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Abstract

This paper studies provable security of symmetric-key schemes against adversaries that have quantum computers from
both theoretical and practical perspectives.

Provable security is a way to mathematically guarantee the security of a cryptosystem, by showing a theorem that
expresses the upper bound on the success probability of an adversary that has specified resources. Most of modern
cryptosystems are shown to be secure in the provable security paradigm under some assumptions, e.g., the hardness of
certain algebraic problems, or the existence of another secure cryptographic primitive. Sometimes security proofs are
provided in an ideal model where the oracle of an ideally random primitive, e.g., a truly random function, is publicly
available. Whether a cryptographic primitive can be built from another primitive is a central problem in the theory
of cryptology. In addition, if an existing scheme is proven to resist more powerful attacks than previously thought, or
if we can prove that a new efficient scheme is secure, the proofs have practical importance. Thus provable security is
important both theoretically and practically.

In symmetric cryptology, (tweakable) block ciphers, pseudorandom functions (PRFs), and hash functions play
central roles as fundamental underlying primitives to build other cryptosystems such as authenticated encryption
schemes. Hence the provable security of such schemes is well-studied.

One of the most important results on provable security is the one on the Luby-Rackoff construction. The Luby-
Rackoff construction, or the Feistel construction, is among the most important approaches to construct secure block
ciphers from secure pseudorandom functions (PRFs). The 3-round and 4-round Luby-Rackoff construction are proven
to be a pseudorandom permutation (PRP) and a strong PRP, i.e., they are secure against chosen-plaintext attacks (CPAs)
and chosen-ciphertext attacks (CCAs), respectively. Another important result on block ciphers is the one by Liskov,
Rivest, and Wagner. They showed constructions to convert secure block ciphers into secure tweakable block ciphers,
which are called the LRW constructions. As for constructions to convert Merkle-Damgård hash functions into message
authentication codes (MACs) or PRFs in a provably secure manner, there has been a long line of research on HMAC
and NMAC. They are proven to be secure up to O(2n/2) computations when the output length is n bits.

On the other hand, their security has not been studied enough in the setting where adversaries have quantum
computers, and many important problems have yet to be solved. On the Luby-Rackoff construction, Kuwakado and
Morii showed that a quantum superposed chosen-plaintext attack (qCPA) can distinguish the 3-round construction from
a random permutation in polynomial time. In addition, Ito et al. showed a quantum superposed chosen-ciphertext attack
(qCCA) that distinguishes the 4-round Luby-Rackoff construction. Since Kuwakado and Morii showed the result, a
problem of much interest has been how many rounds are sufficient to achieve provable security against quantum query
attacks. Though several years have passed since then, the problem still remains open. Similarly, since Kaplan et
al. showed the LRW construction can be broken with a polynomial-time qCPA, it has been open whether there exists a
mode of block ciphers to build quantum-secure tweakable block ciphers. For HMAC and NMAC, Song and Yun showed
that they are quantum pseudorandom functions (qPRFs) under the standard assumption that the underlying compression
function is a qPRF. Their proof guarantees security up to O(2n/5) or O(2n/8) quantum queries. However, there is a gap
between the provable security bound and a simple distinguishing attack that uses O(2n/3) quantum queries.

This paper settles these problems. First, we prove that the 4-round Luby-Rackoff construction is secure up to
O(2n/6) quantum queries, where n is the length of inputs and outputs of the construction. We also prove that the bound
is tight by showing an attack that distinguishes the 4-round Luby-Rackoff construction from a random permutation with
O(2n/6) quantum queries. Our result is the first to demonstrate the tight security of a typical block-cipher construction
against quantum query attacks, without any algebraic assumptions.

Second, we show the first design of quantum-secure tweakable block ciphers based on quantum-secure block ciphers,
and present a provable security bound. Our construction is simple, and when instantiated with a quantum-secure n-bit
block cipher, it is secure against attacks that query arbitrary quantum superpositions of plaintexts and tweaks up to
O(2n/6) quantum queries.

Third, we close the gap between the security bound and the distinguishing attack of HMAC and NMAC. Specifically,
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we show that the tight bound of the number of quantum queries to distinguish HMAC or NMAC from a random function
isΘ(2n/3) in the quantum random oracle model, where compression functions are modeled as quantum random oracles.

We use an alternative formalization of Zhandry’s compressed oracle technique to provide security proofs in the
quantum setting. In addition, to show the tight security bound of HMAC and NMAC, we introduce a new proof
technique based on the compressed oracle technique, focusing on the symmetry of quantum query records.

Furthermore, we show the classical indifferentiability of the SKINNY-HASH internal function. SKINNY-HASH
is a family of function-based sponge hash functions, and it was selected as one of the second round candidates of
the NIST lightweight cryptography competition. Its internal function is constructed from the tweakable block cipher
SKINNY. The construction of the internal function is very simple and the designers claim n-bit security, where n is
the block length of SKINNY. However, a formal security proof of this claim is not given in the original specification
of SKINNY-HASH. In this paper, we formally prove that the internal function of SKINNY-HASH has n-bit security,
i.e., it is indifferentiable from a random oracle up to O(2n) queries, substantiating the security claim of the designers.
Though the result on the SKINNY-HASH internal function is a classical one, it is unlikely to be broken by quantum
attacks. In addition, when post-quantum security of the SKINNY-HASH internal function will be proved, the proof will
be based on our classical proof. Thus we believe it will help understanding post-quantum security of hash functions.

The results on the Luby-Rackoff construction and quantum-secure tweakable block ciphers are significant mainly
from a theoretical perspective. On the other hand, the results on HMAC and NMAC, and the SKINNY-HASH internal
function, are important mainly from a practical perspective.
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Chapter 1

Introduction

1.1 Overview
Cryptography is one of the most important technologies for today’s information security. When we visit web sites of
which URL begins with “https”, use online meeting services, or pay with credit cards, cryptography is used to protect
our data.

Very roughly speaking, cryptographic schemes can be classified into two types: symmetric-key schemes and public-
key schemes. Symmetric-key schemes realize secure communication between two parties that have a common secret
key, which has to be shared in advance. On the other hand, public-key schemes do not require pre-shared secret key.

Public-key schemes often use algebraic structures such as integer factoring and discrete logarithm to realize the
high functionality that encryption key can be public, and their security is guaranteed under the assumption that certain
algebraic problems are hard to solve. Operations such as encryption and decryption of public-key schemes are relatively
slow since they require heavy computation to utilize algebraic properties. On the other hand, operations of symmetric-
key schemes are very fast because they do not require algebraic structures usually. For instance, our experiments show
a typical symmetric-key encryption scheme (AES-128 with CBC mode) requires only about 9 × 10−4 milliseconds to
encrypt a single 2048-bit message on average, while 2048-bit RSA requires 5 × 10−2 milliseconds. 1

Secure and efficient telecommunication is realized by combining the speed of symmetric-key schemes with the high
functionality of public-key schemes. Both of the two types of schemes are indispensable.

In general, there are two ways to guarantee security of a cryptographic scheme S. One is studying attacks on S. If
S is not broken after much efforts are devoted to cryptanalysis, the community reaches the consensus that S is secure.
The other one is showing provable security. In the provable security paradigm, the security of a scheme S is shown as
a theorem that provides an upper bound p(t, d) of the probability that an adversaryA succeeds to break S, where the t
and d represent the amount computational resources such as time and data available to A. 2 Such a theorem strongly
guarantees the security of S in the sense that there does not exist any adversary of which success probability exceeds
the upper bound p(t, d) as long as the amount of available time and data are up to t and d, no matter what strategy the
adversary takes.

Post-quantum security of symmetric-key schemes. In 1994, Shor showed quantum algorithms that efficiently solve
integer factoring and discrete logarithm problems [Sho94, Sho97], which lead to breaking widely used public-key
schemes such as RSA and elliptic curve cryptosystems in polynomial time. Since then, much efforts have been
devoted to realize schemes that will remain secure even after the realization of large-scale, reliable universal quantum
computers. The area to study such schemes is called post-quantum cryptography, which is currently one of the most
active research areas in cryptography. Though the power of today’s quantum computers is not strong enough to
break popular schemes such as 2048-bit RSA, the schemes that are broken by Shor’s algorithm should be replaced
with post-quantum ones soon because a significant technical breakthrough to build large-scale and reliable universal
quantum computers may be realized just today. National Institute of Standards and Technology (NIST, the United
States) is holding the standardization process for post-quantum public-key schemes such as public-key encryption,
key-establishment algorithms, and signatures [Nat16]. Currently used public-key schemes such as RSA cryptosystems
will be replaced with post-quantum ones in a near future.

1For the experiments, we used the openssl speed [algorithm] command (algorithm = aes-128-cbc or rsa2048) with Ubuntu 20.04,
OpenSSL 1.1.1f, and AMD Ryzen 5 3500.

2What computational resources are taken into account in the theorem varies depending on how we model adversaries.
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As mentioned before, both of symmetric-key and public-key schemes are indispensable for today’s information
security. In the post-quantum era, it is desirable that we have some evidence that symmetric-key schemes also have
post-quantum security. Studying post-quantum security of typical symmetric-key schemes is also an interesting problem
from the view point of cryptographic theories.

See Fig. 1.1 for a list of typical symmetric-key primitives. In Fig. 1.1, those at higher levels are relatively
high-functioning ones, which are often built from relatively low-functioning ones at lower levels. For instance, some
message authentication codes are built from hash functions or (tweakable) block ciphers. Sometimes low-functioning
primitives are built from high-functioning ones to achieve a specific goal, e.g., data processing performance. (Note that
the words “high-functioning” and “low-functioning” are not technical terms with precise definition. We ambiguously
use them just for intuitive explanations. In addition, there is no special meaning to whether a primitive is located to
the left/right of another primitive in Fig. 1.1.) Recall that a mode of (tweakable) block ciphers is a construction that
converts block ciphers into other symmetric-key schemes, e.g., TBCs, MACs, and (authenticated) encryption schemes.
“Encryption mode” in the figure denotes a mode to build encryption schemes. Besides, “Permutation / Function” at the
bottom of the figure means public permutations and functions with fixed input/output length.

Authenticated 
Encryption

Message
Authentication

Code

Encryption
Mode

Tweakable Block 
Cipher (  PRP)

Permutation / Function

Block Cipher (PRP)

High-Functioning

Low-Functioning

Mode to build
TBC from BC

SKINNY-HASH
internal function

HMAC/NMAC

Hash 
Function

PRF
(Fixed I/O length)

Luby-Rackoff

Figure 1.1: List of symmetric-key schemes.

Next, we explain two attack models for adversaries with quantum computers. One model is that there exists an
adversaryA that has a quantum computer and the classical keyed oracle of the target cryptographic scheme is available
toA. For instance, suppose we are considering about a block cipher Ek and the (classical) encryption oracle is available.
A can query arbitrary n-bit string x and the oracle returns Ek (x). A tries to break Ek by making queries and using
its own quantum computer. This attack model is called Q1 model in [KLLN16b]. Another attack model is that A
has a quantum computer and the quantum keyed oracle of the target scheme is available. Here, the quantum oracle
of the block cipher Ek is the oracle such that, A can query arbitrary quantum superposition of 2n-bit strings such
as

∑
x,y αx,y |x〉 |y〉, and the oracle returns the answer

∑
x,y αx,y |x〉 |y ⊕ Ek (x)〉 also in quantum superposition. The

quantum oracle of other schemes is defined in the same way. This attack model is called Q2 model, and attacks in the
Q2 model is called quantum query attacks.

If a scheme S is proven to be secure in the Q1 and Q2 model, S is said to have standard security and quantum
security, respectively [Zha12a]. 3 It is a problem of much interest whether a classically secure and efficient scheme also

3Please do not confuse the notions of standard/quantum security with the standard model or the quantum random oracle model [BDF+11]. The
two notions are independent of the models, and it is possible that a scheme has quantum security in the standard model or standard security in the
quantum random oracle model. (The quantum random oracle model is the one where there exists the quantum oracle of an ideally random function
and the standard model is the one where existence of such ideal primitives are not assumed. The term “quantum random oracle” may denote another
notion in other research areas, but throughout the paper we assume that it denotes the quantum oracle of a random function, following the usual
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has quantum security. In a future where much computations and communications are done in quantum superpositions,
some cryptographic schemes that rely on classical primitives will be running on quantum computers. Indeed, some
recently proposed quantum schemes are based on classical primitives. For instance, the candidate construction of
pseudorandom unitary operators by Ji et al. [JLS18] is constructed from pseudorandom permutations (PRPs). In such
a situation where classical cryptographic schemes are implemented on quantum computers, it is natural to assume that
adversaries mount quantum query attacks on them.

The focus of this paper. There already exist many interesting results on quantum attacks on various concrete symmetric-
key schemes [KM10, KM12, KLLN16a]. On the other hand, many basic and important problems about provable
(post-)quantum security of symmetric-key schemes such as the Luby-Rackoff constructions have yet to be solved. For
instance:

1. In the classical setting, the r-round Luby-Rackoff construction is proven to be secure against chosen-plaintext
attack (CPAs). However, it is open whether it becomes secure against quantum chosen-plaintext attacks (qCPAs)
for some r . Here, a qCPA on a block cipher Ek is a quantum query attack on Ek in the setting where the quantum
oracle of Ek is available.

2. It is unknown whether there exists a mode of block ciphers to build quantum-secure tweakable block ciphers.

3. Song and Yun showed that HMAC and NMAC are quantum-secure pseudorandom functions (qPRFs) under the
standard assumption that the underlying compression function is a qPRF [SY17]. Their proof guarantees security
up to O(2n/5) or O(2n/8) quantum queries when the output length of HMAC and NMAC is n bits. However,
there is a gap between the provable security bound and a simple distinguishing attack that uses O(2n/3) quantum
queries.

This paper settles these problems. That is, we show the following results.

1. A proof that the 4-round Luby-Rackoff construction is secure against qCPAs, i.e., it is a quantum-secure pseudo-
random permutation (qPRP). We also prove that our security bound is tight by showing a matching attack.

2. A new mode of operation to build tweakable block ciphers from block ciphers and a proof that it has quantum
security if the underlying block cipher is quantum-secure.

3. The tight quantum security proof of HMAC and NMAC in the quantum random oracle model (QROM) where
the compression function is modeled as a quantum random oracle.

To provide these results, we heavily use an alternative formalization of Zhandry’s compressed oracle technique [Zha19].
Moreover, we give a classical security proof that the SKINNY-HASH internal function is indifferentiable from a random
oracle. Though we cannot prove its (post-)quantum security due to technical limitations, it will lead to understanding
post-quantum security of hash functions. See also Fig. 1.1 about which result implies what kind of relations between
symmetric-key schemes.

The following five sections provide a more detailed overview of each result. Section 1.2, Section 1.3, and
Section 1.4 overview the results on the 4-round Luby-Rackoff construction, the new mode to build quantum-secure
tweakable block ciphers, and HMAC/NMAC, respectively. Section 1.5 briefly explain the compressed oracle technique
and our alternative formalization. Section 1.6 describes the result on the SKINNY-HASH internal function.

1.2 Tight qPRP Security Proof of the 4-Round Luby-Rackoff Construction
The Luby-Rackoff construction is one of the most important approaches to convert pseudorandom functions (PRFs)
into PRPs. It is also called the Feistel construction. Due to its efficiency and security, a significant number of block
ciphers including commonly used ones such as DES [Nat77] and Camellia [AIK+00] were designed on the basis of this
construction.

For families of functions f i := { f i,k : {0, 1}n/2 → {0, 1}n/2}k∈K that are parameterized by k in a key space K
(1 ≤ i ≤ r), the r-round Luby-Rackoff construction LRr ( f1, . . . , fr ) is defined as follows: First, keys k1, . . . , kr are
chosen independently and uniformly at random from K . For each input x0 = x0L ‖x0R, where x0L, x0R ∈ {0, 1}n/2, the
state is updated as

x (i−1)L ‖x (i−1)R 7→ xiL ‖xiR := x (i−1)R ⊕ f i,ki (x (i−1)L )‖x (i−1)L (1.1)

3



Figure 1.2: The i-th round state update.

𝑓1

𝑓2

𝑓3

Figure 1.3: The 3-round Luby-Rackoff construction.

for i = 1, . . . , r in a sequential order. The output is the final state xr = xrL ‖xrR. Then the resulting function becomes
a keyed permutation over {0, 1}n with keys in (K )r . See also Fig. 1.2 and see Fig. 1.3.

In the classical setting, if each f i is a secure PRF, LRr becomes a secure PRP against chosen-plaintext attacks
(CPAs) for r ≥ 3 and a secure PRP against chosen-ciphertext attacks (CCAs) for r ≥ 4 [LR85]. (That is, LRr becomes
a strong PRP. Recall that a PRP Pk is called a strong PRP if it is indistinguishable from a random permutation, even
if adversaries make queries not only to Pk but also its inverse P−1

k
.) However, in the quantum setting, Kuwakado and

Morii showed that LR3 can be distinguished in polynomial time from a truly random permutation by a qCPA [KM10]
(qCPA).4Moreover, Ito et al. showed that LR4 can be distinguished in polynomial time by a quantum chosen-ciphertext
attack (qCCA) [IHM+19].5 On the other hand, for any r , no quantum security proof of LRr is known.

Importance of Proving Quantum Security of the Luby-Rackoff Construction. As we mentioned in Section 1.1, it is a
problem of much interest whether a classically secure and efficient scheme also has quantum security. Though Zhandry
have already shown that we can covert quantum-secure PRFs into quantum-secure PRPs by using constructions of format
preserving encryption [Zha16], the conversion with the Luby-Rackoff constructions is much more efficient and thus
preferable. Hence, it is important to study whether quantum security proof for the r-round Luby-Rackoff construction is
feasible for some r , and if so, to determine the minimum number of r such that we can prove the post-quantum security
of LRr .

1.2.1 Our Contributions
As the first step to giving post-quantum security proofs for the Luby-Rackoff constructions, this paper shows that the
4-round Luby-Rackoff construction LR4 is secure against qCPAs. Roughly speaking, a qCPA denotes an attack by an
adversary that has a quantum computer and can access the quantum encryption oracleOLR4 : |x〉 |y〉 7→ |x〉 |y ⊕ LR4(x)〉,
which allows the adversary to make quantum queries to LR4. In particular, we give a security bound of LR4 against
qCPAs when all round functions are truly random functions. We also prove that the bound is tight by showing a
matching attack. Concretely, we show the following theorems.

Theorem 1 (Lower bound and upper bound, informal). If all round functions are truly random functions, then the
following claims hold.

1. LR4 cannot be distinguished from a truly random permutation by qCPAs up to O(2n/6) quantum queries.

2. A quantum algorithm exists that distinguishes LR4 from a truly random permutation with a constant probability
by making O(2n/6) quantum chosen-plaintext queries.

Theorem 2 (Construction of qPRP from qPRF, informal). Suppose that each f i is a secure PRF against efficient
quantum query attacks, for 1 ≤ i ≤ 4. Then LR4( f1, f2, f3, f4) is a secure PRP against efficient qCPAs.

The proofs are provided in Chapter 4.

Remark 1. Secure PRFs against quantum query attacks can be constructed from post-quantum secure pseudorandom
generators or pseudorandom synthesizers, or based on the LWE assumption, as shown by Zhandry [Zha12a].
convention in cryptology.)

4Strictly speaking, the attack by Kuwakado and Morii works only when all round functions are keyed permutations. Kaplan et al. [KLLN16a]
showed that the attack works for more general cases.

5A qCCA on the block cipher Ek is a quantum query attack in the setting where not only the quantum oracle of Ek but also the quantum oracle
of Dk is available.

4



1.3 Provably Quantum-Secure Tweakable Block Ciphers
Recall that a block cipher (BC) is a keyed permutation, i.e., it takes a plaintext and a key as input to output a ciphertext,
and a tweakable block cipher (TBC) takes additional input called a tweak. TBCs have wide applications in symmetric
key cryptography, as they can be used to construct message authentication codes and authenticated encryption schemes,
see e.g. [Rog04, IMPS17, BGIM19, IKMP20]. The notion of TBC was first formalized by Liskov, Rivest, and
Wagner [LRW02, LRW11]. They introduced two TBC constructions and proved that TBCs can be constructed from
BCs in the classical setting6. However, Kaplan et al. showed that these constructions are broken in polynomial time
when adversaries have access to quantum encryption oracles [KLLN16a]7. There has been no proposal of modes of
BCs to build TBCs that are proven to be secure against quantum query attacks so far, and the existence of such modes
remains open. In this paper, we consider the following question:

Does there exist a mode to build quantum-secure TBCs from quantum-secure BCs?

1.3.1 Our Contributions
We give a positive answer to the question in the reduction-based provable security paradigm by giving the first
construction of quantum-secure TBCs from quantum-secure BCs. Our construction, which we call LRWQ, has a simple
structure and is based on one of the two constructions by Liskov, Rivest, and Wagner. If the underlying BC is an n-bit
BC with k-bit keys, then LRWQ becomes an n-bit TBC with 3k-bit keys and n-bit tweaks. We show that LRWQ is
indistinguishable from tweakable random permutations up to O(2n/6) quantum queries8 in the setting that adversaries
can query arbitrary superpositions of plaintexts and tweaks, i.e., we prove security against qCPAs.

Our result is theoretically significant in the sense that we for the first time showed that quantum-secure tweakable
pseudorandom permutations (qP̃RPs) can be constructed from qPRPs (which establishes the fact that the existence
of qP̃RP is theoretically equivalent to the existence of qPRP). The problem of whether a cryptographic primitive can
be constructed from another primitive (whether there exists a reduction) is fundamental and theoretically the most
important in cryptology. In addition, since Theorem 2 guarantees that qP̃RPs can be obtained from qPRFs through
4-round Feistel cipher, our result establishes the fact that qP̃RPs can be obtained from qPRFs.

On a practical side, it is plausible to assume AES [Nat01] to be a qPRP given that there has been no devastating
quantum attack despite of recent efforts on quantum cryptanalysis on it. Thus, we can certainly obtain qP̃RP by
instantiating LRWQ with AES. This means that our result enables us to directly benefit from recent efforts for quantum
cryptanalysis on AES [GLRS16, BNS19, JNRV20].

Remark 2. To obtain a qP̃RP, one obvious approach is to verify whether existing native TBCs are quantum-secure
(or design new ones), instead of using our mode LRWQ. However, these two approaches do not negate the other,
but complement each other, i.e., our result gives another choice to construct qP̃RP for users. Even if there exists a
quantum-secure native TBC, this does not invalidate our result.

Remark 3. This paper does not provide security proofs against qCCAs, as our construction is broken if the decryption
oracle is available even in the classical setting, which is also the case for one of the original constructions by Liskov,
Rivest, and Wagner. Showing existence of TBCs that are secure against qCCAs is an interesting future work. Note
that TBCs that are secure against chosen-plaintext attacks (which is not secure against chosen-ciphertext attacks)
can be used to instantiate various efficient message authentication codes and authenticated encryption schemes, e.g.,
ZMAC [IMPS17], ZOTR [BGIM19], and Romulus [IKMP20]. Therefore, TBCs that are secure against qCPAs are
relevant.9

1.4 On Tight Quantum Security Bound of HMAC and NMAC in the QROM
Message authentication codes (MACs) are themost important symmetric-key schemes to achieve data integrity. Some of
them including block cipher basedMACs such as CBC-MAC [BKR94, BKR00, BR00, BR05, IK03] and PMAC [BR02]

6Only a single construction is introduced in the journal version of the paper [LRW11], but an additional construction is also introduced in the
preliminary (conference) version of the paper [LRW02].

7Kaplan et al. showed a quantum attack only for one of the two TBC constructions by Liskov, Rivest, and Wagner, but the attack can also be
applied to the other construction. See Section 5.1.1.

8Here, we consider n as a security parameter.
9We note that the argument here is to illustrate the relevance of TBCs that are secure against CPAs. We are not claiming that the modes are

secure against quantum attacks. We also note that there are BC-based authenticated encryption modes that do not use the decryption of BCs, such as
CCM [WHF02], GCM [MV04], and OTR [Min14].
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do not have quantum security, since there exist polynomial time attacks on them [KLLN16a]. However, they have
standard security since their classical security proofs remain valid if adversaries are allowed to make only classical
queries to keyed oracles and the underlying block ciphers are post-quantum secure.

On the other hand, classical security proofs are not necessarily applicable to the (post-quantum) standard security
for hash based MACs where the proofs use idealized models such as the random oracle model (when underlying hash
functions are built on the Merkle-Damgård construction, e.g., SHA-2 [Nat15a]) or the ideal permutation model (when
underlying hash functions are built on the sponge construction, e.g., SHA-3 [Nat15b]). Since adversaries can implement
compression functions and permutations used in the hash functions on their own quantum computers to make quantum
queries, the security of hash based MACs should be proven in the corresponding idealized quantum models such as the
QROM [BDF+11] or quantum ideal permutation model [AR17, HY18].

The main focus here is to study the tight quantum pseudorandom function security (qPRF security) of HMAC and
its variant NMAC [BCK96], which are the most basic and important constructions to convert Merkle-Damgård hash
functions into pseudorandom functions (PRFs) or MACs, in the QROM where compression functions are modeled as
quantum random oracles (QROs)10.

1.4.1 HMAC and NMAC
For a compression function h : {0, 1}m+n → {0, 1}n, the Merkle-Damgård constructionMDh is defined as follows11: Let
IV ∈ {0, 1}n be a fixed public initialization vector. For each input message M ∈ {0, 1}∗, the construction pads M (with
a fixed padding function) and splits it into m-bit message blocks M[1], . . . , M[`]. The state is first set as S0 := IV , and
iteratively updated as Si+1 := h(M[i + 1]| |Si), and S` becomes the final output. We assume m ≥ n, which is the case
for usual concrete hash functions such as SHA-2.

For a key length k ≤ m, HMAC is defined to be the keyed function HMACh : {0, 1}k × {0, 1}n × {0, 1}∗ → {0, 1}n
such that

HMACh (K, IV, M) := MDh (IV, Kout | |MDh (IV, Kin | |M)). (1.2)

Here, Kin := (K | |0m−k ) ⊕ ipad, Kout := (K | |0m−k ) ⊕ opad, and ipad, opad ∈ {0, 1}m are fixed and public constants such
that ipad , opad. We sometimes write HMACh

K (IV, M) to denote HMACh (K, IV, M) for simplicity. See also Fig. 1.4.

Figure 1.4: HMAC and NMAC. Note that pad(M) = M[1]| | · · · | |M[`].

NMAC is a two-key variant of HMAC. Mathematically, it is a keyed function NMACh : {0, 1}n × {0, 1}n × {0, 1}∗ →
{0, 1}n defined by

NMACh (K1, K2, M) := MDh (K2,MDh (K1, M)). (1.3)

Here, K1, K2 ∈ {0, 1}n are chosen independently and uniformly at random.12 We sometimes write NMACh
K1,K2

(M)
instead of NMACh (K1, K2, M) for simplicity. See also Fig. 1.4.

1.4.2 Quantum Security of HMAC and NMAC

Simple Quantum distinguishing attacks on HMAC and NMAC. There are two simple quantum attacks to distinguish
HMAC from a random function. Suppose that we are given an oracle O that is either of HMAC or a random function,
in addition to the quantum random oracle h.

