)
)
.

Additionally, we have

Ψ(z) = Ψ(x)
𝑟∏
𝑗=1

(
1 +𝑂F

(
|𝑢 𝑗 | exp

(
𝐷1∥x∥ (2−2𝜗F )/(1−2𝜗F )

)))
by Lemma 6.10. From the above estimates and the definition of Ξ𝑋 (6.18), we
also obtain formula (6.69). Thus, we complete the proof of this lemma. □

6.3.2 Completion of the proofs of Propositions 6.1, 6.2
Before starting the proofs of Propositions 6.1, 6.2 we introduce some notation.
Define the R𝑟-valued function Fθ,𝑋 (𝑡) by

Fθ,𝑋 (𝑡) = (Re 𝑒−𝑖𝜃1𝑃𝐹1 (1/2 + 𝑖𝑡, 𝑋), . . . ,Re 𝑒−𝑖𝜃𝑟𝑃𝐹𝑟 (1/2 + 𝑖𝑡, 𝑋)),

and 𝜇𝑇,F the measure onR𝑟 by 𝜇𝑇,F (𝐵) := 1
𝑇 meas(F −1

θ,𝑋
(𝐵)∩A) for 𝐵 ∈ B(R𝑟).

Put 𝑦 𝑗 = 𝑉 𝑗𝜎𝐹𝑗 (𝑋). Then we find that

1
𝑇

meas(𝒮𝑋 (𝑇,V ;F , θ)) (6.71)

= 𝜇𝑇,F ((𝑦1,∞) × · · · × (𝑦𝑟 ,∞)) +𝑂F
(
exp

(
−𝑒−1(log log 𝑋)4(𝑟+1)

))
by the estimate meas( [𝑇, 2𝑇] \ A) ≪F 𝑇 exp

(
−𝑒−1(log log 𝑋)4(𝑟+1)

)
. For

x = (𝑥1, . . . , 𝑥𝑟) ∈ R𝑟 , put

𝜈𝑇,F ,x(𝐵) :=
∫
𝐵
𝑒𝑥1𝜉1+···+𝑥𝑟 𝜉𝑟 𝑑𝜇𝑇,F (ξ)

for 𝐵 ∈ B(R𝑟). Note that 𝜈𝑇,F ,x is a measure on R𝑟 , and has a finite value for
every 𝐵 ∈ B(R𝑟), x ∈ R𝑟 , 𝑋 ≥ 3 in the sense

𝜈𝑇,F ,x(𝐵) ≤ 𝜈𝑇,F ,x(R𝑟) =
1
𝑇

∫
A

exp ©­«
𝑟∑
𝑗=1
𝑥 𝑗 Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1

2 + 𝑖𝑡, 𝑋)ª®¬ 𝑑𝑡 < +∞.

Under the above notation, we state and prove three lemmas.
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Lemma 6.13. For 𝑥1, . . . , 𝑥𝑟 > 0, we have

𝜇𝑇,F ((𝑦1,∞) × · · · × (𝑦𝑟 ,∞))

=
∫ ∞

𝑥𝑟 𝑦𝑟

· · ·
∫ ∞

𝑥1𝑦1

𝑒−(𝜏1+···+𝜏𝑟 )𝜈𝑇,F ,x((𝑦1, 𝜏1/𝑥1) × · · · × (𝑦𝑟 , 𝜏𝑟/𝑥𝑟))𝑑𝜏1 · · · 𝑑𝜏𝑟 .

Proof. For every 𝐵 ∈ B(R𝑟), it holds that

𝜇𝑇,F (𝐵) =
∫
𝐵
𝑒−(𝑥1𝑣1+···+𝑥𝑟 𝑣𝑟 )𝑑𝜈𝑇,F ,x(v).

By Fubini’s theorem, we find that∫
(𝑦1,∞)×···×(𝑦𝑟 ,∞)

𝑒−(𝑥1𝑣1+···+𝑥𝑟 𝑣𝑟 )𝑑𝜈𝑇,F ,x(v)

=
∫
(𝑦1,∞)×···×(𝑦𝑟 ,∞)

(∫ ∞

𝑥𝑟 𝑣𝑟

· · ·
∫ ∞

𝑥1𝑣1

𝑒−(𝜏1+···+𝜏𝑟 )𝑑𝜏1 · · · 𝑑𝜏𝑟
)
𝑑𝜈𝑇,F ,x(v)

=
∫ ∞

𝑥𝑟 𝑦𝑟

· · ·
∫ ∞

𝑥1𝑦1

𝑒−(𝜏1+···+𝜏𝑟 )
(∫

(𝑦1,𝜏1/𝑥1)×···×(𝑦𝑟 ,𝜏𝑟/𝑥𝑟 )
1𝑑𝜈𝑇,F ,x(v)

)
𝑑𝜏1 · · · 𝑑𝜏𝑟

=
∫ ∞

𝑥𝑟 𝑦𝑟

· · ·
∫ ∞

𝑥1𝑦1

𝑒−(𝜏1+···+𝜏𝑟 )𝜈𝑇,F ,x((𝑦1, 𝜏1/𝑥1) × · · · × (𝑦𝑟 , 𝜏𝑟/𝑥𝑟))𝑑𝜏1 · · · 𝑑𝜏𝑟 .

□

The next lemma is a generalization of [67, Lemma 6.2] in multidimen-
sions. Define

𝐺 (𝑢) = 2𝑢
𝜋

+ 2(1 − 𝑢)𝑢
tan 𝜋𝑢 , 𝑓𝑐,𝑑 (𝑢) =

𝑒−2𝜋𝑖𝑐𝑢 − 𝑒−2𝜋𝑖𝑑𝑢

2 .

For a set 𝐴, we denote the indicator function of 𝐴 by 1𝐴.

Lemma 6.14. Let 𝐿 be a positive number. Let 𝑐1, . . . , 𝑐𝑟 , 𝑑1, . . . , 𝑑𝑟 be real numbers
with 𝑐 𝑗 < 𝑑 𝑗 . Putℛ = (𝑐1, 𝑑1)×· · ·× (𝑐𝑟 , 𝑑𝑟) ⊂ R𝑟 . For any ξ = (𝜉1, . . . , 𝜉𝑟) ∈ R𝑟 ,
we have

1ℛ(ξ) = 𝑊𝐿,ℛ(ξ) +𝑂𝑟
©­«
𝑟∑
𝑗=1

{(sin(𝜋𝐿 (𝜉 𝑗 − 𝑐 𝑗 ))
𝜋𝐿 (𝜉 𝑗 − 𝑐 𝑗 )

)2
+

(sin(𝜋𝐿 (𝜉 𝑗 − 𝑑 𝑗 ))
𝜋𝐿 (𝜉 𝑗 − 𝑑 𝑗 )

)2
}ª®¬ ,

where𝑊𝐿,ℛ(ξ) is defined as if 𝑟 is even,

𝑖𝑟

2𝑟−1

𝑟∑
𝑗=1

(−1) 𝑗−1 Re
𝑟∏
ℎ=1

∫ 𝐿

0
𝐺

( 𝑢
𝐿

)
𝑒2𝜋𝑖𝜀 𝑗 (ℎ)𝑢𝜉ℎ 𝑓𝑐ℎ ,𝑑ℎ (𝜀 𝑗 (ℎ)𝑢)

𝑑𝑢

𝑢
,

if 𝑟 is odd,

𝑖𝑟+1

2𝑟−1

𝑟∑
𝑗=1

(−1) 𝑗−1 Im
𝑟∏
ℎ=1

∫ 𝐿

0
𝐺

( 𝑢
𝐿

)
𝑒2𝜋𝑖𝜀 𝑗 (ℎ)𝑢𝜉ℎ 𝑓𝑐ℎ ,𝑑ℎ (𝜀 𝑗 (ℎ)𝑢)

𝑑𝑢

𝑢
.

Here, 𝜀 𝑗 (ℎ) = 1 if 1 ≤ ℎ ≤ 𝑗 − 1, and 𝜀 𝑗 (ℎ) = −1 otherwise.
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Proof. We use the following formula (cf. [67, equation (6.1)])

1(𝑐ℎ ,𝑑ℎ) (𝜉ℎ) = Im
∫ 𝐿

0
𝐺

( 𝑢
𝐿

)
𝑒2𝜋𝑖𝑢𝜉ℎ 𝑓𝑐ℎ ,𝑑ℎ (𝑢)

𝑑𝑢

𝑢

+𝑂
((

sin(𝜋𝐿 (𝜉ℎ − 𝑐ℎ))
𝜋𝐿 (𝜉ℎ − 𝑐ℎ)

)2
+

(
sin(𝜋𝐿 (𝜉ℎ − 𝑑ℎ))
𝜋𝐿 (𝜉ℎ − 𝑑ℎ)

)2
)
,

which leads to the estimate Im
∫ 𝐿

0 𝐺
(
𝑢
𝐿

)
𝑒2𝜋𝑖𝑢𝜉 𝑗 𝑓𝑐 𝑗 ,𝑑 𝑗 (𝑢) 𝑑𝑢𝑢 ≪ 1. Therefore, we

obtain

1ℛ(ξ) =
𝑟∏
ℎ=1

Im
∫ 𝐿

0
𝐺

( 𝑢
𝐿

)
𝑒2𝜋𝑖𝑢𝜉ℎ 𝑓𝑐ℎ ,𝑑ℎ (𝑢)

𝑑𝑢

𝑢
(6.72)

+𝑂𝑟
©­«
𝑟∑
𝑗=1

{(sin(𝜋𝐿 (𝜉 𝑗 − 𝑐 𝑗 ))
𝜋𝐿 (𝜉 𝑗 − 𝑐 𝑗 )

)2
+

(sin(𝜋𝐿 (𝜉 𝑗 − 𝑑 𝑗 ))
𝜋𝐿 (𝜉 𝑗 − 𝑑 𝑗 )

)2
}ª®¬ .

For any complex numbers 𝑤1, . . . , 𝑤𝑟 , we observe that

Im(𝑤1) · · · Im(𝑤𝑟)

=
𝑖𝑟

2𝑟
𝑟∑
𝑗=1

(−1) 𝑗−1
(
𝑤1 · · ·𝑤 𝑗−1𝑤 𝑗 · · ·𝑤𝑟 + (−1)𝑟𝑤1 · · ·𝑤 𝑗 · · ·𝑤𝑟

)
.

In particular, if 𝑟 is even, then

Im(𝑤1) · · · Im(𝑤𝑟) =
𝑖𝑟

2𝑟−1 Re
𝑟∑
𝑗=1

(−1) 𝑗−1𝑤1 · · ·𝑤 𝑗−1𝑤 𝑗 · · ·𝑤𝑟 ,

and if 𝑟 is odd, then

Im(𝑤1) · · · Im(𝑤𝑟) =
𝑖𝑟+1

2𝑟−1 Im
𝑟∑
𝑗=1

(−1) 𝑗−1𝑤1 · · ·𝑤 𝑗−1𝑤 𝑗 · · ·𝑤𝑟 .

Substituting these to (6.72), we obtain Lemma 6.14. □

Lemma 6.15. Suppose that F , θ satisfy (S4), (A1), and (A2). Let 𝑐1, . . . , 𝑐𝑟 ,
𝑑1, . . . , 𝑑𝑟 be real numbers with 𝑐 𝑗 < 𝑑 𝑗 . Put ℛ = (𝑐1, 𝑑1) × · · · × (𝑐𝑟 , 𝑑𝑟). Let 𝑇 ,
𝑋 be large numbers depending on F and satisfying 𝑋 (log log 𝑋)4(𝑟+1) ≤ 𝑇 . Then for
any x = (𝑥1, . . . , 𝑥𝑟) ∈ R𝑟 satisfying ∥x∥ ≤ (log log 𝑋)2𝑟 , we have

𝜈𝑇,F ,x(ℛ) (6.73)

= Ξ𝑋 (x)
(
𝑟∏
ℎ=1

𝑒
𝑥2
ℎ
2 𝜎𝐹ℎ

(𝑋)2
)
×


𝑟∏
𝑗=1

∫ 𝑥 𝑗𝜎𝐹𝑗 (𝑋)−
𝑐 𝑗

𝜎𝐹𝑗
(𝑋 )

𝑥 𝑗𝜎𝐹𝑗 (𝑋)−
𝑑 𝑗

𝜎𝐹𝑗
(𝑋 )

𝑒−𝑣
2/2 𝑑𝑣

√
2𝜋

+ 𝐸1

 ,
where the error term 𝐸1 satisfies

𝐸1 ≪F

exp
(
𝐷2∥x∥

2−2𝜗F
1−2𝜗F

)
(log log 𝑋)𝛼F + 1

2
+

exp
(
𝐷2∥x∥

2−2𝜗F
1−2𝜗F

)
√

log log 𝑋

𝑟∏
ℎ=1

𝑑ℎ − 𝑐ℎ
𝜎𝐹ℎ (𝑋)
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for some constant 𝐷2 = 𝐷2(F ) > 0. Moreover, if ∥x∥ ≤ 𝑏4 with 𝑏4 = 𝑏4(F ) > 0
sufficiently small, we have

𝜈𝑇,F ,x(ℛ) (6.74)

=

(
𝑟∏
ℎ=1

𝑒
𝑥2
ℎ
2 𝜎𝐹ℎ

(𝑋)2
)
×


𝑟∏
𝑗=1

∫ 𝑥 𝑗𝜎𝐹𝑗 (𝑋)−
𝑐 𝑗

𝜎𝐹𝑗
(𝑋 )

𝑥 𝑗𝜎𝐹𝑗 (𝑋)−
𝑑 𝑗

𝜎𝐹𝑗
(𝑋 )

𝑒−𝑣
2/2 𝑑𝑣

√
2𝜋

+ 𝐸2

 ,
where the error term 𝐸2 satisfies

𝐸2 ≪F
1

(log log 𝑋)𝛼F + 1
2
+

𝑟∑
𝑘=1

(
𝑥2
𝑘 (𝑑𝑘 − 𝑐𝑘 )
𝜎𝐹𝑘 (𝑋)

+ 1
𝜎𝐹𝑘 (𝑋)2

)
𝑟∏
ℎ=1
ℎ≠𝑘

𝑑ℎ − 𝑐ℎ
𝜎𝐹ℎ (𝑋)

.

Proof. We show formula (6.73). Put 𝐿 = 𝑏5(log log 𝑋)𝛼F with 𝑏5 = 𝑏5(F ) a
small positive constant to be chosen later. It follows from Lemma 6.14 that

𝜈𝑇,F ,x(ℛ) =
∫
R𝑟
𝑊𝐿,ℛ(ξ)𝑒𝑥1𝜉1+···+𝑥𝑟 𝜉𝑟 𝑑𝜇𝑇,F (ξ) + 𝐸, (6.75)

where the error term 𝐸 satisfies the estimate

𝐸 ≪𝑟

𝑟∑
𝑗=1

∫
R𝑟

{(sin(𝜋𝐿 (𝜉 𝑗 − 𝑐 𝑗 ))
𝜋𝐿 (𝜉 𝑗 − 𝑐 𝑗 )

)2
+

(sin(𝜋𝐿 (𝜉 𝑗 − 𝑑 𝑗 ))
𝜋𝐿 (𝜉 𝑗 − 𝑑 𝑗 )

)2
}
𝑒𝑥1𝜉1+···+𝑥𝑟 𝜉𝑟 𝑑𝜇𝑇,F (ξ).

First, we estimate 𝐸 . For z = (𝑧1, . . . , 𝑧𝑟) ∈ C𝑟 , define

𝑀𝑇 (z) =
∫
R𝑟
𝑒𝑧1𝜉1+···+𝑧𝑟 𝜉𝑟 𝑑𝜇𝑇,F (ξ).

Then, it holds that

𝑀𝑇 (z) =
1
𝑇

∫
A

exp ©­«
𝑟∑
𝑗=1

𝑧 𝑗 Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋)ª®¬ 𝑑𝑡.

Putw = (𝑤1, . . . , 𝑤𝑟) = (𝑥1+𝑖𝑢1, . . . , 𝑥𝑟+𝑖𝑢𝑟) with𝑢 𝑗 ∈ R. When ∥(𝑢1, . . . , 𝑢𝑟)∥ ≤
𝐿 holds, we have

|𝑀𝑇 (w) |

≤
���� 𝑟∏
𝑗=1

exp
(
(𝑥 𝑗 + 𝑖𝑢 𝑗)2

2

(
𝜎𝐹𝑗 (𝑋)2 − 𝜎𝐹𝑗 (|𝑤 𝑗 |)2

)
+𝑂F

(
|𝑥 𝑗 + 𝑖𝑢 𝑗 |2 + |𝑥 𝑗 + 𝑖𝑢 𝑗 |

2−2𝜗F
1−2𝜗F

)) ����
+𝑂F

(
exp

(
−6−1(log log 𝑋)4(𝑟+1)

))
≤ exp

(
𝐶∥x∥

2−2𝜗F
1−2𝜗F

) 𝑟∏
𝑗=1

exp
(
𝑥2
𝑗

2

(
𝜎𝐹𝑗 (𝑋)2 − 𝜎𝐹𝑗 (|𝑤 𝑗 |)2

)
−
𝑢2
𝑗

3 𝜎𝐹𝑗 (𝑋)2 +𝑂F

(
𝑢2
𝑗𝐿

2𝜗F
1−2𝜗F

))
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by Proposition 6.7 and (6.67), where 𝐶 = 𝐶 (F ) is some positive constant.
Additionally, by (6.65), we find that

𝑟∏
𝑗=1

exp
(
−
𝑥2
𝑗

2 𝜎𝐹𝑗 (|𝑤 𝑗 |)2

)
≤

𝑟∏
𝑗=1

exp
(
−
𝑥2
𝑗

2 𝜎𝐹𝑗 ( |𝑥 𝑗 |)2

)
≪F Ξ𝑋 (x) exp

(
𝐶∥x∥

2−2𝜗F
1−2𝜗F

)
for some 𝐶 = 𝐶 (F ) > 0. Recall that 𝛼F = min{2𝑟, 1−2𝜗F

2𝜗F }. Hence, the

inequality 𝐿
2𝜗F

1−2𝜗F ≤ (2𝑏5)
2𝜗F

1−2𝜗F log log 𝑋 holds. Therefore, when 𝑏5 is suffi-
ciently small, we have

|𝑀𝑇 (𝑥1 + 𝑖𝑢1, . . . , 𝑥𝑟 + 𝑖𝑢𝑟) | (6.76)

≪F Ξ𝑋 (x) exp
(
𝐶∥x∥

2−2𝜗F
1−2𝜗F

) 𝑟∏
𝑗=1

exp
((
𝑥2
𝑗

2 −
𝑢2
𝑗

4

)
𝜎𝐹𝑗 (𝑋)2

)
for ∥(𝑢1, . . . , 𝑢𝑟)∥ ≤ 𝐿. For any ℓ, 𝜉 ∈ R, we can write(

sin(𝜋𝐿 (𝜉 − ℓ))
𝜋𝐿 (𝜉 − ℓ)

)2
=

2
𝐿2

∫ 𝐿

0
(𝐿 − 𝑢) cos(2𝜋(𝜉 − ℓ)𝑢)𝑑𝑢

=
2
𝐿2 Re

∫ 𝐿

0
(𝐿 − 𝑢)𝑒2𝜋𝑖(𝜉−ℓ)𝑢𝑑𝑢. (6.77)

Thus∫
R𝑟

(sin(𝜋𝐿 (𝜉 𝑗 − ℓ))
𝜋𝐿 (𝜉 𝑗 − ℓ)

)2
𝑒𝑥1𝜉1+···+𝑥𝑟 𝜉𝑟 𝑑𝜇𝑇,F (ξ)

=
2
𝐿2 Re

∫ 𝐿

0
(𝐿 − 𝑢)

∫
R𝑟
𝑒2𝜋𝑖(𝜉 𝑗−ℓ)𝑢𝑒𝑥1𝜉1+···+𝑥𝑟 𝜉𝑟 𝑑𝜇𝑇,F (ξ)𝑑𝑢

=
2
𝐿2 Re

∫ 𝐿

0
𝑒−2𝜋𝑖ℓ𝑢 (𝐿 − 𝑢)𝑀𝑇 (𝑥1, . . . , 𝑥 𝑗−1, 𝑥 𝑗 + 2𝜋𝑖𝑢, 𝑥 𝑗+1, . . . , 𝑥𝑟)𝑑𝑢,

which, by (6.76), is

≪F Ξ𝑋 (x)
exp

(
𝐶∥x∥

2−2𝜗F
1−2𝜗F

)
𝐿2

(
𝑟∏
𝑘=1

exp
(
𝑥2
𝑘

2 𝜎𝐹𝑘 (𝑋)
))

×
∫ 𝐿

0
(𝐿 − 𝑢) exp

(
−(𝜋𝜎𝐹𝑗 (𝑋)𝑢)2

)
𝑑𝑢

≪ Ξ𝑋 (x)
exp

(
𝐶∥x∥

2−2𝜗F
1−2𝜗F

)
𝐿𝜎𝐹𝑗 (𝑋)

𝑟∏
𝑘=1

exp
(
𝑥2
𝑘

2 𝜎𝐹𝑘 (𝑋)
2

)
.
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It then follows that equation (6.75) satisfies

𝜈𝑇,F ,x(ℛ) =
∫
R𝑟
𝑊𝐿,ℛ(ξ)𝑒𝑥1𝜉1+···+𝑥𝑟 𝜉𝑟 𝑑𝜇𝑇,F (ξ) + 𝐸 (6.78)

with

𝐸 ≪F Ξ𝑋 (x)
exp

(
𝐶∥x∥

2−2𝜗F
1−2𝜗F

)
𝐿
√

log log 𝑋

𝑟∏
𝑘=1

exp
(
𝑥2
𝑘

2 𝜎𝐹𝑘 (𝑋)
2

)
.

For the main term in (6.78), it is enough to calculate∫
R𝑟

(
𝑟∏
ℎ=1

∫ 𝐿

0
𝐺

( 𝑢
𝐿

)
𝑒2𝜋𝑖𝜀 𝑗 (ℎ)𝑢𝜉ℎ 𝑓𝑐ℎ ,𝑑ℎ (𝜀 𝑗 (ℎ)𝑢)

𝑑𝑢

𝑢

)
𝑒𝑥1𝜉1+···+𝑥𝑟 𝜉𝑟 𝑑𝜇𝑇,F (ξ) (6.79)

for every fixed 1 ≤ 𝑗 ≤ 𝑟. Using Fubini’s theorem, we find that (6.79) is equal
to∫ 𝐿

0
· · ·

∫ 𝐿

0

(
𝑟∏
ℎ=1

𝐺
(𝑢ℎ
𝐿

) 𝑓𝑐ℎ ,𝑑ℎ (𝜀 𝑗 (ℎ)𝑢ℎ)
𝑢ℎ

)
× 𝑀𝑇

(
𝑥1 + 2𝜋𝑖𝜀 𝑗 (1)𝑢1, . . . , 𝑥𝑟 + 2𝜋𝑖𝜀 𝑗 (𝑟)𝑢𝑟

)
𝑑𝑢1 · · · 𝑑𝑢𝑟 .

