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Abstract

Anatomy is the field of study that reveals the structures of bodies. Computational

anatomy is a subfield of anatomy that introduces computational techniques to analyze

structures. Image processing with computer vision techniques is undeniably fundamen-

tal for revealing anatomies. For instance, segmenting organs allows us to investigate

the target organs’ shapes and sizes. In this thesis, I focus on anatomies in the thorax.

There are various imaging techniques, such as endoscopes, X-ray computed tomog-

raphy (CT), magnetic resonance imaging (MRI), and microscopes, some of which are

available for use in living bodies, including clinically available CT and MRI scanners.

Although optical or electron microscopes have much higher resolution than clinically

available CT or MRI scanners, they cannot be used for living bodies and usually pro-

duce only 2-dimensional images of a tiny region.

For revealing anatomical structures using computational techniques, analyzing from

3-dimensional images is preferred, such as from CT or MRI images. However, since

the spatial resolutions of these imaging techniques are not very high, some anatomies

are vague and unclear. Non-clinical high-resolution imaging techniques, such as micro-

focus X-ray CT (µCT), are also available to acquire images of small tissues that cannot

be observed on the CT or MRI images of living bodies. However, there are still small

structures that appear vague and unclear in µCT volumes.

This work aims to make it possible to reveal anatomical structures in the thorax with
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3-dimensional images. As mentioned, a common difficulty is vague and unclear images

of small tissues. We approach this problem by 1) a novel filtering technique and 2)

image evaluation for analysis.

The first topic is a mediastinal lymph node detection method based on intensity tar-

geted radial structure tensor (ITRST) analysis. We propose a new image processing

filter for lymph nodes on CT volumes. Mediastinal lymph nodes are around only 10 mm

in diameter, have low contrast on CT volumes, and unclear boundaries. Typical filters

are often negatively affected by surrounding regions having higher contrast. The pro-

posed detection method based on ITRST analysis correctly detected lymph nodes even

if with various surrounding tissues or regions, e.g., contrast-enhanced blood vessels,

air, etc. In the experiments, the proposed method’s detection rate was 84.2 %, with 9.1

false positives per volume for lymph nodes whose short axis was at least 10 mm, which

outperformed the conventional filtering methods.

The second topic is cardiac fiber tracking. µCT volumes acquired by a desktop-

type scanner are vague for cardiac fibers compared to a more expensive high-resolution

imaging technique (refraction-contrast X-ray CT). Evaluating the efficacy of µCT vol-

umes for fiber tracking is vital for further investigation using µCT. Although fiber track-

ing is possible using structure tensor analysis, it is unclear that µCT is useful. Comparing

results from µCT and refraction-contrast X-ray CT allows us to discuss the efficacies and

limitations of these imaging techniques. In the experiments, fiber orientations estimated

by two imaging techniques were closely resembled under the correlation coefficient of

0.63. Two imaging techniques’ fiber tracking results were also similar and followed the

anatomical knowledge. The µCT volume’s limitations were found for the artifacts and

stitching scanning.

This thesis consists of five chapters. Chapter 1 provides the motivations of the au-

thor’s research as the introduction. Chapter 2 describes background information, in-

cluding anatomical study fields, imaging techniques for anatomical studies, and tho-
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racic anatomies. Chapter 3 describes the mediastinal lymph node detection method.

Chapter 4 describes cardiac fiber tracking from µCT volumes and Chapter 5 provides a

summary and description of our future work.
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Chapter 1

Introduction

1.1 Preface

Anatomy is the field of study that reveals the structures of bodies. Various imaging

techniques have been developed and utilized for investigating anatomies, including en-

doscopes, X-ray computed tomography (CT), magnetic resonance imaging (MRI), and

microscopes. Some imaging techniques are available for living bodies, including clini-

cally available CT and MRI scanners.

In this thesis, we focus on the computational analysis of thorax anatomies. The

thorax contains many anatomies, such as the bronchus, lungs, and heart, and each

of these anatomies consists of various small structures. The heart consists of muscle

fibers (cardiac fibers) and the structures of these cardiac fibers can be revealed by fiber

tracking.

Although optical and electron microscopes have very high spatial resolution, they

cannot be used for living bodies and usually produce 2-dimensional images of only a

tiny region. It is challenging to understand 3D structures from microscopic images.

However, 3D imaging techniques, including CT and MRI, do not have spatial resolution

1
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comparable to that of microscopes. Thus, anatomies are vague and unclear on these

images, especially for small tissues.

CT is widely used for 3D imaging of the thorax. Since CT imaging is based on X-ray

absorption, contrast between air and non-air regions is high. However, some important

tissues for clinical practices or anatomical investigations do not generate high contrast

or clear edges.

This thesis’s first topic is mediastinal lymph node detection from CT volumetric im-

ages (volumes). Lymph nodes are unclear and have low contrast on CT volumes. The

proposed filter detects lymph nodes with a variety of appearances. Our second topic is

cardiac fiber tracking from micro-focus X-ray CT (µCT) imaging. Since cardiac fibers do

not clearly appear on µCT volumes, we evaluate the efficacy of µCT volumes for fiber

tracking by a comparative study with a high-end imaging technique.

1.2 Goal

Investigating anatomical structures from 3D images (e.g., CT, MRI) is fundamental to

understanding human and animal bodies. Our goal is to investigate the structures of

various thoracic anatomies via computational anatomy in 3D.

Nevertheless, there are still challenging targets, especially for small anatomies that

are vague and unclear on 3D images. One common characteristic between these anatomies

is their unclear and vague appearance on images. These anatomies are physically

smaller than large organs such as the lungs or heart. CT and MRI are feasible can-

didates for 3D imaging of anatomies in the human thorax. However, as shown in Table

2.1, their spatial resolutions are not as small as optical or electron microscopes. Smaller

objects do not tend to be represented very clearly in these images and representing

structures less than 0.1 mm (100 µm) is not feasible.

Although microscopes may allow us to acquire very high spatial resolutions, there
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are problems for volumes of interests. Microscopes are useful not for scanning the entire

bronchus, but for observing the details of bronchial tissues [184]. Although microscopes

can magnify a part of one lymph node [182, 183], these microscope images are not

useful for detecting (finding and locating) scattered lymph nodes. There are many

studies [189, 221, 222] in the histology of cardiac fibers using microscopes. However,

microscopic images are not very useful for analyzing structures in 3D because they are

usually 2D images.
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Figure 1.1: Anatomies in thorax respecting to physical size.

1.3 Computational analysis of thoracic anatomies

Computational anatomy (Section 2.1.5) helps us understand anatomies quantitatively.

There are various anatomies in the thorax, as explained in Section 2.3. Approaches

for imaging and computational anatomy vary for each anatomy. As summarized in Fig.

1.1, the sizes of these anatomies also vary. Generally, smaller anatomies tend to be more

vague or unclear than larger ones on images acquired with the same imaging technique.

1.3.1 Lungs

The lungs are filled with air. The absorption of X-rays in air is less than in bones or soft

tissues. Thus, radiography and CT are widely used for lung imaging. Radiographs are

utilized clinically, such as in thoracic X-ray examination. CT is also utilized when 3D
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Figure 1.2: Anatomies around the lungs on a CT volume. Spatial resolution is 0.723
× 0.723 × 0.801 mm3. (a) Mediastinal window. Window width (WW) is 400 H.U.
and window level (WL) is 0 H.U. (b) Lung window. Annotations of the bronchus cover
limited parts on image. WW is 500 H.U. and WL is -800 H.U.

imaging is desired.

One straightforward anatomical understanding of the lungs by image processing is

segmentation of the lung regions on radiographs or CT volumes (Figs. 1.2 (a)). Since

these show high contrast between the inside and outside of the lungs, high-performance

segmentation methods have existed since the early 1990s for radiographs [146] and CT
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volumes [147]. Nowadays, deep learning methods, especially for fully convolutional

networks [33] such as U-Net [249] are widely used for segmentation [54].

The lungs are divided into the two lobes (See Section 2.3.2). A segmentation method

of the lobes based on 3D watershed transform was proposed in 2003 [145] and an atlas-

based method was proposed in 2005 [140]. A segmentation method based on analyzing

neighboring anatomies (the airway and vascular trees) was proposed in 2008 [141].

1.3.2 Bronchus

Radiographs and CT volumes of the lungs also show the bronchus. Segmentation of

the bronchus has been widely studied. Segmentation methods based on region grow-

ing were proposed from the 1990s to the early 2000s. The region-growing method

segments connected regions whose intensities are within a specific range. Adaptively

setting the range for region growing [143] or introducing a cylindrical volume of inter-

est [144] was proposed to improve robustness of the segmentation processes. Although

many methods were proposed through the 2000s (summarized in EXACT’09 [119]),

it was still difficult to segment the bronchus accurately to the deep branches. Deep

branches tend to be thinner than the root; thus, they are often vague and have low

contrast on CT volumes (Fig. 1.2 (b)). Accurate segmentation to deep branches is still

challenging today [51–53].

Another imaging technique for the bronchus is an endoscope (2.2.2) called the bron-

choscope. Inserting the bronchoscope into the bronchus allows us to acquire color im-

ages inside the bronchus. Since the camera only produces images observed from its

current position, it does not obtain the shape or size of the entire airway tree. It is also

difficult to locate the current position or pose of the bronchoscope. Shapes and sizes of

entire airway trees are obtained by bronchus segmentation, as explained above. There-

fore, the virtual bronchoscopy was introduced [157], which simulates bronchoscopic
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images using the segmented bronchus from CT volumes. However, CT volumes may not

contain detailed information that can be observed by bronchoscopes. Bronchoscopes

are still useful for detailed diagnosis of the bronchus interior; therefore, bronchoscope

tracking methods were proposed for locating the bronchoscope in the airway tree using

electromagnetic sensors [154, 155], an image-based method [148, 149], and a hybrid

of the two [156].

1.3.3 Lymph nodes

As mentioned above, the size of lymph nodes is crucial in lung cancer diagnosis. In

the late 2000s, segmentation methods of each lymph node were proposed. Since the

shape of each lymph node is ellipsoid- or spherelike, most segmentation methods use

prior knowledge of these shapes, e.g., fast marching [104], [103] and graph-based

[105]. However, there was a need to locate lymph nodes manually before starting

segmentation using those methods.

Another difficult problem for both humans and computers is finding and counting

lymph nodes from CT volumes. Not limited to the mediastinum, lymph node detection

from CT volumes is widely studied with notable difficulties of size and small contrast

(Fig. 1.2 (a)). Especially for mediastinal lymph nodes on CT volumes, there are many

neighboring anatomies with very high or low intensities. From the late 2000s, filtering-

based methods [101, 102] were proposed by assuming that lymph nodes have bloblike

shapes and are slightly brighter than their surroundings.

1.3.4 Hearts

Both CT and MRI are widely utilized for 3D imaging of the heart. There are computa-

tional methods for both MRI and CT volumes.
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For the whole heart or its chambers (Fig. 2.10), especially for the left ventricle, seg-

mentation methods from MRI volumes have been actively studied. Thresholding-based

segmentation [114] was proposed in 1995. In the late 1990s, segmentation methods

using the active contour model [107, 113] were proposed. Use of the active counter

model continued after 2000 [115]. Recently, deep learning has been widely introduced

[117, 118] for MRI volumes. For CT volumes, approaches based on deformable mod-

els were further applied in the 2000s [109, 112]. Atlas-based segmentation methods

[110, 111] were also proposed around 2010. Deep learning [108, 116] is currently

being studied for CT volumes.

One important structure of the heart is the cardiac fibers, which are not described in

any well-known gross anatomy book (Fig. 2.13) because of their small size. Neither MRI

(Fig. 1.3 (a)) nor CT (Fig. 1.3 (b)) scanners for clinical purposes can acquire images

of the cardiac fibers that can be observed due to their spatial resolution. One way

to analyze fiber structures is to use diffusion-tensor magnetic resonance imaging (DT-

MRI) [180, 234], which analyzes water molecules using an extended MRI technique.

This work assumes that diffusions of water molecules are parallel to the fibers, which

is difficult to confirm. Analyzing fibers from high-resolution 3D images is promising for

a more straightforward analysis. It has been reported that (µCT) volumes of animal

hearts for estimating fiber orientations can be utilized with the structure tensor [232].

1.4 Approaches for unclearly shown anatomies

Many thoracic anatomies are not clearly shown on 3D images, as listed in Table 1.1.

Available 3D imaging techniques for bodies are usually limited to CT (Section 2.2.6)

or MRI (Section 2.2.7). Especially for living human bodies, it is difficult to choose the

best imaging technique for clearly showing only the analysis target anatomies. Even

in animal experiments, the choice of imaging techniques may be restricted for various
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Table 1.1: Analysis methods for anatomies or lesions in the thorax that are unclear on
3D images.

Anatomy or lesion
Imaging

technique Analysis technique and application

Mammary gland CT
Segmentation by atlases [12],

Segmentation by spectral clustering[8]
Breast lesions MRI Detection by convolutional neural network [11]
Breast cancers MRI Detection by Hessian-based filter [9]

Nonmass breast
abnormalities MRI Characterization by graphs [10]

Bronchus CT
Segmentation by region growing [142],

Segmentation by Hessian-based filter [52]

Esophagus CT
Segmentation by probabilistic model [133],

Segmentation by atlas-based deep learning [134]
Mediastinal
lymph nodes CT

Detection by Hessian-based filter [101],
Detection by 3D Haar-like features [132]

Lung nodules CT

Detection by filter for cylinders [225],
Detection by Hessian-based filter [231],

Estimating malignancy by deep learning [230]

Heart chambers MRI
Segmentation by atlases [229],

Segmentation by deformable model [228]
Cardiac blood vessels MRI Segmentation by deformable models [226]

Cardiac fibers µCT Fiber tracking by structure tensor [232]

reasons, such as cost, ethics, and technical difficulties. Our focus is on anatomical

analyses, even if the target anatomies are not clearly shown on images.

Unclear images of target anatomies are mainly due to the imaging techniques’ char-

acteristics and anatomies’ physical size. We selected several anatomies from Table 1.1

to discuss the causes of these unclear images and their current solutions.
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1.4.1 Prior shape information: Cardiac chambers and blood vessels

on MRI

An MRI volume is generated by observing magnetic resonance many times. However,

since the heart is in a living body and is continuously beating, the MRI scanner needs to

observe the magnetic resonance only at a fixed beating phase over a long period (usually

30 minutes or more). Cardiac MRI volumes tend to be blurred due to the scanning time.

Thus, on cardiac MRI images, most anatomies are blurred, particularly the boundaries

between the blood vessels (e.g., aorta and pulmonary artery).

Since the shape of the heart and the cardiac blood vessels are almost fixed between

patients, we can apply prior anatomical knowledge. Deformable models [226] or prob-

abilistic atlases [227] are methods for introducing previous shape information.

1.4.2 Bloblike filters or texture features: Mediastinal lymph nodes

on CT

Mediastinal lymph nodes are bloblike regions around the major branches of the bronchus.

Unlike the cardiac chambers or blood vessels, lymph node positions and numbers vary

between patients; thus, introducing the probabilistic atlas [101] does not detect lymph

nodes accurately.

One approach is to introduce filters for bloblike regions[100, 101]. However, there

are many surrounding regions, such as air, soft-tissues, and blood vessels. It is not easy

to clearly define the characteristics of mediastinal lymph nodes on CT volumes.

Mediastinal lymph nodes are very hard to detect only from their appear-

ances. They have a similar attenuation coefficient to muscles and vessels.

Both muscles and vessels cover a much larger volume of the body.

... Furthermore, the size of a lymph node can vary a lot.
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Johannes Feulner, et al. [132]

Another approach is to utilize machine learning techniques to observe texture fea-

tures, e.g., marginal space learning [123], Haar-like features with spatial priors [132],

or convolutional neural networks [31].

1.4.3 Tubelike filters: deep branches on CT

The bronchus is an airway tree. Segmentation of the bronchus has been widely studied

[48, 142]. Although only one airway tree exists in the body, its deep branches are

challenging to find on CT volumes. Since the branches are spread all over the lungs,

probabilistic atlases are not very useful.

Filters for tubelike structures have been widely studied. The Hessian-based filter

[35, 120, 121, 126] is the most popular choice. Hessian analysis allows us to develop

filters for a structure type (blob, line, or sheet) with specific sizes. Filtering methods

based on Hessian analysis are still under improvement, e.g., Sukanya et al. [242] for

vessels. Since some parts of the bronchus are not simple linelike, but are more cavity-

like, Meng et al. [52] utilized the cavity enhancement filter [241].

The spatial resolution of clinical CT volumes is around 0.5 mm per voxel at best.

Deep branches (the bronchioles) are often difficult to observe on CT volumes even with

the human eye. This is because the bronchioles might be thinner than the resolution.

