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Abstract. This thesis is the summary of author’s two studies on the value-distribution
of zeta and L-functions.

The first study is on the denseness problem for the iterated integrals of the logarithm of
the Riemann zeta-function ζ(s), which is a joint work with Shōta Inoue [9]. We give a result
for the denseness of the values of the iterated integrals on horizontal lines. By using this result
under the Riemann Hypothesis, we obtain the denseness of the values

∫ t

0
log ζ(1/2 + it′)dt′.

Moreover, we show that, for any m ≥ 2, the denseness of the values of an m times iterated
integral on the critical line is equivalent to the Riemann Hypothesis.

The second study is on the effectivity problem of the universality theorem for zeta and
L-functions. Recently, Garunkštis, Laurinc̆ikas, Matsumoto, J. & R. Steuding showed an
effective universality-type theorem for the Riemann zeta-function by using an effective multi-
dimensional denseness result of Voronin. We will generalize Voronin’s effective result and
their theorem to the elements of the Selberg class satisfying some conditions.
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1. Introduction

Let s = σ + it be a complex variable with Re(s) = σ and Im(s) = t. The Riemann
zeta-function ζ(s) is defined by the series

ζ(s) =
∞∑
n=1

1

ns

for σ > 1. This series can be analytically continued to the whole complex plane and has a
pole at s = 1 with residue 1. The Riemann zeta-function ζ(s) plays a great role in analytic
number theory and is known to be connected with the distribution of prime numbers. In
particular, the distribution of zeros of ζ(s) is closely related to that of the prime numbers.

Let us recall the basic properties of the Riemann zeta-function.

• The Euler product representation

ζ(s) =
∏
p

(
1 − p−s

)−1

holds for Re(s) > 1, where the product is taken over all prime numbers p.
• The functional equation

π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1 − s

2

)
ζ(1 − s)

holds.

The Euler product representation implies that the Riemann zeta-function is zero free for
Re(s) > 1. By the functional equation, we can find that the Riemann zeta-function has zeros
at s = −2,−4,−6, . . . and no zeros for Re(s) < 0 except for these zeros. These zeros of
ζ(s) located in Re(s) < 0 are called trivial zeros. Thus, our main interest is to reveal the
distribution of zeros of ζ(s) in 0 ≤ Re(s) ≤ 1. These zeros of ζ(s) located in 0 ≤ Re(s) ≤ 1
are called non-trivial zeros, and the strip {s ∈ C; 0 ≤ Re(s) ≤ 1} is called the critical strip.
The famous Riemann Hypothesis states that the real part of all non-trivial zeros of ζ(s)
equals 1/2.

1.1. The denseness results for the Riemann zeta-function.
1.1.1. Known facts and unsolved problem for the denseness theorems. As we have seen in

the above, it is important to study the value-distribution of the Riemann zeta-function in the
critical strip to understand the distribution of prime numbers. However, the behavior of the
values of the Riemann zeta-function in the critical strip is extremely complicated. Each of
the following famous results is one of the results which express the complexity of the values
of the Riemann zeta-function.

Theorem 1.1 (Bohr and Courant in 1914 [4]). For any 1/2 < σ ≤ 1, the set {ζ(σ +
it) ; t ∈ R} is dense in the complex plane.

Theorem 1.2 (Bohr in 1916 [3]). For any 1/2 < σ ≤ 1, the set {log ζ(σ + it) ; t ∈ R}
is dense in the complex plane.
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Note that the former theorem immediately follows from the latter one. Here, we define
the branch of log ζ(s). Let G denote

G = C \

{ ∪
ρ=β+iγ

{s = σ + it ; σ ≤ β} ∪ (−∞, 1]

}
and define log ζ(s) by

log ζ(s) =

∫ σ

∞

ζ ′

ζ
(α + it)dα

for s = σ + it ∈ G. Here ρ denotes the non-trivial zeros of ζ(s).
Furthermore, the probabilistic improvements of these two theorems have been known

as the Bohr-Jessen limit theorem [5]. To state this theorem, we recall the notion of weak
convergence from probability theory. A family of probability measure (µT )T>0 on (C,B(C))
is said to converge weakly to a probability measure µ if

∫
C fdµT →

∫
C fdµ holds as T → ∞

for any bounded continuous function f on C, where B(S) stands for the Borel σ-field of
the topological space S. Here and in what follows, let meas(·) denote the one-dimensional
Lebesgue measure.

Theorem 1.3. Let 1/2 < σ ≤ 1. For T > 0, define the probability measure µσ,T on
(C,B(C)) by

µσ,T (A) =
1

T
meas {t ∈ [0, T ] ; log ζ(σ + it) ∈ A} , A ∈ B(C).

Then there exists the unique probability measure µσ on (C,B(C)) such that the family (µσ,T )T>0

converges weakly to µσ as T → ∞. Moreover, µσ has the probability density function which
is continuous and takes everywhere positive values.

The statement of Theorem 1.3 is a little different from that in [5] and written in terms
of modern probability theory. Later, Jessen-Wintner [20] gave an alternative proof by a
probabilistic argument. For further developments of the Bohr-Jessen limit theorem, see
e.g. [16], [17], [24] and [25].

Here we mention some known facts about the denseness of the set of the values ζ(σ + it)
for the other values of σ. For σ > 1, it is classically known that the set {ζ(σ + it) ; t ∈ R}
is bounded. Hence the set {ζ(σ + it) ; t ∈ R} is not dense in C in this case. For σ < 1/2,
Garunkštis and Steuding [14] proved that the set {ζ(σ + it) ; t ∈ R} is not dense in C
under the Riemann Hypothesis. For σ = 1/2, Kowalski and Nikeghbali [23, Corollary 9]
gave a sufficient condition for the denseness of the set {ζ(1/2 + it) ; t ∈ R}. However it is
so strong that no one has proved even that the Riemann Hypothesis implies their condition.
At present, the denseness of the set {ζ(1/2 + it) ; t ∈ R} is still open.

Problem 1. Is the set {ζ(1/2 + it) ; t ∈ R} dense in the complex plane?

Garunkštis and Steuding [14] showed that the set {(ζ(1/2 + it), ζ ′(1/2 + it)) ; t ∈ R} is
not dense in C2, and we may guess that the answer of Problem 1 is negative from this result.
One of the important results in the attempt to understand the distribution of the values for
the Riemann zeta function in the critical line is Selberg’s work [39, 40]. He studied the
moments of log ζ(1/2 + it) to obtain the following limit theorem.
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Theorem 1.4. If A is a Jordan measurable set in the complex plane, then

lim
T→∞

1

T
meas

t ∈ [T, 2T ] ;
log ζ(1/2 + it)√

1
2

log log T
∈ A

 =
1

2π

∫∫
A

e−(x2+y2)/2dxdy.

1.1.2. Statement of the main results. The contents of this subsubsection are based on the
paper [9]. This is a joint work with Shōta Inoue.

In order to mention the main results, we give some definitions. Define the function ηm(s)
for m ∈ N by

ηm(σ + it) =

∫ t

0

ηm−1(σ + it′)dt′ + cm(σ),

where

η0(σ + it) = log ζ(σ + it) and cm(σ) =
im

(m− 1)!

∫ ∞

0

(α− σ)m−1 log ζ(α)dα.

The function ηm(s) is the m times iterated integral of log ζ(s) on the vertical line, which
was introduced by Inoue [18]. In this thesis, we discuss the denseness problem of ηm(s) for
σ ≥ 1/2 and m ≥ 1.

Theorem 1.5. Let 1/2 ≤ σ < 1. If the number of zeros ρ = β + iγ of ζ(s) with β > σ is
finite, then the set {∫ t

0

log ζ(σ + it′)dt′ ; t ∈ [0,∞)

}
is dense in the complex plane. Moreover, for each integer m ≥ 2, the following statements
are equivalent.

(I) The Riemann zeta-function does not have any zeros whose real parts are greater than
σ.

(II) The set {ηm(σ + it) ; t ∈ [0,∞)} is dense in the complex plane.

From this theorem, we see that the Riemann Hypothesis implies that the set{∫ t

0

log ζ(1/2 + it′)dt′ ; t ∈ [0,∞)

}
is dense in the complex plane. Moreover, the equivalence in Theorem 1.5 would be a new
type of statement which gives the relation between the denseness of values of the Riemann
zeta-function and the Riemann Hypothesis.

Now we introduce the function η̃m(s) which is closely related to ηm(s). Define the function
η̃m(σ + it) for m ∈ N by

η̃m(σ + it) =

∫ ∞

σ

η̃m−1(α + it)dα,

where η̃0(σ+it) = log ζ(σ + it). This function is the m times iterated integral of log ζ(σ + it)
on the horizontal line. By Littlewood’s lemma, we can obtain the following connection
between ηm(s) and η̃m(s).
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Lemma 1.6 (Lemma 1 in [18]). Let m be a positive integer, and let t > 0. Then, for any
σ ≥ 1/2, we have

ηm(σ + it) = imη̃m(σ + it) + 2π
m−1∑
k=0

im−1−k

(m− k)!k!

∑
0<γ<t

β>σ

(β − σ)m−k(t− γ)k.

From this connection, it is important to analyze the function η̃m(s) to know the property
of ηm(s). The function η̃m(s) is holomorphic in the same region as in the case of log ζ(s)
and has some properties similar to that of log ζ(s). From this observation, we obtain the
following theorem unconditionally

Theorem 1.7. Let 1/2 ≤ σ < 1, and m be a positive integer. Let T0 be any positive
number. Then the set

{η̃m(σ + it) ; t ∈ [T0,∞)}

is dense in the complex plane.

As mentioned above, Bohr developed his denseness results with Jessen from the viewpoint
of probability theory in [5]. Following their method, Inoue and the author will continue their
study with Mine in a subsequent paper [10]. They will give deeper results such as an analog
of Lamzouri’s study [24] and of the study of Lamzouri, Lester and Radziwi l l [25].

1.2. The multi-dimensional denseness theorem and the universality theorem.
1.2.1. Voronin’s work and related results. In 1972, Voronin [46] generalized Bohr’s results

to obtain the following multi-dimensional denseness theorems.

Theorem 1.8. Let n ∈ N and h > 0. Let s1, . . . , sn satisfy 1/2 < Re(sk) ≤ 1 for
k = 1, . . . , n and sk ̸= sj for k ̸= j. Then the set

{(ζ(s1 + imh), . . . , ζ(sn + imh)) ; m ∈ N}

is dense in Cn.

Theorem 1.9. Let n ∈ N and h > 0 and 1/2 < Re(s) ≤ 1. Then the set

{(ζ(s + imh), ζ ′(s + imh), . . . , ζ(n−1)(s + imh)) ; m ∈ N}

is dense in Cn.

In particular, the following theorem immediately follows from Theorem 1.9.

Theorem 1.10. Let n ∈ N and 1/2 < σ ≤ 1. Then the set

{(ζ(σ + it), ζ ′(σ + it), . . . , ζ(n−1)(σ + it)) ; t ∈ R}

is dense in Cn.

In 1975, Voronin [47] discovered the universality theorem for the Riemann zeta-function,
which states as follows;
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Theorem 1.11. Let K be a compact subset of D = {s ∈ C ; 1/2 < σ < 1} with connected
complement, and let f be a non-vanishing continuous on K that is holomorphic in the interior
of K. Then we have, for any ε > 0,

(1) lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] ; max

s∈K
|ζ(s + iτ) − f(s)| < ε

}
> 0.

Roughly speaking, Theorem 1.11 says that the Riemann zeta-function can approximate
any non-vanishing holomorphic functions. Note that Theorem 1.11 is not the original one
by Voronin but is the form by Reich [37]. Voronin discussed the case when the above K is
replaced by a closed disk {s ∈ C ; |s + 3/4| ≤ r} with 0 < r < 1/4. Note that we can also
see Voronin’s proof of the universality theorem in the textbook [21].

The theory of the universality theorem has been developed in various directions. One of
the remarkable results is Bagchi’s work [1]. He gave a probabilistic proof of the universal-
ity theorem for the Riemann zeta-function, which was a different approach from Voronin’s
original proof. To state this result, we will give some notations. Let γ denote the unit circle
on the complex plane and define Ω =

∏
p γp, γp = γ. Since Ω is compact, there exists the

probability Haar measure m on (Ω,B(Ω)). For any ω = (ω(p))p ∈ Ω and n ∈ N with n ≥ 2,
let ω(1) = 1 and let

ω(n) =
k∏

j=1

ω(pj)
rj ,

where n = pr11 · · · prkk is the prime factorization of n. Let D = {s ; 1/2 < σ < 1} and let H(D)
denote the set of holomorphic function on D equipped with the topology of uniform conver-
gence on compact subsets. Define the probability measures νT and ν on (H(D),B(H(D)))
by

νT (A) =
1

T
meas {τ ∈ [0, T ] ; ζ(s + iτ) ∈ A}

and
ν(A) = m {ω ∈ Ω ; ζ(s, ω) ∈ A}

for A ∈ B(H(D)), where H(D)-valued random variable ζ(s, ω) is defined by

ζ(s, ω) =
∞∑
n=1

ω(n)

ns
.

Bagchi proved the following.

Theorem 1.12. We have the followings;

(i) The probability measures νT converges weakly to ν as T → ∞.
(ii) The support of the probability measure ν coincides with the set

{φ ∈ H(D) ; φ(s) ̸= 0 for s ∈ D or φ(s) ≡ 0} .

Combining Merglyan’s theorem with this theorem we obtain the universality theorem.
Merglyan’s theorem asserts the following;

Theorem 1.13 (see e.g. [38]). Let K be a compact subset of C with connected complement.
If f is continuous function on K which is holomorphic in the interior of K, and if ε > 0,
then there exists a polynomial P such that |f(s) − P (s)| < ε for any s ∈ K.
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At present, Bagch’s approach is a standard method of proving universality theorems for
a wide class of zeta and L-functions. Refer to [27], [43], [22] etc. for the details of Bagchi’s
theory. For other developments of the universality, see e.g. a survey paper [31].

As another development of the universality theorem, there are some studies of the refine-
ment to an effective form of Voronin’s universality theorem. There arose the questions on
how large the value (1) is or how small the shift τ we can take to make ζ(s+ iτ) approximate
a given non-vanishing holomorphic function. In Voronin’s proof of the universality theo-
rem, Pečerskĭı’s rearrangement theorem [35] in Hilbert space and Kronecker’s approximation
theorem [21, Appendix 8, Theorem 1] are used. These theorems assert the followings;

Theorem 1.14 (Pečerskĭı). Let ⟨x, y⟩H denote the inner product of x and y belonging to

a real Hilbert space H. The norm ∥x∥H of x ∈ H is canonically defined by ∥x∥H =
√

⟨x, x⟩H.
Suppose that a sequence {un}∞n=1 on H satisfies the the following conditions;

•
∑∞

n=1 ∥un∥H < ∞,
• For any e ∈ H with ∥e∥H = 1, there exists a bijective mapping l = l(e) : N ∋ k 7→
lk ∈ N such that the series

∑∞
k=1⟨ulk , e⟩H converges conditionally.

