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Abstract

Objective: Amyotrophic lateral sclerosis (ALS) is a multisystem disorder associ-

ated with motor impairment and behavioral/cognitive involvement. We exam-

ined decision-making features and changes in the neural hub network in

patients with ALS using a probabilistic reversal learning task and resting-state

network analysis, respectively. Methods: Ninety ALS patients and 127 cogni-

tively normal participants performed this task. Data from 62 ALS patients and

63 control participants were fitted to a Q-learning model. Results: ALS patients

had anomalous decision-making features with little shift in choice until they

thought the value of the two alternatives had become equal. The quantified

parameters (Pαβ) calculated by logistic regression analysis with learning rate

and inverse temperature well represented the unique choice pattern of ALS

patients. Resting-state network analysis demonstrated a strong correlation

between Pαβ and decreased degree centrality in the anterior cingulate gyrus and

frontal pole. Interpretation: Altered decision-making in ALS patients may be

related to the decreased hub function of medial prefrontal areas.

Introduction

Amyotrophic lateral sclerosis (ALS) is an adult-onset neu-

rodegenerative disorder characterized by upper and lower

motor neuron involvement.1 Although extra-motor cogni-

tive and behavioral impairment were considered atypical

clinical features in early descriptions of ALS, recent stud-

ies demonstrated that approximately 50% of patients with

ALS suffer from frontotemporal dysfunction.2 Further-

more, almost all patients with sporadic ALS and more

than half of those with frontotemporal dementia (FTD)

had TAR DNA-binding protein 43 (TDP-43)-positive

ubiquitinated cytoplasmic inclusions.1-4

While ALS and FTD are certainly on a spectrum, most

ALS patients do not meet the FTD criteria and they are

not consecutive in time. However, previous studies

demonstrated that ALS patients who do not meet the

FTD criteria show abnormalities not only in the fron-

totemporal cortex but also in the basal ganglia, including

the head of the caudate nucleus and its networks.5-7

Although frontostriatal circuits are associated with deci-

sion-making processes8 and patients with FTD show vari-

ous errors in decision-making,9-11 there is limited

available evidence regarding the features of decision-mak-

ing, particularly its network basis, in patients with ALS.

The probabilistic reversal learning (PRL) task is widely

used to assess deficits in decision-making associated with

the caudate nucleus, orbitofrontal cortex, and medial cin-

gulate cortex.8 The PRL task is composed of two stages,

that is, acquisition learning and reversal learning. Due to

its stochastic nature, performance is optimally achieved

by incremental learning of the action–outcome contin-

gency over many trials. Reversal learning needs a flexible

change in a previously established stimulus–response asso-
ciation when the prior response is no longer rewarding.

PRL also includes representative models of reinforce-

ment learning (RL), which is a behavioral process to learn

the values of actions to improve future outcomes using
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trial and error.12,13 RL has two critical parameters: learn-

ing rate (alpha), which represents the extent to which old

values are updated by newly acquired information, and

inverse temperature (beta), known as the degree to which

value estimates influence choice; high inverse tempera-

tures indicate that individuals tend to select the higher-

value option, while low inverse temperatures indicate that

value differences between options govern choices to a les-

ser extent.

In the present study, we investigated alterations in PRL

findings in patients with ALS and their underlying net-

work basis using resting-state functional MRI (RS-fMRI).

We used intrinsic connectivity contrast (ICC),14 which is

a whole-brain voxel-based hypothesis-free analysis based

on graph theory that provides a correlation map without

prior information or assumptions.15

Methods

Participants

Patients with ALS were recruited at the Department of

Neurology at Nagoya University (March 2015 to Decem-

ber 2018). All patients fulfilled the El Escorial revised cri-

teria for probable laboratory-supported or probable

ALS.16 A board-certificated neurologist (W.H.) and

trained speech therapist (O.R.) conducted semi-structured

clinical interviews concerning the FTD criteria.17,18 Two

patients with ALS met the criteria for behavioral variant

FTD.

We also evaluated cognitively normal participants who

did not show any cognitive impairment (Addenbrooke’s

Cognitive Examination Revised [ACE-R] ≥ 89) or neuro-

logical and psychological diseases. Based on the Fazekas

hyperintensity rating system, we could not find white

matter abnormalities characterized by hyperintensities

more severe than grade 2 in T2-weighted MR images.19

All participants in the present study had adequate

vision (with or without eyeglasses) to perform the PRL

task.

This study was conducted according to the Ethical

Guidelines for Medical and Health Research Involving

Human Subjects endorsed by the Japanese government

and approved by the Ethical Review Committee of

Nagoya University Graduate School of Medicine. We

obtained written informed consent from patients with

ALS and cognitively normal participants.

