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Abstract

In this thesis, we discuss the value distribution of L-functions from several
viewpoints. The value distribution of the Riemann zeta-function {(s) is
related to the distribution of prime numbers and therefore important in
number theory. Recently, this theme in probabilistic aspects based on limit
theorems due to Bohr-Jessen and Selberg has developed rapidly by many
mathematicians. In this thesis, we show some results related to this theme.

Chapter 1 is the introduction of this thesis, and we survey some of the
previous works on the value distribution of zeta and L-functions, and de-
scribe some of results in this thesis. In Chapter 2, we prove an approximate
formula for the Riemann zeta-function {(s) and its iterated integrals. As
applications of the formula, we also prove some results on the value dis-
tribution of £(s) and one the relation between the distribution of nontrivial
zeros of {(s) and a Dirichlet polynomial. In particular, a result for the value
distribution of {(s) contributes to Radziwill’s conjecture. In Chapter 3, we
discuss the large deviations for the distribution function of iterated integrals
of the logarithm of the Riemann zeta-function. In Chapter 4, we prove re-
sults on denseness of the Riemann zeta-function. In particular, we also give
an equivalence between the denseness and the Riemann Hypothesis. This
theme is related to Ramachandra’s denseness problem, which is the problem
to ask whether the values ¢ (% +it), t € Ris dense in C. In Chapter 5, we
prove some results for the discrepancy bounds and the large deviations for
the distribution function of { (o +it) in the strip % < o < 1. The result for the
large deviations is an improvement on a recent work. In Chapter 6, we dis-
cuss the independence of certain L-functions on the critical line. We in this
chapter show some results for large deviations in multidimensional central
limit theorem due to Bombieri and Hejhal. As application of the results, we
also prove results for moments of L-functions. In particular, the results for
moments include some new results for the Riemann zeta-function. Finally, in
Chapter 7, we discuss the dependence of log ¢ (o +it) and log L(o +it, ) in
the strip 3 < o < 1. We show that these functions have a certain dependence
property as random variables.
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Chapter1  Introduction

In this thesis, we discuss the value distribution of zeta and L-functions
such as the Riemann zeta-function. The theme is interesting because that
is related to the distribution of zeros and some arithmetic objects involving
prime numbers. In fact, there are many studies for this theme such as mean
value estimates, limit theorems, order estimates, and omega-estimates. In
this chapter, we survey this theme and present some of our results.

1.1 Relations among distribution of values, zeros, and
primes

The distribution of prime numbers has interested many people since a long
time ago. Riemann first related the distribution of prime numbers to zeros
of the function, which is now called the Riemann zeta-function, defined by

(o)

(s) = Zn_s = 1_[(1 —p*)' for Res>1.
p

n=1

Throughout this paper, s = o + it is a complex number with o, € R, and
the product [],, runs over all prime numbers. Riemann in [101] studied the
number of prime numbers less than x a given number. In that paper, he also
conjectured a rule of the distribution of zeros of the Riemann zeta-function.
The conjecture is called the Riemann Hypothesis today.

Conjecture (Riemann Hypothesis (RH)). All real parts of nontrivial zeros of the
Riemann zeta-function are one-half.

This conjecture is one of the most important and famous open problems
in mathematics. The Riemann Hypothesis has a consequence to the distri-
bution of prime numbers. Actually, the Riemann Hypothesis is equivalent
to that

Y du
» logu

n(x) = +0 (x1/2 logx) . (1.1)

Here, n(x) is the number of prime numbers less than x. In particular, this
formula implies ppi1 — pn < p,l/ 2 log p, with p, the n-th prime number.
Here, we explain some notations. For a complex-valued function f and a

positive-valued function g(x), we write f(x) = O(g(x)) if there is a constant
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C > 0 such that [f(x)| < Cg(x) for all x in the appropriate domain. The
constant C is called the implicit constant. If C depends on a parameter «,
we write f(x) = O,(g(x)). Additionally, we can also write f(x) < g(x),
f(x) <o g(x) in the same meaning as f(x) = 0(g(x)), f(x) = O.(g(x))
respectively. We write f(x) =< g(x) if both f(x) < g(x) and f(x) > g(x)
hold. Moreover, if lim,_,, f(x)/g(x) = 0 with @ € R U {£o0}, then we write
f(x) = 0(g(x)) (as x — a). Furthermore, f(x) = Q.(g(x)) (as x — a) means
that limsup,_,  f(x)/g(x) > 0, and also f(x) = Q_(g(x)) (as x — a) means
that liminf,_,, f(x)/g(x) < 0. If both f(x) = Q,(g(x)) and f(x) = Q_(g(x))
hold, we write f(x) = Q.(g(x)). If either f(x) = Q;(g(x)) or f(x) = Q_(g(x))
holds, we also write f(x) = Q(g(x)).

We can find that the Riemann Hypothesis implies equation (1.1) by using
the formula

_ p(n) o 1/ .o p/n
m(x) = Z — {h(x ) — Z Li(x*™) + 0 Tlog il
”Sﬁﬁ; i<t

1/n 1/n\2
x “(logx "'T) +1)}.(1.2)

Here, u(n) is the M6bius function, and the function li(e**?”) is defined by if

y=0,
-& b u 1-¢ e~
ite) =t ([ ) S [ [ 2
&l0 —o0 +e ] U €l0 0 1+& logu

andify #0,

) x+iy eV
li(e*™*") :/ —dw.

cotiy W

. . g B
Then, it holds that li(x*) = li(x#*7) <« T

we can prove (1.1) under the Riemann Hypothesis. Also, we can easily obtain

By using these estimates,

the inverse implication by using the formulas 7 (x) = i/;(g))c + fzx - ('I/Z)ZL)Z du +

O (x'/?) and —%(s) =s floo fffl) dx, where ¥ (x) := >, A(n) with A(n) the von
Mangoldt function.

We also know another conjecture having a consequence for the distribu-
tion of prime numbers. In [70], Lindel6f studied the order of magnitude of
the Riemann zeta-function and its convexity. In that paper, he also conjec-
tured the following hypothesis.

Conjecture (Lindeldf Hypothesis (LH)). Foranyt >1,& > 0,
1£(% +it)] < 15

This hypothesis is also one of the most famous and challenging open prob-
lems in analytic number theory. The statement of this hypothesis is in terms
of the value distribution of the Riemann zeta-function, particularly for the
order of magnitude of the Riemann zeta-function. On the other hand, it is
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known that this conjecture is rewritten to a statement of the distribution of
zeros of the Riemann zeta-function. In fact, Backlund [2] showed that the
following statement (BS) is equivalent to the Lindelof Hypothesis.

BS: for every € > 0, the estimate N(% +e,T+1)- N(% +¢&,T) = o(logT) holds
as T — +co.

Here, N(o,T) is the number of nontrivial zeros p = 8 +iy with 8 > o,
0 < y < T counted with multiplicities. From this equivalence, we see that
the Riemann Hypothesis implies the Lindel6f Hypothesis. Additionally,
assuming the Riemann Hypothesis, Littlewood [71] showed that [£(1/2 +

it)| < exp(Clog)i ’g -) for some constant C > 0 that also leads the implication.
Ingham [49] showed that the Lindel6f Hypothesis implies p,+1 — pn <e

pa/**¢, which is close to the consequence of the Riemann Hypothesis. He

showed that the Lindel6f Hypothesis implies

N(o,T) <, T2+ (1.3)
and this estimate implies p,.1 — pn < p,ll/ >*¢  Estimate (1.3) has not yet
proved at present and called the Density Hypothesis (DH) today. The best

21/40 Iz

unconditional result of gaps of primes is p,+1 — pn < pj, = p,ﬁ+m proved

by Baker, Harman, and Pintz [3].

On the other hand, there are many difficult open problems on the distri-
bution of prime numbers even under the Riemann Hypothesis. The follow-
ing two conjectures are typical examples.

Conjecture (Cramér’s conjecture).

Pntl — Pn K (logpn)z-

Conjecture (Twin prime conjecture).
lim inf(prwl - pn) =2.
n—+0o

Recently, the studies on these conjectures have developed by interesting
works [25], [26], [81], [82], and [124]. On the other hand, the best upper

bound of the gap of prime numbers is p,+1 — pn < p}l/ 2 log p, even under
the Riemann Hypothesis. If we would like to develop this direction of
research by theory of the zeta-function or using formula (1.2), it requires
to understand the distribution of zeros more deeply beyond the Riemann
Hypothesis. In other words, we need to understand the distribution of
imaginary parts of zeros precisely.

For the distribution of imaginary parts of zeros, the formula

N(T):%argF(%+i§)—%logn+S(T)+2 (1.4)

is useful, where N(T) is the number of zeros p = B+iy of [(s) withO <y < T
counted with multiplicities. This formula is usually called the Riemann-von
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Mangoldt formula. Here, S(T) is defined as % Imlog {(% +1it) = 717 arg {(%+it),
whose branch will be described in the last of this section. By using the Stirling
formula, we can calculate terms on the right hand side of (1.4) satisfactorily
except for S(T). Hence, it is desirable to understand the behavior of S(T)
exactly. From this viewpoint, the function S(T') is interesting, and there are
many works. For example, the estimate S(7)) <« logT was proved by von
Mangoldt" in 1905, and Cramér [20] showed that S(T) = o(logT) as T — +oo
under the Lindel6f Hypothesis. Moreover, Littlewood [71] established that
logT

the Riemann Hypothesis implies S(7T) < ToglogT" In particular, it holds that

T T
N(T) = o log o +0(logT)

unconditionally, and this error term comes from the estimate S(7) <« logT.
The following is a summary of the above.

logr

Imaginary Parts of Zeros - S(1) < Toglogr S(t) = o(logt)
e |
Values of Zeta  {(s), S(#) =y / LH\
Real Parts of Zeros - RH BS DH
Prime Numbers o P+l — Pn K p,ll/2 log px Pn+l — Pn g P}z/ere

Here, we describe the branch of the logarithm of zeta and L-functions
F satisfying certain suitable conditions. First, ¢ is equal to neither imagi-
nary parts of zeros nor poles of F, then we choose the branch by the con-
tinuation with the initial condition lim,_,+ log F(o +it) = 0. If t # 0 is
equal to an imaginary part of a zero or a pole of F, we take log F (o +it) =
limg g log F (o +i(t — sgn(t)e)), where sgn is the signum function. If there
exists a pole or a zero such that the imaginary part is zero, then we take
log F(o) =limgyglog F(o —ig).

1.2 The distribution function of the Riemann zeta-function

From the observation in the previous section, we are interested in the value
distribution of zeta and L-functions. For this theme, the following inter-
esting theorems are known. Throughout this thesis, meas(-) stands for the
Lebesgue measure on R.

DThe author was not able to find the original paper of this result. The source of this
information is the textbook by Davenport [21, Section 8]
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Theorem (Bohr-Jessen in [8]). Let o > % be fixed. There exists a probability
measure P, on (R, B(R)) such that for any fixed V e R

%meas {t € [T,2T] : log (o +it) > V} ~ Po((V,+00)) (1.5)

asT — +oco. Moreover, the probability measure P, has a probability density function
D,.

Theorem (Central limit theorem). For any fixed V € R, we have

1 lo L4t e
—measit e [T,2T] : M >V ~/ e‘”z/zﬂ (1.6)
14

d \3loglogT Var

as T — +oo.

Note that the former theorem is a special case in the original their theorem
in [8]. From these theorems and more developed results, we can guess the
behavior of the Riemann zeta-function. Joyner [55, Theorem 4.3 in Chapter
5] showed that there exist positive constants c1, c¢; such that

exp (~(e1+0(1) (V(10g V)7) 77 < Pr((V.409))
< exp (~(c2 + (1) (V(log V)7) 77 )

for % <o <1lasV — +oo. Moreover, Hattori and Matsumoto [40] showed
that ¢ = ¢p = A(0), that is,

Ps((V,+00)) = exp (—(A(o-) +0(1)) (V(log V)(’)%) (1.7)

for 1 <o <1asV — +co. Here, A(0) is expressed by

1
0_2(1' ) T-o
9

T-0 Gy e

A(o) = (

where G (o) = fooo log Io(u)u‘l‘% du, and I is the modified 0-th order Bessel
function. By these estimates and the classical bound ¢’(o +it) < (|t| +2)¢
with ¢ a positive constant, it seems to be guessed that, for % <o <1,

. (log )"
for any ¢ > 3, and
| Qognlt
log |l (o +it)] = Q (log log )" (1.10)




as t — +oo. Actually, these estimates coming from this rough observation
are believed to hold. In particular, the Q-estimate has been proved by Mont-
gomery [86].

Similarly, when o = %, it seems to be guessed that, from central limit
theorem (1.6), the classical bound ¢ ’(% +it) < (|t| +2)¢, and the estimate

/00 e—uz/Z du —v 2 forvV > 0,

\%4 \/2_ 1+V
log|£(3 +ir)| < Cy/logtloglogt (1.11)
log|{(X +in] =Q (,/mgzloglogt) (1.12)

as t — +oo. Remark that the upper bound is stronger than the bound of the
original Lindel6f Hypothesis. These estimates are also believed to hold, and
further there is an interesting work for the constant term by Farmer, Gonek,
and Hughes [24]. Moreover, we should also mention that Bondarenko and
Seip [10] made a breakthrough for the Q-estimate of | (% +it)|. The above
expectations are supported from the viewpoint of large deviations in limit
theorems (1.5) and (1.6).

fort > 3, and

1.3 Moments of the Riemann zeta-function

The study of the moments plays an important role in the study of the value
distribution of zeta and L-functions. We define the 2k-th moment of the
Riemann zeta-function by

27
() = [ leGrinPar
T
It is well known that the Lindel6f Hypothesis is equivalent to, forany 7 > 1,
k € Zzl, & > O,
I(T) <gp TH®.

From this equivalence, we may find the importance of the work for the
moments of the Riemann zeta-function. It is natural to ask the precise order
of magnitude of moments. For this problem, Keating and Snaith suggested
the following interesting conjecture.

Conjecture (Keating and Snaith in [63]). For any k > —5

I(T) ~ a(k) f (k)T (log T)*", (1.13)

5 () )}

m=0

where

ak) =[] {(1 - 1/p>k2(

p



and

(G(1+k))?

F0) =G avan

Here, G is the Barnes G-function.

Asymptotic formula (1.13) has been proved only in the cases k = 0,1, 2.
The case k = 0 is trivial. The cases k = 1,2 were proved by Hardy and
Littlewood [37], and by Ingham [48] respectively. However, the other cases
have not been proved yet at present. We also note that I;(T) = +co for
k < —1/2 which is proved by the existence the zeros in % +it, t € [T,2T]
(see [105, Theorem A]). Therefore, it is interesting to ask whether the weaker
estimates

I,(T) > T(log T)*’, (1.14)
I.(T) < T(log T)* (1.15)

hold for k > —1. Also for this, there are many works, and we already know
the following works.

Theorem. Estimate (1.14) holds in the following situations.

e ke€Zsy byRamachandra [99],

k € Q>0 by Heath-Brown [44],
e k>0 under RH by Ramachandra [100], Heath-Brown [44], independently,
e k<0 under RH by Gonek[32],
e k>1 by Radziwitt and Soundararajan [97],
e k>0 by Heap and Soundararajan [43].
Theorem. Estimate (1.15) holds in the following situations.

o k= % by Ramachandra [100],

k = % withn € Zs1 by Heath-Brown [44],
e 0 < k < 2under RH by Ramachandra [100], Heath-Brown [44], independently,
e 0<k<2+% under RH by Radziwilt [96],

e k>0 wunder RH by Harper[39],

k=1+ % withn € Zs1 by Bettin, Chandee, and Radziwitt [5],

e 0 <k <2 byHeap, Radziwilt, and Soundararajan [42].
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By the above results, we see that the lower bound (1.14) has been proved
for every k > 0 unconditionally, and for every k € R under RH. On the other
hand, there is a gap for the dependence of k between the implicit constants of
the above results and the constant a (k) f (k) due to Keating-Snaith. In fact, we
see that a(k) f(k) = ¢~k* log (k+3)-kloglog (k+3)+O (k) for any k > 0, and particu-
larly a(k) f (k) < 1if 0 < k < 2. By contrast, the implicit constant of Radziwitt
and Soundararajan [97] is > ¢3 and the implicit constant of Heap and
Soundararajan [43] is > k which tends to zero as k — 0. Hence, it would be
at present desirable to improve these. If & is a positive integer, the implicit
constant has been improved to 3> ¢~2*108%+0(*) by Conrey and Ghosh [18],
and Soundararajan [109]. Moreover, Conrey and Ghosh [17] showed that for
any k > 0, the implicit constant is > ¢~ 2K (10g(k+3))+0(k*) ynder RH. It would
be also interesting to improve the bound of their implicit constants at present.
Furthermore, the negative moment of the Riemann zeta-function has been
established by Gonek [32]. Assuming the Riemann Hypothesis, he showed
that It (T) > T(log T)k2 for k < 0, and the implicit constant is absolute. On
the other hand, we see that a(k)f(k) = (1 + 2k)~! for —% < k < 0. Hence,

it seems desirable to show that I(T) > (1 + 2k)"!T(log T)¥* uniformly for
—1 < k < 0. Also, the magnitude of negative moments is unknown uncon-
ditionally. For this problem, we give the following unconditional result for
the lower bound of negative moments in this thesis.

Theorem 1.1 (Special case of Theorem 6.3). There exist absolute constantsa > 0,
B > 0 such that for any 0 < k < a we have

I_(T) > T +T(log T)F" 8",
This implicit constant is absolute.

This lower bound is weaker than Gonek’s and the conjectural lower bound

due to the factor of (logT) “BE byt unconditionally.

For the upper bound, Heap, Radziwilt, and Soundararajan showed that
(1.15) for 0 < k < 2, and the implicit constant is absolute. Hence, we have
already obtained the conjectural upper bound, if not the asymptotic formula
due to Keating-Snaith. However, the conjectural upper bound for k& > 2
has not been proved yet unconditionally. On the other hand, assuming the
RH, Harper showed (1.15) for T > exp,;(Ck), where exp, denote the ¢-fold
iterated exponential throughout this thesis. The implicit constant of his
result is exp,(O(k)), which is so bigger than the conjectural one. Before
Harper’s work, Soundararajan [111] showed that?

I.(T) < kT(log T)*+* M loglog T (1.16)

for k > 2 and T > exp;(Ck), where &(T) = O ((log; 7)), and the implicit
constants are absolute. Toward the improvement for Harper’s implicit con-
stant, we in this thesis give another proof of Soundararajan’s result, and in

DThis estimate is little different from Soundararajan’s estimate, but one can obtain it just
by using his main theorem.



Chapter 6 prove the estimate
I.(T) < T(log T)K (MK

Note that we succeed in removing the factor loglog 7', but our implicit con-
stant in &£(7) may be worse than Soundararajan’s. However, we cannot
remove the factor loglog T just by using his main theorem for large devia-
tions. Additionally, one of the important points of our method is that we
do not use Soundararajan’s main proposition [111, Proposition]. Thanks to
that, it is possible to apply our method to the negative moments and to prove
Theorem 1.1 unconditionally. Moreover, our method can be also applied to
the moments of the imaginary part of the Riemann zeta-function. Precisely,
we can prove the following theorem by using our method.

Theorem 1.2 (Special case of Theorem 6.5). Assume the Riemann Hypothesis.
Forany k € R, & > 0, we have

or
T(logT)* ™ < / exp (Zk arg {(3 + it)) dt <z i T(logT)k*.
T

As we described in Section 1.1, the function arg/{ (% +it)(= nS(1)) is
related to the distribution of the imaginary parts of nontrivial zeros, and so
this estimate is interesting from this viewpoint. Very recently, Najnudel [91]
showed that

o7
/ exp (Zk arg (3 + it)) dt <sx T(logT)¥*
T

forany k € Rand & > 0 under the the Riemann Hypothesis. We give another
proof of this estimate, and further the method allows us to prove the lower
bound too.

1.4 Large deviations in limit theorems for the Riemann
zeta-function

In this section, we consider large deviations in limit theorems (1.5) and (1.6).
The parameter V in the theorems does not depend on 7, but the case when
V depends on T has an important application. For example, we would prove
estimates (1.9), (1.10), (1.11), and (1.12) if limit theorems (1.5), (1.6) could be
true for any V depending on 7. However, this sufficient condition would
be not correct. Therefore, we would like to know the range of V where the
limit theorems hold, and the behavior of the distribution functions in the
case when the limit theorems do not hold.

For this problem, Lamzouri [66] showed an effective result for asymptotic
formula (1.7) due to Hattori and Matsumoto. Precisely, Lamzouri showed
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that

%meas {te[T,2T] : log|{(o +it)| >V} (1.17)

1 +(v1og10gr)<“—%>/<1-”)
ViogV  \(logT)l=7

for any fixed % <o <landany C(o) <V < C(O')l(é;gl—ng); with C(0), c(o)
suitable positive constants. Moreover, Lamzouri, Lester, and Radziwilt [67]
showed a result for large deviations in limit formula (1.5). Actually, they

(logT)'=7

= exp —A(U)Vﬁ(logV)ﬁ 1+0

proved that asymptotic formula (1.5) holds for V = o ( . This range

1
(loglogT) o
is a little narrower than Lamzouri’s. In this thesis, we give a result which
extends their range.

Theorem 1.3 (Special case of Theorem 5.2). Asymptotic formula (1.5) holds for
V= ((log T)l“’)
=0 .

loglogT

For central limit theorem (1.6), Selberg-Tsang [116, Eq. (6.11)] showed
that

1 Lt
1 0g |Z(5 z)|>v

—measit e [T,27] :
d \3loglogT

_ /me—u’l/z du [ (ogs T)?
1% \2n vloglogT .

From this formula and the estimate /VOO e/ 2% = ﬁ exp (—VTZ) for V>0,

asymptotic formula (1.6) holds for V < (1 - &)4/log, T with & any fixed
constant. Radziwilt [95] improved this range into V = o ((log log )Y/ 10)3).
He discussed the large deviations of the distribution function of the Dirichlet

polynomial ¥, x p~!/27". Actually, he showed that for V = o(4/loglogT),
X = 71/(loglog T)Z,

1 Z —(1/2+it) 00 d
T meas |t € [T,2T] : p<X P >V~ / o222
\[% ZpSX p_l v 2

as T — +co. By using this asymptotic formula and the mean value estimate
of the gap of log ¢ (% +it) and },.x pl/i by Selberg-Tsang, he proved the
result of large deviations. From the above result for the Dirichlet polynomial,
Radziwilt suggested the following conjecture.

91n Radziwilt’s paper [95], the range is V = O ((loglog T)'/1°-#) with & any fixed constant,
but the range can be easily improved into V = o ((loglog7)'/'%) just by following his
argument.
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Conjecture (Radziwilt [95]). If V = o (wllog log T), asymptotic formula (1.6)

holds. Moreover, whenV ~ k+/loglog T with k > 0 any fixed constant, there exists
a constant C (k) such that

1 lo Lt o0 d
Tmeas te|[T,2T] : M >V~ C(k)/ o2 u
14

w/%loglogT V2r

We give a result contributing to this conjecture.

Theorem 1.4 (Inequality (2.35) in Theorem 2.5). For V = o ((log log 7)Y/ 6), we
have

1 log |£(% +it)]

—measit € [T,2T] :
d {3 loglogT

Some results weaker than such limit theorems have been already proved.
We note some of those here. We first mention the trivial upper bound of
the distribution of ¢ (% +it) coming from the fourth moment due to Ingham.
Actually, from Ingham’s estimate I(T) ~ #T(log T)*, we can immediately
obtain

2/2 du

>V <(1+0(1))/ - Nt

1 14
og |l (5 +it)] oy

\3loglogT
1 /1
< (ﬁ + z—:) exp (—4V 5 loglog T +4loglog T)

for V > 0. Also, Jutila [56] showed that, for any 0 < V < loglogT,

1
?meas te|T,2T] :

loglg(% +it)|

1 V2 &
—measyt € [T,2T] : >V < exp (—— +0 (—)) .
T {3 loglogT 2 VloglogT
This upper bound is bigger than the gaussian integral fV e w2 ji but his

range is wider than Radziwill’s. Recently, Heap and Soundararajan [43]
showed that

2

1 Ly
log ez +in)| >V =exp (_V7+0(Vlog3T)

{3 loglogT

for y/loglogTlog, T <V < 2loglogT — 24/loglogT log,T. This formula is
also weaker than Radziwill’s, but the range is wider than his. Moreover,

1
Tmeas te|T,2T]
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for the lower bound, Soundararajan [110] showed that, for any 3 < V <

I\logT/loglogT,

%meas {te[T.2T] : logl{(3 +it)| > V} (1.18)

> ;exp (_ OV—z)
loe T)4 logT |’
(logT) log 5

VZlogV

Such estimates also have applications such as to the moments 7; (T'). Actually,
Soundararajan in [111] showed an upper bound of the distribution function
of |£( % +it)|, and proved (1.16) by using the bound. From this background, we
give some upper and lower bounds for distribution functions of L-functions
in Chapter 6, and show some results for moments of L-functions.

1.5 Iterated integrals of the logarithm of the Riemann
zeta-function

In this section, we discuss the iterated integrals of the logarithm of the
Riemann zeta-function. Define the functions n,, (o +it) and #,, (o +it) by the
recurrence equations

t
nm(0'+it)=/ Nm-1(o +iu)du + ¢, (0),
0
ﬁm(0'+it)=/ N, (@ +it)da,
(oa

where no(s) = fig(s) = log{(s), and cp(0) = Gy [ “(a - o) log (a)da.
Under this definition, the well known function S,,(¢) is defined by % Imn, (%+
it).

Fujii [29] showed that the formula

Im 7, (3 +i1) (1.19)

i 1-

=Im "™ nm(2 +it) +27TImZ (

W 2, B=p" =7k,

0<y<t
,B>

which relates the n,, to 77,,. Moreover, he showed that Im ﬁm(% +it) <, logt
for t > 2 and consequently established that the Riemann Hypothesis is
equivalent to the estimate Im nm(% +iT) = o(T™?) for every m € Zs3. Also,
we can show the following proposition.

Proposition 1.1. Let m € Zy1. The Lindelof Hypothesis is equivalent to the
estimate Re i, (3 +it) = o(logt) as t — +oo.

This proposition is a generalization of an unpublished work of Ghosh and
Goldston (see pp.334-335 in [114]). They showed that the Lindel6f Hypoth-
esis is equivalent to that the estimate S1(¢) = o(logt) ast — +co. We see that
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S1(7) =Reijy (% +it) from equation (1.19), and so we can regard that Proposi-
tion 1.1 is a generalization of the equivalence of Ghosh and Goldston. From
these observations, the functions 7,,(s) and #,,(s) are interesting as well as
£ (s) and S(7), and we discuss the value distribution of these functions as one
of the topics in this thesis.

Recently, the study Q-estimates of S,,(¢) have been developed by some
articles such as [11], [14], [15] under the Riemann Hypothesis. Those results
were shown by the resonance method due to Bondarenko and Seip [10], [11].
On the other hand, as Bondarenko and Seip mentioned in [11], it is desirable
that those could be shown unconditionally by proving a stronger result on
the measure of extreme values like Soundararajan’s result (1.18). Toward
this problem, we discuss the large deviations of the distribution function of
i1,,(s) in the critical strip. For example, we give the following theorem.

Theorem 1.5 (Theorem 3.1). Let m € Zs1, 6 € R be fixed. There exists a
positive constant a1 = ai(m) such that, for any large numbers T, V with V <

ngT 2£1+1 h
al W , ‘we naoe

%meas {t e[T,2T] : Ree ", (% +it) > V} (1.20)
= exp (—2m4mV2(log V)2 (1 + R)) ,
where the error term R satisfies
y2m+l (1oo ) 2m(m+1) loglog V
R <, (log V) + 596 .
(logT)™ logV

This result recovers Tsang’s Q-estimate [117]

1/3
S1(T) = Q. ( (logT) )

(loglog T)4/3

as T — +oo. This is at present the best unconditional bound. On the other
hand, Tsang [118] also showed §1(T) = Q. (W %) unconditionally, and
our result cannot recover this estimate. From this problem, it is desirable to
prove (1.20) for some larger range of V.

1.6 Ramachandra’s denseness problem

As forerunners of the limit theorem of Bohr-Jessen (1.5), Bohr and Courant
[7], and Bohr [6] showed the following interesting theorems.

Theorem (Bohr and Courant in 1914 [7]). Let % < o < 1. Then the set
{{(o +it) : t € R} is dense in the complex plane.
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Theorem (Bohrin 1916 [6]). Let% < o < 1. Then the set {log l(o+it) : tEe R}
is dense in the complex plane.

Note that the latter theorem is an improvement of former one since the
former one is an immediate consequence from the latter theorem. These
results are interesting, and there are many developments inspired by these
results, such as the Bohr-Jessen limit theorem [8] and Voronin’s universality
theorem [119]. On the other hand, the value distribution of (s) on the
critical line o = % is more difficult, and the following problem is well known.

Problem 1.1. Is the set {{(3 +it) : t € R} dense in the complex plane?

This problem was first mentioned by Ramachandra (for the history and
the present state-of-art of this problem, see [65]). This problem is at present
open, and it is difficult to solve this even under the Riemann Hypothesis.
For Problem 1.1, there is an interesting study by Kowalski and Nikeghbali
[65]. They studied the Fourier transform of the probability measure which
represents the probability of log £(1/2 +it) € A with A a Borel set. In partic-
ular, they gave a sufficient condition that the values {(1/2 +it) for t € R are
dense in the complex plane (see [65, Corollary 9]). Hence, from their study,
we might guess that the answer for Problem 1.1 could be yes. However,
as they mentioned in their paper [65], their sufficient condition is rather
strong. Therefore, it is also not strange that the answer for Problem 1.1
could be no. Moreover, Garunkstis and Steuding [30] showed that the set
of (£((1/2 +it),’(1/2 +it)) for t € R is not dense in C2. As we can see from
these works, it seems difficult to decide clearly the answer of Problem 1.1
at present. Hence, it is desirable to obtain some new information for this
problem.

In this thesis, we consider the following problem.

Problem 1.2. Is the set {log L(1/2+it) : te R} dense in the complex plane?

This problem is stronger than Problem 1.1 in the sense that if the set
{log §(% +it) : te€ R} is dense in C, then {{(% +it) : te€ R} is also dense
in C. Since the function 7,,(s) is the m-times iterated integral of log {(s)
on the vertical line, we can expect that the function contains information
related to the value distribution of log {(s). In particular, since 7,,(1/2 + it)
is the iterated integral on the critical line, the study of the value distribution
of this function might give new information on Problem 1.2. From this
background, we study the denseness of the function 7,,(s) and prove the
following theorem in Chapter 4.

Theorem 1.6 (Theorem 4.1). Let 1/2 < o < 1. If the number of zeros p = S+ iy
with B > o is finite, then the set

{/tlog{(0'+it')dt' : te |0, oo)}
0

is dense in the complex plane. Moreover, for each integer m > 2, the following
statements are equivalent.
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(I). The Riemann zeta-function does not have zeros whose real part are greater
than o.

(1I). The set {nm (o +it) : t € [0, c0)} is dense in the complex plane.

From this theorem, we see that the Riemann Hypothesis implies that the
set

{/t10g§(1/2+it’)dt’ i teE [0,00)}
0

is dense in the complex plane. This implication seems to suggest that the
answer of Problem 1.2 is yes. Moreover, the equivalence above would be
a new type of statement which gives the relation between the denseness of
values of the Riemann zeta-function and the Riemann Hypothesis.

Furthermore, we also give a result for the denseness of Dirichlet polyno-
mial. Roughly speaking, the proofs of Bohr and Courant are mainly divided
into the following two parts.

Step 1. (Denseness lemma) The corresponding Dirichlet polynomial to { (o +it)
and log { (o + it) can approximate to any complex numbers.

Step 2. For “almost all” t, { (o + it) and log { (o + it) can be approximated by the
corresponding Dirichlet polynomial.

When % < o <1, these assertions were shown by Bohr and Courant. Addi-

tionally, Step 1 in the case o =  wasbeen proved by Kowalski and Nikeghbali
[65, Theorem 2] by showing a lower bound of the distribution function of
the Dirichlet polynomial [], . x (1~ p~ 1271071 which corresponds to { (% +it).
On the other hand, we give the following theorem.

Theorem 1.7 (Special case of Corollary 6.3). Put o(X) = ,/% Yp<x P71, and
define R(z,r) = {u+iveC : max{|Rez—ul,|Imz—-v|} <r}. Forany 0 <
& <1,z € C, and any numbers T, X with X 108108 )2 < T, we have

1 , 202 dud
—measst e [T,2T] : Z p_l/z_” € R(z,e)p ~ ”// P add
T R(z/or(X).&/0(X)) 27

p<X

as X — +oo.

This theorem gives the result on the denseness of the Dirichlet polynomial
Pi(1) = X p<x p~1/27" and so this theorem advances Ramachandra’s problem.
On the other hand, there is a gap between this theorem and the denseness
lemma because the Dirichlet polynomial corresponding to log ¢ (3 +it) is

Py(1) = -3, log(1 - p~ Y27y or P3(t) = Yocnex %. Hence, we should
consider these Dirichlet polynomials from the viewpoint of Ramachandra’s
problem. On the other hand, the contribution from the gaps between the
Dirichlet polynomials P>(z), P3(¢) and P1(¢) is not big. From this fact, The-

orem 1.7 suggests that the distribution functions of P,(¢), P3(t) have also
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similar asymptotic formulas. Actually, the author is considering whether
the asymptotic formulas can be proved by the methods in Chapters 5, 6. In
particular, such asymptotic formulas for the Distribution functions of P»(¢),
P3(t) would give an improvement of the result of Kowalski and Nikeghbali.
From these observations, the author believes it makes sense to state Theorem
1.7 here as one of the progress towards Ramachandra’s problem.

1.7 Definition of some classes of L-functions

So far, we surveyed the value distribution of the Riemann zeta-function.
Some of the results above can be extended to a certain class of L-functions.
For example, Selberg introduced a class of L-functions and gave a theorem
[108, Theorem 2] for central limit theorems of L-functions in the class. Today
this class is called the Selberg class. To define the class, we introduce some
properties for Dirichlet series F(s) = 3, a(n)n™".

(S1) The series 3", ar(n)n~* is convergent absolutely for o > 1.

(52) (Analytic continuation) There exists myp € Zx such that (s—1)" F(s)
is entire of finite order.

(S3) (Functionalequation) F(s) satisfies the following functional equation
Or(s) = wr®r(1-s),

where ®r(s) = y(s)F(s) and y(s) = QF ]_[f.=1 [(Ajs+pj), with 4; > 0,
0 > 0, Re(y;) > 0, and |wr| = 1. Here we use the notation ®r(s) =
NG)

(S3”) F(s) has the same functional equation as in (S3), where the condition
Re(u;) > 0 changes to Re(y;) > —%.

(54) (Euler product) F(s) can be written as

F(s) = [ | Fa(s). Fp(s):exp(z Fp(kf )),
p

k=1

where br(n) = 0 unless n = p with ¢ € Zs1, and br(n) < n’F for some
Ir < %

(S5) Forany k > 2,

k)|2

k
Z |br(p*)(log p (121)

k
D p

(56) (Ramanujan conjecture) For every ¢ > 0, the inequality ar(n) < n®
holds.
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The set of L-functions satisfying (S1)—(54) and (56) is called the Selberg
class denoted by S, and also the set of L-functions not equaling to the
identically zero and satisfying (S1), (52), and (S3) is called the extended
Selberg class denoted by S*. In this thesis, we study the set ST consisting of
L-functions satisfy (S1), (S2), (S3’), (S4), and (S5). We call 8™ the modified
Selberg class. The Ramanujan Conjecture is a strong condition, that implies
(S5) together with (S4). Actually, if F is an L-function satisfying (54) and
(S6), then it holds that (cf. [89, Exercise 8.2.9])

br(p")] <er (20-1) /L.

Hence, it holds that S ¢ ST. Axiom (S5) is sometimes called the Hypothesis
H, which was introduced by Rudnick and Sarnak [102, equation (1.7)]. The
zeros of @ is called the nontrivial zeros of F. It is known that many inter-
esting L-functions belong to these classes. For example, the Riemann zeta-
function, Dirichlet L-functions, Dedekind zeta-functions, Hecke L-functions
associated with primitive Hecke characters, and L-functions associated with
holomorphic newforms of a congruence subgroup of SL,(Z) normalized
suitably belong to the Selberg class. In general, it is difficult to decide the
all of the L-functions in the Selberg class. For this direction, there are in-
teresting works such as [4], [18], [57], [59], [60], and [61]. Additionally, the
following conjecture is known (see [92]).

Conjecture (Main conjecture for the Selberg class). The Selberg class S coin-
cides with the class of the GL(n) over Q automorphic L-functions.

From these observations, the Selberg class is an interesting mathematical
object.

In general, it is difficult to prove the Ramanujan conjecture for automor-
phic L-functions. Hence, we study S in this thesis. As one of advantages of
this relaxing, it has been proved that automorphic L-functions attached to
an irreducible unitary cusp representation of GL(n) over Q for n < 4 belong
to ST. This fact was proved by Rudnick and Sarnak in [102] for n < 3 and
Kim and Sarnak [64, Appendix 2] for n = 4.

1.8 The distribution functions of L-functions

In [108], Selberg suggested some interesting conjectures, and many mathe-
maticians have worked for the conjectures. In particular, he conjectured that
the Riemann Hypothesis is generalized to the Selberg class.

Conjecture (Grand Riemann Hypothesis (GRH)). For F € S\ {1}, all non-

trivial zeros of F lie on the critical line o = 3.

Similarly to the case of the Riemann zeta-function, this conjecture implies the
Grand Lindel6f Hypothesis, which states that F (% +it) < |t|° for |t > 2.
Moreover, the Grand Lindeldf Hypothesis for F has some consequences to
the distribution of zeros of F. For example, we can generalize Backlund’s
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equivalence to the Selberg class and the modified Selberg class. Also, the
Riemann-von Mangoldt formula (1.4) is generalized to the modified Selberg
class. Let Np(T) be the number of nontrivial zeros pr = Br + iyr with
0 < yr < T counted with multiplicity. Then formula (1.4) is generalized to

N#(T) = (1.22)

k
. . 1
%Z (argF(%’ +uj +il,T) — arg (% +y,-)) + 2080 6 (T) = Sp(0) + mp

i1 d
for F € ST\ {1}, where A;, u;, and mr are the numbers in (S2), (S3), and (S3’),
and Sr(¢) is the function defined by 717 Imlog F(% +it) = % arg F(% +it).

Using standard methods, we can show that F (% +it) <pe (t|+ 1)dTF+8
and Sr(t) <r log(|t| +3) for t € R. Here, dF is the degree of F defined by
2 Zl;‘:l Aj which is an invariant for F, that is, the degree dr does not depend
on the form of the gamma factor y(s) in (S3). In particular, substituting the
latter estimate to (1.22) and using the Stirling formula, we have

+Op(logT) (1.23)

T T\
NF(T)=5108 qr |5

for T > 3. Here, g is the conductor of F defined by (2x)9r Q? Hj‘.zl /liﬂj .

This number is also an invariant for F. Additionally, the estimate of Sr(¢)
can be improved into Sr(t) = o(log(|t| + 3)) as |[t| = +oco under the Lindelof
Hypothesis for F. By this improvement, we can improve the error term
of (1.23) into o(logT) under the Lindelof Hypothesis for F. From these
observation, the value distribution of L-functions is important as well as the
Riemann zeta-function.

As we mentioned above, Selberg generalized (1.6) to L-functions in the
Selberg class. Precisely, he showed that, for all F € S\ {1} satisfying a certain
condition,

1 log |F(L +it oo
lim —=meas]{t € [T,27T] : log|F(z +in)l >V :/ e—MZ/Zd_”’
[ore "TF loglogT 4 V2r

‘

Ly o0
arg F (5 +it) >V>:/ oiP2 du’
14 Vi

1
lim —measst € [T,27] :

T—+o00

\ 75 loglogT

where nr is a positive integer. Moreover, these formulas are also generalized
to the modified Selberg class. We will see this fact in Chapter 6.

Also, the value distribution of L-function in the domain o > % have
been studied by many mathematicians. Matsumoto [77] generalized limit
theorem (1.5) to a class of zeta or L-functions. Combing his result with
Potter’s result [94, Theorem 1], we obtain the following: if F € S\ {1} having
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the “polynomial Euler product” satisfies the estimate
27
/ |F (o +it)|2dt < T
T

for any & > 0 and for some oy > 1, then there exists a probability measure
P, ron (R, B(R)) such that

Tl_i)rP00 % meas {t € [T,2T] : log F(c +it) > V} = Py p((V,+0))
for o > o09. Thus, we have already succeeded in generalizing the limit
theorem (1.5) to a certain extent. On the other hand, there is an obstacle to
generalize the existence of the density function of P, r. The details of the
obstacle is written in [78]. Some mathematicians [79], [80], [84] have worked
this generalization, and succeeded it for some certain L-functions. However,
a more generalization, for example to all L-functions in Selberg class, would
require further works.

1.9 Independence of L-functions

We observed some properties of L-functions so far. From the results men-
tioned above, we see that many properties of the Riemann zeta-function
can be generalized to L-functions in S and S'. Therefore, we find that
L-functions in these classes have many common properties. On the other
hand, in order to understand each L-function deeply, it seems to be impor-
tant to study so that the differences of distinct primitive L-functions can be
clarified. Here, we say F € S\ {1} primitive if F = FiF, with Fi,F> € S
implies F; = 1 or F, = 1. In the classes S%, ST, define it in the same way.
From this perspective, we also discuss the independence of L-functions in
this thesis.

Selberg in [108] mentioned that the distinct primitive L-functions in the
Selberg class are “statistically independent” under a strong zero density
estimate and an orthonormality conjecture without any precise description
for the independence. The strong zero density estimate means that there
exists a positive constant 7 such that, uniformly forany 7 > 3and 1 < o < 1,

Np(o,T) < T2 D6 Jog T, (1.24)

Here, Np(o,T) is the number of nontrivial zeros pr = B + iyr of F with
Br > 0,0 < yr < T counted with multiplicities. The statement of the
orthonormality conjecture is the following.

Conjecture (Selberg Orthonormality Conjecture (SOC)). For any primitive
L-function F € S,

2
Z @ =loglog X + Of(1)

p<X
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for some positive integer np and any X > 3. For any primitive L-functions F #
GeS,

D ar(p)ac(p) _ Orc(l)
) :

p<X

forany X > 3.

Assuming (1.24), SOC, and other certain conditions, Bombieri and Hejhal
[9]¥ established the statistically independence of L-functions by showing
that, for any fixed Vq,...,V,,Wq,..., W, €R,

N lo F:(5+it arg F: (5 +1it
1measﬂ [T,21] 8| (2 l)| 5 (2 l)
T

Jj=1 \/ floglogT \/ floglogT
N 00
~T] / / (2?2 dudy (1.25)
j=1 Vi JW; 2n

as T — +oo, where F; are L-functions satisfying certain properties, and
np; are certain positive integers. In particular this formula leads that the L-
functions normalized by the variance %4~ log log T are independent as random
variables on the critical line. To understand this independence more deeply,
we improve the limit theorem of Bombieri and Hejhal for the direction of
large deviations. Here, we omit the precise condition of the theorem which
is written in Chapter 6.

Theorem 1.8 (Special case of Theorem 6.1). Letr € Zyy. Let F = (Fy,...,F,) €
(SN, (61,...,6,) € R satisfying suitable conditions. Then, forany (V1,...,V,) €

R" with maxi< <, |V;| = 0 ((1og log T)l/lo), we have

Ree i log F; (% + it roopeo d
—measﬂ [T,27T] : gfi+1) >V~ 1_[/ e w2 S0
=1 Vi

\/’% loglogT

as T — +oo.

Also, we can obtain an upper bound and a lower bound of the distribution
function of F' = (F1,...,F,) in a wider range of V' (see Theorems 6.2, 6.4).
As one of the application of the bounds, we can obtain the following mean
value theorem.

YBombieri and Hejhal credited Selberg in their paper. The author does not know the
meaning, but their result may be an unpublished work of Selberg.
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Theorem 1.9 (Special case of Theorems 6.3, 6.5). Let x1,...,x, be distinct
primitive Dirichlet characters. Then there exists some positive constant B depending
on y;'s such that for any small enough positive real number k,

(log T) k% /r+Bk3
(loglog T)(r-1/2°

2T -2k 1 T k2/r_Bk3
/ max |L(3 +it,x;)|| dt>T (log7) .

o7 2%
/ (min IL(3+ it,)(j)|) dt < T
T

1<j<r

(1.26)

The above implicit constants depend on y; and k. If we assume the Riemann
Hypothesis for L(s, x;), then we have, for any k > 0 and & > 0,

27 2k i
/ (min |L(% + it,)(j)|) dt < T(logT)* [ree.
T

1<j<r

o7 2k i
/ (max IL(3+ it,)(j)|) dt > T(logT)*"/"=2.
T

1<j<r
The implicit constants depend on x;, k, and e.

From this theorem, we find that the mean value estimate of min{|¢ (% +

it)], |L(% +it)|} is strictly smaller than just the mean value estimate | (% +it)|.
As we mentioned in Section 1.3, it is known unconditionally that, for 0 <
k<2,

2T
/ (% +inPde =, T(logT)F .
T

Moreover, it is expected that /TZT |IL(3+it, x)[**dt < T(logT) ¥ Therefore, the
unconditional result (1.26) is new and interesting when k < B~!/2. We could
regard this fact as one of the new evidence of independence of L-functions.

So far in this section, we observed independence of L-functions on the
critical line. It is a natural question to ask the independence in the other
domain, particularly in the strip 3 < o < 1. One may speculate that L-
functions are independence as random variables even in this strip, but this
does not hold. This fact was informed to the author by Mine [85]. Roughly
speaking Mine’s method, we consider the characteristic functions

Px1.x2 (fl, §2)

1 2T
= lim ?/ exp (ifl log |L(o +it, y1)| +ié2log |L(o + it,)(z)l) dt,
T

and
1 2T
¢y, (&) = lim / exp (i;log|L(c +it, x;)|) dt
—+00 T T
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with y1, x2 distinct primitive Dirichlet characters modulo g. Then we can
show that ¢, ,, # ¢,, - ¢,,. Hence, L(o +it, x1) and L(o + it, x») are not
independent as random variables, and particularly the equation

lim — measm {t € [T,2T] : log|L(o +it, ;)| > Vj}

T—+oo T

= lim {(%meas {t € [T,2T] : log|L(o +it, x1)| > Vl})

T—+c0

X (%meas {t € [T,2T] : log|L(c +it, x2)| > Vz})}

does not hold for some Vi,V, € R. From this fact, it is a natural question
to ask how dependent are L-functions in the strip 3 < o < 1. We give an
answer to this question by extending the results of Hattori-Matsumoto and
Lamzouri to joint value distribution of {(o +it) and L(o +it, y) with y a
quadratic character.

Theorem 1.10 (Special case of Theorem 7.1). Let 3 < o < 1 be fixed, and let y

be a quadratic character. There exists a positive constant a = a(o, x) such that for

(logT)”

loglog T We have

any large T,V with V < a;—=——

%meas {t € [T,2T] : log|{(o +it)| >V and log|L(o +it, x)| > V}

= exp (—2ﬁA(a)v#(1ogV)% (1+ 0(1))) (1.27)

as V — +oo, where A(o) is the number defined by (1.8). The above implicit constant
may depend on o and y.

For any primitive Dirichlet character y, define the distribution functions

Or(x,y; x) =

%meas {t € [T,2T] : log|{(o +it)| > x and log |L(o +it, x)| > y},

Yr(x) = %meas {t € [T.2T] : log|{(o +it)| > x},

Yr(x; x) = %meas {t € [T,2T] : log|L(o +it, x)| > x}

Then, using the method in Chapter 3, one can show that, for any V <

(logT)'~“
loglogT

with ¢ = ¢(x) a small positive constant,
Wr(V;x) = exp (~A(0)V 7 (log V)7 (1+0(1)))
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as V — +oo. From this limit formula and (1.17), if the functions log | (o + if)|
and log|L(o +it, x)| are independent as random variables, the right hand
side of (1.27) must become

exp (—ZA(O-)Vﬁ (log V)™ (1 + 0(1))) ;

but it does not hold for any large V when 1 < o < 1. Moreover, we can
clearly understand the difference between ®7(V,V; x) and ¥Y7(V) X ¥r(V; x)
in the sense

Yr (V) x¥Pr(V; x)
o7 (V,V; x)

20-1

= exp (2 (2 i 1) A(o)VTe (log V) ™o (1+ 0(1)))

when y is a quadratic character. Hence, when % < o < 1, the functions
log |{ (o +it)| and log |L(o +it, x)| are dependent as random variables. It
would be interesting to make an arithmetic meaning for this fact. Also, this
result seems unexpected, in view of the previous work of the joint univer-
sality theorem due to Lee, Nakamura, and Parfikowski [69]. This fact would
suggest that the universality cannot give us information of independence
for random variables. From this viewpoint too, the dependence would be
interesting.
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Chapter2  Approximate formula for log {(s),
nm(s), i1,,(s) and its applications

In this chapter, we prove an approximate formula for the Riemann zeta-
function. The formula plays an important role throughout this thesis. The
contents in this chapter are based on the paper [50].

2.1 Approximate formula for log (s), n,,(s), and 7,,(s)
Throughout this chapter, we use the following notations.
Notations. Let s = o + it be a complex number with o, t real numbers, and
p = B+ iy be a nontrivial zero of /(s) with 8, y also real numbers. Let A(n)
be the von Mangoldt function.

Let H > 1 be a real parameter. The function f : R — [0, +o0) is mass one
and supported on [0, 1], and further f is a C'([0, 1])-function, or for some

d > 2 f belongs to C472(R) and is a C%([0, 1])-function. For such f’s, we
define the number D(f), and functions u s, v u by

D(f) = max{d € Zs1 U {+co} | fis a C4([0,1])-function},

urn(x)=Hf(Hlog(x/e))/x, and
= dx,
vea(y) /y ug g (x)dx

respectively. Further, for each integer m > 0, the function U,, is defined by

1 upa(x)
Un(2) =20 | (logx)™

E . (zlogx)dx

7

forIm(z) # 0. Here, E; ., (2) = E}, ., (x +iy) is the function of a little modified

m-th exponential integral defined by

. +oo+iy eV o) eV
E, 1(2):= / (w—(x+iy)"—dw = / (w—2)"—dw.
X w Z w

+iy
When Im(z) =0, then U, (x) = limgy Uy, (x + ig).
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Let X > 3 be a real parameter. The function Y, (s, X) is defined by

> log((s-p)logX) m=0,
|s—p|<1/log X
Ym(s, X) = m-1 im_l_k (21)
m—k k
Zﬂkzmz(ﬁ‘“) t-y* m=1.
=0 O<y<t
B>0

In this paper, we take the branch of log z by —n < arg(z) < 7. Here, we may
represent Y,, (s, X) by Y, (s) in the case m > 1 since Y, (s, X) does not depend
on X in this case.