Then, for any v ∈ H, there exists a bijective mapping j = j(v) : N ∋ k 7→ jk ∈ N such that

∞∑
k=1

ujk = v in H.

Theorem 1.15 (Kronecker’ approximation theorem). Let A be a Jordan measurable sub-
region of [0, 1)N , and a1, . . . , aN be real numbers linearly independent over Q. Set, for any
T > 0,

I(T,A) = {t ∈ [0, T ] ; ({a1t}, . . . , {aN t}) ∈ A} .

Here {x} means the fractional part of x. Then we have

lim
T→+∞

meas(I(T,A))

T
= meas(A).

Since these two theorems are ineffective, it is difficult in general to obtain effective results
of the universality theorem. Good [15] was the first to make progress on this effectiviza-
tion problem. He combined Montgomery’s results [32] about the extreme values of log ζ(s)
with Voronin’s results to get some effective results of the universality theorem. After that,
Garunkštis [11] extended Good’s idea to obtain some explicit results in a small region for
the above effecitivization problems.

Another approach by using the Taylor series expansion is taken by Garunkštis, Lau-
rinc̆ikas, Matsumoto, J. & R. Steuding [13]. They refined Matsumoto’s weak version of the
universality theorem into the effective form. Matsumoto’s theorem is written in the survey
paper [30, Section 3]. To see what is the refinement, we recall how to prove the Matsumoto’s
theorem. Let g(s) be a function holomorphic at s = s0. By the Taylor series expansions of
ζ(s + iτ) and g(s), the equations

ζ(s + iτ) =
∞∑
k=0

ζ(k)(s0 + iτ)

k!
(s− s0)

k and g(s) =
∞∑
k=0

g(k)(s0)

k!
(s− s0)

k
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hold around s = s0. Letting the coefficients ζ(k)(s0 + iτ) approximate g(k)(s0) simultaneously
by using Theorem 1.10, we can deduce a weak version of the universality theorem which is
valid only around s = s0. However, since Theorem 1.10 is ineffective, we can not obtain the
effective result of this weak approximation theorem. To obtain the effective version of this
result, Garunkštis, Laurinc̆ikas, Matsumoto, J. & R. Steuding directed their attention to the
following theorem by Voronin [48], which is an effective version of Theorem 1.10.

Theorem 1.16. Let N ∈ N and σ0 ∈ (1/2, 1) and b = (b0, b1, . . . , bN−1) ∈ CN with
|b0| > ε > 0. Then a sufficient condition for the system of inequalities∣∣ζ(k)(σ0 + it) − bk

∣∣ < ε, k = 0, . . . , N − 1

to have a solution t ∈ [T, 2T ] is that

T > c0(N, σ0) exp exp
(
c1(N, σ0)A(N, b, ε)

8
1−σ0

+ 8
σ0−1/2

)
,

where c0(N, σ0) and c1(N, σ0) are a positive 1, effectively computable constant, depending only
on N and σ0, and

A(N, b, ε) = |log b0| +

(
∥b∥
ε

)N2

with ∥b∥ =
∑

0≤k<N |bk|. Here the above branch of log b0 can be taken arbitrarily.

We remark that this result is also written in the textbook [21], and the above statement
is the form described in the textbook. This result is also regarded as a kind of Ω-results,
which Voronin called it. He proved this effective result cleverly without using ineffective
results as mentioned above. In his proof, Pečerskĭı’s theorem is replaced by a geometrical
argument and an argument in which the system of the linear equation and the prime number
theorem for short interval are used. Kronecker’s approximation theorem is replaced by a kind
of amplification technique in which we estimate a certain weighted mean value. Garunkštis,
Laurinc̆ikas, Matsumoto, J. & R. Steuding [13] used this effective result to refine Matsumoto’s
theorem. Since the author found a slight mistake in their statement [13], we shall mention
the modified version of this statement as follows;

Theorem 1.17 (Modified version of the result [13]). Let s0 = σ0 + it0, 1/2 < σ0 < 1,
r > 0, K = {s ∈ C ; |s− s0| ≤ r}, and suppose that g : K → C is an analytic function with
g(s0) ̸= 0. Put M(g) = max|s−s0|=r |g(s)|. Fix ε ∈ (0, 1) and 0 < δ0 < 1. If N = N(δ0, ε, g)
and T = T (g, ε, σ0, δ0, N) satisfy

M(g)
δN0

1 − δ0
<

ε

3
and

T ≥ max
{
c0(σ0, N) exp exp

(
c1(σ0, N)A (N,g, (ε/3) exp(−δ0r))

8
1−σ0

+ 8
σ0−1/2

)
, r
}
,

respectively, then there exists τ ∈ [T − t0, 2T − t0] such that

max
|s−s0|≤δr

|ζ(s + iτ) − g(s)| < ε

1It is written in [21] that the constant c1(N, σ0) can be taken 5. However one cannot prove this fact by
the method in [21]. This is probably a mistake.
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for any 0 ≤ δ ≤ δ0 satisfying

M(τ)
δN

1 − δ
<

ε

3
.

Here c0(σ0, N), c1(σ0, N) and A (N,g, (ε/3) exp(−δ0r)) are the same constants as in Theorem
1.16 with g =

(
g(s0), g

′(s0), . . . , g
(N−1)(s0)

)
, and M(τ) is defined by M(τ) = max|s−s0|=r |ζ(s+

iτ)|.

This correction is inspired by Matsumoto’s paper [30]. We will mention this correction
in the proof of Corollary 1.21.

Remark 1.18. We will explain the mistake in [13]. Let the settings be the same as in
Theorem 1.17. In [13], they showed that the inequality

|ζ(s + iτ) − g(s)| < ε

3
+

ε

3
exp(δr) + M(τ)

δn

1 − δ
=: G(δ)

holds for 0 ≤ δ ≤ δ0, which is the second line from the top of the page 214 in [13]. Here n
and τ are some positive numbers depending on δ0 and other parameters, and M(τ) is given
by M(τ) = max|s−s0|=r |ζ(s + iτ)|. After that, they stated that one can choose δ so that
G(δ) = ε since G(0) = (2/3)ε and limδ↗1G(δ) = ∞. However this argument can not always
realized since the above inequality is valid only for 0 ≤ δ ≤ δ0 < 1.

Our goal in this thesis is to generalize these results in [48] and [13] to the Selberg class
S with some conditions.

As other recent effective results, we give examples like [15], [11], [12], [41], [42], [13],
[26] and refer to [28] for a good survey of effectivization problem of the universality theorem.

1.2.2. Statement of the main results. The contents of this subsubsection are based on the
paper [8]. To state the main theorem, we start to recall the definition of the Selberg class S.
The Dirichlet series

L(s) =
∞∑
n=1

a(n)

ns

is said to belong to the Selberg class S if L(s) satisfies the following axioms;

(i) Ramanujan hypothesis: a(n) ≪ε n
ε for any ε > 0.

(ii) Analytic continuation: there exists a nonnegative integer m such that (s − 1)mL(s) is
an entire function of finite order.

(iii) Functional equation: L(s) satisfies a functional equation of the type

HL(s) = ωHL(1 − s)

where

HL(s) = L(s)Rs

f∏
j=1

Γ(λjs + µj) = γ(s)L(s)

with positive real numbers R, λj and complex numbers µj and ω with Reµj ≥ 0 and
|ω| = 1.

(iv) Euler product: logL(s) =
∑∞

n=1 b(n)n−s, where b(n) = 0 unless n = pm with a prime
number p and m ≥ 1, and b(n) ≪ nϑ for some ϑ < 1/2.
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Now we give some definitions. The zeros of L(s) which are not derived from the poles of
the γ-factor γ(s) and are not equal to possible zeros of L(s) at s = 0, 1 are called non-trivial
zeros, and denote by ρ = β + iγ such zeros throughout this thesis. Let NL(T ) denote the
number of non-trivial zeros with multiplicity satisfying 0 ≤ β ≤ 1 and |γ| ≤ T . We remark
that it is known that

(2) NL(T ) =
dL
π
T log T + cLT + O(log T )

holds, where dL = 2
∑f

j=1 λj and cL is some constant depending on L. This dL is called the

degree of L(s) and known to be invariant in the Selberg class S. For other properties of the
Selberg class S, we refer to a survey paper [36] for example.

In this thesis, we further assume the following three conditions.

(C1) There exists a κ = κ(L) > 0 such that

1

π(X)

∑
p≤X

|a(p)|2 ∼ κ as X → ∞.

(C2) There exists a σL ≥ 1/2 such that for any fixed σ > σL

NL(σ, T ) ≪ T 1−∆L(σ)

as T → ∞ with some positive real number ∆L(σ) > 0, where NL(σ, T ) denote the
number of non-trivial zeros of L(s) with multiplicity satisfying β ≥ σ and |γ| ≤ T .
The implicit constant may depend on σ.

(C3) There exists an EL > 0 such that∑
X<p≤X+H

|a(p)|2 ∼ κ
H

logX
and π(X + H) − π(X) ∼ H

logX

hold for X ≥ H ≥ X1−EL(logX)D with some D ≥ 1 as X → ∞.

The above implicit constants appearing in the symbol O(·) and ≪ may depend on L(s).
Remark that the universality theorem for the element of the Selberg class S satisfying the
condition (C1) is proved in a certain strip by Nagoshi and Steuding [34].

Here, we define a branch of logL(s). Let G(L) denote

G(L) = {s ; σ > 1/2} \

{( ∪
ρ=β+iγ

{s = σ + iγ ; σ ≤ β}

)
∪ (−∞, 1]

}

and we define logL(s) by

logL(s) =

∫ σ

∞

L′

L
(α + it)dα

for s = σ + it ∈ G(L).
In this thesis, we first show the following two results which are generalizations of the

results in [48].
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Theorem 1.19. Let L(s) =
∑∞

n=1 a(n)n−s be an element of the Selberg class S satisfying
the conditions (C1), (C2) and (C3). Let max{σL, 1 − 2EL} < σ0 < 1, N ∈ N, ε ∈ (0, 1),
c = (c0, c1, . . . , cN−1) ∈ CN . Then a sufficient condition for the system of inequalities∣∣∣∣ dkdsk

logL(σ0 + it) − ck

∣∣∣∣ < ε for k = 0, 1, . . . , N − 1

to have a solution t ∈ [T, 2T ] is that

T ≥ exp exp

(
C1(L, σ0, N)

(
∥c∥ +

1

ε

)d(σ0,EL)
)
,

where C1(L, σ0, N) and d(σ0, EL) are effectively computable positive constants depending on
L, σ0, N and on σ0, EL respectively.

Corollary 1.20. Under the same hypothesis of Theorem 1.19 with c0 ̸= 0, a sufficient
condition for the system of inequalities∣∣∣∣ dkdsk

L(σ0 + it) − ck

∣∣∣∣ < ε for k = 0, 1, . . . , N − 1

to have a solution t ∈ [T, 2T ] is that

T ≥ exp exp
(
C2(L, σ0, N)B(N, c, ε)d(σ0,EL)

)
,

where C2(L, σ0, N) is effectively computable positive constant depending on L, σ0, N , and
d(σ0, EL) is the same constant as in Theorem 1.19, and

B(N, c, ε) = | log c0| +

(
∥c∥
|c0|

)(N−1)2
1 + |c0|

ε
.

Here the above branch of log c0 can be taken arbitrarily.

By combining Corollary 1.20 with the method as in [13], we have the following corollary.

Corollary 1.21. Let L(s) =
∑∞

n=1 a(n)n−s be an element of the Selberg class S satis-
fying the conditions (C1), (C2) and (C3). Let s0 = σ0 + it0, max{σL, 1 − 2EL} < σ0 < 1,
r > 0, K = {s ∈ C ; |s − s0| ≤ r}, and suppose that g : K → C is an analytic func-
tion with g(s0) ̸= 0. Put M(g) = max|s−s0|=r |g(s)|. Fix ε ∈ (0, 1) and 0 < δ0 < 1. If
N = N(δ0, ε,M(g)) and T = T (L, g, ε, σ0, δ0, N) satisfy

M(g)
δN0

1 − δ0
<

ε

3

and

T ≥ max
{

exp exp
(
C2(L, σ0, N)B (N,g, (ε/3) exp(−δ0r))d(σ0,EL)

)
, r
}
,

respectively, then there exists τ ∈ [T − t0, 2T − t0] such that

max
|s−s0|≤δr

|L(s + iτ) − g(s)| < ε

for any 0 ≤ δ ≤ δ0 satisfying

M(τ ;L)
δN

1 − δ
<

ε

3
.

13



Here C2(L, σ0, N) and B (N,g, (ε/3) exp(−δ0r)) are the same constants as in Corollary 1.20
with g =

(
g(s0), g

′(s0), . . . , g
(N−1)(s0)

)
, and M(τ ;L) is defined by M(τ ;L) = max|s−s0|=r | L(s+

iτ)|.

At the end of this section, we give some examples. First, we will see that one can apply
these results to the Riemann zeta-function in the range 1/2 < σ0 < 1. In this case, the
condition (C1) is well-known as the prime number theorem. For the condition (C2), we can
take σζ = 1/2 by the zero-density theorem (see e.g. [45, Theorem 9.19]). For the condition
(C3), it is known that

π(X + H) − π(X) ∼ H

logX
for X7/12(logX)22 ≤ H ≤ X

holds (see e.g. [19, Theorem 12.8]). Hence we can take Eζ = 5/12 and we obtain max{σζ , 1−
2Eζ} = 1/2 in this case. For other examples, we can confirm that the Dirichlet L-function
L(s, χ) of primitive characters χ and the Dedekind zeta-function ζK(s) belong to the Selberg
class S and satisfy the conditions (C1), (C2) and (C3).

14



2. Proof of main results in 1.1.2

In this subsection, we will show the main results in 1.1.2.

2.1. Key propositions of the proof. Our first purpose is to show Theorem 1.7. In
the proof of Theorem 1.7, the following two propositions play an important role.

In the following, the symbol meas(·) stands for the one-dimensional Lebesgue measure,
and Lim(z) means the polylogarithmic function defined as

∑∞
n=1

zn

nm for |z| < 1.

Proposition 2.1. Let m be a positive integer. Then for any σ ≥ 1/2, T ≥ X135, ε > 0,
we have

lim
X→+∞

1

T
meas

{
t ∈ [0, T ] ;

∣∣∣∣η̃m(σ + it) −
∑
p≤X

Lim+1(p
−σ−it)

(log p)m

∣∣∣∣ < ε

}
= 1.

