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Chapter 1

Introduction

1.1 Background

The invention of the motor vehicle in the late 1800s has significantly changed how

the world operates. With the widespread use of automobiles from the 1900s, many

other technologies started to evolve to catch with the new demands: mechanical

engineering, road infrastructure, in-vehicle equipment and driver education. The

advanced systems embedded inside the vehicle have freed humans from most of

the hard work of driving and allow them to attend more on the other things such

as: conversation, enjoy music, etc. It is not uncommon to see a driver surfing the

web or texting while driving these days. According to common law, such actions

are considered inappropriate to driving since they can distract the driver from their

primary task and expose to a higher risk of accidents. In a recently published report,

the World Health Organization (W.H.O , 2020) showed that there are around 1.35

million fatalities every year because of road traffic accidents.

1.1.1 Traffic accidents

According to W.H.O, the factor that contributes most to a large number of accidents

is human error: speeding, driving under the influence of psychoactive substances,

distracted driving. Other factors are nouse of safety equipment (helmets, seatbelt,

1



1.1. BACKGROUND 2

and child restrains), unsafe road infrastructure, inadequate post-crash care, and

inadequate law enforcement of traffic laws.

The combined efforts of government, scientists, automotive makers, and society have

made big progress in reducing the number of road traffic deaths in high- and middle-

income countries. But the progress has been little in low-income countries.

Figure 1.1: Change in the number of road traffic deaths (2013-2016) (source: W.H.O

, 2018)

In Japan, the number of traffic accident fatalities fell in 2019 to 3215, a three-

year consecutive decrease and the lowest figure since data were recorded in 1948

(data taken from Nippon.com). Even though the number of fatalities fell in total,

the proportion of senior citizens (aged 65 and over) remained high (over 50%). The

common causes of accidents are checking the surroundings, using the phone, checking

the pedestrians, and drinking driving.
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Figure 1.2: Traffic fatalities among Japanese citizens (source: Nippon.com)

The leading factors also vary depending on the countries. In Vietnam, majority

of the traffic accidents related to violating the laws (on the wrong lane) (accounted

for more than 20%). The total of road crashes still increases along with the increase

of the demand for transportation.

Figure 1.3: The most contributing factors to road accidents

Effects of speeding

Speeding violation is related to law enforcement on the road to keep the driving

safety. The reasons for speeding come from various aspects: ages, gender, types of

jobs, driving culture, etc. Recent studies also found a correlation between strong

emotions (anger, anxiety, and contempt) and maladjusted behaviors (aggressive and

road rage) (Roidl et al. , 2014).
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Effects of psychoactive substances

In many countries, the number of fatalities due to the influence of alcohol and drugs

is always among the highest. Alcohol decreases the reflexes and thus decreases the

reaction response of the driver. It can also reduce hand and foot coordination and

lead to driving errors. Furthermore, alcohol has effects on the brain and cognitive

functions which lead to reduce driver vision, concentration and comprehension (the

ability to make decisions). Drug abuse (narcotics, marijuana, methamphetamine,

etc) often find in young drivers but also find on other age groups. Another emerging

topic which is received public debation is the treatment drug (Hours et al. , 2008).

Effects of distracted driving

Distracted driving is any activity that diverts attention from driving, including tex-

ting, conversation, drinking, using mobile, etc. According to the National Highway

Traffic Safety Administration (NHTSA—United States), there are three types of

driver distraction:

• Vision: taking your eye off the road;

• Manual: taking your hand off the driving wheel;

• Cognitive: taking your mind off the driving.

Various studies have attempted to resolve/detect the distraction or inattention

(D’Orazio et al. , 2007; Fletcher and Zelinsky , 2009; Liao et al. , 2016).



1.1. BACKGROUND 5

1.1.2 Driver assistance system

Figure 1.4: Example of Advanced Driver Assistance Systems

(source: Synopsys, Inc.)

Besides road infrastructure improvement and traffic law enforcement by the govern-

ment, automaker companies also equip vehicles with anti-crash protection options,

such as collision avoidance systems, emergency brake assistance, lane-keeping sys-

tem, etc. The NHTSA (Forkenbrock and Snyder , 2015) released a protocol to test

emergency braking at a speed of 25 mph (4̃0 kph) with a stopped lead object and

35-45 mph (5̃6-72 kph) with a slower/decelerating lead object, which is suitable for

most traffic cases. Still, those systems have their limitations, including upper-speed

thresholds, swaying vehicles, when driving uphill, etc. The best performance must

be achieved by keeping drivers’ attention on the driving task.
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1.2 Objective and Construction

1.2.1 Objvetive

It can be seen that of all the mentioned factors, driver’s state keeps an major role in

safety driving. The main objective of this study is to implement a proper method to

estimate driver states by using non-invasive sensors and in-vehicle data. The pro-

posed method can be used for risk estimation related to the driver health condition.

Based on that, hopefully, the method can provide a tool in the development and

improvement of future driver assistance system.

1.2.2 Dissertation construction

This dissertation is organized as the following eight chapters. Chapter 1 introduces

the background of traffic accidents. In Chapter 2, various of driver assessment

methods are presented and discussed. Then the effects of driving tasks and driver

states on the physiological indices were investigated on real-world driving in Chapter

3. Chapter 4 provides the background and the advantages of the graphical models

in exploring complex systems. In Chapter 5, a graphical-based model is developed

to detect the surprise state of the driver in case of pedal misapplications. Chapter

6 will discuss about another possible application of the graphical-based method on

detecting drowsiness and the preliminary result. In Chapter 7, a concept of the

driver assistance system was demonstrated and the possibility of using the proposed

method in improving the system. Conclusion and remarks of future work are given

in Chapter 8. The relationship between chapters is showed in Figure 1.5 as follows.
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Figure 1.5: Dissertation outline



Chapter 2

Driver state assessment methods

The purpose of this chapter is to provide the background of all possible metrics

to assess the driver states. Driver states are considered as one of the main

contributing factors to driving safety. All over the world, researchers have exten-

sively conducted studies related to driver assessment. Existing and cutting-edge

methods and technologies will be mentioned. Figure 2.1 shows an example

of equipment which are attached to the driver and installed inside the vehicle

to collect driver’s bio-metrics and driving operation data: EEG headset, ECG

electrodes attached to the chest, driver recorder camera, and driving operation data.

Figure 2.1: Driver’s features and Driving features collected inside the vehicle

8



2.1. PHYSIOLOGICAL INDICES 9

2.1 Physiological indices

Physiology is a sub-discipline of biology which studies the functions and mechanisms

of a living system. When using biosignal measurement in evaluating the driving

comfort, driving workload, and the usability of in-vehicle systems, changes in the

physiological state of the driver are measured. The knowledge in driver physiological

measures often come from the medical field which includes Central nervous system

activity (or Brain activity), Autonomic nervous system activity (or Cardiac/Heart

system), Visual system, and other physiological indices.

2.1.1 Brain activites

Electroencephalogram - EEG

Electroencephalogram (EEG) is one of the oldest methods for non-invasive observa-

tion of human brain-activity patterns. The EEG amplifies the electrical potential

difference that occur between two electrodes attached on the scalp. The cerebral

cortex contains billions neurons and they are connected by synapses to form a net-

work. The human brain is always active electrically, so potential changes that are

measured by EEG are also occurring constantly.

Frequency bands of EEG which interest many studies are:

• The delta band (0.5-4 Hz)

• The theta band (4-8 Hz)

• The alpha band (8-13 Hz)

• The beta band (13-30 Hz)

• The gamma band (>30 Hz)



2.1. PHYSIOLOGICAL INDICES 10

Figure 2.2 shows an example of EEG headset setup and some frequency bands

of EEG signals.

Figure 2.2: EEG Headset and EEG signal

Depend on the arousal state, the beta band and gamma band can be dominant.

On the other state, the alpha band can be observed. In car driving, the amplitude

in the alpha, theta, and delta bands changes significantly due to different states

such as fatigue or sleepiness. Many studies have used EEG as an indicator to detect

driver mental states, fatigue, drowsiness, etc (Lal et al. , 2003; Min et al. , 2017;

Nguyen et al. , 2017; Zeng et al. , 2018). Therefore, sometimes EEG is considered as

the standard reference for the other methods when estimating the driver state. The

disadvantage of EEG are the sensitivity of the electrodes to the head movement and

to receive better understanding of the brain activities, more electrodes are needed.

So that most of the studies using EEG are conducted in the development phase, it

is difficult to apply in commercial/practical use.

Functional Near-infrared spectroscopy - fNIRS

Functional Near-infrared spectroscopy (fNIRS) is a method that evaluates the blood

flow changes in the brain. In the fNIRS, the near-infrared light is emitted from
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the scalp and measure the reflected light on the scalp. It estimates the changes

in the concentration of oxygenated and deoxygenated hemoglobin in the cerebral

cortex. These changes in the hemoglobin concentration in blood are associated with

the brain activities. Compare to the other techniques on research brain, fNIRS

resolution is lower but the equipment is more compact and allows head movement

more freely. There have been many reports of using fNIRS to evaluate driver state

(Fakhrhosseini et al. , 2015; Xu et al. , 2017; Tanveer et al. , 2019). However,

the measurement is affected by many factors such as the probe stability, hair, and

the scalp blood flow, calibration and attention are required when interpreting the

results.

2.1.2 Cardiac system

Electrocardiogram - ECG

Electrocardiogram (ECG) is a graph of voltage versus time of the electrical activity

of the heart using electrodes placed on the skin of the subject. There are three main

components of the ECG signal:

• The P wave represents the depolarization of the atria;

• The QRS complex represents the depolarization of the ventricles;

• The T wave represents the repolarization of the ventricles.

The interval of the R peak of the QRS complex is called the RR interval (RRi).

Figure 2.3 shows the heart structure and a single normal ECG pattern. Based on

the RRi value, the heart rate (HR) per minute is calculated. In clinical, a complex

12-lead ECG is used to record the heart’s electrical potential from 12 different angles.

The results will be used to monitor and give diagnose by the physicist and doctor.

In other fields such as human factors, lead-II configuration is often used due to

its simple requirement: 2 electrodes on both sides of the heart and an area for
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grounding.

The HR is regulated by the 2 branches of the autonomic nervous system (ANS).

The HR increases upon the activation of the cardiac sympathetic nervous system

(SNS) which stimulates the body’s fight-to-flight response. On the other hand, The

parasympathetic system (PSNS) is responsible for stimulation of ”rest-and-digest”

or ”feed and breed” activities that occur when the body is at rest and decrease the

HR. In general, HR is used as an index for physical and mental strain. HR and

temporal HR changes have been reported in mental effort, tension, fatigue, arousal

studies.

Figure 2.3: Heart structure (left) and ECG waveform (right)

(source of ECG waveform: https://en.wikipedia.org/wiki/Electrocardiography)

Heart-rate Variability - HRV

Heart-rate Variability (HRV) is the variation of the instantaneous HR. The HRV

indices can be calculated in time-series domain, frequency domain, and non-linear

domain. In medical fields, the standard period to compute HRV is often 5 minutes.