Cognitive assessments

To assess general cognitive function, the Mini-Mental

State Examination (MMSE), ACE-R,20,21 Frontal Assess-

ment Battery (FAB), Stroop test, digit span (forward and

backward), and word fluency (letter and semantic) were

performed to assess detailed executive function in patients

with ALS.

PRL task

The PRL task comprised 120 trials. In each trial, the partici-

pants were presented with two abstract line drawings on

the left and right sides of the screen. The presentation side

was randomized for each trial. The participants were asked

to select one drawing by pressing a key within 1000 ms,

and were consequently presented with a reward or loss. If

the participant did not select a stimulus within the presen-

tation time window, the message “Time-up” appeared and

the next trial was initiated. During the first 60 trials, one

drawing had an advantageous option; the reward/loss fre-
quency ratio was 80:20. The other drawing had a disadvan-

tageous option; the reward/loss frequency ratio was 20:80.

After 60 trials, the contingencies were reversed without any

instruction to the participants (Supplementary Data 1).

Before starting the examination, we set up a practice task to

see if the participants understood the task. After the exami-

nation, we asked the participants how they had made their

choice and reconfirmed that they had understood the task.

The paradigm used here was based on previous studies.22

We excluded participants whose score during the

acquisition phase was over 1.5 standard deviations below

the mean score of cognitively normal participants because

they might not have understood the task. We also

excluded cognitively normal participants whose score of

the reversal phase was over 1.5 standard deviations below

the mean score to only select participants who performed

the task successfully.

Learning models

We used Q-learning, win–stay, lose–shift (WSLS), and

random choice models to classify choice behavior.8 When

analyzing decision-making behavior through RL, the elim-

ination of subjects who randomly select their choices is

generally used.23,24 In decision-making tasks, including

the PRL task, it is well known that some participants

make decisions based on the WSLS model instead of the

RL model. The WSLS model is only sensitive to the out-

come of the previous choice, and the mathematical for-

mulas used for analysis are different.13,25,26 It is also

necessary to exclude cases who adopt the WSLS model

when analyzing decision-making behavior.

The Q-learning model is one of the most famous com-

putational RL models. This model updates action values

based on the Rescorla–Wagner model.13,25 After the par-

ticipant chooses a stimulus and feedback is presented, the

estimated action values are updated as follows:
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Qsðtþ1Þ¼QsðtÞþαðRðtÞ�QsðtÞÞ

where QsðtÞ is the estimated action value for stimulus s

on trial t, and R(t) is the reward value of the choice on

trial t. Given the estimated values are set, the probability

of choosing stimulus 1 in the next trail is determined as

the soft-max function below:

PðaðtÞ¼1Þ ¼ 1

1þ e�βðQ1ðtÞ�Q2ðtÞÞ

where a(t) represents the participant’s choice on trial t.

The probability of choosing stimulus 2 is calculated by

the following equation:

PðaðtÞ¼2ÞðtÞ¼ 1�Pða tð Þ¼1ÞðtÞ:
We adopted the maximum-likelihood approach to fit

the parameter set of alpha and beta to the participant’s

choice behavior. The log-likelihood for the entire trial is

as follows:

LL¼ ∑
T

t¼1
logPaðtÞðtÞ:

The optima function in R was employed to find the

parameter set that produced the highest log-likelihood.

The WSLS model in the present study had two param-

eters. The first parameter represented the probability of

staying with the same option on the next trial if a reward

was provided:

PðstayjwinÞ ¼ Pðaðtþ1Þ¼aðtÞjRðtÞ¼1Þ

The probability of switching to another option follow-

ing a win trial was 1�PðstayjwinÞ. The second parameter

represented the probability of shifting to another option

on the next trial if a reward was not provided:

Pðlosejshif tÞ ¼ Pðaðtþ1Þ≠aðtÞjRðtÞ¼0Þ

The probability of staying with an option following a

loss trial was 1�Pðshif tjlossÞ.
26

In the random choice model, each choice of options

was made randomly and in equal frequency.

To clarify which strategy the participant adopted, we

compared the goodness-of-fit of the three models with the

best-fit parameter set. We computed Akaike’s information

criterion (AIC), as shown by the following equation27:

AIC¼�2Lþ2k

where k is the number of free parameters (two for the

standard Q-learning model, two for the WSLS model,

and zero for the random choice model). We regarded the

model with the smallest AIC value as the strategy the par-

ticipant adopted, and targeted participants who employed

the Q-learning model.