The important point of this proposition is that η̃m(s) can be approximated by the Dirichlet
polynomial even on the critical line. To prove this proposition, we must control exactly the
contribution of nontrivial zeros of ζ(s), and we therefore need a strong zero density estimate
of the Riemann zeta-function like Selberg’s result [39, Theorem 1]. More precisely, we require
that there exist numbers c > 0, A < 2m + 1 such that

N(σ, T ) ≪ T 1−c(σ−1/2)(log T )A

uniformly for 1
2
≤ σ ≤ 1. Here, N(σ, T ) is the number of zeros of ζ(s) with multiplicity

satisfying β > σ and 0 < γ ≤ T . Therefore, to prove Proposition 2.1, we need a strong zero
density estimate comparable to the assumption by Bombieri and Hejhal [6]. On the other
hand, when we discuss the denseness of η̃m(s) for fixed 1

2
< σ < 1, it suffices to use the

weaker estimate

N(σ, T ) ≪ T 1−c(σ−1/2)+ε

for every ε > 0. Hence, there is an essential difference of the depth between the discussion
in the case 1

2
< σ < 1 and that in the case σ = 1

2
in Proposition 2.1. We will explain this

point more closely later.
In contrast, we can prove the following proposition by almost the same method as in [3],

[4].

Proposition 2.2. Let m be a positive integer, 1/2 ≤ σ < 1. Let a be any complex number,
and ε be any positive number. If we take a sufficiently large number N0 = N0(m,σ, a, ε), then,
for any integer N ≥ N0, there exists some Jordan measurable set Θ0 = Θ0(m,σ, a, ε,N) ⊂
[0, 1)π(N) with meas(Θ0) > 0 such that∣∣∣∣∣∑

p≤N

Lim+1(p
−σ exp(−2πiθp))

(log p)m
− a

∣∣∣∣∣ < ε.

for any θ = (θpn)π(N)
n=1 ∈ Θ0.

Roughly speaking, Proposition 2.1 means that η̃m(σ + it) “almost” equals the finite sum
of polylogarithmic functions when the number of the terms of the sum is sufficiently large,
and Proposition 2.2 that any complex number can be approximated by the finite sum of
polylogarithmic functions when the number of the terms of the sum is sufficiently large.
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2.2. Proof of Proposition 2.1. In this section, we prove Proposition 2.1. In order to
prove it, we prepare two lemmas.

Lemma 2.3. Let m be a positive integer, and σ ≥ 1/2. Let T be large. Then, for

3 ≤ X ≤ T
1

135 , we have

1

T

∫ T

14

∣∣∣∣η̃m(σ + it) −
∑

2≤n≤X

Λ(n)

nσ+it(log n)m+1

∣∣∣∣2dt ≪ X1−2σ

(logX)2m
.

Here, we refer the following theorem to prove this lemma.

Lemma 2.4. Let m, k be positive integers. Let T be large, and X ≥ 3 with X ≤ T
1

135k .
Then, for σ ≥ 1/2, we have

(3)

∫ T

14

∣∣∣∣ηm(σ + it) − im
∑

2≤n≤X

Λ(n)

nσ+it(log n)m+1
− Ym(σ + it)

∣∣∣∣2kdt
≪ 2kk!

(
2m + 1

2m
+

C

logX

)k
Xk(1−2σ)

(logX)2km
+ Ckk2k(m+1) T

1−2σ
135

(log T )2km
.

This lemma is Theorem 5 in [18]. As we mentioned in the previous section, the proof of
this lemma requires a strong zero density estimate like Selberg’s result. In fact, if we only
knew the estimate

N(σ, T ) ≪ T 1−c(σ−1/2)(log T )A

for some c > 0, A ≥ 1, then the right hand side of (3) in the case k = 1 becomes

O

(
X1−2σ

(logX)2m
+

T
1−2σ
135

(log T )2m+1−A

)
.

Hence, the power of the logarithmic factor of the zero density estimate plays an important
role in the case σ = 1/2.

Proof. By Theorem 5 in [18], we have

1

T

∫ T

14

∣∣∣∣ηm(σ + it) − im
∑

2≤n≤X

Λ(n)

nσ+it(log n)m+1
− Ym(σ + it)

∣∣∣∣2dt ≪ X1−2σ

(logX)2m
,

where

Ym(σ + it) = 2π
m−1∑
k=0

im−1−k

(m− k)!k!

∑
0<γ<t

β>σ

(β − σ)m−k(t− γ)k.(4)

Further, by Lemma 1.6, we see that

ηm(σ + it) − Ym(σ + it) = imη̃m(σ + it).

Hence we obtain this lemma. □
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Lemma 2.5. Let m be an integer, σ ≥ 1/2. Let T be large. Then for 3 ≤ X ≤ T 1/4, we
have

1

T

∫ T

0

∣∣∣∣∑
p≤X

Lim+1(p
−σ−it)

(log p)m
−
∑

2≤n≤X

Λ(n)

nσ+it(log n)m+1

∣∣∣∣2dt ≪ X1−2σ

(logX)2m+1
,

where the function Λ(n) is the von Mangoldt function.

Proof. By definitions of the polylogarithmic function and the von Mangoldt function,
we find that∑

p≤X

Lim+1(p
−σ−it)

(log p)m
−
∑

2≤n≤X

Λ(n)

nσ+it(log n)m+1
=
∑
p≤X

∑
k> logX

log p

p−k(σ+it)

km+1(log p)m

=
∑
p≤X

∑
logX
log p

<k≤3 logX
log p

p−k(σ+it)

km+1(log p)m
+ O

(
X1−3σ

(logX)m

)
.

Here, we can write∣∣∣∣∑
p≤X

∑
logX
log p

<k≤3 logX
log p

p−k(σ+it)

km+1(log p)m

∣∣∣∣2

=
∑
p≤X

∑
logX
log p

<k≤3 logX
log p

p−2kσ

k2(m+1)(log p)2m
+

+
∑
p1≤X

∑
p2≤X

∑
logX
log p1

<k1≤3 logX
log p1

∑
logX
log p2

<k2≤3 logX
log p2

(p1,k1) ̸=(p2,k2)

(pk11 pk22 )−σ(pk11 /pk22 )−it

(k1k2)m+1(log p1 log p2)m
.

Therefore, it holds that∫ T

0

∣∣∣∣∑
p≤X

∑
logX
log p

<k≤3 logX
log p

p−k(σ+it)

km+1(log p)m

∣∣∣∣2dt
= T

∑
p≤X

∑
logX
log p

<k≤3 logX
log p

p−2kσ

k2(m+1)(log p)2m
+

+ O

X3

∑
p≤X

∑
logX
log p

<k≤3 logX
log p

1

pkσkm+1(log p)m


2

≪ T
X1−2σ

(logX)2m+1
+

X5−2σ

(logX)2(m+1)
≪ T

X1−2σ

(logX)2m+1
.
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Hence we have∫ T

0

∣∣∣∣∑
p≤X

Lim+1(p
−σ−it)

(log p)m
−
∑

2≤n≤X

Λ(n)

nσ+it(log n)m+1

∣∣∣∣2dt
≪
∫ T

0

∣∣∣∣∑
p≤X

∑
logX
log p

<k≤3 logX
log p

p−k(σ+it)

km+1(log p)m

∣∣∣∣2dt + T
X2−6σ

(logX)2m
≪ T

X1−2σ

(logX)2m+1
,

which completes the proof of this lemma. □

Proof of Proposition 2.1. By Lemma 2.3 and Lemma 2.5, for X ≤ T 1/135, we find
that

1

T

∫ T

14

∣∣∣∣η̃m(σ + it) −
∑
p≤X

Lim+1(p
−σ−it)

(log p)m

∣∣∣∣2dt
≪ 1

T

∫ T

14

∣∣∣∣η̃m(σ + it) −
∑

2≤n≤X

Λ(n)

nσ+it(log n)m+1

∣∣∣∣2dt
+

1

T

∫ T

14

∣∣∣∣∑
p≤X

Lim+1(p
−σ−it)

(log p)m
−
∑

2≤n≤X

Λ(n)

nσ+it(log n)m+1

∣∣∣∣2dt
≪ X1−2σ

(logX)2m
.

By using this estimate, for any fixed ε > 0, we have

1

T
meas

{
t ∈ [0, T ] ;

∣∣∣∣η̃m(σ + it) −
∑
p≤X

Lim+1(p
−σ−it)

(log p)m

∣∣∣∣ ≥ ε

}
≪ X1−2σ

ε2(logX)2m
+

1

T
.

Hence, for any T ≥ X135, it holds that

1

T
meas

{
t ∈ [0, T ] ;

∣∣∣∣η̃m(σ + it) −
∑
p≤X

Lim+1(p
−σ−it)

(log p)m

∣∣∣∣ ≥ ε

}
→ 0

as X → +∞. Thus, we obtain Proposition 2.1. □

2.3. Proof of Proposition 2.2. In this section, we prove Proposition 2.2 by the method
described in [21, VIII.3], [48]. First of all, we will show the following elementary geometric
lemma.

Lemma 2.6. Let N be a positive integer larger than two. Suppose that the positive numbers
r1, r2, . . . , rN satisfy the condition

rn0 ≤
N∑

n=1
n̸=n0

rn,(5)
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where rn0 = max{rn ; n = 1, 2, . . . , N}. Then we have{
N∑

n=1

rn exp(−2πiθn) ∈ C ; θn ∈ [0, 1)

}
=

{
z ∈ C ; |z| ≤

N∑
n=1

rn

}
.(6)

Proof. By Proposition 3.3 in [7], it immediately follows that{
N∑

n=1

rn exp(−2πiθn) ∈ C ; θn ∈ [0, 1)

}
is the closed circle with center origin and radius

∑N
n=1 rn. Note that their Tn becomes zero

under assumption (5). □
Next, we introduce the following definitions.

Definition 2.7. Let m be a positive integer and M a finite subset of the set of prime
numbers. For σ ≥ 1/2 and θ = (θp)p∈M ∈ [0, 1)M, we define the functions

φm,M(σ, θ) :=
∑
p∈M

exp(−2πiθp)

pσ(log p)m
,

η̃m,M(σ, θ) :=
∑
p∈M

Lim+1(p
−σ exp(−2πiθp))

(log p)m
=
∑
p∈M

∞∑
k=1

exp(−2πikθp)

km+1pkσ(log p)m
.

Definition 2.8. Let pn be the n-th prime number. Put

θ(0) =
(
θ(0)pn

)
n∈N = (0, 1/2, 0, 1/2, . . .) ∈ [0, 1)N,

and

γm,σ =
∑
p

∞∑
k=1

exp(−2πikθ
(0)
p )

km+1pkσ(log p)m
.

Note that the series for γm,σ is convergent for σ ≥ 1/2.

Proof of Proposition 2.2. Fix a complex number a and 1/2 ≤ σ < 1. Let U be a
positive real parameter. We take a sufficiently large number N = N(U,m, σ, a) for which the
estimates

|a− γm,σ| ≤
∑
p∈M

1

pσ(log p)m
,

1

pσmin(log pmin)m
≤

∑
p∈M\{pmin}

1

pσ(log p)m

are satisfied, where M = M(U,N) is defined as {p ; p prime, U < p ≤ N}, and pmin is
the minimum of M. Note that the existence of such N is guaranteed by

∑
p

1
pσ(log p)m

= ∞.

Then, by Lemma 2.6, the function

φm,M(σ, ·) : [0, 1)M ∋ θ 7−→ φm,M(σ, θ) ∈

{
z ∈ C ; |z| ≤

∑
p∈M

1

pσ(log p)m

}
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is surjective. Hence, there exists some θ(1) = θ(m,σ, U,N)(1) = (θ
(1)
p )p∈M ∈ [0, 1)M such that

φm,M(σ, θ(1)) = a− γm,σ.

By using the prime number theorem, we find that

η̃m,M(σ, θ(1)) = φm,M(σ, θ(1)) +
∑
p∈M

∞∑
k=2

exp(−2πikθ
(1)
p )

km+1pkσ(log p)m

= a− γm,σ + O

(
1

(logU)m

)
.

For any prime number p, we put

θ(2)p =

{
θ
(0)
p if p /∈ M,

θ
(1)
p if p ∈ M.

Then it holds that∑
p≤N

Lim+1(p
−σ exp(−2πiθ

(2)
p ))

(log p)m

=
∑
p∈M

Lim+1(p
−σ exp(−2πiθ

(1)
p ))

(log p)m
+
∑
p≤U

Lim+1(p
−σ exp(−2πiθ

(0)
p ))

(log p)m

=η̃m,M(σ, θ(1)) + γm,σ +
∑
p>U

Lim+1(p
−σ exp(−2πiθ

(0)
p ))

(log p)m
,

and additionally, by using the prime number theorem and simple calculations of alternating
series, ∑

p>U

Lim+1(p
−σ exp(−2πiθ

(0)
p ))

(log p)m
=
∑
p>U

exp(−2πiθ
(0)
p ))

pσ(log p)m
+ O

(∑
p>U

1

p2σ(log p)m

)

≪ 1

(logU)m
.

Hence, by taking a sufficiently large U = U(ε) and noting the continuity of the function∑
p≤N

Lim+1(pσ exp(−2πiθp))

(log p)m
with respect to (θp)p≤N ∈ [0, 1)π(N), we obtain this proposition. □

2.4. Proof of Theorem 1.7. In this section, we prove Theorem 1.7. Here, we use the
following lemma related with Kronecker’s approximation theorem.

Lemma 2.9. Let A be a Jordan measurable subregion of [0, 1)N , and a1, . . . , aN be real
numbers linearly independent over Q. Set, for any T > 0,

I(T,A) = {t ∈ [0, T ] ; ({a1t}, . . . , {aN t}) ∈ A} .
Then we have

lim
T→+∞

meas(I(T,A))

T
= meas(A).

Proof. This lemma is Theorem 1 of Appendix 8 in [21] □
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Let us start the proof of Theorem 1.7.

Proof of Theorem 1.7. Let ε > 0 be any small number, a any fixed complex num-
ber, 1

2
≤ σ < 1, and let T0 be any positive number. Define SM(θ1, . . . , θM ;σ,m) and

SM,N(θM+1, . . . , θN ;σ,m) by

SM(θ1, . . . , θM ;σ,m) =
∑
n≤M

Lim+1(p
−σ
n e−2πiθn)

(log pn)m
,

SM,N(θM+1, . . . , θN ;σ,m) =
∑

M<n≤N

Lim+1(p
−σ
n e−2πiθn)

(log pn)m
.

Then, by Proposition 2.2, we can take a sufficiently large M0 = M0(m,σ, a, ε) so that for any

M ≥ M0, there exists some Jordan measurable subset Θ
(M)
1 = Θ

(M)
1 (m,σ, a, ε,M) of [0, 1)M

such that δM := meas(Θ
(M)
1 ) > 0 and

|SM(θ1, . . . , θM ;σ,m) − a| < ε

for any (θ1, . . . , θM) ∈ Θ
(M)
1 . We also find that∫ 1

0

· · ·
∫ 1

0

|SM,N(θM+1, . . . , θN ;σ,m)|2dθM+1 · · · dθN

=

∫ 1

0

· · ·
∫ 1

0

∣∣∣∣∣ ∑
M<n≤N

∞∑
k=1

p−σk
n e−2πikθn

km+1(log pn)m

∣∣∣∣∣
2

dθM+1 · · · dθN

=
∑

M<n1≤N

∑
M<n2≤N

∞∑
k1=1

∞∑
k2=1

{
(pn1pn2)

−σk

(k1k2)m+1(log pn1 log pn2)
m
×

×
∫ 1

0

· · ·
∫ 1

0

e−2πi(k1θn1−k2θn2 )dθM+1 · · · dθN

}

=
∑

M<n≤N

∞∑
k=1

1

k2(m+1)p2σkn (log pn)2m
≪

∑
M<n≤N

1

pn(log pn)2m
.