Lee et al. [119] introduced a support vector machine (SVM) classifier, which offers

additional segmentation results for separate parts on responses by a tubular-like filter,

including Hessian analysis. It is desirable to segment until the disappearing points on

CT volumes. Bian et al. [106] introduced an airway tracking scheme to continue to

segment until the terminal branches.
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1.4.4 Structure tensor: cardiac fibers on µCT

Micro-focus X-ray CT (µCT) volumes of animal hearts are promising for fiber tracking

with the structure tensor [232]. Fiber orientation can be seen on µCT volumes due to

the contrast between the fibers and their extracellular matrices. However, µCT images

acquired by desktop-type low-end scanners are not clear for cardiac fibers and thus car-

diac fibers may not be accurately analyzed due to the low contrast and unclear images.

The contrast is generated between cardiac fibers and their extracellular matrices. These

extracellular matrices consist of collagen, not air.

1.5 Topics

1.5.1 Motivation

This thesis shows that computational anatomical structure analysis is possible, even if

represented as unclearly on 3D images. The ability of 3-dimensional anatomical struc-

ture analysis is presented, even for anatomies that are unclearly shown on volumetric

images.

The CT is widely utilized for 3D imaging of the thorax due to the amount of air in the

thorax. High contrast between the air and non-air regions can be seen on CT volumes.

However, some anatomies of the thorax do not contain or are not surrounded by air.

While a variety of anatomies exist (Section 1.4), two anatomies satisfying

• observed on clinical or µCT volumes,

• unclearly shown because the contrast between the anatomy and the air is unde-

pendable for the analysis, and

• bloblike or fiberlike regions in the thorax.
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are focused.

Topic 1 is mediastinal lymph node detection from CT volumes. Mediastinal lymph

nodes are bloblike structures surrounded by various structures. A robust filtering tech-

nique is proposed for the accurate detection of those bloblike structures.

The clinical CT has a limitation of spatial resolution. Topic 2 is cardiac fiber track-

ing on µCT volumes. On µCT volumes, cardiac fibers can be observed, but they are

unclearly shown. In addition to µCT’s high spatial resolution, the contrast is generated

by their extracellular matrices consisting of the collagen. Nevertheless, µCT is promis-

ing for anatomical studies of physically small structures. Evaluation of µCT’s efficacy is

conducted for anatomical analysis of fiberlike structures.

1.5.2 Topic 1: Mediastinal lymph node detection

This thesis proposes an automated lymph node detection method from chest CT volumes

with experimental results. Although this is a computer-aided detection system method,

the proposed filter focuses on anatomical structures with little effect from surrounding

anatomies. Lung cancer is a leading cause of cancer death. Selecting proper treatment

methods is crucial for the metastasis of lung cancer to the lymph nodes. Radiologists

need to find lymph nodes manually, but this is very difficult because lymph nodes are

small and vary in appearance and shape. Therefore, a novel filter for such small objects

with vague appearances is essential for the accurate detection of lymph nodes.

Mediastinal lymph nodes are bloblike tissues. Not only are these regions filled with

air (e.g., the bronchus and lungs), but there are a variety of neighboring areas, including

soft-tissues and blood vessels. As mentioned in Section 1.4, filters for bloblike structures

have had difficulty defining the target characteristics. We attack this problem using a

filtering scheme that is robust for various surrounding regions.
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1.5.3 Topic 2: Cardiac fiber tracking

The heart consists of muscle fibers that are typically called cardiac fibers. Fiber tracking

from µCT volumes of rabbit hearts is possible using structure tensor analysis for mod-

eling. Fiber tracking results from µCT volumes are compared with those of refraction-

contrast X-ray CT volumes, which have higher contrast resolutions than µCT. However,

as mentioned above, discovering new imaging techniques is vital for obtaining detailed

and broad information about the body. Although micro-focus X-ray (CT) imaging is

promising for acquiring high-resolution images, cardiac fibers are blurred in CT images

due to their low contrast resolution for soft tissues. It is crucial to evaluate the useful-

ness of these new imaging techniques.

Cardiac fibers are shown on CT volumes and can be observed due to the contrast

with the extracellular matrices. However, extracellular matrices mainly consist of colla-

gen. Although the structure tensor can be used for fiber tracking, the reliability of the

results has not yet been confirmed. We evaluate the reliability of the results from CT

volumes of the heart by comparing them with other high-end imaging techniques.

1.6 Thesis structure

This thesis consists of five chapters. Chapter 1 provides the motivations of the research

as an introduction. Chapter 2 describes background information, including anatom-

ical study fields, imaging techniques for anatomical studies, and thoracic anatomies.

Chapter 3 describes the mediastinal lymph node detection method. Chapter 4 describes

cardiac fiber tracking from µCT volumes, and Chapter 5 provides a summary and dis-

cussion of future work of this thesis.
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Figure 1.3: CT and MRI volumes of the heart. (a) MRI (T1-weighted) volume. Figure
1 in [216] with annotation by this thesis’s author. Spatial resolution is 1.37 × 1.37 ×
8.0 mm3. (b) CT (arterial phase) volume. Spatial resolution is 0.644 × 0.644 × 0.801
mm3.





Chapter 2

Anatomical studies and computational

analysis

2.1 Anatomy

Anatomy studies the parts of organisms, including organs, bones, and tissues. The

word “anatomy” is sometimes used as a noun to represent an item inside a body. A

famous anatomial book states that anatomy consists of a variety of fields and is vital for

medicine.

Anatomy includes those structures that can be seen grossly (without the aid

of magnification) and microscopically (with the aid of magnification). Typi-

cally, when used by itself, the term anatomy tends to mean gross or macro-

scopic anatomy – that is, the study of structures that can be seen without

using a microscopic.

. . . Anatomy forms the basis for the practice of medicine.

Susan Standring, et al. [85] pp. 2

17
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(a) Cardiac valves by Leonardo da Vinci (b) Heart by Gempaku Sugita

Figure 2.1: Illustrations of anatomy until modern age. (a) Leonardo da Vinci’s illustra-
tion of cardiac valves (Fig. 3 on [137]). (b) Gempaku Sugita’s illustration of heart (Fig.
1.2 on [139], pp. 32)

There are currently many famous books describing anatomy [27, 67–69, 83–85].

To date, both research and education in anatomy have improved through various ap-

proaches worldwide [138].

2.1.1 Anatomical studies until modern age

Anatomy originated in ancient Egypt around 3100 BC. [82]. Hippocrates (c.460 c.370

BC), the founder of scientific medicine in ancient Greece, dissected animals [55]. In

Alexandria, Herophilus (c. 335 c. 280 BC) and Erasistratus (c. 304 c. 250 BC)

dissected human bodies [60, 61] to investigate bodily structures. They described the

nervous system, cerebrum, and cerebellum. Hippocrates and Herophilus are called “the

Father of Medicine” and “the Father of Anatomy,” respectively [205].

Galenus (Galen, c. 129 c. 200) was a famous clinician in ancient Rome, where the
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dissection of human bodies was prohibited. Galenus published many anatomy reports

based on animal dissections. Over 20 volumes of those reports remain today [208].

Knowledge of the nervous system did not extensively progress until Herophilus and

Erasistratus. For instance, Galenus discovered the seven cranial nerves and the spinal

nerves, and found that paralysis occurs when the spinal cord at the point related to the

paralyzing position is injured. Galenus’ medical knowledge formed the basis of anatomy

until the Renaissance.

Until the Renaissance, anatomy was not very actively investigated [207]. In Europe,

the dissection of human bodies began in the 14th century. Mondino de ’Liuzzi (c.

1270 c. 1326), an Italian anatomist, is known as “the Restorer of Anatomy.” He ar-

gued the importance of “understanding through practice.” de’ Liuzzi conducted the first

documented public dissection after an absence of more than 1700 years. In the 16th-

century, Leonardo da Vinci dissected human bodies with accurate sketches of his work

(Fig. (a)). Andreas Vesalius (1514-1564) was a Belgian anatomist who published many

reports on the dissection of human bodies [204]. He is regarded as a founder of the

science of anatomy based on observations gained using a scalpel on human cadavers.

He published a series of seven books called the “De Humani Corporis Fabrica” that con-

tains observant illustrations. Govard Bidloo (1649-1713) was a Dutch anatomist who

published a book on human anatomy entitled “Anatomia Humani Corporis” in 1685, in

which he described the lipomyelomeningocele in detail.

The study of a wide variety of regions and aspects of the body began in the ancient

era. For instance, regarding the lymphatic system, lymph nodes and vessels contain-

ing milky fluid had already been observed in the pre-Renaissance era, including by

Hippocrates [62]. Bartolomeo Eustachi was a famous scientist who described many

anatomies, including one of two lymph ducts, the thoracic duct [63, 81], in the 14th

century.

Not only was anatomical research actively investigated, but education was also been
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widely provided all over the world. In the 18th century, German anatomist Johann

Adam Kulmus published an anatomical book entitled Anatomische Tabellen. Its Dutch

translation was further translated into Japanese and published as it Kaitai Shinsho

by Gempaku Sugita and Ryotaku Maeno (Fig. 2.1 (b)). Another famous book of the

18th century, Anatomy of the Human Body, was published by British anatomist William

Cheselden.

2.1.2 Gross anatomy

Gross anatomy is the study of bodies and their parts at the visible or macroscopic level

[71]. Anatomy is often synonymous with gross anatomy (See Section 2.1).

Gross anatomy is also called macroscopic anatomy due to its macroscopic observa-

tion. There are many organs and tissues, such as bones, organs, and vessels. Observing

these anatomies macroscopically allows us to understand their sizes, positions, shapes,

and roles. Gross anatomy can be studied from various points of view, such as regional

and systemic approaches [85].

Regional approach

Anatomical study from the regional approach is sometimes regarded as the subcategory

regional anatomy [70]. The body can be divided into regions, e.g., the thorax, abdomen,

and head. The thorax contains the lungs, heart, thoracic skeleton, walls, etc.

Systemic approach

Another point of view is as a system. The body consists of systems including the nervous,

skeletal, muscular, lymphatic, reproductive, gastrointestinal, and respiratory systems.

Although each system is not inside a region, it works integrally. The respiratory system
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consists of the head, neck, and thorax. The nervous, skeletal, and lymphatic systems

cover the entire body.

2.1.3 Surface anatomy

Surface anatomy [77] observes bodies externally. It is sometimes regarded as a subcat-

egory of gross anatomy. Even without dissection or imaging, it is possible to observe

many anatomies, such as the hair, eyes, skin, and nails. Bodies can posture in various

styles.

It is not just about knowing what lies under the skin and which structures

are perceptible to touch in a living body, it is also about enabling learners to

improve their skills in clinical examinations, interventional procedures, and

interpretation of diagnosing images.

Veronica Papa, et al. [78] pp. 167

2.1.4 Microscopic anatomy

Microscope magnification is efficient for investigating small anatomies (See Section

2.2.3). Microscopic anatomy (histology) is the study of small bodily structures, pri-

marily with the use of microscopes, in contrast to the macroscopic approach of gross

anatomy. Microscopes allow us to observe tiny tissues in bodies, such as cells. Marcello

Malpighi (1628-1694) [64, 79] is a pioneer of microscopic anatomy.

The British scientist Robert Hooke first observed plant cells in the 17th century [72].

However, further microscopic exploration was not well conducted for almost 200 years.

In the 19th century, Theodor Schwann and Matthias Jakob Schleiden used microscopes

to observe animals and cells, respectively [73]. Together, they established the cell the-

ory, arguing that all parts of animal and plant bodies are made up of cells. Marcello
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Malpighi described many small anatomies, including the renal glomeruli [65], pul-

monary capillaries, and alveoli [80].

2.1.5 Computational anatomy

Nowadays, computational techniques allow us to investigate anatomies. This field is

called computational anatomy:

Computational anatomy is an emerging discipline deriving from medical

anatomy and several other sciences and technologies, including medical

imaging, computer vision, and applied mathematics. The main focus of the

discipline covers the quantitative analysis and modeling of variability of bi-

ological shapes in human anatomy in health and disease.

...

reliable and automated segmentation schemes for all organs in medical im-

ages are necessary for detecting abnormal structures and surgical planning.

Yoshitaka Masutani, [74] pp. 2

Nowadays, computational techniques allow us to investigate anatomies. This field is

called computational anatomy:

2.2 Imaging for anatomical studies

One way of investigating (gross) anatomy is through dissection. Today, the dissection of

human bodies is considered important education for medical students [59]. For ethical

reasons, dissection has often been avoided or prohibited [55]. Since dissection is usually

restricted to cadavers or experimental animals, the cost, techniques, and environment

make it difficult to perform.
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Axial Sagittal

3D Coronal

(a) Organ segmentation

Ground-truth Detection results

(b) Lung nodule detection

Figure 2.2: Medical image processing for observation of anatomies. (a) Organ segmen-
tation from CT volumes. Figure obtained from [32] with additional notes. (b) Lung
nodule detection from CT volumes. Figure obtained from movie frame in [26] with
additional notes.
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Another method is to utilize imaging techniques (medical imaging). Acquiring im-

ages allows us to observe and record anatomies. There are currently many types of

imaging techniques available for medical imaging. As listed in Table 1.1, many imaging

techniques can be applied to anatomical studies (Table 2.1).
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2.2.1 Optical camera

Cameras are used not only for medical, but also many other purposes, such as artistic

photographs, television, and surveillance. Cameras observe the visible light coming in

through the lens. Historically, films made from gelatin silver or similar techniques were

used for recording this light. Videos can be generated by recording many images over a

period of time, in a manner similar to flipbooks. The Kinetoscope and Cinematographe,

invented in the 1980s, play videos by displaying a series of many images in a timeline.

However, these techniques produce analog images, which are not easily handled by

computers. Digital images can be generated by sampling and quantization. In digital

images, each image is represented as an array. A component of the array is called a

pixel (in 2D) or voxel (in 3D).

The digital camera was invented in 1975 by Steve Sasson [56]. Presently, digital

cameras (Fig. 2.3 (a)) utilize a charge-coupled device (CCD) image sensor to observe

lights and record images as a digital representation. Each image (picture) is divided

into an array of pixels and the pixels are represented as intensity values. It is possible

to generate color images by observing intensities at red, green, and blue (RGB) color

wavelengths individually and recording them as different channels.

The optical camera is not very suitable for observing inside the bodies of humans,

animals, or plants. This is because human skin and most other objects reflect visible

light. There are, however, various ways to observe inside of bodies, as mentioned below.

2.2.2 Endoscope

The endoscope is a medical device for observing the internal organs of living bodies.

Most endoscopes are tube shaped so that they are insertable into the body. A camera

installed at the top of the endoscope allows clinicians to observe the interior of the body.

A type of endoscope for the thorax is a bronchoscope (Fig. 2.3 (b)). The broncho-
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(a) Digital camera (b) Bronchoscope (c) Virtual slide scanner

(d) SEM (e) 2D X-ray scanner (f) Clinical CT scanner

(g) µCT scanner (h) MRI scanner (i) Ultrasonic imaging system

Figure 2.3: Imaging techniques. (a) Digital camera, DSC-WX500 (Sony, Japan). (b)
Bronchoscope, BF-XT190 (OLYMPUS, Japan). Figure from [23] (c) Virtual slide scan-
ner, VS120 (OLYMPUS, Japan). (d) Electron microscope, SU7000 (Hitachi High-Tech,
Japan). Figure from [25] (e) 2D X-ray scanner, DigitalDiagnost (Philips, Netherlands).
Figure from [20] (f) Clinical CT scanner, Aquilion ONE / GENESIS Edition (Canon Med-
ical Systems, Japan). Figure from [21] (g) µCT scanner, SMX-90CT Plus (Shimadzu,
Japan). (h) MRI scanner, Ingenia Elition 3.0T X (Philips, Netherlands). Figure from
[22] (i) Ultrasonic imaging system, Aplio i900 (Canon Medical Systems, Japan). Figure
from [24].

scope is inserted through the nose or throat. The camera at the top of the bronchoscope

allows us to observe the interior of the bronchus. The bronchoscope is widely utilized



28 CHAPTER 2. ANATOMICAL STUDIES AND COMPUTATIONAL ANALYSIS

(a) Components (b) Principle

Figure 2.4: Compound optical microscope. (a) Components of compound optical mi-
croscope. Figure from [167] (b) Working principle. Real image (A’-B’) is generated by
objective lens (C1) for object (A-B). From real image (A’-B’), eye piece (C2) generates
virtual image (A”-B”) which can be observed by eye. Figure from [168]

for clinical purposes, including diagnosis [224] and surgery [223].

2.2.3 Optical microscope

Optical microscopes are used for observing tiny structures, e.g., cells. Acquiring micro-

scopic images is useful for pathology, histology, and biology. These microscopes magnify

objects, making these objects much easier to visualize than in their original size.

Optical microscopes that are consisting of multiple lenses are called compound op-

tical microscopes. The sample is usually prepared on a microscope slide, a rectangular

glass of 75 × 26 mm2. The compound optical microscope consists of many components

(Fig. 2.4 (a)), including a light source, a stage, an objective lens, and an ocular lens.

A light source kindles the microscope slide installed on the stage. A halogen lamp or

an electronic light is often used as a light source. An objective lens facing the sample

collects light from the sample (A-B on Fig. 2.4 (a)) and generates a real image (A’-B’ on
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Fig. 2.4 (a)) inside the microscope. The eye piece (ocular lens) magnifies the real image

(A-B on Fig. 2.4 (a)) as a virtual image (A”-B” on Fig. 2.4 (a)) that can be observed

by an eye. A digital optical microscope utilizes the CCD instead of the ocular lens to

produce digital images.

