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ABSTRACT. This thesis is the summary of author’s two studies on the value-distribution
of zeta and L-functions.

The first study is on the denseness problem for the iterated integrals of the logarithm of
the Riemann zeta-function ((s), which is a joint work with Shota Inoue [9]. We give a result
for the denseness of the values of the iterated integrals on horizontal lines. By using this result
under the Riemann Hypothesis, we obtain the denseness of the values fg log ¢(1/2 + dt")dt’.
Moreover, we show that, for any m > 2, the denseness of the values of an m times iterated
integral on the critical line is equivalent to the Riemann Hypothesis.

The second study is on the effectivity problem of the universality theorem for zeta and
L-functions. Recently, Garunkstis, Laurincikas, Matsumoto, J. & R. Steuding showed an
effective universality-type theorem for the Riemann zeta-function by using an effective multi-
dimensional denseness result of Voronin. We will generalize Voronin’s effective result and
their theorem to the elements of the Selberg class satisfying some conditions.
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1. Introduction

Let s = o + it be a complex variable with Re(s) = ¢ and Im(s) = t. The Riemann
zeta-function ((s) is defined by the series

1
6=
for o > 1. This series can be analytically continued to the whole complex plane and has a
pole at s = 1 with residue 1. The Riemann zeta-function ((s) plays a great role in analytic
number theory and is known to be connected with the distribution of prime numbers. In
particular, the distribution of zeros of ((s) is closely related to that of the prime numbers.

Let us recall the basic properties of the Riemann zeta-function.
e The Euler product representation
a1
)= -p7)
p

holds for Re(s) > 1, where the product is taken over all prime numbers p.
e The functional equation

m=8/2T (%) C(s) = =921 (1 ; S) C(1—ys)

holds.

The Euler product representation implies that the Riemann zeta-function is zero free for
Re(s) > 1. By the functional equation, we can find that the Riemann zeta-function has zeros
at s = —2,—4,—06,... and no zeros for Re(s) < 0 except for these zeros. These zeros of
((s) located in Re(s) < 0 are called trivial zeros. Thus, our main interest is to reveal the
distribution of zeros of ((s) in 0 < Re(s) < 1. These zeros of ((s) located in 0 < Re(s) <1
are called non-trivial zeros, and the strip {s € C;0 < Re(s) < 1} is called the critical strip.
The famous Riemann Hypothesis states that the real part of all non-trivial zeros of ((s)
equals 1/2.

1.1. The denseness results for the Riemann zeta-function.

1.1.1. Known facts and unsolved problem for the denseness theorems. As we have seen in
the above, it is important to study the value-distribution of the Riemann zeta-function in the
critical strip to understand the distribution of prime numbers. However, the behavior of the
values of the Riemann zeta-function in the critical strip is extremely complicated. Each of
the following famous results is one of the results which express the complexity of the values
of the Riemann zeta-function.

THEOREM 1.1 (Bohr and Courant in 1914 [4]). For any 1/2 < o < 1, the set {((c +
it) ; t € R} is dense in the complex plane.

THEOREM 1.2 (Bohr in 1916 [3]). For any 1/2 < o < 1, the set {log((c +it) ; t € R}
1s dense in the complex plane.



Note that the former theorem immediately follows from the latter one. Here, we define
the branch of log ((s). Let G denote

G:(C\{ U {s=o+it; aSﬁ}U(—oo,l]}

p=p+iy

and define log ((s) by

log ((s) = /U CZ/(& + it)da

for s = 0 + it € G. Here p denotes the non-trivial zeros of ((s).

Furthermore, the probabilistic improvements of these two theorems have been known
as the Bohr-Jessen limit theorem [5]. To state this theorem, we recall the notion of weak
convergence from probability theory. A family of probability measure (pr)r=o on (C,B(C))
is said to converge weakly to a probability measure p if [, fdur — [ fdp holds as T — oo
for any bounded continuous function f on C, where B(S) stands for the Borel o-field of
the topological space S. Here and in what follows, let meas(:) denote the one-dimensional
Lebesgue measure.

THEOREM 1.3. Let 1/2 < 0 < 1. For T > 0, define the probability measure ji, 7 on
(C,B(C)) by

por(A) = %meas {t€[0,7]; log((c+it) € A}, AeB(C).

Then there ezists the unique probability measure pi, on (C, B(C)) such that the family (po1)r>0
converges weakly to p, as T — oco. Moreover, i, has the probability density function which
18 continuous and takes everywhere positive values.

The statement of Theorem 1.3 is a little different from that in [5] and written in terms
of modern probability theory. Later, Jessen-Wintner [20] gave an alternative proof by a
probabilistic argument. For further developments of the Bohr-Jessen limit theorem, see
e.g. [16], [17], [24] and [25].

Here we mention some known facts about the denseness of the set of the values ((o + it)
for the other values of 0. For ¢ > 1, it is classically known that the set {((o + it) ; t € R}
is bounded. Hence the set {((c +it) ; t € R} is not dense in C in this case. For o < 1/2,
Garunkstis and Steuding [14] proved that the set {((c + it) ; t € R} is not dense in C
under the Riemann Hypothesis. For ¢ = 1/2, Kowalski and Nikeghbali [23, Corollary 9]
gave a sufficient condition for the denseness of the set {((1/2 +it) ; t € R}. However it is
so strong that no one has proved even that the Riemann Hypothesis implies their condition.
At present, the denseness of the set {((1/2 4+ it) ; t € R} is still open.

PROBLEM 1. Is the set {{(1/2 +it) ; t € R} dense in the complex plane?

Garunkstis and Steuding [14] showed that the set {(¢(1/2 +it),('(1/2+it)) ; t € R} is
not dense in C?, and we may guess that the answer of Problem 1 is negative from this result.
One of the important results in the attempt to understand the distribution of the values for
the Riemann zeta function in the critical line is Selberg’s work [39, 40]. He studied the
moments of log ((1/2 + it) to obtain the following limit theorem.
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THEOREM 1.4. If A is a Jordan measurable set in the complex plane, then

1 1 1/2 41t 1
lim —meas< t € [T,27] ; ogc1/2+it) €A)=— // e~ 2y,
Tooo T \/3 loglog T 27 J )

1.1.2. Statement of the main results. The contents of this subsubsection are based on the
paper [9]. This is a joint work with Shota Inoue.

In order to mention the main results, we give some definitions. Define the function 7,,(s)
for m € N by

t
Nm (0 +it) = / Nm—1(c + it")dt' + ¢, (o),
0

where
sm

! )!/0 (o — )™ tlog ¢ (a)da.

no(o +it) =log((o +it) and c¢p,(0) = m

The function 7,,(s) is the m times iterated integral of log ((s) on the vertical line, which
was introduced by Inoue [18]. In this thesis, we discuss the denseness problem of 7,,(s) for
o>1/2and m > 1.

THEOREM 1.5. Let 1/2 < o < 1. If the number of zeros p = 8+ iy of ((s) with > o is
finite, then the set

{/Ot log (o +it)dt' ; t e [0,00)}

1s dense in the complex plane. Moreover, for each integer m > 2, the following statements
are equivalent.

(I) The Riemann zeta-function does not have any zeros whose real parts are greater than
0.
(IT) The set {ny, (o +it) ; t € [0,00)} is dense in the complex plane.

From this theorem, we see that the Riemann Hypothesis implies that the set

{/Ot log ¢(1/2 +4t")dt" ; t € [0, oo)}

is dense in the complex plane. Moreover, the equivalence in Theorem 1.5 would be a new
type of statement which gives the relation between the denseness of values of the Riemann
zeta-function and the Riemann Hypothesis.

Now we introduce the function 7,,(s) which is closely related to 7,,(s). Define the function
Nm (o +it) for m € N by

o0

ﬁm(cr+it):/ Nm—1(a + it)da,

where 7jo(0 +it) = log ((o + it). This function is the m times iterated integral of log ((o + it)
on the horizontal line. By Littlewood’s lemma, we can obtain the following connection
between 7,,(s) and 7,,(s).



LEMMA 1.6 (Lemma 1 in [18]). Let m be a positive integer, and let t > 0. Then, for any
o >1/2, we have

m—1 -m
N (0 +it) = "N (0 + it) +27TZ —k'k'z Pt — )k
=0 0<y<t
B>0

From this connection, it is important to analyze the function 7j,,(s) to know the property
of N (s). The function 7,,(s) is holomorphic in the same region as in the case of log ((s)
and has some properties similar to that of log((s). From this observation, we obtain the
following theorem unconditionally

THEOREM 1.7. Let 1/2 < 0 < 1, and m be a positive integer. Let Ty be any positive
number. Then the set

{fm(o +1t) 5 t € [Ty, 00)}
1s dense in the complex plane.

As mentioned above, Bohr developed his denseness results with Jessen from the viewpoint
of probability theory in [5]. Following their method, Inoue and the author will continue their
study with Mine in a subsequent paper [10]. They will give deeper results such as an analog
of Lamzouri’s study [24] and of the study of Lamzouri, Lester and Radziwilt [25].

1.2. The multi-dimensional denseness theorem and the universality theorem.
1.2.1. Voronin’s work and related results. In 1972, Voronin [46] generalized Bohr’s results
to obtain the following multi-dimensional denseness theorems.

THEOREM 1.8. Let n € N and h > 0. Let s1,...,s, satisfy 1/2 < Re(sg) < 1 for
k=1,...,n and si # s; for k # j. Then the set

{(¢(sy +imh), ..., ((s, +imh)) ; m € N}

is dense in C".

THEOREM 1.9. Let n € N and h > 0 and 1/2 < Re(s) < 1. Then the set

{(¢(s+imh),l'(s +imh),....(" V(s +imh)) ; m e N}

is dense in C".

In particular, the following theorem immediately follows from Theorem 1.9.

THEOREM 1.10. Let n € N and 1/2 < 0 < 1. Then the set

{(C(o +it), (o +1it),...,.(" V(o +it) ; t € R}

is dense in C".

In 1975, Voronin [47] discovered the universality theorem for the Riemann zeta-function,
which states as follows;



THEOREM 1.11. Let IC be a compact subset of D = {s € C; 1/2 < o < 1} with connected
complement, and let f be a non-vanishing continuous on K that is holomorphic in the interior
of K. Then we have, for any e > 0,

T—o00

1
(1) liminffnleas {T €10,7] ; malug{K(s +i1) — f(s)| < 8} > 0.
s€

Roughly speaking, Theorem 1.11 says that the Riemann zeta-function can approximate
any non-vanishing holomorphic functions. Note that Theorem 1.11 is not the original one
by Voronin but is the form by Reich [37]. Voronin discussed the case when the above K is
replaced by a closed disk {s € C; |s+ 3/4| < r} with 0 < r < 1/4. Note that we can also
see Voronin’s proof of the universality theorem in the textbook [21].

The theory of the universality theorem has been developed in various directions. One of
the remarkable results is Bagchi’s work [1]. He gave a probabilistic proof of the universal-
ity theorem for the Riemann zeta-function, which was a different approach from Voronin’s
original proof. To state this result, we will give some notations. Let v denote the unit circle
on the complex plane and define 2 = Hp Tps Vp = - Since ) is compact, there exists the
probability Haar measure m on (€2, 5(2)). For any w = (w(p)), € © and n € N with n > 2,
let w(l) =1 and let

w(n) = Hw(pj)”,

where n = pi' - - - pi* is the prime factorization of n. Let D = {s; 1/2 < o < 1} and let H(D)
denote the set of holomorphic function on D equipped with the topology of uniform conver-
gence on compact subsets. Define the probability measures vy and v on (H(D), B(H(D)))
by

vr(A) = %meas {r€[0,T]; ((s+ir) € A}
and
v(A)=m{we Q; ((s,w) € A}
for A € B(H(D)), where H(D)-valued random variable ((s,w) is defined by
((sw) =320,

nS

n=1

Bagchi proved the following.