But recent studies also discussed about shorter period can be used in some specific

cases (Esco and Flatt , 2014; Pecchia et al. , 2018). The definitions and quantifying

methods of HRV indices vary among researchers and make comparison of the results
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difficult. But the using HRV indices is still one of the strong techniques in assessing

human states. Table 2.1 shows some of the popular HRV indices.

Figure 2.4: RR interval extracted from ECG waveform

Table 2.1: Summary of some popular HRV parameters

Parameter Unit Description

Time Domains

meanRR ms Mean of RR intervals

SDNN ms Standard deviation of RR intervals

meanHR 1/m Mean of Heart rate

STD HR 1/m Standard deviation of instantaneous Heart rate values

RMSSD ms Square root of the mean squared differences between

successive RR intervals

Frequency Domains

VLF, LF & HF peaks Hz Peak frequencies for VLF, LF and HF bands

VLF, LF & HF powers ms2 Absolute powers of VLF, LF and HF bands

LF/HF - Ratio between LF and HF band powers

Total power ms2 Total spectral power

Non-linear Domains

SD1, SD2 ms Standard deviations of the Poincaré plot

ApEn - Aproximate Entropy

SampEn - Sample Entropy
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Photoplethysmogram - PPG

A photoplethysmogram (PPG) is an optically method that can be used to detect

blood volume changes in the microvascular bed of tissue. A PPG is often obtained

by using a pulse oximeter which illuminates the skin and measures changes in light

absorption. The same technique is used in fNIRS. Unlike the fNIRS retrieve activi-

ties from blood veins near the brain, PPG is often referred to the blood veins of the

body and thus getting the pulse rate or heart rate. By using PPG, instantaneous HR

and SpO2 can be retrieved and used for further analysis. Due to the compactness

of the setup, PPG sensors are widely used in both academic studies (Yoshino et al.

, 2007; Tamura , 2019) and commercial products (sport watch, health monitoring

devices). The sensor positions are not only on the thump but also on the other body

positions such as nose, temple, earlobe, and wrist.

Figure 2.5: PPG sensor in finger

2.1.3 Visual system

Eye movement

Eye movement is measured by the optical method and the electrooculography (EOG)

method. The optical method adopts the image measurement such as camera, video

image processing. In this method, the pupil diameter can also be measured. The

EOG method detects a bioelectric phenomenon and measuring the eye movement
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by detecting the difference in the electrostatic capacitance of the cornea and the

retina by sensors attached around the eyes.

The optical methods are widely used due to its simple setup. Studies about eye

movement can be focused on either voluntary movement or involuntary movement.

Voluntary movement can be seen as gaze direction, saccade, and eye rotation. In-

voluntary movement involves with the unintentionally movement of the eyes. There

have been many studies using those characteristics to detect drive states (Obinata

et al. , 2008; Le et al. , 2019). Eye movement also can be used at the same time

with the facial expression method to detect driver emotions, fatigue, and drowsiness.

The disadvantage of this method is the sensitivity of the camera to the surrounding

environment (light) and the need of calibration for different positions.

Figure 2.6: Involuntary eye movement

Eye blink

Eye blink can be measured by using electrical potential changes using EOG method

or by using the image processing. In studies on automobile, the arousal state is

evaluated by indices such as eye-closing time, blink rate, and blink waveform. Eye

blink is also a useful index for evaluating other driver states such as cognitive state,

attention state, and workload (Danisman et al. , 2010; Benedetto et al. , 2011).
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Pupil

The pupil is a hole located in the center of the iris of the eye that allows light to go

through the retina. The pupil reaction (constriction or dilation) is the response to

the surrounding light (bright or dark). There is also a near reaction where the pupil

becomes smaller when looking object at a near distance. Moreover, the pupillary

dilator is also controlled by the sympathetic nerves, so that the pupil is constricted

when the subject feels strong sleepiness or fatigue, and is dilated when the subject

becomes excited.

2.1.4 Other physiological indices

Other physiological indices can be used in driver state assessment are blood pressure

(BP), respiration rate, galvanic skin response (GSR), etc. These indices are often

measured incorporate with other physiological indices to evaluate and detect driver

states.
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2.2 Driving-based indices

Beside biometrics, driving-based indices are also widely used in driver state detec-

tion. In-vehicle sensors provide not only the vehicle dynamic data but also the driver

operation data.

2.2.1 Longitudinal indices

Velocity metrics

Speed metrics are the most commonly used metrics in driving behavior studies. The

vehicle velocity is often inferred from the wheel sensors but sometimes GPS data

is also used. Typical metrics are mean velocity, velocity variation and maximum

velocity.

Acceleration is computed by differentiating the vehicle velocity. When the velocity

data is discrete, a difference calculation is applied. The other method to obtain the

acceleration of the vehicle is using an accelerometer. In such case, the axis of the

sensor must be aligned with the longitudinal axis of the vehicle.

Another factor needs to be considered is the differentiated value of the acceleration:

Jerk. The vehicle occupants are sensitive to the jerk of the vehicle in motion. The

jerk can be used to detect the onset of the change in acceleration.

Reaction time

The acceleration or deceleration of the vehicle depends on the pedal operation of

the driver: move his/her leg from the brake pedal to the gas pedal and step on it;

or vise versa, release the gas pedal, move the leg to the brake pedal to slow down

or stop.

There are many definitions of the onset and the end of the response time. It can

begin with the event trigger or when the driver release his/her gas/brake pedal.
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It depends on what kind of the signal is available in the study. Reaction time is

still one of the interesting measures when it comes to traffic safety (Taoka , 1989;

Mohebbi and Gray , 2009).

Headway metrics

Distance to the front obstacle is often collected from the sensor put in the front of the

vehicle. But distance is not used directly but through its derivation: the headway

metrics. Variation of the headway metrics are Time Headway (THW) (Schleuning

and Douglas , 2001; Siebert et al. , 2014), Time To Collision (TTC) (Kiefer et al.

, 2006), Performance measure for approach and alienation (KdB), and Perceptual

Risk Estimation (PRE) (Aoki and Hung , 2011).

The definitions of the headway metrics are different, it is important to use the

accurate metric in the specific case. Another considering factor when using headway

metrics is the instrumental sensor equipped in the vehicle, the sensor is attached in

front of the ego vehicle and detect the rear end of the front vehicle. So that the

actual distance value is smaller than the engineering definition of the distance. Also

the sensor range and angle detection are limited. It is sometimes difficult to get

the data in the real-world experiment. Figure 2.7 shows how to get the longitudinal

information from following situation. Tabel 2.2 shows the formulations of some

headway metrics with the longitudinal information and driving response.

Figure 2.7: Longitudinal indices for driving performance
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Table 2.2: Formulas of some Headway metrics

Parameter Unit Formula

Time Headway sec THW = D
Vego

Time-to-Collision sec TTC = D
|Vego−Vlead|

Perceptual Risk Estimation 1
sec

PRE = Vr+αVs+RT (Ap+Af)
Dn

D - Distance between ego vehicle and lead vehicle [m]

Vego and Vs - Velocity of the ego vehicle [m/s]

Vlead - Velocity of the lead vehicle [m/s]

Vr = |Vego − Vlead| - Relative velocity between ego vehicle and lead vehicle [m/s]

α - constant depend on kinematic perception

RT - Reaction time [s]

Ap - Deceleration of the lead vehicle [m/s2]

Af - Foreseen deceleration of the lead vehicle [m/s2]

n - exponent constant depend on the distance perception

2.2.2 Lateral indices

Steering operation

Drivers steer the vehicle appropriately to travel following the curves and change

lanes. In other cases to avoid the obstacles, vehicle maneuvering is also needed. Re-

garding the steering operation, there are steering reaction time and steering move-

ment time. These steering response indices are often used to evaluate the driving

performance while activating lane-departure or lane-keeping system. Figure 2.8

shows some of the lateral indices can be acquired during travel.
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Steering reversal

Steering reversal is defined as the change of steering direction within a short period.

The steering reversal angle must exceed a threshold angle. The threshold values

are varying and depend on the studies. If the value is too small, the calculation

of steering reversal will be too sensitive to the noise or steering vibration. If the

value is too large, the index will not reflect the operation of the driver. Steering

reversal can be used as a metric to evaluate task load and distraction (Markkula

and Engstrom , 2006; Kountouriotis et al. , 2016)

Steering entropy

Analysis of the time-series of steering angle data can provide some valuable infor-

mation. Assuming that the drivers peform smooth steering, then the difference

between the predicted steering angle and the actual steering angle can be calcu-

lated (predicted errors). In case the driver concentrates on the driving, the steering

will be smooth and the distribution of predicted errors will be narrow and close to

zero. In case the driver is distracted by other non-driving tasks, the distribution will

widen. The extent of frequency distribution can be viewed as the degree of entropy

(Nakayama et al. , 1999; Boer , 2001).

Lane position and Standard deviation of Lane position

The position of the vehicle on the road is defined as the distance of a certain vehicle

feature to a certain road feature. As for the road, the common features are the

middle position of the lane, average values of the vehicle trajectory, and the edge of

the centerline of the road. As for the vehicle, the features are the middle point of

the frontal axle, the edge of tyres, and the central gravity of the vehicle.

The standard deviation of Lane position (SDLP) is the one of the most common

feature to evaluate the driving impairment, inattention, driving workload, etc (Peng
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et al. , 2013; Verster and Roth , 2014; Liu et al. , 2016). The value indicates the

lateral wobbling of vehicles in the selected lane and road section. SDLP can be

calculated following way:

• Calculate the mean lateral position (MLP) for the entire drive

MLP [X] = µ =

∑N
i Xi

N

• The standard deviation of Lane position is defined as:

SDLP =

√√√√ N∑
i

(Xi − µ)2

where: Xi is the lane position at time i, N is the number of samples taken for

the entire drive

Figure 2.8: Lateral indices for driving performance
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2.3 Subjective methods

Besides the physiological measures, the performance-based measures, subjective

measures are also widely used to assess the human state in driving. Subjective

methods are presented in the form of questionnaires and often given to the sub-

ject before and after the experiment to evaluate the change in states. The main

advantage of subjective methods is that they are simple and easy to deploy in an

experiment. The disadvantage of these methods is that the answers heavily rely on

the subject’s memory. Furthermore, self-report measures cannot be obtained on a

continuous basis like the other mentioned measures.

NASA Task Load Index - NASA-TLX

The NASA Task Load Index (NASA-TLX) was developed by NASA’s Ames Re-

search Center as a metric to assess subjective workload (Hart , 2006). The index

rates workload based on 6 scales: Mental, Physical, and Temporal Demands, Frus-

tration, Effort, and Performance. This is based on the frame work of task demands,

mental resources needed for the performance to meet the demands and the subjective

evaluation (effort) of own task performance (the frustration level).