10“HMAC” is an abbreviation of “Hash-based MAC”. “N” of “NMAC” is the initial of “Nested”.
11n is the length of chaining values, and m is the length of message blocks.
12Note that there is no IV involved in NMAC.
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The first attack is the one that tries to recover the secret key K . Once we succeed in recovering the correct key
K (when O is HMAC) or realizing that there is no plausible candidate for K (when O a random function), we can
distinguish HMAC from a random function. Since the exhaustive key search of k-bit keys can be done with O(2k/2)
queries by using Grover’s algorithm [Gro96], we can distinguish HMAC from a random function with O(2k/2) quantum
queries.

The second attack uses a collision forO. Suppose that the padding function pad in theMerkle-Damgård construction
satisfies the condition that there exists a function p : Z≥0 → {0, 1}∗ such that pad(M) = M | |p( |M |), which is the case
for usual hash functions such as SHA-2. First, we try to find M, M ′ ∈ {0, 1}m such that O(M) = O(M ′), which can be
done with O(2n/3) quantum queries by using the BHT algorithm [BHT97, BHT98]. When we find such messages, we
check whether O(M | |0m) = O(M ′ | |0m) holds. This equality holds with a constant probability if O is HMAC, but it
holds with a negligible probability if O is a random function. Thus, we can distinguish HMAC from a random function
with O(2n/3) quantum queries.

From the discussion above, HMAC can be distinguished with O(min{2n/3, 2k/2}) quantum queries. This gives
an upper bound of the query complexity to distinguish HMAC. The attacks are also applicable for NMAC, and
O(min{2n/3, 22n/2}) = O(2n/3) is an upper bound of the query complexity to distinguish NMAC.

Previous Results on Quantum Security of HMAC and NMAC. Song and Yun proved that HMAC and NMAC become
quantum-secure pseudorandom functions (qPRFs) against polynomial-time quantum adversaries in the standard model
under the assumption that h(·| |K ) : {0, 1}m → {0, 1}n is a qPRF when K ∈ {0, 1}n is randomly chosen [SY17]. They
for the first time showed that HMAC and NMAC are secure even in the quantum setting, which has great importance
in theory because it enables domain extension for qPRFs.

Roughly speaking, their proof guarantees security up to O(2n/5) or O(2n/8) quantum queries when the underlying
function hK is ideally random for each key K .13 In other words, Ω(2n/5) or Ω(2n/8) is currently the best proven lower
bound of quantum query complexity to distinguish HMAC or NMAC from a random function.

Results in standard models and those in (quantum) random oracles are not directly comparable, but there exists a
large gap between the current best lower bound and the upper bound O(2n/3) (when k is large enough) given in the
above distinguishing attacks.

The gap between Ω(2n/5) (or Ω(2n/8)) and O(2n/3) may not be significant in an ideal world where adversaries are
modeled as polynomial-time machines, but it is indeed significant in the real world applications, which we explain
below.

Closing the Gap. In the real world, closing the gap between Ω(2n/5) (or Ω(2n/8)) and O(2n/3) is relevant for the
following reasons.

Recall that there exist two security notions in the quantum setting: quantum security and standard security. The
standard security of HMAC will have practical importance in a very near future because it is quite reasonable to assume
that an adversary has a quantum computer on which h is implemented, but the attack target (HMAC) is implemented
on a classical device.

Now, the problem is that exiting results guarantee the security of HMAC and NMAC only up to O(2n/5) or O(2n/8)
queries, not only for the quantum security but also for the standard security (in the QROM). This is problematic since
when HMAC is instantiated with SHA-256, where n = 256, the security is not guaranteed after about 2n/5 ≈ 252 (or
2n/8 ≈ 232) classical queries. It is completely unacceptable in practice, as the number is modest even with the current
standard, and is too small to guarantee a longer term security.

In theory, the security up to O(2n/3) queries can be guaranteed with the previous result if the security parameter is
changed from n to 5n/3 (or 8n/3), by replacing the underlying hash function with the one with a longer output length.
However, in the real world, it requires many years to change parameters or primitives of widely used symmetric-key
cryptosystems such as HMAC, or sometimes it is simply infeasible, as we illustrate below:

- Some small IoT devices (e.g., RFID tags) need MACs but do not have enough area for hardware implementation
of primitives with large parameters.

- Some banking systems are still using Triple-DES although 20 years have already passed after the standardization
of AES [ANS17]. This is because even a small change (changing the block cipher) in financial systems is too
costly.

- Artificial satellites require MACs to prevent accepting commands from malicious attackers. Changing primitives
embedded as hardware is infeasible after satellites are launched into the outer space [SF12].

13Actually, the previous work [SY17] did not give concrete security bound, but we can reasonably deduce that the security is guaranteed up to
O(2n/8) quantum queries. We have the boundO(2n/5) instead ofO(2n/8) if we assume a conjecture. We will elaborate this in Section 6.1.
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Hence, giving a precise security bound is relevant from a practical view point, and is one of the most important topics
to study in symmetric-key cryptography, even if the improvement will be from O(2n/5) (or O(2n/8)) to O(2n/3).

We also note that there has been a long line of research to close the gap for HMAC and NMAC in the classical
setting, and it was eventually addressed by Gazi et al. at CRYPTO 2014 [GPR14] showing the upper bound and the
matching lower bound. However, the analysis in the quantum setting does not reach this point, and closing the gap is
important also from a theoretical view point.

1.4.3 Our Contributions
We show the following theorem, which shows that the tight bound of the number of quantum queries to distinguish
HMAC or NMAC from a random function is in Θ(2n/3) (when k is large enough).

Theorem 3 (Lower bound, informal). Suppose that the maximum length of messages that we can query to HMAC,
NMAC, or a random function RF (which is independent of h) is at most m · `. Then, the following claims hold in the
model where h is a quantum random oracle.

1. To distinguish HMAC from RF with a constant probability by making at most Q queries to HMAC or RF and at
most qh queries to h, qh · `5/3 +Q · `5/3 ≥ Ω(2n/3), or qh +Q · ` ≥ Ω(2k/2) have to be satisfied.

2. To distinguish NMAC from RF with a constant probability by making at most Q queries to NMAC or RF and at
most qh queries to h, qh · `5/3 +Q · `5/3 ≥ Ω(2n/3) has to be satisfied.

Remark 4. Our tightness claim focuses on the number of quantum queries, neglecting the effect of the lengths of
the queries. Nevertheless, our result still has practical importance. For instance, when HMAC-SHA-256 is used to
authenticate TCP/IP packets on Ethernet, ` < 32 always holds since Maximum Segment Size (MSS) is about 1500-byte.
In such a use-case our result guarantees about 85-bit security (2n/3 ≈ 285 for n = 256), while previous works do only
about 52-bit security or 32-bit security (in the QROM).

Remark 5. Some readers may think that results in the standard model are always superior to those in the (Q)ROM, but
we emphasize that the standard model and (Q)ROM are theoretically incomparable.

1.4.4 Limitations and Future Directions
Our security bound is tight and any further improvement is impossible in terms of the number of queries. However,
there is a room for improvement in terms of the length of messages. When an adversary makes a single classical query
of very long length (e.g., a message of m · 2n/5 bits, or equivalently ` = 2n/5) to the keyed oracle of HMAC or NMAC,
our result no longer guarantees any security. (Note that this does not invalidate the practical importance of our result.
See Remark 4 for details.) However, we do not find any quantum attack that actually breaks the security of HMAC or
NMAC by making only a few queries of which length is O(m · 2n/5), and we expect that there does not exist such an
attack. Improving the security bound in terms of message lengths is an interesting future work.

1.5 An Alternative Formalization of the Compressed Oracle Technique
One challenging obstacle to giving security proofs against adversaries that make quantum queries is that we cannot
record transcripts of quantum queries and answers. Most classical security proofs implicitly rely on the property that
we can copy and store queries made to oracles and their answers for free. However, it is highly non-trivial how to store
them in the quantum setting, since measuring or copying (parts of) quantum states will lead to perturbing them, which
may be detected by adversaries. (In Section 3.1 we will briefly explain the reason that copying and recording queries
is important in classical security proofs, and why it is hard when adversaries make quantum queries.)

Zhandry’s compressed oracle technique [Zha19] enables us to overcome the obstacle when oracles are truly random
functions. The technique is so powerful that it is applied to prove quantum security of lots of schemes, e.g., Fujisaki-
Okamoto transformation [Zha19] and Fiat-Shamir transformation [LZ19b]. It is also applied to show the tight security
bound to find a multicollision of a random function [LZ19a]. His crucial observation is that we can record queries
and answers without affecting quantum states by appropriately forgetting previous records. In addition, he observed
that transcripts of queries can be recorded in an compressed manner, which enables us to simulate random functions
(random oracles) extremely efficiently.

Zhandry’s formalization enables us not only to record queries but also to compress recorded data, which leads to
efficient simulation of a random oracle. However, security proofs of symmetric-key mode of operations often involve
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the analysis of information theoretic adversaries, where we do not care about efficient simulation of a random oracle,
and thus do not have to compress databases. With this in mind, we modify the construction of Zhandry’s compressed
standard oracle and give an alternative formalization of his technique without compressing databases that can be used
when we focus on (quantum) information theoretic security. All the quantum security proofs we will provide in later
chapters rely on the alternative formalization of the compressed oracle technique.

Our formulation is different from the original one not only in that efficient simulation of a random oracle is omitted
but also in that the encoding and decoding of databases are realized so that the intuition behind them is clear as much
as possible: Roughly speaking, when an adversary makes a query, the compressed oracle first decodes superposition of
databases into the uniform superposition of all functions, responds to the adversary, and then encodes the functions into
databases. The encoding and decoding in the original formulation are realized as a single theoretically sophisticated
unitary operator, but their link to the intuition behind the encoding and decoding is not apparent. On the other hand, we
represent the encoding and decoding as the composition of simple three unitary operators, each of which corresponds
to an intuitive and concrete manipulation, so that the intuition behind each operation is clear as much as possible.

Moreover, we scrutinize the properties of our modified oracle and observe that its behaviors can be described in
an intuitively clear manner by introducing some error terms. We also explicitly describe error terms, which enables
us to give mathematically rigorous proofs. We name our alternative oracle the recording standard oracle with errors,
because it records transcripts of queries and its behavior is described with error terms.

We believe that our alternative formalization and analyses for our oracle’s behavior help us understand Zhandry’s
technique better, which will lead to the technique being applied even more widely.

Details on the compressed oracle technique and the alternative formalization are provided in Chapter 3.

1.6 Classical Security Proof of the SKINNY-HASH Internal Functions
The sponge construction is one of the most basic constructions to convert a function or permutation into a cryptographic
hash function. It is used in many modern cryptographic hash functions including SHA-3 [Nat15b].

The sponge construction based on F : {0, 1}b → {0, 1}b , where F is a public permutation or a public function,
has two positive parameters r and c such that r + c = b. Given an input M ∈ {0, 1}∗, the hash value is computed
as follows: First, M is padded so that its length is a multiple of r . Let M[1]| | · · · | |M[L] ∈ {0, 1}rL be the message
after padding, where M[i] ∈ {0, 1}r for each i. Second, the internal states st0, . . . , stL ∈ {0, 1}b are computed
in a sequential order as st0 := IV and sti := F (sti−1 ⊕ (M[i]| |0c)) for 1 ≤ i ≤ L, where IV ∈ {0, 1}b is an
initialization vector. (This phase is called the absorbing phase.) Third, the internal states stL+1, . . . , stL+h−1 and the
output value H = H[1] · · · | |H[h] ∈ {0, 1}rh (H[i] ∈ {0, 1}r ) are computed as stL+i := F (stL+i−1) for 1 ≤ i ≤ h − 1
and H[i] := (the most significant r bits of stL+i−1). (This phase is called the squeezing phase14.) H is truncated if
necessary. See Fig. 1.5.

F F F F

M[1] M[2] M[3] M[L] H[1] H[h-1] H[h]

IV

r

c

M

pad

H

||

Figure 1.5: The sponge construction.

14In some concrete hash functions, the parameters r and c are changed to other parameters r′ and c′ such that r′ + c′ = b in the squeezing phase.
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The sponge construction is proven to be indifferentiable from a random oracle up to O(2c/2) queries when F is
a random oracle or an ideal permutation [BDPA08], and an appropriate padding function is chosen. That is, if a
cryptosystem is proven to be secure in the random oracle model, the security of the cryptosystem does not decrease
even if we replace the random oracle with the sponge construction, as long as the number of queries made to F through
the sponge construction or the direct computation of F (and F−1, if F is a permutation) is O(2c/2).

Since the sponge construction is proven to be secure, to realize a secure cryptographic hash function, it is sufficient
to construct a secure function or permutation F. There are two possible ways to realize such F.

One approach is to design a dedicated function or permutation from scratch. Most sponge-based hash functions
including SHA-3 take this approach. For instance, SHA-3 uses a dedicated 1600-bit permutation as F. The other
approach is to construct F from well-established primitives such as block ciphers or tweakable block ciphers, which is
taken by the SKINNY-HASH function family.

1.6.1 SKINNY-HASH Internal Functions
SKINNY-HASH [BJK+20] is a family of function-based sponge constructions, which was the second-round candidate of
the NIST lightweight cryptography competition [Nat20]. It consists of SKINNY-tk2-Hash and SKINNY-tk3-Hash,
which are the sponge constructions with b = 256 and b = 384, and the internal functions are built with the tweakable
block ciphers SKINNY-128-256 and SKINNY-128-384 [BJK+16], respectively.
SKINNY-128-256 is a tweakable permutation Ẽ256

tk
: {0, 1}128 → {0, 1}128, where the tweakey tk is chosen from

{0, 1}256. Similarly, SKINNY-128-384 is a tweakable permutation Ẽ384
tk

on {0, 1}128, where the tweakey tk is chosen
from {0, 1}384. Ẽ256

tk
and Ẽ384

tk
are expected to be secure and suitable to instantiate ideal ciphers of which the block

length is 128 bits and the key lengths are 256 bits and 384 bits, respectively.
The internal functions F256 : {0, 1}256 → {0, 1}256 and F384 : {0, 1}384 → {0, 1}384 of SKINNY-tk2-Hash and

SKINNY-tk3-Hash are defined by
F256(x) := Ẽ256x (c1) | |Ẽ256x (c2)

and
F384(x) := Ẽ384x (c1) | |Ẽ384x (c2) | |Ẽ384x (c3),

respectively, where c1, c2, c3 are distinct 128-bit constants (see Fig. 1.6).

||
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128
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128
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Figure 1.6: The SKINNY-HASH internal functions F256 and F384.

In the specification of SKINNY-HASH, the designers claim that “The function F256 is indifferentiable from a 256-bit
random function up to O(2128) queries.” and “The same intuitive argument applies to F384. However, the bound is
worse than the one for F256 by a factor of 3...”.

Their design and security claim are notable since F256 and F384 achieve n-bit security from an n-bit tweakable
block cipher although the designs of the functions are quite simple (just a few parallel applications of tweakable block
ciphers). On the other hand, when we build a compression function (to be used in the Merkle-Damgård construction)
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based on (tweakable) block ciphers, even the known approaches to achieve the same level of security require more
complex constructions [Nai11, HK14].

Observe that F256 and F384 do not give a perfect random function. If we write F256(x) = Y1 | |Y2, then Y1 = Y2 never
happens. Similarly, if we write F384(x) = Y1 | |Y2 | |Y3, then for any i , j, Yi = Yj is impossible. The n-bit security
claim comes from the intuition that these are the only events that make them different from a truly random function.
However, there is no formal proof for the n-bit security claim. Generally, it is highly favorable that a mode of operation
of (tweakable) block ciphers has formal security proofs when a security claim is provided.

1.6.2 Our Contributions
In this paper, we give a formal proof of the indifferentiability of the SKINNY-HASH internal functions F256 and F384 in
the ideal cipher model. In fact, we show a more general theorem: Let E be an n-bit block cipher with `n-bit key, where
` is a small constant. Define FE : {0, 1}`n → {0, 1}`n be the function defined by

FE (x) := Ex (c1) | | · · · | |Ex (c` ), (1.4)

where c1, . . . , c` are fixed distinct n-bit constants. We call FE the SHI function (“SHI function” is an abbreviation of
SKINNY-HASH Internal function). We show the following theorem.

Theorem 4 (Indifferentiability of the SHI function, informal). If E is an ideal cipher, the SHI function FE is in-
differentiable from a random oracle as long as the total number of queries made to E and its inverse E−1 are in
o(2n).

This theorem shows that the SHI function has n-bit security, as claimed by the designers. Since the structure of
SKINNY-HASH internal functions and the generalization FE is quite simple and the security is very high, we believe
that more and more function-based sponge constructions will be developed and used in practical situations relying on
the SHI construction and our security proof.

Details of the result on the SHI function are provided in Chapter 7.

Implications in Post-Quantum Cryptography. For the SHI function, this paper provides only a classical security
proof due to technical limitations. Nevertheless, we still think that the result has some implications in post-quantum
cryptography. Though we do not have any post-quantum security proof of the SHI function, it is unlikely to be broken
by quantum attacks. Hence we will be able to build post-quantum secure hash functions based on the SHI function.
The SHI function is an important example of an internal function for function-based sponge hash because there does
not exist many other instances. Thus it will also play an important role when we understand post-quantum security of
function-based sponge hash functions. Moreover, when post-quantum security of the SHI function will be proved, the
proof will be based on our classical proof. Therefore our result will help future studies on post-quantum security of
hash functions.

1.7 Summary of Contributions
In summary, we obtained results on post-quantum security in symmetric-key cryptography from the perspective of both
theory and practice. On the theoretical side, this paper provides answers to two theoretically important, unresolved
problems. One is whether the r-round Luby-Rackoff construction is a secure qPRP for some r ≥ 4 (Section 1.2 and
Chapter 4). The other is whether we can build a quantum-secure tweakable block cipher from a quantum-secure block
cipher (Section 1.3 and Chapter 5). On the practical side, we prove the tight security bound of HMAC and NMAC in the
quantum random oracle model (Section 1.4 and Chapter 6), and show a formal security proof of the SKINNY-HASH
internal function (Section 1.6 and Chapter 7). Though the result on the SKINNY-HASH internal function is in the
classical setting, it has an implication in post-quantum security in the sense that quantum proofs will be based on our
classical proof. The results related to the compressed oracle technique (Section 1.5 and Chapter 3) are technical ones
that help us prove quantum security.

The relationship between the results (except for the ones on the compressed oracle technique) are as follows. See
also Fig. 1.1. The first result on the Luby-Rackoff construction shows how to convert qPRFs into qPRPs (quantum-
secure block ciphers) in an efficient manner. The second result shows how to achieve a quantum-secure TBC based on
qPRPs. Together with the result on the Luby-Rackoff construction, the second one also guarantees that we can build
a quantum-secure TBC if there exists a qPRF. The third result on HMAC and NMAC shows that we can achieve an
efficient and highly (quantum-)secure MACs from a hash function, or a compression function of fixed input-output
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length. The fourth result on the SKINNY-HASH internal function shows how to make a function of fixed input-output
length from a TBC in a provably secure manner.

1.8 Related Works
Other than the ones introduced above, security proofs against quantum query adversaries for symmetric key schemes
include a proof for standard modes of operations by Targhi et al. [ATTU16], one for the Carter-Wegmanmessage authen-
tication codes (MACs) by Boneh and Zhandry [BZ13], and one for Davies-Meyer and Merkle-Damgård constructions
by Hosoyamada and Yasuda [HY18]. Czajkowski et al. showed quantum security of random sponge, which can be seen
as a variant of CBC-MAC [CHS19]. Zhandry showed the PRP-PRF switching lemma in the quantum setting [Zha15].
Czajkowski et al. showed that the sponge construction is collapsing (collapsing is a quantum extension of the classical
notion of collision-resistance) when round functions are one-way random permutations or functions [CBH+18]. Alagic
and Russell proved that polynomial-time attacks against symmetric-key schemes that use Simon’s algorithm can be pre-
vented by replacing XOR operations with modular additions on the basis of an algebraic hardness assumption [AR17].
However, Bonnetain and Naya-Plasecia showed that the countermeasure is not practical [BN18]. For standard security
proofs (against quantum adversaries that make only classical queries) for symmetric-schemes, Mennink and Szepieniec
proved security for XOR of PRPs [MS17]. There are various notions on quantum MAC security such as EUF-qCMA
security [BZ13] and blind unforgeability [AMRS20]. There also exists another security notion for one-time MAC
security [GYZ17]. MACs built from qPRFs satisfy all these security notions. The SHI function is quite similar to a
function proposed in a previous work [CNL+08, Section 4.4]. The difference of the SHI function from the function
in [CNL+08] is that, while the domain and the range of the SHI function are the same since it is supposed to be used
in the sponge construction, the domain of the function in [CNL+08] is larger than its range since it is supposed to
be used as a compression function in the Merkle-Damgård construction. In addition, while the previous work shows
collision-resistance, this paper shows the indifferentiability.

1.9 Paper Organization
The rest of the paper is organized as follows. Chapter 2 describes notations, definitions, and some basic lemmas used
in later chapters. Chapter 3 duscusses the compressed oracle technique and introduce an alternative formalization,
which is used in quantum security proofs in Chapter 4, Chapter 5, and Chapter 6. Chapter 4 proves that the 4-round
Luby-Rackoff construction is a qPRP and its tight quantum security bound is Θ(2n/6). Chapter 5 shows the new
construction LRWQ that converts BCs into TBCs and proves that it is a quantum-secure TBC. Chapter 6 proves that the
tight quantum security bound of HMAC and NMAC is Θ(2n/3) in the QROM. Chapter 7 provides a formal security
proof that the SKINNY-HASH internal function is indifferentiable from a random oracle. Chapter 8 concludes the
paper. Besides, a summary of important notations, technical terms and their abbreviations is provided in Appendix A
and show the publication list in Appendix B. See also Fig. 1.7.
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Chapter 2

Preliminaries

This chapter describes notations, definitions, and some basic lemmas used in later chapters. Throughout the paper,
algorithms and oracles are quantum algorithms and quantum oracles except for Chapter 7, unless otherwise noted.

2.1 Basic Notations
For any finite sets X and Y , let Func(X,Y ) denote the set of all functions from X to Y , and let Perm(X ) denote the set of
all permutations on X . For any n-bit string x, we denote the left-half n/2-bits of x by xL and the right-half n/2-bits by
xR, respectively. We identify the set {0, 1}m with the set of the integers {0, 1, . . . , 2m − 1}. For bit strings X ∈ {0, 1}m
and Y ∈ {0, 1}n, let X | |Y ∈ {0, 1}m+n denote the concatenation of X and Y . For each bit string X of finite length, let
|X | denote the length of X in bits. For a positive integer m, GF(2m) denotes the finite field of order 2m. We identify
the set of bit strings {0, 1}m with the set of integers {0, 1, . . . , 2m − 1} unless otherwise noted. {0, 1}∗ denotes the set∐∞

n=0{0, 1}
n, where {0, 1}0 denotes the set that includes only the empty string. For a positive integer m, ({0, 1}m)+

denotes the set
∐∞

i=1{0, 1}
im. We say that a function f : Z≥0 → R is negligible if, for arbitrary constant c > 0, there

exists a sufficiently large integer N such that | f (n) | ≤ 1/nc for all n ≥ N .

2.2 Primitives
A keyed function F is a function from a product space {0, 1}k × {0, 1}m to another space {0, 1}n, where {0, 1}k is called
the key space of F. We denote the function F (K, ·) : {0, 1}m → {0, 1}n by FK (·) for each key K ∈ {0, 1}k .

A block cipher (BC) is a keyed function E : {0, 1}k × {0, 1}n → {0, 1}n such that EK (·) is a permutation for each
key K . Let E−1 denote the inverse of E defined by E−1(K, E(K, M)) = M for all M ∈ {0, 1}n. We often write EK (·)
and E−1

K (·) instead of E(K, ·) and E−1(K, ·), respectively.
A tweakable block cipher (TBC) is a keyed function Ẽ : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n such that Ẽ(K,T, ·) is

a permutation on {0, 1}n for each K ∈ {0, 1}k and T ∈ {0, 1}t . The space {0, 1}t is called the tweak space of Ẽ. Let
Ẽ−1 denote the inverse of Ẽ defined by Ẽ−1(K,T, Ẽ(K,T, M)) = M for every K,T , and M . We often write ẼT

K (M) and
(Ẽ−1)TK instead of Ẽ(K,T, M) and ˜E−1(K,T, M), respectively.

2.3 Basics of Quantum Computations
This section briefly recalls basics of quantum computations. Note that the explanations in this section are not compre-
hensive. See textbooks such as [NC10] for complete explanations. How we model (oracle-aided) quantum algorithms
is described in the next section.

In the theory of classical computation, information and data such as a state of an algorithm are described by bits,
which are represented by elements in {0, 1}n for some n. On the other hand, in the theory of quantum computation,
information and data are described by qubits, which are quantum systems that are represented by unit vectors of a
2n-dimensional Hilbert space H for some n. (In fact, this is an explanation for pure states. An explanation for more
general mixed states will be given later. Besides, two states |φ〉 and c |φ〉 for c ∈ C× are identified.) The inner product
of two vectors |φ〉 , |ψ〉 ∈ H is denoted by 〈φ|ψ〉, and the norm of |φ〉 is denoted by ‖ |φ〉 ‖. The function 〈φ|·〉 : H → C
(i.e., the element in the dual space H ∗) is denoted by 〈φ|. In addition, by |φ〉 〈ψ | we denote the operator defined by
|φ〉 〈ψ | ( |η〉) = 〈ψ |η〉 |φ〉.
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We fix a basis ofH and label the 2n basis vectors as |0 · · · 00〉 , |0 · · · 01〉 , . . . , |1 · · · 11〉, and call it the computational
basis. A classical bit string x ∈ {0, 1}n is identified with the vector |x〉. By using the computational basis, arbitrary
(pure) quantum state |φ〉 is described as

|φ〉 =
∑

x∈{0,1}n
αx |x〉 , (2.1)

where α0, α1, . . . , α2n−1 ∈ C satisfy
∑

x |αx |
2 = 1. The equation (2.1) implies that the quantum state |φ〉 can take a

“superposition” of the classical states 0 · · · 00, 0 · · · 01, . . . , 1 · · · 11 ∈ {0, 1}n with the weight function α.
Suppose there exists another quantum system described with a 2m-dimensional Hilbert space H ′. Then the joint

system of the two quantum systems is described with the tensor product H ⊗ H ′. We assume that its computational
basis is {|x〉 |y〉}x∈{0,1}n,y∈{0,1}m , where the computational basis of H ′ is {|y〉}y∈{0,1}m . (We often omit writing the
symbol “⊗” and denote |x〉 ⊗ |y〉 by |x〉 |y〉 or |xy〉, for simplicity.)

Very roughly speaking, arbitrary operation on quantum states is described by a combination of (i) unitary operators,
(ii) embedding into a larger system, (iii) measurements, and (iv) partial trace. First, we explain (i)-(iii).