Next we divide the range of this integral as∫ 𝐿

0
· · ·

∫ 𝐿

0
=

∫ 1

0
· · ·

∫ 1

0
+
𝑟−1∑
𝑘=0

∫
· · ·

∫
𝐷𝑘

,

where

∫
· · ·

∫
𝐷𝑘

=
∫ 1

0
· · ·

∫ 1

0

∫ 𝐿

1

𝑘︷         ︸︸         ︷∫ 𝐿

0
· · ·

∫ 𝐿

0
.

By estimate (6.76) and the estimates 𝑓𝑐,𝑑 (±𝑢)
𝑢 ≪ 𝑑−𝑐,𝐺 (𝑢/𝐿) ≪ 1 for 0 ≤ 𝑢 ≤ 𝐿,

the integral over 𝐷𝑟−𝑘 for 1 ≤ 𝑘 ≤ 𝑟 is

≪F Ξ𝑋 (x) exp
(
𝐶∥x∥

2−2𝜗F
1−2𝜗F

) (
𝑘−1∏
ℎ=1

(𝑑ℎ − 𝑐ℎ)
∫ 1

0
exp

((
𝑥2
ℎ

2 − (𝜋𝑢)2

)
𝜎𝐹ℎ (𝑋)2

)
𝑑𝑢

)
× (𝑑𝑘 − 𝑐𝑘 )

∫ 𝐿

1
exp

((
𝑥2
𝑘

2 − (𝜋𝑢)2

)
𝜎𝐹𝑘 (𝑋)2

)
𝑑𝑢

×
(

𝑟∏
ℎ=𝑘+1

(𝑑ℎ − 𝑐ℎ)
∫ 𝐿

0
exp

((
𝑥2
ℎ

2 − (𝜋𝑢)2

)
𝜎𝐹ℎ (𝑋)2

)
𝑑𝑢

)
≪F Ξ𝑋 (x) exp

(
𝐶∥x∥

2−2𝜗F
1−2𝜗F

)
𝑒−𝜎𝐹𝑘

(𝑋)2
𝑟∏
ℎ=1

𝑑ℎ − 𝑐ℎ
𝜎𝐹ℎ (𝑋)

exp
(
𝑥2
ℎ

2 𝜎𝐹ℎ (𝑋)
2

)
.
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Hence, integral (6.79) is equal to

∫ 1

0
· · ·

∫ 1

0

(
𝑟∏
ℎ=1

𝐺
(𝑢ℎ
𝐿

) 𝑓𝑐ℎ ,𝑑ℎ (𝜀 𝑗 (ℎ)𝑢ℎ)
𝑢ℎ

)
(6.80)

× 𝑀𝑇
(
𝑥1 + 2𝜋𝑖𝜀 𝑗 (1)𝑢1, . . . , 𝑥𝑟 + 2𝜋𝑖𝜀 𝑗 (𝑟)𝑢𝑟

)
𝑑𝑢1 · · · 𝑑𝑢𝑟

+𝑂F

(
𝑟∑
𝑘=1

Ξ𝑋 (x) exp
(
𝐶∥x∥

2−2𝜗F
1−2𝜗F

)
𝑒−𝜎𝐹𝑘

(𝑋)2
𝑟∏
ℎ=1

𝑑ℎ − 𝑐ℎ
𝜎𝐹ℎ (𝑋)

exp
(
𝑥2
ℎ

2 𝜎𝐹ℎ (𝑋)
2

))
.

When ∥(𝑢1, . . . , 𝑢𝑟)∥ ≤ 1, it follows from Proposition 6.7 and equation (6.69)
that

𝑀𝑇
(
𝑥1 + 2𝜋𝑖𝜀 𝑗 (1)𝑢1, . . . , 𝑥𝑟 + 2𝜋𝑖𝜀 𝑗 (𝑟)𝑢𝑟

)
= Ξ𝑋 (x)

𝑟∏
ℎ=1

(
1 +𝑂F

(
|𝑢ℎ | exp

(
𝐷1∥x∥

2−2𝜗F
1−2𝜗F

)
+
𝑥4
𝑗 + 𝑢4

𝑗

log 𝑋

))
× exp

(
𝑥2
ℎ + 4𝜋𝑖𝜀 𝑗 (ℎ)𝑥ℎ𝑢ℎ − 4𝜋2𝑢2

ℎ

2 𝜎𝐹ℎ (𝑋)2

)
+𝑂F

(
exp

(
−6−1(log log 𝑋)4(𝑟+1)

))
Note the last 𝑂 term could be bounded above by

����� 1
log 𝑋Ξ𝑋 (x)

𝑟∏
ℎ=1

exp
(
𝑥2
ℎ + 4𝜋𝑖𝜀 𝑗 (ℎ)𝑥ℎ𝑢ℎ − 4𝜋2𝑢2

ℎ

2 𝜎𝐹ℎ (𝑋)2

) �����
≥ 1

log 𝑋

𝑟∏
ℎ=1

exp
(
−
𝑥2
ℎ

2

(
𝜎𝐹ℎ (𝑋)2 − 𝜎𝐹ℎ (𝑥ℎ)2 +𝑂F (1)

)
− 2𝜋2𝜎𝐹ℎ (𝑋)2

)
≥ exp

(
−6−1(log log 𝑋)4(𝑟+1)

)
,

using the lower bound for Ξ𝑋 (x) in (6.66) and the range of x and 𝑢𝑖. There-
fore, the integral of (6.80) is equal to

Ξ𝑋 (x)
𝑟∏
ℎ=1

∫ 1

0

{
1 +𝑂F

(
𝑢 exp

(
𝐷1∥x∥

2−2𝜗F
1−2𝜗F

)
+
𝑥4
ℎ + 𝑢

4
ℎ + 1

log 𝑋

)}
×

× 𝐺
( 𝑢
𝐿

)
𝑓𝑐ℎ ,𝑑ℎ (𝜀 𝑗 (ℎ)𝑢) exp

(
𝑥2
ℎ + 4𝜋𝑖𝜀 𝑗 (ℎ)𝑥ℎ𝑢 − 4𝜋2𝑢2

2 𝜎𝐹ℎ (𝑋)2

)
𝑑𝑢

𝑢
. (6.81)
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Since 𝐺 (𝑢/𝐿) ≪ 1 and 𝑓𝑐ℎ ,𝑑ℎ (±𝑢)
𝑢 ≪ 𝑑ℎ − 𝑐ℎ, we find that∫ 1

0

(
𝑢 exp

(
𝐷1∥x∥

2−2𝜗F
1−2𝜗F

)
+
𝑥4
ℎ + 𝑢

4 + 1
log 𝑋

)
𝐺

( 𝑢
𝐿

)
𝑓𝑐ℎ ,𝑑ℎ (𝜀 𝑗 (ℎ)𝑢)

× exp
(
𝑥2
ℎ + 4𝜋𝑖𝜀 𝑗 (ℎ)𝑥ℎ𝑢 − 4𝜋2𝑢2

2 𝜎𝐹ℎ (𝑋)2

)
𝑑𝑢

𝑢

≪ exp
(
𝑥2
ℎ

2 𝜎𝐹ℎ (𝑋)
2

)
(𝑑ℎ − 𝑐ℎ)

×
∫ 1

0

(
𝑢 exp

(
𝐷1∥x∥

2−2𝜗F
1−2𝜗F

)
+
𝑥4
ℎ + 𝑢

4 + 1
log 𝑋

)
exp

(
−2𝜋2𝑢2𝜎𝐹ℎ (𝑋)2

)
𝑑𝑢

≪F exp
(
𝐷1∥x∥

2−2𝜗F
1−2𝜗F

)
× exp

(
𝑥2
ℎ

2 𝜎𝐹ℎ (𝑋)
2

)
𝑑ℎ − 𝑐ℎ
𝜎𝐹ℎ (𝑋)2 ,

and that∫ 1

0
𝐺

( 𝑢
𝐿

)
𝑓𝑐ℎ ,𝑑ℎ (𝜀 𝑗 (ℎ)𝑢) exp

(
𝑥2
ℎ + 4𝜋𝑖𝜀 𝑗 (ℎ)𝑥ℎ𝑢 − 4𝜋2𝑢2

2 𝜎𝐹ℎ (𝑋)2

)
𝑑𝑢

𝑢

≪ (𝑑ℎ − 𝑐ℎ) exp
(
𝑥2
ℎ

2 𝜎𝐹ℎ (𝑋)
2

) ∫ 1

0
exp

(
−2𝜋2𝑢2𝜎𝐹ℎ (𝑋)2

)
𝑑𝑢

≪ exp
(
𝑥2
ℎ

2 𝜎𝐹ℎ (𝑋)
2

)
𝑑ℎ − 𝑐ℎ
𝜎𝐹ℎ (𝑋)

.

Moreover, we find that∫ 𝐿

1
𝐺

( 𝑢
𝐿

)
𝑓𝑐ℎ ,𝑑ℎ (𝜀 𝑗 (ℎ)𝑢) exp

(
𝑥2
ℎ + 4𝜋𝑖𝜀 𝑗 (ℎ)𝑥ℎ𝑢 − 4𝜋2𝑢2

2 𝜎𝐹ℎ (𝑋)2

)
𝑑𝑢

𝑢

≪F exp
(
𝑥2
ℎ

2 𝜎𝐹ℎ (𝑋)
2

)
𝑑ℎ − 𝑐ℎ
𝜎𝐹ℎ (𝑋)

𝑒−𝜎𝐹ℎ
(𝑋)2 .

From these estimates and (6.81), integral (6.80) is equal to

Ξ𝑋 (x)
𝑟∏

ℎ=1

∫ 𝐿

0
𝐺

( 𝑢
𝐿

)
𝑓𝑐ℎ ,𝑑ℎ (𝜀 𝑗 (ℎ)𝑢) exp

(
𝑥2
ℎ + 4𝜋𝑖𝜀 𝑗 (ℎ)𝑥ℎ𝑢 − 4𝜋2𝑢2

2 𝜎𝐹ℎ (𝑋)2

)
𝑑𝑢

𝑢

+𝑂F
©­«Ξ𝑋 (x) exp

(
𝐷1∥x∥

2−2𝜗F
1−2𝜗F

) 𝑟∏
𝑗=1

exp
(
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)2

)
1√

log log 𝑋

𝑟∏
ℎ=1

𝑑ℎ − 𝑐ℎ
𝜎𝐹ℎ (𝑋)

ª®¬ .
Using the well known formula

1
√

2𝜋

∫
R
𝑒−𝑖𝑣𝜉𝑒−𝜂𝑣

2
𝑑𝑣 =

1√
2𝜂

exp
(
− 𝜉

2

4𝜂

)
, (6.82)
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we can rewrite the above main term as

Ξ𝑋 (x)
©­­­­«
𝑟∏
ℎ=1

exp
(
𝑥2
ℎ

2 𝜎𝐹ℎ (𝑋)2
)

√
2𝜋

ª®®®®¬
∫
R𝑟
𝑒−(𝑣

2
1+···+𝑣

2
𝑟 )/2

×
{ 𝑟∏
ℎ=1

∫ 𝐿

0
𝐺

( 𝑢
𝐿

)
𝑒2𝜋𝑖𝜀 𝑗 (ℎ)𝑢(𝑥ℎ𝜎𝐹ℎ

(𝑋)2−𝑣ℎ𝜎𝐹ℎ
(𝑋)) 𝑓𝑐ℎ ,𝑑ℎ (𝜀 𝑗 (ℎ)𝑢)

𝑑𝑢

𝑢

}
𝑑v.

Combining this with (6.80), we see that integral (6.79) is equal to

Ξ𝑋 (x)
©­­­­«
𝑟∏
ℎ=1

exp
(
𝑥2
ℎ

2 𝜎𝐹ℎ (𝑋)2
)

√
2𝜋

ª®®®®¬
∫
R𝑟
𝑒−(𝑣

2
1+···+𝑣

2
𝑟 )/2

×
{ 𝑟∏
ℎ=1

∫ 𝐿

0
𝐺

( 𝑢
𝐿

)
𝑒2𝜋𝑖𝜀 𝑗 (ℎ)𝑢(𝑥ℎ𝜎𝐹ℎ

(𝑋)2−𝑣ℎ𝜎𝐹ℎ
(𝑋)) 𝑓𝑐ℎ ,𝑑ℎ (𝜀 𝑗 (ℎ)𝑢)

𝑑𝑢

𝑢

}
𝑑v+

𝑂F
©­«Ξ𝑋 (x) exp

(
𝐷1∥x∥

2−2𝜗F
1−2𝜗F

) 𝑟∏
𝑗=1

exp
(
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)2

)
1√

log log 𝑋

𝑟∏
ℎ=1

𝑑ℎ − 𝑐ℎ
𝜎𝐹ℎ (𝑋)

ª®¬ .
Substituting this equation to the definition of 𝑊𝐿,ℛ and using Lemma 6.14
and equation (6.78), we obtain
𝜈𝑇,F ,x(ℛ)

= Ξ𝑋 (x)
©­­­­«
𝑟∏
ℎ=1

exp
(
𝑥2
ℎ

2 𝜎𝐹ℎ (𝑋)2
)

√
2𝜋

ª®®®®¬
×

{ ∫
R𝑟
𝑒−

𝑣2
1 +···+𝑣2

𝑟
2 1ℛ

(
𝑥1𝜎𝐹1 (𝑋)2 − 𝑣1𝜎𝐹1 (𝑋), . . . , 𝑥𝑟𝜎𝐹𝑟 (𝑋)2 − 𝑣𝑟𝜎𝐹𝑟 (𝑋)

)
𝑑v

+ 𝐸3 + 𝐸4

}
,

where 𝐸3 and 𝐸4 satisfy

𝐸3 ≪F

𝑟∑
𝑗=1

∫
R𝑟

{ (
sin(𝜋𝐿 (𝑥 𝑗𝜎𝐹𝑗 (𝑋)2 − 𝑣 𝑗𝜎𝐹𝑗 (𝑋) − 𝑐 𝑗 ))
𝜋𝐿 (𝑥 𝑗𝜎𝐹𝑗 (𝑋)2 − 𝑣 𝑗𝜎𝐹𝑗 (𝑋) − 𝑐 𝑗 )

)2

+
(
sin(𝜋𝐿 (𝑥 𝑗𝜎𝐹𝑗 (𝑋)2 − 𝑣 𝑗𝜎𝐹𝑗 (𝑋) − 𝑑 𝑗 ))
𝜋𝐿 (𝑥 𝑗𝜎𝐹𝑗 (𝑋)2 − 𝑣 𝑗𝜎𝐹𝑗 (𝑋) − 𝑑 𝑗 )

)2 }
× 𝑒−(𝑣2

1+···+𝑣
2
𝑟 )/2𝑑v,

and

𝐸4 ≪F

exp
(
𝐶∥x∥

2−2𝜗F
1−2𝜗F

)
(log log 𝑋)𝛼F + 1

2
+

exp
(
𝐶∥x∥

2−2𝜗F
1−2𝜗F

)
√

log log 𝑋

𝑟∏
ℎ=1

𝑑ℎ − 𝑐ℎ
𝜎𝐹ℎ (𝑋)
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for some constant 𝐶 = 𝐶 (F ) > 0. By equation (6.77), it holds that, for any
ℓ ∈ R,

∫
R𝑟

(
sin(𝜋𝐿 (𝑥 𝑗𝜎𝐹𝑗 (𝑋)2 − 𝑣 𝑗𝜎𝐹𝑗 (𝑋) − ℓ))
𝜋𝐿 (𝑥 𝑗𝜎𝐹𝑗 (𝑋)2 − 𝑣 𝑗𝜎𝐹𝑗 (𝑋) − ℓ)

)2

× 𝑒−(𝑣2
1+···+𝑣

2
𝑟 )/2𝑑v

=
2
𝐿2 Re

∫ 𝐿

0
(𝐿 − 𝛼)

(∫
R𝑟
𝑒2𝜋𝑖(𝑥 𝑗𝜎𝐹𝑗 (𝑋)

2−𝑣 𝑗𝜎𝐹𝑗 (𝑋)−ℓ)𝛼𝑒−(𝑣
2
1+···+𝑣

2
𝑟 )/2𝑑v

)
𝑑𝛼

=
2(2𝜋) (𝑟−1)/2

𝐿2 Re
∫ 𝐿

0
(𝐿 − 𝛼)𝑒2𝜋𝑖(𝑥 𝑗𝜎𝐹𝑗 (𝑋)

2−ℓ)𝛼
(∫
R
𝑒−2𝜋𝑖𝑣𝜎𝐹𝑗 (𝑋)𝛼𝑒−𝑣

2/2𝑑𝑣

)
𝑑𝛼,

which, by (6.82), becomes

=
2(2𝜋)𝑟/2
𝐿2 Re

∫ 𝐿

0
(𝐿 − 𝛼)𝑒2𝜋𝑖(𝑥 𝑗𝜎𝐹𝑗 (𝑋)

2−ℓ)𝛼 exp
(
−2𝜋2𝛼2𝜎𝐹𝑗 (𝑋)2

)
𝑑𝛼

≪F
1

𝐿𝜎𝐹𝑗 (𝑋)
≪F

1
(log log 𝑋)𝛼F + 1

2
.

Hence, we have 𝐸3 ≪F
1

(log log 𝑋)𝛼F + 1
2
. Finally, by simple calculations, we can

write∫
R𝑟
𝑒−

𝑣2
1 +···+𝑣2

𝑟
2 1ℛ

(
𝑥1𝜎𝐹1 (𝑋)2 − 𝑣1𝜎𝐹1 (𝑋), . . . , 𝑥𝑟𝜎𝐹𝑟 (𝑋)2 − 𝑣𝑟𝜎𝐹𝑟 (𝑋)

)
𝑑v

=
𝑟∏
𝑗=1

∫ 𝑥 𝑗𝜎𝐹𝑗 (𝑋)−
𝑐 𝑗

𝜎𝐹𝑗
(𝑋 )

𝑥 𝑗𝜎𝐹𝑗 (𝑋)−
𝑑 𝑗

𝜎𝐹𝑗
(𝑋 )

𝑒−𝑣
2/2 𝑑𝑣

√
2𝜋

and this completes the proof of (6.73).
Next, we consider (6.74). Using Proposition 6.7 and equation (6.68), we

have

𝑀𝑇
(
𝑥1 + 2𝜋𝑖𝜀 𝑗 (1)𝑢1, . . . , 𝑥𝑟 + 2𝜋𝑖𝜀 𝑗 (𝑟)𝑢𝑟

)
=

𝑟∏
ℎ=1

(
1 +𝑂F

(
|𝑥ℎ + 𝑖𝑢ℎ |2

))
exp

(
𝑥2
ℎ + 4𝜋𝑖𝜀 𝑗 (ℎ)𝑥ℎ𝑢ℎ − 4𝜋2𝑢2

ℎ

2 𝜎𝐹ℎ (𝑋)2

)
+𝑂F

(
exp

(
−6−1(log log 𝑋)4(𝑟+1)

))
when ∥x∥, ∥u∥ are sufficiently small. By using this equation, we can prove
(6.74) similarly to the proof of (6.73). □

Proof of Proposition 6.1. We firstly prove Proposition 6.1 in the case 𝑉 𝑗 ’s are
nonnegative. Let x = (𝑥1, . . . , 𝑥𝑟) ∈ (R>0)𝑟 satisfying ∥x∥ ≤ 𝑏4 with 𝑏4 the
same number as in Lemma 6.15. By Lemma 6.13 and equation (6.74), we
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have

𝜇𝑇,F ((𝑦1,∞) × · · · × (𝑦𝑟 ,∞))

=
𝑟∏
𝑗=1

𝑒
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2
∫ ∞

𝑥 𝑗 𝑦 𝑗

𝑒−𝜏
∫ 𝑥 𝑗𝜎𝐹𝑗 (𝑋)−

𝑦 𝑗
𝜎𝐹𝑗

(𝑋 )

𝑥 𝑗𝜎𝐹𝑗 (𝑋)−
𝜏/𝑥 𝑗

𝜎𝐹𝑗
(𝑋 )

𝑒−𝑣
2/2 𝑑𝑣

√
2𝜋
𝑑𝜏

+𝑂F
©­« 1
(log log 𝑋)𝛼F + 1

2

𝑟∏
𝑗=1

𝑒
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2−𝑥 𝑗 𝑦 𝑗 + 𝐸 ×

𝑟∏
𝑗=1

𝑒
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2ª®¬ ,

where

𝐸 =
𝑟∑
𝑘=1

∫ ∞

𝑥𝑟 𝑦𝑟

· · ·
∫ ∞

𝑥1𝑦1

𝑒−(𝜏1+···+𝜏𝑟 )
(
𝑥2
𝑘 (
𝜏𝑘
𝑥𝑘

− 𝑦𝑘 )
𝜎𝐹𝑘 (𝑋)

+ 1
𝜎𝐹𝑘 (𝑋)2

)
𝑟∏
ℎ=1
ℎ≠𝑘

𝜏ℎ
𝑥ℎ

− 𝑦ℎ
𝜎𝐹ℎ (𝑋)

𝑑𝜏1 · · · 𝑑𝜏𝑟 .

Now, simple calculations lead that∫ ∞

𝑥 𝑗 𝑦 𝑗

𝑒−𝜏
∫ 𝑥 𝑗𝜎𝐹𝑗 (𝑋)−

𝑦 𝑗
𝜎𝐹𝑗

(𝑋 )

𝑥 𝑗𝜎𝐹𝑗 (𝑋)−
𝜏/𝑥 𝑗

𝜎𝐹𝑗
(𝑋 )

𝑒−𝑣
2/2 𝑑𝑣

√
2𝜋
𝑑𝜏 = exp

(
−
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)2

) ∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋

since 𝑦 𝑗 = 𝑉 𝑗𝜎𝐹𝑗 (𝑋). Therefore, we obtain

𝜇𝑇,F ((𝑦1,∞) × · · · × (𝑦𝑟 ,∞)) =
𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−
𝑢2
2
𝑑𝑢
√

2𝜋
+𝑂F

©­« 1
(log log 𝑋)𝛼F + 1

2

𝑟∏
𝑗=1

𝑒
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2−𝑥 𝑗 𝑦 𝑗+ 𝐸

𝑟∏
𝑗=1

𝑒
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2ª®¬ .

Here, we decide 𝑥 𝑗 ’s as 𝑥 𝑗 = max{1, 𝑉 𝑗 }/𝜎𝐹𝑗 (𝑋), where 𝑉 𝑗 ’s must satisfy the
inequality 𝑉 𝑗 ≤ 𝑅𝜎𝐹𝑗 (𝑋). Then, we see that

𝑒−𝑥 𝑗 𝑦 𝑗 = 𝑒−
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2
𝑒

𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2−𝑥 𝑗 𝑦 𝑗 ≪ 𝑒−

𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2
𝑒−𝑉

2
𝑗 /2. (6.83)

This estimate leads that

1
(log log 𝑋)𝛼F + 1

2

𝑟∏
𝑗=1

𝑒
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2−𝑥 𝑗 𝑦 𝑗

≪𝑟
𝑒−(𝑉

2
1 +···+𝑉

2
𝑟 )/2

(log log 𝑋)𝛼F + 1
2
≪𝑟

1
(log log 𝑋)𝛼F + 1

2

𝑟∏
𝑗=1

(1 +𝑉 𝑗 )
∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
.