Typical microscopes focus only on a limited part of a glass slide. Digital microscope

images consist of many pixels for visualizing tiny regions. Typical microscopes focus

only on a limited part of a slide. Virtual slide imaging (VSI) scanners (Fig. 2.3 (c))

are utilized for a vast space of glass slides. VSIs allow us to observe an entire glass

slide as one digital image. 3D imaging techniques based on optical [244] or electron

[243] techniques have been studied. However, there are still many limitations compared

to CT (Section 2.2.6) or MRI (Section 2.2.7) for 3D imaging. One approach for 3D

imaging is stacking and aligning many neighboring slice images [206]. However, it

is very challenging to accurately align these images to view as a volume since there

are many differences between neighboring slices. The banana effect [206] is a known

alignment difficulty. Even if we accurately stack and align, it is infeasible to acquire

a volume with isotropic resolution. The resolution along slices has to depend on slice

thickness, which would be far lower than the axes on each slice.

2.2.4 Electron microscope

Electron microscopes (Fig. 2.3 (d)) utilize the electrons. There are two common scan-

ning techniques: transmission electron microscopy (TEM) and scanning electron mi-

croscopy (SEM). Electron microscopes can achieve much higher spatial resolution than

optical microscopes. Electron microscopes are used to observe viruses or the inside of

cells.

The TEM (Fig. 2.5 (b)) is utilized for observing inside a sample prepared as a very

thin surface (100 nm or less). The sample is installed on the TEM grid. Tiny objects can
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TEM SEM

(a) TEM and SEM images

(b) TEM (c) SEM

Figure 2.5: Electron microscopes: transmission electron microscopy (TEM) and scan-
ning electron microscopy (SEM). (c) SEM and TEM images of escherichia coli O-157.
Figure from [169] with annotations by thesis’ author (a) TEM. Part of Fig. 2.1 in [66]
(b) SEM. Part of Fig. 2.2 in [66]

be observed, e.g., viruses, DNA. The electron gun generates electron beams towards

the sample. The electromagnetic lens (condenser) concentrates the electron beams
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and exposes them to the sample. Subsequent electromagnetic several lenses magnify

the electron beams that have passed the sample. The CCD camera records the image

generated on the phosphorescent screen.

The SEM (Fig. 2.5 (c)) is useful for SEM can observe a wider area than the TEM.

Electron beams generated by the electron gun are focused on the sample installed on the

stage. When the electron beams are projected, X-rays and secondary electrons spread

from the projected point. Images are generated by observing those X-rays and electrons

observed by their detectors with photomultipliers. The secondary electrons are often

utilized for biological samples [66] because secondary electrons escape only from the

samples’ surface.

2.2.5 (2D) Radiograph

In 1895, Wilhelm Rontgen discovered X-rays [58]. X-ray is an electromagnetic wave that

permeates through most non-metal objects well. Images acquired by X-ray are called

radiographs. Wilhelm Rontgen used photographic plates for acquiring radiographs. The

first radiograph was of Wilhelm Rontgen’s wife’s hand, which clearly showed the bones

and a ring on a finger [57].

Radiographs are currently used for many medical purposes. X-ray scanners (Fig.

2.3 (e)) are commonly used in medical examinations. For instance, radiographs are

essential for detecting abnormalities, e.g., a pulmonary nodule, on medical tests. X-rays

uniformly explode from an X-ray generator to the target object to acquire radiographic

images. Photographic plates, films, and detectors receive X-rays passed through the

target objects at the opposite side of the X-ray generator.

The absorption of X-rays occurs severely in tissues that densely consist of large

atomic numbers. The bones and teeth have significant X-ray absorption because they

densely contain calcium (20Ca), whose atomic number is 20. Soft tissues mostly consist
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of low atomic numbers, e.g., hydrogen (1H), carbon (6C), and oxygen (8O). Air has

minimal X-ray absorption. Usually, regions with large X-ray absorption appear brighter

than areas with small absorption. Bones and teeth are therefore bright, air and air-filled

organs (e.g., the lungs) dark, and soft-tissues somewhere in the middle.

Because radiographs are 2D images, many objects overlap with radiation exposure.

For instance, the heart, lungs, ribs, and blood vessels overlap each other on chest radio-

graphs.

2.2.6 Computed Tomography (CT)

Computed tomography (CT) is an imaging technique that solves the issues of (2D)

radiographs mentioned in Section 2.2.5. CT generates images on sections of objects

without physical cutting and it is possible to generate a 3D CT image (volumetric image,

volume).

Projections of X-ray absorption from many angles are required for generating CT im-

ages. Reconstruction algorithms [34, 36] construct a volume from the projections along

with many angles. As with (2D) radiographs, large contrasts are observed between the

bones, soft tissues, and air.

History

CT scanning was initially invented by the British engineer Godfrey Hounsfield while

working for Electrical and Musical Industries Ltd. (EMI) [212]. He learned the basics

of electronics and radar science while in the Royal Air Force. After World War II, he

entered EMI and began working on weapons, radars, and computers. In the late 1960s,

he focused on 3D imaging based on X-rays and developed a CT scanner. Two radiol-

ogists, James Ambrose and Louis Kreel, assisted Godfrey Hounsfield with radiological

knowledge and testing samples.
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In 1971, computed tomography angiography (CTA) scanning was performed on a

preserved human brain, a fresh cow brain, and Godfrey Hounsfield’s brain. The first

patient was a woman suffering from a suspected frontal lobe tumor [203]. The scanner

at this time took 4.5 20 minutes for each 180-degree scan. The CT volumes consisted of

slices of 80 × 80 pixels, with a spatial resolution of 3 × 3 × 13 mm3. In 1979, Godfrey

Hounsfield and an American Physicist, Allan MacLeod Cormack, won the Novel Prize in

Physiology or Medicine. Allan MacLeod Cormack proposed a reconstruction algorithm

from X-ray images acquired from various angles [202].

Although another 3D imaging technique called magnetic resonance imaging (MRI)

started to become common in the 1980s, improvement of the CT scanning technique

has continued with several significant innovations up to today [211]. Spiral scanning

introduced in 1989 replaced slice-by-slice scans for generating a stack with real 3D

images. Today, an entire body can be scanned within 5-20 seconds at a spatial resolution

of less than 1 mm.

Principle

Highly-dense materials with high atomic numbers tend to cause strong attenuation of

the X-ray. The CT estimates the attenuation coefficient at each point in the sample. Note

that the following description is mainly based on pp. 191-192 in [127].

The Radon’s theorem is the basis of generating images of materials’ sections. Ac-

cording to Radon’s theorem, projection data from all angles allows us to reconstruct the

images of materials’ sections.

The X-ray is projected from the X-ray tube to the sample. The X-ray detector existing

at the opposite side of the X-ray tube records the radiation dose. The projection data is

calculated by comparing the projected and recorded radiation doses. When a projected

and recorded radiation doses were I0 and Id, respectively, the projection data value
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View
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(a)

Sample

Recording projection data

(b)

Convolution

Projection data

Reconstruction function

Filtered projection data

(c)

Reconstruction result

(d)

Figure 2.6: Principle of CT reconstruction with filtered-back-propagation (FBP). Figs.
4 and 5 on pp. 191-192 in [127] with modifications by thesis’ author. (a) Recording
projection data. (b) Recording projection data from various angles. (c) Filtering. (d)
Reconstruction with FBP.

p(t, θ) is calculated (Fig. 2.6 (a)) by

Id(t, θ) = I0(t, θ) exp

[
−
∫

µ(x, y) ds

]
(2.1)

= I0(t, θ) exp[−p(t, θ)] (2.2)

∴ p(t, θ) = − ln

Id(t, θ)

I0(t, θ)

 (2.3)

where t represents the distance from the origin, and θ represents the projected angle.

A widely used reconstruction algorithm is filtered-back-projection (FBP). The pro-



2.2. IMAGING FOR ANATOMICAL STUDIES 35

Recording projection data Simple back-projection Filtered back-projection

Sample

Projection data

(a)

Simple back-projection Filtered back-projection

(b)

Figure 2.7: Efficacy of filtering. Parts of Fig 2.3, 2.4, 2.5, and 2.6 on [190] with modi-
fications by thesis’ author. (a) Schematic illustrations. Simple back-propagation gener-
ates blurred images, while filtered back-propagation generates much more clear images.
(b) Reconstruction results of abdominal CT volume.

jection data from various angles (Fig. 2.6 (a)(b)) allows us to reconstruct results by

simple back-projection. However, the reconstruction results are blurred. Therefore, a

reconstruction function is convoluted on the projection data (Fig. 2.6 (c)), and then

back-projection is performed (Fig. 2.6 (d)). Reconstruction functions control the char-

acteristics of results. Figure 2.7 shows the efficacy of filtering.
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Clinical CT

CT scanners for the human body are sometimes called clinical CT scanners (Fig. 2.3

(f)). The Hounsfield Unit (H.U.) is a unit for clinical CT intensity values that represents

radiodensity. It is a quantitative scale that represents -1000 for air and 0 for water. 3D

and 4D CT scanning have become ubiquitous in clinical practice. Spatial resolution is

currently around 0.5 mm or smaller.

Micro-focus X-ray CT (µCT)

While clinical CT is commonly utilized in clinical practice, its resolution is limited to a

millimeter scale. A higher resolution is sometimes required for anatomical, biological,

or pathological studies. Moreover, requests for non-destructive inspection exist in en-

gineering. These inspections may require observing much smaller structures, such as

cotton tissue or concrete.

Micro-focus X-ray CT (µCT) (Fig. 2.3 (g)) is a CT scanner that has a higher spatial

resolution than clinical CT. The X-ray detector can acquire high-resolution projection

images than clinical CT.

The X-ray source’s focal spot size, the detector’s size, and the system’s geometry

affect the spatial resolution [188]. To make µCT’s spatial resolutions higher than clinical

CT’s, the X-ray detector can be developed densely, and the target object can be smaller

than the human body. Reconstruction results from high-resolution images also become

high-resolution. Also, if scanners are not for living bodies, X-rays with high radiation

doses can be utilized.

µCT is clinically utilized in dentistry [186, 187]. Furthermore, µCT is widely used

in engineering,for example, in non-destructive inspection [37, 47] and structure inves-

tigation [38, 45]. It is also useful for observing natural objects [44] such as plants [43],

small animals [39, 40], and insects[41, 42].
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2.2.7 Magnetic resonance imaging (MRI)

Magnetic resonance imaging (MRI) (Fig. 2.3 (h)) is another 3D non-destructive imaging

technique [210]. MRI imaging has many advantages over CT, such as high contrast for

some tissues and no X-ray exposure. Major disadvantages are difficulties for patients

with internal metal hardware or pacemakers, low contrast for bones, and low spatial

resolution. Furthermore, since the scanning time is longer than with CT, MRI is not

suitable for moving organs such as the lungs. In contrast, MRI is utilized widely for the

head, breasts, and limbs.

The atomic nuclei (proton) of some atoms are magnetic (Fig. 2.8 (a)). MRI focuses

on hydrogen, found in water and fat. Usually, these protons are directed arbitrarily.

When a static magnetic field is projected onto the material, proton precession begins

and the protons start to rotate rapidly. The frequency of rotation is called the Larmor

frequency, which depends on the static magnetic field’s strength. The protons’ magnetic

vector is now directed parallel to the static magnetic field (z-direction) and the rotating

protons are now called spins. Along the z-axis, a slightly larger number of spins are now

directed in the z-direction than those in the opposite direction.

An electronic pulse, called the 90-degree pulse of the Larmor frequency, is projected

perpendicular to the static magnetic field (Fig. 2.8 (b)). This 90-degree pulse causes

resonance between spins. In other words, the phases between the spins are fixed. Fur-

thermore, the spins are directed in the same direction as each other along the z-axis.

The magnetic vectors generated by the protons are now directed onto the x-y plane.

When the 90-degree pulse stops, the protons return to the rotation without resonance

(Fig. 2.8 (c)). The relaxation along the z-axis (T1-relaxation) requires more time than

the relaxation along the x-y plane (T2-relaxation).

Spin-echo is a widely utilized method of MRI imaging. Fig. 2.8 (d) shows an ex-

ample of a time sequence. A 90-degree pulse is generated at tex90. After a time TE
2
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from the 90-degree pulse, another pulse named 180-degree pulse is generated. “TE”

represents the echo time. After another time TE
2

, a large signal called the echo is largely

observed. The time between subsequent 90-degree pulses is called “TR”, representing

the repetition time.

Coordinates in the images are assigned by changing the frequencies and phases for

different positions. In addition to the static magnetic field, the gradient coils offer a

gradient magnetic field. The gradient magnetic field can have different strengths for

different positions. Offering the gradient magnetic field along the x-axis allows us to

change the spins’ frequency according to each position’s strength (frequency encoding).

Spin phases can be changed by assigning the gradient magnetic field along the y-axis

for a very short time (phase encoding).

T1- and T2-weighted images are types of MRI images widely used in clinical diag-

nosis. These images have different characteristics for different materials. For both T1-

and T2-weighted images, fat is bright, and bones and blood flow are dark. Water is

dark and bright on T1- and T2-weighted images, respectively. Mucus has the inverse

characteristic of water.

2.2.8 Scintigraphy

Scintigraphy is a 2D imaging radiology technique generated by the radiopharmaceuti-

cals injected into the body. A radiopharmaceutical is a drug containing a radioactive

isotope (RI). Gamma cameras pick up the gamma-ray generated from the radiopharma-

ceutical.

123I-metaiodobenzylguanidine (MIBG) scintigraphy uses a radiopharmaceutical that

behaves similarly to norepinephrine (noradrenaline). Norepinephrine acts as a neuro-

transmitter in the body. The injected 123I-MIBG clusters at cancers originating in the

adrenal medulla or nervus sympathicus. MIBG scintigraphy is often used for the diag-
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nosis of these cancers, e.g., melanocytomas and neuroblastomas.

SPECT and PET

Single-photon emission computed tomography (SPECT) and positron emission tomog-

raphy (PET) are 3D imaging techniques for nuclear medicine. Sometimes SPECT and

PET are separately regarded as scintigraphy due to their 3D imaging. These 3D imaging

techniques are often integrated with a general clinical CT scanner as a SPECT-CT or a

PET-CT scanner.

A radiopharmaceutical is injected into the patient before SPECT or PET scanning is

performed. This scheme is different from clinical CT, which records X-rays irradiated

from the source outside the bodies.

For instance, PET uses the radiopharmaceutical fluorodeoxyglucose F 18 (18F-FDG)

is utilized for cancer diagnosis [209]. 18F-FDG is a derivative of glucose, which contains

the positron-emitting nuclide 18F. Since cancers tend to consume a lot of glucose, 18F-

FDG gathers around the cancer and this cancer can be detected in the PET images.

2.2.9 Ultrasonography

Ultrasonography [181] is another imaging technique used inside living bodies. One

crucial feature is real-time imaging. The scanning system (Fig. 2.3 (i)) is usually much

simpler and easier to operate than CT or MRI and there is no X-ray exposure.

The pulse-echo technique is used for most general ultrasonographic imaging [214].

An ultrasound pulse is sent from the probe to the body. The pulse reflects off the surface

of an object as an echo. The distance between the probe and the object is then estimated

by the return time of the echo. The propagation velocity of ultrasound is assumed to be

constant in the body. Images generated based on the echo strengths are called B-mode

images and are common in the medical field.
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2.3 Thoracic anatomies

2.3.1 Exploring thorax

In this thesis, we focus on the thorax. The thorax contains the lungs and the heart,

which are essential for the respiratory and circulatory systems, respectively. In brief, the

heart receives blood from the entire body, passes the blood through the lungs to receive

oxygen, removes the carbon dioxide, and then pushes the blood back through the entire

body. The bronchus is an airway tree between the lungs and outside the body.

The thorax is the part between the neck and the abdomen (Fig. 2.9). The breasts are

located on the front outside of the thorax (Section 2.1.3). The breasts, bones including

the ribs (thoracic skeleton), and muscles are located under the skin. From the systemic

approach, the breast belongs to the reproductive system (Sec. 2.1.2).

There are well-known and large organs in the region covered by the thoracic skele-

ton: the bronchus, lungs, and heart (Fig. 2.10). These three organs are situated near

each other and strongly correlate via many arteries and veins. However, from a systemic

viewpoint (Sec. 2.1.2), the heart belongs to the circulatory system, while the bronchus

and lungs belong to the respiratory system.

In the following, several major thoracic anatomies are briefly described.

2.3.2 Lungs

The lungs are the organs for transferring the oxygen from the air to the blood and

releasing the blood’s carbon dioxide to the air. The lungs are divided into the left

and right lungs, as shown in Fig. 2.10. The right lung is divided into three lobes,

the superior, middle, and inferior lobes. The left lung consists of only two lobes, the

superior and inferior lobe. The right lung is larger than the left lung [172]. The sizes of

the lungs change with breathing, as they expand and contract when air is inhaled and
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exhaled, respectively.