Remark 1. From the above definitions, the function u y is mass one and
supported on [e, e!*V/#], and further usy is a C!([e, e™*'/H])-function, or
urn belongs to C 4-2(R.0) and is a C%([e, e'*'/H])-function for some integer
d > 2. We also note that v/ z is a nonnegative continuous function on R
and satisfies vy y(y) =0fory > e/ and v y(y) =1for0O <y <e.

Remark 2. Note that some remarks for Y, (s, X). When m = 0, the real part of
it is always non-positive. When m = 1, the function Y1(s) has the following
simple formula

Yi(s) =27 )" (B=0),

O<y<t
B>0

and its value is always nonnegative and always zero for oo > 1/2 under
the Riemann Hypothesis. Next, we suppose m > 2. Then if the Riemann
Hypothesis is true, Y,,(s) is always zero for o > 1/2. On the other hand, if
the Riemann Hypothesis is false, the value of Y,,(s) becomes big in o close
to 1/2. Actually, there exists a nontrivial zero pg = By + iyo with Sy > 1/2,

then we have

Re(Y(5)) = (Bo — o)™ 1+ 0 (rm-3 logt) ,
(2.2)
Im(Y,(5)) = (Bo — )" 2+ 0 (z’"‘4 logt)

for a fixed o with 1/2 < o < Bp.

Now, we state the main theorem in this chapter.

Theorem 2.1. Let m, d be nonnegative integers with d < D(f), and H, X real
parameters with H > 1, X > 3. Then, for any o € R, t > 1, we have

A(l’l)Vf,H (elogn/logx)

ns (log n)m+1

() =i"

2<n<X1+1/H

+ Y, (s, X)+ R, (s, X, H).
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Here the error term R,, (s, X, H) satisfies the estimate

Rm(s, X, H) <<f,d (23)
X2(1 o) Xl o H l 1
* min + Z (X2B=) 4 xP-y
t(log X)m+1  o=iza | \tlog X (log X)™ ot
logX
1 X2(B-0) 4 xB- H !
+— Z min ¢ | ————— | ¢.
(log X)m+1 Bt It — | o<i<d |\ |t —y|log X
“ /17 logX

Moreover, if the Riemann Hypothesis is true, for 1 < H <t/2,3 < X < t, we have

logt 1 log(H +2)
(log X)™ (loglogt ¥ log X ) ‘

The important point of this theorem is that, by Y¥,, (s, X), we can express
explicitly the contribution of certain zeros which have big influence to 7,, ().
Actually, from this theorem, we can take out the information of singularities
coming from such zeros. Thanks to it, we can prove some results for the
Riemann zeta-function. For example, the results are related to the following:

Rn(s, X, H) <5 X7 (2.4)

1. An equivalence between the order of magnitude of 7, (s) and the zero-
free region of {(s),

2. A relation between the prime numbers and the distribution of zeros of
{(s) under the Riemann Hypothesis,

3. The value distribution of log [{(1/2 +it)|,
4. A mean value theorem involving 7,,(s),

5. The value distribution of n,,,(1/2 + it).

We will state the details and proofs of these results in the following five
sections.

Note some remarks on this theorem. First, when m = 0, and H is large,
for example H = X, this formula becomes an assertion close to the hybrid
formula of Gonek, Hughes, and Keating [33, Theorem 1]. In fact, this the-
orem is proved by calculating the contribution of nontrivial zeros which is
based on the following proposition.

Proposition 2.1. Let m be a nonnegative integer. Then, for o € R, t > 0 we have

A(n)vf’H(elogn/logX) M

77m(s) =i"" v S ns(log I’l)m"'l + (log X)m Um((s — 1) 108 X)
_(IO;—X)mZUm((s—p)logX) X)m ZU ((s+2n) log X)
+27rZ R Z (B— )" Kt = y)*.

"0<y<t
B>0
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Here if m = 0, then we regard that the third term on the right hand side is zero.

This proposition in the case of H = X, m = 0 becomes the almost same
as their hybrid formula. On the other hand, as we can see from Theorem
2.1, it becomes difficult to obtain a good estimate for the contribution of
nontrivial zeros and mean value estimates when H is large. From this
reason, we introduce the new parameter H which can control the length
of “smoothing functions." Although most of discussions and results in the
following are obtained by this theorem in the case H is small, the theorem
in the case H is large is also useful when we discuss a Dirichlet polynomial
without smoothing functions like ¥,y p~'/27"". Actually, we will mention
an estimate of this Dirichlet polynomial under the Riemann Hypothesis in
inequality (2.25) below.

2.1.1 Preliminary lemmas

Lemma 2.1. Let m be a positive integer, and let t > 0. Then, for any o > 1/2, we

have
m—1 im= 1-
m—k k
(0 +i) = 1" nm<a+n)+2nz( - ,Z(ﬁ )" = )t
O<y<t
p>0

Proof. In view of our choice of the branch of log {(s), it suffices to show this
lemma in the case ¢ is not the ordinate of zeros of £ (s). We show this lemma
by induction on m. When m = 0, by using Littlewood’s lemma (cf. (9.9.1) in
[114]), it holds that

i/llogg’(o-+it’)dt’—/mlogg’(a)dcx
0 o
—/Oolog{(a+it)da+27ri/ooN(a/,t)da. (2.5)

Here N(o,t) indicates the number of zeros p = B + iy of the Riemann zeta-
function with 8 > o, 0 < y < t counted with multiplicity. We see that

/UOON(a/,t)da:/U Zldoz— Z/ da = Z (B-o0).

O<y<t O<y<t O<y<t
p>a p>o p>o

Therefore, by this formula and the definition of 7,,(s), we have

n1(0'+lt)—l/ 10g{(a+lt)d0/+27r2(,8 o),

O<y<t
p>0

which is the assertion of this lemma in the case m = 1.
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Next we show this lemma in the case m > 2. Assume that the assertion
of this lemma is true at m — 1. Then, we find that

t
/ N1 (o +it")dt’
0

_/0 (m - 2)'/ (@ - )" log{(a +it')dadr’

+27r2(m'1 k),k,/ 2, B=o)" W —p)ar

O<y<t’
B>
im—l 00 t
:W/ (CL’—O')m_z/ log ¢ (a +it')dt da
m—1 im
+2nZ( o Z B-)" -9t (26)
“0<y<t
B>0

Note that the exchange of integration of the first term in the second equation
is guaranteed by the absolute convergence of the integral. Applying formula
(2.5), we find that

sm—1 o0 ¢
—(nll —o)! [T (a - 0)'"_2/0 log ¢ (a +it')dl' da

_ (m%)' / (@ - )" og £(a +if)da — cp(c)
(m i / (@ — )" 'N(e,1)de,
and that
00 B
/ (¢ — )" 'N(a,1)da = Z / (¢ — )" lda = % Z (B-o0)".
o O<y<t ¥ 7 O<y<t
B> >0

Hence, by these formulas, (2.6), and the definition of 7,,(s), we obtain

;m

LN l « __ym-1 .
nm(o +it) = = 1)!/0 (@ —0)" " logl(a+it)da
" m—k k
+27TZ( ),k,Z(ﬁ )" =),
O<y<t
B>0
which completes the proof of this lemma. o

Lemma 2.2. Let m, d be a nonnegative integers withd < D = D(f). Let z = a+ib
be a complex number with b # 0. Set H > 1 be a real parameter. Then we have

U ( )<< e—(1+1/H)a+e—a . H l
min — .
mi&) 1.d D] ozi<a | \1p]
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Proof. By the definition of U,,(z), we have

1 oo _ m oo .
Un(z) = %/ M (/0 uf,H(x)e_(“”b)lngdx da. (2.7)
M a

a+ib

Since uyy belongs to CP72([0,0)) and is a CP([e, e!*/#])-function and
supported on [e, e!*1/H], for 0 < d < D — 1, we see that

JIH/H ( ) (x)xd (a+ib)

® —(a+ib) log x — . 2.8
| urnte w= [ et e

Here the estimate u;dl)q(x) <fd H%™*'holdsonx € [e, e*/H] for0 < d < D.
By this estimate and (2.8), we have

[
o H
/ urp(x)e” (a+ib)logx g, <fa (e I+ 4 o ~*) min {(m) }
0

0<i<d
for 0 < d < D — 1. Moreover, by (2.8), we find that

/ uf,H(x)e_(””b) logxdx
0

—oIH1/H

42D D—(a+ib) |* 141/H (D) D—(a+ib)
(x)x e 5 (x0)x

| N
I—[H{(aﬂ'b)—l} e ]_[l 1{(a+zb)—l}

xX=e
D
H
</ (¢ (“”)a”_a)(|b|) |

By these estimates and (2.7), for 0 < d < D, we have
1 : m a(1+1/H) —a
- d
o (Z)<fd|b|m'0<’<d{(lbl)}/ (@male e

5 e—(l+l/H)a + e ¢ H l
< min {(—] ¢,
|b| o<i<d | \|b|

which completes the proof of this lemma. o

Lemma 2.3. Let m be a nonnegative integer, and let H > 1. Then, for any complex
number z = a +ib with a € R and |b| < 1, we have

i(-2)"logz+0 (1) if |z <1,
Un(z) = (2.9)
0 (e—(1+1/H)a +e—a) if |z > 1.

In particular, for any positive integer m, we have
Up(z) < e"Itl/Ha 4 pma (2.10)

for any complex number z = a +ib with |b| < 1. Here, the above implicit constants
are absolute.
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Proof. In view of our definition of U, (z) and logz, it suffices to show this
lemma in the case that b is not equal to zero. First, we consider the case
a > 1. Then we see that

1 e —(a+ib) log x
Um(z):%/O ufH(x)/ (¢ —a)"———dadx

a+ib
oIH1/H

1
< —|/ uf,H(x)/ (@ —a)" e %dx < ™.
m! J, a

Next, we consider the case |a| < 1. Then we can write

SIHI/H

1 —(a+zb)logx
_ _ m€
Um(z)—m!/e ufH(x)/ (@ —a) T dadx
el*/H o~ (aib) logx
o] MfH(X)/ (@ - a)" ————dadx.

We see that the absolute value of the latter term on the right hand side is

1+1/H
1 e

< — uf,H(x)/ (@ —a)"e %8 dadx < 1.

m!

Next, we consider the former term on the right hand side. By the Taylor
expansion, it holds that

/ ( )me —(a+it) logx
a—d

a+ib

m _ n 1
= uda+2%/ (@ —a)™(a +ib)" da.

« a+ib

When n > 1, we find that

m+n
< 2",

1
/ (@ —a)"(a+ib)" 'da

and so

Z(loﬂ/ (@ —a)"(a+ib)" da < 2.

n=1

Using the binomial expansion, we also find that

1(a_a)m m .

m

= (=)™ (log(l +ib) — log Z) + Z (’]7:) (_Z)m—k ((1 + ib)k_l _ Zk_l)
k=1
= —(-2)" log(z) + O (4™).
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Therefore, by the above calculations, when |a| < 1, we obtain

Un(2) = ~—(~2)" log 2 +.0 (1)

Finally, we consider the case a < —1. We can write

Uo(z) :/ee

Using the result of the previous case, we have Uy (—1+ib) = —(-1+ib) log(-1+
ib) + O(1) = O(1). Also, we can easily see that the first term is <« e~ (+1/H)a o
e “. Hence, we have

1+1/H

e (a+ib)logx
Mf’H(X)/ Wda+Uo(—1+ib).

—(1+1/H)a —a

Up(z) < e +e

for a < —1. When m € Z31, it holds that

Um<z>:%/:

~ m-1)!

by integration by parts and Fubini’s theorem. Applying the estimate of Uy,
we find that

1+1/H ¢~ (a+ib)logx

wn) [ -t da

a+ib

/m(a —a)" Wy(a +ib)da

/ (@ —a)" WUy(a +ib)de < 1,

(m 1)'
(m — 1)|/ (@ —a)" Wy(a +ib)da < e~ IH/Ha 4 p=a
and that
1
=D [1 (= a)" " Up(a + ib)der
1 ' 1 m—1
T T m-1) ‘[1 (@ —a)" ! (log(a +ib) + O(1)) da < % < om0+l

Therefore, we have

Up(z) < e~ IH/Ha 4 o=a

and this implicit constant is absolute.
From the above calculations, we obtain

—(=z2)"logz+0 (1) if |a| <1,

Um(Z) =
0 (e_(1+1/H)“ + e“’) if |a| > 1.

Now, from the condition |b| < 1, the formula where |a| is replaced by |z| also
holds. Hence, we complete the proof of the estimate (2.9).

Moreover, we can obtain the estimate (2.10) from (2.9) since, for m € Z51,
the inequality % (—z)"logz < 1 holds for |z] < 1. Thus, we obtain this
lemma. O
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Proof of Proposition 2.1. In view of our definition of U,,(z) and log ¢ (s), it suf-
fices to show this lemma in the case that ¢ is not equal to the ordinate of zeros
of {(s). First, we prove this proposition in the case m = 0. The proof is the
almost same as the proof of Theorem 1 in [33] (see also the proof of Lemma
1in [9], if necessary). Hence, we only write the rough proof in this case. Let
ii(s) be the Mellin transform of uy y, that is, i(s) = fom u f,H(x)xs‘ldx. Since
the functions v y(x) and (s + 1) /s are Mellin transforms, we find that, for
any complex number z,

(e

A
Z (n) vim ( Jlogn/log X)

nz

n=1

1 AR (M aw+1)
= — - ng
2mi nZ:: nt c—ico w " "
1 (2-Re(z)) log X+ico {/ w ﬂ(w + 1)
__ 2 (Z + ) dW
log X

27t J(2-Re(2)) log X—ico & w

By this formula, for Im(z) > 0, we have

A(n) log n/log X
Z - vf’H(eog /log )

n<X1+1/H
_ ¢ L 8
= —Z(z) + a1+ (1-2)log X) - ; = “i(1+(p - 2)log X)-
[ 1 3
—Z i(1+(2n-z)logX).
— 2n -z
Integrating both sides with respect to z from oo + it to o + it (= 5) , we obtain
log ¢ () (2.11)
— Z SA(I’l) ViH (elogn/logX)
o<negiya n*logn

+Up((s —1)log X) — Z Uo((s — p) log X) — Z Uo((s — 2n) log X).
1Y n=1

Therefore, this theorem holds in the case m = 0.
Next we show this proposition for m > 1. By Lemma 2.1, it suffices to
show that

l'm

(m-1)!

/oo(oz —o)m1 log {(a +it)da = (2.12)

A(n)vy g (elo8n/los X) N i"
n’ (log n)™+! (log X)™

l-m

2<n<XW+1/H

" i ©
" (log X)™ ; Un((s - p) log X) - Tog X" ; Un((s —2n)log X).

Un((s —1)log X)
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Here, by using formula (2.11), the left hand side on the above equation is

A . logn/log X
_m Z (m)vyru(e ) (2.13)

2<n<X1+/H n®(log n)™+!
* (mi_ 1)1/ (o = 0)"Uo((a +it = 1) log X)der
_ﬁ/ Z(a_O-)m_lUO((CL’+it—p)logX)da,

P
_ (n1+ml)‘ /gw,,ziw = 0)""'Uo((a + it = 2n) log X)dar.

In the following, we will change the above sum and integral, and it is guar-
anteed by

Z /00 (@ = )" Uo((a +it - p)log X)|da < +oo.

P

This convergence can be obtained by Lemma 2.2. Further, simple calculations
show that, for any w € C,

l'm

(m—1)!

m

/w(a — )" Wo((a +it = w) log X)da (2.14)

= —(log Xy Un((s —w)log X).

Hence, by (2.13), (2.14), we obtain formula (2.12), and this completes the
proof of this proposition. o

2.1.2 Proof of the approximate formula

Proof of Theorem 2.1. We can immediately obtain estimate (2.3) by Proposi-
tion 2.1, Lemma 2.2, and Lemma 2.3. Now we prove estimate (2.4) under the
Riemann Hypothesis. It suffices to show

1 log X
Z T < logt oo loo 7 +logH |, (2.15)
e<liolste ) 808
and
H log X
Z W < logt X (W + 1) (216)

H
|l—7|>@

under the Riemann Hypothesis. Assuming the Riemann Hypothesis, the
following estimate (cf. Lemma 13.19 in [87])

- ( ) logt
N |t, <
loglogt loglogt

(2.17)
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holds for t > 5. By this estimate, for any 1 < H < £, we find that

[(H-1) loglogt]

1 log X 1
[ S [
Z =7l ;) 1 k Z 1 k+1 =7l
logX<|t 7|<logx W+W<|t_7|slogx+loglogt
H-1 loglog ¢ oz log
[(H-1)75x] 1 log X (H—l)% du
< logt Z loglogt < logt log logt + loglogt
k=0 log X +k 0 log X tu
log X
=logt 8 +logH |,
loglogt
and that
H H H
Z (t—y)?logX - Z (t-7y)?logX +0(tlogX)
|l—7|>% IOI;X<|I_ |<t
[tlogzlogr]
H H
<y 3 LN
— . (t—v)?logX (tlo X)
B ottty i
tloglogt
& 1 H
< Hloglo t +
5708 kz(:J Hloglogt 2 tlogX
log X
t logx \* [ d H
< Hloglogt log ( 5 ) +/ - +
log X | \Hloglog1 0 ( Hloglogt)2 tlog X
U+ s
0g
log X
< logt - +1].
Hloglogt
Hence, we obtain estimates (2.15), (2.16). O

By Theorem 2.1 and Lemma 2.1, we also obtain an approximate formula
for 7, (5).

Theorem 2.2. Let m € Zy1, and let d be a nonnegative integer with d < D(f). Let
H, X real parameters with H > 1, X > 3. Then, forany o € R, t > 1, we have

A(I’l)Vf,H (elogn/logX)

ns (log n)m+1

M (s) = +En(s, X, H).

2<n<XW1/H

Here the error term E,, (s, X, H) satisfies estimates (2.3) and (2.4) under the same
conditions as in Theorem 2.1.
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2.2 An equivalence with the zero-free region of {(s)

As the first application of the approximate formula, we state a conse-
quence which gives an equivalent condition to the zero-free region of {(s).

Corollary 2.1. Let o > 1/2. Then the following three statements (A), (B), (C) are
equivalent.

(A). The Riemann zeta-function does not have zeros whose real part are greater
than o.

(B). For a fixed integer m > 2, the estimate
Ren,(oc+iT) =0 (Tm_l)
holds as T — +co.
(C). For a fixed integer m > 3, the estimate
Imn,(oc+iT)=o0 (Tm_z)

holds as T — +co.

In particular, for a fixed integer m > 2, the Riemann Hypothesis is equivalent to
that the estimate

m(1/2+iT) = 0 (Tm—l)
holds as T — +oo.

This corollary is easily obtained from Theorem 2.1. Actually, we can
show it by the following little discussion.
Applying Theorem 2.1 as X = 3, H = 1, for any positive integer m, we can

obtain the formula
1
Z 1+ (t-y)2)"

P

Um(S) = Ym(s) +On

Now, by the well known estimate (cf. p.98 [21])

1
— < logt, 2.18
Zp]l+(t—y)2<< 8 (2.18)
the above O-term is <, logt. Hence, we obtain
N () = Ym(s) + On(logt). (2.19)

Thus, from estimates (2.2) and (2.19), we obtain Corollary 2.1.

Fujii [29] established an equivalence for the Riemann Hypothesis and an
estimate for S,,(z). He discussed only the behavior of the Riemann zeta-
function on the critical line, and this corollary means that his equivalence
can be generalized to the critical strip naturally. Moreover, Fujii’s result is
an equivalence for S,,(¢) in the case m > 3. On the other hand, thanks to the
consideration on the real part of iterated integrals of the logarithm of the
Riemann zeta-function, we also have the same type of equivalence for m = 2.
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2.3 A Dirichlet polynomial involving prime numbers and
zeros of [ (s)

In this section, we state some consequences of Theorem 2.1 for a rela-
tionship between prime numbers and the distribution of nontrivial zeros of
{(s) in short intervals. These consequences are obtained from a principle
of taking out the information of singularities coming from certain zeros by
using Theorem 2.1.

We define the weighted Dirichlet polynomial P¢(s, X) by

Vi1 (elog p/logX)

for X > 3. Here, the sum runs over prime numbers. Moreover, the function
N(t, h) means the number of zeros p = 8 +iy of /(s) with |t — y| < h counted
with multiplicity. Then we can obtain the following theorem.

Theorem 2.3. Assume the Riemann Hypothesis. Let f be a nonnegative mass one
cl([o, 1])-function supported in [0, 1]. Then, for t > 14, logt < X < t, we have

. B loglogt) . 1
Pr(1/2+1t,X) = log( Tog X ) X N (t, logX) +
logt
1 —v|logl (22
o 2 1 og (I = ylloglog ) "‘Of(loglogt) (2.20)
% <17 I=g1057
In particular, we have
, logt
ggg;(tRe (Pr(1/2+it, X)) <y loglogr’ (2.21)
max Re (-Pf(1/2+it,X)) < logt, (2.22)
and
, logt
max [Im (P;(1/2 +it, X))| < oglog:’ (2.23)

Here we focus on estimates (2.21), (2.23). From these estimates, we would
expect that it is possible to improve estimate (2.22) at log ¢/log log . This ex-
pectation is coming from the following discussion. By the randomness of the
prime numbers, it is probably true that the numbers {tlog p1}, ..., {tlog p,}
are randomly distributed on [0,1) for + > 1. Here, {x} means the frac-
tional part of x. Hence, the author believes that there is not a big difference
among the bounds of the real and imaginary parts of a weighted Dirichlet
polynomial like P (s, X) and their positive and negative parts. From this

observation, the author suggests the following conjecture.
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Conjecture 2.1. Let o be a real number, and f be a nonnegative mass one
C1([0, 1])~function supported in [0, 1]. For sufficiently large T > 0,

max max Re(Py(o +it, X)) < max max Re(=Py(o +it, X)),

14<t<T 3<X<t 14<t<T 3<X<t
max max Re(Ps(o +it, X)) = max max Im(Ps(o +it, X)),
14<r<T 3<X<t 14<t<T 3<X<t

and

max max Im(P,(o +it, X)) x max max Im(-P (o +it, X)).
14<t<T 3<X<t (Py( ) 14<t<T 3<X<t (=Pl )

If this conjecture and the Riemann Hypothesis are true, for every certain
f, we obtain

logt
max |P(1/2 +it, X)| < —8

3<X<t loglogt (2.24)

from estimates (2.21), (2.23).

Estimate (2.24) can be applied to the distribution of the ordinate of ze-
ros of {(s). If estimate (2.24) and the Riemann Hypothesis are true, by
using formula (2.20) as X = (logt)?, we can obtain the following interesting
estimate

Iy log ¢t

(t’ Dloglogt) < log D loglog t

for any 2 < D < logt/loglogt. In particular, on the same condition, we
can improve the estimate of the multiplicity of zeros of the Riemann zeta-
function like the following

log ||

l’l’l( ) L —m,
PI= (loglog [71)?

where m(p) means the multiplicity of a zero p = % +7y. This upper bound is
sharp because the following inequality (see Corollary 1 in [31])

log ||

1
0% (3400 g

is the best known upper bound under the Riemann Hypothesis at present.
From this observation, the author suggests Conjecture 2.1 as an important
open problem.

Furthermore, we will find a deeper fact from the same method as the
above discussion. We consider the following estimate

2, i

p<X p

max

<M .
3<X<Y (1) < M), (2.25)
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where Y (), M(t) are some monotonically increasing functions with 3 <
Y(t) <t, M(1) < \/m /logY(t). Note that an estimate of Dirichlet poly-
nomial without a mollifier is useful because by partial summation and as-
suming estimate (2.25), for any certain f, we have P(1/2 +it) < M(t) for
3 < X <+/Y(1). This fact plays an important role in the following discussion
in this section.

From the discussion in [24, Section 2.2], we may expect that estimate

(2.25) is true with Y () =7, M(t) < y/logtloglog . Here, we can obtain some
bounds of Y(¢) and M(¢) under the Riemann Hypothesis. Assuming the
Riemann Hypothesis, by using estimate (2.4) as H = X, we can show that
estimate (2.25) is true when Y (¢) = ¢, M(¢) = logt. Moreover, we can also
show the inequality M(7) > 4/logtlogloglog?/loglog when the inequal-

ity Y () > exp (L\/logt loglogt/logloglog t) holds with L sufficiently large
constant. This fact can be shown, for example, by the work of Bondarenko
and Seip [11, Theorem 2] and Selberg’s formula [107, Theorem 1].

Now, if estimate (2.25) and the Riemann Hypothesis are true, then we
can obtain the following theorem.

Theorem 2.4. Assume the Riemann Hypothesis and estimate (2.25). Let y(t) be

a function with 3 < y(t) < \Y(¢). Let f be a nonnegative mass one C1([0,1])-
function supported on [0,1]. Then, fort > 14, y(t) < X < t, we have

logv ) 3 (s
log X

Pf(1/2+it,X):log( ’logX)+

logt
logy (1)

> log (It -yllogy(n) +0; (M(r) +

1 1
log X <|t_7|s log y (1)

+loglogX) )

In particular, if the Riemann Hypothesis and estimate (2.25) with Y(t) = t,

M(t) =< Jlogtloglogt are true, then by taking y(t) = exp (w/log)ﬁ);z)f X =

log ¢
exp (D W)’ we have

. \/loglogt) - vlogtloglogt

" Dy/log1 log D

(2.26)

for3 < D < 3+flogtloglogt.

By estimate (2.26), assuming the Riemann Hypothesis and estimate (2.25)
with Y () =1, M(t) < /logtloglogt, we have

|_loglyl
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Here, we should mention that, under the same condition, the estimate

m(p) < \/ log |y|loglog |y| immediately follows from Selberg’s formula [106,

Theorem 1] and the Riemann-von Mangldt formula (1.4), and inequality
(2.27) is an improvement of this estimate. Hence, from this observation, we
may expect that there is an interesting relationship between the behavior of
Zp<x p~ Y27 and the distribution of zeros of the Riemann zeta-function.

2.3.1 Preliminary lemmas and the proofs of theorems

We prove Theorems 2.3, 2.4. First, we prepare a standard lemma to prove
Theorem 2.3.

Lemma 2.4. Assume the Riemann Hypothesis. Then, for t > 14, % <o <

1 1
2t loglogt’

! 1
C(s) = > +0 (log1) . (2.28)
{ [t—y|<1/loglogt 5
Proof. This lemma is Lemma 13.20 in [87]. O

Proof of Theorem 2.3. Lett > 14 and X be a real parameter with log? < X <.
By using Theorem 2.1, we have

logt
Pr(1/2+it,X) =log{(1/2+in) — ) log(lf—ﬂlOgX)+0f(1og1gog;)'
1

|’_7|510gx

By integrating the both sides of (2.28), we obtain

loglogt Ht)
= Z log (| — y|loglog ) +0(

1
|l—’}’|5 loglog ¢

1 . 1
log§(§+zt) —log{(§+

logt
loglogt)’

and by using estimate (13.44) in [87], we obtain
logt

1
1 = ] .
08¢ (2 " loglog ¢ +lt) < loglog ¢t

Hence, we obtain

Pr(1/2+it,X) =

logt
> log(lt—ylloglogr) - >’ 10g(|t—7|10gX)+0f( g )

loglog t
1< g 1< ke °57%6
loglogt
:log( (E O}? )x Z 1+ Z log (|# — y|loglog )
g |t_Y|Slo;X Io;X <|l_’y|§log}ogt
logt
O (1oglogt)'
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Thus, we obtain formula (2.20). In particular, estimates (2.21), (2.22), (2.23)
are easily obtained by formula (2.20) and estimate (2.17). m]

Next, we prepare three lemmas to prove Theorem 2.4. The method of
the proofs of these lemmas are probably standard, and so those proofs are
briefly.

Lemma 2.5. Assume the Riemann Hypothesis and (2.25). Let y(t) be a monotonic
function with 3 < (1) < /Y (t). Then we have

- 1 logt
N(t’ lo t//(t))<< Mo+ logy (1)

Proof. For o > oy = 3 + oy X/ by using the following formula (cf. (2.3) in
[106])

4 Ay (n) 1/2- Ay ()

=(s)=— +0 X777 ———|+logt]], 2.29

g n;(:Z n’ n;;z noxH g ( )
we have

o Ny (n)
7 (ox+in < D | *logt. (2.30)
n<Xx>?
Here, the function A/, (n) is defined by
A(n) if 1<n<X,

Ay(n) =1 A(n)log(X?/n)/logX if X <n < X?,
0 otherwise.

By assuming estimate (2.25) and using partial summation, the right hand
side of (2.30) is

< M(t)log X +logt
for X? < Y(t). On the other hand, by the following formula

o-1/2
(0 =1/2)*+(t - y)?

Re (%(O‘+it)) +O(logt),

<1
we have

1/log X
(1/1og X)? + (1 — y)?

< M(t)log X +logt.
-yl<1

Therefore, we have

log
Z 1<<M(t)+10gX
[t—y|<1/log X 08
for X < +/Y(¢). Hence by putting X = y(¢), we obtain this lemma. |
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Lemma 2.6. Assume the Riemann Hypothesis and estimate (2.25). Let y(t) be a
monotonic function with 3 < y(t) < /Y (t). Then we have

{( L + 't) < M(1) + log
lo i .
& log /(1) log (1)
Proof. By the formula (2.29), we see that
_ Ny (n) 1 Ny (n)
log ¢ (ox +it) = Z W log X Z - +logt||.
2<n<X? n<Xx?

By using the partial summation, the above right hand side is

1
< M(t) + 08!
log X
for X < /Y (t). Hence by putting X = y(¢), we obtain this lemma. ]

Lemma 2.7. Assume the Riemann Hypothesis and estimate (2.25). Let W (t) bea

monotonic function with 3 < y(t) < /Y (z). Then for 5<0< % + logw(t)’ t > 14,

we have
%(s) = |l_7|;; % +O(M (1) logy (1) +log1). (2.31)
~logy (1)

Proof. We can obtain this lemma by using Lemma 2.5 and the same method
as in the proof of Lemma 13.20 in [87]. O

Proof of Theorem 2.4. Let y(t) < X < t. Using (2.18), Lemma 2.5, and Lemma
2.7, we can find that

2 ﬁ < logy (1) (M(1)log ¢ (1) + log1).

_ 1
I 7|>10gd/(t>

Therefore, by using this estimate and Theorem 2.1, we have

Z A(n)vf,l (elogn/log X)

= nl/2+it logn
n

1ogg( +n) D 10g(|t—y|10gX)+0(M(t)+lolgizt)). (2.32)
|l_7|sloéx

On the other hand, by integrating the both sides of (2.31), we find that

1 :
5+ 0 + lt)

3 i(t—7y)
B Z log( +i(t —

1Ogl/f(t)

logg’( +zt) logg(1

0 (M(t)+ log ! )

y) log (1)

2
|t_Y|SlogY(t)
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Hence, using Lemma 2.5 and Lemma 2.6, we have

log ¢ (% + it) = Z log (|t — y|logy (2)) + O (M(t) +

_ 1
le 7|S10gw<t)

logt )
logy (1))

By this formula, the right hand side of (2.32) is equal to

1 t - 1
o (SEL2 ) gz )+ X tom(r-llogw)

1 1
log X <|t—y|§ log y (1)

+0 (M(t)+ log! )

log w (1)

On the other hand, we see that the left hand side of (2.32) is = Py(1/2 +it) +
O (loglog X), which completes the proof of Theorem 2.4. o

2.4 On the value distribution of log |{(1/2 + it)|

In this section, we consider the value distribution of the Riemann zeta-
function. Now, we define the set (T, V) by

S(T,V)={t € [T,2T] | log|L(1/2+it)| > V}.

Here, we give a result on the value distribution of log |{(1/2 + it)|. There are
interesting studies on this theme by Soundararajan [110], [111]. He showed
alower bound and an upper bound of the Lebesgue measure of (7', V), and
his result for the upper bound is under the Riemann Hypothesis. In [111], he
mentioned the question that, in how large range of V, the following estimate

loglog T 2
VloglogT exp( V_) 233)

1

holds. Here, the symbol meas(-) stands for the Lebesgue measure. This
problem is important because there are some interesting consequences such
as the mean value estimate and the Lindel6f Hypothesis. Actually, if estimate
(2.33) holds for any large range of V, we can obtain the conjectural estimates

1 1/2+i log Tloglog T
161%}%1;;] og|(1/ +zt)|<<\/0g oglogT,

2T
/ 12(1/2 +it)[*dt < T(logT)*".
T

Here, we should mention Jutila’s work [56]. He showed unconditionally that
the estimate

lrn (S(T,V)) < ex —V—Z 1+0 _ vV
T e ’ =P loglogT loglogT
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holds for 0 < V < loglogT. In particular, as an immediate consequence of
this estimate, we have

1 V2
? meaS(CS(T, V)) < exp (—W) (234)

for 0 < V < (loglogT)%*3. This estimate does not slightly reach to estimate
(2.33). On the other hand, this estimate was improved by Radziwilt [95]

in the shorter range V = o ((log log 7)3/ 5‘5). In fact, he showed that the

following conjecture is true for V = o ((log log 7)Y/ 10‘8).

Conjecture (Radziwill, [95]). For V =o (wllog log T), as T — +oo

T lello log T /me'MZ/Zﬂ
k4 2 g g v \/2—7_[

Hence, by his study, estimate (2.33) have been proved for +/loglogT <«
V =o0 ((log log T)3/5‘8). In this paper, we will extend unconditionally

this range for V to loglogT < V < (loglogT)?/®. Moreover, we will
also show that the upper bound of Radziwill’s conjecture is true for V =

0 ((log log T)1/6).

1
= 53
T mmeas

Theorem 2.5. For 1 < V < (loglog T)'/, we have

/1
T,V 5 loglogT))

2 du 1% V2
< (1+0(1))/v ¢ /Zx/z_nJrO((loglogT)l/s xp (_7))

as T — +oo. In particular, for 1 <V = o ((log log T)1/6), we have

T,V\/%loglogT)) < (1+0(1))/Vooe_”2/2% (2.35)

as T — +co, and for any large T, we have

loglogT 2
T o

1% - loglogT

S

1
— meas
T

§

L meas
T

%meas(é’ (T,V)) < (2.36)

for \floglogT < V < (loglogT)?/3.

Estimate (2.36) is an improvement of estimate (2.34), and it is expected
from Radziwill’s conjecture that the estimate is best possible.
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This theorem will be shown by using a method of Selberg-Tsang [116] and
Radziwitt’s method [95]. On the other hand, it would be difficult to prove
Theorem 2.5 by using their method only. Actually, the author could not
derive this theorem by a method using Lemma 5.4 in [116] which plays an
important role in their method. The reason why the author could not derive
this theorem by such a method is that the contribution of zeros close to s
cannot be well managed. On the other hand, we can ignore the contribution
of such zeros by using Theorem 2.1 while considering the upper bound of
meas & (T, V). In fact, the important point in the proof of Theorem 2.5 is that
the real part of Yy (s, X) is always non-positive.

241 Preliminary lemmas

In this section, we prove Theorem 2.5. We will use the method of Selberg-
Tsang [116] in a part of the proof, where the following proposition plays an
important role there. Moreover, the proposition also plays an important role
in the proof of Theorem 2.6.

Before stating the proposition, we define ox; and Ax(n) = A(n)wx(n) by

1 1 2
O'X,[ = =+ 2 m%()é 1 {ﬁ - E, @} . (237)
|t—7’|SX1T7X
1 ifl<y<X,
log(X3/y))2=2(log(X2/y))? .
wy(y) = (log( /yz)()log)((;g( /y)) ifX<y< XZ, (2.38)
log(X3/y))? .
ey if X2 <y<Xx°

Then, we can obtain the following proposition.

Proposition 2.2. Assume D(f) > 2. Let m be a nonnegative integer, and let X, H
be real parameters with X > 3, H > 1. Then, for t > 14, o > 1/2, the right hand
side of (2.3) is estimated by

XZ(l—a') +X1—0’
<7 t(log X)m+1
30-X,t - 1/2
(log X)™

— —_ (n)
x2(0x,=0) 4 xox.1 § Ax
( ox o ox O') ( X,I-H.t

n<Xs

+10gt).

Thanks to Proposition 2.2, we can combine the method of Selberg-Tsang
with Theorem 2.1.

Proof. By estimate (2.3) and the line symmetry of nontrivial zeros of {(s)
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with respect to o = 1/2, it suffices to show that

2(6- -
Z (x2(6-0) +X,8—0')+# Z X2B-0) 4 xB-o
(log X)3

f— |3
—yl= iy It
B=1/2 B>1/2
g -0 (% -0 AX(”)
< (ox; — 1/2)(X?(0x4=0) 4 XOx=Ty ( Z " + logt) .
n<Xxs3
If g > & ”2+ Y 2, then by the definition of oy, (2.37), we have
¥3(8-1/2)
t=71> S > 3(8-1/2) > 3o - Bl
og X
By these inequalities, we find that
X2B-0) 4 xb-o logX  Xx2(-0) 4 xb-o
<
t—yP X3B12) (ox, = B)> + (t - y)?
O-X,t - 1/2

< X777 (log X)?

(ox:— B2+ (t—y)?

Then if |t —y| > ox; —1/2, we find that

Next, we suppose 1/2 < g < 212,
x2(B-0) 4 xB-o
£ =P

and if 1/log X < |t —y| < ox, —1/2, we find that

O'X’; - 1/2
(ox; =B+ (1= y)¥

< (X?%470) 4 X7%77) (log X)?

Xz(ﬂ_o') + X,B_O'
lt—vy[3

From the above estimates, we have

(ox. = 1/2)

< (X20x:=0) L xox.:=)(]oe X)3 .
( g X BT =y

1 X2(B=0) 4 xB-o
(log X)3 Zl It =3
|t—7|>logX
B8>1/2
< (ox s = 1/2)(X?0x470) 4 X470 Z oxs ~1/2 . (2.39)
’ , (ox =B+ (1t —y)?
|t_)I|>logX
Moreover, it holds that
Z (XZ(,B—O') + XB—O')
|t_7|S10éX
B=1/2

- - Ox;t— 1/2
< (O-X, — 1/2) (X2(0'X,[ o) + XXt o-) . |
t Z11 (O'X,t—ﬁ)2+(t—y)2

|t—7|§10gx
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By this estimate and (2.39), we obtain

Z (XZ(,B—a-) + Xﬁ_g-) + # Z XZ(ﬁ—a-) + X'B_O'
(10gX)3 |t —y]3
|t—y|£@ |t—y|>@
B=>1/2 p21)2
- - oxt— 1/2
< (O-X, — 1/2)(X2(0'X,[ o) + XXt o-) , .
t Zpl (ox:—B)2+(t—1vy)>2

Here, we have the following estimates (cf. (4.4) and (4.9) in [107])

Ax(n)
Z no'X,t+il

n<Xs

+logt.

Oxrt— 1/2 <
2o p =77

Thus, we obtain this proposition. |
Moreover, we prepare some lemmas.

Lemma 2.8. Let T > 5,and let 3 < X < T. Let k be a positive integer such that
X% < T/logT. Then, for any complex numbers a(p), we have

@ a(p) ()P
[ Y, ke,

p<X P p<X
Here, the above sums run over prime numbers.

2k

dt < Tk! (

Proof. This lemma is a little modified assertion of Lemma 3 in [111], and the
proof of this lemma is the same as its proof. o

Lemma 2.9. Let T > 5, and let k be a positive integer, X > 3, & > 1 be some
parameters with X°¢10 < T. Then, we have

T 1 k
/ (O'X,t - —) X2 « T
0 2

We omit the proof of this lemma because this lemma is a little modified
assertion of Lemma 12 in [107], and the proof of this lemma is the same as
its proof. On the other hand, we will give the proof of a general situation
(see Lemma 6.4 and its proof).

4k gTax 8k !
(log X)* " log X(log T)*1]°

1 logT

Lemma 2.10. Let T be large, Z > 3, and k a positive integer with k < 55 Tog 7"

Then we have
T
I

where C is an absolute positive constant.

2k
dt < TkF(Clog 2)*,

Z Az(p)
pO-Z,t+it

p<Z3
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Proof. Now, we can write

Z Az(p) Z Az(p) Z Az(p) (1 = pl/2-ozsy
po-z,,+it - p1/2+it p1/2+it p

p<Z3 p<Z3 p<Z3
A 9zt A lo
-y - [y L
pSZ3p 1/2 p<Z3 p

and, for 1/2 < o’ < 0z,,

3 Az logp' g [Ty Az(p)log (Zp)log p da'

a’+it pa+it
p<Z8 @ p<Z3
< Z(rz,,—1/2/mzl/2_a Z Az(p) logagjp) logp‘da.
12 ot P

Therefore, we have

A

A
S Alp)l,
p

p<Xx® p<Ys
© A | Yp)l
+ (v, —1/2)y 712 / ylizel 3 r(p)log Yp)logpl,, - 4)
1/2 Py p
By Lemma 2.8, we have
T 2k
Az(p) 2%
/0 D “ihwi| i < Tk!(Clog2)™. (2.41)

p<Z3 p

On the other hand, by the Cauchy-Schwarz inequality and Lemma 2.9, we
find that

T 00
/ (O-Z,t — 1/2)2kZ2k(0—Z,t_1/2) / Z1/2—a
0 1/2

1/2
X

a+it
p

2k
A 1 Zp)l
Z z(p)log (Zp) ng‘da) "

p<Z3

T
< (/ (O'Z,z - 1/2)4kZ4k(‘TZ,t—1/2)dt
0

T 00
X / / Zl/z—&
0 1/2

4k
Tl2Ck L Az(p)log(Zp)logp‘
< Z1/2-a da| dt
(log Z)%k /0 (/1/2 Z

1/2

a+it
p

4k
A 1 Zp)l
Z z(p)log (Zp) ng‘da) "

p<Z3
1/2

a+it
p<Zz3 p
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Moreover, by Holder’s inequality, we have

/OO Zl/2—a
1/2 <25
o 4k-1 o
([ zean) | [
1/2 1/2

1 ® 1w Az(p)log (Zp)logp
- Z
(log Z)4k—1 [/2 Z

poz+it
Therefore, by using Lemma 2.8, we find that

T [}
/ / Z1/2—cy
o \Jip ot
. 14k1/°°21/2—a /T
(log Z) 12 o |

2k
TCK)! [ 1 (log(Zp))*(log p)*
(log Z)*-1 /1/2 ‘ (Z p* da

a+it
p

4k
5 el log (2p) logp' da)

a+it
p

5 Aelr) log (Zp) logp rk da)

p<Z’
4k

p<Z3

a+it
p

4k
A 1 Zp)l
Z z(p)log (Zp) ng'da) s

Z Az(p)log (Zp)logp

a+it
p

4k
dt | da

p<Z3

< Tk**C*(log 7)%+1 / 7127 da < Tk* C*(log 7)8*.
1/2

Hence, by estimate (2.42), we have

T o0
/ (07, —1/2)%k z2k(02.71/2) / Z1/2-a
0 1/2

< Tk*(Clog 2)*.

a+it
p

2k
A 1 Zp)l
Z z(p)log (Zp) ng‘da) s

p<Z3

Thus, from this estimate and (2.40), (2.41), we obtain this lemma. O

Lemma 2.11. Let T be large, X = 71/(0glogT)? For 1 « V = o({/loglogT), we

have
1 1 1 1
—meas{te[T,ZT] : Rez — >V |z —}
T p<X p2* 2 p<X p
2 du
= (1+ 0(1))/ e P—
v V2r
as T — +oo.
Proof. This lemma is Proposition 1 in [95]. O
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2.4.2 Proof of the theorem

Proof of Theorem 2.5. Let T be large, and V a parameter with y/loglogT <
V < (loglog T)?3. Here, we may assume the inequality V < A(loglogT)%3
with A any fixed positive constant. Then, it suffices to show that, as T — +co

%meas(é’(T, V))

(o)

du 1% V2
cavoy [T, e o VgV
— 2 (loglog T)%/° loglog T

Let X, Y be parameters with X = 71/(081087)* <y < 71/10_ et f be a fixed
function satisfying the condition of this paper and D(f) > 2. By Theorem
2.1 and Proposition 2.2, for T < t < 2T, we have

A(H)Vf,l (elogn/logY)

nl/2+it Jog n

log |£(1/2 +if)| < Re Z

2<n<Y?

Ay(n)
Z n(Ty,t+l.f

n<ys

+C1(oy, — 1/2)y?ov~1 (

+log T) , (242)

where Cj is an absolute positive constant. Now, we see that

R A(n)vf’l(elogn/logY)
€ Z nl/2+it logn

2<n<y?
1 1% elogp/logY v elog p?/logY
= ke Z pl/2+it tRe Z f,l( 1/2+it : +ReZ f711(+2il‘ log p? )
P<X p X<p<y? p p<Y p gp
R A(pk)vf’l(elogpk/logY)
+ ke Z pk(1/2+iz) logpk
kaYZ
k>3
k
AT g
k(1/2+ir) | k 2 1oe pk < 1,
pk§Y2 P ng pksyZP ng
k>3 k>3
and that
Ay(p") log p
Z pk(oy i) < Z IW <logY+0(1) <logT.
kaYa kaY3
k=2 k>2

Hence, we have

meas(S(T,V)) < meas(S7) + meas(Sy) + meas(S3) + meas(Sy), (2.43)
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where the sets S1, S2, S3, S4 are defined by

1
Re Z 1/2+it > Vl} i

St = {t € [T,2T]

pSXp
log p/logY
vy1(e©8PosT)
Sy = [T,2T] : Re Z Ry >Vyb,
X<p<Y2
. (olog p*/logY
. vy1(e©8? )
S5 = {te [T,2T] ReZ e >Vy b,
p<Y

Sy:=31t€|[T,2T]

Ci(oy, —1/2)v*v1 (

Ay (p)
Z pO'y,t+l't

p<y3

+210gT) >Vor,

where V1 =V -3V, and V; is a positive parameter with V, < V/4. Let k be a

positive integer with k < 1%)0 }2?5 By Lemma 2.11, we find that

/TZT Z

X<p<Y?

2T
/T

By Lemma 2.9, we have

Vi1 (elogp/log Y) 2k

k
ST di < T (CrklogloglogT)",  (2.44)

and that
Vi1 (elog p?/log X) 2k
1+2it

2,

p<X p

dt < Tk!Cj. (2.45)

2T

CylogT\*
(2C1)* (v, = 1/2) Y2 (log T) <<T( fogi ) '

Moreover, by Cauchy-Schwarz and Lemmas 2.9, 2.10, we have

k
17 o o DIk Ay(p)
! /T Chlov, ~1/2Mr e 57 S
p<Ys
172
_d 2 o ooy P
T i O—Y’f+lt
T T psy?:p

Csk1/2 k
< )
( logY )
Hence, we have

1 2T
7| chton-1ppyemcn
T

Z Ay(p)
pO—Y,t+it

p<Y3

k
T +210gT) dt (2.46)

(C6 log T)k
< .
logY
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Thus, by estimates (2.44), (2.45), (2.46), the following estimates

k
1 kCylogloglogT
—meas($r) < 2708 08 08 ) ,
T V22
1 kes\© 1 CelogT\*
—meas(S3) < —23 , —meas(Sy) <<( 608 )
T v; T ValogY

1/100 1 logT
hold for X <Y < 71100 § < T00 Tog 7+
We puty =T1081087/0CV) and e =2 | ¥

W ], where C7 is a constant
chosen as satisfying C7 > 2 and C;V?/loglog T > 2. Further, we decide V; as
200C4Cse?AV /(loglog T)'/3 Then we obtain

meas(S) + meas(S) + meas(Sy) _ 2v2 eA(loglog T)?/3
T P loglogT 1%
for \loglogT < V < A(loglog T)*3. Hence, by Lemma 2.11 and inequality
(2.43), we have

1 o0 00
T meas(S$(T,V)) < (1+0(1)) /Vl e_MZ/zﬂ " 0( euz/zdu)
W (T)

V2r ViTosT
for \/loglogT < V < A(loglogT)*/*. Here, W(T) indicates

W(T) = fZZp ‘/—loglogT+0 logloglogT)
hoX loglog
Here, we find that
/ _p du 7 2/2 du \/W 22 du
and that

/«/m _u2/z du ( Vi ) 1

e 2w (T)?
V1/2 log log T W(T)
v2
_ loglogT
(log log T)5/6
Thus, we have
% meas(S(7T,V))
°° 25 du __v2 \%
< (1 + 0(1)) e /227 + O | e loglogT
\/1/21‘;% \2r (loglogT)5/6

for vloglogT < V < A(loglogT)?/3. This completes the proof of Theorem
2.5.

m]
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2.5 A mean value theorem involving 7j,,(s)

In this section, we state a certain mean value theorem. There are some
interesting applications of the theorem to the value distribution of 7,,(s).

Theorem 2.6. Let m be a positive integer. Let k be a positive integer. Let T be large,
and X > 3 with X < T, Then, for o > 1/2, we have

17| . O
f./ nm(0—+lt) - Z o+it 1 m+1
14 2<n<X n ( 0g I’l)
k 20 120
< 2kk1 2m +1 + ¢ Xt + kkz"(’"”)TL.
2m log X ) (logX)%m (log T)2km

Here, the above C is an absolute positive constant.

This theorem will give an answer for the question of how much of the
function 7,,(s) can be approximated by the corresponding Dirichlet polyno-
mial. Such a study is often useful. For example, Radziwilt [95] proved a
large deviation theorem for Selberg’s limit theorem, and he used Corollary
in [116, p.60] to prove his result. The corollary is related with the approxi-
mation of log {(s) by a certain Dirichlet polynomial, and we can regard that
Theorem 2.6 corresponds to the corollary. Hence, it is expected to be able to
show a limit theorem for 7,,(s), which is similar to Selberg’s limit theorem
or the Bohr-Jessen limit theorem, and also its large deviation.

2.5.1 Proof of the theorem

Proof of Theorem 2.6. Let m be a positive integer and f be a fixed function
satisfying the condition of this paper and D(f) > 2. Then, by Theorem 2.2,

forr>14,X < T =: Y, we obtain

- . m A(n)
T]m(O' + lt) —1 Z;X no-+it(1og n)m+1
2k
A(H)V 71(elogn/logY) .
< 2% Z no-+£(10g n)m+1 + 22k|Rm (o +it,Y, 1)|2k. (2.47)
X<n<y?

By using partial summation, Lemma 2.8, and the prime number theorem,
we find that

[

X<p<y?