Logistic regression analysis

Logistic regression analysis of alpha and beta values

showed the extent to which the participant’s choice

behavior was characteristic to ALS compared with the

control group. This estimated logistic regression equa-

tion was designated as “Pαβ” in the current study. By

using receiver operating characteristic (ROC) analysis, we

calculated the value of Pαβ that most efficiently discrimi-

nated between the ALS and control groups. Based on the

value of Pαβ, patients with ALS were classified into two

groups: patients with anomalous choice behavior and

patients with normal choice behavior. We compared ALS

patients who had anomalous choice behavior with those

who had normal choice behavior, and assessed the clinical

features in ALS patients with anomalous choice behavior.

Analysis of RS-fMRI

RS-fMRI was used to identify the underlying neural net-

works linked to specific choice behavior in patients with

ALS. All MRI scans were performed using a Siemens

Magnetom Verio (Siemens, Erlangen, Germany) 3.0-T

scanner with a 32-channel head coil at the Brain and

Mind Research Center. High-resolution T1-weighted

images (T1-WI) were acquired using the following

parameters: repetition time (TR) = 2.5 s, echo time

(TE) = 2.48 ms, 192 sagittal slices with 1-mm thickness,

field of view (FOV) = 256 mm, 256 × 256 matrix size,

and an in-plane voxel resolution of 1 × 1 mm2. Eight-

minute closed eyes resting-state functional images were

obtained with echo-planar imaging using the following

parameters: TR = 2.5 s, TE = 30 ms, 39 transversal slices

with a 0.5-mm interslice interval and 3-mm thickness,

FOV = 192 mm, 64 × 64 matrix dimension, flip angle =
80°, and 198 volumes.

Functional MRI data were preprocessed using the

default pipeline as the standard procedure implemented

in Conn Functional Connectivity Toolbox version 18b,28

using MATLAB. The first five volumes of each partici-

pant’s data were discarded to remove initial image inho-

mogeneity. Then, each participant’s images were

realigned, unwarped to remove dynamic EPI distortions,29

slice-time corrected, co-registered to the bias corrected

T1-WI, segmented and normalized to Montreal Neurolog-

ical Institute coordinates, resampled to an isotropic voxel

resolution of 2 × 2 × 2 mm3, and smoothed using an 8-

mm FWHM Gaussian filter. Moreover, the principal com-

ponent-based noise-correction CompCor approach was

applied to remove the BOLD signal noise associated with

white matter and cerebrospinal fluid. Band-pass filtering

was performed with a frequency window of

0.008–0.09 Hz. Artifact detection tools (ART)-based
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outlier detection and scrubbing were performed to elimi-

nate the effects of head motion.

ICC analysis

In graph theory, “degree centrality” represents the num-

ber of direct connections between a given region and the

rest of the brain. By measuring degree centrality, ICC

analysis detects hub regions.14 We calculated the ICC-

power (ICC-p) value that could be interpreted as a

“weighted” degree centrality, a network measure repre-

senting the number of connections between a given voxel

and the rest of the brain, obtained with the connectivity

threshold set to 0. We performed correlation analysis

between the ICC-p value and Pαβ using the CONN tool-

box considering age, sex, and education history as nui-

sance covariates. Statistical significance was set at a height

threshold of P < 0�005, FDR-corrected cluster-size thresh-

old of P < 0�05, and one-sided negative contrast to reveal

network dysfunction. We calculated the mean ICC-p

value of the cluster with significantly different ICC-P val-

ues.

We subsequently performed seed-to-voxel analysis to

identify the origin of the alterations in degree centrality.

First, all regions with significantly different ICC-p values

were extracted as the regions of interest for seeds. The

average filtered BOLD signal in each seed was evaluated,

and its bivariate correlation with the BOLD signal in all

other voxels in the brain was computed. Then, we con-

ducted correlation analysis on the calculated connectivity

and Pαβ. The results were assessed with a cluster-forming

height threshold of P < 0.005 and FDR-corrected cluster-

size threshold of P < 0.05.

Statistical analyses

Clinical backgrounds and cognitive examinations were

compared using the Mann–Whitney or chi-squared test.

The threshold of statistical significance was set at

P < 0.05. Statistical analyses were performed using the

Statistical Package for the Social Sciences (SPSS) version

24 (SPSS, Inc., Chicago, IL, USA).

