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1 Introduction

The index of a nonconstant meromorphic function g on a compact Riemann surface is

an invariant of g, which is defined as the number of negative eigenvalues of the differential

operator L := −∆−|dG|2, where ∆ is the Laplacian with respect to a conformal metric

ds2 = λdζdζ̄ on the Riemann surface, defined by ∆ := 4
λ

∂2

∂ζ∂ζ̄
using a local coordinate

ζ, G : M → S2 is the holomorphic map corresponding to the meromorphic function g

and |dG| is the norm of the differential dG of G. The multiplicity of the eigenvalue 0

of L is called the nullity of g and denoted by Nul(g). The operator L depends on how

to choose a conformal metric, but the index and the nullity do not depend on how to

choose a conformal metric.

The index of a meromorphic function is closely related to the index (Morse index)

of a complete minimal surface with finite total curvature. Huber [6] and Osserman [11]

proved if the total curvature of a complete oriented minimal surface in R3 is finite, this

minimal surface is identified with a Riemann surface given by excluding finite points from

a compact Riemann surface, and the Gauss map on this minimal surface is extended to a

meromorphic function on the compact Riemann surface. Fischer-Colbrie[3] and Gulliver-

Lawson [4], [5] proved that for a complete oriented minimal surface in R3, the index is

finite if and only if the total curvature is finite. This is a qualitative study of the index.

Fischer-Colbrie proved when the total curvature a complete oriented minimal surface

in R3 is finite, the index coincides with the index of the extended Gauss map of this

minimal surface. Tysk [12] proved the index of a complete oriented minimal surface in

R3 is bounded from above by some scalar multiple of the total curvature. This is the first

quantitative study of the relationship between the index and the total curvature. Study

of lower bound of index was done by Choe [1] and Nayatani [9]. Nayatani [10] studied

for the index and the nullity of the operator Lg associated to any meromorphic function

g on a compact Riemann surface M , how they change under a certain deformation gt

of g (t is a positive real number). He considered the derivative ℘′ of the Weierstrass

℘-function corresponding to the square lattice Z⊕ iZ as a meromorphic function g, and

computed the index of gt when t is sufficiently small and the nullity of gt for all t. In

particular, he showed that there are two values t1, t2(t1 < t2) of t such that the nullity is

4. Furthermore, he investigated the change of index when t becomes large. He showed

that the indices of t1g, t2g are 5, and since t2g is the Gauss map of the Costa surface,

he could conclude that the index of the Costa surface is 5.

In this paper, we study the index Ind(g) and the nullity Nul(g) of certain nonconstant

meromorphic functions g from a compact Riemann surface M to Ĉ = C∪{∞}. In order

to compute Nul(g), we recall the real vector space H(g)(see (2.5)) which was introduced

by Ejiri-Kotani [2] and Montiel-Ros [7]. By the formula Nul(g) = 3+dimR H(g), we can
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compute Nul(g). If the genus of the Riemann surfaceM is 1, that is, M is homeomorphic

to the torus, H(g) can be defined as follows.

H(g) =
{
fω | f : M → Ĉ is a meromorphic function,

D(f) + B̃(g) ⩾ 0,Respi (fω) = 0, i = 1, · · · , µ,

Re

∫
α

(1− g2, i(1 + g2), 2g)(fω) = 0,∀α closed curve
}
,

where ω is a fixed nonzero holomorphic one-form on M , p1, · · · , pµ are the ramification

points of g with ramification indices e1, · · · , eµ, and D(f) is the divisor of f , and when

P (g) is the polar divisor of g, B̃(g) is the divisor defined by B̃(g) =
∑µ

i=1 eipi − 2P (g).

Since the definition of H(g) is complicated as it includes the period condition, we intro-

duce the complex vector space

Ĥ(g) =
{
fω | f : M → Ĉ is a meromorphic function,

D(f) + B̃(g) ⩾ 0,Respi (fω) = 0, i = 1, · · · , µ
}

that is easier to handle, excluding the period condition. H(g) is a real subspace of Ĥ(g).

For t ∈ C \ {0}, H(tg) 6= H(g) in general, but Ĥ(tg) = Ĥ(g).

As already mentioned, Nayatani[10] computed the index of Costa surface. The com-

pact Riemann surface of the Costa surface is C divided by the square lattice Z ⊕ iZ,
which is homeomorphic to a torus, and the Gauss map of Costa surface is a scalar

multiple of the derivative ℘′ of the Weierstrass ℘-function. C/Z⊕ iZ is isomorphic to

M1 =
{
(z, w) ∈ Ĉ2 | w2 = z(z2 − 1)

}
as a Riemann surface, and ℘′ coincides with the meromorphic function w except for a

scalar multiple. As a generalization of Nayatani’s setting, we consider a one-paramenter

family

Ma =

{
(z, w) ∈ Ĉ2 | w2 = z(z − a)

(
z +

1

a

)}
, a ⩾ 1

of Riemann surfaces homeomorphic to a torus and the meromorphic function w, and

we tackled the problem of computing the index and nullity of tw, t > 0. We note

that Ma is isomorphic, as a Riemann surface, to C divided by the rectangular lattice

Z ⊕ icZ, c > 0. As a result, we are able to determine Ind(tw) for all a in the range

1 ⩽ a ⩽ a0 (where a0 can be numerically evaluated) and all t > 0. This is the main

theorem of this dissertation.

First we determine Ĥ(w).

4



Lemma 1.1. (Lemma 4.1) Ĥ(w) is a three dimensional complex vector space spanned

by

η1 =
z − 1

2
(A1 + A2)

(z − A1)2(z − A2)2
dz

w
,

η2 =
z2 − A1A2

(z − A1)2(z − A2)2
dz

w
,

η3 =
z − 1

2
(A1 + A2)

(z − A1)2(z − A2)2
dz.

Then we determine t > 0 so that the dimension of H(tw) is 1 or more, and find

exactly two values t = t1(a), t2(a) (t1(a) < t2(a)). We then determine Nul(tw).

Lemma 1.2. (Lemma 4.4) For each a in the range 1 ⩽ a ⩽ a0 (where a0 can be

numerically evaluated) there are positive real numbers t1(a), t2(a) (t1(a) < t2(a)) such

that

dimR H(tw) =

1, t = t1(a), t2(a),

0, t > 0, t 6= t1(a), t2(a).

Therefore,

Nul(tw) =

4, t = t1(a), t2(a),

3, t 6= t1(a), t2(a).

By using the fact that Nul(tw) also changes if Ind(tw) changes when a, t move, we

determine Ind(tw) for all a in the range 1 ⩽ a ⩽ a0 (where a0 can be numerically

evaluated) and all t > 0.

Theorem 1.3. (Theorem 5.2) If t1(a) and t2(a) are as described in Lemma 1.2, then

Ind(tw) =

5, 0 < t ⩽ t1(a), t2(a) ⩽ t,

6, t1(a) < t < t2(a)

for any a in the range 1 ⩽ a ⩽ a0 ( where a0 can be numerically evaluated ).
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Organization of this thesis

This paper is organized as follows. In Section 2, first we prepare basic concepts

and materials on the Riemann surface and the meromorphic function and differential.

Then we define the index and nullity of a meromorphic function on a compact Riemann

surface. We also recall the vector spaces which are used in the computation of nullity

and were introduced by Ejiri-Kotani [2] and Montiel-Ros [7]. In Section 3 we consider a

certain family of meromorphic functions ga of degree three defined on Riemann surfaces

Ma, a ≥ 1, homeomorphic to the torus, and describe the above vector spaces in these

special cases. In Section 4 we compute the nullity of tga for all t > 0 and a in the range

1 ⩽ a ⩽ a0, where a0 is a constant which can be numerically evaluated. In Section 5 we

compute the index of tga for all t and a in the same range.
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2 Preliminaries

In this section, we prepare basic concepts and materials which will be used in this

thesis.