THEOREM 1.12. We have the followings;

(i) The probability measures vy converges weakly to v as T — oo.
(ii) The support of the probability measure v coincides with the set

{p e H(D); ¢(s)#0 for s€D or p(s)=0}.
Combining Merglyan’s theorem with this theorem we obtain the universality theorem.

Merglyan’s theorem asserts the following;

THEOREM 1.13 (see e.g. [38]). Let K be a compact subset of C with connected complement.
If f is continuous function on K which is holomorphic in the interior of K, and if € > 0,
then there exists a polynomial P such that |f(s) — P(s)| < & for any s € K.
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At present, Bagch’s approach is a standard method of proving universality theorems for
a wide class of zeta and L-functions. Refer to [27], [43], [22] etc. for the details of Bagchi’s
theory. For other developments of the universality, see e.g. a survey paper [31].

As another development of the universality theorem, there are some studies of the refine-
ment to an effective form of Voronin’s universality theorem. There arose the questions on
how large the value (1) is or how small the shift 7 we can take to make ((s+47) approximate
a given non-vanishing holomorphic function. In Voronin’s proof of the universality theo-
rem, Pecerskii’s rearrangement theorem [35] in Hilbert space and Kronecker’s approximation
theorem [21, Appendix 8, Theorem 1] are used. These theorems assert the followings;

THEOREM 1.14 (Pecerskii). Let (x,y)y denote the inner product of x and y belonging to
a real Hilbert space H. The norm ||z||y of x € H is canonically defined by ||x||ly = \/ (@, x)%.

Suppose that a sequence {u,}>2, on H satisfies the the following conditions;

o Sl < o0,
e For any e € H with |le||ly = 1, there exists a bijective mapping | = l(e) : N> k —
li € N such that the series Y, (u, , €)y converges conditionally.

Then, for any v € H, there exists a bijective mapping j = j(v) : N 3 k +— jx € N such that

o
g uj, =v inH.
k=1

THEOREM 1.15 (Kronecker’ approximation theorem). Let A be a Jordan measurable sub-
region of [0, 1), and ay,...,ax be real numbers linearly independent over Q. Set, for any
T >0,

KT, A) = {tc[0,T]; ({art},... {ant}) € A}.
Here {x} means the fractional part of x. Then we have

meas(I(T, A))
T—4o00 T

= meas(A).

Since these two theorems are ineffective, it is difficult in general to obtain effective results
of the universality theorem. Good [15] was the first to make progress on this effectiviza-
tion problem. He combined Montgomery’s results [32] about the extreme values of log ((s)
with Voronin’s results to get some effective results of the universality theorem. After that,
Garunkstis [11] extended Good’s idea to obtain some explicit results in a small region for
the above effecitivization problems.

Another approach by using the Taylor series expansion is taken by Garunkstis, Lau-
rinc¢ikas, Matsumoto, J. & R. Steuding [13]. They refined Matsumoto’s weak version of the
universality theorem into the effective form. Matsumoto’s theorem is written in the survey
paper [30, Section 3]. To see what is the refinement, we recall how to prove the Matsumoto’s
theorem. Let g(s) be a function holomorphic at s = sg. By the Taylor series expansions of
((s +17) and g(s), the equations

2 () (5o + 0T i (k) (s i
C(S + iT) = Z %(s — 50) and g(s) = Z J /{3<' )(S - So)
k=0 ' '

k=0
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hold around s = sy. Letting the coefficients (*)(so +i7) approximate g*)(sy) simultaneously
by using Theorem 1.10, we can deduce a weak version of the universality theorem which is
valid only around s = sg. However, since Theorem 1.10 is ineffective, we can not obtain the
effective result of this weak approximation theorem. To obtain the effective version of this
result, Garunkstis, Laurincikas, Matsumoto, J. & R. Steuding directed their attention to the
following theorem by Voronin [48], which is an effective version of Theorem 1.10.

THEOREM 1.16. Let N € N and oo € (1/2,1) and b = (bo,b1,...,by_1) € CV with
|bg| > & > 0. Then a sufficient condition for the system of inequalities

(WP (o9 +it) —bi| <e, k=0,...,N—1
to have a solution t € [T, 2T is that

T > ¢o(N, 0) exp exp (cl(N, 00)A(N, b, g)%JF?ngl/E) :

where co(N, 0¢) and ¢y (N, 0y) are a positive *, effectively computable constant, depending only
on N and oy, and

b\
A(N,b,e) = |logbo| + (—H_H)
£
with [[bl] = 3 g<xen || Here the above branch of logby can be taken arbitrarily.

We remark that this result is also written in the textbook [21], and the above statement
is the form described in the textbook. This result is also regarded as a kind of (-results,
which Voronin called it. He proved this effective result cleverly without using ineffective
results as mentioned above. In his proof, Pecerskii’s theorem is replaced by a geometrical
argument and an argument in which the system of the linear equation and the prime number
theorem for short interval are used. Kronecker’s approximation theorem is replaced by a kind
of amplification technique in which we estimate a certain weighted mean value. Garunkstis,
Laurincikas, Matsumoto, J. & R. Steuding [13] used this effective result to refine Matsumoto’s
theorem. Since the author found a slight mistake in their statement [13], we shall mention
the modified version of this statement as follows;

THEOREM 1.17 (Modified version of the result [13]). Let so = o¢ + itg, 1/2 < 09 < 1,
r>0 K={seC; |s—so <r}, and suppose that g : K — C is an analytic function with
g(s0) # 0. Put M(g) = maxjs_s|=r |9(s)|. Fizxe € (0,1) and 0 < do < 1. If N = N(do,¢,9)
and T'=T(g,¢, 00,00, N) satisfy

M 6 5
@15, <3

and
T > max {co(ao, N) exp exp <01(00, N)A(N,g,(e/3) exp(—éor))ﬁJrﬁ) ,r} ,
respectively, then there exists T € [T — to,2T — to| such that
max |((s+i1) —g(s)| <e

|s—s0|<dr

Tt is written in [21] that the constant ¢;(N,0q) can be taken 5. However one cannot prove this fact by
the method in [21]. This is probably a mistake.
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for any 0 < < &y satisfying
5N L6
1-46 3
)
-

M(r)

Here co(og, N), c1(09, N) and A(N, g, (¢/3) exp(—dor)) are the same constants as in Theorem
1.16 with g = (9(s0), ¢'(50), - .-, gV "V (s0)) , and M(7) is defined by M (7) = max|s_s = |((s+
iT)|.

This correction is inspired by Matsumoto’s paper [30]. We will mention this correction
in the proof of Corollary 1.21.

REMARK 1.18. We will explain the mistake in [13]. Let the settings be the same as in

Theorem 1.17. In [13], they showed that the inequality
_ € € o
IC(s +1i1) — g(s)] < 3 + gexp(ér) + M(T)1 — = G(9)

holds for 0 < § < &, which is the second line from the top of the page 214 in [13]. Here n
and 7 are some positive numbers depending on ¢y and other parameters, and M (1) is given
by M(T) = max|s_s|=r |((s + 7)|. After that, they stated that one can choose ¢ so that
G(9) = e since G(0) = (2/3)e and lims » G(§) = co. However this argument can not always
realized since the above inequality is valid only for 0 < < §p < 1.

Our goal in this thesis is to generalize these results in [48] and [13] to the Selberg class
S with some conditions.

As other recent effective results, we give examples like [15], [11], [12], [41], [42], [13],
[26] and refer to [28] for a good survey of effectivization problem of the universality theorem.

1.2.2. Statement of the main results. The contents of this subsubsection are based on the
paper [8]. To state the main theorem, we start to recall the definition of the Selberg class S.

The Dirichlet series
aln
L(s) = E 7(13

n=1

is said to belong to the Selberg class S if £(s) satisfies the following axioms;

(i) Ramanujan hypothesis: a(n) <. n® for any € > 0.
(ii) Analytic continuation: there exists a nonnegative integer m such that (s — 1)"L(s) is
an entire function of finite order.
(iii) Functional equation: L(s) satisfies a functional equation of the type

Hﬁ(S) = w'Hg(l — E)

where
f
He(s) = LR [[TOys + p5) = 7(5) L(5)
j=1
with positive real numbers R, A\; and complex numbers p; and w with Reu; > 0 and
lw| = 1.

(iv) Euler product: log £(s) = > 2, b(n)n~*, where b(n) = 0 unless n = p™ with a prime
number p and m > 1, and b(n) < n? for some ¥ < 1/2.
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Now we give some definitions. The zeros of £(s) which are not derived from the poles of
the ~-factor v(s) and are not equal to possible zeros of L(s) at s = 0,1 are called non-trivial
zeros, and denote by p = [ + iy such zeros throughout this thesis. Let N (T') denote the
number of non-trivial zeros with multiplicity satisfying 0 < g <1 and |y| < T. We remark
that it is known that

d
(2) N£(T) = =T 1og T + T + O(log T)
m

holds, where d, = 2 Zle Aj and ¢ is some constant depending on £. This d is called the
degree of L£(s) and known to be invariant in the Selberg class S. For other properties of the
Selberg class S, we refer to a survey paper [36] for example.

In this thesis, we further assume the following three conditions.

(C1) There exists a k = k(L) > 0 such that
1
=) Z la(p)|” ~ kK as X — oo.
p<X

(C2) There exists a oz > 1/2 such that for any fixed o > o,
Np(o,T) < T2l

as T — oo with some positive real number Az(c) > 0, where N;(o,T') denote the
number of non-trivial zeros of £(s) with multiplicity satisfying 5 > ¢ and |y| < T.
The implicit constant may depend on o.

(C3) There exists an E, > 0 such that

H H
2

~ d X+H)—7m(X)~
> la)f ~wi and (X H) = w(X) ~ o

X<p<X+H

hold for X > H > X'~ #2(log X)? with some D > 1 as X — oo.

The above implicit constants appearing in the symbol O(-) and < may depend on L(s).
Remark that the universality theorem for the element of the Selberg class S satisfying the
condition (C1) is proved in a certain strip by Nagoshi and Steuding [34].

Here, we define a branch of log £(s). Let G(£) denote

G(L) ={s; 0>1/2}\{< U {s=0+iv; USB})U(—OOJ}}

p=PB~+ivy

and we define log L(s) by

log L(s) = / %(a + it)da

o0

for s =0+ it € G(L).
In this thesis, we first show the following two results which are generalizations of the
results in [48].
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THEOREM 1.19. Let L(s) = >~ a(n)n™* be an element of the Selberg class S satisfying
the conditions (Cl) (C2) and (C3). Let max{o,,1 —2E;} <09 <1, N e N, e € (0,1),
c=(co,c1,...,cn-1) € CN. Then a sufficient condition for the system of inequalities

’ logﬁoo—i—zt)—ck <e fork=0,1,...,N—1

to have a solution t € [T,2T) is that

1\ Uo0.Er)
rzepen (Lo (d+1) ),

where C1(L, 00, N) and d(og, E¢) are effectively computable positive constants depending on
L, 09, N and on oy, E; respectively.

COROLLARY 1.20. Under the same hypothesis of Theorem 1.19 with cq # 0, a sufficient
condition for the system of inequalities
k
W ﬁ(O‘O + ’Lt) — C
to have a solution t € [T,2T) is that
T > expexp (Cz(ﬁ, 00, N)B(N, ¢, E)d("O’Eﬁ)) ,

where Co(L, 00, N) is effectively computable positive constant depending on L,o0¢, N, and
d(og, Er) is the same constant as in Theorem 1.19, and

N— 1
[E u)< 1+ Jeo|
’0\ €

Here the above branch of logcy can be taken arbitrarily.