Vi1 (elogp/log Y) 2k

p0'+it(logp)m

k
1
d Tk! ———
' (Z psz(logpﬂm)

p>X

k k(1-20)
STk!(2m+1 C ) X

2m +logX (log X)2km’
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and that

2k k
T v elogpz/logY 1
/ Z J;Ol'-EZit(lo 2)11)1 dt < Tk! Z 40’(10 2)2m
0 X<p25y2p gpP p>\/Yp &P
k(1-40)/2
< TRICKE—

Set

ws(z,y) = ), logp.
y<pl<z

[>3

Then we can easily obtain the inequality ¥3(z,y) < z'/3. By using this

inequality and partial summation, we find that

vy (elogpl/IOgY) ©  slocé +m x1/3-0
Z ];(10'+it) 1 I\m < / 1+o0 gé: m+1 ¢3(§’ X)df < 1 X m’

X<plsy21p (log p*) x &7 (logé) (log X)
>3

Therefore, we have
T

I

Hence it holds that

r

2k

log p! /1
vra(es? fidd) dt < TC*

X<leSY2 lpl(0'+il) (log pl)m
>3

xk(2/3-20)
(log X)ka ’

2k

A(n)vf’l(elogn/logY)

X<n<Y?

) 1 k xk(1-20)
m+l, € ) (2.48)

|
< Tk.( o +logX (log X)Zm"

Next, we consider the integral of R, (s,Y,1). By Proposition 2.2, we have

Tl—o' + T(l—o-)/Z

T k
R, (o +it,Y, | dr < (Ckz("”l)) X +
/14 |Ru(0 +1 )l (log TR+

2k
(Ck2myky (1-20)k /T 1\ o Ap(n)
+ (lOgT)ka ” Oy — 5 Y Z oyt +log1t dt,

n<y3
where Ay(n) = A(n)wy(n), and wy(n) is given by (2.38). By Lemma 2.9, we
find that

T 2k
1
/ (O'Y,t - E) Ysk(”“_l/z)(log N?kdr < T(Ck?)¥,
14
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and that, by using the Cauchy-Schwarz inequality and applying Lemmas

2.9,2.10,
T 2% 2%
1 8k(ay ~1/2) Ay(n)
[4 (O'Y,t - E) yemer. Z oy il
n<y3

T 1 4k 1/2 T
< / (ay,,——) yl6koy-12) 4| o /
14 2 14

< T(Ck)*.

dt

Ay(n)
Z n(TY’["'l.l’

n<ys

dt)

Therefore, we obtain

A { (o5 ) v

Hence, we have

T Ck k2k(m+1)
/ Ry, (o +1it,Y, 1)|2kdt < Tl"' 75 —.
14 (log T)2km

Thus, from this estimate, (2.47), and (2.48), we obtain Theorem 2.6. m]

ZAY()

n<y3

2k
+log (¢ + 2))} dt < T(Ck>)*.

2.6 An upper bound of the distribution function of
~ /1 .
Mm (E + lt)

In this section, we consider the value distribution of #,,(1/2 +it). There are
many studies on the value distribution of the Riemann zeta-function and
other L-functions.

We discuss a measure for the difference between #,,(1/2 + it) and the
corresponding Dirichlet polynomial. We are interested in the exact value
distribution of 7,,(1/2 +it) and S,,(#). Here our aim is to establish a theorem
for n,,(1/2 + it) and S,,(¢) similar to the results of Jutila [56], Radziwitt [95],
and Soundararajan [111] on the large deviation of the Riemann zeta-function.
The motivation of this study in the present paper is to search for the exact

bound of 7,,(1/2 +it).
> V}.

We define the set 7,,(T, X, V) by
We obtain the following result which evaluates the difference between
nm(1/2 +it) and the corresponding Dirichlet polynomial.
Theorem 2.7. Let m be a positive integer, and let T, X be large with X 15 <1 If

V satisfies the inequality 2(log X)™ < V < co(log T) 7+ (log X)~ e , then we
have

A(n)

1 .
24nzx n2* (log n)m+l

{te [T,2T] : |ii, (1/2 +it) -

m 2 2m c
“4(m+ 1)V (log X) (1 - logX)) ‘

55

1
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m m2+ m
If V satisfies co(log T) zn+1 (log X)_% <V < logT/(log X)"*!, then we have
1 1 m_
7 meas(J,(T,X,V)) < exp (—c1Vm+1 (logT) m+1) .
Moreover, if the Riemann Hypothesis is true, then we have

% meas(,, (T, X,V)) (2.49)
Vi (log X)™
(log T)ﬁ

< exp (—czVﬁ (log T)m1 log (e

m Wl.2+ m
for (log T)zn+1 (log X)‘22m+21 <V < logT/(log X)™*. Here the numbers co, c1,
2, C are some absolute positive constants.

This theorem can be applied to the value distribution of 7,,(s) on the
critical line. For example, we can obtain the following results from this
theorem.

2m2+2m

Corollary 2.2. Let T, V be large numbers. If V < (log )z (loglogT)™ 2m
then we have

%meas {te[T.2T] : |fi,, (3 +it)] >V} < exp (—C5V2(log V)zm) .(2.50)
IfV > (logT) = (loglog T)~ e , then we have

%meas {te[1.2T] : [i,(k+i)] >V} < exp (—cévﬁ(log T)%) (2.51)

Here cs, cg are some absolute positive constants.

Corollary 2.3. Assume the Riemann Hypothesis. Let m be a positive integer, and
let T, V be numbers with T,V > Ty(m), where Ty(m) is a suﬁciciently large number
depending only on m. If V > (log T) 2=+ (loglog T)~ e , then we have

1
— meas {t € [T,2T] | I, (3 +it)| > V}

2m+1
m Vam2 (log V)™
< exp —cyVim (log T) =+ log (ew)) .

(logT) pITE
Here c7 is an absolute positive constant.
These assertions can be obtained by the following argument. Now, we

A 12
see that ZZSI’LSV nl/2+it (1((:2 n)m+l m (logV)"’*l .
find that

Hence, for sufficiently large V, we

meas {t € [T, 2T] | |7, (3 +it)| > V} < meas(F1(T,V,V/2))
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unconditionally, and that
meas {t e [T,2T] | |ﬁm(% +it)| > V} < meas(7,,(T,V,V/2))

under the Riemann Hypothesis. Further, the estimate f;m(% +it) <, logt
holds unconditionally, and the estimate #,,(1/2 + it) <, logt/(loglog )™+
holds under the Riemann Hypothesis. By these inequalities and Theorem
2.7, we can obtain Corollary 2.2 and Corollary 2.3.

It could be expected that the function 4/V log T in the exponential on the
right hand side of (2.51) is sharp as an unconditional result by the following
discussion. Actually, if there is a function w(T, V) with lim7_, w(T,V) =
400 or limy_ ;0 w(T,V) = 400 such that the left hand side of (2.51) is <«
exp(—w(T,V)4/V1ogT), then the Lindel6f Hypothesis holds. Moreover, esti-
mate (2.51) matches the well known inequality S1(7) < log?.

We are also interested in that estimate (2.50) holds in how large range
of V. If the estimates hold for any large V, then we have 7,,(1/2 +it) <,
vlogt/(loglogt)™. Although the necessary condition of this implication is
rather strong, the author guesses that it could be true. Hence the author
expects the inequality for 7,,(1/2 + it) could be also true.

2.6.1 Proof of the theorem

Proof of Theorem 2.7. Let m be a positive integer. Let X, T be sufficiently large

numbers with X < T7%. Set V be any positive number. By Theorem 2.6,
there exists a positive number C; > 3 such that

k
) . (2.52)

k
4k(1+1 + 1021)( X €y k20m41)
eVZ(log X)?m V2(log T)>™

meas(7,,(T,X,V)) <« \/E(

2m2+

Here, if V satisfies 2(log X)™ < V < co(logT)Zm%(log X)‘Tflm, then we
choose k = [V?(log X)*" /4(1+1/m)], where c( is an absolute positive constant
satisfying co < e7! Cl1 /(4m42) Then, by (2.52), we have

m
4m+1)

g _ 2 2m _ ¢
meas(7,, (T, X,V)) < exp( V<(log X) (1 ogX))" (2.53)

o _m _2m2+2m log T
If V satisfies co(logT)zn+ (log X)™ zmei < V < (10;%,

k = [(eCy)"mn Vs (log T)i|. Then, by (2.52), we have

then we choose

meas(Ty, (T, X, V)) < exp (—clvﬁ (log T)%) . (2.54)

Thus, from estimates (2.53) and (2.54), we obtain this theorem.
Next, we show (2.49) under the Riemann Hypothesis. Let f be a fixed
function satisfying the condition of this paper and D(f) > 2. By Theorem
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21lasH=1,for X < Z < T, we have

A(n)
no’+it (log n)m+1

(o +it) —i" Z

2<n<X
. Z A(n)vf,l(elogn/logZ)
no it (IOg n)m+1

+ R, (0 +it,Z,1). (2.55)

X<n<Z2

Since we assume the Riemann Hypothesis, by using Proposition 2.2, it holds
that there exists some constant C3 > 1such thatforany3 < Z <T,t € [T,2T],

Cs3 1

|Rm(1/2+ll,z,1)| < ? (logz)m+1 Z

WZ(P)108P+ logT )

1, 4 m+1
pSZ3 p2+logZ+lt (log Z)

1
where wy is defined by (2.38). Therefore, by letting Z = exp ((C3 logT) " )’

Vv
we have
1% lo 1%
R (1/2 +it,Z;u)| < w + =
ZIOgT o p§+@+lt 2
for ¢ € [T,2T]. Note that the inequality V < (101;% implies X < Z. Hence,
by formula (2.55), when V < (lolgo%, we have
meas(7, (T, X,V)) < meas(S1) + meas(Sy). (2.56)

Here, the sets S1 and S» are defined by

Z A(n)vf’l(elogn/logZ)

nl/2+it (log n)m+l

St = {t € [T,2T]

%
> —r,
4}

Vv
>_
4

X<n<Z2

Sy =4t e [T,2T]

+it

% wz(p)logp
2logT 1y 4
)4

_+_
<753 pZ logZ

By the same calculation as (2.48), we obtain

1 2T
7

On the other hand, by Lemma 2.8 and the prime number theorem, we

find that

o 2k

1 1 i+l

—/ b wzp)losp|) - o Ckk!( 4 )
T Jr \2logT S Ttz logT

2k
Ckk!

dt <« ———.
< (log X)2mk

A 05

nl/2+it (log n)m+1

X<n<Z2
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for k < coVm (log T)m+. Here cg is a small positive constant. Therefore, by
this estimate and (2.57), we obtain the following estimates

meas(S1) + meas(S>) - ( Cyk1/? )2k
\%

C4k1/2 v m/(m+1) 2k
T V(log X)™ ( ) ’

log T

where Cy is a sufficiently large positive constant. Hence, by these esitmates

and (2.56), when V < (101;%, we have

4k1/2 )2k

meas(7,(T,X,V)) <« (W

. o _m_ _ 2m242m CO log T
Since V satisfies (log T) 2= (log X)™ 2m1 <V < —2°= we have, by choos-

(108X>m+1 7
ing k = [(eCq) 2V (log T) ],

V%(log x)"

meas(I,(T,X,V)) < exp —C4Vﬁ(logT)% log |e —
(log T)2m=2

Thus, we obtain estimate (2.49) under the Riemann Hypothesis. m]
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Chapter3  On the value distribution of 7,,(s) in
the critical strip

In this chapter, we discuss the value distribution of #,, (s) in the critical strip.
The contents in this chapter are based on the paper [51].

3.1 Results of large deviations of the distribution function
of 7,,(s)
Now, we define the set &, 4(T,V; o) by
Smo(T,V;o) = {t € [T,2T] : Ree "5, (o +it) > V}.
Then we show the following theorem.
Theorem 3.1. Let m € Zs1, 6 € R be fixed. There exists a positive constant

logT )ﬁ

a1 = a1(m) such that, for any large numbers T, V with V < a1 (W

4

we have
% meas(S,,.0(T,V;1/2)) = exp (—2m4mV2(10g V)2 (1 + R)) ,

where the error term R satisfies

V2m+1 1 1%4 2m(m+1) loglogV
R <m ( 08 ) + 0898 .
(logT)™ logV

Theorem 3.1 contains the unconditional best result S1(¢) = Q_ (

(logn)'/3
(loglog 1)4/3 )
due to Tsang [117]. Actually, we can immediately obtain the following
corollary.

Corollary 3.1. Let m € Z>1, 0 € R be fixed. Then we have

Re e 5, (1/2 +if) = Qu ( (log )z ) .

(loglog t)zrgjz#

To prove Theorem 3.1, we show the result for the value distribution of
the Dirichlet polynomial.
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Proposition 3.1. Let m € Z31, 6 € R be fixed. There exist positive constants ay =

VlogT

ax(m), a3 = az(m) such that for large numbers T,V,X with V < 2 ogTog Ty

and V* < X < T9/V2108V)™" 1h0 have

1 -if 1

pSXp
2m4™v?(log V)" loglogV
= exp| 2V VT [ [lo8los Y )
1 (losz) logV
~ \Togx

Moreover, our method of the proof of the above assertions can be also

applied to the case 3 < o < 1. Actually, we can obtain the theorem which is

an analogue of the works due to Lamzouri [66]. We define A,, (o) by

20

o -0
An(0) = ((1 _ 0-)20‘—1+mG(0-)0') ’ (3.1)

Here, G(0) = /Ooo log Ig(u)u‘l‘%du, and I is the modified 0-th Bessel func-
tion defined by Io(z) = 5 _7; exp(zcos0)dd = ¥, (z/2)*"/(n!)2.

Theorem 3.2. Let m € Zso, % <o <1 and 8 € R be fixed. There exists
a positive constant ay = a4(o,m) such that, for any large numbers T, V with

V< (log T)l-o

= a4w, we have

1 m+o
7 meas(§o(T, V; o)) = exp (—Am(a)vﬁ (log V)5 (1 + R)) :
where the error term R satisfies the estimate

1 loglogV
R <o m \/ M08 08 . (3.2)
’ logV

When m = 0, the asymptotic formula of this type was firstly proved by
Hattori and Matsumoto? [40]. They showed that, for % <o<l1,

3
1
Tllgloo 7 meas JUO So.z;(T,V;0) (3.3)

= exp (~Ao(e)V 7 (log V) 7 (1 + 0(1)) )

as V. — +oco. Note that the parameter V in their asymptotic formula is not
effective with respect to 7. Theorem 3.2 can recover this asymptotic formula

DThere is a difference of the range of f between ours and theirs, but it seems not essential.
Precisely, our range of r is ¢t € [T,2T], and theirsisz € [-T,T].

62



effectively. Actually, we see that

% meas (So0(T,V; o))

IA

3
1
N meas (U 6’0,%‘,-(T, V; a’))

J=0

3
< Z meas (6’0,%]‘(T, % 0)) ,
7=0

N

and both sides are equal to exp (—AO(U)Vﬁ (log V)Te (1 + R)) from The-
orem 3.2. Here, the error term R satisfies (3.2). Hence, we can improve
(3.3) to the effective form. On the other hand, it seems this improvement
has been essentially obtained by Lamzouri’s work [66]. After the study of
Hattori-Matsumoto, Lamzouri [66] showed an effective asymptotic formula
in the case 6 = 0 only. Though he did not mention, we can also prove his
theorem for any 6 € R by just using his method. Therefore, we may say that
the above improvement has been already given by Lamzouri.

Now, we state the proposition corresponding to Proposition 3.1, which
plays an important role in Theorem 3.2.

Proposition 3.2. Let m € Zso, + < o < 1,and 6 € R be fixed. There exist positive
constants as = as(o,m), ag = ag(o, m) such that for large numbers T, X,V with

(logT)!~ Ao a6 /VT5 (log V) 125
VS%WWMVHT <X <T9% & ,wehave

1 -i6 1

p<X
1+mloglogV
logV '

Here, we describe the method of the proofs of Theorem 3.1 and Theo-
rem 3.2 roughly. These theorems are analogues of Lamzouri’s result, but
we cannot adopt directly his method. He used the Euler product of the
Riemann zeta-function and the generalized divisor function to estimate a
Dirichlet polynomial. However, #,,(s) does not have the representation of
Euler product when m > 1, and so we cannot apply directly his method. To
avoid this obstacle the author uses Radziwilt’s method [95] to estimate the
Dirichlet polynomial.

= exp (—Am(U)Vﬁ (log V)% 1+04m

3.2 Preliminaries

In this section, we prepare some lemmas.

Lemma 3.1. Let 6 € R be fixed. For any n € Zs;, we write n = q‘fl ...qy", where
q are distinct prime numbers. Then we have

2T 1
%/T g(cos(tlogqﬁ@))wj dt:f(””o(;)
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forany T > 0. Here, f is the multiplicative function defined by f(p®) =27¢ (;;2)

for a prime power p®, and we regard that ( /2) 0 if a is odd.

Proof. This lemma is a special case of Lemma 6.7, and so we omit this proof.
O

Lemma 3.2. Let m € Z5g, 3 < o < 1 be fixed. Let X > 3, and T be large. Then,
for any positive integer k, we have

k
1 /ZT i 1
— e _— dt
T T Z p0'+lt(logp)m

p<X

XZk
dw+0|—].
Zm ka+1,1:)[( ( ‘T(logp)m) ( T )

Here, R is any positive number, and Iy is the modified O-th order Bessel function.

Re

Proof. Define the multiplicative function gx(n) as, for every prime number

pand a € Zz1, gx(p®) = 1/a!(log p)*™ if p < X, and gx(p®) = 0 otherwise.
By Lemma 3.1, we find that

1 2T 0 1 k
— e — || dt
T -/T Z p0'+ll (lng)m

p<X
1 Z fTZT cos(tlog p1+0) ---cos(tlog pi +0)dt
(p1-+-pi)7(log p1 -+ -log pi)™

_ Z f(p1---pr) (XZk)
= +0 .
<x (P1---pi)7(log py - - -log p)™ T
From this equation and the definition of gx, we have
T k 2%
X
L o ] 45 2 o).
T = 7 (logp) abrte M7

By Cauchy’s integral formula, the above is equal to

f(n) Q(n) 4w dw X_Zk
2ni ?I{vl RZ gx(mw wh+1 +0( T )

Since the functions f, gx, and w™ are multiplicative, this main term is

k! o [ (w/2p” (log p)™)*
- % R Wk+1 H (Z ( (11)2 )) dw

p<X \I=0

Re

dw
2m I |ka+11!:?lf ( "(logp)m)

which completes the proof of this lemma. |
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Lemma 3.3. Let m be a fixed positive interger. For x > 3, X > x>, we have

X
n|l— ™M
L[ O(x/ﬁ(logp)’")
x? log x? loglog x
= —|1- .
eXP(Sm(Zlogx)zm( log X O( log x )

Proof. By the Taylor expansion of Iy and the prime number theorem, we find
that

X
o (e

(logxx)Zm <p=<
a7+ g
=ex — + 0 | —
Pl (4p<logp>2m p(log p)*"

X <p<X
2m 1 1
+0, ( °8 ng))). (3.4)
log x

(log )2
On the other hand, by using the inequality Ip(x) < exp(x) and the prime
number theorem, it holds that

log x?

2
- 8m(2logx)>" - log X

X 1
11 I°(ﬁ<logp>m)se"p * 2 Vrogpr

L
ps (log x)2m (log x)Zm

)C2
= &P (0’" (<logx)2m+1)) '

From this estimate and equation (3.4), we obtain this lemma. o

Lemma 3.4. Let % <o <1, m € Zs be fixed. Then, for large x, X > x3, we have

-
p?(log p)™

p<X

U%Gwzx% (1 o (1 +m10glogx)) |
(logx)F” log x

Proof. We take the numbers yo, y1 as satisfying the equations y{ (log yo)" =
172 y{ (log y1)" = %32, respectively. Then, it holds that yg =, x%(logx)‘%,

Y1 =m x%(logx)_%, and the estimate X > y; also holds. By the Taylor
expansion of /y and the prime number theorem, we find that

320

X 20
lo lo Onmo |—1-
p;( 8l (“(logp)’") p;l 810 (‘T(logp)’") ’ ((10gx)F+l)
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By the inequality Ip(x) < exp(x), it holds that

1-o

Zlog 0( )Sz—x <m,o xz"'m .
“(logp)’" p?(ogp)™ 7 (logx)s*!

P=Yo P=Yo

From these estimates, one has

395 og) @9)

X 1 320 1+o
= logly | ——— | + Om oc|l——— 20 4 x 20 .
Z g 0 (po-(logp)m) ’ ((logx);+l ()C X ))

By using partial summation and estimates of Iy, we obtain

X
yO;yl p?(logp)
l+o 320

yi+ X X 20 +X 20
= lo ———||dé+ O | ———— |-
‘/):0+ ﬂ'(é:) ( g 0 (ga-(logg)m)) f + ( (logx)3+1 )

Applying the basic formula 7(¢) = 2§ 1§§’u + O(£e7VI8E) we find that the

first term on the right hand side is equal to

1 loglo (W) 1
d§+0( ~eVIogé 16 1 (—) g).(3.7)
/yo / ‘ 810\ & log &y

log ¢

Note that we used the monotonicity of Iy in the above deforming. By the
estimate /p(x) < exp(x) and the Taylor expansion of Ip(z), we find that

Y1
~Vleg¢ og | (—)d
/yo ‘ 810\ o log ey |
xl/o

(log 0™/ d¢ 2 /°° dé
<Kp X —_— +X
-éo é:a- (10g §)2m+3 1/o §2°‘(10g §)2m+3

)m/a

1
X o

<« —
(log x) 7 *2

Finally, we consider the first term of (3.7). By making the change of variables
u= W, hard but not difficult calculations can lead that the first term

of (3.7) is equal to

ot [ (14 0n (") log lo(w)
O_ma' o
x~1/2 ults (log (x/u))et!

x1/2 o
R 1/0/ 110glo(u) i+ 0y mx!/ logmlozgx |
12 y1+7 (log (x/u)) o+ (logx) o™

du
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Since forrbrrs = OAOBHIEY for x1/2 <y < x1/2, we find that

1/2

/X log In(u)
u
12 e (log (x/u)) 5+
1 /xm log In(u)
———F—du

= m
(IOgX)l_r+1 x1/2 u1+%

+0,,

1 / log Io(u)| logul
(log x) o *2 Je-112 ults

Moreover, by Ip(x) < exp(x) and the Taylor expansion of I, it holds that

1/2
“log * log I c o
/ 0g_o<u>du:/ log @) 1, 0, (v x5,
0

1
12 ul+; I/t1+_

and that

/ log Io(u)] logul y <, 1
-1/2

1+—

for 1 < o < 1. From the above calculations, equation (3.6) is

_ U%G(azx% (1 o (1 +mloglogx)) |
(logx) =+ log x

Hence, by estimates (3.5), (3.6), (3.7), we obtain this lemma. O

Lemma 3.5. Let m € Z5o, + < o < 1 be fixed with (m,o) # (0,1/2). Let T, W

be large numbers. Put k(o) = 0if o = 1/2, k(o) = o otherwise. Define the set
A=AT,X,W;0,m) by
W} ) (3.8)

Then, there exists a small positive constant by = bi(o,m) < 1 such that for any
m+k (o)

3< X < TVWFT logW) 0

1|
p0'+l[ (log p)m

p<X

A = {te [T,2T] :

1 m+k(o
—meas([T, 27 \ A) < exp ( —b1WT7 (log W) " Eﬂ) ,
Proof. Using the prime number theorem, we can obtain

1 ko
Hi(log p)" " (log kym (")’

p<k(logk)z*(o) p

By Lemma 2.8, we have

1 /ZT
T
T T r(og ky2~(o) < p<x

1 ‘ Kime
k! | <l
P M)

p>k(log k)Z«() p

1 2k

p0'+it (log p)m
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for X* < T2, where C; = Ci(0,m) is a positive constant. Therefore, when

X* < TY2 it holds that

1 p2r 2k K=o 2k
— dt < |[Cp———
T T (108 k)m+l<(0')

for some constant C, = Cp(o-, m) > 0. Hence, we have

1
Z p0'+it (10g p)m

p<X

kl_o. )2k

1
T meas([7,2T] \ A) < (CZ W(log k)m+l<(0)

(3.9)

Choosing k = [cWﬁ(log W)%Ef)] with ¢ = ¢(o,m) a suitably small con-

stant, we obtain this lemma.

O

Lemma 3.6. Assume the same situation as in Lemma 3.5. There exists a small

positive constant by = b2(0' m) such that for 3 <
(o)
<X <TUWE? 7 (log ) “To" , we have

).
T ﬂexp

_ n ( ff(logp)m) + 0 (exp (=xW)) .

p<X

' 1
X Re 6_19 — | dt
= p0'+tt(10g p)m)

Proof. By the definition of A and the Stirling formula, we have
xRee™ Z ; dt
p()'+ll (IOg p)m

/ exp
A =X
Z / —i6 k
= — | dt+ 0O
k! ( = p0'+lt(10gp)m)

k<Y

1 (exW k
Ty — =2
2

m+k (o)

x < Wi+ rr(logW) -0,

(3.10)

where Y = ¢2xW. Here, an easy calculation for geometric sequence shows
that the above O-term is < T exp (—e?xW) . By using the Cauchy-Schwarz

inequality, we find that

o0 k 2T oif k
Re — | dt = Re — | dt+
/A ( Z p0'+tt(10g p)m) -/T ( Z p0'+zt(10g p)m)

2k \1/2
)

When b, < 72, from estimate (3.9) and Lemma 3.5, this O-term is

p<X p<X

/ZT
T

Z 1
p0'+it (IOg p)m

+ 0| (meas([T,2T] \ A))'/?
p<X

by 4k (o) k- ¢
< Texp (——VV1 v(log W) 1-o ) (CZW)
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for k <Y, where C; = C2(0, m) is a positive constant. Also, it holds that

o0

k kl—o’ k 1 Yl—o' k
Z % (C2 m+K(0')) < Z F (C2 : m+/<(0'))
52 K (logk) ! (logY)

< exp (2172 TCWT-o a(log W) +K((r))

for any sufficiently large W. Therefore, choosing by suitably small, we find

m+k (

that the right hand side is < exp ( hyes (logW) 1o ) Hence, we obtain

—i0 k
—| dt
Z k! /( = p(r+tt(10gp)m)

k<Y

2T o0 k
= —_— | dt+
Z k! / ( = p0'+lt(logp)m)

k<Y

+0 (T exp (—%Wl = (log W) ) )) ,

From these estimates, the left hand side of (3.10) is equal to
2T —i0 k
e
Py ——N— dt+ O |T exp —e%xW (3.11)
S0 (R X srmimggys) 40 rew ()

for any sufficiently large W when b, is suitably small. By Lemma 3.2, this
main term is equal to

2ri }{M Z k+11—[ (g(logp)m)dw (3.12)

=ex k<Y p<X

By Lemmas 3.3 and 3.4, there exists a constant C4 = C4(0, m) > 0 such that

< Ip(R/p? (logp)™) < exp|C

[ ] 00w/p” log p)™)

p<X

1
X o
( Og x) m+l;—((r) )

Choosing b; as a suitably small constant, the right hand side is < exp(xW).
Moreover, since we see that

k

X
Z wk+1

k>Y

< exp (—esz) ,

it holds that

< exp (—xW)

w
l;Y k+1 [!:)I( (\/ﬁ(logp)m)
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for |w| = ex. Hence, (3.12) is equal to

T
- Z —_— rl ( U(logp)m) dw + O (T exp (—xW)) .

|w|=ex k<Y p<X

Thus, by this formula and equation (3.11) and using Cauchy’s integral for-
mula, we obtain

1 / i 1

— [ exp|xRee™ ———— | dt

T " p ;{ p0'+1t(10gp)m)

= l_[ ( ‘T(logp)m) +0 (exp (=xW)),

p<X

which completes the proof of this lemma. |

Lemma 3.7. Let m € Z>;, % < o < 1befixed. LetT belarge, X > 3, and A > 0.
Define the set B = B(T, X, A; o) by

(o +it) = ) Aln)

+it +1
2 Gty n7H (log )™

B = {t e [T,2T] :

logT  \Zms
Then, for 0 < A < ((log?(%) " we have

%meas([T, 2T\ B) < exp (—b3A2(10g X)z’”) ,

logT ZneT logT
and for (W) <A< Tlog w17 We have

%meas([T, 2T\ B) < exp <—b4(A(log T)m)l/(m+1)) .

Here, b3, by are absolute positive constants.

Proof. By Lemma 2.1 and Theorem 2.6, we have

1 T A(n)
— n. (o +it) — , dt
TA nm( ) ZSnZSX na’+ll(10g n)m+1
- 1-20
< ot XD ckgkomiy T
(log X)ka (log T)ka

for 3 < X < T, where C is an absolute positive constant. Therefore, we
obtain

Ckl/Z )Zk ( Ckm+1 )Zk

1
?meas([T, 2T\ 8) < (m + W
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logT 2;1"7
When A < (o)

small constant, we have

, putting k = [cA%(log X)?"] + 1 with c a suitably

%meas([T, 2T\ B) < exp (—b3A2(1Og X)zm)

for some absolute constant b3 > 0. When the inequality ((bgl?(%) e

A < (101;% holds, by choosing k = [c(A(log T)’”)ﬁ] + 1 with ¢ a suitably

small constant, we have
1
T meas([7,27T] \ B) < exp (—b4(A(log T)m)l/(m+1))

for some absolute constant b4 > 0. Thus, we obtain this lemma. O

3.3 Proofs of Proposition 3.1 and Theorem 3.1

In this section, we prove Proposition 3.1 and Theorem 3.1.

Proof of Proposition 3.1. Letm € Z>1, 6 € Rbe fixed. LetT, V be large numbers

with V < azﬂ, and let X be a real parameter with V* < X <
(loglogT)™*2

T93/V?(10gV)?™" ' Here, ay = ax(m), a3 = a3(m) are positive constants to be

chosen later. Moreover, let W > 0,3 < x < boW(log W)?" be numbers to be

chosen later, where by = by(1/2,m) is the same constant as in Lemma 3.6.

Put

. 1
S*(T,V):={te A : Ree ™™ , >Ve.

Here, the set A = A(T, X, W;1/2,m) is defined by (3.8). Then, for x > 0, we
have

/ exp
A

By this equation and Lemma 3.6, it holds that

1 /e 1 1
? [00 e’ meas(é’*(T, V))dV = )_C 1—[ Iy (m) +0 ()_C exp (—XW))

p<X

. 1 o0
xRee™ , dt = x/ "’ meas($*(T,v))dv.
[;( p1/2+1l(10gp)m) o

whenx® < X <1V W2 (log W) Therefore, by Lemma 3.3, we obtain

1 /oo " meas(S$*(T,v))dv (3.13)

T
o, (log logx)))
log x

log x? ’
log X

N N S
- P 8m(21ogx)?"
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for x3 < X < THYW*1g W) Now, we decide the parameters x, W as satisfying
the equations
Zm)

and W = 8m4" KV, respectively. The constant K; = Kj(m) is defined as
Ky = max{b;l, by Y and by is the same constant as in Lemma 3.5. Then, this
x satisfies

log x?
log X

2x
(p— —
8m(2logx)?" (

4m4™
X =
1 - (logV?/log X)?m

V(logV)*" (1+ 0,,(loglogV/logV)),

and hence we can take out x from the range 3 < x < byW(log W)>" for
any large V. Also, when ay, asz are suitably small, the inequalities X <
TUWA0g W)™ and x3 < X < TUW*10sW)™ hold for any large V. Moreover,
by using Lemma 3.5, meas([7,2T] \ A) < T exp (-8m4"V?(logV)?") holds.
Therefore, we obtain

1 . -0 1
7 e {t €IT.2T] : Ree Z pl/2+it(log p)™ - V}

p<X

= %meas(oﬁ’*(T, V) +0 (% meas([T,2T] \ .7())

- % meas(§*(T, V)) + O (exp (—8m4mV2(log V)Z'”)) . (3.14)

Put ¢ = Kyy/loglogx/logx with K, = K»(m) a sufficiently large constant.
Then, by using equation (3.13), we find that

V(l-¢) 00
/ "’ meas(S*(T,v))dv < esxv(l_‘g)/ "1 meas(8*(T, v))dv

log x? o 82+0 loglog x
log X 3 "\ logx

X2
“Texp| ——[1-
P\ 8m(210g )2

1 (0]
< 5/ " meas(S$*(T,v))dv.

Similarly, we find that

/ e’ meas(§*(T,v))dv < e—ng(1+g)/ 1) meas($*(T, v))dv
%

(1+e) —0

2m
2 log x? 2 log 1
—Texp|——r 1o [-2 ) _Z g, (28281
8m(2logx)?" log X 3 log x
< % e*’ meas(S$*(T,v))dv.
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Hence, we have

1 V(1+e)

—/ e* meas(S§*(T,v))dv
T Jva-¢

log x? ?
log X

x? loglog x
—exp|l—o —[1- O 222111
P (8m(2 log x)" ( ( log x )

Moreover, since meas($™(7,v)) is a nonincreasing function with respect to
vand [/ evdy = exp(xV (1 + O(g))), it holds that

V(l-¢)
2m o, ( ]oglogx)))
\/ log x

% meas($*(T,V(1 +¢g)))

log x?
log X

< X 1
=P\ 75, (2logx)?™
< %meas(é’*(T, V(1 -g))).
In particular, since x satisfies
-1
x = 4mV(2log V)*" {(1 + (log x*/log X)zm) + O (loglogV/log V)} ,

the second term of the above inequalities is equal to
2m4™
—V2(log V)*"

loglogV))
log V2 logV '
) Ve

Additionally, if we change the above V to V(1 + O(¢)), the above form does
not change. Hence, we obtain

exp| - 1+0,

2m4mV2(log V)>" loglogV
1meas(oS’*(T, V)) =exp| - ™ (log m) + O, 08987 .
T 1- (losz) IOgV
log X

By this equation and (3.14), we complete the proof of Proposition 3.1. o

Proof of Theorem 3.1. Let T, V be sufficiently large parameters satisfying V <
logT
ai
(loglog T)?m+2
chosen later. Let a3, by be the same constants as in Proposition 3.1 and
Lemma 3.7. Put X = T%/V2108V)*" with bs = min{as, bs(4m4™)~1}. Note
that this X satisfies the inequality X > exp ((log T)ﬁ_s) > V* when T

IOgT _ V2m+2(10gv)2m(m+l)
(log x)m+1 — b+ (logT)m 7

Iy
) , where a1 = aj(m) is a suitably small constant to be

is large. Then, applying Lemma 3.7 as A =
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we find that there exists a set 8 c [T,2T] such that meas([T,2T] \ B) <
T exp (—4m4™V?(logV)?"), and for all € B

1
1/2+[t(10gp)m - bZJrl(logT)m V
=:0,V,

n(1/2+i01) = >

p<X p

y2m+1 (log V)Zm(m+1) c ) y

say. Here the constant c indicates the value % i, > Now, we

1
decide the number a; such that §,, < 1/2. Then, it holds that

~ 1
meas{t € B : Ree ™™ : >V(1+6,)
| O

< meas {t € B : Ree 5, (1/2+it) > V}

. 1
< meas{teB : Ree ™ .
{ ;;( p1/2+zl(10gp)m

>V(1l- §m)} .

Hence, by these inequalities and Proposition 3.1, we have

1 )
— meas {te B : Ree ™, (1/2+it) >V} =

V2m+1 (log V)Zm(m+1) log log 1%4
(log T)™ ¥ logV '

Thus, by this equation and meas([7,2T] \ B) < T exp (—4m4’”V2(log V)zm),
we complete the proof of Theorem 3.1. o

exp (—2m4mV2(log V)2 140,

3.4 Proofs of Proposition 3.2 and Theorem 3.2

Some parts in the proof of Proposition 3.2 are written briefly because many
points are similar to the proof of Proposition 3.1.

Proof of Proposition 3.2. Let m € Zsg, 3 < o < 1 be fixed. Let T, V be
(logT)'=7

large numbers with V < as TToglog 1™

and let X be a real parameter with

1 mt+o
Ve < X < T%/VT7(108V)1°0  Here g5 = as(or, m), ag = ag(c, m) are positive
constants to be chosen later. Moreover, let W > 0,3 < x < byWTo (log W)%
be numbers to be chosen later. Here, b, = by(0, m) is the same constant as

in Lemma 3.6. Put

; 1
é);-(T,V) = {t eEA : Ree_le Z W > V},

p<X

where A = A(T, X,V;0,m) is the set defined by (3.8). Using Lemmas 3.4,
3.6, and the equation

. 1 o0
exp |xRee™™ — | =x / e’ meas(S,.(T,v))dv,
J e I,Z;( p"(logp)’") .

74



we obtain

l /oo e’ meas(S,(T,v))dv (3.15)

c5G(o)x7 140 1+mloglogx
- log x

1 mto
for x3 < X < TYWT7(osW) =" Here, we decide the parameters x, W as the
numbers satisfying the equations

O'UG(O')X__l

a(logx) T

and W = (2 Anl) g )T V, respectively. The constant K3 = K3(o,m) is de-
fined as K3 = max{b 1 b‘l} where b1 is the same constant as in Lemma 3.5.

Then, this x satisfies x = ’"(U)Vl = (log V)17 (1 + 0(10g log V/log V)) and

so we can pick up this x from the range 3 < x < hyWT% (log W) T+ for any
large V. Also, choosing as, a¢ as suitably small constants, we find that the

1 mia 1 mta
inequalities x> < TV/WT7UosW) =7 and x3 < x < TVWTo(logW) =7 hold for
any large V. Moreover, by Lemma 3.5, the inequality meas([T,2T] \ A) <

m+o

T exp (~24, ()Y (log V) £ ) holds.

Putting & = K4,/% with Ky = K4(0,m) a suitably large constant
and using equation (3.15), we have

V(l-¢) 1 00
/ e’ meas(S,(T,v; X))dv < 5/ e’ meas(S,(T,v; X))dv,

(o) —00

and

o

o 1
/ e’ meas(S;(T,v; X))dv < 5/ e’ meas(S,(T,v; X))dv.
V(1l+e) -

o0

Therefore, we obtain

1 rQ+ov

—/ e’ meas(S,(T,v))dv

T Ja-eyv

_ O'%G(O‘n)qx% (1+0(1 +mloglogx)) .
(log x) o+l log x

Moreover, since meas(8*(7, v)) is a nonincreasing function, and the equation
/‘X(Hg) edv = exp(xV(1+ O(¢))) holds, we have

% meas(S*(T,V(1+¢€); X))

1-0 O'%G(O')x%

o (logx)s+!

(1+0(¢))

< exp (—

< —meas(S*(T,V(1 - ¢); X)).

Nl
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In particular, as x is the solution of equation (3.15), the above second term is
equal to

exp (—Am(O')V% (log V)T_g (1+ R)) ,

where

R < 1+mloglogx<< 1+mloglogV-
log x logV

Additionally, if we change the above V to V(1 + O(¢)), the above form does

not change. Thus, we obtain
1+mloglogV
logV '

By this equation and meas([T,2T] \ A) < T exp (—2Am(o-)Vﬁ (log V)%),
we obtain Proposition 3.2. |

1
?meas(oS’*(T, V; X))

= exp —Am(O')Vﬁ (log V)Tj—g 1+0

Proof of Theorem 3.2. We show only the case m > 1 because the case m =0
can be shown similarly by use of Lemma 2.2 in [36] instead of Lemma 3.7.
Let m € Zs1, 1/2 < o < 1. Let a5, ag, and by be the same con-

stants as in Proposition 3.2 and Lemma 3.7. Let T, V be sufficiently large
(log T)l-o

a4 (loglog T)m+17

as(o,m) is a suitably small constant less than as to be chosen later. Put

1 mia
X = The/VIr(logV)T=7 wwith b = min{ag, b4(24,,(0’))"1}. Then we decide
the number a4 as satisfying X712 > (logT)®. Applying Lemma 3.7 as
1

positive numbers satisfying the inequality V < where a4 =

m+o

1
(vm (logV) -0

A= 1087 ) , we find that there exists a set 8 c [T, 2T]

= (1ng)m+1 - bg”l(lOgT)m
such that meas([7,2T] \ 8) < Texp (—2Am(U)Vﬁ (log V)%), and for all
teB

1 m+o m+1
(Vﬁ (logV) ﬁ)
= Xg-—l/Zbng (10g T)m

1
i, (0 +it) — .
n ) l;( p0'+zt(10gp)m

k
Here, ¢ = 2,k 450 W. Therefore, the right hand side is < K with

K4 = K4(m, o) a positive constant. Then, it holds that
1

= pcr+zt(logp)m

<meas{t € B : Ree ™, (o +it) >V}

i 1 -
Smeas{tEB:Ree GZW>V(1_K4V 1)}
p<X

meas {t €B : Ree™ > V(1+ K4V‘1)}
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Hence, by these inequalities and Proposition 3.1, we have

1+mloglogV
logV '

By this equation and meas([7,27] \ 8) < T exp (—2Am(0')Vﬁ (logV) Tffrr),
we complete the proof of Theorem 3.2. o

1 .
7 meas {t €B : Ree 5, (o +it) > V}

= exp —Am(U)Vﬁ(log V)rlnj_g 1+0
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Chapter4  Denseness of 17,,(s) and 7,, ()

In this chapter, we prove some results for the denseness of 7,,(s) and #,,(s).
The contents in this chapter are based on the paper [22].

41 Results

The main results in this chapter is the following.

Theorem 4.1. Let 1/2 < o < 1. If the number of zeros p = 8 + iy of {(s) with
B > o is finite, then the set

{/llogf(0'+it’)dt’ : 1 €0, oo)}
0

is dense in the complex plane. Moreover, for each integer m > 2, the following
statements are equivalent.

(I) The Riemann zeta-function does not have any zero whose real part is greater
than o

(II) The set {ny, (o +it) : t € [0,00)} is dense in the complex plane.

From this theorem, we see that the Riemann Hypothesis implies that the
set

{/tlog§(1/2+it’)dt’ Cte [0,00)}
0

is dense in the complex plane. This implication seems to suggest that the val-
ues (% +it) int € R are dense in C. Moreover, the equivalence above would
be a new type of statement which gives the relation between the denseness
of values of the Riemann zeta-function and the Riemann Hypothesis.

Here, we mention the plan of the proof of Theorem 4.1 briefly. Recall
that the function 7, (o + it) is defined by the recurrence equation

(o +it) = / Mm-1(a +it)da,

where 7jg (0 +it) = log { (o +it). This function is the m-times iterated integral
of log {(o +it) on the horizontal line. Our main focus in this paper is
better understanding of Ramachanra’s denseness problem, and the value-
distribution of 7, (1/2+it). However, the function 7, (s) is regular in the same
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region as in the case of log {(s), and also some properties of this function
are similar to log {(s). Additionally, by Proposition 1.1, the behavior 7, (s)
on the critical line is directly related to the Lindelof Hypothesis. From this
observation, this function would be an interesting object itself, and we obtain
the following theorem unconditionally.

Theorem 4.2. Let 1/2 < o < 1, and m be a positive integer. Let Ty be any positive
number. Then the set

{ﬁm(O' +it) 1 te€ [To,oo)}
is dense in the complex plane.

Theorem 4.1 can be obtained from Theorem 4.2 and Lemma 2.1. Hence,
our first purpose is to show Theorem 4.2. In the proof of Theorem 4.2, the
following two propositions play an important role.

The function Li,,(z) indicates the polylogarithmic function defined as
hI rf—,’; for |z| < 1.

Proposition 4.1. Let m be a positive integer. Then for any o > 1/2, T > X%,
e > 0, we have
< g} =1.

The important point of this proposition is that 7, (s) can be approximated
by the Dirichlet polynomial even on the critical line. To prove this propo-
sition, we must control exactly the contribution of nontrivial zeros of {(s),
and we therefore need a strong zero density estimate of the Riemann zeta-
function like Selberg’s result [107, Theorem 1]. More precisely, we require
that there exist numbers ¢ > 0, A < 2m + 1 such that

—o-—it)

~ . Lim+1 (P
i, (0 +it) — —
I;( (log p)

X—+00

1
lim N meas {t € [0,T] :

N(o,T) < T2 (1og )4

uniformly for % < o < 1. Here, N(o,T) is the number of zeros of (s) with
multiplicity satisfying 8 > o and 0 < y < T. Therefore, to prove Proposition
4.1, we need a strong zero density estimate comparable to the assumption by
Bombieri and Hejhal [9]. On the other hand, when we discuss the denseness
of 7, () for fixed % < o < 1, it suffices to use the weaker estimate

N(O’, T) < Tl—c(a'—l/2)+s

for every € > 0. Hence, there is an essential difference of the depth between
the discussion in the case < o < 1 and that in the case o =  in Proposition
4.1. We will explain this discussion more closely later.

In contrast, we can prove the following proposition by almost the same

method as in [6], [7].
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Proposition 4.2. Let m be a positive integer, 1/2 < o < 1. Let a be any complex
number, and & be any positive number. If we take a sufficiently large number
No = No(m,o,a,¢), then, for any integer N > Ny, there exists some Jordan
measurable set ®y = Oy(m, o, a, &, N) c [0,1)" V) with meas(®p) > 0 such that

Z Liny1(p™7 exp(=27i6,))
(log p)™

al < &.
P<N

forany 6 = (8,,)7% < €.

Roughly speaking, Proposition 4.1 means that #,, (o +it) “almost" equals
the finite sum of polylogarithmic functions when the number of the terms of
the sum is sufficiently large, and Proposition 4.2 that any complex number
can be approximated by the finite sum of polylogarithmic functions when
the number of the terms of the sum is sufficiently large.

Bohr developed his denseness results with Jessen from the viewpoint of
probability theory in [8]. Following their method, the author will continue
our study in the next chapter. They will give deeper results such as an analog
of Lamzouri’s study [66] and the study of Lamzouri, Lester, and Radziwilt
[67].

4.2 Approximation of 1, (s) and 7j,,(s) by Dirichlet
polynomials

In this section, we prove Proposition 4.1. In order to prove it, we prepare
two lemmas.

Lemma 4.1. Let m be a positive integer, and o > 1/2. Let T be large. Then, for
3<X< Tﬁ, we have

%/1: (o +in) =y Alr)

This lemma is a special case the following lemma.

X1—20'

< (og x)2"°

Lemma 4.2. Let m, k be positive integers. Let T be large, and X > 3 with X < T TS,
Then, for o > 1/2, we have

N : A(n)
/14 i, (o +it) — Z

+it +1
2 Gty 17 (logn)™

2k

(4.1)

k k(1=2 120
<<2kk!(2m+1 C ) xk(1=27) K 2k(me1) T T

2m +10gX (logX)Z"’"+ (log T)%km”

This lemma is Theorem 2.6. As we mentioned in the previous section,
the proof of this lemma requires a strong zero density estimate like Selberg’s
result. In fact, if we only knew the estimate

N(o,T) < T2 (1og )4
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for some ¢ > 0, A > 1, then the right hand side of (4.1) in the case k =1
becomes

1-20

Xl—ZO’ TW
(10g X)Zm + (log T)2m+1—A

Hence, the power of the logarithmic factor of the zero density estimate plays
an important role in the case o = 1/2.

Lemma 4.3. Let m be an integer, o > 1/2. Let T be large. Then for 3 < X < T'/4,
we have

1 T
7

where the function A(n) is the von Mangoldt function.

a'—it)

3 L) 5y ) ’ X2
= (lng)m 2 no it (lOg n)m+1

(log X)2m+1 >

Proof. By definitions of the polylogarithmic function and the von Mangoldt
function, we find that

Z iy (p7™")
(log p)™

p<X

A(n) k(o-+zt)
Z n0'+it(10g n)m+1 Z Z m+1 (logp)m

2<n<X p<X ; logX

~Tog p
—k(o+it) X1—30'
_ p
Z Z km+1(] m+0((10 X)m)
p<X log X 310gX ( ng) g
log p log p

Here, we can write

—k(o+it)

2
14
Z Z km+1 (log p)m

p<X logX log X
Tos <k§310g17

2ko

B Z Z k2(m+f) (log p)?" +

p<X 10gX< 3110gX
og P

log p

Yy Y 5 (P pi) = (pl/pi)=
P1<X pr<X logX <ky<3 logX logX ko log X (klkz)m+1(10gp1 logPZ)m

log py ~“logpy log pp
(p1,k1)#(p2,k2)

log pp
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Therefore, it holds that

/ Z Z p—k(a'+it) 2
—— | dt
p<X IogX logX km+1 (logp)m
Togp <K= log
2ko

=T Z Z kz(””f)_(logp)zm +

p<X logX log X
log p kSSIng

1
+0 X3 Z Z ko-km+1(10gp)m

p<X logX k<3logX p
logp ~" =" logp

Xl—Za’ X5—20’ Xl—ZO’
T + KT ————.
(log X)2m+1 (log X)Z(m+1) (log X)2m+1

Hence we have

/* Zlhmﬂp””ﬂ_ 3 Am)
0 p<X (log p)m 2 n0'+it(log n)m+1
p—k(a'+it) 2 X260 x1-20
Z Z m+1 m dt+T 2m <T 2m+1°
p<X logX logX k (log p) (log X) (lOg X)
log p = logp
which completes the proof of this lemma. o

Proof of Proposition 4.1. By Lemma 4.1 and Lemma 4.3, for X < 71135 we
find that

1 T

7).
1 T

< = /
T J1a

—cr—it) 2

- . Lim+1 (p
(o +in) = ) =l
; (log p)

(o +it) = Y — Aln)

+it +1
25rzx 17 (logn)"

1 T
o
T J14

dt

o-—it)

Z Lipa(p™™™)
= (logp)™

Z A(n)
n“”(log n)m+1

2<n<X

X1—20'
< —.
(log X)2m

By using this estimate, for any fixed € > 0, we have

—o-—it)

- . Lim+1 (P
fm (o +it) — —
g} (log p)

1
— meas {t € [0,T] : > 8}
T
X1—20' 1

< e%(log X)?m T
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Hence, for any T > X', it holds that

1 L'm —o—it
Tmeas{t € [0,T] : |fm(o +it) — Z % > s} -0
= (logp)
as X — +o0. Thus, we obtain Proposition 4.1. o

4.3 Proof of the denseness lemma for corresponding to
M (5)

In this section, we prove Proposition 4.2 by the method of [62, VIIIL.3], [120].
First of all, we will show the following elementary geometric lemma.

Lemma 4.4. Let N be a positive integer larger than two. Suppose that the positive

numbers r1,ry, . .., ry satisfy the condition
N
Fag £ D Tns (4.2)
n=1
n#ng
where ry, = max{r, | n =1,2,...,N}. Then we have
N N
{Zrn exp(~27if,) € C : 6, € [0, 1)} = {z eC : |7 < Zr}
n=1 n=1

Proof. By Proposition 3.3 in [13], it immediately follows that

N
{Zrn exp(-2rif,) € C : 6, € [0, 1>}

n=1

is the closed circle with center origin and radius ZnNzl r,. Note that their 7,
becomes zero under assumption (4.2). o

Next, we introduce the following definitions.