2.1 Preliminaries on a Riemann surface and meromorphic func-

tion

As this thesis is concerned with a meromorphic function on a Riemann surface, we

recall their definitions. We begin with the Riemann surface.

Definition 2.1. Let M be a connected Hausdorff space. When there is a set A =

{(U1, ϕ1), (U2, ϕ2), · · · } of the pairs (Ui, ϕi) of open subsets Ui inM and homeomorphisms

ϕi from Ui to an open subsets in C, and A satisfies the following conditions, (M,A) is

called Riemann surface.

(i) U1, U2, · · · cover M .

(ii) For any i, j = 1, 2, · · · , when Ui ∩ Uj 6= ∅, the coordinate change

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj)

is holomorphic.

Next we define the meromorphic function and related functions/differentials.

Definition 2.2. A complex-valued function f : M → C is called holomorphic if f ◦ ϕ−1
i

is a holomorphic function on ϕi(Ui) for all i.

Definition 2.3. If a differential 1-form ω can be locally written as ω = h(ζ)dζ with a lo-

cal holomorphic coordinate ζ and a holomorphic function h(ζ), ω is called a holomorphic

differential on M .

Definition 2.4. A function f : M → Ĉ = C∪{∞} is called meromorphic if there exists

an open set M ′ ⊂ M which satisfies the following conditions,

(i) M ∖M ′ is empty or discrete in M .

(ii) f |M ′ is holomorphic.

(iii) For any p ∈ M ∖M ′, limz→p |f(z)| = ∞.
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Definition 2.5. When ω satisfies the following conditions, ω is called a meromorphic

differential on M : There is an open set M ′ ⊂ M such that M ∖M ′ is discrete and

(i) ω|M ′ is a holomorphic differential on M ′.

(ii) For any p ∈ M ∖ M ′, there is a local holomorphic coordinate ζ with ζ(p) = 0

such that ω = m(ζ)dζ near p, where m(ζ) is a meromorphic function and has ζ = 0 as

a pole.

Finally, we collect basic notions related to the meromorphic function and differential

which will be used later.

Definition 2.6. Let ω be a meromorphic differential on M , let p ∈ M , and we express

ω as ω = m(ζ)dζ for a local holomorphic coordinate ζ with ζ(p) = 0. The residue of

the meromorphic function m(ζ) at ζ = 0 is called the residue of ω at p.

In the following two definitions, let g be a nonconstant meromorphic function from

a compact Riemann surface M to Ĉ = C ∪ {∞}.

Definition 2.7. Let p ∈ M . If there exists a local holomorphic coordinate ζ with

ζ(p) = 0 such that

g(ζ) =

g(0) + ζe, if p is not a pole,

1
ζe
, if p is a pole,

then e(⩾ 1) is called the ramification index of g at p. If e ≥ 2, then p is called a

ramification point of g.

Definition 2.8. Let p1, · · · , pµ be the ramification points of g and e1, · · · , eµ be their

ramification indices. Then

B(g) =

µ∑
i=1

(ei − 1)pi

is called the ramification divisor of g.

2.2 Preliminaries on the index and the nullity of a meromor-

phic function

In this subsection, we define the index and nullity of a meromorphic function on

a compact Riemann surface. We also recall the vector spaces which are used in the

computation of nullity.
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Let M be a Riemann surface, and g be a nonconstant meromorphic function from a

compact Riemann surface M to Ĉ. We fix a conformal metric ds2 = λdzdz, where λ is

a positive function on M , and consider the differential operator L = −∆− |dG|2. Here,
∆ := 1

λ

(
∂2

∂x2 +
∂2

∂y2

)
= 4

λ
∂2

∂z∂z
is the Laplace-Beltrami operator of ds2.

G =

(
2Re(g)

|g|2 + 1
,
2Im(g)

|g|2 + 1
,
|g|2 − 1

|g|2 + 1

)
: M → S2

is the holomorphic map corresponding to the meromorphic function g, where S2 is the

unit sphere of R3. |dG|2 is the square of the norm of dG with respect to the metric ds2,

that is, |dG|2 = 1
λ

(∣∣∂G
∂x

∣∣2 + ∣∣∣∂G∂y ∣∣∣2) = 4
λ

∣∣∂G
∂z

∣∣2 .
Lemma 2.9. For functions u and v on M ,∫

M

(∆u)vdA = −
∫
M

〈du, dv〉 dA, (2.1)∫
M

(∆u)vdA =

∫
M

u(∆v)dA, (2.2)∫
M

(Lu)vdA =

∫
M

u(Lv)dA (2.3)

hold. Here, dA = λdx ∧ dy is the area element with respect to ds2.

Proof.

λdz ∧ dz = λ(dx+ idy) ∧ (dx− idy)

= −iλdx ∧ dy + iλdy ∧ dx

= −2iλdx ∧ dy.

Therefore,

dA = λdx ∧ dy

=
1

−2i
λdz ∧ dz

=
i

2
λdz ∧ dz.

Thus, the left side of (2.1) becomes∫
M

(∆u)vdA =

∫
M

4

λ

∂2u

∂z∂z
v · i

2
λdz ∧ dz

=

∫
M

2i
∂2u

∂z∂z
vdz ∧ dz,
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and the right side (2.1) becomes

−
∫
M

〈du, dv〉dA

= −
〈∂u
∂z

dz +
∂u

∂z
dz,

∂v

∂z
dz +

∂v

∂z
dz
〉 i
2
λdz ∧ dz

= −i

(
∂u

∂z

∂v

∂z
+

∂u

∂z

∂v

∂z

)
dz ∧ dz.

On the other hand, let β = −v
(
−∂u

∂z
dz + ∂u

∂z
dz
)
. We obtain

dβ = d

(
−v

∂u

∂z

)
∧ dz + d

(
v
∂v

∂z

)
∧ dz

=

[
∂

∂z

(
−v

∂u

∂z

)
dz +

∂

∂z

(
−v

∂u

∂z

)
dz

]
∧ dz +

[
∂

∂z

(
v
∂u

∂z

)
dz +

∂

∂z

(
v
∂u

∂z

)
dz

]
∧ dz

=
∂

∂z

(
−v

∂u

∂z

)
dz ∧ dz +

∂

∂z

(
v
∂u

∂z

)
dz ∧ dz

= −
(
∂v

∂z

∂u

∂z
+ v

∂2u

∂z∂z

)
dz ∧ dz +

(
∂v

∂z

∂u

∂z
+ v

∂2u

∂z∂z

)
dz ∧ dz

=

(
∂v

∂z

∂u

∂z
+

∂v

∂z

∂u

∂z

)
dz ∧ dz + 2v

∂2u

∂z∂z
dz ∧ dz

=
1

i
((∆u)vdA+ 〈du, dv〉dA) .

Since
∫
M
d(iβ) = 0 by the theorem of Stokes,∫

M

((∆u)vdA+ 〈du, dv〉dA) = 0.

Therefore, (2.1) is proved. (2.2), (2.3) follow from (2.1). This completes the proof of

the lemma.

Remark 1. For two different eigenvalues λ, µ of L, an eigenfunction u of L corresponding

to λ, and an eigenfunction v of L corresponding to µ, we have∫
M

uvdA = 0.

Actually, ∫
M

(Lu)vdA = λ

∫
M

uvdA,∫
M

u(Lv)dA = µ

∫
M

uvdA
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by Lu = λu, Lv = µv. By (2.3), we obtain

(λ− µ)

∫
M

uvdA = 0.

Thus, since λ 6= µ, ∫
M

uvdA = 0.

Claim 1. N(g) = {u ∈ C∞(M) | Lu = 0} does not depend on how the conformal metric

ds2 is taken.

Actually,

L̃ = ϕL, ϕ =
λ

λ̃
> 0

for two conformal metrics ds2 = λdzdz, d̃s2 = λ̃dzdz. (Note that ϕ is globally defined

on M .) Therefore, L̃u = 0 if and only if Lu = 0. Thus, N(g) does not depend on the

choice of conformal metric ds2.