<e fork=0,1,...,N—1

B(N,¢,e) = |logco| + (

By combining Corollary 1.20 with the method as in [13], we have the following corollary.

COROLLARY 1.21. Let L(s) = >~ a(n)n™® be an element of the Selberg class S satis-
fying the conditions (C1), (C2) and (C3). Let sy = oo + ity, max{og,1 —2E,} < ¢ < 1,
r>0 K={seC; |s—s <r}, and suppose that g : K — C is an analytic func-
tion with g(so) # 0. Put M(g) = maxs_s = |9(s)|. Fize € (0,1) and 0 < 6o < 1. If
N = N(bo,e,M(g)) and T =T(L,g,¢,00,00, N) satisfy

N
Mg < 2

-0, =3

and
T 2 max {expexp (Co(L, 30, N)B (N, g, (¢/3) exp(—=8r)) ) v |
respectively, then there exists T € [T — to,2T — to| such that

. Hsla|}<(6 |L(s+iT) —g(s)| <e
for any 0 < < 6y satisfying
M) <€
1 -46 3
13



Here Cy(L, 0 ) and B (N, g, (¢/3)exp(—dor)) are the same constants as in Corollary 1.20
with g = ( ,g $0)s---, 9NV (s0)) , and M(7; L) is defined by M (7; L) = maxs_so=r | L(s+
iT)].

At the end of this section, we give some examples. First, we will see that one can apply
these results to the Riemann zeta-function in the range 1/2 < o9 < 1. In this case, the
condition (C1) is well-known as the prime number theorem. For the condition (C2), we can
take o, = 1/2 by the zero-density theorem (see e.g. [45, Theorem 9.19]). For the condition
(C3), it is known that

(X +H) —n(X) ~ for X7(logX)2<H<X

log X
holds (see e.g. [19, Theorem 12.8]). Hence we can take Er = 5/12 and we obtain max{o.,1—
2E:} = 1/2 in this case. For other examples, we can confirm that the Dirichlet L-function

L(s, x) of primitive characters y and the Dedekind zeta-function (x(s) belong to the Selberg
class S and satisfy the conditions (C1), (C2) and (C3).

14



2. Proof of main results in 1.1.2
In this subsection, we will show the main results in 1.1.2.

2.1. Key propositions of the proof. Our first purpose is to show Theorem 1.7. In
the proof of Theorem 1.7, the following two propositions play an important role.

In the following, the symbol meas(-) stands for the one-dimensional Lebesgue measure,
and Li,(z) means the polylogarithmic function defined as Yo7 | 2% for |2| < 1.

PROPOSITION 2.1. Let m be a positive integer. Then for any o > 1/2, T > X35 ¢ >0,

we have
< 5} =1.

The important point of this proposition is that 7,,(s) can be approximated by the Dirichlet
polynomial even on the critical line. To prove this proposition, we must control exactly the
contribution of nontrivial zeros of ((s), and we therefore need a strong zero density estimate
of the Riemann zeta-function like Selberg’s result [39, Theorem 1]. More precisely, we require
that there exist numbers ¢ > 0, A < 2m + 1 such that

N(o,T) < T'== 1D (log T)A

uniformly for § < o < 1. Here, N(0,7T) is the number of zeros of ((s) with multiplicity
satisfying 5 > o and 0 < v < T'. Therefore, to prove Proposition 2.1, we need a strong zero
density estimate comparable to the assumption by Bombieri and Hejhal [6]. On the other
hand, when we discuss the denseness of 7, (s) for fixed 3 < o < 1, it suffices to use the
weaker estimate

—U—it)

. : Lipq1(p
im0+ it) = 3 (f;(—)m
X gp

) 1
Xl_lg_loo 7 meas {t €1[0,7] ;

N(O', T) < Tl—c(0—1/2)+6

for every € > 0. Hence, there is an essential difference of the depth between the discussion
in the case % < 0 < 1 and that in the case 0 = % in Proposition 2.1. We will explain this
point more closely later.

In contrast, we can prove the following proposition by almost the same method as in [3],
[4].

PROPOSITION 2.2. Let m be a positive integer, 1/2 < o < 1. Let a be any complex number,
and e be any positive number. If we take a sufficiently large number Ny = No(m, 0, a,¢), then,
for any integer N > Ny, there exists some Jordan measurable set Oy = Oy(m,o,a,e,N) C
[0, 1)) with meas(©g) > 0 such that

Z Lip41(p~7 exp(—2mib,))
o (logp)™

for any 0 = (Hpn)z(:]\{) € 0.

Roughly speaking, Proposition 2.1 means that 7,,(c + it) “almost” equals the finite sum
of polylogarithmic functions when the number of the terms of the sum is sufficiently large,
and Proposition 2.2 that any complex number can be approximated by the finite sum of
polylogarithmic functions when the number of the terms of the sum is sufficiently large.

—a| <E.

15



2.2. Proof of Proposition 2.1. In this section, we prove Proposition 2.1. In order to
prove it, we prepare two lemmas.

LEMMA 2.3. Let m be a positive integer, and o > 1/2. Let T be large. Then, for
3§X§T%, we have

%/14 N (0 + it) — Z A(n)

5% notit (10g n)m—f—l
Here, we refer the following theorem to prove this lemma.

2 X120

dt <« —
< (log X)2m

LEMMA 2.4. Let m, k be positive integers. Let T be large, and X > 3 with X < T 55 .
Then, for o > 1/2, we have

5y [ it) — im Aln) Y, ol
(3) o (0 +it) — i Z no+it(logn) ™+l m(o +it)| dt
2<n<X
om+1  C \F Xxki-20) T 155
Qkk' C«kk,2k(m+1) )
< ( 2m * logX) (log X')2km * (log T7)2km

This lemma is Theorem 5 in [18]. As we mentioned in the previous section, the proof of
this lemma requires a strong zero density estimate like Selberg’s result. In fact, if we only
knew the estimate

N(o,T) < T'== 1D (log T)A
for some ¢ > 0, A > 1, then the right hand side of (3) in the case k = 1 becomes
X1-20 T
@) +
(log X)2m ' (log T)2m+1-A

Hence, the power of the logarithmic factor of the zero density estimate plays an important
role in the case o = 1/2.

PrROOF. By Theorem 5 in [18], we have

1 /7 _ m A(n) ,
?/14 N (0 + 1t) — i Z 2 (log ) — Y (o +it)
where
(4) Yo (o + it) Z (m = k"k'z B—a)" kit — )k

2 1—20

dt -_—
< log X2’

2<n<X

Further, by Lemma 1.6, we see that
N (0 +it) — Yo (o +it) = "y (0 + it).
Hence we obtain this lemma. (Il
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LEMMA 2.5. Let m be an integer, o > 1/2. Let T be large. Then for 3 < X < TY* we

have
L " —o—1t A 2 X1—20
‘Z el ) - Z Tit ) 11 dt < 2m+1’
(log p)™ e A (logn)™ (log X)

where the function A(n) is the von Mangoldt function.
PROOF. By definitions of the polylogarithmic function and the von Mangoldt function,
we find that

Z Lim_,_l(p*"*it) B Z A(n) Z Z k(a+zt)
m o+ m+1 m—+1
(logp) 2 tit(log n)m+ P k + (log p)™

p<X

—k(o+it) X1-30
p
I S Eaad (s R
p<X logX<k 311(2)2);

Here, we can write

—k(o+i 2
pk(+t)

2 2 gy

psX e X (3l
ogp logp

—2ko
p

pz):( logX§3llc)gX kQ(m+1) (logp)Qm
(P ph?) o (o /p52)
+
Z Z Z Z (krk2)™ 1 (log p1 log pa)™

p1<Xp2<X logX log X log X log X
T <K1S3Togpr Togpg <F2S370g7,

(p17k“1)7£(p27k2)

—k(o+it) 2

p
S S o

<X logX log X
= <k<3TES

dt

Therefore, it holds that
p—2ko

=T Z Z }20m+1) (log p)2m

<X logX log X
P> log p <k§3 log p
2

1

+0 X3 Z Z kok.m+1 (10g p)m

p<X logX<k 3logX
logp

< T X1—20' N X5—20' < T Xl —20
<logX)2m+1 (log X)Q(erl) (log X)2m+1'

17



Hence we have

i

afit) 2

Z Lim—l—l(pi .

A(n)
Z notit(log n)m+1

p<X (logp) 2<n<X
—k(o+it) 2 2—60 X120
p
—— | dt+ T ——— <
<[ ¥ Eefarr e S

p<X logX<k< log X
log p

which completes the proof of this lemma. 0

PROOF OF PROPOSITION 2.1. By Lemma 2.3 and Lemma 2.5, for X < TY13 we find

that
1 T
v/,

2

dt

—a—it)

~ . Lim+1 (p
(0 + i) = Y = S
= (logp)

1 /7 A(n) 2
— . it) — - dt
< T [4 U (U 1 ) 2<Z<X no—i—zt(log n)m—i—l
L m —o—it A 2
_/ i (p ) - Z otit ) m+1 dt
T logpn 2= wori(logn)
X1—2o
< Qog X
By using this estimate, for any fixed ¢ > 0, we have
1 ~ . Lim_H(p—a—it) Xl—2a 1
= tel0,T]; |Tm t) — L S = 4=
Tmeas{ 0,7 ; |Tm(o + it) I;{ (log )" > K 82(10gX)2m+T

Hence, for any 7' > X'3° it holds that

—cr—it)

Li,,
il +it) — Y Bt )

1
—measqt € [0,7];
r { = (logp)™

Zs}—>0

as X — 4o0o. Thus, we obtain Proposition 2.1. O

2.3. Proof of Proposition 2.2. In this section, we prove Proposition 2.2 by the method
described in [21, VIIL.3|, [48]. First of all, we will show the following elementary geometric
lemma.

LEMMA 2.6. Let N be a positive integer larger than two. Suppose that the positive numbers
r1,72,...,N Satisfy the condition

(5) Tg < ) T,



where rp, = max{r, ; n=1,2,... N}. Then we have

(6) {Zrnexp(—Qmﬁn) eC; 6, €lo, 1)} = {z €eC; |7 < Zrn} .

n=1

PRrROOF. By Proposition 3.3 in [7], it immediately follows that
N

{Z rnexp(—2mif,) € C; 6, € [0, 1)}
n=1

is the closed circle with center origin and radius ZnNzl rn. Note that their 7T}, becomes zero
under assumption (5). O

Next, we introduce the following definitions.

DEFINITION 2.7. Let m be a positive integer and M a finite subset of the set of prime
numbers. For o > 1/2 and 0 = (6,),em € [0, 1)M, we define the functions

Z exp(—2mif,)

5 v (logp)™

. Liy11(p~7 exp(—2mib,) exp(—2mik6
T Sl s

m+1 kU
peEM 1ng pEM k=1 lng)

Pm, M (Ua Q) =

DEFINITION 2.8. Let pn be the n-th prime number. Put
00 = (6) . =1(0,1/2,0,1/2,...) € [0, )",

and

ZZ eXp QTZkG( ))
m—+41 ko’
- 2 g (g )

Note that the series for 7, , is convergent for o > 1/2.

PROOF OF PROPOSITION 2.2. Fix a complex number a and 1/2 < o < 1. Let U be a
positive real parameter. We take a sufficiently large number N = N (U, m, o, a) for which the
estimates

1
G — Ym,o < —
| | Z p° (log p)™

peEM

1m§2%

Phin (10g pmin) PEM\ {Pmin} p (log p)

are satisfied, where M = M(U, N) is defined as {p ; p prime, U < p < N}, and Prin 18
the minimum of M. Note that the existence of such N is guaranteed by Z = 00.