(i) The operation that is described by a unitary operator U changes a state |φ〉 to U |φ〉. The important characteristic
of this operation is reversibility. The original state |φ〉 can be obtained from U |φ〉 by applying the conjugate
operator U∗ (in practice it may be hard to implement U∗, though).

(ii) An operation of embedding changes a state |φ〉 into another state |φ〉 ⊗ |ψ〉 ∈ H ⊗H ′ of a larger system for some
|ψ〉 ∈ H ′.

(iii) Let S := {Pi : H → H}1≤i≤s be a set of operators such that (a) P∗i = Pi for each i, (b) PiPj is equal to Pi if
i = j and equal to 0 otherwise, and (c)

∑
1≤i≤s Pi = I (I is the identity operator). The measurement with S is a

operation that changes |φ〉 into Pi |φ〉 /‖Pi |φ〉 ‖ and outputs the information that we measured i, with probability
pi := ‖Pi |φ〉 ‖

2. This operation is irreversible.

Below we give a few examples of (iii).
Example 1: Measurement by the computational basis. Let Sc := {Px := |x〉 〈x |}x∈{0,1}n . Then it is straightforward to
check Sc satisfies the properties (a)-(c). When we measure |φ〉 with Sc , we obtain a classical bit string x and the state
changes to |x〉with probability px = ‖(|x〉 〈x |) |φ〉 ‖2 = ‖αx |x〉 ‖2 = |αx |

2. We call this measurement the measurement
with the computational basis.

Example 2: Partial measurement with the computational basis. Suppose |ψ〉 is in H ⊗ H ′, where dim(H ) = 2n
and dim(H ′) = 2m. The computational basis of H and H ′ is {|x〉}x∈{0,1}n and {|y〉}y∈{0,1}m , respectively. |ψ〉 can be
described as |ψ〉 =

∑
x,y βx,y |x〉 |y〉, where βx,y satisfies

∑
x,y | βx,y |

2 = 1. Now, let Scp := {P′x := |x〉 〈x | ⊗ Im}x∈{0,1}n ,
where Im is the identity operator on H ′. Then Scp satisfies the properties (a)-(c). When we measure |ψ〉 with Scp ,
we obtain a classical bit string x with probability p′x = ‖( |x〉 〈x | ⊗ Im) |ψ〉 ‖2 = ‖

∑
y βx,y |x〉 |y〉 ‖2 = |

∑
y βx,y |

2.
Intuitively, the measurement with Scp partially measures the leftmost n-qubits of |ψ〉 with the computational basis. We
call this measurement (and similar measurements that partially measure other qubits) the partial measurement with the
computational basis.

Before describing what partial trace is, here we explain mixed state and density operator. Suppose there are two
persons Alice and Bob, and Alice has a 2-qubit state |ψ〉 = 1√

2
|0〉 |+〉 + 1√

2
|1〉 |−〉, where |+〉 = 1√

2
(|0〉 + |1〉) and

|−〉 = 1√
2

( |0〉 − |1〉). If Alice partially measures the leftmost qubit of |ψ〉, she will obtain 0 or 1 with probability 1/2
and the state changes to |0〉 |+〉 or |1〉 |−〉, respectively. After the measurement, if Alice does not tell the measurement
result to Bob, what Bob knows on Alice’s state is that it is |0〉 |+〉 or |1〉 |−〉 with probability 1/2. From Bob’s point of
view, this state cannot be described as a single vector. Such a state is called a mixed state and described by a density
operator. More generally, suppose that we have a mixed state that is equal to |ψi〉 with probability pi (1 ≤ i ≤ s,∑

i pi = 1). Then this state is described by the operator ρ =
∑

i pi |ψi〉 〈ψi |, which is called the density operator of
the mixed state. Two states with the same density operator are considered identical. In general, a density operator is
an Hermitian non-negative operator on H such that Tr(ρ) = 1, where Tr is the trace function (it is easy to check that∑

i pi |ψi〉 〈ψi | is indeed Hermitian non-negative and its trace is 1). Mixed states are the most general quantum states,
i.e., arbitrary quantum state can be regarded as a mixed state and described by a density operator. A state that can be
described by a unit vector |φ〉 is called a pure state. Note that a pure state |φ〉 can also be regarded as the mixed state of
the density operator |φ〉 〈φ|. Recall that the trace norm ‖A‖tr of an operator A is defined by ‖A‖tr := Tr

(√
A · A∗

)
. In

this paper the distance between two operators ρ and σ is measured by the trace distance td(ρ, σ) := 1
2 ‖ρ − σ‖tr (when

it can be defined).
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The operations (i)-(iii) are generalized to mixed states as follows. The unitary operator U changes a mixed state
ρ to U ρU∗. An embedding changes ρ to ρ ⊗ |ψ〉 〈ψ | for some |ψ〉. When we measure a state ρ with the operators
S = {Pi }1≤ j≤t , we obtain the information that we measured i with probability Tr(Pi ρ) and the state changes to
Pi ρ/Tr(Pi ρ).

Next, we explain the partial trace operation.

(iv) Let σ be the density operator of a state on the joint system H ⊗ H ′. Then there exist A1, . . . , As, B1, . . . , Bs ,
where Ai and Bi are operators onH andH ′, respectively, such that σ =

∑
1≤i≤s Ai ⊗ Bi . The partial trace of σ

onH ′ is defined by trH ′ (σ) :=
∑

1≤i≤s Tr(Bi)Ai . (trH ′ (σ) becomes a density operator onH and this definition
does not depend on how we choose A1, . . . , As, B1, . . . , Bs .) Intuitively, this operation corresponds to discarding
qubits that correspond toH ′.

Note that the partial trace of a pure state |ψ〉 (more precisely, the state |ψ〉 〈ψ |) is not necessarily a pure state. Conversely,
for arbitrary mixed state ρ onH , there exists a quantum system associated with a Hilbert spaceH ′ and a pure state |ψ〉
inH ⊗ H ′ such that trH ′ (|ψ〉 〈ψ |) = ρ holds. Such |ψ〉 is called a purification of ρ.

Throughout the paper, we use the following notations. H denotes the Hadamard transform on 1-qubit states defined
by H |b〉 = 1√

2
(|0〉 + (−1)b |1〉) for b ∈ {0, 1}. Note that H ⊗n |x〉 =

∑
y∈{0,1}n (−1)x ·y |y〉 holds for each x ∈ {0, 1}n,

where x · y denotes the dot product defined by (x1 ∧ y1) ⊕ · · · ⊕ (xn ∧ yn) ∈ {0, 1} (xi and yi are the i-th bits of x and
y, respectively). We denote the identity operator for an n-qubit quantum system by In or just I. In addition, we denote
the vectors |φ〉 ⊗ |0s〉 and |0s〉 ⊗ |φ〉 by the same symbol |φ〉, if there will be no confusion. For a unitary operator U,
we denote the operators U ⊗ I and I ⊗ U by the same symbol U.

2.4 (Oracle-Aided) Quantum Algorithms
This section describes how to model quantum oracles and (oracle-aided) quantum algorithms. First, in Section 2.4.1
we consider the case where an adversary has an access to a single quantum oracle and we take only the number of
quantum queries into account as adversaries’ computational resources, i.e., we consider quantum information-theoretic
adversaries. Section 2.4.2 explains how an information theoretic adversary is modeled when it has accesses to multiple
quantum oracles. Section 2.4.3 treats the case when we take other computational resources such as time and the number
of available qubits.

In what follows, we assume that adversaries and the oracles are modeled as in this section when refer to the “quantum
setting”, unless otherwise noted. Besides, by “quantum security” we denote various security notions proven in the
quantum setting (see Section 2.6 for concrete definitions of security notions in the quantum setting). Similarly, the
“classical setting” denotes the setting where all the algorithms including adversaries and oracles are classical ones, and
“classical security” denotes security notions proven in the classical setting.

2.4.1 Information-Theoretic Model with a Single Quantum Oracle
When a single quantum oracle is available and we ignore computational resources except for the number of queries,
following previous works [BDF+11, SY17, Zha12a] we model an oracle-aided quantum algorithmA that makes at most
q quantum queries as a sequence of unitary operators (U0, . . . ,Uq) that act on an s-qubit state space (which is the state
space ofA), where U0 corresponds to an initialization process and Ui corresponds toA’s offline computation after the
i-th query, for i ≥ 1. Without loss of generality we can assume that A does not make any intermediate measurements,
and A’s state space HA (a Hilbert space) is a joint system of an aquery-qubit quantum system Hquery, an aanswer-qubit
quantum system Hanswer, and an (s − aquery − aanswer)-qubit quantum system Hwork. Here, Hquery, Hanswer, and Hwork
correspond to the register to send queries to oracles, the register to receive answers from oracles, and the register for
A’s offline works, respectively. We also model a quantum oracle O as a unitary operator O (to process queries) with
its own quantum state space. O may have some (classical) randomness, and the unitary operator O may be chosen
randomly according to a distribution at the beginning of each game. If O has s′-qubit quantum states, joint quantum
states of A and O are (s + s′)-qubit quantum states. We denote O’s state space by HO . When A makes the i-th
query, the unitary operator Oi acts on Hquery ⊗ Hanswer ⊗ HO . Let |initA〉 and |initO〉 be the initial states of A and O,
respectively. We assume that |initA〉 is set to be |x〉 whenA takes a classical bit string x as an input (whenA does not
take any initial input, by convention we assume that the initial state of A is |0α〉 for some α). When we run A, the
unitary operatorsU0,O,U1,O, . . . ,Uq act on the initial state |initA〉 ⊗ |InitO〉 in a sequential order (the resulting quantum
state is |Φ〉 = UqO · · ·OU0(|initA〉 ⊗ |InitO〉)),A measures the first s-qubit of the state |Φ〉 with the computational basis
to obtain a classical s-bit string z, and finally outputs (a part of) z. We denote the event that A outputs a bit string x
after it runs relative to O by x ← AO .
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Examples. The quantum oracle Of of a (fixed) function f : {0, 1}m → {0, 1}n is modeled as the unitary operator

O f : |x〉 |y〉 7→ |x〉 |y ⊕ f (x)〉 . (2.2)

Of does not have its own state. When a quantum algorithm A runs relative to Of , Hquery and Hanswer are defined as
m-qubit space and n-qubit space, respectively.

Let F be a family of functions from {0, 1}m to {0, 1}n. Suppose that a quantum algorithm A runs relative to the
quantum oracle OF that first chooses f randomly from F (according to a distribution on F) and gives A a quantum
oracle access to f . In this case we assume that f is chosen randomly from F andA runs relative to the quantum oracle
of f . When f is chosen just uniformly at random from the set of all the functions from {0, 1}m to {0, 1}n, then this is
the quantum oracle of a random function.

Remark 6. Even if a function f admits input messages M and M ′ of which lengths differ, we assume that the quantum
oracle of O f admits queries of superpositions of M and M ′. In such a case, we assume that length |M | of each message
M is encoded with M . However, for ease of notation, we just write |M〉 instead of |(|M |, M)〉 for each message M .

2.4.2 Information-Theoretic Model with Multiple Quantum Oracles
Suppose that an adversary A is given oracle accesses to multiple quantum oracles O1, . . . ,Os , and A makes q queries
to each oracle O1, . . . ,Os in a sequential order. That is, for each 1 ≤ j ≤ s, after A makes the i-th query to Oj , A
performs some offline computations, and them makes the i-th query to Oj+1. Similarly, afterA makes the i-th query to
Os , A performs some offline computations, and then makes the (i + 1)-th query to O1. Here we explain how to model
the behavior of A and multiple quantum oracles O1, . . . ,Os as sequential applications of unitary operators, in the case
that A makes queries in a sequential order as above.

The adversary A is modeled as the sequence of unitary operators (U0,U1,1, . . . ,Us,1,U1,2, . . . ,Us,q), where Ui, j

corresponds to the offline computation byA after the j-th query to Oi . The state space ofA is modeled in the same way
as before. The oracles are assumed to share a state space HO . For each quantum oracle Oi , let Oi denote the unitary
operator to process queries. Let |initA〉 and |initO〉 be the initial states of A and the oracles, respectively. Then the
quantum state ofA and the oracles before the final measurement becomes

(∏q
j=1 Us, jOs · · ·U1, jO1

)
U0 |initA〉 ⊗ |init〉.

By z ← AO1,...,Os (x), we denote the event thatA finally outputs the classical string z whenA takes x as an input and
runs relative to the oracles O1, . . . ,Os .

2.4.2.1 The Model of Adversaries of Which Queries are not in a Sequential Order

In the above model we considered the special case that the adversary queries to oracles O1, . . . ,Os in a sequential order.
However, even if an adversary B (given oracle accesses to O1, . . . ,Os) does not make queries in such a sequential order,
the behavior of B can be captured with the above model: Suppose that B makes at most qi quantum queries to Oi for
each i, and s is a constant. Then, we can make another adversary A such that A’s output distributions are the same
as that of B, and A makes O(max{q1, . . . , qs }) queries to each oracle in a sequential order as in the above model, by
appropriately increasing the number of queries. Thus all reasonable adversaries are captured by the above model.

2.4.3 Non-Information-Theoretic Model
When we take other computational resources such as time and the number of available qubits into account in addition to
the number of quantum queries, we model a quantum algorithm as a combination of classical algorithms and quantum
circuits. In this paper we consider the pure quantum circuit model and ignore the costs related to communication
complexity and error corrections. We regard that a quantum circuit of depth D runs in time D. We assume that each
quantum circuit is composed of (1) the Hadamard gate H , (2) the π/8-gate T , (3) the phase gate S, (4) the CNOT gate,
and (5) the oracle gate (if an oracle is available). We assume that each of basic gates runs in time O(1), in addition that
CNOT can act on arbitrary pair of qubits.

Remark 7. In practice, computational complexity of quantum algorithms would significantly vary depending on error
correction costs and quantum hardware architectures, or communication costs. Our model might overestimate quantum
algorithms’ abilities, but schemes that are proven to be secure in this model will remain secure in other more realistic
models.
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2.5 Ideal Primitive Models
The random oracle model is the model where there exists the oracle of a random functionRO (either of fixed input-length
and variable input-lengths), and adversaries have access to RO(·). The ideal permutation model is the model where
there exists the oracle of a random permutation P and its inverse P−1, and adversaries have access to P(·) and P−1(·)
(we sometimes refer to P as an ideal permutation). The ideal cipher model is the model where there exists the oracle
of an ideal cipher E (an ideal cipher is a block cipher such that, for each key K , E(K, ·) is chosen independently at
random) and its inverse E−1, and adversaries have access to E(·, ·) and E−1(·, ·).

In addition, a quantum random oracle (QRO) is defined to be the quantum oracle such that, f : {0, 1}m → {0, 1}n
is chosen uniformly at random at the beginning of each game (for some m and n), and quantum oracle access to Of

is given to adversaries. The quantum random oracle model (QROM) is the model where a QRO is available to an
adversary.

In what follows, we refer to (i) a (quantum) random oracle (either of fixed input length and variable input lengths),
(ii) an ideal permutation, and (iii) an ideal cipher as ideal primitives.

2.6 Security Definitions
This section provides security definitions. Definitions for the setting where a quantum adversary has an access to a
single quantum oracle is given in Section 2.6.1. Those for multiple quantum oracles (including security definitions in
the QROM) are given in Section 2.6.2. Section 2.6.3 gives definitions of indifferentiability in the classical setting.

2.6.1 Quantum Security in Single-Oracle Settings
2.6.1.1 Quantum Distinguishing Advantage

LetA be a quantum algorithm that makes at most q queries and outputs 0 or 1 as the final output, and let O1 and O2 be
some oracles. We consider the situation where O1 and O2 are chosen randomly in accordance with some distributions.
We define the quantum distinguishing advantage of A by

Advdist
O1,O2

(A) :=
�����
Pr
O1

[
AO1 () → 1

]
− Pr
O2

[
AO2 () → 1

] �����
. (2.3)

When we are interested only in the number of queries and do not consider other complexities such as the number
of gates (i.e., we focus on information theoretic adversaries), we use the notation

Advdist
O1,O2

(q) := max
A

{
Advdist

O1,O2
(A)

}
, (2.4)

where the maximum is taken over all quantum algorithms that make at most q quantum queries.

2.6.1.2 Quantum PRF Advantage

Let RF denote the quantum oracle of a random function, i.e., the oracle such that a function f ∈ Func({0, 1}m, {0, 1}n)
is chosen uniformly at random, and adversaries are given oracle access to O f .

Let F = {Fk : {0, 1}m → {0, 1}n}k∈K be a family of functions (i.e., a keyed function). Let us use the same symbol
F to denote the oracle such that k is chosen uniformly at random, and adversaries are given oracle access to OFk

. In
addition, let A be an oracle query algorithm that outputs 0 or 1. Then we define the quantum pseudorandom function
advantage (qPRF advantage) by

AdvqPRF
F

(A) := Advdist
F ,RF(A).

Similarly, we define AdvqPRF
F

(q) by AdvqPRF
F

(q) := maxA
{
AdvqPRF

F
(A)

}
, where the maximum is taken over all

quantum algorithms A that make at most q quantum queries.

2.6.1.3 Quantum PRP Advantage

Let RP denote the quantum oracle of a random permutation, i.e., the oracle such that a permutation P ∈ Perm({0, 1}n)
is chosen uniformly at random, and adversaries are given oracle access to OP .
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Let P = {Pk : {0, 1}n → {0, 1}n}k∈K be a family of permutations. We use the same symbol P to denote the oracle
such that k is chosen uniformly at random, and adversaries are given oracle access to OPk

. Let A be an oracle query
algorithm that outputs 0 or 1, and we define the quantum pseudorandom permutation advantage (qPRP advantage) by

AdvqPRP
P

(A) := Advdist
P,RP(A).

Similarly, we define AdvqPRP
P

(q) by AdvqPRP
P

(q) := maxA
{
AdvqPRP

P
(A)

}
, where the maximum is taken over all

quantum algorithms A that make at most q quantum queries.

2.6.1.4 Quantum P̃RP Advantage

Let R̃P be the quantum oracle of a function P̃ : {0, 1}t × {0, 1}n → {0, 1}n such that P̃(T, ·) is chosen from Perm({0, 1}n)
uniformly at random for each T ∈ {0, 1}t (i.e., P̃ is a tweakable random permutation).

Let Ẽ : {0, 1}k×{0, 1}t×{0, 1}n → {0, 1}n be a tweakable block cipher, andA be an oracle-aided quantum algorithm.
By abuse of notation, let Ẽ also denote the quantum oracle that chooses a key K ∈ {0, 1}k uniformly at random and
gives a quantum oracle access to Ẽ(K, ·, ·). Extending the classical security notion [LRW02, LRW11], we define the
quantum tweakable pseudorandom permutation advantage (or qP̃RP advantage for short) by

Advq̃PRP
Ẽ

(A) := Advdist
Ẽ,R̃P

(A) .

Similarly, we define Advq̃PRP
P

(q) by Advq̃PRP
Ẽ

(q) := maxA
{
Advq̃PRP

Ẽ
(A)

}
, where the maximum is taken over all

quantum algorithms A that make at most q quantum queries.

2.6.1.5 Security against Efficient Adversaries

An algorithm A is called efficient if it can be realized as a quantum circuit that has a polynomial number of quantum
gates in n. A keyed function F (resp., a block cipher P, and a tweakable block cipher Ẽ) is a quantum-secure PRF
or qPRF (resp., a quantum-secure PRP or qPRP, and a quantum-secure P̃RP or qP̃RP) if the following properties are
satisfied:

1. Evaluation of F (resp., P, and Ẽ) can be implemented on a quantum circuit that have a polynomial number of
quantum gates in n.

2. AdvqPRF
F

(A) (resp., AdvqPRP
P

(A), and Advq̃PRP
Ẽ

(A)) is negligible for any efficient algorithm A.

2.6.2 Quantum Security in Multiple-Oracle Settings
2.6.2.1 Quantum Distinguishing Advantage

For quantum oracles O1, . . . ,Os and O ′1, . . . ,O
′
s , we define the quantum distinguishing advantage of an adversaryA by

Advdist
(O1,...,Os ),(O′1,...,O

′
s ) (A) := ���Pr

[
1← AO1,...,Os ()

]
− Pr

[
1← AO

′
1,...,O

′
s ()

] ��� .

In addition, we define Advdist
Oh

1 ,O
h
2

(q) := max
{
Advdist

(O1,...,Os ),(O′1,...,O
′
s ) (A)

}
, where the maximum is taken over all the

adversaries that make at most q queries to each oracle.

2.6.2.2 Quantum PRF Advantage in the QROM

Let h be a QRO and Fh
K be a keyed function that may depend on h. By the same symbol Fh

K we denote the quantum
oracle such that the key K is chosen at random, and the quantum oracle access to Fh

K is given to adversaries. In addition,
let RF be the quantum oracle of a random function that is independent of h. Then, we define the quantum-secure
pseudorandom function advantage (qPRF advantage) of A on Fh

K by

AdvqPRF
Fh
K

(A) := Advdist
(Fh

K ,h), (RF,h)
(A).

In addition, we define AdvqPRF
Fh
K

(q) := max
{
AdvqPRF

Fh
K

(A)
}
, where the maximum is taken over all the adversaries that

make at most q quantum queries to each oracle.

19



2.6.2.3 Quantum PRG Advantage in the QROM

Let h be a QRO and ρh : {0, 1}k1 → {0, 1}k2 be a function that may depend on h. Then, we define the quantum PRG
advantage AdvqPRG

ρh
(A) of A on ρh by

AdvqPRG
ρh

(A) :=
����Pr

[
K1

$
←− {0, 1}k1 : 1← Ah (ρh (K1))

]
−Pr

[
K2

$
←− {0, 1}k2 : 1← Ah (K2)

] ���� .

2.6.3 Classical Indifferentiability
In this section, all the algorithms and oracles are classical ones. Let R be a classical ideal primitive. Let H be a
function that accesses to the oracle of another ideal primitive O, and suppose that the input and output lengths of H are
the same as those of R. Let S be an algorithm that has the same interface of input and output as O and has an oracle
access to R. Let RealH,O,A be the game that runs A relative to (HO,O), and finally returns what AHO,O outputs. In
addition, let IdealR,A

S
be the game that runs A relative to (R,SR ), and finally returns what AR,SR outputs. We define

the indifferentiability advantage of an adversary A against (HO,O) and R with respect to the simulator S by

Advindiff
(HO,O),R,S (A) := ���Pr

[
1← RealH,O,A

]
− Pr

[
1← IdealR,A

S

] ��� .

See also Fig. 2.1.

H O R S

A

Real Ideal

Figure 2.1: Indifferentiability games.

Definition 1 (Indifferentiability [MRH04]). The function HO is said to be (tS, tA, qA,QA, ε )-indifferentiable from R
if there exists a simulator S such that (1) S runs in time at most tS , and (2) for any adversary A that runs in time tA ,
makes at most qA queries to O (resp., SR), and QA queries to HO (resp., R),

Advindiff
(HO,O),R,S (A) ≤ ε

holds.

We ambiguously say that HO is indifferentiable from R up to x queries if there exists a simulator S such that, for
arbitrary adversary A such that qA,QA � x, Advindiff

(HO,O),R,S (A) is negligible.
The composition theorem [RSS11] assures that, if (i) the security of a primitive Q is defined with a single-stage

game, and (ii) HO is indifferentiable from a random oracle, then it suffice to prove the security of QR in the setting that
adversaries can access to R to prove the security of QHO in the setting that adversaries can access to (HO,O).

2.6.4 Useful Proof Tools in the Quantum Setting
This section reviews some useful proof tools in the quantum setting for later use. Note that, in this section we take the
running time and the number of available qubits into account, in addition to the number of quantum queries, when we
estimate adversaries’ computational resources (see Section 2.4.3 for details).

Switching Random Functions and Random Permutations. The following theorem is a quantum version of the RF-RP
switching lemma, which was shown by Zhandry [Zha15].
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Theorem 5 (Theorem 7 in [Zha15]). Let RF and RP denote quantum oracles of a random function from {0, 1}n to
{0, 1}n and an n-bit random permutation, respectively. Let A be an oracle-aided quantum algorithm that makes at
most q quantum queries. Then Advdist

RF,RP(A) ≤ O(q3/2n) holds.

Simulating RandomFunctions in the Quantum Setting. For a positive integer k, k-wise independent hash function family
is a family of functions H = {hi : X → Y}i∈I (I is a finite index set) such thatPri←$I

[
hi (x1) = y1 ∧ · · · ∧ hi (xk ) = yk

]
=

1/|Y |k holds for arbitrary tuple (x1, . . . , xk, y1, . . . , yk ) ∈ Xk × Yk such that xα , xβ for α , β.
Zhandry showed that a random function can be perfectly simulated with 2q-wise independent hash function families

against quantum algorithms that make at most q queries [Zha12b].

Theorem 6 (Theorem 3.1 in [Zha12b]). Let A be an oracle-aided quantum algorithm that makes at most q quantum
queries. Let H = {hi : {0, 1}m → {0, 1}n}i∈I be a 2q-wise independent hash function family. By abuse of notation, let
H also denote the quantum oracle such that i ∈ I is chosen uniformly at random and the quantum oracle access to the
function hi is given to A. Then AdvqPRF

H (A) = 0 holds.

The set of polynomials over GF(2n) of which degree is at most 2q − 1 (≤ 2n) becomes a 2q-wise independent
hash function family (domains and ranges are GF(2n) = {0, 1}n). Let H = {hi : {0, 1}n → {0, 1}n}i∈I denote this hash
function family. Then H can be regarded as a function from I × {0, 1}n to {0, 1}n. We can built a quantum circuit with
depth Õ(q) and width Õ(q) (Õ suppresses factors of polynomials in n) that computes the function H : (i, x) 7→ hi (x).
Therefore, the following corollary follows from Theorem 6.

Corollary 1. There exists a function family H = {hi : {0, 1}n → {0, 1}n}i∈I such that (1) sampling i from I uniformly
at random can be done in time Õ(q), (2) H : (i, x) 7→ hi (x) is implemented on a quantum circuit with depth Õ(q) and
width Õ(q), and (3) AdvqPRF

hi
(A) = 0 holds for any quantum algorithmA that makes at most q quantum queries when

i is chosen uniformly at random.

21



Chapter 3

Compressed Oracle Technique

This chapter provides an alternative formalization for the compressed oracle technique and its properties. All the
security proofs in the quantum setting of later chapters rely on the techniques explained in this chapter.

See also Section 1.5 for an overview. Section 3.1 briefly explains the reason that copying and recording queries is
important in classical security proofs, and why it becomes hard when adversaries make quantum queries. Section 3.2
gives an overview of the original technique by Zhandry. Then, in Section 3.3 we describe our alternative formalization.