We now define the index and the nullity of g.

Definition 2.10. We define the index Ind(g) of the meromorphic function g as the

number of negative eigenvalues (counted with multiplicities) of the operator L, and

define the nullity Nul(g) of g as

Nul(g) = dimN(g).

The nullity Nul(g) does not depend on the choice of conformal metric ds2 by Claim 1.

The index Ind(g) also does not depend on the choice of ds2 by the following discussion.

The bilinear form associated with L is represented by Q : C∞(M) × C∞(M) → R.
That is, for u, v ∈ C∞(M), we define Q(u, v) as

Q(u, v) =

∫
M

(Lu)vdA

=

∫
M

(−∆u− |dG|2 u)vdA.

By (2.3), Q(u, v) = Q(v, u), that is, Q is symmetric. By (2.1),

Q(u, u) =

∫
M

(
|du|2 − |dG|2u2

)
dA

for a function u on M .

Remark 2. Q does not depend on the choice of conformal metric ds2 on M .
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Actually, if we let ds2 = λ(dx2 + dy2), we obtain

Q(u, u) =

∫
M

(
|du|2 − |dG|2u2

)
dA

=

∫
M

(
1

λ

((
∂u

∂x

)2

+

(
∂u

∂y

)2
)

− 1

λ

(∣∣∣∣∂G∂x
∣∣∣∣2 + ∣∣∣∣∂G∂y

∣∣∣∣2
)
u2

)
λdxdy

=

∫
M

((
∂u

∂x

)2

+

(
∂u

∂y

)2

−

(∣∣∣∣∂G∂x
∣∣∣∣2 + ∣∣∣∣∂G∂y

∣∣∣∣2
)
u2

)
dxdy. (2.4)

Since λ is not included in the rightmost side of (2.4), Q does not depend on the choice

of conformal metric ds2 on M .

Let the eigenspace Vλ corresponding to the eigenvalue λ of L be Vλ = {u ∈ C∞(M) | Lu = λu},
µ1 < µ2 < · · · < µk < 0 be the set of all negative eigenvalues of L, and V =

Vµ1 ⊕ Vµ2 ⊕ · · · ⊕ Vµk
⊂ C∞(M).

Claim 2. Q is negative definite on V , that is, Q(u, u) < 0 for any u ∈ V ∖ {0}.

Actually, for any u ∈ V , u can be written as

u =
k∑

i=1

ui, ui ∈ Vµi
.

Then

Q(u, v) =

∫
M

(Lu)udA

=

∫
M

(
L

k∑
i=1

ui

)(
k∑

j=1

uj

)
dA

=

∫
M

(
k∑

i=1

Lui

)(
k∑

j=1

uj

)
dA

=

∫
M

(
k∑

i=1

µiui

)(
k∑

j=1

uj

)
dA

=

∫
M

(
k∑

i,j=1

µiuiuj

)
dA

=
k∑

i,j=1

µi

∫
M

uiujdA

=
k∑

i=1

µi

∫
M

u2
i dA,

where we have used Remark 1. Therefore, when u 6= 0, Q(u, u) < 0.
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In fact, one can show that V is a maximal subspace of C∞(M) on which Q is negative

definite. Thus, the index Ind(g) coincides with the dimension of a maximal subspace of

C∞(M) on which Q is negative definite. Hence, by Remark 2, Ind(g) does not depend

on the choice of conformal metric ds2.

Let ds2S2 = 4
(1+|z|2)2dzdz̄ be the standard Riemannian metric on Ĉ. Let ζ be a local

holomorphic coordinate on M . The pull-back ds2g of ds2S2 by g can be written as ds2g =

g∗ds2S2 = λdζdζ̄, where λ = 4|g′|2
(1+|g|2)2 . Let ∆g = 4

λ
∂2

∂ζ∂ζ̄
be the Laplacian of ds2g. If L

corresponding to this ds2g is represented by Lg, Lg = −∆g − 2.

Since λ = 0 at the ramification points of g, ds2g = 0 at the ramification points. Al-

though ds2 is not strictly a conformal metric, one can show that Ind(g) can be computed

as the number of negative eigenvalues (counted with multiplicities) of Lg and Nul(g) can

be computed as the multiplicity of the eigenvalue 0 of Lg. In other words, we have the

following.

Lemma 2.11. Ind(g) can be computed as the number of eigenvalues (counted with mul-

tiplicities) of −∆g which are smaller than 2. Nul(g) can be computed as the multiplicity

of the eigenvalue 2 of −∆g.

Remark 3. Let M ′ be a complete oriented minimal surface in R3 and ds2 be the first

fundamental form on M ′. The operator L corresponding to ds2 becomes the Jacobi

operator L = −∆ + 2K. Here, ∆ is the Laplacian corresponding to ds2 and K is the

Gaussian curvature of ds2. Then the (Morse) index of M ′ is defined as

Ind(M ′) = sup {dimV | V ⊂ C∞
0 (M ′), Q is negative definete on V } .

Here, Q(u, v) =
∫
M ′(Lu)vdA, u, v ∈ C∞

0 (M ′). Furthermore, Fischer-Colbrie [3] proved

that when the total curvature of M ′ is finite, the index of M ′ coincides with the index

of the extended Gauss map of M ′.

Example 1. The index of the catenoid is 1. In fact, the catenoid is identified with

C−{0} as a Riemann surface, and its extended Gauss map is the meromorphic function

g(z) = z on Ĉ. Therefore, ds2g = ds2S2 , the standard metric of the unit sphere. Thus,

Ind(g) coincides with the number of eigenvalues (counted with multiplicities) of −∆S2

which are smaller than 2. Since 0 is the only such eigenvalue and has multiplicity 1, we

conclude that Ind(g) = 1. Thus, the index of the catenoid is 1 by Remark 3.

Proposition 2.12. Nul(g) ⩾ 3.

Proof. We define L(g) as L(g) = {a ·G | a ∈ R3}. Since G = (G1, G2, G3) : M → S2 ⊂
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R3 is a holomorphic map, G satisfies the harmonic map equation ∆G+ |dG|2G = 0. 　

L(a ·G) = L

(
3∑

i=1

aiGi

)

=
3∑

i=1

aiLGi

=
3∑

i=1

ai(−∆Gi − |dG|2Gi)

= 0.

Therefore, a ·G ∈ N(g). Thus, L(g) ⊂ N(g). The dimension of L(g) is three. In fact, if

this is not true, we have a linear relation a1G1 + a2G2 + a3G3 = 0, and this means that

the image of G lies in a great circle of S2. But this implies G is a constant map (and g

is a constant function) as it is holomorphic. This contradicts the assumption that g is

nonconstant. Therefore, dimL(g) = 3 and dimN(g) ⩾ 3. This completes the proof of

the proposition.

As mentioned in the above proof, L(g) ⊂ N(g), and Nul(g) > 3 if and only if

N(g) \L(g) 6= ∅. In order to compute Nul(g), we recall the work of Ejiri-Kotani [2] and

Montiel-Ros [7]. They observed that an element of N(g) \L(g) appears in the following

way.

Definition 2.13. Let X : M ′ = M \{p1, · · · , pµ} → R3 be a complete branched minimal

immersion of finite total curvature, where M is a compact Riemann surface. An end pi

is said to be planer if there exists a unit vector ai ∈ S2 such that 〈X, ai〉 is bounded in

a neighborhood of pi.

Proposition 2.14 (Ejiri-Kotani [2] and Montiel-Ros [7]). Let g : M → Ĉ be a noncon-

stant meromorphic function on a compact Riemann surface M , and G : M → S2 be the

holomorphic map corresponding to g. Let X : M ′ = M \ {p1, · · · , pµ} → R3 be a com-

plete branched minimal immersion of finite total curvature whose extended Gauss map

is g and whose ends are all planer. Then u = 〈X,G〉 : M ′ → R, the support function of

X, extends to M smoothly and gives an element of N(g) \ L(g).

