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Chapter 1

Introduction

1.1 Introduction

The key to modern human civilization lies, arguably, in the ability to ex-
change, store, and process information. Even before the common era, hu-
mans used to engrave texts on stones, presumably as a means of storing and
communicating information. After the invention of letterpress printing in
15th century, paper become a major media for information storage. Analog
recordings of sound and images were made available in the 19th and 20th
century, and computers started to be developed around mid 20th century.
The information age began and humans became capable of handling larger
amounts of data. Computer chips are now so densely packed that we are
now facing an inevitable challenge of quantum tunneling 1. Another major
issue is the energy consumption of computers; the amount of electricity used
by large IT companies is comparable to the electricity consumption of whole
nations [1]. We are now in desperate need for next generation computer
devices that are more reliable and energy efficient.

Conventional computer components rely on electric charge as informa-
tion bits, and are therefore by its very nature vulnerable to electric pertur-
bations such as ionizing radiations. Spintronics was developed to overcome
inherent weaknesses in electronics by exploiting the spin degrees of freedom

1Today, we have personalised computers that can compute 5 × 109 instructions per
second. At such high frequencies, even light cannot travel further than 10cm during a
cycle, so silicone based IC chips cannot be larger than a few cm2. The chip components
must therefore be packed as densely as possible, and modern day processors have their
wirings less than ten nanometers apart.

1
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in electrons. Spintronics based their development on ferromagnetic mate-
rials, and devices such as the racetrack memory [2] and magnetoresistive
random access memories (MRAMs) were proposed. MRAMs have proven
themselves useful in equipments that need high reliability such as aircraft
and cars [3]. Although ferromagnetic memory devices are immune to elec-
trical perturbations, they are weak against magnetic perturbations because
information must be stored in the orientation of magnetization. Hence, re-
cently researchers in the field of spintronics are starting to focus more on
antiferromagnetic materials, because of their immunity to both electric and
magnetic perturbations. Antiferromagnetic materials have additional advan-
tages over ferromagnets, such as the versatility of materials and fast spin
dynamics [4, 5, 6, 7, 8].

The immunity of antiferromagnets to external perturbations is a double-
edged blade, because it makes the manipulation and detection of spin ori-
entation extremely challenging. Observing antiferromagnetic spins is hard
because they do not produce any stray fields, and are not accompanied by
macroscopic angular momentum. Another reason why antiferromagnets are
hard to tackle is because of the lack of an elucidating theoretical backbone.
The number of theoretical calculations in antiferromagnets are scarce com-
pared to ferromagnetic ones, mainly due to two reasons: first, a proper the-
oretical treatment of antiferromagnets necessitates the consideration of at
least two sublattices which makes the theory more complicated, and second,
macroscopic spin conservation arguments that were applicable in ferromag-
nets are absent in antiferromagnets. The goal of this thesis to establish a firm
theoretical framework that allows for a better understanding of the dynamics
of antiferromagnetic spins, and the means to control them.

In the body of this thesis, we explore different ways to manipulate anti-
ferromagnetic spins. Chapter 2 of this thesis is concerned about the effect
of magnetic fields on antiferromagnets, since magnetic field is the most fun-
damental external perturbation to manipulate magnetic materials. We show
that inhomogeneous magnetic fields are capable of moving antiferromagnetic
spin textures. Chapters 3 and 4 discusses the effect of conduction electrons
on antiferromagnetic spins. Manipulation of spins using electrical currents is
ideal from a scalability perspective. In chapter 3, we develop a theory that
studies the motion of antiferromagnetic spin textures induced by conduction
electrons. Quantum field theory is used for the treatment of conduction elec-
trons. In chapter 4, the effect of conduction electrons on antiferromagnetic
spin waves is explored, and the differences to ferromagnets is discussed in
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detail. A short summary is given in chapter 5.

1.2 Spin dynamics

Before diving into antiferromagnets, we first go over the basics of spin dy-
namics. We show here the “derivation” of the Lagrangian of a single spin
in the framework of classical mechanics. Consider a rigid body with cylin-
drical symmetry. Ignoring its translational motion, the Lagrangian for its
orientational degrees of freedom can be written as

L =
I1

2
(θ̇2 + φ̇2 sin2 θ) +

I3

2
(ψ̇ + φ̇ cos θ)2 −H(θ, φ) (1.1)

where I1 and I3 are moments of inertia orthogonal and parallel to the sym-
metry axis, θ and φ specify the orientation, and ψ is the angle around the
symmetry axis. The dot represents a time derivative, and H denotes the
potential energy. Now, let us shrink this cylinder to an infinitesimal size
while retaining a constant angular momentum along the symmetry axis, i.e.
I1, I3 → 0 and I3ψ̇ = ~S, just like an electron. Then, the Lagrangian takes
the form

L = ~Sφ̇ cos θ −H(θ, φ) (1.2)

where (~S)2

2I3
has been dropped because it is a constant. This is nothing but

the Lagrangian of a single spin [9]. From this Lagrangian, the equation of
motion of the spin is derived as

~Ṡ =
∂H

∂S
× S (1.3)

which describes the precession of the spin around an effective field ∂H
∂S

.
One of the main missions of spintronics is to take full control of this

equation of motion, and the most straight forward method is by using mag-
netic field. As it has been demonstrated by the Einstein-de Haas effect and
Barnett effect 2, charged particles with spin give rise to magnetization. An

2Einstein-de Haas effect measured the change in mechanical angular momentum by
changing the magnetization direction of a ferromagnet. The paper was published in 1915,
before the discovery of electron spin in 1925. This experiment proved the connection be-
tween angular momentum and magnetization. Barnett effect is the inverse of the Einstein-
de Haas effect.
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Figure 1.1: Illustration of a spin precessing around a magnetic field. Note
that a spin likes to point opposite to the magnetic field.

electron spin couples to external magnetic field (B) via the Zeeman coupling
as

HB = −µ ·B, (1.4)

µ = −gµBS = −γ~S, (1.5)

where µB = e~/(2m) is the Bohr magneton with e > 0 the elementary charge
and m the particle mass. g is a dimensionless constant called the g-factor
which is about 2.0023 for an electron in vacuum.

In quantum mechanics, the spin operator satisfies the commutation rela-
tion [Ŝi, Ŝj] = iεijkŜk where εijk is the Levi-Civita tensor. Using the Heisen-

berg equation of motion i~(dŜ/dt) = [Ŝ, Ĥ], the equation of motion for a
spin in a magnetic field (described by Ĥ = ĤB) is given by

d

dt
Ŝ = γB × Ŝ (1.6)

This describes the precession of a spin S = 〈Ŝ〉 around the magnetic field
B, similar to the equation of a rotating cylinder (See Fig. 1.1).

1.2.1 Landau-Lifshitz-Gilbert equation

The precessional motion of the spin does not last forever in realistic systems,
and some kind of damping is usually present. A phenomenological equa-
tion called the Landau-Lifshitz-Gilbert (LLG) equation is commonly used to
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account for the relaxation of spins in realistic systems,

d

dt
Ŝ = γB × Ŝ − α

S

(
S × d

dt
S
)

(1.7)

where α is a dimensionless constant called the Gilbert damping constant.
Note that the above equation of motion satisfies the constraint S · Ṡ = 0.
With damping in consideration, the energy dissipation rate of a spin under
magnetic field is given by

d

dt
HB = −~α

S

( d
dt
S
)2

+O(α2) (1.8)

so we have confirmed the Gilbert damping dissipates energy.
To account for damping in the Lagrangian formalism, one considers the

Rayleigh dissipation function

W =
~α
2S

( d
dt
S
)2

(1.9)

and calculate the equation of motion(
d

dt

δL

δṠ
− δL

δS
+
δW

δṠ

)
× S = 0 (1.10)

to retrieve the LLG equation 3. The external product ×S ensures S does
not change in length.

1.2.2 Ferromagnets

Let us now consider an array of spins that are interacting with each other.
Though various types of interactions exist, here we consider the ferromagnetic
exchange interaction dominant; this is described by the Hamiltonian

HF = −JF
∑
〈i,j〉

Si · Sj (1.11)

where JF > 0 is the ferromagnetic exchange constant and Si is a localized
spin placed at site i on the lattice. The summation, 〈i, j〉, is taken over
the nearest neighboring sites. This Hamiltonian achieves lower energy when

3Note the relation dH/dt = −2W .
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neighboring spins are parallel to each other (see Fig.1.2 (a)). With the ferro-
magnetic interaction dominating, the texture of spins in a ferromagnet can
be considered relatively smooth, so we can employ the continuum approx-
imation by Si · Sj = −1

2
(Si − Sj)2 + S2 ' −1

2
(aij · ∇S)2 + S2 where aij

is a vector connecting the two sites i and j. The ferromagnetic exchange
Hamiltonian in d-dimensions is written in the continuum limit as

HF =
JFa

2

2

d∑
i

∫
ddr

ad
(∂iS)2 (1.12)

where a is the distance between the two nearest neighbors.
Although the ferromagnetic exchange interaction is adequate to make all

spins point in the same direction via the spontaneous symmetry breaking,
this cannot describe realistic magnets, since the spins have no way to know
its orientation relative to the crystal lattice. (The needle of the compass
must rotate with the magnetization.) This is accounted for by the magnetic
anisotropy, often described by

HK = −K
2

∑
i

(Szi )2, (1.13)

where K > 0 is the anisotropy constant, and we chose the z axis to be the
easy axis 4. The microscopic origin of magnetic anisotropy lies in the spin-
orbit coupling and magnetic dipole-dipole interaction. With the easy axis
anisotropy, the ground state of the ferromagnet is achieved by pointing all
spins in the positive (or negative) z direction.

With the anisotropy Hamiltonian, the equation of motion of the ferro-
magnetic spins is given by

~Ṡ = −JFa2(∇2S)× S −KSz ẑ × S (1.14)

Let us solve this ferromagnetic spin equation of motion using the small
amplitude method. That is, we assume the ferromagnetic spins to point
mostly in the z direction, and consider the small deviation from it as S =

4One also has the freedom to choose a hard axis, HK′ = K′

2

∑
i(S

y
i )2, with K ′ > 0.

This is also called the easy plane, because the spins happily point anywhere orthogonal to
the hard axis. Other anisotropies that are not covered include magnetic shape anisotropy,
which comes from the magnetic dipole-dipole interaction and is the dominant anisotropy
in permalloy.
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Figure 1.2: Illustration of various magnetic structures. (a) Uniform ferro-
magnet. (b) Uniform antiferromagnet. (c) A ferromagnetic domain wall. (d)
An antiferromagnetic domain wall.

Sẑ + δneiq·r−iωt. To first order in δn (⊥ ẑ), one obtains the equation of
motion

−i~ωδn = (JFSa
2q2 +KS)δn× ẑ. (1.15)

This equation of motion describes spin waves, which is the small precession
of spins that propagate through the ferromagnet. The dispersion relation is
given by a parabola

~ω = JFSa
2q2 +KS. (1.16)

This is known as the ferromagnetic spin wave dispersion relation. Note that
the anisotropy constant gives rise to a gap in the spin wave dispersion.

1.2.3 Antiferromagnets

Changing the sign of the ferromagnetic exchange constant, one has the anti-
ferromagnetic exchange interaction described by the following Hamiltonian

HAF = J
∑
〈i,j〉

Si · Sj (1.17)

where J > 0 is the antiferromagnetic exchange constant. This Hamiltonian
achieves lowest energy when neighboring spins are aligned opposite to each
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other (see Fig. 1.2 (b)). A detailed derivation of the antiferromagnetic spin
equation of motion with anisotropy and magnetic field is given in chapter 2.
The effect of electric current on the antiferromagnetic spins is discussed in
chapters 3 and 4.

1.3 Spin textures

In the previous section, we have studied spin waves, which are the collective
low-energy excitations of localized spins.

In this section, we look at another type of excitation in ferromagnets
called domain walls (See Fig. 1.2 (c)). Domain walls are anticipated to play
a crucial role in spintronic devices, for example as memory bits in race-track
memories [2]. A domain wall solution can be obtained by solving the equation
of motion of ferromagnetic spins in the static case.(

JFa
2(∇2S) +KSz ẑ

)
× S = 0, (1.18)

or

λ2∇2θ − sin θ cos θ(1 + λ2(∇φ)2) = 0 (1.19)

sin θ∇2φ+ 2 cos θ(∇θ)(∇φ) = 0 (1.20)

where we wrote S = Sn = S(sin θ cosφ, sin θ sinφ, cos θ), and λ =
√
JFa2/K.

A trivial solution is S = ±Sẑ. This is the lowest energy state of the Hamil-
tonian. A non-trivial solution with ∇φ = 0 and the only spatial varia-
tion in the x direction (i.e. ∂xθ 6= 0), also with a boundary condition
S(x = ±∞) = ±Sẑ, is given by

cos θ = tanh[(x−X)/λ], sin θ = 1/ cosh[(x−X)/λ]. (1.21)

This describes a ferromagnetic domain wall with domain wall width λ located
at position X. Note that the magnetic anisotropy is essential for the domain
wall to stabilise. Large magnetic anisotropy (or small exchange interaction)
results in a shorter domain wall width, and vice versa.

1.4 Conduction electrons and the s-d model

Let us demonstrate in this section the basics of the treatment of conduction
electrons, and model their interactions with ferromagnetic spins.
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1.4.1 Electrical conductivity

In this thesis, all conduction electrons are considered in the tight-binding
Hamiltonian

Hel = −t
∑
〈i,j〉

[
c†icj + H.c.

]
+ Vimp (1.22)

where t is the hopping integral, c†i = (c†i,↑, c
†
i,↓) is the electron creation operator

at site i, and Vimp is the impurity potential. The kinetic energy part of this
Hamiltonian can be solved by Fourier transformation

ci =

√
1

N

∑
k

cke
iri·k, c†j =

√
1

N

∑
k

c†ke
−irj ·k (1.23)

as

Hel =
∑
k

c†kεkck + Vimp (1.24)

where εk = −2t
∑d

l=1 cos(akl) for a d-dimensional lattice, where a is the
distance to the nearest neighboring sites, and d the number of dimensions.
The summation k is taken over the Brillouin zone. The dispersion relation
of tight binding electrons in a 2-dimensional square lattice is given by εk =
−2t[cos(akx) + cos(aky)].

Let us from now on consider a 1-dimensional system for simplicity. With
the local charge density operator ni = −ec†ici with e > 0, and the continuity
equation ṅi = i[Hel, ni] = −(ji+1− ji), we define the current operator as ji =
it(−e)(c†ici−1− c†i−1ci). The total current J =

∑
i ji in Fourier representation

is given by

J = −e
∑
k

c†k(∂kεk)ck. (1.25)

The total electrical conductivity can be derived using the Kubo formula
as

Nσ = lim
ω→0

KR(ω)−KR(0)

iω
(1.26)

with

KR(ω) = i

∫ ∞
0

dt ei(ω+i0)t〈[J(t), J(0)]〉. (1.27)
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The average is taken withHel as 〈(· · · )〉 = tr[(· · · ) exp(−βHel)] / tr[exp(−βHel)].
Using the Green’s functions for the conduction electrons, the conductivity can
be written as

σ =
1

π

1

N

∑
k

(2te sin kx)
2GRGA (1.28)

where the Green’s functions are given by GR = 1/(µ − εk + iγ) and GA =
(GR)∗. µ is the chemical potential of the conduction electrons, and γ =
(2τ)−1 > 0 is the damping constant for which we shall see the derivation later.
The electrical conductivity is calculated by approximating the Lorentzian as
a delta function (GRGA = π

γ
δ(µ− εk)), and we finally get our hands on the

conductivity

σ = 2e2Dν (1.29)

where D = 〈v2
F 〉τ/d = ν−1 1

N

∑
k[(2t sin kx)

2]δ(µ − εk)τ is the diffusion con-
stant, and ν = 1

N

∑
k δ(µ − εk) is the density of states per spin. The factor

2 accounts for the spin degeneracy.

1.4.2 Born approximation

In this section, we go over the treatment of the impurity potential Vimp, and
determine the expression of the damping constant γ. For electric conductiv-
ity, it suffices to only consider non-magnetic point-like impurities

Vimp = ui

∑
i∈C

c†ici (1.30)

where C is a set of indices the impurities are placed at. The Fourier trans-
formation gives

Vimp = ui

∑
k,q

ρqc
†
kck−q (1.31)

with ρq = 1
N

∑
i∈C e

−iri·q. Finite q implies that Vimp breaks translational
symmetry. Performing an impurity average defined by 〈(· · · )〉imp = 1

NCNi

∑
C(· · · )

recovers translational symmetry. The summation
∑

C is performed over all
the possible sets of indices for the position of impurity potentials, Ni is the



1.4. CONDUCTION ELECTRONS AND THE S-D MODEL 11

total number of impurities, and NCNi
is the number of possible combinations

the impurities can be placed. Note that 〈1〉imp = 1, and

〈ρq〉imp = niδq,0, (1.32)

〈ρqρq′〉imp '
ni − (ni)

2

N
δq+q′,0 + (ni)

2δq,0δq′,0 (1.33)

' ni

N
δq+q′,0 (1.34)

where ni = Ni/N is the impurity density (See Fig. 1.3) 5. For the first

equality (Eq. (1.33)) we wrote Ni(Ni−1)
N(N−1)

' (ni)
2, and in the second equality

(Eq. (1.34)) we have dropped higher contributions in ni. In the Born ap-
proximation, only the contribution of Eq. (1.34) is considered for the self
energy as

γ = −niu
2
i

1

N

∑
k

ImG0,R (1.35)

= niu
2
i πν (1.36)

where the bare retarded and advanced Green’s functions are given byG0,R/A =
1/(µ− εk ± i0).