Note that the last sum tends to zero as M → +∞. Therefore, there exists some large number
M1 = M1(m, ε) such that, for any N > M ≥ M1, it holds that

meas
({

(θM+1, . . . , θN) ∈ [0, 1)N−M ; |SM,N(θM+1, . . . , θN ;σ,m)| < ε
})

>
1

2
.

Here we denote the set of the content of meas(·) in the above inequality by Θ
(M,N)
2 =

Θ
(M,N)
2 (M,N, ε).

We put M2 = max{M0,M1} and Θ3 = Θ
(M2)
1 × Θ

(M2,N)
2 for any N > M2. Then Θ3 is a

subset of [0, 1)N satisfying meas(Θ3) > δM2/2. Hence, putting

I(T ) =

{
t ∈ [T0, T ] ;

({
t

2π
log p1

}
, . . . ,

{
t

2π
log pN

})
∈ Θ3

}
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and applying Lemma 2.9, for any positive integer N > M2, there exists some large number
TN > T0 such that meas(I(T )) > δM2T/2 holds for any T ≥ TN . On the other hand, by
Proposition 2.1, there exists a large number N0 = N0(ε, δM2) such that

meas

{
t ∈ [T0, T ] ;

∣∣∣∣η̃m(σ + it) −
∑
n≤N

Lim+1(p
−σ−it
n )

(log pn)m

∣∣∣∣ < ε

}
> (1 − δM2/4)T

for any N ≥ N0, T ≥ p135N .
Therefore, for any N ≥ max{N0,M2 + 1}, T ≥ max{TN , p

135
N }, there exists some t0 ∈

[T0, T ] such that ({
t0
2π

log p1

}
, . . . ,

{
t0
2π

log pN

})
∈ Θ3,

and ∣∣∣∣∣η̃m(σ + it0) −
∑
n≤N

Lim+1(p
−σ−it0
n )

(log pn)m

∣∣∣∣∣ < ε.

Then we have

|η̃m(σ + it0) − a|

≤
∣∣∣∣η̃m(σ + it0) −

∑
n≤N

Lim+1(p
−σ
n e−it0 log pn)

(log pn)m

∣∣∣∣+

∣∣∣∣∣ ∑
n≤M2

Lim+1(p
−σ
n e−it0 log pn)

(log pn)m
− a

∣∣∣∣∣
+

∣∣∣∣∣ ∑
M2<n≤N

Lim+1(p
−σ
n e−it0 log pn)

(log pn)m

∣∣∣∣∣ < 3ε.

This completes the proof of Theorem 1.7. □

2.5. Proof of Theorem 1.5. In this section, we prove Theorem 1.5. Here, we prepare
the following lemma.

Lemma 2.10. Let σ ≥ 1/2 and m be a positive integer. Then we have

ηm(s) = Ym(s) + Om(log t),

where Ym is defined by (4).

Proof. This lemma is equation (2.2) in [18]. □

Proof of Theorem 1.5. First, we show Theorem 1.5 in the case m = 1. If the number
of zeros ρ = β + iγ of ζ(s) with β > σ is finite, then there exists a sufficiently large T0 such
that Y1(σ + it) ≡ b for t ≥ T0, where b is a positive real number. Therefore, by Lemma 1.6,
we have ∫ t

0

log ζ(σ + it′)dt′ = iη̃1(σ + it) + b
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for any t ≥ T0. By this formula, we obtain{∫ t

0

log ζ(σ + it′)dt′ ; t ∈ [0,∞)

}
⊃
{∫ t

0

log ζ(σ + it′)dt′ ; t ∈ [T0,∞)

}
= {iη̃1(σ + it) + b ; t ∈ [T0,∞)} .

If a set A ⊂ C is dense in C, then for any c1 ∈ C\{0} and c2 ∈ C, the set {c1a+c2 ; a ∈ A} is
also dense in C. By this fact and Theorem 1.7, the set {iη̃1(σ+ it) + b ; t ∈ [T0,∞)} is dense

in C. Thus, the set
{∫ t

0
log ζ(σ + it′)dt′ ; t ∈ [0,∞)

}
is dense in C under this assumption.

Next, for m ∈ Z≥2, we show the equivalence of (I) and (II). The implication (I) ⇒ (II) is
clear since the equation ηm(σ + it) = imη̃m(σ + it) holds by assuming (I).

In the following, we show the inverse implication (II) ⇒ (I). By Lemma 2.10, if (I) is
false, then the estimate |ηm(σ + it)| ≫m tm−1 holds. Therefore, for some T2 > 0, we have

{ηm(σ + it) ; t ∈ [T2,∞)} ⊂ C \ {z | |z| ≤ 1} .

Here, A means the closure of the set A. Since {ηm(σ + it) ; t ∈ [0, T2]} is a piecewise smooth

curve of finite length, µ
(
{ηm(σ + it) ; t ∈ [0, T2]}

)
= 0. Here µ is the Lebesgue measure in

C. Therefore, we obtain

{z ; |z| ≤ 1} ̸⊂ {ηm(σ + it) ; t ∈ [0, T2]}.
Hence, if (I) is false, then the set {ηm(σ + it) ; t ∈ [0,∞)} is not dense in C. Thus, we obtain
the implication (II) ⇒ (I). □
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3. Proof of main results in 1.2.2

3.1. Preliminaries. In this section, let L(s) be an element of the Selberg class S which
is represented by

L(s) =
∞∑
n=1

a(n)

ns
=
∏
p

exp

(
∞∑
k=1

b(pk)

pks

)
for σ > 1.

3.1.1. Definitions and Notations. We use the following definitions and notations.

• Let N0 denote the set of nonnegative integers.
• Let P denote the set of all prime numbers.
• For a set A, let RA denote the family of elements in R indexed by A.
• For any Q > 0, let P(Q) denote the set of prime numbers smaller than or equal to
Q.

• We define the generalized von Mangoldt function ΛL(n) by

−L′

L
(s) =

∞∑
n=1

ΛL(n)n−s

for σ > 1, that is, ΛL(n) = b(n) log n.
• Let M be a finite subset of P and s = σ + it be a complex number with σ > 1/2.

For any M ⊂ N ⊂ P and θ = (θp)p∈N ∈ RN , we denote φM(s, θ) and logLM(s, θ)
by

φM(s, θ) =
∑
p∈M

b(p) exp(−2πiθp)

ps

and

logLM(s, θ) =
∑
p∈M

∞∑
l=1

b(pl) exp(−2πilθp)

pls
.

Note that the series logLM(s, θ) converges absolutely by the estimate b(pl) ≪ plϑ

with some ϑ < 1/2 coming from the axiom (iv) of the Selberg class. If M = {p}, we
abbreviate φ{p}(s, θ) and logL{p}(s, θ) to φp(s, θ) and logLp(s, θ) respectively, and
if θ = (0)p∈N , we do logLM(s, (0)p∈N ) to logLM(s).

3.2. Some known results. In this subsection, we summarize the results not coming
from analytic number theory. The followings are used in [21] and [48].

3.2.1. A certain estimate coming from the Vandermonde matrix.

Lemma 3.1. Let X > e, N ∈ N and a = (a0, a1, . . . , aN−1) ∈ CN . Put Xj = 2jX for j =
0, 1, . . . , N − 1. Then the system of linear equations in the unknown z = (z0, z1, . . . , zN−1) ∈
CN ; 

1 1 · · · 1
− logX0 − logX1 . . . − logXN−1

(− logX0)
2 (− logX1)

2 . . . (− logXN−1)
2

...
...

. . .
...

(− logX0)
N−1 (− logX1)

N−1 · · · (− logXN−1)
N−1




z0
z1
z2
...

zN−1

 =


a0
a1
a2
...

aN−1
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has a unique solution z0 = z0(X, a) ∈ CN and the estimate

∥z0∥ ≪N (logX)N−1∥a∥
holds.

This lemma is used in [21] and [48], however the proof was written very roughly in these
papers. For this reason, we will give a proof in this thesis.

Proof. Fix a = (a0, a1, . . . , aN−1) ∈ CN . Let U = (U0, U1, . . . , UN−1) be indetermi-
nate and z = (z0, z1, . . . , zN−1) variable in C(U)N , where C(U) denotes the field of rational
functions. We first consider the following system of linear equations;

(7)


1 1 · · · 1
U0 U1 . . . UN−1

U2
0 U2

1 . . . U2
N−1

...
...

. . .
...

UN−1
0 UN−1

1 · · · UN−1
N−1




z0
z1
z2
...

zN−1

 =


a0
a1
a2
...

aN−1

 .

Let B(U) denote the first matrix in the left hand side of (7). Since B(U) is the Vandermonde
matrix, we have

(8) det (B(U)) =
∏

0≤l<k≤N−1

(Uk − Ul) ̸= 0 in C[U].

Hence the system of linear equations (7) has a solution z = z(U, a) ∈ C(U)N such that

tz =
1

det (B(U))
B̃(U) · ta,

where B̃(U) = t(̃bi,j(U))0≤i,j≤N−1 denotes the adjugate matrix of B(U). Here the symbol tD
stands for the transposed matrix of a matrix D. We fix 0 ≤ i, j ≤ N − 1 and put

∆j(U) =
∏

0≤l<k≤N−1;
l,k ̸=j

(Uk − Ul).

Then we find that ∆j(U) divides b̃i,j(U), and hence there exists fi,j(U) ∈ C[U] such that

b̃i,j(U) = fi,j(U)∆j(U). By the definition of the determinant, we have

deg
(
b̃i,j(U)

)
=

N−1∑
β=0

β − i.

Here the statement deg(g(U)) = n means that

max
{
i1 + · · · + iN−1 ; ci1,...,iN−1

̸= 0
}

= n

for g(U) =
∑

i0...,iN−1
ci0,...,iN−1

U i0
0 · · ·U iN−1

N−1 ∈ C[U]. On the other hand, we find that

deg (∆j(U)) = # {(l, k) ∈ {0, 1, . . . , N − 1} ; l < k, l, k ̸= j}

=
N−1∑
β=0

β − (N − 1).
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Therefore we have

deg (fi,j(U)) = deg
(
b̃i,j(U)

)
− deg (∆j(U))

=

(
N−1∑
β=0

β − i

)
−

(
N−1∑
β=0

β − (N − 1)

)
= N − 1 − i ≤ N − 1.

By substituting U into X = (− logX0,− logX1, . . . ,− logXN−1) and letting z0 = z0(X, a)
be a solution of the system of linear equations (7) in this case, the estimates∣∣∣̃bi,j(X)

∣∣∣ = |∆j(X)| |fi,j(X)| ≪N (logX)N−1 and det (B(X)) ≍N 1

hold by the equation (8) and the definition of ∆j(X). Consequently, we obtain

∥z0∥ ≪N

( ∑
0≤i,j≤N−1

∣∣∣̃bi,j(X)
∣∣∣) ∥a∥ ≪N (logX)N−1∥a∥.

This completes the proof. □

3.2.2. Elementary geometric lemma.

Lemma 3.2. Let N be a positive integer larger than two. Suppose that the positive numbers
r1 ≤ r2 ≤ · · · ≤ rN satisfy rN ≤

∑N−1
n=1 rn. Then we have{

N∑
n=1

rn exp(−2πiθn) ∈ C ; θn ∈ [0, 1)

}
=

{
z ∈ C ; |z| ≤

N∑
n=1

rn

}
.

Proof. The proof is written in [7] roughly and in [44] precisely. □

3.2.3. The mollifier and the estimate for its Fourier series expansion. Let Q,M > 2 and
put δ = δQ = Q−1 ∈ (0, 1). We will prepare a mollifier on RP(Q) and its truncated formula
as follows; We take φ ∈ C∞(R) satisfying

φ(x) ≥ 0, supp(φ) ⊂ [−1, 1],

∫ ∞

−∞
φ(x)dx = 1.

Throughout this subsection, let the implicit constants depend on φ. We define the function
φδ : [−1/2, 1/2] → R by

φδ(θ) =
1

δ
φ

(
θ

δ

)
, θ ∈ [−1/2, 1/2]

and extend φδ onto R by periodicity with period 1. We also define ΦQ(θ) : RP(Q) → R by

ΦQ(θ) =
∏
p≤Q

φδ(θp), θ = (θp)p∈P(Q) ∈ RP(Q).

Note that

(9) ΦQ(θ) ̸= 0 implies θ ∈ [−δ, δ]P(Q) + ZP(Q).
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For any θ0 ∈ R, the function φδ(θ − θ0), θ ∈ R can be represented as a Fourier series

φδ(θ − θ0) =
∑
n∈Z

αn(θ0) exp(2πinθ)

where the Fourier coefficients are given by

αn(θ0) =

∫ 1/2

−1/2

φδ(θ − θ0) exp(−2πinθ)dθ.

By integration by parts, we have

(10) α0(θ0) = 1 and |αn(θ0)| ≤ min{1, Cφ/δ
2n2}

with some positive constant Cφ depending on φ. Then we have

ΦQ(θ − θ(0)) =
∑

n∈ZP(Q)

βn(θ(0)) exp (2πi⟨n, θ⟩)

=
∑

n=(np)p∈P(Q)∈ZP(Q);

maxp≤Q |np|≤M

βn(θ(0)) exp (2πi⟨n, θ⟩) + O

 ∑
n∈ZP(Q);

maxp≤Q |np|>M

∣∣∣βn(θ(0))
∣∣∣


for θ = (θp)p∈P(Q) ∈ RP(Q), where

⟨n, θ⟩ =
∑
p≤Q

npθp and βn(θ(0)) =
∏
p≤Q

αnp(θ(0)p ).

Note that the estimates

β0(θ(0)) = 1 and |βn(θ(0))| ≤
∏
p≤Q

min{1, Cφ/δ
2n2

p}

hold by the estimate (10). By using the prime number theorem and by noting{
n = (np)p∈P(Q) ∈ ZP(Q) ; max

p≤Q
|np| > M

}
=

∪
q∈P(Q)

{
n ∈ ZP(Q) ; |nq| > M

}
,

we have

(11)
∑

n∈ZP(Q)

|βn(θ(0))| ≤

(∑
n∈Z

min

{
1,

Cφ

δ2n2

})π(Q)

≪ exp(C0Q)

and ∑
n=(np)p∈P(Q)∈ZP(Q);

maxp≤Q |np|>M

∣∣∣βn(θ(0))
∣∣∣

≤π(Q)

∑
n∈Z;
|n|>M

1

δ2n2


(∑

n∈Z

min

{
1,

1

δ2n2

})π(Q)−1

≪ 1

M
exp(C1Q)
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for some positive constant C0, C1 depending on φ. Hence we have

ΦQ(θ − θ(0))(12)

=
∑

n=(np)p∈P(Q)∈ZP(Q);

maxp≤Q |np|≤M

βn(θ(0)) exp (2πi⟨n, θ⟩) + O

(
1

M
exp(C1Q)

)
.