Definition 1. Let m be a positive integer and M a finite subset of the set
of prime numbers. For o > 1/2 and 6 = (6,),em € [0, 1M, we define the
functions

exp(—2mif,)
Pmm (o, 0) = Z ﬁ,
pem P gp

~ Liy1(p~7 exp(—27i6),)) —  exp(-2nikf,)
Tmm(0,0) = — = :
M p;/{ (logp) p;\:/( ; km+1pk0' (logp)m

respectively.
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Definition 2. Let p, be the n-th prime number. Put
0) _ (0)) _ N
0 (9,,” = 0.1/201/2..) e [0.D",

and

Z i exp(—27rik9§,0))
Ymo = km+1pk0'(10gp)m ’

p k=1
Note that the series for y,, » is convergent for o > 1/2.

Proof of Proposition 4.2. Fix a complex number a and 1/2 < o < 1. Let
U be a positive real parameter. We take a sufficiently large number N =
N(U,m, o, a) for which the estimates

1
la = Ymol < —_—
m,o p;\:/[ po'(logp)m

1 1
mm(log Pmin)" ) p7(log p)"

PGM\{Pmin

are satisfied, where M = M(U, N) is defined as { p : pisprime, U <p <N },
and pmin is the minimum of M. Note that the existence of such N is guaran-

teed by 3, pa(log i = o0 Then, by Lemma 4.4, the function

1
mlo,) [0, DM 59— m(0,0)eqzeC : |z] < —_

is surjective. Hence, there exists some 81V = §(m, o, U, N)V) = (9(1))peM €
[0, 1)M such that

Sum(0,0") = a = Yo
By using the prime number theorem, we find that

exp(—27rik9§,1))
km+1pka' (lOg p)m

Bpt(@,00) = upi(0, 00+ 37

pEM k=2

1
=a-Yno+0 (—(log U)m) .

For any prime number p, we put

@ _ |0y if peM,
(VO
» p e M.
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Then it holds that
y Lips1 (p~” exp(=2mi0}")

= (log p)™

-y Lips1 (p™ exp(=27i6\")) Ly Lips1(p™ exp(=27i6"))
oy (log p)™ = (log p)™
i Lip1 (p~7 exp(-27i63)))

:nm,M(o-’ Q(l)) +Ymo + Z - (logp)m .

p>U

and additionally, by using the prime number theorem and simple calcula-
tions of alternating series,

Z Li1(p™@ exp(—27ri91(,0))) _ Z exp(—27ri91(70))) L0 Z ' 1
(log p)™ p?(logp)” S p* (log p)"
(logU)™"

p>U p>U

Hence, by taking a sufficiently large U = U(e) and noting the continuity of

Liman (pggl}:)(fmel,)) with respect to (6,),<y € [0,1)" V), we

obtain this proposition. o

the function 3’ .y

4.4 Proof of the denseness of 77,,(s)
In this section, we prove Theorem 4.2. Here, we use the following lemma
related with Kronecker’s approximation theorem.

Lemma 4.5. Let A be a Jordan measurable subregion of [0,1)V, and a1, .. .,ay be
real numbers linearly independent over Q. Set, for any T > 0,

I(T,A)={t€[0,T] : ({a1it},...,{ant}) € A}.

Then we have
meas(/(T,A))

TEIPOO T = meas(A).
Proof. This lemma is Theorem 1 of Appendix 8 in [62] O

Let us start the proof of Theorem 4.2.

Proof of Theorem 4.2. Let ¢ > 0 be any small number, a any fixed com-
plex number, < o < 1, and let Ty be any positive number. Define

Sm(01,...,0m;0,m) and Sy n(Ops1, ..., 0n; 0, m) by
Li 1(p—0'e—2m'9n)
Sm(61,...,0m;00m) = > e,
Li 1(p—0'€—2m’9n)
SM,N(9M+15""0N;O-’m) = Z m+(l K )m
M<n<N 08 Pn
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Then, by Proposition 4.2, we can take a sufficiently large My = My(m, 0, a, €)
so that for any M > M), there exists some Jordan measurable subset @gM) =
@gM)(m, o,a,g, M) of [0,1)™ such that 6, := meas(G)gM)) >0 and

|Spu(01,....0p;0,m) —al <e

forany (01,...,0y) € @gM). We also find that

/ /|SMN(9M+1,~ LOn; 0, m)[2dOys1 - dOy

yEA»

_ - (PnyPny)
- Z Z Z Z {(klkz)m”(logpm logpnz)

M<ni <N M<ny<N k1=1 kp=
% / L / e—2m’(k10n1—k29n2)d9M+1 ... dQN}
0 0

- Z 2(m+1) 201 o Z —
Maen = K pa’ " (log pn) MmN pn(log pn)

°° —2mik@,
n

dOpy -+ dOy

M<n<N k=1 km+1(10g p”)m

(o)

Note that the last sum tends to zero as M — +oo. Therefore, there exists
some large number M = My(m, ¢) such that, for any N > M > My, it holds
that

- 1
meas({(6M+1,...,0N) e [0, DM ¢ Sy v (Ousts - -, On; o m)| < g}) >
Here we denote the set of the content of meas(-) in the above inequality by
eV ="V (M, N, e).
We put M = max{My, M1} and O3 = @gMz) X @gMZ’N) for any N > M.
Then ©j is a subset of [0,1)" satisfying meas(©3) > dy,/2. Hence, putting

I(T) = {t € [Ty, T] ({élogpl},...,{élogmv}) € @3}

and applying Lemma 4.5, for any positive integer N > M>, there exists
some large number Ty > Tj such that meas(Z (7)) > 6u,7/2 holds for any
T > Ty. On the other hand, by Proposition 4.1, there exists a large number
No = No(g, dum,) such that

o— lt)

~ . L1m+1 (pn
(0 +it) — —
24 (log )

meas {t € [Ty, T] : < s} > (1-06m,/4)T

forany N > Ny, T > pi°.
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135

Therefore, for any N > max{No, M> + 1}, T > max{Ty, py,

some ty € [Ty, T] such that

}, there exists

I T IS

and

—O'—iTO)

~ . Lim+1 (pn
i, (0 +itg) — —
;V (log pn)

ns

<E&.

Then we have
|77,, (0 +itg) — a

1i —O'e—ito log pn
f]m(0'+it0)—z m+1(pn )

< m
= (log py)

—a

Z Lij1(p, 7 e iologpn)
n<Mj (lOg pn)m

+ < 3e.

$ Lt (pireiobsr)
M2<nSN (log pn)m

This completes the proof of Theorem 4.2. o

4.5 Proof of the denseness of 7,,(s)

In this section, we prove Theorem 4.1. Here, we prepare the following
lemma.

Lemma 4.6. Let o > 1/2 and m be a positive integer. Then we have
NMm(s) =Y (s) + Om(log 1),
where Y,, is defined by (2.1).

Proof. This lemma is equation (2.2). ]

Proof of Theorem 4.1. First, we show Theorem 4.1 in the case m = 1. If the
number of zeros p = B+ iy of {(s) with 8 > o is finite, then there exists a
sufficiently large 7y such that Y1 (o +it) = b for t > Ty, where b is a positive
real number. Therefore, by Lemma 2.1, we have

t
/ log { (o +it')dt’ = ifj (o +it) + b
0

for any r > Tp. By this formula, we obtain

{/tlogg(aﬂt’)dt’ : e |0, oo)} ) {/tlogg(aﬂt’)dt’ D tE [To,oo)}
0 0
={if(c+it)+b : t € [Ty,)}.
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Ifaset A c CisdenseinC,thenforanycy € C\{0}and c; € C, theset {c1a+cy |
a € A}isalso densein C. By this fact and Theorem 4.2, the set {ifj; (o +it)+b |
t € [Ty, )} is dense in C. Thus, the set {fot log {(o +it")dt' | t € [0, oo)} is
dense in C under this assumption.
Next, for m € Z5,, we show the equivalence of (I) and (II). The implication
(I) = (I) is clear since the equation i, (o +it) = i"#,, (o +it) holds by assuming
(D).
In the following, we show the inverse implication (II) = (I). By Lemma

4.6, if (I) is false, then the estimate |n,, (o + it)| >, "~ ! holds. Therefore, for
some 75 > 0, we have

{nm(o+it) : te[Th,0)} cC\{zeC : |z] <1}.

Here, A means the closure of the set A. Since {5,,(c +it) | t € [0,T>]} is a
piecewise smooth curve of finite length, u ({nm(o- +it) : t €0, Tz]}) = 0.
Here u is the Lebesgue measure in C. Therefore, we obtain

{zeC : |z| <1} ¢ {nu(o +it) : t €[0,T5]}.

Hence, if (I) is false, then the set {n,,(c-+it) : t € [0,00)} is not dense in C.
Thus, we obtain the implication (II) = (I). O

89






Chapter 5 Discrepancy estimate and Large
deviations for the Riemann
zeta-function

The purpose of this chapter is to study the distribution of values 7, (o + it)
as t € R varies. The contents in this chapter are based on the paper [23].

5.1 Results

For a Lebesgue measurable function f : R — C, define
Pr(f(t) € A) := %meas{t € [T,2T] : f(r) € A},

where T > 0 and A € B(C). We consider the probability measure Pr(#,, (o +
it) € A). Let P be the set of prime numbers. Let {X(p)},ep be a sequence
of independent random variables on a probability space (€, &, P) uniformly
distributed on the unit circle in the complex plane. Define

(0, X) = D iy (0, X (), (5.1)
p

where

k

~ Lina(p™7w) _ < w
o (oyw) = P W) 5.2
(70 = g oy = 2 T (log 71 62

for w € C with |w| = 1. One can show that (5.1) converges almost surely if
o > 1/2 and m € Zsp; see Lemma 5.1. The first main result of this chapter
presents a discrepancy bound for the value distribution of 7, (o +it), that is,
an upper bound for the quantity

D (T) = sup |Pr(f,, (o +it) € R) = P(#,, (07, X) € R)|,
R

where R runs through all rectangle in C with edges parallel to the axes.
Theorem 5.1. Let 1/2 < o < 1 and m € Zsg. Then we have

1

Do m(T) <om (logT) (loglog T)""
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Next, we consider the large deviation for the values Re e, (o +it) with
any angle o € R.

Theorem 5.2. Let 1/2 < o < 1 and m € Zso. There exists a positive constant
a = a(o, m) such that for large T, T with T < a(log )~ (loglog T) ™~ we have

Pr (Re e q (o +it) > 7)

=P (Re e (o, X) > 7)[1+0

177 (log 7) To
(logT)“ (loglog T)™

for any @ € R. Here, the implicit constant depends on o and m.

5.2 Mean value results

Denote by A the set of pairs (o, m) such that
A={(oc,m) : o >1/2andm € Z} \ {(3,0)}

For1/2 < o <1, we put

o if 1/2<0<1,
(o) =

0 if o=1/2.
We define

. p—itk
Pny(o+it) = ,
Y kaS:Y kpko-(logpk)m

X(p)*

Ppy(o,X) =

Y kaS]Y kpko'(logpk)m

for (o,m) € A and Y > 3. The following mean value result for P,,y (o + it)
and P,y (o, X) is useful to study the value distribution of 7, (o + it).

Proposition 5.1. Let (o,m) € A with o < 1. Let T,V > 0 be large. Denote by
Ar = Ar(V,Y; 0, m) the set

Ar={t € [0,T] : |Ppy(c +it)| <V} (5.3)
forY > 3. If we further suppose that

3<Y <exp ( log T ) (54)

m+7 (o)

Ve (logV) T

holds, then there exist positive constants by = by(o,m) and by = by(o,m) such

that for any complex numbers z1, zo with |z1], |z2] < b1VTo (logV) "5 we have
1 -
il / exp (lem,y(O' +it) + 2Py y(o + it)) dt
T Ja,

-E [exp (Zle’y(O', X) + 22Pmy(0, X))] +E,
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where E is estimated as

1 m+7 (o) Vi- (T(log V) m-{TE;r)
E < 7 (Vl 7 (logV) T )

+exp ( b2V1 v (logV) mlTErU)) .

After showing some preliminary lemmas in Section 5.2.1, we derive an-
other mean value result which plays a key role in the proof of Theorem
5.1.

Proposition 5.2. Let 1/2 < o < 1 and m € Zsy. For A > 1, there exists

a positive constant b = b(o,m, A) such that for any complex number w with
lw| < b(logT)” (loglog T)™ we have

1 T !
?/0 exp (i (fi,, (o +it), w))dt = E [exp(i{ij,, (o, X), w))| + O ((1 T)A)

where the inner product (-,-) is defined by (z,w) = RezRew + ImzImw for
z,weC.

5.2.1 Preliminaries

Lemma 5.1. Let (0-,m) € A. Then the series of (5.1) converges almost surely.

Proof. For any prime number p, we have

> E|X(p)¥|
E n g N X = =
[nm,p( (p))] kzzl kpka'(IOg pk)m

where the change of the sum and expectation is justified by Fubini’s theorem.
By the prime number theorem, we further obtain

_ 1
ZP:E (17,0, (e X ()| < Zp: g <

since (o, m) € A. Thus the assertion follows from [75, Theorem 17.3.I]. O

Lemma5.2. Let (o,m) € Awitho <1. LetT > 5andY > 3. Forany k,{ € Z51,
we have

%/OT(Pm,y(a +in)* (Py(o+ it))gdt

Y2(k+€)
=)

_E [(Pm,y(a, X))k (Pm,y(a, X))f +0
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Proof. We see that

/ T(pm,y(a +if))k (Pm,y(a n it))f di
0

1
- 010'1 Adkym . . . axo ak\xm
p}aj ’’’’’ pgksy aipy (log pi*) axp,*” (log p}*)
ql1 ..,q/sY
b by \ it
1 /T qy' -4,
% L) ar
blq?lo'(log qi’l)m ... bfq?w(log q?g)m 0 (pélll . 'sz
= Sl + Sz,

where 1 is the sum over the terms with p‘lz1 epit = qll’1 e q?f, and S5 is the
sum over the other terms. Here, for p{" --- pi* # qi” e q?" , it holds that

. b[

T th g it
/ | dt < Y*,
0 pl ... pk
and hence we have

k+€

1

k+¢ 2(k+¢)

S <Y ( Z ap‘w'(logp“)m) <nY .
pesY

We can also write

L) 1 655)

w Ty a1p{" (log p{*)™ - - - axp* (log pi)m

1
X )
1427 (log g2 )™ - - begb ™ (log gof)m
On the other hand, it holds that

k [——————— 14
E|(Pny(c, X)) (Pm,y(m X))
1
@} (og p{)" - aip (log p)”

% 1 [X(pl)“l - X(pr)
b1q} " (log g}y -+ beq)” (log g ym 1 X(q1)"t -+ X(qe)

Since X(p)’s are independent and uniformly distribution on the unit circle
in C, it holds that

i by b
X(p1)* -- 'X(pk)“"] _ {1 if pUt .- plt = ght gl

5.6
X(qPr---X(qo)b | 7|0 if pit - pP # gy qp (56)
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Therefore, we deduce from (5.5) the equation

E l(Pm,Y(U'a X))k (Pm,Y(O'a X))g] =TS,

which completes the proof of the lemma. o

Lemma 5.3. Let {a(p)},ep be any complex sequence. Let T > 5and Y > 3. For
k € Zsq with Y* < T(log T)™!, we have

1 ! —it % 2 k
7 [t dz<<k!(Z|a(p>|).

p<Y p<Y
Additionally, for any k € Zs1, we have

2k

El| > a(p)X(p)

p<sY

< k! (Z |a<p)|2)k.

p<sY

Proof. The former assertion is Lemma 2.8. We prove the latter assertion. By
equation (5.6), we see that

2k
Bl a(p)X(p)
p<Y
X X

= Y atp)-atpata) - atgoe | S0

DP1sesPk <Y q1 dk

q1.-2qk <Y

k
<k Y Ja(pP e la(pol < K (Z |a(p>|2) ,
Plseees Pk <Y p<Y
which completes the proof of the lemma. o

Lemma 5.4. Let (o,m) € A with o < 1. Let T > 0 be large and Y > 3. There
exists a positive constant C = C (o, m) such that

1 T l1-o 2k
— / Py (o +in) Pt < [ —S5 (5.7)
T 0 (log 2k)m+‘r(0’)
for k € Zs1 with Y* < T(logT)™. Additionally, we have
ckl-r \*
2%
E [|Pmy (o, X)|7] < ((log 20 (J)) (5.8)

forany k € Zs1.
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Proof. Suppose that the inequality k log 2k < Y holds. Then we see that

T
/ |y (o +i1)|* dt
0
> e
p0'+it (lOg p)m

T
< 9"(/
0 p<klog2k
T
+/
0

where C is an absolute positive constant. By Lemma 5.3 and the prime
number theorem, it holds that

2k

1 2

k
— | dt+CH*T
pa'+tt(log p)m

2

klog2k<p<Y

k
1 /T 1 2k 1
= ——| dtx k! - -
o klog;psY p7+(log p)™ klog;psY p** (log p)*"
C1k=c 2k
<N\ T Ao s
((log 2k)m+7(a'))

where (1 is a positive constant which may depend on o~ and m. Furthermore,
by the prime number theorem it follows that

2k
1 /T 2k 1
— dt < _—
T Jo Z p? (log p)”

p<klog2k

Cok=o 2k
< ((log 2k)’"+(’) :

1
pg%:g o p0'+it (108 p)m

where C; is also a positive constant which may depend on o and m. From
the above estimates, we obtain estimate (5.7). If the inequality ¥ < klog2k
holds, then we have

1 - Crkl—c
7 (log p)™ (log 2k)m+o

Ppy(o+it) < Z

p<sY p

by the prime number theorem. Hence, estimate (5.7) follows in this case.
Similarly, we can prove estimate (5.8). O

Lemma 5.5. Let (o,m) € A with o < 1. Let T,V > 0 be large. There exists a
small positive constant ¢ = c¢(o-, m) such that

Pr (|Pmy (o +it)] > V) < exp (—cvﬁ(log V)%Ef)) (5.9)

if Y > 3 satisfies (5.4). Additionally, we have

P (|Pmy(o, X)| > V) < exp (—cvﬁ(log V) m;zfro)) (5.10)
foranyY > 3.
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Proof. Note that (5.4) implies the condition Y* < T(log7)~!. Then we derive
from (5.7) the estimate

11 /7
PT (|Pm,y(a'+it)| > V) < Wf‘/ov |Pm,Y(O-+it)|2kdt
1 ( Clo,mk'™" 2k
<
V2k (log 2k)m+T(0')

Hence, choosing k = [clvﬁ (logV) —'"{jff)] with ¢1 a suitably small constant

depending on o and m, we obtain inequality (5.9). Similarly, by using (5.8),
we see that

1
B (1P (o, X1 > V) < B [Py (o X)1]

1 ( C(o,mk'= )2k
<

V2k (IOg 2k)m+‘r(0')
holds for any ¥ > 3. Thus again choosing k = [clvﬁ (logV) —'"Kf,”)], we
obtain inequality (5.10). O

Lemma 5.6. Let (0,m) € A, and let T > 0 be large. ForY > 3 and W > 0, we
denote by Br = Br(Y, W, o, m) the set

By = {t € 14,T] : |7, (o +it) — Ppy(o +in)] < Wy%—f’} . (511)

There exists a small positive constant ¢ such that

% meas([14,T] \ By) < exp (—CWZ(log Y)Zm)

m

for0<W < ((log T)(logY )‘2(m+1))2m+1. Moreover, we have
% meas([14,T] \ Br) < exp (—c(W(log T)m)ﬁ) (5.12)

for ((log T)(logY) —2(m+1)

—m_
) 2m+1

< W < (logT)(logY)~m+D),

Proof. When m € Z51, this lemma is a little modification of Lemma 5.6, and
the proof is the same as that for Lemma 5.6. When m = 0, this can be also
proved similarly by using [116, Corollary in page 60] or Proposition 6.6 in
Chapter 6. O

Lemma 5.7. Let (o,m) € A. LetY > 3 and W > 0. There exists a small positive
constant ¢ such that

P (|ﬁm(0', X) = Py (o, X)| > Wy%“’) < exp (—ch(logY)zm) .
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Proof. We see that

E [|ﬁm(0-’ X) - Pm,Y(U', X)|2k] =K

Z X(p)
[pf(r (IOg pf)m

pt>Y

Zkl
Additionally, we find that

X(p)t 1
Z £ 60'(1(5) f)m < 1
p[>Y p gp

Y”‘i(logY)m.
=2

Therefore, it holds that

E [|fiy (0, X) = Py (o, X) 1]

xp) ., ct Y
Z pa(logp)m (Y20'—1 (log Y)2m)

p>Y
for some constant C > 0. Similarly to the proof of Lemma 5.3, we obtain

D X(p) [*
p“ (log p)™

p>Y

‘ kC k
] (ZY pZO'(logp)Zm) = (YZO'—l (log Y)Zm)

Hence, it follows that

kC ¢
E (|7, (o, X) = Py (o, X)|?*] <
[|77m(0- ) ,Y(O- )l ] (YZU’—I (log Y)zm)
This inequality leads that

P (lﬁm(o-’ X) - Pm,Y(O', X)| > WY%_O-)

1 kC g
<—— E[li, (0. X) = Ppy(c, )] < |
< (WY%—U')zk [|nm(0- ) y (o, X)| ] (Wz(IOgY)Zm)
Choosing k = [e"!C1W?(log Y)?"], we obtain this lemma. O

Lemma 5.8. Let (o,m) € A. ForY > 3 and w € C, we have

E [exp(i(f, (o, X), w))| = E [exp (i(Pmy (o, X), w))| + O

lwl
Yo ~2(log Y)
Proof. By the definition of #,,(c, X), we see that

E [exp(i (A, (o, X), w))]

=E

kpka(logpk)m w

k 5.13
exp(l(Pmy(O'X)w)+l(Z X(p) >)] 6.13)
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Since the estimate

Z X(p)* 1
<
= kpko(logpk)m Y20'—1 (IOg Y)m

<
o~

k>2

holds, we have

X(p)k _ X(p) |w|
<p;y kpkv(logpk)m’w> - <Z pa(logp)m’w> +0 (YZO-—l(log Y)m)

p>Y

by applying the Cauchy-Schwarz inequality |(z, w)| < |z||w|. Furthermore,
by the inequality |e?? — ¢®| < |b — a| for a, b € R, the left hand side of (5.13)
is equal to

[wl
Y2o-1(logY)" |
From the independence of X(p)’s, we see that the above expectation is equal
to

E |exp (l(Pmy(a X), w>+l<§lﬁg%m w>) +0

E [exp (i{(Pmy(o, X),w))| XxE

X(p)

p>Y

Moreover, by the Cauchy-Schwarz inequality and the inequality |e™ —1| < |x|
for x € R, we find that

exp |i wy|| -1
P <Y2;Zp000gpy1 ”
Z _X(p) <|w||E
p? (log p)™
forany Z > Y. Applying Lemma 5.3, the last is

' Y<p<Z
1\ ]
w
< |wl - | <«—
(Y;z pza(logp)zm) Y72 (log Y)™

E

< |w|E

Z X(p)
p7 (log p)™

Y<p<Z

2 )1/2

Therefore, by Lebesgue’s dominated convergence theorem, it holds that

X(p)
E [exp (KZ p“(logp)’" )

p>Y

_ X(p)
exp (z( Z p‘T(logp)m >)

Y<p<Z

=1lim E =1+0

Z—00

W]
yo-2 (logY)™
and hence, (5.14) is equal to

E [exp (i{Pmy (o, X),w))] + O

[wl
Yo~ 2(log Y)™
Thus, the left hand side of (5.13) is also equal to the above. ]
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5.2.2 Proofs of mean value results

Proof of Proposition 5.1. Let (o,m) € A be fixed. Suppose that Y satisfies
inequality (5.4). By the definition of the set A7 = Ar(V,Y; o, m), we find that

/ exp (lem’y(O' +it) + 2Py (o + it)) dt (5.15)
Ar
47 it 2122’ ke
= Z 22 [ poy(o+it) Pay(o+it) dt+0|T Z B B2l kst |
ke Ja ’ ’ k¢!
k+(<Z T k+(>7
k,fGZZQ k,KGZZo

where Z = C3V1 7 (log V) o, and c3 is a small constant decided later. For

m+‘r((r)

|z1], |z2] < 27 23V (log V) “To - = 271e 2V 1 Z, it holds that

Z |11L'|ZZ'2| VR < Z - Z ( ) (2—1e‘2z)n = Z % (e_zZ)n

k+t>7Z n>7Z
k,€€Z>0

< Z e < exp (—C3Vﬁ(log V) mﬂf)) (5.16)

n>7Z

by the Stirling formula. On the other hand, we can write

—_—
/ Pm,y(0'+l't)kpm,y(0'+l‘l) dt
Ar

T
_ R
= / Py (o +it) P,y(o +it) dt - / Puy(o +it) P,y (o +it) dt.
0 [0.TT\Ar

Recall that Y** < T(log T)~! is satisfied for k+¢ < Z if c3 is sufficiently small.
By using the Cauchy-Schwarz inequality and estimates (5.7), (5.9), we have

1

_—
—/ Pm,Y(cT+it)kPm,y(o-+it) dt
T Jior\ar

1 V211 pT 2(k+t 12
< (T meas([0,T] \AT)) (?/ |Pm,y(o-+it)| ( +)dt)
0

+7 (0 1-0 k+€
<<exp(__vl”(log V) mit(o) >)(C(m,0')(k+€) )

(log2(k + £))m+7(@)
mee()\ [ C(m, o) ZV7 et
<exp (__V1 7 (log V) 7" ((log2Z)m+T(0))
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for 1 < k+¢ < Z. We note that the same is true for k = £ = 0 by estimate
(5.9). Therefore, we have

k€

1 772 -,
T Z 1, ?/ Pm,Y(0'+it)kPm,y(0'+it) dt
T &2, K Jomar
k.0eZ5
m+7 (o) 1 m+-r(o—) k+C
< exp (——V1 7 (logV) T ) Z — (2 1C’c3V e (log V )
k!¢
0<k+t<Z
kf€Z>o

< exp (—%Vﬁ(log V) " ) exp (C Ve (log V)T ira)) ,

where C’ > C(m, o) + 1 is a positive constant not depending on V and cs.
Hence, choosing c3 = ¢1/4C’, we obtain

k€

1 2z -,
T Z 1. ?/ Puy(o +it) P, y(o +it) dt
T &2, K Joma

k,fEZZ()

< exp (—%Vﬁ(log V)%frg)) < exp (—C3Vﬁ (log V)%ff)) . (6.17)

Thus, by (5.15), (5.16), and (5.17), we have

1 _—_—
T / exp (Z1Pm,Y(0' +it) + 2P y(o + it)) dt (5.18)
Ar
1 kel .,
T Z kll;/ Py (o +it)*Ppy(o +it) dt
kit<z vt /0
k,teZ

+0 (exp ( c3VTe (logV) " )) .

Applying Lemma 5.2 to the integral on the right hand side, we see that its
first term is equal to

2, E
k+t<Z
k,fEZZ()

=E [exp (zle,y((r, X) + 2Py (o, X))]

k é’

< <t
klwfme(o- X) PmY(O- X)

0 (; (V7% (log 1) "5y )”)

k_t

21 e a—
- > 22| Par(e 0 Py (@ X)]
k+e>7Z T
k,é’eZZo

1 m+7(0) 2Z
+O(T (Vlfr(logV) T ) )
By using the Cauchy-Schwarz inequality and estimate (5.8), we obtain

— Clo,m)(k + )17\
E [Pm,y(a, X) Py (o, X) ] < ( (log2(k + 5))%(0))
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By this estimate, a calculation similar to (5.16) shows that
k.t

—Z ¢ > v m+7 (o)
Z kl,ﬁE [Pm,Y(O', X) Pyy(o,X) ] < exp (—c3vﬁ(10g V) e )
k+t>Z

k.LeZ2

Hence, the left hand side of (5.18) is equal to

E [exp (zle,y(O', X) +z22Pny(o, X))]

1 o m+7 (o 27 m+7 (o
+0 (? (Vﬁ(log V)%Y) +exp (—C3Vﬁ (logV) o ))) ,

which completes the proof of Proposition 5.1. o

Proof of Proposition 5.2. Suppose that Y satisfies (5.4), and let w = u + iv be
a complex number with u,v € R. Let 0 < W < (|w| + 1) bea parameter
chosen later. Then we see that

T
%/0 exp (i{f,, (o +it), w)) dt (5.19)

1
= l/ exp (i{fi,, (o +ir),w)) dt + O (—(meas([O, T] \BT)) )
T Js, T
From the definition of the set By = By (Y, W; 0, m), we can write
exp ({7, (o +it), w)) = exp (i{Puy(c +if), w)) + O (|w|WY%—f’)

for all t € Br by using the inequality |e”” — ¢/| < |b — a|. By this formula, the
integral on the right hand side of (5.19) is equal to

1 / exp (i(Pmy (0 +if), w)) di + O (|W|WY%-C’)
T Jg,
_ L / exp (i(Pmy (o +it),w)) dt
T Ja,
1
+0 (|w|WY%_‘T + T {meas([0,T] \ A7) + meas([0,T] \ BT)}) .
Therefore, by this formula and Lemma 5.5, the left hand side of (5.19) is

= %/ exp (i(Pmy (o +it),w)) dt

At

m+7(0)

+0 (WY + exp (—eV e (log V)52 ) + £ meas([0.7] \ Br)) .
p g 7

Here, applying Proposition 5.1 to the integral on the right hand side with
71 = 5(u —iv), 22 = 5(u +iv), the above integral is equal to

E [exp(i(Pmy (o, X),w))]

1 m+7(0)
m+7 (o) )Vlo— (IOgV) 1-o m+7 (o) ) )

+0 %(Vﬁ(logV) o Y +exp (—cVﬁ(logV) T
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m+7 (o)

for |w| < ¢cV¥7 (logV) T+ . Moreover, applying Lemma 5.8, we find that

E [exp(i(Pm,y(O', X), w))] =E [exp(i(ﬁm(a, X), w))] +0

lwl
yo-2 (logY)m
Hence, for |w| < cVTs (logV) SE , we obtain

1 T
—/0 exp (i(f,, (o +it), w)) dt — E [exp(i(fi,, (o, X), w))]

T
< |w|WY%‘“ +exp (—cvﬁ (logV) E=o )

+ %meas([O, T]\ By(T,W))

1 m+7 (o)
1 o mir(o) \VI-o (logV) T-o
+ (V7 Qo1 Yo
d Y7 2(logY)™
. 1/2 _A+2 (log T) 71710_ .
Choosing W = (logT)"/%, Y = (logT) 12, and V = caqfoammr with c3 a

small constant depending on o, m, and A, we have

1 [T :
?‘/0 exp (i{f,, (o +it), w)) dt = E [exp(i(fi,, (o, X), w))| + O ((logT)A)

for [w| < c4(logT)? (loglogT)™ from estimate (5.12). Here, c4 is a small
constant determined from c3. Thus, we complete the proof of Proposition
5.2. |

5.3 Probability density function for 7,, (o, X)

The goal of this section is the following proposition.

Proposition 5.3. Let (o, m) € A. There exists a continuous function Dy ,, : C —
R0 such that

B(77, (. X) € A) = /A Do (2) ldz,

for all A € B(C), where |dz| = (2r)"'dxdy for z = x +iy. Furthermore, the
following properties hold.

(i) Let m > 1. If1/2 < 0 < 1, then Dy y(z) > 0 forall z € C. If ¢ > 1, then
D is compactly supported.

(ii) Let m =0. If1/2 < 0 <1, then Dy, (2) > Oforall z € C. If o > 1, then
D is compactly supported.

(iii) Let (o,m) € A. For any a > 0, we have
/ Dy (2) |dz] < o
o
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The distribution of #,, (o, X) is the probabilistic measure defined as
Hom(A) = P(i, (o, X) € A) (5.20)
for A € B(C). Let p be a prime number. We also define

Ho,m,p (A) = P(ﬁm,p(o-’ X(p)) € A)
for A € B(C), where 7j,, (o, X(p)) is defined from (5.2).

Lemma 5.9. Let (o, m) € A. The convolution measure

YomN = Hom,p; ¥ * Hom,py (521)

converges weakly to ps , as N — oo, where p, indicates the n-th prime number.
Furthermore, the convergence is absolute in the sense that it converges to (i, in
any order of terms of the convolution.

Proof. Recall that #,, ,(o, X(p)) and #,, ,(o, X(g)) are independent if p and
g are distinct prime numbers. Hence, the distribution of 7, ,(co, X(p)) +
fim,q (0 X(q)) equals to pio m,p * Hemq- More generally, we see that

Vomn(A) =P D i, (0, X(pn) € A
n<N

for all A € B(C). By Lemma 5.1, 3, <y fin , (07, X(P1)) — (07, X) in law
as N — oo, i.e. Vg u N — Uom Weakly. The absoluteness of the convergence
follows from Jessen-Wintner [54, Theorem 6]. O

In general, the support of a probability measure P on (C, 8(C)) is defined
as

supp(P) ={z€C : P(A) > 0forany A € B(C) withz € A'},

where A’ is the interior of A. We know that supp(P) is a non-empty closed
subset of C. Applying Lemma 5.9, we can study the support of ps .

Lemma 5.10. Let (o,m) € A and py,m be the probability measure defined as
(5.20).

(i) Let m > 1. If1/2 < o < 1, then supp(pom) = C. If o > 1, then
supp(te.m) is a compact subset of C.

(ii) Letm =0. If1/2 < o < 1, then supp(tgm) = C. If o > 1, then supp(to-m)
is a compact subset of C.

Proof. Let {An}nen be a sequence of subsets of C. We denote by limy_,. Ay
the set of all points in C that may be represented in at least one way as
the limit of a sequence of points a, € A,. For A,B c C, define A + B by
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{a+b : ae A beB}. Then Jessen and Wintner [54, Theorem 3] proved
that

supp(P) = 1\1]13}0 (supp(P1) +- - - + supp(Pn))

if the convolution measure P; * - -- * Py converges weakly to P as N — oo.
Applying further [54, Theorem 14] with P, = ts  p, for m = 0, we obtain
assertion (ii). Now, we consider the case m > 1. By Lemma 5.9, we have

supp(tom) = ]\1111}0 (Supp(/l(r,m,m) +oot Supp(,ua,m,p;v)) .
Note that the support of every u ., is determined as

supp(Uomp) = {ﬁm,p(o-a eie) NS [0,27‘()}

by the definition. First, we let 1/2 < o < 1. In this case we apply [112,
Theorem 5.4] to deduce that for any z € C, Ny > 1, and & > 0, we have

Lins1 (2,7 Py e
(Z 2. <logpn>m) 2 Togp| <

n<Ny No<n<N

with some N = N(z, Ny, €) > Ny and {6, }n,<n<n € [0,27)¥~N0. We also derive

Lijps1(p, 7€)
Z (log pn)™ Z (log pa)™ gpn)’”

No<n<N No<n<N

if N is sufficiently large. These imply supp(tsm) = Cfor1/2 < o < 1. Next,
we let o > 1. Then we have

Zn’"” (™) < Z pnlogpn

for any {6,},.v € [0, 27)N in this case. Hence, supp(te,m) is included in a
bounded disk, which completes the proof. o

Lemma 5.11. Let (o, m) € A. Then the expected value E exp (alf,, (o, X)I)] is
finite for all a > 0.

Proof. Since 3, <, f (0, X(p)) — #,,(0, X) in law as y — oo, we have, by
Fatou’s lemma,

E [@(7, (o, X))] < liminf B|@{ 3" 7, (. X(p))

p<y

(5.22)

for any continuous function ® : C — Ryo. In particular, we can take the
function ®(z) = exp(+ta Rez). In this case, we have ®(z + w) = O (z2)P(w),
and therefore the equation

@ > Ty (0 X ()

p<y

- H E [‘I’ (ﬁm,p(fﬂ X (p)))] (5.23)

p<y
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holds since {X(p)}yep is a set of independent variables. If we suppose
p > al/?  then the estimate

2

follows by the Taylor expansion. This implies
_ a
E [q; (Um,p(O', X(P)))] =1+0 (IW)

since E [Ref,, (o, X(p))] vanishes. Recall that 3, p~7 (log p) ™" is finite if
(0,m) € A. Hence, we conclude that the infinite product

[1E @ (finp(o X (0D |
]

converges, and that E [Cb(ﬁm(a, X ))] is finite by (5.22) and (5.23). From the
above, we deduce

E [exp(al Re i, (o, X)))]
<E [exp(aRef},, (o, X))| +E [exp(-aRef,, (o, X))| < 0.

One can prove thatE [exp(al Im7,, (0, X) |)] is finite by replacing the function
® by ®(z) = exp(+aImz). By the Cauchy-Schwarz inequality, we conclude
that

E [exp (alf,, (o, X)1)]
< \E [exp (2a] Re (e, X)) ]y/E [exp (2al Im 7, (o, X)])] < o0

as desired. m]
The characteristic function of u.,, of (5.20) is represented as
AW; g m) =E [exp(iu Re#,, (o, X) +ivIm#7,, (o, X))]

= | E [exp(iuRe,, , (o, X (p)) +ivImi,, (o, X (p)))]
p

= l_l A(W; ,ua',m,p)
p

for w = u+iv since pe m,p, * - * hompy — Hom Weakly as N — oco. Applying
this infinite product expression, we prove the following result.

Lemma 5.12. Let (o, m) € A. Suppose that |w| > c(o, m) with a large constant
c(o,m) > 0. Then we have

AW )| < exp (=Iw]'/27)
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Proof. Since |A(W; o m,p)| < 1 for every p, the inequality

A )| < | | 1AOW; 1 mp)] (5.24)
pEP

holds for any subset % c P. Put P(M) = M|w|'/” for M > 1. By the Taylor
expansion of exp(z), we obtain
exp(iuReip,, ,(o, X(p)) +ivim7p,, (o, X(p)))
=1+iuRef, (o, X(p)) +ivImij, (o, X(p))
1. o o 2 (lul + v])°
+ E{W Ref,, (o, X(p)) +ivImi, (o, X(p))}"+ O (IW
for p > P(M7) with some M7 > 1. We have

E [Ref,, (07, X(p)] = E [Im7},, , (o, X(p))] =0,

E [Ref,, , (o, X(p)) Im7,, (o, X(p))] =0,
and

. 20
E [(Re ﬁw(a,X(p)))z] -E [(Im ﬁm,p(a,X(p)))z] = %%

Therefore, the characteristic function A(w; ys m p) is evaluated as
|w|? Ligms2(p™) w?

4 (logp)m p
Hence, we deduce the asymptotic formula

WP Lo (0> | ( P )
4 (logp)* p> (log p)>"
if p > P(M>) with some M, > M;. We notice that the inequalities

|w|? Ligms2(p™27) 1 wl?
4 (logp)?m — 4p27(logp)*™’
w1 P
p30'(logp)3m - Mp20'(10gp)2m
are satisfied for p > P(M) with any M > 1. Hence, there exists an absolute
constant M3 > M, such that the inequality
1P
8 p>* (log p)*"
holds for p > P(M3). Therefore, taking & = Ps p(u,) in (5.24), we deduce

AW; ttgmp) =1 -

108 |A(W/' IUO',m,p)| =

10g |A(W} ,u(r,m,p)| <

w? 1 o
AW pem)| S exp|—o- Y | < exp (w7
8 p>Piy) P 7 (log p)=" ( )

if |w| > ¢(o, m) with some large constant c(o, m) > 0. O

107



Proof of Proposition 5.3. By Lemma 5.12, we see that

/ AW o) [dW] < co.
C

Therefore the probability measure y ,, is absolutely continuous in the sense
that it is represented as

Hom(A) = /A Do m(2) ld2]

for all A € B(C) with some non-negative Lebesgue measurable function
Dy . By Levy’s inversion formula, we can determine one of such functions
as

Dor(2) = /C AOW; fioram) eXp(—iz, w)) |, (5.25)

which is a continuous function. We prove properties (i)—(iii). Remark that
the support of the function D, ,, is equal to supp(u. ) studied in Lemma
5.10. Let m > 1. Then the fact that D ,, is compactly supported for o > 1 is
a direct consequence of the lemma. Let 1/2 < o < 1. To prove the positivity
of Dy, (z), we define two probabilistic measures

b _ # _
Vo-,m,N = Hom2 * #O',m,p'{ * * lu(r,m,p';v and Va',m,N - /’t(r,m,p? * * lua',m,pﬁ]

as analogues of (5.21), where pﬁ’, is the n-th prime number congruent to 1
(mod 4), and p is the n-th prime number congruent to =1 (mod 4). Then
it can be proved that vz_,m’ v and vi’ .y converge weakly to some probability
measures ,u'ZTm and ,uim as N — oo, respectively. One can check that the

limit measures ,ufr’m and ,uf;’m satisfy many of the same properties as s n
described above. In particular, we have

SUPP(M'fT,m) = supp(uﬁ,m) =C
for 1/2 < o < 1 along the same line of Lemma 5.10. Furthermore, we obtain
|A(w; 2l ), TAGW; )] < exp (_|W|1/<za))

as analogues of Lemma 5.12. Therefore, there exist non-negative continuous
functions D’ ,, and D¥ , such that

W (A) = /A D) (2)ldz] and 4, (A) = /A DY, (2) |dz]

for all A € B(C), whose supports are equal to Cif 1/2 < o < 1. Recall that

b #
Vomn * Vomy converges weakly to pig, as N — oo by Lemma 5.9. Hence,

we deduce the equation

Dom(z) = / DY, (z = W)L, (w)ldw]
C
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for any z € C. Since the functions D, ,, and D, are continuous and are
non-zeros on every disk on C, we see that D ,,(z) > 0 for any z € C. Hence,
the proof of assertion (i) is completed. We note that assertion (ii) is just a
consequence of [54, Theorem 14]. Finally, we have

/Ce“lZ'Da,m(Z) |dz] = E [exp (ali, (e X))] < o0

for any a > 0 by Lemma 5.11. Thus, we complete the proof of assertion
(iid). O

Let (o,m) € A. By Lemma 5.11, we see that the moment-generating
function

E [exp(sRe(e™, fj,, (0. X)))]

exists for any s € C. The following lemma is used in the proof of Theorem
5.2.

Lemma 5.13. Let (o-,m) € A. ForY > 3and s = k + it with |s| < Y(’_%(log Y)”,
we have

E [exp(sRe e, (0, X))| =E [exp (sRee Py y(0, X))
K

+0|E [exp(KRe e_mf]m(o'a X))] oL
Y7 2(logY)™

Proof. Since the estimate

X(p)* 1
Z kpk"'(lo pk)m < Yzzr—l(lo Y)m
ot g g
k>2

holds, we have
E [exp(sRe e, (o, X))]

=E

: Ree @ X
exp|sRee P, y(c,X) +s Z Ree ™ X(p)

= p7(logp)™

|s]
o|l—————
(Yz"‘l(logY)m))] (5.26)
Ree X (p)

-E
p? (log p)™

sRee P, y(c,X) +s Z
p>Y

exp

Re e @X(p)

+0
p? (log p)™

ElkRee P, y(o, X) +« Z

p>Y

|s|
y20-1 (log y)m ’
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Note that the independence of X(p)’s yields

Ree X (p)
p? (log p)™

[ex (sRee_i"X(p)
p p7 (log p)™

E sRee P, y(o,X) +s Z

p>Y

=E [exp (sRee Py y (0, X))| x 1—[ E
p>Y

exp

| oo

Furthermore, if p > Y, we find that the inequality

||
< <1
p? (log p)™

’SRe e X (p)
p7 (log p)”

holds for |s| < Y7 (logY)™. From the Taylor expansion of exp(z) we deduce

exp (SRe e_i“X(p))] _E Ree X (p) ‘O ( |s|? )]

E
p? (log p)™ p? (log p)m P27 (log p)2m

1+s

=1+0 (—MZ )
pZO'(logp)Zm

since the expected value E [Re(e‘i“ X( p))] vanishes. Therefore, by equation
(5.27), the formula

Re e @X(p)

E
p“ (log p)™

sRee P, y(o,X) +s Z
p>Y

=E [exp (sRee P, y(o, X))]

exp

+0

E [exp (kRee P, y(0,X))| ———
[ p( ! )] Y‘T_%(logY)m)

holds for |s| < Y -3 (logY)™. Inserting this to (5.26), we finally obtain
E [exp(s Re e, (0, X))]

=E [exp (sRe e P, y(o, X)||1+0

|s]
yo-: (logY)m
which yields the result. o

5.4 Discrepancy bounds: Proof of Theorem 5.1

In this paper, we derive discrepancy bounds by applying Esseen’s inequality.

Lemma 5.14 (Sadikova [103]). Let P, Q be probabilistic measures on (R?, B(R?))
with the distribution functions

F(s,1) = P((=0c0,5] X (=00,t]) and G(s,1) = Q((—00,s] X (=00, 1]).

110



Denote by f(u,v) and g(u, v) the characteristic functions of P and Q, that is,

f(u7 V) = / ei(ux+VY) dP('x’ y) ﬂl’ld g(”’ V) = / ei(ux+vy) dQ()C, y)
R2 2

R
Furthermore, we put

f(l/l,V) = f(l/l,V) - f(u,O)f(O, V) and §(u,v) = g(u,v) —g(u,O)g(O, V).

Suppose that G(s,t) is partially differentiable and that G(s,t) and G,(s,t) are
bounded on R?. Then we have

2
sup |F(s,t) —G(s,t)| < //
(s,z)£R2 (2m)? JJi—r.Rp2

+ﬂ[R J(u,0) —g(u, 0)‘ /R

+ (6\/5 +8V3 + 7) (A1 + Ap)R™! (5.28)

f(u,v)—g(u,v) dud

uy

f0.) =500

v

forall R > 0, where A1 = SUP (5 1)cR? |Gs(s,1)| and Ay = SUP (5 )er2 |G (s,1)].
To begin with, we prepare the following result.
Lemma 5.15. Let (o-,m) € A, and let T > 0 be large. We have

1

T
—/ |7,,(0 +it)[2dt <gm 1.
T Jo

Proof. Let X = T'/13%, and put

. _ . A(n)
Ryu(o+it; X) =1,(0 +it) — — —.
ZSnZSXn i (log n)m*

Then we see that

|7, (o +it)|* < 4 +4|R, (o +it; X)|?.

5 Ay |
n0'+it (lOg n)m+l

2<n<X

By Lemma 2.1 and Theorem 2.6, we have

1 7 ) T3
—/ Ry (o +it; X)|"dt « ————.
T Jo (log )%™

Also, we can write

D Ay P
na’+it(10g n)m+1

2<n<X

- Z k2(m+1)p2k0'(10g )2

k<X

1 1 k _—C
+ (p p ) .
pk;<x km+1pk0'(logp)m €m+1q£’0'(10g q)m
(p.k)#(q.0)
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Therefore, we obtain

T 2
/ > — Aln) dt
0 n0'+lt(10g n)m+l

2<n<X
=T Z k2(m+1)p2k0'(logp)2m

k<X

. 1
' 0 ([log(p*q™)|" ).
P"%sx (ke)m+1(pkq)” (log p log ¢)™ (| & | )
(p.k)#(q.0)
The first sum on the right hand side is = O, ,(1). Next, it holds that

|10g(pkq_€)|_1 < X when p¥, ¢' < X and p* # ¢'. Hence, the second sum is

2
1 2
< X < X°.
(pgx k2(m+1)p2k0' (logp)?.m

From the above estimates, we obtain this lemma. O
Proof of Theorem 5.1. Identifying C with R?, we apply Lemma 5.14 with
P(A) =Pr(fj, (o +it) e A) and Q(A) =P(#,,(c, X) € A).

In this case, the distribution function of Q is given by

K t
Gs.1) = / / Doy (x +iy) |dz]

by Proposition 5.3. Hence, it is partially differentiable, and we have

sup |G(s,t)| < sup Dy (s +iy)dy < oo,
(s,t)€R? seR

sup |G(s,t)| < sup Dy p(x +it) dx < oo.
(s,t)€R? teR

Furthermore, the characteristic functions of P and Q are given by

T
f(u,v) = %/0 exp (i, (o +it),u+iv)) dt
g(u,v)=E [exp(i(ﬁm(O', X),u+ iv))] .

We begin by considering the estimate of the first integral on the right hand
side of (5.28). Let r = (log T) 2 and define

U={(u,v) € [-R,R]* : |u| >rand|v|>r}.
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Then we have

dudv

f(M,V) - g(M,V)

u
2

I

< (1og§) sup | f(u,v) - g(u,v)|. (5.29)

(u,v)€[-R.R]?
We estimate the difference | f(u, v) — g(u, v)| as follows. First, we have
1f (e, v) = 8@, v)| < | f(u,v) = g(u, v)| + | (1, 0) = g(u,0)] +1£(0,v) — (0, v)|
by the definition. Then Proposition 5.2 yields
|f (u,v) = g(u,v)| < (log 7)™

for (u,v) e Uif wetake R = %b(log T)? (loglogT)™. One can prove the same

estimate for | f(u,0) —g(u,0)| and | f(0,v) —g(0,v)|. Inserting these estimates
to (5.29), we obtain

I

Next, we consider the case (u,v) ¢ U. We have

SR =80} gugy < (10gT) *(loglog 7). (530

A

flu,v)y ={f(u,v) = f(u,0) = £(O,v) + 1} = (f(«,0) = 1)(f(0,v) = 1)
= / (e™ —1)(e”" — 1) dP(x,y)
R2

- / (e™ —1)dP(x,y) - / (e”” —1)dP(x,y).
R2 R2
Recall that ¢’ — 1 < |6 holds for any 6 € R. Then we deduce
fu,v) < |uv| / (2 +y?) dP(x,y) <o luv| (5.31)
R2
by Lemma 5.15. Furthermore, we see that
20y < vl [ (2437 d0Gy) = vl [ PDem(ldz] (532
R C
holds similarly. Recall that the integral
1= [12PDem(ld
c

is finite by Proposition 5.3 (iii). As a result, the estimate

// ACAVE (R0 P // 1 dudv
— [-R.R]2\U

uv
< (logT)"?(loglogT)™  (5.33)
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holds. We proceed to the second integral on the right hand side of (5.28).

We divide the integral as
—r r R
du = ( / + / + / )
-R -r r

/R f(l/t,O)—g(I/t,O)
-R

u
By an argument similar to (5.30), we obtain

L)

For the integral over [-r, r], we use the estimate

f(I/t,O) B g(u,O)‘ du.
u

f(u,0) ;gwa(’)‘ du < (logT)*(loglog T).

P =50 = [ @ =1 aPxy) = [ (@ =1 d0(w) <l
similarly to (5.31) and (5.32). It yields
/_r f(l/l,O) _g(u’o)‘

_r u

Note that the same estimates are valid for f(0,v) — g(0,v). Therefore, we

obtain
R _ R
[]peo g(u,m‘ aus [
—-R u R

< (log T)™ (loglogT) + (logT) 2,
Combining (5.30), (5.33), and (5.34), we conclude

du <g ., (log T)72.

f(()’ V) - g(o’ V)

4

dv (5.34)

sup |F(s,1) — G(s,1)| <om (logT) *(loglogT)?
(s,t)eR2

+ (log T)" 2 (loglogT)™ + (logT)™7 (loglog T)™
< (logT) 7 (loglogT)™
by Lemma 5.14. Finally, using the inequality

sup |PT(f7m(0'+it) e R) -P(7,,(0,X) € R)| <4 sup |F(s,t)-G(s,1)|,
R (s,t)eR?

we obtain the desired upper bound for D, ,,(T).