1.4.3 s-d exchange interaction

In chapters 3 and 4 of this thesis, we deal with antiferromagnetic metals
that is composed of conduction electrons and localized antiferromagnetic
spins. The interaction between the conduction electrons and localized spins
is described by the s-d exchange interaction 6, which is written as the inner

5For the second order perturbation of the impurity potential, we need 〈ρqρq′〉imp =
1

NCNi

∑
C

1
N2

(∑
i∈C e

−iri·(q+q′) +
∑

i∈C
∑

j(6=i)∈C e
−iri·q−irj ·q′

)
. In the first term, we

have taken the same impurities from ρq and ρq′ , and in the second term we two different

impurities. The second term equates to Ni(Ni−1)
N(N−1)

1
N2

∑
i e
−iri·q

[{∑
j e
−irj ·q′

}
− e−iri·q′

]
which becomes Ni(Ni−1)

N(N−1)
[
δq,0δq′,0 − 1

N δq+q′,0

]
' (ni)

2
[
δq,0δq′,0 − 1

N δq+q′,0

]
6The s-d exchange interaction models the interaction between 3d orbital electrons and

4s orbital electrons, and is useful for understanding 3d transition metals. The electrons
in the 3d orbital is assumed to give rise to the localized spins (magnetization), while only
the 4s electrons are made responsible for electrical conductivity. The microscopic origin
of the interaction is quantum, and comes from exchanging electrons. The strength of
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Figure 1.3: (a) Illustration of an electron scattered by impurities. (b) Feyn-
man diagram representing the impurity average Eq. (1.32). (c) Feynman
diagram representing the first term in Eq. (1.33). This is what will be con-
sidered in the Born approximation. A wave-vector summation is taken for
the Green’s function sandwiched by the impurity lines. (c) Feynman diagram
representing the second term in Eq. (1.33).

product between the localized spins and conduction electron spins,

Hsd = −Jsd

∑
i

Si · c†iσci (1.37)

where σ = (σx, σy, σz) is a vector of Pauli matrices.

s-d interaction with ferromagnets When conduction electrons interact
with a static and spatially uniform ferromagnetic background, the conduction
electron has the Hamiltonian

H0 = −t
∑
〈i,j〉

[
c†icj + H.c.

]
− JsdS

∑
i

c†iσ
zci + Vimp (1.38)

where the direction parallel to the ferromagnetic spins is chosen as the z
axis. The dispersion relation is given by εk ± JsdS, where ± corresponds
to the minority and majority spin electrons. See Fig. 1.4 for a graph of the
dispersion relation, where one sees that the spin degeneracy is lifted due to
the s-d exchange interaction.

s-d interaction with Antiferromagnets For antiferromagnets, the s-d
exchange interaction is written as

H0,FM = −t
∑
〈i,j〉

[
c†icj + H.c.

]
− JsdS

∑
i

(−)ic†iσ
zci + Vimp (1.39)

the s-d exchange interaction is thought to be larger than 0.1eV [3]. (Although 3d orbital
electrons are also responsible for electrical conductivity in reality, the s-d model suffices
to understand the essence of metallic ferro and antiferromagnets.)
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−π 0 π

ak

(a) Ferromagnetic

0

−π/2 0 π/2
ak

(b) Antiferromagnetic

Figure 1.4: (a) Dispersion relation of conduction electrons interacting with
ferromagnetic spins. The spin degeneracy is lifted because of the s-d exchange
interaction. (b) Dispersion relation of 1-dimensional conduction electrons
interacting with antiferromagnetic spins. The spin degeneracy is present and
the electron band is two-fold degenerate. Also, the Brillouin is folded in half
because of the larger unit-cell.

where (−)i is 1 when i ∈ A sublattice (localized spin is pointing up), and −1
when i ∈ B sublattice (localized spin is pointing down). The z axis is chosen
along the direction of the localized spin at site A. To obtain the dispersion
relation of this Hamiltonian, it is convenient to write the Hamiltonian in the
sublattice representation

ci = ai =

√
2

N

∑
k

ake
iri·k, i ∈ A sublattice

ci = bi =

√
2

N

∑
k

bke
iri·k, i ∈ B sublattice (1.40)

where 2/N normalizes the summation, which is now taken over the reduced
Brillouin zone. With this, the Hamiltonian can be written as

H0,AF =
∑
k

c̃†k

[
εkτx − JsdSσ

zτz

]
c̃k + Vimp (1.41)

where c̃k = (ak, bk), and τx, τz are Pauli matrices that act on the sublattice
space. The dispersion relation of this Hamiltonian is given by ±Ek, where
Ek =

√
ε2
k + (JsdS)2 (See Fig. 1.4 (b)).
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1.5 This thesis

Each chapter in this thesis is kept self-contained, and are organized as follows.
In chapter 2, we study the dynamics of antiferromagnetic spins under a

magnetic field. We obtain the equation of motion of antiferromagnetic spins
that corrects the ones derived in previous studies. Based on the obtained
results, the dynamics of an antiferromagnetic domain wall under the influence
of an inhomogeneous magnetic field is studied analytically. The domain wall
motion predicted by our analytical equations are are verified by atomistic
simulations.

In chapters 3 and 4 of this thesis, we discuss the effects of conduction
electrons on antiferromagnetic spins. In chapter 3, we study the current
induced spin torques in antiferromagnets. Despite the abundance in research
on antiferromagnetic spin torques, the number of microscopic theories are
miniscule. In this chapter, microscopic derivations of antiferromagnetic spin
torques are given. Analytic expressions for the spin-transfer torque (for which
the coefficient is denoted by vn), β-torque, and damping torques αn, α` are
derived. We further study the antiferromagnetic domain wall motion driven
by an electrical current, and show that the domain wall velocity is opposite
to the ferromagnetic case.

In chapter 4, we pursue the study on current induced spin torques in
antiferromagnets. We show that the Doppler shift of antiferromagnetic spin
waves (induced by spin-transfer torque) comes in two forms, expressed as
vn and v`. Microscopic calculations for the two spin-transfer torques are
presented for electrons with nearest-neighbor (t) and next-nearest-neighbor
(t′) hopping considered (Fig. 1.5); the two hoppings interpolate the anti-
ferromagnetic transport regime (t′/t � 1) and the ferromagnetic transport
regime (t′/t � 1). Introduction of the two hoppings parameters allows us
to study the smooth transition of the spin-transfer torque from the ferro-
magnetic regime to the antiferromagnetic regime. In the antiferromagnetic
transport regime, vn and v` give opposite contributions, and v` dominates
around the antiferromagnetic band bottom while vn dominates near the an-
tiferromagnetic band gap edge. In the ferromagnetic transport regime, vn
and v` coincide to form ferromagnetic spin-transfer torque.

This work is supported by JSPS KAKENHI Grant Numbers JP15H05702,
JP17H02929 and JP19K03744. JJN is supported by a Program for Leading
Graduate Schools “Integrative Graduate Education and Research in Green
Natural Sciences” and Grant-in-Aid for JSPS Research Fellow Grant Number
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Figure 1.5: Illustration of conduction electrons hopping in a 2-dimensional
antiferromagnetic lattice. The nearest-neighbor hopping t makes an electron
jump from a site with up localized spin to a site with down localized spin (or
vice versa), whereas the next-nearest-neighbor hopping t′ connects the sites
with the same direction of localized spins. When t dominates over t′, it is
called the antiferromagnetic transport regime, and the opposite is called the
ferromagnetic transport regime.

19J23587.
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Chapter 2

Magnetic-field-driven domain
wall motion

In this chapter, we theoretically study the antiferromagnetic do-
main wall motion actuated by an inhomogeneous external mag-
netic field. First, we derive the Lagrangian and the equations of
motion of antiferromagnetic spins with Zeeman coupling. Then,
we obtain the equation of motion for an antiferromagnetic domain
wall by using the method of collective coordinates. A solution is
found that describes the actuation of a domain wall by an inho-
mogeneous field. The domain wall motion is initiated by a para-
magnetic response of wall magnetization, which is then driven by
a Stern-Gerlach like force. The effects of pinning potential are
also investigated. These results are in good agreement with atom-
istic simulations. While the present formulation contains the so-
called intrinsic magnetization associated with antiferromagnetic
spin texture, a supplementary discussion is given to reformulate
the theory in terms of physical magnetization without the intrinsic
magnetization.

2.1 Introduction

This chapter explores the means to control antiferromagnetic spins using
magnetic fields. Magnetic fields are one of the most fundamental perturba-
tions used to control magnetic materials (modern hard-drives still rely on

17
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external magnetic fields for writing information), so understanding their ef-
fect on antiferromagnetic spins is of fundamental importance. Although the
effect of external magnetic field on uniform antiferromagnets is well under-
stood, studies on textured antiferromagnets remain fairly limited. We focus
on a specific antiferromagnetic texture, a domain wall, for its simplicity and
applicational importance.

A domain wall is one of the topological objects in magnetic materials that
may prove useful in memory devices, and its creation, manipulation and de-
tection has been the scope in numerous studies. Some pioneering theoretical
works show that antiferromagnetic domain walls can be driven by spin waves
[10] and spin-orbit torques [11, 12]. Indirect experimental observations of
antiferromagnetic domain wall motion are reported [13]. Domain walls in
materials similar to antiferromagnets, such as synthetic antiferromagnets[14]
and ferrimagnets around the angular momentum compensation temperature
[15, 16], have also been studied, which allow for an easier observation and
manipulation of domain walls.

It is known that ferromagnetic domain walls can be controlled with a uni-
form magnetic field [17], because one domain is energetically favoured over
the other. In antiferromagnets however, different domains are degenerate
under an applied magnetic field, so domain walls do not have an incentive
to move. Recently, it was proposed that antiferromagnetic spin textures give
rise to intrinsic magnetization [18]. It was demonstrated that this intrinsic
magnetization couples to external magnetic fields, and may be used to actu-
ate antiferromagnetic domain wall motion. In this chapter, we reinvestigate
this problem starting from the same model. We found an additional coupling
of the Néel vector to the inhomogeneous magnetic field, similar to the one in
Ref. [19], which nullifies the effect of the above intrinsic magnetization. With
the new Lagrangian obtained, we find an alternative mechanism for domain
wall motion actuated by an inhomogeneous external magnetic field.

This chapter is organized as follows. After presenting in section 2 the La-
grangian and equations of motion for the antiferromagnetic order parameter
(Néel vector) under an inhomogeneous magnetic field, we derive in section 3
the equations of motion in terms of collective coordinates of a domain wall.
By solving the equations, we find a solution in which the domain wall position
grows exponentially with time. Interestingly, there is no domain wall motion
in the absence of damping. We also study the effects of pinning introduced
by a local modulation of easy-axis magnetic anisotropy. Finally, we perform
an atomistic simulation to test the analytical results, and see that they are
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in good agreement. As a supplementary discussion, we identify the physical
magnetization and reformulate the theory therewith.

2.2 Model

In this section, we derive an effective Lagrangian that describes low-frequency,
long-wavelength spin dynamics of an antiferromagnet, starting from a lattice
spin model. We closely follow the procedure described in Ref. [18], except
that we consider the inhomogeneity of the external magnetic field from the
beginning of the formulation.

2.2.1 Hamiltonian

We start with a Heisenberg Hamiltonian for classical spins on a one-dimensional
lattice with antiferromagnetic exchange coupling J > 0, easy-axis anisotropy
K > 0, and Zeeman coupling,

H = J
∑
i

Si · Si+1 −K
∑
i

(Si · ez)2 + γ~
∑
i

Hi · Si, (2.1)

where γ is the gyromagnetic ratio. The localized spins and magnetic field
at lattice site i are written as Si and Hi, respectively. In a typical easy-
axis antiferromagnet, the exchange energy dominates J � K, giving rise to
relatively thick domain walls (e.g. 150nm for NiO [20]). Therefore, we work
in the exchange approximation J � K (and J � γ~|Hi|), and focus on spin
textures with slow spatial/temporal variations.

Let us write the antiferromagnetic spins in terms of the Néel and uniform
moments,

nn =
S2n − S2n+1

2S
, ln =

S2n + S2n+1

2S
, (2.2)

respectively, where |Si| = S is a constant. (i is the site index, and n is the
unit-cell index.) The original spins are retrieved by

S2n = S(ln + nn), S2n+1 = S(ln − nn). (2.3)



20 CHAPTER 2.

With nn and ln, the Hamiltonian is written as H =
∑

n hn, where

hn = JS2

{
2(l2n − n2

n)− (ln − ln−1)2

2
+

(nn − nn−1)2

2

+ (nn − nn−1) · ln − nn · (ln − ln−1)

}
− 2KS2

{
(lzn)2 + (nzn)2

}
+ γ~S

{
(H2n +H2n+1) · ln − (H2n+1 −H2n) · nn

}
. (2.4)

We adopt the continuum approximation and write nn − nn−1 ' 2a∂xn and
ln − ln−1 ' 2a∂xl, where a is the lattice constant. The magnetic field is also
assumed slowly-varying (having no staggered component) and thus H2n +
H2n+1 ' 2H , H2n+1 −H2n ' a∂xH , and the summation is replaced by an

integration
∑
n

=

∫
dx

2a
. Thus the Hamiltonian is written as

H = JS2

∫
dx

2a

{
2(l2 − n2) +

(2a)2

2

[
(∂xn)2 − (∂xl)

2
]

+ (2a)
[
l · (∂xn)− n · (∂xl)

]}
− 2KS2

∫
dx

2a

{
(lz)2 + (nz)2

}
+ γ~S

∫
dx

2a

{
2H · l− a(∂xH) · n

}
. (2.5)

As we shall see later, |l| = O(a/λ) in the exchange approximation (J � K),
where λ = a

√
J/2K is the typical length scale of spatial variation. We

discard the terms which are of higher order in l, such as Kl2 = O(Jl4) and
(a ∂xl)

2 = O(l4). Using the constraints,

n2 + l2 = 1, n · l = 0, (2.6)

or n · ∂xl = −(∂xn) · l, which follow from |Si| = const., we obtain

H ' 4JS2

∫
dx

2a

{
l2 +

a2

2
(∂xn)2 + a l · (∂xn)− K

2J
(nz)2

}
+ γ~S

∫
dx

2a
(2H · l− a(∂xH) · n) . (2.7)

As seen, the magnetic field couples not only to l but also to n [19].
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2.2.2 Lagrangian and equations of motion

To derive the Lagrangian, L = L0 −H, we next look at its kinetic part,

L0 = ~S
∑
i

φ̇i cos θi

= ~S
∑
n

(
φ̇2n cos θ2n + φ̇2n+1 cos θ2n+1

)
, (2.8)

where the spins are expressed as

Si = S(sin θi cosφi, sin θi sinφi, cos θi). (2.9)

Let θ2n+1 = π − (θ2n + δθ2n+1) and φ2n+1 = π + (φ2n + δφ2n+1), so that the
neighboring spins are totally antiparallel when δθ = δφ = 0. To leading order
in δθ and δφ, one finds[21, 22]

L0 = 2~S
∫
dx

2a
l · (n× ṅ), (2.10)

up to a total time derivative. This shows that 2~S(l × n) is the canonical
momentum conjugate to n. As a side note, the emergent gauge field, AAF,i =
l · (∂in×n), demonstrated in [23] for canted antiferromagnets complies with
this kinetic term.

Damping is taken into account by Rayleigh’s dissipation function,

W = α
~

2S

∑
i

Ṡ2
i = α~S

∑
n

(l̇2n + ṅ2
n). (2.11)

In the continuum approximation, we write

W = 2~S
∫
dx

2a

(
1

2
α`l̇

2 +
1

2
αnṅ

2

)
, (2.12)

where we introduced two damping constants, α` and αn, for more generality
[24].

By noting the constraints, Eq. (2.6), the equations of motion are obtained
as 

ṅ =

(
1

sn

δH

δn
+ αnṅ

)
× l +

(
1

sn

δH

δl
+ α`l̇

)
× n

l̇ =

(
1

sn

δH

δn
+ αnṅ

)
× n+

(
1

sn

δH

δl
+ α`l̇

)
× l

, (2.13)
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in agreement with Ref. [25]. Here, we defined the angular momentum density
sn = 2~S/(2a). Note that these equations of motion respect the constraints,
Eq. (2.6). The first equation of Eq. (2.13) can be written as [18, 26]

l =
~

4JS
(n× ṅ− γH⊥)− a

2
(∂xn), (2.14)

to leading order in l, where H⊥ = n × (H × n) is the component perpen-
dicular to n. The first term (∼ n × ṅ) embodies the momentum nature of
l conjugate to n, namely, it is proportional to the “velocity” ṅ. The second
term is due to canting induced by H . The linear dependence on the field
H⊥ indicates that the response to it is paramagnetic. The last term (∼ ∂xn)
is referred to in Ref. [18] as the intrinsic magnetic moment induced by the
Néel texture. Substituting this result into the second equation of Eq. (2.13),
one obtains the equation of motion written solely by the Néel vector,

− ~2

2J
n̈× n =

[
−2JS2a2(∂2

xn)− 4KS2(n · ẑ) ẑ + 2~Sαnṅ

+
γ~2

J
(H · n) ṅ× n+

(γ~)2

2J
(H · n)H

− γ~2

2J
(Ḣ × n)

]
× n. (2.15)

As an important observation, the terms with ∂xH have been canceled out.
To see what happened, let us go back to the Lagrangian L, or its density,

L = sn l · (n× ṅ)− snγ
{
H · l− a

2
(∂xH) · n

}
− 2JS2

a

{
l2 +

a2

2
(∂xn)2 + a l · (∂xn)− K

2J
(nz)2

}
. (2.16)

Since this is quadratic in l, one can “integrate out” l and obtain the one
written solely by the Néel vector,

L =
~2

8Ja
ṅ2 − JS2a

2
(∂xn)2 +

KS2

a
(nz)2

+
(γ~)2

8Ja
(H × n)2 +

γ~S
2

∂x(H · n)

− sn
2

(n× ṅ) ·
[
a ∂xn+

γ~
2JS

H

]
. (2.17)
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Figure 2.1: This figure illustrates that the uniform moment, Eq. (2.2), in
the presence of antiferromagnetic spin texture depends on the choice of unit
cell. The long arrows represent the atomic spins, Si. The top red arrows and
the bottom green arrows represent the “uniform moments” locally defined
by the average of the two neighboring spins, (Si + Si+1)/2. Here, they
arise from the antiferromagnetic spin texture, and as seen, they are mutually
opposite. Such unit-cell-choice dependent components should not represent
the physical magnetization.

Here, the Zeeman coupling of the “intrinsic magnetization” (∼ H · ∂xn)
has been combined with the additional term[19] (∼ n ·∂xH in Eq. (2.5)),
forming a total derivative, ∂x(H · n). This is why the intrinsic moment
does not appear in the equation of motion, Eq. (2.15). Intuitively, this can
be understood from Fig. 2.1, which shows that the texture-induced uniform
moment depends on the unit-cell choice; if another choice is made, it changes
sign. This means that the texture-induced uniform moment is an artifact of
the parametrization of Eq. (2.2), and does not appear in physical phenomena.