Then, by Lemma 2.6, the function

log p)™

1
() [0, DM 30— o m(0,0) el zeC s |2 < _—
¥ ,M( ) [ ) ¥ 7/\/(( ) { | | pez/:\/lpa(logp)m}
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is surjective. Hence, there exists some 0 = 0(m, o, U, N)V) = (Qél))peM € [0, 1) such that

Pm,.M (U; Q(l)) =a— Ymo-
By using the prime number theorem, we find that

_ (1) ) exp( 2mk:c9 )
Nim,. M UaQ SOmM g, 9 +
) - POpREE

1
=0~ Ymo +0 (aogmm) '

For any prime number p, we put

P o) it pe M.

Then it holds that
Z Lin1(p~7 exp(—2mwi65))
(log p)

p<N logp "
_ 3 L0 expl( 2nity”)) 3 Linnap™” exp(—2mify”))
pEM (logp)m p<U (1ng)m

p~7 exp(—27i6y"))
(log p)™

Y

~ Li,
(0, 80) g+ 3

p>U

and additionally, by using the prime number theorem and simple calculations of alternating

series,
Lin1 (p~7 exp(—2mi6})) exp(—2mid ")) 1
Z ( m = Z . m + O Z m

= log p) < v (logp) < p*(logp)
o !
(logU)™

Hence, by taking a sufficiently large U = U(e) and noting the continuity of the function
Z Liy+1(p? exp(—27iby))
p<N (log p)™

with respect to (6,),<ny € [0,1)™™) we obtain this proposition. [J

2.4. Proof of Theorem 1.7. In this section, we prove Theorem 1.7. Here, we use the
following lemma related with Kronecker’s approximation theorem.

LEMMA 2.9. Let A be a Jordan measurable subregion of [0,1)N, and ai,...,ay be real
numbers linearly independent over Q. Set, for any T > 0,

(T, A) = {t€[0,T] : ({ait},..., {ant}) € A}.

Then we have
meas(I (T, A))

TLHEOO T = meas(A).
PrOOF. This lemma is Theorem 1 of Appendix 8 in [21] O
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Let us start the proof of Theorem 1.7.

PROOF OF THEOREM 1.7. Let € > 0 be any small number, a any fixed complex num-
ber, % < o < 1, and let Ty be any positive number. Define Sy (61, ...,0y;0,m) and
SM,N<9M+1; e ,9]\[; g, m) by

Lierl(p_
Su(01,...,00;0,m) = L

067271’1'0” )

06—27ri9n )

)

Li,, -
SM,N(9M+17-~-,9N;O', m) — Z +(11(p )m
M<n<N 0g Pn

Then, by Proposition 2.2, we can take a sufficiently large My = My(m, 0, a, <) so that for any
M > M, there exists some Jordan measurable subset @gM) = @ﬁM) (m,o,a,e, M) of [0,1)M
such that d§y = meas(@gM)) > 0 and

‘SM(elw"aeM;o-?m)_a“ <é

for any (0y,...,0y) € @gM). We also find that

1 1
/" / 1Svn Orrsss - - -, On;0,m)|PdOrryy - - - dOy
0

—2mikOy

Z Z km+i( logp

M<n<N k=1

-y ¥ zz{ b

k1ks) m+1 (lo lo
M<ni1<N M<na<N ki=1ko=1 1k2) g Pny 108 Py )™

1 1
X / . / 6727”'(]“19”1 *k29n2)d9M+1 . dQN}
0

1
- Z Zka-‘rl 20k10gp )2m < Z b (1og p,)2m

2m
M<n<N k=1 M<n<N pn(logp )

dOrri -+ - dby

Note that the last sum tends to zero as M — +o0o. Therefore, there exists some large number
M, = Mi(m, ) such that, for any N > M > M, it holds that

1
meas ({(9M+17- .. ,(9]\[) € [O, 1)N7M ; ’SM,N(HMJA; ce ,QN;O',m)‘ < 8}) > 5

@(2M,N) _

Here we denote the set of the content of meas(-) in the above inequality by
oMM (M, N, e).

We put My = max{My, M,} and O3 = @§M2> X @gM2’N) for any N > M. Then O3 is a
subset of [0, 1)V satisfying meas(03) > )7, /2. Hence, putting

(T) = {t € [T, T] ({%logpl},...,{%logp]v}) E @3}
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and applying Lemma 2.9, for any positive integer N > Ms, there exists some large number
Tyn > Ty such that meas(Z(T)) > dp,7T /2 holds for any T" > Ty. On the other hand, by
Proposition 2.1, there exists a large number Ny = Ny(e, dps,) such that

—U—it)

Li,,
ﬁm(a-+it)—-j{:-l—ilQﬁL———

meas < t € [Ty, T] ;

< 5} > (1= 0p, /)T

for any N > Ny, T > pi¥.
Therefore, for any N > max{Ny, My + 1}, T > max{Ty, p°}, there exists some t, €

[To, T'] such that
t t
({2_01ng1} PRI {_OlogpN}) S @37
T 2

Lipi1(p, 7 ")
(log p,)™

and

<E.

(0 + ito) = >

n<N

Then we have

|77m(0 + itO) - a|

~ le —O’e—ito log pn le —ae—ito log pn
< im0 +itg) — Z ng)n ) ) + Z H((l]:)" B ) _ a
L.m —o ,—ito log pn
NS 1+1(fn€m )| < se.
Ma<n<N ( ng")
This completes the proof of Theorem 1.7. 0

2.5. Proof of Theorem 1.5. In this section, we prove Theorem 1.5. Here, we prepare
the following lemma.

LEMMA 2.10. Let 0 > 1/2 and m be a positive integer. Then we have
M (8) = Ym(s) + Om(logt),
where Y, is defined by (4).
PrOOF. This lemma is equation (2.2) in [18]. O

ProOF OrF THEOREM 1.5. First, we show Theorem 1.5 in the case m = 1. If the number
of zeros p = f + iy of {(s) with 8 > o is finite, then there exists a sufficiently large Ty such
that Y;(o 4 it) = b for t > Ty, where b is a positive real number. Therefore, by Lemma 1.6,
we have

t
/ log ((o +it")dt' =iy (o +it) + b
0
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for any t > T. By this formula, we obtain

t t
{/ log (o +it)dt' ; t € [O,oo)} D {/ log (o +it)dt' ; t € [To,oo)}
0 0
If aset A C Cis dense in C, then for any ¢; € C\ {0} and ¢; € C, the set {cia+c2; a € A} is
also dense in C. By this fact and Theorem 1.7, the set {if} (0 +it) +b; t € [Tp, 00)} is dense
in C. Thus, the set {fg log ((o +it")dt' ; t € [0, oo)} is dense in C under this assumption.

Next, for m € Zso, we show the equivalence of (I) and (IT). The implication (I) = (II) is
clear since the equation n,,(o + it) = ™7,,(o + it) holds by assuming (I).

In the following, we show the inverse implication (II) = (I). By Lemma 2.10, if (I) is
false, then the estimate |n,,(o + it)| >, t™~! holds. Therefore, for some T3 > 0, we have

{nm(o +it) ; t € [T,00)} CC\{z||z[ < 1}.
Here, A means the closure of the set A. Since {n,,(c +it) ; t € [0, Ty]} is a piecewise smooth

curve of finite length, u ({nm(a +it) ; t €0, Tg]}> = 0. Here p is the Lebesgue measure in
C. Therefore, we obtain

{25 [2 <1} Z {nmlo +it) ; ¢ € [0, To]}

Hence, if (I) is false, then the set {n,,(c +it) ; ¢t € [0,00)} is not dense in C. Thus, we obtain
the implication (II) = (I). O
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3. Proof of main results in 1.2.2

3.1. Preliminaries. In this section, let £(s) be an element of the Selberg class S which
is represented by

L(s) = Zl ay(;:) = Hexp <kz b;is)> for o> 1.

3.1.1. Definitions and Notations. We use the following definitions and notations.

e Let Ny denote the set of nonnegative integers.

e Let P denote the set of all prime numbers.

e For a set A, let R4 denote the family of elements in R indexed by A.

e For any @ > 0, let P(Q) denote the set of prime numbers smaller than or equal to

Q.
e We define the generalized von Mangoldt function A,z(n) by
L =
=3 Acmn
n=1

for o > 1, that is, Az(n) = b(n) logn.
e Let M be a finite subset of P and s = o + it be a complex number with o > 1/2.
For any M C N C P and 6 = (0,),en € RV, we denote pu(s,0) and log La(s, 0)

by
b(p) exp(—2mif
s ) = 3 P2
pEM p
and
log Luq(s.6) Z Z exp —2mil6 )
peEM =1

Note that the series log L (s, 8) converges absolutely by the estimate b(p') < p'
with some ¥ < 1/2 coming from the axiom (iv) of the Selberg class. If M = {p}, we
abbreviate (s, 8) and log L,1(s,0) to p,(s,8) and log L,(s,0) respectively, and
if 0 = (0)penr, we do log L (s, (0)pen) to log La(s).

3.2. Some known results. In this subsection, we summarize the results not coming
from analytic number theory. The followings are used in [21] and [48|.
3.2.1. A certain estimate coming from the Vandermonde matrizx.

LEMMA 3.1. Let X > e, N € N and a = (ap, ay,...,an_1) € CN. Put X; = 21X for j =

0,1,..., N —1. Then the system of linear equations in the unknown z = (29, 21, ...,2N-1) €
(CN,'
1 1 1 % ag
—log X —log X3 —log Xn_1 % aq
(—log X,)* (—logX1)* ... (=logXy_1)? z | = | a
(—log Xo)V ' (=log X))V " o (=log Xny_)V ! ZN-1 aN—1
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has a unique solution z, = zo(X,a) € CV and the estimate
zoll < (log X)™ |l
holds.

This lemma is used in [21] and [48], however the proof was written very roughly in these
papers. For this reason, we will give a proof in this thesis.

PROOF. Fix a = (ag,ay,...,ay_1) € CV. Let U = (Uy,Uy,...,Un_1) be indetermi-
nate and z = (2, 21, .. ., 2y_1) variable in C(U)", where C(U) denotes the field of rational
functions. We first consider the following system of linear equations;

1 1 1 % ao
Uy Uy oo Un_q 21 a1
(7) us Ut Ui n | =] a
ot oot o Ut \eva an-1

Let B(U) denote the first matrix in the left hand side of (7). Since B(U) is the Vandermonde
matrix, we have
(8) det(B(U) =[] @We—-tn)#0 inC[U.
0<I<k<N-1

Hence the system of linear equations (7) has a solution z = 2(U, a) € C(U)" such that

1 -
E— 10 SR
der gy P Y e

where B(U) = t(gm(U))ogmgN_l denotes the adjugate matrix of B(U). Here the symbol *D
stands for the transposed matrix of a matrix D. We fix 0 <4,7 < N — 1 and put

AU = T -,
0<I<k<N-1;
=

Then we find that A;(U) divides EM(U), and hence there exists f; ;(U) € C[U] such that
b;;(U) = f;;,(U)A;(U). By the definition of the determinant, we have

deg (0i5(U)) = Nfﬁ i
8=0

Here the statement deg(g(U)) = n means that

tgz

......

for g(U) = >, ix_, Cion.. iy U ..U e C[U]. On the other hand, we find that
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Therefore we have

de (f3,(U)) = deg (bi;(U) ) — deg (4;(0))
_ (Z‘ﬁ_i) . (z‘ﬁ_w_n)
B=0

=N-1—-i1<N-1

By substituting U into X = (—log Xy, —log X1,...,—log Xy_1) and letting z, = z,(X, a)
be a solution of the system of linear equations (7) in this case, the estimates

b;;(X)| = 1A;(X)] 1 f;(X)]| <n (log X))V~ and  det (B(X)) = 1

hold by the equation (8) and the definition of A;(X). Consequently, we obtain

ol <<N( > \E,AX)\) lall < (log X)¥ " la].