3.2.4. Known results for the Selberg class S.

Lemma 3.3. The following statements hold.

(i) We have a(p) = b(p) for all primes p.
(ii) For any ε > 0, we have the inequality

|b(pl)| ≪ε (2l − 1)plε/l

for all primes p and all l ∈ N, where the implicit constant may depend on L(s).

Proof. The proof can be found in [33, Exercise 8.2.9]. □
Lemma 3.4. Let qj(r) = (µj + r)/λj for j = 1, . . . f and r ∈ N0. If x > 1 and s ̸=

0, 1,−qj(r), ρ for j = 1, . . . f and r ∈ N0, then we have

L′

L
(s) = −

∑
n≤x2

ΛL,x(n)

ns
+

1

log x

f∑
j=1

∞∑
r=0

x−qj(r)−s − x−2(qj(r)+s)

(qj(r) + s)2
(13)

+ mL
x−2s − x−s

s2 log x
+ mL

x2(1−s) − x1−s

(1 − s)2 log x
+

1

log x

∑
ρ

xρ−s − x2(ρ−s)

(ρ− s)2
,

where ΛL,x(n) is defined by

ΛL,x(n) = ΛL(n) for 1 ≤ n ≤ x, ΛL(n)
log(x2/n)

log x
for x ≤ n ≤ x2,

and mL is defined by

mL =


the order of pole of L(s) at s = 1 if L(s) has a pole at s = 1,

0 if L(s) has no zeros or poles at s = 1,

(−1) × (the order of zero of L(s) at s = 1) if L(1) = 0.

Proof. This follows by the same argument as in [45, Theorem 14.20]. □
3.3. Proofs.
3.3.1. Proof of Theorem 1.19. We fix max{σL, 1 − 2EL} < σ0 < 1 and N ∈ N, c =

(ck)N−1
k=0 ∈ CN and take ε ∈ (0, 1). We begin with the following lemma.

Lemma 3.5. There exist d1(σ0, EL) > 0 and C(L, σ0, N) > 0 such that if

Q > C(L, σ0, N) (∥c∥ + 1/ε)d1(σ0,EL) ,

then there exist θ(⋆) = θ(⋆)(Q) = (θ
(⋆)
p )p∈P(Q) ∈ RP(Q) such that∣∣∣∣ dkdsk

logLP(Q)(σ0, θ
(⋆)) − ck

∣∣∣∣ < ε

3
for k = 0, 1, . . . , N − 1.
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Here (dk/dsk)F (σ) means (dk/dsk)F (s)|s=σ for holomorphic F (s).

Proof of Lemma 3.5. We divide the proof into several steps.

Step 1. We will show the following claim and give a certain convergent series.

Claim 3.6. There exists θ(0) = (θ
(0)
pn )∞n=1 ∈ RN such that the estimate

(14)

∣∣∣∣∣∑
p≤ξ

b(p) exp(−2πiθ(0)p )

∣∣∣∣∣ ≤ CL,ηξ
η

holds for any ξ > 0 when the estimate |b(p)| = |a(p)| ≤ CL,ηp
η holds for any prime number

p with some positive number η.

Proof of Claim 3.6. We put P0 = {p ∈ P ; b(p) ̸= 0} and {pn}∞n=1 which satisfy
{pn}∞n=1 = P0 and pn < pn+1 for any n ∈ N. For any n ≥ 1, put

b(pn) = |b(pn)| exp(2πiθ(L)pn ),

and we take θ(0) = (θ
(0)
pn )∞n=1 ∈ RN so that

θ(0)p1
= θ(L)p1

, θ(0)p2
= 1/2 + θ(L)p2

,

θ(0)p3
=


θ
(L)
p3 if

2∑
j=1

b(pj) exp(−2πiθ(0)pj
) ≤ 0,

1/2 + θ
(L)
p3 if

2∑
j=1

b(pj) exp(−2πiθ(0)pj
) > 0,

...

θ(0)pl
=


θ
(L)
pl if

l−1∑
j=1

b(pj) exp(−2πiθ(0)pj
) ≤ 0,

1/2 + θ
(L)
pl if

l−1∑
j=1

b(pj) exp(−2πiθ(0)pj
) > 0.

By the construction of θ(0) ∈ RN, we have the estimate (14) for any ξ > 0 when the estimate
|b(p)| = |a(p)| ≤ CL,ηp

η holds for any prime number p with some positive number η. Taking
θp = 0 for p ∈ P \ P0, we have the conclusion. □

We put

γk =
∞∑
p

∞∑
l=1

(− log pl)kb(pl) exp(−2πilθ
(0)
p )

plσ0

for any k = 0, . . . , N − 1 and γ = (γk)N−1
k=0 . Since it holds that∑

p

∞∑
l=2

|b(pl)|(log pl)k

plσ0
< ∞

by an argument similar to (2.13) in [34], we find that the series γk is convergent by partial
summation.
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Step 2. We will use the positive density method introduced by Laurinc̆ikas and Mat-
sumoto [29]. The following idea is due to [34]. Put µ =

√
κ/8 and ρ = κ/4. Then we

have
κ− ρ > 0 and κ− 2µ2 − ρ > 0.

We first take a positive number η so that

(15) 0 < η < 1/2(1 − EL),

which is chosen more precisely later (see (32)). Then there exists CL,η > 0 such that |a(p)| ≤
CL,ηp

η for any prime number p by the axiom (i) of the Selberg class S. Let U be a large
positive parameter depending on L, σ0, N, η, and let U1−EL(logU)D+1 ≤ H ≤ U . We put

M(U,H)
µ,j = {p ∈ P ; 2jU < p ≤ 2jU + H, |a(p)| > µ}

for j = 0, 1, . . . N − 1.

Claim 3.7. We have

(16) #(M(U,H)
µ,j ) ≫L,N,η

H

U2η logU
,

where #(A) denotes the cardinality of the set A.

Proof of claim 3.7. Put πµ(x) = #{p ∈ P ; p ≤ x, |a(p)| > µ}. When α > β ≥ 1, it
holds that

(17)
∑

α<p≤β

|a(p)|2 ≤ (C2
L,ηβ

2η − µ2) (πµ(β) − πµ(α)) + µ2(π(β) − π(α))

by (2.26) in [34]. By the condition (C3), it holds that

(18) π(2jU + H) − π(2jU) ≤ 2
H

logU

and

(19)
∑

2jU<p≤2jU+H

|a(p)|2 ≥ (κ− ρ)
H

logU
.

Substituting α = 2jU , β = 2jU +H for j = 0, 1, . . . , N − 1 into (17) and using the estimate
(18) and (19), we have

#(M(U,H)
µ,j ) =πµ(2jU + H) − πµ(2jU)

≥(κ− 2µ2 − ρ)
H

(4NηC2
L,ηU

2η − µ2) logU

≫L,N,η
H

U2η logU
.

This completes the proof. □
Step 3. We will use Lemma 3.2 in this step. Let X be a sufficiently large positive number

depending on L, σ0, N, η. We may assume that #(M(X,X)
µ,0 ) ≥ N by (15) and (16). Fix the

distinct primes pk0 , pk2 , . . . , pkN−1
∈ M(X,X)

µ,0 . Let Y ≥ 2X + 1 be a positive parameter which
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is determined later (see (20)), and let Y 1−EL(log Y )D+1 ≤ H ≤ Y which is determined later
(see (31)). Let

M(Y,H)
j =

{
p ∈ P ; 2jY < p ≤ 2jY + H

}
and put

M(Y,H)
µ =

N−1⊔
j=0

M(Y,H)
µ,j and M(Y,H) =

N−1⊔
j=0

M(Y,H)
j .

Claim 3.8. We consider the following two conditions;

(Y1) For any pX ∈ M(X,X)
µ,0 and pY ∈ M(Y,H), it holds that

|a(pX)|
pσ0
X

≥ |a(pY )|
pσ0
Y

,

(Y2) For any pX ∈ M(X,X)
µ,0 and j = 0, 1, . . . , N − 1, it holds that

|a(pX)|
pσ0
X

≤
∑

p∈M(Y,H)
j

|a(p)|
pσ0

.

Then the choice

(20) Y =

(
CL,η

µ

) 1
σ0−η

(2X)
σ0

σ0−η ,

yields the condition (Y1), and the estimate

(21)
1

Xσ0−η
≪L,σ0,N,η

H

Y σ0+2η(log Y )2
.

yields the condition (Y2). (We take H suitably which satisfies the bound (21) later (see (32)).)

Proof of Claim 3.8. We first consider the condition (Y1). Since the estimates

|a(pX)|
pσ0
X

≥ µ

pσ0
X

≥ µ

(2X)σ0
and

|a(pY )|
pσ0
Y

≤ CL,η

pσ0−η
Y

≤ CL,η

Y σ0−η

hold for pX ∈ M(X,X)
µ,0 and pY ∈ M(Y,H), the choice Y in (20) yields the condition (Y1).

Next we consider the condition (Y2). Now it holds that

(22)
∑

p∈M(Y,H)
j

|a(p)|
pσ0

≥
∑

p∈M(Y,H)
µ,j

|a(p)|
pσ0

≥ µ

(2NY )σ0
#
(
M(Y,H)

µ,j

)
≫L,σ0,N,η

H

Y σ0+2η log Y

by (16). By using the above estimate and the estimate |a(pX)|p−σ0
X ≤ CL,ηX

−(σ0−η) for

pX ∈ M(X,X)
µ,0 , the condition (Y2) holds when the estimate (21) holds. □

For any j = 0, 1, . . . , N − 1, put

Mj = {pkj} ⊔M(Y,H)
j and M =

N−1⊔
j=0

Mj.

31



In what follows, we take

Y =

(
CL,η

µ

) 1
σ0−η

(2X)
σ0

σ0−η .

Then we have

(23)

∑
p∈Mj

b(p) exp(−2πiθp)

pσ0
; (θp)p∈Mj

∈ [0, 1)Mj

 =

z ∈ C ; |z| ≤
∑
p∈Mj

|b(p)|
pσ0


by Lemma 3.2 and by (i) of Lemma 3.3 when the estimate (21) holds.

Step 4. Let θ = (θp)p∈M ∈ RM and write θj = (θp)p∈Mj
. We will prove the following

claim.

Claim 3.9. For j, k = 0, 1, . . . N − 1 and for θ = (θp)p∈M ∈ RM, we have

(24)
∂k

∂sk
φMj

(σ0, θj) = (− log Yj)
kφMj

(σ0, θj) + Rj,k,

where Yj = 2jY and

(25) Rj,k ≪L,σ0,N,η (log Y )N−2H2Y −(1+σ0−η) +
(logX)N−1

Xσ0−η
.

Proof of Claim 3.9. By the equation (24), we have

Rj,k =
∑

p∈M(Y,H)
j

{
(− log p)k − (− log Yj)

k
}
b(p)p−σ0 exp(−2πiθp)

+
{

(− log pkj)
k − (− log Yj)

k
}
b(pkj)p

−σ0
kj

exp(−2πiθpkj ).

Using the mean value theorem for (− log p)k − (− log Yj)
k in the first term, we have

Rj,k ≪N

∑
p∈M(Y,H)

j

(log Y )k−1H

Y
|b(p)|p−σ0 + |(log pkj)

k − (log Yj)
k||b(pkj)|p

−σ0
kj

.

By using the estimate |b(p)| = |a(p)| ≪L,η p
η, it holds that∑

p∈M(Y,H)
j

(log Y )k−1H

Y
|b(p)|p−σ0 ≪L,η (log Y )k−1H

Y

∑
p∈M(Y,H)

j

pη−σ0

≤ (log Y )k−1H

Y
Y η−σ0

∑
p∈M(Y,H)

j

1

≪ (log Y )N−2H2Y −(1+σ0−η),

and

|(log pkj)
k − (log Yj)

k||b(pkj)|p
−σ0
kj

≪L,N,η (log Y )N−1pη−σ0

kj
≪ (log Y )N−1

Xσ0−η
≪L,σ0,N,η

(logX)N−1

Xσ0−η
.
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This completes the proof. □

Step 5. We now consider the following system of linear equations in the unknown zj:

(26)
N−1∑
j=0

(− log Yj)
kzj = ck − γk for k = 0, 1, . . . , N − 1.

Since the coefficient matrix of this system is the Vandermonde matrix, Lemma 3.1 implies
that it has a unique solution z = z(Y, c, γ) = (z0, z1, . . . , zN−1) which satisfies the bound

(27) ∥z∥ ≪N (log Y )N−1∥c− γ∥.

Claim 3.10. A sufficient condition that the system of equations

(28) φMj
(σ0, θj) = zj, for j = 0, 1, . . . , N − 1

has a solution θ ∈ RM is that the estimate (21) and the estimate

(29)
H

Y σ0+2η(log Y )N+1
≫L,σ0,N,η ∥c− γ∥ + 1.

hold.

Proof of Claim 3.10. It is enough to take H to establish

(30) ∥z∥ ≤
∑
p∈Mj

|b(p)|
pσ0

by (23). The bound (22) and (27) give the proof. □

Step 6. Note that, by σ0 ∈ (max{σL, 1−2EL}, 1), it holds that
(
σ0,

1+σ0

2

)
∩(1 − EL, 1) ̸=

∅. We will show the following claim.

Claim 3.11. Let H = Y A and choose A = A(σ0, EL) and η = η(σ0, EL) such that

(31) A = A(σ0, EL) =
1

2

(
max {σ0, 1 − EL} +

1 + σ0

2

)
∈
(
σ0,

1 + σ0

2

)
∩ (1 − EL, 1)

and

(32) η = η(σ0, EL) =
1

2
min

{
1 − EL

2
,
A(σ0, EL) − σ0

2
, 1 + σ0 − 2A(σ0, EL)

}
> 0.

Put

d
(1)
1 (σ0, EL) =

σ0

σ0 − η
(A− σ0 − 2η) > 0

and

B(σ0, EL) = min

{
σ0

σ0 − η
(1 + σ0 − 2A− η) , σ0 − η

}
> 0.

If the estimate

(33) X ≥ C(1)(L, σ0, N)
(
∥c− γ∥N + 1

)2(d(1)1 (σ0,EL))
−1
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holds with sufficiently large C(1)(L, σ0, N) depending on L, σ0, N , then there exists θ(1) =

θ(1)(L, σ0, N,X) = (θ
(1)
p )p∈M ∈ RM such that

(34)

∣∣∣∣∣
N−1∑
j=0

∂k

∂sk
φMj

(σ0, θ
(1)
j ) − (ck − γk)

∣∣∣∣∣≪L,σ0,N X−B(σ0,EL)(logX)N−1

holds for any k = 0, 1, . . . , N − 1.