Two small notes. First, the quadratic term in H , namely, the fifth term
∼ (H · n)H in Eq. (2.15) or the fourth term ∼ (H × n)2 in Eq. (2.17),
has the same form as the magnetic anisotropy term, hence the magnetic field
acts as a hard-axis anisotropy. (But the effect is small, see below.) Second,
the sixth term ∼ (n × ṅ) · ∂xn in Eq. (2.17) is “topological”, and does not
contribute to the equation of motion, hence can be omitted.
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2.3 Domain wall motion

In this section, we study the domain wall motion in an inhomogeneous mag-
netic field using collective coordinates. We take the magnetic field to be in
the easy-axis (ẑ-) direction with magnitude linearly varying in space,

H = Hz ẑ = (H0 +H1x) ẑ. (2.18)

2.3.1 Static domain wall solution

To work with collective coordinates of the antiferromagnetic domain wall, one
must first obtain a static domain wall solution. Dropping the time derivative
terms, Eq. (2.15) becomes

0 =

[
−2Ja2(∂2

xn)− 4K(n · ẑ) ẑ +
(γ~)2

2JS2
(H · n)H

]
× n. (2.19)

With Eq. (2.18) for the magnetic field,

0 =
[
−2Ja2(∂2

xn)− 4K ′(n · ẑ) ẑ
]
× n, (2.20)

where K ′ = K − (γ~Hz)
2/(8JS2). Note that the Zeeman coupling γ~Hz

is typically of the order of few kelvins (for Hz of few tesla), similar to
the anisotropy energy. Thus, the difference between K ′ and K is of or-
der O(K2/J) which is dismissed under our current approximation, K ′ ' K.
We write the Néel vector using the polar and azimuthal angles,

n = (sin θ cosφ, sin θ sinφ, cos θ), (2.21)

under the assumption that the uniform moment is small (namely, 1 = n2 +
l2 ' n2). Assuming φ is spatially uniform, and noting that ẑ = n cos θ −
eθ sin θ, the static texture satisfies

0 = −λ2∂2
xθ + cos θ sin θ, (2.22)

where λ = a
√
J/2K. Note that the domain wall width in antiferromagnets

differ to the ferromagnetic one by a factor of 1/
√

2. A domain wall solution
is given by [17]

cos θ = tanh

(
±x−X

λ

)
, (2.23)
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and thus sin θ =
[
cosh x−X

λ

]−1
, where X is the domain wall position. The ±

sign is the topological charge of the domain wall. The position of the wall, X,
and the angle of the wall plane, φ (= const.), will be promoted to dynamical
variables in the next subsection.

2.3.2 Collective coordinate description

Using the domain wall solution for n, Eq. (2.23), the kinetic part of the
Lagrangian, L0 in Eq. (2.10), is obtained as

LDW,0 = 2sn
(
±lφẊ − λlθφ̇

)
, (2.24)

where we defined

lθ =

∫
dx

2λ

eθ · l(x)

cosh x−X
λ

, lφ =

∫
dx

2λ

eφ · l(x)

cosh x−X
λ

. (2.25)

Equation (2.24) indicates that lθ and lφ are canonical momenta conjugate to
φ and X, respectively, which should be considered as new collective variables.
Note that a uniform moment induced by the (longitudinal) field, Eq. (2.18), is
localized at the domain wall (see Eq. (2.14)). In a more systematic treatment,
this corresponds to expanding l with some complete set of functions {ϕn(x)}
[17],

l(x) = (lθeθ + lφeφ)ϕ0(x) +
∑
k

lk ϕk(x), (2.26)

where

ϕ0(x) =
1

cosh x−X
λ

, (2.27)

and retain the first two terms. See Ref. [17] for other ϕk(x)’s, which, together
with ϕ0(x), form a complete orthogonal basis.

The Hamiltonian, Eq. (2.7), then becomes

HDW = 4JS2λ

a

{(
lθ ∓

a

2λ

)2

+ l2φ +
a2

2λ2

}
− γ~S

(
2λ

a
lθ ∓ 1

)
(H0 +H1X). (2.28)
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The dissipation function Eq. (2.12), dismissing the α` l̇
2 term [27], is given

by

WDW = snαnλ

(
Ẋ2

λ2
+ φ̇2

)
. (2.29)

These results lead to the following four equations of motion,

±l̇φ = −αnẊ/λ+ γH1λ
(
lθ ∓

a

2λ

)
, (2.30)

l̇θ = αnφ̇, (2.31)

φ̇ = −(4JS/~)
(
lθ ∓

a

2λ

)
+ γ(H0 +H1X), (2.32)

Ẋ = ±(4JS/~)λlφ. (2.33)

Note that (X, lφ) and (φ, lθ) are coupled via H1. However, lθ and lφ can
be eliminated, resulting in two coupled equations for X and φ, or χ and ϕ
defined by

χ =
X

λ
+

H0

H1λ
, ϕ = φ+ φ1, (2.34)

as {
χ̈ = −α̃χ̇+ H̃1α̃ϕ

ϕ̇ = H̃1χ− α̃ϕ
. (2.35)

Here, we defined

α̃ =
4SJ

~
αn, H̃1 = γH1λ, (2.36)

and φ1 = α−1
n (l0θ ∓ a/2λ)− φ0, where l0θ and φ0 are initial values introduced

when Eq. (2.31) is integrated in time. It is readily seen that the acceleration
of the domain wall is absent if there is no damping, α̃ = 0. This feature is
not seen in Refs. [18, 19]. Writing the equations of motion in matrix form,

d

dt

χ̇χ
ϕ

 =

−α̃ 0 H̃1α̃
1 0 0

0 H̃1 −α̃

χ̇χ
ϕ

 , (2.37)
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and assuming the solution of the form ∼ eεt, the problem reduces to an
eigenvalue problem with determinant,

ε(ε+ α̃)2 − α̃H̃2
1 = 0. (2.38)

Since α̃ is positive, this equation has one real positive root ε0, and two
complex roots ε1 and ε2 (= ε∗1) with negative real parts. Using Cardano’s
method, the roots are written as

εn = −2α̃

3
+ ωn

3

√
q +

√
q2 − p3 + ω2n 3

√
q −

√
q2 − p3,

n = 0, 1, 2 (2.39)

where p = 1
9
α̃2, q = ( 1

27
α̃2 + 1

2
H̃2

1 )α̃, ω = −1
2

+ 1
2

√
3i, and the real branch of

the cube roots are chosen. (Note that q2 − p3 ≥ 0.) With these roots, the
general solution is given by

χ = C0e
ε0t + Re

[
C1e

ε1t
]
, (2.40)

ϕ = C0
H̃1

α̃ + ε0

eε0t + Re

[
C1

H̃1

α̃ + ε1

eε1t

]
, (2.41)

where a real constant C0 and a complex constant C1 are determined by
initial conditions. Thus, we find that an inhomogeneous magnetic field drives
domain wall motion, X ∼ λC0e

ε0t, that grows exponentially in time.
When α̃� H̃1, the roots can be given as

ε0 '
3H̃2

1

α̃
, ε1 ' −α̃ + iH̃1, (2.42)

to leading order of α̃/H̃1. We expect most antiferromagnets under magnetic
field satisfy this condition. For example, for 2Sαn = 10−3, J = 103K, γ~H1 =
1K/cm, λ = 100nm, and S = 1, then, α̃ = 1011s−1, H̃1 = 105s−1, and
ε0 = 1s−1. A plot of ε0 in Eq. (2.39) is shown in Fig. 2.2 as a function of α̃
and H̃1.

The above solutions (and equations) are limited to the case, |lθ|, |lφ| � 1,
in order for the exchange approximation to be valid. Since lθ/χ ∼ αnH̃1/(α̃+
ε0), this requires |χ| � (α̃ + ε0)/(αn|H̃1|), or |X − X0|/λ � max{4SJ/~,
ε0/αn}/|H̃1| ≡ b, namely, the domain wall position should be within the
distance ∼ 1

10
bλ from the position X0 ≡ −H0/H1 of vanishing external field,
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Figure 2.2: The real positive eigenvalue ε0 [Eq. (2.39)] plotted as a function
of α̃ and H̃1. It increases with H̃1 as expected.

Hz = 0. Beyond this point, the nonlinearity of lθ may not be neglected.
With parameters given above, we have b ∼ 109, hence bλ is much larger than
the domain wall width, and the above condition is always satisfied. We note
that the above condition is equivalent to γ~|Hz| � J at the domain wall
position, which is practically always satisfied.

2.3.3 With pinning potential

We introduce a pinning potential by a local modulation δK of the anisotropy
K at the origin, K → K − 2aδ(x)δK [17]. The pinning potential of the
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domain wall is then given by

Vpin = −2δKS2 1

cosh2(X/λ)

' 2δKS2((X/λ)2 − 1) Θ(λ− |X|), (2.43)

which we approximated by a truncated parabola. (Θ is the Heaviside step
function.) When |X| < λ, the equation of motion is altered as

d

dt

χ̇χ
ϕ

 =

−α̃ −δK̃ H̃1α̃
1 0 0

0 H̃1 −α̃

χ̇χ
ϕ

 , (2.44)

where

δK̃ = 4δKS2 a

λ

2J

~2
, (2.45)

and we redefined

χ =
X

λ
− γH0

H̃1

δK̃ − H̃2
1

, (2.46)

ϕ = φ+ φ1 −
1

α̃
γH0

δK̃

δK̃ − H̃2
1

. (2.47)

The determinant is now given by

(ε2 + εα̃ + δK̃)(ε+ α̃)− α̃H̃2
1 = 0. (2.48)

A positive real root exists when

δK̃ < H̃2
1 , (2.49)

giving us the depinning condition. The analytical expression of the real
root of the cubic equation is given by Eq. (2.39) with p = 1

9
α̃2 − 1

3
δK̃ and

q = ( 1
27
α̃2 + 1

2
H̃2

1 − 1
6
δK̃)α̃.

2.4 Numerical simulation

To test the validity of the approximations made above, such as the continuum
description, the discarding of higher-order terms in l, and the use of collective
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Figure 2.3: Domain wall position as a function of time under a linearly-
varying magnetic field, Eq. (2.18). The simulation result (orange line) is
fitted by an exponential curve (blue dashed line), with exponent ε0 = 1.627×
109s−1. The used parameters are as follows; J = 103K, K = 1K, γ~ = 1K/T,
a = 10−10m, H1 = 10mT/a, H0 +H1X(0) = H1λ× 10−3 (field at the initial
position X(0)), α = 10−3, and S = 1. The system is one-dimensional and
has N = 104 spins (so the system size is L = 104a = 1µm), and the spins at
both ends are fixed upwards (S1 = SN = +ẑ). The starting configuration is
Eq. (2.23) with initial position X(0) = 102λ ' 2236a. A time discretization
of dt = 5× 10−15s is used.
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coordinates, we perform an atomistic simulation based on the equation of
motion for each Si,

Ṡi +
α

S
Si × Ṡi

= ~−1 [J(Si−1 + Si+1)− 2KSzi ẑ + γ~Hi]× Si. (2.50)

Using the approximate domain wall solution (2.23) as an initial configuration,
we solved Eq. (2.50) under an inhomogeneous magnetic field, Eq. (2.18). The
position of the domain wall is determined by linear interpolation as the point
at which the profile of the staggered component (−1)iSzi vanishes, and it is
plotted in Fig. 2.3 as a function of time. The values of the parameters
used are described in the caption of Fig. 2.3. The width of the domain
wall is λ = a

√
J/2K ' 22.36a. In accord with our analysis, the domain

wall position changes exponentially with time. The exponent obtained from
the simulation, ε0 = 1.627 × 109s−1, is very close to the analytical result,
ε0 = 1.626× 109s−1 [Eq. (2.39)]. The domain wall moves in the direction of
stronger magnetic field.

We next simulate the motion of the domain wall with pinning potential
located at the initial position of the domain wall. With the parameter values
described in the caption of Fig. 2.3, Eq. (2.49) is satisfied when δK ≤ 1.398×
104K. To test this value, we simulate the domain wall motion with “strong
pinning” δK = 2× 10−4K, and “weak pinning” δK = 1× 10−4K. As shown
in Fig. 2.4, the former pins the domain wall, while the latter cannot stop the
exponential increase of the domain wall position.

2.5 Physical picture

Here, we discuss the physical mechanism of the domain wall actuation by an
inhomogeneous magnetic field.

First, consider a static solution. Then, Eqs. (2.30), (2.32), and (2.33)
lead to lθ = ±a/2λ, lφ = 0, and X = −H0/H1. The first two relations
show that only the artifactual texture-induced uniform moment is present,
while the third relation tells us that the domain wall must be positioned
where the magnetic field vanishes. When the domain wall is placed in a
finite magnetic field, the Néel vector starts to precess (φ̇ 6= 0) according
to Eq. (2.32), and the uniform moment lθ develops through damping [see
Eq. (2.31)]. As seen from Eqs. (2.30) and (2.33), the development of lθ in
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Figure 2.4: Domain wall position as a function of time in the presence of
pinning potential. Using the same parameters as in Fig. 2.3, we added a
pinning potential δK on the neighboring two sites at the initial position of
the domain wall (i.e. 102λ from the left end). The domain wall remains
pinned for δK = 2×10−4K [purple (or light) line], whereas it is depinned for
δK = 1× 10−4K [blue (or dark) line]. The inset shows a closeup.

conjunction with the field gradient applies a force on the domain wall; like
in the Stern-Gerlach experiment, the domain wall feels a force towards the
direction with stronger magnetic field to gain Zeeman energy. Thus, the
antiferromagnetic domain wall can be thought of as a paramagnetic particle
under an (inhomogeneous) applied magnetic field. Without damping, the
uniform moment is not induced by the field, hence there is no actuation of
domain wall motion. The present mechanism involves a dissipative process,
hence is different from the purely reactive mechanisms discussed in Refs. [18,
19].
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2.6 Reformulation

We have seen that the Zeeman coupling of the intrinsic magnetization (∼
H ·∂xn) is nullified by the coupling of the Néel vector to the field gradient
(∼ n ·∂xH in Eq. (2.5)). The reasoning behind this was given intuitively
through Fig. 2.1, which indicates that the intrinsic magnetization is not a
physical quantity.

In this section, we reformulate the theory in terms of “physical magnetiza-
tion”, eliminating the intrinsic magnetization. We first identify the physical
magnetization by reexamining the interaction with external magnetic field,
and therewith express the Lagrangian (Sec. 6.1). The result is applied to the
collective coordinates of a domain wall (Sec. 6.2). Finally, the procedure is
extended to general lattices (Sec. 6.3).

2.6.1 Physical magnetization

To identify the physical magnetization, we look at the interaction with the
external magnetic field [the second line of Eq. (2.7)], and rewrite it as

2γ~S
∫
dx

2a

{(
l +

a

2
∂xn

)
·H − a

2
∂x(H · n)

}
. (2.51)

The first term is the Zeeman coupling in the bulk, and the second (total-
derivative) term describes that at the edges. Therefore, the physical magne-
tization is identified to be −γsnl̃, with

l̃ ≡ l +
a

2
(∂xn). (2.52)

This is the uniform moment with the intrinsic magnetization subtracted, and
agrees with Haldane’s definition[28] (according to the analysis made in Ref.
[18]). In terms of l̃, the Lagrangian density, Eq. (2.16), is simplified as

L = snl̃ · (n× ṅ− γH)

− sn
2JS

~

{
l̃ 2 +

a2

4
(∂xn)2 − K

2J
(nz)2

}
. (2.53)

Here, we dropped the “topological” term ∼ ∂xn · (n × ṅ) since it does not
affect the equation of motion. Note that the exchange stiffness constant
of the Néel vector (the coefficient of (∂xn)2) has been reproduced correctly
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(without eliminating the uniform moment), and the “sublattice symmetry”
(l̃,n) → (l̃,−n) has been recovered. Note also that the constraints are
preserved, l̃ · n = 0 and n2 + l̃2 = 1, within the exchange approximation.
These suggest that the theory is simplified if reformulated in terms of l̃.

To complete this program, we need to examine the damping term. If the
dissipation function has the form,

W = sn

∫
dx

(
1

2
α`

˙̃l2 +
1

2
αnṅ

2

)
, (2.54)

in terms of l̃ [instead of l as in Eq. (2.12)], the damping term is also simplified.
To show that this is indeed the case, it is sufficient to observe that the spins
Si couple to other degrees of freedom (“environment”) through (l̃,n) rather
than (l,n). As an example, let us consider the s-d exchange coupling to
conduction electrons,

Hsd = −Jsd

∑
i

Si · σi, (2.55)

where σi is the electron spin at site i, and Jsd is the coupling constant.
This has the same form as the Zeeman coupling (Hi → σi), and we can
proceed in exactly the same way as Eq. (2.51). By noting that σi may have
staggered component as well, we obtain the s-d coupling in the continuum
approximation as

Hsd = −JsdS

∫
dr
{(
l +

a

2
∂xn

)
· σ` + n · σn

}
, (2.56)

where σ` and σn are the uniform and staggered components of the electron
spin density. (For simplicity, we dropped the total derivative terms.) As
seen, there is a “correction” a ∂xn/2 in the first term, and the coupling to
the electrons occurs through (l̃,n), instead of (l,n). (Precisely speaking, the
“corrections” arise symmetrically between l and n, but in the second term,
we adopted the exchange approximation, n + a ∂xl/2 ' n.) Therefore, the
resulting Gilbert damping, or the dissipation function, should have the form
of Eq. (2.54) through (l̃,n).

Explicit calculations of Gilbert damping and spin-transfer torques are
done in chapters 2 and 3, where we have found that the expectation value of
σn is odd in n while that of σ` is even [29]. Thus, the spin torques resulting
from the s-d exchange interaction also possess the sublattice symmetry under
(l̃,n)→ (l̃,−n).
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2.6.2 Domain wall

For a domain wall in the collective coordinate description, the physical mag-
netization, Eq. (2.52), is given by

l̃θ ≡ lθ ∓
a

2λ
, (2.57)

and lφ (not altered). With these, the equations of motion are written as

±l̇φ = −αnẊ/λ+ γH1λl̃θ, (2.58)

˙̃lθ = αnφ̇, (2.59)

φ̇ = −(4JS/~) l̃θ + γ(H0 +H1X), (2.60)

Ẋ = ±(4JS/~)λlφ. (2.61)

The sign ± represents the topological charge. We see that a static domain
wall has l̃θ = γ~H0/4JS for H1 = 0, and l̃θ = 0 for H1 6= 0.

2.6.3 General case

The procedure described in Sec. 6.1 can be generalized to arbitrary bipartite
lattices. We assume a nearest-neighbor exchange interaction J and a uniax-
ial magnetic anisotropy K. Taking the unit cell along the x direction, the
Hamiltonian density (without Zeeman coupling terms) is calculated as

Hd,z = sn
zJS

~

{
l̃ 2 +

a2

4d

d∑
i=1

(∂in)2 − K

zJ
(nz)2

}
, (2.62)

where l̃ is given by Eq. (2.52), d is the space dimensionality, and z is the
number of nearest-neighbor sites. For example, (d, z) = (2, 3), (2, 4), and
(3,6) for honeycomb, square, and simple cubic lattices, respectively. The
Zeeman coupling is the same as Eq. (2.51), hence l̃ is identified as the physical
magnetization. The Lagrangian density is given by L = snl̃ · (n× ṅ−γH)−
Hd,z.