Results

Specific choice behavior in patients with
ALS

We performed the PRL task in 127 cognitively normal

people and 90 patients with ALS. Clinical backgrounds

and cognitive examinations are shown in Supplementary

Data 2. Although there were no significant differences in

the scores of the PRL tasks and ratio of strategies

classified by AIC, we found some ALS patients demon-

strated a unique choice behavior (Figure 1), that is, they

rarely changed their choice, with few switches in the early

stage of the acquisition and reversal phases. Few cogni-

tively normal participants showed such a pattern. Thus,

we selected cognitively normal participants with typical

choice behavior as control subjects and compared them

with ALS patients, to reveal the choice behavior features

of ALS patients with unique choice behavior.

First, we excluded 19 cognitively normal participants

who scored below 1.5 standard deviations from the mean

score during the acquisition and/or reversal phase (score

at acquisition phase < 28, score at reversal phase < 20)

since they could not perform the PRL task appropriately.

Second, we classified their strategies of choice behavior

into Q-learning, WSLS, and random choice models, using

AIC. Since the unique choice behavior of patients with

ALS had the lowest AIC value of Q-learning among the

three models, we selected 62 from 90 patients with ALS

and 66 of 108 control participants who adopted RL (Q-

learning model) and evaluated the parameters in the Q-

learning model. Finally, we excluded three control partici-

pants who showed abnormal inverse temperature with

scores over 3 standard deviations from the mean score

(Supplementary Data 3).

Demographic and cognitive features of
participants with the Q-learning model

Choice data from 62 patients with ALS and 63 control

participants were best fitted using the Q-learning model.

Clinical backgrounds and results of the PRL task are

shown in Table 1. Although there was no significant dif-

ference in age, the ALS group exhibited significantly lower

education and MMSE and ACE-R scores. In the PRL task,

there were no significant differences in total score, score

at acquisition phase, or score at reversal phase between

the ALS and control participants. Although the alpha

value tended to be lower in the ALS group, it was not sig-

nificantly different from the control group. The mean

PRL beta value was significantly higher in patients with

ALS compared to controls.

Features of choice behavior in patients with
ALS

Figure 1 shows a representative specific choice pattern,

with low exploration and high exploitation, observed in

patients with ALS, with high beta values, but relatively

variable alpha values. However, ALS patients who had a

mild to moderate increase in beta values (from 5 to 10)

showed lower alpha values than controls. Besides, there

was no significant correlation between alpha and beta
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values in patients with ALS. Thus, we applied logistic

regression analysis to predict the probability of ALS (Pαβ)

based on the two parameters concerning choice behavior.

According to AIC, Pαβ yielded stronger explanatory power

than those using alpha or beta values alone (AIC alpha =
174.69, AIC beta = 163.78, AIC alpha and beta =
162.12). A higher Pαβ well represented the unique choice

pattern observed in patients with ALS (Figure 2). A Pαβ
cutoff value of 0.512 provide optimal separation between

ALS patients and controls in ROC analysis (area under

the ROC curve, 0.666 [95% confidence interval

0.571–0.761]; sensitivity, 0.565; and specificity, 0.762).

There were no significant correlations between Pαβ and

age, education, disease type, disease duration, disease

severity (ALS Functional Rating Scale Revised [ALSFRS-

R]), and other scores of cognitive tests in patients with

ALS (Supplementary Data 4).

Clinical characteristics and ALS-specific
choice behavior

Using a Pαβ cutoff value of 0.512, 35 out of 62 ALS

patients were classified into the ALS anomalous choice

behavior group. In a comparison of ALS patients who

had anomalous choice behavior with those who had typi-

cal choice behavior, there were no significant differences

in clinical backgrounds and conventional cognitive exami-

nations. In the PRL task, ALS patients with anomalous

choice behavior exhibited significantly higher scores at the

acquisition phase, lower alpha values, and higher beta val-

ues (Supplementary Data 5).

In the 35 patients with ALS who had anomalous choice

behavior, the total score of the PRL task was significantly

correlated with alpha, MMSE, and ACE-R. Furthermore,

the score at the acquisition phase was significantly

correlated with MMSE. The score at the reversal phase

was significantly correlated with alpha and MMSE

(Supplementary Data 6).

Functional connectivity changes associated
with ALS-specific choice behavior

We performed RS-fMRI in 34 patients with ALS and 33

age- and sex-matched control participants. There were no

significant differences in clinical backgrounds, PRL scores,

parameters, and Pαβ of ALS patients who underwent MRI

and those who did not undergo MRI. ALS patients who

underwent MRI had higher ACE-R scores than those who

did not (Supplementary Data 7).