2.3.3 Bronchus

The bronchus is the airway tree that provides air to the lungs. The root of the bronchus

(trachea) lies between the left and right lungs. The trachea’s diameter size is around

12 mm [86] depending on the person and sex. The trachea branches into the left and

right lungs (Fig. 2.11 (a)). Each branch further branches several times in the lungs and

deeper branches tend to be thinner than their parents. These branches run parallel to

the pulmonary arteries. Terminations of the branches consist of the alveolar sacs and

the alveoli, which are similar in shape to raspberries (Fig. fig:netterBronchus (b)). The

lymph nodes, including the mediastinal lymph nodes, reside beside the bronchus (Fig.

2.12).

2.3.4 Lymph nodes

The lymph nodes are tissues for the lymphatic system. Bacterias, viruses, and cancer

cells in the lymphatic fluid are cleaned. Numbers of lymph nodes exist all over the body

and are bloblike in shape. The region between the left and right lungs is called the

mediastinum. One group of lymph nodes, called mediastinal lymph nodes, exist beside

the airways (Fig. and 2.12 annotated in Fig. 2.10). Although reported sizes in the

anatomical reports vary ([150–152]), each mediastinal lymph node is usually less than

10 mm in diameter.

For lung cancer diagnosis, it is essential to check lymph node size since lymph nodes

metastasized by cancers are enlarged. “10 mm” is the clinical size threshold for checking

metastasis [153] in diagnosing lung cancer.
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2.3.5 Heart and blood vessels

The heart is an organ that pumps blood to the entire body and the lungs. The heart

is located below the bronchus and between the lower parts of the lungs. It consists of

four chambers: the left ventricle, right ventricle, left atrium, and right atrium. Sizes

and shapes change frequently during beating. These chambers are connected to blood

vessels. There are also valves for directing blood flow.

Pulmonary arteries and veins spread throughout the lungs. The roots of these arter-

ies and veins are connected to the heart. The pulmonary arteries carry deoxygenated

(low oxygen concentration) blood from the heart’s right ventricle. After the lungs re-

duce carbon dioxide and increase oxygen concentration in the blood, the blood returns

to the heart’s left atrium and is moved to the left ventricle via the mitral valve. The

blood is then pushed out throughout the body through the aortic valve and aorta (an

artery). During its course through the body, the blood is deoxygenated. The deoxy-

genated blood first returns to the right atrium through the superior vena cava vein and

then to the right atrium via the tricuspid valve.

The heart consists of muscles (cardiac muscles) for pushing out the blood to the

lungs and body. It continues to work constantly through life without resting. For effi-

cient blood circulation, the cardiac muscle fibers (cardiac fibers) consist of complicated

structures [173, 174]. Unfortunately, such structures are not well illustrated or ex-

plained in any well-known gross anatomy book (Fig. 2.13).
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Figure 2.8: Basics of MR imaging. Figures 1, 2, 4 and 5 on [185] with modifications
by thesis’ author. (a) Protons and nuclear magnification. When static magnetic field H0

is offered, magnetic field M0 generated by protons directs along z-axis. (b) Excitation.
When 90-degree pulse is given, magnetic vectors lie on x − y plane. (c) T1- and T2-
relaxations. (d) Example of time sequence for spin-echo method.
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(a) Entire bronchus (pp. 191 in [27]). (b) Around termination of branches (pp. 192 in
[27])).

Figure 2.11: Detailed illustrations of bronchus. (a) Entire bronchus. (b) Around termi-
nation of branches.
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Figure 2.12: Detailed illustrations of lungs, bronchus and surrounding lymph nodes and
vessels (pp. 197 in [27]).

Figure 2.13: Detailed illustrations of the left ventricle of the heart (pp. 209 in [27]).
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2.4 Computational anatomy in thorax

2.4.1 Motivations of focusing on thorax

We focus on the thorax since diseases of the thoracic anatomies are responsible for many

deaths each year. It is essential to understand thoracic anatomies by computational

techniques for further medical study and to ensure proper treatment.

Japan’s Ministry of Health, Labour and Welfare (MHLW) reports the numbers and

causes of death every year. According to an MHLW report [1], 1,381,093 people died

in 2019. The top five causes of death were cancers (27.3 %), cardiac diseases (15.0

%), senile decay (8.8 %), cerebrovascular diseases (7.3 %), and pneumonia (6.9 %).

Cardiac diseases occur in the heart, while pneumonia is an inflammation of the lungs.

Some cancers of the thoracic anatomies prove fatal. The top five cancers causing death

were of the lungs (20.0 %), stomach (11.4 %), pancreas (9.7 %), colon (9.5 %), and

breasts (4.0 %). The lungs and breasts are thoracic anatomies.

2.4.2 Assistance of clinical practices

Generally, it is essential to find diseases or lesions as early as possible. Frequent health

examinations are recommended. In Japan, some examinations, such as chest X-ray

imaging and urinalysis, are legal requirements for employees (Industrial Safety and

Health Act). Cancer is of significant interest in these health examinations. If possibilities

of disease are detected, further examinations are considered.

As mentioned in Section 2.4.1, cancer can be fatal. When cancers or their precur-

sors are detected, careful diagnosis and precise treatment are essential. Some cancers

are difficult to detect until they grow large. Sometimes cancers metastasize to the

lymph nodes or other areas. The TNM Classification of Malignant Tumors (TNM) cri-

terion is used to recognize the spread of cancer. Cancers and their metastases to the
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lymph nodes or other organs are considered in the TNM. Clinicians create a treatment

plan by recognitions based on the TNM. The major treatment methods include surgery,

chemotherapy, and radiotherapy. Multidisciplinary therapy is also commonly planned.

To properly plan treatment based on the TNM, it is essential to observe the cancer’s cur-

rent growth. However, there is a potential for oversight or misdiagnosis when reviewing

medical images. For instance, it has been reported that 25% of lung cancers are over-

looked in chest X-ray diagnoses [2]. The oversight (false negative) rate of breast cancers

on mammograms is reported as 4%-34% [3]. Suppressing the ribs on chest X-ray im-

ages allows clinicians to observe anatomies and lesions overlapped by the ribs [16]. In

addition to observing these images by eye, computational techniques assist quantitative

diagnosis with little possibility of misdiagnosis. The oversight of lesions that may be

cancerous (e.g., lung nodules, breast calcification) may be prevented with automated

detection [7, 15]. Interpretation may be quantitatively performed with little variation

between observers with automated segmentation [14] and lesions can be classified into

malignant or benign [13].

Cardiac diseases are also proving fatal, as mentioned in Section 2.4.1. Cardiac dis-

eases include myocardial infarction, arrhythmia, and heart failure. Computational anal-

ysis of cardiac diseases has been widely studied. The electrocardiogram records cardiac

activities as electric signals. Arrhythmia has been widely studied for automated diagno-

sis from electrocardiograms [4, 5]. Imaging techniques are more useful than electrocar-

diograms for patients’ current bodies, such as increasing the image size of the ventricles

[19]. The segmentation of heart chambers [18] assists in quantitatively measuring size,

shape, and activity. Such information is essential for the diagnosis of various cardiac

diseases. For instance, dilated cardiomyopathy [6], a type of heart failure, involves a

decrease in the contractile activity of the ventricles, resulting in an enlargement of the

cavity sizes of the ventricles. Segmentation of the chambers from MRI volumes [18]

or ultrasonographies [17] is useful for detecting dilated cardiomyopathy and quantita-
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tively measuring its progress.





Chapter 3

Mediastinal lymph node detection

3.1 Overview

This chapter addresses mediastinal lymph node detection from CT volumes. CT is

widely utilized for imaging around the lungs in clinical practice because of the amount

of air contained in the lungs. CT volumes show considerable contrast between air and

non-air regions. In clinical practice, detecting mediastinal lymph nodes is essential in

lung cancer patients’ CT volumes. Mediastinal lymph nodes are small and not readily

apparent on CT volumes because there are various tissues with unique intensity ranges

in the vicinity of the lymph nodes. It is challenging to model target conditions such as

“bloblike structure that is slightly brighter than its surroundings.” It is essential to focus

on small intensity gradients around the lymph nodes for detection.

Therefore, in this chapter, a filtering method that works efficiently even among vari-

ous tissues is proposed and applied for mediastinal lymph node detection. This chapter

is based on a paper entitled “Automated mediastinal lymph node detection from CT

volumes based on intensity targeted radial structure tensor analysis” published in the

Journal of Medical Imaging in 2017.

51
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3.2 Background

Lung cancer is the leading cause of cancer-related deaths in the United States [90] and

China [91]. It is also the leading cause of cancer-related deaths among men worldwide

[87]. There are several treatment methods for lung cancer, e.g., surgery, chemotherapy,

and radiotherapy. To choose the best treatment method, cancer staging based on the

TNM staging system [92] is required. Three factors are focused on in staging: T (tu-

mor), N (lymph nodes), and distant M (metastasis). In the preoperative diagnosis of

lung cancer, radiologists check mediastinal lymph nodes on computed tomography (CT)

volumes. However, because lymph nodes are small and their silhouette is not clear, they

might be overlooked. A computer-Aided Detection (CADe) system for automated lymph

node detection is strongly desired. It prevents medical doctors from overlooking and

lighten their burden.

There are various approaches for detecting lymph nodes from CT volumes: random

forest statistical classifier [125], and local intensity structure analyses based on Hessian

matrix [120, 121, 126] or radial structure tensor (RST) [130]. 3D Haar-like features are

a three-dimensional feature point detection method that can detect bloblike structures

in volumetric images. Barbu et al. [123] introduced 3D Haar-like features for axillary,

pelvic, and abdominal lymph nodes. Feulner et al. [132] utilized them for mediastinal

lymph node detection. The random forest statistical classifier is an unsupervised ma-

chine learning technique that can enhance target objects in image volumes. Cherry et

al. [124] utilized random forest statistical classifiers for abdominal lymphadenopathy

detection.

Local intensity structure analysis based on the Hessian matrix has been widely used

for automated detection and segmentation of organs [163, 164, 166] and lesions [160–

162, 165]. The Hessian matrix is computed for each location. It describes the local

intensity structure as a blob, line, or sheet around the location and whether it is brighter
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or darker than surrounding regions. The bright bloblike structure enhancement filter

based on the Hessian matrix (Hessian filter) responds with a high value at the central

part of the bloblike regions, brighter than surrounding regions. Feuerstein et al. [101]

proposed a mediastinal lymph node detection method using this. Another method pro-

posed by Liu et al.[100] is also based on the Hessian analysis. Random forest [125] and

support vector machine (SVM) [159] classifiers were introduced for improvement of

performance. Roth et al. [135] introduced deep convolutional neural networks [128]

for further improvement.

Another method of detection is through local intensity structure analysis based on

RST [130]. Nimura et al. [122] introduced the bright bloblike structure enhancement

filter based on RST (RST filter) for detecting the abdominal lymph nodes. Its benefit

is that it can enhance the entire region of the target object, in contrast to the Hessian

filter, which only enhances the region’s central part. The RST filter can capture the

lymph node shape more properly than the Hessian filter. The features extracted can

be used to determine whether each candidate region is a true positive (TP) or a false

positive (FP) using machine learning techniques. However, the RST filters have not

performed well on mediastinal lymph node detection. The current RST filter fails when

tissues have largely varying intensity distributions close to the target, for instance, in

the case of air and contrasting blood vessels.

Lymph nodes on CT volumes typically show the following characteristics:

Characteristics 1) slightly higher intensity than surrounding regions,

Characteristics 2) spherical shape,

Characteristics 3) narrow intensity range similar to soft tissue.

The RST filter is designed to detect the regions having Characteristics 1) and 2). How-

ever, mediastinal lymph node detection is a challenging problem in the medical imag-

ing area. Mediastinal lymph nodes are closely surrounded by many structures, such as

contrast-enhanced blood vessels or air, as shown in Fig. 3.1. Although several methods
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Figure 3.1: Intensity profile of lymph node. (a) Example of axial slice and its magnifi-
cation of lymph node. Yellow represents lymph nodes. (b) Intensity profile on the line
segment A–B shown in (a).

have been proposed for lymph node detection on CT volumes, they fail in detecting such

lymph nodes. This chapter proposes a new filter called the ITRST (Intensity Targeted

Radial Structure Tensor) filter. The ITRST filter can detect lymph nodes located around

the anatomical structures of extremely higher or lower intensities. The ITRST filter’s

idea is to ignore extremely higher or lower intensity regions in RST computation to

meet the requirement of Characteristics 1). This allows us to detect lymph nodes that

regions having extremely high or low intensities are neighboring.

This chapter’s contribution is summarized as (a) to propose a new lymph node

detection filter called the ITRST filter and (b) to evaluate the performances of the ITRST

filter by using artificial and clinical CT volumes.

In Section 3.4, we propose the automated mediastinal lymph node detection method

based on the ITRST filter and SVM classifier. In Section 3.5, we present two experiments

showing the ITRST filter’s efficacy. The results are discussed in the following sections.
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3.3 Conventional local intensity structure analyses

3.3.1 Hessian analysis

As mentioned in Section 3.2, the local intensity structure analysis based on the Hessian

matrix [120, 121, 126] has been widely utilized for medical image processing. The

Hessian matrix for a point x = [x, y, z]T in the CT volume I is written by

H(x) =



∂2

∂x2
I(x)

∂2

∂x∂y
I(x)

∂2

∂x∂z
I(x)

∂2

∂y∂x
I(x)

∂2

∂y2
I(x)

∂2

∂y∂z
I(x)

∂2

∂z∂x
I(x)

∂2

∂z∂y
I(x)

∂2

∂z2
I(x)


(3.1)

where
∂2

∂x∂y
I(x) and similar components represent the second derivatives of I at x.

The second derivative is given by

∂2

∂x∂y
=

∂2

∂x∂y
G(x; σH) ∗ I(x) (3.2)

where G(x; σH) represents an isotropic 3D Gaussian function with a standard deviation

σH (Section 3.2 in [121] for more detail). The symbol ∗ represents convolution.

Eigenvalues of the Hessian matrix are evaluated for filtering. For instance, I(x) is

brighter than the surrounding region if all eigenvalues are negative. The larger the

magnitude of the eigenvalue, the larger the gradient. The eigenvalues are utilized to

enhance the bright bloblike structure regions that have the condition λ1 ≃ λ2 ≃ λ3 ≪ 0

using an evaluation formula. For example, a simple evaluation formula
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fblob(λ0, λ1, λ2) =

 |λ2|
|λ2|
|λ0|

if λ2, λ1, λ0 < 0,

0 otherwise,

(3.3)

was proposed by Li et al. [120]. Such formulae produce high responses in the bright

bloblike regions.

3.3.2 RST analysis

The Radial Structure Tensor (RST) is given as the second-order tensor matrix (3 × 3

matrix). The RST is given by

T (x) =
∑
i

∑
j

αi,jrig
T
i,j, (3.4)

where x = (x, y, z)T represents the coordinate of a voxel where the RST is computed, ri

represents an i-th search direction from x, and gi,j represents a local gradiant vector of

I(xi,j). αi,j represents the opacity, given by

αi,j =


0 if |I(x)− I(xi,j)| < tmin,

|I(x)− I(xi,j)|
|tmax − tmin|

if tmin ≤ |I(x)− I(xi,j)| < tmax,

1 otherwise,

(3.5)

where i is the index of search directions, j is the index of search steps of each search,

xij is a voxel located in the j-th search step on the i-th search direction, tmin and tmax

(tmin < tmax) are parameters for controlling the sensitivity of the gradient. For definition

of the search directions ri (i = 1, · · · , 42), a pentakis icosidodecahedron (PI) is utilized.

ri (i = 1, · · · , 42) are defined as direction vectors from the PI’s center to the PI’s 42

vertices.
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When an accumulated opacity βi =
∑

j αi,j ≃ 1 or a search length becomes tlen or

larger, a search for the i-th search direction is terminated.

Eigenvalues λ0, λ1, λ2 (|λ0| ≥ |λ1| ≥ |λ2|) of T (x) + T T(x) represent the magnitude

of the gradient directing the corresponding eigenvector around x. Those eigenvalues

can be evaluated as the same scheme as those of the Hessian matrix for filtering.

3.4 ITRST-based lymph node detection method

3.4.1 ITRST filter

This chapter introduces a novel bloblike structure enhancement filter called the ITRST

filter, a modified version of the RST filter. Before explaining the ITRST filter, we will

give a brief overview of the RST filter.

However, suppose some of the radial searches incorporate regions whose intensities

are extremely high or low. In that case, huge intensity gradients of some specified

directions are summed into the RST T (x), according to Eq. (3.4). The eigenvalues

calculated in such regions may become λ0 ≪ λ1 ≤ λ2 ≤ 0 or λ1 ≤ λ2 ≤ 0≪ λ0, and the

responses of an evaluation formula such as Eq. (3.3) become low.