2.7 Summary

In chis chapter, we have investigated the motion of an antiferromagnetic
domain wall under inhomogeneous magnetic field. Starting from the lat-
tice Heisenberg model with antiferromagnetic exchange coupling, easy-axis
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anisotropy, and Zeeman coupling, we constructed a continuum model by
closely following Ref. [18]. We first retrieved a term that was missing in
Ref. [18], in which the Néel vector couples to the field gradient. We have
shown that this retrieved term nullifies the previously demonstrated cou-
pling of the intrinsic magnetization, attributed to the Néel spin texture, to
the magnetic field, and found an alternative mechanism for domain wall mo-
tion actuated by an inhomogeneous field.

As a supplemetary discussion, we pointed out that the uniform moment
l defined by Eq. (2.2) contains unphysical component (intrinsic magnetiza-
tion). We have reformulated the theory by properly defining the physical
magnetization.



Chapter 3

Microscopic calculation of spin
torques in textured
antiferromagnets

In this chapter, we investigate the effect of conduction electrons
on antiferromagnetic (AF) spins. In the first part of this chapter,
we present a microscopic calculation for the spin-transfer torques
(STT) and damping torques. It is found that the sign of the STT
is opposite to that in ferromagnets because of the AF transport
character, and the current-to-STT conversion factor is enhanced
near the AF gap edge. The dissipative torque parameter βn and
the damping parameter αn for the Néel vector arise from spin
relaxation of electrons. In the second part of this chapter, physical
consequences are demonstrated for the AF domain wall motion
using collective coordinates. Similarities to the ferromagnetic case
are pointed out such as intrinsic pinning and the specialty of αn =
βn. A recent experiment on a ferrimagnetic GdFeCo near its
angular-momentum compensation temperature is discussed.

3.1 Introduction

In the previous chapter, we explored the effect of inhomogeneous magnetic
fields on antiferromagnetic domain walls. In this chapter, we investigate the
effect of conduction electrons on antiferromagnetic spins. Torque exerted by

37
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conduction electrons on antiferromagnetic or ferromagnetic spins is referred
to as spin torques. Spin torques are favored over magnetic field from a
scalability perspective; while the magnetic field strength is proportional to
total current, spin torques are proportional to current density [17].

Spin torques in textured ferromagnets (FM) is well-understood through
the spin angular momentum transfer between the conduction electrons and
magnetization [30, 31, 32]. However, a similar picture is not feasible in anti-
ferromagnets (AFs) [6, 33, 4] since the magnetic order parameter and conduc-
tion electrons do not carry macroscopic spin angular momenta [34, 35, 24, 27,
36, 37, 38]. This makes microscopic studies indispensable for understanding
spin torques in AFs.

In FM, electrons moving in a spin texture with exchange coupling exhibit
a spin polarization,

〈σ̂〉 ∝ n× (v · ∇)n, (3.1)

where n is the magnetic order parameter (magnetization vector for FM) and
v is a velocity that characterizes the electron flow (spin current for FM).
The spin polarization arises as a reactive response [39] and exerts a reaction
torque, known as the spin-transfer torque (STT), on the FM spins. In AF, Xu
et al. [34] and Swaving and Duine [35] numerically obtained the same form
of spin polarization as Eq. (3.1) with n now representing the Néel vector.
Analogous to FM, this spin polarization emerges through a reactive process,
and gives rise to a torque that conserves total angular momentum, which
may thus be called the STT. However, in contrast to FM, the coefficient
cannot be determined by a macroscopic argument based on the conservation
law. Moreover, there is in general another type of torque, called the β torque,
that arises as a dissipative response due to spin relaxation [40, 2], the analytic
expression of which is yet to be determined for AFs.

In this chapter, we present a microscopic calculation of the STT, the β
torque, and the damping torques in AF metals. A careful treatment is given
to the effects of spin relaxation, which we model by magnetic impurities. We
find a STT proportional to the electric current but with a coefficient different
from that in FM. The β torque is proportional to the spin-relaxation rate.
Interestingly, both torques in AFs drive the texture in the opposite direction
compared to those in FMs. Using collective coordinates, it is shown that
only the β torque drives AF domain walls (DWs) [24, 27], because the effect
of STT is nullified by an effect similar to the intrinsic pinning in FM. Finally,
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a recent experiment on the current-assisted DW motion in ferrimagnets at
the angular-momentum compensation temperature [16] is discussed.

3.2 Model

We consider the s-d model consisting of localized spins (HS), conduction
electrons (Hel), and the s-d exchange interaction (Hsd) between them,

H = HS +Hel +Hsd. (3.2)

The space dimensionality, d, can be arbitrary in the general formulation, but
explicit calculations will be done for a two-dimensional square lattice, d = 2.

We first sketch the derivation of the equations that describe long-wavelength,
low-frequency dynamics of AF spins coupled to conduction electrons. We
start with the lattice model,

HS = J
∑
〈i,j〉

Si · Sj −K
∑
i

(Szi )2, (3.3)

Hsd = −Jsd

∑
i

Si · c†iσ ci, (3.4)

where Si is a localized, classical spin at site i, J > 0 is the AF exchange
coupling constant between nearest-neighbor (n.n.) sites 〈i, j〉, and K > 0
is the easy-axis magnetic anisotropy constant. In Hsd, c†i = (c†i↑, c

†
i↓) is the

electron creation operator at site i, σ is a vector of Pauli matrices, and Jsd

is the s-d exchange coupling constant.
We consider a two-sublattice unit cell m with localized spins, SA,m and

SB,m, on each sublattice, and define the Néel component nm and the uniform
component lm by [41]

nm =
SA,m − SB,m

2S
, lm =

SA,m + SB,m
2S

, (3.5)

where S = |Si| is the (constant) magnitude of the localized spins. We as-
sume the spatial variations are slow for nm and lm, and adopt a continuum
description, nm → n(r) and lm → l(r). We also exploit the exchange ap-
proximation, |l| � 1, and neglect higher order terms in l [42]. It then follows
from | l± n| = 1 that |n| = 1 and n · l = 0.
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Since the magnetization l in Eq. (3.5) contains a texture-induced unphys-
ical component [18], it is convenient to work with the physical magnetization
[43],

l̃ ≡ l +
a

2
(∂xn), (3.6)

where a is the lattice constant, and the x axis is chosen along the bond con-
necting two sites in the unit cell. This preserves the constraints, l̃ ·n = 0 and
|n| = 1, within the exchange approximation, and simplifies the formalism.
In terms of l̃ and n, the Lagrangian density is given by [43]

LS = sn

{
l̃ · (n× ṅ)−HS −Hsd

}
, (3.7)

HS =
zJS

~

{
l̃2 +

a2

4d

d∑
i=1

(∂in)2 − K

zJ
n2
z

}
, (3.8)

Hsd = −M
sn

( l̃ · σ̂` + n · σ̂n), (3.9)

where sn = 2~S/(2ad) is the density of staggered angular momentum, z is the
number of n.n. sites of a given site, σ̂` and σ̂n are the uniform and staggered
components of the electron spin density, and M = JsdS. The equations of
motion are obtained as ṅ = H` × n+ tn,

˙̃l = Hn × n+H` × l̃ + t `,
(3.10)

where Hn = ∂HS/∂n and H` = ∂HS/∂ l̃ are the effective fields coming from
the spin part (HS), and

tn =
M

sn
n× 〈σ̂`〉, (3.11)

t ` =
M

sn

{
n× 〈σ̂n〉+ l̃× 〈σ̂`〉

}
, (3.12)

are the spin torques from electrons (Hsd). We calculate 〈σ̂`〉 and 〈σ̂n〉 in
response to an applied electric field E or to the time-dependent n and l̃
using the Kubo formula [44, 45].
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To be explicit, we consider tight-binding electrons on a two-dimensional
square lattice described by

Hel = −t
∑
〈i,j〉

(c†icj + h.c.) + Vimp, (3.13)

where the first term expresses n.n. hopping, and

Vimp = ui

∑
l

c†l cl + us

∑
l′

Simp
l′ · c

†
l′σ cl′ , (3.14)

defines coupling to nonmagnetic and magnetic impurities. Combined with
Hsd, the hopping term gives upper and lower (spin-degenerate) bands, ±Ek =
±
√
ε2
k +M2, in a uniform AF state, where εk = −2t(cos kx+cos ky). We take

a directional average of Simp
j with second moment S2

z (S2
⊥) for the compo-

nent parallel (perpendicular) to n. In the Born approximation, they appear

through γn = πniu
2
i ν, γ⊥ = πnsu

2
s S

2
⊥ ν, and γz = πnsu

2
s S

2
z ν, where ni and ns

are the respective impurity concentrations, and ν = 1
N

∑
k δ(|µ| −Ek) is the

density of states per spin (N is the total number of sites) with the chemical
potential µ measured from the AF gap center.

Vertex correction is necessary for a proper account of spin conservation,
or its weak violation. Here, it is evaluated in the ladder approximation,

Πσσ̄ =
2

πντ 2

µ2

µ2 −M2

1

Dq2 − iω + τ−1
ϕ + τ−1

s

. (3.15)

This describes diffusion, dephasing, and relaxation of transverse spin density,
generalizing the result of Ref. [23] to include the effect of magnetic impurities.
Here, τ−1 = 2 [γ+ + (M/µ)2γ−], with γ± = γn + γz ± 2γ⊥, is the electron
scattering rate, and

1

τϕ
=

4M2

µ2

[
µ2 +M2

µ2 −M2
γn + 3γ⊥ +

2(2µ2 +M2)

µ2 −M2
γz

]
, (3.16)

1

τs

= 4 (γ⊥ + γz), (3.17)

are, respectively, the spin-dephasing rate [46, 23] and the (transverse) spin-
relaxation rate. In Eq. (3.15), q−1 (ω−1) is the typical length (time) scale of
the AF spin texture (dynamics), and D is the diffusion constant. We assume
q`ϕ � 1 and ωτϕ � 1, where `ϕ =

√
Dτϕ is the spin-dephasing length,
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and let q, ω → 0 in the results. The constant terms in the denominator,
τ−1
ϕ + τ−1

s , reflect spin nonconservation in the electron system. The spin
dephasing (τ−1

ϕ ), characteristic of AF and absent in FM, is dominated by
nonmagnetic impurities and vanishes at M = 0 [46], whereas τ−1

s comes
solely from magnetic impurities and is essentially the same as that in FM
[44]. It is convenient to decompose the former as τ−1

ϕ = τ−1
ϕ0 + τ−1

ϕ1 , where

τ−1
ϕ0 (∝ γn) is the contribution from nonmagneic impurities and τ−1

ϕ1 is from

magneic impurities. The “dissipated” spin angular momentum via τ−1
ϕ0 is

actually transferred to the AF spin system.
We calculate electron spin density induced by an external electric field

E in the presence of spin texture (for current-induced torques), or induced

by time-dependent spins, ṅ and ˙̃l (for damping torques). We assume weak
spin relaxation, γz, γ⊥ � γn, and retain terms of lowest nontrivial order.
The calculations are straightforward along the lines of Refs. [44, 45, 23]; see
Appendix for details.

3.3 Results

We obtained

〈σ̂n〉 = −(sn/M){βn (vn ·∇)n+ αnṅ}, (3.18)

〈σ̂`〉 = (sn/M){n× (vn ·∇)n− α` ˙̃l}, (3.19)

which are consistent with previous studies [34, 35, 24, 27, 36, 37], and lead
to the torques,

tn = −(vn ·∇)n− α`n× ˙̃l, (3.20)

t ` = −βnn× (vn ·∇)n− αnn× ṅ. (3.21)

We retained dominant contributions, which come from 〈σ̂`〉 for tn, and 〈σ̂n〉
for t`.

3.3.1 Current-induced torques

The first terms in t` and tn are current-induced torques, which are propor-
tional to the charge current density, j = σxxE = 2e2DνE, via

vn = − ~
2esn
Pnj. (3.22)
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The velocity vn quantifies the STT, and we identify

Pn =
µM

µ2 −M2
, (3.23)

to be the conversion factor from a charge current to STT. Note that |Pn| can
be significantly larger than unity near the AF gap edge (|µ| & |M |). This
contrasts to the case of FM, in which the corresponding factor |P | is less
than or equal to unity. The current-induced torque in t` is characterized by
a dimensionless parameter,

βn =
2(γ⊥ + γz)

M
=

~
2Mτs

, (3.24)

which originates from magnetic impurities, i.e., from spin relaxation, and
is therefore a dissipative torque. The spin dephasing due to nonmagnetic
impurities (τ−1

ϕ 0 ) is microscopically a reactive process and does not contribute

to βn, whereas that from τ−1
ϕ 1 , combined with the self-energy terms, results in

a contribution proportional to τ−1
s . Along with the contribution originating

from τ−1
s in Eq. (3.15), it leads to Eq. (3.24). The obtained two current-

induced torques are related via βnn×, which is reminiscent of the relation
between the reactive and dissipative torques in FM; we call the former [−(vn·
∇)n] the STT in AF, and the latter [−βnn× (vn ·∇)n] the βn torque. The
expression of βn in terms of τs and M = JsdS is also shared by FM [44, 40].

The above two current-induced torques change their signs across the AF
gap [see Eq. (3.23)], reflecting the fact that electrons in the upper and lower
AF bands have mutually opposite spin directions. This feature of the STT
was suggested in Ref. [35]. Interestingly, the driving direction is opposite
to the naive expectation based on the two-FM picture of AF. Namely, for
µ < 0, the spin polarization on the Fermi surface is positive (dominated by
majority spin carriers) but the driving direction is opposite to the direction
of electron flow. This is due to the intersublattice hopping in AF, namely,
the electron spins exert torques on oppositely pointing neighboring spins, so
the sign of the torques is reversed from that of FMs 1. The same is true for
µ > 0.

1We have confirmed this by introducing the next n.n. hopping t′. As t′ starts dominat-
ing, the sign of the STT changes from negative to positive in the µ < 0 region, and vice
versa for µ > 0, in conformity with the change of transport character from AF like to FM
like [47]. The derivation for this is given in the next chapter. Note that the torques in FM
also change their signs in a tight-binding model as µ is increased from the band bottom
to the top since the majority/minority spins are switched and the sign of P is reversed.
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3.3.2 Damping torques

The second terms in Eqs. (3.20) and (3.21) describe damping. The damping
parameters are calculated as

αn =

{
γ⊥ + γz +

M2

µ2
(γ⊥ − γz)

}
2~ν
sn

, (3.25)

α` =
(µ2 −M2)(µ2 +M2)

µ2

ν

sn
τ. (3.26)

While αn arises from spin relaxation (magnetic impurities), α` does not neces-
sitate it. Rather, α` is proportional to τ , like conductivity, hence can be very
large in good metals. These features were pointed out in Refs. [48, 49, 50]
based on the first-principles calculation.

It is interesting to compare αn with the Gilbert damping in FM,

αF =
∑
σ

(γz,σνσ̄ + γ⊥,σνσ)
~
s0

, (3.27)

obtained based on the same spin-relaxation model (magnetic impurities) [44].
Here, γα,σ = πnsu

2
sS

2
α νσ (α =⊥, z), νσ (σ =↑, ↓) is the density of states of

electrons with spin σ, and s0 = ~S/ad is the angular-momentum density.
We see that in the limit of spin-degenerate bands (ν↑ = ν↓) and isotropic
magnetic impurities (γ⊥ = γz), the above expressions of αn (for AF) and αF

(for FM) coincide. Therefore, in the current model of AF, the ratio βn/αn is
of order unity, similar to FM [39].

3.3.3 Equations of AF spin dynamics

With the obtained torques and HS [Eq. (3.8)], the equations of motion are
explicitly written as

ṅ = J̃ l̃× n− (vn ·∇)n, (3.28)

˙̃l = −(c2J̃−1∇2n+ K̃nz ẑ)× n
+ (αnṅ+ βn(vn ·∇)n)× n
+ n [ l̃·(vn ·∇)n], (3.29)

with c = (zJSa)/(~
√
d), J̃ = 2zJS/~, and K̃ = 2SK/~. Damping terms in

the first equation are dropped as they are higher order in l̃. Solving Eq. (3.28)
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for l̃ as l̃ = J̃−1n× [ṅ+ (vn·∇)n], and substituting it in Eq. (3.29), one can
obtain a closed equation for n,

n̈× n = (c2∇2n+ J̃K̃nz ẑ)× n
− J̃(αnṅ+ βn(vn ·∇)n)× n
− [(vn ·∇) ṅ]× n. (3.30)

This differs slightly from Ref. [35] due to the difference in Hsd (i.e., l vs. l̃),
and leads to the magnon dispersion,

ω =

√
c2q2 + J̃K̃ + (vn ·q − iJ̃αn)2/4 + iJ̃βnvn ·q

± (vn ·q − iJ̃αn)/2, (3.31)

where damping enters only through αn and βn.

3.3.4 Domain wall motion

Here we study the AF DW motion using collective coordinates. Since LS
[Eq. (3.7)] is written with n and l̃, we consider collective coordinates for both
n and l̃ [43]. Assuming for n = (sin θ cosφ, sin θ sinφ, cos θ) a DW form,

cos θ(x, t) = ± tanh
(
x−X(t)

λ

)
and φ(x, t) = φ0(t), where λ = a

√
zJ/4Kd

is the DW width, we treat the DW position X(t) and the angle φ0(t) as
dynamical variables [17]. As for l̃, we expand it as [43]

l̃(x, t) = [ lθ(t) eθ + lφ(t) eφ ]ϕ0(x) + · · · , (3.32)

where eθ ≡ ∂θn and eφ ≡ n × eθ are orthonormal vectors normal to n.

The function ϕ0(x) =
[
cosh x−X

λ

]−1

reflects the spatial profile of n × ṅ,

and naturally extracts lθ and lφ in the first term of LS [Eq. (3.7)]. The
obtained Lagrangian, LDW = 2sn(±Ẋlφ − λφ̇0lθ)−HS, shows that lφ and lθ
are canonical conjugate to X and φ0, respectively. The equations of motion
are given by

±λ l̇φ = βnvn − αnẊ, (3.33)

±Ẋ = ±vn + vJ lφ + α`λl̇φ, (3.34)

l̇θ = αn φ̇0, (3.35)

λ φ̇0 = −vJ lθ − α`λl̇θ, (3.36)
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where vJ = 4JSλ/~, and ± is the topological charge of the AF DW. The
first two equations describe the translational motion, and the remaining two
describe the rotational motion of the DW plane (defined by the Néel vector).
Unlike in FM [51], these two motions are decoupled in AF. The term ±vn in
Eq. (3.34) describes the spin-transfer effect, and βnvn in Eq. (3.33) describes
the momentum-transfer effect (a force on the DW). The terms with α` are
negligible in effect, but retained here for the sake of comparison with FM
(see below).