Proof of Claim 3.11. Let X satisfy the bound (33). Then we have (21). By substi-
tuting (20), the left hand side of (29) equals

(35)
H

Y σ0+2η(log Y )N+1
=

Y A−σ0−2η

(log Y )N+1
≍L,σ0,N

Xd
(1)
1 (σ0,EL)

(logX)N+1
,

and the estimate

(36) Rj,k ≪L,σ0,N X−B(σ0,EL)(logX)N−1

holds by (25). By the estimate (35), we have (29). Hence Claim 3.10 with the estimates

(21) and (29) implies that there exists θ(1) = θ(1)(L, σ0, N,X) = (θ
(1)
p )p∈M ∈ RM such that

the system of equations (28) holds. Therefore, by (24), (26), (28) and (36), we have the
conclusion. □

Step 7. To finish the proof, we give some estimates. Put

δ0 =
1

2
(σ0 − 1/2), l0 =

2

σ0 − 1/2
.

Then we have ∣∣∣∣ ∂k

∂sk
logLp(σ0, θp) −

∂k

∂sk
φp(σ0, θp)

∣∣∣∣ ≤ ∞∑
l=2

lN−1|b(pl)|(log p)N−1

plσ0
.

for k = 0, 1, . . . , N − 1 and θp ∈ R. By a calculation similar to (2.12) in [34], we have

∞∑
l=2

lN−1|b(pl)|(log p)N−1

plσ0
≪L,σ0,N

(log p)N−1

p2(σ0−δ0)
+

(log p)N−1

pl0(σ0−1/2)
≪ (log p)N−1

pσ0+1/2
.

Hence it holds that

(37)

∣∣∣∣ ∂k

∂sk
logLp(σ0, θp) −

∂k

∂sk
φp(σ0, θp)

∣∣∣∣≪L,σ0,N
(log p)N−1

pσ0+1/2

for k = 0, 1, . . . , N − 1 and θp ∈ R.
From now, let Q > 2NY and let X satisfy (33). Put

θ(⋆)p =

{
θ
(0)
p if p ∈ P \M,

θ
(1)
p if p ∈ M.

Then we have the following estimates.
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Claim 3.12. We have

(38)
∂k

∂sk
logLP(Q)\M(σ0, θ

(0)) = γk + OL,σ0,N

(
X1/2−σ0(logX)N−1

)
,

(39)
∂k

∂sk
logLM(σ0, θ

(1)) − ∂k

∂sk
φM(σ0, θ

(1)) ≪L,σ0,N X1/2−σ0(logX)N−1

hold for any k = 0, 1, . . . , N − 1.

Proof of Claim 3.12. The estimate (39) follows from the estimate (37). Next, we will
show the estimate (38). We can write

∂k

∂sk
logLP(Q)\M(σ0, θ

(0)) = γk −

(∑
p>Q

+
∑
p∈M

)
∂k

∂sk
logLp(σ0, θ

(0)).

By the estimate (37), we have(∑
p>Q

+
∑
p∈M

)(
∂k

∂sk
logLp(σ0, θ

(0)) − ∂k

∂sk
φp(σ0, θ

(0))

)

≪L,σ0,N

∑
p>X

(log p)N−1

pσ0+1/2
≪N X1/2(logX)N−1.

On the other hand, we have

(−1)k
∑
p>Q

∂k

∂sk
φp(σ0, θ

(0)) =
∑
p>Q

b(p)(log p)k exp(−2πiθ
(0)
p )

pσ0

=

[(∑
p≤ξ

b(p) exp(−2πiθ(0)p )

)
(log ξ)k

ξσ0

]ξ=∞

ξ=Q

−
∫ ∞

Q

(∑
p≤ξ

b(p) exp(−2πiθ(0)p )

)
d

(
(log ξ)k

ξσ0

)
≪L,σ0,N Q1/2−σ0(logQ)N−1 ≤ X1/2−σ0(logX)N−1

by partial summation and the estimate (14). By a calculation similar to the above, we have

(−1)k
∑
p∈Mj

∂k

∂sk
φp(σ0, θ

(0))

=
b(pkj)(log pkj)

k exp(−2πiθ
(0)
pkj

)

pσ0
+

∑
Yj<p≤Yj+H

b(p)(log p)k exp(−2πiθ
(0)
p )

pσ0

≪L,σ0,NX
1/2−σ0(logX)N−1

for any j = 0, 1, . . . , N − 1. This completes the proof. □
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Step 8. We will finish the proof in this step. By Claim 3.12, we have

∂k

∂sk
logLP(Q)(σ0, θ

(⋆))

=
∂k

∂sk
φM(σ0, θ

(1)
j ) +

(
∂k

∂sk
logLM(σ0, θ

(1)) − ∂k

∂sk
φM(σ0, θ

(1))

)
+

∂k

∂sk
logLP(Q)\M(σ0, θ

(0))

= ck − γk + OL,σ0,N

(
X−B(σ0,EL)(logX)N−1

)
+ γk + OL,σ0,N

(
X1/2−σ0(logX)N−1

)
= ck + OL,σ0,N

(
X−min{B(σ0,EL),σ0−1/2}(logX)N−1

)
for any k = 0, 1, . . . , N − 1. Hence we have∣∣∣∣ ∂k

∂sk
logLP(Q)(σ0, θ

(⋆)) − ck

∣∣∣∣≪L,σ0,N X−min{B(σ0,EL),σ0−1/2}(logX)N−1

for any k = 0, 1, . . . , N − 1. Putting

d1(σ0, EL) =
2σ0

σ0 − η
max

{
(d

(1)
1 (σ0, EL))−1, (min {B(σ0, EL), σ0 − 1/2})−1

}
,

letting C(L, σ0, N) be sufficiently large depending on L, σ0, N , and using

∥c− γ∥ + 1/ε ≪L ∥c∥ + 1/ε,

we have the conclusion. □

Proof of Theorem 1.19. We divide the proof into several steps.

Step 1. First we will give settings and mention the strategy of the proof. Let Q satisfy

Q > C
(1)
1 (L, σ0, N) (∥c∥ + 1/ε)d1(σ0,EL) ,

where C
(1)
1 (L, σ0, N) is a sufficiently large constant depending on L, σ0, N with C

(1)
1 (L, σ0, N) ≥

28/(σ0−1/2). Let θ(⋆) = (θ
(⋆)
p )p∈P(Q) ∈ RP(Q) be as in Lemma 3.5 and put δ = Q−1. We put

I =

∫
DT

N−1∑
k=0

ΦQ

(
γ(t) − θ(⋆)

) ∣∣∣(logL(σ0 + it))(k) −
(
logLP(Q)(σ0 + it)

)(k)∣∣∣2 dt,
where ΦQ(θ) is the mollifier defined in subsection 3.2.3,

γ(t) =

(
log p

2π
t

)
p∈P(Q)

∈ RP(Q),

and DT is the subset of [T, 2T ] which is defined as follows. For each nontrivial zeros ρ = β+iγ
of L(s), we define

P (h)
ρ = {s = σ + it ; (1/2)(σL + σ0) ≤ σ ≤ 15, |t− γ| ≤ h}
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with the positive parameter 10 ≤ h < T , and we put

DT = DT (h) =

t ∈ [T, 2T ] ; σ0 + it ̸∈
∪

ρ ; β>(1/2)(σL+σ0)

P (h)
ρ

 .

Now, we mention the strategy of the proof. We want to choose T depending on L, σ0, N, c, ε
and choose Q and h depending on T so that

(40) I ≤
(ε

3

)2 ∫
DT

ΦQ

(
γ(t) − θ(⋆)

)
dt,

(41)

∫
DT

ΦQ

(
γ(t) − θ(⋆)

)
dt ≥ T

2
,

and

(42)

∣∣∣∣ ∂k

∂sk
logLP(Q) (σ0, θ) − ∂k

∂sk
logLP(Q)

(
σ0, θ

(⋆)
)∣∣∣∣ < ε

3

for |θp − θ
(⋆)
p | < δ, p ≤ Q and k = 0, 1, . . . , N − 1. Once we have such choices, there exists

t0 ∈ [T, 2T ] such that∣∣∣∣ ∂k

∂sk
logL(σ0 + it0) −

∂k

∂sk
logLP(Q)(σ0 + it0)

∣∣∣∣ ≤ ε

3

for any k = 0, 1, . . . , N − 1 and ΦQ

(
γ(t0) − θ(⋆)

)
> 0. By (42) and (9) and by noting the

equation logLP(Q)(σ0 + it0) = logLP(Q)

(
σ0, γ(t0)

)
, we have∣∣∣∣ ∂k

∂sk
logLP(Q) (σ0 + it0) −

∂k

∂sk
logLP(Q)

(
σ0, θ

(⋆)
)∣∣∣∣ < ε

3

for any k = 0, . . . , N − 1 by substituting θ = γ(t0). These estimates and Lemma 3.5 give the
inequalities ∣∣∣∣ dkdsk

logL(σ0 + it0) − ck

∣∣∣∣ < ε for k = 0, 1, . . . , N − 1.

Step 2. We give a certain estimate toward the estimate (42). By using the estimates
|eiα − 1| ≤ |α| for α ∈ R and b(pl) ≪L pl/2, we have∣∣∣∣ ∂k

∂sk
logLP(Q) (σ0, θ) − ∂k

∂sk
logLP(Q)

(
σ0, θ

(⋆)
)∣∣∣∣≪∑

p≤Q

∞∑
l=1

lk+1(log p)k|b(pl)|
plσ0

δ(43)

≪L,σ0,N Q−1
∑
p≤Q

(log p)N−1

pσ0−1/2
≪σ0,N Q1/2−σ0(logQ)N−1

for |θp − θ
(⋆)
p | < δ, p ≤ Q and k = 0, 1, . . . , N − 1.
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Step 3. We will estimate I. To estimate I, we use the formula (13) in Lemma 3.4. First
we will give the formula similar to (13) for logL(s) . Put

F (s, z) =

∫ s

s+10

xz−w − x2(z−w)

(w − z)2
dw.

Integrating (13), we obtain

logL(s) = logL(s + 10) +
∑
n≤x2

ΛL,x(n)

ns log n
−
∑
n≤x2

ΛL,x(n)

ns+10 log n

− mL

log x
F (s, 1) − mL

log x
F (s, 0) +

1

log x

∑
ρ

F (s, ρ) +
1

log x

f∑
j=1

∞∑
r=0

F (s,−qj(r))

=
∑
n≤x2

ΛL,x(n)

ns log n
+
∑
n>x

(ΛL(n) − ΛL,x(n))
1

ns+10 log n
(44)

− mL

log x
F (s, 1) − mL

log x
F (s, 0) +

1

log x

∑
ρ

F (s, ρ) +
1

log x

f∑
j=1

∞∑
r=0

F (s,−qj(r))

if t is not equal to 0 and the imaginary part of any zero of L(s). Let Q < x ≤ T and put

Ik =

∫
DT

ΦQ

(
γ(t) − θ(⋆)

) ∣∣∣(logL(σ0 + it))(k) −
(
logLP(Q)(σ0 + it)

)(k)∣∣∣2 dt.

We will estimate Ik for k = 1, . . . , N −1. For k = 0, we have the same upper bound by using
the formula (44). For any k = 1, 2, . . . , N − 1, the estimate

Ik ≪ Ak + Bk + Ck + Dk + Ek + Fk,
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holds, where

Ak =

∫
DT

ΦQ

(
γ(t) − θ(⋆)

) ∣∣∣∣∣∣∣
∑

n≤x2

ΛL,x(n)

ns0

(k−1)

−

(∑
n≤Q

ΛL(n)

ns0

)(k−1)

∣∣∣∣∣∣∣
2

dt,

Bk =

∫
DT

ΦQ

(
γ(t) − θ(⋆)

) ∣∣∣∣∣∣∣∣
∑

p≤Q

∑
l> logQ

log p

ΛL(pl)

pls0


(k−1)

∣∣∣∣∣∣∣∣
2

dt,

Ck =
1

(log x)2

∫
DT

ΦQ

(
γ(t) − θ(⋆)

)
×

×

∣∣∣∣∣∣
(

f∑
j=1

∞∑
r=0

x−qj(r)−s0 − x−2(qj(r)+s0)

(qj(r) + s0)2

)(k−1)
∣∣∣∣∣∣
2

dt,

Dk =
m2

L
(log x)2

∫
DT

ΦQ

(
γ(t) − θ(⋆)

) ∣∣∣∣∣
(
x2(1−s0) − x1−s0

(1 − s0)2

)(k−1)
∣∣∣∣∣
2

dt,

Ek =
m2

L
(log x)2

∫
DT

ΦQ

(
γ(t) − θ(⋆)

) ∣∣∣∣∣
(
x−2s0 − x−s0

s20

)(k−1)
∣∣∣∣∣
2

dt,

Fk =
1

(log x)2

∫
DT

ΦQ

(
γ(t) − θ(⋆)

) ∣∣∣∣∣∣
(∑

ρ

xρ−s0 − x2(ρ−s0)

(ρ− s0)2

)(k−1)
∣∣∣∣∣∣
2

dt,

and s0 = σ0 + it.
Bound for Ak. We can write∑

Q<n≤x2

ΛL,x(n)(log n)k−1

ns0

=
∑

Q<p≤x2

ΛL,x(p)(log p)k−1

ps0
+

∑
Q<n≤x2;
n=pl,l≥2

ΛL,x(pl)(log pl)k−1

pls0
,

and ∑
Q<n≤x2;
n=pl,l≥2

ΛL,x(pl)(log pl)k−1

pls0

≪
∑
p≤

√
Q

∑
l> logQ

log p

|ΛL,x(pl)|(log pl)k−1

plσ0
+
∑
p>

√
Q

∞∑
l=2

|ΛL,x(pl)|(log pl)k−1

plσ0
.(45)
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Note that

(46)
∑
l>X

lk

plσ
≪σ,N

Xk

pXσ
.

holds for X ≥ 1, σ > 0 and for k = 0, 1, . . . N − 1. We will estimate the first term of (45).
By using the estimate b(pl) ≪L pl/2 and (46), we have

(47)
∑

l> logQ
log p

|ΛL,x(pl)|(log pl)k−1

plσ0
=
∑

l> logQ
log p

|b(pl)|(log pl)k

plσ0
≪L,σ0,N Q1/2−σ0(logQ)N−1

for any p ≤
√
Q and k = 0, 1, . . . , N − 1. Put

η0 =
σ0 − 1/2

4
.

Since Lemma 3.3 (ii) yields the estimate

b(pl) ≪L,σ0 (2l − 1)
pη0l

l
≤ p(η0+ log 2

log p)l

l
,

we have, by the estimate (46),∑
l> logQ

log p

|b(pl)|(log pl)k

plσ0
≪L,σ0 (log p)k

∑
l> logQ

log p

lk−1

p(σ0−η0− log 2
log p

)l

≤(log p)k
∑

l> logQ
log p

lk−1

p(σ0−1/2(σ0−1/2))l
≪σ0,N Q−σ0−1/2(1/2−σ0)(logQ)N−1(48)

for p ≥ 24/(σ0−1/2). By the estimate (47) and (48), we have∑
p≤

√
Q

∑
l> logQ

log p

|ΛL,x(pl)|(log pl)k−1

plσ0

=

 ∑
2≤p<2

4
σ0−1/2

+
∑

2
4

σ0−1/2≤p≤
√
Q

 ∑
l> logQ

log p

|ΛL,x(pl)|(log pl)k−1

plσ0

≪L,σ0,NQ
1/2−σ0(logQ)N−1 +

∑
p≤

√
Q

Q−σ0−1/2(1/2−σ0)(logQ)N−1

≪Q1/2(1/2−σ0)(logQ)N−1.