To prevent the effect of the huge intensity gap explained above, we propose the

ITRST filter. Schematic illustration showing the difference between the RST and the

ITRST filters is summarized in Fig. 3.2. The ITRST filter introduces the target region’s

prior knowledge to prevent summing huge intensity gradients into the ITRST. Intensity

gradients at higher or lower intensity regions than the thresholds are not summed into

the ITRST. The ITRST is defined by modifying Eq. (3.4) as

T ′(x) =
∑
i

∑
j

αi,jγi,jrig
T
i,j (3.6)
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(a) (b)

Figure 3.2: Schematic illustration showing differences between (a) RST and (b) ITRST
filters. Point x is in sphere, and sphere is touching region with very low intensities. Top
row represents intensity gradients that are summed into RST and ITRST, respectively.
Bottom row represents magnitudes of eigenvalues λ0, λ1, λ2 (|λ0| ≥ |λ1| ≥ |λ2|) with
corresponding eigenvectors of RST and ITRST, respectively.

where γi,j is a function that classifies whether all points utilized for computing gi,j have

the intensity within a predetermined range or not, which is defined as

γi,j =

 1 if tdark ≤ I(x′) ≤ tbright for ∀x′ ∈ N (i, j)

0 otherwise, .
(3.7)
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where N (i, j) is a set of 6-neighborhood voxels around xi,j. In Eq. (3.7), tdark and tbright

are upper and lower limits of target intensity range, respectively. The parameters tdark

and tbright affect the enhancement results as follows. If we lower tdark, this causes FPs of

lymph nodes located at neighbors of air regions. If we set tbright higher, this setting pro-

duces false negatives (FNs) of lymph nodes located at neighbors of contrast-enhanced

blood vessels (intensities of 150 – 300 H.U.) are produced. Choosing higher tdark or

lower tbright makes the filter responses lower, because it reduces the intensity gradients

summed into the ITRST. When an accumulated opacity β′
i = max

(∑
j αi,j, γi,j

)
≃ 1

or a search length becomes tlen or larger, a search for the i-th search direction is termi-

nated. Eigenvalues of T ′(x) + T ′T(x), λ′
0, λ

′
1, λ

′
2 (|λ′

0| ≥ |λ′
1| ≥ |λ′

2|) can be utilized in

the same manner as those of the RST filter.

3.4.2 Mediastinal lymph node detection

Overview

This section explains a mediastinal lymph node detection method from CT volumes

based on the ITRST filter. In this method, we assume that the input of the method is

a chest CT volume. The output is mediastinal lymph node detection results. Detection

targets are the mediastinal lymph nodes having specified least short axis or above. This

is because enlarged lymph nodes have a high possibility to be metastasized. The entire

process consists of (1) preprocessing, (2) obtaining candidate regions by thresholding

against the responses of the ITRST filter, and (3) FP reduction using a machine-learning.

The input volume I is a chest CT volume. The ground-truth binary volume Ig of

mediastinal lymph nodes is required if I is utilized for training only. The output is a

binary volume Iout, which has lymph node regions denoted by the value 1. We describe

the size of each lymph node using Principal Components Analysis. We focus on detecting

lymph nodes above a specified size, defined by a short axis length of at least rtarget [mm].
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Preprocessing

First, we interpolate an input volume to generate an isotropic resolution volume. We

apply the cubic interpolation on I to obtain a volume with isotropic resolution wreso

[mm] ×wreso [mm] ×wreso [mm] per voxel [89]. Furthermore, we apply a Gaussian

smoothing filter with standard deviation σsmooth [mm] to reduce noise and make local

gradients more stable. We denote the preprocessed input volume as I ′.

Target region of detection

We restrict the target region for lymph node detection to inside the mediastinal region.

We define the mediastinal region simply as the region between the right and left lungs.

A lung region Alung is segmented by some automatic segmentation method. We use a

lung segmentation method similar to Hu et al.[136].

Firstly, we obtain air regions Aair in I ′ as regions having lower intensities than a

given threshold tair and not touching to the boundary of the input CT volume. Then, we

select the first and second largest connected components from the air regions detected.

If the second largest component of the air regions is less than 20% of the largest one,

we choose the largest component of the air regions as Alung. Finally, the mediastinum

region Amedia is obtained by Alung using Algorithm 1. The function max(a) represents

the maximum value of a in this algorithm.

We assume that the x-axis of the input volume I corresponds with the right-to-left

direction of the body, the y-axis corresponds with the front-to-back direction, and z-axis

corresponds with the head-to-foot direction. We scan the lung region Alung from each

pair of (y, z) toward the right-to-left direction (along the x-axis). For each scan, we

check whether no fewer than two components exist in the scan line. This means that

there are right and left lung regions in the scan line. If no fewer than two components

exist, we fill the gap between each component by the value 1.
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Algorithm 1 Segmentation of Mediastinum Region Amedia

Input: lung region Alung

for z = 0 to max(z) do
for y = 0 to max(y) do
a1 = 0
for x = 0 to max(x)− 1 do

if Alung(x, y, z) = 1 ∩ Alung(x+ 1, y, z) = 0 then
a1 ← a1 + 1

end if
end for
if a1 ≥ 2 then
a2 = 0
for x = 0 to max(x)− 1 do

if 1 ≤ a2 < a1 ∩ Alung(x+ 1, y, z) = 0 then
Amedia(x, y, z)← 1

end if
if Alung(x, y, z) = 1 ∩ Alung(x+ 1, y, z) = 0 then
a2 ← a2 + 1

end if
end for

end if
end for

end for
Output: mediastinum region Amedia

Initial lymph node detection using ITRST filter

We obtain the candidate regions using the ITRST filter. Firstly we apply the ITRST filter

with the evaluation formula (3.3) to I ′. Since each point of I ′ has one response, we

obtain the volume of filter response F . Because responses of the ITRST filter sometimes

become zero in the bloblike regions as like an individual hole, we apply a median filter

of whole × whole × whole [voxels] to F for normalizing such points. Then, we perform

thresholding onto the result of the median filter F ′ as

F ′
blob(x) ≥ tblob (3.8)
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with the threshold value tblob. Regions of connected components whose volume is less

than that of the sphere with radius tsmall (mm) and ones that are not touching the

mediastinum region Amedia are eliminated. The remaining are denoted as candidate

regions.

FP reduction

Candidate regions generated by the ITRST filter contain many FP regions. The SVM

classifier is utilized to classify each candidate region into a TP or an FP.

(10 + 7|D|)-dimensional features are utilized for each candidate region, as shown

in Table 3.1. D is the permutation of radii utilized for computation of features related

to the intensity. The number of elements of D is |D|, index of D is p (1 ≤ p ≤ |D|),

and one of its elements is written as d ∈ D. When d > 0 mm, the target region for

calculating the intensity features is obtained by dilation of the candidate region. The

dilation is performed using a structural element of a sphere whose radius is d mm.

The target region represents the candidate region’s neighbor, and larger values of d

bring the target region thicker. When d = 0 mm, the target region is the same as the

candidate region. Features are computed for both the training step and the testing step

and utilized as follows.

• Training step

Feature vectors obtained from candidate regions of all volumes in the training

dataset are used for training of the SVM [159]. The set of lymph node regions

whose short axis is at least rtargetwtrain mm in the ground truth Ig is written as G.

rtarget is a parameter representing the minimum length of the target lymph nodes’

short axis. wtrain (0 < wtrain < 1) is the parameter for setting the smallest size of

a lymph node that is utilized for training. If the center of a candidate region is

in one of the lymph node regions of G, its feature vector is utilized as a positive
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sample. If the center of a candidate region is outside the lymph node regions, its

feature vector is utilized as a negative sample.

• Testing step

A candidate region extracted from a test volume is classified into TP or FP with its

feature vector by using an SVM trained as above. If a candidate region is predicted

as a TP, the values of the output binary volume Iout are set to 1 in the candidate

region.
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3.5 Experiements

3.5.1 ITRST filter

Synthetic data

A synthetic volume is utilized for the evaluation of the ITRST filter. This volume in-

cludes seven objects imitating lymph nodes, three objects imitating contrast-enhanced

blood vessels, and three objects imitating air regions. Figures 3.3 (a) and (b) show

the blueprint and one slice of the artificially-generated volume containing the synthetic

objects, respectively. This volume contains one isolated sphere, three spheres overlap-

ping with 300 H.U. square poles, and three spheres overlapping with -1,000 H.U. square

poles. The background of the volume is 0 H.U. The spheres whose diameter is 15 mm

are drawn as the uniform of 50 H.U. Gaussian smoothing of σ = 1.0 mm is applied to

make the spheres similar to lymph nodes of real CT volumes. After that, the square

poles whose thickness is 15 mm and length is 50 mm are drawn.

Filter responses

We apply the ITRST, the RST, and the Hessian filters to the artificially-generated volume

explained above. Firstly, we examine the filter responses. In this experiment, we obtain

the eigenvalue profile on the two spheres shown in Fig. 3.3 (b). The line A–B on Fig.

3.3 (b) crosses one of the spheres overlapping with a dark region. The line C–D is on

one of the spheres overlapping with a bright region.

Parameters used in the experiments are shown in Table 3.4 (a). We set tbright =

100 H.U. and tdark = −100 H.U. since the spheres have comparability with lymph nodes

ranging from -100 H.U. to 100 H.U. We also set tlen = 15 mm as the upper limit of the

radius of lymph nodes to be detected in real CT volumes.
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Table 3.2: Specification of CT volumes used in experiments of mediastinal lymph node
detection.

Item Spec

Number of volumes 47

Dimension 3

Phase Arterial

Device Aquilion 64, Toshiba

Reconstruction function FC11

Size 512 × 512 × (338–463) voxels

Resolution (0.625–0.782) × (0.625–0.782) × (0.799–0.801) mm3

3.5.2 Mediastinal lymph node detection

Table 3.3: Number of lymph nodes categorized by short axes.

Size category Number of lymph nodes
[10 mm,∞) 57
[7.5 mm, 10 mm) 62
[5 mm, 7.5 mm) 145
[3 mm, 5 mm) 284
Total 548

Materials

Forty-seven chest CT volumes are prepared for the experiments of mediastinal lymph

node detection. These volumes are authorized by the ethics committee of Nagoya Uni-

versity Hospital. The specifications of the volumes are shown in Table 3.2. We evaluate

the performance of lymph nodes for a range of minimum sizes: the short axis is at least

rtarget ∈ {10, 7.5, 5 mm}. Ground-truth data is a set of mediastinal lymph node labels.

Two technical researchers who have enough knowledge of lymph nodes traced lymph
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node candidate regions on the CT volumes manually. Then, an expert radiologist con-

firmed these traced data, including missing lymph nodes on CT slices. Table 3.3 shows

the number of lymph nodes of each size category.
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Figure 3.3: Synthetic examples of solid objects. (a) Blueprint of artificially-generated
volume. Slice contains centers of all spheres. (b) Slice containing one isolated sphere
and six spheres touching bright (300 H.U.) or dark (-1000 H.U.) square poles.
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Initial detection performances

We compute FROC curves of initial detection results by changing the parameter tblob for

comparing the ITRST, the RST, and the Hessian filters. The filter output is binarized

in different thresholds (tblob =20, 40, 80, and 160 for the ITRST filter, tblob =20, 40,

80, and 160 for the RST filter, and tblob =2000, 4000, 8000, and 16000 for the Hessian

filter), as explained in Section 3.4.2.

Each point on FROC curves represents the averages of the detection rate and the

number of FPs/volume among all volumes. The corresponding error bars represent

the standard deviation of the detection rate. Our detection targets are mediastinal

lymph nodes whose short axes are at least rtarget [mm]. Each mediastinal lymph node is

classified and counted as a TP or an FN. If at least one region produced by the filter is

overlapping with a mediastinal lymph node of the detection target, the lymph node is

counted as a TP. The detection rate of each volume is defined as

(Detection rate of each volume) =
(Number of TPs)

(Number of detection targets)
.

The number of FPs in each volume is the count of regions produced by the filter that

does not overlap with any lymph nodes or lung cancers.

The FROC curves are drawn for each value (5, 7.5, 10 mm) of the least short axis

parameter rtarget. Parameters of tbright, tdark, and tlen are the same as the experiment of

Section 3.5.1. Other parameters are set empirically (Table 3.4 (b)). Air region segmen-

tation threshold tair is set as -200 H.U. This threshold is set as enough lower than lymph

nodes or surrounding soft tissues, which have around -100 H.U. or above. Isotropic

resolution parameter wreso is set as 0.625 mm. This is equals to the smallest pixel size

of axial slices of the CT volumes (Table 3.2). Standard deviation of Gaussian smoothing

filter σsmooth is set as 1 mm. This setting is good for reducing noise on chest CT volumes
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without severely blurring edges. The parameter whole, the size of the median filter ap-

plied for the output of the ITRST filter, is set as three voxels. This is the smallest size of

the median filter.

Overall detection performances

We compute the FROC curves as the overall performances. This performance includes

FP reduction by SVM. An FROC curve is obtained by changing the weighting parameter

wF of negative samples for the SVM classifier [159] utilized in the FP reduction step

(explained in Section 3.4.2). Leave-one-out cross-validation is conducted to evaluate

the performance of FP reduction for each volume. The SVM classifier is tested by the

data not used in the training process.

We also conduct the statistical test (Fisher’s exact test) of the detection rate obtained

by the ITRST filter and the others. For a fair comparison of detection rates between the

filters, we draw the FROC curve with various values of wF, and estimate the detection

rate at the point of 10.0 FPs/volume on the FROC curve.

The threshold for the filter output is chosen as tblob =20 for the ITRST and the RST

filters, and tblob =2000 for the Hessian filter, since these settings of tblob gave the highest

initial detection rate with each filter. For computing the FROC curves, the weighting

parameter wF is changed as 0.025, 0.05, 0.075, 0.10, 0.125, 0.15, 0.20, 0.25, 0.30, 0.40, and

0.50. Other parameters utilized for the FP reduction step are set empirically (Table 3.4

(c)). The parameter wtrain for the tolerance of using feature vectors extracted from can-

didate regions of smaller lymph nodes than the rtarget is set as 0.5, for preventing FNs of

lymph nodes whose short axis is almost the same as rtarget. Permutation D representing

the width of regions for computing feature values regarding intensity is set as {0, 1, 2}

for focusing on each candidate region’s inside and neighboring regions. The LIBSVM

3.17 [158] library is utilized as an SVM implementation.
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3.6 Results

3.6.1 ITRST filter

The responses of the ITRST, RST, and Hessian filters for the synthetic volume are shown

in Figs. 3.4 (a), (b), and (c), respectively. The responses were higher in most sphere

regions than those of the RST and the Hessian filters, despite the overlapping of square

poles.

The eigenvalue profiles obtained by the ITRST, RST, and Hessian filters are shown in

Fig. 3.5 (a), (b), and (c), respectively. Using the ITRST filter, all eigenvalues were neg-

ative. Their magnitudes are not very different from each other in the whole part of both

spheres. Using the RST filter, λ1 became far smaller or larger than other eigenvalues, in

the spheres touching to the bright and dark square poles, respectively. Eigenvalues of

the Hessian filter also become positive in the parts near the square poles.

3.6.2 Mediastinal lymph node detection

Initial detection

The FROC curves of initial detection are shown in Fig. 3.6. As shown in Table 3.5, a

higher detection rate was achieved by the proposed method (ITRST filter) than by the

RST filter. For instance, when rtarget = 10 mm and tblob = 20, 97.1% of lymph nodes

were detected with 692.1 FPs/volume by the proposed method (ITRST filter). Using the

RST (tblob = 20) or the Hessian filters (tblob = 2000), 75.4% or 91.1% were detected with

377.8 or 683.2 FPs/volume, respectively. Examples of the detection results are shown

in Fig. 3.8.
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(c) Hessian filter

(a) ITRST filter 

(b) RST filter 

Figure 3.4: Responses for synthetic volume. (a) ITRST filter. (b) RST filter. (c) Hessian
filter. Color scheme is same as (a). Blue represents low response (around 1), yellow
represents medium response (around 125), and red represents high response (around
250).
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(a) ITRST filter

(b) RST filter

(c) Hessian filter
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Figure 3.5: Eigenvalue profiles on lines A–B and C–D shown in Fig. 3.3 (b). (a) ITRST
filter. (b) RST filter. (c) Hessian filter.
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(a) 𝑟target = 5 mm

(b) 𝑟target = 7.5 mm

(c) 𝑟target = 10 mm
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Figure 3.6: FROC curves obtained after initial detection (tblob for 20.0, 40.0, 80.0, and
160.0 for ITRST and RST filters, and tblob for 2000, 4000, 8000, and 16000 for Hessian
filter). (a) rtarget = 5 mm. (b) rtarget = 7.5 mm. (c) rtarget = 10 mm.
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Overall performances

Table 3.5 and Fig. 3.7 show the overall performances calculated from the detection

method’s output, with parameters tblob =20 (tblob = 2000 for Hessian filters) and wF =

0.075. For example, when rtarget = 10 mm, 84.2% of lymph nodes were detected with

9.1 FPs/volume by the proposed method (the ITRST filter). Table 3.6 displays the results

of Fisher’s exact test at 10.0 FPs/volume. Performances of the proposed method were

not always significantly better. It was showed that detection rates of ITRST and RST

filters were significantly different (p < 0.05) with all settings (5, 7.5, 10 mm) of the

least short axis. On the other hand, the ITRST and the Hessian filters’ detection rates

were significantly different when the least short axis was 5 mm.