Let us overview the translational motion of AF DW under a stationary
vn [24]. When αn = βn = 0, lφ is a constant of motion. With an initial
condition lφ = 0 (no canting), the DW moves at a constant velocity Ẋ = vn
by the spin-transfer effect [35]. If the DW is initially canted, lφ = l0φ, the

constant velocity is modified to Ẋ = vn ± vJ l0φ. For finite αn, lφ is no longer
conserved, and approaches a terminal value, lφ → ∓(1 − βn/αn)(vn/vJ).
Then, from Eq. (3.34), the DW velocity approaches

Ẋ → vn −
(

1− βn
αn

)
vn =

βn
αn

vn, (3.37)

which is solely determined by the βn torque. If βn = 0, the spin-transfer effect
is completely nullified by the canting lφ = ±vn/vJ , and the aforementioned
steady movement eventually ceases [24]. This is quite similar to the intrinsic
pinning in FM. For finite βn, canting lφ is reduced, and the cancellation of
the spin-transfer effect is incomplete. Finally, the case βn = αn is special in
that there is no canting, and the spin-transfer effect is undisturbed.

It is instructive to make a more detailed comparison with FM. In FM,
the current-driven DW motion is described by

±λ φ̇0 = βvs − αẊ, (3.38)

±Ẋ = ±vs + vK sin 2φ0 + αλφ̇0, (3.39)

where, now, X and φ0 are coupled. (φ0 here is defined by the uniform
magnetization, and ± is the topological charge of the FM DW.) A close
similarity to Eqs. (3.33) and (3.34) is evident, and here φ0 plays the role
of lφ. The effect of current appears in vs = −(~/2es0)Pj, where P is the
current polarization factor, and the velocity vK = K⊥Sλ/2~ is defined with
the hard-axis anisotropy constant K⊥. At low current, vs < vK , and with
β = 0, the DW plane tilts by φ0 = (1/2) sin−1(vs/vK) and the DW ceases to
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move, Ẋ = 0. This is the intrinsic pinning in FM [51, 52]. If vs exceeds vK ,
vK can not nullify the spin-transfer effect vs and the DW is released from
intrinsic pinning. The corresponding term in Eq. (3.34) has the linearised
form, vJ lφ, which is justified since vJ of AF is much larger than vK of FM
(by 2-3 orders of magnitude), and the intrinsic pinning is robust in AF. It
is interesting to note the contrasting origins of intrinsic pinning; in FM it is
the explicit breaking of spin rotation symmetry, K⊥, whereas in AF it is the
AF order itself, i.e., spontaneous breaking. Finally, the case α = β provides
a special solution φ0 = 0 and Ẋ = vs, similar to the case αn = βn for AF.

Recently, current-assisted field-driven DW motion was experimentally
studied in a ferrimagnetic GdFeCo near its angular-momentum compensation
temperature [16]. The authors analyzed the data by the Landau-Lifshitz-
Gilbert equation for the uniform moment m (parallel to n), and obtained
a very large, negative value of β/α ' −100. They assumed ∼ βPj for the
β-torque coefficient (that acts on m), with a small factor P (' 0.1) included.
If, however, the main driving is the βn torque that acts on the Néel vector
n, as studied in the present work, we would conclude Pnβn/αn ' −10 (see
Appendix for details). While βn/αn ' 1 as in FM (for positive Jsd

2 [53]),
|Pn| can be significantly larger than unity near the AF gap edge. Therefore,
the large value of |Pn| ∼ 10 may lie within the scope of the present results.
The negative sign can be explained likewise from Pn with a negative µ, which
reflects intersublattice hopping in AF. Such “antiferromagnetic transport” in
GdFeCo is supported by a recent magnetoresistance measurement [54].

In conclusion, we have presented a microscopic model calculation of current-
induced torques and damping torques in AF metals, paying attention to the
effects of spin relaxation (and spin dephasing). A formulation in terms of
the Néel vector and physical magnetization is given to study the AF spin dy-
namics in metallic AFs with s-d exchange interaction. The current-induced
torques are found to be opposite in direction to those of FMs, reflecting the
AF transport character, and the current-to-STT conversion factor can be
significantly larger than that in FM. These results seem to be relevant to the
recent experiment on GdFeCo.

2A negative β (or βn) parameter is realized if Jsd is negative [53], where the STT is
reversed but the β torque is not. In contrast, the sign change in µ across the AF gap in
our present result brings a sign change in both STT and the βn torque, and their ratio,
i.e., the βn parameter remains positive (if Jsd > 0).
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3.A Appendix: Model of electrons

The conduction electrons are considered in the tight-binding Hamiltonian
and s-d exchange interaction,

Hel = −t
∑
〈i,j〉

(c†icj + h.c.) + Vimp, (3.40)

Hsd = −Jsd

∑
i

Si · c†iσ ci (3.41)

where c†i = (c†i↑, c
†
i↓) is the electron creation operator at site i. The first term

in Hel describes the electron hopping (with amplitude t). The second term
describes the coupling to nonmagnetic and magnetic impurities,

Vimp = ui

∑
i∈C

c†ici + us

∑
j∈C′

Simp
j · c†jσ cj, (3.42)

where ui and us are the strengths of the coupling, and C and C′ are the sets of
positions of nonmagnetic and magnetic impurities, respectively. The number
of impurities on A and B sublattices are assumed equal.

The coupling of conduction electrons to the localized spins is introduced
by Hsd, where σ = t(σx, σy, σz) are Pauli matrices and Jsd is the coupling
constant. With l̃ and n, its density is written as

Hsd = −M
sn

( l̃ · σ̂` + n · σ̂n), (3.43)

where σ̂` (σ̂n) is the uniform (staggered) spin density of electrons, sn =
2~S/(2a2), and M = JsdS.

We introduce a local unitary transformation in the electron spin space
that sorts the Néel vector at each site i to the ẑ direction [45, 55],

U †i (ni · σ)Ui = σz. (3.44)

We define an SU(2) spin gauge field Aij by

U †i Uj = eiAij . (3.45)

This is associated with the hopping from site j to i, and satisfies Aij =
−Aji. It contains information about the texture of the Néel vector. We
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assume slow spatial variation for ni, therefore, Aij is small and can be treated
perturbatively. We define the Fourier component Aµ(q) by

Aij =
∑
q

Aµ(q) eiq·(ri+rj)/2, (3.46)

where µ̂ = rj − ri, and expand it with Pauli matrices,

Aµ(q) =
∑

α=x,y,z

Aαµ(q)
σα

2
≡ Aµ ·

σ

2
. (3.47)

The corresponding 3× 3 matrix Ri is defined by

U †i σ
αUi = Rαβ

i σβ. (3.48)

To first order in the spin gauge field, the Hamiltonian in the Fourier repre-
sentation is written as [23]

H̃el =
∑
k

ψ†kεkτ1ψk +
1

2

∑
i=x, y

∑
k,q

(∂iεk)(ψ†k+
σατ1 ψk−)Aαi (q) + H̃imp, (3.49)

H̃sd = −M
∑
k

ψ†kσ
zτ3ψk, (3.50)

where τn and σα are Pauli matrices that act in sublattice (A or B) and spin
(↑ or ↓) spaces, respectively, εk = −2t(cos kx + cos ky), k± = k ± q

2
, and

we set the lattice constant to unity. The electron creation operator in the
sublattice representation is now given by ψ†k = (c̃†Ak↑, c̃

†
Ak↓, c̃

†
Bk↑, c̃

†
Bk↓), where

c̃†A/Bkσ is the Fourier representation of the electron creation operator in the

rotated frame with spin σ and on sublattice A/B. The k-integral is taken in
the reduced Brillouin zone, |kx + ky| ≤ π. Note that in H̃sd, the coupling to
l is dropped since it only gives higher order terms in l̃.

3.B Appendix: Calculation of spin torques

3.B.1 Formalism

We calculate the conduction electron spin density, σ̃τβ =
∑

k ψ
†
kστβψk, in

response to an applied electric field Ei using the Kubo formula. In par-
ticular, we are interested in the uniform density, 〈σ̂`〉 = 1

2
R〈σ̃τ0〉, and the
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staggered density, 〈σ̂n〉 = 1
2
R〈σ̃τ3〉. We dropped the wave vector carried by

the spin density operator since the spin gauge field already contains a spatial
derivative. The Kubo formula is given by

〈O〉ne = lim
ω→0

Ki(ω + i0)−Ki(0)

iω
Ei, (3.51)

Ki(iωλ) =

∫ β

0

dτeiωλτ 〈TτO(τ)J̃i〉, (3.52)

where O = σα or σατ3. The current operator in the rotated frame is given
to first order in spin gauge field by

J̃i = −e
∑
k

ψ†k[(∂iεk)τ1]ψk − e
∑
k,q

ψ†
k+ q

2
[(∂2

i εk)σατ1]ψk− q
2
Aαi (q). (3.53)

The average 〈· · · 〉 is taken in the thermal equilibrium state, determined by
H̃el + H̃sd, to first order in the spin gauge field.

The calculation is executed using the Green’s function of the tight-binding
electrons in a homogeneous antiferromagnetic state. The retarded Green’s
function is given by

GR
k = µRk + TRk τ1 + JRk σ

zτ3, (3.54)

where µR = (µ + iγ0)/DR
k , TR = εk/D

R
k , JR = (−M + iγ3)/DR

k , and DR
k =

(µ + iγ0)2 − ε2
k − (M − iγ3)2. The damping constants are calculated in the

Born approximation (see Fig. 4.1 (a)) as γ0 = γn + γz + 2γ⊥ and γ3 =
(γn + γz − 2γ⊥)M/µ, with γn = πniu

2
i ν from nonmagnetic impurities and

γ⊥ = πnsu
2
s S

2
⊥ ν, γz = πnsu

2
s S

2
z ν, (3.55)

from magnetic impurities. We wrote ni (ns) for the nonmagnetic (magnetic)
impurity concentration, and we took the directional average of magnetic
impurity spins in the rotated frame, S̃imp = R−1Simp, as 〈S̃imp

α 〉imp = 0,

〈(S̃imp
j,z )2〉imp ≡ S2

z , and 〈(S̃imp
j,x )2〉imp = 〈(S̃imp

j,y )2〉imp ≡ S2
⊥. The density of

states is given by ν = ν(µ) = 1
N

∑
k δ(|µ| −Ek) where Ek =

√
ε2
k +M2, and

µ is the chemical potential.

To work in consistency with the Born approximation, we consider the
impurity-ladder vertex correction as shown in Fig. 4.1 (b). The relevant
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correction comes from retarded and advanced Green’s functions with opposite
spins, and is obtained as

Πσσ̄ =
2

πν

4γ2µ2

µ2 −M2

1

Dq2 − iω + τ−1
ϕ + τ−1

s

(3.56)

' 2γ

πν
· γn − γz
M2

µ2
γn + γz + (1− M2

µ2
)γ⊥

, (3.57)

where γ = γ0 + (M/µ)γ3 is the electron scattering rate,

1

τϕ
=

4M2

µ2

[
µ2 +M2

µ2 −M2
γn + 3γ⊥ +

2(2µ2 +M2)

µ2 −M2
γz

]
, (3.58)

1

τs

= 4 (γ⊥ + γz), (3.59)

are the spin-dephasing and spin-relaxation rates, respectively. We decompose
the former into

1

τϕ0

=
4M2

µ2

µ2 +M2

µ2 −M2
γn, (3.60)

1

τϕ1

=
4M2

µ2

[
3γ⊥ +

2(2µ2 +M2)

µ2 −M2
γz

]
. (3.61)

3.B.2 Uniform spin density

The uniform spin density is finite without magnetic impurities, so magnetic
impurities are not considered here. The first two diagrams in Fig. 4.1 (d)
give

(d1) + (d2) =
1

iω

−ω
2πi

1

2
Aαi
∑
k

(∂iεk)2tr(σ⊥GRσατ1G
Rτ1G

A) + c.c.

= A⊥i
2ντ

µ

[
−2M2

µ2 +M2
〈〈(∂iεk)2〉〉 − 〈〈εk(∂2

i εk)〉〉
]
, (3.62)

where A⊥i = Ai − Azi ẑ and 〈〈· · · 〉〉 = ν−1 1
N

∑
k(· · · )δ(|µ| − Ek). The third

diagram (d3) gives

(d3) =
1

iω

−ω
2πi

1

2
Aαi
∑
k

(∂2
i εk) tr

[
σ⊥GRσατ1G

A
]

= A⊥i
2ντ

µ
〈〈εk(∂2

i εk)〉〉, (3.63)
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Figure 3.1: Feynman diagrams for the current-induced spin torques and
damping torques. (a) and (b) show the treatment of random impurities,
and (c)-(f) show the response functions (electron spin density in response to
the electric field E or time-dependent uniform/staggered magnetization, n
or l̃). The solid line represents the electron Green’s function, and the dashed
line with a cross (circled cross) represents nonmagnetic (magnetic) impurity
scattering. (a) Self-energy in the Born approximation. (b) Four-point ver-
tex with impurity ladder. The upper (lower) electron line is in the retarded
(advanced) branch and has spin σ (σ̄). (c) Definition of vertices. The filled
circle represents the current vertex (∂iεk)τ1, where the direction i is coupled
to the external electric field Ei. The empty circles represent vertices that
contain the spin gauge field A coming either from the perturbation Hamil-
tonian (∂lεk)Al(q) · στ1 or from the current vertex (∂2

i εk)Ai(q) · στ1. The
empty square is the uniform (σ) or staggered (στ3) spin density. Diagrams
in (d) and (e) represent current-induced torques, in which the right vertex
represents the charge current that couples to E. (d) Diagrams first order in
A. The so-called Fermi-sea terms, consisting of only retarded or advanced
Green’s functions, also need to be retained for the staggered spin density. (e)
Diagrams first order in A with ladder vertex corrections. Diagrams in (f)
represent damping torques.



3.B. APPENDIX: CALCULATION OF SPIN TORQUES 53

which cancels the term ∼ 〈〈εk(∂2
i εk)〉〉 in (d1)+(d2). In Fig. 4.1 (e), the first

two diagrams, (e1) and (e2), give

(e1) + (e2) =
1

42

1

iω

−ω
2πi

1

2
Aαi
∑
k′

tr
[
σ⊥GRσ⊥GA

]
Πσσ̄

×
{∑

k

(∂iεk)2tr(σ⊥GRσατ1G
Rτ1G

A) + c.c.

}
= A⊥i

2ντϕ0

µ

[
−2M2

µ2 +M2
〈〈(∂iεk)2〉〉 − 〈〈εk(∂2

i εk)〉〉
]
, (3.64)

where Πσσ̄ is the ladder vertex part [Eq. (3.57)], and we defined µ2−M2

2M2 τ = τϕ0.
The third diagram (e3) can be similarly calculated,

(e3) = A⊥i
2ντϕ0

µ
〈〈εk(∂2

i εk)〉〉. (3.65)

Thus, the total uniform spin density in the rotated frame is obtained as

〈σ̃⊥〉ne = Fig. 4.1 (d)+(e) = A⊥i (τ + τϕ0)
2ν

µ

−2M2

µ2 +M2
〈〈(∂iεk)2〉〉(−eEi)

= A⊥i τ
2ν

µ
〈〈(∂iεk)2〉〉eEi

= A⊥i
2µ

µ2 −M2

ji
2e
, (3.66)

where j = 2e2DνE = 2e2 µ2−M2

µ2
〈〈(∂iεk)2〉〉 ντE is the electric current density

[23]. The spin density in the laboratory frame is obtained from RA⊥i =
−n× ∂in,

〈σ⊥〉ne = R〈σ̃⊥〉ne = −n× ∂in
2µ

µ2 −M2

ji
2e
. (3.67)

3.B.3 Staggered spin density

The staggered spin density vanishes without magnetic impurities, so they
must be considered. Note that since the staggered spin density is zeroth
order in the scattering time τ , the so-called “Fermi-sea terms” that contain
only advanced or retarded Green’s functions need to be retained.
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Let us first calculate the Fermi-surface terms. The first two diagrams in
Fig. 4.1 (d) without vertex correction are calculated as

[(d1) + (d2)]surf =
1

iω

−ω
2πi

1

2
Aαi
∑
k

(∂iεk)2 tr
[
σ⊥τ3G

Rσατ1G
Rτ1G

A
]

+ c.c.

= Ai × ẑ
∑
k

2δ(µ2 − E2
k)
τ

|µ|

{
−(∂iεk)2γ3

+ (µγ3 +Mγ0)

[
2(∂iεk)2γ0

τ

µ
− µεk(∂2

i εk)− (∂iεk)2

µ2 −M2

]}
.

(3.68)

The anomalous velocity term (the third diagram) without vertex correction
is calculated as

(d3)surf =
1

iω

−ω
2πi

1

2
Aαi
∑
k

(∂2
i εk)tr(σ⊥τ3G

Rσατ1G
A)

= Ai × ẑ
∑
k

(∂2
i εk)εk2γ3

τ

|µ|
δ(µ2 − E2

k). (3.69)

The Fermi-sea terms in (d1)+(d2) are given by

[(d1) + (d2)]sea =
1

iω

1

2πi

1

2
Aαi
∑
k

(∂iεk)2

×
∫
dε

{
f(ε−) tr

[
σ⊥τ3G

R
+ (τ1G

R
−σ

ατ1 + σατ1G
R
+τ1)GR

−
]

− f(ε+) tr
[
σ⊥τ3G

A
+ (τ1G

A
−σ

ατ1 + σατ1G
A
+τ1)GA

−
]}

= Ai × ẑ
M (sgnµ)

µ2 −M2

∑
k

{
εk(∂2

i εk)− (∂iεk)2
}
δ(µ2 − E2

k),

(3.70)

where f(ε) = θ(−ε) is the Fermi-Dirac distribution function at zero temper-

ature, ε± = ε± ω/2, and G
R/A
± = GR/A(ε± ω/2).
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The Fermi-sea term from the anomalous velocity diagram vanishes,

(d3)sea =
1

2πi

1

2
Aαi
∑
k

(∂2
i εk)

∫
dε

{
f(ε−) tr

[
σ⊥τ3G

R
+σ

ατ1G
R
−
]

− f(ε+) tr
[
σ⊥τ3G

A
+σ

ατ1G
A
−
]}

= 0. (3.71)

Adding up the Fermi-surface and Fermi-sea terms, we obtain

[(d1) + (d2) + (d3)]surf & sea = Ai × ẑ
2ν

µ
〈〈(∂iεk)2〉〉2τ

2γ0

µ2
(µγ3 +Mγ0).