As for the second term of (45), by an argument similar to (48), we have∑
p>

√
Q

∞∑
l=2

|ΛL,x(pl)|(log pl)k−1

plσ0
≪L,σ0,N Q(3/4)(1/2−σ0)(logQ)N−1.
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Hence we have

(49)
∑

Q<n≤x2;
n=pl,l≥2

ΛL,x(pl)(log pl)k−1

pls0
≪L,σ0,N Q1/2(1/2−σ0)(logQ)N−1.

Therefore, we have

Ak ≪L,σ0,N

∫
DT

ΦQ

(
γ(t) − θ(⋆)

) ∣∣∣∣∣∣
∑

Q<p≤x2

ΛL,x(p)(log p)k−1

ps0

∣∣∣∣∣∣
2

dt

+ Q1/2−σ0(logQ)2N−2

∫
DT

ΦQ

(
γ(t) − θ(⋆)

)
dt =: A(1)

k + A(2)
k .

By the formula (12) with βn := βn(θ(⋆)), we have

A(1)
k

≪
∑

n=(nq)q∈P(Q)∈ZP(Q);

maxq∈P(Q) |nq |≤M

|βn|

∣∣∣∣∣∣
∫ 2T

T

exp

it
∑

q∈P(Q)

nq log q

∣∣∣∣∣∣
∑

Q<p≤x2

ΛL,x(p)(log p)k−1

ps0

∣∣∣∣∣∣
2

dt

∣∣∣∣∣∣
+

1

M
exp(C1Q)

∫ 2T

T

∣∣∣∣∣∣
∑

Q<p≤x2

ΛL,x(p)(log p)k−1

ps0

∣∣∣∣∣∣
2

dt

≪
∫ 2T

T

∣∣∣∣∣∣
∑

Q<p≤x2

ΛL,x(p)(log p)k−1

ps0

∣∣∣∣∣∣
2

dt

+
∑

0̸=n=(nq)q∈P(Q)∈ZP(Q);

maxq∈P(Q) |nq |≤M

|βn|

∣∣∣∣∣∣
∫ 2T

T

exp

it
∑

q∈P(Q)

nq log q

∣∣∣∣∣∣
∑

Q<p≤x2

ΛL,x(p)(log p)k−1

ps0

∣∣∣∣∣∣
2

dt

∣∣∣∣∣∣
+

1

M
exp(C1Q)

∫ 2T

T

∣∣∣∣∣∣
∑

Q<p≤x2

ΛL,x(p)(log p)k−1

ps0

∣∣∣∣∣∣
2

dt =: A(1,1)
k + A(1,2)

k + A(1,3)
k .

By using the estimates |b(p)| = |a(p)| ≪L,σ0 p
η0 and

∑
1≤n1≤n2≤T

1

nα
1n

α
2 log(n2/n1)

≪α T 2−2α log T for 1/2 ≤ α < 1,
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we have

A(1,1)
k

≤
∑

Q<p≤x2

|b(p)|2(log p)2k

p2σ0
T + O

 ∑
Q<p1<p2≤x2

|b(p1)||b(p2)|(log p1)
k(log p2)

k

pσ0
1 pσ0

2 log(p2/p1)


≪L,σ0,NQ

(3/2)(1/2−σ0)(logQ)2N−2T + x2(log x)2N−1.

We also have

A(1,3)
k =

1

M
exp(C1Q)A(1,1)

k

≪L,σ0,N
1

M
exp(C1Q)

(
Q(3/2)(1/2−σ0)(logQ)2N−2T + x2(log x)2N−1

)
.

We will estimate A(1,2)
k . Fix 0 ̸= n = (nq)q∈P(Q) ∈ ZP(Q) with maxq∈P(Q) |nq| ≤ M . Then we

have ∣∣∣∣∣∣
∫ 2T

T

exp

it
∑

q∈P(Q)

nq log q

∣∣∣∣∣∣
∑

Q<p≤x2

ΛL,x(p)(log p)k−1

ps0

∣∣∣∣∣∣
2

dt

∣∣∣∣∣∣
≤

∑
Q<p≤x2

|b(p)|2(log p)2k

p2σ0

∣∣∣∣∣∣
∫ 2T

T

exp

it
∑

q∈P(Q)

nq log q

 dt

∣∣∣∣∣∣
+O

( ∑
Q<p1<p2≤x2

|b(p1)||b(p2)|(log p1)
k(log p2)

k

pσ0
1 pσ0

2

×

×

∣∣∣∣∣∣
∫ 2T

T

exp

it
∑

q∈P(Q)

nq log q

(p2
p1

)it

dt

∣∣∣∣∣∣
)

=: Ã(1,2,1)
k (n) + Ã(1,2,2)

k (n)

holds. We will estimate ∫ 2T

T

exp

it
∑

q∈P(Q)

nq log q

 dt.

Note that
∑

q∈P(Q) nq log q ̸= 0. Put

Q+(n) = {q ∈ P(Q) ; nq ≥ 0}, Q−(n) = {q ∈ P(Q) ; nq < 0},

and

Q+(n) =
∏

q∈Q+(n)

qnq , Q−(n) =
∏

q∈Q−(n)

q−nq .

Then it holds that ∑
q∈P(Q)

nq log q = log

(
Q+(n)

Q−(n)

)
.
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By the asymptotic formula
∑

p≤X log p ∼ X as X → ∞, we have

(50) max{Q+(n), Q−(n)} ≤ exp

M
∑

q∈P(Q)

log q

 ≤ exp (C2QM)

for some absolute positive constant C2. Hence, since it holds that

| log(n/m)| > 1

max{m,n}

for any distinct positive integers m and n, we have

(51)

∫ 2T

T

exp

it
∑

q∈P(Q)

nq log q

 dt ≪ exp (C2QM) .

Therefore we have

(52) Ã(1,2,1)
k (n) ≪σ0,N Q(3/2)(1/2−σ0)(logQ)2N−2 exp (C2QM) .

By calculations similar to (52), we have

Ã(1,2,2)
k (n)

≪
∑

Q<p1<p2≤x2

|b(p1)||b(p2)|(log p1)
k(log p2)

k

pσ0
1 pσ0

2

∣∣∣∣∣
∫ 2T

T

(
p2Q

+(n)

p1Q−(n)

)it

dt

∣∣∣∣∣
≪

∑
Q<p1<p2≤x2

|b(p1)||b(p2)|(log p1)
k(log p2)

k

pσ0
1 pσ0

2

max{p2Q+(n), p1Q
−(n)}

≪L,σ0,Nx
4(log x)2N−2 exp (C2QM) .

Hence we have, by the estimate (11),

A(1,2)
k ≤

∑
0̸=n=(nq)q∈P(Q)∈ZP(Q);

maxq∈P(Q) |nq |≤M

|βn|
(
Ã(1,2,1)

k (n) + Ã(1,2,2)
k (n)

)

≪L,σ0,N

 ∑
0 ̸=n∈ZP(Q);

maxq∈P(Q) |nq |≤M

|βn|

x4(log x)2N−2 exp (C2QM)

≪x4(log x)2N−2 exp(C0Q) exp (C2QM) .
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Therefore we have

A(1)
k

≪L,σ0,N

(
1 +

1

M
exp(C1Q)

)(
Q(3/2)(1/2−σ0)(logQ)2N−2T + x2(log x)2N−1

)
+ x4(log x)2N−2 exp(C0Q) exp (C2QM)

≪Q(3/2)(1/2−σ0)(logQ)2N−2T + x4(log x)2N−2 exp exp (C3Q) ,

where we take M = exp(2C1Q), and C3 > 2C1 is a positive absolute constant. Therefore we
have

Ak ≪L,σ0,NQ
(3/2)(1/2−σ0)(logQ)2N−2T

+ x4(log x)2N−2 exp exp (C3Q)

+ Q1/2−σ0(logQ)2N−2

∫
DT

ΦQ

(
γ(t) − θ(⋆)

)
dt.

Bound for Bk. By calculations similar to (49), we have

∑
p≤Q

∑
l> logQ

log p

b(pl)(log pl)k

pls0
≪L,N,σ0 Q

1/2(1/2−σ0)(logQ)N−1.

Hence we have

Bk ≪L,N,σ0 Q
1/2−σ0(logQ)2N−2

∫
DT

ΦQ

(
γ(t) − θ(⋆)

)
dt.

We will estimate Ck, Dk, Ek, Fk using the following bound. We define

D̃T = D̃T (h)

=

{
s ; σ ≥ σ0 − 1/10(σ0 − σL), T − 1 ≤ t ≤ 2T + 1, s ̸∈

∪
ρ ; β>1/2(σL+σ0)

P (h−1)
ρ

}
.
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σL σ0

h

h

D̃T

P
(h)
ρ

Then, by using the Cauchy integral formula, the estimate

(53) |g(k−1)(s0)| =

∣∣∣∣(k − 1)!

2πi

∫
|z−s0|=1/10(σ0−σL)

g(z)

(z − s0)k
dz

∣∣∣∣≪L,σ0,N sup
z∈D̃T

|g(z)|

holds for any holomorphic function g(s) on D̃T and t ∈ DT and for any k = 1, . . . , N − 1.
Bound for Ck, Dk, Ek. By using the estimate (53), we can easily check that

Ck ≪L,σ0,N
1

T 4x2A(σ0)(log x)2

∫
DT

ΦQ

(
γ(t) − θ(⋆)

)
dt,

Dk ≪L,σ0,N
x4(1−A(σ0))

T 4(log x)2

∫
DT

ΦQ

(
γ(t) − θ(⋆)

)
dt,

Ek ≪L,σ0,N
1

T 4x2A(σ0)(log x)2

∫
DT

ΦQ

(
γ(t) − θ(⋆)

)
dt,

where A(σ0) = σ0 − 1/10(σ0 − σL).
Bound for Fk. We will estimate

sup
s∈D̃T

∣∣∣∣∣∑
ρ

xρ−s − x2(ρ−s)

(ρ− s)2

∣∣∣∣∣
2

.
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Fix s = σ + it ∈ D̃T . We divide the sum into two sums;∑
ρ

xρ−s − x2(ρ−s)

(ρ− s)2

=
∑
ρ;

0<β≤(1/2)(σL+σ0)

xρ−s − x2(ρ−s)

(ρ− s)2
+

∑
ρ;

(1/2)(σL+σ0)<β≤1

xρ−s − x2(ρ−s)

(ρ− s)2

=: ΣL + ΣR.

By using the estimate NL(T + 1) −NL(T ) ≪L log T for T ≥ 2 which is deduced by (2), we
have

ΣR ≪ x2(1−σ)
∑

m≥h−2

∑
m≤|γ−t|<m+1

1

|γ − t|2

≤ x2(1−σ)
∑

m≥h−2

1

m2

∑
m≤|γ−t|<m+1

1 ≪L x2(1−σ)
∑

m≥h−2

log(t + m)

m2

≪ x2(1−σ)
∑

m≥h−2

max{log t, logm}
m2

≪ x log T

h
.

On the other hand, we have

ΣL ≪σ0 x
−2/5(σ0−σL)

∑
ρ

1

1 + (t− γ)2
≪L x−2/5(σ0−σL) log T.

Therefore we obtain

Fk

≪L,σ0,N
1

(log x)2

(
x2(log T )2

h2
+ x−4/5(σ0−σL)(log T )2

)∫
DT

ΦQ

(
γ(t) − θ(⋆)

)
dt.

Step 4. Next we will give the lower bound for
∫
DT

ΦQ

(
γ(t) − θ(⋆)

)
dt. By the estimate

(11), it holds that∫
DT

ΦQ

(
γ(t) − θ(⋆)

)
dt

=

∫ 2T

T

ΦQ

(
γ(t) − θ(⋆)

)
dt−

∫
[T,2T ]\DT

ΦQ

(
γ(t) − θ(⋆)

)
dt

≥
∫ 2T

T

ΦQ

(
γ(t) − θ(⋆)

)
dt− 2h

∑
n∈ZP(Q)

|βn|NL (1/2(σL + σ0), 2T )

=

∫ 2T

T

ΦQ

(
γ(t) − θ(⋆)

)
dt + O (h exp(C0Q)NL (1/2(σL + σ0), 2T )) .
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By the estimates (11), (12) and (51) and by substituting M = exp(2C1Q), we have∫ 2T

T

ΦQ

(
γ(t) − θ(⋆)

)
dt

≥T −
∑

0 ̸=n∈ZP(Q);
maxp≤Q |np|≤M

|βn|

∣∣∣∣∣
∫ 2T

T

exp

(
it
∑
p≤Q

np log p

)
dt

∣∣∣∣∣+ O

(
T

M
exp(C1Q)

)

=T + O (exp exp(C3Q)) + O

(
T

M
exp(C1Q)

)
=

(
1 + O

(
exp exp(C3Q)

T

)
+ O

(
1

exp(C1Q)

))
T.

Taking h = T∆L(1/2(1/2+σ0))/2, we have

h exp(C0Q)NL (1/2(σL + σ0), 2T ) ≪L,σ0 exp(C0Q)T 1−∆L(1/2(σL+σ0))

2

by the condition (C2). Hence we have∫
DT

ΦQ

(
γ(t) − θ(⋆)

)
dt ≥

(
1 + OL,σ0

(
exp(C0Q)T−∆(1/2(σL+σ0))

2

)
+

+ O

(
exp exp(C3Q)

T

)
+ O

(
1

exp(C1Q)

))
T.

Taking T = exp exp(CQ), C = C0 + C3, we have the inequality (41).

Step 5. We will finish the proof in this step. By the estimate (41) and by the estimates
Ak-Fk, we obtain

I ≪L,σ0,N

(
Q1/2−σ0(logQ)2N−2 +

x4(log x)2N−2

T 1/2
+

x2(log T )2

T∆L(1/2(1/2+σ0))
+

+ x−4/5(σ0−σL)(log T )2
)∫

DT

ΦQ

(
γ(t) − θ(⋆)

)
dt.

Taking

x = T µ with µ = min {1/200,∆(1/2(σL + σ0))/10} ,
we have

(54) I ≪L,σ0,N Q1/2(1/2−σ0)

∫
DT

ΦQ

(
γ(t) − θ(⋆)

)
dt.

Put

d(σ0, EL) = max

{
d1(σ0, EL),

8

σ0 − 1/2

}
.

By the estimates (43) and (54) and step 4, we have (40), (41) and (42) if

Q ≥ C
(1)
1 (L, σ0, N) (∥c∥N + 1/ε)d(σ0,EL)

holds. Taking C1(L, σ0, N) = CC
(1)
1 (L, σ0, N), we have the conclusion. □
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3.3.2. Proof of Corollary 1.20. We will prove by using the same method as in [48] and
[21]. Before stating the proof, we give some notations and lemmas.