3.1 The Recording Barrier in the Quantum Setting
Lots of classical security proofs rely on the fact that the queries to oracles and the answers can be copied and recorded.
For instance, suppose we want to show the hardness of finding a collision of a random function f : {0, 1}n → {0, 1}n in
the classical setting1. Let A be a (classical) adversary that tries to find a collision of f by making exactly q queries. f
is chosen randomly before A runs. Since we are in the classical setting, we can modify the oracle of f so that it will
copy and recordA’s queries and the answers (this modification does not change the difficulty of finding a collision and
A cannot notice). Then the record can be represented as a sequence of pairs ((X1,Y1), . . . , (Xq,Yq)), where Xi is A’s
i-th query and Yi is the response (i.e., Yi = f (Xi)). A finds a collision if and only if Yi = Yj for some i and j such that
Xi , X j 2. Thus we have

Pr [A finds a collision] = Pr
[
Yi = Yj for some i , j such that Xi , X j

]

≤
∑

1≤i< j≤q,Y ∈{0,1}n
Pr

[
Yi = Y and Yj = Y and Xi , X j

]

=
∑

1≤i< j≤q,Y ∈{0,1}n
Pr[Yj = Y and Xi , X j |Yi = Y ] · Pr[Yi = Y ]

Since f is a random function, Pr [Yi = Y ] = 1/2n and Pr[Yj = Y and Xi , X j |Yi = Y ] ≤ 1/2n hold for all i < j and all
Y ∈ {0, 1}n. Hence

Pr [A finds a collision] ≤
∑

1≤i< j≤q,Y ∈{0,1}n

1
22n ≤

q2

2n

holds, which implies that the probability that A finds a collision is extremely small when q � 2n/2.
The above classical proof fully relies on the fact that we can record the sequence of queries and answers

((X1,Y1), . . . , (Xq,Yq)) without being noticed by A. However, in the quantum setting, we cannot copy and record
Xi and Yi in general because this may perturb the adversary’s quantum states significantly, which may be detected by
the adversary. Below we explain why this is the case.

Recall that the quantum oracle of f is represented as the unitary operator O f : |x〉 |y〉 7→ |x〉 |y ⊕ f (x)〉. Let B be
the quantum adversary that tries to find a collision of the random function f by making O(2n/3) quantum queries to f
as follows.

1Recall that a collision of f is a pair of distinct inputs (X, X′) such that f (X) = f (X′).
2To be precise there is a possibility that A finds and outputs a collision by chance even if Yi , Yj holds for all i and j such that Xi , Xj .

However, here we assume that A gives up and abort (which means that A failed to find a collision) in such a situation, for simplicity.
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1. B queries the state
∑

X∈{0,1}n
1√
2n
|X〉 |0n〉 to the quantum oracle twice in a row. Now B has a 2n-qubit state |φ〉.

Then, B applies the Hadamard operator H ⊗n on the leftmost n-qubit of |φ〉.

2. B measures the leftmost n-qubit and checks whether it is |0n〉. If it is |0n〉, proceed to the next step. If not, B
aborts (in this case B fails to find a collision).

3. B runs the quantum collision-finding algorithm by Brassard et al. [BHT98, BHT97], which finds a collision of a
random function with high probability by making O(2n/3) quantum queries (B succeeds to find a collision).

Suppose that the oracle given to B is indeed the original O f without any modification. Then, the transition of the
quantum state of B in the first step is as follows.∑

X∈{0,1}n

1
√

2n
|X〉 |0n〉

O f

−−→
∑

X∈{0,1}n

1
√

2n
|X〉 | f (X )〉

O f

−−→
∑

X∈{0,1}n

1
√

2n
|X〉 |0n〉

H⊗n⊗In
−−−−−−−→ |0n〉 |0n〉 (= |φ〉)

Hence the leftmost n-qubit of |φ〉 is always |0n〉 in the second step, and B successfully finds a collision in the third
step.

Next, suppose O f is modified in such a way that it copies and records queries and answers. Formally, the modified
oracle is represented by the operator

O′f : |X〉 |Y 〉 7→ |X〉 |Y ⊕ f (X )〉 ⊗ |X〉 | f (X )〉 .

(The number of qubits stored in the oracle increases by 2n per each query. Note that this operator can be realized by a
combination of the embedding |X〉 |0n〉 7→ |X〉 |0n〉 ⊗ |0n〉 |0n〉, a query to O f , and some other unitary operations.) If
the oracle given to B is O′f , the transition of the entire quantum state in the first step becomes as follows.

∑
X∈{0,1}n

1
√

2n
|X〉 |0n〉

O′
f

−−→
∑

X∈{0,1}n

1
√

2n
|X〉 | f (X )〉 ⊗ |X〉 | f (X )〉

O′
f

−−→
∑

X∈{0,1}n

1
√

2n
|X〉 |0n〉 ⊗ |X〉 | f (X )〉 |X〉 | f (X )〉

H⊗n⊗In⊗I4n
−−−−−−−−−−−→

∑
X,Y ∈{0,1}n

1
2n
|Y 〉 |0n〉 ⊗ |X〉 | f (X )〉 |X〉 | f (X )〉 (= |φ〉)

When B measures the leftmost n-qubits of |φ〉 in the second step, the probability that B obtains |0n〉 is 1/2n. Thus B
aborts and fails to find a collision with an overwhelming probability.

The above example demonstrates that the quantum state is perturbed and B can detect it if we copy and record
queries and answers in the quantum setting. In particular, the classical security proof we mentioned before does not
work in the quantum setting because there exist quantum adversaries such as B that can distinguish O f and O′f (in other
words, the classical proof works because O f and O′f are indistinguishable for classical adversaries.). What Zhandry
showed in [Zha19] is that this recording barrier in the quantum setting can be overcome to some extent, for the quantum
oracle of random functions.

3.2 An Overview of the Original Technique
First, Zhandry observed that the quantum oracle of a (fixed) function f : {0, 1}m → {0, 1}n, which is described as the
unitary operator O f : |x〉 |y〉 7→ |x〉 |y ⊕ f (x)〉, can be implemented with an encoding of f and an operator stO that is
independent of f . In this section, we assume that each function f : {0, 1}m → {0, 1}n is encoded into the (n2m)-qubit
state | f 〉 = | f (0)‖ f (1)‖ · · · ‖ f (2m − 1)〉. The operator stO is the unitary operator that acts on (n + m + n2m)-qubit
states defined as

stO : |x〉 |y〉 ⊗ |α0〉 · · · |α2m−1〉 7→ |x〉 |y ⊕ αx〉 ⊗ |α0〉 · · · |α2m−1〉 , (3.1)

where αx ∈ {0, 1}n for each 0 ≤ x ≤ 2m − 1. 3 We can easily confirm that stO |x〉 |y〉 | f 〉 = |x〉 |y ⊕ f (x)〉 | f 〉 holds.
Here, |x〉 |y〉 corresponds to the first (m + n)-qubits of adversaries’ registers.

3“stO” is an abbreviation of “standard oracle”.
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When f is chosen uniformly at random and A runs relative to stO and | f 〉 (i.e., A runs relative to the quantum
oracle of a random function), the whole quantum state before A makes the (i + 1)-st quantum query becomes

|φ f ,i+1〉 = (Ui ⊗ I)stO(Ui−1 ⊗ I)stO · · · stO(U0 ⊗ I) |0`〉 | f 〉 (3.2)

with probability 1/2n2m . Here, we assume that A has `-qubit quantum states.
The random choice of f can be implemented by first making the uniform superposition of functions

∑
f

1√
2n2m

| f 〉 =

H ⊗n2m
|0n2m

〉 and then measuring the state with the computational basis. So far we have considered the case that a
random function f is chosen at the beginning of games, but the output distribution of A will not be changed even if
we measure the | f 〉 register at the same time as we measure A’s register. Thus, below we assume that all quantum
registers including those of functions are measured only once at the end of each game.

Then the whole quantum state before A makes the (i + 1)-st quantum query becomes

|φi+1〉 =
∑
f

|φ f ,i+1〉 = (Ui ⊗ I)stO · · · stO(U0 ⊗ I) *.
,
|0`〉 ⊗

∑
f

1
√

2n2m
| f 〉+/

-
. (3.3)

Next, we change the basis of the y register and αi registers in (3.1) from the standard computational basis {|u〉}u∈{0,1}n
to the one called the Fourier basis {H ⊗n |u〉}u∈{0,1}n 4 by Zhandry [Zha19]. In what follows, we use the symbol “̂ ” to
denote the encoding of classical bit strings into quantum states by using the Fourier basis instead of the computational
basis, and we ambiguously denote H ⊗n |u〉 by |û〉 for each u ∈ {0, 1}n. Then, it can be easily confirmed that

stO |x〉 | ŷ〉 ⊗ |α̂0〉 · · · |α̂2m−1〉 = |x〉 | ŷ〉 ⊗ |α̂0〉 · · · |α̂x ⊕ y〉 · · · |α̂2m−1〉 (3.4)

holds. Intuitively, the direction of datawriting changes after changing the basis: Whenweuse the standard computational
basis, data is written from the function registers to adversaries’ registers as in (3.1). On the other hand, when we use
the Fourier basis, data is written in the opposite direction as in (3.4). With the Fourier basis, |φi+1〉 can be written as

|φi+1〉 = (Ui ⊗ I)stO(Ui−1 ⊗ I)stO · · · stO(U0 ⊗ I)
(
|0`〉 ⊗ |E0n2m

〉

)
. (3.5)

Here, note that
∑

f | f 〉 = H ⊗n2m
|0n2m

〉 = |E0n2m
〉 holds. Thus

|φi+1〉 =
∑
xyzD̂

a′
xyzD̂

|xyz〉 ⊗ |D̂〉 (3.6)

holds for some complex numbers a′
xyzD̂

such that
∑

xyzD̂ |a
′

xyzD̂
|2 = 1, where each x is an m-bit string that corresponds

to A’s register to send queries to oracles, y is an n-bit string that corresponds to A’s register to receive answers
from oracles, z corresponds to A’s remaining register to perform offline computations, and D̂ = α̂0‖ · · · ‖α̂2m−1 is a
concatenation of 2m strings of n bits.

Zhandry’s key observation is that, since stO adds at most one data to the D̂-register in each query, α̂x , 0n holds for
at most i indices x, and thus D̂ can be regarded as a database with at most i non-zero entries. (Note that D̂ may contain
fewer than i non-zero entries. For example, if a state |x〉 | ŷ〉 is successively queried to stO twice, then the database will
remain unchanged since stO · stO = I.) We use the same notation D̂ to denote the database and call it the Fourier
database since now we are using the Fourier basis for D̂. Each entry of the database D̂ has the form (x, α̂x ), where
x ∈ {0, 1}m, α̂x ∈ {0, 1}n, and α̂x , 0n.

Intuitively, if the Fourier database D̂ contains an entry (x, α̂x ), it means thatA has queried x to a random function
f and holds some information about the value f (x). Hence D̂ can be seen as a record of transcripts for queries and
answers. However, it is still not clear what kind of information A has about the value f (x), since we are now using
the Fourier basis. To clarify this information, let the Hadamard operator H ⊗n act on each α̂x in D̂ and obtain another
(superposition of) database D. Then, intuitively, D satisfies the condition in which “(x, αx ) ∈ D corresponds to the
condition that A has queried x to the oracle and received the value αx in response.” We call D a standard database.

In summary, Zhandry observed that the quantum random oracle can be described as a stateful quantum oracle CstO.
The whole quantum state of an adversary A and the oracle just before the (i + 1)-st query is

|φi+1〉 =
∑
xyzD

axyzD |xyz〉 ⊗ |D〉 , (3.7)

4Note that the Hadamard operator H⊗n corresponds to the Fourier transformation over the group (Z/2Z)⊕n .
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where each D is a standard database that contains at most i entries. Initially, the database D is empty. Intuitively, when
A makes a query |x, y〉 to the oracle, CstO does the following three-step procedure5.

The Three-Step Procedure of CstO.

1. Look for a tuple (x, αx ) ∈ D. If one is found, respond with |x, y ⊕ αx〉.

2. If no tuple is found, create new registers initialized to the state 1√
2n

∑
αx
|αx〉. Add the registers (x, αx ) to D.

Then respond with |x, y ⊕ αx〉.

3. Finally, regardless of whether the tuple was found or added, there is now a tuple (x, αx ) in D, which may have to
be removed. To do so, test whether the registers containing αx contain 0n in the Fourier basis. If so, remove the
tuple from D. Otherwise, leave the tuple in D.

Intuitively, the first and second steps correspond to the classical lazy sampling, which do the following procedure:
When an adversary makes a query x to the oracle, look for a tuple (x, αx ) in the database. If one is found, respond with
αx (this part corresponds to the first procedure of CstO). If no tuple is found, choose αx uniformly at random from
{0, 1}n (this part corresponds to creating the superposition 1√

2n

∑
αx
|αx〉 in the second step of CstO), respond with αx ,

and add (x, αx ) to the database.
The third “test and forget” step is crucial and specific to the quantum setting. Intuitively, the third step forgets

data that is no longer used by the adversary from the database. By appropriately forgetting information, we can record
transcripts of queries and answers without perturbing quantum states.

3.2.1 Formalization with Compression
On the basis of above clever intuitions, Zhandry gave a formalized description of the compressed standard oracle CstO
(although we do not give the explicit description here). Note that, since each database D has at most i entries before the
(i + 1)-st query, D can be encoded in a compressed manner by using only O(i(m + n)) qubits. With this observation,
CstO is formalized in such a way that it has O(i(m+ n))-qubit states before the (i+1)-st query for each i, which enables
us to simulate a random oracle very efficiently on the fly, without an a priori bound on the number of queries (which
required computational assumption before Zhandry’s work).

3.3 Our Alternative Formalization
Next we give our alternative formalization. From now on, we represent each function f : {0, 1}m → {0, 1}n as an
(n + 1)2m-bit string (0‖ f (0))‖(0‖ f (1))‖ · · · ‖(0‖ f (2m − 1)). Remember that the whole quantum state afterA makes
the i-th query is described as

|φ̃i〉 = stO(Ui−1 ⊗ I)stO · · · stO(U0 ⊗ I) *.
,
|0`〉 ⊗

∑
f

1
√

2n2m
| f 〉+/

-
. (3.8)

At each query, we first “decode” superpositions of databases to superpositions of functions when an adversary makes
a query, then respond to the adversary, and finally “encode” again superpositions of functions to superpositions of
databases. Below we describe our encoding.

3.3.0.1 Encoding Functions to Databases: Intuitive Descriptions

Modifying the idea of Zhandry, we apply the following operations to the | f 〉-register of |φ̃i〉 (i.e., just after the i-th
query).

1. First, for each x, we change the basis of the registers for the output value f (x) from the computational basis to
the Fourier basis. That is, we let the Hadamard operator H ⊗n act on the f (x) register for all x. Now the state
becomes ∑

xyzD̃

a′
xyzD̃

|xyz〉 ⊗ |D̃〉 (3.9)

5 Note that this three-step procedure is a quoted verbatim from a preliminary full version of the original paper [Zha18] on IACR Cryptology
ePrint archive, except that the symbol y′ and 0 are used instead of αx and 0n , respectively, in the original procedure.
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for some complex numbers a′
xyzD̃

, where each D̃ = (0‖α̂0)‖ · · · ‖(0‖α̂2m−1) is a concatenation of 2m strings of
(n + 1) bits, and α̂x , 0n at most i indices x.

2. Next, we check and mark which x has been previously queried by A. Intuitively, α̂x , 0n means that A has
queried x before. Thus, for each x, we flip the bit just before α̂x if α̂x , 0n. Then each D̃ changes to the bit
string (b0‖α̂0)‖ · · · ‖(b2m−1‖α̂2m−1), where bx ∈ {0, 1}, and bx = 1 if and only if α̂x , 0n.

3. Now the information on which x has been previously queried byA is recorded in D̃. However, it is still not clear
what kind of information A has about the response value f (x), since we are now using the Fourier basis. To
clarify this information, for x that A has previously queried, we change the basis of the register α̂x back to the
computational basis. That is, for each x, we let the n-bit Hadamard transformation H ⊗n act on |α̂x〉 if and only
if bx = 1. Then the quantum state becomes

|ψ̃i〉 :=
∑
xyzD

axyzD |xyz〉 ⊗ |D〉 (3.10)

for some complex numbers axyzD , where each D is a concatenation of 2m strings of (n + 1) bits, (b0‖α0)‖ · · ·
‖(b2m−1‖α2m−1), such that bx , 0 holds for at most i indices x. Intuitively, bx , 0 means that A has queried x
to a random function f and has information that f (x) = αx . If bx = 0, then αx = 0n holds.

3.3.0.2 Encoding Functions to Databases: Formal Descriptions

The above three operations can be formally realized as actions of unitary operators on | f 〉-registers. The first one is
realized as IH := (I1 ⊗ H ⊗n)⊗2m . The second one is realized as Utoggle := (I1 ⊗ |0n〉 〈0n | + X ⊗ (In − |0n〉 〈0n |))⊗2m ,
where X is the 1-qubit operator such that X |0〉 = |1〉 and X |1〉 = |0〉. The third one is realized by the operator
CH := (CH ⊗n)⊗2m , where CH := |0〉 〈0| ⊗ In + |1〉 〈1| ⊗ H ⊗n.

We call the action of the unitary operator Uenc := CH · Utoggle · IH and its conjugate U∗enc encoding and decoding,
respectively.

Remark 8. In Zhandry’s paper [Zha19], Uenc and U∗enc correspond to a single unitary operator StdDecomp′ that is
defined in a theoretically concise and sophisticated way. We use the encoding as the composition of three unitary
operators like above so that the intuition behind the encoding and decoding is clear as much as possible.

By using our encoding and decoding, the recording standard oracle with errors is defined as follows.

Definition 2 (Recording standard oracle with errors). The recording standard oracle with errors is the quantum oracle
such that queries are processed with the unitary operator RstOE defined by RstOE := (I ⊗Uenc) · stO · (I ⊗U∗enc) and
the initial state is |0(n+1)2m

〉. (See also Fig. 3.1.)

R
stO
E

𝑈1

R
stO
E

𝑈0

R
stO
E

𝑈𝑞𝑈2

0 𝑛+1 2𝑚

0𝑚

0𝑛

0ℓ

Figure 3.1: A quantum circuit that illustrates an adversary A that runs relative to RstOE. The register |0(n+1)2m
〉 at

the top corresponds to the oracle’s state. The second and third registers (|0m〉 and |0n〉) are used to send queries and
receive answers, respectively. The register |0`〉 at the bottom corresponds to A’s private working space for offline
computations.

The original compressed oracle maintains only an O(i(m + n))-qubit state by compressing databases. On the other
hand, our oracle always has (n + 1)2m-qubit states since we do not consider any compression.
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3.3.1 Core Properties of RstOE
This subsection describes some useful properties of RstOE.

Note that |ψ̃i〉 = RstOE(Ui−1 ⊗ I)RstOE · · ·RstOE(U0 ⊗ I)( |0`〉 ⊗ |0(n+1)2m
〉) and |φ̃i〉 = (I ⊗ U∗enc) |ψ̃i〉 hold for

each i. Therefore, the following proposition holds.

Proposition 1. The recording standard oracle with errors is perfectly indistinguishable from the quantum oracle of a
random function.

The following proposition guarantees that each database contains at most i entries after i quantum queries.

Proposition 2. Let i ≥ 1. Suppose that we measure the oracle states’ register of |ψi+1〉 and obtained a database D.
Then D is valid, and contains at most i entries.

Proof. Let IA and ID denote the identity operators on the adversary’s states and databases, respectively (IA ⊗ ID
becomes the identity operator on the entire state space). Recall that Uj denotes the unitary operator for the adversary’s
offline computation after the j-th query.

First,
|ψ̃i〉 = ((Ui−1 ⊗ ID ) · RstOE) · · · ((U1 ⊗ ID ) · RstOE) |ψ̃1〉

holds for i ≥ 2.
Second, recall that

RstOE = (IA ⊗ Uenc) · stO · (IA ⊗ Uenc)∗

holds. Since Uenc does not act on the adversary’s registers, and “Utoggle · CH” in

(Uenc)∗ = IH ·Utoggle · CH

does not change the state |ψ̃1〉 (because the database register of |ψ̃1〉 is all 0), we have

|ψ̃i〉 = (IA ⊗ Uenc) · ((Ui−1 ⊗ ID ) · stO) · · · ((U1 ⊗ ID ) · stO) · IH |ψ̃1〉

for i ≥ 2.
Next, define

stO′ := (H ⊗m ⊗ IH)stO(H ⊗m ⊗ IH),
U ′j := H ⊗m ·Uj · H ⊗m for j = 1, . . . , i − 2, and

U ′i−1 := Ui−1 · H ⊗m,

U ′enc := (CH ·Utoggle),

where H ⊗m acts on the adversary’s register to receive answers from the oracle. Then

|ψ̃i〉 = (IA ⊗ U ′enc) · ((U ′i−1 ⊗ ID ) · stO′) · · · ((U ′1 ⊗ ID ) · stO′) · (H ⊗m ⊗ ID ) |ψ̃1〉 (3.11)

follows.
Recall that

stO |x〉 |y〉 |S〉 = |x〉 |y ⊕ sx〉 |S〉

holds, where x ∈ {0, 1}m, y ∈ {0, 1}n, and S = (b0‖s0)‖(b1‖s1)‖ · · · ‖(b2m−1‖s2m−1), where bi ∈ {0, 1} and si ∈ {0, 1}n
for each i ∈ {0, 1}m. On the other hand, straightforward calculations show that

stO′ |x〉 |y〉 |S〉 = |x〉 |y ⊕ sx〉 |S ⊕ (y)x〉

holds, where S ⊕ (y)x := (b0‖s0)‖ · · · ‖(bx ‖sx ⊕ y)‖ · · · ‖(b2m−1‖s2m−1).
Since the database register of |ψ̃1〉 is all 0, when we measure the state

((U ′i−1 ⊗ ID ) · stO′) · · · ((U ′1 ⊗ ID ) · stO′) · (H ⊗m ⊗ ID ) |ψ̃1〉 ,

we always obtain a bit string S of the form

S = (0| |s0) | |(0| |s1) | |...| |(0| |s2m−1),

where the number of j such that s j , 0 is at most (i − 1). When U ′enc = CH · Utoggle acts on such a state |S〉, we
always obtain a (superposition of) valid database D with |D | ≤ (i − 1). Since (3.11) holds, this means that the claim of
Proposition 2 holds. �
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Next, we introduce notations that are required to describe important properties of RstOE. We call a bit string
D = (b0‖α0)‖ · · · ‖(b2m−1‖α2m−1), where bx ∈ {0, 1} and αx ∈ {0, 1}n for each x ∈ {0, 1}m, is a valid database if
αx , 0n holds only if bx = 1. We call D an invalid database if it is not a valid database. Note that, in a valid database,
bx can be 0 or 1 if αx = 0n. We identify a valid database D with the partially defined function from {0, 1}m to {0, 1}n
of which the value on x ∈ {0, 1}m is defined to be y if and only if bx = 1 and αx = y. We use the same notation D for
this function. If x is in the domain of D, we write D(x) ,⊥, and otherwise write D(x) =⊥. Moreover, we identify
D with the set {(x, D(x))}x∈dom(D) ⊂ {0, 1}m × {0, 1}n, and we use the notations D ∪ (x, α) and D \ (x ′, α′) to denote
the insertion of (x, α) into D and the deletion of (x ′, α′) from D. For a valid database D that corresponds to the bit
string (b0 | |α0) | | · · · | |(b2m−1 | |α2m−1) such that D(x) =⊥ (i.e., bx = 0 and αx = 0n) and γ , 0n, we denote the invalid
database that corresponds to the bit string (b0 | |α0) | | · · · | |(bx−1 | |αx−1) | |(0| |γ) | |(bx+1 | |αx+1) | | · · · | |(b2m−1 | |α2m−1) by
D ∪ Jx, γK. Unless otherwise noted, we always assume that D is valid.

The following proposition describes the core properties of RstOE.

Proposition 3 (Core Properties). Let D be a valid database and suppose that n is sufficiently large (n ≥ 6 suffices).
Then, the following properties hold.

1. Suppose that D(x) = ⊥. Then, for any y and α, there exists a vector |ε〉 such that

RstOE |x〉 |y〉 ⊗ |D ∪ (x, α)〉 = |x〉 |y ⊕ α〉 ⊗ |D ∪ (x, α)〉 + |ε〉

and ‖ |ε〉 ‖ ≤ 5/
√

2n. More precisely,

RstOE |x, y〉 ⊗ |D ∪ (x, α)〉 = |x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉 (3.12)

+
1
√

2n
|x, y ⊕ α〉 *.

,
|D〉 − *.

,

∑
γ∈{0,1}n

1
√

2n
|D ∪ (x, γ)〉+/

-

+/
-

(3.13)

−
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗

(
|D ∪ (x, γ)〉 − |Dinvalid

γ 〉
)

(3.14)

+
1
2n
|x〉 |0̂n〉 ⊗ *.

,
2

∑
δ∈{0,1}n

1
√

2n
|D ∪ (x, δ)〉 − |D〉+/

-
(3.15)

holds, where |Dinvalid
γ 〉 is a superposition of invalid databases defined by

|Dinvalid
γ 〉 :=

∑
δ,0n

(−1)γ ·δ
√

2n
|D ∪ Jx, δK〉

for each γ, and |0̂n〉 = H ⊗n |0n〉.

2. Suppose that D(x) = ⊥. Then, for any y, there exists a vector |ε ′〉 such that

RstOE |x〉 |y〉 ⊗ |D〉 =
∑

α∈{0,1}n

1
√

2n
|x〉 |y ⊕ α〉 ⊗ |D ∪ (x, α)〉 + |ε ′〉 (3.16)

and ‖ |ε ′〉 ‖ ≤ 2/
√

2n. To be more precise,

|ε ′〉 =
1
√

2n
|x〉 |0̂n〉 ⊗ *.

,
|D〉 −

∑
γ∈{0,1}n

1
√

2n
|D ∪ (x, γ)〉+/

-
(3.17)

holds, where |0̂n〉 = H ⊗n |0n〉.

An intuitive interpretation of Proposition 3. The proposition shows that, when the adversary’s state is not superposed,
we can intuitively capture time evolutions of databases with only the (classical) lazy-sampling-like arguments by
ignoring the error terms |ε〉 and |ε ′〉: When an adversary makes a query x to the oracle, RstOE looks for a tuple (x, α)
in the database. If one is found, respond with α (the first property in the above proposition). If no tuple is found, create
the superposition 1√

2n

∑
αx
|αx〉, respond with αx , and add (x, αx ) to the database (the second property in the above

proposition).
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Note that this intuition for the classical lazy-sampling does not necessarily work when the adversary’s state is
superposed. This means that, intuitively, a record (x, α) in a database may be deleted or overwritten by another record
(x, γ) when a quantum query is made.

For example, suppose that the database is empty, the adversary’s state is |x〉 |0n〉,6 and the adversary makes the
same query twice. At the first query, the adversary’s state is not superposed and the classical intuition works: Due to
the second property of the proposition, the state changes to

∑
α |x〉 |α〉 ⊗ |(x, α)〉 up to a small error term |ε ′〉. This

intuitively means that α is randomly sampled and the data (x, α) is added to the database. At the second query, classical
intuition says that the data (x, α) will be kept in the database. However, now the adversary’s state is superposed and
the classical intuition does not work: Since RstOE · RstOE = I holds and the second query cancels the first query, the
database gets back to empty. This means that the sum of the error terms (in the first property of the proposition) must
be large at the second query.

Therefore, sometimes we can ignore the error terms and use the classical intuition, but sometimes we cannot.