Moreover, since it holds that∫ ∞

𝑥 𝑗 𝑦 𝑗

(
𝜏

𝑥 𝑗
− 𝑦 𝑗

)
𝑒−𝜏𝑑𝜏 =

𝑒−𝑥 𝑗 𝑦 𝑗

𝑥 𝑗
, (6.84)
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we have∫ ∞

𝑥𝑟 𝑦𝑟

· · ·
∫ ∞

𝑥1𝑦1

𝑒−(𝜏1+···+𝜏𝑟 )
(
𝑥2
𝑘 (𝑑𝑘 − 𝑐𝑘 )
𝜎𝐹𝑘 (𝑋)

+ 1
𝜎𝐹𝑘 (𝑋)2

)
𝑟∏
ℎ=1
ℎ≠𝑘

𝜏ℎ/𝑥ℎ − 𝑦ℎ
𝜎𝐹ℎ (𝑋)

𝑑𝜏1 · · · 𝑑𝜏𝑟

= 𝑥2
𝑘

𝑟∏
𝑗=1

1
𝜎𝐹𝑗 (𝑋)

∫ ∞

𝑥 𝑗 𝑦 𝑗

(
𝜏

𝑥 𝑗
− 𝑦 𝑗

)
𝑒−𝜏𝑑𝜏

+ 𝑒−𝑥𝑘 𝑦𝑘

𝜎𝐹𝑘 (𝑋)2

𝑟∏
𝑗=1
𝑗≠𝑘

1
𝜎𝐹𝑗 (𝑋)

∫ ∞

𝑥 𝑗 𝑦 𝑗

(
𝜏

𝑥 𝑗
− 𝑦 𝑗

)
𝑒−𝜏𝑑𝜏

= 𝑥2
𝑘

𝑟∏
𝑗=1

𝑒−𝑥 𝑗 𝑦 𝑗

𝑥 𝑗𝜎𝐹𝑗 (𝑋)
+ 𝑥𝑘
𝜎𝐹𝑘 (𝑋)

𝑟∏
𝑗=1

𝑒−𝑥 𝑗 𝑦 𝑗

𝑥 𝑗𝜎𝐹𝑗 (𝑋)
. (6.85)

for every 1 ≤ 𝑘 ≤ 𝑟. By estimate (6.83) and 𝑥 𝑗𝜎𝐹𝑗 (𝑋) ≍ 1 +𝑉 𝑗 , we can write

𝑒−𝑥 𝑗 𝑦 𝑗

𝑥 𝑗𝜎𝐹𝑗 (𝑋)
≪ 𝑒−

𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2 𝑒−𝑉

2
𝑗 /2

1 +𝑉 𝑗
≪ 𝑒−

𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2
∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
.

By this observation, (6.85) is

≪𝑟

(
𝑥2
𝑘 +

𝑥𝑘
𝜎𝐹𝑘 (𝑋)

) 𝑟∏
𝑗=1

𝑒−
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2
∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋

≪F

1 +𝑉2
𝑘

log log 𝑋

𝑟∏
𝑗=1

𝑒−
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2
∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
.

Hence, we have

𝐸
𝑟∏
𝑗=1

𝑒
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2
≪F

1 + ∥V ∥2

log log 𝑋

𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
.

From the above estimations, we obtain

𝜇𝑇,F ((𝑦1,∞) × · · · × (𝑦𝑟 ,∞)) =
𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
+𝑂F

©­«
{ ∏𝑟

𝑘=1(1 +𝑉𝑘 )
(log log 𝑋)𝛼F + 1

2
+ 1 + ∥V ∥2

log log 𝑋

}
𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
ª®¬

for 0 ≤ 𝑉 𝑗 ≤ 𝑏2𝜎𝐹𝑗 (𝑋). Thus, by this formula and (6.71), we complete the
proof of Proposition 6.1 in the case 𝑉 𝑗 ’s are nonnegative.

In order to finish the proof of Proposition 6.1, we consider the negative
cases. It suffices to show that, for the case −𝑏𝜎𝐹1 (𝑋) ≤ 𝑉1 ≤ 0 and 0 ≤ 𝑉 𝑗 ≤
𝑏𝜎𝐹𝑗 (𝑋),

1
𝑇

meas(𝒮𝑋 (𝑇, (−𝑉1, 𝑉2, . . . , 𝑉𝑟);F , θ))

=

(
1 +𝑂F

( ∏𝑟
𝑘=1(1 + |𝑉𝑘 |)

(log log 𝑋)𝛼F + 1
2
+ 1 + ∥V ∥2

log log 𝑋

))
𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−
𝑢2
2
𝑑𝑢
√

2𝜋
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since other cases can be shown by similarly by induction. By the definition
of the set 𝒮𝑋 (𝑇,V ;F , θ), it holds that

𝒮𝑋 (𝑇,V ;F , θ) = 𝒮𝑋 (𝑇, (𝑉2, . . . , 𝑉𝑟); (𝐹2, . . . , 𝐹𝑟), (𝜃2, . . . , 𝜃𝑟))
\𝒮𝑋 (𝑇, (−𝑉1 − 0, 𝑉2, . . . , 𝑉𝑟);F , (𝜋 − 𝜃1, 𝜃2, . . . , 𝜃𝑟)),

where we regard that if 𝑟 = 1, the first set on the right hand side is [𝑇, 2𝑇].
Therefore, from the nonnegative cases, we have

1
𝑇

meas(𝒮𝑋 (𝑇, (−𝑉1, 𝑉2, . . . , 𝑉𝑟);F , θ)) (6.86)

=
1
𝑇

meas(𝒮𝑋 (𝑇, (𝑉2, . . . , 𝑉𝑟); (𝐹2, . . . , 𝐹𝑟), (𝜃2, . . . , 𝜃𝑟)))

− 1
𝑇

meas(𝒮𝑋 (𝑇, (−𝑉1 − 0, 𝑉2, . . . , 𝑉𝑟);F , (𝜋 − 𝜃1, 𝜃2, . . . , 𝜃𝑟)))

= (1 + 𝐸1)
𝑟∏
𝑗=2

∫ ∞

𝑉 𝑗

𝑒−
𝑢2
2
𝑑𝑢
√

2𝜋
− (1 + 𝐸2)

𝑟∏
𝑗=1

∫ ∞

|𝑉 𝑗 |
𝑒−

𝑢2
2
𝑑𝑢
√

2𝜋
.

Here, 𝐸1 and 𝐸2 satisfy

𝐸1 ≪F

∏𝑟
𝑘=2(1 +𝑉𝑘 )

(log log 𝑋)𝛼F + 1
2
+ 1 + ∥(𝑉2, . . . , 𝑉𝑟)∥2

log log 𝑋 ,

𝐸2 ≪F

∏𝑟
𝑘=1(1 +𝑉𝑘 )

(log log 𝑋)𝛼F + 1
2
+ 1 + ∥(𝑉1, . . . , 𝑉𝑟)∥2

log log 𝑋 .

Hence, we find that (6.86) is equal to(
1 −

∫ ∞

−𝑉1

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋

) 𝑟∏
𝑗=2

∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋

+ 𝐸1

𝑟∏
𝑗=2

∫ ∞

𝑉 𝑗

𝑒−
𝑢2
2
𝑑𝑢
√

2𝜋
+ 𝐸2

𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−
𝑢2
2
𝑑𝑢
√

2𝜋

=

(
1 +𝑂F

( ∏𝑟
𝑘=1(1 + |𝑉𝑘 |)

(log log 𝑋)𝛼F + 1
2
+ 1 + ∥V ∥2

log log 𝑋

))
𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
.

Thus, we also obtain the negative cases of Proposition 6.1. □

Proof of Proposition 6.2. Let V = (𝑉1, . . . , 𝑉𝑟) ∈ (R≥0)𝑟 satisfying the inequal-
ity ∥V ∥ ≤ (log log 𝑋)2𝑟 , and put 𝑥 𝑗 = max{1, 𝑉 𝑗 }/𝜎𝐹𝑗 (𝑋). Similarly to the
proof of Proposition 6.1 by using (6.73) instead of (6.74), we obtain

𝜇𝑇,F ((𝑦1,∞) × · · · × (𝑦𝑟 ,∞))

= Ξ𝑋 (x)
{

𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋

+𝑂F
©­«exp ©­«𝐶

(
∥V ∥√

log log 𝑋

) 2−2𝜗F
1−2𝜗F ª®¬

∏𝑟
𝑘=1(1 +𝑉𝑘 )

(log log 𝑋)𝛼F + 1
2

𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
+ 𝐸ª®¬

}
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for 0 ≤ 𝑉 𝑗 ≤ (log log 𝑋)2𝑟 , where

𝐸 =

exp
©­­«𝐶

(
∥V ∥√

log log 𝑋

) 2−2𝜗F
1−2𝜗F ª®®¬

1√
log log 𝑋

×
𝑟∏
𝑗=1

𝑒
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2

𝜎𝐹𝑗 (𝑋)

∫ 𝑦 𝑗

𝑥 𝑗

(
𝜏

𝑥 𝑗
− 𝑦 𝑗

)
𝑒−𝜏𝑑𝜏.

Here, 𝐶 = 𝐶 (F ) is a positive constant. Moreover, using (6.84) we have

𝐸 = exp
©­­«𝐶

(
∥V ∥√

log log 𝑋

) 2−2𝜗F
1−2𝜗F ª®®¬

1√
log log 𝑋

𝑟∏
𝑗=1

𝑒
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2−𝑥 𝑗 𝑦 𝑗

𝑥 𝑗𝜎𝐹𝑗 (𝑋)

By estimate (6.83) and 𝑥 𝑗𝜎𝐹𝑗 (𝑋) ≍ 1 +𝑉 𝑗 , we can write

𝑒
𝑥2
𝑗

2 𝜎𝐹𝑗 (𝑋)
2−𝑥 𝑗 𝑦 𝑗

𝑥 𝑗𝜎𝐹𝑗 (𝑋)
≪ 𝑒−𝑉

2
𝑗 /2

1 +𝑉 𝑗
≪

∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
.

By this observation, we have

𝐸 ≪𝑟 exp
©­­«𝐶

(
∥V ∥√

log log 𝑋

) 2−2𝜗F
1−2𝜗F ª®®¬

1√
log log 𝑋

𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
.

From the above estimations, we obtain

𝜇𝑇,F ((𝑦1,∞) × · · · × (𝑦𝑟 ,∞))

= Ξ𝑋 (x)
𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋

×
{

1 +𝑂F
©­­«exp

©­­«𝐶
(

∥V ∥√
log log 𝑋

) 2−2𝜗F
1−2𝜗F ª®®¬

{ ∏𝑟
𝑘=1(1 +𝑉𝑘 )

(log log 𝑋)𝛼F + 1
2
+ 1√

log log 𝑋

}ª®®¬
}
.

In particular, by the definition of Ξ𝑋 (6.18), assumptions (A1), (A2), and
Lemma 6.10, it holds that

Ξ𝑋 (x) =
(
1 +𝑂F

(
1√

log log 𝑋

))
Ξ𝑋

(
𝑉1

𝜎𝐹1 (𝑋)
, . . . , 𝑉𝑟

𝜎𝐹𝑟 (𝑋)

)
.

Thus, by these formulas and (6.71), we obtain Proposition 6.2 when ∥V ∥ ≤
(log log 𝑋)2𝑟 . □
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6.3.3 Proofs of a sharp error term of distribution functions
In this section, we prove Proposition 6.3. The proof and the proofs of some
lemmas are written roughly because those many points are similar to the
proofs of Proposition 6.1. When F = (𝐹, 𝐹) ∈ (S† \ {1})2, θ = (𝜃1, 𝜃2) ∈ R2

satisfy (A2) (i.e. |𝜃1 − 𝜃2 | = 𝜋/2 in this case), we can write

𝐾F ,θ (𝑝, z) =
2∑
𝑗=1

𝑧 𝑗𝑎𝐹 (𝑝)𝑒−𝑖𝜃 𝑗
2∑
𝑘=1

𝑧𝑘𝑎𝐹 (𝑝)𝑒−𝑖𝜃𝑘 = (𝑧21 + 𝑧
2
2) |𝑎𝐹 (𝑝) |

2. (6.87)

Thanks to this equation, we can improve formula (6.68) and Lemma 6.15
to the following lemmas. We omit the proofs of those because the lemmas
can be shown similarly the proofs of formula (6.68) and Lemma 6.15 just by
using equation (6.87).
Lemma 6.16. Let F = (𝐹, 𝐹) ∈ (S† \ {1})2 and θ = (𝜃1, 𝜃2) ∈ R2 satisfying (S4),
(A1), and (A2). There exists a positive 𝑏 = 𝑏(𝐹) such that for any z = (𝑧1, 𝑧2) ∈ C2

with ∥z∥ ≤ 𝑏 we have∏
𝑝≤𝑋

𝐼0
(√
𝐾𝐹,𝜃 (𝑝, z)/𝑝

)
= exp

(
𝑧21
2 𝜎𝐹 (𝑋)

2 +𝑂𝐹 ( |𝑧1 |4)
)

exp
(
𝑧22
2 𝜎𝐹 (𝑋)

2 +𝑂𝐹 ( |𝑧2 |4)
)
.

Lemma 6.17. Suppose that F = (𝐹, 𝐹) ∈ (S† \ {1})2 and θ ∈ R2 satisfy (S4),
(A1), and (A2). Let 𝑐1, 𝑐2, 𝑑1, 𝑑2 be real numbers with 𝑐 𝑗 < 𝑑 𝑗 . Put ℛ =

(𝑐1, 𝑑1) × (𝑐2, 𝑑2) ⊂ R2. Let 𝑇 , 𝑋 be large numbers with 𝑋 (log log 𝑋)4(𝑟+1) ≤ 𝑇 . Then,
there exists a positive constant 𝑏2 = 𝑏2(F ) such that for x = (𝑥1, 𝑥2) ∈ R2 with
∥x∥ ≤ 𝑏2, we have

𝜈𝑇,F ,x(ℛ) = 𝑒
𝑥2
1+𝑥

2
2

2 𝜎𝐹 (𝑋)2 ×


2∏
𝑗=1

∫ 𝑥 𝑗𝜎𝐹 (𝑋)−
𝑐 𝑗

𝜎𝐹 (𝑋 )

𝑥 𝑗𝜎𝐹 (𝑋)−
𝑑 𝑗

𝜎𝐹 (𝑋 )

𝑒−𝑣
2/2 𝑑𝑣

√
2𝜋

+ 𝐸
 ,

where the error term 𝐸 satisfies

𝐸 ≪𝐹
1

(log log 𝑋)𝛼F + 1
2
+

2∑
𝑘=1

(
𝑥4
𝑘 (𝑑𝑘 − 𝑐𝑘 )
𝜎𝐹 (𝑋)

+ 1
𝜎𝐹 (𝑋)4

) 2∏
ℎ=1
ℎ≠𝑘

𝑑ℎ − 𝑐ℎ
𝜎𝐹 (𝑋)

.

Proof of Proposition 6.3. Using Lemma 6.17, we can prove Proposition 6.3 in
the same way as Proposition 6.1. □

Proof of Corollary 6.3. Let 0 < 𝜀 ≤ 1 and 𝑧 = 𝑥 + 𝑖𝑦 ∈ C. We may assume
|𝑧 | + 2 ≤ 𝑎7𝜎𝐹 (𝑋), where 𝑎7 is the same constant as in Theorem 6.3. and
Proposition 6.3 in the case 𝜃1 = 0 and 𝜃2 = 𝜋

2 , we obtain
1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : ∥𝑃𝐹 ( 1

2 + 𝑖𝑡, 𝑋) − 𝑧∥ < 𝜀
}

=
∫ 𝑥+𝜀

𝜎𝐹 (𝑋 )

𝑥−𝜀
𝜎𝐹 (𝑋 )

∫ 𝑦+𝜀
𝜎𝐹 (𝑋 )

𝑦−𝜀
𝜎𝐹 (𝑋 )

𝑒−
𝑢2+𝑣2

2
𝑑𝑢𝑑𝑣

2𝜋 +𝑂𝐹

(
1

(log log 𝑋)𝛼F +1/2 + 1
(log log 𝑋)2

)
.
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Since we assume that |𝑎𝐹 (𝑝) | ≪𝐹 𝑝
𝜗𝐹 for some 𝜗𝐹 ∈ [0, 1/3), the inequality

𝛼F ≥ 1/2 + 𝑐0 holds for a constant 0 < 𝑐0 < 1. Therefore, the above 𝑂-term
is ≤ 𝐶

(log log 𝑋)1+𝑐0
for some 𝐶 = 𝐶 (𝐹) > 0. Thus, we complete the proof of

Corollary 6.3. □

6.4 Proofs of the unconditional results for moments of
𝐿-functions

Lemma 6.18. Suppose the same situation as Proposition 6.5. Let 𝑟 ∈ Z≥1 be given.
There exists a positive constant 𝐴4 = 𝐴4(𝐹, 𝑟) such that for 𝑋 = 𝑇1/(log log𝑇)4(𝑟+1) ,
𝑌 = 𝑇 𝛿𝐹/𝑘 , 𝑘 ∈ Z≥1 with 𝑘 ≤ 𝛿𝐹 (log log𝑇)4(𝑟+1) ,

1
𝑇

∫ 2𝑇

𝑇

���� log 𝐹 ( 1
2 + 𝑖𝑡) − 𝑃𝐹 ( 1

2 + 𝑖𝑡, 𝑋)−
∑

| 12+𝑖𝑡−𝜌𝐹 |≤
1

log𝑌

log (( 1
2 + 𝑖𝑡 − 𝜌𝐹) log𝑌 )

����2𝑘𝑑𝑡
≤ 𝐴𝑘4 𝑘

2𝑘 + 𝐴𝑘4 𝑘!(log3 𝑇)
𝑘 ,

and

1
𝑇

∫ 2𝑇

𝑇

���� log 𝐹 ( 1
2 + 𝑖𝑡) − 𝑃𝐹 ( 1

2 + 𝑖𝑡, 𝑋)
����2𝑘𝑑𝑡 ≤ 𝐴𝑘4 𝑘

4𝑘 + 𝐴𝑘4 𝑘!(log3 𝑇)
𝑘 .

Proof. By Proposition 6.5, it suffices to show that∑
𝑋<𝑝≤𝑌2

|𝑎𝐹 (𝑝) |2
𝑝

≪𝐹,𝑟 log3 𝑇, (6.88)

and that

1
𝑇

∫ 2𝑇

𝑇

���� ∑
𝑝ℓ≤𝑋
ℓ≥2

Λ𝐹 (𝑝ℓ)
𝑝ℓ(1/2+𝑖𝑡) log 𝑝ℓ

����2𝑘𝑑𝑡 ≤ 𝐶𝑘 𝑘! (6.89)

for some constant 𝐶 = 𝐶 (𝐹) > 0. where 𝑌 = 𝑇 𝛿𝐹/𝑘 . Using formula (6.1), we
find that∑

𝑋<𝑝<𝑌2

|𝑎𝐹 (𝑝) |2
𝑝

= 𝑛𝐹
(
log log𝑌2 − log log 𝑋

)
+𝑂𝐹 (1) ≪𝐹 log3 𝑇.

Thus, we obtain estimate (6.88).
Next, we show estimate (6.89). Similarly to the proof of (6.31), we obtain∑

𝑝ℓ≤𝑋
ℓ≥2

Λ𝐹 (𝑝ℓ)
𝑝ℓ(1/2+𝑖𝑡) log 𝑝ℓ

=
∑

2≤ℓ≤𝐾1

∑
𝑝ℓ≤𝑋

Λ𝐹 (𝑝ℓ)
𝑝ℓ(1/2+𝑖𝑡) log 𝑝ℓ

+𝑂𝐹 (1),
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where 𝐾1 is the same constant as in Lemma 6.5. Therefore, we have

1
𝑇

∫ 2𝑇

𝑇

���� ∑
𝑝ℓ≤𝑋
ℓ≥2

Λ𝐹 (𝑝ℓ)
𝑝ℓ(1/2+𝑖𝑡) log 𝑝ℓ

����2𝑘𝑑𝑡
≤ 𝐶𝑘1

∑
2≤ℓ≤𝐾1

1
𝑇

∫ 2𝑇

𝑇

���� ∑
𝑝≤𝑋1/ℓ

Λ𝐹 (𝑝ℓ)
𝑝ℓ(1/2+𝑖𝑡) log 𝑝ℓ

����2𝑘𝑑𝑡 + 𝐶𝑘1
for some 𝐶1 = 𝐶1(𝐹) > 0. Moreover, by Lemma 2.8, it holds that

1
𝑇

∫ 2𝑇

𝑇

���� ∑
𝑝≤𝑋1/ℓ

Λ𝐹 (𝑝ℓ)
𝑝ℓ(1/2+𝑖𝑡) log 𝑝ℓ

����2𝑘𝑑𝑡 ≪ ℓ𝑘! ©­«
∑
𝑝≤𝑋1/ℓ

|Λ𝐹 (𝑝ℓ) |2
𝑝ℓ (log 𝑝ℓ)2

ª®¬
𝑘

.

Since
∑
𝑝

|Λ𝐹 (𝑝ℓ ) |2
𝑝ℓ (log 𝑝ℓ )2 ≪ 1 holds by (6.30), we obtain

1
𝑇

∫ 2𝑇

𝑇

���� ∑
𝑝ℓ≤𝑋
ℓ≥2

Λ𝐹 (𝑝ℓ)
𝑝ℓ(1/2+𝑖𝑡) log 𝑝ℓ

����2𝑘𝑑𝑡 ≤ 𝐶𝑘2 𝑘!,

which completes the proof of (6.89). □

Proof of Theorem 6.1. We consider (6.3) and (6.4)–(6.6) separately.

Proof of (6.3). Let 𝑇 be large. Put 𝑋 = 𝑇1/(log log𝑇)4(𝑟+1) . Let 𝐴 ≥ 1 be a fixed
arbitrary constant. Let the set E 𝑗 be

E 𝑗 :=
{
𝑡 ∈ [𝑇, 2𝑇] :

���� log 𝐹𝑗 ( 1
2 + 𝑖𝑡) −

∑
𝑝≤𝑋

𝑎𝐹𝑗 (𝑝)
𝑝1/2+𝑖𝑡

���� ≥ L
}
.