(3.72)

Next, the diagrams with vertex corrections, shown in Fig. 4.1 (e), give

(e1) + (e2) + (e3) =

1

iω

−ω
2πi

1

42

1

2
Aαi

(∑
k

tr(σ⊥τ3G
RσλGA)

)
2γ

πν
· γn − γz
M2

µ2
γn + γz + (1− M2

µ2
)γ⊥

×
{∑

k

(∂iεk)2 tr
[
σλGRσαGRτ1G

A
]

+ c.c.+ (∂2
i εk) tr

[
σλGRσατ1G

A
]}
.

(3.73)

The first trace is evaluated as∑
k

tr
[
σ⊥τ3G

RσλGA
]

= −i tr(σ⊥σλσz)(γ3µ+ γ0M)
2πτν

µ2
. (3.74)

The second trace is the same as calculation of the uniform spin density. Thus,
we have

(e1) + (e2) + (e3) =

Ai × ẑ
2ν

µ
〈〈(∂iεk)2〉〉 γn − γz

M2

µ2
γn + γz + (1− M2

µ2
)γ⊥

(
−M(µγ3 +Mγ0)2

4µ4γ2

)
.

(3.75)
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Therefore, the total staggered spin density in the rotated frame is obtained
as

〈σ̃⊥τ3〉ne = [(d1) + (d2) + (d3)]surf & sea + (e1) + (e2) + (e3)

= Ai × ẑ
2ντ

µ
〈〈(∂iεk)2〉〉(γ⊥ + γz)

2M(γn + γz)

M2γn + µ2γz + (µ2 −M2)γ⊥
(−eEi)

= Ai × ẑ
2ντ

µ
〈〈(∂iεk)2〉〉2(γ⊥ + γz)

M
(−eEi)

= −Ai × ẑ
2(γ⊥ + γz)

M

2µ

µ2 −M2

ji
2e
, (3.76)

where in the third equality, we retained lowest-order terms in spin relaxation
(magnetic impurities). In the laboratory frame, we have

〈σ⊥τ3〉ne = R〈σ̃⊥τ3〉ne = βn ∂in
2µ

µ2 −M2

ji
2e
, (3.77)

where βn = 2(γ⊥ + γz)/M .

3.B.4 Damping torques for staggered moment

To calculate the damping term due to conduction electrons, we use the small
amplitude method and consider

Hδn
sd = −M

∑
k

ψ†kστ3ψk · δn (3.78)

to be the perturbing Hamiltonian, with the dynamic deviation of the Néel
vector δn in the xy plane [44]. We calculate the ω-linear terms of the stag-
gered spin density in response to Hδn

sd using the Kubo formula

〈στ3(ω)〉δnne = − i
~

∫ ∞
−∞

eiωtθ(t)〈[σ̂n(t),Hδn
sd (0)]〉 dt. (3.79)

The terms without vertex correction is given by

〈στ3〉δn = −Mδnα
1

2πi

∫
dε

[
(−f(ε+) + f(ε−))στ3G

R(ε+)σατ3G
A(ε−)

+ f(ε+)στ3G
A(ε+)σατ3G

A(ε−)− f(ε−)στ3G
R(ε+)σατ3G

R(ε−)

]
.

(3.80)
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The RA term gives

〈στ3〉δnRA = −Mδn
ω

2πi
4(µRµA − TRTA − JRJA) (3.81)

= 2iωMδn
2ντ

µ2
(γ2

0 − γ2
3) (3.82)

The RR and AA terms give

〈στ3〉δnRR + 〈στ3〉δnAA =
1

2
Mδnα

ω

2πi

(
στ3G

Rσατ3G
R + στ3G

Aσατ3G
A

)
(3.83)

= 0 (3.84)

With vertex correction the RA term is given by,

〈στ3〉δnRA,V = − 1

42
Mδnα

ω

2πi
tr(στ3G

RσβGA) Π tr(σβGRσατ3G
A) (3.85)

= −iωMδn(γ3µ+ γ0M)2 2ντ

µ2

γn − γz
M2γn + µ2γz + (µ2 −M2)γ⊥

(3.86)

Lastly, let us consider the vertex correction on the RR and AA terms.

〈στ3〉δnRR,V + 〈στ3〉δnAA,V

=
1

2 · 42
Mδnα

ω

2πi

(
tr[στ3G

Aσβτ3G
A] Π1 tr[σβτ3G

Aσατ3G
A] + c.c.

)
(3.87)

=Mδniω(γn − γz)
2ν

µ2
(3.88)

where Π1 is the vertex correction with one non-magnetic and magnetic im-
purity, Π1 = 4

πν
(γn − γz). Finally, adding up the terms obtained

〈στ3〉δnne = 〈στ3〉δnRA + 〈στ3〉δnRR + 〈στ3〉δnAA
+ 〈στ3〉δnRA,V + 〈στ3〉δnRR,V + 〈στ3〉δnAA,V (3.89)

= −2 δṅ
2ν

M

[
γz + γ⊥ +

M2

µ2
(γ⊥ − γz)

]
(3.90)

to the leading order in magnetic impurities. This gives the damping param-
eter

αn =

[
γz + γ⊥ +

M2

µ2
(γ⊥ − γz)

]
2ν

sn
(3.91)

where sn = 2~S/(2a2).
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3.B.5 Damping torques for uniform moment

The uniform damping torque parameter α` is similarly calculated using the
small amplitude method as the ω-linear terms of the uniform spin density in
response to the s-d coupling to l̃. The result is given by

〈σ〉na = 2Miωl̃(µ2 −M2)
2(τ + τ 0

φ)ν

µ2
(3.92)

= iωl̃
(µ2 +M2)(µ2 −M2)

M

2ντ

µ2
, (3.93)

so

α` =
(µ2 +M2)(µ2 −M2)

µ2

ντ

sn
. (3.94)

3.C Appendix: Domain wall motion in ferri-

magnet

To discuss the experiment reported in Ref. [16], we study here the dynam-
ics of a domain wall (DW) in a ferrimagnet. We use the collective coor-
dinates which are essentially the same as those for antiferromagnetic (AF)
DW defined in the text, by noting that the Néel vector is associated with a
(longitudinal) ferromagnetic (FM) component. Near the angular-momentum
compensation point, the dynamics is dominated by the AF component with
a slight mixture of the FM component. Denoting the fraction of the latter
by δ, which is a small dimensionless parameter (|δ| � 1) and vanishes at
the angular-momentum compensation point, the equations of motion under
a steady current are given by [16]

1

vJ
Ẍ ± δφ̇0 + α̃

Ẋ

λ
=
βnvn + βvs

λ
, (3.95)

1

vJ
λ2φ̈0 ∓ δẊ + α̃λφ̇0 = ∓vs − vK sin 2φ0. (3.96)

Here, α̃ ' αn is the effective damping parameter. Other notations are the
same as in Eqs. (33)-(36), (38) and (39) in the text. Note that these equations
reduce to those in AF at δ = 0, except for the terms with vs (including βvs),
which do not necessarily vanish at δ = 0 [16]. (Similarly, the difference α̃−αn
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is finite in general, but this would be small compared to αn, or, at most, of
the same order as αn.) Following Ref. [16], we obtain the terminal velocity
as

〈Ẋ〉 = − α̃βnvn + (α̃β + δ)vs

δ2 + α̃2
, (3.97)

which is decomposed into the even part (with respect to δ),

〈Ẋ〉even = − α̃(βnvn + βvs)

δ2 + α̃2
' −βnvn + βvs

αn
, (3.98)

which comes from the β torques, and the odd part (not shown) coming
from the spin-transfer torque. In the last expression, we set δ = 0 and
approximated α̃ by αn. Of the two terms in Eq. (3.98), the analysis in
Ref. [16] was done only with the second one (∼ βvs), whereas we found in
the present work that the first term (∼ βnvn) also exists. In the text, a
discussion is given that considering the latter (∼ βnvn) allows a reasonable
interpretation of the experimental results.
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Chapter 4

Current-induced spin-wave
Doppler shift

In this chapter, we theoretically study the influence of an elec-
tric current on antiferromagnetic spin waves. One of the effects
electric current has on spin waves is spin-transfer torque induced
Doppler shift in spin wave dispersion. It has been believed that
there is only one spin-transfer torque in antiferromagnets, simi-
lar to ferromagnets, hence only one source of spin-wave Doppler
shift. In this chapter, we identify two different sources of spin-
transfer torques that stem from uniform (vn) and staggered (v`)
electron spin densities. While the former is well recognized, the
latter is often overlooked. We show that both vn and v` contribute
equally to the spin-wave Doppler shift. Microscopic calculations
are presented for electrons on a two-dimensional square lattice
with nearest-neighbor (t) and next-nearest-neighbor (t′) hopping,
which interpolate two opposite transport regimes of strongly-coupled
AF (t′/t� 1) and two decoupled ferromagnets (t′/t� 1). In the
AF transport regime (t′/t � 1), vn and v` have opposite signs,
and the sign of the Doppler shift depends on band filling. As t′/t
is increased, vn undergoes a sign change whereas v` does not. In
the limit of vanishing t, vn and v` coincide and the spin-transfer
torque reduces to that of ferromagnets.

61
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4.1 Introduction

In the previous two chapters, we looked at the dynamics of antiferromag-
netic domain walls. In this chapter, we focus on spin waves, which is another
fundamental dynamics in magnetic materials. Spin waves are small pertur-
bations of spins from their equilibrium positions that collectively propagate
as a wave, They carry heat and angular momentum, and are expected to
play an important role in spintronics. Unlike electric currents that can also
carry heat and angular momentum, spin waves do not suffer Joule heating
and can be more energy efficient.

Much of the work done so far on spin waves are focused on ferromagnets
(FMs) and the understanding of antiferromagnetic (AF) spin waves remain
relatively poor. As it was previously noted, AFs have the advantage of fast
spin dynamics compared to FMs 1, so AF spin wave-based devices can operate
at frequencies higher by orders of magnitude. AF spin waves come with
another big perk that might revolutionize magnonics, which is the chirality
or isospin degree of freedom [56]. In contrast to FM spin waves that can only
encode information in its amplitude, AF spin waves have multiple modes
with different chiralities. Specifically, collinear AFs possess two degenerate
eigenmodes with opposite chiralities. Despite the highly anticipated features
of AF spin waves, the means to control them remain limited.

From a scalability perspective, electrical manipulation of spin waves is
ideal. In FMs, the effects of electric current on spin waves are relatively
well known [57, 58, 59, 60, 61]. In particular, the adiabatic spin-transfer
torque (STT) causes a Doppler shift on spin waves, which can be used as a
probe of spin-polarized transport in magnetic materials [58], to realize effec-
tive black holes [62], and so on. Spin-wave Doppler shifts also realize in AFs
[35]. Pioneering theories have elucidated key properties of AF spin torques
phenomenologically [34, 35, 24, 27, 36, 37], and microscopic theories have
identified their origins [29]. Experiments on AF spintronics remain limited
as the lack of leakage magnetic field hinders detection of magnetic infor-
mation, while the immunity to external fields forbids easy manipulation of
the AF spins. Compensated ferrimagnets have been used to overcome these

1AF have spin waves that can reach frequencies in the terahertz range while FM spin
waves remain in the gigahertz range. This difference stems from the gap in the spin wave
dispersion; while the gap for FM spin waves is given by the magnetic anisotropy K, it is
given by the square root of the product of magnetic anisotropy and exchange coupling,√
JK, in AF.
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difficulties, in which AF spin dynamics is realized at the angular momen-
tum compensation temperature while a finite macroscopic magnetic moment
allows detection and manipulation of the magnetic texture [16, 63].

In this chapter, we microscopically explore the effect of electric current
on AF spin dynamics, and study the spin-wave properties in particular. We
first derive the equations of motion for AF spins with two kinds of adiabatic
STT. The coefficients of the STTs are then calculated based on a microscopic
electron model. With nearest-neighbor (n.n.) and next-nearest-neighbor
(n.n.n.) electron hopping considered, the model incorporates two typical
transport regimes, namely, strongly-coupled AF and two decoupled FMs.
By interpolating these two limiting cases, we identify several characteristic
features of the STT in AF compared to FM. In particular, we point out that
the STT responsible for the spin-wave Doppler shift in AF is different from
the STT that acts on AF domain walls [24, 27, 29]. This distinction is a new
feature of AF STT, not present in FM.

4.2 Antiferromagnetic spin dynamics and

Doppler shift

We consider a metallic AF consisting of localized spins and conduction elec-
trons, interacting mutually via the s-d exchange interaction. The Hamilto-
nian is

H = HS +Hel +Hsd. (4.1)

The localized spins and their coupling to the electrons are described, respec-
tively, by

HS = J
∑
〈i,j〉

Si · Sj −K
∑
i

(Szi )2, (4.2)

Hsd = −Jsd

∑
i

Si · c†iσci, (4.3)

where Si is a classical spin at site i, J > 0 is the AF exchange coupling
constant between the n.n. sites, and K > 0 is the easy-axis anisotropy
constant. In Hsd, c†i = (c†i↑, c

†
i↓) are electron creation operators at site i, σ

is a vector of Pauli matrices, and Jsd is the s-d exchange coupling constant.
The Hamiltonian Hel for the electrons will be specified later.
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We first describe the AF spin dynamics by considering a general Bra-
vais (primitive) lattice in d spatial dimensions. We adopt the exchange ap-
proximation, in which J is considered the largest energy scale in the spin
system[42, 18]. Then the description is simplified by introducing the Néel
vector and uniform moment[41],

nm =
SA,m − SB,m

2S
, lm =

SA,m + SB,m
2S

, (4.4)

respectively. The localized spins at A and B sites in unit cell m are denoted
by SA,m and SB,m, and S is their constant magnitude. We also adopt the
continuum approximation, nm → n(r) and lm → l(r), assuming that their
spatial variations are slow. Further simplifications can be made by introduc-
ing the physical magnetization [43]

l̃ ≡ l +
a

2
∂xn, (4.5)

where a is the lattice constant and ∂x is a spatial derivative in the direction
from A to B site in the unit cell.

The Lagrangian density for localized spins is then given by

LS = sn
{
l̃ · (n× ṅ)−HS −Hsd

}
, (4.6)

HS =
1

2

{
J̃ l̃ 2 +

c2

J̃

d∑
i=1

(∂in)2 − K̃ (nz)2

}
, (4.7)

Hsd = −M
sn

(l̃ · σ̂` + n · σ̂n), (4.8)

where σ̂n and σ̂` are the staggered and uniform spin densities of the conduc-
tion electrons. We defined J̃ = 2zJS/~, c = (zJSa)/(~

√
d), K̃ = 2SK/~,

sn = 2~S/(2ad) and M = JsdS, where z is the coordination number (number
of n.n. sites). This leads to the equations of motion,

ṅ = H` × n+ tn, (4.9)

˙̃l = Hn × n+H` × l̃ + t`, (4.10)

where Hn = ∂HS/∂n and H` = ∂HS/∂ l̃ are the effecive fields determined
by the spin Hamiltonian, and

tn =
M

sn
n× 〈σ̂`〉, (4.11)

t` =
M

sn

{
n× 〈σ̂n〉+ l̃× 〈σ̂`〉

}
, (4.12)
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are the torques due to the conduction electrons. Note that Eqs. (4.9) and
(4.10) are consistent with the constraints, l̃ · n = 0 and |n| = 1.

Under a current flow or time-dependent n and l̃, the spin densities 〈σ̂n〉
and 〈σ̂`〉 are expected to acquire nonequilibrium components as

〈σ̂n〉 =
sn
M

{
− βn(vn ·∇)n+ n× (v` ·∇) l̃− αnṅ

}
, (4.13)

〈σ̂`〉 =
sn
M

{
n× (vn ·∇)n− α` ˙̃l

}
, (4.14)

where vn and v` are coefficients for the current-induced torques, βn charac-
terizes the so-called β-torque, and αn and α` are damping coefficients. The
microscopic expressions of vn, βn, αn and α` have been derived in Ref. [29],
while v` is often overlooked (see, however, Refs. [24, 38]). Note that the
above spin densities respect the sublattice symmetry n→ −n, l̃→ l̃ in Eqs.
(4.9) and (4.10).

The equations of motion can then be written explicitly as

ṅ = J̃ l̃× n− (vn · ∇)n (4.15)

˙̃l = −
(
J̃−1c2∇2n+ K̃nz ẑ

)
× n

+
{
βn(vn · ∇)n+ αnṅ

}
× n

− (v` · ∇) l̃ + n[l̃ · (vn · ∇)n+ n · (v` · ∇)l̃]. (4.16)

The terms with α` are dropped in the exchange approximation. One may
eliminate l̃ from these equations to obtain

n× n̈ = n×
(
c2∇2n+ J̃K̃nz ẑ

)
− J̃n×

[
βn(vn · ∇)n+ αnṅ

]
− n× [(vn + v`) · ∇]ṅ

− n× (v` · ∇)(vn · ∇)n. (4.17)

Linearizing this equation around a uniform state n = ẑ by considering a small
transverse component δn such that n(r) = ẑ + δn eiq·r−iωt, one obtains a
dispersion relation,

ω2 = c2q2 + J̃K̃ + iJ̃
{
βn(vn · q)− ωαn

}
+ [(vn + v`) · q]ω − (v` · q)(vn · q). (4.18)
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Solving for ω to the leading order in vn and v` leads to

ω =

(
c2q2 + J̃K̃ + J̃βn(vn · iq)− (v` · q)(vn · q)

+
[iαnJ̃ − (vn + v`) · q]2

4

)1/2

∓ iαnJ̃ − (vn + v`) · q
2

(4.19)

'
√
c2q2 + J̃K̃ ± (vn + v`) · q

2
. (4.20)

In the last expression, we dropped the effects of damping and dissipative
β-torques. We see that the Doppler shift of AF spin waves is given by (vn +
v`)/2; this is one of the main results of this chapter. A similar result was
obtained in Ref. [35] but without account for v`.