Remark 9. For invalid databases, basically we can ignore them in security proofs since, when we measure the database
register while an adversary runs relative to the recording standard oracle with errors, we always obtain a valid database.

Proof of Proposition 3. Recall that RstOE is decomposed as

RstOE = (I ⊗ CH) · (I ⊗ Utoggle) · (I ⊗ IH)stO(I ⊗ IH∗) · (I ⊗ U∗toggle) · (I ⊗ CH∗), (3.18)

and that each D is described as a bit string (b0‖α0)‖ · · · ‖(b2m−1‖α2m−1), where bx ∈ {0, 1} and αx ∈ {0, 1}n for each
x ∈ {0, 1}m.

We begin with showing the first property. Since now the operator RstOE does not affect the registers of entry of
x ′ in D for x ′ , x, it suffices to show that the claim holds when D is empty. In addition, without loss of generality,
we can assume that x = 0m. Now D ∪ (x, α) corresponds to the bit string (1‖α)‖(0‖0n)‖ · · · ‖(0‖0n). We have that
U∗enc = IH∗U∗toggleCH

∗ = IHUtoggleCH and

U∗enc |D ∪ (x, α)〉 = IHUtoggle
*.
,

∑
u∈{0,1}n

(−1)α ·u
√

2n
|1‖u〉+/

-
⊗ *

,

2m−1⊗
i=1
|0‖0n〉+

-

= IH *.
,

∑
u∈{0,1}n

(−1)α ·u
√

2n
|0‖u〉+/

-
⊗ *

,

2m−1⊗
i=1
|0‖0n〉+

-
+ IH

(
1
√

2n
(|1‖0n〉 − |0‖0n〉)

)
⊗ *

,

2m−1⊗
i=1
|0‖0n〉+

-

= |0‖α〉 ⊗ *
,

2m−1⊗
i=1
|0〉 |0̂n〉+

-
+ |ε1〉 , (3.19)

where |0̂n〉 := H ⊗n |0n〉 and |ε1〉 =
1√
2n

(|1〉 − |0〉) |0̂n〉 ⊗
(⊗2m−1

i=1 |0〉 |0̂n〉
)
. Thus, we have that

stO
(
I ⊗ U∗enc

)
|x, y〉 ⊗ |D ∪ (x, α)〉 = |x, y ⊕ α〉 ⊗ |0‖α〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0̂n〉+

-
+ stO( |x, y〉 ⊗ |ε1〉). (3.20)

Note that, from (3.19), it follows that

Uenc *
,
|0‖α〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0̂n〉+

-
+ |ε1〉+

-
= |D ∪ (x, α)〉 . (3.21)

Therefore,

(I ⊗ Uenc) stO
(
I ⊗ U∗enc

)
|x, y〉 ⊗ |D ∪ (x, α)〉

= (I ⊗ Uenc) *
,
|x, y ⊕ α〉 ⊗ |0‖α〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0̂n〉+

-
+ stO( |x, y〉 ⊗ |ε1〉)+

-

= (I ⊗ Uenc) *
,
|x, y ⊕ α〉 ⊗ |0‖α〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0̂n〉+

-
+ |x, y ⊕ α〉 ⊗ |ε1〉+

-
− (I ⊗ Uenc) (|x, y ⊕ α〉 ⊗ |ε1〉) + (I ⊗ Uenc)stO(|x, y〉 ⊗ |ε1〉)

= |x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉 + |ε2〉 (3.22)

6 |x〉 corresponds to the register to send queries to the oracle and |0n〉 corresponds to the register to receive answers from the oracle.
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holds, where |ε2〉 = − (I ⊗ Uenc) (|x, y ⊕ α〉 ⊗ |ε1〉) + (I ⊗ Uenc)stO( |x, y〉 ⊗ |ε1〉). Now we have that

(I ⊗ Uenc)stO(|x, y〉 ⊗ |ε1〉)

= (I ⊗ CH ·Utoggle · IH)
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ (|1〉 − |0〉) ⊗ |γ〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0̂n〉+

-

= (I ⊗ CH ·Utoggle)
1
√

2n
∑
γ,δ

(−1)γ ·δ

2n
|x, y ⊕ γ〉 ⊗ ( |1〉 − |0〉) ⊗ |δ〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

= (I ⊗ CH)
1
√

2n
∑
γ,δ

(−1)γ ·δ

2n
|x, y ⊕ γ〉 ⊗ (|0〉 − |1〉) ⊗ |δ〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

+ (I ⊗ CH)
2
√

2n
∑
γ

1
2n
|x, y ⊕ γ〉 ⊗ (|1〉 − |0〉) ⊗ |0n〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

=
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗

(
|0〉 ⊗

(
H ⊗n |γ〉

)
− |1〉 ⊗ |γ〉

)
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

+
2
√

2n
∑
γ

1
2n
|x, y ⊕ γ〉 ⊗

(
|1〉 ⊗

(
H ⊗n |0n〉

)
− |0〉 ⊗ |0n〉

)
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

=
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |0〉 ⊗

(
H ⊗n |γ〉

)
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

−
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |1〉 ⊗ |γ〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

+
2
√

2n
∑
γ

1
2n
|x, y ⊕ γ〉 ⊗ *

,

∑
δ

1
√

2n
|D ∪ (x, δ)〉 − |D〉+

-

=
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |0〉 ⊗ *

,

∑
δ

(−1)γ ·δ
√

2n
|δ〉+

-
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

−
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |1〉 ⊗ |γ〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

+
2
2n

∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ *

,

∑
δ

1
√

2n
|D ∪ (x, δ)〉 − |D〉+

-

=
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |0〉 ⊗ *

,

∑
δ,0n

(−1)γ ·δ
√

2n
|δ〉+

-
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

+
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |0〉 ⊗

(
1
√

2n
|0n〉

)
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

−
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |1〉 ⊗ |γ〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

+
2
2n

∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ *

,

∑
δ

1
√

2n
|D ∪ (x, δ)〉 − |D〉+

-

=
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |Dinvalid

γ 〉

+
1
2n

∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |D〉
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−
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗ |D ∪ (x, γ)〉

+
2
2n
|x〉 |0̂n〉 ⊗ *

,

∑
δ

1
√

2n
|D ∪ (x, δ)〉 − |D〉+

-

= −
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗

(
|D ∪ (x, γ)〉 − |Dinvalid

γ 〉
)

+
1
2n
|x〉 |0̂n〉 ⊗ *

,
2
∑
δ

1
√

2n
|D ∪ (x, δ)〉 − |D〉+

-
, (3.23)

where

|Dinvalid
γ 〉 = *

,

∑
δ,0n

(−1)γ ·δ
√

2n
|0〉 |δ〉+

-
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-
=

∑
δ,0n

(−1)γ ·δ
√

2n
|D ∪ Jx, δK〉

for each γ.
In addition, we have that

Uenc |ε1〉 = (CHUtoggleIH)
1
√

2n
( |1〉 − |0〉) |0̂n〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0̂n〉+

-

= CH
1
√

2n
( |1〉 − |0〉) |0n〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

=
1
√

2n
(|1〉 |0̂n〉 − |0〉 |0n〉) ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

=
1
√

2n
∑
γ

1
√

2n
|D ∪ (x, γ)〉 −

1
√

2n
|D〉 (3.24)

holds. Thus,

(I ⊗ Uenc) |x, y ⊕ α〉 ⊗ |ε1〉 =
1
√

2n
|x, y ⊕ α〉 *.

,

*.
,

∑
γ

1
√

2n
|D ∪ (x, γ)〉+/

-
− |D〉+/

-
(3.25)

holds. Therefore,

RstOE |x, y〉 ⊗ |D ∪ (x, α)〉 = |x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉

+
1
√

2n
|x, y ⊕ α〉 *.

,
|D〉 − *.

,

∑
γ

1
√

2n
|D ∪ (x, γ)〉+/

-

+/
-

−
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗

(
|D ∪ (x, γ)〉 − |Dinvalid

γ 〉
)

+
1
2n
|x〉 |0̂n〉 ⊗ *

,
2
∑
δ

1
√

2n
|D ∪ (x, δ)〉 − |D〉+

-
(3.26)

holds, and this proves the first property.
Next, we show the second property. Since now the operator RstOE does not affect the registers of entry of x ′ in D

for x ′ , x, it suffices to show that the claim holds when D has no entry. In addition, we can without loss of generality
assume that x = 0m. Now D corresponds to the bit string (0‖0n)‖(0‖0n)‖ · · · ‖(0‖0n), and we have that

U∗enc |D〉 = IHUtoggleCH |D〉

=
*.
,

∑
α∈{0,1}n

1
√

2n
|0〉 |α〉+/

-
⊗ *

,

2m−1⊗
i=1
|0〉 |0̂n〉+

-
. (3.27)
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Hence, it holds that

stO(I ⊗ U∗enc) |x, y〉 ⊗ |D〉 =
∑

α∈{0,1}n

1
√

2n
|x, y ⊕ α〉 ⊗ |0〉 |α〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0̂n〉+

-
. (3.28)

In addition, we have that

(I ⊗ Uenc)stO(I ⊗ U∗enc) |x, y〉 ⊗ |D〉

= (I ⊗ (CHUtoggleIH)) *.
,

∑
α∈{0,1}n

1
√

2n
|x, y ⊕ α〉 ⊗ |0〉 |α〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0̂n〉+

-
+/
-

= (I ⊗ (CHUtoggle)) *.
,

∑
α∈{0,1}n

1
√

2n
|x, y ⊕ α〉 ⊗ *.

,

∑
u∈{0,1}n

(−1)α ·u
√

2n
|0〉 |u〉+/

-
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-
+/
-

= (I ⊗ CH) *.
,

∑
α∈{0,1}n

1
√

2n
|x, y ⊕ α〉 ⊗ *.

,

∑
u∈{0,1}n

(−1)α ·u
√

2n
|1〉 |u〉+/

-
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-
+/
-

+ (I ⊗ CH) *.
,

∑
α∈{0,1}n

1
√

2n
|x, y ⊕ α〉 ⊗

(
1
√

2n
( |0〉 − |1〉) ⊗ |0n〉

)
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-
+/
-

=
∑

α∈{0,1}n

1
√

2n
|x, y ⊕ α〉 ⊗ |1〉 |α〉 ⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

+
∑

α∈{0,1}n

1
√

2n
|x, y ⊕ α〉 ⊗

(
1
√

2n
( |0〉 |0n〉 − |1〉 |0̂n〉)

)
⊗ *

,

2m−1⊗
i=1
|0〉 |0n〉+

-

=
∑

α∈{0,1}n

1
√

2n
|x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉

+
1
√

2n
|x〉 |0̂n〉 ⊗ *.

,
|D〉 −

∑
γ

1
√

2n
|D ∪ (x, γ)〉+/

-
(3.29)

holds. Therefore, the second property also holds. �

Let RstOE be the recording oracle with errors for a random function f : {0, 1}m → {0, 1}n. We also show the
following proposition for later use.

Proposition 4. Let y be a fixed n-bit string, and

|ψ〉 =
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

cx,α,D |x, y〉 ⊗ |D ∪ (x, α)〉 ⊗ |ψx,α,D〉

+
∑

x∈{0,1}m,D
D(x)=⊥

c′x,D |x, y〉 ⊗ |D〉 ⊗ |ψ
′
x,D〉

be a vector such that ‖ |ψ〉 ‖ ≤ 1, ‖ |ψx,D〉 ‖ ≤ 1, and ‖ |ψ ′x,α,D〉 ‖ ≤ 1 for each x, α, and D. Here, |x〉 and |y〉 are the
registers to send queries to f and receive the responses, respectively, and |ψx,α,D〉 , |ψ

′
x,D〉 correspond to an additional

quantum system on which RstOE does not affect. In addition, cx,α,D and c′x,D are complex numbers such that∑
x∈{0,1}m,α∈{0,1}n,D

D(x)=⊥

|cx,α,D |2 ≤ 1

and ∑
x∈{0,1}m,D
D(x)=⊥

|c′x,D |
2 ≤ 1.
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Let Πvalid be the orthogonal projection onto the vector space spanned by valid databases. Then there exists a vector |ε〉
such that ‖ |ε〉 ‖ ≤ 10/

√
2n and

ΠvalidRstOE |ψ〉 =
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

cx,α,D |x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉 ⊗ |ψx,α,D〉

−
∑

x∈{0,1}m,α,γ∈{0,1}n,D
D(x)=⊥

1
2n

cx,α,D |x, y ⊕ γ〉 ⊗ |D ∪ (x, γ)〉 ⊗ |ψx,α,D〉

+
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

c′x,D
1
√

2n
|x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉 ⊗ |ψ ′x,D〉

+ |ε〉

hold.

An intuitive interpretation of Proposition 4. Intuitively, this proposition shows that, when an adversary’s register to
receive responses from the oracle (i.e., the |y〉 register) is not superposed, we can ignore the effect that an existing
record (x, α) will be deleted from a database. (Nevertheless, we cannot ignore the effect that an existing record (x, α)
will be overwritten with another record (x, γ).)

Proof of Proposition 4. Let

|φ0〉 :=
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

cx,α,D |x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉 ⊗ |ψx,α,D〉 ,

|φ1〉 :=
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

cx,α,D
1
√

2n
|x, y ⊕ α〉 ⊗ *.

,
|D〉 − *.

,

∑
γ∈{0,1}n

1
√

2n
|D ∪ (x, γ)〉+/

-

+/
-
⊗ |ψx,α,D〉 ,

|φ2〉 := −
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

cx,α,D
1
√

2n
∑
γ

1
√

2n
|x, y ⊕ γ〉 ⊗

(
|D ∪ (x, γ)〉 − |Dinvalid

γ 〉
)
⊗ |ψx,α,D〉 ,

|φ3〉 :=
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

cx,α,D
1
2n
|x〉 |0̂n〉 ⊗ *.

,
2

∑
δ∈{0,1}n

1
√

2n
|D ∪ (x, δ)〉 − |D〉+/

-
⊗ |ψx,α,D〉 ,

|φ′0〉 :=
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

c′x,D
1
√

2n
|x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉 ⊗ |ψ ′x,D〉 ,

|φ′1〉 :=
∑

x∈{0,1}m,D
D(x)=⊥

c′x,D
1
√

2n
|x〉 |0̂n〉 ⊗ *.

,
|D〉 −

∑
γ∈{0,1}n

1
√

2n
|D ∪ (x, γ)〉+/

-
⊗ |ψ ′x,D〉 .

Then
RstOE |ψ〉 =

∑
0≤i≤3

|φi〉 +
∑

0≤i≤1
|φ′i〉

follows from Proposition 3.

Upper bounding ‖ |φ1〉 ‖.
First, for distinct tuples (x, α, D) , (x ′, α′, D′) such that D(x) = ⊥ and D(x ′) = ⊥,

|x, y ⊕ α〉 ⊗ *.
,
|D〉 − *.

,

∑
γ∈{0,1}n

1
√

2n
|D ∪ (x, γ)〉+/

-

+/
-

is orthogonal to

|x ′, y ⊕ α′〉 ⊗ *.
,
|D′〉 − *.

,

∑
γ∈{0,1}n

1
√

2n
|D′ ∪ (x ′, γ)〉+/

-

+/
-
.
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Thus
‖ |φ1〉 ‖

2 ≤ (2/2n) ·
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

|cx,α,D |2 ≤ 2/2n (3.30)

holds.

Upper bounding ‖ |φ3〉 ‖.
We have that

‖ |φ3〉 ‖
2 ≤ 5 ·

∑
x∈{0,1}m,D
D(x)=⊥

*
,

∑
α

|cx,α,D |
2n

+
-

2

≤ 5 ·
∑

x∈{0,1}m,D
D(x)=⊥

∑
α

��cx,α,D ��2

2n
≤

5
2n

(3.31)

holds, where we used the convexity of the function X 7→ X2 for the second inequality.

Upper bounding ‖ |φ′1〉 ‖.
We have that

|φ
′
1〉


2
≤

2
2n

∑
x∈{0,1}m,D
D(x)=⊥

|c′x,D |
2 ≤

2
2n

(3.32)

holds.
Now the claim of the proposition holds by setting |ε〉 := |φ1〉 + |φ3〉 + |φ

′
1〉. �
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Chapter 4

Quantum Security of the 4-Round
Luby-Rackoff Construction

This chapter provides technical details of our results on the 4-round Luby-Rackoff construction. The result of this
chapter contributes to understanding (post-)quantum security of symmetric-key schemes mainly from the theoretical
perspective. The Luby-Rackoff construction is the most important scheme to convert PRFs to PRPs. Thus the problem
of whether the r-round Luby-Rackoff construction is a secure qPRP for some r is theoretically significant. However,
the problem has been unresolved since Kuwakado and Morii showed the 3-round quantum distinguisher [KM10]. We
solve it by proving that the 4-round construction is indeed a secure qPRP. See also Section 1.2 for an overview, and
Section 1.7 for the relationship of the results in this chapter with those in other chapters.

First, we briefly recall the definition of the Luby-Rackoff constructions. Fix r ≥ 1, and for 1 ≤ i ≤ r , let f i := { f i,k :
{0, 1}n/2 → {0, 1}n/2}k∈K be a family of functions parameterized by key k in a key spaceK . Then, the Luby-Rackoff con-
struction for f1, . . . , fr is defined as a family of n-bit permutations LRr ( f1, . . . , fr ) :=

{
LRr ( f1,k1, . . . , fr,kr )

}
k1,...,kr ∈K

with the key space (K )r . For each fixed key (k1, . . . , kr ), LRr ( f1,k1, . . . , fr,kr ) is defined by the following procedure:
First, given an input x0 ∈ {0, 1}n, divide it into n/2-bit strings x0L and x0R. Second, iteratively update n-bit states as

(x (i−1)L, x (i−1)R) 7→ (xiL, xiR) := (x (i−1)R ⊕ f i,ki (x (i−1)L ), x (i−1)L ) (4.1)

for 1 ≤ i ≤ r . Finally, return the final state xr := xrL ‖xrR as the output.
The resulting function LRr ( f1,k1, . . . , fr,kr ) : x0 7→ xr becomes an n-bit permutation owing to the property

of the Feistel network. Each f i,ki is called the i-th round function. When we say that an adversary is given or-
acle access to LRr ( f1, . . . , fr ), we consider the situation in which keys k1, . . . , kr are first chosen independently
and uniformly at random, and then the adversary runs relative to the stateless oracle OLRr ( f1,k1,..., fr,kr ) : |x〉 |y〉 7→
|x〉 |y ⊕ LRr ( f1,k1, . . . , fr,kr )(x)〉. When each round function is chosen from Func({0, 1}n/2, {0, 1}n/2) uniformly at
random (i.e., each f i is the set of all functions Func({0, 1}n/2, {0, 1}n/2) for all i), we use the notation LRr for short.

The goal of this chapter is to show Theorem 1 and Theorem 2, which are restated below.

Theorem 7 (Lower bound and upper bound, informal (Restatement of Theorem 1)). If f1, . . . , f4 are truly random
functions, then the following claims hold.

1. LR4 cannot be distinguished from a truly random permutation by qCPAs up to O(2n/6) quantum queries.

2. A quantum algorithm exists that distinguishes LR4 from a truly random permutation with a constant probability
by making O(2n/6) quantum chosen-plaintext queries.

Theorem 8 (Construction of qPRP from qPRF, informal (Restatement of Theorem 2)). Suppose that each f i is a secure
PRF against efficient quantum query attacks, for 1 ≤ i ≤ 4. Then LR4( f1, f2, f3, f4) is a secure PRP against efficient
qCPAs.

The current chapter is organized as follows. Section 4.1 provides an informal technical overview. Section 4.2 gives
formal security proofs. Section 4.3 shows the matching upper bound.
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4.1 Technical Overview
It is straightforward to show that Theorem 8 follows from the second claim of Theorem 7. In addition, the second claim
of Theorem 7 can be achieved by a simple quantum polynomial speed-up of existing classical attacks. In what follows,
we present a rough overview on how we show the first claim of Theorem 7.

We assume that all round functions in the Luby-Rackoff constructions are truly random functions, and we focus on
the number of queries when we consider computational resources of adversaries.

To have a good intuition on our proof in the quantum setting, it would be better to intuitively capture how LR3 is
proven to be secure against classical CPAs, how the quantum attack on LR3 works, and what problem will be hard even
for quantum adversaries. Thus, we first give some observations about these questions, and then provide a high-level
overview on the quantum security proof of LR4.

4.1.1 An Overview of a Classical Security Proof for LR3.
Here we give an overview of a classical proof for the security of LR3 against chosen plaintext attacks in the classical
setting. For simplicity, we consider a proof for PRF security of LR3.

Let bad2 be the event that an adversary makes two distinct plaintext queries (x0L, x0R) , (x ′0L, x ′0R) to the real
oracle LR3 such that the corresponding inputs x1L and x ′1L to the second round function f2 are equal, i.e., inputs to f2
collide. In addition, let bad3 be the event that inputs to f3 collide, and define bad := bad2 ∨ bad3.

If bad2 (resp., bad3) does not occur, then the right-half (resp., left-half) n/2 bits of LR3’s outputs cannot be
distinguished from truly random n/2-bit strings. Thus, unless the event bad occurs, adversaries cannot distinguish LR3
from random functions.

If the number of queries of an adversary A is at most q, we can show that the probability that the event bad occurs
when A runs relative to the oracle LR3 is in O(q2/2n/2). Thus we can deduce that LR3 is indistinguishable from a
random function up to O(2n/4) queries.

4.1.2 Quantum Chosen Plaintext Attack on LR3.
Next, we give an overview of the quantum chosen plaintext attack on LR3 by Kuwakado and Morii [KM10]. Note that
we consider the setting in which adversaries can make quantum queries. The attack distinguishes LR3 from a random
permutation with only O(n) queries.

Fix α0 , α1 ∈ {0, 1}n/2 and for i = 0, 1, define gi : {0, 1}n/2 → {0, 1}n/2 by gi (x) = (LR3(αi, x))R ⊕ αi , where
(LR3(αi, x))R denote the right half n/2-bits of LR3(αi, x). In addition, define G : {0, 1} × {0, 1}n/2 → {0, 1}n/2
by G(b, x) = gb (x). Then, g0(x) = g1(x ⊕ s) can be easily confirmed to hold for any x ∈ {0, 1}n/2, where s =
f1(α0) ⊕ f1(α1). Thus G(b, x) = G((b, x) ⊕ (1, s)) holds for any b and x, i.e., the function G has the period (1, s).

If we can make quantum queries to G, then we can find the period (1, s) by using Simon’s period finding algo-
rithm [Sim94, Sim97], making O(n) queries to G. In fact G can be implemented on an oracle-aided quantum circuit
CLR3 by making O(1) queries to LR3.1

Roughly speaking, Simon’s algorithm outputs the periods with a high probability by making O(n) queries if applied
to periodic functions, and outputs the result that “this function is not periodic” if applied to functions without periods.

If we are given the oracle of a random permutation RP, the circuit CRP will implement an almost random function,
which does not have any period with a high probability. Thus, if we run Simon’s algorithm on CRP, with a high
probability, it does not output any period. Therefore, we can distinguish LR3 from RP by checking if Simon’s period
finding algorithm outputs a period.

4.1.3 Observation: Why the Classical Proof Does not Work?
Here we give an observation about why quantum adversaries can distinguish LR3 from random permutations even
though LR3 is proven to be indistinguishable from a random permutation in the classical setting.

We observe that quantum adversaries can make the event bad2 occur: Once we find the period 1‖s = 1‖ f1(α0) ⊕
f2(α1) given the real oracle LR3, we can force collisions on the input of f2. Concretely, take x ∈ {0, 1}n/2 arbitrarily
and set (x0L, x0R) := (α0, x), (x ′0L, x ′0R) := (α1, x ⊕ s). Then the corresponding inputs to f2 become f1(α0) ⊕ x for
both plaintexts. Thus the classical proof idea does not work in the quantum setting.

1Herewe have to truncate outputs of O without destroying quantum states, which is pointed out to be non-trivial in the quantum setting [KLLN16a].
However, this “truncation” issue can be overcome by using a technique described in [HS18].
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4.1.4 Quantum Security Proof for LR4: The Basic Strategy
As we explained above, the essence of the quantum attack on LR3 is finding collisions for inputs to the second
round function f2. On the other hand, finding collisions for inputs to the third round function f3 seems difficult
even for quantum (chosen-plaintext) query adversaries. This implies that the left part of the output of LR3, which is
x3L = x2R ⊕ f3(x2L ), always looks completely random for adversaries. (Recall that xiL and xiR denote the left-half
and right-half n/2 bits of the internal state after the i-th round, respectively.)

Having these observations, our idea is that even quantum adversaries would have difficulty in noticing that the
third state update (x2L, x2R) 7→ (x2R ⊕ f3(x2L ), x2L ) of LR3 is modified as (x2L, x2R) 7→ (F (x2L, x2R), x2L ), where
F : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 is a random function. We denote this modified function by LR′3 (see Fig. 4.1) and
will show that it is hard to distinguish LR′3 from LR3.

𝑓1

𝑓2

𝐹

Figure 4.1: LR′3

Next, let LR′′2 denote a modified version of the 2-round Luby-Rackoff construction such that the first and second
state update operations are modified as (x0L, x0R) 7→ (F1(x0L, x0R), x0L ) and (x1L, x1R) 7→ (F2(x1L, x1R), x1L ),
respectively, where F1, F2 : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 are independent random functions (see Fig. 4.2). Then, we
intuitively see that LR′′2 is hard to distinguish from a random function RF from {0, 1}n to {0, 1}n.

𝐹1

𝐹2

Figure 4.2: LR′′2

Once we show the above two properties, i.e.,

1. LR′3 is hard to distinguish from LR3, and

2. LR′′2 is hard to distinguish from RF,

we can prove Theorem 8 with simple and easy arguments: Define functions LR′′4 and LR′′′4 as in Fig. 4.3. Then, by
applying the first property twice we can show that LR4 and LR′′4 are indistinguishable. In addition, LR′′4 and LR′′′4 are
indistinguishable from the second property. Since the distribution of the function LR′′′4 is equal to that of a random
function, indistinguishability of LR4 and a random function follows.

In other words, those two properties are technically the most difficult parts to show in our proof for Theorem 8.

4.1.5 Adversary and Oracle’s States
We show the two properties by heavily using (our alternative formalization of) the compressed oracle technique. See
Chapter 3 for the details of the compressed oracle technique.

As in Chapter 2, We assume that an oracle-aided quantum algorithm A has three quantum registers and its state is
described as a superposition ∑

x,y,z

αx,y,z |x, y, z〉 .

|x〉 and |y〉 corresponds to the registers to send queries to the oracle and receive the answers, respectively, and |z〉
corresponds to the register for A’s offline computation. Recall that the quantum oracle of a (fixed) function f is
modeled by the unitary operator O f : |x〉 |y〉 7→ |x〉 |y ⊕ f (x)〉.
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𝑓1

𝑓2

𝐹

𝐹′

𝑓1

𝑓2

RF

Figure 4.3: The functions LR′′4 (illustrated on the left side) and LR′′′4 (illustrated on the right side). F, F ′ : {0, 1}n/2 ×
{0, 1}n/2 → {0, 1}n/2 and RF : {0, 1}n → {0, 1}n are independent random functions.