Subjective Workload Assessment Technique - SWAT

The Subjective Workload Assessment Technique (SWAT) was developed by the

USAF Armstrong Aerospace Medical Research Laboratory. It evaluates workload

based on three dimensions: time load, mental effort load, and psychological stress

load. Each of these dimensions has 3 levels: low, medium, and high. The rank order

data retrieved from the subjects will be converted to scales [1-100] (Reid and Nygren

, 1988). The disadvantages of SWAT are the time required to perform the process

and the complexity of the scale calculation (Luximon and Goonetilleke , 2001).
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2.4 Conclusion

This chapter has briefly introduced various driver state assessment methods, ranging

from the physiological measures, driving-based information to the subjective mea-

sures. Each measure has its own advantage and disadvantage. This study will focus

on the heart rate and cardiac activities indices because of their wide acceptance in

biosignal research and less affected by movement noise while in driving. Driving

information is also used because of its importance in safety. The combination of

physiological and driving information will lead to a better knowledge driver state in

various driving situations.



Chapter 3

Physiological indices and Driving data in real world

3.1 Objectives

Driving is considered as a complex task, demanding both the physical and cognitive

resources of the driver. The development of technology has the driver to have a

better driving experience. More and more activities beside driving are introduced

to the driver and gradually diverse them from the main task and potentially lead to

traffic accidents. Human factors focuses on using multiple human aspects and the

application of methodologies to solve those problems.

The objective of the study presented in this chapter is to investigate the effect of

mental workload and driving difficulty to the response of the cardiovascular system

and driving performance of the driver.

Figure 3.1: Preparation for the experiment in Kyosei test track, Okazaki city, Japan

24
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3.2 Methods

3.2.1 Participants

There are 5 participants in this study. All the participants have valid drive licenses.

The test drivers are divided into 2 groups: novice drivers and professional drivers.

Novice drivers (2 males, 1 female) are young students (aged 20-35) who have little

driving experience in Japan (drive less than once a week). The professional drivers

(2 males) are middle-age drivers (aged 35-55) who have taken training for vehicle

development. The experiment was approved by the Nagoya University’s Institute of

Innovation for Future Society Ethical Review Board.

3.2.2 Apparatus

Vehicle

All participants drove the same vehicle (Prius) in the test track in turn. The vehicle

was equipped with a high-speed CAN computer to record all the operation data of

the vehicle.

Driver recorder

Physiological data were recorded by a portable recorder which has the same func-

tion with Livo TM4488 (Livo) (Toyota Technical Development Corporation, TTDC,

Japan). Livo is a biomedical signal recording system which can record brain activ-

ities such as electromyography (EMG) and electrocardiogram (ECG). Instead of

sending data to the host computer like Livo, the portable recorder stores ECG data

(from electrodes) and PPG data (from sensor in the glasses) directly to the SD card

inside which is more compact and easier for in-car driving. Figure 3.2 shows how the

ECG is recorded in two systems. The portable recorder ECG recordings used a lead
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II configuration at a sample rate of 1000 Hz. Isopropyl alcohol cleaner was used to

clean the skin and standard pre-gelled disposable electrodes (Ag/AgCl paste, Vit-

rode Bs-150) were applied. The start and stop time of the task were recorded by a

trigger button.

Figure 3.2: Driver biosignal recorders

Data aquisition system

The data acquisition system includes multiple instruments attached to the subject

to collect bio-signal data and get driving operation data from the vehicle. The

instruments can be divided into 2 subgroups: a cloud-based storage system which

allowed multiple separated recording systems can upload and synchronize timestamp

with a central computer and local storage including 3 computers collecting data

separately. The central computer was connected to the internet through pocket wifi

and sent data with its timestamp to the cloud database (Amazon Web Services -

AWS). Details of the system are presented in Figure 3.3.
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Figure 3.3: Data acquisition system

3.2.3 Driving tasks

The experiment was taken place in the test track of Kyosei driving school, Okazaki

city, Japan. The scenarios were designed to evaluate the driving performance and

physiological indices under the influence of the complexity of driving and the sec-

ondary task.

Primary task

The main task of the subject was to drive and maintain a fixed velocity (autocross)

or fixed distance (car following) to the front vehicle on a zigzag line created by

pylons on the oval test track. The road of the test track had two lanes with 6 meters

width. The distance between 2 pylons is about 50 meters. The pylons were placed

near the center line but on the opposite lanes to force the driver to steer in zigzag

route. Details of driving task are shown in Figure 3.4
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Figure 3.4: Experiment route and driving task

(Course captured from Satellite image of Google Map)

Secondary task

The secondary task was an auditory delayed response number called the n-back

task. The task is a type of memory task which require the subject has to listen and

remember a series of random number played in a fixed interval. The ”n” in n-back

denotes the previous position of the number which the subject has to remember.

For example, 1-back means that the subject has to remember the previous number,

2-back means that the subject has to remember the second number to the last one.

If the current number and the ”n” number are the same, the subject will press the

wright button, otherwise press the wrong button. Figure 3.5 shows an example of

1-back task and 2-back task. Other details of task combination are shown in Figure

3.6.
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Figure 3.5: Example of n-back task

Tasks while driving Mixed driving tasks

Primary task

Autocross

Car following

Secondary task

No N-back

1-back

2-back

Test drive

Autocross

Autocross 1-back

Autocross 2-back

+

+

Test drive

Car following

Car following 1-back

Car following 2-back

+

+

Figure 3.6: Task flowchart
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3.3 Results & Analysis

3.3.1 Results

As mentions in the tasks’ description, subjects had to maintain either relative con-

stant speed or distance to the front car depend on the type of primary task. Intu-

itively, comparing the standard deviation of the speed and distance can show the

different between normal driving and driving under the mental workload. In real

driving on the highway, the cruise control system can detect the distance to the front

car. But in this experiment setup, the distance data sometimes cannot detect the

front vehicle due to the limit of the detection angle of sensor. As a consequence, the

longitudinal parameters used for this analysis is only the standard deviation of the

speed and the lateral parameters are the deviation of the steering angle and steering

velocity.

As for the ECG data, raw data was extracted and aligned with the driving data

by timestamp collected from cloud storage. Extracted data was passed through a

median filter to remove the baseline wandering and then passed through a band-

pass filter to remove noise (Acharya et al. , 2007). The R-peak detection procedure

used a non-linear transformation and first-order Gaussian differentiator technique

(Kathirvel et al. , 2011). The procedure was implement in Python code. Figure 3.7

shows ECG data results through the preprocessing: Raw ECG data (top), median

filter to remove the baseline wandering (middle), bandpass filter to remove the noise

and R-peak detection (bottom). The R-peak outputs then was calculated in Ku-

bios HRV (Tarvainen et al. , 2014) for the HRV parameters. The HRV parameters

includes time-series (mean RR-interval, the standard deviation of RR - SDNN) and

frequency indices (low frequency - LF, high frequency - HF, LF/HF ratio).
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Figure 3.7: Preprocessing ECG data

3.3.2 Factorial analysis

In real-world driving, factors that can affect driver physiological indices and driving

performance are immense. Vehicle driving task can be present as demanding of

”visual-spatial-ambient + manual resources” (Wickens , 2008). The secondary task

which imposes mental workload in this experiment will occupy auditory resource,

cognition processing and partially the manual resource. If the two tasks (primary

and secondary) utilize the same resources at the same time, the result of the complex

task will be less efficient.

Two hypotheses are proposed according to the expected variations of variables in

this study:

• Hypothesis 1: The types of primary task and secondary task have an effect on

the physiological indices and driving performance;

• Hypothesis 2: The driver’s skill and secondary task have an effect on the

physiological indices and driving performance.
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3.3.3 Discussion

In general, the driving performances showed no significant difference between the

normal driving task and driving with the secondary task except the standard devia-

tion of speed. The detailed results (Figure 3.8-a) showed that in the following task,

the standard deviation of speed is higher than the autocross task. While the au-

tocross task results remained fairly stable, the car following showed a decrease when

the difficulty of the secondary task increase (no secondary task to n-back task).

(a) Standard deviation of Speed

(b) Standard deviation of Steering Velocity

Figure 3.8: Effect of driving task to the driving performance

Primary task: D - Autocross task; F - Following task

Secondary task: N0 - No n-back; N1 - 1-back; N2 - 2-back
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The significant difference in the standard deviation of speed (Tabel 3.1) under

the effect of driving task might due to the differences of driving without constraining

(except maintain speed) and driving with the constrain of the speed and distance to

the front vehicle: the driver’s mental resource has to share between manual control

(driving the vehicle) and visual recognition (maintaining speed and distance).

In case the driver’s reaction time increases, the deviation of speed will also increase

to maintain the safety condition. This trend also shows in steering performance

(Figure 3.8-b). The effectiveness is lesser due to the main requirement of the driving

task is longitudinal control. These results show that using driving performance can

help clarify the state of driving condition: normal driving and driving while sharing

resource for other jobs.

As for the cardiovascular system response, the results indicate that the mental task

has a significant effect on the heart-rate (reflected on mean RR) and the standard

deviation of heart-rate (reflected on SDNN). In the test of the driving task and

n-back task, the n-back task showed a significant effect on SDNN. The result is

showed in Figure 3.9 (a). Driver’s skill and n-back task had significant effects on

both meanRR and SDNN, but showed no effect on the ratio LF/HF (Tabel 3.2).

These results can be explained when considering various factors affect the HRV:

age, gender, diseases, life habits, and environments, etc. In general, the mean RR

(or mean heart-rate) reflects the physical requirement of the human body. In the

resting state, the heart-rate is generally low while the SDNN is high. In the focus

state and the physical activities, the sympathetic nervous system prepares the body

be ready for the response by increasing heart-rate. Also, the SDNN is lower than

the resting state.
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(a) SDNN = Driving + N-back

(b) meanRR = DriverSkill + N-back

(c) SDNN = DriverSkill + N-back

Figure 3.9: Effects of Driver skill and Tasks to Physiological indices

Primary task: D - Autocross task; F - Following task

Driver skill: P - Professional driver; N - Novice driver



3.3. RESULTS & ANALYSIS 35

In the driving experiment, the factors which affect HRV reduced are the driving

tasks (including types of driving and types of n-back task) and driving experience.

As can be seen from Figure 3.9 (b, c), the n-back task induced more stress to the

cardiovascular system than normal driving in different levels based on driver’s skill.