ICC analysis demonstrated that Pαβ was associated with

decreased degree centrality in the region of the anterior

cingulate gyrus and frontal pole (Figure 3). Only the ALS

group showed a significant correlation between the degree

centrality Z-score in this region and Pαβ score (r =
−0.712, p < 0.001; Figure 4). Seed-based analysis from

the region of the anterior cingulate gyrus and frontal pole

Figure 1. Examples of anomalous choice behavior in cognitively normal participants and patients with amyotrophic lateral sclerosis (ALS). Some

ALS patients followed a rational method of choice behavior, in which after a short or no trial and error, they learned to choose the advantageous

stimulus with minimum selection of the disadvantageous stimulus. When the contingencies changed, they shifted to a new advantageous

stimulus with minimum selection of the disadvantageous stimulus. Conversely, typical decision-making in control participants had some

exploration choices. The red dot indicates when the participants received a reward feedback signal (“Atari” in Japanese). The blue dot indicates

when the participants did not receive a reward. The blue line indicates a change in participant choice. The absence of a sign indicates that the

participants did not select a stimulus within the presentation time window. Akaike’s information criterion showed anomalous decision-making in

patients with ALS had the lowest value in the Q-learning model (Q-learning = 33, WSLS = 46, random choice = 158).
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revealed that patients with ALS had decreased functional

connectivity with the paracingulate gyrus, frontal medial

cortex, anterior cingulate gyrus, frontal pole, subcallosal

cortex, and superior frontal gyrus (Supplementary Data

8).

Discussion

This is the first study to demonstrate that ALS patients

could have an anomalous decision-making pattern, in

which there is little exploration and infrequent shifts in

their choice to other PRL task alternatives. ALS patients

barely chose the option they deemed disadvantageous, but

often changed their choice when they thought the value

of the two alternatives was equal. Pαβ calculated by the

Q-learning model and logistic regression analysis well rep-

resented the unique choice pattern of patients with ALS.

Pαβ was not correlated with age, education, other conven-

tional cognitive tests, and disease severity. Network analy-

sis using the ICC method demonstrated a significant

correlation between Pαβ and decreased degree centrality in

the regions associated with decision-making (including

the anterior cingulate gyrus and frontal pole). Altered

decision-making in ALS patients may be related to the

decreased hub function of medial prefrontal areas.

RL, Q-learning model, inverse temperature,
and learning rate

The PRL task was designed to assess RL capacity, but as

Worthy et al30 demonstrated, participants often use

heuristic-based models, including the WSLS model, dur-

ing these kinds of tasks. In particular, when working

memory load was high, participants were more likely to

adopt WSLS strategies than RL.31 In the WSLS model,

they were more likely to stay-with or shift-to options with

higher expected values than options with lower expected

values (i.e., RL). The combined WSLS-RL dual-process

model may provide a superior fit to the data relative to

the WSLS model alone.32 When different learning param-

eters could be associated with positive and negative pre-

diction errors33,34 and participants had a high learning

rate and high inverse temperature, decision-making based

on Q-learning was close to that based on the WSLS

model.

However, individual choices in the Q-learning model

are not made in isolation, but are embedded in a series of

past experiences, decisions, and outcomes. Conversely, the

WSLS model is only sensitive to the outcome of the pre-

vious choice. The mathematical formulas used for analysis

are also different.13,25,26 We also thought the WSLS model

was a different strategy to RL. Random choice behavior

must also be treated as a different strategy from the RL

strategy because random choice behavior indicates the

failure of learning. Since the WSLS model and random

choice are different strategies to the RL model, and the

Q-learning model should be applied to the participants

who adopted RL, we used AIC to clarify which strategy

(i.e., the RL, WSLS, and random choice models) was the

most appropriate model and excluded participants classi-

fied as WSLS and random choice model. There were no

significant differences between the proportion of WSLS to

random choice between patients with ALS and control

participants. We found that the unique choice behavior

of ALS patients could be classified using the Q-learning

model. These findings supported the idea that the choice

model is determined independently of disease state.

The Q-learning model is the most commonly used RL

algorithm for model-free analysis of choice behavior. In

the PRL task, the Q-learning model provides two crucial

parameters, that is, inverse temperature (beta) and learn-

ing rate (alpha). The beta value determines the random-

ness of choice behaviors. Patients with ALS had high beta

values, indicating that they hardly shifted their choice to

another alternative, especially in a good situation.12,13 A

Table 1. Clinical features, cognitive examinations, and probabilistic

reversal learning (PRL) task results of patients with amyotrophic lateral

sclerosis (ALS) and control participants.