From Lemma 6.18, we have

meas(E 𝑗 ) ≪ 𝑇L−2𝑘
𝑗 𝐴𝑘5 (𝑘

4𝑘 + 𝑘 𝑘 (log3 𝑇)
𝑘 )

for all 𝑗 with 𝐴5 := 𝐴5(F ) = max1≤ 𝑗≤𝑟 𝐴4(𝐹𝑗 , 𝑟) + 1, where 𝐴4(𝐹𝑗 , 𝑟) has the
same meaning as in Lemma 6.18. Here the parameter L satisfying L ≥
(2𝐴5 log3 𝑇)2/3 will be chosen later. Set 𝑘 = ⌊L1/2/𝑒𝐴1/4

5 ⌋ so that meas(E 𝑗 ) ≪
𝑇 exp(−𝑐1L1/2) for some 𝑐1 > 0. Therefore except on the set E :=

⋃𝑟
𝑗=1 E 𝑗

with measure 𝑂𝑟 (𝑇 exp(−𝑐1L1/2)), we have

Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 ( 1
2 + 𝑖𝑡) = Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1

2 + 𝑖𝑡, 𝑋) + 𝛽 𝑗 (𝑡)L (6.90)

with |𝛽 𝑗 (𝑡) | ≤ 1 for all 𝑗 = 1, . . . , 𝑟 . By (6.90) and Proposition 6.1, the measure
of 𝑡 ∈ [𝑇, 2𝑇]\E such that for all 𝑗 = 1, . . . , 𝑟

Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 ( 1
2 + 𝑖𝑡) ≥ 𝑉 𝑗

√
𝑛𝐹𝑗

2 log log𝑇 (6.91)
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is at least (since 𝛽 𝑗 (𝑡) ≤ 1

𝑇
©­­«1 +𝑂F

©­­«
∏𝑟

𝑗=1(1 + |𝑉𝑘 | + L√
log log𝑇

)

(log log𝑇)𝛼𝐹+ 1
2

+
1 + ∥V ∥2 + L2

log log𝑇

log log𝑇
ª®®¬
ª®®¬

×
𝑟∏
𝑗=1

∫ ∞

𝜎𝐹𝑗 (𝑋)−1 (𝑉 𝑗

√
(𝑛𝐹𝑗 /2) log log𝑇+L)

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
(6.92)

for L√
log log𝑇

, ∥V ∥ ≤ 𝑐
√

log log𝑇 with 𝑐 sufficiently small. Similarly, the
measure of 𝑡 ∈ [𝑇, 2𝑇]\E such that (6.91) holds is at most

𝑇
©­­«1 +𝑂F

©­­«
∏𝑟
𝑘=1(1 + |𝑉𝑘 | + L√

log log𝑇
)

(log log𝑇)𝛼F + 1
2

+
1 + ∥V ∥2 + L2

log log𝑇

log log𝑇
ª®®¬
ª®®¬

×
𝑟∏
𝑗=1

∫ ∞

𝜎𝐹𝑗 (𝑋)−1 (𝑉 𝑗

√
(𝑛𝐹𝑗 /2) log log𝑇−L)

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
(6.93)

for L√
log log𝑇

, ∥V ∥ ≤ 𝑐
√

log log𝑇 . By using equation (6.1), we find that

𝜎𝐹𝑗 (𝑋) =
√
𝑛𝐹𝑗

2 log log𝑇 +𝑂𝑟,𝐹 𝑗

(
log3 𝑇√
log log𝑇

)
,

and so we also have

𝜎𝐹𝑗 (𝑋)−1 =
1√

𝑛𝐹𝑗

2 log log𝑇

(
1 +𝑂𝑟,𝐹 𝑗

( log3 𝑇

log log𝑇

))
. (6.94)

Therefore, when |𝑉 𝑗 | ≤
√

log log𝑇
log3 𝑇

, ( |𝑉 𝑗 | + 1)L ≤ 𝐵1
√

log log𝑇 with 𝐵1 > 0 a
constant to be chosen later, we find that∫ ∞

𝜎𝐹𝑗 (𝑋)−1 (𝑉 𝑗

√
(𝑛𝐹𝑗 /2) log log𝑇±L)

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋

=
∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
+

∫ 𝑉 𝑗

𝑉 𝑗+𝑂𝑟 ,𝐹𝑗 ( |𝑉 𝑗 |
log3 𝑇

log log𝑇 + L√
log log𝑇

)
𝑒−𝑢

2/2 𝑑𝑢√
2𝜋

=
∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
+𝑂𝑟,𝐹𝑗 ,𝐵1

((
|𝑉 𝑗 | log3 𝑇

log log𝑇 + L√
log log𝑇

)
𝑒−𝑉

2
𝑗 /2

)
=

(
1 +𝑂𝑟,𝐹 𝑗 ,𝐵1

(
|𝑉 𝑗 | ( |𝑉 𝑗 | + 1) log3 𝑇 + L(|𝑉 𝑗 | + 1)

√
log log𝑇

log log𝑇

)) ∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
.
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Hence, choosing L = 2𝑐−2
1 𝑟

2(∥V ∥4 + (log3 𝑇)2), we find that (6.92) and (6.93)
become

𝑇

(
1 +𝑂F ,𝐵1

(
(∥V ∥4 + (log3 𝑇)2) (∥V ∥ + 1)√

log log𝑇
+

∏𝑟
𝑘=1(1 + |𝑉𝑘 |)

(log log𝑇)𝛼F + 1
2

))
×

𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−
𝑢2
2
𝑑𝑢
√

2𝜋
,

and
𝑇 exp(−𝑐1L1/2) ≪ 𝑇 exp(−𝑟 (∥V ∥2 + log3 𝑇))

≪ 𝑇
1

log log𝑇

𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋

when ∥V ∥ ≤ 𝑐2
1𝑟

−2𝐵1(log log𝑇)1/10. Choosing 𝐵1 = 𝐴𝑐−2
1 𝑟

2, we have

1
𝑇

meas
©­­«
𝑟⋂
𝑗=1

𝑡 ∈ [𝑇, 2𝑇] :
Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 (1/2 + 𝑖𝑡)√

𝑛𝐹𝑗

2 log log𝑇
≥ 𝑉 𝑗


ª®®¬

=

(
1 +𝑂F ,𝐴

(
(∥V ∥4 + (log3 𝑇)2) (∥V ∥ + 1)√

log log𝑇
+

∏𝑟
𝑘=1(1 + |𝑉𝑘 |)

(log log𝑇)𝛼𝐹+1/2

))
×

𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−
𝑢2
2
𝑑𝑢
√

2𝜋

for ∥V ∥ ≤ 𝐴(log log𝑇)1/10. Thus, we complete the proof of (6.3). □

Proof of (6.4) and (6.6). Let 𝑋 = 𝑇1/(log log𝑇)4(𝑟+1) and let B 𝑗 be the set of 𝑡 ∈
[𝑇, 2𝑇] such that�������log 𝐹𝑗 ( 1

2 + 𝑖𝑡) − 𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋) −

∑
|1/2+𝑖𝑡−𝜌𝐹𝑗 |≤

1
log𝑌𝑗

log(( 1
2 + 𝑖𝑡 − 𝜌𝐹𝑗 ) log𝑌 )

������� ≥ L.

By Lemma 6.18, we know
meas(B 𝑗 ) ≤ 𝑇L−2𝑘𝐴𝑘5 (𝑘

2𝑘 + 𝑘 𝑘 (log3 𝑇)
𝑘 ),

where 𝐴5 = max1≤ 𝑗≤𝑟 𝐴4(𝐹𝑗 , 𝑟) + 2 and 𝐴4(𝐹𝑗 , 𝑟) has the same meaning
as in Lemma 6.18. By taking 𝑘 = ⌊L/

√
𝐴5𝑒⌋, we have that meas(B 𝑗 ) ≤

𝑇 exp(−𝑐2L) for some 𝑐2 > 0 as long as L ≥ 2𝐴5 log3 𝑇 . Therefore, it follows
that for 𝑡 ∈ [𝑇, 2𝑇] \ ⋃𝑟

𝑗=1 B 𝑗

Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 (1/2 + 𝑖𝑡)
= Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1

2 + 𝑖𝑡, 𝑋) +
∑

|1/2+𝑖𝑡−𝜌𝐹𝑗 |≤
1

log𝑌𝑗

Re 𝑒−𝑖𝜃 𝑗 log(( 1
2 + 𝑖𝑡 − 𝜌𝐹𝑗 ) log𝑌 𝑗 )

+ 𝛽 𝑗 (𝑡)L
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holds for all 1 ≤ 𝑗 ≤ 𝑟 with some |𝛽 𝑗 (𝑡) | ≤ 1. Let C𝑗 be the set of 𝑡 ∈ [𝑇, 2𝑇]
such that ∑

|1/2−𝑖𝑡−𝜌𝐹𝑗 |≤
1

log𝑌𝑗

Re 𝑒−𝜃 𝑗 log(( 1
2 + 𝑖𝑡 − 𝜌𝐹𝑗 ) log𝑌 𝑗 ) ≥ L.

When 𝜃 𝑗 ∈ [− 𝜋
2 ,

𝜋
2 ] and |1/2 + 𝑖𝑡 − 𝜌𝐹𝑗 | ≤ 1

log𝑌 𝑗
, we find that

Re 𝑒−𝑖𝜃 𝑗 log(( 1
2 + 𝑖𝑡 − 𝜌𝐹𝑗 ) log𝑌 𝑗 )

= cos 𝜃 𝑗 log | ( 1
2 + 𝑖𝑡 − 𝜌𝐹𝑗 ) log𝑌 𝑗 | + sin 𝜃 𝑗 arg(( 1

2 + 𝑖𝑡 − 𝜌𝐹𝑗 ) log𝑌 𝑗 ) ≤ 𝜋.

Hence, we have∑
|1/2+𝑖𝑡−𝜌𝐹𝑗 |≤

1
log𝑌𝑗

Re 𝑒−𝑖𝜃 𝑗 log(( 1
2 + 𝑖𝑡 − 𝜌𝐹𝑗 ) log𝑌 𝑗 ) ≤ 𝜋

∑
|1/2+𝑖𝑡−𝜌𝐹𝑗 |≤

1
log𝑌𝑗

1,

and thus by Lemma 6.6

meas(C𝑗 ) ≤ 𝐶𝑘 𝑘2𝑘𝑇L−2𝑘

for some constant 𝐶 = 𝐶 (𝐹𝑗 ) > 0. By choosing 𝑘 = ⌊L/
√
𝐶𝑒⌋, we have

meas(C𝑗 ) ≤ 𝑇 exp(−𝑐3L) for some 𝑐3 > 0. Now we have that the measure of
𝑡 ∈ [𝑇, 2𝑇] \ ⋃𝑟

𝑗=1(B 𝑗 ∪ C𝑗 ) such that

Re 𝑒−𝜃 𝑗 log 𝐹𝑗 ( 1
2 + 𝑖𝑡) ≥ 𝑉 𝑗

√
𝑛𝐹𝑗

2 log log𝑇

is bounded by the measure of the set 𝑡 ∈ [𝑇, 2𝑇] such that

Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋) ≥ 𝑉 𝑗

√
𝑛𝐹𝑗

2 log log𝑇 − 2L. (6.95)

From Proposition 6.1, we know (6.95) holds with measure

𝑇
©­­«1 +𝑂F

©­­«
∏𝑟
𝑘=1(1 + |𝑉𝑘 | + L√

log log𝑇
)

(log log𝑇)𝛼𝐹+ 1
2

+
1 + ∥V ∥2 + L2

log log𝑇

log log𝑇
ª®®¬
ª®®¬

×
𝑟∏
𝑗=1

∫ ∞

𝜎𝐹𝑗 (𝑋)−1 (𝑉 𝑗

√
(𝑛𝐹𝑗 /2) log log𝑇−2L)

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
(6.96)

for L√
log log𝑇

, ∥V ∥ ≤ 𝑐
√

log log𝑇 with 𝑐 sufficiently small. Choosing L =

𝑐−1
4 𝑟 (∥V ∥2 + 2𝐴5 log3 𝑇), we see that (6.96) becomes

𝑇

(
1 +𝑂F ,𝐴

(
(∥V ∥2 + log3 𝑇) (∥V ∥ + 1)√

log log𝑇
+

∏𝑟
𝑘=1(1 + |𝑉𝑘 |)

(log log𝑇)𝛼F + 1
2

))
×

𝑟∏
𝑗=1

∫ ∞

𝑉 𝑗

𝑒−
𝑢2
2
𝑑𝑢
√

2𝜋
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for ∥V ∥ ≤ 𝐴(log log𝑇)1/6. This completes the proof of (6.4).
The proof of (6.6) is similar by noting that when 𝜃 𝑗 ∈ [ 𝜋2 ,

3𝜋
2 ] and | 12 + 𝑖𝑡 −

𝜌𝐹𝑗 | ≤ 1
log𝑌 𝑗

,

Re 𝑒−𝑖𝜃 𝑗 log(( 1
2 + 𝑖𝑡 − 𝜌𝐹𝑗 ) log𝑌 𝑗 )

= cos 𝜃 𝑗 log | ( 1
2 + 𝑖𝑡 − 𝜌𝐹𝑗 ) log𝑌 𝑗 | + sin 𝜃 𝑗 arg(( 1

2 + 𝑖𝑡 − 𝜌𝐹𝑗 ) log𝑌 𝑗 ) ≥ −𝜋,

and thus the set of 𝑡 ∈ [𝑇, 2𝑇] such that∑
|1/2+𝑖𝑡−𝜌𝐹𝑗 |≤

1
log𝑌𝑗

Re 𝑒−𝜃 𝑗 log(( 1
2 + 𝑖𝑡 − 𝜌𝐹𝑗 ) log𝑌 𝑗 ) ≤ −L

has measure bounded by 𝐶𝑘 𝑘2𝑘𝑇L−2𝑘 for some constant 𝐶 = 𝐶 (𝐹𝑗 ). □

Proof of Theorem 6.2. Let 𝑋 = 𝑇1/(log log𝑇)4(𝑟+1) . Let 𝑎1 = 𝑎1(F ) > 0 be a suffi-
ciently small constant to be chosen later, Let V = (𝑉1, . . . , 𝑉𝑟) ∈ (R≥0)𝑟 such
that ∥V ∥ ≤ 𝑎1(1 +𝑉1/2

𝑚 )(log log𝑇)1/4 with 𝑉𝑚 := min1≤ 𝑗≤𝑟 𝑉 𝑗 .
We consider the case when θ ∈ [− 𝜋

2 ,
𝜋
2 ]𝑟 first. Similarly to the proof of

(6.4) (see (6.95)), we find that the measure of the set of 𝑡 ∈ [𝑇, 2𝑇] except for
a set of measure 𝑇 exp(−𝑐4L) (L ≫ log3 𝑇) such that Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗

(
1
2 + 𝑖𝑡

)
≥

𝑉 𝑗

√
𝑛𝐹𝑗

2 log log𝑇 is at most the measure of the set 𝑡 ∈ [𝑇, 2𝑇] such that

Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋) ≥ 𝑉 𝑗

√
𝑛𝐹𝑗

2 log log𝑇 − 2L.

From Proposition 6.1, the measure of 𝑡 ∈ [𝑇, 2𝑇] satisfying this inequality
for all 𝑗 = 1, . . . , 𝑟 is equal to

𝑇
©­­«1 +𝑂F

©­­«
∏𝑟
𝑘=1(1 +𝑉𝑘 + L√

log log𝑇
)

(log log𝑇)𝛼𝐹+ 1
2

+
1 + ∥V ∥2 + L2

log log𝑇

log log𝑇
ª®®¬
ª®®¬

×
𝑟∏
𝑗=1

∫ ∞

𝜎𝐹𝑗 (𝑋)−1 (𝑉 𝑗

√
(𝑛𝐹𝑗 /2) log log𝑇−2L)

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
(6.97)

for L√
log log𝑇

, ∥V ∥ ≤ 𝑐
√

log log𝑇 with 𝑐 sufficiently small.

Now, we choose L = 2𝑟𝑐−1
4 ∥V ∥2 + log3 𝑇 and 𝑎1 small enough so that we

have the inequalities ∥V ∥ ≤ 𝑎9
√

log log𝑇 and 4L ≤ (1+𝑉 𝑗 )
√
𝑛𝐹𝑗

2 log log𝑇 for
all 𝑗 = 1, . . . , 𝑟 , where 𝑎9 is the same constant as in Proposition 6.1. Then,
by equation (6.94) and the estimate

∫ ∞
𝑉
𝑒−𝑢

2/2𝑑𝑢 ≪ 1
1+𝑉 𝑒

−𝑉2/2 for 𝑉 ≥ 0, we
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obtain ∫ ∞

𝜎𝐹𝑗 (𝑋)−1 (𝑉 𝑗

√
(𝑛𝐹𝑗 /2) log log𝑇−2L)

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋

≪𝑟,𝐹𝑗

1
1 +𝑉 𝑗

exp ©­«−1
2

(
𝑉 𝑗 +𝑂𝑟,𝐹𝑗

(
L√

log log𝑇
+𝑉 𝑗

log3 𝑇

log log𝑇

))2ª®¬
≪F

1
1 +𝑉 𝑗

exp
(
−
𝑉2
𝑗

2 +𝑂F

(
𝑉 𝑗 ∥V ∥2√
log log𝑇

+ ∥V ∥4

log log𝑇

))
.

Hence, when 0 ≤ 𝑉1, . . . , 𝑉𝑟 ≤ 𝑎
√

log log𝑇 with 𝑎 sufficiently small, (6.97) is

≪F 𝑇

©­«
𝑟∏
𝑗=1

1
1 +𝑉 𝑗

ª®¬ + 1
(log log𝑇)𝛼F + 1

2


× exp

(
−
𝑉2

1 + · · · +𝑉2
𝑟

2 +𝑂F

(
∥V ∥3√

log log𝑇

))
.

Moreover, we have

𝑇 exp(−𝑐4L) ≤ 𝑇 exp(−2𝑟 ∥V ∥2) ≤ 𝑇
𝑟∏
𝑗=1

exp
(
−2(𝑉2

1 + · · · +𝑉2
𝑟 )

)
≪ 𝑇

𝑟∏
𝑗=1

1
1 +𝑉 𝑗

exp
(
−
𝑉2
𝑗

2

)
.

Similarly when θ ∈ [ 𝜋2 ,
3𝜋
2 ]𝑟 , except for a set of measure 𝑇 exp(−𝑐4L) (L ≫

log3 𝑇), the measure of 𝑡 ∈ [𝑇, 2𝑇] such that

Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 ( 1
2 + 𝑖𝑡) ≥ 𝑉 𝑗

√
𝑛𝐹𝑗

2 log log𝑇

is at least the measure of 𝑡 ∈ [𝑇, 2𝑇] such that

Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡) ≥ 𝑉 𝑗

√
𝑛𝐹𝑗

2 log log𝑇 + 2L

When 4L ≤ 𝑉 𝑗
√
𝑛𝐹𝑗

2 log log𝑇 , we have the measure of 𝑡 satisfying the above
inequality for all 𝑗 = 1, . . . , 𝑟 is (by Proposition 6.1)

𝑇
©­­«1 +𝑂F

©­­«
∏𝑟
𝑘=1(1 +𝑉𝑘 + L√

log log𝑇
)

(log log𝑇)𝛼𝐹+ 1
2

+
1 + ∥V ∥2 + L2

log log𝑇

log log𝑇
ª®®¬
ª®®¬

×
𝑟∏
𝑗=1

∫ ∞

𝜎𝐹𝑗 (𝑋)−1 (𝑉 𝑗

√
(𝑛𝐹𝑗 /2) log log𝑇+2L)

𝑒−𝑢
2/2 𝑑𝑢√

2𝜋
, (6.98)
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which can be bounded by

≫F 𝑇
©­«
𝑟∏
𝑗=1

1
1 +𝑉 𝑗

ª®¬ exp
(
−
𝑉2

1 + · · · +𝑉2
𝑟

2 +𝑂F

(
∥V ∥L√
log log𝑇

))
when

∏𝑟
𝑗=1(1 + 𝑉 𝑗 ) ≤ 𝑐(log log𝑇)𝛼F + 1

2 with 𝑐 = 𝑐(F ) > 0 a suitably small
constant. Choose L = 2𝑟 ∥V ∥2 + log3 𝑇 and 𝑎1 small enough so that ∥V ∥ ≤
𝑎6

√
log log𝑇 and 4L ≤ 𝑉 𝑗

√
𝑛𝐹𝑗

2 log log𝑇 hold for all 𝑗 = 1, . . . , 𝑟 , where 𝑎6 is
the same constant as in Proposition 6.1. Then (6.98) is

≫F 𝑇
©­«
𝑟∏
𝑗=1

1
1 +𝑉 𝑗

ª®¬ exp
(
−
𝑉2

1 + · · · +𝑉2
𝑟

2 +𝑂F

(
∥V ∥3√

log log𝑇

))
,

which completes the proof of Theorem 6.2. □

We prepare a lemma to prove Theorem 6.3.

Lemma 6.19. Let 𝜃 ∈
[
− 𝜋

2 ,
𝜋
2
]
, and 𝐹 ∈ S† satisfying (6.1) and (A3). There exist

positive constants 𝑎11 = 𝑎11(𝐹), 𝑎12 = 𝑎12(𝐹) such that for any large 𝑉 ,

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : Re 𝑒−𝑖𝜃 log 𝐹 ( 1

2 + 𝑖𝑡) > 𝑉
}

≤ exp
(
−𝑎11

𝑉2

log log𝑇

)
+ exp (−𝑎12𝑉) .

Proof. We can show that, for 𝑡 ∈ [𝑇, 2𝑇], the inequality Re 𝑒−𝑖𝜃 log 𝐹 (1/2+𝑖𝑡) ≤
𝐶1 log𝑇 with 𝐶1 = 𝐶1(𝐹) > 0 a suitably large constant by using Theorem 6.6
in the case 𝑋 = 3, 𝐻 = 1 and estimate (6.26). Hence, this lemma holds when
𝑉 ≥ 𝐶1 log𝑇 with 𝐶1 = 𝐶1(𝐹) > 0. In the following, we consider the case
𝑉 ≤ 𝐶1 log𝑇 . Similarly to the proof of Lemma 6.18, we obtain∫ 2𝑇

𝑇

���� log 𝐹 ( 1
2 + 𝑖𝑡) − 𝑃𝐹 ( 1

2 + 𝑖𝑡, 𝑋) −
∑

| 12+𝑖𝑡−𝜌𝐹 |≤
1

log 𝑋

log (( 1
2 + 𝑖𝑡 − 𝜌𝐹) log 𝑋)

����2𝑘𝑑𝑡
≤ 𝑇𝐴𝑘4 𝑘

2𝑘 + 𝑇𝐴𝑘4 𝑘!(log log𝑇)𝑘

for 𝑋 = 𝑇 𝛿𝐹/𝑘 . Additionally, by using Lemma 2.8 and Lemma 6.6, we obtain∫ 2𝑇

𝑇
|𝑃𝐹 ( 1

2 + 𝑖𝑡, 𝑋) |2𝑘𝑑𝑡 ≤ 𝑇
(
𝐶𝑘 log log𝑇

) 𝑘
,

and ∫ 2𝑇

𝑇

©­­«
∑

| 12+𝑖𝑡−𝜌𝐹 |≤
1

log𝑌

1
ª®®¬

2𝑘

𝑑𝑡 ≤ 𝑇𝐶𝑘 𝑘2𝑘 .

202



When 𝑉 ≤ log log𝑇 , we choose 𝑘 = ⌊𝑐𝑉2/log log𝑇⌋, and when 𝑉 ≥ log log𝑇 ,
we choose 𝑘 = ⌊𝑐𝑉⌋. Here, 𝑐 is a suitably small constant depending only on
𝐹. Then, by the above inequalities and Re 𝑒−𝑖𝜃 log (( 1

2 + 𝑖𝑡 − 𝜌𝐹) log 𝑋) ≤ 𝜋,
we obtain

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : Re 𝑒−𝑖𝜃 log 𝐹 ( 1

2 + 𝑖𝑡) > 𝑉
}

≤ exp
(
−𝑐5

𝑉2

log log𝑇

)
+ exp (−𝑐6𝑉) ,

which completes the proof of Lemma 6.19. □

Proof of Theorem 6.3. Let 0 ≤ 𝑘 ≤ 𝑎3 with 𝑎3 > 0 suitably small to be chosen
later. Put 𝜙F (𝑡) = min1≤ 𝑗≤𝑟 Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 (1/2 + 𝑖𝑡) and

ΦF (𝑇,𝑉) := meas {𝑡 ∈ [𝑇, 2𝑇] : 𝜙F (𝑡) > 𝑉} .