0<i,j<N-1

This completes the proof. O
3.2.2. Elementary geometric lemma.

LEMMA 3.2. Let N be a positive integer larger than two. Suppose that the positive numbers
r1 <1y <o <1y satisfy ry < ij_l r,. Then we have

N N
{Zrnexp(—zmen) eC; 0, €0, 1)} = {z €eC; 2| < Zrn} :
n=1

n=1
PROOF. The proof is written in [7] roughly and in [44] precisely. O

3.2.3. The mollifier and the estimate for its Fourier series expansion. Let @), M > 2 and
put § = dg = Q7! € (0,1). We will prepare a mollifier on RP(®) and its truncated formula
as follows; We take ¢ € C°(R) satisfying

e}

o@) >0, supp(e) C [~1,1], / p(x)dr = 1.

o0

Throughout this subsection, let the implicit constants depend on ¢. We define the function
o5 [-1/2,1/2] = R by

el =30(5) vel-uz12

and extend s onto R by periodicity with period 1. We also define ®o(6) : RP(@ — R by

Po(0) = H ps(bp), 0= (ep)pe'P(Q) € RP@,
P<Q
Note that
(9) Bo(0) #0 implies 0 € [-6,0]7@Q + 2P,
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For any 6, € R, the function ps(0 — 6p), 0 € R can be represented as a Fourier series
ws(0 —6p) = Z o, (0) exp(2mind)
ne”L
where the Fourier coefficients are given by
1/2
an(6y) = / ©0s(0 — bp) exp(—2mind)d6.
—1/2
By integration by parts, we have
(10) ap(fp) =1 and |ay(6y)| < min{1,C,/6%n}
with some positive constant C,, depending on ¢. Then we have

P —0") = Y 5a(0©) exp (2ri(n, 0))

nezZP (@)

=Y A en@rimo)+0| Y |60

n=(np)pep(q)€L”(?); nezZP @),
max,<q |np| <M max,<q [np|>M

for 6 = (0,)pep(q) € R”@, where
0) => mn0, and B,(09) =[] o, (6).
p<Q p<Q
Note that the estimates
Bo(0”) =1 and [B,(6) < [] min{1,C,/6°n}
p<Q

hold by the estimate (10). By using the prime number theorem and by noting

{ﬂ_ (n)pepio) € ZP@ ; m<a5<|np| > M} — U {nez”9; |nJ|>M},
P>
q€P(Q)

c m(Q)
;:2 }) < exp(ChQ)

(11) D 1.8 < (Zmin{l, 5

neZP (@) nez

we have

and

2.

n=(np)pep(Q) €LY Y;
max,<q |np|>M

5u(0)

(@)1
1 1 1
<@ | Y o <§jmm{ 5}) < L exp(1Q)
neZ; nez

|n|>M
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for some positive constant Cy, C; depending on ¢. Hence we have

(12) D0 — 00

=Y Al enerit) +0 (5 o).

n=(np)pep(q)€L”Y;
max,<q [np|<M

3.2.4. Known results for the Selberg class S.

LEMMA 3.3. The following statements hold.

(i) We have a(p) = b(p) for all primes p.
(ii) For any ¢ > 0, we have the inequality

b(p)| < (2' = 1)p*/i
for all primes p and all | € N, where the implicit constant may depend on L(s).
PRrROOF. The proof can be found in [33, Exercise 8.2.9]. O

LEMMA 3.4. Let qj(r) = (u; +7)/Xj forj =1,...f andr € No. Ifz > 1 and s #
0,1,—q;(r),p for j=1,...f and r € Ny, then we have

Ll Aﬁw T —q;(r —x —2(gj(r)+s)
13 Es)=-—
13 F@=-2 = bgl,ZZ T
TL§$2 J]= 1 r=0
728 _ s I‘Q(l s) _ rl=s 1 P—s — I2(p—s)
e s?log x e (1 —s)2logx i log;xZ (p—s)?

where Az .(n) is defined by
1 2
Ac.(n)=Ag(n) forl<n<uz, Ag(n)% for x <n < 2?,
x
and mg is defined by
the order of pole of L(s) at s =1 if L(s) has a pole at s =1,
me =<0 if L(s) has no zeros or poles at s = 1,
(—=1) x (the order of zero of L(s) at s =1) if L(1) =

PRroOOF. This follows by the same argument as in [45, Theorem 14.20]. O

3.3. Proofs.
3.3.1. Proof of Theorem 1.19. We fix max{o,,1 —2E;} < 09 < 1 and N € N, ¢ =
(cx)h=gt € CV and take ¢ € (0,1). We begin with the following lemma.

LEMMA 3.5. There exist dy(og, Ez) > 0 and C(L, 09, N) > 0 such that if
Q> C(L,00,N) (Ilc]| + 1/2) 752,
then there exist 0 = 6 (Q) = (91(0*))]3673(@) € RP@ such that
dk

—— log ,Cp(Q)(UO,Q(*)) — k| <

7ok fork=0,1,...,N — 1.
s

€
3
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Here (d*/ds®)F (o) means (d*/ds®)F(s)|s—s for holomorphic F(s).
Proor or LEMMA 3.5. We divide the proof into several steps.

STEP 1. We will show the following claim and give a certain convergent series.

CLAIM 3.6. There exists °) = (01(,?1))” . € RY such that the estimate

(14) Zb p) exp( 27?2'91()0)) < Cpp€"

P<&
holds for any & > 0 when the estimate |b(p)| = |a(p)| < Cr,p" holds for any prime number
p with some positive number 7.

PRrOOF OF CLAIM 3.6. We put Py = {p € P ; b(p) # 0} and {p,}r>, which satisfy
{pn}2, = Py and p,, < ppy1 for any n € N. For any n > 1, put

b(pn) = |b(pn)| exp(2mib]),
and we take 8 = (65))2, € R so that
00 =69 6 =1/24 ')

p1? p2 7’
o5 if Zb(pj)exp(—Zmé’é?)) <0,

0) __ j=1
91(03) ’ 2

12405 it ) b(py) exp(—2mi6”) > 0,

\ j=1

/ -1

oy it Zb(pj) exp(—2m0}()2)) <0,

90 — j=1
b -1
1/2 4+ Qz(f) if Z b(p;) exp(—27rz'9§)?)) >0
\ 7j=1

By the construction of ) € RY, we have the estimate (14) for any £ > 0 when the estimate
|b(p)| = |a(p)| < Cr,p" holds for any prime number p with some positive number 7. Taking
6, =0 for p € P\ Py, we have the conclusion. O

We put

—log p")*b(p') exp —2milpY
%—ZZ (v') exp(—2rite})
p

plao
forany K =0,...,N —1and v = (fyk) " - Since it holds that
Ib )| (log p')*
2 Z e <
p

by an argument similar to (2.13) in [34], we find that the series v, is convergent by partial
summation.
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STEP 2. We will use the positive density method introduced by Laurincikas and Mat-
sumoto [29]. The following idea is due to [34]. Put u = /k/8 and p = k/4. Then we
have

k—p>0 and k—2u%>—p>0.
We first take a positive number 1 so that
(15) 0<n<1/2(1—Ep),

which is chosen more precisely later (see (32)). Then there exists Cr,, > 0 such that |a(p)| <
Cpr,p" for any prime number p by the axiom (i) of the Selberg class S. Let U be a large
positive parameter depending on L, 0o, N, 7, and let U=z (log U)P* < H < U. We put

M = {pe P DU <p<2U+ H lalp)] > )
fOI'jzoylv"'N_l’
CLAIM 3.7. We have

(v, )
(16) # M) > g log U’

where #(A) denotes the cardinality of the set A.

PROOF OF CLAIM 3.7. Put m,(z) =#{p € P ; p <z, la(p)| > p}. When a > g > 1, it
holds that

(17) Y la)f < (C2,8% — 1) (mu(B) = mu(@) + ¥ (w(8) = m(a))

a<p<p

by (2.26) in [34]. By the condition (C3), it holds that

. A H
1 27 H) —7n(27U) <2
(18) w(PU + H) = w(2U) < 2
and
9 H

(19) > lap)P = (k- p)—-

. : log U

21U<p<27U+H

Substituting o = 2U , § =2/U + H for j =0,1,..., N — 1 into (17) and using the estimate
(18) and (19), we have
H(MUY =m0, (27U + H) — m,(27U)

12%]

H
(4NnCZ U — pi2) log U

>(k — 2p° = p)
H
P LN o log U
This completes the proof. O

STEP 3. We will use Lemma 3.2 in this step. Let X be a sufficiently large positive number
depending on £, 09, N,n. We may assume that #(M%’X)) > N by (15) and (16). Fix the

distinct primes pr,, Prys - - - Pky_; € M%’X). Let Y > 2X + 1 be a positive parameter which
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is determined later (see (20)), and let Y=z (log V)P < H <Y which is determined later
(see (31)). Let

MY = Lpe P 2V <p<2Y + H}

and put
N-1 N-1
MLY’H) = I_I MLY]H) and MO — |_| M§Y’H).
§=0 §=0

CraM 3.8. We consider the following two conditions;
(Y1) For any px € M%’X) and py € MY it holds that
apx)] _ lalpy)]

X Y

(Y2) For any px € M%’X) and 7 =0,1,...,N — 1, it holds that

bl

la(px)] < Z !a(p)!‘
(o) — o0
Px peM§Y’H>

Then the choice

1

(20) re (CL> T Xy,

0
yields the condition (Y1), and the estimate

H
Xoo—n <<£,00,N77] Yao+27l<10g Y)2

yields the condition (Y2). (We take H suitably which satisfies the bound (21) later (see (32)).)

(21)

PrROOF OF CLAIM 3.8. We first consider the condition (Y1). Since the estimates

ol | g, n ) Cey _ Ce
Px Px (2X)0 Dy py T T Yoo

hold for px € M%’X) and py € MY H) the choice Y in (20) yields the condition (Y1).
Next we consider the condition (Y2). Now it holds that

a(p)] o)l . # (v 1
(22) > 2 D = Gyt (M) > eonivn Yoor2nlogy

p°
pGJ\/l;Y’H> pGMfL}j]TH)

by (16). By using the above estimate and the estimate |a(px)[py”® < Cr,X @0~ for

px € M%’X), the condition (Y2) holds when the estimate (21) holds. O
For any y =0,1,...,N — 1, put
N-1
M; = {p, UMD and M= | | M;.
=0
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In what follows, we take

Then we have

@) Y M) (g 0y b=z < Y B2

o
PEM; p pPEM;

by Lemma 3.2 and by (i) of Lemma 3.3 when the estimate (21) holds.

STEP 4. Let 0 = (0,)pem € RM and write 6; = (6))perr,. We will prove the following
claim.