Table 3.6: Fisher’s exact test among detection rate at 10.0 FPs/volume.

Least short Detection rate [%] p-value
axis [mm] ITRST RST Hessian ITRST-RST ITRST-Hessian

5 68.3 46.4 53.0 0.003 0.043
7.5 72.5 57.5 65.6 0.037 0.357
10 85.1 66.4 76.8 0.003 0.207

3.7 Discussion

3.7.1 ITRST filter

The ITRST filter responses were higher in most of the sphere regions than those of the

RST filter, even if the square poles were overlapping, as shown in Fig. 3.4. It suppressed

the negative effect of the regions with much higher or lower intensity than the detection

target. The Hessian filter responded positive values only on some parts of the spheres.

The magnitude of λ1 computed from the ITRST filter was similar to λ2 and λ3, and

it was negative on almost all of A-B or C-D, as shown in Fig. 3.5 (a). Huge intensity
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gradients were not summed into the ITRST, and the eigenvalues followed the condition

of the bright bloblike structure. In contrast, as shown in Fig. 3.5 (b), the magnitude

of λ1 computed from the RST filter was far larger than λ2 and λ3 in the sphere. This

is because huge intensity gradients directed from the sphere to the square pole were

accumulated into the RST. Figure 3.5 (c) shows the magnitude of λ1 computed from

the Hessian filter, which becomes large near the square poles of in the Hessian filter.

The eigenvalues did not follow the condition of the bright bloblike structure (λ1 ≃

λ2 ≃ λ3 ≪ 0) in the part having large magnitude of λ1, and the responses became low

according to Eq. (3.3).

By comparing the FROC curves of initial detection shown in Fig. 3.6, the ITRST filter

had a higher detection rate for large and small lymph nodes than the RST filter. After FP

reduction of the proposed method (ITRST filter), results were also better than those of

the RST filter. The ITRST filter is more useful than the RST filter for mediastinal lymph

node detection.

3.7.2 Mediastinal lymph node detection

Efficacy of ITRST filter

The lymph node shown in Fig. 3.8 (a) was detected correctly by the proposed method

(ITRST filter) and the Hessian filter. In contrast, the RST filter was not able to detect

it. This was likely due to contrast-enhanced blood vessels and the air region adjacent

to the lymph node. In contrast to the RST filter, the ITRST filter reduced the large

intensity gradients’ impact around the lymph node. The eigenvalues still followed the

condition of the bright bloblike structure. Extremely high- or low-intensity regions did

not surround this lymph node. Some intensity gradients derived from soft tissue could

still be utilized for describing the bright bloblike structure.

The lymph node shown in Fig. 3.8 (b) was detected initially by all methods. The
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candidate region obtained by the RST filter was poorly segmented because of the nega-

tive effect of the contrast-enhanced blood vessels and the air. It was removed by SVM.

However, the candidate region obtained by the ITRST filter covered most of the lymph

node region, and it was classified as a lymph node. The ITRST filter prevented the

negative effect of the surrounding regions and contributed to accurate classification.

Although the candidate region obtained by the Hessian filter was a little smaller than

the one of the ITRST filter, it was also properly classified.

Still produced FNs

Some lymph nodes were still missed by the ITRST filter, as shown in the FROC curves in

Fig. 3.6. This is because they tend to be sandwiched by extremely high or low intensity

regions. For instance, the lymph node shown in Fig. 3.8 (c) could not be detected by

the ITRST or the RST filters. It was sandwiched by the contrast-enhanced blood vessels,

and the air region, and very little amount of soft tissue was touching the lymph node.

Most gradient vectors around it were not summed into the ITRST, so the magnitude of

eigenvectors did not follow the condition of the bright bloblike structure. In contrast to

the ITRST or the RST filters, the Hessian filter does not strongly suffer from intensity

differences between lymph nodes and neighboring regions. The small candidate region

detected by the Hessian filter was finally classified into lymph node class after the FP

reduction process. Future work is to improve the ITRST filter that can segment lymph

nodes surrounded by extremely high or low intensity regions.

The ITRST filter initially detected the lymph node shown in Fig. 3.8 (d). However,

the SVM classifier removed it. To prevent generating such kind of FNs, we will improve

the classification accuracy by introducing deep learning techniques as future work. Note

that the candidate region of the ITRST filter was classified correctly as a lymph node

with wF = 0.025.
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Promise for application to segmentation

As shown in Fig. 3.8 (e), some lymph nodes are detected by all filters (the ITRST, the

RST, and the Hessian). However, the ITRST filter produced more proper segmentation

results of lymph nodes than other filters. In the future, the ITRST filter can be improved

for application to the segmentation of lymph nodes, not only for detection. This will

assists radiologists in measuring the size and shape of each lymph node.

3.7.3 Lung area segmentation

We have extracted mediastinum regions from CT volumes by extracting lung regions.

There is some possibility to fail in lung region segmentation in the pathological lung

having lung cancer, as shown in Fig. 3.9. However, that does not affect the subsequent

processes since lung segmentation is only for obtaining the mediastinum region sand-

wiched by the left and right lungs. The lung cancer region is merged into the target

region.

3.8 Conclusions

This chapter proposed a novel mediastinal lymph node method based on the intensity

targeted radial structure tensor (ITRST) filter. The conventional radial structure tensor

(RST) filter cannot detect some lymph nodes due to the effects of neighboring lymph

node regions, which have extremely high or low intensities. We proposed the ITRST

filter by modifying the RST filter to prevent such negative effects by introducing knowl-

edge about the detection target’s intensity range. This allows us to exclude neighboring

regions for computing the filter response and increase the lymph node detection rate.

We evaluated the ITRST filter’s efficacy by applying it to both an artificially gener-

ated volume and chest CT volumes. In the synthetic data experiment, the ITRST filter
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produced high responses of detection in the spheres neighboring bright or dark square

poles. In contrast, the RST filter responses were very low. These results show that the

ITRST filter can prevent the negative effect caused by neighboring regions in contrast

to the RST filter, which severely suffers from these types of regions.

Furthermore, experimentation with real clinical images for mediastinal lymph node

detection showed that the ITRST filter outperformed the RST filter. This is because most

of the mediastinal lymph nodes adjacent to air or contrast-enhanced blood vessels in

the chest CT volumes can be detected using the ITRST filter. The detection performance

after FP reduction was also better than the RST filter. The proposed ITRST filter could

potentially detect other organs or tissues of interest in medical imaging.

This chapter presented a detection method for bloblike structures, which are not

clearly shown in clinical CT volumes. Lymph nodes regarded as bloblike structures

were detected from the clinical CT volumes. Chapter 3 will present analysis of cardiac

fibers. Chapter 3’s topic presents many different aspects to mediastinal lymph node

detection. Fiber-like structures are targeted for fiber tracking on the µCT volumes of

animal hearts. While lymph node detection is clinically useful in lung cancer diagnosis,

fiber tracking is beneficial for anatomical investigation of the heart.
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(a) 𝑟target = 5 mm

(b) 𝑟target = 7.5 mm

(c) 𝑟target = 10 mm
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Figure 3.7: FROC curves obtained after FP reduction (wF for 0.025, 0.05, 0.075, 0.10,
0.125, 0.15, 0.20, 0.25, 0.30, 0.40, and 0.50) with tblob = 20 for ITRST and RST filters, and
tblob = 2000 for Hessian filter. (a) rtarget = 5 mm. (b) rtarget = 7.5 mm. (c) rtarget = 10
mm.



3.8. CONCLUSIONS 83

Figure 3.8: Examples of detection results (a)–(e) with parameters tblob = 20 and rtarget =
10 mm. Yellow denotes ground truth. Cyan denotes TP detection. Red denotes FP
detection. Green represents detection of small or hilar lymph nodes. First two rows
represent　 candidate regions and after FP reduction using ITRST filter. Third and
fourth rows represent results of RST filter. Fifth and sixth rows are of Hessian filter.
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Figure 3.9: Target region extraction on volume having lung cancer region. (a) Input
volume. (b) Lung cancer region. (c) Lung region. (d) Target region.



Chapter 4

Cardiac fiber tracking

4.1 Overview

In Chapter 3, we presented a mediastinal lymph node detection method from clinical

CT volumes. Since mediastinal lymph nodes are surrounded by a variety of tissues, we

are required to focus on small intensity gradients for detecting them. A filtering scheme

was proposed for detecting those lymph nodes.

This chapter describes a different topic: cardiac fiber tracking on µCT volumes. 3D

imaging of cardiac fibers by clinically available imaging techniques (e.g., CT, MRI) is

infeasible. Since cardiac fibers are tiny, they cannot be represented by clinically utilized

CT or MRI scanners. Even if µCT is used to scan animal hearts, the cardiac fibers are

still vague and unclear. This is because cardiac fibers can be recognized by contrast with

their extracellular matrices consisting of collagen. These regions are not clearly divided

on µCT volumes, and air- and non-air regions are not separated.

We discovered µCT’s usefulness for anatomical investigation in 3D. The efficacy of

µCT volumes is evaluated by comparing them with another high-end scanning tech-

nique. This chapter is based on a paper entitled “Cardiac fiber tracking on super

85
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high-resolution CT images: A comparative study” [88] published in the Journal of

Medical Imaging in 2020.

4.2 Background

A deep understanding of the cardiac fiber structure in the left ventricle (LV) is required

to understand cardiac anatomy and such diseases as heart failure. 6.5 million people

experienced heart failure between 2011 and 2014 in the United States [236]. Although

the fiber structure may also be changed by heart failure, the details have not been

investigated deeply. High-resolution cardiac imaging and analysis methods in 3D space

are needed.

Diffusion tensor magnetic resonance imaging (DT-MRI) is well-known for analyzing

cardiac fiber structure [179, 180, 235]. With DT-MRI, we estimate the fiber orientation

at a point as the orientation with the strongest diffusion of water molecules. How-

ever, DT-MRI’s resolution is inadequate. For instance, Helm, et al. [179] used a 1.5

T CV/I MRI Scanner (General Electric) whose resolutions were 300, 300, and 800 µm

for each of three axes. Histopathological images have also been used [233, 237] for

cardiac imaging with much higher resolution than DT-MRI. However, precise recon-

struction of the heart’s stacked section images is complicated due to the tissue damage

caused by cutting the sections and the banana problem [175]. 3D analysis from a heart’s

histopathological stacks is challenging.

We explored two alternate imaging techniques: refraction-contrast X-ray CT (RCT)

and micro-focus X-ray CT (µCT). RCT [247, 248] is a 3D imaging technique, one type

of phase-contrast CT scanning based on observing the refraction of X-rays. It has very

high soft-tissue contrast, even for cardiac fibers. However, the RCT is not commer-

cially available and cannot be utilized publicly because the RCT requires a synchrotron

system.
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µCT is a commercially-available 3D imaging technique. Generally, scanning is done

by observing the absorption of X-rays that run through target objects. The resolution,

contrast, and image size vary, as do their price ranges. Some scanners observing phase

shift have very high spatial resolutions; SCYSCAN 1727 (Bruker, United States) has the

highest resolution: 0.35 µm resolution). We utilize a relatively low-end type of scanner,

inspeXio SMX-90CT Plus (Shimadzu, Japan), which only observes X-ray absorption. Its

highest spatial resolution is around 5 µm. Although cardiac fibers can be observed on

the µCT volumetric images (volumes) produced by this scanner, their contrast is not as

high as the RCT volumes.

This chapter first describes the fiber analysis method from the RCT or µCT volumes

of the heart. Then, we evaluate how µCT produces proper fiber analysis results by

comparing them with RCT. Fiber analysis consists of estimating the orientation and the

tracking fibers. The results from a µCT volume are compared with those of an RCT

volume. We prepared a heart specimen with our original protocols and scanned it with

RCT and µCT, and registered their volumes. Using the registered RCT and µCT volumes,

we compared the fiber orientation estimation results on a slice to check quantitatively

whether the µCT volume produces similar fiber orientation estimation results as the

RCT volume. Moreover, we tracked the fibers to investigate whether fiber orientation

can be estimated well on the µCT volume in the entire LV. The experimental results

demonstrated that µCT scanning could be utilized for cardiac fiber analysis. However,

further investigation is required in differences in fiber analysis results on RCT and µCT.
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4.3 Fiber analysis method

4.3.1 Overview

Our fiber analysis method consists of two schemes: (1) estimation of the fiber orienta-

tion and (2) fiber tracking.

We conducted scheme (1) for each voxel in the input CT volume to estimate the fiber

orientation around the voxels to quantitatively analyze the fiber orientation statistics.

We performed scheme (2) on the entire CT volume to produce trajectories that fol-

low the fibers. Scheme (1) must be performed during the tracking process. The scheme

(2) is useful for qualitatively visualizing how fibers flow in the entire LV.

4.3.2 Fiber orientation estimation

Structure tensor (ST) analysis is commonly used for estimating the cardiac fiber orienta-

tion in µCT volumes [245, 246]. First, for each volume, we apply a Gaussian smoothing

filter with a standard deviation σP to smooth the intensity gradients and empirically set

σP = 20 µm.

ST T (x) at voxel x is defined:

T (x) =
∑
x′∈N

w(σT, ||x− x′||) g(x′) gT(x′), (4.1)

where N is a set of the neighboring voxels around x, x′ is one of the voxels in N ,

w(σT, ||x−x′||) is the Gaussian weight with standard deviation σT and distance ||x−x′||

from the center, and g(x′) is a local intensity gradient vector around x′. T (x) can be

written as a 3 × 3 matrix. The eigenvector of T (x), which corresponds to the smallest

eigenvalue f(x), is assumed to be a direction of the fiber orientation at x, which has

the smallest intensity changes around x. We set σT to 400 µm.
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4.3.3 Fiber tracking

We randomly generated N initial points in the mask of the LV region. From each initial

point, fiber tracking was done by an iterative process. First (iteration k = 0), we esti-

mated the fiber direction vector f(x0) at each initial point x0 ∈ I using the structure

tensor analysis described in Section 4.3.2. Since fibers are running in both positive and

negative directions f(x0) and −f(x0), fiber tracking was also performed for both di-

rections. We calculated the endpoint coordinates of the trajectories at the k-th iteration

(k > 0):

xk = xk−1 + sf(xk−1), (4.2)

x−k = x−(k−1) − sf(x−(k−1)), ,

where s represents the step size, f(xk−1) represents the orientation vector at xk−1, and

f(x−(k−1)) represents the orientation vector at x−(k−1). We terminated the tracking for

each direction when xk or x−k was outside the LV mask, or index k of the iterations

reached kmax. We set the parameters to ni = 1000, s = 4 voxels, and kmax = 1000. The

trajectories, which were tracked from all the initial points, are output.

4.4 Materials

4.4.1 Scanning

The following sequence obtained RCT and µCT volumes of a rabbit heart: (1) harvesting

a heart, (2) ethanol fixation, (3) RCT scanning, (4) contrast enhancement, (5) rinse,

and (6) µCT scanning. Fixation was performed once by using ethanol. I2KI was used

for contrast enhancement for µCT scanning. Ethanol was used again in preparation for

µCT scanning for rinsing excess I2KI to reduce artifact.
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Figure 4.1: Rabbit heart: longest axis is about 20 mm.

Figure 4.2: Machines that scanned rabbit heart shown in Fig. 4.1: (a) RCT and (b) µCT

Specimen preparation and scanning procedures are as follows: We scanned one µCT

and one RCT volume of the rabbit heart shown in Fig. 4.1 under the IRB approval

of Nagoya University. We harvested the heart of a Japanese white rabbit (10-week-old
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Figure 4.3: Axial and coronal slices of (a) RCT and (b) µCT volumes. Fibers on RCT
volume look clearer than those of µCT volume. Registration is required for comparison
due to different heart positions.

male) just after euthanasia with a KCl injection into the aortic arch and obtained a heart

specimen. RCT scanning is as follows: (1) Ethanol fixation: The heart was fixated with

an 80 % ethanol-water solution since ethanol fixation effectively improves the tissue

contrast better than formalin fixation for the other phase-contrast imagings of hearts

[238]. (2) RCT scanning: RCT scanning was performed using the synchrotron system
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Table 4.1: Specification of RCT scanning.

Item Value

Location for scanning Photon Factory, High Energy Accelerator
Research Organization (Tsukuba, Japan)

Camera VHR 16 M (Photonics Science)
X-ray optical system X-ray dark field imaging
Resolution 15 µm × 15 µm × 15 µm / voxel
Volume size 1600 × 1600 × 1240 voxels
X-ray energy 19.8 keV

developed by Ando et al.’s group (Fig. 4.2(a)) at the High Energy Accelerator Research

Organization (KEK) (Japan) [170]. The synchrotron system used for RCT scanning was

built in about 177 million USD (1 USD = 110 JPY)[171]. The specification of the RCT

scanning is listed in Table 4.1. Axial and coronal slices of the RCT volume are shown in

Fig. 4.3(a).