Then we have∫ 2𝑇

𝑇
exp (2𝑘𝜙F (𝑡)) 𝑑𝑡 =

∫ ∞

−∞
2𝑘𝑒2𝑘𝑉ΦF (𝑇,𝑉)𝑑𝑉. (6.99)

We consider the case when θ ∈ [− 𝜋
2 ,

𝜋
2 ]𝑟 first. From Theorem 6.2, it follows

that, for any 0 ≤ 𝑉 ≤ 𝑎13 log log𝑇 with 𝑎13 = 𝑎13(F ) a suitably small constant,

ΦF (𝑇,𝑉) (6.100)

≪F 𝑇

(
1

1 + (𝑉/
√

log log𝑇)𝑟
+ 1
(log log𝑇)𝛼F + 1

2

)
× exp

(
−ℎF

𝑉2

log log𝑇 + 𝐶1
𝑉3

(log log𝑇)2

)
for some constant 𝐶1 = 𝐶1(F ) > 0. Moreover, by Lemma 6.19, it holds that

ΦF (𝑇,𝑉) ≤ 𝑇 exp
(
−𝑎11

𝑉2

log log𝑇

)
+ 𝑇 exp (−𝑎12𝑉) (6.101)

for any large 𝑉 . Now we choose 𝑎3 = min{𝑎11𝑎13/4, 𝑎12/4}. Put 𝐷1 = 4𝑎−1
11 .

We divide the integral on the right hand side of (6.99) to(∫ 0

−∞
+
∫ 𝐷1𝑘 log log𝑇

0
+
∫ ∞

𝐷1𝑘 log log𝑇

)
2𝑘𝑒2𝑘𝑉ΦF (𝑇,𝑉)𝑑𝑉 =: 𝐼1 + 𝐼2 + 𝐼3,

say. We use the trivial bound ΦF (𝑇,𝑉) ≤ 𝑇 to obtain 𝐼1 ≤ 𝑇 . Also, by
inequality (6.101), it follows that

𝐼3 ≤ 𝑇
∫ ∞

𝐷1𝑘 log log𝑇
2𝑘

{
exp

((
−𝑎7

𝑉

log log𝑇 + 2𝑘
)
𝑉

)
+ 𝑒(−𝑎8+2𝑘)𝑉

}
𝑑𝑉

≤ 𝑇
∫ ∞

0
4𝑘𝑒−2𝑘𝑉𝑑𝑉 ≤ 2𝑇.
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Moreover, using inequality (6.100), we find that

𝐼2 ≪F 𝑇

∫ 𝐷1𝑘 log log𝑇

0
(𝐸1 + 𝐸2) exp

(
2𝑘𝑉 − ℎF

𝑉2

log log𝑇 + 𝐶1
𝑉3

(log log𝑇)2

)
𝑑𝑉

≪ 𝑇 (log𝑇)𝑘2/ℎF +𝐶1𝐷
3
1𝑘

3

×
∫ 𝐷1𝑘 log log𝑇

0
(𝐸1 + 𝐸2) exp

(
− ℎF

log log𝑇

(
𝑉 − 𝑘

ℎF
log log𝑇

)2
)
𝑑𝑉,

where 𝐸1 = 𝑘

1+(𝑉/
√

log log𝑇)𝑟
and 𝐸2 = 𝑘

(log log𝑇)𝛼F + 1
2
. We see that∫ 𝐷1𝑘 log log𝑇

0
𝐸2 exp

(
− ℎF

log log𝑇

(
𝑉 − 𝑘

ℎF
log log𝑇

)2
)
𝑑𝑉

≤ 𝑘

(log log𝑇)𝛼F + 1
2

∫ ∞

−∞
exp

(
− ℎF

log log𝑇𝑉
2
)
𝑑𝑉 ≪F

𝑘

(log log𝑇)𝛼F .

Also, we write∫ 𝐷1𝑘 log log𝑇

0
𝐸1 exp

(
− ℎF

log log𝑇

(
𝑉 − 𝑘

ℎF
log log𝑇

)2
)
𝑑𝑉

=

(∫ 𝑘
2ℎF

log log𝑇

0
+
∫ 𝐷1𝑘 log log𝑇

𝑘
2ℎF

log log𝑇

)
𝑘

exp
(
− ℎF

log log𝑇

(
𝑉 − 𝑘

ℎF
log log𝑇

)2
)

1 + (𝑉/
√

log log𝑇)𝑟
𝑑𝑉

=: 𝐼2,1 + 𝐼2,2,

say. We find that

𝐼2,2 ≪F
𝑘

1 + (𝑘
√

log log𝑇)𝑟

∫ ∞

−∞
exp

(
− ℎF

log log𝑇𝑉
2
)
𝑑𝑉

≪F
𝑘
√

log log𝑇
1 + (𝑘

√
log log𝑇)𝑟

,

and that

𝐼2,1 ≤
∫ 𝑘

ℎF
log log𝑇

𝑘
2ℎF

log log𝑇
𝑘 exp

(
− ℎF

log log𝑇𝑉
2
)
𝑑𝑉

≤

√
log log𝑇
ℎF

∫ ∞

𝑘

2
√
ℎF

√
log log𝑇

𝑘𝑒−𝑢
2
𝑑𝑢.

If 𝑘 ≤ (log log𝑇)−1/2, the last is clearly ≪F 1. If 𝑘 ≥ (log log𝑇)−1/2, we use
the estimate

∫ ∞
𝑥
𝑒−𝑢

2
𝑑𝑢 ≪ 𝑥−1𝑒−𝑥

2 to obtain

𝐼2,1 ≤

√
log log𝑇
ℎF

∫ ∞

𝑘

2
√
ℎF

√
log log𝑇

𝑘𝑒−𝑢
2
𝑑𝑢 ≪ 1.
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Hence, we obtain

𝐼2 (6.102)

≪F 𝑇 + 𝑘𝑇 (log𝑇)𝑘2/ℎF +𝐶1𝐷
3
1𝑘

3

( √
log log𝑇

1 + (𝑘
√

log log𝑇)𝑟
+ 1
(log log𝑇)𝛼F + 1

2

)
.

Combing this estimate and the estimates for 𝐼1, 𝐼3, we complete the proof of
(6.8).

Next, we consider the case θ ∈ [ 𝜋2 ,
3𝜋
2 ]𝑟 . By equation (6.99), estimate (6.7),

and positivity of ΦF , we have∫ 2𝑇

𝑇
exp (2𝑘𝜙F (𝑡)) 𝑑𝑡

≥
∫ 1

0
2𝑘𝑒2𝑘𝑉ΦF (𝑇,𝑉)𝑑𝑉 +

∫ 𝑘
ℎF

log log𝑇+
√

log log𝑇

𝑘
ℎF

log log𝑇
2𝑘𝑒2𝑘𝑉ΦF (𝑇,𝑉)𝑑𝑉.

By estimate (6.7), the first integral on the right hand side is ≫F 𝑇 , and the
second integral on the right hand side is

≫F
𝑘𝑇

1 + (𝑘
√

log log𝑇)𝑟

×
∫ 𝑘

ℎF
log log𝑇+

√
log log𝑇

𝑘
ℎF

log log𝑇
exp

(
2𝑘𝑉 − ℎF

𝑉2

log log𝑇 − 𝐶1
𝑉3

(log log𝑇)2

)
𝑑𝑉

≥
𝑘𝑇 (log𝑇)

𝑘2
ℎF

−𝐶2𝑘
3

1 + (𝑘
√

log log𝑇)𝑟

×
∫ 𝑘

ℎF
log log𝑇+

√
log log𝑇

𝑘
ℎF

log log𝑇
exp

(
− ℎF

log log𝑇

(
𝑉 − 𝑘

ℎF
log log𝑇

)2
)

≫F 𝑘𝑇 (log𝑇)
𝑘2
ℎF

−𝐶2𝑘
3

√
log log𝑇

1 + (𝑘
√

log log𝑇)𝑟
,

where 𝐶2 ≥ 0 is some constant depending on F . Hence, we also obtain
Theorem 6.3 in the case θ ∈ [ 𝜋2 ,

3𝜋
2 ]𝑟 . □

6.5 Proofs of the conditional results for moments of
𝐿-functions

Proof of Theorem 6.4. Let F ∈ (S†)𝑟 and θ ∈ [− 𝜋
2 ,

3𝜋
2 ]𝑟 satisfying 𝒜. Let 𝑇

be a sufficiently large constant depending on F . Set 𝑌 = 𝑇𝐾1/L where 𝐾1 =
𝐾1(F ) > 0 is a suitably large constant and L ≥ (log3 𝑇)2 is a large parameter
to be chosen later. Let 𝑓 be a fixed function satisfying the condition of this
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paper (see Notation) and 𝐷 ( 𝑓 ) ≥ 2. Assuming the Riemann Hypothesis for
𝐹1, . . . , 𝐹𝑟 , we apply Theorem 6.6 with 𝑋 = 𝑌 , 𝐻 = 1 to obtain

log 𝐹𝑗 ( 1
2 + 𝑖𝑡) =

∑
2≤𝑛≤𝑌2

Λ𝐹𝑗 (𝑛)𝑣 𝑓 ,1(𝑒log 𝑛/log𝑌 )
𝑛1/2+𝑖𝑡 log 𝑛

+
∑

|1/2+𝑖𝑡−𝜌𝐹𝑗 |≤
1

log𝑌

log(( 1
2 + 𝑖𝑡 − 𝜌𝐹𝑗 ) log𝑌 ) + 𝑅𝐹𝑗 ( 1

2 + 𝑖𝑡, 𝑌 , 1),

where

��𝑅𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑌 , 1)

�� ≤ 𝐶0

(
1

log𝑌

���� ∑
𝑛≤𝑌3

Λ𝐹𝑗 (𝑛)𝑤𝑌 (𝑛)

𝑛
1
2+

4
log𝑌 +𝑖𝑡

���� + 𝑑𝐹𝑗 log𝑇
log𝑌

)
for any 𝑡 ∈ [𝑇, 2𝑇]. Here 𝐶0 is a positive constant depending only on 𝑓 .
Moreover, when 𝜃 𝑗 ∈

[
− 𝜋

2 ,
𝜋
2
]
, it holds that

Re 𝑒−𝑖𝜃 𝑗
∑

|1/2+𝑖𝑡−𝜌𝐹𝑗 |≤
1

log𝑌

log(( 1
2 + 𝑖𝑡 − 𝜌𝐹𝑗 ) log𝑌 ) ≤ 𝜋

∑
|1/2+𝑖𝑡−𝜌𝐹𝑗 |≤

1
log𝑌

1,

and when 𝜃 𝑗 ∈
[
𝜋
2 ,

3𝜋
2
]
, it holds that

Re 𝑒−𝑖𝜃 𝑗
∑

|1/2+𝑖𝑡−𝜌𝐹𝑗 |≤
1

log𝑌

log(( 1
2 + 𝑖𝑡 − 𝜌𝐹𝑗 ) log𝑌 ) ≥ −𝜋

∑
|1/2+𝑖𝑡−𝜌𝐹𝑗 |≤

1
log𝑌

1.

Hence, there exists some positive constant 𝐶1 > 0 such that we have (by
(6.39)),

Re 𝑒−𝑖𝜃 𝑗
∑

|1/2+𝑖𝑡−𝜌𝐹𝑗 |≤
1

log𝑌

log(( 1
2 + 𝑖𝑡 − 𝜌𝐹𝑗 ) log𝑌 )

≤ 𝐶1

(
1

log𝑌

���� ∑
𝑛≤𝑌3

Λ𝐹𝑗 (𝑛)𝑤𝑌 (𝑛)

𝑛
1
2+

4
log𝑌 +𝑖𝑡

���� + 𝑑𝐹𝑗 log𝑇
log𝑌

)
when 𝜃 𝑗 ∈

[
− 𝜋

2 ,
𝜋
2
]
, and

Re 𝑒−𝑖𝜃 𝑗
∑

|1/2+𝑖𝑡−𝜌𝐹𝑗 |≤
1

log𝑌

log(( 1
2 + 𝑖𝑡 − 𝜌𝐹𝑗 ) log𝑌 )

≥ −𝐶1

(
1

log𝑌

���� ∑
𝑛≤𝑌3

Λ𝐹𝑗 (𝑛)𝑤𝑌 (𝑛)

𝑛
1
2+

4
log𝑌 +𝑖𝑡

���� + 𝑑𝐹𝑗 log𝑇
log𝑌

)
when 𝜃 𝑗 ∈

[
𝜋
2 ,

3𝜋
2
]
. Taking 𝐾1 = 2(𝐶0 + 𝐶1) max1≤ 𝑗≤𝑟 𝑑𝐹𝑗 , we find that there

exists some positive constant𝐶2 depending on 𝑓 such that for any 𝑡 ∈ [𝑇, 2𝑇]
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and all 𝑗 = 1, . . . , 𝑟 ,

Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 ( 1
2 + 𝑖𝑡) ≤ Re 𝑒−𝑖𝜃 𝑗

∑
𝑝≤𝑌2

𝑎𝐹𝑗 (𝑝)𝑣 𝑓 ,1(𝑒log 𝑝/log𝑌 )
𝑝1/2+𝑖𝑡 (6.103)

+
���� ∑
𝑝ℓ≤𝑌2

ℓ≥2

Λ𝐹𝑗 (𝑝ℓ)𝑣 𝑓 ,1(𝑒log 𝑝ℓ/log𝑌 )
𝑝ℓ(1/2+𝑖𝑡) log 𝑝ℓ

����
+ 𝐶2

log𝑌

���� ∑
𝑛≤𝑌3

Λ𝐹𝑗 (𝑛)𝑤𝑌 (𝑛)

𝑛
1
2+

4
log𝑌 +𝑖𝑡

���� + L
2

when 𝜃 𝑗 ∈
[
− 𝜋

2 ,
𝜋
2
]
, and

Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 ( 1
2 + 𝑖𝑡) ≥ Re 𝑒−𝑖𝜃 𝑗

∑
𝑝≤𝑌2

𝑎𝐹𝑗 (𝑝)𝑣 𝑓 ,1(𝑒log 𝑝/log𝑌 )
𝑝1/2+𝑖𝑡

−
���� ∑
𝑝ℓ≤𝑌2

ℓ≥2

Λ𝐹𝑗 (𝑝ℓ)𝑣 𝑓 ,1(𝑒log 𝑝ℓ/log𝑌 )
𝑝ℓ(1/2+𝑖𝑡) log 𝑝ℓ

����
− 𝐶2

log𝑌

���� ∑
𝑛≤𝑌3

Λ𝐹𝑗 (𝑛)𝑤𝑌 (𝑛)

𝑛
1
2+

4
log𝑌 +𝑖𝑡

���� − L
2

when 𝜃 𝑗 ∈
[
𝜋
2 ,

3𝜋
2
]
.

Put 𝑋 = 𝑌1/(log log𝑇)4(𝑟+1) . By Lemma 2.8 and assumption (A1), we obtain

∫ 2𝑇

𝑇

���� ∑
𝑋<𝑝≤𝑌2

𝑎𝐹𝑗 (𝑝)𝑣 𝑓 ,1(𝑒log 𝑝/log𝑌 )
𝑝1/2+𝑖𝑡

����2𝑘𝑑𝑡 ≪ 𝑇𝑘! ©­«
∑

𝑋<𝑝≤𝑌2

|𝑎𝐹𝑗 (𝑝) |2

𝑝

ª®¬
𝑘

≤ 𝑇𝐶𝑘3 𝑘
𝑘 (

log3 𝑇
) 𝑘

for some constant 𝐶3 = 𝐶3(𝐹𝑗 , 𝑟) > 0. Similarly to the proofs of estimates
(6.44) and (6.45), we can show that for any integer 𝑘 with 1 ≤ 𝑘 ≤ L/4𝐾1∫ 2𝑇

𝑇

���� ∑
𝑝ℓ≤𝑌2

ℓ≥2

Λ𝐹𝑗 (𝑝ℓ)𝑣 𝑓 ,1(𝑒log 𝑝ℓ/log𝑌 )
𝑝ℓ(1/2+𝑖𝑡) log 𝑝ℓ

����2𝑘𝑑𝑡 ≤ 𝑇𝐶𝑘4 𝑘 𝑘
for some constant 𝐶4 = 𝐶4(𝐹𝑗 ) > 0. Moreover, by Lemma 6.5, we have∫ 2𝑇

𝑇

(
𝐶1

log𝑌

���� ∑
𝑛≤𝑌3

Λ𝐹𝑗 (𝑛)𝑤𝑌 (𝑛)

𝑛
1
2+

4
log𝑌 +𝑖𝑡

����)2𝑘

𝑑𝑡 ≤ 𝑇𝐶𝑘5 𝑘
𝑘

for any integer 𝑘 with 1 ≤ 𝑘 ≤ L/4𝐾1 and for some constant𝐶5 = 𝐶5(𝐹𝑗 ) > 0.
Here the assumptions in Lemma 6.5 is satisfied as we can take 𝜅𝐹 arbitrarily
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large. Therefore, the set of 𝑡 ∈ [𝑇, 2𝑇] such that for all 𝑗 = 1, . . . , 𝑟 ,

L
2 ≤

���� ∑
𝑋<𝑝≤𝑌2

𝑎𝐹𝑗 (𝑝)𝑣 𝑓 ,1(𝑒log 𝑝/log𝑌 )
𝑝1/2+𝑖𝑡

���� + ���� ∑
𝑝ℓ≤𝑌2

ℓ≥2

Λ𝐹𝑗 (𝑝ℓ)𝑣 𝑓 ,1(𝑒log 𝑝ℓ/log𝑌 )
𝑝ℓ(1/2+𝑖𝑡) log 𝑝ℓ

����
+ 𝐶2

log𝑌

���� ∑
𝑛≤𝑌3

Λ𝐹𝑗 (𝑛)𝑤𝑌 (𝑛)

𝑛
1
2+

4
log𝑌 +𝑖𝑡

����
has a measure bounded by 𝑇L−2𝑘𝐶𝑘6 𝑘

𝑘
(
log3 𝑇

) 𝑘 with 𝐶6 = 𝐶6(F ) > 0 a suit-
ably large constant. Choosing 𝑘 = ⌊𝑐1L⌋ with 𝑐1 suitably small depending
only on F , we find that there exists a set X ⊂ [𝑇, 2𝑇] with

meas(X) ≤ 𝑇 exp
(
−𝑐1L log

(
L

log3 𝑇

))
(6.104)

such that for any 𝑡 ∈ [𝑇, 2𝑇] \ X and any 𝑗 = 1, . . . , 𝑟 ,

Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 ( 1
2 + 𝑖𝑡) ≤ Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1

2 + 𝑖𝑡, 𝑋) + L (6.105)

when 𝜃 𝑗 ∈ [− 𝜋
2 ,

𝜋
2 ], and

Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 ( 1
2 + 𝑖𝑡) ≥ Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1

2 + 𝑖𝑡, 𝑋) − L

when 𝜃 𝑗 ∈ [ 𝜋2 ,
3𝜋
2 ].

First, we show estimates (6.10) and (6.11). Suppose that V satisfies
∥V ∥ ≤ 𝑎5𝑉

1/2
𝑚 (log log𝑇)1/4(log3 𝑇)1/2, where 𝑎5 is a sufficiently small posi-

tive constant. Set L = 4𝑟𝑐−1
1

(
∥V ∥2

log ∥V ∥ + (log3 𝑇)4
)
. Then we can verify from

(6.104) that meas(X) ≪F 𝑇 exp
(
−2𝑟 ∥V ∥2) . Moreover, when 𝜃𝑖 ∈ [− 𝜋

2 ,
𝜋
2 ], the

measure of 𝑡 ∈ [𝑇, 2𝑇]\X such that

Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 ( 1
2 + 𝑖𝑡) ≥ 𝑉 𝑗

√
𝑛𝐹𝑗

2 log log𝑇

is bounded above by the measure of 𝑡 ∈ [𝑇, 2𝑇] such that

Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋)

𝜎𝐹𝑗 (𝑋)
≥ 𝑉 𝑗 − 𝐶F

(
L√

log log𝑇
+
𝑉 𝑗 log3 𝑇

log log𝑇

)
.

where𝐶F is some positive constant and we used (6.94) for𝜎𝐹𝑗 (𝑋)−1. Similarly
when 𝜃𝑖 ∈ [ 𝜋2 ,

3𝜋
2 ], the measure of 𝑡 ∈ [𝑇, 2𝑇]\X such that

Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 ( 1
2 + 𝑖𝑡) ≥ 𝑉 𝑗

√
𝑛𝐹𝑗

2 log log𝑇

is bounded below by the measure of 𝑡 ∈ [𝑇, 2𝑇] such that

Re 𝑒−𝑖𝜃 𝑗𝑃𝐹𝑗 ( 1
2 + 𝑖𝑡, 𝑋)

𝜎𝐹𝑗 (𝑋)
≥ 𝑉 𝑗 + 𝐶F

(
L√

log log𝑇
+
𝑉 𝑗 log3 𝑇

log log𝑇

)
.
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Here, we choose 𝑎3 so that 𝐶F
(

L√
log log𝑇

+ 𝑉 𝑗 log3 𝑇
log log𝑇

)
≤ 𝑉𝑚

2 . From these obser-

vations, the estimate
∫ ∞
𝑉
𝑒−𝑢

2/2𝑑𝑢 ≍ 1
1+𝑉 𝑒

−𝑉2/2 for 𝑉 ≥ 0, estimate (6.65), and
Proposition 6.2, we find that if 𝜃 𝑗 ∈ [− 𝜋

2 ,
𝜋
2 ],

1
𝑇

meas(𝒮(𝑇,V ;F , θ))

≪F
1
𝑇

meas(X)

+
(

1
𝑉1 · · ·𝑉𝑟

+ 1
(log log𝑇)𝛼F + 1

2

)
×

𝑟∏
𝑗=1

exp
{
−
𝑉2
𝑗

2 −
𝑉2
𝑗

2𝜎𝐹𝑗 (𝑋)2𝜎𝐹𝑗

(
𝑉2
𝑗

𝜎𝐹𝑗 (𝑋)2

)2

+𝑂F
©­­«

∥V ∥L√
log log𝑇

+ L2

log log𝑇 +
(

∥V ∥√
log log𝑇

) 2−2𝜗F
1−2𝜗F ª®®¬

}

≪F

(
1

𝑉1 · · ·𝑉𝑟
+ 1
(log log𝑇)𝛼F + 1

2

)
𝑟∏
𝑗=1

exp
(
−
𝑉2
𝑗

2 +𝑂F

(
∥V ∥3√

log log𝑇 log ∥V ∥

))
for ∥V ∥ ≤ 𝑎5𝑉

1/2
𝑚 (log log𝑇)1/4(log3 𝑇)1/2. Hence, we obtain estimate (6.10).