CLAIM 3.9. For j,k=0,1,...N — 1 and for = (0,)pem € RM, we have

ak
(24) @@Mj(ob)Qj) = (= logY;)* o, (00,0;) + Rk,
where Y; = 27Y and
o oy (o), (log X))V
(25) Rjk Leonny (log V)N 2H2Y (0w 4 2 —
PrOOF OF CLAIM 3.9. By the equation (24), we have
R = Z {(—=logp)* — (—logY;)*} b(p)p~*° exp(—2mi6,)

pEM(YH>
+ {(—logpy,)* — (—log Y;)*} b(pr, )Py, exp(—27ri6pkj).
Using the mean value theorem for (—log p)* — (—log Y;)* in the first term, we have
— H —0 —0
Rip<n Y, (ogY)"'p)lp™™  +|(ogpy,)" — (log ¥5)"|b(px,)lpi,™
pEMg-Y’H)
By using the estimate |b(p)| = |a(p)| <,y p", it holds that
H H
k—1 —0 k—1 —o
> (ogY) S bp)lp <y (log Y)Y

(Y,H) (Y,H)
pEMj pEMj

H
< (logY) 1Y Y

p€M§Y’H)

(log Y)N 2H2Y (1+o00— 77)
and
|(log pr,)* — (log ;)" |[b(ps, ) 1,

(logY)N-1 (log X)N -1

<eNm (log Y)Nilpzjigo < Xoo—n £,00,Nm X o0-n
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This completes the proof. O

STEP 5. We now consider the following system of linear equations in the unknown z;:

=2

(26) (—logY;)fzj =cx —y fork=0,1,...,N — 1.

.
Il
o

Since the coefficient matrix of this system is the Vandermonde matrix, Lemma 3.1 implies

that it has a unique solution z = 2(Y,¢,v) = (20, 21, - - -, 2v—1) which satisfies the bound
(27) 2]l <n (log Y)¥ e — -

CramM 3.10. A sufficient condition that the system of equations
(28) om,;(00,0;) = 25, for j=0,1,...,N~—1
has a solution § € RM is that the estimate (21) and the estimate
(29) o P e =2l + 1

Yoot2n(log Y)N+1 -

hold.

Proor or CrAmM 3.10. It is enough to take H to establish

|b(p)|

(30) Hdéggzm
by (23). The bound (22) and (27) give the proof. O

STEP 6. Note that, by 0y € (max{o,,1—2E,},1), it holds that (oo, 2) N (1 — E,, 1) #
(). We will show the following claim.

CLAM 3.11. Let H =Y* and choose A = A(ag, E¢) and n = n(og, E¢) such that

1 1 1
(31) A:M%EQZEGMM%J—Q}+*;ge(%,z%>mu—aﬂ)

and

1 1—E; Aloy,E;) —
(32) 77 = n(o-o, E£> = 5 mln{ 2 ‘C’ (007 QE) 0()

, 1+ 09— 2A(UO,E£)} > 0.

00

Op—1

4\ (00, Br) =

(A—O'O—QT])>0

and

B(oy, Er) = min{aoai ; (14+09—24—1n),00 — 77} 0.
If the estimate
(1) _
(33) X 2 CO(L,00,N) (Jle = 7y + 1) 5™
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holds with sufficiently large CV (L, 00, N) depending on L,0q, N, then there exists o =
WL, 00,N, X) = (92(,1))1,6/\4 € RM such that

N-L gk
(34) Z 5gF P M, (00, 05) = (cx — )| Keoon X PP (log X)N !
7=0

holds for any k =0,1,..., N — 1.

PrOOF OF CLAIM 3.11. Let X satisfy the bound (33). Then we have (21). By substi-
tuting (20), the left hand side of (29) equals

H YA—O’()—Qn ngl)(o'mEL)

35 = =Loo,N 77 o N
(35) Yoot2n(log Y)N+1 — (log Y)N+1 L,00,N (log X )N+1

and the estimate
(36) Rikx <rogn X Bl0E) (Jog X)N-1

holds by (25). By the estimate (35), we have (29). Hence Claim 3.10 with the estimates
(21) and (29) implies that there exists 81 = 8V(L, oy, N, X) = (6’1(71))1,6/\4 € RM such that
the system of equations (28) holds. Therefore, by (24), (26), (28) and (36), we have the

conclusion. ([l
STEP 7. To finish the proof, we give some estimates. Put
1 2

(5025(0'0—1/2), lO:o‘O——]_/Q

Then we have

" 0"
’@ IOg ﬁp(Jo, ep) - @@p(o—m ep)

- i N o(ph)| (log p)N !

plao

=2

for k=0,1,...,N —1 and 6, € R. By a calculation similar to (2.12) in [34], we have

= IV 1b(p")| (log p) N (logp)¥*  (logp)V~'  (logp)¥~!
pla'o <<E’OO’N p2(00—50) pl0(00—1/2) p00+1/2 ’

=2

Hence it holds that
k k 1ng N-1
‘8 - log L,(09,0,) — @gop(agﬁp) ( )

p0'0+1/2

(37) <<£,UO,N

for k=0,1,...,N —1and 0, € R.
From now, let @ > 2VY and let X satisfy (33). Put

o) _ 9;? ifpe P\ M,
P o) ifpe M.

Then we have the following estimates.
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CLAM 3.12. We have

ak
(38) R log Lp@ym(00,07) = Y + Op 5o v (X277 (log X)N ),

ak
sk
hold for any k=0,1,..., N — 1.

ak
log EM(UO:Q( )) - —<PM(0079( )) < L,00 Xl/ziao(logX)Nfl

(39) 9aF

PROOF OF CLAIM 3.12. The estimate (39) follows from the estimate (37). Next, we will
show the estimate (38). We can write

ak
ek log Lp(q \M(Uo, =T — (Z-i‘ Z) - log £, (00,0 0))-

p>Q  peM

By the estimate (37), we have

(x:x) ( 108 £,(00,0%) iy (o0, 0

p>Q pEM

ng _
<<£ 00,V Z 00+1/2 <<N X1/2(10g X)N '
p>X

On the other hand, we have

oF b(p)(log p)* exp —2mif!
S 20 - 3 M) exp(2ri?)

p>Q p>Q P
&=00
[(; b(p) exp( 27rz'01()0))> (longf)k]
P =Q
/ (; b(p) exp( 27ri6}(70))) d ((105%)])

Loy Q@77 (log Q)N < X270 (log X)N !
by partial summation and the estimate (14). By a calculation similar to the above, we have
k o 0)
Z @%(an A )
pEM;

b(pr, ) (log pi, ) exp(—2mi6y) ) S b(p)(log p)* exp(—2rif")

e Y;<p<Y;+H P
<<E,00,NX1/2_UO(lOgX>N_1
for any 7 =0,1,..., N — 1. This completes the proof. O
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STEP 8. We will finish the proof in this step. By Claim 3.12, we have
akz
sk

o () 0" wy_ 9" W
:@<p (00,9 )+ aklogﬁM(og,Q )‘@@M(UO,Q )

log Lp(g) (00, Q(*))

8k
t o log Lp(qy (a0, )

=cp — Ve + OrooN (X_B(UO’EL)(log X))
+ 9% + Or,00.N (Xlﬂ_ao(log X)N_l)
= cp + OL,GO,N (Xfmin{B(oO,Eg),oOfl/Z}<logX)Nfl)

for any k =0,1,..., N — 1. Hence we have

ak * — min o 00— —
5 log Lp(g (UO,Q( )) —cr| Kroon X {B(c0,EL),00 1/2}(logX)N 1
for any £ =0,1,..., N — 1. Putting
20 _ . -
don, Be) = max { (" (00, )", (min {B(oo, Bc), 00 — 1/21) '},
0 —

letting C'(L, 09, N) be sufficiently large depending on L, 0y, N, and using
lle =l +1/e <z [le]| + 1 /e,
we have the conclusion. O
Proor or THEOREM 1.19. We divide the proof into several steps.
STEP 1. First we will give settings and mention the strategy of the proof. Let @) satisfy
Q> C1(L.00,N) (Ilcl| + /)%,

where 01(1) (L, 00, N) is a sufficiently large constant depending on L, oy, N with C’p (L,00,N) >
28/(00=1/2) e ™) = (Qé*)>pep @ € RP@ be as in Lemma 3.5 and put § = Q~'. We put

2

dt,

/ Z CI>Q — 0(*)> ‘(log L(og +it))® — (log Lpg)(o0 + it))(k)

T k=0
where @ (6) is the mollifier defined in subsection 3.2.3,

1
7(t) = < o8P t> e R7@
21 ) ber(@)

and Dy is the subset of [T, 2T which is defined as follows. For each nontrivial zeros p = f+ivy
of L(s), we define

M={s=o+it; (1/2)(oc+00) <o <15, [t—~| < h}
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with the positive parameter 10 < h < T, and we put

Dp = Dp(h)={t€[T,2T]; oo +it & U pm

p
p; B>(1/2)(oc+00)

Now, we mention the strategy of the proof. We want to choose T' depending on £, oy, N, ¢, €
and choose ) and h depending on 7' so that

£\ 2
40 < (= /cp ~(t) — 6% dt,
0 ) [ vl -e)
T
By 1C) >
(41) | w0 (st -89 i = 5,
and
oF oF ) £
(42) ’@IOgﬁp(Q) (Uo,Q) Os YA logﬁp <O'0,Q( )>‘ < g

for |6, — 9](,*)\ <6, p<Qandk=0,1,...,N — 1. Once we have such choices, there exists
to € [T, 2T] such that

k k

’@ log L(og + ity) — 5k - log Lp(q) (o0 +ity)| <

C«OI(‘f)

for any £ =0,1,...,N — 1 and ®¢ (1(250) - Q(*)> > 0. By (42) and (9) and by noting the
equation log Lp(q)(oo + ity) = log Lp(g) (Uo,j(to))7 we have
k

8k

’ - log Lp(q) (o0 + itg) — 3

log Lp(q <007Q(*)>‘ <<

for any k£ =0, .. — 1 by substituting § = 7(t). These estimates and Lemma 3.5 give the
inequalities

‘ log£00+zt0)—ck <e fork=0,1,...,N — 1.

STEP 2. We give a certain estimate toward the estimate (42). By using the estimates
le — 1| < |a| for & € R and b(p') < p/?, we have

F k o jk+1 k l
p<Q =1

Z ng o -
<<,C, 500, N Q 0.0 1/2 <<0'0,N Q1/2 O(log Q)N !
p<Q

for |6, — 65| <6, p<Qand k=0,1,...,N — 1.
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STEP 3. We will estimate Z. To estimate Z, we use the formula (13) in Lemma 3.4. First
we will give the formula similar to (13) for log £(s) . Put

s z—w __ .2(z—w)
F(s,z):/ ‘ ° s—dw.
5410 (w—2)

Integrating (13), we obtain

Ag,m(n) Z Ag}x(n)

n*logn > nst10]logn

log L(s) =log L(s + 10) + Z

n<g2 n<a2
e 1) - M ) Y B ) ¢3S Pl gy(0)
log % log x % log ~ 5P logavj:1 o A
AE,I n) 1
4 =3 E 3 ()~ Ao g
n<x? g n>x g
f oo
mpe mpr 1 1
— F(s,1)— F F F(s,—q;
TG e e (8’0)+10gx§p: (S’f’)ﬂogx;; (s,~4;(r))

if ¢ is not equal to 0 and the imaginary part of any zero of L(s). Let @ < x < T and put
_ e ANON Ol
Iy = Do (y(t) -8 (log L(og + it)) (log Lp(q)(o0 + it)) dt.
Dy

We will estimate Z, for k =1,..., N —1. For k£ = 0, we have the same upper bound by using
the formula (44). For any k = 1,2,..., N — 1, the estimate

I, < A, + By, +C, + Dy, + &1 + Fi,
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holds, where