When A runs relative to the quantum oracle of a random function, we can use the compressed oracle technique.
Recall that the compressed oracle maintains a state called database, which corresponds to the record of queries and
answers in the classical lazy sampling. Before making any queries, the database is empty. When A queries a value
x and x is not found in the database (i.e., x has not been queried before), the oracle makes the uniform superposition∑

y |y〉, responds with y, and adds the data (x, y) into the database. (Making the uniform superposition corresponds
sampling y uniformly at random in the classical lazy sampling.) When A queries a value x and a pair (x, y) is found
in the database (i.e., x has been queried before and the previous answer was y), the oracle responds with y. The entire
state of A and the oracle is described as ∑

x,y,z,D

αx,y,z,D |x, y, z〉 ⊗ |D〉 ,

where each D is a database that keeps some pairs (x1, y1), . . . , (xi, yi).

Remark 10. The compressed oracle technique looks close to the classical lazy sampling. However, there is actually a
large difference between them. In the compressed oracle technique, records in a database are sometimes removed or
overwritten when A makes queries, unlike the classical lazy sampling. If the oracle does not remove the records in
databases appropriately, the quantum state may be perturbed and A may notice that the oracle is recording queries
and answers. We do not explain the details on when records are deleted in this section, but this difference is crucial for
recording queries in the quantum setting.

4.1.6 How to Prove the Two Properties
Next, we explain how we show the first property, i.e., the indistinguishability of RF3 and RF′3. Since RF3 (resp., RF′3)
depends on three random functions f1, f2, and f3 (resp., f1, f2, and F), the oracle keeps three databases D1, D2, and
D3 (resp., D1, D2, and DF ). As we mentioned before, we expect that the two oracles are indistinguishable unless a
collision occurs for inputs to f3. We define that a database (D1, D2, D3) for RF3 is “bad” when the database contains
the information that there is a collision for inputs to f3. Similarly, we define that a database (D1, D2, DF ) for RF′3 is
“bad” when the database contains the information that there is a collisions at left-half inputs to F. We define a database
is “good” if it is not bad.

Let |ψ j〉 (resp., |ψ ′j〉) be the entire state of A and the oracle LR3 (resp., LR′3) just before the j-th query. Then,
roughly speaking, |ψ j〉 can be decomposed as |ψ j〉 = |ψ

good
j 〉+ |ψbad

j 〉, where |ψ
good
j 〉 contains good databases and |ψbad

j 〉

contains (mainly) bad databases. |ψ ′j〉 can be decomposed in the same way.
Roughly speaking, we have the following observations:

(a) There is a natural one-to-one correspondence between the good databases for LR3 and those for LR′3. More
precisely, for a good database (D1, D2, D3) for LR3, there exists DF such that (D1, D2, DF ) is a good database
for LR′3, which we denote by [(D1, D2, D3)]F . Similarly, for a good database (D1, D2, DF ) for LR′3, there exists
D3 such that (D1, D2, D3) is a good database for LR3.

(b) The behavior of the oracle LR3 on a good database (D1, D2, D3) is the same as that of LR′3 on [(D1, D2, D3)]F
unless they change to bad.

(c) The chance that a good database change to bad is very small.
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Intuitively, (a) and (b) guarantee that |ψgood
j 〉 and |ψ

′good
j 〉 are always the same for each j when we ignore the state

of databases, which implies that A cannot distinguish LR3 and LR′3 as long as databases are good. In addition, (c)
shows that the “bad” components ‖ |ψbad

j 〉 ‖ and ‖ |ψ
′bad
j 〉 ‖ are always small, which implies that LR3 and LR′3 are indeed

indistinguishable.
For the indistinguishability of LR′′2 and RF are shown in the similar way except that we define “bad” databases as,

roughly speaking, the ones that contain “collisions at left-half inputs to F2”.
Our proof is much more complex than the classical one, though, we give rigorous and careful analyses.

Remark 11. If we try to show the quantum security of the 3-round Luby-Rackoff construction with similar ideas (e.g.,
try to show that quantum adversaries cannot notice when we replace the second and third round of LR3 with LR′′2 ), we
will be able to show that adversaries cannot distinguish as long as databases are good, but will not be able to prove the
claim that the chance that good databases change to bad is small.

The next section provides formal security proofs based on the intuition explained above.

4.2 Security Proofs
The goal of this section is to show the following theorem, which gives the quantum query lower bound for the problem
of distinguishing the 4-round Luby-Rackoff construction LR4 from a random permutation RP, when all round functions
are truly random functions. This theorem is the formal version of the first half of Theorem 7.

Theorem 9. AdvqPRP
LR4

(
q
)
is in O

(√
q3/2n/2

)
.

Before showing the theorem, we prove the following corollary, which is the formal version of Theorem 8.

Corollary 2. Let f i be a quantumly secure PRF for each 1 ≤ i ≤ 4. Then, the 4-round Luby-Rackoff construction
LR4( f1, f2, f3, f4) is a quantumly secure PRP.

Proof. Let RF1, . . . ,RF4 be independent random functions from {0, 1}n/2 to {0, 1}n/2. For i = 0, . . . , 4, let Gi :=
LR4

(
g(i)

1 , g(i)
2 , g(i)

3 , g(i)
4

)
, where g(i)

j = f j if j > i and g(i)
j = RFj if j ≤ i. Then G0 = LR4( f1, f2, f3, f4) and G4 = LR4

hold.
For each 1 ≤ i ≤ 4 and any efficient adversary A, we can construct an efficient adversary Bi such that

Advdist
Gi−1,Gi

(A) = AdvqPRF
fi

(Bi). Below, we explain how we construct Bi when i = 2. Suppose that B2 is given
an oracle g̃, which is either f2 or RF2. First, B2 runs A. B2 simulates the oracle of G̃ := LR4(RF1, g̃, f3, f4) by
simulating RF1, f3, and f4 by itself and making queries to g̃. WhenA makes queries, B2 responds with G̃. Finally, B2
returnsA’s final output as its own output. Because truly random functions can be efficiently simulated against efficient
quantum adversaries [Zha12b], we can make B2 efficient. We have Advdist

G1,G2
(A) = AdvqPRF

f2
(B2) because G̃ = G1 if

g̃ = f2, and G̃ = G2 if g̃ = RF2. Bi for other i can be constructed in the same way2.
Now we have

AdvqPRP
LR4 ( f1, f2, f3, f4) (A) ≤

∑
1≤i≤4

Advdist
Gi−1,Gi

(A) + AdvqPRP
LR4

(A)

=
∑

1≤i≤4
AdvqPRF

fi
(Bi) + AdvqPRP

LR4
(A).

The first term of the right hand side of the above inequality is negligible since f i is a quantumly secure PRF for each i.
The second term is also negligible by Theorem 9. Hence the corollary follows. �

In the rest of this section, we assume that all round functions in the Luby-Rackoff constructions are truly random
functions, and we focus on the number of queries when we consider computational resources of adversaries.

As we explained in Section 4.1, technically the most hardest parts to show the quantum security of LR4 is to show
the indistinguishability of LR3 and LR′3, and the indistinguishability of LR′′2 and a random function.

Recall that LR′3 is defined in the sameway as LR3 except that the third state update (x2L, x2R) 7→ (x2R⊕ f3(x2L ), x2L )
of LR3 is modified as (x2L, x2R) 7→ (F (x2L, x2R), x2L ), where F : {0, 1}n/2× {0, 1}n/2 → {0, 1}n/2 is a random function.
LR′′2 denote a modified version of the 2-round Luby-Rackoff construction such that the first and second state update
operations aremodified as (x0L, x0R) 7→ (F1(x0L, x0R), x0L ) and (x1L, x1R) 7→ (F2(x1L, x1R), x1L ), respectively, where
F1, F2 : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 are independent random functions.

2When i = 1, we do not need efficient simulation of a random function.
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4.2.0.1 Organization of the Rest of Section 4.2

Section 4.2.1 shows that LR′3 is hard to distinguish from LR3. Section 4.2.2 shows that LR′′2 is hard to distinguish from
RF. Section 4.2.3 proves Theorem 9 by combining the results in Section 4.2.1 and Section 4.2.2.

4.2.1 Hardness of Distinguishing LR′3 from LR3

Here we show the following proposition.

Proposition 5. Advdist
LR3,LR′3

(
q
)
is in O

(√
q3/2n/2

)
.

First, let us discuss the behavior of the quantum oracles of LR3 and LR′3. LetA be an adversary that makes at most
q quantum queries.

4.2.1.1 Quantum Oracle of LR3

Let us define the unitary operator OUP.i that computes the state update of the i-th round by

OUP.i : |x (i−1)L, x (i−1)R〉 |yL, yR〉 7→ |x (i−1)L, x (i−1)R〉 |(yL, yR) ⊕ ( f i (x (i−1)L ) ⊕ x (i−1)R, x (i−1)L )〉 .

OUP.i can be implemented by making one query to f i (see Fig. 4.4).

𝑂𝑓𝑖
|𝑦𝐿 ⊕ 𝑓𝑖(𝑥 𝑖−1 𝐿) ⊕ 𝑥 𝑖−1 𝑅⟩

|𝑥 𝑖−1 𝐿⟩ |𝑥 𝑖−1 𝐿⟩

|𝑥 𝑖−1 𝑅⟩ |𝑥 𝑖−1 𝑅⟩

|𝑦𝐿⟩

|𝑦𝑅⟩ |𝑦𝑅 ⊕𝑥 𝑖−1 𝐿⟩

Figure 4.4: Implementation of OUP.i . In the security proof, O fi is replaced with the recording standard oracle with
errors for f i .

Now OLR3 can be implemented as follows by using {OUP.i }1≤i≤3:

1. Take |x〉 |y〉 = |x0L, x0R〉 |yL, yR〉 as an input.

2. Compute the state (x1L, x1R) by querying |x0L, x0R〉 |0n〉 to OUp.1, and obtain

|x0L, x0R〉 |yL, yR〉 ⊗ |x1L, x1R〉 . (4.2)

3. Compute the state (x2L, x2R) by querying |x1L, x1R〉 |0n〉 to OUp.2, and obtain

|x0L, x0R〉 |yL, yR〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 . (4.3)

4. Query |x2L, x2R〉 |yL, yR〉 to OUp.3, and obtain

|x〉 |y ⊕ LR3(x)〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 . (4.4)

5. Uncompute Steps 2 and 3 to obtain
|x〉 |y ⊕ LR3(x)〉 . (4.5)

6. Return |x〉 |y ⊕ LR3(x)〉.

The above implementation is illustrated in Fig. 4.5.
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𝑂UP.1
|0⟩

|𝑥⟩

|0⟩

|𝑦⟩

|0⟩

|𝑥⟩

|0⟩

|𝑦 ⊕ 𝐿𝑅3 𝑥 ⟩

𝑂UP.2

𝑂UP.3

𝑂UP.2

𝑂UP.1

Figure 4.5: Implementation of LR3.

𝑂𝐹

𝑦𝐿 ⊕𝐹 𝑥2𝐿 , 𝑥2𝑅

|𝑥2𝐿⟩ |𝑥2𝐿⟩

|𝑥2𝑅⟩ |𝑥2𝑅⟩

|𝑦𝐿⟩

|𝑦𝑅⟩ |𝑦𝑅 ⊕𝑥2𝐿⟩

Figure 4.6: Implementation of O′UP.3. In the security proof, OF is replaced with the recording standard oracle with
errors for F.

4.2.1.2 Quantum Oracle of LR′3
The quantum oracle of LR′3 is implemented in the same way as LR3, except that the third round state update oracle OUP.3
is replaced with another oracle O′UP.3 defined as

O′UP.3 : |x2L, x2R〉 |yL, yR〉 7→ |x2L, x2R〉 |(yL, yR) ⊕ (F (x2L, x2R), x2L )〉 .

O′UP.3 is implemented by making one query to OF , i.e., the quantum oracle of F (see Fig. 4.6).
In what follows, we assume that the oracles of the functions f i and F are implemented as the recording standard

oracle with errors, and we use D1, D2, D3, and DF to denote (valid) databases for f1, f2, f3, and F, respectively. In
particular, after the i-th query of an adversary to LR3, the joint quantum states of the adversary and functions can be
described as ∑

x,y,z,D1,D2,D3

ax,y,z,D1,D2,D3 |x, y, z〉 ⊗ |D1〉 |D2〉 |D3〉 (4.6)

for some complex numbers ax,y,z,D1,D2,D3 such that
∑

x,y,z,D1,D2,D3 |ax,y,z,D1,D2,D3 |
2 = 1. Here, x, y, and z correspond

to the adversary’s register to send queries to oracles, receive answers from oracles, and perform offline computations,
respectively. (If the oracle is LR′3, then the register |D3〉, which corresponds to f3, is replaced with |DF 〉, which
corresponds to F.)

Next, we define good and bad databases for LR3 and LR′3. Intuitively, we say that a tuple (D1, D2, D3) (resp.,
(D1, D2, DF )) for LR3 (resp., LR′3) is bad if and only if it contains the information that some inputs to f3 (resp., the
left halves of some inputs to F) collide. Roughly speaking, we define good and bad databases in such a way that a
one-to-one correspondence exists between good databases for LR3 and those for LR′3, so that adversaries will not be
able to distinguish LR′3 from LR3 as long as databases are good.

4.2.1.3 Good and Bad Databases for LR3

Here we introduce the notion of good and bad for each tuple (D1, D2, D3) of valid database for LR3. We say that
(D1, D2, D3) is good if, for each entry (x2L, γ) ∈ D3, there exists exactly one pair ((x0L, α), (x1L, β)) ∈ D1 × D2 such
that β ⊕ x0L = x2L . We say that (D1, D2, D3) is bad if it is not good.

4.2.1.4 Good and Bad Databases for LR′3
Next we introduce the notion of good and bad for each tuple (D1, D2, DF ) of valid database for LR′3. We say that a valid
database DF is without overlap if each pair of distinct entries (x2L, x2R, γ) and (x ′2L, x ′2R, γ

′) in DF satisfies x2L , x ′2L .
We say that (D1, D2, DF ) is good if DF is without overlap, and for each entry (x2L, x2R, γ) ∈ DF , there exists exactly
one pair ((x0L, α), (x1L, β)) ∈ D1 × D2 such that β ⊕ x0L = x2L and x2R = x1L . We say that (D1, D2, DF ) is bad if it
is not good.
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4.2.1.5 Compatibility of DF with D3

For a valid database DF for F without overlap, let [DF ]3 be the valid database for f3 such that (x2L, x2R, γ) ∈ DF if
and only if (x2L, x2R ⊕ γ) ∈ [DF ]3. We say that a valid database D3 for f3 is compatible with DF if D3 = [DF ]3.

Remark 12. For each good database (D1, D2, D3) for LR3, a unique DF without overlap exists such that [DF ]3 =
D3 and (D1, D2, DF ) is a good database for LR′3, by the definition of good databases. Similarly, for each good
database (D1, D2, DF ) for LR′3, (D1, D2, [DF ]3) becomes a good database for LR3. That is, there exists a one-to-one
correspondence between good databases for LR3 and those for LR′3.

Here we prove the following lemma for later use, which shows that the behavior of O′UP.3 for DF without overlap is
the same as that of OUP.3 for [DF ]3.

Lemma 1. It holds that

〈x ′2L, x ′2R, y
′
L, y

′
R | ⊗ 〈D

′
F |O

′
UP.3 |x2L, x2R, yL, yR〉 ⊗ |DF 〉

= 〈x ′2L, x ′2R, y
′
L, y

′
R | ⊗ 〈[D′F ]3 |OUP.3 |x2L, x2R, yL, yR〉 ⊗ |[DF ]3〉 (4.7)

for any x2L, x2R, yL, yR, x ′2L, x ′2R, y
′
L, y

′
R ∈ {0, 1}

n/2 and any valid databases DF and D′F without overlap.

Proof. It suffices to consider the case that x ′2L = x2L , x ′2R = x2R, and y′R = yR because the both sides of (4.7) become
zero if these three equations do not hold. Since the database O′UP.3 affects only the entry of (x2L, x2R) in DF when
it acts on |x2L, x2R, yL, yR〉 ⊗ |DF 〉, it suffices to show the claim for the cases that (1) DF has only a single entry
(x2L, x2R, α), or (2) DF has no entry (i.e., DF = ∅).

First, we show the claim for the first case where DF = {(x2L, x2R, α)}. In this case, by the first property of
Proposition 3 we have that

O′UP.3 |x2L, x2R, yL, yR〉 ⊗ |DF 〉 = |x2L, x2R, yL ⊕ α, yR ⊕ x2L〉 ⊗ |(x2L, x2R, α)〉

+
1
√

2n/2
|x2L, x2R, yL ⊕ α, yR ⊕ x2L〉

*.
,
|∅〉 −

*.
,

∑
γ

1
√

2n/2
|(x2L, x2R, γ)〉+/

-

+/
-

−
1
√

2n/2

∑
γ

1
√

2n/2
|x2L, x2R, yL ⊕ γ, yR ⊕ x2L〉 ⊗ |(x2L, x2R, γ)〉

+
1

2n/2
|x2L, x2R〉 |0̂n〉 |yR ⊕ x2L〉 ⊗ *

,
2
∑
δ

1
√

2n/2
|(x2L, x2R, δ)〉 − |∅〉+

-
+ |invalid〉 (4.8)

holds, where ∅ is the empty database and |invalid〉 is a vector containing invalid databases. In addition, we have that
[DF ]3 = {(x2L, α ⊕ x2R)}, and

OUP.3 |x2L, x2R, yL, yR〉 ⊗ |[DF ]3〉 = |x2L, x2R, yL ⊕ α, yR ⊕ x2L〉 ⊗ |(x2L, α ⊕ x2R)〉

+
1
√

2n/2
|x2L, x2R, yL ⊕ α, yR ⊕ x2L〉

*.
,
|∅〉 −

*.
,

∑
γ

1
√

2n/2
|(x2L, γ)〉+/

-

+/
-

−
1
√

2n/2

∑
γ

1
√

2n/2
|x2L, x2R, yL ⊕ γ ⊕ x2R, yR ⊕ x2L〉 ⊗ |(x2L, γ)〉

+
1

2n/2
|x2L, x2R〉 |0̂n〉 |yR ⊕ x2L〉 ⊗ *

,
2
∑
δ

1
√

2n/2
|(x2L, δ)〉 − |∅〉+

-
+ |invalid′〉
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= |x2L, x2R, yL ⊕ α, yR ⊕ x2L〉 ⊗ |[(x2L, x2R, α)]3〉

+
1
√

2n/2
|x2L, x2R, yL ⊕ α, yR ⊕ x2L〉

*.
,
|∅〉 −

*.
,

∑
γ

1
√

2n/2
|[(x2L, x2R, γ ⊕ x2R)]3〉

+/
-

+/
-

−
1
√

2n/2

∑
γ

1
√

2n
|x2L, x2R, yL ⊕ γ ⊕ x2R, yR ⊕ x2L〉 ⊗ |[(x2L, x2R, γ ⊕ x2R)]3〉

+
1

2n/2
|x2L, x2R〉 |0̂n〉 |yR ⊕ x2L〉 ⊗ *

,
2
∑
δ

1
√

2n/2
|[(x2L, x2R, δ ⊕ x2R)]〉 − |∅〉+

-
+ |invalid′〉
= |x2L, x2R, yL ⊕ α, yR ⊕ x2L〉 ⊗ |[(x2L, x2R, α)]3〉

+
1
√

2n/2
|x2L, x2R, yL ⊕ α, yR ⊕ x2L〉

*.
,
|∅〉 −

*.
,

∑
γ

1
√

2n/2
|[(x2L, x2R, γ)]3〉

+/
-

+/
-

−
1
√

2n/2

∑
γ

1
√

2n/2
|x2L, x2R, yL ⊕ γ, yR ⊕ x2L〉 ⊗ |[(x2L, x2R, γ)]3〉

+
1

2n/2
|x2L, x2R〉 |0̂n〉 |yR ⊕ x2L〉 ⊗ *

,
2
∑
δ

1
√

2n/2
|[(x2L, x2R, δ)]3〉 − |∅〉+

-
+ |invalid′〉 , (4.9)

where |invalid′〉 is a vector containing invalid databases. From (4.8) and (4.9), the claim immediately follows for the
first case that DF = {(x2L, x2R, α)}.

We can similarly show that the claim holds for the second case where DF is empty by straightforward calculations
using the second property of Proposition 3. �

4.2.1.6 Technical Core to Prove the Indistinguishability of LR3 and LR′3
Let |ψi〉 and |ψ ′i 〉 be the joint quantum states of the adversary A and the oracle just before making the i-th query when
A runs relative to LR3 and LR′3, respectively. In addition, by |ψq+1〉 and |ψ ′q+1〉we similarly denote the states just before
the final measurement, by abuse of notation. Then

|ψ j〉 =
∑

x,y,z,D1,D2,D3
(D1,D2,D3) : valid database

cx,y,z,D1,D2,D3 |x, y, z〉 ⊗ |D1〉 |D2〉 |D3〉

holds for some complex number cx,y,z,D1,D2,D3 such that∑
x,y,z,D1,D2,D3

(D1,D2,D3) : valid database

|cx,y,z,D1,D2,D3 |
2 = 1.

Here, x = x0L ‖x0R, y = yL | |yR, and z correspond toA’s registers to send queries, receive answers, and perform offline
computations, respectively (x0L, x0R, yL, yR ∈ {0, 1}n/2). Note that |D1 |, |D2 | ≤ 2( j − 1), and |D3 | ≤ j − 1 hold for
each summand of |ψ j〉, since each query to the recording standard oracle with errors RstOE affects only the qubits that
correspond to a single entry of each database. |ψ ′j〉 can be decomposed on the computational basis in the same way.

Showing the following proposition is the technical core to prove Proposition 5.

Proposition 6. For each j = 1, . . . , q + 1, there exist vectors |ψgood
j 〉, |ψbad

j 〉, |ψ
′good
j 〉, |ψ′badj 〉, and complex number

a( j)
x,y,z,D1,D2,DF

such that

|ψ j〉 = |ψ
good
j 〉 + |ψbad

j 〉 , |ψ ′j〉 = |ψ
′good
j 〉 + |ψ

′bad
j 〉 ,

|ψ
good
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good

a( j)
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, [DF ]3〉 , (4.10)

|ψ
′good
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good

a( j)
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, DF 〉 , (4.11)
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the vector |D1, D2, DF 〉 in |ψ
′good
j 〉 (resp., |D1, D2, [DF ]3〉 in |ψgood

j 〉) has non-zero quantum amplitude only if |D1 | ≤
2( j − 1), |D2 | ≤ 2( j − 1), and |DF | ≤ j − 1, and

‖ |ψbad
j 〉 ‖ ≤

|ψ
bad
j−1〉

 +O *
,

√
j

2n/2
+
-
, ‖ |ψ

′bad
j 〉 ‖ ≤

|ψ
′bad
j−1 〉

 +O *
,

√
j

2n/2
+
-

(4.12)

hold (we set |ψbad
0 〉 = 0 and |ψ′bad0 〉 = 0).

Intuition on the claim of the proposition. Intuitively, equations (4.10) and (4.11) show that the adversary A can-
not distinguish the oracles as long as databases are good: Roughly speaking, the vectors |ψgood

j 〉 and |ψ
′good
j 〉 are

the components of |ψ j〉 and |ψ ′j〉 with good databases. Due to (4.10) and (4.11), the coefficient of each basis
vector |x, y, z〉 ⊗ |D1, D2, [DF ]3〉 in |ψgood

j 〉 is exactly equal to that of |x, y, z〉 ⊗ |D1, D2, DF 〉 in |ψ
′good
j 〉, where

(D1, D2, [DF ]3) is the good database for LR3 that corresponds to (D1, D2, D3) for LR′3. This implies that we have
td

(
trD123

(
|ψ

good
j 〉 〈ψ

good
j |

)
, trD12F

(
|ψ
′good
j 〉 〈ψ

′good
j |

))
= 0, which intuitively means that LR3 and LR′3 are indistinguish-

able forA as long as databases are good. (Here, trD123 and trD12F denote the partial trace operations over the databases
for LR3 and LR′3, respectively.)

Equation (4.12) shows that, at each query, the chance that good databases change to bad is exponentially small.
This means that the trace distance td

(
trD123

(
|ψq+1〉 〈ψq+1 |

)
, trD12F

(
|ψ ′

q+1〉 〈ψ
′
q+1 |

))
, which is an upper bound ofA’s

distinguishing advantage, is quite close to td
(
trD123

(
|ψ

good
q+1 〉 〈ψ

good
q+1 |

)
, trD12F

(
|ψ
′good
q+1 〉 〈ψ

′good
q+1 |

))
= 0.

Therefore, it suffices to prove the above proposition to show the indistinguishability of LR3 and LR′3.

Proof intuition for Proposition 6. Recall that a database (D1, D2, D3) for LR3 (resp., (D1, D2, DF ) for LR′3) is defined
to be bad if and only if inputs to D3 collide (resp., the left halves of inputs to DF collide). Roughly speaking, “good”
and “bad” vectors correspond to the states with good and bad databases, respectively.

If we were in the classical setting, databases would correspond to transcripts, and we would define the “good” and
“bad” vectors to be the (classical) states with good and bad transcripts, respectively. As long as transcripts are good, the
behaviors of the oracles LR3 and LR′3 are the same and they are indistinguishable. Basically we can also use a similar
intuition in the quantum setting for “good” states, and thus there exists complex number a( j)

x,y,z,D1,D2,DF
that satisfies

(4.10) and (4.11).
For the inequalities (4.12) on “bad” states, when a classical adversary A makes the j-th query to LR3 (resp., LR′3),

a good classical state (good transcript) changes to a bad state (bad transcript) only if a new query is made to f1 or f2,
and the input to f3 (resp., the left half of the input to F) collides with a previous input to f3 (resp., the left half of a
previous input to F). Such a “bad” event happens with a probability p in O( j/2n). In the quantum setting, roughly
speaking, the difference between the norms of the j-th bad vector |ψbad

j 〉 (resp., |ψ
′bad
j 〉) and the ( j − 1)-th bad vector

|ψbad
j−1〉 (resp., |ψ

′bad
j−1 〉) corresponds to

√
p, which is in O(

√
j/2n). Thus we obtain (4.12).

A very rough proof intuitions is as stated. However, to be more precise, an existing record (x, α) in a database
may later be deleted or overwritten with a different record in the quantum setting, and the effect of such deletion and
overwriting is too large to be ignored. Therefore, we have to perform more careful and quantum-specific analysis.

4.2.1.7 Technical Lemmas for Bounding “bad” Norms

Before describing the formal proof of Proposition 6, we provide some technical lemmas to bound the norms of “bad”
vectors.

Intuitively, when a value x is queried to RstOE f1 (RstOE fi denotes the recording standard oracle with errors for f i),
a good database (D1, D2, D3) for LR3 changes to bad when some of the following events happen.

1. x is not recorded in D1. A new record (x, α) is added to D1 for some α, and (D1 ∪ (x, α), D2, D3) becomes bad.

2. There exists a record (x, α) in D1, but it is deleted at the query, and (D1 \ (x, α) , D2, D3) becomes bad.

3. There exists a record (x, α) in D1, but it is overwritten with a new record (x, γ) for some γ at the query, and
((D1 \ (x, α)) ∪ (x, γ), D2, D3) becomes bad.