Similarly, we can also find that if 𝜃 𝑗 ∈ [ 𝜋2 ,
3𝜋
2 ],

1
𝑇

meas(𝒮(𝑇,V ;F , θ))

≫F

(
1

𝑉1 · · ·𝑉𝑟
+ 1
(log log𝑇)𝛼F + 1

2

)
×

𝑟∏
𝑗=1

exp
{
−
𝑉2
𝑗

2 −
𝑉2
𝑗

2𝜎𝐹𝑗 (𝑋)2𝜎𝐹𝑗

(
𝑉2
𝑗

𝜎𝐹𝑗 (𝑋)2

)2

−𝑂F
©­­«

∥V ∥L√
log log𝑇

+ L2

log log𝑇 +
(

∥V ∥√
log log𝑇

) 2−2𝜗F
1−2𝜗F ª®®¬

}
− 1
𝑇

meas(X)

≫F
1

𝑉1 · · ·𝑉𝑟
exp

(
−
𝑉2

1 + · · · +𝑉2
𝑟

2 −𝑂F

(
∥V ∥3√

log log𝑇 log ∥V ∥

))
for ∥V ∥ ≤ 𝑎5𝑉

1/2
𝑚 (log log𝑇)1/4(log3 𝑇)1/2 satisfying the inequality

∏𝑟
𝑗=1𝑉 𝑗 ≤

𝑎6(log log𝑇)𝛼F + 1
2 with 𝑎6 = 𝑎6(F ) > 0 a suitably small constant. Hence, we

also obtain (6.11).
Now we consider (6.12), where 𝜃 𝑗 ∈

[
− 𝜋

2 ,
𝜋
2
]
. Putting L = 4𝐾1 log𝑇

log log𝑇 , we see
that 𝑌 = (log𝑇)1/4, and hence there exists a positive constant 𝐴 = 𝐴(F ) such
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that the right hand side of (6.103) is ≤ 𝐴
log𝑇√

log log𝑇

√
𝑛𝐹𝑗

2 log log𝑇 uniformly for

any 𝑡 ∈ [𝑇, 2𝑇] and all 𝑗 = 1, . . . , 𝑟 . Thus, we may assume ∥V ∥ ≤ 𝐴
log𝑇√

log log𝑇
.

We first consider the case when
√

log log𝑇 ≤ ∥V ∥ ≤ 𝐴
log𝑇√

log log𝑇
. Set L =

𝑏1
∥V ∥

2
√

log log𝑇 , where 𝑏1 is some small positive constant such that the
inequality 𝑌 ≥ 3 holds. Then we see (6.104) becomes

meas(X) ≪F 𝑇 exp
(
−𝑐2∥V ∥

√
log log𝑇 log ∥V ∥

)
for some constant 𝑐2 = 𝑐2(F ) > 0. Using Lemma 2.8, we have, uniformly for
any 𝑗 = 1, . . . , 𝑟 ,∫ 2𝑇

𝑇
|𝑃𝐹𝑗 ( 1

2 + 𝑖𝑡, 𝑋) |2𝑘𝑑𝑡 ≪F 𝑇 (𝐶6𝑘 log log𝑇)𝑘 (6.106)

for any integer 𝑘 with 1 ≤ 𝑘 ≤ L log log𝑇 and some 𝐶6 = 𝐶6(F ). Combing
(6.106) and (6.105), we obtain

1
𝑇

meas(𝒮(𝑇,V ;F , θ))

≪ min
1≤ 𝑗≤𝑟

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] : Re 𝑒−𝑖𝜃 𝑗 log 𝐹𝑗 ( 1

2 + 𝑖𝑡) > 𝑉 𝑗
}

≪F ∥V ∥−2𝑘𝐶𝑘7 𝑘
𝑘 + exp

(
−𝑐2∥V ∥

√
log log𝑇 log ∥V ∥

)
.

When ∥V ∥ ≤ log log𝑇 , we choose 𝑘 = ⌊𝑐3∥V ∥2⌋, and when ∥V ∥ > log log𝑇 ,
we choose 𝑘 = ⌊𝑐3∥V ∥

√
log log𝑇⌋, where 𝑐3 is a suitably small positive

constant depending only on F . Then, it follows that

1
𝑇

meas(𝒮(𝑇,V ;F , θ))

≪F exp
(
−𝑐4∥V ∥2

)
+ exp

(
−𝑐5∥V ∥

√
log log𝑇 log ∥V ∥

)
,

which completes the proof of (6.12). □

Proof of Theorem 6.5. Let 𝑇 be large, and put 𝜀(𝑇) = (log3 𝑇)−1. Let 𝑘 ≥ 0. We
recall equation (6.99), which is∫ 2𝑇

𝑇
exp (2𝑘𝜙F (𝑡)) 𝑑𝑡 =

∫ ∞

−∞
2𝑘𝑒2𝑘𝑉ΦF (𝑇,𝑉)𝑑𝑉.

We divide the integral on the right hand side to(∫ 0

−∞
+
∫ 𝐷2𝑘 log log𝑇

(0
+
∫ ∞

𝐷2𝑘 log log𝑇

)
2𝑘𝑒2𝑘𝑉ΦF (𝑇,𝑉)𝑑𝑉 =: 𝐼4 + 𝐼5 + 𝐼6,
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say. Here, 𝐷2 = 𝐷2(F ) is a suitably large positive constant. Now we consider
the case when 𝜃 𝑗 ∈ [− 𝜋

2 ,
𝜋
2 ]. We use the trivial bound ΦF (𝑇,𝑉) ≤ 𝑇 to obtain

𝐼4 ≤ 𝑇 . Applying estimate (6.12), we find that the estimate

ΦF (𝑇,𝑉) ≪F 𝑇 exp (−4𝑘𝑉)

holds for𝑉 ≥ 𝐷2𝑘 log log𝑇 when𝑇 ≥ exp exp exp(𝐶𝑘) and𝐶, 𝐷2 are suitably
large depending only on F . Therefore, we have

𝐼6 ≪F 𝑇

∫ ∞

𝐷2 log log𝑇
2𝑘𝑒−2𝑘𝑉𝑑𝑉 ≪ 𝑇.

By estimate (6.10), we find that

ΦF (𝑇,𝑉)

≪𝑘,F 𝑇

(
1

1 + (𝑉/
√

log log𝑇)𝑟
+ 1
(log log𝑇)𝛼F + 1

2

)
× exp

(
− ℎF𝑉

2

log log𝑇 + 𝐶1𝑉
3

(log log𝑇)2 log3 𝑇

)
≪ 𝑇

(
1

1 + (𝑉/
√

log log𝑇)𝑟
+ 1
(log log𝑇)𝛼F + 1

2

)
(log𝑇)𝐶1𝐷

3
2𝑘

3𝜀(𝑇)

× exp
(
−ℎF

𝑉2

log log𝑇

)
for (log log𝑇)2/3 ≤ 𝑉 ≤ 𝐷2𝑘 log log𝑇 . Here, 𝐶1 = 𝐶1(F ) is some positive
constant. Similarly to the proof of (6.102) by using this estimate, we obtain

𝐼5 ≪F 𝑇 + 𝑇 (log𝑇)𝑘2/ℎF +𝐵𝑘3𝜀(𝑇)
(

𝑘
√

log log𝑇
1 + (𝑘

√
log log𝑇)𝑟

+ 1
(log log𝑇)𝛼F + 1

2

)
.

Hence, we obtain (6.13).
For estimate (6.14), it holds from the positivity of ΦF (𝑇,𝑉) and equation

(6.99) that∫ 2𝑇

𝑇
exp (2𝑘𝜙F (𝑡)) 𝑑𝑡 ≫𝑘

∫ 𝑘
ℎF

log log𝑇+
√

log log𝑇

𝑘
ℎF

log log𝑇
𝑒2𝑘𝑉ΦF (𝑇,𝑉)𝑑𝑉.

When 𝜃𝑖 ∈ [ 𝜋2 ,
3𝜋
2 ], assuming 𝜗F < 1

𝑟+1 , we use (6.11) to obtain

ΦF (𝑇,𝑉) ≫𝑘,F
𝑇

1 + (𝑉/
√

log log𝑇)𝑟
exp

(
−ℎF

𝑉2

log log𝑇 − 𝐶𝑉3

(log log𝑇)2 log3 𝑇

)
≫F

𝑇 (log𝑇)−𝐶2𝑘
3𝜀(𝑇)

1 + (𝑉/
√

log log𝑇)𝑟
exp

(
−ℎF

𝑉2

log log𝑇

)
for 𝑘

ℎF
log log𝑇 ≤ 𝑉 ≤ 𝑘

ℎF
log log𝑇+

√
log log𝑇 . Here,𝐶2 = 𝐶2(F ) is a positive

constant. Similarly to the proof of (6.9) by using this estimate and the bound
ΦF (𝑇,𝑉) ≫F 𝑇 for 0 ≤ 𝑉 ≤ 1, we can also obtain (6.14). □
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6.6 Conclusion remarks

From the result for large deviations, it seems to expected that∫ 2𝑇

𝑇

(
min
1≤ 𝑗≤𝑟

|𝐹𝑗 ( 1
2 + 𝑖𝑡) |

)2𝑘
𝑑𝑡 ≍𝑘 𝑇 + 𝑇

(log𝑇)𝑘2/ℎF

(log log𝑇) (𝑟−1)/2 .

We may be interested in whether, using our method and Harper’s [39], we
can improve our mean value theorem into∫ 2𝑇

𝑇

(
min
1≤ 𝑗≤𝑟

|𝐹𝑗 ( 1
2 + 𝑖𝑡) |

)2𝑘
𝑑𝑡 ≪𝑘 𝑇 + 𝑇

(log𝑇)𝑘2/ℎF

(log log𝑇) (𝑟−1)/2 for 𝑘 ≥ 0.

Our method requires a strong zero density estimate for 𝐿-functions. Un-
fortunately, the estimate has not been proved yet for many 𝐿-functions.
Therefore, we may be interested in whether we can prove our large devia-
tions results to avoid the estimate by using the method of Laurinčikas [68]
or Radziwiłł-Soundararajan [98]. On the other hand, Hsu and Wong [46]
proved a joint central limit theorem (for fixed 𝑉 𝑗 ) for Dirichlet 𝐿-functions
by using the method of Radziwiłł-Soundararajan. However, their method
requires essentially that Dirichlet coefficients satisfy |𝑎(𝑛) | ≤ 1 (in this case
|𝜒(𝑛) | ≤ 1), hence also requires Ramanujan conjecture when we consider
generalization to automorphic 𝐿-functions.

In this chapter, we showed that, for certain 𝑘 ,∫ 2𝑇

𝑇

(
min
1≤ 𝑗≤𝑟

|𝐹𝑗 ( 1
2 + 𝑖𝑡) |

)2𝑘
𝑑𝑡 ≪𝑘,F 𝑇 (log𝑇)𝑘2/ℎF +𝐵𝑘3

,

and ∫ 2𝑇

𝑇

(
min
1≤ 𝑗≤𝑟

|𝐹𝑗 ( 1
2 + 𝑖𝑡) |

)2𝑘
𝑑𝑡 ≪𝑘,F 𝑇 (log𝑇)𝑘2/ℎF +𝜀

under GRH. Moreover, we can also show that, using Theorems 6.2, 6.4,∫ 2𝑇

𝑇

(
max
1≤ 𝑗≤𝑟

|𝐹𝑗 ( 1
2 + 𝑖𝑡) |

)2𝑘
𝑑𝑡 ≪𝑘,F 𝑇 (log𝑇)𝑛F 𝑘2+𝐵𝑘3

,∫ 2𝑇

𝑇

∏
1≤ 𝑗≤𝑟

|𝐹𝑗 ( 1
2 + 𝑖𝑡) |2𝑘 𝑗𝑑𝑡 ≪𝑘,F 𝑇 (log𝑇)𝑛𝐹1 𝑘

2
1+···+𝑛𝐹𝑟 𝑘

2
𝑟+𝐵k3

for any small 𝑘, 𝑘1, . . . , 𝑘𝑟 ≥ 0 with k = max1≤ 𝑗≤𝑟 𝑘 , and∫ 2𝑇

𝑇

(
max
1≤ 𝑗≤𝑟

|𝐹𝑗 ( 1
2 + 𝑖𝑡) |

)2𝑘
𝑑𝑡 ≪𝑘,F ,𝜀 𝑇 (log𝑇)𝑛F 𝑘2+𝜀,∫ 2𝑇

𝑇

∏
1≤ 𝑗≤𝑟

|𝐹𝑗 ( 1
2 + 𝑖𝑡) |2𝑘 𝑗𝑑𝑡 ≪𝑘,F ,𝜀 𝑇 (log𝑇)𝑛𝐹1 𝑘

2
1+···+𝑛𝐹𝑟 𝑘

2
𝑟+𝜀

for any 𝑘, 𝑘1, . . . , 𝑘𝑟 ≥ 0 under GRH, where 𝑛F = max1≤ 𝑗≤𝑟 𝑛𝐹𝑗 .
Finally, we should mention that our method also recovers the work of

Heuberger-Kropf [45] for higher dimensional quasi-power theorem, and it is
probably possible to improve their work in the direction of large deviations
by our method.
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Chapter 7 Dependence of 𝜁 (𝜎 + 𝑖𝑡) and
𝐿 (𝜎 + 𝑖𝑡, 𝜒) in the strip 1/2 < 𝜎 < 1

In this chapter, we discuss the joint value distribution of 𝐿-functions in the
Selberg class in the strip 1/2 < 𝜎 < 1. The contents in this chapter are based
on the paper [53].

7.1 Results

In this section, we state our result for the dependence of the Riemann zeta-
function and Dirichlet 𝐿-functions associated with a quadratic character. We
consider the measure of the set

𝒮(𝑇,V ; 𝜒, 𝜎, 𝜃) :={
𝑡 ∈ [𝑇, 2𝑇] : Re 𝑒−𝑖𝜃 log 𝜁 (𝜎 + 𝑖𝑡) > 𝑉1 and Re 𝑒−𝑖𝜃 log 𝐿 (𝜎 + 𝑖𝑡, 𝜒) > 𝑉2

}
.

When 𝜎 = 1
2 , the measure is discussed in the previous chapter, and so we in

this chapter focus on the case 1
2 < 𝜎 < 1. The main theorem in this chapter

is the following.

Theorem 7.1. Let 1
2 < 𝜎 < 1, and let 𝜒 be a quadratic Dirichlet character. Then,

there exists a positive constant 𝑎1 = 𝑎1(𝜎, 𝜒) such that, for any large numbers 𝑇 ,
𝑉1 satisfying 𝑉1 ≤ 𝑎1

(log𝑇)1−𝜎
log log𝑇 , we have

1
𝑇

meas(𝒮(𝑇,V ; 𝜒, 𝜎, 𝜃))

= exp
(
−2

𝜎
1−𝜎 𝐴(𝜎)𝑉

1
1−𝜎

1 (log𝑉1)
𝜎

1−𝜎 (1 + 𝑜(1))
)

with 𝑉2 = 𝑉1(1 + 𝑜(1)) as 𝑉1 → +∞.

From this theorem, we find that log |𝜁 (𝜎 + 𝑖𝑡) | and log |𝐿 (𝜎 + 𝑖𝑡, 𝜒) | are
dependent as random variables for every 1

2 < 𝜎 < 1. Moreover, we can also
obtain the following corollary.

Corollary 7.1. Let 1
2 < 𝜎 < 1, and let 𝜒 be a quadratic character. Then we have

min
{
log |𝜁 (𝜎 + 𝑖𝑡) |, log |𝐿 (𝜎 + 𝑖𝑡, 𝜒) |

}
= Ω±

(
(log 𝑡)1−𝜎

log log 𝑡

)
as 𝑡 → +∞.
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Similarly to the previous chapter, to prove Theorem 7.1, we firstly calcu-
late certain Dirichlet polynomials. We define

𝒮𝑋 (𝑇,𝑉1, 𝑉2; 𝜒, 𝜎, 𝜃)

:=
{
𝑡 ∈ [𝑇, 2𝑇] : Re

∑
𝑝≤𝑋

𝑒−𝑖𝜃

𝑝𝜎+𝑖𝑡
> 𝑉1, and Re

∑
𝑝≤𝑋

𝑒−𝑖𝜃𝜒(𝑝)
𝑝𝜎+𝑖𝑡

> 𝑉2

}
.

Then, we can show the following proposition.

Proposition 7.1. Let 𝐿 ≥ 2, and 𝜒 be a quadratic Dirichlet character. There
exists positive constant 𝑎2 = 𝑎2(𝜎, 𝜒, 𝐿) such that, for any large numbers 𝑇 , 𝑉1,
𝑋 = (log𝑇)𝐿 with 𝑉1 ≤ 𝑎2

(log𝑇)1−𝜎
log log𝑇 , we have

1
𝑇

meas(𝒮𝑋 (𝑇,𝑉1, 𝑉2; 𝜒, 𝜎, 𝜃))

= exp
(
−2

𝜎
1−𝜎 𝐴(𝜎)𝑉

1
1−𝜎

1 (log𝑉1)
𝜎

1−𝜎 (1 + 𝑜(1))
)

with 𝑉2 = 𝑉1(1 + 𝑜(1)) as 𝑉1 → +∞.

7.2 Approximate formulas for moment generating
functions II

In this section, we give an approximate formula for characteristic functions
of an 𝑟-tuple of Dirichlet polynomials in general cases. In this section,
a(𝑝) = (𝑎1(𝑝), . . . , 𝑎𝑟 (𝑝)) is a fixed 𝑟-tuple of bounded sequences on the
prime numbers. For every 𝑤, 𝑧1, . . . , 𝑧𝑟 ∈ C, 𝜎 ∈ R, and prime number 𝑝, we
define 𝐾a(𝑝, z) by (6.46) and

𝑃 𝑗 (𝜎 + 𝑖𝑡, 𝑋) =
∑
𝑝≤𝑋

𝑎 𝑗 (𝑝)
𝑝𝜎+𝑖𝑡

.

It is the goal of this section to prove the following proposition.

Proposition 7.2. Let 1
2 < 𝜎 < 1, 𝐿 ≥ 1 be fixed. There exist positive constants

𝑏1 = 𝑏1(a, 𝜎, 𝐿), 𝑏2 = 𝑏2(a, 𝜎, 𝐿), 𝑏3 = 𝑏3(a, 𝜎, 𝐿) such that, for large 𝑇 ,
𝑋 = (log𝑇)𝐿 , and z = (𝑧1, . . . , 𝑧𝑟) ∈ C𝑟 with ∥z∥ ≤ 𝑏1(log𝑇)𝜎, we have

1
𝑇

∫
A

exp ©­«
𝑟∑
𝑗=1

𝑧 𝑗 Re
(
𝑃 𝑗 (𝜎 + 𝑖𝑡, 𝑋)

)ª®¬ 𝑑𝑡
=

∏
𝑝≤𝑋

𝐼0

(√
𝐾a(𝑝, z)/𝑝2𝜎

)
+𝑂

(
exp

(
−𝑏2

log𝑇
log log𝑇

))
,

where A ⊂ [𝑇, 2𝑇] is a set satisfying meas(𝐴) ≤ 𝑇 exp(−𝑏3 log𝑇/log log𝑇).

To prove this proposition, we prepare some lemmas.
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Lemma 7.1. Let 𝜎 ≥ 1/2 be fixed. Let 𝑋 ≥ 3, and 𝑇 be large. Let 𝑧1, 𝑧2, . . . , 𝑧𝑟 be
complex numbers. Then, there exists a positive constant 𝐶1 = 𝐶1(a) such that, for
all 𝜎 ≥ 1/2, 𝑘 ∈ Z≥1, 𝑅 > 0, we have

1
𝑇

∫ 2𝑇

𝑇

©­«
𝑟∑
𝑗=1

𝑧 𝑗 Re
(
𝑃 𝑗 (𝜎 + 𝑖𝑡, 𝑋)

)ª®¬
𝑘

𝑑𝑡

=
𝑘!

2𝜋𝑖

∮
|𝑤 |=𝑅

1
𝑤𝑘+1

∏
𝑝≤𝑋

𝐼0

(
𝑤

√
𝐾a(𝑝, z)/𝑝2𝜎

)
𝑑𝑤 +𝑂

(
(𝐶1∥z∥𝑋3)𝑘

𝑇

)
.

Proof. This lemma can be easily proved by using Lemma 6.8. □

Lemma 7.2. There exists a positive constant 𝐶1 = 𝐶1(a, 𝜎) such that for 𝑋 ≥ 3
𝑤 ∈ C, z = (𝑧1, . . . , 𝑧𝑟) ∈ C𝑟 with ∥z∥ ≤ 𝑋𝜎, we have���� ∏

𝑝≤𝑋
𝐼0

(√
𝐾a(𝑝, z)/𝑝2𝜎

) ���� ≤ exp
(
𝐶1

∥z∥ 1
𝜎

log (∥z∥ + 3)

)
.

Proof. By the definition of 𝐾a(𝑝, z) and the boundedness of 𝑎 𝑗 (𝑝), there
exists a constant 𝐶 = 𝐶 (a) > 0 such that����𝐼0 (√

𝐾a(𝑝, z)/𝑝2𝜎
)���� ≤ ∞∑

𝛼=0

(𝐶a∥z∥/𝑝𝜎)2𝛼

(2𝛼)! ≤ exp
(
𝐶a∥z∥
𝑝𝜎

)
.

By this inequality and using the prime number theorem, we have����� ∏
𝑝≤∥z∥

1
𝜎
1

𝐼0

(√
𝐾a(𝑝, z)/𝑝2𝜎

) ����� ≤ exp ©­«𝐶
∥z∥

1
𝜎

1
log (∥z∥1 + 3)

ª®¬
for some 𝐶 = 𝐶 (a, 𝜎) > 0. On the other hand, for 𝑝 > ∥z∥ 1

𝜎 , we see that

𝐼0

(√
𝐾a(𝑝, z)/𝑝2𝜎

)
= 1 +𝑂a

(
∥z∥2

1
𝑝2𝜎

)
.

Using this equation and the prime number theorem, we find that∏
∥z∥ 1

𝜎 <𝑝≤𝑋

𝐼0

(√
𝐾a(𝑝, z)/𝑝2𝜎

)

= exp
©­­«

∑
∥z∥ 1

𝜎 <𝑝≤𝑋

log
(
1 +𝑂a

(
∥z∥2

𝑝2𝜎

))ª®®¬
≤ exp

©­­«𝐶′
∑

∥z∥ 1
𝜎 <𝑝≤𝑋

∥z∥2

𝑝2𝜎

ª®®¬ ≤ exp
(
𝐶′′ ∥z∥ 1

𝜎

log (∥z∥ + 3)

)
.

Thus, by taking 𝐶1 = max{𝐶,𝐶′′}, we obtain this lemma. □
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Lemma 7.3. Let 𝐿 ≥ 1, and let 𝑇 be large. Put 𝑋 = (log𝑇)𝐿 . Let 𝑎(𝑝) be a
bounded complex sequence with |𝑎(𝑝) | ≤ 𝑀 . Then there exists a positive constant
𝐶2 = 𝐶2(𝜎, 𝑀) such that, for all integer 𝑘 with 1 ≤ 𝑘 ≤ log𝑇

10𝐿 log log𝑇 ,

∫ 2𝑇

𝑇

���� ∑
𝑝≤𝑋

𝑎(𝑝)
𝑝𝜎+𝑖𝑡

����2𝑘𝑑𝑡 ≤ 𝑇 (
𝐶2

𝑘1−𝜎

(log (𝑘 + 3))𝜎

)2𝑘
.