) (k-1) . (k-1) 2
Aﬁm n AE n
A / Qo (2(t) — Q(*) 2L\ B Ag(n) &,
k Dr Q (_() ) n<Zz2 nso T;Q 1750
(k—1)]2
Ac(p
B, = / dq (1(15) — 6 )) Z Z lso i,
o p<Ql>10gQ
1
Ch = 27— ) 1) — ™)
’ (log x)? /D:r Q <1( )-8 ) X
2
iix )=s0 _ -2yt ) d
X .
j=1 r=0 (q](r) -+ 80)2
2
m2 220 SO)—:C “so (B-1)
=t [ v (-0 | ()
—2s0 (k—1) 2
e W) | (2 =
® t) =6 dt,
& = (log x)? /T Q(l() 2 ) ( )
(k—1)]?
! P80 _ p2(p=s0)
- o t) — o™ g
(logx)z/T Q(l() 2 ) ( TENE >

and sg = gg + it.
Bound for Ai,. We can write

Az .(n)(logn)k=t
Z nso
Q<n<z?
. A (p)(logp)*! T Az.(p')(logp')
= pSO plSO )
Q<p<z? Q<n<a?;
n=pt,1>2
and
Z Az (ph)(log p')!
ls
Q<n<az?; P
n=pt,1>2
|Azo(p')|(log p')"! Az (ph)|(log p')*?
(45) <>, > e LYY o
p<V@Q >l p>/Q =2

log p
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Note that

(46)

I>X

holds for X > 1, 0 > 0 and for k = 0,1,... N — 1. We will estimate the first term of (45).
By using the estimate b(p') <, p/? and (46), we have

(47) Z Acs(p)logp )™ - Z W Loon Q7777 (log Q)N

loo log
= ope
for any p <+/Q and k=0,1,...,N — 1. Put
oo —1/2
o = %
Since Lemma 3.3 (ii) yields the estimate
ol (no+1222)1
b(p') e (2 = D < e,
we have, by the estimate (46),
[b(p")|(log p")* K !
Z plUO <<£,CTO (logp) Z (O_O_T]O_%ogQ)l
>3 et
k > 1/2(1/2 N-1
(48) <(logp) Z o120 1/2) LooN @77 [21/2700) (log Q)N
[>log@ p
logp
for p > 24/(20=1/2) " By the estimate (47) and (48), we have
Z Z ‘Aﬁx )|(log p")* "
loo
P<V@Q > 28
Az (p)](log p))* !
e + ’
2t X l%@ o
2§p<20071/2 20’071/2 Spg\/g Tog p
CeanQ* 7 (log QN+ Y QA (log Q)N
P<V@Q

<<Q1/2(1/2—00) (log Q)N—l

As for the second term of (45), by an argument similar to (48), we have

-1

Az (p")|(lo _ _
3 o et Mot | oo og g
p>VQ 1=2
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Hence we have

A - ! lo I\k—1
(49) Z c(p );lsogp ) K Loo N Q1/2(1/2*U°)(log Q)Nfl.
Q<n<z?;
n=p',1>2

Therefore, we have

)k*l ?
dt

A L .o0N /

D

2o (y() - 6%) | 32 Aza(p)(logp

S0
Q<p<x? p

+ Ql/?*d(} (lOg Q)2N2/ (I)Q (;Y(t) _ Q(*)) dt =: Ag) + Agf)

Dt

By the formula (12) with £, := 5,(0*)), we have

A
2
2T k—1
: Ag.(p)(logp
< X | ew(n X || 3 Aelefoer)
n=(nq)qep(@)€L"(@; T q9€P(Q) Q<p<La?
maxgep(qQ) Ing|<M
2
1 - Aza(p)(logp)™™
open(@Q) [ | 30 ReIRER g
Q<p<a?
2
2T k—1
Az (p)(lo
<</ v A (p)(sogp) 0
T |Q<p<a? P
2T k—1
, Acq(p)(logp
+ Z |ﬁn|/ exp | it Z nglogq Z ;80 )
0#n=(nq)gep(q) €L (?; T a€P(Q) Q<p<a?

maxgep(Q) [nql<M
2

1 2r As, 1 k—1
+ i exp(ChQ) /T Z = <p)]§£gp) dt =: A,(j’l) + AS’” + A,il’3).
Q<p<a?

By using the estimates |b(p)| = |a(p)| <K z.0, pP™ and

Lo TP *logT for 1/2<a<1,

1<n1<ns<T ning log(nz/n)
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dt



we have

A]il’l)

> \b(p)\Q(logp)2’“T+O 5 b(p1)]b(p2)|(log p1)* (log ps)*

po p1°p3° log(p2/p1)

Q<p<La? Q<p1<p2<a?

<<£7007NQ(3/2)(1/2700)(log Q)2N72T + I‘Q(IOg x)QNfl.

We also have

1
ALY = ep(CQAL

1 . _ _
MGXP(CHQ) (Q(3/2)(1/2 0)(10g Q)QN 2T + 552(10% :L')2N 1) .

We will estimate A,(:Q). Fix 0 # n = (ny)4ep(q) € Z™'9 with max,ep(g) [ng| < M. Then we
have

<<E,00,N

2

2T A 1 1
/ €xXp it Z nqlogq Z va(p)(ogp) dt

S0
T q9€P(Q) Q<p<La? p

2] 2%k oT
< Z [b(p)"(log p) / exp | it Z nglogq | dt
T

200
Q<p<La? p q€P(Q)

+O( S elb)los p) (o pa)”

00 ,.00
P1 D2

Q<p1<p2<a?

27 it
<[ ew it 3 nylogg (?) dt) A )+ A ()

r 4€P(Q) !

holds. We will estimate

27
/ exp | it Z nqlogq | dt.

T 4€P(Q)

Note that > Q) Mqlog g # 0. Put

qeP(Q

Q' (n) ={q€P(Q); ng 20}, Q (n)={q€P(Q); ng <0},

= II ¢ o Hq

and

qeQ*(n) %
Then it holds that
QT (n
Z nglogq = log <Q_En§ :
q€P(Q) -
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By the asymptotic formula ZpSX logp ~ X as X — oo, we have

(50) max{Q"(n), Q" ()} <exp | M Y logq | < exp(CoQM)
q9€P(Q)

for some absolute positive constant Cs. Hence, since it holds that

1

[log(n/m)| > ————+ ]

for any distinct positive integers m and n, we have

2T
(51) / exp | it Z nglogq | dt < exp (CoQM) .
T
q€P(Q)

Therefore we have
(52) AL (1) o QPP (10g Q)N 72 exp (CLQM) .
By calculations similar to (52), we have

71(1,2,2
AL ()

bl b2 lo 1k10 2k
T [b(p1)|[b(p2)|(log p1)” (log p2)

< p1°ps°

max{pQ*(n),p1Q (n)}

Q<p1<pa<z?

b(p)|1b(pa)|(log p1)* (log po)*
™ |6(p1)]|b(p2)|(log p1)" (log pa)

< pIops°

Q<p1<p2<z?

<<L,UO’Nx4(log x)2N_2 exp (CoQM) .

Hence we have, by the estimate (11),

A< R (A )+ AP )

Oiﬂz("q)qu(Q)GZP“p%
maxg,ep(Q) [ngl<M

L Lyo0,N > 1Ba| | 2*(log 2)* 72 exp (CLQM)

0#£neZP(@);
maxqep(Q) [ng|<M

<zt (log )N 2 exp(CoQ) exp (CoLQM) .
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Therefore we have

A

1
Cemn (14 37 00(CIQ) ) (QU21020 log QY21 4 #(10g.2) )

+ 2*(log 2)*V 72 exp(CyQ) exp (CoLQM)
<QBA02=00) (100 Q)N 2T + 2 (log )N 2 exp exp (C5Q)

where we take M = exp(2C1Q), and C3 > 2C is a positive absolute constant. Therefore we
have

Ak <<L7GO’NQ(3/2)(1/27(70) (log Q>2N72T
+ 2t (log 2)* 2 exp exp (C5Q)

+ QU (og @7 [ g (40) - 09 .

Dy

Bound for By,. By calculations similar to (49), we have

10gp o _
Z Z < LN Q1/2(1/2 0)(10gQ)N 1

< log Q
p= Ql>1cc)>ggp

Hence we have

By < v @727 (log Q)QN_Z/

Dy

g (1@) - Q<*>) dt.
We will estimate Cy, Dy, &, Fi using the following bound. We define

Dy = Dy (h)

:{5; o>00—1/10(cg —0p), T —1<t<2T+1,s ¢ U Pp(hl)}.
P 5>1/2(0’£—|~0’0)
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oc 00
Then, by using the Cauchy integral formula, the estimate

L0908 SUP [g(2)]
z2€Dp

k—1)!
O el | o
|z—s0|=1/10(c0—0or) (

27i z— Sp)

holds for any holomorphic function g(s) on Dy and t € Dy and for any k=1,..., N — 1.
Bound for Cy, Dy, . By using the estimate (53), we can easily check that

1
C ” d ( t) — 9<*>> dt,
b SLooN T4224(00) (log )2 /DT e lat) -8

D —4(1 o) ) — 6( ) d
Lro ( Y t * ) t,
k < L,00,N T4<1 )2 / Q ( ) z

1
£ ” P ( t—H(*)> dt,
b SLooN T42:24(00) (log x)? /DT olal) -8

where A(og) = 09 — 1/10(0g — o).
Bound for Fi. We will estimate




Fix s=o+it € ET. We divide the sum into two sums;

Z xpfs — x2(p78)
— g)2
~  (p—9)
xp_s — x2(p_s) mp_s — x2(p_s)

L s AR N 7=

)

0<B<(1/2) (0 +o0) (1/2)(02 4o0)<B<1
= ZL + ER.

By using the estimate No(T + 1) — No(T') < logT for T > 2 which is deduced by (2), we
have

Sr<at S, )] ﬁ

m>h—2 m<|y—t|<m+1

1 log(t
S332(170) Z — Z 1<, p2(1-0) Z Og<m-;-m)

m>h—2 m<|y—t|<m-+1 m>h—2
2(1-0) max{logt,logm} xlogT
L7 Z 2 <K n
m>h—2

On the other hand, we have

ZL <<0'o $—2/5(Uo—05) Z
P

- <<£ $_2/5(UO_UE) log T
L+ (t—7)?

Therefore we obtain

Fr

1 2?(log T)? 4/5(00—02) )
. —4/5(00=02) (Jog T 0q (1(t) - 6) at.
<LL,00,N (10gx)2 < 12 t (Og ) /DT Q 1( ) v

STEP 4. Next we will give the lower bound for [ by 20 (Z(t) - Q(*)> dt. By the estimate
(11), it holds that

S—
ﬂ
KA
Q
VN
|2
e~
SN—
|
|
o
N——
jo )
~

o (1)~ 69) at

I
ﬂ\w
~
KA
O
|2
~
S—
|
1D
*
I~
~
|
—
Do
3
—
)
S
A
|

nezZP (@)
2T

AV
ﬂ\w
S
A
o
/N /N /N
I

() = 0%) dt =20 D |BulNe (1/2(0 + 00), 2T)

A(t) = 0%) dt + O (hexp(CoQ) N (1/2(0, + 09), 2T)) .

I
’ﬂ\
Ko

Q
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By the estimates (11), (12) and (51) and by substituting M = exp(2C,Q), we have

/ ey (v() 89 s

or
>T — Z | Bn| / exp (z’t Z Ny logp) dt

0#£neZP(@); T p<Q
max,<q [np|<M

=T + O (expexp(C3Q)) + O (% eXp(ClQ))

:<1+O<w>+0<m>)f

Taking h = T2(1/2(1/2490))/2 e have

hexp(CoQ) N (1/2(0z + 00),2T) <0y exp(CoQ)T"
by the condition (C2). Hence we have

+0 <% exp(ClQ)>

_ Ap(1/2(cp+0g))
2

_AQ@/2(op+00)) )
2

/DT 029) <1(t) - Q(*)> dt > (1 + Or.0 <eXP(CoQ)T

() o))

Taking T' = expexp(CQ), C = Cy + Cs, we have the inequality (41).