After RCT scanning, we scan the same heart specimen in the following manner.

The additional staining process is introduced for µCT scanning. The processes are (1)

Contrast enhancement: We stained the rabbit heart with a 7.5% I2KI solution for one

day. (2) Rinse. The heart is briefly rinsed with an 80 % ethanol solution. (3) µCT

scanning. 4.2 shows scanning specification. Our scanner’s field of view (FOV) was

limited: 1024 × 1024 × 548 mm3 at 17 µm × 17 µm × 17 µm /voxel resolution. It has

a stitch-scanning mode to cover larger FOVs. We used this feature to cover the entire

heart (three consecutive scannings). However, not every volume was aligned well in the

stitching mode. Furthermore, the ring artifacts on the µCT volume were quite obvious.

We used TomoPy [177] to reduce the ring artifacts, which are commonly observed in

µCT volumes. Examples of the axial and coronal slices of the µCT volume are shown in

Fig. 4.3(b).

This work used a desktop-type µCT scanner, inspeXio SMX-90CT Plus (Shimadzu,

Japan) (Fig. 4.2(b)), which is a low-end, desktop type. The catalog price is approx-
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Table 4.2: Specifications of µCT scanning

Item Value
Location for scanning Nagoya University (Nagoya, Japan)
Scanner inspeXio SMX-90CT Plus (Shimadzu)
Resolution 17 µm × 17 µm × 17 µm / voxel
Volume size 1024 × 1024 × 1627 voxels
# of divided-scanning parts 4
Tube voltage 90 kVp
Tube current 110 µA
# of X-ray projection 1200
# of projections for each angle 12

imately 236,000 USD (1 USD = 110 JPY). Ethanol fixation [238] is also suitable for

µCT scanning in combination with contrast enhancement. Other µCT cardiac imaging

works [239, 245] use high-end, much more expensive µCT scanners than ours. In those

works, contrast enhancement continued for several days by staining the specimens in

an iodine-potassium iodide (I2KI) solution. For instance, one trial by Stephenson et al.

[239] stained a rabbit heart in a 7.5% I2KI solution for three days with the Metris X-Tec

custom 320kV bay system with 155kV tube voltage and 150-µA tube current. However,

directly using the same protocols as these references [239, 245] for our scanner caused

artifacts since our scanner has lower X-ray energy.

4.4.2 Registration

To compare the fiber analysis results, we registered the RCT volume as µCT. The heart’s

µCT and RCT volumes were cropped and rotated manually using the MITK Workbench

2016.11 [176]. The left ventricle (LV) is entirely covered with a slight margin around

it and roughly aligned between the two volumes whose size and resolution were re-

spectively adjusted into 900 × 980 × 1080 and 18 µm × 18 µm × 18 µm / voxels. The

coordinate system of these volumes is defined in Fig. 4.4. Since the parts of surround-
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Figure 4.4: Coordinate system and position of ventricles: Axial planes (x-y plane) cut
axis along base and apex into rounds. On axial planes, RV is shown on left of LV. Outside
ratio is illustrated in magnified part. Outside ratio becomes 0 % at endocardium side
and 100 % at epicardium side.

ing regions such as RV were also included, the processing target region was specified by

masking. The mask of the LV region (LV mask) was segmented semi-automatically using

the MITK Workbench 2016.11 [176] on the µCT volume. Then we applied non-rigid

registration to the RCT volume to align it with the µCT volume. We used deedsBCV,

which is open-source software published by Heinrich et al. [240].

Figures 4.5 (a) and (b) show the axial and coronal slices of the registration results.

In Fig. 4.5(c), the two registered volumes’ axial slices are shown as one figure after

being merged to resemble a checkerboard. The RCT volume was successfully registered

to the µCT volume. As shown in Fig. 4.5(c), the boundaries of the LV and the image

patterns shown in both volumes were successfully aligned to each other.
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Figure 4.5: Axial and coronal slices of registered volumes: Registration results of (a)
RCT and (b) µCT with LV mask (red line); (c) Checker-board-like scheme visualization
of these volumes.

4.5 Experimental setup

4.5.1 Overview

We evaluated how our fiber analysis method produced precise results from the µCT vol-

ume by comparing them with the RCT volume results. We performed fiber tracking for

each registered volume to compare the tracking results obtained from the RCT and µCT

volumes. We analyzed the fiber orientation statistics on multiple axial slices. Detailed
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analysis is conducted on one of those axial slices around the central part of the LV, fo-

cusing on fiber orientations. The 3D visualization of the fibers was performed by fiber

tracking (Section 4.3.3).

4.5.2 Fiber orientation statistics

Definition of outside ratio

Anatomical studies [234, 237] clarified that inside and outside of the LV tend to have

different fiber orientations. Therefore, analyzing the fiber orientations may produce

different results that correspond to their positions inside and outside the LV. We define

the outside ratio measure as follows: it represents how each sample point is nearer

outside the LV wall than inside it. The outside ratio becomes 0 % at the endocardium

side and 100 % at the epicardium side, as illustrated in the magnified part of Fig. 4.4.

From the center point of the LV region on an axial slice, we performed radial searches

to eight angles on an axial slice. On each search, we obtain a set of sample points

whose outside ratios were 10, 20, · · · , or 90 %. On each sample point, we individually

estimated the fiber orientation from the RCT and µCT volumes, where the axial slices

cut the heart orthogonally to its longest axis (Fig. 4.4).

Angle difference of µCT from RCT

We define the angle difference of µCT from RCT θ1:

θ1 = cos−1
{
fµ(x) · fR(x)

}
(0 ≤ θ1 ≤ π), (4.3)

where fµ(x) and fR(x) represent the unit vectors of the fiber orientations estimated

from the µCT and RCT volumes (Fig. 4.6(a)), respectively. Assuming the orientation

from RCT is the ground-truth, the angle difference of µCT from RCT represents the
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estimation error on µCT.

To evaluate how the fiber orientations estimated from µCT volumes are different

from those of the RCT, we plotted the average and standard deviations of the angle dif-

ference of µCT from RCT at 100-slice intervals. We also visualized the angle differences

of µCT from RCT on sample points on an axial slice around the central area.

Inclination angle

Inclination angle θ2 follows anatomical studies. Streeter et al. [237] defined fiber angle

α and showed that it becomes positive inside and negative outside the LV. Our definition

of inclination angle resembles their definition, which can be computed in 3D volumes.

As illustrated in Fig. 4.6(b), the inclination angle is defined:

θ2 = cos−1 {f(x) · p} (−π < θ2 ≤ π), (4.4)

where f(x) represents the estimated fiber orientation. p = p(f(x))
||p(f(x))|| represents a unit

vector on the axial plane, written by the orthographic projection p(f(x)) of f(x) onto

the axial plane.

We visualized the angle difference of µCT from RCT of each sample point on an ax-

ial slice around the central area. A scatter plot of the inclination angles computed from

µCT and RCT was drawn. We also verified the statistical significance of the correspon-

dence. We also observed the correlation between the outside ratio and the inclination

angle for each volume. Their significant correlations suggest that the results follow the

anatomical knowledge that the fiber orientations are different inside and outside LV.
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Figure 4.6: Definitions of angles: (a) Angle difference of µCT from RCT θ1 and (b)
Inclination angle θ2

4.5.3 3D visualization of fibers

We performed 3D visualization using open-source software ParaView 5.3.0 [178] for

each registered volume. This allows us to qualitatively compare the fiber trajectories

from the RCT and µCT volumes in the entire LV. All points of the trajectories were

colored to show the inclination angle. We showed all the tracking results. We trimmed

the tracking results and showed whether, for the sagittal slices, the tracking was done

properly in the entire LV. Since ParaView crashed when we directly opened the RCT

or µCT volumes, we downsampled these volumes twice by cubic interpolation before

opening them.

4.6 Results

4.6.1 Fiber orientation statistics

Figure 4.7 shows the mean and standard deviation of the angle differences of µCT from

RCT on the axial slices throughout the LV. Most axial slices had a mean angle difference
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of µCT from RCT of around 20 degrees. For instance, the mean and standard deviations

of the angles were 21.8◦±20.5 on an axial slice around the central part. Figure 4.8 shows

the angle differences of µCT from RCT on a manually selected slice (depth = 8.85 mm.

see Fig. 4.7). In Fig. 4.8, fiber orientations at a sample point are represented as two

cylinders. A white cylinder shows fiber orientation estimated from the RCT volume. The

colored cylinder shows fiber orientation estimated from the µCT volume and is colored

according to their angle difference of µCT from RCT .

Figure 4.9 also shows estimated fiber orientations. Cylinders show estimated fiber

orientation and are colored according to their inclination angles in this figure.

The relationship of inclination angles measured in the RCT and µCT volumes are

shown in Fig. 4.10. Each circle in Fig. 4.10 is gray-scale coded based on the outside

ratio. The inclination angles estimated from the RCT and µCT volumes had a corre-

lation coefficient (CC) of 0.63. No significant difference was observed by Spearman’s

significant test: p < 2.2 × 10−16. This result shows that µCT produced fiber analysis

results that resembled those of RCT. The inclination angles of RCT and the outside ratio

also show a significant correlation: p = 2.4× 10−6 with a CC of -0.48. Those of the µCT

and the outside ratio are p = 1.2× 10−7 and showed a correlation with a CC of -0.53.

4.6.2 3D visualization of fibers

Figure 4.11 shows the fiber trajectories cropped along the coronal plane and a sagittal

slice of the µCT or RCT volumes. Colors showing the inclination angles are red inside

the LV and green outside it. These color tendencies visually confirm the correspondence

of the outside ratio and the inclination angles. However, from the µCT results (Fig.

4.11(b)), some fiber tracking results were flat and densely gathered. This tendency

was not observed in the RCT results (Fig. 4.11(a)). These incorrect tracking results

from the µCT volume were caused by the joints produced by the scanning procedure,
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Figure 4.7: Mean and standard deviation of angle differences of µCT from RCT at
sample points on each axial slice: Target axial slices were selected at 100-slice intervals
along Z-axis (longest axis from apex to base) of RCT and µCT volumes. Each point on
graph shows mean angle differences of µCT from RCT of a sample point on slice, and
error bars represent standard deviation. Sample points on each slice were defined by a
radial search scheme, explained in Section 4.5.2. Results do not greatly vary throughout
the entire LV. Slice located at depth 8.85 mm is used for further evaluation in Figs. 4.8,
4.9 and 4.10 is pointed by arrow.

as explained in Section 4.4.1.

4.7 Discussions

4.7.1 Fiber orientation statistics

The µCT visually had lower contrast for the heart shown in Figs. 4.3 and 4.5. The fiber

orientation estimations were not very similar to those of the RCT volume, which had an
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Figure 4.8: Angle differences of µCT from RCT on manually selected slice (depth =
8.85 mm. see Fig. 4.7): Colored cylinders show fiber orientations estimated from
µCT volume and are colored according to angle difference of µCT from RCT . Fiber
orientations estmated from RCT volume are also shown as white cylinders.

average error of around 20 degrees (Fig. 4.7). The average error values were increased

by outliers, like the red bars in Fig. 4.8.

In part magnified in Fig. 4.8, many outliers are observed. Those errors were caused

by the artifact of iodine solution (having higher absorption of X-ray), used for contrast

enhancement of µCT imaging, as shown in Fig. 4.8. This iodine solution made a strong

artifact in a slice plane. The tracking algorithm traced this artifact and produced in-

plane (flat) tracking.
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Figure 4.9: Fiber orientations on manually selected slice (depth = 8.85 mm. see Fig.
4.7) with coloring based on inclination angle: (a) RCT and (b) µCT. Cylinders show
estimated fiber orientations, and colors represent inclination angles.

The colors of the points in Fig. 4.9 suggest that the inclination angles computed

from both the RCT and µCT volumes were positive inside and negative outside the LV.

This tendency was already proved through anatomical studies [237]. The results of

both the µCT and RCT volumes followed it.

We used non-rigid registration to compensate for the specimen deformation at the

scanning times of RCT and µCT. Our scanning procedures were performed in the follow-

ing order: RCT scanning, iodine staining, and µCT scanning, as explained in 3.1. Iodine
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Figure 4.10: Relationship of inclination angles measured in RCT and µCT volumes.
We manually selected slice (depth = 8.85 mm. see Fig. 4.7) and plot inclination angles
measured on selected slice in this figure. Each circle is gray-scale coded based on outside
ratio. From the figure, we can find positive correlation is clearly observed between
inclination angles estimated from RCT and µCT volumes. Also, we can observe positive
inclination angles in the outside area (epicardium).

staining causes a slight contraction of the heart. There are some changes in specimen

sizes and small structures between two CT volumes.
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4.7.2 3D visualization of fibers

Fiber tracking allows an intuitive understanding of fiber running orientations in 3D

space. The tendency of inclination angles, correlated to the outside ratio, was also

visually observed in the fiber tracking results from both the RCT and µCT volumes (Fig.

4.11). Most of the fiber tracking results inside the LV were red, and most of those

outside were green. The trajectories were visually smooth from both volumes.

Figure 4.11 shows the fiber tracking results from the base to the apex. One large

difference between the RCT and µCT volumes can be observed. On the results from

the µCT volume (Fig. 4.11(b)), flat tracking results are densely gathered. Since our

µCT scanner had a limited field of view, the rabbit heart was scanned by dividing it

into three parts (Section 4.4.1). The images of the three scanning results were not

precisely aligned. Their joints were followed by tracking. Correction processes for such

mistracking are required in the future.

We found that it is possible to estimate fiber orientation on µCT volumes reasonably.

Our fiber orientation estimation procedures were useful for fiber tracking in the entire

LV. However, the results must be carefully observed about errors between the two scans.

µCT, which is a promising imaging technique for cardiac imaging and useful for observ-

ing cardiac fibers, is commonly used by many companies and institutes for industrial

purposes. Our work shows one of these cardiac imaging applications, which presents

imaging protocols and their usefulness for observing cardiac fibers.

4.8 Conclusions and limitations

This chapter first describes our fiber analysis methods from the RCT or µCT volumes

of the heart. Also, by comparing the results with RCT, we evaluated how µCT volumes

produce reasonable analysis results. A rabbit heart was fixated by ethanol, scanned
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by RCT, stained in an iodine solution, and then scanned by µCT. The RCT and µCT

volumes were non-linearly registered. The fiber orientation of each point was estimated

using the structure tensor analysis on each volume. We defined two measures, angle

difference of µCT from RCT and inclination angles, to compare the fiber orientation

estimation results at sample points of these volumes. Although promising results were

obtained in the cardiac fiber analysis using µCT, we need to investigate the differences

between µCT and RCT volumes further. Analysis results from both imaging techniques

match the anatomical knowledge that fiber orientations are different inside and outside

the left ventricle. Unfortunately, the µCT volume caused incorrect tracking around the

boundaries due to stitching scanning. Smoothing around the boundaries will be a focus

of our future work.

Our work suffers from the following limitations. First, we only had one specimen

for the comparison experiments of two scans and their analysis. This is because we

needed to use the synchrotron facility (Circumference: 187 m) shared by world-wide

high-energy physics researchers for RCT scanning. Beamtime in the synchrotron facil-

ity is very expensive and very difficult to obtain. Thus, we only had one sample. We

intend to increase the number of samples in our future work. Second, we must have

quantitative validation of the fiber orientation results from the RCT volume used as

ground-truth. Several manually-set parameters and the evaluation of different sets of

parameters are also required. One idea for this work is to compare with histopatholog-

ical sections. However, such a project is very challenging, as explained in Section 4.2.

Therefore, future work will include more in-depth validation using many more hearts

and quantitatively validating the fiber estimation of the structure tensors for RCT vol-

umes. We would also like to find ways to observe fibers in the left ventricle and other

parts and tissues in the heart.
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Figure 4.11: Fiber tracking results with sagittal slice. Colors represent inclination an-
gles. Two viewpoints were defined: one is useful for observing endocardium, and an-
other is for epicardium. (a) RCT: Tracking was performed properly in entire LV. (b) µCT:
Although closely resembling RCT results in (a), flat tracking results, densely gathered
in joints, were produced due to scanning procedure, explained in Section 4.4.1.



Chapter 5

Summary and future work

5.1 Summary

5.1.1 Overall conclusion

We focused on the anatomies in the thorax. Computational anatomy (Section 2.1.5)

investigates the structures of anatomies from 3D images, which is essential for under-

standing human and animal bodies. Segmentation methods allow us to investigate the

sizes and shapes of each anatomy. Detection methods allow us to find and locate scat-

tered tissues. Fiber tracking methods reveal fiber structures.

The main problem that we tackled in this thesis is that these small anatomies are

usually unclear and vague on images. CT and MRI are feasible candidates for 3D imag-

ing of anatomies in the human body’s thorax. Spatial resolutions of these scanning

techniques are not as small as optical or electron microscopes. Smaller objects do not

tend to be represented very clearly in images. We addressed two topics toward reveal-

ing the anatomical structures of these small organs and tissues that are appear vague

and unclear in 3D images.