(a)

(b)

Figure 3.10: Effects of Driver skill to driving performance

Driver skill: P - Professional driver; N - Novice driver

Secondary task: N0 - No n-back; N1 - 1-back; N2 - 2-back

Another factor should be considered is the characteristics of the individual sub-

jects. All subjects reported that the 2-back task is the most stressful task. While

performing the 2-back task, it was too hard for the memory, then the subject just

ignored the secondary task and pressing buttons randomly. Since the professional
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drivers are more confident about their driving skill, their operations were more gen-

tle and stable than the novice drivers in all tasks, showed as the deviation of speed

and steering velocity of professional driver result did not change so much in Fig-

ure 3.10. The results of the novice drivers ranges varied larger, especially in case

of 2-back, the steering performance of the novice drivers was more erratic (Figure

3.10-a). This result shows consistent with the ANOVA result (Table 3.2) about the

driver skill. Driver’s experience and characteristics should be taken into account

when choosing subjects for future experiment.
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Table 3.1: Effects of primary and secondary task

Source Sum.Sq df F Pr

MeanRR

Driving task 2.81E+02 1 0.022 8.84E-01

N-back task 1.78E+04 2 0.684 5.09E-01

Driving:N-back 9.53E+02 2 0.037 9.64E-01

SDNN

Driving task 1.02E+02 1 0.680 4.13E-01

N-back task 1.22E+03 2 4.076 2.24E-02 *

LF/HF

Driving task 4.53E+01 1 2.475 1.22E-01

N-back task 4.18E+01 2 1.142 3.27E-01

Driving:N-back 3.89E+01 2 1.063 3.53E-01

Standard deviation of speed

Driving task 9.75E-01 1 16.516 1.58E-04 ***

N-back task 7.49E-02 2 0.634 5.34E-01

Driving:N-back 1.43E-01 2 1.210 3.06E-01

Standard deviation of steering angle

Driving task 2.22E+00 1 0.851 3.60E-01

N-back task 1.05E+01 2 2.008 1.44E-01

Driving:N-back 9.92E-01 2 0.1896 0.8278

Standard deviation of steering velocity

Driving task 2.41E-03 1 2.9692 9.06E-02

N-back task 7.75E-04 2 0.4766 6.23E-01

Driving:N-back 9.06E-04 2 0.5574 5.76E-01

Note: * p<0.05, ** p<0.01, *** p<0.001
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Table 3.2: Effects of driver’s skill and secondary task

Source Sum.Sq df F Pr

MeanRR

Driver’s skill 5.32E+05 1 183.72 <2e-16 ***

N-back task 2.13E+04 2 3.677 3.17E-02 *

SDNN

Driver’s skill 8.61E+02 1 6.338 1.48E-02 *

N-back task 1.24E+03 2 4.579 1.45E-02 *

LF/HF

Driver’s skill 1.23E+01 1 0.664 4.19E-01

N-back task 6.27E+00 2 0.169 8.45E-01

Skill:N-back 1.48E+01 2 0.398 6.73E-01

Standard deviation of speed

Driver’s skill 1.58E-01 1 2.087 1.54E-01 ***

N-back task 7.00E-03 2 0.043 9.58E-01

Skill:N-back 4.10E-02 2 0.273 7.62E-01

Standard deviation of steering angle

Driver’s skill 1.61E+01 1 7.026 1.04E-02 *

N-back task 1.05E+01 2 2.292 1.10E-01

Standard deviation of steering velocity

Driver’s skill 9.00E-06 1 0.010 9.20E-01

N-back task 3.66E-04 2 0.215 8.08E-01

Skill:N-back 9.00E-06 1 0.443 9.20E-01

Note: * p<0.05, ** p<0.01, *** p<0.001



3.4. CONCLUSION 39

3.4 Conclusion

In this chapter, the effects of mental workload with the incorporation of other fac-

tors to the cardiovascular system and driving performance have been taken into

accounted. It can be seen that the heart-rate and the activities of the cardiovascu-

lar system in a short time are sensitive to the mental task and driving task. These

changes can be used as an indicator to detect different driving states of the driver.

The results showed a consistent conclusion with previous research. It needs to pro-

cess to extend the knowledge to the detection of dangerous states of driving which

will lead to accidents.



Chapter 4

Graphical models

4.1 Introduction

Searching for patterns in data has a long history, involving in many fields: statistical

analysis, signal processing, image analysis, bioinformatics, computer graphics, etc.

Pattern recognition is concerned to automatically discover the regularities of the

data and use those finding to take actions such as detection of abnormal data from

normal ones or clarifying the data into different categories by utilizing the use of

computer algorithms. The key concept is uncertainty. This comes from the noise

of the measurements and the limited size of data that can be collected. In the era

of big data, the limitation of the data sets can be overcome by employing massive

sensors and data sources. The development of computing technology has increase

the computational capacity of the machine and open pathways for bigger and bigger

models and data sets. As a result, humans have seen the enourmous expansison of

the machine learning in the past few decades. The using of deep learning algorithms

have help solve a lot of problems with great outcome. But when it comes to the

exploration or explanation, those approaches are generally ambiguous. This chapter

will introduce an advantaged method to tackle that problems by using diagrammatic

representations of probability distributions, probabilistic graphical models or in short

graphical models.

40
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4.2 Graphical models

Graphical models combine the ability to dealing with uncertainty problems through

the use of probability theory and an effective approach to handling complexity

through the use of graph theory. The application field of graphical models includes

chemistry (Bronson et al. , 2010; Olsson and Noé , 2019), genomics (Sinoquet ,

2014), neurology (Paz-Linares et al. , 2018; Belilovsky et al. , 2016), psychology

(Bhushan et al. , 2019), and social interaction (Zhang et al. , 2010; Farasat et al. ,

2015).

Graphical models are graphs which comprise nodes (or vertices) connected by edges

(or links or arcs). Each node represents a random variable and edge represents

the probabilistic relationships between these variables. The graph then show the

representation of joint probability distributions over all random variables. As for

the representation, there are two main kind of graphical models: directed and undi-

rected.

4.2.1 Directed graphical models

In directed graphical models, also known as Bayesisan Networks, the edges have a

particular direction indicated by arrows. In most of the real-life cases when repre-

senting or modeling some event, it would be dealing with many random variables.

Even if considering all the random variables to be discrete, there would still be ex-

ponentially large number of values in the joint probability distribution. However,

many of these variables are marginally or conditionally independent of each other.

By exploiting these independencies, it can be reduced the number of values needed

to store to represent the joint probability distribution.
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Figure 4.1: A simple directed graphical model

Considering the example in Figure 4.1, the joint probability distribution

p(A,B,C,D) across the four random variables A,B,C, and D, by using the chain

rule of probability, can be writen the joint distribution in the form:

p(A,B,C,D) = p(A)× p(B|A)× p(C|A,B)× p(D|A,B,C) (4.1)

By using the conditional independence relationships, the equation 4.1 can be

rewritten as:

p(A,B,C,D) = p(A)× p(B|A)× p(C|A)× p(D|B,C) (4.2)

The terms in equation 4.1, p(C|A,B) is simplified to p(C|A) because C is in-

dependent of B given its parent A (denoted as C ⊥⊥ B|A), and p(D|A,B,C) is

simplified to p(D|B,C) (D ⊥⊥ A|B,C). The joint distribution of a graph with N

nodes can be written in general as:

p(x) =
N∏
i=1

p(xi|pai) (4.3)

where pai denotes the set of parents of xi, and x = x1, ..., xN . This equation expresses

the factorization properties of the joint distribution for a BN model. Eventhough

mentioned above that each node correspond to a single variable, it can be also

associated sets of variables and vector-valued variables with the node of a graph.

An important restriction to the directed graphs that in the considered graph there
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must be no directed cycles. In other words there is no closed path (path that one can

move from node to node along edges following the direction of arrows and end up

at the starting node). These graphs are also called directed acyclic graphs - DAG.

It can be seen from the example that the conditional independence characteristics

allow the graph to represent the joint distribution (equation 4.3) more compactly.

4.2.2 Undirected graphical models

In undirected graphical models, also know as Markov Random Fields (MRF), the

edges have no directional significance and do not carry arrows. This representation

is useful in cases of modeling a variety of phenomena where one cannot naturally

ascribe a directionality to the interaction between variables. Undirected models also

offer a different and often simpler perspective on directed models, both in terms of

the independence structure and the inference task. The edges of MRF correspond to

some notion of direct probabilistic interaction between neighboring variables. Figure

4.2 shows an example of MRF in image processing.

Figure 4.2: An example of undirected graphical model

In the MRF, there is a need to find the factorization rule for the conditional

independence. Considering two nodes xi and xj that are not connected by an edge,
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it means that these two nodes are conditional independent given all the other nodes

of the graph. This property can be expressed as:

p(xi, xj|x−i,j) = p(xi|x−i,j)× p(xj|x−i,j) (4.4)

where x−i,j denotes the set x with all variables except xi and xj. This leads to

consider a graphical concept called clique, which is defined as as subset of nodes

in a graph that there exists an edge between all pairs of nodes in the subset. A

maximum clique is a clique that cannot be extended by including one more adjacent

node. By defining clique, it can be defined the factors in the decomposition of the

joint distribution to be the functions of the variables in the cliques. Then the joint

distribution of a MRF is defined as follow:

p(x) =
1

Z

∏
C

ψC(xC) (4.5)

where C denotes a clique, xC is the set of variables in that clique, ψC(xC) is the

potential function on the clique C, and Z is the normalization factor or partition

function given by:

Z =
∑
x

∏
C

ψC(xC) (4.6)

This factor ensures that the distribution p(x) given by equation 4.5 is normalized. By

considering potential function ψC(xC) ≥ 0, it ensures that the distribution p(x) ≥ 0.

4.2.3 Learning the graph

Learning the graph refers to the structure of the model (topology), or the paramters

of the graph, or both. Another important factor in learning the graph is whether

all the graph variables are observed or some of them are hidden. This leads to the

following ways for classifying learning problems:

• Known structure, full observability

• Known structure, partial observability
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• Unknown structure, full observability

• Unknown structure, partial observability

Addition factor needs consideration is whether the goal is to find a ”best” model/

a set of parameters, or to return a posterior distribution over models/ parameters.

Because the number of graph structures grows exponentially with the number of

nodes, it is often nessary to adopt to heuristics to find a good candidate model.

Some of the popular methods in learning the graph are the maximum likelihood

estimates (MLEs), the estimate maximum a posterori estimates (MAP), the Expec-

tation Maximization (EM), search algorithms, etc.
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4.3 Gaussian Graphical Model

The undirected graphs can be divided into subgroups following the correlation con-

dition:

• Marginal Correlation graphs

• Partial Correlation graphs

• Conditional Independence graphs

4.3.1 Marginal Correlation graphs

In a marginal correlation graph, an edge is established between 2 nodes xi and xj

if a measure of association |ρ(xi, xj)| ≥ ε. Normally, ε equals to 0. Sometimes

ρ(xi, xj) can also be written as ρ(i, j) The parameter ρ(i, j) is required to have the

independent property:

X ⊥⊥ Y implies ρ(X, Y ) = 0 (4.7)

The measure ρ should have many properties: easy to compute, robuts and there

is some way to compute a confidence interval for the parameter. There are some

candidates for this measure: Pearson correlation ρ, Kendall τ , distance correlation

γ2, etc.

4.3.2 Partial Correlation graphs

Before looking into the partial correlation graph, it needs to define what is partial

correlation. Let X, Y ∈ R and Z is a random vector. The partial correlation between

X and Y, given Z is a measure of association between X and Y after removing the

effect of Z. That means ρ(X, Y |Z) is the correlation between residual eX and eY

resulting from the linear regression of X with Z and of Y with Z. In graphical

model, let x = x1, ..., xN and ρij denotes the partial correlation between xi and xj
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given all the other variables. The matrix of partial correlation K = ρij is given by:

Kij = − Ωij√
ΩiiΩjj

(4.8)

where Ω = Σ−1, Σ is the covariance matrix of x.

4.3.3 Conditional Independence graphs

The conditional independence graph is the strongest type of undirected graph. This

means that the edge between 2 nodes i and j is omitted if xi is independent of xj

given the rest of the variables.

xi ⊥⊥ xi | rest (4.9)

Gaussisan Graphical Models

Considering random vector x is centered and normalized.

x ∼ N(0,Σ) (4.10)

In this case, it goes back to the partial correlation graph. This graph is also

called Gausian Graphical Model (GGM).