5.5 Preliminaries for the results on large deviations

5.5.1 Results on polylogarithms
Letm € Z and a € R. We define

ok
A,(0;m, @) = Re e @ Li,, (re'?) = Z ]:—m cos(kO — a)
k=1
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function A, (0; m, @) satisfies the differential relation

for 0 € R, where 0 < r < 1/V2 is a real number. By the definition, the

2.(0;m,a) =2,(0;m—-1,a —n/2). (5.35)
We begin with the following lemma on zeros of 1,(6; m, ).

Lemma 5.16. Let m > 0 and a € R. For any fixed real number 0 < r < 1/V2, the
function A,(6; m, «) has exactly two zeros in the interval [0, 27).

Proof. We prove this lemma by induction on m. Note that Lip(z) = z/(1 - z).
Therefore, we see that 1,(6;0, @) = 0 if and only if cos(6 — @) = r cos a. There
exist only two such ’s. Let m € Z>1. We assume that 4,(6; m, @) has exactly
two zeros in the interval [0,27) for any « € R, 0 < r < 1/ V2. We have
A-(0;m, @) = 2.(6;m +1,a + n/2) by relation (5.35). Note that the function
A,(6; m+1, a+m/2) is smooth and periodic. Thus A;(6; m+1, a+nr/2) vanishes
at least twice in the period. Hence, there exist at least two zeros of A, (6; m, @)
in [0, 27). If there were three zeros of A,(8; m, @) in [0, 27), then we saw that
A.(6; m, @) has also three zeros in [0,27) by Rolle’s theorem. However, it
implies that the function A,(6;m — 1, @ — 7/2) has three zeros in [0, 27) by
(5.35), which contradicts the assumption of induction. |

Let m € Z>1 and @ € R. Denote by 61 and 6, the zeros of A,.(6; m, @) with
0 < 61 < 0y <2n. Then we have A,(61;m,a) # A,(02; m, «); otherwise we
have the third zero of 1,.(6; m, @) between 61 and 6,. Furthermore, we obtain
the following result as a consequence of Lemma 5.16.

Lemma 5.17. Let m > 1 and a € R. For 0 < r < 1/V2, there exist real numbers
01 =01(m,a,r)and 6, = O(m, @, r) with 61 < 62 < 61+ 21 such that the function
A-(0; m, @) is decreasing for 01 < 6 < 6, and is increasing for 6 < 6 < 61 + 2.

Proof. Let 0 < 6; < 6 < 2r be the zeros of 1.(6;m,a). If 1,(81;m,a) >
A,(62;m, @), then we have

<0 forf; <6<6y,

.(0;m, @) {

>0 forf, <60 <6;+2n

since there exists no zero except for §; and 8, by Lemma 5.16. Then the result
follows by taking 6; = ;. In the case of 4,(61;m, @) < A,(02;m, @), we take
61 = 6, and 6, = 6, + 2n. Then we obtain the desired result similarly. o
Lemma 5.18. Let m > 0 and a € R. We have

/lﬁn)(e;m,a) <nlr

uniformly for 0 < r < 1/v2,n > 0,and 6 € R.
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Proof. By (5.35) and the definition of 1,(6; m, a), we have
/lﬁ”)(G;m,a) =A.(0;m—-—n,a-n/2) < Z k'rk = S, (r).
k=1

We prove the upper bound S,(r) < n!r by induction on n. The bound is
elementary for n = 0. If n > 1, we have

00 n—1
(1=7)Su(r) =r+ > {(k+1)" = k"} ! = r(l £ (’;)S,(r)).
k=1 =0

Hence, the desired estimate on S,,(r) holds by the assumption of induction.
O

Let B8 denote
B = {(m (0,1/\/5]) me zm24} U{(m, (0,0.15]) : m=0,1,2,3}.

Lemma 5.19. Let m > 0 and « € R. Denote by 61 = 01(m,a,r) and 6y =
02(m, a, r) the real numbers of Proposition 5.17 for 0 < r < 1/V2.

(i) We have |4}/ (01;m, )| > r for (m,I1) € Bandr € L.

(ii) There exists an absolute constant d > 0 such that 6, — 61 > d for (m,I) € B
andr € I.

(iii) For any 0.15 < r < 1/\/§ and m = 0,1, 2,3, there exists a positive integer
n1 = ni(m,a,r) such that /15")(91;171,&) =0forl <n < 2n-1and
22 (91 m, @) < 0.

Proof. The third assertion follows from Lemma 5.17. Since A,.(61;m, ) =0,
we have

' 0 k-1 © k-1
|sin(61 — @)| = |- Z = sin(kf; — @)| < Z o1 < fn(r),
k=2 k=2
and
g =0.176... if m € Zs4,
fm(r) = 2 — 7'2
ifm=0,1,2,3
1-r)2 s

forr €e I dueto0 < £(3) —1 < 1/4. Since f,(0.15) = 0.384... holds for
m=0,1,2,3, we have

[cos(61 — a)] = y/1 = sin(01 — )2 > 41 = £ (r)? = |/1- (0.39)2 =: ¢,
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holds for r € I. Furthermore, we obtain

rk

Ms

|/l’,’(61;m,a) +rcos(61 — a)| < — < rgm(r),
k=2 k
2
g lf m € Z24,
gm(r) = a2 3
4r = 3r°+r” if m=0,1,2.3
(1-r)3

forr € Idueto0 < £(2) -1 < 2/3. If we suppose cos(61 — @) < —+/1 = fu(r)?,

then we have

/llr/(gl;ma @) > (\[1 - fm(r)z - gm(r)) r=:hy,(r)r,

1/2 lf m € 224,
hn(r) = .
h,(0.15) =0.0507... if m=0,1,2,3.

for r € I, which contradicts with the fact that A, (6; m, @) takes the maximum
value at 6 = 61. Thus we have cos(6; — @) > V1 — f,,(r)? > c¢1, and therefore

A7 (0;m, @) < — (\/1 — fm(r)? - gm(r)) r = —hy(r)r < —0.0507---xr.

Since |/1’r’(01 ;m, cx)| = —A/(61, m, @), we obtain the first assertion.

On the other hand, we have cos(6; — @) < =1 = f,,(r)? < —c1 by similar
calculations. Putting

d =inf {lw1 —wz| : w1 €cos ([c1,1]),wz € cos™H([-1,—¢c1])} > O,
we have the second assertion. m]

In what follows, we take r = p™ with p > 2 and o > 1/2. We study the
function

1 2r s
FO',m,p (S/ a’) = EL exp (W/IPU(Q,WL + 1, Q’) dag. (536)

Proposition 5.4. Let (o-,m) € Aand a € R. We take s = k +it € Cwith k > ¢
and |t| < k, where ¢ > 0 is sufficiently large. Then we have the followings;

(i) Suppose that (m,I) € B, p~7 € I, and p? (log p)" < «(log )6 are satisfied.
Then we have

Fo-,m,p(s} @)

=exp ((logp)m/lpcr(el,m +1, Q/)) \/27TS|/1;;—<T(01;m +1, CZ)|

2N-12(N+)-1 o m\ (k/2)=¢€
p? (log p)
X {1 + Z Z Ark(Ams1.0- N) (—Sg )

=1 k=3¢
(p‘f(lc;gp)’”)’v (logk)éjv) }

+0N
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where

At’,k (/lm+1,a’ N)

k/2
28 2p™7
VT 1 (B;m +1,0)

(]1) ) (je) )
P R |
3< 15 e <2N+1; Jiieje
j1+...+j(:k

and gy = /000 x* exp(=x2)dx. In addition, we have Ay (Api1.0- N) <n 1
(ii) Suppose that p~7 € (0.15,1/ \/E] and m = 0,1, 2,3 are satisfied. Then we have

Fcr,m,p(S; @)
1
2

(@mY)dogp)  \"
s (01;m + 1, )]

_ 80m exp( il
T (log p)™

Ap-oc(01;m +1, a))

2n N 12n1(N+€) 1 i

-k

X411+ Z Z Be ik (Amst,a- N)s 2+
=1 k=2m+1)¢

+ Om,O',N (K_N(log K)znl (2n1+1)N) }’

where

Bf,k (/lm+1,a, N)

k

2nq

8km (2n1)!(log p)™

= £! 1 mé (2my) X
'g0,n, (l0g p) 4,7 (01;m +1, )]

/l(h) Oy;m+1,a)-- /l;j_"(),(91;m +1,a)
X > —— ,

[
2m+1< 1, je <201 (N+1)=1; Jizcee e
Jite+je=k

and gi.p, = /Ooo xk exp(—xz"l)dx. In addition, we have By x (Am+1.as N) <mon 1.

Proof. We will use the saddle point method of asymptotic expansions. First,
we prove the case (m, ) € 8 and p™ € I. For simplicity, we write

A0) =20 (6;m+1, ).

By the periodicity of 1(6), we have F ,,, ,(s; @) = I1 + I, where

02

h=ox )y & ((1 PR

/1(9))
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and

1 61+2n (

" P Tog

) ()) do.

We start with the estimate of /7. Put

_ 2(log p)"
e = (o8N]

and divide the integral /7 into two parts:

hege (] R o (g ) @

Note that we have & < d when « is large, where d is the absolute constant in
Lemma 5.19. Since /l;)_g (61;,m+1,a) =0, we obtain

O1+&
0
L, e ((1 ot ))
_ 2(log p)m
I ((1 py )) \ @1
k
log k N>(91) 2(log p)™ S 5
X/o =P <logp>m Z vt |2 () o
by making change of variables. By Lemmas 5.18 and 5.19, we have
k
Z <’<>(91) 2(log p)mx
(log p)" k|47 (61)]
k
B Zf a<k>(91) 200gp)" | |
(logp)’“ k|47 (61)]

(PS (lc:(g p" )N (log K)2N+2))

for 0 < x < log « since we have the estimate

k
s o AR 6)) [ [2(log p)™
(log p)™ k:;gz k! ( \ «l7(61)] x)

o o m\ k/2 o m\N
K Z (CP (log p) ) <y (P (l(j(gp) ) (logK)ZN+2,

p7(logp)" \ 55 K

X|1+O0pN
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where C is a some positive absolute constant. By the Taylor series expansion,
we have
k
oo | 8 Zf A0 @) [ [20ogp)m
Pllogp™ & &k | V@)
2N-1 L[2N+1 5 (k) k
14 Y 1( s ) N AWy [ [20ogp)"
N \(ogp)™) | & k! k| A" (61)]

(pO'(logp)m )N
K

l

+0N

(log K)6N)

for 0 < x < log k. The above second sum is equal to
2N-12(N+6)-1

Z Z af,k(P,/lmﬂ,a,N)( g )f(z(logp)m)k/z)Ck
¢ (log p)™ | \ k|47 (67)]

=1 k=3
(pf’(kj{g p)’”)N (log K)6N_z)

+0N

by Lemma 5.18, where

AU (67) - - AU (9y)

ark(Amstas N) = P

3< 100 je <2N+1;
Jitetje=k

Therefore we obtain

k
tog s a9 [ [20og p)n 5
ex 22\ 4
/0 P (bgp)'"k; w (\ et [P )

=go(s, kK)+
2N-12(N+0)-1

ark(p, Am+1,as N) g £ (2(log pym\ k12
+é’; kZ—;‘» e ((10819)’") (K|/l”(01)|) gk (5 4)

+O0pN + Eq,

N
) (log «)®V

(p”(log p)"
K

where g (s, «) is defined by

Y 52
gk(s,K)—/O x exp( —x )dx,

and the error term Ej is estimated as E; <y exp (-(log«)?/2) by using
Lemma 5.18 and the bound

/ x*exp (—xZ) <k exp (—§(10g K)Z) .
log « 4
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By using the equation g (s, k) = (/s)*+D/2g, with g; = fooo x* exp(—x?)dx,
we obtain

k
log « M(el) 2(log p)™ s 5
/o P (logp)m Z (\] | [P (-) o

2N-12(N+6)-1 (k/2)-¢
\/ K p? (log p)™
-1+ E E A A ,N) | ————— +
t’,k(P m+1,a ) s

2 § =1 k=3¢

(p0'<1ogp>m)N (log K)m) )

+0N

K

where
A€7k(p,/1m+l,a’N)
L1 \117(61)] 3< 1, fe <2N+1; Jits ]'

Jite+je=k

Therefore we deduce the asymptotic formula

1 O1+&
27 ), p((l Y (9))

Lo _(logp)™
=2° ((1 gyt ))Vznsu"wmx

2N-12(N+£)-1 o m (k/2)—¢€
p? (logp)
x{1+ DI WEPHTAE Y (AT

¢=1 k=3¢ §

(p"(ligp)”’)]v (log K)6N) }

We estimate the integral /1 whose integral interval is restricted to [61 + &, 6>].
We can write

62
/e exp ((1 PR (9))

Ky 02
exp e (@) [ exp s (100) - 2601 a.

Since A(6) is decreasing for 61 + &€ < 6 < 6>, we find that
200l
1 )

+ON

A(0) —A(01) < A(O1+¢€) — A1) < —

Therefore we obtain

) |/1”(91)| )
/01+s exp ((1 PE (A(0) - /1(6’1))) do < exp( Ta )
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Thus, we have the asymptotic formula for /;. Applying the same calculations
to the integral />, we have the asymptotic formula for F;; ,, , (s; @) in this case.
The estimate A (An+1.0- N) <y 1 follows from Lemma 5.18.
Next, we will prove the second assertion. Let p=@ € (0.15,1/ V2] and
m = 0,1,2,3. Note that 1/4/p < 0.15 implies 1/0.15% = 44.444.. < p. Thus
it is enough to prove the case m = 0,1,2,3 and 2 < p < 44 to complete the
proof. Since the patterns we should consider are finite, the implicit constant
appearing in the error term depend only on m,o, N when we carry out
similar calculations to the above. Therefore we obtain the second assertion.
m|

We see that F; , , (s, @) is holomorphic and non-zero on the region
Ac={s=«k+it : k>c, |t| £k}
under the assumption on Proposition 5.4. Therefore, we may define

fa’,m,p(S, @) = log Fo',m,p(sa @)

for s € A., where the branch is taken so that f ,, , (s, @) is real valued on the
positive real axis. The function fi ,, ,(s, @) is holomorphic on A., and we
obtain the following result.

Corollary 5.1. Let (o,m) € A and o € R. We take s = « + it € C with k > ¢ and
|t| < K, where ¢ > 0 is sufficiently large. Suppose that p” (log p)™ < «k(log x)~° is
satisfied. Then we have

1

o,mp\S, & < —_—,
Tomp(57) p” (log p)™

K , .
prlogpyn’  Jrm(5@) <

and for all n > 2,

2"n!

£ (s;@) < -

Proof. We only prove the case (m,I) € 8 and p~” € I. We have

S
fa’,m,p(S; a’) = Wﬂp—a(el;m +1, CU)
1, S| (01;m + 1, @) A
5 C ;a),
2 Og (logp)m + + O',m,p(s a’)
for s € A, where C is a real number, and
h (s;) < L
o.m,p\S; & =5
P (log )5/2
By the Cauchy integral formula, we have
1 h ; 2"n!
hp (K @) = —/ 7mp (2 Oll)d " —
270 Jo—ij=xj2 (2 — k)™ «"(log «)5/

for k > c¢. By differentiating A, ,(s; @) and substituting s = «, we have the
conclusion. The other cases can be obtained by a similar argument. |
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5.5.2 Basic properties of the Bessel function I
We further prepare some lemmas on Bessel functions. Put
A={z=x+iy : x>0,|y| <x}. (5.37)
Lemma 5.20. We have |Ip(z)| < Ip(x) forall z € A.

Proof. The inequality |Ip(z)| < Io(x) is deduced from the definition. We
prove that |Ip(x)/Ip(z)| is bounded if x > 0 and |y| < x. Recall that the
asymptotic formula (see [121, pp. 74, 198])

Io(z) = —= (1+0(|z|—1)) (5.38)
V2rz
holds if Re z > 0. Hence, we see that there exists an absolute constant R > 0
such that
I
o) 5 JE o
Ip(z) x

if |z > R and z € A. Since |Iy(x)/Ip(z)| is bounded if |z] < R and z € A, we
complete the proof. o

Recall that the modified Bessel function /y(z) is non-zero and holomor-
phic for Re z > 0. Therefore, we may define

8(z) = log Io(z)
as a holomorphic function on Re z > 0, whose values are real on the real axis.
Lemma 5.21. We have the following statements;
(i) We have g(z) = z2/4+ O (|z|*) for |z < 1.
(ii) Let 6 be a positive number. We have g(z) <s |z| for Re(z) > § and z € A.

Proof. By the Taylor expansion of exp(z),

Io(z) =1+ E(2)z%, E(2) = % i nl (_)2(n 1)
n=2

holds. Since the estimate |E(z)| < 1 holds for |z| < 1, we have

© o 1yk-1 2
log Ip(z) = ) ( 1]3 E()* =S +0(12l')
k=1

for |z] < 1. Hence, we have the first assertion. The second assertion im-
mediately follows from the asymptotic formula (5.38). This completes the
proof. o
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Lemma 5.22. For any z € C, we have

12 o<zl <1, Y < {|z| if0 < |z <1,

FOIRSS . .
8 {Izl iflzl > 1, 1 e 21,

and forn > 2,

n! if0<|z] <1,
2"z if|z] 2 1.

g (2) < {

Proof. The first and the second estimates follow from [67, Lemma 7.4]. We
also know that g(z) < |z] holds. Hence, the third estimate follows by
Cauchy’s integral formula. o

5.6 Cumulant-generating functions

Let (0, m) € A and a € R. We consider the moment-generating function
Fom(s;@)=E [exp(s Ree 5, (o, X))] (5.39)

for s = k +it € C. Note that F,,(k;a) > 0 if « € R by the definition. We
define the cumulant-generating function

fom(k @) =log Fy (k)
for k € R, which is a real analytic function. In this section, we will show the

asymptotic formulas for f;',%(K; a)forl/2 <o <1and m € Zsy.

Proposition 5.5. Let 1/2 < o < 1 and m € Zso. There exists a small constant
¢m > 0 such that for n € Zso we have

1,

;’f,),,(K,' @) = O'%gn(a)% (1 +0 (2”(n +1)°

loglog K))
(logk)o™

log

if kK > ko(o, m), where ko(o,m) > 0 is a large constant, and

o ,(n)
_ g™ (u)
gn(0) = /0 Ao
with g(z) = log Ip(z) as above. The implicit constant depends only on o and m.

Let (o7,m) € A and a € R. Note that the the function F, ,,(s; @) of (5.39)
satisfies

Fom(5;0) = | | Fomp(si@) (5.40)
p

by the independence of X(p)’s, where F; ,, ,(s; @) is the function of (5.36).
Put

Am,o_:{S:K-i-l.t . K>L)n,0" |t| SK}’

where L, . is a sufficiently large constant depending on m and o
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Lemma 5.23. Let (o,m) € A and @ € R. Suppose that kp=> (log p)™ < & is
satisfied with a positive small absolute constant 6. Then we have

s K
omplS, &)= —— |+ 0| ——7——
Tomp(5:0) = & (pv'aogp)m) (psz(logp)m)
for s = k +it € A. Here, the region A is given by (5.37).

Proof. We can write

X(p)

— 0+ E(T,m( )’ Ea’,m( ) <
p (log p)™ P g

i (7 X (P)) = P2 (log p)"™

Recalling that |s| < 2« holds for every s = k + it € A, we have

—ia K
exp (sRe(e ™ Esu(p))) =1+0 (W)

for s € A if p satisfies kp™2” (logp)™ < 6. Hence, Fy u ,(s; @) can be calcu-
lated as

Fomp(s;a@) =E

oxp (SRe<e-faX<p>> )]

p? (log p)™
Re(e_i“X(p)) K
rE e (S 7 (log p)” )0(p2°'<logp>m)]

=10 stog )+ [0 (s ogr) s og)
~ P\ polog p)m "\pr(logp) ) p2r(log p) ]

By Lemma 5.20, we have

S K
Fomp(s;a) =1 (—pg (logp)m) (1 +0 (—pza( logp)’”)) ) (5.41)

Therefore, if ¢ is sufficiently small, F,; ,, ,(s;@) # 0 for s € A. Hence, we
define fi; ., (s; @) = log Fy . p(s; @) as before. We have by (5.41) the formula

S K
N e d e B
o510 =8 { o iog py | 2\ 27 log py
This completes the proof. o

Proof of Proposition 5.5. First, we will show the asymptotic formula

frm(s;@) = a%gour)(loL (1 +0 (log log“)) (5.42)

K)ot log «

for s = k +it € A~ and @ € R. Let y; and y, be the parameters determined
by

P p 1 2o
s =§ and o = ,
y5 log «
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where ¢ > 0 is the constant in Lemma 5.23. Using formula (5.40) along with
Corollary 5.1, Lemmas 5.22 and 5.23, we have

S
Jom(s;@) = Z g(ﬁ)+E1, (5.43)
Y1<p<y2 p (logp)
where
2
K K
E1<<Z 0' m Z 20‘ m+z 20 2
=P (ng) 5 p*(logp)" & p*(log p)*m
Kyll—O' % y21 20

<m,o

(log )’1)””1 (log y2)2m+1”

. 1 1 1 .
Since y1 <, k20 and y; = k= (log k) 2=-1, we obtain

1
Ko K

NI—=

1
2—+

E1 <om (5.44)

(log K)m+1 (IOg K)2m+2 (10 )% +2

if « is large enough.
The main term comes from the terms for y; < p < y,. Recall that the
asymptotic formula

—8 logy
) = /logt+0 )

holds. Then, by partial summation, we have

>, #(ormgo) = [ #irmg) gy
8 p7 (log p)" " 8 yr(logy)" ) logy " %

Y1<psy2

where

yze—S\ﬂog 2

E, < y1e_8 logy1 4

s
(yz‘f(log yz)’")
e SVlogy

d
¥ (log y)" ¥

(e
8 y17 (log y1)™

/)72 , s
+ K
" 8 (yl"(logyl)m)

Recall further that we have |sy,™ (log y2) ™| < 1,and that |sy1‘” (log y1)_’”| <
1 is sufficiently large. Hence, estimate (5.38) and Lemma 5.21 give

—84/1 1.1
e et e
y17 (log y1)™ y1° tlogy)m 7 (logx)™
and
8+/1 1
¢ || y2eVIB 2 <« e Ve <o — T p8Vlogx,
y27 (log y2)™ y2271(logy2)m 7™ (log k)2m+l
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The third term is estimated as
e

y2 s
’ d
K/yl § (y1"(logy1)’") y? (log y)™ Y

< Ke 8V1°gy1/ _ —K —
‘T(logy)m (logK)F

-84/logy

ql=

e_4\/10?

by Lemma 5.22. As a result, the error term E» is estimated as

1
Ko

(log k) #*2°

E) <om

Next, making change of variables, we obtain

/Y2 ( s ) dy
" 8 p“(logp)™ ) logy

= O'%K% /u] & (%) du (1 +0 (—10g10gK))
w u (log(£) 7! logk ]’

where we put

K and K
= unH = ————-.
V7 (log y1)™ 27 Y7 (log y2)™

Since it holds that

a+ | log ul
(log(g)) - (10g1)%+1 (1+0‘T’m( 12§Z ))

for u1 < u < up, and the estimate

(o) su 1
/ —lg(Kz Ogu|du <, 1
0 rea

u—+1

also holds, the integral is calculated as

/)’2 ( s ) dy
" 8 p?(logp)™ ) logy

G g (2 logl
:a——iT—/'§¥2w0+om43§%ﬁ».
(log K)F+1 u u?+1 108K

Finally, we see that the estimates

753 g su o 1 1
/ (%) du <q tty 7 <om ,
0

ql3

1
uotl log k
Su
©g (7) 1-1 11
T, du <5 uy 7 <gm K272
ui I,{F+
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hold by Lemma 5.22, and therefore, the asymptotic formula

U1 su 00 Su
[P [ (1)
w yotl 0 yotl logK

follows. From the above, and by using the equation

1
~ g (%) s [ g (u)
/0 u%*’l du = K_% 0 u%*’l du’
we conclude

1
m v logl
D g(_g 5 m):g;g(,((,) S (Hoo_’m(w)),%)
wsty, \p7(logp) (logk) = log «

Combining (5.43), (5.44), and (5.45), we obtain the asymptotic formula (5.42).
Let « be large enough depending on o and m. Then we have

S

<

W + hO',m(Z; @),

fo-,m(zr' @) = O'%go(O')

where
K loglog «
(log «) +*1 log«k

hO',m (Z; Q’) <<0',m

for |z — k| < «/2 by the asymptotic formula (5.42). By Cauchy’s integral
formula, we have

1
Ko "

K () = fU) (k@) — 06 Gp(o)go(0r) ————
(K@) = fom(k @) (0)go( )(logk)gﬂ

_ I’l_' ho-,m(z; a’) -
2mi |z—«|=«/2 (Z - K)n+1
iplkT " loglog «

<<0'm m
" (logk)stl logk

where G, (o) = ]—[;?;é(% — j). Using the equation g,(0) = G,(0)go(o) and
the estimate |g,(0)| >, (n —3)! for n > 3, we have the conclusion. O

5.7 Further results on probability density functions

5.7.1 Preliminaries

Lemma 5.24. Let (o,m) € A and a € R. Suppose that s = « + it satisfies
k > c(o,m) with a large constant c(o,m) > 0. Then we have

|Form(s; )]

Fons| (i)
FO’,W!(K; CZ) P

for|t| > /3.
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Proof. We see that

Fom(s;0)] _ [E [exp(s Re ey, (0, X ()))]|
Fom(k;a) — My <p< il E [exp(KRe e"'aﬁm,p(o-,X(p)))]

(5.46)

If we suppose that s = k + it satisfies k > c(o,m) and |t| > «/3, then |s| < 4]¢].
By the Taylor expansion of exp(z), we obtain

exp(s Ree 7, p0,X(p)))

—ia~ 1 —ia 2
=1+sRee nm’p(O',X(p))+§(sRee nmp(o-,X(p)))

11
013 3
p>7 (log p)™"
for p > My |t|"/7 with suitably large M;. It holds that

E [Re e, , (o X(p))] =

and

-l ~ 2 1 N
E[(Ree nm’p(O',X(p))) ] = EZ kg-(logpk)m)Z

By these formulas, it follows that

E [exp(s Re e ", p(O' X(p))]

s |t
= — 0 .
T Z (kpkff(logpk>m>2 ’ (psffaogpﬁm)
Therefore, we have

|E [exp(sRe e, (0, X(p))]|
E [exp(x Re e, (0, X(p)]

Y 3
:‘1+21Kt tZ 1 +0( It| )
4 4 (kpke(l

ngk)m)Z p30'(10gp)3m

for Mi|t]V/7 < p < |t]*7. In particular, when M; is sufficiently large, it also
holds that

<

ikt — 12 & 1 |t 1
E O|l————— —,
4 (kp*e (log pk)m)? * ( ) -2

= p3a' (lOg p)3m
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From these results and inequality (5.46), we obtain

|F0',m(sr' a’)l
Fo-,m(K; a’)

< exp ( Z Relog (1 +

My|t|V o <p<|e2lo

2th -2 Z
(kp’“’(log pkym)?

o ( o )
p30'(10gp)3m

2ikt — 1> Z 1
4 & (kp*to(log p*)m)?

+0 (—ltl3 )
p30'(10g p)3m

< ex Z (—_t2 +0 (—|t|3 ))
=P 2p27 (log p)*m p37 (log p)3™"

My|e|V e <p<|tP/ o

1
_2 1|12
< exp( t E 4p2"'(10gp)2m) < exp( |7] )

MtV o <p<|t]P @

= exp ( Z Re
M7 <p<|iPle

when M; is sufficiently large. Thus, we obtain this lemma. O

As a final preliminary lemma, we prove the following result.

Lemma 5.25. Let (o,m) € A and « € R. For each v > 0, there exists a unique
real number k = k(t;0°,m, @) > 0 such that

fom(Ka)=1. (5.47)
Furthermore, we have k — oo as T — oo.

Proof. Since fiu(k; @) =log Fy n(k; @), we have

fomlisa) = T2
oK) = .
’ Fo (k)
In particular, we obtain
F (0, )
4 M = - = ]E Y =

where we define Y = Re(e™™@ fim,p (0, X(p))). Therefore it is sufficient to show
that £, (x; @) > 0 for « > 0 for the proof of the result. Note that we have

Fo/f,m(K; Q')Fa',m(K; CY) - Fé.,m(K,' CY)Z

fo-’m(K; a) i Fo-,m(K} a,)2
_ 1 R
= Fa',m(K}a’)E [(Y fo’,m(K,a’)) eXp(KY)] > 0.
Hence, the result follows. ]
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5.7.2 A transformation of the density function

Let (o,m) € A and @ € R. We define a non-negative continuous function
Dy pm(x; @) as

. dy
Da,m(x/' a’) = /Da,m(ela(x +iy)) )
R V21

where D ,,(z) is the probability density function determined by (5.25). Then
the function D, ,, (x; @) satisfies

E [® (Ree ™7, (0, X))| = /C ® (Ree™z) Dy (2) |dz|

- / B() D (x; ) |d]
R

for all Lebesgue measurable functions ®(x), where |dx| = (27)~Y2dx. Hence,
D, n(x; @) is again a probability density function, whose moment-generating
function is given by

FO',m(S; a’) = /esxDO',m(X; a’) |dx| (548)
R

which agrees with (5.39). In this section, we study the function

KT

Dg . (x; ) = e Dy mx+1;0),

Fa’,m(K; CZ)
where 7 > 0 and « = «(7; 0, m, @) is a positive real number satisfying (5.47).

Lemma 5.26. Let (o-,m) € A and a € R. For T > 0, the function D , (x; ) is a
probability density function, whose Fourier transform is given by

Fom(k+it; )

57 t; = itxD‘r ; dx| = —itT
(1) = [ D (0 d = ISl

Proof. By the definition, we have

1 (o)
DY . (x;a)|dx| = —/ KD (x+1a)|dx| =1
[ Pentsialast = s [ D x4 w0 i

due to (5.48). Similarly, the Fourier transform of D, (x; @) is calculated as
D (t;@) = 1 / " prlryine (x + ;) |dx|
T Fom(KG,0) J o T

1 . Kx+it (x—T)
~ Fom(k Q) Dy p(x;a)|d
Fom(k; @) [00 ¢ om(X; @) |dx|

Fom(k+it; @)
Fo (k)

_—itT
9

which completes the proof. o
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By Lemma 5.24, we find that 5;,m(t; @) is absolutely integrable over R.
Hence, the function D{ ,, (x; @) can be recovered by the inversion formula

Dg . (x;a) :/ﬁg,m(r,-a)e‘”ﬂdﬂ. (5.49)
R

Next, we apply (5.49) to obtain an asymptotic formula for DJ , (x; @).

Proposition 5.6. Let 1/2 < o < 1, m € Zsp, and « € R. For v > 0, we take
k =k(t;0,m,a) > 0 satisfying (5.47). Then we have

. ' 1 x2 L 1(my
D . (x;a) = —27Tf(;-’,m(K; = {ex ( Y )) +0 (K 7 (log ) (% 1))}

forall x € R if > 0 is large enough. The implicit constant depends only on o and
m.

Proof. First, applying formula (5.49), we deduce
k/3 _ '
Dy p(x; @) = / DY, (t;@)e™™ |dt| + Eq, (5.50)
-k/3

where E1 < Vkexp(—+/«/3) by Lemmas 5.24 and 5.26. In order to estimate
the integral in (5.50), we define a holomorphic function G(z) as

fo,',mY(K CZ) O'mY(Z"'K/a')

G(z)=exp|-1z- 5.51
( ) P ( 2 FO',m,Y(K/ CZ) ( )
=1+ Z dn n.

Note that the coefficients a, are calculated as

" n (1) ()

_ - n g, .
m=ym > (n1 )f () ) (k)
k=1 ni+--ng=n
Vj, n_,-23

since G (z) is also expressed as

Jom(Ka) 5

G@) =exp (frn (4450) = frmlb50) = Frp (5002 = 223

(n)
m (K @)
e[ 3, H)

near the origin. Then, by Lemma 5.26, we have

Dl (t;a) =exp (—wﬁ) G(it).
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Hence, we obtain

«/3 . x/3 7 (K a .
/ DI . (t;@)e™™ |dt| = / exp (—Ltz) e "™ |dt| + E,, (5.52)
-«/3 —k/3 2

where

«/3 17 . )
Ey = / exp (—Mtz) (G(it) = 1) e™™ |d1]

«/3 2
Z |an| ) dr.

K/3 1
<</ exp( fgm(K'a) )
0

We further evaluate the error term E» as follows. Notice that we have

£ (k)

|an| n n
< _— —
E o 1" < exp E o t 1

for 0 <t < k/3. Furthermore, it is deduced from Proposition 5.5 that
(n) 1l_3

- ’ 2t K
§ | P/ E ‘ "— 3
n! P <em ———wg ( ) r.

= : (log K)o (log K)ot

Hence, there exists a constant C,- ,, > 0 such that

ooanln ool 13 3”
Z:; i < Z;( —t , (5.53)

(log K)o+

which deduces

1 n
- 1 Kl_"_3 3 x/3 fo,',m(K/a/) 21 .3
E — ——1 — | " dt
2 ; n! (C”’m (log k) &+1 ) /0 xp 2

(3n+1) K%_g "
~ m<K, Z ! N JFEaa) (log k)|
By Proposition 5.5, we see that

K(_f_s

VIEwa) (log k) #+1

holds. Therefore we arrive at the estimate

<gm K2 (log K)%(%H)

1
Er <gp ————k 2 (log K)2( D

VIEm (K@)
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if k > 0 is large enough. Finally, we obtain

k/3 "
/ exp( J f”"( ) ) I dy| (5.54)
-k/3
= / exp (—Mtz) e \dt| + E3

1 x2

B 27ng’,m(/<;cy)ex( 2f5. (K/OK))-FEB’

where

E; < / exp( fam(K'a) ) dt < exp( MKZ) :
o3 — 2 18

Since f . (k; @) <o m K%‘z(log k)~ o due to Proposition 5.5, we obtain the
result by combining (5.50), (5.52), and (5.54). m]

5.8 Large deviations: Proof of Theorem 5.2

5.8.1 Preliminaries

In this section, we prove the following proposition.

Proposition 5.7. Let 1/2 < 0 < 1, m € Zsp, and @ € R. For v > 0, we take
k = k(T;0,m,a) > 0 satisfying (5.47). Then we have

P (Ree 7, (o, X) > 1) (5.55)
Fom(G@)e” {1 +0 (K 7 (log K)Z(' +1))}

N2 (K )

if T > 0 is large enough. The implicit constant depends only on o and m.

We prepare some lemmas toward the proof of Proposition 5.7.

Lemma 5.27 (Granville-Soundararajan [35]). Let A > O be a real number . For
y > 0and ¢ > 0, we have

1 cHioo e —1\ ds
0<—/ ys( )——X(y)

T2 oo As

1 c+ioo e/ls -1 1-e¢ —As
< — s ds,
C 270 Je—ioo Y ( As )( s ) *

where x(y) =1ify > 1 and x(y) = 0 otherwise.
By Lemma 5.27, we obtain

0< L/CﬂmF (s;a)e™™ et -1 ds — P (Re(e™7,,(0, X)) > 7)
<o ), Fom s;a)e 2 s e "4, (0, T
1 c+ico e/ls -1 1= e—/ls
< . —-Ts
<o ) Fom(s;a)e ( P ) ( . ) ds.

Then the main term in (5.55) comes from the following integral.
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Lemma 5.28. With the assumptions of Proposition 5.7, we have

1 K+ik/3 e/IS -1
— Fo(s;a)e™ ds
2mi Kk—ik/3 O-’m( ) ( As? )

_ FO',m(K; a’)e_TK

{1 +0 (K—%(logk)%ﬁ—’l“))} ,

KN (K @)

where we take A = k=3, and the implicit constant depends only on o and m.

Proof. Let G(z) be the function defined as (5.51). Then we see that

. "7 (K«
Fom(k+it;a)e™ ™) = F | (k;a)e™ ™ exp (—%lz) G (ir)

by definition. Furthermore, we obtain
A(k+it) _ 1 1 2
AL W Y MO PPN
Alk+it)2  « K K2

for |t| < k/3. Hence, the integral is calculated as

1 Kk+ik/3 e -1
— F ; s d
2mi Kk—ik/3 G',m(s a)e ( As? ) ’
Fom(k;a@)e™™ «/3 om(KG Q) ,
= — exp |-—————t
K 21 J /3 2

2
X G (it) (1 — i£ +0 (/lk+ t—)) dt

K2
_ Fom(G@)e™ { 1 /K/3exp (_f(,’-’,m(x;a)ﬂ) »
K 21 J_xs3 2

«/3 e 2
exp (—Mtz) (—zé +0 (/lK + t—)) dt

+_
271' /3 2 K2
1 [x/3 om(K@) 5\ [ a,
+— T Ly —(ir)"
21 J_x/3 X ( 2 ) ”Z:; n! (if)
1 2
X|1-i—+0 /1/<+—2 dt
K K
F ,. —TK
= U’m(KKa)e (h+ 1+ 13),

say. We have

L= __ 1 {1 +0 (exp (——f(;/’m(K; @) Kz))}
N ey E

and

L <«

o [ )
— Akt ————].
T m(K; @) K2 for m (K; @)
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Since A = k73, the contributions of I; and I, are evaluated as

—TK —KT

F o,m (K ; a’)e
K\ 27 [ (K; @)
by using Proposition 5.5. As for I3, we use inequality (5.53) to derive

Tak/3 %
I3 <<Z ( —3)/ exp( fam(K’a) )3"dt

(log k)=

(3n+1) K%_g "
2V2C o :
Vfol'/m(K @) Z nt ( v (’T’,m(K;a)B(logk)gﬂ)

By Proposition 5.5, we see that

Fom(k;a)e

(h+1)= {1+0(/< o—(logK)z( +1))}

1.3

VIEwa) (log k) #+1

holds. Therefore we arrive at the estimate

<gm K27 (log K205+

1 m
I3 <gm e (log K)%(;H)

VG (K; @)

if k > 0 is large enough, which yields the result. o

Proof of Proposition 5.7. The remaining work is to evaluate the integrals

1 K=+ico /ls -1
Ei=— Fom(s;a)e™ ™ ( ) ds
270 Jysin/3 As2
and
1 K+ioo As _ 1 1-— —As
Ey=— Fym(s;a)e™™ ¢ ¢ ds. (5.56)

270 Jy—ico ’ As s

Since we take A = k=3, we obtain

e -1 i3 eV —1\(l-e k3 if|r] < «/3,
< — and <9\ 3.5 .
As? 12 As s k3t~> if |t| > /3.

For the integral E1, we apply Lemma 5.24 to derive

o0 3
E1 < Fyp(k; a)e‘”/ exp(—tl/(z‘f));(—2 dt
k/3

—TK

< Fypm(k;a)e 1/(2‘7)) .

( 1
exp (—5&
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Hence, Proposition 5.5 yields

Fo',m(K; a')e_KT

K~/ (;'/,m(K; a’)

Next, we split the integral of the right hand side of (5.56) as

1 Kk+ik/3 K£ioco
E2=—_(/ + )=E21+E22.
2mi k—ik/3 Kkxik/3

E < K_%(log K)%(%+1).

Then we have

k/3
Ey1 < Fyp(k; a)e_”/ K 3dr < Fom(k; @)e k2.
-k/3

The integral E»; can be estimated along the same lines as in the case of Ej.
Hence, we deduce

Fo-,m (K; a’)e_KT

K o m (K; @)

by Proposition 5.5. The conclusion follows from the above estimates on Eq
and E; together with Lemma 5.28. O

Ey < K2 (log ) 2(3+1)

Corollary 5.2. Let 1/2 < o <1, m € Zsp, and a € R. For large T > 0, we have
P (Re e q (o, X) > 7)

B e P loglog t
=exp |-An(o)rTo (log7)T (1 +0 (W))) ,

where Ay, (o) is defined as (3.1).

Proof. By Proposition 5.5, one can estimate « = «(7; 0, m, @) of Lemma 5.25
as

(o m+o 1 1
k = Cp(0) 7757 (log 1) £ (1 +0 (M))

log t

if 7 > 0 is large enough, where

Cp (o) = g )ﬁ
() ((1—a>z+1g1(a>

Insertingitand g1(o) = o~1(1 —0)1717G (o) to (5.55), we obtain the corollary.
m|
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5.8.2 Proof of the result for large deviations
Define

— 2_” M _ 1 —2niuc _ ,—2miud
G(u) = - + tan (e) and f.q(u) = 2(6 e )

with ¢, d € R. For a set A, we denote the indicator function of A by 14.

Lemma 5.29. Let L > 0. Let c,d € R with ¢ < d. For any x € R, we have

L
_ Z 2miux @
lea@ =Im [ 6 (7)™ faw?

(sin(ﬂL(x —¢)) )2 . (sin(nL(x —d)) )2)

+o nL(x —c) nL(x —d)

Proof. This lemma is equation (6.1) in [67], which is proved essentially in
[116]. O

Let X c [0,T] be a Lebesgue measurable set. We define

PY(f (1) eA):%meas{teX : f(r) € A}

for A € B(R), where f : R — R is a Lebesgue measurable function. Denote
by u and v the measures on (R, 8(R)) such that

u(A) = P?T (Re e_"“Pm,y(O' +it) € A),
v(A) =P (Ree ™, (0, X) € A),

respectively, where Ay = Ar(V,Y; 0, m) is given by (5.3), and Y,V are func-
tions of T' determined later. Towards the proof of Theorem 5.2, we further
define the measures P and Q as

P(A) = /A & du(u),  Q(A) = /A ¢ dv(u)

for A € B(R), where « is a real number chosen later. Then, for any 7 > 0, we
obtain

u((r, oo)):/ e dP(u):/ e “P((t,x/k))dx, (5.57)

T

and

v((t,0)) :/ooe_K“ dQ(u) = /Doe_xQ((T,x/K))dx. (5.58)

T

We begin with estimating the difference between P and Q.
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Lemma 5.30. Let 1/2 < 0 < 1, m € Zsp, and « € R. Suppose that we have
V%(log V)% < SYU_%(log Y)"

with a small constant € > 0. There exists a positive constant by = by(o-, m) such
that for any |«| < bV 7 (log V) %% we have

P((c,d)) = Q((c.d)) + E,

forany c,d € R with ¢ < d, where

1+« K2 Vﬁ (log V)%
2(m+0)

o m+o +
Vi (log V) == Vlz—_atr(logV) T-o Y‘T‘%(logY)m

1 mto
Vi-o (logV)1-o

Fa',m (K; a’)

E <om (

+ (Ve (log V) Io Y +exp (-baVTe (logV) 5 ). (5.59)
( ) ( )

Proof. Let L = b VTs (log V)ie. By Lemma 5.29 and the definition of P, we
can write

) L
P((c,d)) = [ e Im/0 G (%) ezﬂi”xfc,d(u)%dy(x) +E1, (5.60)

where

sin(wL(u — ¢)) 2 sin(wL(u — d)) 2 P
Er < /R{( nL(u—c) ) +( nL(u—d) ) }e dp ().

First, we estimate E;. For z € C, we define
M(z) = /eZ”du(u).
R

Then it holds that

1 i~ .

M(z) = —/ exp (zRee™7,, (o +ir)) dt
T Ja,
1 . L
=7 /AT exp (%e_’aﬁm(a +it) + %e’“ﬁm(a + it)) dt.

For any ¢, x € R, we can write

. 2 o L
(s1n7f7Lr(Lu(bi€)5))) ZE/O (L — &) cos(2m(u — €)&)dé

2 L .
= 5 Re /0 (L — &)e¥u=0¢ g,
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and therefore we have

. 2
/ (sm(ﬂL(u—f))) ()
R2

nl(u—+¢)
2 L +27i(u—=)
-2 ["-g [ emmrtauag
L
- % / (L — &)e ™ M (k + 2mi&)dé. (5.61)
0

Here, we decide b; as b1/4, where b1 is the same constant as in Proposition
5.1. We can apply Proposition 5.1, and obtain

M (x +27i¢) = E [exp ((k + 27i€) Re e " Py y (07, X)) | + O(E2)

for |¢| < L, where

+

1 o m+o
Er= (Vl—a (log V) 7y

Vﬁ(logv)% 1 mto
) +exp (—bzvﬁ (log V)W) .

Applying further Lemma 5.13, we derive
M (k +27mié) = Fg n(k +27i€; @) + O(E2 + E3), (5.62)
where
Ve (logV) T
yo-2 (logY)m .

|k + 2mi&|

E3:Fa',m(K;a’) 1
Y7 2(logY)™

< Fo-,m(K; a’)

By this formula, Lemma 5.24, and the inequality
|Form (& +27i&; @) | < Fom(x; @),

we find that

L
% / (L — &)e ™% M (k + 27i&) dé
0

o,m\K; K 1 L
< fomlki®) L(; ?) (/O (L - &)dé + ﬁ/ (L-¢) exP(—§”(2"))d§) +Ey + E3

2

1+
< ( LK + %) Fom(k;a)+ Ex + E3.

From this estimate and equation (5.61), we obtain

. 2 2
Ly — 1
/ (SIH(JT (u C))) e du(u) < ( +K + %) Fom(k; @) + Ex + E3,
R

nL(u—c) L
and
sin(nL(v — d)) 2 1+x &>
o — | Fym(k; E> + E3.
/R( 2L —d) )e d,u(u)<<( 7 +L2 mKa)+Ex+ E3
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Thus, we can estimate the error term E; on the right hand side of equation
(5.60) by

2
LN K—) Fym(i; @) + Ez + Es. (5.63)

1
Ei <
! (L 12

Next, we calculate the main term of (5.60). Using Fubini’s theorem, we
find that the main term is equal to

Im/ de( )M(K+2mu)du

By equation (5.62) and the estimates G(x) < 1for0 < x < land |f. 4(u)/u| <
|d — c|, this is further equal to

Im/ fc d(l/t) Fom(k +2niu; a)du + O(L(d — ¢)(Ez + E3)). (5.64)
Since we can write
Fom(k +2miu; @) = ‘/e(ﬁzmu)fdv(f),
R

we find that, by using Fubini’s theorem, (5.64) equals to

Im/ / 2mu§fc d(u)_ekfdv(f) + O(L(d — C)(EZ + ES))

Applying Lemma 5.29 again, this is equal to
O(R) +0 (L(d - c)(Ex + E3) + Ey)

where

sin(rL(u - c))\? (sin(rL(u - d)\*| .,
E4<</R{( TLi—0) ) +( L) )}e dv(u).

Similarly to the proof of (5.63), we can obtain

2
1+K1 K
+

Ey < 2

Fo-,m(K; a)'

Thus, we obtain this lemma. O

Proposition 5.8. Let 1/2 < o < 1, m € Zyo, and a € R. Let T > 0 be large
enough. We take the functions Y and V as

Y = (log T)8,

5.65
V = (log T)l= (loglogT) -m-1 (.65
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with B = U—Luz' Then there exists a constant b,,(o) > 0 such that
P;‘T (Ree™™ P,y (o +it) > 1)

1+0

=P (Ree 7, (0, X) > 7)

70 (log 7)%
VT (log V) 7
in the range 1 < v < by, (0)V.

Proof. By equation (5.57), we have

(o8]

P;‘T (Re e P y(0 +it) > 7) :/ e "P((t,x/k))dx.

KT

Hence, by Lemma 5.30, this is equal to

/00 e 0((t,x/k))dx + O (e *"E),

where E satisfies estimate (5.59). By equation (5.58), this main term is equal
to P (Re(e™#j,, (0, X)) > 7). Thus, we complete the proof. o

Proof of Theorem 5.2. Define Y, V by (5.65). Let By = Br(Y, W; o, m) be the set
given by (5.11). Then we have

Pr (Re e (o +it) > 7)

= Pﬁr (Re e—iaﬁm(a- +if) >7)+0 (% meas([0, T] \BT))
<P (Ree™Pyy(o+it) >T—¢)+0 (% meas([0,7] \ BT))

by the definition of By, where we put ¢ = WYz o, Furthermore, we obtain
P?T (Ree P, y(o +it) > 17— &)
= P?T (Ree ™ Py y(o +it) > 7 —¢)

+0 %meas([O, T\ Ar) + %meas([O,T] \ BT)) .

Then, the asymptotic formula

P?T (Re e P, y(o +it) > T — g)
7% (log 7) %

=P (Re e 7 (o, X)>1—¢ — —
( T ) Vi-z(logV)i-o

1+0

|

follows from Proposition 5.8. Recall that P (Re ™7, (o, X) > 7 + ) is rep-
resented as

P (Ree 7, (0, X) > T+7) = Fou(k; oz)e_”/ e ™D, (x; ) |dx]|
y
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for all y € R, which implies

P (Ree 7, (o, X) > T — &) — P (Ree ™, (0, X) > 7)

0
= Fy(iG@)e™ / e E, (53 ) |dx]

&

< P (Re e (0, X) > 7) - kee ®
by Propositions 5.6 and 5.7. Therefore we deduce

Pr (Re e ', (o +it) > 7)

<P (Ree 7, (c,X) >7)|1+0

7% (log 7) 7 e
o m+o + Kkee
Vi-s(logV)1-o
+0 N meas([0,T]\ Ar) + %meas([O, T]\ BT)) .
Similarly one can obtain

Pr (Re e ™4, (o +it) > 7)

> P (Ree 7, (0, X) >7)[1+0

1-o

0 (log 1) T e
Vi-s (logV)
1
+0 (— meas([0,7] \ Ar) + T meas([0, 7]\ BT)) ,
and therefore,

Pr (Re e (o +it) > 7)

=P (Ree™ij,, (0, X) > 1)

—— + kee
Viz(logV) i ))
+0 (? meas([0,T] \ Ar) + %meas([o, T\ BT)) .

We choose the function W as

W = (logT)(loglog 7)1,

Then we find kse*® < (logT) 2 for 1 < 7 < by (0, A)V. Letc = c(o,m) be a
small positive constant for which both (5.10) and (5.12) are valid. Then, by
Corollary 5.2, we have

P (Re e, (0, X) > r)_l < exp (%Vﬁ(log V)%)

intherange 1 < 7 < b, (0)V with b,,(0) > 0 small enough. By this estimate
and Lemmas 5.5, 5.6, we obtain

— meas([0,T] \ Ar) < P (Ree ™7, (o, X) > 7) exp (_gvﬁ (log V) %)
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and
1 —ia C.,L mto
meas([0,7]\ Br) < P (Ree™7, (o7, X) > 7) exp (~5V 77 (log V) 7 ).
Since we have
exp (—%Vﬁ(log V)%) < (logT)™,

the desired result follows.
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Chapter 6  Joint value distributions of

L-functions on the critical line
o=1/2

In this chapter, we discuss the joint value distribution of L-functions. The
contents in this chapter are based on the paper [52]. We consider the L-
functions belonging to the modified Selberg class S. Additionally, to study
the joint value distribution of functions in ST, we need the following as-
sumption .