STEP 5. We will finish the proof in this step. By the estimate (41) and by the estimates
Aj-Fi., we obtain
(log z)?N—2 2?(log T)?
T1/2 TA£(1/2(1/2+0'0))

Dg (Z(t) - Q(*)> dt.

4
x
1 <Lro0,N (QI/Q_UO(IOg QN7 +

+ :c74/5(007"£)(10g T)Z) /

Dr
Taking
r=T" with p=min{1/200,A(1/2(cs + 09))/10},

we have

54 T Koo n Q227000 [ &, (y(t) — %)) dt.

00, Q\JL
Dt
Put

8
Er) = Ep)y——— 7.
(o0, Ee) = max { (o, Ee). 3}
By the estimates (43) and (54) and step 4, we have (40), (41) and (42) if
Q = G (L, 00, N) (llellw +1/2)" ")
holds. Taking C1(L, 09, N) = C’C’fl)(ﬁ, 00, V), we have the conclusion. O
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3.3.2. Proof of Corollary 1.20. We will prove by using the same method as in [48] and
[21]. Before stating the proof, we give some notations and lemmas.

Let C[[X]] be the formal power series ring with coefficients in C and indeterminate X.
We refer the reader to [2] for the details of the general theory of the formal power series ring
for example. In what follows, we will use the following notations;

e Let R, denote the set of nonnegative real numbers.

e For any N € N, we write [N] = [1, N]NN.

e For empty index () € C° we adopt the convention that ||(]|o = 0.

e Let N € Nand [N] C ACN. For z = (2;)jea € C*, we write zpn = (2;)IL, € CV.

o Let o(X) =) 2 a, X" € C[[X]] and f(X) = >~ b, X" € C[[X]] with b, € Ry
for any n € Ny. The statement a < 8 means that |a,| < b, holds for any n € N. We
also define a®(X) € C[[X]] by o™ (X) = Y07 |an| X™.

o Let Z = (Z;)%, € C" be the indeteminate and let N be a positive integer. For a
multi-index i = (i1,...,ix) € N) and for f(Z) € C[Z], define the symbol ¢ as a
differential operator given by

ol f

(f(2)= —————(2), li|=i1+ - +in.
1(2) = gt @), il =it i
In addition, we write 2! = i,!---iy! and (Zy))* = VARRRY A
Let Z = (Z;)52, and W = (W})32; be the indeterminates and write Z;,) = (Z;)}_; and

Wiy = (Wp)i, for n € N. For n € N, define the polynomials F,(Z;,) € R[Z,] and
Gn(Wy,)) € R[Zp,] by

(55) exp ( ZnX”) =14 Fu(Z,)X"
and

log (1 + i WnX”> = i Go(W ) X"
n=1

n=1

Then we have deg(F},) = n. We also define the maps

F cVs z= (Zj);il — E(é) = (Fj(éj));L € CN,

JANE CV>3z= (Zj);v:l = E[N](z) = (Fj(z[j}));yzl eC",
and
G:CVow= ()2, — Gw) = (G;(wy));2, € C.

We can easily check that G is the inverse mapping of F. For complex variables z = (z;)
define

o]
=1

(e 9]

n=1

9(X,z) =log (1 + izﬁ(")

n=1
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and
h(X;z) = —log (1 - IanX”> :
n=1

Note that the relations

(56)
hold.
LEMMA 3.13. Let z = (2j)%2, be complex variables.
(i) We have f*™(X;z) <h(X; F(2)).
in_1) € N7 awith |i] > 1. Then we have (X ; 0UF(z))<

(ii) Let N € N andi = (i1, ..
X5Wexp (f*5(X;z2)), where 8*F(z) = (0"F;(z(;))52, and S(i) = iy 4 2ip+ - (N —

f(X52) =9(X,F(z)) and g(X,z2) Ih(X;z2)

Vin_1.
PROOF. Note that a(X) < B(X) implies a®™(X) < B(X) for a(X), B(X) € C[[X]]. This
.. ,iN—l) € N(])V_l

and the relation (56) deduce the first assertion. We fix N € N and i = (i1,
with |i| > 1. By differentiating exp (f(X; Z)), we have

= exp (f(X;Z)) = X7 exp (f(X;2)).
0Z;
Hence, applying 0% on the both sides of the equation (55) with z in place of Z, we obtain

X*Wexp (f(X;2)) = f(X;0'F(2)).
]

We can confirm that exp (f(X;z)) <exp ( fabs(X; g)), and this completes the proof.
CiyEN-1), &=

LEMMA 3.14. Fiz e > 0 and N € N. Let zp,a9 € C and z = (z1, 22,

. ,ozN_l) € CN-1,

(Oél, ..
(i) We have
N-1
leel| <n (1 4[| Epy_y(@)]])
(i) If ||(20, 2) — (a0, @)|| < 0 < 1, then we have
|e*0 — e™| < 2]e™ |0
and
z0 aQ aQ (Nfl)z
[e* Ein_yy(2) — e™ Epy_yj(@) || < [e®] (1 + || Epy_y(@)]]) 0.
PROOF. Let
ﬁ: (alv"'vaN—170707"') € CN
and
w? = (Fy(aq), Felap), ..., Fv-1(a),0,0,...) € C.
Note that



holds. Then we have

N-1
(57) Z |an|Xn — fabs (X,ﬁ) S] fabs (X,Q(ﬂ))
n=1

9 (X:F (G)) = h (X:u®) = - log (1 ¥ mmmxn)

n=1

by (i) of Lemma 3.13. Evaluating (57) at X = (3 (1 + HF[N_l](a)H))_l, we have
N

(3(1+HF[1zv—u(a)H)> _1§|a"|§2’ ”'( 1+HF[1N (e )H))n

(-3 (5) ) =

IA

n=1

which deduces [af <y (1+ HF[N_I](a)H)N_l. Hence, we have the first assertion of this
lemma.
To prove the second assertion of this lemma, we will show

(58) Z|a’ ()| <n (14 | Epy_y(a)) ™

for i € Njj and |7| > 1. By (ii) of Lemma 3.13, we have

N-1
(59) > |0 (o) | X™ D (X 00 (o))
n=1
N-1
X Wexp (f*(X:a9)) = X5 exp (Z Iaan”> :
n=1

By evaluating (59) at X = (3 (1+ |la|))”", we have
1 No1Na1 N 1 n
(Gramen) X el < Xl (55 o)

n=1
1\ 5@ N1 n
HORCIMIONES

n=1
which implies Z 1 }6Z (o) | <y (1+|la)™ " By (i) of Lemma 3.14, we obtain

N-1

S 10 Fle)| <o (14 [ Epy (@)

n=1
which gives the estimate (58).
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We will show the second assertion. Let ||(z0,2) — (ap, @)|| < § < 1. By the Taylor series
expansion, we have

Z « « 20— « . 5’”’ «
(60) 620 — e20| = [e®| |e* 0—1|g\eoyzmg2|eoya.
=1
By the Taylor series expansion, by the equation (58) and by using deg F,, = n , we have
(61) Fu(2n)) — Fulam)

an )
- 2 %(Z[nl — o)’ < (L [ Epyy(@l)

for 1 <n < N — 1. Hence we deduce

IFn—1(2) = Fiy_g(@)|| < (1+ | Ey_y(@)) 5.
Therefore we obtain
||€ZOE[N—1]( ) — e °Fly H

<le*] || Epy-n(2) = F[ H + | Epy-n(e)] e —e|
<[e® —e™| HE[N (2 F[N 1 ||
+ e [ Epv—y(2) - F[N (@) + [|Ex i (e)][ [ — e
<] (14 || By (@)) 75
by the estimates (60) and (61). This completes the proof. O

PROOF OF COROLLARY 1.20. Let ¢ € (0,1), ¢ = (c)n' € CN with |co| # 0. Put
Z()(lf) = lOg ,C(O'O + Zt),

1d 1 del .

z(t) = s — log L(o¢ + it), . SN D) log L(og +it) |,
- C1 _ Co _ CN_1 _ N_1
b= = B = e = (B0

and
ag = logcy, an = Gl(,@m); <oy O = GN—l(B[N—l])a o = (Oéj)ﬁy:?-
Note that 8 = Fy_y (o) holds. Let
AN - £
0= 5(679 AN) = N (N—1)2 S (O? 1)7
(1+[e)| (1 + || Epyy(e)]))

where Ay is sufficiently small depending on N. Note that, by the relation (55), we have

20(t) 1d 1 vt .
e E[Nfl] (Z(t)) = ﬁd— ;C(O'O + Zt) (N — 1)' dsN—1 E(O-O + Zt)

for L(og + it) # 0. Hence if

(62) 1(z0(1), 2(£)) — (ap, )| <6 and  L(og +it) £ 0
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hold, then we have

‘—E oo +it) —cx| <e fork=0,1,...,N—1

by Lemma 3.14 (ii). To get the inequality (62), it is enough to notice

<£ for k=0,1,...,N — 1.

‘— log L(og + it) — kloy N

By Lemma 3.14 (i), we have
||c||> VY 4 |
|Co| 9

Combining with Theorem 1.19, we have the conclusion. 0

N
(o, Nevy, ..., (N — Dlay_1)|| + = 5 <n | log co| + (

3.3.3. Proof of Corollary 1.21. Although the proof is almost the same as in [13], we shall
give the full details.

PROOF OF COROLLARY 1.21. Let the setting be as in Corollary 1.21. We will use the
Taylor expansion series to prove the corollary. Recall the Cauchy integral formula

k! (z)
®) (g ) = P / _ 9z
g ( 0) 2m |z—so|=r (Z - 80)k+1

Hence we have
19" (s0) (s — 50)*| < KM (g)d
for |s — so| < dor. By using the Taylor expansion series, we have

(k) N
g (30) ko_ 9%
_ Z X (5 — 50)" Z o 1 s

0<k<N

for |s — so| < dgr. We chose N = N(do, e, M(g)) such that
oy 5

1 —do

M(g)

We apply Corollary 1.20 with ¢; = ¢ (s) and (£/3) exp(—dor) in place of . We chose
T =T(L,00,9,¢,00, N) such that

T > max {exp exp (C’g(ﬁ, 00, N)B (N, g, (¢/3) exp(—éor))d(UO’E£)> ,r} )
Then there exists ¢, € [T',2T] such that
‘E(k)(ao +ity) — g(k)(ao +itg)| < % exp(—dor)

for 0 < k < N. Put 7 := t; — ty and note that oy + it; = sg + ¢7 holds. Remark that our
choice of T' > r make the disc {s ; |s — so| < dor} +i7 avoid from including the pole of L(s).

52



Hence we have

L® (5o +ir) 9" (s0)
2Py s = (o)
0<k<N 0<k<N
9 ((507’)k 9
< gexp(—éor) Z 1 < 3

0<k<N

for |s — so| < dpr. On the other hand, we have

(k) So 1T k
L(s+iT) — Z M(s — Sp)

k!
0<k<N

for |s — sg| < 0r and 0 < & < &g. Therefore we have

5N

dig =
3 1-9

< M(1)

2 N
|IL(s+iT) —g(s)| <T1+ S0+ 33 < §5+M(7)1 —
for |s — so| < dr and 0 < 6 < §y. Choosing § which satisfies
M(T.g)ﬂ <Z
1 —6 3

we have the conclusion.
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