The partial correlation matrix is often called the precision matrix. Equation 4.8 also

write as:

Cor(xi, xj|x−ij) = − Kij√
Kii

√
Kjj

(4.11)

To represent the GGMs graphically, the partial correlation matrix after being

standardized is an asymmetric matrix with the diagonal equals to 1. The off-diagonal

elements represent the partial correlation between two 2 elements. Each variable

represents a node. If the partial correlation between 2 variables equals to zero, there

is no link or edge between them. But this means that the graph is dense. To obtain

a sparse model, the partial correlations are forced to zero by using threshold rules.
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Figure 4.3 shows an example of representing GGM structure with colored weighted

edges.

Figure 4.3: An example of GGMs

Interpreting GGMs

The strong point of the graphical model is the capability in exploratory data analysis.

In fact many natural phenomena in real life can be approximated by a bell-shaped

frequency distribution known as the normal distribution or the Gaussian distribu-

tion. This can be used as advantaged when constructing the graph and do the causal

interpretation.

According to a review by Epskamp et al. , 2018, interpreting GGMs can be in

different ways:

• Predictive effects: GGM’s edges can be used to show which variables predict

another. While using the directed graphs, the interpretation requires a causal

inference. While using GGM, for example A-B-C, only information of the

middle node (B) is needed when predict the others (A and C);

• Indicative of causal effects: eventhough the information of causal is vague

in GGMs (the lack of arrows), the exploratory search algorithms perform in
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GGMs is easier. Edges in the GGM may be interpreted as potential causal

paths;

• Causal generating model: the interaction in undirected network models is

a two side effect. Link between A-B could be interpreted as intervening on A

would impact B, and intervening on B would impact A. This interpretation

is useful in discussing the phenomena in psychology, genetics, social networks,

etc.
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4.4 Conclusion

This chapter has introduced the background of the graphical models. By combining

the probability theory and graph theory, graphical model is a powerful tool in solving

complex problems with the capability of exploratory. The later part of the chapter

breifly bring up the specific Gaussian Graphical Model, how to represent one and

the advantages of interpret GGMs over directed graphs.



Chapter 5

Surprise state detection in case of driving misap-

plication

5.1 Background

5.1.1 Driving misapplication in the world

Startle or surprise responses are quite common in general driving: a sudden obstacle

appears, unintended acceleration or lough sound on the road, etc. By definition, star-

tle is a reaction to a sudden, intense threatening stimulus while surprise is inclined

toward cognitive and emotional response. These terms are often used interchange-

ably. In aviation, many studies about their effects on operation functions have been

carried out (Rivera et al. , 2014; Landman et al. , 2017; de Boer and Hurts , 2017).

In some extreme cases, the surprise may impair the pilot’s troubleshooting capabil-

ities. The reaction of road drivers is similar. While subtle surprise events appear

more often, more extreme cases such as near hit can develop fear or panic feeling.

In a report, Lococo et al. , 2012 stated that startle or panic was common associated

with pedal misapplication in the United States. Summary of crash situations and

places are shown in Figure 5.1.

51
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Figure 5.1: Crash locations and situations related to pedal misapplication

(data source: Lococo et al. , 2012)

Other studies have investigated the relationship between surprising situations

and driving performance. In cases of pedal misapplications, other operation errors

might cause unexpected accidents, including human error (wrong direction) and

using the wrong gear when starting to drive (Schmidt et al. , 1997). Green , 2000

pointed out that, in unexpected and surprising events, the human perception-brake

reaction time increases significantly compared to in fully aware situations (around

0.7-0.75 seconds compared to 1.25-1.50 seconds). Figure 5.2 shows a summary of

Green’s conclusion about the reaction time. A recent study (Fitch et al. , 2012) also

agreed with Green’s conclusion that surprised driver responses are slower than those

of an aware driver, but these performances vary depending on other factors such as

age, gender, vehicle, etc.

Figure 5.2: Reaction time in driving situations

(data source: Green , 2000)
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5.1.2 Driving misapplication in Japan

In Japan, the Institute for Traffic Accident Research and Data Analysis (ITRADA)

has published reports about driving operation errors and pedal misapplication. As

for driving operation errors, drivers aged 24 or under and 75 or over are the groups

who cause the highest number of accidents (Masahide , 2014). Figure 5.3 shows an

increasing trend of pedal misapplication in elderly groups. Additionally, in Akihiro

, 2018 “flustered/panicking” is the most factor common for all operation errors.

Figure 5.4 shows the top human factors lead to driving operation errors.

Figure 5.3: Rate of pedal misapplication by age group in Japan

(source: Akihiro , 2018)

Figure 5.4: Factors lead to driving operation error accidents in Japan

(source: Masahide , 2014)
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5.2 Methods

5.2.1 Participants

As mentioned in the previous section, elderly citizens (aged 75 or over) are among

the group that causes the highest number of accidents due to operation errors. We

conducted a study on 35 participants who participated, with ages from 65 to 85

years old (mean age = 74.3). All have valid driving licenses. The subjects were

informed that they must read the instruction and give their consent before they

participated in the study. The study was approved by Nagoya University’s Institute

of Innovation for Future Society Ethical Review Board.

The participants were asked to drive while wearing bio-sensors to collect their biosig-

nal data. Due to the noise in the data (bad contact or loose electrodes) or data cor-

ruption, some of the data had to be marked as unusable. The recorder sometimes

lost its time system, which led to us being unable to merge the timing between the

physiological data and the driving data. Those data were marked as not merged

with the driving simulation data. For those above reasons, only 8 subjects’ data

were used. Figure 5.5 shows the flowchart of data selection.

Figure 5.5: Data selection flowchart
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5.2.2 Apparatus

Driving simulator

The surprising situations are exposed to high risk of accidents. In order to ensure

the safety of the participants, the experiments were conducted in an advanced simu-

lation room in the NIC Building, Institute of Innovation for Future Society, Nagoya

University. The simulator was a 5-screen 4K projectors with a stereoscopic-view

driving simulator incorporates with many other elements such as: traffic simulation,

and vehicle dynamics and performance, by building upon the UC-win/Road software

(FORUM8 Co. Ltd.).

• Projectors:

– Support 4K, 120 Hz, 3D Active stereo for Front, Left, Right and Floor

screens

– Support Full HD for Back screen

• Screen size: W 5400 mm x H 2850 mm

The logging function of UC-win/Road recorded the driver’s operation and the

vehicle’s dynamic values. The logging data is recorded to the log file for latter

analysis or can transmit in real-time through the UDP connection other interaction

with the system. The trigger condition for the alert was also received through the

UDP connection. As mentioned before, the system can provide a lot of information

related to the operation and vehicle dynamics. The manual of UC-win/Road has

the comprehensive detailed and description of the parameters. Table 5.1 only lists

some of the parameters.
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Table 5.1: List of parameters can be acquired from Driving simulator

Parameter Unit Range Description

position X meter East +X Position of the vehicle

position Y meter Up +Y same as above

position Z meter North +Z same as above

Yaw angle radian South = 0 Yaw angle of the vehicle

(Counter clockwise)

Pitch angle radian Horizonal = 0 Pitch angle of the vehicle

(Up = positive rotation)

Roll angle radian Horizonal = 0 Roll angle of the vehicle

(Right inclination = posi-

tive rotation)

speedInMetresPerSecond m/s Velocity of the vehicle

steering ratio [-1..+1] Input on the steering wheel

(-1: Max left, +1: Max

right)

steeringVelocity 1/s Rotation rate of the steering

wheel

throttle ratio [0..+1] Input on the gas pedal (0:

Release, +1: Full throttle)

brake ratio [0..+1] Input on the brake pedal (0:

Release, +1: Full brake)
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Figure 5.6: Overview of Driving simulator system

Figure 5.6 shows an overview of the driving simulator room. To provide addi-

tional information besides driving information,monitoring cameras equipped inside

the cockpit to monitor driver operation (behind), face expression and posture (front),

and foot movement (over the feet compartment). The recording videos were synchro-

nized with the UC-win/Road time system. Figure 5.7 shows the images captured

during the experiment.
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Figure 5.7: Camera capture images inside the cockpit

Human machine interface

To investigate the effectiveness of different alert types, there was a human-machine

interface (HMI) system alerted the driver about the dangerous distance between

the vehicle and the obstacle. The system consisted of a screen put on the

instrumental dashboard in front of the driver, a speaker put under the driver

seat, and a vibration motor put under the brake pedal. Upon receiving a warning

signal about the distance, the HMI system will alert the driver with one of a

combination of 4 types of warning — a message on the display, a high-pitched

warning sound, a human warning voice, and a vibration — named pattern 0 (P0) to

pattern 6 (P6). Details of the alert patterns and descriptions are showed in Table 5.2
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Table 5.2: Alert patterns used in the experiments

Pattern Display Buzzer Voice Vibration Description

P0 - - - - Driving without any alert

P2 © © © - When triggered, display flash-

ing, buzzer gives alarm, and a

guidance voice

P3 - © © - When triggered, buzzer gives

alarm and a guidance voice

P4 © © - - When triggered, display flash-

ing and buzzer gives alarm

P5 - - © © When triggered, vibration at

the acceleration pedal and a

guidance voice

P6 © © - - When triggered, the integrated

device (display and buzzer)

turns on display and alarm

Physiological data recorder

Physiological data were recorded by the same portable recorder used in Chapter 3.

ECG recordings used a lead II configuration at a sample rate of 1000 Hz. Depending

on the subject’s medical history, isopropyl alcohol or non-alcohol cleaner were used

to clean the skin and standard pre-gelled disposable electrodes (Ag/AgCl paste,
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Vitrode Bs-150) were applied. The recorder did not have an internal real-time

clock, so the time system was synchronized with the UC-win/Road time system

through the wireless network. The bio-signal was recorded continuously without

interruption, and the experiment events were marked by a button event operated

by a monitoring operator seating behind the driver seat.

5.2.3 Driving tasks

The tasks were designed to evaluate various driver internal response and reaction

to the surprising situation and alarm sources. Figure 5.8 shows the overview of the

scenario and the task areas.

Designated tasks

• The first task was a trial drive which allowed the subjects to become familiar

with the driving environment. In this task, the driver would drive through a

straight road and pass a bus stop in the same lane, which required the driver

to slow down and change lane. This setup helped the subjects to become used

to the feeling of driving with the simulator system. This task was conducted

on the ”Trial driving” area shown in Figure 5.8. Because the subjects drove as

instructed and some subjects felt nervous, the data variation of the first task

was large and excluded in the analysis of this research;

• The second task was to drive through an intersection with traffic control

and then drive into a parking lot in front of a food court;

• The third task was the main focus of this experiment, which was to create

a surprising scenario. At the parking lot, the subject was asked to move out;

the gear shift was intentionally reversed by the operator, causing the vehicle

to move toward to the food court instead of moving backward. The second
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task and third task were conducted on the ”Driving & Parking” area shown

in Figure 5.8.