Proof. By applying Lemmas 7.1, 7.2 as 𝑟 = 1, 𝑎1(𝑝) = 𝑎(𝑝), 𝑧1 = 1, and 𝜃1 = 0,
we can obtain

1
𝑇

∫ 2𝑇

𝑇

���� ∑
𝑝≤𝑋

𝑎(𝑝)
𝑝𝜎+𝑖𝑡

����2𝑘𝑑𝑡
=
𝑘!

2𝜋𝑖

∮
|𝑤 |=𝑅

1
𝑤𝑘+1

∏
𝑝≤𝑋

𝐼0

(
𝑤

√
𝑎(𝑝)/𝑝2𝜎

)
𝑑𝑤 +𝑂

(
(𝐶𝑋3)𝑘
𝑇

)
≪ 𝑘!

𝑅𝑘
exp

(
𝐶1

𝑅
1
𝜎

log (𝑅 + 3)

)
+ 𝑇−1/2

for any 0 < 𝑅 ≤ 𝑋𝜎 = (log𝑇)𝜎𝐿 , 1 ≤ 𝑘 ≤ log𝑇
10𝐿 log log𝑇 . Choosing 𝑅 =

𝑘2𝜎−1(log 𝑘)2𝜎, this is

≪
(
𝑘1−𝜎

(log 𝑘)𝜎

)2𝑘
exp

(
𝐶′

1𝑘
(
𝑘1−𝜎 log (𝑘 + 3)

))
+ 𝑇−1/2 ≪

(
𝐶2

𝑘1−𝜎

(log (𝑘 + 3))𝜎

)2𝑘

for some 𝐶2 = 𝐶2(𝜎, 𝑀). □

Lemma 7.4. Let 𝐿 ≥ 1, and let 𝑇 be large. Put 𝑋 = (log𝑇)𝐿 . Define the set A by

A =
𝑟⋂
𝑗=1

{
𝑡 ∈ [𝑇, 2𝑇] :

��Re
(
𝑃 𝑗 (𝜎 + 𝑖𝑡, 𝑋)

) �� ≤ (log𝑇)1−𝜎

log log𝑇

}
. (7.1)

Then, there exists a positive number 𝑐1 = 𝑐1(a, 𝜎, 𝐿) such that

1
𝑇

meas( [𝑇, 2𝑇] \ A) ≤ exp
(
−𝑐1

log𝑇
log log𝑇

)
.

Proof. By Lemma 7.3, there exist positive constants 𝐶 𝑗 = 𝐶 𝑗 (a, 𝜎), for which

1
𝑇

meas
{
𝑡 ∈ [𝑇, 2𝑇] :

��Re
(
𝑃 𝑗 (𝜎 + 𝑖𝑡, 𝑋)

) �� > (log𝑇)1−𝜎

log log𝑇

}
≤

(
𝐶 𝑗

𝑘1−𝜎 log log𝑇
(log 𝑘)𝜎 (log𝑇)1−𝜎

)2𝑘

.
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holds for 2 ≤ 𝑘 ≤ log𝑇
2𝐿 log log𝑇 . Hence, we have

1
𝑇

meas([𝑇, 2𝑇] \ A)

≤ 1
𝑇

𝑟∑
𝑗=1

meas
{
𝑡 ∈ [𝑇, 2𝑇] :

��Re
(
𝑃 𝑗 (𝜎 + 𝑖𝑡, 𝑋)

) �� > (log𝑇)1−𝜎

log log𝑇

}
≤

(
𝐶

𝑘1−𝜎 log log𝑇
(log 𝑘)𝜎 (log𝑇)1−𝜎

)2𝑘

,

where 𝐶 = 𝑟 · max1≤ 𝑗≤𝑟 𝐶 𝑗 . Thus, we obtain this lemma by choosing 𝑘 =
[𝑐 log𝑇/log log𝑇] with 𝑐 = 𝑐(a, 𝜎, 𝐿) a suitably small constant. □

Proof of Proposition 7.2. Let A be the set defined by (7.1). Let 𝛿 = 𝛿(a, 𝜎, 𝐿)
be a suitably small positive constant to be chosen later. Then we find that

1
𝑇

∫
A

exp ©­«
𝑟∑
𝑗=1

𝑧 𝑗 Re
(
𝑃 𝑗 (𝜎 + 𝑖𝑡, 𝑋)

)ª®¬ 𝑑𝑡 =
1
𝑇

∑
0≤𝑘≤𝑌

1
𝑘!

∫
A

( 𝑟∑
𝑗=1

𝑧 𝑗 Re
(
𝑃 𝑗 (𝜎 + 𝑖𝑡, 𝑋)

) ) 𝑘
𝑑𝑡 +𝑂 ©­«

∑
𝑘>𝑌

1
𝑘!

(
∥z∥(log𝑇)1−𝜎

log log𝑇

) 𝑘ª®¬ ,
where 𝑌 = log𝑇

10𝐿 log log𝑇 . Here, by using the Stirling formula, this 𝑂-term is

≪ exp
(
− 1

10𝐿
log𝑇

log log𝑇

)
for ∥z∥ ≤ 𝛿(log𝑇)𝜎 if 𝛿 ≤ 1

10𝑒2𝐿
. By using the Cauchy-

Schwarz inequality, for 0 ≤ 𝑘 ≤ 𝑌 , we find that

1
𝑇

∫
A

( 𝑟∑
𝑗=1

𝑧 𝑗 Re
(
𝑃 𝑗 (𝜎 + 𝑖𝑡, 𝑋)

) ) 𝑘
𝑑𝑡

=
1
𝑇

∫ 2𝑇

𝑇

( 𝑟∑
𝑗=1

𝑧 𝑗 Re
(
𝑃 𝑗 (𝜎 + 𝑖𝑡, 𝑋)

) ) 𝑘
𝑑𝑡+

+𝑂
©­­«

1
𝑇
(meas([𝑇, 2𝑇] \ A))1/2 ©­«

∫ 2𝑇

𝑇

���� 𝑟∑
𝑗=1

𝑧 𝑗 Re
(
𝑃 𝑗 (𝜎 + 𝑖𝑡, 𝑋)

) ����2𝑘𝑑𝑡ª®¬
1/2ª®®¬ .

Using Lemma 7.3 and Lemma 7.4, this 𝑂-term is

≪ exp
(
−𝑐1

2
log𝑇

log log𝑇

) (
𝐶′

2∥z∥
(𝑘 + 1)1−𝜎

(log (𝑘 + 3))𝜎

) 𝑘
≤ exp

(
(𝐶′

2𝛿1 −
𝑐1
2 )

log𝑇
log log𝑇

)
,

where 𝑐1 is the same constant as in Lemma 7.4, and 𝐶′
2 is a positive constant

depending on a, 𝜎. Moreover, when 𝛿 ≤ 𝑐1
4𝐶 ′

2
, this right hand side is ≤
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exp
(
− 𝑐1

4
log𝑇

log log𝑇

)
. From the above calculations, when 𝛿 ≤ min{ 1

10𝑒2𝐿
, 𝑐1

4𝐶 ′
2
}, we

have

1
𝑇

∫
𝐴

exp ©­«
𝑟∑
𝑗=1

𝑧 𝑗 Re
(
𝑃 𝑗 (𝜎 + 𝑖𝑡, 𝑋)

)ª®¬ 𝑑𝑡 (7.2)

=
1
𝑇

∑
0≤𝑘≤𝑌

1
𝑘!

∫ 2𝑇

𝑇

( 𝑟∑
𝑗=1

𝑧 𝑗 Re
(
𝑃 𝑗 (𝜎 + 𝑖𝑡, 𝑋)

) ) 𝑘
𝑑𝑡 +𝑂

(
exp

(
−𝑐2

log𝑇
log log𝑇

))
,

where 𝑐2 = min{ 1
10𝐿 ,

𝑐1
4 }.

Now, by Lemma 7.1, we obtain

1
𝑇

∑
0≤𝑘≤𝑌

1
𝑘!

∫ 2𝑇

𝑇

( 𝑟∑
𝑗=1

𝑧 𝑗 Re
(
𝑃 𝑗 (𝜎 + 𝑖𝑡, 𝑋)

) ) 𝑘
𝑑𝑡

=
1

2𝜋𝑖

∮
|𝑤 |=𝑒

∑
0≤𝑘≤𝑌

1
𝑤𝑘+1

∏
𝑝≤𝑋

𝐼0

(
𝑤

√
𝐾a(𝑝, z)/𝑝2𝜎

)
𝑑𝑤 +𝑂

(
𝑇−1/2

)
.

By Lemma 7.2, there exists a positive constant 𝐶3 = 𝐶3(a, 𝜎) such that���� ∏
𝑝≤𝑋

𝐼0

(
𝑤

√
𝐾a(𝑝, z)/𝑝2𝜎

) ���� ≤ exp
(
𝐶3𝛿

1
𝜎

log𝑇
log log𝑇

)
for |𝑤 | = 𝑒, ∥z∥ ≤ 𝛿(log𝑇)𝜎. In addition, for |𝑤 | = 𝑒, we see that����∑

𝑘>𝑌

1
𝑤𝑘+1

���� ≪ exp
(
−

log𝑇
10𝐿 log log𝑇

)
.

Therefore, if 𝛿 ≤ 1
(20𝐶3𝐿)𝜎 , |𝑤 | = 𝑒, it holds that����∑

𝑘>𝑌

1
𝑤𝑘+1

∏
𝑝≤𝑋

𝐼0

(
𝑤

√
𝐾a(𝑝, z)/𝑝2𝜎

) ���� ≪ exp
(
−

log𝑇
20𝐿 log log𝑇

)
.

Hence, by choosing 𝛿 = min{ 1
10𝑒2𝐿

, 𝑐1
4𝐶 ′

2

1
(20𝐶3𝐿𝜎) } and by this estimate and (7.2),

we have

1
𝑇

∫
𝐴

exp ©­«
𝑟∑
𝑗=1

𝑧 𝑗 Re
(
𝑃 𝑗 (𝜎 + 𝑖𝑡, 𝑋)

)ª®¬ 𝑑𝑡
=

1
2𝜋𝑖

∮
|𝑤 |=𝑒

∏
𝑝≤𝑋

𝐼0

(
𝑤

√
𝐾a(𝑝, z)/𝑝2𝜎

)
𝑑𝑤

𝑤 − 1 +𝑂
(
exp

(
−𝑐3

log𝑇
log log𝑇

))
,

where 𝑐3 = min{ 1
20𝐿 ,

𝑐1
4 }. This right hand side is equal to∏

𝑝≤𝑋
𝐼0

(√
𝐾a(𝑝, z)/𝑝2𝜎

)
+𝑂

(
exp

(
−𝑐3

log𝑇
log log𝑇

))
,

which completes the proof of Proposition 7.2. □
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7.3 Distribution functions of Dirichlet polynomials in the
strip 1

2 < 𝜎 < 1

For 𝑧1, 𝑧2 ∈ C, and a Dirichlet character 𝜒, define

𝐾𝜒,𝜃 (𝑝, 𝑧1, 𝑧2) =
(
𝑧1𝑒

−𝑖𝜃 + 𝑧2𝑒−𝑖𝜃𝜒(𝑝)
)
×

(
𝑧1𝑒−𝑖𝜃 + 𝑧2𝑒−𝑖𝜃𝜒(𝑝)

)
.

Then, by Proposition 7.2, there exists a positive constant 𝑏1 = 𝑏1(𝜒, 𝜎, 𝐿)
such that, for max{|𝑧1 |, |𝑧2 |} ≤ 𝑏1(log𝑇)𝜎, we have

1
𝑇

∫
A

exp
(
𝑧1 Re

∑
𝑝≤𝑋

𝑒−𝑖𝜃

𝑝𝜎+𝑖𝑡
+ 𝑧2 Re

∑
𝑝≤𝑋

𝜒(𝑝)𝑒−𝑖𝜃
𝑝𝜎+𝑖𝑡

)
𝑑𝑡 (7.3)

=
∏
𝑝≤𝑋

𝐼0

(√
𝐾𝜒,𝜃 (𝑝, 𝑧1, 𝑧2)/𝑝2𝜎

)
+𝑂

(
−𝑏2

log𝑇
log log𝑇

)
,

where meas(A) ≤ 𝑇 exp(−𝑏3 log𝑇/log log𝑇). Then, we can obtain the fol-
lowing proposition, which plays an important role in the proof of Proposition
7.1.

Proposition 7.3. Let 𝜒 be a quadratic character. Let 𝑓0 be a function with 0 <

𝑓0(𝑥) ≤ 1
3 and lim𝑥→+∞ 𝑓0(𝑥) = 0. For any 𝑋 ≥ 9, 3 ≤ 𝑥1, 𝑥2 ≤ 𝑋

2𝜎
3 with

|𝑥1 − 𝑥2 | ≤ (𝑥1 + 𝑥2) 𝑓0(𝑥1 + 𝑥2), we have∏
𝑝≤𝑋

𝐼0

(√
𝐾𝜒,𝜃 (𝑝, 𝑥1, 𝑥2)/𝑝2𝜎

)
= exp

(
𝐺 (𝜎)(𝑥1 + 𝑥2)

1
𝜎

2 log (𝑥1 + 𝑥2)

(
1 +𝑂

(
1

log (𝑥1 + 𝑥2)
+ 𝑓0(𝑥1 + 𝑥2)

1
𝜎

)))
.

Here, the implicit constant depends on 𝜒 and 𝜎.

To prove this proposition, we prepare two lemmas. Remark that we can
prove assertions, similar to these two lemmas, for all primitive not necessarily
quadratic characters.

Lemma 7.5. Let 𝜒 be a quadratic character. Put

𝐴+(𝑦) =
∑
𝑝≤𝑦
𝜒(𝑝)=1

1, 𝐴−(𝑦) =
∑
𝑝≤𝑦

𝜒(𝑝)=−1

1.

There exists a constant 𝑐 > 0 such that, for 𝑦 ≥ 3,

𝐴+(𝑦), 𝐴−(𝑦) =
li(𝑦)

2 +𝑂𝜒

(
𝑦 exp

(
−𝑐

√
log 𝑦

))
,

where li(𝑦) :=
∫ 𝑦

2
𝑑𝑢

log 𝑢 .
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Proof. It is well known (see [87, Section 11]) that, for 𝑦 ≥ 3,∑
𝑝≤𝑦

𝜒(𝑝) = 𝑦𝛽

𝛽
+ 𝑦 exp

(
−𝑐

√
log 𝑦

)
≪𝜒 𝑦 exp

(
−𝑐

√
log 𝑦

)
,

and ∑
𝑝≤𝑦

|𝜒(𝑝) | = 𝜋(𝑦) +𝑂𝜒 (1) = li(𝑦) +𝑂𝜒

(
𝑦 exp

(
−𝑐

√
log 𝑦

))
,

where 𝛽 is an exceptional zero. Thus, by these estimates and

𝐴±(𝑦) =
1
2

(∑
𝑝≤𝑦

|𝜒(𝑝) | ±
∑
𝑝≤𝑦

𝜒(𝑝)
)
+𝑂𝜒 (1),

which completes the proof of this lemma. □

Lemma 7.6. Let 1
2 < 𝜎 < 1 be fixed. Let 𝜒 be a quadratic character. Put

𝐵+(𝑥, 𝑋) :=
∑
𝑝≤𝑋
𝜒(𝑝)=1

log 𝐼0
(
𝑥

𝑝𝜎

)
, 𝐵−(𝑥, 𝑋) :=

∑
𝑝≤𝑋

𝜒(𝑝)=−1

log 𝐼0
(
𝑥

𝑝𝜎

)
,

𝑐±(𝜎, 𝜒) =
∑
𝑝

𝜒(𝑝)=±1

1
𝑝2𝜎

For 𝑋 ≥ 3 and 0 ≤ 𝑥 ≤ 2, we have

𝐵±(𝑥, 𝑋) =
𝑐±(𝜎, 𝜒)

4 𝑥2 +𝑂
(
𝑥4

)
.

For 𝑋 ≥ 3 and 2 ≤ 𝑥 ≤ 𝑋
2𝜎
3 , we have

𝐵+(𝑥, 𝑋), 𝐵−(𝑥, 𝑋) =
𝐺 (𝜎)𝑥 1

𝜎

2 log 𝑥

(
1 +𝑂

(
1

log 𝑥

))
.

Here, the implicit constants depend on 𝜒 and 𝜎.

Proof. By the Taylor expansion of 𝐼0, for 0 ≤ 𝑥 ≤ 2, we find that

𝐵±(𝑥, 𝑋) =
∑
𝑝≤𝑋

𝜒(𝑝)=±1

(
𝑥2

4𝑝2𝜎 +𝑂
(
𝑥4

𝑝4𝜎

))
=
𝑐±(𝜎, 𝜒)

4 𝑥2 +𝑂
(
𝑥4

)
.

In the following, we assume that 𝑥 ≥ 2. We write

𝐵±(𝑥, 𝑋) =
©­­­«

∑
𝑝≤𝑦0

𝜒(𝑝)=±1

+
∑

𝑦1<𝑝≤𝑋
𝜒(𝑝)=±1

+
∑

𝑦0<𝑝≤𝑦1
𝜒(𝑝)=±1

ª®®®¬ log 𝐼0
(
𝑥

𝑝𝜎

)
=: 𝑆±1 + 𝑆±2 + 𝑆±3 ,
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say. By using partial summation, we find that

𝑆±3 = −
∫ 𝑦1

𝑦0

𝐴±(𝜉)
(
𝑑

𝑑𝜉
log 𝐼0

(
𝑥

𝜉𝜎

))
𝑑𝜉 + 𝐴±(𝑦1) log 𝐼0

(
𝑥

𝑦𝜎1

)
(7.4)

− 𝐴±(𝑦0) log 𝐼0
(
𝑥

𝑦𝜎0

)
.

By Lemma 7.5, the integral on the right hand side is equal to

−1
2

∫ 𝑦1

𝑦0

li(𝜉)
(
𝑑

𝑑𝜉
log 𝐼0

(
𝑥

𝜉𝜎

))
𝑑𝜉 +𝑂

(∫ 𝑦1

𝑦0

𝜉𝑒−𝑐
√

log 𝜉
(
𝑑

𝑑𝜉
log 𝐼0

(
𝑥

𝜉𝜎

))
𝑑𝜉

)
.

Note that we used the monotonicity of 𝐼0 in the above deformation. We find
that

−
∫ 𝑦1

𝑦0

li(𝜉)
(
𝑑

𝑑𝜉
log 𝐼0

(
𝑥

𝜉𝜎

))
𝑑𝜉

= − li(𝑦1) log 𝐼0
(
𝑥

𝑦𝜎1

)
+ li(𝑦0) log 𝐼0

(
𝑥

𝑦𝜎0

)
+

∫ 𝑦1

𝑦0

log 𝐼0
(
𝑥
𝜉𝜎

)
log 𝜉 𝑑𝜉,

and that∫ 𝑦1

𝑦0

𝜉𝑒−𝑐
√

log 𝜉
(
𝑑

𝑑𝜉
log 𝐼0

(
𝑥

𝜉𝜎

))
𝑑𝜉

≪ 𝑦1𝑒
−𝑐
√

log 𝑦1 log 𝐼0
(
𝑥

𝑦𝜎1

)
+ 𝑦0𝑒

−𝑐
√

log 𝑦0 log 𝐼0
(
𝑥

𝑦𝜎0

)
+

∫ 𝑦1

𝑦0

𝑒−𝑐
√

log 𝜉 log 𝐼0
(
𝑥

𝜉𝜎

)
𝑑𝜉

≪ 𝑥2𝑦1−2𝜎
1 𝑒−𝑐

√
log 𝑦1 + 𝑥𝑦1−𝜎

0 𝑒−𝑐
√

log 𝑦0 .

Substituting the above estimates to (7.4) and using Lemma 7.5, we obtain

𝑆±3 =
1
2

∫ 𝑦1

𝑦0

log 𝐼0
(
𝑥
𝜉𝜎

)
log 𝜉 𝑑𝜉 +𝑂

(
𝑥2𝑦1−2𝜎

1 𝑒−𝑐
√

log 𝑦1 + 𝑥𝑦1−𝜎
0 𝑒−𝑐

√
log 𝑦0

)
.

By making change of variables 𝑢 = 𝑥
𝜉𝜎 , we have

∫ 𝑦1

𝑦0

log 𝐼0
(
𝑥
𝜉𝜎

)
log 𝜉 𝑑𝜉 = 𝑥

1
𝜎

∫ 𝑥/𝑦𝜎0

𝑥/𝑦𝜎1

log 𝐼0(𝑢)
𝑢1+ 1

𝜎 log (𝑥/𝑢)
𝑑𝑢.

For 𝑥−1/2 ≤ 𝑢 ≤ 𝑥1/2, it holds that 1
log(𝑥/𝑢) =

1
log 𝑥 + 𝑂

(
| log 𝑢 |
(log 𝑥)2

)
. Therefore, the

above right hand side is equal to

𝑥
1
𝜎

log 𝑥

∫ 𝑥/𝑦𝜎0

𝑥/𝑦𝜎1

log 𝐼0(𝑢)
𝑢1+ 1

𝜎

𝑑𝑢 +𝑂
(

𝑥
1
𝜎

(log 𝑥)2

∫ 𝑥/𝑦𝜎0

𝑥/𝑦𝜎1

log 𝐼0(𝑢) | log 𝑢 |
𝑢1+ 1

𝜎

𝑑𝑢

)
. (7.5)
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Moreover, we find that the main term of (7.5) is equal to

𝑥
1
𝜎

log 𝑥

∫ ∞

0

log 𝐼0(𝑢)
𝑢1+ 1

𝜎

𝑑𝑢 +𝑂
(
𝑥1/𝜎

log 𝑥

(
(𝑥/𝑦1)

2𝜎−1
𝜎2 + (𝑥/𝑦0)

𝜎−1
𝜎2

))
=
𝐺 (𝜎)𝑥 1

𝜎

log 𝑥 +𝑂
(

𝑥
1
𝜎

(log 𝑥)2

)
,

and that the 𝑂-term of (7.5) is

≪ 𝑥
1
𝜎

(log 𝑥)2

∫ ∞

0

log 𝐼0(𝑢) | log 𝑢 |
𝑢1+ 1

𝜎

𝑑𝑢 ≪ 𝑥
1
𝜎

(log 𝑥)2 .

Hence, choosing 𝑦0 = 𝑥
1

2𝜎 , 𝑦1 = 𝑥
3

2𝜎 , we have

𝑆±3 =
𝐺 (𝜎)𝑥 1

𝜎

2 log 𝑥

(
1 +𝑂

(
1

log 𝑥

))
.

For 𝑆±1 , by using the inequality 𝐼0(𝑥/𝑝𝜎) ≤ exp(𝑥/𝑝𝜎), we find that

𝑆±1 ≤
∑
𝑝≤𝑦0

𝑥

𝑝𝜎
≪ 𝑥 ≪ 𝑥

1
𝜎

(log 𝑥)2 .

For 𝑆±2 , by using the Taylor expansion of 𝐼0, we find that

𝑆±2 ≪
∑
𝑝>𝑦1

𝑥2

𝑝2𝜎 ≪ 𝑥2

𝑦2𝜎−1
1

≪ 𝑥
1
𝜎

(log 𝑥)2 .