Characteristics of materials and scanning techniques may cause images to be unclear.
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MRI requires a long time for scanning and it is difficult to generate clear MRI volumes

for moving organs, including the heart. Also, MRI detects protons in hydrogen atoms.

T1- or T2-MRI images do not show tissues that do not contain much water or fat.

CT utilizes X-rays, which generate a high contrast between the air and non-air re-

gions. However, the contrast between multiple non-air regions may be low on CT vol-

umes. In this thesis, we addressed the two topics listed below.

5.1.2 Mediastinal lymph node detection

The first topic was a proposal of a filter-based detection approach. Mediastinal lymph

node detection method from CT volumes was proposed in Chapter 3.

As mentioned in Section 1.4, mediastinal lymph nodes have been detected by filter-

based or texture-feature-based approaches. The texture-feature-based approaches learn

lymph nodes’ appearances using the training dataset. Although the texture-feature-

based approaches are robust for various appearances, it is difficult for us to understand

target tissues’ appearances.

The filter-based approaches are usually utilized with manually-defined characteris-

tics as if “bloblike tissues brighter than surroundings.” However, the mediastinal lymph

nodes are tissues scattered around the main branches of the bronchus. There are vari-

ous regions around each lymph node, such as air, contrast-enhanced blood vessels, and

soft tissues. Lymph node boundaries tend to be unclear.

We proposed a filtering technique for mediastinal lymph nodes that can detect lymph

nodes surrounded by various regions. This is a novel filtering approach, which is robust

for various appearances. Since lymph nodes were in the specific intensity range, the

analysis was performed only in the range.

Initial detection of mediastinal lymph nodes was performed by the filter based on

the ITRST analysis. While most mediastinal lymph nodes were detected, many false
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positives were also produced on regions that satisfy the filter’s detection target’s robustly

defined characteristics. The support vector machine was introduced for removing those

false positives.

Experiments were performed by 47 chest CT volumes of lung cancer patients. For

lymph nodes whose short axis was at least 10 mm, the proposed method’s detection rate

was 84.2 %, with 9.1 false positives per volume. The proposed method outperformed

the conventional filtering methods, the Hessian and RST analyses.

5.1.3 Cardiac fiber tracking

The second topic was an evaluation for a structure-tensor-based fiber-tracking approach.

Cardiac fiber tracking on a µCT volume of a rabbit heart was reported in Chapter 4.

Since clinical CT or MRI volumes do not represent cardiac fibers (Fig. 1.3), the

micro-focus X-ray CT (µCT) was utilized for imaging. Even on µCT volumes, which

have a higher spatial resolution than clinical CT or MRI volumes, cardiac fibers were

still unclear and vague. Therefore, an evaluation of µCT volumes’ efficacy for fiber

tracking was presented.

The µCT volume of a rabbit heart acquired by a desktop-type scanner was utilized.

µCT volumes acquired by a desktop-type scanner do not provide clear cardiac fiber

images. On µCT volumes, cardiac fibers can be observed as a little contrast between

the fibers and their extracellular matrices consisting of collagen. Fiber tracking results

were compared with those of another imaging technique, RCT volumes. Evaluating

the efficacy of µCT volumes for fiber tracking is essential for further anatomical studies

using µCT.

Even though cardiac fibers on µCT volumes were more unclearly shown than on the

RCT volume, estimation results of cardiac fiber orientations were similar to those of the

RCT volume, with a correlation coefficient of 0.63. Fiber tracking results of the two
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imaging techniques were almost similar. However, µCT’s problems were also revealed

about the artifacts and the stitching scanning.

5.1.4 Further challenges

These two topics cover significant problems regarding the computational analysis of

anatomies shown on low-contrast CT volumes. We discussed filter-based detection and

structure tensor-based fiber tracking from a technical viewpoint. However, problems

remain for anatomical investigation from 3D volumes.

• Filtering for other structure types

This thesis focused on the analysis of lymph nodes and cardiac fibers. Lymph

nodes and cardiac fibers are regarded as bloblike and fiberlike structures, respec-

tively.

Hessian-based filters [35, 120, 121, 126] have been widely utilized for various

anatomies (Section 1.4). These filters can be customized for bloblike, linelike, or

sheetlike structures. The structure tensor (RST) [130] is the basic technology of

lymph node detection in Section 2.w The RST can compose a filter for hollow-

tube, which are bright on peripheral parts and dark around the centerlines.

Other structure types can be considered. The alveolar is a tiny structure in the

lungs. The alveolar on µCT volumes [99] may be regarded as a hollow bloblike

structure.

Furthermore, filtering for a broader viewpoint than such local structures can be

considered. The bronchus on CT volumes is currently locally handled as a dark

tube-like or a hollow tube-like structure. However, the bronchus consists of an

airway tree from a broader viewpoint. The isolated alveolar is a hollow-blob on

µCT volumes. However, in the lungs, many alveoli gather in a honeycomb shape.

Thus, filters from broader viewpoints can be considered, including filters for a
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hollow-tube treelike or honeycomb-like structure.

• Analyses for other imaging techniques

In this thesis, we investigated image processing for clinical CT and µCT volumes.

However, we described many other imaging techniques in Section 2.2. Although

MRI is widely utilized for the heart, cardiac MRI images of moving organs tend to

be blurred. Anatomical analysis by such images remains a challenge.

• Robust target setting for various diseases

Prior shape information can be introduced for anatomies whose shapes or po-

sitions are almost fixed between patients, for example, cardiac chambers and

blood-vessels. For instance, deformable models or probabilistic atlases are uti-

lized (Section 1.4). For tissues or organs whose prior shape information is not

suitable to apply, filtering techniques are useful (Section 2).

However, model-based or filter-based techniques have problems of robustness for

manual target setting. For lymph nodes, another technique other than filtering

is machine learning, e.g., texture-feature-based machine learning, deep learning.

The problem with machine learning techniques is that they depend on the train-

ing dataset. A large number of training datasets should be gathered for training.

Furthermore, those techniques might overlook regions having unique shapes or

appearances caused by various diseases. Newly developing a scheme that is ro-

bust for abnormal appearances is desired.

• Contrast enhancement or image converting techniques

We focused on the problem of unclear images of anatomies. One approach which

was not discussed in the thesis was contrast enhancement for preprocessing.
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In Section 3, cardiac fibers were not very clearly shown on µCT volumes. One

candidate approach that was not discussed is contrast enhancement of the µCT

volumes. Furthermore, RCT was utilized to obtain a reference. Image conver-

sion of µCT volumes to such high-contrast imaging techniques is also a candidate

approach. Nowadays, many image conversion methods are available, such as

CycleGAN-based methods [98]. Super-resolution techniques are also promising

for analyzing small structures that are difficult to observe on available imaging

techniques [97].

5.2 Blueprints

The goal of this research is to reveal detailed structures in the thorax. There is a variety

of future work from both the anatomical and technical viewpoints.

5.2.1 Incorporating advantages of various imaging techniques

Each imaging technique has advantages. CT causes high contrast for organs containing

air. MRI is widely used for organs that are stationary and contain water or fat. Ultra-

sonography allows clinicians to obtain real-time images inside the body. Incorporating

the advantages of multiple imaging techniques may allow us to obtain more informa-

tion. Currently, image registration methods [93, 95, 96] allow us to align images of

different imaging techniques, phases, or patients.

Registration does not need to be limited to image-to-image alignment. Structure

or information can be combined for further investigation. Current clinical practice is

already doing a similar task. For example, breast cancer diagnosis utilizes both mam-

mography (X-ray) and ultrasonography. Mammography is useful for evaluating calcifi-

cation. Ultrasonography is helpful for finding small lumpiness, especially for patients



5.2. BLUEPRINTS 113

with well-developed mammary glands. Combining such practical techniques in a sys-

tematic approach can be the first step towards incorporation.

Furthermore, images from imaging techniques can be fused as an intermediate lan-

guage. Image fusion [94] is currently utilized for observing images from different imag-

ing techniques. This can be extended to image generation for intermediate languages,

allowing clinicians or anatomists to understand information with little noise easily.

5.2.2 Assisting elementary or secondary education

Anatomical education is not only conducted in medical schools. Basic anatomical educa-

tion is currently performed in elementary and high schools. Computational anatomical

analysis can be applied for such educational purposes. Textbooks contain theoretical

explanations and illustrations. Imaging and computational analysis allow students to

understand the structures of visible materials in their schools and may help students un-

derstand the theories. Visualization techniques should be studied and developed much

profoundly. For instance, animation of breathing simulations may be generated from

the µCT volumes of a whole frog body.

5.2.3 3D imaging and analysis for microscopic anatomy

Today, microscopic anatomy (histology) is mainly studied with 2D microscopic images.

Even on high-resolution microscopic images, it is challenging to understand 3D struc-

tures. As surveyed [218, 219], 3D reconstruction has been studied for both optical

[191, 192] and electron [193, 220] microscopes. Another approach is the ultimate use

of high-resolution 3D imaging techniques, including (µCT). Using these 3D imaging

techniques for histological studies is not very common today because microscopes have

the advantage of spatial resolution. However, X-ray imaging techniques at nanometer

scale are now under improvement [194–196]. There are already some extensions to
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3D imaging (nanotomography) [197], including applications to human or animal tis-

sues [198, 199]. In the future, nanotomography may be more commonly utilized for

histology [217].

As 3D imaging with nanotomography is expected in the future, computational anatomy

should also be developed. Nanotomographic images might be more challenging to ana-

lyze than clinical or µCT because of their tiny spatial resolution. Depending on scanning

systems or materials, images may be blurry. More complicated problems than we men-

tioned in this thesis should exist.

Removing borders between imaging techniques will also be desired. Even if nan-

otomography becomes commonly utilized and of high quality, microscopes still have

advantages, such as color imaging. Clinical and µCT scanners are useful to scan wider

regions than microscopes or nanotomography. Mutually sharing analysis results allows

us to navigate from the entire body to inside cells.

5.2.4 Deep learning techniques for various imaging techniques

Deep learning techniques are currently widely utilized for image processing. However,

deep learning techniques are not very common on images acquired by µCT or other

imaging techniques that are not very common in the clinical field.

One reason is the lack of training datasets and the manually generated annotations

required by most deep learning techniques. Even if µCT scanning is more common in

the future, scanners and materials may still be specific for each study. The cost of collect-

ing materials or images will remain high. Therefore, deep learning techniques should

be improved so that they work without a large dataset. Promising studies including

self-supervised [200, 201], unsupervised [215] and semi-supervised [213] learning are

under improvement. In addition, high-resolution images, including µCT, are often large.

Since deep learning often encounters GPU memory problems or over-fitting when large
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images are input without downsampling, deep learning methods for large images are

desired.

5.2.5 Finding unknown anatomies

There may still be anatomies of the body that have not yet been seen. In 2020, Valstar

et al. [49] discovered the tubarial salivary glands in PET-CT images. This encourages

us to search for unknown anatomies in the body. Collecting materials and images, and

utilizing image processing techniques may lead to the discovery of unknown anatomies.

It may be possible to extend abnormal shadow detection methods [129] to new imaging

techniques or anatomies.

Non-clinical imaging techniques, including µCT, have enormous potential for finding

unknown anatomies. Images may contain interesting tissues or lesions for experts of

specific fields. Candidates of newly discovered tissues should be automatically detected

and suggested to experts.
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[14] Luis Gonçalves, J Novo, and Aurélio Campilho. Hessian based approaches for 3D

lung nodule segmentation. Expert Systems with Applications, Vol. 61, pp. 1–15,

2016.

[15] Jun Wei, Yoshihiro Hagihara, Akinobu Shimizu, and Hidefumi Kobatake. Optimal

image feature set for detecting lung nodules on chest X-ray images. In CARS 2002

Computer Assisted Radiology and Surgery, pp. 706–711. Springer, 2002.

[16] Kenji Suzuki, Hiroyuki Abe, Heber MacMahon, and Kunio Doi. Image-processing

technique for suppressing ribs in chest radiographs by means of massive train-

ing artificial neural network (MTANN). IEEE Transactions on medical imaging,

Vol. 25, No. 4, pp. 406–416, 2006.

[17] GN Balaji, TS Subashini, and N Chidambaram. Detection and diagnosis of di-

lated cardiomyopathy and hypertrophic cardiomyopathy using image processing

techniques. Engineering Science and Technology, an International Journal, Vol. 19,

No. 4, pp. 1871–1880, 2016.

[18] Mahendra Khened, Varghese Alex, and Ganapathy Krishnamurthi. Densely con-

nected fully convolutional network for short-axis cardiac cine MR image segmen-

tation and heart diagnosis using random forest. In International Workshop on

Statistical Atlases and Computational Models of the Heart, pp. 140–151. Springer,

2017.

[19] 平岡昌和. 心電図自動診断の限界. 心電図, Vol. 35, No. 2, pp. 149–155, 2015.

[20] DigitalDiagnost Digital radiography solutions — Philips Health-

care. https://www.usa.philips.com/healthcare/product/HC712220/

digitaldiagnost-digital-radiography-system.

https://www.usa.philips.com/healthcare/product/HC712220/digitaldiagnost-digital-radiography-system
https://www.usa.philips.com/healthcare/product/HC712220/digitaldiagnost-digital-radiography-system


122

[21] Computed Tomography Products — Canon Medical Systems USA. https://us.

medical.canon/products/computed-tomography/.

[22] Ingenia Elition 3.0T X A revolutionary breakthrough in diagnostic quality

and speed — Philips Healthcare. https://www.usa.philips.com/healthcare/

product/HC781358/ingenia-elition-30t-x.

[23] Bronchoscopes - Pulmonology - Olympus Medical Systems. https:

//www.olympus-europa.com/medical/en/Products-and-Solutions/

Products/Pulmonology/Bronchoscopes.html.

[24] Aplio i-Series — ultrasound — Canon Medical Systems. https://global.

medical.canon/products/ultrasound/aplio_i-series.

[25] Ultra-High-Resolution Schottky Scanning Electron Microscope SU7000 : Hitachi

High-Tech GLOBAL. https://www.hitachi-hightech.com/global/product_

detail/?pn=su7000.

[26] Lung Nodule Detection from low dose CT scan using Optimiza-

tion on Intel Xeon and Core processors with Intel Distribution

of OpenVINO Toolkit. https://builders.intel.com/ai/blog/

lung-nodule-detection-ct-scan-xeon-core-openvino.

[27] Frank Henry Netter. Atlas of human anatomy: 2nd Edition. Elsevier Science,

1998.

[28] Thomas M Link, Volker Vieth, Christoph Stehling, Albrecht Lotter, Ambros Beer,

David Newitt, and Sharmila Majumdar. High-resolution MRI vs multislice spi-

ral CT: which technique depicts the trabecular bone structure best? European

radiology, Vol. 13, No. 4, pp. 663–671, 2003.

https://us.medical.canon/products/computed-tomography/
https://us.medical.canon/products/computed-tomography/
https://www.usa.philips.com/healthcare/product/HC781358/ingenia-elition-30t-x
https://www.usa.philips.com/healthcare/product/HC781358/ingenia-elition-30t-x
https://www.olympus-europa.com/medical/en/Products-and-Solutions/Products/Pulmonology/Bronchoscopes.html
https://www.olympus-europa.com/medical/en/Products-and-Solutions/Products/Pulmonology/Bronchoscopes.html
https://www.olympus-europa.com/medical/en/Products-and-Solutions/Products/Pulmonology/Bronchoscopes.html
https://global.medical.canon/products/ultrasound/aplio_i-series
https://global.medical.canon/products/ultrasound/aplio_i-series
https://www.hitachi-hightech.com/global/product_detail/?pn=su7000
https://www.hitachi-hightech.com/global/product_detail/?pn=su7000
https://builders.intel.com/ai/blog/lung-nodule-detection-ct-scan-xeon-core-openvino
https://builders.intel.com/ai/blog/lung-nodule-detection-ct-scan-xeon-core-openvino


REFERENCES 123

[29] Daniel Stucht, K Appu Danishad, Peter Schulze, Frank Godenschweger, Maxim

Zaitsev, and Oliver Speck. Highest resolution in vivo human brain MRI using

prospective motion correction. PloS one, Vol. 10, No. 7, p. e0133921, 2015.

[30] Steffen Hahn, Till Heusner, Sherko Kümmel, Angelika Köninger, James Nagara-
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[36] Martin J Willemink and Peter B Noël. The evolution of image reconstruction for

CT―from filtered back projection to artificial intelligence. European radiology,

Vol. 29, No. 5, pp. 2185–2195, 2019.

[37] Nadia Kourra, Jason M Warnett, Alex Attridge, Aishah Dahnel, Helen Ascroft,

Stuart Barnes, and Mark A Williams. A metrological inspection method using

micro-CT for the analysis of drilled holes in CFRP and titanium stacks. The In-

ternational Journal of Advanced Manufacturing Technology, Vol. 88, No. 5, pp.

1417–1427, 2017.

[38] Jixuan Ya, Zhenguo Liu, and Yuanhang Wang. Micro-CT characterization on

the meso-structure of three-dimensional full five-directional braided composite.

Applied Composite Materials, Vol. 24, No. 3, pp. 593–610, 2017.
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