The events that good databases change to bad at queries to other functions can be classified similarly3. The same
arguments also hold for LR′3.

3In fact, a good database does not change to bad at queries to RstOE f3 in our proof due to the definition of good databases.
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Below, we show four lemmas to bound the norms of “bad” vectors that correspond to the above three events.
Lemma 2 and Lemma 3 correspond to the first and second events. For the third event, we further divide it into two
different cases.

(a) For each (D̃1, D2, D3) and α such that D̃1(x) = ⊥ and (D̃1 ∪ (x, α), D2, D3) is good, the number of γ such that
(D̃1 ∪ (x, γ), D2, D3) becomes bad is small. (Here, D̃1 ∪ (x, α) corresponds to D1 in the above discussions.)

(b) For each (D̃1, D2, D3) and α such that D̃1(x) = ⊥ and (D̃1∪ (x, α), D2, D3) is good, (D̃1∪ (x, γ), D2, D3) becomes
bad for almost all γ , α. However, for each (D̃1, D2, D3) and γ such that D̃1(x) = ⊥ and (D̃1 ∪ (x, α), D2, D3)
is bad, the number of α such that (D̃1 ∪ (x, α), D2, D3) becomes good is small.

The cases (a) and (b) correspond to Lemma 5 and Lemma 4, respectively. We describe the lemmas in the most general
way as possible so that they can be used for other future applications.

In what follows, S denotes a bit string that corresponds to a database, the adversary’s state, and the oracle’s state.
The bit strings α and γ are in {0, 1}n/2. Rgood and Rbad are some relations. In security proofs, Rgood (resp., Rbad) will
be relations such that databases are good (resp., bad) and some additional conditions are satisfied.

Lemma 2. Let aS be a complex number such that
∑

S |aS |2 ≤ O(1). Let

|φ〉 :=
∑
S,α

S∈Rgood∧(S,α)∈Rbad

aS
1
√

2n/2
|S〉 |α〉 .

Suppose that the number of α such that (S, α) ∈ Rbad is at most X for each S ∈ Rgood. Then

‖ |φ〉 ‖ ≤ O *
,

√
X

2n/2
+
-

holds.

Proof. The claim holds since

‖ |φ〉 ‖2 =
∑
S,α

S∈Rgood∧(S,α)∈Rbad

|aS |2

2n/2
=

∑
S∈Rgood

|aS |2 ·
|{α |(S, α) ∈ Rbad}|

2n/2
≤ O

(
X
2n

)
.

�

Lemma 3. Let aS,α be a complex number such that
∑

S,α |aS,α |2 ≤ O(1). Let

|φ〉 :=
∑
S,α

(S,α)∈Rgood∧S∈Rbad

aS,α
1
√

2n/2
|S〉 .

If the number of α such that (S, α) ∈ Rgood is at most X for each tuple S ∈ Rbad, then

‖ |φ〉‖ ≤

√
X

2n/2

holds.

Proof. The claim holds since we have

‖ |φ〉 ‖2 =
∑

S∈Rbad

�����

∑
α:(S,α)∈Rgood aS,α

√
2n

�����

2

≤
∑

S∈Rbad

X ·
∑
α:(S,α)∈Rgood

��aS,α��2

2n/2
=

X
2n/2

∑
S,α

(S,α)∈Rgood∧S∈Rbad

��aS,α��2 ≤ O
(

X
2n/2

)
,

where we used the convexity of the square function for the first inequality. �
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Lemma 4. Let aS,α be a complex number such that
∑

S,α |aS,α |2 ≤ O(1). Let

|φ〉 :=
∑
S,α,γ

(S,α)∈Rgood∧(S,γ)∈Rbad

aS,α
1

2n/2
|S〉 |γ〉 .

If the number of γ such that (S, γ) ∈ Rbad is at most X for each tuple (S, α) ∈ Rgood, then

‖ |φ〉‖ ≤

√
X

2n/2

holds.

Proof. The claim holds since

‖ |φ〉 ‖2 =
∑
S,γ

(S,γ)∈Rbad

�����

∑
α:(S,α)∈Rgood aS,α

2n/2
�����

2

≤
∑
S,γ

(S,γ)∈Rbad

∑
α:(S,α)∈Rgood

��aS,α��2

2n/2

=
∑

(S,α)∈Rgood

��aS,α��2 · |{γ |(S, γ) ∈ Rbad}|

2n/2
≤

∑
(S,α)∈Rgood

��aS,α��2 · X
2n/2

≤ O
(

X
2n/2

)
holds. �

Lemma 5. Let aS,α be a complex number such that
∑

S,α |aS,α |2 ≤ O(1). Let

|φ〉 :=
∑
S,α,γ

(S,α)∈Rgood∧(S,γ)∈Rbad

aS,α
1

2n/2
|S〉 |γ〉 .

If the number of α such that (S, α) ∈ Rgood is at most X for each tuple (S, γ) ∈ Rbad, then

‖ |φ〉‖ ≤ O *
,

√
X

2n/2
+
-

holds.

Proof. The claim holds since we have

‖ |φ〉 ‖2 =
∑
S,γ

(S,γ)∈Rbad

�����

∑
α:(S,α)∈Rgood aS,α

2n/2
�����

2

≤
∑
S,γ

(S,γ)∈Rbad

X ·
∑
α:(S,α)∈Rgood

��aS,α��2

(2n/2)2

=
X

2n/2
·
∑
γ

1
2n/2

∑
S,α

(S,α)∈Rgood∧(S,γ)∈Rbad

|aS,α |2 ≤
X

2n/2
·
∑
γ

1
2n/2

∑
S,α

|aS,α |2

≤
X

2n/2
· 1 · O(1) ≤ O

(
X

2n/2

)
,

where we used the convexity of the square function for the first inequality. �

4.2.1.8 Proof of Proposition 6

We show the proposition by induction on j. Remember that the oracles of LR3 and LR′3 are decomposed as OLR3 =

OUP.1 ·OUP.2 ·OUP.3 ·OUP.2 ·OUP.1 and OLR′3 = OUP.1 ·OUP.2 ·O′UP.3 ·OUP.2 ·OUP.1. We check how the quantum states
change when OUP.1, OUP.2, OUP.3 (resp., O′UP.3), OUP.2, and OUP.1 act on |ψ j〉 (resp., |ψ ′j〉) in a sequential order. The
claim obviously holds for j = 1 by setting |ψgood

1 〉 := |ψ1〉 and |ψ
′good
1 〉 := |ψ ′1〉. Below we show the claim on |ψ j+1〉 and

|ψ ′
j+1〉 holds if the claim on |ψk〉 and |ψ ′k〉 holds for k = 1, . . . , j.
Recall that, in addition to database registers, the quantum oracle OLR3 uses ancillary 2n-qubit registers to compute

the intermediate state after the first and second rounds (see (4.3) and (4.4)). We say that a state vector |D1〉 |D2〉 |D3〉 ⊗

46



|x1〉 ⊗ |x2〉 for OLR3 , where |x1〉 ⊗ |x2〉 is the ancillary 2n qubits, is regular if x1 = 0n, x2 = 0n, and the database is
valid. We define regular states for OLR′3 similarly. Since the encoding operator Uenc of RstOE for f i (1 ≤ i ≤ 3) and
F does not act on the ancillary 2n-qubit registers, we always obtain regular vectors when we measure |ψ j〉 and |ψ ′j〉.
Similarly, we say that a state vector |D1〉 |D2〉 |D3〉 ⊗ |x1〉 ⊗ |x2〉 for OLR3 is preregular if x2 = 0n and the database is
valid, and define preregular states for OLR′3 similarly. When we measure the states just before the first action of OUP.2
or just after the second action of OUP.2, we always measure preregular vectors. In this proof, for the sake of brevity, we
do not write (a part of) the ancillary qubits that are used to compute the intermediate states, as long as they are |0m〉 for
some m.

Let Πgood and Πbad denote the projections onto the vector space spanned by the vectors that correspond to good
databases and bad databases, respectively. LetΠreg andΠprereg be the projections onto the spaces spanned by the vectors
that correspond to regular and preregular states, respectively.

Action of the first OUP.1.
Here we show the following claim.

Claim 1 (Action of the first OUP.1). There exist vectors |ψgood,1
j 〉, |ψbad,1

j 〉, |ψ
′good,1
j 〉, |ψ

′bad,1
j 〉 that satisfy the following

properties.

1. OUP.1 |ψ j〉 = |ψ
good,1
j 〉 + |ψbad,1

j 〉 and OUP.1 |ψ
′
j〉 = |ψ

′good,1
j 〉 + |ψ

′bad,1
j 〉.

2. There exists complex number a( j),1
x,y,z,D1,D2,DF

such that

|ψ
good,1
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good
D1 (xL ),⊥

a( j),1
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, [DF ]3〉

⊗ |x1L, x1R〉 ,

|ψ
′good,1
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good
D1 (xL ),⊥

a( j),1
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, DF 〉

⊗ |x1L, x1R〉 .

3. The vector |D1, D2, DF 〉 in |ψ
′good,1
j 〉 (resp., |D1, D2, [DF ]3〉 in |ψgood,1

j 〉) has non-zero quantum amplitude only if
|D1 | ≤ 2( j − 1) + 1, |D2 | ≤ 2( j − 1), and |DF | ≤ j − 1.

4. ‖ |ψbad,1
j 〉 ‖ and ‖ |ψ

′bad,1
j 〉 ‖ are upper bounded as

‖ |ψbad,1
j 〉 ‖ ≤ ‖ |ψbad

j 〉 ‖ +O *
,

√
j

2n/2
+
-
, ‖ |ψ

′bad,1
j 〉 ‖ ≤ ‖ |ψ

′bad
j 〉 ‖ +O *

,

√
j

2n/2
+
-
.

Here, x1L = D1(xL ) ⊕ xR and x1R = xL for each summand of |ψgood,1
j 〉 and |ψ

′good,1
j 〉.

Proof. Since the response of the first OUP.1 is written into an auxiliary register that is initially set to be |0n/2, 0n/2〉, by
applying Proposition 4 to RstOE of f1 there exist vectors |ε〉, |ε ′〉 such that ‖ |ε〉 ‖, ‖ |ε ′〉 ‖ ≤ O(

√
1/2n/2), and

ΠvalidOUP.1 |ψ
good
j 〉

=
∑

x,y,z,D1,D2,DF
(D1,D2,DF ) : good

D1 (xL ),⊥

a( j)
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, [DF ]3〉 ⊗ |xR ⊕ D1(xL ), xL〉

−
∑

x,y,z,γ,D1,D2,DF
(D1,D2,DF ) : good

D1 (xL ),⊥

1
2n/2

a( j)
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1 \ (xL, D1(xL )) ∪ (xL, γ), D2, [DF ]3〉 ⊗ |xR ⊕ γ, xL〉

+
∑

x,y,z,D1,D2,DF ,α
(D1,D2,DF ) : good

D1 (xL )=⊥

√
1

2n/2
a( j)
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1 ∪ (xL, α), D2, [DF ]3〉 ⊗ |xR ⊕ α, xL〉

+ |ε〉 (4.13)
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and

ΠvalidOUP.1 |ψ
′good
j 〉

=
∑

x,y,z,D1,D2,DF
(D1,D2,DF ) : good

D1 (xL ),⊥

a( j)
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, DF 〉 ⊗ |xR ⊕ D(xL ), xL〉

−
∑

x,y,z,γ,D1,D2,DF
(D1,D2,DF ) : good

D1 (xL ),⊥

1
2n/2

a( j)
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1 \ (xL, D1(xL )) ∪ (xL, γ), D2, DF 〉 ⊗ |xR ⊕ γ, xL〉

+
∑

x,y,z,D1,D2,DF ,α
(D1,D2,DF ) : good

D1 (xL )=⊥

√
1

2n/2
a( j)
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1 ∪ (xL, α), D2, DF 〉 ⊗ |xR ⊕ α, xL〉

+ |ε ′〉 (4.14)

hold.
Now, let

|ψ
good,1
j 〉 := Πgood

(
ΠvalidOUP.1 |ψ

good
j 〉 − |ε〉

)
, |ψbad,1

j 〉 := OUP.1 |ψ j〉 − |ψ
good,1
j 〉 ,

|ψ
′good,1
j 〉 := Πgood

(
ΠvalidOUP.1 |ψ

′good
j 〉 − |ε ′〉

)
, |ψ

′bad,1
j 〉 := OUP.1 |ψ

′
j〉 − |ψ

′good,1
j 〉 .

Then the first property of the claim holds by definition, and the second and third properties immediately follow from
(4.13) and (4.14) and the assumption on |ψ j〉 and |ψ ′j〉. Below we bound the norms of the bad vectors.

On the first term of the right hand side of (4.14), we have

Πbad
(
the first term of the right hand side of (4.14)

)
= 0 (4.15)

since all the databases are good.
On the second term of the right hand side of (4.14), we have

− Πbad
(
the second term of the right hand side of (4.14)

)
=

∑
x,y,z,α,γ,D1,D2,DF

(D1∪(xL,α),D2,DF ) : good
D1 (xL )=⊥

(D1∪(xL,γ),D2,DF ) : bad

1
2n/2

a( j)
x,y,z,D1∪(xL,α),D2,DF

|x, y, z〉 ⊗ |D1 ∪ (xL, γ), D2, DF 〉 ⊗ |xR ⊕ γ, xL〉

=
∑

x,y,z,α,γ,D1,D2,DF
(D1∪(xL,α),D2,DF ) : good

D1 (xL )=⊥
(D1∪(xL,γ),D2,DF ) : bad
D2 (x1L ),⊥∧[DF ]3 (x2L ),⊥

1
2n/2

a( j)
x,y,z,D1∪(xL,α),D2,DF

|x, y, z〉 ⊗ |D1 ∪ (xL, γ), D2, DF 〉 ⊗ |xR ⊕ γ, xL〉 (4.16)

+
∑

x,y,z,α,γ,D1,D2,DF
(D1∪(xL,α),D2,DF ) : good

D1 (xL )=⊥
(D1∪(xL,γ),D2,DF ) : bad

D2 (x1L )=⊥∨(D2 (x1L ),⊥∧[DF ]3 (x2L )=⊥)

1
2n/2

a( j)
x,y,z,D1∪(xL,α),D2,DF

|x, y, z〉 ⊗ |D1 ∪ (xL, γ), D2, DF 〉 ⊗ |xR ⊕ γ, xL〉 ,

(4.17)

where x1L := α ⊕ xR, and x2L := D2(x1L ) ⊕ xL when D2(x1L ) , ⊥.
Here we give an upper bound of the norm of the term (4.16). If a tuple (x, (D1 ∪ (xL, γ), D2, DF )) satisfies the

conditions

1. D1(xL ) = ⊥,

2. (D1 ∪ (xL, γ), D2, DF ) is bad,

then the number of α such that

48



1. (D1 ∪ (xL, α), D2, DF ) becomes good,

2. D2(x1L ) , ⊥ (here, x1L := α ⊕ xR), and

3. [DF ]3(x2L ) , ⊥ (here, x2L := D2(x1L ) ⊕ xL),

is at most |D2 | ≤ 2( j − 1). Hence, by applying Lemma 5, we have

‖(4.16)‖ ≤ O *
,

√
2( j − 1)

2n/2
+
-

(4.18)

Next, we give an upper bound of the norm of the term (4.17). For each tuple (x, α, (D1, D2, DF )) that satisfies

1. D1(xL ) = ⊥,

2. (D1 ∪ (xL, α), D2, DF ) is good, and

3. D2(x1L ) = ⊥ or D2(x1L ) , ⊥ ∧ [DF ]3(x2L ) = ⊥ (here, x1L := α ⊕ xR and x2L := D2(x1L ) ⊕ xL),

the number of γ such that (D1 ∪ (xL, γ), D2, DF ) becomes bad is at most |DF | ≤ j − 1. Thus, by applying Lemma 4,
we have

‖(4.17)‖ ≤ O *
,

√
j − 1
2n/2

+
-
. (4.19)

From (4.16)–(4.19),


(
the second term of the right hand side of (4.14)

) ≤ O *
,

√
j

2n/2
+
-

(4.20)

follows.
In addition, on the third term of the right hand side of (4.14), for each (x, D1, D2, DF ) such that (D1, D2, DF ) is

good and D1(xL ) = ⊥, the number of α such that (D1 ∪ (xL, α), D2, DF ) becomes bad is at most O( j). Hence, by
applying Lemma 2 we have


(
the third term of the right hand side of (4.14)

) ≤ O *
,

√
j

2n/2
+
-
. (4.21)

From (4.15), (4.20), and (4.21),

Πbad
(
ΠvalidOUP.1 |ψ

′good
j 〉 − |ε ′〉

) ≤ O *
,

√
j

2n/2
+
-

(4.22)

follows. Since ΠvalidOUP.1 |ψ
′
j〉 = OUP.1 |ψ

′
j〉, we have

|ψ
′bad,1
j 〉

 =
OUP.1 |ψ

′
j〉 − |ψ

′good,1
1 〉


=

ΠvalidOUP.1
(
|ψ
′good
j 〉 + |ψ

′bad
j 〉

)
− |ψ

′good,1
1 〉


≤

ΠvalidOUP.1 |ψ
′good
j 〉 − |ψ

′good,1
1 〉

 +
ΠvalidOUP.1 |ψ

′bad
j 〉


=

ΠvalidOUP.1 |ψ
′good
j 〉 − Πgood

(
ΠvalidOUP.1 |ψ

′good
j 〉 − |ε ′〉

) +
|ψ

′bad
j 〉


=

Πbad
(
ΠvalidOUP.1 |ψ

′good
j 〉 − |ε ′〉

) +
|ψ

′bad
j 〉



≤ O *
,

√
j

2n/2
+
-
+

|ψ
′bad
j 〉

 .

Similarly, we can also show |ψ
bad,1
j 〉

 ≤ O
(√

j

2n/2

)
+

|ψ
bad
j 〉

. Therefore, the fourth property of the claim also
holds. �
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Action of the first OUP.2.
The following claim can be shown by applying Proposition 4 on f2 in the same way as we showed the claim for the
action of the first OUP.1 by applying Proposition 4 on f1.

Claim 2 (Action of the first OUP.2). There exist vectors |ψgood,2
j 〉, |ψbad,2

j 〉, |ψ
′good,2
j 〉, |ψ

′bad,2
j 〉 that satisfy the following

properties.

1. OUP.2OUP.1 |ψ j〉 = |ψ
good,2
j 〉 + |ψbad,2

j 〉 and OUP.2OUP.1 |ψ
′
j〉 = |ψ

′good,2
j 〉 + |ψ

′bad,2
j 〉.

2. There exists complex number a( j),2
x,y,z,D1,D2,DF

such that

|ψ
good,2
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good
D1 (xL ),⊥,D2 (x1L ),⊥

a( j),2
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, [DF ]3〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 ,

|ψ
′good,2
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good
D1 (xL ),⊥,D2 (x1L ),⊥

a( j),2
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, DF 〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 .

3. The vector |D1, D2, DF 〉 in |ψ
′good,2
j 〉 (resp., |D1, D2, [DF ]3〉 in |ψgood,2

j 〉) has non-zero quantum amplitude only if
|D1 | ≤ 2( j − 1) + 1, |D2 | ≤ 2( j − 1) + 1, and |DF | ≤ j − 1.

4. ‖ |ψbad,2
j 〉 ‖ and ‖ |ψ

′bad,2
j 〉 ‖ are upper bounded as

‖ |ψbad,2
j 〉 ‖ ≤ ‖ |ψbad

j 〉 ‖ +O *
,

√
j

2n/2
+
-
, ‖ |ψ

′bad,2
j 〉 ‖ ≤ ‖ |ψ

′bad
j 〉 ‖ +O *

,

√
j

2n/2
+
-
.

Here, x1L = D1(xL ) ⊕ xR, x1R = xL , x2L = D2(x1L ) ⊕ x1R, and x2R = x1L for each summand of |ψgood,2
j 〉 and

|ψ
′good,2
j 〉.

Action of OUP.3 and O′UP.3.
Here we show the following claim.

Claim3 (Action ofOUP.3 andO′UP.3). Let |ψ
good,3
j 〉 := ΠvalidOUP.3 |ψ

good,2
j 〉, |ψbad,3

j 〉 := OUP.3OUP.2OUP.1 |ψ j〉−|ψ
good,3
j 〉,

|ψ
′good,3
j 〉 := ΠvalidOUP.3 |ψ

′good,2
j 〉, and |ψ

′bad,3
j 〉 := OUP.3OUP.2OUP.1 |ψ

′
j〉 − |ψ

′good,3
j 〉. Then the following properties

hold.

1. There exists complex number a( j),3
x,y,z,D1,D2,DF

such that

|ψ
good,3
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good
D1 (xL ),⊥,D2 (x1L ),⊥

a( j),3
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, [DF ]3〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 ,

|ψ
′good,3
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good
D1 (xL ),⊥,D2 (x1L ),⊥

a( j),3
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, DF 〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 .

2. The vector |D1, D2, DF 〉 in |ψ
′good,3
j 〉 (resp., |D1, D2, [DF ]3〉 in |ψgood,3

j 〉) has non-zero quantum amplitude only if
|D1 | ≤ 2( j − 1) + 1, |D2 | ≤ 2( j − 1) + 1, and |DF | ≤ j.

3. ‖ |ψbad,3
j 〉 ‖ and ‖ |ψ

′bad,3
j 〉 ‖ are upper bounded as

‖ |ψbad,3
j 〉 ‖ ≤ ‖ |ψbad

j 〉 ‖ +O *
,

√
j

2n/2
+
-
, ‖ |ψ

′bad,3
j 〉 ‖ ≤ ‖ |ψ

′bad
j 〉 ‖ +O *

,

√
j

2n/2
+
-
.

Here, x1L = D1(xL ) ⊕ xR, x1R = xL , x2L = D2(x1L ) ⊕ x1R, and x2R = x1L for each summand of |ψgood,3
j 〉 and

|ψ
′good,3
j 〉.
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Remark 13. Intuitively, a good database does not change to bad as long as it does not change to an invalid database
when x2L is queried to f3 (or (x2L, x2R) is queried to F), due to the definition of good databases. This is the reason
why |ψgood,3

j 〉 and |ψ
′good,3
j 〉 are defined as above.

Proof. First, for each summand |x, y, z〉 ⊗ |D1, D2, DF 〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 of |ψ
′good,2
j 〉, we have that

ΠbadΠvalidO′UP.3 |x, y, z〉 ⊗ |D1, D2, DF 〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 = 0

by definition of good databases. Therefore, we have

Πbad |ψ
′good,3
j 〉 = ΠbadΠvalidO′UP.3 |ψ

′good,2
j 〉 = 0,

which implies
|ψ
′good,3
j 〉 = Πgood |ψ

′good,3
j 〉 .

Similarly,
|ψ

good,3
j 〉 = Πgood |ψ

good,3
j 〉

holds. Now the first property of the claim follows from the second property in the claim for the first action of OUP.2 and
Lemma 1. The second property of the claim follows from the third property in the claim for the first action of OUP.2.

Moreover, we have
|ψ

bad,3
j 〉

 =
OUP.3OUP.2OUP.1 |ψ j〉 − |ψ

good,3
j 〉


=

ΠvalidOUP.3OUP.2OUP.1 |ψ j〉 − ΠvalidOUP.3 |ψ
good,2
j 〉


=

ΠvalidOUP.3 |ψ
bad,2
j 〉


≤

|ψ
bad,2
j 〉



≤ ‖ |ψbad
j 〉 ‖ +O *

,

√
j

2n/2
+
-
, (4.23)

where we used the fourth property in the claim for the first action of OUP.2 in the last inequality. Similarly, |ψ
′bad,3
j 〉

 ≤

‖ |ψ
′bad
j 〉 ‖ +O

(√
j

2n/2

)
follows. Therefore, the third property of the claim holds. �

Action of the second OUP.2.
Next, we show the following claim.

Claim4 (Action of the secondOUP.2). Let |ψgood,4
j 〉 := ΠgoodΠpreregOUP.2 |ψ

good,3
j 〉, |ψbad,4

j 〉 := OUP.2OUP.3OUP.2OUP.1 |ψ j〉−

|ψ
good,4
j 〉, |ψ

′good,4
j 〉 := ΠgoodΠpreregOUP.2 |ψ

′good,3
j 〉, and |ψ

′bad,4
j 〉 := OUP.2OUP.3OUP.2OUP.1 |ψ

′
j〉 − |ψ

′good,4
j 〉. Then the

following properties hold.

1. There exists complex number a( j),4
x,y,z,D1,D2,DF

such that

|ψ
good,4
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good
D1 (xL ),⊥

a( j),4
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, [DF ]3〉 ⊗ |x1L, x1R〉 ,

|ψ
′good,4
j 〉 =

∑
x,y,z,D1,D2,DF

(D1,D2,DF ) : good
D1 (xL ),⊥

a( j),4
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, DF 〉 ⊗ |x1L, x1R〉 .

2. The vector |D1, D2, DF 〉 in |ψ
′good,4
j 〉 (resp., |D1, D2, [DF ]3〉 in |ψgood,4

j 〉) has non-zero quantum amplitude only if
|D1 | ≤ 2( j − 1) + 1, |D2 | ≤ 2 j, and |DF | ≤ j.

3. ‖ |ψbad,4
j 〉 ‖ and ‖ |ψ

′bad,4
j 〉 ‖ are upper bounded as

‖ |ψbad,4
j 〉 ‖ ≤ ‖ |ψbad

j 〉 ‖ +O *
,

√
j

2n/2
+
-
, ‖ |ψ

′bad,4
j 〉 ‖ ≤ ‖ |ψ

′bad
j 〉 ‖ +O *

,

√
j

2n/2
+
-
.
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Here, x1L = D1(xL ) ⊕ xR and x1R = xL for each summand of |ψgood,4
j 〉 and |ψ

′good,4
j 〉.

Proof. The first property follows from the first property of Proposition 3 and the first property in the claim on the
actions of OUP.3 and O′UP.3. In addition, the second property follows from the second property in the claim on the
actions of OUP.3 and O′UP.3. Below, we show the third property.

LetΠD3:6⊥ andΠD3:⊥ be the projections onto the spaces spanned by the vectors |x, y, z〉 ⊗ |D1, D2, D3〉 ⊗ |x1L, x1R〉 ⊗
|x2L, x2R〉 such that D3(x2L ) , ⊥ and D3(x2L ) = ⊥, respectively.

Remark 14. Before going into details, here we provide an intuition behind the following analysis. Roughly speaking,
we will bound the norm of the vectors that are good before the application of the second OUP.2 but become bad after
that, depending on D3(x2L ) , ⊥ and D3(x2L ) = ⊥. Intuitively, D3(x2L ) , ⊥ and D3(x2L ) = ⊥ imply that the
value x2L is entangled with the database for f3 or is not, respectively. Therefore we need different analysis depending
on D3(x2L ) , ⊥ and D3(x2L ) = ⊥. In addition, we can focus on the vectors that are bad and preregular after
the application of OUP.2 because, when we measure the entire state after the second application of OUP.2, we always
obtain a preregular state. In summary, our first goal is to bound the norms of ΠbadΠpreregOUP.2ΠD3: 6⊥ |ψ

good,3
j 〉 and

ΠbadΠpreregOUP.2ΠD3:⊥ |ψ
good,3
j 〉.