Assumption (o). An r-tuple of L-functions F = (Fy, ..., F,) with F; € ST and
an r of the numbers 6 = (01, ...,0,) € R" satisfy o if and only if F, O satisfy the
following properties.

(A1) (Selberg Orthonormality Conjecture)  For any F;, we have
2
ar.
ZM = np,; loglogx + Or,(1), (6.1)
pP<x

for some positive constant np, and x > 3. For any pair F; # Fj,

Z ar; (p)aFj (p) _ OFi,Fj(l).

pP=x p

(A2) For every component F;, there is at most one L-function such that F; = F;
with i # j, and then |6; — 0] = 7.

(A3) (Zero Density Estimate) For every F;, there exists a positive constant kr, such
that, uniformly forany T > 3and 1/2 < o <1,

Nr (0, T) <, TP 1og T, 6.2)

where Np(o,T) is the number of nontrivial zeros pr = Br +iyr of F € ST
with Bp > ocand 0 < yp < T.

Remark 3. The Selberg Orthonormality Conjecture has been proved for L-
functions associated with cuspidal automorphic representations of GL(n)
unconditionally for n < 4 by Liu and Ye in [73], (see [1, 72]) and in full
generality in [74].

145



Remark 4. The zero density estimate like (6.2) for the Riemann zeta function
and Dirichlet L-functions was established by Selberg [107] and Fujii [28]
respectively. For GL(2) L-functions, (A3) has been established by Luo [76]
for holomorphic cusp forms of the full modular group. Also, some weaker
estimates have been proved by Ford and Zaharescu [27, Section 7] for other
congruence subgroups of GL(2), and further by Sankaranarayanan and Sen-
gupta [104] for Maaf3 cusp forms. If we assume the Riemann Hypothesis for
F, then (A3) holds for any «r > 0.

Remark 5. It is natural to assume (A2). This allows us to consider the joint
distribution of log |F (s)| and Im log F(s). It can be seen that Re e %1 log F ()
and Re e™"%2log F(s) can not be independent when 61 — 6, # § (mod 2x).

6.1 Results

Before we state our theorems, we need some notation. Let r be a fixed
positive integer. For V = (V1,...,V,) € R", 0 = (01,...,6,) € [0,2n]", and
F = (F,...,F,) € (8" satisfying assumption «/, we define

Re e~ log F; (3 +it)

\/ n% loglog T
1-20p

where the constants nf, are defined in (6.1). Let ap := min{2r, T }, where
?F = maxi<;<, 9F; as defined in (S54). Here ar = 2r if 9F = 0. We denote
lz]| = maxi<j< |z;|. Throughout this paper, we write log, x for logloglogx.

The following theorem extends the result of Bombieri and Hejhal [9],
where we show (1.25) holds for a larger range of V.

S(T,V,;F,0):=4te[T,2T] :

>Viforj=1,...,r¢,

Theorem 6.1. Let @ = (0y,...,6,) € R', F = (Fy,...,F,) € (S")" satisfying
assumption . Let A > 1 be a fixed constant. For any large T and any V =
(V1,...,V,) e R" with | V|| < A(loglog T)Y1°, we have

]. ! 0 u? dl/l
—meas(S(T,V; F,0)) =(1+Ry) / e 7 , 6.3
- i H MR- (6:3)
where
V|t + (log, ) (V] +1 r(1+V
Ry <pa (IVI* + ogs T UV )+ [T (1 +] kl)1
vloglog T (loglog T)*F*2
Moreover, if 01,...,0, € [-%, 2] and | V|| < A(loglog T)'/® we have
1 4 0 u? dl/l
—meas(S(T,V;F,0)) < (1+Ry) / e 7 , 6.4)
= > H L e (
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and

(V% + (log; 1)) IV +1) o e 3+ Vi)

vloglogT (loglog T)“F+%

Furthermore, if 61,...,6, € [7, 3”] V]| < c(loglogT)V/®, and H;:1(1+ Vil) <
c(loglog T)”F+% with ¢ = ¢(F) > 0 small enough, we have

Ry <F.A (65)

%meas(é’(T V;F,0)) > (1-R3) 1—[/ \/— (6.6)

Here, the error term R3 is < the right hand side of (6.5).

Remark 6. For r = 1, F; = {, and 6; = 0, the asymptotic for ||V <
(loglog 7)'9 in (6.3) was obtained by Radziwitt [95], and the bound for
V]l < (loglog T)1/6 in (6.4) was obtained in Theorem 2.5.

It is reasonable to conjecture that the asymptotic in (6.3) holds for ||V|| =

o(+/loglogT) as speculated in [95] for {(s). If we are only concerned with
upper and lower bounds, we could extend the range of |V || further.

Theorem 6.2. Let F = (Fy,...,F,) € (ST\{1})" and 0 = (61,...,6,) € [-E, 3]
satisfying assumption of. Let T be large There exist some positive constants
a1 = a1(F), ax = ax(F) such that if 0 € [-7, 7], we have

1
T meas(§(T,V,; F,0)) <p

ﬁ : ! exp V2+W+Vr2+0 Ivi°
1 T Lop
=1 1+V; (log log T)“F*1 2 vloglogT

forany V= (Vi,...,V,) € (Rso) satisfying ||V|| < a1(1 + V,/?) (loglog T)/4
with V,, = miny¢j<, V;, and if 0 € [Z, 37”]r, we have

1
T meas(S(T,V; F,0))

71 Vit AV IvI?
> exp|————+0 py————
i (H 1+ Vj) p( 2 g yloglogT

for |V < a1(1+ V,i/*)(log log T)/* with [T (1+V)) < az(loglog T)*F*z,

Substituting V' = | = 4 T 4 to Theorem 6.2, we ob-
\/% loglog T \/% loglogT
tain the following corollary.
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Corollary 6.1. Let F = (Fy,...,F,) € (S"™\{1})" and @ = (61, ...,6,) € (-5 32”]

satisfying assumption o. Put hp = n;ll +o n;rl. There exists a small constant
az = az(F) such that if @ € [-%,%]", we have

1 .
fmeas {t € [T,2T] : min Ree ™% log Fj(% +it) > V}

1<j<r

1 1
+
g ( (1+V/yloglogT)" (loglog T)or+3 )

coxp-hp—(1+0p(—Y
P FloglogT F loglog T

forany 0 <V < asloglogT, and if € |%, 32", we have

1
- meas {t € [T,2T] : min Ree ™ log F;(3 +it) > V} 6.7)

1<j<r

>

oy gt 1+ (i)
exp |-hFp———= |1+ O0F |——=
Ty loglog T)" p( "loglogT ( " \loglogT
forany 0 <V < azmin{loglogT, (loglog T) 1t ),

Remark 7. When r = 1, F1 = {, and 6; = 0, Jutila [56], using bounds on
moments of {(s), has proved

%meas {te[T,2T] : logl{(3 +it)| > V}

<op(-t(1+0[ L
P loglog T loglog T

uniformly for 0 < < loglogT. Our Theorem 6.2 slightly improves this
“log %" when VloglogT <V < azloglogT for some

bound by a factor of
small constant as.

The extended range of V allows us to prove the following mean value
theorem.

Theorem 6. 3 Let F = (Fy,...,F,) € (S")" satisfying assumption of. Let hp =
n F1 +---+n, F Then there exist some positive constants ag = a4(F') and B = B(F)

such that forany 0 < k < ay, we have

2T
/ exp(Zk min Ree™ JlogF (2+lt))dt
T

1<j<r
k+/loglogT 1
1+ (k+/loglog )" (loglog T)“F+%

< T(log T)kz/}““m‘3

(6.8)
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when @ = (01,...,6,) € [-5, 2], and if 9F < we have

+1’

1<j<r

27
/ exp (Zk min Re e % log F; (3 +it) | dt
T
2 g3 k+JloglogT
1+ (k+/loglogT)"

when 6 = (61,...,6,) € |3, 37”] Here, the above implicit constants depend only
on F. In particular, if 95 < -1, it holds that, for any 0 < k < ay,

2T 2k (lo T)”F
L 8
i (52}2'“(2*”)') A T g log 1) 072"

> T(logT) i

+Bk

2
(log 7)r #¥°

(loglog T)(-b/2’

2T 2k
/ (maxlF (2+zt)|) dt >p T
T 1<j<r

3
(IOgT)hF Bk 2T
(loglog T)(- Dz S /T exp (2k 1r£1]1£1 Imlog F; (2 +it) | dt
(IOgT)hF+Bk
<k T ’
" " (loglog T)(r=1/2
and
2
(log T)"r B

2T
<<k,F/ exp( —2k max ImlogF(2+zt) dt
T

1<j<r

(loglog T)—D/2

(log T) hF +Bk

(loglog T)(r-D/2"

Remark 8. It is conjectured that
r 2
/ |F( +it)|**dt ~ C(F,k)T(log T)*
0

for some constant C(F, k) as T — oo, see [16]. It is also expected that the
values of distinct primitive L-functions are uncorrelated, which leads to the
conjecture

T
/O FL(§ +i0) 25| F (L in) P di ~ C(F, k)T (log Tk -+

for some constant C(F', k) as T — co. This has be established for product
of two Dirichlet L-functions for k1 = k» = 1 (see [41, 88, 115] and for some
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degree two L-functions when k =1 and r = 1 (see [34, 122, 123]). For higher
degree L-functions and higher values of k, obtaining the asymptotic formula
seems to be beyond the scope of current techniques. But an upper bound of
this kind has been established by by Milinovich and Turnage-Butterbaugh
[83] for automorphic L-functions of GL(n) under the Riemann Hypothesis
for these L-functions. Our result give some further evidence that distinct
primitive L-functions are “statistically independent".

The range for k in Theorem 6.3 is small due to the fact that ||V in
Theorem 6.2 is only allowed to be a small multiple of loglog 7. However, if
we assume the Riemann Hypothesis for the corresponding L-functions, then
we can improve the upper bound for ||V|| in Theorem 6.2 and thus obtain
better bound for Theorem 6.3 for all .

Theorem 6.4. Let F = (Fy,...,F,) € (8) and 6 = (61,...,6,) € R satisfying
assumption o, and additionally assume that the Riemann Hypothesis is true for
Fi,...,F.. Let T be large, and V = (V1,...,V,) € (Ry3)" satisfying ||V <
asV,/*(loglog T)/*(log, T)V/2 with V,, = miny<;<, V;, where as = as(F) is a
small constant. If @ € [-7, 71", we have

%meas(&(T, V,; F,0)) (6.10)

1 1
<F\yv Ty T 1
1 r (loglogT)*F*2

(Vf+---+V3 ( N4k ))
xXexp|-————=—+O0F ,

2 vloglog T log || V||

and if @ € [%,32]" and [,V < ae(loglog T)*F*1 with ag = ae(F) a suitably

small constant, we have

%meas(S(T, V,;F,0)) (6.11)
1 Vi 4 V2 0 IVIP
>p eXp|-———H — ~UFr '
Vv P 2 Vioglog T log || V||

Moreover, there exist some positive constants ay = a7 (F'), ag = ag(F’) such that for
any V € (Ry3)" with ||V || > yloglogT and 0 = (61,...,6,) € [-%, %],

% meas(S(T,V; F,0)) (6.12)

<F exp (—a7||V||2) +exp (—a8||V|| loglogT log ||V||) )

With r = 1, Theorem 6.4 slightly improves the bound in [83, Proposition
4.1] in the range of the following corollary.

150



Corollary 6.2. Let F € S, and assume the Riemann Hypothesis for F. Let
A>160¢ [-Z,Z

Z,Z|. Then, for any real number V with \floglogT < V <
A(loglog T)*3(log, T)/3, we have
%meas {t € [T,2T] : Ree™™ log F(% +it)| > V}

loglog T 2
|4 nrloglogT
as T — oo.

An application of Theorem 6.4 yields the following mean value theorem.

Theorem 6.5. Let F = (Fy,...,F,) € (S and 0 = (61,...,0) € [_721,3%]
satisfying assumption of , and additionally assume that the Riemann Hypothesis is

true for F1, ..., F.. Then, there exists some positive constant B = B(F') such that

forany k > 0, and any T > exp exp exp(Ck) with C = C(F) a large constant, if
6 € [-%. %], we have

2T
/ exp (Zk min Re e % log Fj(% + it)) dt (6.13)
T 1<j<r
k+/loglogT 1

+ )
1+ (kyloglogT)" (loglog T)or+3

, 3 1
and if @ € [%,%F] and 9p < -5, we have

< T+T(logT)¥/hr+BEeT)

2T
. —9: (1,
‘/T exp (ZklrgjlgrRee JlogFJ(2+zt)) dt

k+/loglogT
> p T +T(log )k /hP=BR=(T) .
o & 1+ (k+/loglogT)"

Here, &(T) = (log, 7). In particular, if 9p < %, it holds that, for any k > 0,
>0,

(6.14)

2T 2k
/ (min |F;(%+ it)l) dt <5 T(logT)F /e,
T 1<j<r

2T -2k
/ (max |F;(%+ it)l) dt >, T(log T)K*/hp—e
T 1<j<r

<Jj<r

2T
T(log T)k2/hp—8 Lok F / exp (Zk 1min Imlog FJ-(% + it)) dt
T

<ex.F T(log T)kz/hF+‘9,
and

21
T(log T)kz/hF_g S / exp (—Zk max Imlog F]-(% + it)) dt
T

1<j<r
< r.r T(log T)kz/hF+‘9.
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To prove the above theorems, we consider the Dirichlet polynomials
associated with F. Let x = (x1,...,x,) € R, 2z = (z1,...,2,) € C", and
F = (F,...,F,) € (8" satisfying assumption &/. We define

PF(S, X) = Z al;)(p),

S
p<X

or(X) = Jl Z M, (6.15)

1. (X) = 71, (X; F, 0) = 1Re (e—lwf—eﬂ D ar(plar,(p) );’F-f(p )), (6.16)
p=X

Kpo(p,2) = Zz,aF (p)e” JZZkaFk (p)e i, (6.17)
j=1

Ey(x) = Ex(z; F, ) (6.18)

l_[ Iy (\/m)

, exp (Kro(p,2)/4p)’

= exp( Z XL X1,T1 1 (X)

1<lhi<lr<r

and

Sx(T,V;F,0) = {te[T,ZT] : >ijorj:1,...,r}.

Here, Io(z) = 5 f exp(zcos 6)dd = Z;’f’zo(z/2)2”/(n!)2 is the modified 0-th
order Bessel function. The convergence of the infinite product of (6.18) is
shown in Lemma 6.10.

We have the following the joint large deviations results for Dirichlet
polynomials.

Proposition 6.1. Assume F = (Fi,...,F,) be an r-tuple of L-functions and

0 < [0,2n]" satisfy (S4), (A1), and (A2). Let T, X be large numbers with

X (loglog )*™ V" < T Then there exists some positive constant ag = aq(F') such that

f01’ V=0W,...,V,) e R with |V]| < ag(TFj(X),
1
T meas(Sx(T,V; F,0))

Mo L+ VD) 1+ VP
(loglog X)"F+2 log log X

= 1+OF

:1

/ _u2/2 du
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We could improve the range V; in Propositions 6.1 with a weaker error
term.

Proposition 6.2. Assume F = (Fi,...,F,) be an r-tuple of L-functions and
0 € [0,2n]" satisfying (54), (A1), and (A2). Let T, X be large numbers satisfying
x(oglog )" < T Then for any V= (V1,...,V,) € (Rso)” with |V <
(log log X)?", we have

1
7 meas(Sx(T,V; F,0)) (6.19)

r (e
25 du
:(1+E)><EX( i oo, )l |/ eI
or (X) or (X) v N

where E satisfies

2-29

220F
VI V7 T (T + V) L1 .
vloglog X (loglog X)F+3 loglog X

Remark 9. In contrast to Proposition 6.1, we allow V; to be of size C+/log log X
for arbitrarily large C, which is important in the proof of Theorem 6.5. We
can prove an estimate similar to (6.19) for larger V;, where we need to change
the value of X suitably in this case. However, our main purpose is to prove
Theorems 6.1, 6.2, and 6.4, and the case of larger V; is not required in the
their proofs. For this reason, we give only the case ||V|| < (loglog X)* for
simplicity.

E <pexp|C

When r =2 and F; = F», we can improve the error term in Proposition 6.1
slightly, which has a consequence for Ramachandra’s denseness problem.

Proposition 6.3. Let F' = (F,F) and 0 = (61,6>) € R? satisfy (54), (A1), and
(A2). Let T, X be large numbers with X (loglog X)'* < T Then, there exists some
positive constant aig = aio(F) such that for V. = (V1,Vo) € R" with |V;| <
a100r(X),

%meas(é’x(T, V,F,0))

(1+[Va))(1 +|V2)) + 1+|V]* / / il dudv
(loglog x)yer+s  (loglog X)? || Jv, Jw

Corollary 6.3. Let F € ST satisfying (A1), (A2), and the estimate |ar(p)| <r p°F
for some 9 € [0,3). Forany 0 < & < 1, z € C, and any large numbers T, X with

12
X (oglog X)™* < T e have

= 1+0F

lmeas {t € |T,2T] : Pr(1/2+it,X) € R(z,¢€)}

// 2+v2 dudv
R(z/or (X), s/ap(X)) 27

as X — +oo. Recall that R(z,r) :=={u+iv € C : max{|Rez—u|,|Imz-v|} <r}.
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6.2 Approximate formulas for L-functions

In this section, we give an approximate formula for log F (s). In the following,
we use the same notation as in Chapter 2. We also define Ar(n) as the
von Mangoldt function associated with F defined by Ar(n) = br(n)logn.
Additionally, define ox(F) for F # 1 and wx(n) by

1 1 2
ox(F)==+2 max {,BF - =, } . (6.20)
Iz—yFlsXS'ff,‘;;/zl 2 log X

Then we have the following theorem, which is a generalization of Theorem
2.1 in the case when F is the Riemann zeta function {(s) and m = 0.

Theorem 6.6. Let F € S'. Let d be a nonnegative integer with d < D(f), and H,
X real parameters with H > 1, X > 3. Then, forany o > 1/2, ¢t > 14, we have

AF(”)Vf,H (elog n/logX)

log F(s) = (6.21)
2<n<XW1/H n log "
+ Z log((s — pr)log X) + Rp(s, X, H).
|S—PF|S@
Here, the error term Rp (s, X, H) satisfies the estimate
mF(XZ(l—O') +X1—0’) 2(Br— _
Rp(s, X, H) < + X2 Br=0) 4 xPr-c
F(s ) <r.d [Tog X Z 1 ( )
|t_7F|Sm

1 X2(Br=0) 4 xBr—c H l

+ Z min {[—————| }, (6.22)
log X . |t — yr| o<i<d | \|t —yr|log X

|T—7F|>@

where the number m is the nonnegative integer such that the function (s—1)"* F(s)
is entire. Moreover, when D(f) > 2, we also have

XZ(l—O') + Xl—o‘

Rr(s,X,H) <y mp (623)

tlog X
Z Ar(n)wx(n)

H (0, (F) = 1/2) (X*(7:F70) 4 yxa(F)=r) ( o (P

+drlog t)
n<Xx3
for |t| > to(F) with to(F) a sufficiently large constant depending on F.

Remark 10. Note that we choose the branch of log (s — pr) as follows. If
t # yr, then —1 < arg(s—pr) < @, and if ¢t = yF, then arg (s — pr) =
limgyo arg (o — Br +ie).
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Remark 11. Theorem 6.6 is a modification and generalization of the hybrid
formula by Gonek, Hughes, and Keating [33] to apply the method of Selberg-
Tsang [116]. Our formula has the advantage of being able to estimate to
contribution from zeros close to s over the original their formula [116, Lemma
5.4]. Actually, we can find the sign of the contribution from zeros to s by the
form 3, . 1 log((s—pr)log X). This fact plays an important role in the

logX
proof of theorems in Section 6.1.

Theorem 6.6 can be obtained by the same method as the proof of Theorem
2.1, where we need the following proposition instead of Proposition 2.1.

Proposition 6.4. Let F € ST. Let X > 3, H > 1 be real parameters. Then, for any
s € C, we have

log F(s) =

Ar(n)vyn(e
n’logn

logn/logX)

+my(Up((s — 1) log X) + Up(slog X))

2<n<XW1/H

oo k
= D Uo((s=pp)logX) = ) > Un((s+ (n+u;)/4;) log X),
PF

n=0 j=1
pr#0,1 /

where the number m7, is the integer such that the function (s — 1)™r F(s) is entire
and not equal to zero at s = 1.

Using Theorem 6.6, we obtain the following propositions.

Proposition 6.5. Let F € ST satisfying (6.1) and (A3). Put §p = min{}, 45} with
kr the positive constant in (6.2). Let o > 1/2, and T be large. Let 0 < & < 1/2 be
given. Then, there exist positive constants A1 = A1(F) such that for any k € Zs;,
3<X <Y =Tk

1 2T
7

k
2
SAllckaT(l—ZO')ép+Allck!Xk(1—20’)+Allck!( Z Iapgp)l ) '
p o

Ar(n 2k
log F(o +it) = > % - D log((o+it—pr)logY)| d
2<n<X g |o+it—pF \S@

X<p<y?

Proposition 6.6. Suppose the same situation as Proposition 6.5. Then, there exists
a positive constant Ay = Ap(F) such that forany k € Z»1,3 < X <Y := ToF/k,

1 2r AF(I’l)
)

2%
— | dt
I’lO-'Hthgl’l
k
< AR pART(1-20068  gk g xxk(1-20) | gk gy lap(p)|?
< Aj + AS k! + AL k! Z - .

log F (o +if) - Z

2<n<X

X<p<Yy? p

Proposition 6.6 has been essentially proved by Selberg [108, Theorem
1]. However, there are some differences from his, so we give the proof of
Proposition 6.6 for completeness.
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6.2.1 Proof of the approximate formula for L-functions

We give the proofs of Proposition 6.4 and Theorem 6.6, but the proofs are
almost the same as the proofs of Proposition 2.1 and Theorem 2.1. Therefore,
we give the sketches only.

Lemma 6.1. Let F € 8%\ {1}. Forall s € C neither equaling to pole nor a zero of
F, we have

F’ 1 1 1 1
F(a+it): Z ( +—)+yp—mp(s_1+;)—logQ (6.24)

- Zk:/l~£(/l-s+,u~)
LT\ il

n=0 j=1
where yp is a complex number and satisfies Re(yr) = —Re 2, (1/pr). In partic-
ular, for |t| > to(F), we have
F’ 1 1
~ (o +it) = Z ( +—)+0(dplog|t|). (6.25)
F 54 \S—pr pF
pr#0,1

Proof. We obtain equation (6.24) by the same method as the proof of [87, eq.
(10.29)]. Moreover, by applying the Stirling formula to equation (6.24), we
can also obtain equation (6.25). O

Lemma 6.2. Let F € ST. For |t| > to(F),1 < H < 1l e have

Z 1 < dpHlog 1], (6.26)
lt-yr|<H
drlog |t
D L ~ < Fzgl ) (6.27)
lt—yr|>H (t=yF)

Proof. Applying the Stirling formula to Lemma 6.1, for |t| > #o(F), we have

Foo H-8
Re (F(H+ zt)) = Zp: B+ (Z 7 +0 (drlogltl).

On the other hand, it holds that

H - Br 1
;<H—ﬁF>2+<r—m2 > L

lt-yr|<H

H-Br H
; (H = Br)*+ (t = vr)? - Z (t=vr)*

lt=yr|=H

Since br(n)logn <r n'/? from (S4), we find that

(F'[F)(H +in)| = | > br(n)logn/n™| <p {(H-1/2) -1 < 27"

n=2
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Hence we obtain (6.26) and (6.27) for H > 2. In addition, we immediately
obtain these inequality the case 1 < H < 2 from (6.26) and (6.27) in the case
H=2. m]

Lemma 6.3. Let F € S'. Forany T > ty(F), there exists some t € [T, T + 1] such
that, uniformly for 1/2 < o < 2,

’

%(o’ +it) <r (logT)>.

Proof. Using Lemma 6.2, we obtain this lemma by the same argument as the
proof of [87, Lemma 12.2]. O

Proof of Proposition 6.4. By using Lemma 6.3, we obtain Proposition 6.4 in the
same method as the proof of Proposition 2.1. o

Proof of Theorem 6.6. Equation (6.21) and estimate (6.22) are immediately ob-
tained from Lemmas 2.2, 2.3 in the case m = 0 and Proposition 6.4. Hence, it
suffices to show estimate (6.23) on the range |¢| > 7o(F). Following the proof
of Proposition 2.1, we see that it suffices to check

> Ar(mwy (n) +drloglt], (6.28)

nox.t (F)+il‘

Z ox.(F)—1/2
e (ox4(F) = Br)* + (t = yr)?

n<X3

which can be shown by the same proofs as in [107, eq. (4.4); eq. (4.7)] by
using equation (6.25) instead of [107, Lemma 11]. O

6.2.2 Proofs of mean value results for L-functions

The next lemma is an analogue and a generalization of [116, Lemma 5.2].

Lemma 6.4. Let F € 8"\ {1} be an L-function satisfying (A3). Let T be large,
and kr be the positive constant in (6.2). For k € Zs1, 3 < X <T?3, & > 1 with
X& < T¥F1* we have

2T 1 k
/ (O'XJ(F) - E) g2 w0 T
T

gk g% . Chu
(log X)*  log X(logT)*-1)’

where C = C(F) is a positive constant.

Proof. By definition (6.20) of ox;(F), we obtain

2T 1 k
/ (U'X,z(F) _E) grx ()12 (6.29)
T
k k k

4 (4 2 1 1
< T&TogX - 2| (x3&H)Pra,
=rer (logX)+1ogX 2 1(F 2)( ¢

- X%ﬁg;{l/zx <YF S2T+—X31|oﬁgF)7‘
Br=1/2
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From the equation
1\f )
(,BF - 5) (X3£2)Pr—2
Br 1
:[ {(0-—1/2)]( log (X3é32)+k(0__1/2)k—1} (X3§2)0-_§d0-’

we find that

1\F )
Z (ﬁF - 5) (X3£2)Pr—2
1
- o
Br=1/2
BF 1
< 2 =12 g (e + k(0 - 172 ()T o
0<yr<3T "2
Br=1/2
1
< [ e-12M105008) 4k (@ -2 (02 1o
’ 0<yr<3T
Br=0o

1
- [ {(0’ —1/2)* log (X3¢?) + k (o - 1/2)“} (X3£2)7 "N (o, 3T) dor.

2

By assumption (A3), we can use the estimate Nr(o,T) <f T1-xr(0-1/2) logT,
and so, for X¢ < T¥*/%, the above most right hand side is

. 342\073
<<FT10gT[ {(0'—1/2)klog(x3§2)+k(0'—1/2)k—1} (%) do

2
Ckk!

T—
< log )1

for some C = C(F) > 0. Hence, by this estimate and inequality (6.29), we
obtain this lemma. o

Lemma 6.5. Let F € S' be an L-function satisfying (6.1) and (A3). Let T be large.
Put 6 = min{}I, 55} with kg the positive constant in (6.2). For any k € Zs1,
X > 3 with X < T/, we have

/ZT
T

where wy is the smoothing function defined by (2.38), and C = C(F) is a positive
constant.

2k
Z Ar(mwx (n) dt < TC*k* (log X)**

nO'X,;(F)+il

n<X3

Proof. For brevity, we write oy ,(F) as ox; in this proof. We see that

Z Ap(m)wx(n) _ Z Z Ar(pHwx(p?)

nU'X,t+it pg(U'X,t‘H't)

n<X3 21 p<x3/t
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Let 61 = 61(F) > 0 be a positive constant for which the estimate
Ap(ph) <p p'117-o) (6.30)

holds. The existence of such a constant is guaranteed by condition (S4). Put
Ky = 267", Using the inequality 0 < wx(n) < 1, we find that for any o > 3

A ¢ A
Z Z F(pg();ift()(p ) Z Zl F;/P; )|

>Kq p‘7<X3 >K1 p

<<FZZ o <<FZ‘,%<< 1.

)4 €>K1

ST

Hence, it holds that for any o >

Ap(m)wx (n) Ar(p)wx(p")
D= ) D e tOr(). (63D
n<Xx3 1<¢<Kq pt<X3

For the inner sum, we write

Z Ar(pHwx(pY)

p(SX3 p[(O'X,t'Ht)
.S Ar(pYwx (p") S Ar(pHwx (ph) (1 pti/2-ox.)
= Pz L2+ p
f<X3 p€<X3
Z Ar(pDHwx(p®) [T AF(P[)WX(PK) 10gpfd ,
= P plGarin @,
[<X [<X3
and, for 1/2 < o’ < oxy,
Z Ar(pYwx (p?) log p’
@+
ot p (a’+it)
_ Xa/_l/z « Xl/z_a Z AF(pf)WX(pK) 108 (pr) logp
- , C(a+it)
¢ pl<x3 p

Ar(pO)wx(p®) log (Xp?) log p* "
Z pf(a'+zt)

S Xa-X,,—l/Z/OOXUZ—a
1/2

Therefore, we have

pfSX3

Z Ar(pO)wx(pY)

p[’SX:; pf(O'X,l+il)
¢ ¢
< Z Afr(p )WX_(P)
pL(1/2vi)
pZSXS
_ © Ar(pHwx(p) log (Xp) log p*
+(oxs = %)XJX’I 12 /1/2 xt/re Z pllatin da,

17€SX3
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which together with equation (6.31) yields

Ap(m)ywx () [
Z SR = (6.32)
n<X3 e
< Ck 4 (K2 Ar(pHwx (ph) [P
< €1 +(2K1) Z Z C(1/2+in)
1S€SK] PSXS/[

Z Ar(pHwx(pf)log (Xp©) log p*

IR
+((Ux,t—%)X(rX" 2/ X pllatin

1
2

p<X3/t

2k
da) }
for some constant C; = C1(F) > 0. By Lemma 2.8, it holds that

k
Z / 2kdt<<Tk! Z (Z M)

1<t<Kk; YT 1<t<k; \p<x3/¢ p

2T

Z Ar(pHwx(p)
/2w

p<Xx3/¢

for X < T°r/k < TV/4k_ By the definition of the von Mangoldt function Ar(n),
we can rewrite (1.21) to

o2
Z |AF£+)| <rl (6.33)
p

for every ¢ > 2. Hence, we obtain

k

2
S| X ) <a
2<6<Kq

p<X3/¢ p

for some constant C; = C>(F) > 0. Additionally, by using (6.1), partial
summation, and applying the fact Ar(p) = ar(p) log p, we find that

Z |AF(p)I?
p<Xx® p
2 X391 2

_ (log X%)? Z lar(p)| _/ ngz lar(p)| dé

P 2 & =

X log1
= nr(log X°)?loglog X° — 2np/ 08¢ X gog Oggdf +OF ((logX)z)
2

= nr(log X°)?loglog X° — nr(log X°)?loglog X° + OF ((log X)z)
<r (log X)2. (6.34)

Hence, we have

> [
1<¢<K; r

2k
dt < TCik*(logX)*  (6.35)

Z Ar(pHwx(p)
/20

p<Xx3/¢

160



for some constant C3 = C3(F) > 0.

Next, we estimate the integral of the last term on the right hand side of
(6.32). By the Cauchy-Schwarz inequality and Lemma 6.4, when 6 < k¢ /20,
it holds that

r 1 [ 1
[ tona-1mxest [Txe
T 1

2

Ar(pHwx (p?)log (Xp*) log p*
Z pf((t+it)

2k
doz) dt

p(’ <Xx3

2T 1/2
< ( / (ox.¢ —1/2)*k x4k (ox.a=1/2) dt) X
T

2T o
X / / Xl/Z—a/
T 1/2 pl<x3
1ck 2T 0
< r2C; / / x1/2-a
(log X)* | Jr 1/2
for some constant C4 = C4(F) > 0. Moreover, by Holder’s inequality, we

have
4k
da)

Ar(pO)wx(p®) log (Xp®) log p*
Z pé’(a+it)

Ar(phHwx (p?)log (Xp*) log p*
pt’((z+it)

1
4k \2
da/) dt

1
4k \2
da/) dt| ,

(6.36)

Ar(pH)wx (p)log (Xp’)log p*
Z pf(a/+iz)

pt’ <Xx3

Ar(pHwx(p) log (Xp*) log p*
p{f(a+it)

S 4k-1 S
< (/ Xf_”da/) X/ X27¢
1/2 1/2 e

_ 1 _ /°° x| 3 Ar(p“wx(p*)log (Xp®) log p°
(log X)*= 1/2

p€ (a+it)
Therefore, by using Lemma 2.8, we find that

2T 00
[
T 1/2 X3/t
< — X dt |da
(log X)4k-1 /1/2 ./7:

2k
rao [ Xma( 5 |AF(pf)|2<log(Xp"))Z(logpf)Z) "
1

4k
da

4k
da.

pt’ SXS

Ar(pH)wx(p®) log (Xp®) log p’
Z pf(w+it)

4k
da/) dt

Ar(p®)log (Xp©) log p’
Z p{’(a/+it)

p<Xx3/t

(log X)*-1 /1 » S pala

2k
Tk (Z AF<pf>|2<log<pr>>2<logpf>2) |

< —
(log X)# St p’

161



From (6.34) we see that

Z |AF(p)I*(log (Xp))*(log p)

<r (log X)°.
p rios

p<X3

Also by (6.33), we have

Z |AF (P9I (log (Xp*))*(log p*)*

n <r (log X)*
P

psx3/(

for every £ > 2. Therefore, we obtain

2T o
S
T 1/2

< T(2k)!CE (log X)®

Ar(pHwx (p©) log (X p*) log p*
pt’(a/+il)

4k
da) dt

p<Xx3/t

for some C5 = C5(F) > 0. By this estimate and (6.36), we have
2T .
Z / ((Ux,z - 1/2)X7% 2
T

1<¢<K;
o0
1
X / X2«
1

2

Z Ar(phwx (p') log (Xp') log p'

2%
pllarin da) dt

pSX3/l

< TCf k¥ (log X)**

for some constant Cs = C¢(F) > 0. Combining this with (6.32) and (6.35), we
complete the proof of Lemma 6.5. o

Lemma 6.6. Let F € S be an L-function satisfying (6.1) and (A3). Let o > 1/2,
T be large. Let k., 6 be the same constants as in Lemma 6.5. There exists a positive
constant C = C(F) such that forany k € Z»1,3 < X < Tor/k,

2k
2r —o-1rses 2 (log T\
/ Z 1] dt < Cle (27 1)6F+1°g§( (lOiX) ) (6.37)
T |0'+it—pF|S@ &
and
k

2T
./T

< (Ck)le—(a—1/2)6p+l4(fTI§( (

Z log((o +it — pr)log X)| dt
lortit=pr 1< g (6.38)
logT)kJr%
log X '
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Proof. From (6.20), there are no zeros of F with |0 + it — pr| < @ when

o > ox,(F). Put ¢ = T°f/* Note that £ > 1 because we suppose that
3 < X < T9/k = £, From these facts, we have

> aggme® N

. 1 1
|0'+11—PF|Sm |t—7F|S@

for o > 1/2. By definition (6.20) and the line symmetry of nontrivial zeros
of F, we find that

(s (F) = 1/2)2
2 182 )L 1 ) e A G

|f—7F|S@ |l—7F|S@ l=yFl<gex
Br=1/2 Br=1/2

Applying estimate (6.28) to the above right hand side, we obtain

Z Ap(n)wx(n)
nO’X’[ (F)+lt

D, 1< (ox(P)=1/2) (

1
|t_7F|S@

+drlog T) (6.39)

n<X3

for ¢t € [T,2T]. Noting X¢?* < T¥/* and using Lemmas 6.4, 6.5, we have

2T 2k
_ Arp(n)wx(n)
_ 2k 2k(0ox +(F)—0) § F X 2%
T (xAF) = 1/2)767 ( nox, (F)+it + (log 7)™ | dt
n<X3
2T
< §2k(1/2_”){(10g T)Zk (O-X,t(F) _ 1/2)2/(452/((0')(,,(F)—l/Z)dt+
T

Z Ap(n)wx(n)

no-X’f (F)"'lf

27 12/ o
(/ (ox(F) - 1/2)2k§2k((fx,,(F)—1/2)dt) /
! T

n<X3
sk (logT 2k _ak_
< Ck 2k(1/2-0) T &TogX +T longk/2
¢ ¢ log X ¢

og X

< Ckr
-2 log X

2k

for some constant C, = C»(F) > 0. Hence, we obtain estimate (6.37).
Next, we show estimate (6.38). We find that

Z log ((o +ir — pr) log X)

. 1
|0'+ll‘—pF|Sm

< (gx(s) +m) x Z 1,

1
log X

|o+it—pF|<
where gx(s) = gx (o +it) is the function defined by
gx(s)

_ { log (m) if there exists a zero pr with |0 + it — pp| < @,

0 otherwise.
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Here, p, indicates the zero of F nearest from s = o +it. By using the
Cauchy-Schwarz inequality and estimate (6.37), we obtain

k
dt (6.41)

2T
Z log((o +it — pr) log X)

|o+it—pr | < 5y

T
log X

2T 1/2
< Cé‘ (/ gx(o+ it)det + ﬂsz)
T

o @100+ (log T
log X
for some constant C3 = C3(F) > 0. Moreover, we find that

o o 2T 1 %
/T 8x(s) dtS/T 2 (log(|0'+it—PF|10gX)) “

|O-+ll PF|<10gX

yF+10gX 1 2k
: [ o sl
|t —yr|log X

T- s <yr <2T+ 10 YET logX

1 5 ! 1\\*
< / (log (—)) dt
IOgX T-1<yp<2T+1 0 ¢
logT ! 1)\

By induction, we can easily confirm that the last integral is equal to (2k)!.
Hence, we obtain

log T
log X

2T
/ gx(s)?*dr <p (2617
T

By substituting this estimate to inequality (6.41), we obtain this lemma. O

Proof of Proposition 6.5. Let f be a fixed function satisfying the condition of
this paper (see Notation) and D(f) > 2. Leto > 1/2, T be large, k € Z>1, and
X, Y be parameters with3 < X <Y := T9r /% where 65 = min{ 5, }L}. It holds
that Y2(0v.(F)=0) 4 yovu(F=o — y2(1/2-0) . y2(or,(F)=1/2) 4 y1/2-0", yoy.(F)-1/2 <
2y1/2=o . y2(ov.(F)=1/2) for o > 1/2. Using this inequality and estimate (6.23)
as H = 1, we find that there exists a positive constant C; = C1(F) such that

2k

log F (o +if) — Z _Ar(n) Z log((o +it — pr) log )| (6.42)

o+it
2<n<X n lOg n

|O'+lt_PF|< lOgY

Z AF(n)va (elogn/logY)

k
<C :
1 n*logn

X<n<Y?

Z Ap(n)wy(n)

n(TY,t (F)"'ll

2k
+ C{‘YZk(l/z_(r)(O'Y,z(F) _ 1/2)2ky4k(ffy,z(F)—1/2) ( +log T)

n<y3
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fort € [T, 2T]. Following the proof of estimate (6.40), we obtain

2k
2T
- _ Ap(n)wy(n)
k(1-20) 3 2ky4k(ay . (F)-1/2) D)WY
P20 [ (aya(p) - 127 ( > A og| e
n<Y
< Cle (20’ 1)6F+}(6)61; (122’;) < Tl—(zo‘—l)(ché(ka (643)

for some positive constant C, = C>(F). Similarly to the proof of (6.31), we
have

£ log p?/log Y
5 ArDuae SPISY) i
pl(@+in Jog pf F ’
X<pl<y?
>Kq

where K is the same constant as in the proof of Lemma 6.5. Here, we used
the inequality |v_f,1(e1°gp()/ log¥)| < 1. Therefore,

AF(n)vf’l(elogn/logY) 2k
Z notit log n

X<n<Y?

<kt Y

(<K

Ap (p[)vf,l (elogp[/log Y) 2k
p€(0'+it) 1ng€

+ C§X(1_20-)k

X1t<p<y?/t

for some positive constant C3 = C3(F). Using Lemma 2.8, we have
1 2T
i),

A y|2
D D e e S )
1<l<K; X1/€<pSY2/f p (logp )

dt

Ap(n)VfJ(elOg"/logY) 2k
Z notit IOgl’l

X<n<Y?

Moreover, by estimate (6.30), it holds that }’, AP - 1 for £ > 2, and

p‘(log p")?
thus we obtain
A £y |2 A £y |2
IAr(OE ) |€ OF e (g
X1t <p<y?/t p (logp ) (logp )
Combining (6.45), (6.42), and (6.43), we obtain Proposition 6.5. O

Proof of Proposition 6.6. By Proposition 6.5, it suffices to show that there exists
a positive constant Az = A3(F) such that

2
o1
/ Z log((o +it — pr)log¥)| < T 7@7Dor gk gk
T Niosic-prisly
with ¥ = 79/, and this estimate can be obtained by Lemma 6.6. O
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6.3 Distribution functions of Dirichlet polynomials on the
critical line

In this section, we assume that F' = (F1, ..., F},) is an r-tuple of L-functions,
and that @ = (61,...,0,) e R".

6.3.1 Approximate formulas for moment generating
functions I

We first show the following proposition, which gives formulas for moment
generating functions.

Proposition 6.7. Assume that F, 0 satisfy (54), (A1), and (A2). Let T, X be
large numbers with x (oglog X)**V <T. Forany z = (z1,...,2,) € C" with
[|z]] < 2(log10gX)2’,

1 . .
= ‘Re (e P, (3 +it,X)) |d
T/ﬂexp(;z_, e(e Fi(5+i )) t

= n Io (VKF,B(P, Z)/p) +0 (eXp (—6_1(log log X)4(’+1))) :
p<X
where K g(p, z) is define by (6.17), and A is a subset of [T, 2T] defined by (6.49)
satisfying meas([7T,2T] \ A) < T exp (—e_l(log log X)4(r+l))'

We prepare the proof this Proposition 6.7 with some lemmas.

Lemma 6.7. Let w = {w; ,}1<j<r pep be a complex sequence, where P is the set
of all prime numbers, and 1 = {Y; p11<j<rpep a real sequence. For all n € Z
written as n = g - - - q5* with q; distinct prime numbers, we have

1 2T s r m
f/T H(Z W g cOS(tlog g, +tﬁj,qm)) dt

m=1\ j=1
Py, S

— [ Jwrg,+--+ |wr,qm|>“m) .
m

=1

= fwyp(n) + 0

Here, Q(n) is the number of the prime factors of n, and f, v is the multiplicative
function defined by

2 5
1{a\[< . o
Jo(P") = 35 (a/2) (Z Wf,pel%’p) (Z Wj,pe“/'””) :
Jj=1 j=1

@ ). Lo . ) @ o
The number (a /2) is the binomial coefficient, and we define (a /2) =0if a is odd.
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Proof. Let p be a prime number, and « a positive integer. Then we find that

[0

Z wjp,cos(tlogp+y;,)

Jj=1

a
= Z Witp =" Wia.p 1—[ cos(tlog p +j,.p)
k=1

1<j1,..c.ja<r

and that
a 1 (04
k:l k=1
— i eial(tlogp+¢/,~1,p)+~--+z‘gn(tlogp+¢/jmp)
a
- £1,...,€0€{-1,1}
— i e EWinpttealior) ¢ Fo
a
2 £1,...,£0€{-1,1}
&1++e,=0

where E7 is the sum whose the number of terms is less than 2%, and the form
of each term is 6¢"#1987 with |6| < 27% and 1 < |B] < @. We define that the
first sum on the right hand side is zero if @ is odd. Therefore, we can write

a
r

Z wjpcos(tlogp +y; )
Jj=1
— i W ieWj.pttealjor) 4 E
= e Witp " " Wja.p € 2.
1<j1,...ja<r £1,..,€q€{-1,1}

g1++e4=0

Here, E; is the sum of which the number of terms is less than (2r)%, and the
form of each term is §’¢"A1087 with || < 2‘“(2321 wip)*and 1 < |B] < a.
Moreover, the first term on the right hand side is rewritten as

1 , .
5 Dy D (wape ) (g petteti)

&1,..,8q€{-1,1} 1<j1,..0sja <r
g1++e,=0

a
1 r 2 r
_ = . LY, . e,
DI PR G N O
1 j=1

&1++e4=0

a

2

g g
1{a)\l< . r S

:z_a(a/z) 2 Wi | | D wipe i | = fua(p).
J=1 J=1

Thus, we obtain

Am
N

[TID wign cos(tlog gm+w1q,) | = fuwap(n) +Es,

m=1\j=1
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where Ej3 is the sum whose the number of terms is less than [} _,(2r)*",
and the form of each term is §” (1108 a1+-+As1084s) with 0 < |B;| < @, and
Bu # 0 for some 1 < u < s. Here, 6” is a complex number independent of
t, and satisfies [6”| < W =[], 2“""(2;:1 W;.q,, ). Since |B1log gt +--- +
Bslog gs| > n~1, the integral of each term of E3 is bounded by Wn. Hence,
by this bound of E3 and the bound for the number of terms of E3, we have

21
/ Esdt < Wn H(Zr)“m = &y H(Z W g )™
r m=1 j=1
which completes the proof of the lemma. o

Lemma 6.8. Let a(p) = (ai1(p),...,a,(p)) be an r-tuple of sequences with
{a;j(p)} a complex sequence over prime numbers. Let X > 3, and T be large.
Let z = (z1,...,2,) € C". Put

Ka(p,2) = ), zja;(p) ) zar(p). (6.46)
j=1 k=1

Then, for k € Zs1, R > 0, we have

k
1 27 $ a;(p)
J:

p<X p

okt
27 Jii-r w p<X <%

k
: [0 (wVEalp 270 )dw+o( rllzl Y ||a<p>||nr) )

Here, the symbol || - || means the L1-norm, that is, ||a(p)|l1 = la1(p)|+- - -+]a,(p)|.

Note that we do not need to consider the branch of Ip(4/z) since the
function is an entire function on the complex plane.

Proof. We write

k
% /TZT (Z <jRe ) a{/(z{?t) di (6.47)

= p<x P

k

1 21
:?/T (Z\/_sz|a](p)|cos(tlogp—al‘gaj(P)) dt

p<X

1 / 4
— zjla;j(pi)| cos(tlog p; —arga;(p;))dt.

Inorder touse Lemma 6.7, weputw = {w; ,}1<j<r pep Wherew; , = z;la;(p)|,
and v = (¢} p}1<j<rpep Withyj , = —arga;(p). Forn=p1---pr =q{" ---q5°*
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with ¢g,,’s being distinct prime numbers, we find that

S S
PO [T wrgn+ -+ wrg, ) = P [ TUz1a1(gm)l +---+ lzra, (@)D

m=1

<10 - latgm ™
m=1

k
= (= [ [latplh.
=1

Therefore, by Lemma 6.7, integral (6.47) becomes

fuw(Pr-py) | <r||z||>k )
la(pn)llVpi
2 ] 2 oot
k
Swap(P1- Pr) 1
ZPM Noa 0( rzn;(na(p)nlf))

This gives
21 ¢
1 - Clj(p)
- /T (Z zjRe ) o /M) dt (6.48)

j=1 p<X
k
ZEDY ||a<p>||1w7) )

p<X

. fum/;( ) X(WO(%

Q(n)=k

where gy (n) is the multiplicative function defined as gx (p®) = 1/a!forp < X
and 0 otherwise. By Cauchy’s integral formula, the right hand side of (6.48)
becomes

Jw,ap (1) nd
27rl§I§W|RZ 3 ()Q() (

Note that we exchanged the order of the integral and the series in the above
deformation, but it is guaranteed by their absolute convergence. Since the
functions f, 4, gx, and wo) are multiplicative, we find that

Jwp(n) " Jwp(P) , Fww(P*)
5 Ful0) et < [ 52 P00 7§ Sl

n=1 p<X a=0 p p<X a=0

k
rllzll ) ||a(p)||1\/_) )

p<X

Using the definition of f, (n), we can write

3 et = S oot Sy
- 1y (wVRalo 20,

which completes the lemma. o
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Lemma 6.9. Let T, X be large with X108108X)*"™™ < T Define the set A =
A(T, X, F) by

<

Pr, (3 +it, X)

< (loglog X)2+D L (6.49
o (X (loglog X) (6.49)

Then we have
1
= meas([T,2T]\ A) < exp (—e‘l(log log X)4(r+1)) _

Proof. By Lemma 2.8, we have

1 2T
7

for 3 < X < TY/2?k Therefore, it holds that

N jar, (p)12\" -
Pr, (L +it,X)| dr < k! Z —L | = (kow (X)P)F (6.50)
p

p<X

Pr (3 +it, X)

1
7 meas 1 € [T,2T] : > (loglog X)*r+V

oF; (X)

k k
< ((loglogX)4(’+1)) ’

Hence, we obtain

1 k k
? meas([T, 2T] \ ﬂ) <rX ((log log X)4(r+1)) ’

Choosing k = le7! (loglog X )4+ | we obtain this lemma. O

Proof of Proposition 6.7. Let T, X be large numbers such that X 108108 X o
T. Letz=(z1,...,2) € C" with [|2]| <2(loglog X)?". From (6.49), we have

1/ 4 L
— [ ex E ziRee ™ ipPp (L +it, X) | dt
T Ja p(j_l ’ h2
1 1 a ¢
_ }: 2: —i6; 1,
T FL(jzlszee JPF’(EHI’X)) «

0<k<y
1 2r+5/2 k
> 7 (Clloglog x)**12) 2
k>Y

+0
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with ¥ = 1(loglog X)*"+D. Here, C = C(F) is some positive constant. We
see that this O-term is < exp (—(1og log X )4(”1)). By the Cauchy-Schwarz
inequality, we find that

1 - . ¢
?‘/ (szRee_’ngFj(%+it,X)) dt

(%

k
zjRee™iPp (3 +it, X)) dt
j=1

-

—i0; 1. .
sz Ree™ Pp, (5 +it, X)
J=1

2k 12
dt .

By Lemma 6.9, estimate (6.50), and bounds for ||z||, this O-term is

1 12 2T
+0 T(meas([T, 2T\ A)) (/T

k
< exp (—(2e)_1 (loglog X)4(’+1)) (C1k1/2(10g log X)2r+1/2)

for 0 < k <Y, where C; = C1(F') > 0 is a positive constant. Therefore, it
holds that

1 X .
f/ﬂexp(szRee’efPF].(%Ht,X))dt (6.51)
=1
1 1 73 . g
== Z F/T (szRee_’eprj(%+it,X)) dt
0<k<y J=1
Cre(loglog X 2r+1/2\k
+0 exp (—(26)_1(10g10gX)4(r+1)) Z (Cre( ngokg/z ) ) )
0<k<Y

When X is sufficiently large, it follows that

(Cre(loglog X)2r+1/2)k (Cre(loglog X)2r+1/2)k
Z Jk/2 = Z Kk/2 + 0(1)
0<k<Y 0<k<(loglog X)4r+2
< exp ((log log X)4r+3) .