After the first task, the subjects were asked whether they felt comfortable with

the driving conditions and whether they could continue with the experiment. The

second task and third task were carried out continuously without a break. The

subjects were informed about the overall objective of the experiment but were not

told when the surprise event would occur. The task sequence was carried out in an

orderly fashion by the operator. To prevent any negative influence on the driving

state, the subjects were asked to take 5 minutes resting before starting the test. The

subjects were asked to drive in their normal driving style.

Normal driving

The normal driving state was considered to be all the data collected throughout the

normal driving situations, including the second task (driving along the street) and

part of the third task (before the surprise event).

Surprise state

The surprise state was considered to be the data recorded in the latter part of the

third task, when the subject reacted to the unexpected movement. Because the

subjects expected to move backward but instead moved forward toward the store in

front of where they were parked. Some drivers could realize the situation, release

the gas pedal and press the brake pedal in time; other could not realize or could

not react fast enough and hit to the wall in front of the vehicle. This setup was

considered a surprising event.
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Figure 5.8: Driving scenario and tasks
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Besides the human factors and driving performance, the effectiveness of the alert

source in the last task (reverse gear) was taken into consideration to improve the

driver’s reaction. To keep the surprise feeling intact, each subject only experimented

once with one of the six alert patterns. The subjects were not informed about the

alert pattern before it happened and were asked about their awareness of the alert

after the test. Other details of the experimental setup was presented in Tsujita et al.

, 2019.

Figure 5.9: Data collection and Model training procedure
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5.3 Input data

Physiological data

The physiological features using in this study is the cardiac information, specifically

heart rate and HRV indices. The raw ECG data went through the same prepro-

cessing procedure in Chapter 3: a noise filter and extract RR interval. Then, the

processed data were divided into windows (10 seconds, 30 seconds, 60 seconds). The

window sizes were all under 5 minutes, they were considered to be an ultra-short

analysis of HRV. According Pecchia et al. , 2018, the features which are used for

investigation for an extremely short period of RR series are the mean RR, RMSSD,

LF, HF, and SD1 & SD2. The meaning of each feature depends on the nature of

the statistical index. To ensure the integrity of the study only mean RR, RMSSD,

SD1, and SD2 were used as input data for the investigation.

5.3.1 Driving information

As for the driving-based information, the driving scenario focused on the longitudinal

dynamics of the vehicle, the driver’s reaction to the driving scenes, and the safety

evaluation of the outcome. In this experiment, only the reaction time during the

transition between the acceleration pedal and the brake pedal was considered. The

reaction time could only be calculated in a specific period due to the discrete nature

of the pedal operation. While driving, some drivers used the brake pedal more

often, and others prefer releasing the gas pedal to slow down and only fully stop

in case of stopping. Thus, for a short time (in 10 and 30-second windows) some of

the extracted data had no reaction operation and the extracted data was null. As

a result, the representative RT feature was extracted and used only in a 60-second

window analysis.
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5.4 Graphical-based detection model

The graphical-based model combines two layers: a layer of GGM and a layer of

Logistic Regression Classifier were put into a sequence. Following the assumption of

the GGM, all inputs (features) needed to be standardized. In the learning phase, the

driving data were used to estimate Driving GGM, and the surprise data were used to

estimate Surprise GGM. The labeled inputs were grouped, and we used QuickGraph-

icLasso method from “skggm: Gaussian graphical models using the scikit-learn API”

(Laska and Narayan , 2017) to estimate the respective GGM models. To reduce the

uncertainty of estimate the undirected graph, model selection method was used,

specifically in this study was the cross-validation. The initialization also affected

the outcome of the model, so that different random seeds were tested and chose the

best result.

The objective of the model was to combine HRV indexes, reaction time, and alert

patterns to classify the driver’s state . By using the structures acquired from GGMs,

the relationship between these inputs with structural changes in the models can

explain the influences of one node (feature) to another. As explained in Driving

information section, only 60-second windows had the reaction time data, and thus

these data were used in the model. The model inputs include: meanRR, RMSSD,

SD1, SD2, alert type, and reaction time. Because the number of input data was

small, all data sample was used for the learning phase.
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Figure 5.10: Proposed model

The trial data is presented in the same form with the input data

Z = {Z1, . . . , Zp} (5.1)

The sampled data contained p features x m, where m is the length of time. Assume

that the trial data belongs to one of the GGM models discussed above, the score

function is used to test which model fit the trial data. The score function is the log-

likelihood value of the covariance of the Gaussian trial data with the covariance of

the estimate graph model. This value is used to represent how “likely” the test data

belong to the graph model. The training trial data are extracted by a segmentation

data set, as shown in Figure 5.9. Since the data set was small, synthetic test trial

data were created to test the performance of the detection method. The test trial

data were randomly selected from the data set by the group labels “Drive data” and

“Surprise data”. The test trial data were then labeled according to their group.

Then the score values obtained by the precomputed GGMs were used as the input

of the Logistic Regression Classifier. The Logistic Regression Classifier was trained

by the train trial data. The detailed structure of the graphical detection method is

shown in Figure 5.10.
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5.5 Results analysis

5.5.1 Basic statistical result

Table 5.3: Mean and SD of the heart activites and reaction time

Normal state Surprise state Unit

Variable Mean SD Mean SD

RR interval 911.3 64.5 934.7 55.2 ms

Heart-rate 66.3 4.5 64.6 3.8 bpm

Reaction time 1792.4 286.3 463.8 129 ms

Tabel 5.3 shows that the mean of HR in the surprise was lower than the mean of

HR in normal driving. This change is somewhat unexpected as typically one would

assume that the heart rate should increase as a response to a surprise event. In

most of the case the cardiac activities increase right after the stressful event then

gradually decrease back to normal. Nomikos et al. , 1968 mentioned that cardiac

acceleration or deceleration was due to individual differences. Gantiva et al. , 2019

reported about the psychological responses to facial expression in which the image

sudden appeared, the HR decrease and startle reflexes increase indicated that the

rising of attention response and preparation for ”fight-or-flight” response of the SNS

system.

5.5.2 Cannonical machine learning methods

In order to evaluate the performance of the proposed model, three canonical clas-

sification models were trialed in this study due to their popularity in small data
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sets: support vector machine (SVM), random forest (RF), and multilayer percep-

tron (MLP).

As mentioned in Section 5.3, the input data were segmented into time windows of 10

seconds, 30 seconds, and 60 seconds to create three data sets. Due to the limit of the

sample size, the data set extracted with the 60-second time window was excluded

in this section and only used with the proposed model.

The data sets were then divided into training sets and test sets to evaluate the

performance of the conventional machine learning models. The division ratio was

80:20. The preprocessing, learning, prediction, and cross-validation were carried out

using the APIs of scikit-learn (Pedregosa et al. , 2011) in Python.

Due to the limitation of the collected data, the number of surprise state data was

significantly lower than the number of drive data. The imbalance of the data will

have affected the performance of the model. For that reason, the synthetic minority

over-sampling technique (SMOTE) (Chawla et al. , 2011) was used to balance the

number of two classes.

Overall, the accuracy of RF was the best among the canonical methods (0.98-0.99

in the training set, 0.71 in the test set). The accuracy of SVM and MLP were a

little better than those of a random guess (0.64-0.65 in the training set, 0.48-0.50

in the test set). Other indexes reflecting the effectiveness of the models (Precision,

Recall, and F1-score) are shown in Table 2.



5.5. RESULTS ANALYSIS 69

Table 5.4: Performance of SVM, RF, MLP, and the graphical model

Model Window

size (sec)

Num. of

Samples

Acc. on

train set

Acc. on

test set

Precision Recall F1-

score

SVM 10 278 0.65 0.48 0.58 0.54 0.56

30 95 0.65 0.50 0.50 0.43 0.46

RF 10 278 0.99 0.71 0.85 0.63 0.72

30 95 0.98 0.71 0.88 0.50 0.64

MLP 10 278 0.64 0.48 0.58 0.52 0.55

30 95 0.64 0.50 0.50 0.36 0.42

GGM-L 10 278 0.73 0.57 0.77 0.21 0.32

30 95 0.67 0.59 1.00 0.18 0.31

601 48 0.80 0.66 0.77 0.47 0.58

602 48 0.94 0.94 0.94 0.97 0.96

1 without RT 2 with RT

5.5.3 Graphical-based methods

The performance of the proposed graphical model was shown to be favorable in the

case of the 60-second data set with RT information. In the case of the 60-second

data set without RT, it was also better than that of SVM and MLP.
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5.6 Discussion

5.6.1 Machine learning methods

Among the trialed machine learning methods, RF had the highest accuracy (in

both the training set and test set). The gap between the training and test accuracy

might be the effect of overfitting. The cross-validation and model selection method

could reduce this phenomenon.The high precision shows that the model used in this

study is good at detecting the surprise state. However, the low recall reflects that

the model is bad at detecting the driving state and tends to mistake the driving

state for the surprise state. This might be the effect of the synthetic data creation

by SMOTE to balance the data. In this study, those machine learning methods

were also tested without SMOTE. Even though the accuracies were better but the

performance indexes were worst.

The limited sample size has significant effects on the performance of the machine

learning methods, especially MLP did not converge during the training. It can be

seen that the performance indexes of SVM and MLP decrease correlated with the

decrease of sample size.

The surprise state in driving involves not only the cognitive function but also the

sensorimotor function (bodily movement, steering, and leg movement). Using only

physiological measures will not be as effective as the addition of other information

on driver behavior and the driving context in detecting driver states under varying

external conditions. Similar results have been found by other studies (Solovey et al.

, 2014; McDonald et al. , 2020).

5.6.2 Graphical-based methods

Despite the fact of limited sample data, the proposed model yield the best

performance in detecting driver state compared to the other machine learning
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methods. In reality, the number of usable data points for human behavior in driving

is limited. The performance of the model with a small data set is an advantage.

Further more overcome the limitation of sample data will be considered as future

work.

Another important factor when using graphical models is inference. The two

graphical models (GGM for driving state and GGM for surprise state) included in

the learning phase have the same features (nodes). Because the driver states for

each model are different, two models were acquired with different structures. The

changes in structure will lead to a better understanding of the interaction between

the models’ features.

Figure 5.11: Graphical structures for (Left) driving state and (Right) surprise state

Figure 5.11 shows the results of the two models estimated from the data. The

changes in the structure of those two models can be seen clearly.

Drive state

In case of the drive state, reaction time has almost no relationship with the other

features. The partial correlation with P0 (no alert) is very small, which is under-
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standable because there is no alert source to affect other human factors.

Surprise state

The changes in the model structure of the surprise state are noticeable. The partial

correlation between the pair “RT - mean RR” and “RT – P3” is positive. The partial

correlation of the pair “RT – P6” is negative. There are little changes in the partial

correlation between the nodes SD1, SD2, and RMSSD and the other nodes. These

results can be interpreted as meaning that the reaction time and the inner system

have less influence in normal driving, though in a surprising situation they interact

with each other closely.

Effectiveness of alert type

The interesting point here is that the alert type also affects the reaction time but in

an opposite way. P3 and P6 use a similar alert source—auditory (voice in P3 and

alarm in P6) and visual (display in both patterns). But P3 tends to have a positive

influence on RT while P6 tends to have a negative effect. This phenomena can be

interpreted as the alarm (P6) reducing the RT. Conversely, the voice (P3) tends to

prolong the RT. It can be inferred that the human sensing system and brain respond

in different ways to the alert sources. As a result, the human sound appears to be

effective in the case of giving instructions, such as in take-overs (Forster et al. , 2017).