On the contrary, Ejiri-Kotani [2] and Montiel-Ros [7] proved that any element of

N(g) \ L(g) appeared as the support function of a complete branched minimal surface

with planer ends.

Theorem 2.15 (Ejiri-Kotani [2] and Montiel-Ros [7]). For any u ∈ N(g)∖L(g), there

exists a complete branched minimal immersion X : M ′ = M ∖{p1, · · · , pµ} → R3 whose
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ends are all planer and whose extended Gauss map coincides with g such that u = 〈X,G〉
on M , where G : M → S2 is the holomorphic map corresponding to g. In terms of the

Weierstrass representation formula, this assertion is stated as follows. Let H(g) be the

real vector space defined by

H(g) =
{
ω ∈ H0(K(M) + B̃(g)) | Respiω = 0,∀i = 1, · · · , µ,

Re

∫
α

((1− g2), i(1 + g2), 2g)ω = 0, ∀α ∈ H1(M,Z)
}
, (2.5)

where K(M) is the canonical divisor of M , pi are the ramification points of g, P (g)

is the polar divisor of g and B̃(g) is the divisor defined by B̃(g) =
∑µ

i=1 eipi − 2P (g).

Then for any u ∈ N(g) ∖ L(g), there exists ω ∈ H(g) \ {0} such that u = 〈Xω, G〉 on
M , where Xω : M ∖ {p1, · · · , pµ} → R3 is the branched minimal immersion defined by

Xω(p) = Re

∫ p

p0

((1− g2), i(1 + g2), 2g)ω. (2.6)

In particular, we have the linear isomorphism N(G)/L(G) ∼= H(g).

Corollary 2.16 (Ejiri-Kotani [2] and Montiel-Ros [7]). Nul(g) can be computed from

the dimension of H(g) by the following formula :

Nul(g)− 3 = dimR H(g). (2.7)

The complex vector space Ĥ(g) defined as follows plays an auxiliary role in the

computation of H(g).

Definition 2.17. Define a complex vector space Ĥ(g) as

Ĥ(g) =
{
ω ∈ H0(K(M) + B̃(g)) | Respiω = 0, i = 1, · · · , µ

}
.

For t ∈ C \ {0}, H(tg) 6= H(g) in general, but Ĥ(tg) = Ĥ(g).
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3 Setting

In this section, we consider a certain family of meromorphic functions of degree three

defined on Riemann surfaces homeomorphic to the torus, and describe the above vector

spaces in these special cases.

3.1 Torus

We first define the Riemann surfaces. Let

Ma =

{
(z, w) ∈ Ĉ2 | w2 = z(z − a)

(
z +

1

a

)}
, a ⩾ 1.

If (r1, θ1), (r2, θ2), (r3, θ3) are the polar coordinates centered at 0, a,− 1
a
, then z ∈ Ĉ is

represented in three ways as

z = r1e
iθ1 , z = a+ r2e

iθ2 , z = −1

a
+ r3e

iθ3 , r1, r2, r3 ⩾ 0, 0 ⩽ θ1, θ2, θ3 < 2π.

Define the two branches w1, w2 of w by

w1 =
√
r1r2r3e

i(θ1+θ2+θ3)
2 , w2 =

√
r1r2r3e

i(θ1+θ2+θ3)
2

+π = −w1.

Prepare two copies of the Riemann spheres Ĉ, let them be Ĉ1 and Ĉ2, respectively, and

consider w1 as a function on Ĉ1 and w2 as a function on Ĉ2. Put in a slit in the half line

connecting z = a and z = ∞ on Ĉ1, and let the upper part (of the slit) be l1 and the

lower part be l̃1. Put in a slit in the half line connecting z = a and z = ∞ on Ĉ2, and let

the upper part be l2 and the lower part be l̃2. Put in a slit in the line segment connecting

z = 0 and z = − 1
a
on Ĉ1, and let the upper part be h1 and the lower part be h̃1. Put in

a slit in the line segment connecting z = 0 and z = − 1
a
on Ĉ2, and let the upper part be

h2 and the lower part be h̃2. If l̃1 is attached to l2, h1is attached to h̃2, h̃1 is attached

to h2 and l1 is attached to l̃2 so that w1 and w2 are continuously connected, a Riemann

surface M ′
a homeomorphic to the torus can be obtained. Let z1 ∈ Ĉ1, z2 ∈ Ĉ2, and define

the map ϕ : M ′
a → Ma by z1 7−→ (z1, w1(z1)), z2 7−→ (z2, w2(z2)). Let z1 ∈ l1 ⊂ Ĉ1 and

z2 ∈ l̃2 ⊂ Ĉ2, and suppose z1 = z2 in M ′
a. Then ϕ(z1) = ϕ(z2) since w1(z1) = w2(z2).

The same holds at the other slits. Therefore, the map ϕ is well-defined. It is confirmed

that ϕ is bijective. Identify Ma with M ′
a by this bijection, and consider Ma as a Riemann

surface.

3.2 Vector spaces H(w) and Ĥ(w)

In this subsection, we describe the vector spaces, reviewed in the subsection 2.2,

when the mermorphic function is w : Ma → Ĉ.
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z : Ma 3 (z, w) 7−→ z ∈ Ĉ is a meromorphic function of degree 2 on Ma, has

(∞,∞) as a pole of order 2, and has (0, 0) as a zero of order 2. dz is a meromorphic

differential, has (∞,∞) as a pole of order 3,and has (0, 0), (a, 0), (− 1
a
, 0) as zeros of order

1, respectively.

w : Ma 3 (z, w) 7−→ w ∈ Ĉ is a meromorphic function of degree 3 on Ma, has (∞,∞)

as a pole of order 3, and has (0, 0), (a, 0), (− 1
a
, 0) as zeros of order 1, respectively. dw is a

meromorphic differential, has (∞,∞) as a pole of order 4, and has (A1,±B1), (A2,±B2)

as zeros of order 1, respectively. Here, A1 =
a− 1

a
+
√

a2+ 1
a2

+1

3
, A2 =

a− 1
a
−
√

a2+ 1
a2

+1

3
, B1 is

the value w1(A1) of w1 at z = A1 ∈ Ĉ1, and B2 is the value w1(A2) of w1 at z = A2 ∈ Ĉ1.

If dz
w

becomes zero, then dz becomes zero or w becomes pole, and dz
w

becomes pole,

then dz becomes pole or w becomes zero. The possible points are the only four points

(0, 0), (a, 0), (− 1
a
, 0), (∞,∞). For example, considering at (0, 0), since dz and w have

(0, 0) as a zero of order 1, these can be written as

dz = a1ζdζ + · · · , w = b1ζ + b2ζ
2 + · · · , a1 6= 0, b1 6= 0

near (0, 0). Therefore, dz
w

∼ a1
b1
dζ, and dz

w
has neither zero nor pole at (0,0) because

a1
b1

6= ∞, a1
b1

6= 0. Similarly, it can be confirmed that dz
w

has neither zero nor pole at

(a, 0), (− 1
a
, 0), (∞,∞). Therefore, dz

w
has neither zero nor pole everywhere.

Using the nowehre vanishing holomorphic differential dz
w
, H(w) can also be written

as follows.

H(w) =
{
f
dz

w
| f : Ma → Ĉ is a meromorphic function,

D(f) + B̃(w) ⩾ 0, Respi

(
f
dz

w

)
= 0, i = 1, · · · , µ,

Re

∫
α

((1− w2), i(1 + w2), 2w)

(
f
dz

w

)
= 0, ∀α closed curve

}
,

where D(f) is the divisor of f defined as follows.