Hence, the O-term of (6.51) is < exp (—%(log log X YA +1)). Moreover, apply-
ing Lemma 6.8 as a;(p) = ar,(p)e™"%, we find that

1 1 [ : ¢
S n ) (Rereerndrin) a-
J=1

0<k<Y

1 Z W:+1 l—[IO (W\/m) dw+Op

2ni Iwl=e g<x<y p<X

L o)
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for some C; = C(F) > 0. Note that we in this deformation of the O-term
used the estimate |ar,(p)| <F, p1/?2 which is deduced from the equation
ar;(p) = br,(p) and axiom (54). By noting the range of X, the O-term is
< T712. Hence, by substituting these estimations to equation (6.51), we
obtain

1 ¢ .
?/ﬂexp(szRee‘efPF].(%+it,X))dt (6.52)
j=1
1 1
= — Io \WwvVKFpe(p,2z)/p|dw
2ni |W|:‘30§1<Z;ka+llgf ( )

+0 (exp (—6_1(log log X)4(r+1))) :

By inequality (6.67) and noting the range of || z||, we find that

[0 (wVKrolp.2)/p)

p<X

< exp ((log log X)4r+2)

for |w| = e. Additionally, for |w| = e, we have

1
2, i

k>Y

< exp (—4'1(log log X)4(’+1)) .

Therefore, we obtain

Z w’il n Io (W\/m) dw < exp (—6‘1 (loglog X)4(r+1)) -

k>Y p<X

By this inequality, the right hand side of equation (6.52) is equal to

zim. j{m:e J;[(Io (W\/W) dw +0 (exp (_6—1 (log log X)Z(r+1))) _

w—1

In particular, since the function [],.x Io (w VKro(p,z)/ p) is entire with
respect to w, this is equal to

l_[ Iy (\/KF’Q(p, z)/p) +0 (exp (—6_1(log log X)z(”l))) ,
p<X

completes the proof of Proposition 6.7. o

Next, we give some lemmas to help estimate the main term in Proposition
6.7.

Lemma 6.10. Assume that F satisfies (54), (A1), and (A2). Put

Iy (\/Im)

¥(z) =¥(z F,0) = '
(2) (2 ) L exp (Kro(p,z)/4p)
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Then, ¥ is analytic on C", and satisfies

r Z? 220
¥ <|[ exp |50, (1) +0r (lz,| +121” F) ‘ (653)
j=1
forany z = (z1,...,2,) € C,and
r x2 5 220
¥(x) = nexp (—EJO'FJ- (x;)"+OF x2 +x; MF)) (6.54)
j=1
forx € (Rxo)". Moreover, forany z = (x1+iuq, ...,x,+iu,) € C" satisfyingx; > 0

and u; € R with ||lul| < 1, we have

Y(z)=¥(xi,....x) ﬂ (1 +O0F (|u,| exp (Dl||m||f iép))) . (6.55)

j=1
Here, D1 = D1(F) is a positive constant.

Proof. First, we show that ¥ is analytic on C". It suffices to show that, for
every compact set D c C’, the infinite product is convergent uniformly for
z € D. By the definitions of Kr g and 9, it holds that, for any z € D,

Kro(p,2)| < ClizIPllar(p)I} <p.r p*'F, (6.56)

for some positive constant C = C(F') > 0. Therefore, for any prime p >
po(D, F) with po(D, F) sufficiently large depending on D, we can write

fo ( “KF’O(p’Z)/p) B i Kro(p,2)™ — Kro(p,2)" N (657)
exp(Kpo(p,2)/4p) 44 4mpm(mh? — \&4 4'p'n! '
lag(p)|I3
=1+ OD’F pZ—T

lar(p)IF
R

uniformly for z € D. Since we assume (A1) for F, it holds that ¥,
+oo. Hence, the infinity product is convergent uniformly for z € D.

2
Next, we prove (6.53). Put M = (C||z||) "*F . Here, C is the same constant
as in (6.56). Then we divide the range of the product as

UIO(W) (H ﬂ) o (VEro (. 2)/p)

exp (Kro(p.2)/4p) -y i) &P (KFo(p.2)/4p)
Using the Taylor expansion of Iy, we see that

Iy (\/KF,G(P, Z)/P)

< Io (VIKro(p, 2)/p)
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From this inequality, (6.56), and the inequality |Ip(z)| < exp(|z|), it holds that

<exp(Cz||ZZ a F<p>|).

J=1 ps<M

l—[ Iy (\/KF,e(p, Z)/P)

p<M

Using assumption (A1) and the Cauchy-Schwarz inequality, we find that

lar, (p)| V20 lar (P L
Z—Q,; S(Z 1) (Z—fp ) <p |2I™7F,  (6.58)

pP<M pP<M P<M

and thus

n Iy (W\/KF,B(Pa Z)/P)

p<M

220
< exp (OF (nzn—l-wF))

2-29
[Jenfor =)

Additionally, since

Kro(p,2)
= Zz]aF (p)e™™i ZZkaFk(p)e Ok
j=1
= Zz ar(P)P+2 3z Re (e ap, (par, (7)) . (659)

1<h<lr<r
we see that, using (Al) and (A2),

2
[T exp (~Kro(p. 2)/40) = exp| = " Zorr, (M) +0p(1217) | (6.60)

pP<M j=1

If |z;] < ||2]|'/?, then Z?O'FJ.(M)2 <r ||| If |z;] > ||2]|"/?, then we use (A1)
to obtain

Z? 2 Z? Z? lar, Z? 2 2
Zor, (M7 = Zow (50 + £ = Lo, (121 + O (I1217)

lzjl<p<M

From this observation and (6.60), we find that

r ZZ
n exp (-Kr.o(p,2)/4p) = 1—[ exp —EJO'FJ(|Z]‘|)2 + 0F(|Zj|2)) . (6.61)
p<M j=1
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Hence, we obtain

1_[ Io(m)‘

<t &P (KF.o(p, 2)/4p)
r 2

2 220
neXP _TO'FJ‘ (|Z]|) +O0F (|Zj| +|z;]" 2ﬂF) ‘

J=1

(6.62)

<

When p > M and C is sufficiently large, it holds from the Taylor expansion
that

Iy (\/KF,G(P,Z)/P) e

1
exp (Kr.o(p, z)/4p) 2’

and that

exp (Kro(p, z)/4p) p2

o (VReo2p) ('Z”4 | <>|4)
= arg,\p :
1

j:

Therefore, we have

o Io (VKr.0(p-2)/p)
o

exp (Kro(p, 2)/4p)
—RGZIO Z I1zII* Z'
exp (Kro(p, z)/4p)

b (VKrap.2)1p)

p>M p>M
By (6.1), we find that

lar, (p)[* lar, (p)I? _
Z J - <p Z j  pRorl
p>M p p>M p

lar, (p)I? lar,(p)|?
- Z 19 P 2P0 Z lar\P)  p2Pr-1
M<p<M? p p>M? p

2951 |aFj(p)|2 2020 p-1)
< M*F Z ———— +0F (M F loglogM)
M<p<M? p

<p M?PF1, (6.63)

Hence, we obtain

Io (VKro(p,2)/p ,
p1>_ll[/l ez]@E (KZ:(P,Z)/4]))) - &P (OF (”ZHZ)) = nexp (OF (|Zj|2)). (6.64)

j=1
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Combing this estimate and (6.62), we obtain estimate (6.53).

Next, we show (6.54). We see that exp (x/2) < Ip(x) < exp(x) forx > 0
1 /4
2 -n/4

this inequality and (6.56) that, for M = (C||m||)ﬁ,

1—[ Iy (\/Kpﬂ(p,a;)/p) = exp(OF(||a3|| Zr: Z |aF,~(P)|)).

since exp(x/2) < exp(xcosf)df < Ip(x) < exp(x). It follows from

p<M Jj=1p<M \/ﬁ
Similarly to (6.58) and by this equation, we have
r 229
[T (VErot.2)/p) =] Jexp (OF (|xj|—1-2f’F )) .
P<M j=1

We can calculate the other parts similarly to the proof of (6.53), and obtain
(6.54).
Finally, we prove equation (6.55). Since ¥ is analytic on C", we can write

W(x1+iut,...,x, +iu,)
o0
1 0" (x1,...,x
- Z Z Tl el ]511 k,r) (iup)* - - (iuy)kr.
n:O k1+--.+kr:n 1- re azl e 8Zr
k1,....,k>0

It follows from estimates (6.53) and (6.54) that
2-29p
|‘P(Z1, ceey Zr)| <F lP()q, .. ,xr) exp (C||a:|| 1_—2191,)

for some C = C(F) > 0 when |z1 — x1| = - - |z, — x,| = 2. Using this estimate
and Cauchy’s integral formula, we find that

0" (x1,...,x)

k k,
dzy - dzy

ki!--- k! / / Y(z1,...,2r) dz dz
S L L
(2ri)" Jyz—x, =2 lg—x|=2 (21 = x1)k - (20 — xp )k '

2205
<p 2_(k1+---+kr)k1! ok (X, LX) eXP (C”m”_l—Zz‘)F) ’

where C is a positive constant depending only on F'. Hence, when [|u|| <1,
we have

2—219F
W(x1+iut,...,xp +iuy) = ¥Y(x1,...,x,) (1 +O0pFp (||u|| exp (Cllwll 1-20p )))

! 229 p
=WY(x1,...,x) l_[ (1 +O0F (|uJ| exp (C”:BH_lZeF ))) ’

J=1

which completes the proof of (6.55). |
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Lemma 6.11. For x = (x1,...,x,) € (Rxp)", we have

r 2 2-20
Ex(x) = l_l exp (—?JO'Fj (xj)2 +O0F x? + x}wa )) , (6.65)
j=1
and
r X2
Ex(x) > n exp (—310'1:_]. ()cj)2 -Of (xf)) i (6.66)
j=1

Proof. By formula (6.54) and the boundedness of 7; ;(X), we find that

X2

Ex(x) = n exp (—ém:_/.(lle)2 +0p
j=1

2-20
lz||? +x2+x; 'F ))
J J

220
1-29
x? +x. F],

I

: X 2
:ﬂexp ~ o7, (1) + O
j=1

which completes the proof of (6.65).
Next, we consider estimate (6.66). By (6.64), we obtain

Iy \VKFro(p.z)/p r
[ ex;g (Kro(p. m)/4p)) =[Tew(0r (lr)).

p>M j=1

2
where M = (C||x||)'"?’F . Using this equation and the boundedness of 7; ; (X),
we have

I \VKF.e(p,®)/p r
=x(@) = n eX]EE (KF,B(P,:B)/4P)) 8 nexp (OF (llez))'

pP<M J=1

Additionally, it follows from estimate (6.61) that

r xz
n exp (—Kro(p.x)/4p) = n exp (—éUFj(Iij)Z +O0p (Ilez)) .

P<M j=1

Hence, using the above equations and the inequality /p(x) > 1 for x € R, we
complete the proof of (6.66). o

Lemma 6.12. Assume that F satisfies (54), (A1), and (A2). For z = (z1,...,2,) €

2
C', X = C(||z|| + 3)=2?F with C = C(F) a sufficiently large positive constant, we
have

[17 (VEro(r. 2)7p) ‘ (6.67)

p<X

- Zi 2 2 2 2-29 g
l_[eXP E(O-Fj(X) —O'Fj(|Zj|) +0p (|Zj| +|Z].|1219F‘) "

J=1

<
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where or;(X) is defined by (6.15). Moreover, there exists a positive constant by =
bo(F') such that, for any X > 3 and any z = (z1,...,2,) € C" with || z|| < by, we
have

r 2
74
[0 (VEra(p.2)/p) =[] (1+ 0 (I27) ) exp | 0w, (X)?] . (668)
p<X j=1
Furthermore, for any z = (x1+iu1, ..., x,+iu,) € C" withxj,u; € Rand ||u|l <1,

2
and any X > C(||z||+3) =2"F with C = C(F') a sufficiently large positive constant,
we have

[T (VEra(r.2)/p) (6.69)

p<X

= EBx(x) ﬁ

J=1

2-20p |Zj|4
|ujlexp | Dall|| 277 | +

1+0F IOgX

b

z2
exp (%apj (X)Z

where Ex is the function defined by (6.18), and D is the same constant as in Lemma
6.10.

Proof. First, we prove (6.67). It holds that

n Iy (\/KF,O(Pa Z)/P)

p<X

Kro(p,z)/4
=¥(2) | | exp (Kra(p,2)/4p) x | | exp (Kro(p. 2)/4p)

p<X p>Xx lo (\/KF,O(P’ Z)/P) .

By (6.64), we have

exp (Kro(p, z)/4p) - ﬁeXp (OF (lzflz))

p>X lo (\/KF,G(P»Z)/P) j=1

when X > C (||z]| +3) iy with C a suitably large constant. Also, as in the
proof of (6.60), we find that

r 2
l_[ exp (Kro(p. z)/4p) = 1_[ exp (%apj(x)z +O0p (|Zj|2)) '

p<X j=1

Combing the above two estimates and Lemma 6.10, we have estimate (6.67).
Next, we prove (6.68). From the estimate ar,(p) < pF for some
vr € [0,1/2), there exists a positive constant b1 = b1(F) such that for

any zi, ...,z € Cwith |z1|,...,|z/| £ b1, the inequality [\/Krg(p,z)/p| <1
holds for all primes p. Then, we find that

1o (VKro(p. 2)/p) -1

1
S_’
2
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and that, from the Taylor expansion of I,

1 4 r
Io(VKF’g(p,Z)/ ) 1+EKF9(p’Z)+0F(”Zz| ;l ( )|4)

lar; (10)I4

Similarly to the proof of estimate (6.63), we see that 3., x <r L

Therefore, we obtain

> log 1y (\/Kp,o(p, Z)/p) =,

1 r
(EKF,o@,z) + OF( il Z| (p)|4))
p=X p<X

= Y 1-Krolp2) +0x (I=11).

p<X

Using equation (6.59), we also have

Z i —Kro(p,z) = Z 20 r (X)? + Z 2020,y (X)),

1<lhi<b<r

(6.70)

p<X
where 7; ;(X) is defined by (6.16). By Assumptions (A1) and (A2), it holds
that 7, ,,(X) <p 1forall1 </; < Iy <r, and so we obtain

2
> s (X) < 215

1<lhi<lp<r

Hence, we have

)
> log o (VKa(p, 2)7p) = Y, s, (X7 + 0 (11213)
p<X ]jl ZZ

=2 (o0 +0r ().

=1

which completes the proof of (6.68).
Finally, we prove (6.69). The left hand side of (6.69) can be written as

) l_[ exp (Kro(p, 2)/4p)

p>Xx Io (\/KF,B(P’Z)/P) |

‘P(Z)eXp(Z 1, Kro(r.2)

p<X

Similarly to (6.57), we find that
p (Kro(p.2)/4p)

exp (Kr, g(p,z)/4p) Z log ex

g b (VKeatroa i)\t \ fo (VEralr217p)
5 ||z||§t||ap<p>||%)).

2-20p
p>X p

=exp |0
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2
for X > C(||z||+3) 2?F with C = C(F) sufficiently large. By assumption (A1)

. . . 41oglog X 4
and partial summation, the lastis =1+ OF (%) =1+0pF (%) =

log X

r 2
1 Z5
eXp(;EKF’G(p’Z)):eXP(Z_15’%(?‘“ > zzlzzzm,b(X)).
p= Jj=

1<l <lr<r

[T (1 +OF ( 1 )) Moreover, by equation (6.70), we see that

In particular, by assumptions (A1) and (A2), the estimate 7, ;,(X) < 1holds
forall 1 <l; <l <r,and so the above is equal to

5
E{07y(xj

r

1—[(1 +OF(luj| - |l + u?)) exp

j=1

exp( Z xllxllel,lz(X)

1<lhi<b<r

Additionally, we have
¥Y(z) =¥(x) ; 1+0F (|u;l D1 ||(2—219F)/(1—219F)
z wg(+ F(u] exp( 1l )))

by Lemma 6.10. From the above estimates and the definition of Zx (6.18), we
also obtain formula (6.69). Thus, we complete the proof of this lemma. O

6.3.2 Completion of the proofs of Propositions 6.1, 6.2

Before starting the proofs of Propositions 6.1, 6.2 we introduce some notation.
Define the R"-valued function Fy x(t) by

Fox(t) = (Ree ™ Pr (1/2+it,X),...,Ree™™ Pr (1/2 +it, X)),

and ur r themeasure onR" by ur p(B) := % meas(Fe‘k(B)ﬂﬂ) for B € B(R").
Put y; = V;or;(X). Then we find that

%meas(&x(T, V;F,0)) 6.71)
= ur.F((y1,00) X+ X (yr, ) + OF (exp (_e_l(loglogX)4(’+1)))

by the estimate meas([T,2T] \ A) < Texp (—e‘l(loglog X)4(r+1)). For
= (x1,...,x,) €R", put

vr F.z(B) 1=/exlgﬁmﬂrf’dﬂT,F(ﬁ)
B

for B € B(R"). Note that vy r » is a measure on R”, and has a finite value for
every B € B8(R"), x € R", X > 3 in the sense

1 4 .
vr Fa(B) S vrpa(R") = = /ﬂ exp (Z xjRee™iPp (3 +it, X) |dt < +oo.
j=1

Under the above notation, we state and prove three lemmas.
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Lemma 6.13. For x1,...,x, > 0, we have
pr, F((y1,00) X -+ X (yr, ))
= / e / e_(TlJr"'”’)vT,F,m((yl, T1/X1) X - X (yp, T /%))dT1 - - - dT,
XrYr X1)1

Proof. For every B € B(R"), it holds that

g (B) = / eI gy ().
B

By Fubini’s theorem, we find that

/ e—(x1v1+--~+xrvr)dVT,F,w(,v)

(¥1,00) XX (yy,00)
(YI,OO)X"'X(YNOO) XrVr X1vV1

= / e / e_(T1+m+Tr) (/ 1dVT’F’w ('U)) dTl s dTr
XrYr X11 (Y171 /1) XX (Vr o Tr /%)

:/ / ey (01,71 /X1) X -+ X (Y T /X)) dT - - diT,
XrYr X1)1

O

The next lemma is a generalization of [67, Lemma 6.2] in multidimen-
sions. Define
2u 2(1 _ u)u e—2m’cu _ e—Zm’du

Glu)=—+———— fealu) =

tan mu 2

For a set A, we denote the indicator function of A by 14.

Lemma 6.14. Let L be a positive number. Let c1, ..., ¢y, d1, . .., d, be real numbers
withcj < dj. Put R = (c1,d1)X---x(cr,d,) CR". Forany§ = (é1,...,&) €R,
we have

~ " [ (sin(xL(é; —¢;))\*  (sin(xL(¢; - d;))\*
1%(8) = Wi %(§) + O, (]Zl{( nL(§j —cj) ) +( nL(¢ - d;j) ) })

where Wi, (&) is defined as if r is even,

- 12( 1)/- 1Re]—[ / 2) Pries e g, (e () o,

if r is odd,
wie U du
= 12( 1)i- 11m]‘[ / PN £, (e ()

Here, gj(h) =1if1 < h < j—1,and g;(h) = =1 otherwise.
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Proof. We use the following formula (cf. [67, equation (6.1)])

@ =tm [ G (%) 2411, 0,002
v o (sm(nL(fh - ch)))2 . (sin(nL(fh - dh)))2
nL(ép —cp) nL(&p —dp) ’

which leads to the estimate Im fOL G (%) e2miugj f. 1 (1) % < 1. Therefore, we
obtain

_ 2mu€h d_”
19(8) = H m [ 6 fonn (0% 672)
sin(nL(¢; - c;)) )2 (sin(nL(gj ~d))) )2
O, .
' (; {( iLE—cp) )\ AL -dy)
For any complex numbers wy, ..., w,, we observe that

Im(wl) - Im(wy)

=5 Z( 1)/~ 1(w1 Wiawj - wr + (=1) ' wy - —w,)
j=1

In particular, if r is even, then

Im(wy) - - - Im(w,) =

iy e,
Jj=1

and if r is odd, then

r+1 r
Im(w1) ---Im(w,) = 2= Im D=1y w
j=1
Substituting these to (6.72), we obtain Lemma 6.14. o

Lemma 6.15. Suppose that F, 6 satisfy (S4), (A1), and (A2). Let c1,...,c;,
di,...,d, be real numbers with c; < d;. Put ® = (c1,d1) X --- X (¢r,d,). Let T,

X be large numbers depending on F and satisfying X 18108 Y < T, Then for
any x = (x1,...,x,) € R satisfying | z|| < (loglog X)*, we have

vr F.z(R) (6.73)

roo2 r ij'p(X)—L
*h 2 o0 _ 25 dV
:Ex(w)(l |e2‘th(X))>< / eV P — 4+ E ¢,
x

h=1 J=1 7% (X0 =5 ot V2r

where the error term Eq satisfies
2-29 2-29
exp (Dzllw”lZﬂF) exp (DzllelZﬂF) .
—+
(loglog X)"F+% vloglog X el oF, (X)
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for some constant Dy = Do (F') > 0. Moreover, if |x|| < by with by = by(F) > 0
sufficiently small, we have

V1. Fa(R) (6.74)
r x2 r i .(X)——(T o
= [TeHom® ) /X’”F B i Vg L
h=1 j=1 YxioF; (X)- oF; (x) V2r

where the error term E satisfies

- Z(dk 1 4 dh bl Ch
Er < .

e (loglogX)“F+z ,Z‘( UFk(X) O'Fk(X)Z g or, (X)
h#k

Proof. We show formula (6.73). Put L = bs(loglog X)*F with b5 = b5(F') a
small positive constant to be chosen later. It follows from Lemma 6.14 that

viFra(R) = | Wira(§)e ™ s dur p(€) +E, (6.75)
Rr

where the error term E satisfies the estimate

I <,
r : 2 . ’
R |
First, we estimate E. For z = (z1,...,z,) € C", define
Mr(z) = / T dup g (€).
Then, it holds that
My (z) = %/ﬂ exp (Zrl“ zjRee™Pp (3 +it, X)) dt.
=
Putw = (w1,...,w,) = (x1+ius, ..., x+iu,) withu; € R. When |[|(uq, ..., u,)|| <
L holds, we have
|Mr (w)]
< ﬁexp(w (o, (0% = o (w1)?) + O (|xJ s+l | T 2))‘
j=1
+O0F (exp (—6_l (loglog X)4(r+1)))
< exp (cnxnfggi) [ Texe (xz (o, (0% =, (w1)2) - = —301: (X)? +0p ( §LFF))
j=1
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by Proposition 6.7 and (6.67), where C = C(F') is some positive constant.
Additionally, by (6.65), we find that

r x2~ r X2~
[Texp (_EJO'Fj(lel)z) <| e (—?’aquijZ)

J=1 j=1

220
<F Zx(x) exp (C||:1:|| 12’9F)

for some C = C(F) > 0. Recall that ap = min{2r, 15129’21? }. Hence, the

20 29p
inequalit Ll‘ng < (2b5)1_wF loglog X holds. Therefore, when b5 is suffi-
q y g10g
ciently small, we have

My (x1 +iuq, ..., x, +iu,)| (6.76)

r

2 2
2-20F X5 us
<F Ex(x)exp (Cllmlll—z”F) l—[ exp ((Ej - Z]

J=1

or, (X)?

for || (u1,...,u,)|| < L. For any ¢, ¢ € R, we can write

, 2
(sm(nL(f - f))) _ % /L(L —u)cos(2n(&é — O)u)du
0

nL(¢-0)
2 L .
=7 Re /O (L — u)e?™ &gy, (6.77)
Thus
sin(zrL(£; - 0)) )2 R
: e 1£1+ +xr'§:rd/l F(S)
/Rr ( rL(& - 0) e
2 L .
T2 Re/ (L—u) | XE a0t gy p(€)du
L2 O R" ’
2 L —2milu .
= 2 Re ; e (L—u)Mr(x1,...,Xj-1,X; +2miu,x 41, . .., X;)du,
which, by (6.76), is
2-29
exp (cnxn—le) : )
= Yk (X)
<p Bx(x) 1 D exp > OF,

L
X / (L —u)exp (—(HO'F’.(X)M)z) du
0

2-29p
exp (C||:1;||12’9F) r 2

X
< Bx(x) l_l exp (?kO'Fk (X)?
k=1

Lor,(X)
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It then follows that equation (6.75) satisfies

v b a(R) = /R Wi () e a9 quy o(€) + E (6.78)

with

220

exp (CHw”l—Zz‘)F
E < Ex(x)

) n exp ( OF, (X)

LyloglogX ,_;

For the main term in (6.78), it is enough to calculate

/ (1_[ / 27rlsj(h)uf/,f0h d (8] (h)u)—) X1E1+4x,Er dur, (&) (6.79)
Rr

for every fixed 1 < j < r. Using Fubini’s theorem, we find that (6.79) is equal
to

[l

Next we divide the range of this integral as

////Z//

Mh fch dp (8] (h)”h))

u
h=1 h

X My (x1 +2nie;(Dus, . .., x, + 2xicj(r)u,) duy - - - du,

where

k
—_—
1 1 pL pL L
Joh kb
By estimate (6.76) and the estimates f“’T(i”) <d-c,G(u/L) < 1forO<u<1L,
the integral over D,_; for1 < k <ris

<r Ex(z) exp (cnmnf F) (]—[(dh ~an [ eXp((— - (w)?

X2

X (d — ck)/ exp ((— — (u)?
1_[ (dn = cn) / exp ((— — (ru)’

h=k+1

OF, (X)

g

2
d, — x
h” Ch exp (—hO'Fh(X)2 .

\/

oF, (X)?

OF (X)

2-28p r

<p Ex(x) exp (Cll:cll_””F) ¢~TF (X)?

2




Hence, integral (6.79) is equal to

/ / (“) fen, dh(sxh)uh)) 650
Un
X Mr (x1 + 2rie;(Dua, . .., x, +2mig;(r)u,) duy - - - du,

2

r 2-29 r d _ X
Z Ex(x) exp (C”w”l 2791?) o~ F (X)? 1—[ Gh=Cn exp (Eha-Fh (X)2

+0F
k=1 h=1 or, (X)

When ||(u1, ..., u,)|| <1, it follows from Proposition 6.7 and equation (6.69)
that
My (x1 +2nie;(Dug, . .., x, + 27ic;(r)uy)
4 4
220 XT+u
Ex(x) ﬂ 1+OpF |lunlexp (D1||33||1 wF) l]ogX]
+4me h)xpup — 47%u

+O0F (exp (—6'1 (loglog X)4(’+1)))

Note the last O term could be bounded above by

log X 2

4 x2 +4rmie; (h)xpupy — 4m°u
Ex(@) | |exp ( h : Fh(X)
h=1

r 2
Xp 2 2 2 2
> Tog X g exp (_E (O'Fh (X)) = oF, (xp)" + OF(l)) - 2n“0F, (X)

> exp (—6_1 (loglog X)4(r+1)) ,

using the lower bound for Ex(x) in (6.66) and the range of « and u;. There-

fore, the integral of (6.80) is equal to
Hx<m>]_[/ {1+0F }x
xi, +4niej(h)xpu — 4r2y?

X G (%) fonan (2 (y) exp ( . oy (X)?

220p\  xp4up+1
uexp | D1l|z||2"F T T logx

du

(6.81)
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(+u)

Since G(u/L) < 1 and Jedy (1) "" < dj — ¢, we find that

/1 uexp Dl||a;||_333§ +)M G(ﬁ)fc a, (€ (h)u)
0 logX L h@n \<J
X2 +4rie; (h)xpu — 4n2u? d
xexp( h ](2) ! or, (X)? =

2
< exp (?ho-ph (X)?

1
X/
0

2-29 2
T X 2
<F exp (Dlllm” 1—21?F) X exp (30’1% (X)

(dn —cn)

2-20p xé +ut+1
uexp DlllCUlllfzﬁF + W

exp (— u?or, (X) )

dh —Cj
OF, (X)Z’

and that

1 x2 +4rie; (h)xpu — 4n2u? d
/ G(%)fch,dh@/(h)u)exp( L or (X% =

2

/Olexp (— u O'Fh(X) )

X, 2
< (dh - Ch) exp EO'Fh (X)

2

Xy dp—cp
< exp 20'Fh() _—

or, (X))

Moreover, we find that

L 2 4 Antig j(h)xpu — 4m’u
/ G(%)fc,,,dh(es,-(h)u)exp(x’l+ ey W 24T (x >)‘i

X dn = Ch —op, (x)?
<F exp ?O'Fh(X) T){) Fn
h

From these estimates and (6.81), integral (6.80) is equal to

2 . 422
._X(m)rl/‘ fch o (&5 () exp (xh+4msj(h)xhu 4r“u O’Fh(X)z ﬂ

2

r

2 r
2205 X5 1 dn = cn
+OF|Ex(x)exp | D1||x||2F exp | = oF, (X)? '
F( x () p( 1l )!_1[ p(2 7 ( >) ’—loglogXBth(X))

Using the well known formula

\/Z_n/ e Ve gy = \/L_exp( 52) (6.82)
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we can rewrite the above main term as

. exP( crph(X)) o
=x@)| [ | — / 32
71' r

h=1

{ 1—[ / zmgf(h)"(xh‘th (X)?- Vh‘TFh(X))fch dy, (81 (h)u)@}dv
u
h=1

Combining this with (6.80), we see that integral (6.79) is equal to

r eXp( ch,,(X)) o
2x(@) | [ ] o / - (2e2) 2
7r r

h=1
{ 1—[ / 2meﬂh)u(xho—"‘h (X)*- VhO—Fh(X))fch dp (8/(h)u)_}dv+
h=1
2205\ - x? dy —cy,
0r | Ex (@) ex (Dlnmn—l-z"'F) exp | Lo, (X)?
p B P12or \/loglogX n g, (X) |

Substituting this equation to the definition of W; % and using Lemma 6.14
and equation (6.78), we obtain

VT,F.x (%)

, eXp(%%’chh(X)z)
=Ex(x) l_[ T

h=1

24qp2
it
X {/ e 7 1g (xlo'Fl(X)2 -viof (X), ... ,er'Fr(X)2 - er'Fr(X)) dv

+ E3 + E4},

where E3 and E, satisfy

r sin(JrL(ijFj(X)2 - VJ'O'Fj(X) —cj)) ?
Es <r ]Z:;/r { ( nL(x;or,(X)? = v;or,(X) = ¢)) )

. 2
SIH(ﬂL(xjo-Fj (X)2 —VjOF; (X) - dj)) } % e—(v%+...+v%)/2d,v’
ﬂ'L(XjO'Fj(X)2 - VjO'Fj(X) - dJ)
and
2—21‘71;- 2—2191;-

exp Cllel 75 ) exp Clal ™ )

N dp —cp
(log log X)*F*2 Vioglogx | _1 07, (X)
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for some constant C = C(F') > 0. By equation (6.77), it holds that, for any
{ eR,

) » 2
[ sin(rL (3,0, (X2 = vy, () = O\' oo
r JTL(XjO'Fj(X)Z_VjO-Fj(X) - 1)

L
ZERG/ (L—CZ) / e27ri(xj0'Fj(X)Z—vj(rpj(X)—f)ae—(v%+...+v%)/2d’u da
L2 0 R"

~-1)/2 L
= m”i#Re / (L — a) 2 ior; (X)*=Oa ( / e‘z”"”’Ff(X)“e‘Vz/zdv) da,
0 R

which, by (6.82), becomes

2 2 r/2
( 71') / (L 2m(x10'1: (X)%-0)a exp (_2ﬂ2a20_Fj(X)2) da

LO'F; (X) (loglog X)"FJ’%-

1

Hence, we have F3 <p ——————
(loglog X)“F*2

. Finally, by simple calculations, we can

—

write

2+ +V2
A,
/ e 1% (XlO'Fl(X) —vioF (X), ... ,er'Fr(X)2 - er'Fr(X)) dv

c:
. _ J
X mTEm o, dy
— J eV 2 %Y
d:
J hY)

and this completes the proof of (6.73).

Next, we consider (6.74). Using Proposition 6.7 and equation (6.68), we
have

My (x1 +2rig;(Duy, ..., x, + 27ri8j(r)u,)

o +Amie;(h)xpup — 4ry
= (1+0F (|xh+iuh|2))exp( / > Fh(X)
h=1

+0F (exp (—6_1 (loglog X)4(’+1)))

when ||z||, ||u|| are sufficiently small. By using this equation, we can prove
(6.74) similarly to the proof of (6.73). m]

Proof of Proposition 6.1. We firstly prove Proposition 6.1 in the case V,’s are
nonnegative. Let = (x1,...,x,) € (Rso)" satisfying ||| < by with by the
same number as in Lemma 6.15. By Lemma 6.13 and equation (6.74), we
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have

uTF((y1,°<>) X -+ X (yr, 0))

_ 1—[ O'F (X)Z/ /x jOF; (X)- O'F (X) _v2/2 dv dt
XjYi XjOoF; (X)- oy V21

OF; (X)

r x2 x2

+OF L 1ne2UF(X) xfyf+E><l_[e2UF(X)2 ,
(loglog X)*F*2 =1

where

r Th _

r () 00 2 Tk _

Z/ / JRCTe) MiSrR L. 11lE= L - d.
k=1 XrYr X1y1 O-Fk (X) O-Fk (X) h=1 O-Fh (X)

h#k
Now, simple calculations lead that
oo XjOF; (X)- = (X) dv xz 00 d

/ / T,f P dr = exp |~ o, (X)? / e
Xjy;j XjOF; (X)- e (X) 21 V; V27T

since y; = V;oF,(X). Therefore, we obtain

ur F((y1,00) X - X (yp,00)) =

g o0 u? dl/l 1 " 12 2 2
e T —+0p o2 0E Xy p T g 7o (07|
B /Vj V2r 1 l_[ l_[

(loglog X)*F*2 ;4 j=1

Here, we decide x;’s as x; = max{1, V;}/oF,(X), where V;’s must satisfy the
inequality V; < Ror,(X). Then, we see that

2 2 x7
N 2 Y z -
oY = g B OE (X For (X xyyy A ow (X V2 (6.83)

This estimate leads that

r X2

1 For (X))
11_182 J7]

(loglog X)“F*2 ;4
e_(V12+'"+Vr2)/2 1

du
<, < 1+V) / e W2 2
(loglog X)“F+% (loglog X)‘)‘F+ l:l V2r

Moreover, since it holds that

/ (1 - yj) erar = 2 (6.84)




we have

/oo /OO e_(Tl+-~~+Tr) x%(dk - Ck) + 1
Xp Yy X1y1 OF; (X) OF; (X)2

n Th/Xn = e dr,

O-Fh(X)
h#k
2 T -7
——Vjle dr
1_[ O-F (X) Xy ( J)
e kYK ® [ r —
—yile 'dr

O'Fk(X)2 n OF; (X) Xjyj ( J)

J#k

—XjYj

)
_ngxjffﬂ(x) O-Fk(X) nxl‘” (X)

(6.85)

for every 1 < k < r. By estimate (6.83) and x;0F,(X) < 1+V;, we can write

—_X TV xz. —‘/2 2 xz o
e < e 7o XE 1 ! < e_TJ"Ff(X)Z/ e_MZ/Z—du .
ijFj(X) 1 +Vj V; V21

By this observation, (6.85) is
X Ly 2 du
2 k ~Lor, () / w22
< + e 2UF
' ( £ o, <X>) H v, V2x

Hence, we have
r x2 r
E 1_[ eTJ‘TFj(X)z 1+ ”V”2 1—[/ —u2/2 du .
i1 log log X
From the above estimations, we obtain
pr.F((y1,00) X - X (yr, 0)) =
_2 du [T (14 Vi) 1 +||V? _29 du
n / /2 +O0p k=1 r l—[ / u /2
(loglog X)”F+2 oglog X

for 0 < V; < baor;(X). Thus, by this formula and (6.71), we complete the
proof of Proposition 6.1 in the case V;’s are nonnegative.

In order to finish the proof of Proposition 6.1, we consider the negative

cases. It suffices to show that, for the case —bor (X) <V; <0and 0 <V; <
bO'Fj (X)I

1
T meas(Sx (T, (-V1,V,,...,V,), F,0))

[T, (1 + Vi) L1+ V]2

= 1+0F
(loglogX)“F+2 loglog X
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since other cases can be shown by similarly by induction. By the definition
of the set §x (T, V; F, 0), it holds that

OSJX(T,V,'F,Q) :éjX(T’ (V2a---avr)/'(F2’---,Fr)’ (92?"-’01”))
\Sx(T,(—Vl -0, Vz,...,Vr);F, (71'—6’1,92,...,9,)),

where we regard that if r = 1, the first set on the right hand side is [T, 2T].
Therefore, from the nonnegative cases, we have

L meas(Sy(T. (V1. Va......V,); F.0)) (6.86)
1
k- meas(Sx (T, (Va,..., V), (Fp, ..., F),(02,...,0,)))

1
-7 meas(Sx (T, (-V1-0,Vo,...,V,); F,(n —61,0>,...,60,)))

_(1+E1)1—[/ ——(1+152)]_[/| zd”

Here, E1 and E; satisfy
[Thmn (1 + Vi) . 1+[|(Va, ..., V)2

E1 <F )
(log IOg X)(YF+% log logX

1 (1+V VIR

E, <p [T (1 + k)1 S LV
(loglog X)*F*2 loglog X

Hence, we find that (6.86) is equal to

* du 4 2 du
1 _/ e—uz/Z_) / e ! /2“7
( -V \/2_71' ljz Vi \/ﬂ

r

2 o2
L Ey l_[/ du e du
j=1YV; 2n
r 2 r o)
140, (Mm@t 141V l_[/ e A
(loglog X)“F+2 loglog X V; \2n
Thus, we also obtain the negative cases of Proposition 6.1. |

Proof of Proposition 6.2. Let V' = (V1,...,V,) € (Ry0)" satisfying the inequal-
ity |V < (loglog X)*", and put x; = max{1,V;}/op,(X). Similarly to the
proof of Proposition 6.1 by using (6.73) instead of (6.74), we obtain

pr F((y1,00) X -+ X (¥, ))

r )
—_ _MZ 2 du
N A —
{j:l Vj V27T

220F
+0F exp - ||V|| 129 H2_1(1+Vk) l_l/ —u2/2 du +E
\/loglogX (loglogX)“F"'z
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for 0 < V; < (loglog X)*", where

E =
220 <2
IV e 1 A ( T d
exp|C | ——— ——y-)e‘T T.
P Vloglog X Vlog logX i1 OF X) Jy, \x; 7

Here, C = C(F) is a positive constant. Moreover, using (6.84) we have

220 2
T20p 1 r TJO'F (X)2—x;y;

Jloglog X g xjor; (X)

VIl

vloglog X

E=exp|C

By estimate (6.83) and x;o7F;(X) < 1 +V;, we can write

2
_7
eZ

OF; (X)2 -X;y;j e—VJZ/Z ) 2 du
<</ e
xjor; (X) STv 4 4 V2n

By this observation, we have

220
20

VI

vloglog X

2/2 du

\/log log X n/ V2r

E <, exp|C

From the above estimations, we obtain

ur F((y1,00) X -+ X (¥, 0))

r 00
—_ —M2 2 du
~ Ex(@)| |/ 2 A
j=1 Vi V27

2-29

TR a1+ V) . 1
(loglog x)2r+s  Lfloglog X '

Vi

vloglog X

x{1+0p exp|C

In particular, by the definition of Ex (6.18), assumptions (Al), (A2), and
Lemma 6.10, it holds that

1

vloglog X

Thus, by these formulas and (6.71), we obtain Proposition 6.2 when ||V|| <
(loglog X)*". o

1+0F

— —- V Vi
dx(w): =y (O—FIEX)’.”,O—Fr(X)).

193



6.3.3 Proofs of a sharp error term of distribution functions

In this section, we prove Proposition 6.3. The proof and the proofs of some
lemmas are written roughly because those many points are similar to the
proofs of Proposition 6.1. When F = (F,F) € (ST\ {1})?, 8 = (61,6,) € R?
satisfy (A2) (i.e. |61 — 62| = n/2 in this case), we can write

2 2
Kro(p.z) = ) zjar(p)e™ Y ziap(p)e = (3 +3)lar(p)l*. (6.87)
=) k=1

Thanks to this equation, we can improve formula (6.68) and Lemma 6.15
to the following lemmas. We omit the proofs of those because the lemmas
can be shown similarly the proofs of formula (6.68) and Lemma 6.15 just by
using equation (6.87).

Lemma 6.16. Let F = (F,F) € (S"\ {1})? and 6 = (61, 6>) € R? satisfying (S4),
(A1), and (A2). There exists a positive b = b(F') such that for any z = (z1,22) € C?
with ||z|| < b we have

[ (VKo 2)7p)

p<X

2 2
= exp (Z—O'F(X) + O r(|z1] ))exp( or(X)*+O0r(|22/h |

Lemma 6.17. Suppose that F = (F,F) € (ST \ {1})? and 0 € R? satisfy (54),
(A1), and (A2). Let c1,c2,d1,dy be real numbers with c¢; < d;. Put R =
(c1,d1) X (ca,dp) € R%. Let T, X be large numbers with X 108108 X)4(r+1) < T. Then,
there exists a positive constant by = by(F) such that for = (x1,x2) € R? with
llz|| < by, we have

x2+x2 2 x]'(J'F(X)—L
j=1Yxj0F (X)— o (X) 2

where the error term E satisfies

2 do —
E < +Z k( k Ck) 1 .
(loglogX)“F+z e\ or(X) O'F(X)

ﬁ dh —Ch

i1 oF(X)

hik

Proof of Proposition 6.3. Using Lemma 6.17, we can prove Proposition 6.3 in

the same way as Proposition 6.1. m]

Proof of Corollary 6.3. Let 0 < ¢ < 1 and z = x +iy € C. We may assume
|z| + 2 < ayop(X), where ay is the same constant as in Theorem 6.3. and
Propos1t10n 6.3 in the case 61 = 0 and 6, = £, we obtain

1
- meas {te[T.2T] : |IPF(3+it,X) -z < g}

/”F(x) /UF(X) _ut+ve +v2 dl/ldv +0 ]. + 1
2r F (loglog X)*r+1/2 ~ (loglog X)2 |
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Since we assume that |ap(p)| <r p’F for some 9 € [0,1/3), the inequality
aF > 1/2 + ¢o holds for a constant 0 < ¢y < 1. Therefore, the above O-term

< —(loglogX)lﬂo for some C = C(F) > 0. Thus, we complete the proof of

Corollary 6.3. o

6.4 Proofs of the unconditional results for moments of
L-functions

Lemma 6.18. Suppose the same situation as Proposition 6.5. Let r € Zx1 be given.

There exists a positive constant Ay = A4(F, r) such that for X = T1/(oglogD)*"V
Y = T(SF/k, k € Zsq with k < 5F(10g 10g T)4(r+1),

1 2T
r)

< Abk** + AKk!(log, T)*,

1 2T
7,

Proof. By Proposition 6.5, it suffices to show that

2k
log F(% +it) — Pr(} +it, X)- Z log ((3 +it — pr)logY)| dt

|2+lt PF|<10gY

and

2k
dt < ALk* + Ajk!(log, T)F.

log F(% +it) - Pp(3 +it, X)

2
> M«” log, T, (6.88)
X<p<y? p
and that
1 2T A 4 2k
—/ > m/sz)p) | dr < CFi1 (6.89)
T Jr p[<Xp ) log p

2
for some constant C = C(F) > 0. where Y = T9¢/, Using formula (6.1), we
find that
Z lap(p)I> _ (1 loo 12
————— =nr (loglogY* - loglogX) +0r(1) <flog, T

X<p<¥? p

Thus, we obtain estimate (6.88).
Next, we show estimate (6.89). Similarly to the proof of (6.31), we obtain

Ar(ph) Ar(ph)
Z pl7Zin Jog pl Z Z f(l/2+iz)logpf+0F(1),

p=X 20Ky plex P
2
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where Kj is the same constant as in Lemma 6.5. Therefore, we have

2<€<Kq

2k
17 Z Ar(ph) dr
T Jr P72+ 1og pt

pl<x

=2

1 Ar(ph

< Cf - ‘ dt + CF
- Z T/T p<X1/€p5(1/2+1t)10gp€ 1

for some C1 = C1(F) > 0. Moreover, by Lemma 2.8, it holds that

k
2T A £\]12
1/ dr < tkt| % .

TJr | & p‘(log p°)

D Ar(ph)y  P*
, pl/24i0 og pt S

: IAF (P92 .
Since ¥, -7 < 1 holds by (6.30), we obtain

pt(log p?)?
Z Ar(pY)
¢ pla2+in Jog pt
p

1 /ZT
T T <X

22
which completes the proof of (6.89). o

2k
dt < Cyk!,

Proof of Theorem 6.1. We consider (6.3) and (6.4)—(6.6) separately.

Proof of (6.3). Let T be large. Put X = T1/10glogD*"™" "ot A > 1 be a fixed
arbitrary constant. Let the set &; be
> 2.

. ar;(p)
log Fj (3 +it) - Z plj/zm

p<X

&= {t e [T,2T] -

From Lemma 6.18, we have
meas(&;) < TL; AL (k* + k*(log, T)¥)

for all j with As := A5(F) = maxi<;<, A4(Fj,r) +1, where A4(F;,r) has the
same meaning as in Lemma 6.18. Here the parameter L satisfying £ >
(245 log, T)?/® will be chosen later. Set k = I_Ll/z/eA;MJ so that meas(&;) <
T exp(—c1L/?) for some ¢ > 0. Therefore except on the set & := 18
with measure O, (T exp(—cl.ﬁl/z)), we have

Ree ™ log F;(3 +it) =Ree ™ Pp (3 +it,X) +B;(1) L (6.90)

with [8;(#)| < 1forall j =1,...,r. By (6.90) and Proposition 6.1, the measure
oft € [T,2T]\E such that forall j =1,...,r

—i0; 1 . nF;
Ree ™/ log F;(5 +it) 2V, TIOglogT (6.91)
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is at least (since §;(¢) < 1

[T (L4 Vil +

L LZ
\/loglogT) + 1+ ”VHZ + loglogT
(loglog T)”F’r% loglogT

<[] / 2 4 6 o)

=1 Jor(X07N; /(nFj /2) loglog T+L) V2r

for W VI < cyloglogT with ¢ sufficiently small. Similarly, the
measure of ¢t € [T, 2T]\& such that (6.91) holds is at most

T|1+0Fr

[Tjzy (1 + [Vic] \/W) . L+ VI + TogT

(loglog T)or+: loglogT

<[] / 2 (6 93
Jj=17

F; ()71 /(npj /2)loglog T—L) V2r

for —=——. ||V|| < cy/loglogT. By using equation (6.1), we find that
x/illllx/ggygq (6.1),

loglogT
or; (X) :w/ loglogT+0rF

and so we also have

or (X))t = ! (1 + 0., (bg—3T)) . (6.94)

T 1+0F

log; T
vloglogT

Therefore, when |V;| < dlﬁggTT, (IVil + 1)L < Biy/loglogT with B; > 0 a

constant to be chosen later, we find that

/00 e_u2/2 dl/l
o (X)L, /(np /2) loglog T+L) V21

/ e du Y 2/ du
= e —_—
v, V2 7r VitOr (V)| e Dy L V2n

oglogT " Vg g7
o0 d V:llo B
:/ e_MZ/z,/—u +0r,Fj»Bl | jl g3 + = e V_?/Z
Vj 27T

loglogT  \/loglogT
120 (|Vj|(|Vj|+1)log3T+£(|Vj|+1)\/loglogT))/°° 2y du
= r.Fj,B1 ¢

Vi

loglogT V2r
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Hence, choosing £ = 2¢72r2(||V||* + (log, T)?), we find that (6.92) and (6.93)
become

(IVII* + logs D) IVl +1) e 3+ Vi)

vloglogT (loglog T)“F+%
2 du

<1/, <

n ]

Texp(—c1 L% < Texp(-r(|V|* +1og, 7))

]. ! /00 _u2/2 dl/l
I'————— e —_—
loglog T g v, V21

when || V]| < ¢2r72B;(loglog T)'/1%. Choosing By = Acj*r?, we have

T 1+01:‘J_rg1

and

A Ree ilog F;(1/2 + it
lmeas ﬂwe[T,ZT]: ce o Fi(1/ Z)ZVJ-
T - ng;
j=1 - loglog T
(IVII*+ Qogs DHUIVII+1) Ty (1+Viel)
=|1+O0F4 + 7
VloglogT (loglog T)ar+1/
a © 2 du
X ez
1, &

for || V|| < A(loglog T)"/1°. Thus, we complete the proof of (6.3). O

yAr+1)

Proof of (6.4) and (6.6). Let X = T/(oglosT
[T,2T] such that

and let B; be the set of ¢ €

log F; (% +it) - Pr, (L +it, X) - Z log(( +it - pr,) log¥)| = L.
|1/2+lt—pp |<

logY
By Lemma 6.18, we know
meas(8B;) < TL‘zkA’g(kzk + kk(log3 7)%),

where As = maxi<j<r A4(Fj,r) + 2 and A4(F;,r) has the same meaning
as in Lemma 6.18. By taking k = | £/VAse], we have that meas(8;) <
T exp(—c2L) for some c; > 0 as long as £ > 2Aslog, T. Therefore, it follows
that for ¢t € [T,2T] \ U;zl B

Re e i log F;(1/2 +it)

= Re e‘ie«fPFj(% +it, X) + Z Re e~ log((% +it — pr;) logY;)

|1/2+it— PF; |< =

+ﬁj(f)£

logY
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holds for all 1 < j < r with some |8;(#)| < 1. Let C; be the set of ¢ € [T,2T]
such that

Z Ree™% log((% +it — pr;)logY;) > L.

[1/2=itpr; | iy

When 0; € [-7, 7] and [1/2 +it — pp,| < log;YJ we find that
J

ee Vi log((% +it — pr;) logY;)
= cosf;log |(% +it — pr;) logY;| +sin6; arg((% +it — pr;)logY;) < .