Control ALS P-value

N 63 62 -

Age (y) 63.4 (9.8) 66.0 (8.9) N.S. (0.152)

Sex (men: women) 24:39 40:21 0.002

Education (years) 14.1 (2.2) 12.1 (2.6) <0.001
Clinical phenotype

(spinal: bulbar: others)

- 44:16:2 -

Disease duration (years) - 1.9 (1.4) -

ALSFRS-R - 40.9 (4.1) -

MMSE 29.2 (1.1) 27.7 (2.1) <0.001
ACE-R Total score 97.3 (2.6) 89.0 (8.8) <0.001
ACE-R Orientation/attention 17.9 (0.3) 17.4 (1.3) 0.002

ACE-R Memory 24.7 (1.6) 20.4 (4.3) <0.001
ACE-R Fluency 13.7 (0.6) 12.2(2.4) <0.001
ACE-R Language 25.2 (1.0) 23.8 (2.1) <0.001
ACE-R Visuospatial abilities 15.7 (0.7) 15.2 (1.0) 0.004

Total score in PRL task 74.3 (7.6) 72.4 (9.4) N.S. (0.229)

Score at acquisition phase 41.7 (4.2) 40.9 (6.4) N.S. (0.980)

Score at reversal phase 32.6 (5.8) 31.5 (8.2) N.S. (0.692)

Alpha 0.4 (0.3) 0.3 (0.3) N.S. (0.197)

Beta 4.0 (1.7) 7.0 (7.1) 0.007

Data are shown as mean � standard deviation (SD). Age, years of

education, and scores in cognitive examinations and the PRL task

were compared by Mann–Whitney analysis. Sex was compared by the

chi-squared test. The statistical significance threshold was set at

P < 0.05. ACE-R, Addenbrooke’s Cognitive Examination revised;

ALSFRS-R, ALS Functional Rating Scale Revised; MMSE, Mini-Mental

State Examination; N.S., not significant.
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significantly higher beta value could indicate that they

were likely to select the higher value option, which might

reflect stereotypic and compulsive behavior.

The alpha value has a complex relationship with per-

formance in RL tasks; different learning environments

afford distinct optimal learning rates. However, a low

alpha value indicates difficulty in updating old values

despite newly acquired information, and subsequently no

shift in choice. In ALS patients with the unique choice

pattern, the alpha value was significantly correlated with

the total score and score at the reversal phase (Supple-

mentary Data 6). This could be attributed to optimization

of their internal model, indicating more flexible, goal-di-

rected actions due to representation of the contingencies

of the task and less accelerated exploration, in addition to

lower attention to the alternative choice after the situation

changed.35,36

Pαβ indicates anomalous decision-making
behavior in patients with ALS

The balance between “exploration” for searching for a

better choice and “exploitation” for obtaining a large

reward is said to be one of the major issues in RL. ALS

patients did not change their choice as frequently as con-

trols (Figure 1), which means the change of the balance

of exploration vs. exploitation trade-off. ALS patients

barely chose the option that they thought was disadvanta-

geous, although they often changed their choice when

they thought the value of the two alternatives had become

equal. Their choice behavior seemed to be strictly guided

by action values that are estimated through RL (such as

Q-learning). This anomalous choice behavior is the key

point in the change in choice behavior in patients with

ALS.

Figure 2. Logistic regression analysis using alpha and beta values. Logistic regression analysis using Q-learning parameters (alpha and beta)

demonstrated that Pαβ reflects the specificity of choice behavior in patients with amyotrophic lateral sclerosis (ALS). Pαβ was calculated using the

following equation: Pαβ¼ 1
1þe0:742þ1:263α�0:245β. A higher Pαβ was associated with more ALS-specific choice behavior. Examples of choice behavior are

shown in 1–6 (1–5 showed anomalous choice behavior; 6 showed typical choice behavior). The line (P = 0.512) demonstrates ROC analysis

results, which determined the most effective division between the ALS and control groups.
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In the current study, we used Pαβ, which was a better

measure of anomalous PRL behavior in patients with

ALS. The use of only alpha or beta values could not com-

pletely explain the uniqueness of choice behavior in

patients with ALS. AIC showed Pαβ had stronger explana-

tory power than alpha or beta values alone. Interestingly,

ICC analysis showed that Pαβ was significantly correlated

with decreased degree centrality in the anterior cingulate

gyrus and frontal pole in patients with ALS. This region

was reportedly associated with the decision-making pro-

cess based on perceptual cues and reward values.37 Fur-

thermore, patients with ALS frequently show pathological

changes in these regions.3,38 These findings support the

idea that Pαβ, induced by both alpha and beta values, can

represent the anomalous decision-making behavior related

to the involvement of the prefrontal cortex in patients

with ALS.