Definition 3.1. Let f be a meromorphic function from a compact Riemann surface M

to Ĉ, p1, · · · , pm be the poles of order a1, · · · , am of f , and q1, · · · , qn be the zeros of

order b1, · · · , bm of f . Then

D(f) = −
m∑
i=1

aipi +
n∑

j=1

bjqj

is called the divisor of f .
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Similarly, Ĥ(w) can also be written as follows.

Ĥ(w) =
{
f
dz

w
| f : Ma → Ĉ is a meromorphic function,

D(f) + B̃(w) ⩾ 0, Respi

(
f
dz

w

)
= 0, i = 1, · · · , µ

}
.
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4 Computation of Nul(tw)

In this section we compute the dimension of H(tw) and, as a consequence, compute

the nullity of tw. First, we find a basis of Ĥ(w).

Lemma 4.1. Ĥ(w) is a three dimensional complex vector space spanned by

η1 =
z − 1

2
(A1 + A2)

(z − A1)2(z − A2)2
dz

w
,

η2 =
z2 − A1A2

(z − A1)2(z − A2)2
dz

w
,

η3 =
z − 1

2
(A1 + A2)

(z − A1)2(z − A2)2
dz.

Proof. First, we prove that η1, η2, η3 are elements of Ĥ(w). Note that

B̃(w) = 2(A1,±B1) + 2(A2,±B2)− 3(∞,∞)

by

B(w) = (A1,±B1) + (A2,±B2) + 2(∞,∞), P (w) = 3(∞,∞).

We compute the divisors of

f1 =
z − 1

2
(A1 + A2)

(z − A1)2(z − A2)2
,

f2 =
z2 − A1A2

(z − A1)2(z − A2)2
,

f3 =
z − 1

2
(A1 + A2)

(z − A1)2(z − A2)2
w.

They are given by

D(f1) = −2(A1,±B1)− 2(A2,±B2) + 6(∞,∞) + (
1

2
(A1 + A2),±B3),

D(f2) = −2(A1,±B1)− 2(A2,±B2) + 4(∞,∞) + (
√

A1A2,±B4) + (−
√
A1A2,±B4),

D(f3) = −2(A1,±B1)− 2(A2,±B2) + 3(∞,∞) + (0, 0) + (
1

2
(A1 + A2),±B3) + (a, 0)

+ (
1

a
, 0),

where B3 is the value of w1 at z = 1
2
(A1 + A2) ∈ Ĉ1 and B4 is the value of w1 at

z = −
√
A1A2 ∈ Ĉ1. Therefore,

D(fi) + B̃(w) ⩾ 0, i = 1, 2, 3.
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We compute the residues of ηi, i = 1, 2, 3. Let ζ = z −A1 near (A1,±B1). w can be

written as

w = ±B1 + b2ζ
2 + · · ·

near ζ = 0. If we compute by using them, we obtain

η1 ∼
1

±2B1(A1 − A2)ζ2
dζ,

η2 ∼
A1(A1 + A2)

±B1(A1 − A2)2ζ2
dζ,

η3 ∼
1

2(A1 − A2)ζ2
dζ.

Therefore,

Res(ηi, (A1,±B1)) = 0, i = 1, 2, 3.

Similarly, we obtain

Res(ηi, (A2,±B2)) = 0, i = 1, 2, 3.

Next, we prove that η1, η2, η3 are linearly independent. For γ1, γ2, γ3 ∈ C we write

γ1η1 + γ2η2 + γ3η3 = 0. (4.1)

If we substitute z = 1
2
(A1 + A2) into (4.1), we obtain γ2 = 0. Therefore, (4.1) becomes

γ1η1 + γ3η3 = 0. (4.2)

(4.2) can be written as

γ1(c0 + c1ζ + · · · ) + γ3(d1ζ + · · · ) = 0, c0 6= 0, d1 6= 0, near (0, 0).

γ1c0 = 0 when ζ → 0. γ1 = 0 by c0 6= 0. Therefore, γ3 = 0. Thus, η1, η2, η3 are linearly

independent.

Next, we prove that the complex dimension of Ĥ(w) is 3. If, dimC Ĥ(w) > 3,

then dimR Ĥ(w) ⩾ 8. Since there are only 6 simultaneous equations from the period

condition, the dimension of H(w) is 2 or more. By Corollary 2.16, Nul(tw) is 5 or more

for all t. On the other hand, by a result of Nayatani [10, p518, THEOREM 2], to be

reviewed below as Theorem 4.2, the nullity of tw is 3 when t is sufficiently small, which

is a contradiction. Therefore, dimC Ĥ(w) = 3.

Theorem 4.2 (Nayatani [10]). Let g : M → Ĉ be a nonconstant meromorphic function

of degree d. Let ν be the number of distinct poles of g. Then the following estimates

hold for all sufficiently small t :

Ind(tg) ⩾ 2d− ν,

Ind(tg) + Nul(tg) ⩽ 2d+ ν + 1,

Nul(tg) ⩽ 2ν + 1.
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In particular, if ν = 1, then we have

Ind(tg) = 2d− 1 and NuI(tg) = 3

for all sufficiently small t.

In the proof of the next lemma, we use the perfect elliptic integrals. So we recall the

definition of these integrals.

Definition 4.3.

K(k) =

∫ π
2

0

dθ√
1− k2 sin2 θ

is called the perfect elliptic integral of the first kind and

E(k) =

∫ π
2

0

√
1− k2 sin2 θdθ

is called the perfect elliptic integral of the second kind.

Lemma 4.4. For each a in the range 1 ⩽ a ⩽ a0 (where a0 can be numerically evaluated)

there are positive real numbers t1(a), t2(a) (t1(a) < t2(a)) such that

dimR H(tw) =

1, t = t1(a), t2(a),

0, t > 0, t 6= t1(a), t2(a).

Therefore,

Nul(tw) =

4, t = t1(a), t2(a),

3, t 6= t1(a), t2(a).

Proof. Let α1, α2 be

α1 =

{(
a− 1

4a

)
+ (a+

1

4a
)eiθ ∈ Ĉ1 | 0 ⩽ θ ⩽ π

}
∪
{(

a− 1

4a

)
+

(
a+

1

4a

)
eiθ ∈ Ĉ2 | π ⩽ θ ⩽ 2π

}
,

α2 =

{(
−1

a
+

a

4

)
+

(
1

a
+

a

4

)
eiθ ∈ Ĉ1 | 0 ⩽ θ ⩽ 2π

}
.

We take η ∈ Ĥ(w) and express it as

η = γ1η1 + γ2η2 + γ3η3, γj = xj + iyj, xj, yj ∈ R, j = 1, 2, 3.
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We will find the simultaneous equation that γ1, γ2, γ3 must satisfy so that the condition

Re

∫
α

(1− (tw)2, i(1 + (tw)2), 2tw)η = 0 for ∀α closed curve in Ma

holds for this η.

To do this, we first compute the integrals of ηi, wηi, w
2ηi, i = 1, 2, 3, on α1, α2.

When we actually compute, we change α1, α2 and we compute along the closed intervals

[0, a], [− 1
a
, 0] on the real axis, respectively. Since the denominator of ηi, i = 1, 2, 3,

has z − A1, z − A2 and these integrals diverge at z = A1, A2, we subtract from ηi

the differentials of meromorphic functions fi with poles at most order one at (z, w) =

(A1, B1), (A2, B2) on the Riemann surface Ma so that the integrals of the meromorphic

differentials ηi − dfi converge.