On the other hand, the response to the alarm takes less time; the human brain can

automatically acknowledge the serious problem and take action in a shorter period

(Kozak et al. , 2006; Campbell et al. , 2007). The questionnaire result also showed

that the alarm sound was more effective than the other warning sources.
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5.7 Conclusion

This chapter has investigated different detection methods for surprise state in driv-

ing. The graphical-based detection model shows a good potential in both the predic-

tion performance and exploratory inference ability. Although there is a limitation

in the data samples, the result show that it was consistent with those of previous

studies. The favorable outcome also shows that this approach can be applied not

only to this specific case but also to other human behavior that need to have deeper

knowledge of the internal interaction.



Chapter 6

Drowsiness detection in driving

6.1 Background

Drowsiness (or Sleepiness or Somnolence) is a state of strong desire for sleep. Sleepi-

ness associated with the low level of arousal which is a serious cause of traffic ac-

cidents. The naturalistic driving study found that drowsy driving contributed to

22%–24% of the crashes and near-crashes observed (Klauer et al. , 2006). The other

crash survey data showed that this problem is not a specific problem of the United

States. The survey conducted by the European Sleep Research Society showed

that the median prevalence of sleep-related accidents was 7.0% among 19 European

countries(Gonçalves et al. , 2015). The rate of falling asleep on the wheel in Tokyo

(Japan) is higher to 10.4% (Komada et al. , 2010).

The stages of sleep can be categorized as awake, non-rapid eye movement sleep

(NREM), and rapid eye movement sleep (REM). The dangers of drowsiness come

from the second stage, NREM. NREM can be subdivided into three following stages:

• Stage I: the transition from awake to asleep (drowsy)

• Stage II: light sleep

• Stage III: deep sleep
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6.2 Experiment setup

6.2.1 Participants

There are 11 participants (7 males, 4 females, aged from 30 to 65) in this study.

All have valid driving licenses. The subjects were informed the instruction of how

to maintain awake state and sleepiness state before they participated in the study.

The study was approved by Nagoya University’s Institute of Innovation for Future

Society Ethical Review Board.

6.2.2 Apparatus

Driving simulator

Due to the high risk of driving in the drowsy state, the experiments were conducted

by using a simulator putting inside a dark and quiet room in the NIC Building,

Institute of Innovation for Future Society, Nagoya University. The driving scene was

created by the UC-win/Road software (FORUM8 Co. Ltd.). The logging function

of UC-win/Road recorded the driver’s operation and the vehicle’s dynamic values.

System configuration is shown in Figure 6.1.

Driver biosignal recorder

Physiological data were recorded by the same portable recorder used in Chapter 3

and Chapter 5. ECG recordings used a lead II configuration at a sample rate of

1000 Hz. Isopropyl alcohol cleaners were used to clean the skin and standard pre-

gelled disposable electrodes (Ag/AgCl paste, Vitrode Bs-150) were applied. The

biosignal was recorded continuously without interruption, and the beginning and

the end events were marked by a button event operated by the system operator.
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6.2.3 Driving tasks

There were two types of driving in this experiment: awake driving and sleepiness

driving. Subjects were asked to drive the same 8-shape highway road in total around

12 minutes (Awake driving) and 24 minutes (Sleepiness driving) one time. The

vehicle will try to follow a front vehicle with constant speed (80 km/h) without any

restriction.

• Awake driving: the participants were asked to maintain their normal sleep

routine, recommend to sleep at least 6 hours per day;

• Sleepiness driving: the participants were asked to restrict sleeping time in

two consecutive days (sleep time maintains around 3-4 hours per day) and

cannot drink any coffee on the experiment day.

On the experiment day, the participants were asked to answers questionnaires

include a sleepiness scale to confirm their sleepiness states.

Figure 6.1: Experimental setup
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Driver camera

A camera device for face detection was also used to record the driver reaction in the

dark room. The camera brand is OMRON camera. This camera has the ability to

record video in low light environment and detect the face at the speed of 30 frames

per second. The videos acquired from the camera will be labeled by 2 operators

individually to confirm the driver state based on NEDO drowsiness level

Table 6.1: NEDO drowsiness level

Level Definition Symptoms

0 Awake Fully awake

1 Some what Show some symptoms of tired

2 Neither sleepy nor awake Symptoms of tired, sleepy more often

3 Sleepy Yawn, sometimes close eye

4 Very sleepy Take effort to state awake

5 Almost fall asleep Sometimes fall asleep

Figure 6.2: Video marker by operator

1 - Status; 2 - Drowsiness level; 3 - Drowsiness making
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6.3 Detection methods

Sleepiness evaluation methods can be divided by what is measured (sleep propen-

sity or somnolence) and the nature of the method itself: objective measurement or

subjective measurement method.

Sleep propensity

In sleep propensity methods, the test is used to measure either the amount of time

taken to fall asleep or the ability to remain awake when instructed. Two famous tests

for sleep propensity are the multiple sleep latency test (MSLT) and the maintenance

of wakefulness test (MWT). Both tests require using sleep polygraph to measure

the amount of time taken for falling asleep (sleep latency). The implement of both

MSLT and MWT requires the facility and equipment for sleep polygraph and a

skilled tester. So that it is difficult to use them in-vehicle experiment.

Somnolence detection

Detecting somnolence methods can be either objective or subjective. The subjective

methods include the Stanford sleepiness scale (SSS), the Karolinska Sleepiness Scale

(KSS), and the visual analog scale (VAS). The methods are highly sensitive to the

variations of sleepiness within an individual.

The objective methods also use physiological indices and driving-based information

to assess the sleepiness state. Some physiological indices were used in the literature

are: EEG, HRV, and the percentage closure of eyes averaged across a time (PERC-

LOS). The driving information which are considered correlated with the sleepiness

are the lane deviation and lateral acceleration.
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6.4 Preliminary results

The HR data was extracted from the raw ECG data. Then the mean values of HR

in 5-second segments were calculated. The data was then aligned with the marker

data collected from the video file. Figure 6.3 and 6.4 showed the results of the mean

HR and drowsiness level of two participants in case of awake and sleepiness. The

preliminary results showed that the mean HR decrease at the start of the somnolence

and increase at the end of the period (Figure 6.5). This finding consistent with the

report that the HR decrease in the case of fatigue and low arousal level, which is

also the drowsiness state.

Figure 6.3: Subjects’ heart rate in awake driving
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Figure 6.4: Subjects’ heart rate in sleepiness driving

Figure 6.5: Heart rate decrease in high drowsiness level
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6.5 Conclusion

In this chapter, the study about drowsiness has been conducted. This is an on-going

study and not finished yet. The preliminary results showed that drowsiness could

be detected by using the data acquired in the experiment. It can be seen that the

graphical method used in Chapter 5 in case the driver states change significantly.

But in the case of somnolence detection, the state changes from awake to drowsiness

more gradually. So that more considerations need to be taken in using the physio-

logical indices and driving information to detect drowsiness by using the graphical

model.



Chapter 7

Driver assistance system

7.1 Background

Driving is always considered as a complex task which requires both physical and

cognitive activities. Driving for a too long period or under cognitive stressors can

increase the chance of accidents.The physical disorder or diseases are also considered

as a factor which also increases the risk of accidents (Schultheis et al. , 2011).

Researchers and automakers have cooperated to provide the vehicle with options to

reduce both the physical and cognitive workload of the driver. But the number of

intrinsic sudden death in traffic accidents is still high over the years (Table 7.1).

Table 7.1: Report of intrinsic sudden death of driver

Author Location Period Sudden death reported

Number Percentage

West et al. , 1968 USA(California) 1963-1965 155/1026 15%

Osawa et al. , 1998 Japan(Kanagawa) 1992-1997 15/188 8%

Oliva et al. , 2011 Canada 2002-2006 123/1260 9.7%

Tervo et al. , 2013 Finland 2008-2009 55/488 11.3%
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Among the natural cause of sudden death, cardiovascular disease (CVD) and

cerebrovascular disease are statistically found the most common causes while driv-

ing(Schmidt et al. , 1990; Motozawa et al. , 2005). The effects of cardiovascular

diseases are not immediate but gradual, so that the driver can somehow stop the

vehicle to the side of the road safely. The common symptoms of heart disease are

chest pain or discomfort (angina), shortness of breath, pain or numbness in legs or

arms or shoulder, dizziness or fatigue, or abnormal drowsiness. Those symptoms can

impair the awareness, recognition, eyesight, physical strength, and other functions

that will result the distracted driving. Another more serious symptom that comes

with CVD is syncope, the sudden and transient loss of consciousness, will lead to

the lost control of the vehicle. The relationship between driving accidents and heart

disease has been studied for many years (West et al. , 1968; Baker and Spitz , 1970;

Tervo et al. , 2013). In Europe, a meta-analysis has reported that CVD patients

have 23% higher chance of involving accident than drivers without the disease (Gma

et al. , 2003). In Japan, Motozawa et al. , 2005 have reported that the main cause of

natural death after the wheel is ischemic heart disease based on the autopsies results

of the Transportation Bureau of National Police Agency (Japan). Even though, the

Japanese cardiovascular disease mortality is relatively low, but there is an increasing

trend of heart disease incidence in urban men (Iso , 2011).

To prevent the effect of health disease on driving capability, the authorities have

issued laws and regulations to decide whether a person with heart disease is safe

to drive or not (Epstein et al. , 1996; Petch , 1998; Theodoros A. Zografos , 2010).

Drivers who want to renew driving license need to pass a screening questionnaire

and test for both physical and cognitive functions. Although these methods can

prevent several deaths at the wheel caused by CVD, there are still drivers who are

healthy or seem healthy but have a potential to get cardiac events or emergencies

when driving.
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7.2 System Objectives

The objective of this study is to develop a concept system that can prevent traffic

accidents caused by physical disorders specifically cardiac emergencies. The system

can detect driver’s abnormality by collecting the biosignals and driver’s ergonomic

features: ECG data, PPG data, blood pressure, by using a steering-type sensor, and

the driver’s posture by using a driver agent and camera. In case of the driver lost

his or her capability to drive, the system will take over the maneuver of the vehicle,

and automatically drive to a safe spot. Figure 7.1 shows the 3 phase of the system

operation:

• Phase 1: Normal driving

• Phase 2: Cardiac emergency detection

• Phase 3: Automated stop & E-call

Figure 7.1: System objectives
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7.3 System configuration

7.3.1 Bio-signal sensing and emergency event detection

To detect the CVD event, the biosignals play an essential part. In the medical field,

the data is often collected from the electrodes attached to the subject’s chest. In

this concept system, the ECG electrodes and PPG sensor are attached on the outer

frame of the steering wheel. By gripping the steering wheel with both hands and

place the right thumb on the PPG sensor, ECG data is recorded and blood pressure

(BP) is estimated from the pulse transmit time by both ECG and PPG data. Figure

7.2 shows the position of the sensors on the wheel.