Network alterations and altered decision-
making in patients with ALS

Seed-based analysis from the anterior cingulate gyrus and

frontal pole revealed changes in functional connectivity to

regions that consist of the paracingulate gyrus, frontal

medial cortex, anterior cingulate gyrus, frontal pole, sub-

callosal cortex, and superior frontal gyrus. The medial

prefrontal cortex monitors whether choice behavior is

reliable and enforces the switch from exploitation to

exploration.37,39 The functional connectivity of the frontal

polar cortex alters when someone decides to switch to the

alternative behavior, since the frontal pole plays a role in

monitoring the alternative course of action.37,40 The

reorganization of these networks might lead to a change

in the balance between exploitation and exploration,

or influence the switch to the alternative behavior,

Figure 3. Decreased degree centrality associated with Pαβ in patients with amyotrophic lateral sclerosis (ALS). Analysis of resting-state functional

magnetic resonance imaging using intrinsic connectivity contrast demonstrated that the Pαβ was associated with decreased degree centrality at

the medial prefrontal cortex. This area consisted of the anterior cingulate gyrus and frontal pole in patients with ALS. The results were assessed

using a cluster-forming height threshold of P < 0.01 and family-wise error-corrected cluster-size threshold of P < 0.05.
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subsequently producing the anomalous choice behavior in

patients with ALS.

Influence of motor dysfunction in patients
with ALS on the PRL task

Upper and lower motor neurons are affected in patients

with ALS, which could influence the selections made by

pressing a key within a short period of time. Motor def-

icits might make ALS patients have a stronger choice

perseverance tendency than control participants. How-

ever, we carefully assessed whether ALS patients per-

formed the PRL task appropriately. We postulated that

motor deficits could not significantly influence the

uniqueness of choice behavior in ALS patients. There

were no significant differences in the scores and strate-

gies of the PRL task between ALS and control partici-

pants. Furthermore, the anomalous choice behavior

linked with a high Pαβ required the selection of the

advantageous stimulus, which was randomly presented

on either the left or right side in each trial. Moreover,

there was no significant correlation between Pαβ and dis-

ease duration, type, and severity (ALSFRS-R). Thus,

changes in choice behavior were not mainly due to

motor dysfunction.

Limitations

We classified the participants’ strategies into Q-learning,

WSLS, or random choice using only standard models. In

standard RL models, the action values are assumed to be

updated according to the reward prediction error.

Numerous studies have noted that the magnitude of the

update is biased depending on the sign of the reward pre-

diction error.33,34 The bias is represented in RL models by

differential learning rates for positive and negative reward

prediction errors.

Regarding the sensitivity of the choice probabilities

shown by inverse temperature, choice perseverance,

shown by choice trace weight “ϕ”,25,41 more closely fitted

ALS symptoms. Thus, in future work, it is recommended

that other mathematical schemes be compared to reveal

the anomalous choice behavior of ALS patients.

We found there were significant differences in cognitive

function, especially memory, fluency, and language,

between ALS patients and cognitively normal controls

(Supplementary Data 2 and Table 1). Previous studies

also showed ALS patients had frontotemporal dysfunc-

tion.3,42 Our results supported the findings of these stud-

ies. However, the participants performed a practice task

before the PRL task to ensure they knew how to perform

Figure 4. Correlation between degree centrality of regions of interest and Pαβ. The correlation between the Z score of degree centrality and Pαβ
are shown. The Z score of degree centrality correlates with Pαβ in patients with amyotrophic lateral sclerosis (r = −0.712, P < 0.001).
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the task. Besides, we could not find a significant correla-

tion between Pαβ and conventional cognitive examina-

tions. We postulated that cognitive dysfunction assessed

by conventional examinations could not explain the

anomalous choice behavior of patients with ALS.

Another limitation was that we assessed ICC with a

cluster-forming height threshold of P < 0.005. However,

the contributing neural systems in our analysis overlapped

with those found in task-fMRI studies. Thus, it is best to

perform RS-fMRI analysis with more participants in a

future study to obtain more reliable results.

Conclusion

ALS patients showed anomalous changes in choice behav-

ior during the PRL task. The Q-learning model and logis-

tic regression analysis were useful for quantifying the

decision-making process. Analysis of RS-fMRI by ICC

suggested that the anomalous changes in choice behavior

in patients with ALS were associated with decreased

degree centrality of medial prefrontal areas. Altered deci-

sion-making in ALS patients may be related to the

decreased hub function of these areas.
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in the Supporting Information section at the end of the

article.