When we consider η1, we obtain

η1 −
1

2B2
1

d
w

(z − A1)(z − A2)

=
z − 1

2
(A1 + A2)

(z − A1)2(z − A2)2
dz

w
− 1

2B2
1

(
dw

(z − A1)(z − A2)
− (z − A1)w + (z − A2)w

(z − A1)2(z − A2)2
dz

)
=− 3

4B2
1

dz

w
+

1

B2
1

(z − 1
2
(A1 + A2))(w

2 +B2
1)

(z − A1)2(z − A2)2
dz

w

=− 3

4B2
1

dz

w
+

1

B2
1

(z − 1
2
(A1 + A2))(z + 2A1 − (a− 1

a
))

(z − A2)2w
dz

=− 3

4B2
1

dz

w
+

1

B2
1

dz

w
+

(A1 − A2)
2

4B2
1(z − A2)2w

dz

=
1

4B2
1

dz

w
− (A1 − A2)

2

4B2
1(z − A2)2w

dz.

Therefore, by
∫
α1

d w
(z−A1)(z−A2)

= 0,∫
α1

η1

=
1

4B2
1

∫
α1

dz

w
− (A1 − A2)

2

4B2
1

∫
α1

1

(z − A2)2w
dz

=
1

4B2
1

∫ 0

a

dt

i
√

t(a− t)( 1
a
+ t)

+

∫ a

0

dt

−i
√

t(a− t)( 1
a
+ t)


−(A1 − A2)

2

4B2
1

∫ 0

a

dt

(t− A2)2i
√
t(a− t)( 1

a
+ t)

−
∫ a

0

dt

(t− A2)2i
√

t(a− t)( 1
a
+ t)


=

i

2B2
1

∫ a

0

dt√
t(a− t)( 1

a
+ t)

− i(A1 − A2)
2

2B2
1

∫ a

0

dt

(t− A2)2
√

t(a− t)( 1
a
+ t)

. (4.3)
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We compute the rightmost side of (4.3). By the definition of the perfect elliptic

integral,

E(ia) =

∫ π
2

0

√
1 + a2 sin2 θdθ, (4.4)

K(ia) =

∫ π
2

0

dθ√
1 + a2 sin2 θ

. (4.5)

Let a sin2 θ = t. Then dθ = dt

2
√

t(a−t)
, and (4.4), (4.5) becomes

E(ia) =

∫ a

0

√
1 + at

2
√
t(a− t)

dt, (4.6)

K(ia) =

∫ a

0

dt

2
√
t(a− t)(1 + at)

. (4.7)

Also,

E(ia)−K(ia) =

∫ a

0

at

2
√

t(a− t)(1 + at)
dt (4.8)

holds. By (4.7), the first definite integral of the rightmost side of (4.3) is∫ a

0

dt√
t(a− t)( 1

a
+ t)

= 2
√
aK(ia). (4.9)

Next, we compute the second definite integral of the rightmost side of (4.3). If we

set

φ(t) = t3 +

(
1

a
− a

)
t2 − t,

I[m] =

∫ a

0

tmdt√
φ(t)

,

J [m] =

∫ a

0

dt

(t− A2)m
√

φ(t)
,

the recurrence formula

2mφ(A2)J [m+ 1] + (2m− 1)φ′(A2)J [m] + (m− 1)φ′′(A2)J [m− 1]

+
2m− 3

6
φ′′′(A2)J [m− 2] +

m− 2

12
φ′′′′(A2)J [m− 3] = 0
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holds (see [8]). Since

φ(A2) = B2
2 , φ′(A2) = 0, φ′′′(A2) = 6, φ′′′′(A2) = 0,

this recurrence formula becomes

2mB2
2J [m+ 1] + (2m− 3)J [m− 2] = 0. (4.10)

Substituting m = 1 into (4.10), we obtain the following equation

2B2
2J [2] = J [−1]. (4.11)

On the other hand,

J [−1] = I[1]− A2I[0]. (4.12)

By (4.6) and (4.8), we obtain

I[0] =

∫ a

0

dt√
t(a− t)( 1

a
+ t)

= 2
√
aK(ia), (4.13)

I[1] =

∫ a

0

t√
t(a− t)( 1

a
+ t)

dt =
2(E(ia)−K(ia))√

a
. (4.14)

Substituting (4.13) and (4.14) into (4.12), we obtain the following equation

J [−1] = 2
E(ia)−K(ia)− aA2K(ia)√

a
. (4.15)

Since the second definite integral of the rightmost side of (4.3) is J [2],∫ a

0

dt

(t− A2)2
√
t(a− t)( 1

a
+ t)

=
E(ia)−K(ia)− aA2K(ia)√

aB2
2

by (4.11) and (4.15). Using this, the integral of η1 on α1 is obtained as∫ a

0

η1 =

√
a

B2
1

iK(ia)− (A1 − A2)
2

2B2
1

1√
a
(E(ia)−K(ia))−

√
aA2K(ia)

B2
2

i.

Other integrals can be computed similarly. The results are as follows.∫
α1

η1 =

√
a

B2
1

iK(ia)− (A1 − A2)
2

2B2
1

iI2(a),

∫
α1

wη1 = 0,

∫
α1

w2η1 = 3
√
aiK(ia),∫

α1

η2 =
2A1

√
a

B2
1

iK(ia) +
A1 + A2

3B2
1

iI2(a),

∫
α1

wη2 = 0,

∫
α1

w2η2 =
6√
a
iI1(a),∫

α1

η3 = 0,

∫
α1

wη3 = 3
√
aiK(ia),

∫
α1

w2η3 = 0,

25



∫
α2

η1 = − 1√
aB2

2

K

(
i

a

)
+

(A1 − A2)
2

2B2
2

J2(a),

∫
α2

wη1 = 0,

∫
α2

w2η1 =
3√
a
K

(
i

a

)
,∫

α2

η2 = − 2A2√
aB2

2

K

(
i

a

)
− A1 + A2

3B2
2

J2(a),

∫
α2

wη2 = 0,

∫
α2

w2η2 = −6
√
aJ1(a),∫

α2

η3 = 0,

∫
α2

wη3 =
3√
a
K

(
i

a

)
,

∫
α2

w2η3 = 0.

Here,

I1(a) = E(ia)−K(ia), I2(a) =
1

B2
2

(
1√
a
I1(a)−

√
aA2K(ia)

)
,

J1(a) = E

(
i

a

)
−K

(
i

a

)
, J2(a) =

1

B2
1

(√
aJ1(a) +

1√
a
A1K

(
i

a

))
.

Now we return to the period condition

Re

∫
α

(1− (tw)2, i(1 + (tw)2), 2tw)η = 0

for η = γ1η1 + γ2η2 + γ3η3 ∈ Ĥ(w) and closed curves α = α1, α2 on Ma. First we obtain

Re

∫
α1

wη = 0 ⇐⇒ Im(γ3) = 0,

Re

∫
α2

wη = 0 ⇐⇒ Re(γ3) = 0.

Therefore, γ3 = 0.

Next, we have

Re

∫
α

(1− w2)η = Re

∫
α

i(1 + w2)η = 0

⇐⇒
∫
α

η =

∫
α

w2η. (4.16)

When we compute the left and right sides of (4.16) on α1, α2, we obtain∫
α1

η

= γ1

(√
a

B2
1

iK(ia)− (A1 − A2)
2

2B2
1

iI2(a)

)
+ γ2

(
2A1

√
a

B2
1

iK(ia) +
A1 + A2

3B2
1

iI2(a)

)
,∫

α1

w2η

= −3t2γ1
√
aiK(ia)− 6√

a
t2γ2iI1(a),
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∫
α2

η

= γ1

(
−1√
aB2

2

K

(
i

a

)
+

(A1 − A2)
2

2B2
2

J2(a)

)
+ γ2

(
−2A2√
aB2

2

K

(
i

a

)
− A1 + A2

3B2
2

J2(a)

)
,∫

α2

w2η

= 2t2γ1
3

2
√
a
K

(
i

a

)
− 6

√
at2γ2J1(a).