Let C[[X]] be the formal power series ring with coefficients in C and indeterminate X.
We refer the reader to [2] for the details of the general theory of the formal power series ring
for example. In what follows, we will use the following notations;

• Let R+ denote the set of nonnegative real numbers.
• For any N ∈ N, we write [N ] = [1, N ] ∩ N.
• For empty index ∅ ∈ C0, we adopt the convention that ∥∅∥0 = 0.
• Let N ∈ N and [N ] ⊂ A ⊂ N. For z = (zj)j∈A ∈ CA, we write z[N ] = (zj)

N
j=1 ∈ CN .

• Let α(X) =
∑∞

n=0 anX
n ∈ C[[X]] and β(X) =

∑∞
n=0 bnX

n ∈ C[[X]] with bn ∈ R+

for any n ∈ N0. The statement α⊴ β means that |an| ≤ bn holds for any n ∈ N. We
also define αabs(X) ∈ C[[X]] by αabs(X) =

∑∞
n=0 |an|Xn.

• Let Z = (Zj)
∞
j=1 ∈ CN be the indeteminate and let N be a positive integer. For a

multi-index i = (i1, . . . , iN) ∈ NN
0 and for f (Z) ∈ C[Z], define the symbol ∂i as a

differential operator given by

∂i (f(Z)) =
∂|i|f

∂Zi1
1 · · · ∂ZiN

N

(Z), |i| = i1 + · · · + iN .

In addition, we write i! = i1! · · · iN ! and (Z [N ])
i = Zi1

1 · · ·ZiN
N .

Let Z = (Zj)
∞
j=1 and W = (Wj)

∞
j=1 be the indeterminates and write Z [n] = (Zj)

n
j=1 and

W [n] = (Wj)
n
j=1 for n ∈ N. For n ∈ N, define the polynomials Fn(Z [n]) ∈ R[Z [n]] and

Gn(W [n]) ∈ R[Z [n]] by

(55) exp

(
∞∑
n=1

ZnX
n

)
= 1 +

∞∑
n=1

Fn(Z [n])X
n

and

log

(
1 +

∞∑
n=1

WnX
n

)
=

∞∑
n=1

Gn(W [n])X
n.

Then we have deg(Fn) = n. We also define the maps

F : CN ∋ z = (zj)
∞
j=1 7→ F (z) = (Fj(zj))

∞
j=1 ∈ CN,

F [N ] : CN ∋ z = (zj)
N
j=1 7→ F [N ](z) = (Fj(z[j]))

N
j=1 ∈ CN,

and

G : CN ∋ w = (wj)
∞
j=1 7→ G(w) = (Gj(w[j]))

∞
j=1 ∈ CN.

We can easily check that G is the inverse mapping of F . For complex variables z = (zj)
∞
j=1,

define

f(X; z) =
∞∑
n=1

znX
n,

g(X, z) = log

(
1 +

∞∑
n=1

znX
n

)
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and

h(X; z) = − log

(
1 −

∞∑
n=1

|zn|Xn

)
.

Note that the relations

(56) f(X; z) = g(X,F (z)) and g(X, z) ⊴ h(X; z)

hold.

Lemma 3.13. Let z = (zj)
∞
j=1 be complex variables.

(i) We have f abs(X; z) ⊴ h(X;F (z)).
(ii) Let N ∈ N and i = (i1, . . . , iN−1) ∈ NN−1

0 with |i| ≥ 1. Then we have f abs(X; ∂iF (z))⊴
XS(i) exp

(
f abs(X; z)

)
, where ∂iF (z) = (∂iFj(z[j]))

∞
j=1 and S(i) = i1 + 2i2 + · · · (N −

1)iN−1.

Proof. Note that α(X) ⊴ β(X) implies αabs(X) ⊴ β(X) for α(X), β(X) ∈ C[[X]]. This
and the relation (56) deduce the first assertion. We fix N ∈ N and i = (i1, . . . , iN−1) ∈ NN−1

0

with |i| ≥ 1. By differentiating exp (f(X;Z)), we have

∂

∂Zj

exp (f(X;Z)) = Xj exp (f(X;Z)) .

Hence, applying ∂i on the both sides of the equation (55) with z in place of Z, we obtain

XS(i) exp (f(X; z)) = f(X; ∂iF (z)).

We can confirm that exp (f(X; z)) ⊴ exp
(
f abs(X; z)

)
, and this completes the proof. □

Lemma 3.14. Fix ε > 0 and N ∈ N. Let z0, a0 ∈ C and z = (z1, z2, . . . , zN−1), α =
(α1, . . . , αN−1) ∈ CN−1.

(i) We have

∥α∥ ≪N

(
1 + ∥F [N−1](α)∥

)N−1

(ii) If ∥(z0, z) − (α0,α)∥ < δ < 1, then we have

|ez0 − eα0| < 2|eα0|δ

and∥∥ez0F [N−1](z) − eα0F [N−1](α)
∥∥≪N |eα0|

(
1 +

∥∥F [N−1](α)
∥∥)(N−1)2

δ.

Proof. Let

α(0) = (α1, . . . , αN−1, 0, 0, . . .) ∈ CN

and

w(0) = (F1(α[1]), F2(α[2]), . . . , FN−1(α), 0, 0, . . .) ∈ CN.

Note that

G
(
w(0)

)
[N−1]

= α,
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holds. Then we have

N−1∑
n=1

|αn|Xn = f abs
(
X;α(0)

)
⊴ f abs

(
X;G(w(0))

)
(57)

⊴h
(
X;F

(
G(w(0))

))
= h

(
X;w(0)

)
= − log

(
1 −

N−1∑
n=1

|Fn(α[n])|Xn

)

by (i) of Lemma 3.13. Evaluating (57) at X =
(
3
(
1 +

∥∥F[N−1](α)
∥∥))−1

, we have(
1

3
(
1 +

∥∥F[N−1](α)
∥∥)
)N−1 N−1∑

n=1

|αn| ≤
N−1∑
n=1

|αn|

(
1

3
(
1 +

∥∥F[N−1](α)
∥∥)
)n

≤ − log

(
1 −

N−1∑
n=1

(
1

3

)n
)

≪ 1,

which deduces ∥α∥ ≪N

(
1 +

∥∥F[N−1](α)
∥∥)N−1

. Hence, we have the first assertion of this
lemma.

To prove the second assertion of this lemma, we will show

(58)
N−1∑
n=1

∣∣∂iFn(α[n])
∣∣≪N

(
1 + ∥F [N−1](α)∥

)(N−1)2

for i ∈ Nn
0 and |i| ≥ 1. By (ii) of Lemma 3.13, we have

N−1∑
n=1

∣∣∂iFn(α[n])
∣∣Xn ⊴ f abs(X; ∂iF (α(0)))(59)

⊴XS(i) exp
(
f abs(X;α(0))

)
= XS(i) exp

(
N−1∑
n=1

|αn|Xn

)
.

By evaluating (59) at X = (3 (1 + ∥α∥))−1, we have(
1

3 (1 + ∥α∥)

)N−1 N−1∑
n=1

∣∣∂iFn(α[n])
∣∣ ≤N−1∑

n=1

∣∣∂iFn(α[n])
∣∣ ( 1

3 (1 + ∥α∥)

)n

≤
(

1

3

)S(i)

exp

(
N−1∑
n=1

(
1

3

)n
)

≪ 1,

which implies
∑N−1

n=1

∣∣∂iFn(α[n])
∣∣≪N (1 + ∥α∥)N−1. By (i) of Lemma 3.14, we obtain

N−1∑
n=1

∣∣∂iFn(α[n])
∣∣≪N

(
1 + ∥F [N−1](α)∥

)(N−1)2
,

which gives the estimate (58).
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We will show the second assertion. Let ∥(z0, z) − (α0,α)∥ < δ < 1. By the Taylor series
expansion, we have

(60) |ez0 − eα0| = |eα0|
∣∣ez0−α0 − 1

∣∣ ≤ |eα0|
∞∑
n=1

δn

n!
≤ 2 |eα0| δ.

By the Taylor series expansion, by the equation (58) and by using degFn = n , we have

Fn(z[n]) − Fn(α[n])(61)

=
∑

i=(i1,...,in)∈Nn
0 ;

1≤|i|≤n

∂iFn(α[n])

i!

(
z[n] −α[n]

)i ≪N

(
1 + ∥F [N−1](α)∥

)(N−1)2
δ

for 1 ≤ n ≤ N − 1. Hence we deduce∥∥F [N−1](z) − F [N−1](α)
∥∥≪N

(
1 + ∥F [N−1](α)∥

)(N−1)2
δ.

Therefore we obtain∥∥ez0F [N−1](z) − eα0F [N−1](α)
∥∥

≤|ez0|
∥∥F [N−1](z) − F [N−1](α)

∥∥+
∥∥F [N−1](α)

∥∥ |ez0 − eα0|
≤|ez0 − eα0|

∥∥F [N−1](z) − F [N−1](α)
∥∥

+ |eα0|
∥∥F [N−1](z) − F [N−1](α)

∥∥+
∥∥FN−1(α)

∥∥ |ez0 − eα0|

≪N |eα0|
(
1 +

∥∥F [N−1](α)
∥∥)(N−1)2

δ

by the estimates (60) and (61). This completes the proof. □
Proof of Corollary 1.20. Let ε ∈ (0, 1), c = (ck)N−1

k=0 ∈ CN with |c0| ̸= 0. Put

z0(t) = logL(σ0 + it),

z(t) =

(
1

1!

d

ds
logL(σ0 + it), . . . ,

1

(N − 1)!

dN−1

dsN−1
logL(σ0 + it)

)
,

β1 =
c1

c0 · 1!
, β2 =

c2
c0 · 2!

. . . , βN−1 =
cN−1

c0(N − 1)!
,β = (βk)N−1

k=1

and
α0 = log c0, α1 = G1(β[1]), . . . , αn = GN−1(β[N−1]),α = (αj)

N−1
j=1 .

Note that β = F [N−1] (α) holds. Let

δ = δ(ε, c,∆N) =
∆N · ε

(1 + |eα0)|
(
1 +

∥∥F [N−1](α)
∥∥)(N−1)2

∈ (0, 1),

where ∆N is sufficiently small depending on N . Note that, by the relation (55), we have

ez0(t)F [N−1] (z(t)) =

(
1

1!

d

ds
L(σ0 + it), . . . ,

1

(N − 1)!

dN−1

dsN−1
L(σ0 + it)

)
for L(σ0 + it) ̸= 0. Hence if

(62) ∥(z0(t), z(t)) − (α0,α)∥ < δ and L(σ0 + it) ̸= 0
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hold, then we have ∣∣∣∣ dkdsk
L(σ0 + it) − ck

∣∣∣∣ < ε for k = 0, 1, . . . , N − 1

by Lemma 3.14 (ii). To get the inequality (62), it is enough to notice∣∣∣∣ dkdsk
logL(σ0 + it) − k!αk

∣∣∣∣ < δ

N
for k = 0, 1, . . . , N − 1.

By Lemma 3.14 (i), we have

∥(α0, 1!α1, . . . , (N − 1)!αN−1)∥ +
N

δ
≪N | log c0| +

(
∥c∥
|c0|

)(N−1)2
1 + |c0|

ε
.

Combining with Theorem 1.19, we have the conclusion. □

3.3.3. Proof of Corollary 1.21. Although the proof is almost the same as in [13], we shall
give the full details.

Proof of Corollary 1.21. Let the setting be as in Corollary 1.21. We will use the
Taylor expansion series to prove the corollary. Recall the Cauchy integral formula

g(k)(s0) =
k!

2πi

∫
|z−s0|=r

g(z)

(z − s0)k+1
dz.

Hence we have

|g(k)(s0)(s− s0)
k| ≤ k!M(g)δk0

for |s− s0| ≤ δ0r. By using the Taylor expansion series, we have

Σ1 :=

∣∣∣∣∣g(s) −
∑

0≤k<N

g(k)(s0)

k!
(s− s0)

k

∣∣∣∣∣ ≤ M(g)
∞∑

k=N

δk0 = M(g)
δN0

1 − δ0

for |s− s0| ≤ δ0r. We chose N = N(δ0, ε,M(g)) such that

M(g)
δN0

1 − δ0
<

ε

3
.

We apply Corollary 1.20 with ck = g(k)(s0) and (ε/3) exp(−δ0r) in place of ε. We chose
T = T (L, σ0, g, ε, δ0, N) such that

T ≥ max
{

exp exp
(
C2(L, σ0, N)B (N,g, (ε/3) exp(−δ0r))d(σ0,EL)

)
, r
}
.

Then there exists t1 ∈ [T, 2T ] such that∣∣∣L(k)(σ0 + it1) − g(k)(σ0 + it0)
∣∣∣ < ε

3
exp(−δ0r)

for 0 ≤ k < N . Put τ := t1 − t0 and note that σ0 + it1 = s0 + iτ holds. Remark that our
choice of T ≥ r make the disc {s ; |s− s0| ≤ δ0r}+ iτ avoid from including the pole of L(s).
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Hence we have

Σ2 :=

∣∣∣∣∣ ∑
0≤k<N

L(k)(s0 + iτ)

k!
(s− s0)

k −
∑

0≤k<N

g(k)(s0)

k!
(s− s0)

k

∣∣∣∣∣
<

ε

3
exp(−δ0r)

∑
0≤k<N

(δ0r)k

k!
<

ε

3

for |s− s0| ≤ δ0r. On the other hand, we have

Σ3 :=

∣∣∣∣∣L(s + iτ) −
∑

0≤k<N

L(k)(s0 + iτ)

k!
(s− s0)

k

∣∣∣∣∣ < M(τ)
δN

1 − δ

for |s− s0| ≤ δr and 0 < δ ≤ δ0. Therefore we have

|L(s + iτ) − g(s)| ≤ Σ1 + Σ2 + Σ3 <
2

3
ε + M(τ)

δN

1 − δ

for |s− s0| ≤ δr and 0 < δ ≤ δ0. Choosing δ which satisfies

M(τ ;L)
δN

1 − δ
<

ε

3
,

we have the conclusion. □
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[13] R. Garunkštis, A. Laurinc̆ikas, K. Matsumoto, J. Steuding and R. Steuding, Effective uniform approxi-
mation by the Riemann zeta-function, Publ. Mat. 54(2010), no. 1, 209-219.

[14] R. Garunks̆tis and J. Steuding, On the roots of the equation ζ(s) = a, Abh. Math. Semin. Univ. Hambg.
84 (2014), 1–15.

[15] A. Good, On the distribution of the values of Riemann’s zeta-function, Acta Arith., 38 (1981), no. 4,
347–388.

[16] G. Harman and K. Matsumoto, Discrepancy estimates for the value-distribution of the Riemann zeta-
function. IV, J. London Math. Soc. (2) 50 (1994), no. 1, 17–24.

[17] T. Hattori and K. Matsumoto, A limit theorem for Bohr-Jessen’s probability measures of the Riemann
zeta-function, J. Reine Angew. Math. 507 (1999), 219–232.

[18] S. Inoue, On the logarithm of the Riemann zeta-function and its iterated integrals, preprint,
arXiv:1909.03643.
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