Supplementary Data 1. Schematic representation of the

probabilistic reversal learning task. A) Time course of a

trial: The task comprises 120 trials. Following presenta-

tion of a cross-hairs as a fixation on each trial, partici-

pants are presented two abstract line drawing on the left

and right side of the fixation. Abstract stimuli were uti-

lized to prevent participants from verbal coding and

developing simple memory strategies. Subsequently partic-

ipants choose one of the two stimuli by pressing a key
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within 1000 ms. After that, a feedback signal indicating

either a reward (in Japanese “Atari”) or a loss (in Japa-

nese “Hazure”) is presented. If the participant did not

select a stimulus within the presentation time window,

the message “Time-up” (in Japanese “Jikangire”)

appeared and the experiment continued. Stimulus mate-

rial was run by Presentation (Neurobehavioral Systems,

Albany, CA). B) Reward/loss ratio: During the first 60 tri-

als, one stimuli is an advantageous option, in which

reward/loss frequency ration was 80:20, whereas the other

stimuli is a disadvantageous option, in which the reward/
loss frequency is 20:80. The contingencies are reversed in

the last 60 trials without any instruction to participants.

Supplementary Data 2. Clinical features and cognitive

examinations and PRL task results in ALS patients and

cognitively normal control participants. Data are shown

as mean � standard deviation (SD). Age, years of educa-

tion, scores in cognitive examinations, and PRL task were

compared by Mann–Whitney analysis. Sex was compared

by chi-squared test. The statistical significance threshold

was set at P < 0.05. ACE-R: Addenbrooke’s Cognitive

Examination revised; MMSE: Mini-Mental State Examina-

tion; PRL: Probabilistic Reversal Learning.

Supplementary Data 4. Correlation coefficient between

Pαβ and age, education, disease duration, and conven-

tional cognitive examinations. Pearson’s rank correlation

coefficient was performed to reveal the correlation

between Pαβ and the clinical backgrounds. Spearman’s

rank correlation was performed to reveal the correlation

between Pαβ and disease type. *: P-value < 0.05, **: P-
value < 0.001.

Supplementary Data 5. Clinical backgrounds of patients

with amyotrophic lateral sclerosis who had anomalous

choice behavior and those who had typical choice behav-

ior. Data are shown as mean � standard deviation (SD).

Age, education, disease duration, ALSFRS-R, MMSE,

ACE-R, and PRL task were compared by Mann–Whitney

analysis. Sex and clinical phenotype were compared by

chi-squared test. The statistical significance threshold was

set at P < 0.05. ACE-R: Addenbrooke’s Cognitive Exami-

nation revised; MMSE: Mini-Mental State Examination;

PRL: Probabilistic Reversal Learning.

Supplementary Data 6. Clinical features and cognitive

examination and probabilistic reversal learning (PRL) task

data of patients with amyotrophic lateral sclerosis (ALS)

with a higher Pαβ. Pearson’s correlation coefficient was

performed to reveal the correlation between scores and

the clinical backgrounds, parameters, P-index, and con-

ventional cognitive examinations. Only Sex and Disease

Types were analyzed by Spearman’s correlation. *: P-

value < 0.05, **: P -value < 0.001. MMSE: Mini-Mental

State Examination, ACE-R: Addenbrooke’s Cognitive

Examination revised.

Supplementary Data 7. Clinical backgrounds of patients

with amyotrophic lateral sclerosis (ALS) who underwent

magnetic resonance imaging (MRI) and did not undergo

MRI. Data are shown as mean � standard deviation

(SD). Age, education, disease duration, ALSFRS-R,

MMSE, ACE-R, and PRL task were compared by Mann–-
Whitney analysis. Sex and clinical phenotype were com-

pared by chi-squared test. The statistical significance

threshold was set at P < 0.05. ACE-R: Addenbrooke’s

Cognitive Examination revised; MMSE: Mini-Mental State

Examination; PRL: Probabilistic Reversal Learning.

Supplementary Data 3. Selection of participants in the

probabilistic reversal learning (PRL) Task.

Supplementary Data 8. Seed-based analysis (SBA) in

amyotrophic lateral sclerosis (ALS). SBA from the region

of the anterior cingulate gyrus and frontal pole revealed

that patients with ALS had decreased functional connec-

tivity with the paracingulate gyrus, frontal medial cortex,

anterior cingulate gyrus, frontal pole, subcallosal cortex,

superior frontal gyrus.. The threshold was set at

P < 0.005 for a cluster-forming height threshold and an

FDR-corrected cluster-size threshold of P < 0.05.
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