Therefore, (4.16) with α = α1, α2 becomes

γ1(

√
a

B2
1

K(ia)− (A1 − A2)
2

2B2
1

I2(a)) + γ2(
2A1

√
a

B2
1

K(ia) +
A1 + A2

3B2
1

I2(a))

= −3t2γ1
√
aK(ia)− 6t2√

a
γ2I1(a),

γ1(−
1√
aB2

2

K(
i

a
) +

2(A1 − A2)
2

4B2
2

J2(a)) + γ2(−
2A2√
aB2

2

K(
i

a
)− A1 + A2

3B2
2

J2(a))

= t2γ1
3√
a
K(

i

a
)− 6

√
at2γ2J1(a).

(4.17)

Let

U =

 1
B2

1
K(ia)− (A1−A2)2

2
√
aB2

1
I2(a) + 3t2K(ia) 2A1

B2
1
K(ia) + A1+A2

3B2
1

√
a
I2(a) +

6t2

a
I1(a)

1
B2

2
K( i

a
)−

√
a(A1−A2)2

2B2
2

J2(a) + 3t2K
(
i
a

) 2A2K( i
a
)

B2
2

+ A1+A2

3B2
2

√
aJ2(a)− 6at2J1(a)


and

V =

 1
B2

1
K(ia)− (A1−A2)2

2
√
aB2

1
I2(a)− 3t2K(ia) 2A1K(ia)

B2
1

+ A1+A2

3
√
aB2

1
I2(a)− 6t2

a
I1(a)

1
B2

2
K( i

a
)−

√
a(A1−A2)2

2B2
2

J2(a)− 3t2K
(
i
a

) 2A2K( i
a
)

B2
2

+ A1−A2

3
√
aB2

2
J2(a) + 6at2J1(a)

 .

If we use these matrices, then (4.17) becomes

(
U 0
0 V

)
x1

x2

y1

y2

 = 0, (4.18)

where γj = xj + iyj, xj, yj ∈ R, j = 1, 2. (4.18) has a nontrivial solution if and only

if detU = 0 or detV = 0. The conditional equation detU = 0 is a quadratic equation

of x = t2. This has only one positive real solution for each a. If we denote the positive

square root of this positive real solution by t1(a), then this is the only positive real

t that satisfies detU = 0. The conditional equation detV = 0 is also a quadratic
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equation of x = t2. This has only one positive real solution for each a. If we denote

the positive square root of this positive real solution by t2(a), then this is the only

positive real t that satisfies detV = 0. If we draw the graphs of t1(a), t2(a) in the range

1 ⩽ a ⩽ a0 ( where a0 can be numerically evaluated ) by Mathematica, we see that

t1(a) < t2(a). When t = t1(a), detU = 0, but detV 6= 0. Then there is only one

nontrivial solution of (4.18) up to real multiple, and this nontrivial solution is written

as (x1, x2, y1, y2) = (a1, a2, 0, 0). When t = t2(a), detV = 0, but detU 6= 0. Then

there is only one nontrivial solution of (4.18) up to real multiple, and this nontrivial

solution is written as (x1, x2, y1, y2) = (0, 0, b1, b2). Therefore, the basis of H(t1(a)w)

is η = a1η1 + a2η2 when t = t1(a) and the basis of H(t2(a)w) is η = ib1η1 + ib2η2

when t = t2(a). Thus dimR H(tw) = 1 when t = t1(a), t2(a), and dimR H(tw) = 0 when

t 6= t1(a), t2(a). Therefore, Nul(tw) = 4 when t = t1(a), t2(a), and Nul(tw) = 3 when

t 6= t1(a), t2(a).

Remark 4. By using Mathematica, we can check that t1(a) < t2(a) for small values of a.

In fact, as the graphs of Figure 1 suggest, the constant a0 in the statement of Lemma

4.4 is surely larger than 5. On the other hand, the graphs of Figure 2 suggest that the

values of t1(a) and t2(a) become close to each other rather quickly as the parameter a

becomes bigger.
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Figure 1: Graphs of t1, t2 for a ⩽ 5.

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

Figure 2: Graphs of t1, t2 for a ⩽ 10.
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5 Computation of Ind(tw)

In this section we compute the index of tga for all t and a in the range 1 ⩽ a ⩽ a0,

where a0 is as in Section 4.

As mentioned in Introduction, Nayatani [10] computed the index and nullity of t℘′,

where ℘ is the Weierstrass ℘-function corresponding to the square lattice Z ⊕ iZ. The

Riemann surface C/Z⊕ iZ is isomorphic to

M1 =
{
(z, w) ∈ Ĉ2 | w2 = z(z2 − 1)

}
and ℘′ coincides with w : M1 → Ĉ up to a multiplicative positive real constant. Since

we use Nayatani’s result in the proof of Theorem 5.2, we state his result in our setting.

Theorem 5.1 (Nayatani[10]). For the meromorphic function w : M1 3 (z, w) 7−→ w ∈
Ĉ, we have

Ind(tw) =

5, 0 < t ⩽ t1(1), t2(1) ⩽ t,

6, t1(1) < t < t2(1),

and

Nul(tw) =

4, t = t1(1), t2(1),

3, t 6= t1(1), t2(1).

Theorem 5.2. If t1(a) and t2(a) are as in Lemma 4.4, then

Ind(tw) =

5, 0 < t ⩽ t1(a), t2(a) ⩽ t,

6, t1(a) < t < t2(a)

for any a in the range 1 ⩽ a ⩽ a0 ( where a0 can be numerically evaluated ).

Proof. Let g = tw. We consider at t = t1(a). What we already know is Nul(g) =

4, Ind(g) = 5 when t = t1(1). That is, there are exactly 5 eigenvalues smaller than 2

of −∆g. If a moves in the range 1 ⩽ a ⩽ a0, then Nul(g) = 4 forever. We arrange the

eigenvalues of −∆g from the smallest, and we write the i-th eigenvalue as λi(a), i =

1, 2, · · · . When a moves from 1 to a0, λi(a) changes continuously, so if Ind(g) changes,

then Nul(g) also changes. Therefore Ind(g) = 5 does not change. When t = t2(a),

Ind(g) can also be determined similarly.

Now, take one a in the range from 1 to a0, and we write it as a = ã0. We move t.

When t = t1(ã0), t2(ã0), then Nul(g) = 4, Ind(g) = 5. We consider t = 1
2
t1(ã0) in the
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range from 0 to t1(ã0). When t = 1
2
t1(1), then Nul(g) = 3, Ind(g) = 5. If a moves from

1 to a0, Ind(g) = 5 also does not change since Nul(g) = 3 does not change in the range

from 0 to t1(a). Therefore, when t = 1
2
t1(ã0), then Nul(g) = 3, Ind(g) = 5. Ind(g) = 5

also does not change since Nul(g) = 3 does not change in the range from 0 to t1(ã0).

Therefore, when 0 < t < t1(ã0), then Ind(g) = 5. We consider t = 1
2
(t1(ã0) + t2(ã0)) in

the range from t1(ã0) to t2(ã0). When t = 1
2
(t1(1) + t2(1)), then Nul(g) = 3, Ind(g) = 6.

If a moves from 1 to a0, Ind(g) = 6 also does not change since Nul(g) = 3 does not

change in the range from t1(a) to t2(a). Therefore, When t = 1
2
(t1(ã0) + t2(ã0)), then

Nul(g) = 3, Ind(g) = 6. Ind(g) = 6 also does not change since Nul(g) = 3 does

not change in the range from t1(ã0) to t2(ã0). Therefore, when t1(ã0) < t < t2(ã0),

then Ind(g) = 6. We consider t = 2t2(ã0) when t < t2(ã0). If t = 2t2(1), then

Nul(g) = 3, Ind(g) = 5. If a moves from 1 to a0, Ind(g) = 5 also does not change

since Nul(g) = 3 does not change when t < t2(a). Therefore, When t = 2t2(ã0), then

Nul(g) = 3, Ind(g) = 5. When t < t2(ã0), Ind(g) = 5 also does not change since

Nul(g) = 3 does not change. Therefore, when t < t2(ã0), then Ind(g) = 5.