4.3 Current-induced torques

To determine the magnitude of vn and v`, we next perform a microscopic
calculation. To be explicit, we consider electrons on a two-dimensional square
lattice,

Hel = −t
∑
〈i,j〉

(c†icj + H.c.)− t′
∑
〈〈l,m〉〉

(c†l cm + H.c.) + Vimp, (4.21)

with n.n. hopping (first term), n.n.n. hopping (second term), and subject
to impurity potentials (last term). To calculate vn and v`, it is sufficient to
consider nonmagnetic impurities,

Vimp = ui

∑
j∈C

c†jcj, (4.22)

where ui is the strength of the impurity potential and C is a set of impurity
positions. The number of impurities is assumed equal for the two sublat-
tices, with density ni. Combining Hel with Hsd completes the model for the
conduction electrons.

To treat the spatial variation of the Néel vector, we employ the method
of spin gauge field [17]. For this, it is convenient to assume that n and l̃ are
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defined at each site i, and write[28]

Si = S
{
l̃i + (−)ini

}
. (4.23)

This will be justified, and is consistent with Eqs. (4.4) and (4.5) [43], if l̃i
and ni are smooth enough and do not contain large-wavevector components.
We then perform a local SU(2) rotation Ui that brings the Néel vector at
each site i to the z direction, U †i (ni · σ)Ui = σz. The hopping term is then
modified through U †i Uj = eiAij , which introduces the spin gauge field Aij.

We also define the corresponding 3× 3 rotation matrix Ri by U †i σUi = Riσ.
The Hamiltonian then becomes Hel +Hsd = H0 +H ′ + Vimp,

H0 =
∑
i,j

tij c̃
†
i c̃j −M

∑
i

(−)ic̃†iσ
z c̃i, (4.24)

H ′ =
∑
i,j

tij c̃
†
i iAij c̃j −M

∑
i

(R−1
i l̃i) · c̃

†
iσc̃i, (4.25)

up to O(A2
ij), where c̃i = U †i ci is defined in the rotated frame, and tij is −t

(−t′) if i, j are n.n. (n.n.n.) pairs and zero otherwise. Since Aij and l̃ are
considered small, we treat H ′ perturbatively [23].

The unperturbed part H0 describes electrons interacting with a uniform
AF moment with dispersion

Ek,± = ±Ek + ε′k, (4.26)

where Ek =
√
ε2
k +M2, εk = −2t(cos kx + cos ky) comes from the n.n. hop-

ping, and ε′k = −4t′ cos kx cos ky from the n.n.n. hopping. At t′ = 0, it
reduces to Ek,± = ±Ek. For t = 0, it becomes Ek,± = ε′k ± |M |, and the
model describes two decoupled FMs with opposite magnetization (hence van-
ishing total magnetization). We call the former the “AF transport limit”,
and the latter the “FM transport limit”. More generally, the model is in
the “AF transport regime” for t� t′, and in the “FM transport regime” for
t� t′.

In the following, we calculate the electron spin densities, 〈σ̂n〉 and 〈σ̂`〉, in
response to an applied electric field E, using the linear response theory and
the Green’s function method [44, 45, 29]. The effects of impurities are con-
sidered in the Born approximation together with ladder vertex corrections.
Details of the calculation are presented in the appendices.
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4.3.1 Spin-transfer torque via uniform spin density: vn

The STT vn that arises through the uniform spin density 〈σ̂`〉 is obtained as

vn =
−e~E
sn

M2Λ
∑
η=±1

1

N

∑
k

(v0
i )

2 − (v′i)
2

2Ek|ηEkγ0 +Mγ3|

× ηEkγ3 +Mγ0

ηEkγ0 +Mγ3

δ(µ− ε′k − ηEk), (4.27)

where v0
i = ∂iεk is the velocity coming from the n.n. hopping, and v′i = ∂iε

′
k

from the n.n.n. hopping. The effects of damping surface through γ0 =
πniu

2
i

∑
η=±1

1
N

∑
k δ(µ−ε′k−ηEk) and γ3 = πniu

2
iM

∑
η=±1

1
N

∑
k δ(µ−ε′k−

ηEk)/(ηEk), where N is the total number of sites. The chemical potential µ
is measured from the AF gap center at t′ = 0. The impurity ladder vertex
correction is considered through Λ = (1− Λ1)−1, where

Λ1 =
πniu

2
i

γ0

∑
η=±1

1

N

∑
k

ε2
k

Ek

δ(µ− ε′k − ηEk)

|ηEk +M(γ3/γ0)|
. (4.28)

In the AF transport limit, t′ = 0, one has Λ = (µ2 +M2)/(2M2), and vn
reduces to

vn = − ~
2esn

µM

µ2 −M2
σxxE (t′ = 0), (4.29)

where σxx = 2e2Dν is the longitudinal conductivity, D = 1
N

∑
k(∂xEk)2δ(|µ|−

Ek)τ/ν is the diffusion constant, τ = (1/2)(γ0 +Mγ3/µ)−1 is the scattering
time, and ν = 1

N

∑
k δ(|µ|−Ek) is the density of states per spin, all evaluated

at t′ = 0. This result agrees with the one reported in Ref. [29] (See chapter
3).

In the opposite limit, t = 0, we retrieve the STT for FMs [44, 45]

vn = − ~
2esn

(σ↑ − σ↓)E (t = 0), (4.30)

where σ↑/↓ is the longitudinal conductivity of electrons in band ε′k ∓M . We
find that the sign of the STT in the AF transport regime, Eq. (4.29), is
opposite to that in the FM transport regime, Eq. (4.30).

Numerical plots of vn are shown in the upper panel in Fig. 4.1, including
those with other values of t and t′. We set t = (1− x) t0 and t′ = x t0, which
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ṽ ℓ

µ/M

x = 0.00
x = 0.25
x = 0.50
x = 0.75
x = 1.00

t = (1− x)t0,
t′ = xt0

Figure 4.1: The STT coefficients, vn (upper panel) and v` (lower panel), as
functions of chemical potential µ for several choices of x, where t = (1−x) t0
and t′ = x t0 with t0/M = 0.25. Plotted are the normalized values, ṽn =
(vn ·E)snγ̃/(e~|E|2) and ṽ` = (v` ·E)snγ̃/(e~|E|2), where γ̃ = πniu

2
i /M

2 is
the dimensionless damping parameter. The choice t0/M = 0.25 corresponds
to a “strong AF”, in which the upper and lower bands do not overlap. The
following features are seen. (i) vn changes sign as x is increased from x = 0
(AF transport limit) to x = 1 (FM transport limit), whereas v` keeps the
same sign throughout. (ii) v` coincides with vn at x = 1. (iii) vn and v` are
odd functions of µ at x = 0 and 1 because of the presence of particle-hole
symmetry, but not for general x.
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Figure 4.2: Normalized STT coefficients, ṽn (red), ṽ` (blue) and ṽn + ṽ`
(black), calculated with t/M = 1 and t′ = 0. The total Doppler shift vn + v`
changes sign as a function of µ.

interpolate the AF transport regime (x ∼ 0) and the FM transport regime
(x ∼ 1). As seen, vn changes sign as x is increased from x = 0 to 1. This
means that the STT due to vn has opposite sign between FM and AF. This
fact has been used in Ref. [29] to interpret the experimental result of domain
wall motion in a compensated ferrimagnet GdFeCo, [16] which is expected
to be in the AF transport regime [54].

4.3.2 Spin-transfer torque via staggered spin density:
v`

The STT v` arising from the staggered spin density 〈σ̂n〉 is calculated by
considering the canting moment l̃ [23]. In the AF transport limit t′ = 0, we
obtain

v` =
~

2esn
Mτ

[
µ2 −M2

µDd
+ 2ζ

]
σxxE (t′ = 0), (4.31)

where ζ comes from the impurity correction to the l̃-vertex (see Fig. 4.3 (c)
and Eq. (4.44) in appendix). As seen from Fig. 4.1 (blue line in the lower
panel) and Fig. 4.2, the sign of v` relative to E is negative (hence positive
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relative to the electron flow) in the lower band, and v` remains finite at the
band bottom. These are in contrast to vn. As a result, the total Doppler
shift (vn + v`)/2 is dominated by v`, hence is negative, at the band bottom.
As the chemical potential is shifted to the AF gap edge, vn starts to take
over and the Doppler shift undergoes a sign change.

In the FM transport limit t = 0, we find

v` = − ~
2esn

(σ↑ − σ↓)E (t = 0), (4.32)

which coincides with vn in Eq. (4.30). Thus, the AF spin waves receive a
Doppler shift by (vn + v`)/2 = v`, and this is exactly the Doppler shift in
FM.

For other t, t′ values, we have numerically evaluated Eqs. (4.59)-(4.62)
given in appendix C, and the results are plotted in the lower panel in Fig.
4.1. In contrast to vn, it does not change sign with x, hence its sign is always
that of FM.

While both vn and v` appear in the spin-wave Doppler shift, only vn
appears in the collective-coordinate equations of AF domain wall motion
[24, 27, 29]. Thus, in contrast to FM, in which there is only one kind of
STT, AFs allow two kinds of STT that play different roles depending on the
physical phenomena.

4.4 Summary

In this chapter, we have studied STTs in AF that induce a Doppler shift in
spin-wave spectrum. Unlike in FM, the Doppler shift is induced by two kinds
of adiabatic STTs, identified as vn and v`, which arise through uniform and
staggered electron spin densities, respectively, and are proportional to the
spatial gradient of the Néel vector and the uniform moment, respectively.
Both STTs contribute to the spin-wave Doppler shift equally. This contrasts
with the effects on AF domain walls, to which only vn is relevant.

We next determined the STTs microscopically using a tight-binding model
with n.n. and n.n.n. hopping. In the AF transport regime dominated by
n.n. hopping, vn and v` have opposite signs, and the sign of the Doppler
shift depends on band filling. In the FM transport limit with only the n.n.n.
hopping, both vn and v` coincide with the well-known STT in FM, and add
up to reproduce the Doppler shift in FM.
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4.A Appendix: Green’s function

In the following appendices, we present the calculation of the uniform spin
density R−1〈σ̂`〉 and the staggered spin density R−1〈σ̂n〉 (in the rotated
frame), or 〈σ̂`〉 and 〈σ̂n〉 (in the original frame), in response to an external
electric field, to obtain vn and vl, respectively.

The unperturbed Hamiltonian is written as

H0 =
∑
k

c†khkck, (4.33)

where ck = t(ck↑,A, ck↓,A, ck↑,B, ck↓,B) and

hk = ε′k + εkτ1 −Mσzτz. (4.34)

The Pauli matrices that act in the sublattice (spin) space are denoted by τ
(σ). The retarded Green’s function of the unperturbed Hamiltonian is

GR = µR + TRτ1 + JRσ3τ3, (4.35)

where µR = (µ − ε′k + iγ0)/DR, TR = εk/D
R, JR = (−M + iγ3)/DR, and

DR = (µ− ε′k + iγ0)2− ε2
k− (−M + iγ3)2, and the advanced Green’s function

is given by its Hermitian conjugate, GA = (GR)†. The velocity operator is
given by

vi = v0
i τ1 + v′i. (4.36)

The spin gauge field appears through the perturbative Hamiltonian, HA =∑
k c
†
kviAick, and the anomalous velocity, (∂jvi)Aj. The spin gauge field is

expanded using Pauli matrices as Ai = Ai · σ/2, where the perpendicular
component of the spin gauge field is given by Ai − Azi ẑ = −R−1(n× ∂in).

The effect of Vimp is considered in the Born approximation and ladder
type vertex correction, as shown in Fig. 4.3 (a), (b), and (c).

4.B Appendix: Calculation of vn

Here, we calculate the uniform spin density R−1〈σ̂`〉. The first two diagrams
in Fig. 4.3 are given by

(e1) + (e2) =
1

2π

1

N

∑
k

tr
[
σαGRviAiG

Rvi(−eEi)GA
]

+ c.c., (4.37)
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and the third diagram in Fig. 4.3 is given by

(e3) =
1

2π

1

N

∑
k

tr
[
σαGR(∂ivi)Ai(−eEi)GA

]
. (4.38)

Adding up the terms (e1), (e2), and (e3) determines the spin density (R−1σ`)
α

in response to an electric field Ei, without the effect of vertex correction taken
into account. Note that we are only interested in α = x, y because σ̂` ⊥ n.
From this it follows that the z component of the spin gauge field Azi does not
contribute.

Integrating by parts, and using the relation ∂iG
R = GRviG

R, (e3) can be
merged with (e1)+(e2),

(e1) + (e2) + (e3) =
1

4π
Aβi

1

N

∑
k

[
(v0
i )

2 tr
{
σαGRτ1(σβGR −GRσβ)τ1G

A
}

+ (v′i)
2 tr
{
σαGR(σβGR −GRσβ)GA

}]
(−eEi) + c.c.

(4.39)

Evaluating the trace and approximating the product of the Green’s functions
by a delta function, one obtains

(e1) + (e2) + (e3)

= −MAαi
∑
η=±1

1

N

∑
k

(v0
i )

2 − (v′i)
2

2Ek|ηEkγ0 +Mγ3|
ηEkγ3 +Mγ0

ηEkγ0 +Mγ3

× δ(µ− ε′k − ηEk)(−eEi). (4.40)

These are for diagrams without vertex corrections. The effect of vertex cor-
rections is taken into account by multiplying the above result by Λ, and we
can now write the current induced uniform spin density as

〈σ`〉 = Mn× ∂inΛ
∑
η=±1

1

N

∑
k

(v0
i )

2 − (v′i)
2

2Ek|ηEkγ0 +Mγ3|
ηEkγ3 +Mγ0

ηEkγ0 +Mγ3

× δ(µ− ε′k − ηEk)(−eEi). (4.41)

4.C Appendix: Calculation of v`

Here, we calculate the staggered spin density R−1〈σ̂n〉 in response to an
external electric field, and obtain v`. We are interested in the first-order
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terms in the uniform moment l̃, perturbed through

H` = −M
∑
k

(R−1l̃) · σ. (4.42)

The relevant diagrams are depicted in Fig. 4.3 (f). The first four diagrams
(without vertex correction) give

(f1) + · · ·+ (f4)

=
1

2π
(1 + iζ)(−MR−1l̃ )β(−eEi)

× 1

N

∑
k

{
tr
[
σ⊥τ3G

RσβGRvjAjG
RviG

A
]

+ tr
[
σ⊥τ3G

RvjAjG
RσβGRviG

A
]

+ tr
[
σ⊥τ3G

RσβGRviG
AvjAjG

A
]

+ tr
[
σ⊥τ3G

RσβGR(∂jvi)AjG
A
]}
,

(4.43)

where ζ comes from the impurity correction to the l̃-vertex, Fig. 4.3 (c),

ζ = niu
2
i Im

[
2

N

∑
k

(µR)2 + (TR)2 − (JR)2

]
. (4.44)

The trace is nonvanishing only for Azσz/2 in Aj, which is, however, not
gauge-invariant. Note also that the k-integrals vanish by symmetry unless
j = i. Integrating by parts and evaluating the traces, one has

(f1) + · · ·+ (f4)

=
1

2π
(1 + iζ)(−MR−1l̃ )β4Azi (−eEi)

× 1

N

∑
k

[
(v0
i )

2
{

((µR)2 + 3(TR)2 − (JR)2)(µAJR − JAµR)
}

+ (v′i)
2
{

((µR)2 + (TR)2 − (JR)2)(µAJR − JAµR)

− 2µRTR(TRJA − JRTA)− 2TRJR(TRµA − µRTA)
}

− 2v0
i v
′
i

{
2µRTR(µRJA − µAJR)

+ ((µR)2 − (JR)2 + (TR)2)(TRJA − JRTA)
}]
. (4.45)
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Next we look at the fifth diagram in Fig. 4.3 (f),

(f5) =
1

2π
(1 + iζ)(−MR−1l̃)β(−eEi)

× 1

N

∑
k

tr[σ⊥τ3G
R
+σ

βGR
−(∂ivi−)τ1G

A
−], (4.46)

in which the wave vector q needs to be extracted from the Green’s functions,
G
R/A
± ≡ G

R/A
k±q/2, or from the velocity vertex, vi± = vi,k±q/2. To first order in

q, and after integrating by parts, one has

(f5) =
1

2π
(1 + iζ)(−MR−1l̃)βqi(−eEi)

× 1

N

∑
k

tr[σ⊥τ3G
RviG

RσβGRviτ1G
A]. (4.47)

The trace is evaluated to give

(f5) =
1

2π
(1 + iζ) 4ẑ × (−MR−1l̃ ) iqi(−eEi)

× 1

N

∑
k

{
(v0
i )

2((µR)2 + 3(TR)2 − (JR)2)(JRµA − µRJA)

+ (v′i)
2
[
((µR)2 + (TR)2 − (JR)2)(µAJR − µRJA)

− 2µRTR(TRJA − JRTA)− 2TRJR(TRµA − TAµR)
]

− 2v0
i v
′
i

[
((µR)2 + (TR)2 − (JR)2)(TRJA − JRTA)

+ 2µRTR(µRJA − JRµA)
]}
. (4.48)

Taking iqi → ∂i and using the relation

ẑ × (∂iR−1) l̃ = ẑ × (Ai ×R−1l̃ ) (4.49)

= −AziR−1l̃, (4.50)

we see that (f5) cancels the gauge-noninvariant terms in (f1) + · · ·+ (f4).
The vertex correction is taken into account by the replacement,

σ⊥τ3 → iσ⊥σ3Λ3, (4.51)
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where Λ3 is given by

Λ3 =
2πniu

2
i

1− Λ1

1

N

∑
k

(µ− ε′k)γ3 +Mγ0

|(µ− ε′k)γ0 +Mγ3|
δ((µ− ε′k)2 − E2

k). (4.52)

This is simplified in the AF transport limit,

Λ3 =
γ0

M
(t′ = 0), (4.53)

and also in the FM transport limit,

Λ3 =
γ0

M
(t = 0). (4.54)

The next four diagrams (with vertex corrections) give

(f1V) + · · ·+ (f4V)

=
1

2π
iΛ3(1 + iζ)(−MR−1l̃ )β(−eEi)

× 1

N

∑
k

{
tr[σ⊥σ3GRσβGRAiviG

RviG
A]

+ tr[σ⊥σ3GRAiviG
RσβGRviG

A]

+ tr[σ⊥σ3GRσβGRviG
AAiviG

A]

+ tr[σ⊥σ3GRσβGRAi(∂ivi)G
A]
}

(4.55)

and the trace is evaluated as

(f1V) + · · ·+ (f4V)

=
1

2π
iΛ3(1 + iζ)(−MR−1l̃ ) 4Azi (−eEi)

× 1

N

∑
k

{
(v0
i )

2
[
((µR)2 + (TR)2 − (JR)2)(µRµA + TRTA − JRJA)

+ 2µRTR(TRµA + µRTA)− 2TRJR(JRTA + TRJA)
]

+ (v′i)
2
[
((µR)2 − (TR)2 − (JR)2)(µRµA − TRTA − JRJA)

+ 4µRTR(µATR + µRTA)
]

+ 2v0
i v
′
i

[
((µR)2 + (TR)2 − (JR)2)(TRµA + µRTA)

+ 2µRTR(µRµA + TRTA − JRJA)
]}
. (4.56)
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The last diagram in Fig. 4.3 (f) gives

(f5V) =
1

2π
iΛ3(1 + iζ)(−MR−1l̃ )βqi (−eEi)

× 1

N

∑
k

tr[σ⊥σ3GRviG
RσβGRviG

A] (4.57)

=
1

2π
iΛ3(1 + iζ)(−MR−1l̃ ) qi (−eEi) tr[σ⊥σ3σβ]

× 1

N

∑
k

{
(v0
i )

2
[
((µR)2 + (TR)2 − (JR)2)(µRµA + TRTA − JRJA)

+ 2µRTR(TRµA + µRTA)− 2TRJR(JRTA + TRJA)
]

+ (v′i)
2
[
((µR)2 − (TR)2 − (JR)2)(µRµA − TRTA − JRJA)

+ 4µRTR(µATR + µRTA)
]

+ 2v0
i v
′
i

[
((µR)2 + (TR)2 − (JR)2)(µRTA + TRµA)

+ 2µRTR(µRµA + TRTA − JRJA)
]}
. (4.58)

Thus, we see that the gauge-noninvariant terms in (f5V) are canceled out
by (f1V) + · · · (f4V). It is clear that the effect of vertex correction is absent
when t = 0. When t′ = 0, (f5V) is equal to (f5)× (µ2−M2)/(2M2). Adding
up all diagrams in Fig. 4.3 (f), the current induced staggered spin density is
given by

〈σn〉 =
2

π
(−Mn× ∂il̃ ) (−eEi)

1

N

∑
k

{
(v0
i )

2C1 + (v′i)
2C2 + 2v0

i v
′
iC3

}
(4.59)

where the coefficient of (v0
i )

2 is given by

C1 =(1 + iζ)
[
((µR)2 + 3(TR)2 − (JR)2)(JRµA − µRJA)

+ iΛ3

{
((µR)2 + (TR)2 − (JR)2)(µRµA + TRTA − JRJA)

+ 2µRTR(TRµA + µRTA)− 2TRJR(JRTA + TRJA)
}]

+ c.c.