Hence, we have

Z Re e i log((% +it — ij) lOgYJ‘) <n Z 1,

|1/2+it-pr; |<10gy 11/2+it—pr; 1< iy

IogY
and thus by Lemma 6.6
meas(C;) < Cki?kr L2k

for some constant C = C(F;) > 0. By choosing k = [ L/VCe]|, we have
meas(C;) < T exp(—c3L) for some c3 > 0. Now we have that the measure of
te€[T,2T]\ U;Zl (8; UCj) such that

_g; 1 . ng;
Ree ™"/ log F;(5 +it) > Vm/TloglogT

is bounded by the measure of the set t € [T, 2T] such that

. n j
Re e i Pp (L +it, X) > V,-J% loglog 7 - 2.L. (6.95)

From Proposition 6.1, we know (6.95) holds with measure

r L
Hk:1(1+|Vkl+m) 1+ |V|? + —£

loglog T

T|1+O0pF +
(loglog T)“F”% loglogT
xﬁ / ) 2 (6 96)
i1 Jor, 071V, fnr; /2) loglog T-2.2) \2r
for W IVl < cyloglogT with c¢ sufficiently small. Choosing £ =

c;'r(|IV]1* + 245 log, T), we see that (6.96) becomes

T(1+O0OF.a

(V112 +1og, T) (V|| +1) T 1+ 1VeD) ))

vloglogT (log 1OgT)aF+2
o /me_% du
1 \V2r
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for ||V|| < A(loglog T)'/®. This completes the proof of (6.4).
The proof of (6.6) is similar by noting that when 6; € [7, 37”] and |% + it —
PF; | < log Y;’

Re ™% log((% +it — pr;) logY;)
= cos0;log|(3 +it — pr,) logY;| +sin6; arg((3 +it — pr,) log¥;) > -,

and thus the set of ¢ € [T, 2T] such that

Z Ree ¥ log((% +it — pf;)logY;) < -L

[1/2+4i1=pr <

has measure bounded by C*k*T £-2* for some constant C = C(F i) O

Proof of Theorem 6.2. Let X = T1/(0glog ™™ [ et g1 = g1 (F) > 0 be a suffi-
ciently small constant to be chosen later, Let V' = (V1,...,V,) € (Ry0)" such

that | V|| < a1(1 +V,/?) (loglog T)"/* with V,, := min;<<, V;.

We consider the case when 6 € [-7, 7]" first. Similarly to the proof of

(6.4) (see (6.95)), we find that the measure of the set of 7 € [T 2T] except for
a set of measure T exp(—csL) (£ > log, T) such that Re ™"/ log F; ( + zt)

Vj\/% loglog T is at most the measure of the set ¢t € [T, 2T] such that

—i6; 1 "F;
Ree™ Pp, (5 +it,X) 2 V; TIOglogT—ZL.

From Proposition 6.1, the measure of ¢ € [T,2T] satisfying this inequality
forall j =1,...,ris equal to

(1 + Ve —2— 24 L2
[Tjma (T4 Vi W) L+ VIR + io5hogT

T|1+0F +
(loglog T)or+s loglog T
4 © 25 du
—u-/2
X e — (6.97)
H /(TF_/.(X)—l(vj /(npj /2)loglog T-2.L) V2n
or —\/W’ IV]| < cyloglogT with c sufficiently small.

Now, we choose £ = 2rc;1 V1> + log, T and a1 small enough so that we

have the inequalities | V|| < ag+/loglogT and 4L < (1+V)) ’% loglogT for

all j =1,...,r, where ag is the same constant as in Proposition 6.1. Then,
by equation (6.94) and the estimate fvoo e 12dy < ﬁe‘vz/ 2forV > 0, we
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obtain

/OO e_u2/2 du
o (X)71(V; [(nE; /2) loglog T-2.L) V21

VJ + Or,F-

J

L v log, T
+ .
loglogT "loglog T
VillVII? N vi*
loglogT loglogT||"

Hence, when 0 < Vy,...,V, < ay/loglog T with a sufficiently small, (6.97) is

1 1
< 3w, OP| 72

1 2
J
<<F1+Vjexp( 2+0F

<gT lLI ! + 1
g = L+Vi | (loglog T)oF+;
V2. 4 V2 V|3
i +0F( IV ))

xexp |-
P ( 2 vloglogT

Moreover, we have

Texp(-caL) < Texp(=2r| V) < T [ | exp (—2({/12 bt v}))

j=1
r 2
1 Vj
T _J
< g 1 " VJ exp ( 2 )

Similarly when 6 € [7, %”]’, except for a set of measure T exp(—c4L) (L >
log, T'), the measure of ¢ € [T, 27T such that

Ree i log F;(3 +it) > Vj\/%loglogT

is at least the measure of ¢ € [T, 2T] such that

Re e‘i(’prj(% +it) > Vj\/%loglogT+2£

When 4L < Vﬂ/% loglog T, we have the measure of ¢ satisfying the above
inequality for all j =1, ..., r is (by Proposition 6.1)

P 1+ Ve +—£ 2, L2
[Tj=a (1 + Vi m) L+IVIE + o5Tog7

T|1+ Or +
(loglog T)“F‘”% loglog T

r 00 d
x / 221 (6.98)
a,

i1 Jor; (X071 [, 12) loglog T+2.0) V2r'
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which can be bounded by
Vg 4 V2
Y F o ( IvVi£ ))

- 1
>pT exp F
(H 1+ Vj) 2 VloglogT

when ]—[;:1(1 +V;) < c(loglog T)“FJ’% with ¢ = ¢(F') > 0 a suitably small

constant. Choose £ = 2r||V||* + log, T and a1 small enough so that [|V]| <

as/loglogT and 4L < Vj\/% loglogT hold for all j =1,...,r, where ag is
the same constant as in Proposition 6.1. Then (6.98) is

>p T ﬁ . exp V12+H.+Vr2+0 Ivi°
F ———F+tO0Fr | ——=||
i 1+V; 2 yloglogT

which completes the proof of Theorem 6.2. o

We prepare a lemma to prove Theorem 6.3.

Lemma 6.19. Let 6 € [-%, %], and F € S" satisfying (6.1) and (A3). There exist
positive constants a1 = a11(F), a1z = a12(F) such that for any large V,

1 .
- meas {t € [T.2T] : ReelogF(5 +it) >V}
V2

< exp (—a11 ) + exp (—apnV).

loglog T
Proof. We can show that, for € [T,2T], the inequality Re e " log F (1/2+it) <
C1log T with C1 = C1(F) > 0 a suitably large constant by using Theorem 6.6
in the case X = 3, H = 1 and estimate (6.26). Hence, this lemma holds when
V > C1logT with C1 = C1(F) > 0. In the following, we consider the case
V < CylogT. Similarly to the proof of Lemma 6.18, we obtain

2T
/T

< TAika + TAi‘k!(log log T)k

2k
log F(3+if) = Pr(3+it,X) = > log((3+it—pr)logX)| dr

1,; 1
|§+lf—PF|Sm

for X = T97/k. Additionally, by using Lemma 2.8 and Lemma 6.6, we obtain
27 .
/ |Pr(3 +it, X)|*dt < T (CkloglogT)",
T

and
2k

2T
/ Z 1| dr < TCFK?*,
T

1,: 1
|§+lt—pF|S@
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When V < loglog T, we choose k = | cV?/loglogT], and when V > loglog T,
we choose k = | cV]. Here, c is a suitably small constant depending only on
F. Then, by the above inequalities and Re e™log (( +it — pp) log X) < =,
we obtain

1 .
7 meas {t € [T,2T] : Reelog F(% +it) > V}

VZ
< exp (_CSW) +exp (—c6V),
which completes the proof of Lemma 6.19. o

Proof of Theorem 6.3. Let 0 < k < a3 with az > 0 suitably small to be chosen
later. Put ¢ p(¢) = min;j<;<, Re e % log F;(1/2 +it) and

Op(T,V) :=meas{t € [T,2T] : ¢p(t) > V}.

Then we have

2T 00
/ exp (2k¢ (1)) dt = / 2ke* VO R (T, V)av. (6.99)
T —

o0

We consider the case when 0 € [-7, 7]" first. From Theorem 6.2, it follows

that, forany 0 < V < ajzloglog T with a3 = a13(F’) a suitably small constant,

Op(T,V) (6.100)

<F

1 1
T +
(1 +(V/yloglogT)" (loglog T)“F+% )

V2 Ve
X exp (—h

C
FloglogT T (loglogT)?

for some constant C; = C1(F') > 0. Moreover, by Lemma 6.19, it holds that

2

Op(T,V) <Texp (—a11 ) +T exp (—a12V) (6.101)

loglogT

for any large V. Now we choose a3 = min{ai1a13/4, a12/4}. Put D1 = 4a;11.
We divide the integral on the right hand side of (6.99) to

0 DikloglogT 00
/ +/ +/ 2k Op(T, VYAV = I + I, + I,
—00 0 DikloglogT

say. We use the trivial bound ®¢(T,V) < T to obtain /71 < T. Also, by
inequality (6.101), it follows that

I3 < T/ 2k {exp ((—ch + Zk) V) + e(-as+2k)v} dv
DikloglogT log IOgT

<T / dke 2KV qv < 2T.
0
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Moreover, using inequality (6.100), we find that

DikloglogT VZ V3
L <p T/ (E1+E2)exp (ZkV—hF )
0

——+C————|dV
10g10gT+ 1(loglogT)2

< T(log T)kz/hF“Lch?k3

DikloglogT hp k 2
X (E1+E))exp|-————= |V - . loglogT) |dV,
0 F

loglogT
where F1 = ——* — and E; = ——% . We see that
! 1+(V/y/loglog T)" 27 (1oglogT)“F+
DikloglogT hp 2
/ Eyexp | -———— (V — —loglog T) dv
0 loglogT

k o ) k
< —F gy <«p—o .
(loglog T)or+s ./_oo exp( loglog T ) «F (loglogT)or

Also, we write

DikloglogT 2
/ Ejexp (—h—F (V - hi loglog T) ) dv
0 F

loglog T
h 2
ﬁ loglogT DikloglogT exp (_loglf)‘gT (V - % IOg IOg T)
+ k v
/o /ﬁ log log T 1+ (V/y/loglogT)"

=1+,

say. We find that

k /°° ( hF 2)
Ly < exp|(-————=V°|dV
22 1+ (k+/loglogT)" J-co P loglogT
k+/loglogT

F 1+ (k+/loglogT)" ’

and that

% loglog T L ( hF

b1 < - F
21 = loglog T

V2) dv
ﬁ loglog T

loglogT [
< ‘/—og o8 / ke™ du.
hp 2\/’;_F\/10g10gT

If k < (loglogT)~'/2, the last is clearly <f 1. If k > (loglogT)~'/2, we use
the estimate [~ e du < x71

e to obtain

log 1 T
Og 08 ke Pdu < 1.

\/log logT
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Hence, we obtain

b (6.102)
vloglogT 1
+ )
1+ (k+/loglogT)" (loglogT)aF’f%
Combing this estimate and the estimates for I7, I3, we complete the proof of
(6.8).

Next, we consider the case 6 € [7, 37”] ". By equation (6.99), estimate (6.7),
and positivity of ®f, we have

<p T+ kT (log T)kz/hF‘Lch?k3

2T
/T exp (2kpr (1)) di

1 # loglog T++/loglog T
> / 2ke*V O p(T,V)dV + 2ke*V (T, V)av.
0 %loglogT

By estimate (6.7), the first integral on the right hand side is > T, and the
second integral on the right hand side is

kT

>F
1+ (k+/loglogT)"

% loglog T++/loglog T
X exp (ZkV —hF
# loglog T

2 3
V _q V J
loglogT (loglogT)?

2
_ kT(log Tyir R

"~ 1+ (k4floglogT)"
#loglogT+\/10glogT hp . k o loa T 2
P loglogT hp 008

X
% loglog T

»  JloglogT
1+ (k+/loglog T)

where C; > 0 is some constant depending on F. Hence, we also obtain

Theorem 6.3 in the case 6 € [7, 37”]r. O

2 _c
>p kT(logT)"r

6.5 Proofs of the conditional results for moments of
L-functions

Proof of Theorem 6.4. Let F € (S7)" and 0 € [-%, 3" satisfying o/. Let T
be a sufficiently large constant depending on F. Set Y = TX1/£ where K; =
K1(F) > 0is a suitably large constant and £ > (log, T)? is a large parameter

to be chosen later. Let f be a fixed function satisfying the condition of this
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paper (see Notation) and D(f) > 2. Assuming the Riemann Hypothesis for
Fi,...,F,, we apply Theorem 6.6 with X =Y, H =1 to obtain

AF_,- (n)vf,l (elog n/log Y)

log Fj(§ +it) =

nl/2+it log n

2<n<y?
+ Z log((} +it — pr,) log¥) + Rp, (% +i1,Y,1),
11/2+it-pr, 1< by
where
Ap;(mWwy(n)| df;logT
Rr,(3+it.Y. D] < G5 ‘ — |+ —
| Fjl2 | 23 n2 oy it logY

for any t € [T,2T]. Here Cy is a positive constant depending only on f.
Moreover, when 6; € [-%, %], it holds that
Ree i Z log((L +it - pr,) log¥) <« Z 1,

[1/2+it—pF;|< 1557 11/2+it—pF; < o7

log Y logY

and when ¢; € [Z, 7”] it holds that

Re ¢ D log((3 +it = pr;)log¥) > 2. 1

11/2+it—pF; < op7 11/2+it—pF;|< 1557

logY logY

Hence, there exists some positive constant C; > 0 such that we have (by
(6.39)),

Ree % Z log((} +it — pr,) logY)

|1/2+it— PF; |<10gy

1 Ap, (nywy(n)| dr,logT
- 1(10 Y Z jl+i+it * ljo Y

g I’ZSY3 n2 logY g

Ree i Z log((% +it — pr;) logY)

11/2+it=pr,|< ky
Ap,(n)wy(n dp. logT
> _¢y 1 F_,l( )4 Y,( ) , dri1og
logY Sty logY

when 6; ¢ [”, 3”] Taking K1 = 2(Cp + C1) maxy <<, dr;, we find that there
exists some positive constant C; depending on f such that for anyt € [T,2T]
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andall j=1,...,r,

ar,(p)vy(e'°8r/losY)
p1/2+it

Re e log F; (% +it) <Re e Z (6.103)

p<Y?

t
Z Ap,(p)vya(elosr/loeY)

=, U724 1og pt
>2

e Ap;(mwy(n)| L
logY =, n%+@+z’z 2

when 6; € [—%, ’Z—r], and

ar,(p)vya(eosr/ioel)
p1/2+it

Re e~ log Fj(% +it) >Ree % Z

p<Y?

Ar,(ph)vya(elosr'/logY)
pl<y?

pl/2+i0) Jog pt
2

logY

Ar; (m)wy (n)

1 4
§+10gY

L

2

+it

n<y3 n

T 3

when 6; € %, ¥].
Put X = y1/(loglog)*"*V By Lemma 2.8 and assumption (A1), we obtain

2T
‘/7:

for some constant C3 = C3(F;,r) > 0. Similarly to the proofs of estimates
(6.44) and (6.45), we can show that for any integer k with 1 < k < L/4K;

2T
J

for some constant C4 = C4(F;) > 0. Moreover, by Lemma 6.5, we have

@)

k
2k lar,(p)|?
| o
Tz dt < Tk! E

4

X<p<y? p X<p<y?

< TC*k* (log. T)*
3 83

2k

e (pOvra(elsr ey 2t
- 4

pl(/2+in) Jog pt

pl<y?
£>2

2k
2T
C Afp,(n)wy(n)
/ LIS ] dr < TChRF
T IOgY nSY3 HE+W+”

for any integer k with 1 < k < £/4K; and for some constant Cs = C5(F;) > 0.
Here the assumptions in Lemma 6.5 is satisfied as we can take « arbitrarily
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large. Therefore, the set of t € [T,2T] such thatforall j =1,...,r,

4
L . Z aFj(p)vf,l(elogP/logY) AFj(pf)vf,l(elogp /logY)

B 1/2+it £(1/2+it) 7

2 X<p<y? p l pl<y? p ' logp

>2
e Afp,(n)wy(n)
logY T4 it
n<y3 n- %

has a measure bounded by TL % CEk* (log, T)k with Cg = C¢(F') > 0 a suit-
ably large constant. Choosing k = [c¢1£L] with ¢ suitably small depending
only on F', we find that there exists a set X C [T,2T] with

meas(X) < T exp (—clL log (logL T)) (6.104)
3

such that forany ¢ € [T,2T]\ X and any j =1,...,r,

Ree i log Fj (1 +ir) < Ree ™ Py (L +it,X) + £ (6.105)
when ¢; € [-%, 5], and

Re e~ 1ogFj(% +1it) > Re e_ingF_,(% +it,X) - L

when 6; € [7, 3—”].
Flrst we show estimates (6.10) and (6.11). Suppose that V satisfies
IVl < asV,/*(loglog T)*(log, T)1/2, where as is a sufficiently small posi-

Ivi?
log [[V/]]

(6.104) that meas(X) < T exp (-2r||V||?). Moreover, when §; € [-%, %], the
measure of ¢t € [T,2T]\X such that

, nr.
Ree ™ log Fj(3 +it) > ij/%loglogT

is bounded above by the measure of t € [T, 2T] such that
L Vjlogs T
+ :
JioglogT loglogT

where Cr is some positive constant and we used (6.94) for o, (X )~L. Similarly
when 6; € [7, 3—’T] the measure of ¢t € [T, 2T]\X such that

. nF;
Re e i log Fj (L +it) > V; % loglogT

is bounded below by the measure of ¢ € [T, 2T] such that

L V;log, T)

+ .
JioglogT loglogT

tive constant. Set £ = 4rc;! ( + (log, T) ) Then we can verify from

Re e i Pp (3 +it, X)
or (X)

ZVj—CF

Re e i Py (3 +it, X)
or; (X)

ZVj+CF
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Vjlogs T

L Vin -
Here, we choose a3 so that Cg VosiaT + ToglogT < =5*. From these obser

vations, the estimate fvoo e 2y = ﬁe‘vz/ 2 for V > 0, estimate (6.65), and
Proposition 6.2, we find that if 6; € [-7, 7],

1
?meas(oS’(T, V,; F,0))

1
<F T meas(X)

1 1
+ + 1
(Vlvr (loglogT)aF-'—j)
V2 V2
J

r V2
J J
X ex - — - .
| o { 2" 2, (077"

or, (X)?

220

IVIL L? i\
+O0F + +
vloglogT loglogT vloglogT

1 ) : % vie
<F + 1 exp (—— +OF /
(Vl"'vr (IOgIOgT)a/F-'—i) g p( 2 ( loglOgT]-Og“Vll

for V]| < a5an1/2(log log 7)Y 4(10g3 T)1/2. Hence, we obtain estimate (6.10).
Similarly, we can also find thatif 6; € [ 3,

2°72
1
?meas(é’(T, V,F,0))
> ! + L
F
Vi Vy (loglogT)“FJ’%
r V2 V2 72
J j j
x| |exps — = - OF,
g p{ 2 " 20, (X2 o, (X)2

2-29

e e v )T
JioglogT loglogT | \/loglogT

—%meas()()
1 VEt.o V2 o Vi3
> exXpl————F— —
Fyi v P 2 F loglog T log ||V ||

for ||V]| < a5V,}l/2(log log T)1/4 (log, T)1/2 satisfying the inequality H;‘:l Vi <

as(loglog T)*F +2 with ae = a¢(F) > 0 a suitably small constant. Hence, we
also obtain (6.11).
Now we consider (6.12), where 6; € [-%, Z]. Putting £ = %,

thatY = (log T)'/4, and hence there exists a positive constant A = A(F') such

we see
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that the right hand side of (6.103) is < A ——— . >~ loglog T uniformly for

logT

— __08%
anyt € [T,2T]and all j =1,...,r. lhus, we may assume ||V]| < A osbonT
We first consider the case when yloglog7 < ||[V]| < A 8T Set £ =

loglog T
bl@ loglog T, where b1 is some small positive constant such that the
inequality ¥ > 3 holds. Then we see (6.104) becomes

meas(X) <g T exp (—c2||V|| loglongogHVll)

for some constant ¢, = c2(F') > 0. Using Lemma 2.8, we have, uniformly for
any j=1,...,r,

2T
/ |Pp, (3 +it,X)|**dt <p T(CokloglogT)* (6.106)
T

for any integer k with 1 < k < LloglogT and some Cs = C¢(F'). Combing
(6.106) and (6.105), we obtain

1
T meas(S(T,V; F,0))
1 -if; 1,

< 1r£111£1r—meas {t € [T,2T] : Ree log F;(5 +it) > Vj}

<F ||V||_2kC§kk +exp (—cz||V|| loglog T log ||V||) .
When ||V|| < loglogT, we choose k = les||V||12], and when ||V || > loglogT,
we choose k = [c3||V||+y/loglogT], where c3 is a suitably small positive
constant depending only on F'. Then, it follows that

1

N meas(S(T,V; F,0))

<r oxp (sl VI?) +exp (—C5||V|| log log T log ||V||) ,

which completes the proof of (6.12). |

Proof of Theorem 6.5. Let T be large, and put &(T) = (log, T) L. Let k > 0. We
recall equation (6.99), which is

2T )
/ exp (k¢ (1)) dt = / 2ke*V @ (T, V)av.
T —00

We divide the integral on the right hand side to

0 DykloglogT co
/ +/ +/ 2ke*VOR(T,V)AV =: I + I5 + I,
—0o0 0 DykloglogT
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say. Here, Dy = D, (F) is a suitably large positive constant. Now we consider
the case when 6; € [-7, 7]. We use the trivial bound ®r(T,V) < T to obtain
Iy < T. Applying estimate (6.12), we find that the estimate

Qr(T,V) <p T exp (—4kV)

holds for V > D>k loglog T whenT > exp exp exp(Ck) and C, D> are suitably
large depending only on F'. Therefore, we have

Ig < T/ Zke_ZkvdV <T.
DjloglogT
By estimate (6.10), we find that

Qp(T,V)

<xrT ! + !

k,F
1+ (V/4loglogT)" (loglog T)or+3
( hpV? C1V3 )
X exp |- +
loglogT = (loglogT)?log, T

) (log T)C1D3k38(T)

V2
X exp (_hF loglog T)

<T L + ! T
1+ (V/yloglogT)" (loglogT)*r*2

for (loglogT)?® < V < DjkloglogT. Here, C; = C1(F) is some positive
constant. Similarly to the proof of (6.102) by using this estimate, we obtain

k+/loglogT
Is < T +T(log T)¥/hr B ( 08108 1 ) .

+
1+ (ky/loglogT)" (loglog T)CYF+%

Hence, we obtain (6.13).
For estimate (6.14), it holds from the positivity of ®¢(T, V) and equation
(6.99) that

% loglog T++/loglog T

# loglog T

2T
/ exp (kg (1)) dt > Vo p(T,V)dV.
T

When 6; € [7, 3’7”], assuming Jp < %, we use (6.11) to obtain

Op(T,V) > ! ex (—h v w
B R v loglog Ty P\"FloglogT ~ (loglogT)? log, T
T(logT)—C2k3s(T) V2
> exp | -hp——
1y (V/+/loglogT)" p( FloglogT)

for % loglogT <V < % loglog T++/loglog T. Here, C, = C>(F') isa positive
constant. Similarly to the proof of (6.9) by using this estimate and the bound
®p(T,V) >p T for 0 <V < 1, we can also obtain (6.14). m|
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6.6 Conclusion remarks

From the result for large deviations, it seems to expected that
(logT) K*/hp
(loglog T)(r-1/2°

We may be interested in whether, using our method and Harper’s [39], we
can improve our mean value theorem into

2T 2k
/ (min |Fj(%+it)|) dt <, T+T
T

1<j<r

(logT) K2 /hp
(loglogT)(r—1/2

Our method requires a strong zero density estimate for L-functions. Un-
fortunately, the estimate has not been proved yet for many L-functions.
Therefore, we may be interested in whether we can prove our large devia-
tions results to avoid the estimate by using the method of Laurinc¢ikas [68]
or Radziwilt-Soundararajan [98]. On the other hand, Hsu and Wong [46]
proved a joint central limit theorem (for fixed V;) for Dirichlet L-functions
by using the method of Radziwit-Soundararajan. However, their method
requires essentially that Dirichlet coefficients satisfy |a(n)| < 1 (in this case
|x(n)| < 1), hence also requires Ramanujan conjecture when we consider
generalization to automorphic L-functions.

In this chapter, we showed that, for certain &,

2k

2T
f (min IFJ~<%+ir>|) dt <y p T(logT)**/hF+B,
T 1<j<r

for k > 0.

o1 2%k
/ (min |F;(% +it)|) dt <  T+T
T

1<j<r

and
2T 2k ,
/ (min |Fj(% +it)|) dt <. T(logT)*/hr+e
T 1<j<r

under GRH. Moreover, we can also show that, using Theorems 6.2, 6.4,

1<j<r

2T 2k
/ (max F;(L+ it)|) dt <y p T(log T)"FK+BK
T

2T
/ 1_[ F; (L +it)[Pidi < p T(log T)'miki+ -+ ki+Bk
T <j<r
for any small k, k1, ..., k, > 0 with k = max;<;<, k, and
2T 2k
/ (max |Fj(% + it)l) dt <ip.e T(logT)”Fk2+8,
T 1<j<r

21
/ [T 1F G+ dr < p.o T(logTymnkit-+nkive
T q<j<r
for any k, k1, ..., k, > 0 under GRH, where ng = maxi<;<, np,.

Finally, we should mention that our method also recovers the work of
Heuberger-Kropf [45] for higher dimensional quasi-power theorem, and it is
probably possible to improve their work in the direction of large deviations
by our method.
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Chapter 7 Dependence of (o +it) and
L(o+it,y)inthestripl/2 <o <1

In this chapter, we discuss the joint value distribution of L-functions in the
Selberg class in the strip 1/2 < o < 1. The contents in this chapter are based
on the paper [53].

7.1 Results

In this section, we state our result for the dependence of the Riemann zeta-
function and Dirichlet L-functions associated with a quadratic character. We
consider the measure of the set

S(T,V;x,0,0) =

{te[T,2T] : Reelog{(o +it) > Viand Reelog L(o +it, x) > Va}.

When o = 1, the measure is discussed in the previous chapter, and so we in

this chapter focus on the case % < 0 < 1. The main theorem in this chapter

is the following.

Theorem 7.1. Let % < o <1, and let y be a quadratic Dirichlet character. Then,

there exists a positive constant a; = a1(o, x) such that, for any large numbers T,

Vi satisfying Vi < a 08D e have
1 §V1isa loglogT *

%meas(é’(T, V;x,o,0))
= exp (-2 A(0) V7 (log Vi) %7 (1+ 0(1))

with Vo = Vi(1+0(1)) as Vi — +c0.

From this theorem, we find that log |{ (o +it)| and log |L(o +it, )| are
dependent as random variables for every 1 < o < 1. Moreover, we can also
obtain the following corollary.

Corollary 7.1. Let 3 < o < 1, and let y be a quadratic character. Then we have

(log t)l‘“)

min {log | (o +ir)|,1og |L(0 +it, x)|} = Qs ( loglogt

ast — +oo.
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Similarly to the previous chapter, to prove Theorem 7.1, we firstly calcu-
late certain Dirichlet polynomials. We define

Sx(T,V1,Vo; x, 0, 6)

e—ie e—iGX(p)
=131t€|[T,2T] : Re — >V, and Re — ">V

Then, we can show the following proposition.

Proposition 7.1. Let L > 2, and y be a quadratic Dirichlet character. There
exists positive constant ay = ax(o, x, L) such that, for any large numbers T, V1,

1-o0
X = (log Tt with V; < ap 181

TogTogT+ V¢ have

1
T meas(Sx (T, V1, V2; x, 0, 0))
o L o
= exp (—ZEA(O')Vf“’ (logV1)T=7 (1+0(1))

with V; = Vi(1+0(1)) as V] — +oo.

7.2 Approximate formulas for moment generating
functions II

In this section, we give an approximate formula for characteristic functions
of an r-tuple of Dirichlet polynomials in general cases. In this section,
a(p) = (ai(p),....a,(p)) is a fixed r-tuple of bounded sequences on the
prime numbers. For every w, z1, ...,z € C, o € R, and prime number p, we
define K, (p, z) by (6.46) and

a;j(p)

o+it *
p

Pi(o +it,X) = Z

p<X
It is the goal of this section to prove the following proposition.

Proposition 7.2. Let 3 < o < 1, L > 1 be fixed. There exist positive constants
b1 = bi(a,0,L), by = ba(a,o,L), b3 = bz(a,o, L) such that, for large T,
X = (logT)t, and z = (z1, . ..,zr) € C" with || z|| < b1(logT)“, we have

1 ’ ,

?/ﬂexp(jzlsze (Pj(0'+lt,X)))dt

B > logT

- [0 [retr ) o e (i)

p<X

where A C [T, 2T] is a set satisfying meas(A) < T exp(—bzlogT/loglogT).

To prove this proposition, we prepare some lemmas.
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Lemma 7.1. Let o > 1/2 be fixed. Let X > 3, and T be large. Let z1,z2, ...,z be
complex numbers. Then, there exists a positive constant C1 = C1(a) such that, for
all o >1/2,k € Z>1, R > 0, we have

k
1 2T | . r .
?/T (;sze (Pj(0'+lt,X))) dt
k! [ o (CrllzlIX3)*
=0 8 |ka+1 nlo(w Ka(p, 2)/p? )d +0(1#).

p<X
Proof. This lemma can be easily proved by using Lemma 6.8. |
Lemma 7.2. There exists a positive constant C1 = Cy(a, o) such that for X > 3
weC, z=(z1,...,2) € C"with ||z|| £ X7, we have
1
l_[ Iy (\/Ka(p,z)/pz‘f) < exp Clﬁ) )
L log (=[[+3)

Proof. By the definition of K4(p,2) and the boundedness of a;(p), there
exists a constant C = C(a) > 0 such that

i o\ 2
o (W) < Callzl/p) Sexp(cauz”).

(2a)! p7
By this inequality and using the prime number theorem, we have

[] (\/Ka(p, z)/p%)

1
pslizlly”

< oxn|C Izl
=P\ "log (12l +3)
for some C = C(a, o) > 0. On the other hand, for p > ||z||%, we see that

[El
Iy (\/Ka(p, z)/pzﬂ) =1+ 04 pT;) .

Using this equation and the prime number theorem, we find that

Ka(p, Z)/pz‘f)
2|7 <p<X

2
= exp lo g(l + 0, (”Zzll ))
1 p

lzllo <p<X

, =12 L
<exp|C Z 20 sexp|C log (lzIl+3) |

1
lzllo<p<X

tiNg

Thus, by taking C; = max{C, C"}, we obtain this lemma. |
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Lemma 7.3. Let L > 1, and let T be large. Put X = (logT)L. Let a(p) be a
bounded complex sequence with |a(p)| < M. Then there exists a positive constant

Co> = Cao(o, M) such that, for all integer k with1 < k < mﬁ)%,
/” 3 a(p)
T = p0'+lt
Proof. By applying Lemmas7.1,7.2asr =1,a1(p) =a(p),z1=1,and 6; =0,

we can obtain
Z a(p)
pa'+it

1 /ZT

r r p<X
k! 1 (CX3)k

:2_7ri o e nlo (w\/a(p)/pz‘r) dw+0( T

2k

kl—a' 2k
© (log (k + 3))0)

asr|

2k

p<X
1
k! R©=
<« — Cr—— |+ T71/?
<Rkexp 110g(R+3))
forany 0 < R < X7 = (logT)°t, 1 < k < 10;;;%. Choosing R =

k?>*~(log k)%, this is

-0 \2k / 1o 2k
’ 1-0o -1/2 E—
< ((log k)“) exp (Clk (k log (k + 3))) +T7° < (Cz (log (k + 3))0)
for some C, = Cr(0, M). O

Lemma 7.4. Let L > 1, and let T be large. Put X = (log T)*. Define the set A by

- log 7)™
A = ﬂ {t e [T,2T] - |Re (Pj(0'+it,X))| < %}. (7.1)

j=1
Then, there exists a positive number c1 = c1(a, o, L) such that

logT )

1

Proof. By Lemma 7.3, there exist positive constants C; = C;(a, o), for which

1 T 1-o0
lmeas tel|T,2T] : |Re (Pj(o-+it,X))| > &
T loglog T

2k
<c k=7 loglog T
~ | (log k)7 (log T) 1~
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logT
holds for2 < k < M ToglogT" Hence, we have

% meas([T,2T] \ A)
1« . . (log 7)1~
< ?;meas {t € [T,ZT] : |Re (Pj(0'+lt, X))| > W

- k=7 loglog T 2
| (dogk)(logT)l-o| ~

where C = r - maxi<j<, C;. Thus, we obtain this lemma by choosing k =
[clogT/loglogT] with ¢ = ¢(a, o, L) a suitably small constant. O

Proof of Proposition 7.2. Let A be the set defined by (7.1). Let § = §(a, o0, L)
be a suitably small positive constant to be chosen later. Then we find that

1 r . —

f/ﬂexp(;z;Re (PJ(U+II’X)))‘”—

1 1 r , ¢ 1 [llzll(log T)'~7 '
P 3 h St faco[ 3 (St ).

0<k<y k>Yy

logT
10L1loglogT"
< exp (—w%b;%) for ||z]| < 6(logT)7 if § <
Schwarz inequality, for 0 < k <Y, we find that

1 4 ¢
?‘/ﬂ(jzz;sze(Pj(0'+it,X))) dt

1 2T | T k
:T/ (szRe (Pj(o-+it,X))) dr+
r \—H

where Y = Here, by using the Stirling formula, this O-term is

1022L' By using the Cauchy-

r

> 2;Re (Pj(c +it, X))
=1

o \12
dt .

logT
loglogT)’

2T
+0 %(meas([T, 2T\ A))/? ( /T

Using Lemma 7.3 and Lemma 7.4, this O-term is

€1

1 T 1-0o
c1 log )(Céllzll (k+1) E)

k
7log logT (log (k + 3))‘7) = exp ((C261 B

< exp (—

where ¢ is the same constant as in Lemma 7.4, and C, is a positive constant
depending on a,c. Moreover, when ¢ < 4%, this right hand side is <
2
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c¢1 logT
exp (_I ToglogT ) From the above calculations, when § < min{

T 2L 4C,} we

have

%/Aexp(szRe (Pj((7+it,X)))dt (7.2)

. ) - k logT
1y k_/T (Zz,Re Pi(o +it, X))) dt+0(exp(‘czw))’

0<k<Y

where ¢, = min{wLL, T
Now, by Lemma 7.1, we obtain

1 Z /ZT(Zr:z]Re Pi(o +it, X))) dt

0<k<Y

ZZLJU' Z i l—[IO (w\/K (p,z)/pz‘f) dw+0(T 1/2)

wi=e o<y W' p<x

By Lemma 7.2, there exists a positive constant C3 = C3(a, o) such that

[0 (wkatr. 21/ o)

< exp (C363
o<X loglogT

for |w| =e, ||z]| < 6(logT)?. In addition, for |w| = e, we see that

Z 1 logT )
whk+1

< exp (—— )
= 10LloglogT

Therefore, if 6 < m, |w| = e, it holds that

Z — [ 4 (w\/K (p,Z)/pz")

k>Y p<X

logT
< eXp W .

Hence, by choosing ¢ = min{ 1032 T 4‘C, (20C3 &8 } and by this estimate and (7.2),
we have

;/exp(szRe (Pj(o +it, X)))
“5m b i (ketr2ir)

|w|=e <X

dw logT
300 (o [ongiogr )

where c3 = min{5}-, ¢}. This right hand side is equal to

logT
[ () oo i)

p<X

which completes the proof of Proposition 7.2. |
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7.3 Distribution functions of Dirichlet polynomials in the
strip <o <1

For z1, zp € C, and a Dirichlet character y, define

—i6

Kyo(p,z21,22) = (Z1€ +Zz€_i9)((l?)) X (Zle‘ie + Zze_ig)((l?)) :

Then, by Proposition 7.2, there exists a positive constant b1 = b1(y, o, L)
such that, for max{|z1[, |z2|} < b1(logT)?, we have

;/exp mReZ -+ 22 ReZX( — ) (7.3)

p<X psX

logT
- l—[ Iy (\/Kx,e(p,ZLZz)/PZU) +0 (_bzﬁ) ’

p<X

where meas(A) < T exp(—bzlogT/loglogT). Then, we can obtain the fol-
lowing proposition, which plays an important role in the proof of Proposition
7.1.

Proposition 7.3. Let y be a quadratic character. Let fy be a function with 0 <
fo(x) < % and lim, ;o fo(x) = 0. Forany X > 9, 3 < x1,x < X% with
lx1 — x2| < (21 +x2) fo(x1 + x2), we have

[T (VEeatpomsomrio]
<X

p<

 exp GO +32) (1

2log (x1 + x2)

(m + fo(x1 +X2);))) .

Here, the implicit constant depends on y and o.

To prove this proposition, we prepare two lemmas. Remark that we can
prove assertions, similar to these two lemmas, for all primitive not necessarily
quadratic characters.

Lemma 7.5. Let y be a quadratic character. Put

A= D1 A= Z 1

p<y <
x(p)=1 X(p)=—

There exists a constant ¢ > 0 such that, for y > 3,

100 A-0) =220 0, yexp ~cyflog ]

where li(y) = [ kj’g“u.
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Proof. It is well known (see [87, Section 11]) that, for y > 3,
B
y
x(p)=—=+yex (—c lo y) <, yex (—c lo y),
;; 5+ vexp | cylogy| < yexp|—cy/log
and
> L) =500+ 0,(1) = 1(3) + 0, yexp e flog ).
P<y

where £ is an exceptional zero. Thus, by these estimates and

AL = (Z ()= Y x(p)

Py pP=y

+0,(1),

which completes the proof of this lemma.

Lemma 7.6. Let % < o < 1befixed. Let y be a quadratic character. Put

B.(x,X) := Z log Iy (l%), B_(x,X) = Z log I (l%)’

p<X p<X
x(p)=1 x(p)=-
1
ce(o, x) = Z S
7P
x(p)==1

For X >3and 0 < x < 2, we have

Bi(x,X) = #xz +0 (x4) .

PorXZBandZSxSX%r,wehave

Bi(x,X),B_(x,X) = Gz(lc:;:;; (1 +0 (103;)6)) .

Here, the implicit constants depend on y and o
Proof. By the Taylor expansion of Iy, for 0 < x < 2, we find that

2 4

B x x* )\ cxlox) o 4

Bi(x.X)= (4p20+0(p40))_ . x+0(x).
p<X

x(p)=+1

In the following, we assume that x > 2. We write

BwX)=| >+ >+ > loglg(px—g)

P=Yo0 y1<p<X Yo<p<yi
(P)=£1 x(p)=#=1 x(p)=%1

—_. Q% + +
=87 +85 +53,

220



say. By using partial summation, we find that
Sg—“ = / AL(é) (— log Iy ( )) dé + A (y1)logly (%) (7.4)
Yo ‘f y1

— 4.0 Tog Io (—(,.)
Yo

By Lemma 7.5, the integral on the right hand side is equal to

2, 160 G ] a0 [ eV Ggronn )]

Note that we used the monotonicity of Iy in the above deformation. We find

that
—/ li(¢) (—loglo( 0))0{5
Y0 &
=—h(y1)loglo( )+11(y0)log]0( X )+/y1 %da
7 ol Jy log &
and that

" gemeiogE ( loglo( ))df
Yo &>
K ye cvlogy110g10 (y )+y0e CVIOgyOlOgIg( )
Yo

1 x
+ e~ VI08E oo [ | — |dé
£
Yo
< x2y1 20- —c/log y1 +xy(1)—a'e—cxllogyo-

1

Substituting the above estimates to (7.4) and using Lemma 7.5, we obtain

log I,
SE :1/ 1g0—()d§+0(x2 1-20 —cvlogy1+xy C\/logyo).
372 Yo log ¢

X

By making change of variables u = o, We have

I g T (%)dg — b /”yé’ log Io(u0)
Yo

log ¢ x/yy ul*s log (x/u)
_ . 1
For x 12 < u < x1/2 it holds that log(lx = lo}gx +0 ( (llsggx';L). Therefore, the

above right hand side is equal to

du+ O

X7 /"/Yér log Io(u)

1
log x )y ylts

X7 /x/ya’logzo(u)uogm
(logx)z x/yo ul*'%

du) . (7.5)
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Moreover, we find that the main term of (7.5) is equal to
1
xo [ loglo(u) xl/e 201 o
logx/O yl s du+0 log x ((x/yl) <+ &) e )
3 G(O‘)X% N X7
~ logx (logx)?

2

and that the O-term of (7.5) is

1 o 1
« X7 / loglo(u)|logu|du L
(logx)? Jo e (log x)2

. 1 3
Hence, choosing yg = x2o, y1 = x20, we have

. G(O')x% 1
53 = 2logx (1+O(logx))'

For ST, by using the inequality /o(x/p”) < exp(x/p?), we find that

Sl

X X
S* < E BT i a—
1 P=Y0 p” (logx)z

For S, by using the Taylor expansion of Iy, we find that

3l

S < E < <
2 —_— *

Thus, we obtain Lemma 7.6. O

Proof of Proposition 7.3. Let fy be a function satisfying 0 < fy(x) < % and

limy; 400 fo(x) = 0. Let 3 < xq,x2 < X% with |x1 — x| < (x1 +x2) fo(x1 + x2).
Then we can write

Iy (\/KX,Q(P,xl,xz)/PZ(’) = Io (%lxl +x2)((19)|) :

We write

> logls (\/Kx,e(p,xl,xz)/psz)

p<X

1
=2t 2t 10810(F|x1+x2)((17)|) = S, +5_+ S0,

p<X p<X p<X
x(p)=1 x(p)=-1 x(p)=0

say. By Lemma 7.6, we find that

_ G(o)(x1 +x2)7 1
= D log (n +x2) (1+0(1og(x1+x2)))'
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Also, we find that if |x; — x| < 2,

(x1+x2) 7
(log (x1 +x2))?’

_elon),

S- 4

X1 —x2)%+0 ((xl - x2)4) <oy
and that if 2 < [x1 — x2| < VX1 +x2,

<G<a>|x1—xz|%(1+0( 1 )) VI3
log |x1 — x2|

_< Lfox T 7 .
21log(|x1 - x2l) ¥ log (x1 +x2)

(x1 +x2)@
(log (x1 +x2))%

Moreover, if \/x1 + x3 < |x1 — x2| < (x1 +x2) fo(x1 + x2), we have

< G(o)|x1 — x2|7 ( 0 ( 1 )) (x1 +x2)7 fo(x1 +x2) @
~ 7 2log(|x1 —x2]) 7 \log |x1 — x2| X (log (x1 +x2))2

Furthermore, we find that

(x1+x2)7
(log (x1 +x2))?’

So = Zloglo (@) <1 <
plq P

where ¢ is the conductor of y. Thus, we obtain

Z log Ip (\/KX,G(P’xl’xz)/on-)

p<X

_ G@) (i +x)7 (1
B 210g (X1 +XQ)

(—bg o it +xz>v)),

which completes the proof of Proposition 7.3.

Now, we finish the preparation of the proof of Proposition 7.1, and start
the proof of the proposition.

Proof of Proposition 7.1. Let f be a positive valued function with lim f(x) =
X—>+00

0. We may assume that f(x) > W. Let T be large, and X = (logT)~.

. loe T 1-o
Let Vi be large with V; < %,

positive constant to be chosen later, and let V; be a positive number with
Vi = Vo < Vi f(V1). Put

where ay = ax(x,o0, L) is a suitably

T (T, V1,Va; x)
10

e ex(p)
::{IEﬂ : Rezpa'ﬂ't >V1}m{t€ﬂ : RQZW>V2 .

p<X p<X
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Then we find that

(0] (o]
/ / 22 meas(J (T, vy, va, x))dvidvy
—00 o —00

-6

e e“x(p)
X1 Re Z p0'+it + X2 Re Z W

p<X psX

1
= — exp
X1X2 J A

dt.

Therefore, by equation (7.3) and Propositions 7.2, 7.3, we have

1 (o] o
T / / "2 meas(T (T, v, va, x))dvidva (7.6)

G () (x1 +x2)7
2log (x1 + x2)

= exp

1
(1 + 04y (fo(X1 +x2) ”)))
for 3 < x1,x2 £ by (lOg 77, |x1 — x| < (x1 + xz)fo(xl + x»), where by =
b1(x, o, Lp) is the same constant as in Proposition 7.2 in the case a = (1, x)
with 1 the identically one function. Here, we decide the parameters x; and
x2 as the solutions of the equations

G(0)(x1 +x2)7 L G(o) ()7

Vi= , = .
! 4ox1log (x1 +x2) 2 40 xlog (x1 +x2)

(7.7)

Then we can find that these x1, x; satistfy the equations

6= 22 (105 V)1 (140, (V).
= 289 (1o vy (10, (FV).

We choose fy = Bf with B = B(o) a sufficiently large constant, and a> =
ax(o, x, L) sufficiently small. Then we find that these x1, xo satisfy 3 <

11,02 < F(10g7)7, [x1 = xa] < 3(x1 +32) folx1 +x2).
Now, we divide the range of the integral of (7.6) as follows:

V2(1+5) V1(1+5) V2(1—5) V1(1+5) o V1(1+5)
+ +
// /\/(1 -5) /\/1(1—5) /_oo /\/1(1—5) /\/2(1+5) ./\/1(1—5)
V1(1-9) 00 oo
A I B
—00 o —00 —oo JV1(146)

where § = K1 fo(x1 + xz)% with K7 = K1 (0, x) a suitably large constant to be
chosen later. By equation (7.6), we find that

(7.8)

Va(1-6)  pVi(1+6)
/ / x1V1+X2V2 meas(g(T, V1, VZ,X))CZ\/ldVZ
Vi(1-6)

< %e(s"zVZ(l_‘s)/ / 12102 meag (T (T, vy, vo; x))dvidvo

G(0)(x1 + (1= 6)xp) 7

— eéxzvz(l—é)
2 log (X1 + xz)

exp

(1+0., (ﬁ)(xm)%))) 79

224



Remark that we must confirm that the numbers x1, x2(1 — ) satisfy 3 <
x1,x2(1 = 6) < bl(IOgT)O- and lx1 = x2(1 = 6)| < (x1 + Xz)fo(xl + x2), but
these hold for any sufficiently large 7, V; depending on o and y. Using the
formulas x; = x1 + O(x1 fo(x1 +x2)) and (1+7r)7 =1+ L + 0(r2) with || < 1,
we see that (7.9) is equal to

exp [0xaV2(1 - 9) +

G(0)(x1 +x2) 7 (1
200

2 log (x1 + XQ)

- i + 00’,){ (fO(xl +x2)))))

G(o)(x1 +x2) 7 (1_ 52

- &P 2log (x1 + x2) 20

+ 04y (folx1 +xz))))) :

Hence, choosing K7 as a suitably large constant and using equation (7.6), we
obtain

Vo (1-6) V1 (1+46)
/ / 122 meas(T (T, vi, vo; x))dvidva
V1(1-6)

< E/ / 122 meas(T (T, vi, vo; x))dvidvs.

Similarly to the above calculations, we can obtain
V1 (1+6)
/ / gty meas(?](T, V1, Vz;)())dvldVQ
V2(1+(5) V1(1 5)

S T —(5sz2(1+5) / / X]V1+X2(1+6)V2 meaS(J (T Vi, Vz,/\/))d\}]d\/z

= exp

G(o)(x +x2)cr (1 _ 52

210g (xl +x2) % + 00’,)( (fO(xl +)C2)))))

1 o o
< 3/ / e 22 meas(T (T, v1, vo; x))dvidva,

Vi(1-9)
T/ / e 22 meas(J (T, v1, vo; x))dvidva

< %e‘sxlvl(“‘s)/ / 1 IHOVIH2 meag (T (T, v1, va; x))dvidvy

=exp (6x1V1(1 -0)+ Glo) (i +x2) 7 1- 2 + 00y (folx1 +x2)))))

2log (x1 +x2) 20
1o e
< g/ / pF1V1tx2v2 meas(J (T, v1, V2;X))dV1dV2,

and

1 [o0) (o]
— / / 122 meas(T (T, vi,va; x))dvidvo
V](1+(5)

1 [ [
< 5 / / e 22 meas(T (T, v, vo; x))dvidvs.
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Hence, by these inequalities and equations (7.6), (7.8), we have

1 V2(146)  pVi(146)
?/‘/(1 5) /\/(1 5) e meas(T (T, v, va; x))dvidva
201= 1(1-—

G () (x1 +x2)7
2log (x1 + x2)

(1 + Oa',)( (f()(X1 +)C2)%))) .

By this equation and / Va(146) Vi (1+6)

Va(los) Jvi1es) €22 = exp((n V1 +x2V2) (1+0(0))),
we find that

% meas(T (T,V1(1+6),Va(1+06); x))

1-0cG(o)(x +xz)%

o 2log(x1 +x2) (1+0 ()

< exp (—

< %meas(?f(T, Vi(1=6),Va(1-6); x)).
In particular, by equations (7.7), the second term is equal to
exp (=(1 - o) (x1V1 +x2V2) (1+ 0 (6))),
and so we have
exp (=(1 =) (x1V1 + x2V2) (1 +6) (1+ O (9)))
< %meas(?/‘(T, Vi.Vo; x)) <exp (=(1=0)(x1V1 +x2V2)(1 - 6) (1+ 0 (9))) .
Therefore, we obtain

%meas(&”(T, V1, V2 X)) = exp (—2&A(a)vﬁ(1og Vi)Te (1 + 0(5))) :

where 6 = 0(1) as V1 — +c0. By this equation and the estimate meas(A) <
T exp(—b3logT/loglogT), when ay is suitably small, we obtain

1 1 1
Tmeas(é’(T, Vi,V x)) = T (meas(F](T, Vi,Vo, x)) + O (T meas(A)))

= exp —2&A(a)vlﬁ(1og Vi)Toe (1+ 0(1)))

as V1 — +oo. This completes the proof of Proposition 7.1. o

7.4 Proof of dependence of {(s) and L(s, x)

Proof of Theorem 7.1. Let T be large, and X = (log T)* with L = 51%. We can
use Proposition 6.6 for the Riemann zeta-function and Dirichlet L-functions.
Therefore, using the proposition, we obtain

1 2T 2k
)

Arp(n) di < AL TO-2000r 4 gk p1yh(1-20)

n0'+it lOg n

log F (o +it) — Z

2<n<X
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forl <k < 5{ lol;i;T, where F(s)is {(s) or L(s, x). By this inequality, we can
easily find that there exists a set C c [T, 27T] such that meas([7,27] \ C) <

T exp (-clogT/loglogT), and forall 7 € C,

1
log{(o+it) = Y ——|<1+c,
pSXp
log L(o +it, x) — Z X(Siz <1+c(y).
pSXp

A(P*)x(p*)

ke og o) I In particular,

H — A(p*) d — |
ere, ¢ Zpk,kzz pko (log pk)” an C(X) Zpk,kZZ

when a; is sufficiently small, it follows that
meas([T,2T] \ C) < T exp (—2 27 A(o)V 77 (log V)%) . (7.10)

Therefore, the right hand side is < K with K = K(o0) a positive constant.
Then, it holds that

meas (CNS(T, V1 +K,Vo+K); x,0,0))
<meas{t € C : Ree?log{(c +it) > Vyand Reelog L(c +it, x) > V>}
s<meas (CNS(T, V1+K,V,+K); x,0,0)).

Hence, by these inequalities and Proposition 7.1, we have

1 . A
7 Mmeas {t €C : Reelogl(o+it) > Vyand Ree ™ log L(o +it, x) > Vz}

= exp (—2%A(a)v%(1og V)T (1+ 0(1)))

as Vi — +oo. Thus, by this equation and inequality (7.10), we obtain Theorem
7.1. m]
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