Thus, we obtain Lemma 7.6. □

Proof of Proposition 7.3. Let 𝑓0 be a function satisfying 0 < 𝑓0(𝑥) ≤ 1
3 and

lim𝑥→+∞ 𝑓0(𝑥) = 0. Let 3 ≤ 𝑥1, 𝑥2 ≤ 𝑋
2𝜎
3 with |𝑥1 − 𝑥2 | ≤ (𝑥1 + 𝑥2) 𝑓0(𝑥1 + 𝑥2).

Then we can write

𝐼0

(√
𝐾𝜒,𝜃 (𝑝, 𝑥1, 𝑥2)/𝑝2𝜎

)
= 𝐼0

(
1
𝑝𝜎

|𝑥1 + 𝑥2𝜒(𝑝) |
)
.

We write∑
𝑝≤𝑋

log 𝐼0
(√
𝐾𝜒,𝜃 (𝑝, 𝑥1, 𝑥2)/𝑝2𝜎

)

=
©­­­«

∑
𝑝≤𝑋
𝜒(𝑝)=1

+
∑
𝑝≤𝑋

𝜒(𝑝)=−1

+
∑
𝑝≤𝑋
𝜒(𝑝)=0

ª®®®¬ log 𝐼0
(

1
𝑝𝜎

|𝑥1 + 𝑥2𝜒(𝑝) |
)
=: 𝑆+ + 𝑆− + 𝑆0,

say. By Lemma 7.6, we find that

𝑆+ =
𝐺 (𝜎) (𝑥1 + 𝑥2)

1
𝜎

2 log (𝑥1 + 𝑥2)

(
1 +𝑂

(
1

log (𝑥1 + 𝑥2)

))
.
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Also, we find that if |𝑥1 − 𝑥2 | ≤ 2,

𝑆− =
𝑐−(𝜎, 𝜒)

4 (𝑥1 − 𝑥2)2 +𝑂
(
(𝑥1 − 𝑥2)4

)
≪𝜎,𝜒

(𝑥1 + 𝑥2)
1
𝜎

(log (𝑥1 + 𝑥2))2 ,

and that if 2 < |𝑥1 − 𝑥2 | ≤
√
𝑥1 + 𝑥2,

𝑆− ≤ 𝐺 (𝜎) |𝑥1 − 𝑥2 |
1
𝜎

2 log( |𝑥1 − 𝑥2 |)

(
1 +𝑂

(
1

log |𝑥1 − 𝑥2 |

))
≪𝜎,𝜒

√
𝑥1 + 𝑥2

log (𝑥1 + 𝑥2)

≪ (𝑥1 + 𝑥2)
1
𝜎

(log (𝑥1 + 𝑥2))2 .

Moreover, if √𝑥1 + 𝑥2 < |𝑥1 − 𝑥2 | ≤ (𝑥1 + 𝑥2) 𝑓0(𝑥1 + 𝑥2), we have

𝑆− ≤ 𝐺 (𝜎) |𝑥1 − 𝑥2 |
1
𝜎

2 log(|𝑥1 − 𝑥2 |)

(
1 +𝑂𝜒,𝜎

(
1

log |𝑥1 − 𝑥2 |

))
≪𝜎,𝜒

(𝑥1 + 𝑥2)
1
𝜎 𝑓0(𝑥1 + 𝑥2)

1
𝜎

(log (𝑥1 + 𝑥2))2 .

Furthermore, we find that

𝑆0 =
∑
𝑝 |𝑞

log 𝐼0
(
|𝑥1 |
𝑝𝜎

)
≪𝜒 𝑥1 ≪ (𝑥1 + 𝑥2)

1
𝜎

(log (𝑥1 + 𝑥2))2 ,

where 𝑞 is the conductor of 𝜒. Thus, we obtain∑
𝑝≤𝑋

log 𝐼0
(√
𝐾𝜒,𝜃 (𝑝, 𝑥1, 𝑥2)/𝑝2𝜎

)
=
𝐺 (𝜎)(𝑥1 + 𝑥2)

1
𝜎

2 log (𝑥1 + 𝑥2)

(
1 +𝑂

(
1

log (𝑥1 + 𝑥2)
+ 𝑓0(𝑥1 + 𝑥2)

1
𝜎

))
,

which completes the proof of Proposition 7.3. □

Now, we finish the preparation of the proof of Proposition 7.1, and start
the proof of the proposition.

Proof of Proposition 7.1. Let 𝑓 be a positive valued function with lim
𝑥→+∞

𝑓 (𝑥) =
0. We may assume that 𝑓 (𝑥) ≥ 1

(log 𝑥)𝜎 . Let 𝑇 be large, and 𝑋 = (log𝑇)𝐿 .

Let 𝑉1 be large with 𝑉1 ≤ 𝑎2 (log𝑇)1−𝜎
log log𝑇 , where 𝑎2 = 𝑎2(𝜒, 𝜎, 𝐿) is a suitably

positive constant to be chosen later, and let 𝑉2 be a positive number with
|𝑉1 −𝑉2 | ≤ 𝑉1 𝑓 (𝑉1). Put

𝒯(𝑇,𝑉1, 𝑉2; 𝜒)

:=
{
𝑡 ∈ A : Re

∑
𝑝≤𝑋

𝑒−𝑖𝜃

𝑝𝜎+𝑖𝑡
> 𝑉1

} ⋂ {
𝑡 ∈ A : Re

∑
𝑝≤𝑋

𝑒−𝑖𝜃𝜒(𝑝)
𝑝𝜎+𝑖𝑡

> 𝑉2

}
.
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Then we find that∫ ∞

−∞

∫ ∞

−∞
𝑒𝑥1𝑣1+𝑥2𝑣2 meas(𝒯(𝑇, 𝑣1, 𝑣2, 𝜒))𝑑𝑣1𝑑𝑣2

=
1
𝑥1𝑥2

∫
A

exp
(
𝑥1 Re

∑
𝑝≤𝑋

𝑒−𝑖𝜃

𝑝𝜎+𝑖𝑡
+ 𝑥2 Re

∑
𝑝≤𝑋

𝑒−𝑖𝜃𝜒(𝑝)
𝑝𝜎+𝑖𝑡

)
𝑑𝑡.

Therefore, by equation (7.3) and Propositions 7.2, 7.3, we have
1
𝑇

∫ ∞

−∞

∫ ∞

−∞
𝑒𝑥1𝑣1+𝑥2𝑣2 meas(𝒯(𝑇, 𝑣1, 𝑣2, 𝜒))𝑑𝑣1𝑑𝑣2 (7.6)

= exp
(
𝐺 (𝜎)(𝑥1 + 𝑥2)

1
𝜎

2 log (𝑥1 + 𝑥2)
(
1 +𝑂𝜎,𝜒

(
𝑓0(𝑥1 + 𝑥2)

1
𝜎

)))
for 3 ≤ 𝑥1, 𝑥2 ≤ 𝑏1(log𝑇)𝜎, |𝑥1 − 𝑥2 | ≤ (𝑥1 + 𝑥2) 𝑓0(𝑥1 + 𝑥2), where 𝑏1 =
𝑏1(𝜒, 𝜎, 𝐿2) is the same constant as in Proposition 7.2 in the case a = (1, 𝜒)
with 1 the identically one function. Here, we decide the parameters 𝑥1 and
𝑥2 as the solutions of the equations

𝑉1 =
𝐺 (𝜎) (𝑥1 + 𝑥2)

1
𝜎

4𝜎𝑥1 log (𝑥1 + 𝑥2)
, 𝑉2 =

𝐺 (𝜎) (𝑥1 + 𝑥2)
1
𝜎

4𝜎𝑥2 log (𝑥1 + 𝑥2)
. (7.7)

Then we can find that these 𝑥1, 𝑥2 satisfy the equations

𝑥1 =
2 2𝜎−1

1−𝜎 𝐴(𝜎)
1 − 𝜎 (𝑉1 log𝑉1)

𝜎
1−𝜎 (1 +𝑂𝜎 ( 𝑓 (𝑉1))) ,

𝑥2 =
2 2𝜎−1

1−𝜎 𝐴(𝜎)
1 − 𝜎 (𝑉1 log𝑉1)

𝜎
1−𝜎 (1 +𝑂𝜎 ( 𝑓 (𝑉1))) .

We choose 𝑓0 = 𝐵 𝑓 with 𝐵 = 𝐵(𝜎) a sufficiently large constant, and 𝑎2 =
𝑎2(𝜎, 𝜒, 𝐿) sufficiently small. Then we find that these 𝑥1, 𝑥2 satisfy 3 ≤
𝑥1, 𝑥2 ≤ 𝑏1

2 (log𝑇)𝜎, |𝑥1 − 𝑥2 | ≤ 1
2 (𝑥1 + 𝑥2) 𝑓0(𝑥1 + 𝑥2).

Now, we divide the range of the integral of (7.6) as follows:∫ ∞

−∞

∫ ∞

−∞
=
∫ 𝑉2 (1+𝛿)

𝑉2 (1−𝛿)

∫ 𝑉1 (1+𝛿)

𝑉1 (1−𝛿)
+
∫ 𝑉2 (1−𝛿)

−∞

∫ 𝑉1 (1+𝛿)

𝑉1 (1−𝛿)
+
∫ ∞

𝑉2 (1+𝛿)

∫ 𝑉1 (1+𝛿)

𝑉1 (1−𝛿)

+
∫ ∞

−∞

∫ 𝑉1 (1−𝛿)

−∞
+
∫ ∞

−∞

∫ ∞

𝑉1 (1+𝛿)
,

(7.8)

where 𝛿 = 𝐾1 𝑓0(𝑥1 + 𝑥2)
1

2𝜎 with 𝐾1 = 𝐾1(𝜎, 𝜒) a suitably large constant to be
chosen later. By equation (7.6), we find that

1
𝑇

∫ 𝑉2 (1−𝛿)

−∞

∫ 𝑉1 (1+𝛿)

𝑉1 (1−𝛿)
𝑒𝑥1𝑣1+𝑥2𝑣2 meas(𝒯(𝑇, 𝑣1, 𝑣2, 𝜒))𝑑𝑣1𝑑𝑣2

≤ 1
𝑇
𝑒𝛿𝑥2𝑉2 (1−𝛿)

∫ ∞

−∞

∫ ∞

−∞
𝑒𝑥1𝑣1+𝑥2 (1−𝛿)𝑣2 meas(𝒯(𝑇, 𝑣1, 𝑣2; 𝜒))𝑑𝑣1𝑑𝑣2

= 𝑒𝛿𝑥2𝑉2 (1−𝛿) exp
(
𝐺 (𝜎) (𝑥1 + (1 − 𝛿)𝑥2)

1
𝜎

2 log (𝑥1 + 𝑥2)
(
1 +𝑂𝜎,𝜒

(
𝑓0(𝑥1 + 𝑥2)

1
𝜎

)))
. (7.9)
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Remark that we must confirm that the numbers 𝑥1, 𝑥2(1 − 𝛿) satisfy 3 ≤
𝑥1, 𝑥2(1 − 𝛿) ≤ 𝑏1(log𝑇)𝜎 and |𝑥1 − 𝑥2(1 − 𝛿) | ≤ (𝑥1 + 𝑥2) 𝑓0(𝑥1 + 𝑥2), but
these hold for any sufficiently large 𝑇 , 𝑉1 depending on 𝜎 and 𝜒. Using the
formulas 𝑥2 = 𝑥1 +𝑂 (𝑥1 𝑓0(𝑥1 + 𝑥2)) and (1 + 𝑟) 1

𝜎 = 1 + 𝑟
𝜎 +𝑂 (𝑟2) with |𝑟 | ≤ 1,

we see that (7.9) is equal to

exp
(
𝛿𝑥2𝑉2(1 − 𝛿) + 𝐺 (𝜎) (𝑥1 + 𝑥2)

1
𝜎

2 log (𝑥1 + 𝑥2)

(
1 − 𝛿

2𝜎 +𝑂𝜎,𝜒 ( 𝑓0(𝑥1 + 𝑥2)))
))

= exp
(
𝐺 (𝜎) (𝑥1 + 𝑥2)

1
𝜎

2 log (𝑥1 + 𝑥2)

(
1 − 𝛿2

2𝜎 +𝑂𝜎,𝜒 ( 𝑓0(𝑥1 + 𝑥2)))
))
.

Hence, choosing 𝐾1 as a suitably large constant and using equation (7.6), we
obtain ∫ 𝑉2 (1−𝛿)

−∞

∫ 𝑉1 (1+𝛿)

𝑉1 (1−𝛿)
𝑒𝑥1𝑣1+𝑥2𝑣2 meas(𝒯(𝑇, 𝑣1, 𝑣2; 𝜒))𝑑𝑣1𝑑𝑣2

≤ 1
5

∫ ∞

−∞

∫ ∞

−∞
𝑒𝑥1𝑣1+𝑥2𝑣2 meas(𝒯(𝑇, 𝑣1, 𝑣2; 𝜒))𝑑𝑣1𝑑𝑣2.

Similarly to the above calculations, we can obtain

1
𝑇

∫ ∞

𝑉2 (1+𝛿)

∫ 𝑉1 (1+𝛿)

𝑉1 (1−𝛿)
𝑒𝑥1𝑣1+𝑥2𝑣2 meas(𝒯(𝑇, 𝑣1, 𝑣2; 𝜒))𝑑𝑣1𝑑𝑣2

≤ 1
𝑇
𝑒−𝛿𝑥2𝑉2 (1+𝛿)

∫ ∞

−∞

∫ ∞

−∞
𝑒𝑥1𝑣1+𝑥2 (1+𝛿)𝑣2 meas(𝒯(𝑇, 𝑣1, 𝑣2; 𝜒))𝑑𝑣1𝑑𝑣2

= exp
(
𝐺 (𝜎) (𝑥1 + 𝑥2)

1
𝜎

2 log (𝑥1 + 𝑥2)

(
1 − 𝛿2

2𝜎 +𝑂𝜎,𝜒 ( 𝑓0(𝑥1 + 𝑥2)))
))

≤ 1
5

∫ ∞

−∞

∫ ∞

−∞
𝑒𝑥1𝑣1+𝑥2𝑣2 meas(𝒯(𝑇, 𝑣1, 𝑣2; 𝜒))𝑑𝑣1𝑑𝑣2,

1
𝑇

∫ ∞

−∞

∫ 𝑉1 (1−𝛿)

−∞
𝑒𝑥1𝑣1+𝑥2𝑣2 meas(𝒯(𝑇, 𝑣1, 𝑣2; 𝜒))𝑑𝑣1𝑑𝑣2

≤ 1
𝑇
𝑒𝛿𝑥1𝑉1 (1+𝛿)

∫ ∞

−∞

∫ ∞

−∞
𝑒𝑥1 (1+𝛿)𝑣1+𝑥2𝑣2 meas(𝒯(𝑇, 𝑣1, 𝑣2; 𝜒))𝑑𝑣1𝑑𝑣2

= exp
(
𝛿𝑥1𝑉1(1 − 𝛿) + 𝐺 (𝜎)(𝑥1 + 𝑥2)

1
𝜎

2 log (𝑥1 + 𝑥2)

(
1 − 𝛿

2𝜎 +𝑂𝜎,𝜒 ( 𝑓0(𝑥1 + 𝑥2)))
))

≤ 1
5

∫ ∞

−∞

∫ ∞

−∞
𝑒𝑥1𝑣1+𝑥2𝑣2 meas(𝒯(𝑇, 𝑣1, 𝑣2; 𝜒))𝑑𝑣1𝑑𝑣2,

and
1
𝑇

∫ ∞

−∞

∫ ∞

𝑉1 (1+𝛿)
𝑒𝑥1𝑣1+𝑥2𝑣2 meas(𝒯(𝑇, 𝑣1, 𝑣2; 𝜒))𝑑𝑣1𝑑𝑣2

≤ 1
5

∫ ∞

−∞

∫ ∞

−∞
𝑒𝑥1𝑣1+𝑥2𝑣2 meas(𝒯(𝑇, 𝑣1, 𝑣2; 𝜒))𝑑𝑣1𝑑𝑣2.
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Hence, by these inequalities and equations (7.6), (7.8), we have

1
𝑇

∫ 𝑉2 (1+𝛿)

𝑉2 (1−𝛿)

∫ 𝑉1 (1+𝛿)

𝑉1 (1−𝛿)
𝑒𝑥1𝑣1+𝑥2𝑣2 meas(𝒯(𝑇, 𝑣1, 𝑣2; 𝜒))𝑑𝑣1𝑑𝑣2

= exp
(
𝐺 (𝜎) (𝑥1 + 𝑥2)

1
𝜎

2 log (𝑥1 + 𝑥2)
(
1 +𝑂𝜎,𝜒

(
𝑓0(𝑥1 + 𝑥2)

1
𝜎

)))
.

By this equation and
∫ 𝑉2 (1+𝛿)
𝑉2 (1−𝛿)

∫ 𝑉1 (1+𝛿)
𝑉1 (1−𝛿)

𝑒𝑥1𝑣1+𝑥2𝑣2 = exp((𝑥1𝑉1 + 𝑥2𝑉2) (1 +𝑂 (𝛿))),
we find that

1
𝑇

meas(𝒯(𝑇,𝑉1(1 + 𝛿), 𝑉2(1 + 𝛿); 𝜒))

≤ exp
(
−1 − 𝜎

𝜎

𝐺 (𝜎)(𝑥1 + 𝑥2)
1
𝜎

2 log (𝑥1 + 𝑥2)
(1 +𝑂 (𝛿))

)
≤ 1
𝑇

meas(𝒯(𝑇,𝑉1(1 − 𝛿), 𝑉2(1 − 𝛿); 𝜒)).

In particular, by equations (7.7), the second term is equal to

exp (−(1 − 𝜎) (𝑥1𝑉1 + 𝑥2𝑉2) (1 +𝑂 (𝛿))) ,

and so we have

exp (−(1 − 𝜎)(𝑥1𝑉1 + 𝑥2𝑉2)(1 + 𝛿) (1 +𝑂 (𝛿)))

≤ 1
𝑇

meas(𝒯(𝑇,𝑉1, 𝑉2; 𝜒)) ≤ exp (−(1 − 𝜎)(𝑥1𝑉1 + 𝑥2𝑉2) (1 − 𝛿) (1 +𝑂 (𝛿))) .

Therefore, we obtain
1
𝑇

meas(𝒯(𝑇,𝑉1, 𝑉2; 𝜒)) = exp
(
−2

𝜎
1−𝜎 𝐴(𝜎)𝑉

1
1−𝜎

1 (log𝑉1)
𝜎

1−𝜎 (1 +𝑂 (𝛿))
)
,

where 𝛿 = 𝑜(1) as 𝑉1 → +∞. By this equation and the estimate meas(𝐴) ≪
𝑇 exp(−𝑏3 log𝑇/log log𝑇), when 𝑎2 is suitably small, we obtain

1
𝑇

meas(𝒮(𝑇,𝑉1, 𝑉2; 𝜒)) = 1
𝑇

(
meas(𝒯(𝑇,𝑉1, 𝑉2; 𝜒)) +𝑂

(
1
𝑇

meas(𝐴)
))

= exp
(
−2

𝜎
1−𝜎 𝐴(𝜎)𝑉

1
1−𝜎

1 (log𝑉1)
𝜎

1−𝜎 (1 + 𝑜(1))
)

as 𝑉1 → +∞. This completes the proof of Proposition 7.1. □

7.4 Proof of dependence of 𝜁 (𝑠) and 𝐿 (𝑠, 𝜒)

Proof of Theorem 7.1. Let 𝑇 be large, and 𝑋 = (log𝑇)𝐿 with 𝐿 = 10
2𝜎−1 . We can

use Proposition 6.6 for the Riemann zeta-function and Dirichlet 𝐿-functions.
Therefore, using the proposition, we obtain

1
𝑇

∫ 2𝑇

𝑇

���� log 𝐹 (𝜎 + 𝑖𝑡) −
∑

2≤𝑛≤𝑋

Λ𝐹 (𝑛)
𝑛𝜎+𝑖𝑡 log 𝑛

����2𝑘𝑑𝑡 ≤ 𝐴𝑘2 𝑘
4𝑘𝑇 (1−2𝜎)𝛿𝐹 + 𝐴𝑘2 𝑘!𝑋 𝑘 (1−2𝜎)
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for 1 ≤ 𝑘 ≤ 𝛿𝐹
𝐿

log𝑇
log log𝑇 , where 𝐹 (𝑠) is 𝜁 (𝑠) or 𝐿 (𝑠, 𝜒). By this inequality, we can

easily find that there exists a set C ⊂ [𝑇, 2𝑇] such that meas( [𝑇, 2𝑇] \ C) ≤
𝑇 exp

(
−𝑐 log𝑇/log log𝑇

)
, and for all 𝑡 ∈ C,���� log 𝜁 (𝜎 + 𝑖𝑡) −

∑
𝑝≤𝑋

1
𝑝𝜎+𝑖𝑡

���� ≤ 1 + 𝑐,���� log 𝐿 (𝜎 + 𝑖𝑡, 𝜒) −
∑
𝑝≤𝑋

𝜒(𝑝)
𝑝𝜎+𝑖𝑡

���� ≤ 1 + 𝑐(𝜒).

Here, 𝑐 =
∑
𝑝𝑘 ,𝑘≥2

Λ(𝑝𝑘 )
𝑝𝑘𝜎 (log 𝑝𝑘 ) , and 𝑐(𝜒) =

�� ∑
𝑝𝑘 ,𝑘≥2

Λ(𝑝𝑘 )𝜒(𝑝𝑘 )
𝑝𝑘𝜎 (log 𝑝𝑘 )

��. In particular,
when 𝑎1 is sufficiently small, it follows that

meas([𝑇, 2𝑇] \ C) ≤ 𝑇 exp
(
−2 · 2

𝜎
1−𝜎 𝐴(𝜎)𝑉 1

1−𝜎 (log𝑉) 𝜎
1−𝜎

)
. (7.10)

Therefore, the right hand side is ≤ 𝐾 with 𝐾 = 𝐾 (𝜎) a positive constant.
Then, it holds that

meas (C ∩𝒮(𝑇, (𝑉1 + 𝐾,𝑉2 + 𝐾); 𝜒, 𝜎, 𝜃))
≤ meas

{
𝑡 ∈ C : Re 𝑒−𝑖𝜃 log 𝜁 (𝜎 + 𝑖𝑡) > 𝑉1 and Re 𝑒−𝑖𝜃 log 𝐿 (𝜎 + 𝑖𝑡, 𝜒) > 𝑉2

}
𝑠 ≤ meas (C ∩𝒮(𝑇, (𝑉1 + 𝐾,𝑉2 + 𝐾); 𝜒, 𝜎, 𝜃)) .

Hence, by these inequalities and Proposition 7.1, we have

1
𝑇

meas
{
𝑡 ∈ C : Re 𝑒−𝑖𝜃 log 𝜁 (𝜎 + 𝑖𝑡) > 𝑉1 and Re 𝑒−𝑖𝜃 log 𝐿 (𝜎 + 𝑖𝑡, 𝜒) > 𝑉2

}
= exp

(
−2

𝜎
1−𝜎 𝐴(𝜎)𝑉 1

1−𝜎 (log𝑉) 𝜎
1−𝜎 (1 + 𝑜(1))

)
as𝑉1 → +∞. Thus, by this equation and inequality (7.10), we obtain Theorem
7.1. □
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