(4.60)
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the coefficient of (v′i)
2 is given by

C2 =(1 + iζ)
[
((µR)2 + (TR)2 − (JR)2)(µAJR − µRJA)

− 2µRTR(TRJA − JRTA)− 2TRJR(TRµA − TAµR)

+ iΛ3

{
((µR)2 − (TR)2 − (JR)2)(µRµA − TRTA − JRJA)

+ 4µRTR(µATR + µRTA)
}]

+ c.c. (4.61)

and the coefficient of 2v0
i v
′
i is given by

C3 =(1 + iζ)
[
− ((µR)2 + (TR)2 − (JR)2)(TRJA − JRTA)

− 2µRTR(µRJA − JRµA)

+ iΛ3

{
((µR)2 + (TR)2 − (JR)2)(µRTA + TRµA)

+ 2µRTR(µRµA + TRTA − JRJA)
}]

+ c.c. (4.62)
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Figure 4.3: Feynman diagrams considered in the calculation. The impuri-
ties are treated as in (a)-(c), and the calculated electron spin polarizations
are shown in (e) and (f), with the vertices defined in (d). The solid line
represents the electron Green’s function, and the dashed line with a cross
represents nonmagnetic impurity scattering. (a) Self-energy in the Born ap-
proximation. (b) Four-point vertex in the ladder approximation. The upper
(lower) electron line is in the retarded (advanced) branch and has spin σ (σ̄).
(c) Impurity correction to the (static) l̃-vertex. The plus (minus) sign is for
the retarded (advanced) branch. (d) Definition of vertices. The filled circle
(•) represents the current vertex v0

i that couples to the external electric field
Ei. The empty circle (◦) is associated with the spin gauge field Ai, com-
ing either from the perturbation Hamiltonian, vlAl(q), or from the current
vertex, (∂ivi)Ai(q). The empty square (�) represents the uniform (σ`) or
staggered (σn) spin density. The filled square (�) is the l̃-vertex with impu-
rity correction. In (e) and (f), the right vertex represents the charge current
that couples to E, and the upper (lower) electron lines are in the retarded
(advanced) branch. (e) Diagrams for the “uniform” spin density, σ`, in first
order in Ai. (f) Diagrams for the “staggered” spin density, σn, in first order
in l̃. The diagrams with ◦ (spin gauge field) only give gauge-noninvariant
terms (∝ Azi ), which cancel those arising from (∂iR−1) l̃ in the remaining
diagrams.
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Chapter 5

Summary

Spin electronics, or spintronics for short, aims to utilize both the magnetic
and electric properties of electrons to expand upon the conventional physics of
electronics. So far, spintronics has proven itself useful through the discovery
of the Nobel prize winning giant magneto resistance and magnetoresistive
random access memories.

Such remarkable discoveries were made in ferromagnets, and research in
other classes of materials such as antiferromagnets (AFs) remain relatively
limited. AF is another class of magnetic material that has a number of advan-
tages over ferromagnets, such as the robustness to magnetic perturbations,
THz range spin dynamics, and absence of stray fields. Immunity to external
magnetic fields and absence of stray fields is however a double-edged sword,
and makes the manipulation and measurement of AFs a challenge compared
to ferromagnets. In this thesis, I theoretically explore different ways to tame
AFs to our advantage.

A domain wall is a topologically stable texture in magnetic materials that
is expected to play an important role as information carriers in spintronic
devices. Dynamics of domain walls is one of the most fundamental processes
in magnetic materials, and is of interest from both theory and application
perspectives. In the first part of my thesis, I explored the dynamics of AF
domain walls driven by inhomogeneous magnetic fields. The Lagrangian
and the equation of motion of AF spins under an inhomogeneous magnetic
field are derived. The dynamics of AF domain walls is investigated using
the method of collective coordinates. A solution is found that describes the
actuation of a domain wall by an inhomogeneous field, in which the motion
is initiated by a paramagnetic response of wall magnetization, which is then
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driven by a Stern-Gerlach like force. The validity of the theory is backed up
by atomistic simulations.

In the second part of the thesis, I explored the effect of conduction elec-
trons on AF spins. A microscopic calculation is presented for current-induced
spin-transfer torques (STT) and damping torques in metallic AFs. It is found
that the sign of STT is opposite to that in ferromagnets because of the AF
transport character. Enhancement of the current-to-STT conversion factor
near the AF gap edge is observed. The dissipative torque parameter and
damping parameter arise from spin relaxation of electrons. Physical conse-
quences are demonstrated for AF domain wall dynamics. Similarities to the
ferromagnetic case are pointed out such as the intrinsic pinning and the spe-
cialty of αn/βn = 1. Finally, I give a possible explanation for the experiment
on domain wall motion in ferrimagnetic GdFeCo near its angular-momentum
compensation temperature.

Spin waves are collective excitations in magnetically ordered systems that
carry energy and angular momentum. In the last part of the thesis, I investi-
gate the effect of electric current on AF spin wave dispersions. I identify two
different sources of spin-wave Doppler shift induced by electric current, while
in ferromagnets there is only one. The two STTs that give rise Doppler shift
have opposite signs and compete against each other; one dominates at the
AF band bottom, and the other dominates near the AF gap edge. The effect
of next nearest-neighbor hopping is investigated, where the crossover from
ferromagnetic STT to antiferromagnetic STT can be observed by tuning the
hopping parameters. In the limit of only the next-nearest neighbor hopping,
the two STTs coincide to form the ferromagnetic STT.

To conclude, I have investigated the effects of magnetic field and electric
current on AF spin dynamics. It is shown that AF domain walls can be
driven by inhomogeneous magnetic fields, and an analytic solution for the
domain wall dynamics is derived. Spin-transfer torques and damping torques
on AF spins are also studied starting from a microscopic Hamiltonian. The
differences between AF domain wall motion and ferromagnetic domain wall
motion are demonstrated. The effect of current on AF spin waves is also
discussed.



Acknowledgements

This thesis would not have existed if it were not for the tremendous support
that I have received from all the people I came in touch with over the years.

First and for most, I would like to thank my supervisor, Hiroshi Kohno,
for guiding me through all the hardships during the last six years. Not only
was he very patient and generous every time I needed his assistance, he also
was a role-model to me as an ideal researcher.

Prof. Ai Yamakage for helping me out, and answering any questions no
matter how basic.

I would like to thank my colleagues in my laboratory, T. Funato, Y. Imai,
K. Nakazawa, Y. Ogawa, T. Yamaguchi, and Y. Yamazaki for many valuable
discussions.

Thank you Prof. John Wojdylo for making physics interesting during my
bachelors. All the faculty members in Nagoya university for going through
the trouble of making the G30 program possible.

All my friends in Japan and overseas for keeping me company. The trips,
karaoke-sessions, gaming, Skype-calls etc. made my day, and I am always up
for more.

I would like to thank my family for all the unconditional financial and
mental support. I feel blessed for being born in this understanding family
letting me pursue my interests.

83



84 CHAPTER 5. SUMMARY



Bibliography

[1] N. Jones: Nature 561 (2018) 163.

[2] S. S. P. Parkin, M. Hayashi, and L. Thomas: Science 320 (2008) 190.

[3] G. Tatara: Supintoronikusu no butsuri: ba no riron no tachiba kara
(Uchida rokakuho, 2019).

[4] T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich: Nature Nan-
otechnology 11 (2016) 231.

[5] Z. Qiu, J. Li, D. Hou, E. Arenholz, A. T. N’diaye, A. Tan, K.-I. Uchida,
K. Sato, S. Okamoto, Y. Tserkovnyak, Z. Q. Qiu, and E. Saitoh: Nature
Communications 7 (2016) 12670.

[6] A. H. MacDonald and M. Tsoi: Philosophical Transactions of the Royal
Society of London Series A 369 (2011) 3098.

[7] O. Gomonay, T. Jungwirth, and J. Sinova: Physica Status Solidi Rapid
Research Letters 11 (2017) 1700022.

[8] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and
Y. Tserkovnyak: Reviews of Modern Physics 90 (2018) 015005.

[9] H. Kohno and J. J. Nakane, CHAPTER 5 - Spintronics, In A. Ya-
maguchi, A. Hirohata, and B. Stadler (eds), Nanomagnetic materials.
Elsevier, Amsterdam, 2021.

[10] E. G. Tveten, A. Qaiumzadeh, and A. Brataas: Phys. Rev. Lett. 112
(2014) 147204.

[11] O. Gomonay, T. Jungwirth, and J. Sinova: Phys. Rev. Lett. 117 (2016)
017202.

85



86 BIBLIOGRAPHY

[12] T. Shiino, S.-H. Oh, P. M. Haney, S.-W. Lee, G. Go, B.-G. Park, and
K.-J. Lee: Phys. Rev. Lett. 117 (2016) 087203.

[13] D. Herranz, R. Guerrero, R. Villar, F. G. Aliev, A. C. Swaving, R. A.
Duine, C. van Haesendonck, and I. Vavra: Phys. Rev. B 79 (2009)
134423.

[14] S.-H. Yang, K.-S. Ryu, and S. Parkin: Nature Nanotechnology 10 (2015)
221.

[15] K.-J. Kim, S. K. Kim, Y. Hirata, S.-H. Oh, T. Tono, D.-H. Kim,
T. Okuno, W. S. Ham, S. Kim, G. Go, Y. Tserkovnyak, A. Tsukamoto,
T. Moriyama, K.-J. Lee, and T. Ono: Nature Materials 16 (2017) 1187.

[16] T. Okuno, D.-H. Kim, S.-H. Oh, S. K. Kim, Y. Hirata, T. Nishimura,
W. S. Ham, Y. Futakawa, H. Yoshikawa, A. Tsukamoto, Y. Tserkovnyak,
Y. Shiota, T. Moriyama, K.-J. Kim, K.-J. Lee, and T. Ono: Nature
Electronics 2 (2019) 389.

[17] G. Tatara, H. Kohno, and J. Shibata: Physics Reports 468 (2008) 213.

[18] E. G. Tveten, T. Müller, J. Linder, and A. Brataas: Phys. Rev. B 93
(2016) 104408.

[19] H. Y. Yuan, W. Wang, M.-H. Yung, and X. R. Wang: Phys. Rev. B 97
(2018) 214434.

[20] N. B. Weber, H. Ohldag, H. Gomonaj, and F. U. Hillebrecht: Phys.
Rev. Lett. 91 (2003) 237205.

[21] T. Dombre and N. Read: Phys. Rev. B 38 (1988) 7181.

[22] F. D. M. Haldane: Phys. Rev. Lett. 61 (1988) 1029.

[23] J. J. Nakane, K. Nakazawa, and H. Kohno: Phys. Rev. B 101 (2020)
174432.

[24] K. M. D. Hals, Y. Tserkovnyak, and A. Brataas: Phys. Rev. Lett. 106
(2011) 107206.

[25] A. Brataas, H. Skarsv̊ag, E. G. Tveten, and E. Løhaugen Fjærbu: Phys.
Rev. B 92 (2015) 180414.



BIBLIOGRAPHY 87

[26] B. A. Ivanov and A. K. Kolezhuk: Phys. Rev. Lett. 74 (1995) 1859.

[27] E. G. Tveten, A. Qaiumzadeh, O. A. Tretiakov, and A. Brataas: Phys.
Rev. Lett. 110 (2013) 127208.

[28] F. D. M. Haldane: Phys. Rev. Lett. 50 (1983) 1153.

[29] J. J. Nakane and H. Kohno: Phys. Rev. B 103 (2021) L180405.

[30] D. Ralph and M. Stiles: Journal of Magnetism and Magnetic Materials
320 (2008) 1190.

[31] Y. B. Bazaliy, B. A. Jones, and S.-C. Zhang: Phys. Rev. B 57 (1998)
R3213.

[32] A. Brataas, A. D. Kent, and H. Ohno: Nature Materials 11 (2012) 372.

[33] R. Duine: Nature Materials 10 (2011) 344.

[34] Y. Xu, S. Wang, and K. Xia: Phys. Rev. Lett. 100 (2008) 226602.

[35] A. C. Swaving and R. A. Duine: Phys. Rev. B 83 (2011) 054428.

[36] Y. Yamane, J. Ieda, and J. Sinova: Phys. Rev. B 94 (2016) 054409.

[37] H.-J. Park, Y. Jeong, S.-H. Oh, G. Go, J. H. Oh, K.-W. Kim, H.-W.
Lee, and K.-J. Lee: Phys. Rev. B 101 (2020) 144431.

[38] J. Fujimoto: Phys. Rev. B 103 (2021) 014436.

[39] H. Kohno and G. Tatara, CHAPTER 5 - Theoretical Aspects of Current-
Driven Magnetization Dynamics, In T. Shinjo (ed), Nanomagnetism and
Spintronics, pp. 189–229. Elsevier, Amsterdam, 2009.

[40] S. Zhang and Z. Li: Phys. Rev. Lett. 93 (2004) 127204.

[41] H. J. Mikeska and M. Steiner: Advances in Physics 40 (1991) 191.

[42] E. M. Lifshitz and L. P. Pitaevskii: Statistical Physics, Part II, Course
of Theoretical Physics (Pergamon, Oxford, 1980).

[43] J. J. Nakane and H. Kohno: Journal of the Physical Society of Japan
90 (2021) 034702.



88 BIBLIOGRAPHY

[44] H. Kohno, G. Tatara, and J. Shibata: Journal of the Physical Society
of Japan 75 (2006) 113706.

[45] H. Kohno and J. Shibata: Journal of the Physical Society of Japan 76
(2007) 063710.

[46] A. Manchon: Journal of Physics Condensed Matter 29 (2017) 104002.

[47] J. J. Nakane and H. Kohno: Submitted to Journal of the Physical Soci-
ety of Japan .

[48] Q. Liu, H. Y. Yuan, K. Xia, and Z. Yuan: Phys. Rev. Materials 1 (2017)
061401.

[49] H. Y. Yuan, Q. Liu, K. Xia, Z. Yuan, and X. R. Wang: EPL (Europhysics
Letters) 126 (2019) 67006.

[50] H. T. Simensen, A. Kamra, R. E. Troncoso, and A. Brataas: Phys. Rev.
B 101 (2020) 020403.

[51] G. Tatara and H. Kohno: Phys. Rev. Lett. 92 (2004) 086601.

[52] T. Koyama, D. Chiba, K. Ueda, K. Kondou, H. Tanigawa, S. Fukami,
T. Suzuki, N. Ohshima, N. Ishiwata, Y. Nakatani, K. Kobayashi, and
T. Ono: Nature Materials 10 (2011) 194.

[53] K. Hoshi, T. Yamaguchi, A. Takeuchi, H. Kohno, and J.-i. Ohe: Applied
Physics Letters 117 (2020) 062404.

[54] J. Park, Y. Hirata, J.-H. Kang, S. Lee, S. Kim, C. Van Phuoc, J.-R.
Jeong, J. Park, S.-Y. Park, Y. Jo, A. Tsukamoto, T. Ono, S. K. Kim,
and K.-J. Kim: Phys. Rev. B 103 (2021) 014421.

[55] J. Shibata and H. Kohno: Phys. Rev. B 84 (2011) 184408.

[56] M. W. Daniels, R. Cheng, W. Yu, J. Xiao, and D. Xiao: Phys. Rev. B
98 (2018) 134450.

[57] P. Lederer and D. L. Mills: Phys. Rev. 148 (1966) 542.

[58] V. Vlaminck and M. Bailleul: Science 322 (2008) 410.



BIBLIOGRAPHY 89

[59] S.-M. Seo, K.-J. Lee, H. Yang, and T. Ono: Phys. Rev. Lett. 102 (2009)
147202.

[60] K. Sekiguchi, K. Yamada, S.-M. Seo, K.-J. Lee, D. Chiba, K. Kobayashi,
and T. Ono: Phys. Rev. Lett. 108 (2012) 017203.

[61] J.-Y. Chauleau, H. G. Bauer, H. S. Körner, J. Stigloher, M. Härtinger,
G. Woltersdorf, and C. H. Back: Phys. Rev. B 89 (2014) 020403.

[62] A. Roldán-Molina, A. S. Nunez, and R. A. Duine: Phys. Rev. Lett. 118
(2017) 061301.

[63] D.-H. Kim, S.-H. Oh, D.-K. Lee, S. K. Kim, and K.-J. Lee: Phys. Rev.
B 103 (2021) 014433.