We close this section with concluding remarks.

Remark 5. Since H(tw) 6= {0} for t = t1(a), t2(a), there exists a (possibly branched)

complete orientable minimal surface in R3 whose extended Gauss map is tw and all of

whose ends are planer for each of t = t1(a), t2(a). In particular, the Morse indices of

these minimal surfaces are both 5. If t 6= t1(a), t2(a), tw is still the extended minimal

surface of some complete orientable minimal surfaces in R3, and Theorem 5.2 computes

the Morse indices of these minimal surfaces.

In the case that the Riemann surface has genus zero, it is a remarkable result of

Ejiri-Kotani [2] and Montiel-Ros [7] that the index of a generic meromorphic function

of degree d has index 2d− 1. On the other hand, in the higher-genus case, there are not

so many complete orientable minimal surfaces nor meromorphic functions whose indices

are computed. Theorem 5.2 should be of some interest as it provides new examples

of meromorphic functions on compact Riemann surfaces of genus 1 whose indices are

computable.
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6 Appendix

We write computations omitted in Section 4 here.

We compute the integrals of ηi, wηi, w
2ηi, i = 1, 2, 3, on α1, α2. When we actually

compute, we change α1, α2 and we compute along the closed intervals [0, a], [− 1
a
, 0] on

the real axis, respectively. Since the denominator of ηi, i = 1, 2, 3, has z−A1, z−A2 and

these integrals diverge at z = A1, A2, we subtract from ηi differentials of meromorphic

functions fi with poles at most order one at (z, w) = (A1, B1), (A2, B2) on the Riemann

surface Ma so that the integrals of the meromorphic differentials ηi − dfi converge.

We compute the integrals of wη1 on α1. First we compute

wη1 +
1

2
d

1

(z − A1)(z − A2)

=
z − 1

2
(A1 + A2)

(z − A1)2(z − A2)2
dz −

z − 1
2
(A1 + A2)

(z − A1)2(z − A2)2
dz

=0.

Therefore, by
∫
α1

1
2
d 1
(z−A1)(z−A2)

= 0,∫
α1

wη1 = 0.

We compute the integrals of w2η1 on α1. First we compute

w2η1 +
1

2
d

w

(z − A1)(z − A2)

=
(z − 1

2
(A1 + A2))w

(z − A1)2(z − A2)2
dz +

dw

2(z − A1)(z − A2)
− (z − A1)w + (z − A2)w

2(z − A1)2(z − A2)2
dz

=
3

4

dz

w
.

Therefore, by
∫
α1

d w
(z−A1)(z−A2)

= 0,∫
α1

w2η1 =
3

4

∫
α1

dz

w
= 3

√
aiK(ia).
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We compute the integrals of η2 on α1. First we compute

η2 −
A1

B2
1

d
w

(z − A1)(z − A2)

=
z2 − A1A2

(z − A1)2(z − A2)2w
dz − A1

B2
1

d
w

(z − A1)(z − A2)

=
z2 − A1A2

(z − A1)2(z − A2)2w
dz − A1

B2
1

(
dw

(z − A1)(z − A2)
− (z − A1)w + (z − A2)w

(z − A1)2(z − A2)2
dz)

=− 3A1

2B2
1

dz

w
+

B2
1(z

2 − A1A2) + A1(2z − (A1 + A2))w
2

B2
1(z − A1)2(z − A2)2w

dz

=− 3A1

2B2
1

dz

w
+

B2
1(z

2 − A1A2) + (z2 − A1A2)w
2 − (z2 − 2zA1 + A2

1)w
2

B2
1(z − A1)2(z − A2)2w

dz

=− 3A1

2B2
1

dz

w
+

(z2 − A1A2)(w
2 +B2

1)

B2
1(z − A1)2(z − A2)2w

dz − w

B2
1(z − A2)2

dz

=− 3A1

2B2
1

dz

w
+

(z2 − A1A2)(z + 2A1 − (a− 1
a
))

B2
1(z − A2)2w

dz − w

B2
1(z − A2)2

dz

=− 3A1

2B2
1

dz

w
+

2A1z
2 + 2

3
(2z + A1)− 1

3
(a− 1

a
)

B2
1(z − A2)2w

dz

=
A1

2B2
1

dz

w
+

A1 + A2

6B2
1

dz

(z − A2)2w
.

Therefore, by
∫
α1

d w
(z−A1)(z−A2)

= 0,∫
α1

η2 =
A1

2B2
1

∫
α1

dz

w
+

A1 + A2

6B2
1

∫
α1

dz

(z − A2)2w

=
2A1

√
a

B2
1

iK(ia) +
A1 + A2

3B2
1

iI2(a).

We compute the integrals of wη2 on α1. First we compute

wη2 + d
z

(z − A1)(z − A2)

=
z2 − A1A2

(z − A1)2(z − A2)2
dz + d

z

(z − A1)(z − A2)

=
z2 − A1A2

(z − A1)2(z − A2)2
dz +

1

(z − A1)(z − A2)
dz − z(z − A1) + z(z − A2)

(z − A1)2(z − A2)2
dz

=0.

Therefore, by
∫
α1

d z
(z−A1)(z−A2)

= 0,∫
α1

wη2 = 0.
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We compute the integrals of w2η2 on α1. First we compute

w2η2 + d
zw

(z − A1)(z − A2)

=
w(z2 − A1A2)

(z − A1)2(z − A2)2
dz + d

zw

(z − A1)(z − A2)

=
w(z2 − A1A2)

(z − A1)2(z − A2)2
dz +

w

(z − A1)(z − A2)
dz

+
zdw

(z − A1)(z − A2)
− (z − A1)w + (z − A2)w

(z − A1)2(z − A2)2
dz

=
w(z2 − A1A2)

(z − A1)2(z − A2)2
dz +

3z

2w
dz

+
w(z2 − (A1 + A2)z + A1A2 − 2z2 + (A1 + A2)z)

(z − A1)2(z − A2)2
dz

=
3z

2w
dz.

Therefore, by
∫
α1

d zw
(z−A1)(z−A2)

= 0,∫
α1

w2η2 =

∫
α1

3z

2w
dz =

6√
a
iI1(a).

We compute the integrals of η3 on α1. First we compute

η3 +
1

2
d

1

(z − A1)(z − A2)

=
z − 1

2
(A1 + A2)

(z − A1)2(z − A2)2
dz −

z − 1
2
(A1 + A2)

(z − A1)2(z − A2)2
dz

=0.

Therefore, by
∫
α1

d 1
(z−A1)(z−A2)

= 0,∫
α1

η3 = 0.

We compute the integrals of wη3 on α1. First we compute

wη3 +
1

2
d

w

(z − A1)(z − A2)

=
(z − 1

2
(A1 + A2))w

(z − A1)2(z − A2)2
dz +

dw

2(z − A1)(z − A2)
− (z − A1)w + (z − A2)w

2(z − A1)2(z − A2)2
dz

=
3

4

dz

w
.

Therefore, by
∫
α1

d w
(z−A1)(z−A2)

= 0,∫
α1

wη3 =
3

4

∫
α1

dz

w
=

6
√
a

2
iK(ia).
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We compute the integrals of w2η3 on α1. First we compute

w2η3 +
B2

1

2
d

1

(z − A1)(z − A2)

=
(z − 1

2
(A1 + A2))(w

2 −B2
1)

(z − A1)2(z − A2)2
dz

=
(z − 1

2
(A1 + A2))(z + 2A1 − (a− 1

a
))

(z − A1)2(z − A2)2
dz

=dz − (A1 − A2)
2

4

dz

(z − A2)2
.

Therefore, by
∫
α1

d 1
(z−A1)(z−A2)

= 0,∫
α1

w2η3 =

∫
α1

dz − (A1 − A2)
2

4

∫
α1

dz

(z − A2)2
= 0.
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