The abnormality in the rhythm of ECG data is called arrhythmia. During the

arrhythmia, the heart can beat faster (tachycardia) or slower (bradycardia) or has

an irregular rhythm (abnormality of QRS or irregular of RR or blood pressure).

These abnormal states of the heart will make the driver feel uncomfortable and

lose concentration or capability to operate the vehicle properly. In serious cases,

arrhythmia can lead to life-threatening complications such as stroke, heart failure,

or sudden cardiac arrest. The system will detect the abnormal ECG, PPG and BP

and trigger the emergency signal to the next unit.

Figure 7.2: ECG & PPG signals collected by the steer-sensor
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7.3.2 Driver’s ergonomic factor

When the system receives the abnormal detect signal in the driver’s state sent from

the biosensing unit, the driver-monitor camera will detect the driver’s posture (Fig-

ure 7.3). Some kind of arrhythmias can cause pain or numbness in the chest area or

on the shoulder, others make the driver feel dizziness, fatigue, or even loss conscious-

ness. These phenomenons make the driver uncomfortable and eventually lose the

normal driving posture. The abnormal posture will be captured by the monitoring

camera.

Figure 7.3: Posture collapsing detection

7.3.3 Driver agent assistance

A driver agent is equipped inside the vehicle in the shape of a robot putting on

the dashboard in front of the driver. The driver agent has the functions of giving

instructions and alerts while driving. If detect the abnormal posture, the driver

agent will alert the driver. The alerting is designed to avoid the misdetection of the

arrhythmia and posture collapsing. In case of false detection, the driver can override

the system by confirming that he or she is alright. In case of true detection, after a

certain period, the driver cannot react to the agent, the autonomous drive mode is

activated , and then call to the emergency center.
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7.3.4 Automated driving system

Many subsystems in the automated driving system enable the vehicle to ”sense”

the surrounding environment: a LiDAR sensor (HDL-64E, Velodyne LiDAR, Inc.),

360 degrees camera (Ladybug 5, Point Grey Research, Inc.), Grasshoper 3 cameras

and Javad RTK sensors receive GPS (Global Positioning System) information from

satellites as shown in the Figure 7.4. The sensors fusion in the system allows the

precision of the estimated position within 0.1 meters. This configuration enables

the vehicle to operate in both urban and suburban areas. The system can also auto-

matically stop in front of or avoid humans and other obstacles on the road by itself.

When the life-threatening state is confirmed by both prior units: the biosensing

and the driver agent (including the posture camera), the system will activate the

automated driving mode. In autonomous driving, the system recognizes the sur-

rounding environment of the vehicle by the sensors and the premade map. In this

case, the system also can find a safety spot to on the side of the road to park the

vehicle. Figure 7.5 shows the decision-making procedure of the shifting from manual

to automated mode.

Figure 7.4: Automated driving system
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Figure 7.5: Decision-making procedure
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7.4 Demonstration

The demonstration of the system concept has been presented at TOC Ariake, Tokyo,

Japan in August 2015. A well-prepared scenario was set to demo the working pro-

totype: Two test drivers seat inside the vehicle, one demo driver will seat on the

passenger seat to perform the simulated abnormal state, the other assistance driver

will seat on the driver seat to take countermeasures in case of system errors. The

steer-sensor and the driver-monitoring camera were attached on the passenger seat

side as shown on the Figure 7.6.

Figure 7.6: Interior layout of the vehicle

The demo driver drove in a healthy state and the abnormal state was injected

into the system to emulate the emergency. Normal ECG data was measured directly

by the sensor on the steering wheel. The emergency ECG (Ventricular fibrillation

- VF) was obtained from PhysioBank MIMIC database (Moody and Mark , 1996)

and used for simulation of the life-threatening situation.

The threshold crossing sample count (TCSC) (Arafat et al. , 2011) was implemented

to detect the VF signal. Monitoring cameras were settled inside the vehicle for

checking and showing of what happens during the demonstration: two cameras for

driver’s face and posture detection, one for the driver agent animation and one

for the demo driver’s biosignals (Figure 7.7). The scenario of the demonstration

is illustrated in Figure 7.8. The demonstration started with normal driving and
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the system worked in the normal state. The arrhythmia detection and cameras

worked from the beginning and continuously monitored the biosignals for abnormal

symptoms. Right after the simulated VF was injected, the arrhythmia was detected

by the emergency detection unit and the posture collapsing of the driver was detected

by the face camera and driver agent. The agent gave an alert to the driver to confirm

the situation. Then the system automatically turned on the automated driving when

it confirms the driver’s critical state. In the driving scene, the automated driving

system successfully recognized a pedestrian crossing the road and stopped in front of

him, waiting until he finished crossing. As soon as the system confirmed that there

were no obstacles ahead; the automated driving system drove the vehicle to the safe

parking area (Evacuation space on side of the road) and stopped the vehicle.

Figure 7.7: Captured cameras at the demonstration

Figure 7.8: The scenario of the demonstration
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7.5 Results

The demonstration vehicle started at the speed of 20 km/h, it took some seconds

for the vehicle to reach the designated velocity and all the system started with the

normal state. The system successfully detected the simulated abnormal state and

automatically maneuvered the vehicle right after confirming the unfitness of the

driver to the safety spot on the side of the road.

The European automakers have developed similar systems in recent years (Volkswa-

gen , 2016). The system prevents the frontal crash and lane departures by using

adaptive cruise control and a lane-keep assist when a driver lost his capacity to drive

by a physical disorder. Another related system demonstration has been presented

at the 22nd ITS world congress, France, in October 2015 (AISIN SEIKI Co.Ltd. ,

2015). The system used a camera to detect the driver’s incapacity and automatically

stopped the vehicle on the shoulder of a road at the demonstration. Automakers also

introduced systems which enable the elder driver stay safe with the similar functions

(BMW). Although the related systems are well designed for the countermeasures for

incapacitated drivers, the future studies require further detection methodologies of

the driver’s abnormality at earlier stage. A few seconds of early detection can be

critical to deciding the dead or alive of the driver. The prototype of the system us-

ing bio-signal detection was successfully demonstrated its function at the prepared

scenario.

Limitation

In the demonstration, the concept system also revealed its limitations and problems.

• Sensor noise: Conventional ECG sensor in a separated test has showed that

the driving condition actively adds noise to the signal. Motion artifacts due to

bodily movement were detected as severe arrhythmias, resulting in misdetec-
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tions. The steer-sensor sometimes generates more noises than the conventional

sensors and the waveform of the PQRST complex easily gets distorted.

• Getting data: In practical driving, it is hard to find the driver gripping the

driving wheel by both hands all the time. Sometimes the driver will do the

other task and just drive with one hand, or just simple feeling comfortable with

driving one hand. In such cases, it requires alternative or additional sensors

such as capacitive ECG sensor or wearable PPG sensor to compensate for the

signal distortions or the signal losses.

• Decision making: It can be seen from Figure 7.8, the period of the un-

controlled is around 14 seconds with the initial velocity when the arrhythmia

started was 20 km/h (5.6 m/s). As a result the freely moving distance is

roughly 78 meters. Normally, if the driver feels any discomfort while driving

he or she will apply brake and slow down. Others might suffer more serious

symptoms and collapse. The unconscious driver can accidentally push his or

her foot on the acceleration pedal and suddenly make the vehicle travel faster

or leaning to the steering wheel the vehicle to one side and lead the vehicle

hitting to the side of the road. Those situations will eventually lead to serious

accidents. It is important to shorten the detection time of both arrhythmia

and posture collapse. In that case, algorithms or methods which can predict

arrhythmia or even prevent before it happens play an essential part in the

system.
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7.6 Overcome the limitations

The concept of the system at the time demonstrated still had limitations. The

limitation of the sensor was due to the limitation of the current technologies. With

the current development of sensor, portable ECG devices are available, that means

there is no need the steering-type sensor. Normal daily use is acceptable but more

attention when using in vehicle due to the potential noise comes from the body

movement while driving and the seatbelt. Another potential candidate is using PPG

sensor. PPG sensors are embedded in many wearable devices such as wrist-watch,

glasses, and earphone. Even though PPG sensors have not reached the medical

standard but their data keeps an important part in detect driver state and driver

health status.

As for the decision making, it can be seen that detect the emergency situations

is not enough. Using framework such as risk estimation or case study estimating

technique, detecting sudden events and gradual events while driving could improve

the safety of the driver assistance system by continuously monitoring the driver

health status. Figure 7.9 briefly illustrates the concept.

Figure 7.9: Strategy to improve the health monitoring system
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7.7 Conclusion

This chapter has demonstrated the concept of an automated safety stop system in

case of cardiac emergencies. At the time of proposal (2016), the prototype system

has shown possibilities benefits to not only patients but also normal healthy peo-

ple. Even though the system contains some limitations (sensors, decision making),

possible solutions were proposed. By using the graphical-based models proposed

in Chapter 5, detecting the sudden events (abrupt stressors) and gradual events

(gradual symptoms or sign symptoms) during driving can improve the effectiveness

of the driver assistance system.



Chapter 8

Conclusion

8.1 Conclusion

The main purpose of the study is to proposed a method to estimate the driver states

by using non-invasive sensors and in-vehicle data. The results of the study show that

this objective has been fulfilled.

Firstly, the driver state assessment methods have been investigated: physiological in-

dices, driving-based methods, and subjective questionnaires. By choosing the proper

indices for the specific experiment, the effects of driving tasks and non-driving tasks

to the physiological indices has been investigated in real-world test track. The re-

sults showed that driving tasks and secondary task have significant effects on the

cardiac system. The heart rate and some HRV indices are sensitive to the driving

situation. They can be used as indicators to detect driver state while driving.

Secondly, graphical models are introduced in this study with their advantages in

exploring the interaction between components of the system structure. By applying

the graphical model to the detection of the surprise state in case of misapplica-

tions, the detection outcome showed favorable results. In addition, the exploratory

characteristic allows inferring the relationship between reaction time and the alert

types. This result will help to improve the human-machine interface system in the

future. The graphical model approach showed the potential of using in case of grad-
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ual changes such as drowsiness detection.

Lastly, a concept of an automated safety safety stop system has been considered and

demonstrated. The demonstration result proved that the system concept is good

and can be used in the near future. Even though the driver assistance system still

has some limitations, the possible solutions were discussed and could be overcome

by using the proposed graphical model to detect driver states in the early stage of

driving.

The autonomous vehicle is considered as the future of the automotive. But to achieve

that Level 5 of autonomous, it will take a long time with the transition to the highly

advanced driver assistance system (Level 3 and 4). The graphical model and the

concept of driver health monitoring will contribute largely to keeping the driving

safe. Even reaching that Level 5, monitoring vehicle passenger health still play an

important role in the transportation industries.
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8.2 Remarks for Future work

The main limitations of this study were the small sample size in generating the

model. This limitation can increase the uncertainty of the estimated model. There-

fore, caution should be taken in when applying this method to the other situations.

The proposed model has been worked well in case the state change is abrupt. In

case of gradual change such as drowsiness detection, more attention needs to be

considered.

In the future, to confirm the robustness of the model, it is need to recruit a larger

sample data and apply multiple model selection/average techniques to acquire the

best model.
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