We have

ΠD3:6⊥ |ψ
good,3
j 〉

=
∑

x,y,z,D1,D2,DF
(D1,D2,DF ) : good

D1 (xL ),⊥,D2 (x1L ),⊥
[DF ]3 (x2L ),⊥

a( j),3
x,y,z,D1,D2,DF

|x, y, z〉 ⊗ |D1, D2, [DF ]3〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉

=
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉 ⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 ,

where x1L := D1(xL ) ⊕ xR, x1R := xL , x2L := α ⊕ x1R, and x2R := x1L for each summand in the right hand side. Now
we have that

ΠbadΠpreregOUP.2ΠD3: 6⊥ |ψ
good,3
j 〉

= ΠbadΠpreregOUP.2
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉 ⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉

= ΠbadΠprereg
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉 ⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉
(4.24)

+ ΠbadΠprereg
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
√

2n/2
a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1〉
*.
,
|D2〉 −

∑
γ

1
√

2n/2
|D2 ∪ (x1L, γ)〉+/

-
|[DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉

(4.25)

− ΠbadΠprereg
∑

x,y,z,α,γ,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1〉
(
|D2 ∪ (x1L, γ)〉 − |Dinvalid

γ 〉
)
|[DF ]3〉

⊗ |x1L, x1R〉 ⊗ |α ⊕ γ, 0n/2〉

(4.26)

+ ΠbadΠprereg
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1〉 *
,
2
∑
δ

1
√

2n/2
|D2 ∪ (x1L, δ)〉 − |D2〉+

-
|[DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0̂n/2, 0n/2〉

(4.27)
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holds, where the second equation follows from the first property of Proposition 3 to f2 (the term (4.24) corresponds
to the term “|x〉 |y ⊕ α〉 ⊗ |D ∪ (x, α)〉” in the proposition, and the terms (4.25), (4.26), (4.27) correspond to the three
terms (3.13)-(3.15)).

On the term (4.24), we have

(4.24) = 0 (4.28)

since all databases are good.
On the term (4.25), we have

(4.25) = ΠbadΠprereg
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
√

2n/2
a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1〉
*.
,
|D2〉 −

∑
γ

1
√

2n/2
|D2 ∪ (x1L, γ)〉+/

-
|[DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉

= Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
√

2n/2
a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉 ⊗ |D1, D2, [DF ]3〉 ⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉

(4.29)

− Πbad
∑

x,y,z,α,γ,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉 ⊗ |D1, D2 ∪ (x1L, γ), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉 .
(4.30)

First, we upper bound the norm of the term (4.29). For each (x, y, z, D1, D2, DF ) such that D1(xL ) , ⊥ and D2(x1L ) = ⊥
(recall that x1L := xR ⊕ D1(xL )), the number of α such that [DF ]3(x2L ) , ⊥ (recall that x2L := xL ⊕ α) and
(D1, D2 ∪ (x1L, α), DF ) becomes good is at most |DF | ≤ j. Hence, by applying Lemma 3 we have

‖(4.29)‖ ≤ O *
,

√
j

2n/2
+
-
. (4.31)

Second, we upper bound the norm of the term (4.30). If a tuple (x, (D1, D2 ∪ (xL, γ), DF )) satisfies the conditions

1. D1(xL ) , ⊥,

2. (D1, D2 ∪ (x1L, γ), DF ) is bad,

then the number of α such that

1. (D1, D2 ∪ (x1L, α), DF ) becomes good,

2. D2(x1L ) = ⊥ (here, x1L := D1(xL ) ⊕ xR), and

3. [DF ]3(x2L ) , ⊥ (here, x2L := α ⊕ xL),

is at most |DF | ≤ j. Hence, by applying Lemma 5, we have

‖(4.30)‖ ≤ O
(

j
2n/2

)
. (4.32)

From (4.29)–(4.32),

‖(4.25)‖ ≤ O *
,

√
j

2n/2
+
-

(4.33)

follows.
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On the term (4.26), we have

(4.26) = −ΠbadΠprereg
∑

x,y,z,α,γ,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1〉
(
|D2 ∪ (x1L, γ)〉 − |Dinvalid

γ 〉
)
|[DF ]3〉

⊗ |x1L, x1R〉 ⊗ |α ⊕ γ, 0n/2〉

= −Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
23n/2 a( j),3

x,y,z,D1,D2,DF
|x, y, z〉 ⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉

= 0, (4.34)

where the second equality holds since Πprereg cancels the terms with invalid databases and those with α ⊕ γ , 0n/2, and
the last equality holds since Πbad cancels good databases.

On the term (4.27), first we have

(4.27) = ΠbadΠprereg
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1〉 *
,
2
∑
δ

1
√

2n/2
|D2 ∪ (x1L, δ)〉 − |D2〉+

-
|[DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0̂n/2, 0n/2〉

= Πbad
∑

x,y,z,α,δ,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

2
2n

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉 ⊗ |D1, D2 ∪ (x1L, δ), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉 ,
(4.35)

− Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L ),⊥

1
√

23n/2
a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉 ⊗ |D1, D2, [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉

(4.36)

= −
2

2n/2
· (4.30) −

1
√

2n/2
· (4.29). (4.37)

Hence

‖(4.27)‖ ≤ O *
,

√
j

2n/2
+
-

(4.38)

follows from (4.31) and (4.32).
From (4.24)–(4.28), (4.33) (4.34), and (4.38),

ΠbadΠpreregOUP.2ΠDF : 6⊥ |ψ
good,3
j 〉

 ≤ O *
,

√
j

2n/2
+
-

(4.39)

follows.
In the same way as we obtained (4.24)–(4.27), by applying the first property of Proposition 3 to f2 we have

ΠbadΠpreregOUP.2ΠD3:⊥ |ψ
good,3
j 〉

= ΠbadΠpreregOUP.2
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉 ⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉

= ΠbadΠprereg
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉 ⊗ |D1, D2 ∪ (x1L, α), [DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉
(4.40)
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+ ΠbadΠprereg
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

1
√

2n/2
a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1〉
*.
,
|D2〉 −

∑
γ

1
√

2n/2
|D2 ∪ (x1L, γ)〉+/

-
|[DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉

(4.41)

− ΠbadΠprereg
∑

x,y,z,α,γ,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1〉
(
|D2 ∪ (x1L, γ)〉 − |Dinvalid

γ 〉
)
|[DF ]3〉

⊗ |x1L, x1R〉 ⊗ |α ⊕ γ, 0n/2〉

(4.42)

+ ΠbadΠprereg
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1〉
(
2
∑
δ

1√
2n/2 |D2 ∪ (x1L, δ)〉 − |D2〉

)
|[DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0̂n/2, 0n/2〉 .

(4.43)

On the term (4.40), we have

(4.40) = 0 (4.44)

since all databases are good.
On the term (4.41), we have

(4.41) =ΠbadΠprereg
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

1
√

2n/2
a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1〉
*.
,
|D2〉 −

∑
γ

1
√

2n/2
|D2 ∪ (x1L, γ)〉+/

-
|[DF ]3〉

⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉

=Πbad
∑

x,y,z,α,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

1
√

2n/2
a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2, [DF ]3〉 ⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉

(4.45)

− Πbad
∑

x,y,z,α,γ,D1,D2,DF
D1 (xL ),⊥,D2 (x1L )=⊥

(D1,D2∪(x1L,α),DF ) : good
[DF ]3 (x2L )=⊥

1
2n/2

a( j),3
x,y,z,D1,D2∪(x1L,α),DF

|x, y, z〉

⊗ |D1, D2 ∪ (x1L, γ), [DF ]3〉 ⊗ |x1L, x1R〉 ⊗ |0n/2, 0n/2〉 .
(4.46)

The term (4.45) is zero since all databases are good. Below, we give an upper bound of the norm of the term (4.46).
Note that, for each tuple (x, α, (D1, D2, DF )) that satisfies

1. D1(xL ) , ⊥,

2. (D1, D2 ∪ (x1L, α), DF ) is good, and

3. [DF ]3(x2L ) = ⊥ (here, x1L := D1(xL ) ⊕ xR and x2L := α ⊕ xL),

the number of γ such that (D1 ∪ (xL, γ), D2, DF ) becomes bad is at most |DF | ≤ j. Hence, by applying Lemma 4, we
have

‖(4.46)‖ ≤ O *
,

√
j

2n/2
+
-
. (4.47)

From (4.45)–(4.47),

‖(4.41)‖ ≤ O *
,

√
j

2n/2
+
-

(4.48)

follows.

55



On the term (4.42), we can show

(4.42) = 0 (4.49)

in the same way as we showed (4.34).
On the term (4.43), we have

(4.43) = −
2

2n/2
· (4.46) −

1
√

2n/2
· (4.45).

Hence

‖(4.43)‖ ≤ O *
,

√
j

2n/2
+
-

(4.50)

holds.
From (4.40)–(4.44) and (4.48)–(4.50),

ΠbadΠpreregOUP.2ΠDF :⊥ |ψ
good,3
j 〉

 ≤ O *
,

√
j

2n/2
+
-

(4.51)

follows.
Therefore,

ΠbadΠpreregOUP.2 |ψ
good,3
j 〉


≤

ΠbadΠpreregOUP.2ΠDF : 6⊥ |ψ
good,3
j 〉

 +
ΠbadΠpreregOUP.2ΠDF :⊥ |ψ

good,3
j 〉



≤ O *
,

√
j

2n/2
+
-

(4.52)

follows from (4.39) and (4.51).
Since OUP.2OUP.3OUP.2OUP.1 |ψ j〉 = ΠpreregOUP.2OUP.3OUP.2OUP.1 |ψ j〉,

|ψ
bad,4
j 〉


=

OUP.2OUP.3OUP.2OUP.1 |ψ j〉 − ΠgoodΠpreregOUP.2 |ψ
good,3
j 〉


=

ΠpreregOUP.2OUP.3OUP.2OUP.1 |ψ j〉 − ΠgoodΠpreregOUP.2 |ψ
good,3
j 〉


=

ΠpreregOUP.2
(
|ψ

good,3
j 〉 + |ψbad,3

j 〉
)
− ΠgoodΠpreregOUP.2 |ψ

good,3
j 〉


≤

ΠbadΠpreregOUP.2 |ψ
good,3
j 〉

 +
ΠpreregOUP.2 |ψ

bad,3
j 〉



≤ O *
,

√
j

2n/2
+
-
+

|ψ
bad,3
j 〉

 ≤ O *
,

√
j

2n/2
+
-
+

|ψ
bad
j 〉



follows from the claim on the action of OUP.3 and O′UP.3. We can show

|ψ
′bad,4
j 〉

 ≤ O *
,

√
j

2n/2
+
-
+

|ψ
′bad
j 〉

 (4.53)

in the same way, and the third property of the claim also holds. �

Action of the second OUP.1 (and Uj).
Recall thatUj denotes the unitary operator that corresponds toA’s offline computation after the j-th query. Let |ψgood

j+1 〉 :=
UjΠgoodΠregOUP.1 |ψ

good,4
j 〉, |ψbad

j+1〉 := |ψ j+1〉 − |ψ
good
j+1 〉, |ψ

′good
j+1 〉 := UjΠgoodΠregOUP.1 |ψ

′good,4
j 〉, and |ψ′bad

j+1 〉 := |ψ ′
j+1〉 −

|ψ
′good
j+1 〉. Then we can show these |ψgood

j+1 〉, |ψ
bad
j+1〉, |ψ

′good
j+1 〉, and |ψ

′bad
j+1 〉 satisfy the desired properties in Proposition 6, in

the same way as we showed the claim on the action of the second OUP.2. �
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4.2.1.9 Finishing the Proof of Proposition 5

Proof of Proposition 5. Let |ψgood
j 〉, |ψbad

j 〉, |ψ
′good
j 〉, and |ψ′badj 〉 be the vectors as in Proposition 6. Then

|ψ
bad
q+1〉

 ≤
∑

1≤ j≤q
O *

,

√
j

2n/2
+
-
≤ O *

,

√
j3

2n/2
+
-

(4.54)

follows. Similarly,

|ψ
′bad
q+1〉

 ≤ O *
,

√
j3

2n/2
+
-

(4.55)

holds.
Recall that trD123 and trD12F denote the partial trace operations over the databases for LR3 and LR′3, respectively.

Then
td

(
trD123

(
|ψ

good
q+1 〉 〈ψ

good
q+1 |

)
, trD12F

(
|ψ
′good
q+1 〉 〈ψ

′good
q+1 |

))
= 0 (4.56)

follows from (4.10) and (4.11).
Therefore

Advdist
LR3,LR′3

(A) ≤ td
(
trD123

(
|ψq+1〉 〈ψq+1 |

)
, trD12F

(
|ψ ′q+1〉 〈ψ

′
q+1 |

))
≤ td

(
trD123

(
|ψ

good
q+1 〉 〈ψ

good
q+1 |

)
, trD12F

(
|ψ
′good
q+1 〉 〈ψ

′good
q+1 |

))
+ 2 |ψ

bad
q+1〉

 + 2 |ψ
′bad
q+1〉



≤ O *
,

√
j3

2n/2
+
-

(4.57)

holds, which completes the proof. �

4.2.2 Hardness of Distinguishing LR′′2 from RF
The goal of this subsection is to show the following proposition.

Proposition 7. Advdist
LR′′2,RF

(q) is in O
(√

q3/2n/2
)
.

Let F1 : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 and F ′2 : {0, 1}n/2 × {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 be independent random
functions. Let RF′ : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 × {0, 1}n/2 be the function defined by

RF′(xL, xR) := (F ′2 (x1L, x1R, xR), x1L ),

where (x1L, x1R) := (F1(xL, xR), xL ) (see Fig. 4.7). Note that RF′ is in fact a random function since F1 and F ′2 are

𝐹1

𝐹′2

𝐹1

𝐹2

Figure 4.7: LR′′2 and RF′.
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random functions. In what follows, we show

Advdist
LR′′2,RF

′ (q) ≤ O
(√

q3/2n/2
)

instead of showing Advdist
LR′′2,RF

(q) ≤ O
(√

q3/2n/2
)
.

We use the same proof strategy as in Section 4.2.1. That is, we define good and bad databases for LR′′2 and RF′ in
such a way that

1. There exists a one-to-one correspondence between good databases for LR′′2 and those for RF′.

2. The behavior of the oracle LR′′2 on a good database is almost the same as that of the oracleRF′ on the corresponding
good database.

3. “Good” states change to “bad” states with a small probability.

Intuitively, we define “bad” databases as those with collisions on the leftmost (n/2) bits of the input to F2 or F ′2 , and
“good” databases as those without such collisions.

4.2.2.1 Quantum Oracle of LR′′2
Let us define the unitary operator OUP.i that computes the state update of the first round by

OUP.i : |x (i−1)L, x (i−1)R〉 |yL, yR〉 7→ |x (i−1)L, x (i−1)R〉 |(yL, yR) ⊕ (Fi (x (i−1)L, x (i−1)R), x (i−1)L )〉 .

OUP.i can be implemented by making one query to Fi . Then OLR′′2 can be implemented as follows by using OUP.1 and
OUP.2:

1. Take |x〉 |y〉 = |x0L, x0R〉 |yL, yR〉 as an input.

2. Compute the state (x1L, x1R) by querying |x0L, x0R〉 |0n〉 to OUp.1, and obtain

|x0L, x0R〉 |yL, yR〉 ⊗ |x1L, x1R〉 .

3. Query |x1L, x1R〉 |yL, yR〉 to OUP.2, and obtain

|x〉 |y ⊕ LR′′2 (x)〉 ⊗ |x1L, x1R〉 .

4. Uncompute Step 2 to obtain
|x〉 |y ⊕ LR′′2 (x)〉 .

5. Return |x〉 |y ⊕ LR′′2 (x)〉.

4.2.2.2 Quantum Oracle of RF′

The quantum oracle of RF′ is implemented in the same way as LR′′2 , except that the second round state update oracle
OUP.2 is replaced with another oracle O′UP.2 defined as

O′UP.2 : |x0R, x1L, x1R〉 |yL, yR〉 7→ |x0R, x1L, x1R〉 |(yL, yR) ⊕ (F ′2 (x1L, x1R, x0R), x1L )〉 .

In what follows, we assume that the oracles of F1, F2, and F ′2 are implemented with the recording standard oracle
with errors, and we use D1, D2, and D′2 to denote (valid) databases for F1, F2, and F ′2 , respectively.

4.2.2.3 Good and Bad Databases for LR′′2
Here we introduce the notion of good and bad for each tuple (D1, D2) of valid database for LR′′2 . We say that a valid
database D2 is without overlap if each pair of distinct entries (x1L, x1R, β) and (x ′1L, x ′1R, β

′) in D2 satisfies x1L , x ′1L .
We say that (D1, D2) is good if D2 is without overlap, and for each entry (x1L, x1R, β) ∈ D2, there exists exactly one
entry (x0L, x0R, α) ∈ D1 such that α = x1L and x1R = x0L . We say that (D1, D2) is bad if it is not good.
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4.2.2.4 Good and Bad Databases for RF′

Next, we introduce the notion of good and bad for each tuple (D1, D′2) of valid database for RF′. In addition, we say
that a valid database D′2 is without overlap if each pair of distinct entries (x1L, x1R, x0R, β) and (x ′1L, x ′1R, x ′0R, β

′) in D′2
satisfies x1L , x ′1L . We say that (D1, D′2) is good if D′2 is without overlap, and for each entry (x1L, x1R, x0R, β) ∈ D′2,
there exists exactly one entry (x0L, x0R, α) ∈ D1 such that α = x1L and x1R = x0L . We say that (D1, D′2) is bad if it is
not good.

In addition, we say that a valid database D′2 for F ′2 is normal if D′2(x1L, x1R, x0R) , ⊥, then D′2(x ′1L, x1R, x0R) = ⊥
for all x ′1L , x1L . Note that, for each good database (D1, D′2) for RF′, D′2 becomes normal by definition.

4.2.2.5 Compatibility of D′2 with D2

For a valid and normal database D′2 for F ′2 without overlap, let [D′2]2 be the valid database for F2 such that (x1L, x1R, β) ∈
D2 if and only if there is a unique x0R such that (x1L, x1R, x0R, β) ∈ D′2. Then [D′2]2 is without overlap. We say that a
valid database D2 for F2 without overlap is compatible with D′2 if D2 = [D′2]2.

Remark 15. For each good database (D1, D2) for LR′′2 , a unique D′2 without overlap exists such that [D′2]2 = D2 and
(D1, D′2) is a good database for RF′, by the definition of good databases. Similarly, for each good database (D1, D′2)
for RF′, (D1, [D′2]2) becomes a good database for LR′′2 . That is, there exists a one-to-one correspondence between
good databases for LR′′2 and those for RF′.

The following lemma shows that the behavior of O′UP.2 on a valid and normal databases D′2 for F ′2 without overlap
is the same as that of OUP.2 on the corresponding database [D′2]2 for F2.

Lemma 6. It holds that

〈x̃0R, x̃1L, x̃1R, ỹL, ỹR | ⊗ 〈D̃′2 |O
′
UP.2 |x0R, x1L, x1R, yL, yR〉 ⊗ |D′2〉

= 〈x̃0R, x̃1L, x̃1R, ỹL, ỹR | ⊗ 〈[D̃′2]2 |OUP.2 |x0R, x1L, x1R, yL, yR〉 ⊗ |[D′2]2〉

for any x0R, x1L, x1R, yL, yR, x̃0R, x̃1L, x̃1R, ỹL, ỹR ∈ {0, 1}n/2 and any valid and normal databases D′2 and D̃′2 for F ′2
without overlap.

We omit to write the proof since the lemma can be shown in the same way as we showed Lemma 1.
Let A be an adversary that makes at most q quantum queries. Let |ψ j〉 and |ψ ′j〉 be the joint quantum states of

A and the oracle just before making the j-th query when A runs relative to LR′′2 and RF′, respectively. In addition,
by |ψq+1〉 and |ψ ′q+1〉 we similarly denote the states just before the final measurement, by abuse of notation. Then the
following proposition holds.

Proposition 8. For each j = 1, . . . , q + 1, there exist vectors |ψgood
j 〉, |ψbad

j 〉, |ψ
′good
j 〉, |ψ′badj 〉, and complex number

a( j)
x,y,z,D1,D

′
2
such that

|ψ j〉 = |ψ
good
j 〉 + |ψbad

j 〉 , |ψ ′j〉 = |ψ
′good
j 〉 + |ψ

′bad
j 〉 ,

|ψ
good
j 〉 =

∑
x,y,z,D1,D

′
2

(D1,D
′
2) : good

a( j)
x,y,z,D1,D

′
2
|x, y, z〉 ⊗ |D1, [D′2]2〉 ,

|ψ
′good
j 〉 =

∑
x,y,z,D1,D

′
2

(D1,D
′
2) : good

a( j)
x,y,z,D1,D

′
2
|x, y, z〉 ⊗ |D1, D′2〉 ,

the vector |D1, D′2〉 in |ψ
′good
j 〉 (resp., |D1, [D′2]2〉 in |ψgood

j 〉) has non-zero quantum amplitude only if |D1 | ≤ 2( j − 1)
and |D′2 | ≤ j − 1, and

‖ |ψbad
j 〉 ‖ ≤

|ψ
bad
j−1〉

 +O *
,

√
j

2n/2
+
-
, ‖ |ψ

′bad
j 〉 ‖ ≤

|ψ
′bad
j−1 〉

 +O *
,

√
j

2n/2
+
-

hold (we set |ψbad
0 〉 = 0 and |ψ′bad0 〉 = 0).
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The proposition can be shown in a similar way as we showed Proposition 6, and thus we omit to write the entire
proof. Since here only two random functions are involved in each oracle while three random functions are involved
in each oracle in Proposition 6, the proof becomes simpler: When we prove Proposition 8, we can skip showing the
claims that correspond to those for the actions of OUP.2 in the proof of Proposition 6.

Now we can show that Advdist
LR′′2,RF

′ (A) ≤ O
(√

q3/2n/2
)
follows from Proposition 8 in the same way as we showed

that Proposition 5 follows from Proposition 6. Therefore Proposition 7 holds.

4.2.3 Proof of Theorem 9
This subsection finishes our proof of Theorem 9, by using the results given in Sections 4.2.1 and 4.2.2.

Proof of Theorem 9. First, let us modify LR4 in such a way that the state updates of the third and fourth rounds are
replaced with (x2L, x2R) 7→ (x3L, x3R) := (F (x2L, x2R), x2L ) and (x3L, x3R) 7→ (x4L, x4R) := (F ′(x3L, x3R), x3L ),
respectively, where F, F ′ : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 are random functions. Recall that the modified function is
denoted by LR′′4 . In addition, recall that LR′′′4 is the composition of LR2 with a random function RF : {0, 1}n → {0, 1}n
(see Fig. 4.3).

Then, by applying Proposition 5 twice, we can show that

Advdist
LR4,LR′′4

(q) ≤ O *
,

√
q3

2n/2
+
-

(4.58)

holds. In addition,

Advdist
LR′′4,LR

′′′
4

(q) ≤ O *
,

√
q3

2n/2
+
-

(4.59)

follows from Proposition 7, and
Advdist

LR′′′4 ,RF
(q) = 0 (4.60)

holds since LR2 is a permutation.
From Theorem 5, (4.58), (4.59), and (4.60), we have

Advdist
LR4,RP(q) ≤ Advdist

LR4,LR′′4
(q) + Advdist

LR′′4,LR
′′′
4

(q) + Advdist
LR′′′4 ,RF

(q) + Advdist
RF,RP(q) ≤ O *

,

√
q3

2n/2
+
-
,

which completes the proof of the theorem. �

4.3 Matching Upper Bound
Here we show that the query lower bound derived from Theorem 9 is tight by showing the matching upper bound (i.e.,
we show the latter half of Theorem 7). Again, we consider the case that all round functions of LR4 are truly random
functions, and show the following theorem.

Theorem 10. A quantum algorithm A exists that makes O(2n/6) quantum queries and satisfies AdvqPRP
LR4

(A) = Ω(1).

Proof intuition. Intuitively, our distinguishing attack is just a quantum version of a classical collision-finding-based
distinguishing attack [Pat91]. A classical attack distinguishes LR4 from a random permutation by finding a collision of
a function that takes values in {0, 1}n/2, which requires O(

√
2n/2) = O(2n/4) queries in the quantum setting. However,

finding a collision of the function requires only O( 3√2n/2) = O(2n/6) queries in the quantum setting, which enables us
to build a O(2n/6)-query quantum distinguisher. (Note that we can generally find a collision of random functions from
{0, 1}n/2 to {0, 1}n/2 with O( 3√2n/2) = O(2n/6) quantum queries [Zha15].)

4.3.1 Proof of Theorem 10
First, we describe an overview of a classical attack [Pat91]. Let us denote the composition of two independent random
functions from {0, 1}n/2 to {0, 1}n/2 by RF ◦ RF.
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4.3.1.1 An Overview of a Classical Attack

Suppose that we are given an oracle access to O, which is either the 4-round Luby-Rackoff construction LR4 or a random
permutation from {0, 1}n to {0, 1}n. Let us define a function GO : {0, 1}n/2 → {0, 1}n/2 that depends on O by

GO (x) :=
(
O(0n/2, x)

)
R
⊕ x, (4.61)

where
(
O(0n/2, x)

)
R
is the right half n/2 bits of O(0n/2, x). We can implement GO by making O(1) queries.

When O is the 4-round Luby-Rackoff construction LR4, we have that GO (x) = f3( f2(x ⊕ f1(0n/2))) ⊕ f1(0n/2)
holds. Thus, if all round functions of LR4 are truly random functions, the function distribution of GO will be the same
as that of the composition of two independent random functions RF ◦ RF. On the other hand, when O is a random
permutation from {0, 1}n to {0, 1}n, the function distribution of GO will be almost the same as that of the truly random
function RF from {0, 1}n/2 to {0, 1}n/2.

Since RF ◦ RF has twice as many collisions as RF, we can distinguish LR4 from a truly random permutation by
making O((2n/2)1/2) = O(2n/4) queries to GO .

4.3.1.2 Conversion of the Classical Attack to a Quantum Attack

Next, we explain how to convert the classical attack above into a quantum attack that makes O(2n/6) quantum queries
and prove Theorem 10. The following lemma is crucial. It shows that we can distinguish RF ◦ RF from RF by making
O((2n/2)1/3) = O(2n/6) quantum queries.

Lemma 7. Let us denote the composition of two independent random functions from {0, 1}n/2 to {0, 1}n/2 by RF ◦ RF.
Then, a quantum algorithm B exists that makes O(2n/6) quantum queries and satisfies AdvqPRF

RF◦RF(B) = Ω(1). That is,
an algorithm exists that distinguishes RF ◦ RF from a random function with a constant probability, by making O(2n/6)
quantum queries.

Proof. We use the following fact that is shown by Ambainis [Amb04, Amb07].

Fact 1 ([Amb04, Amb07]). Let X andY be finite sets, and F : X → Y be a function. Then there is a quantum algorithm
that judges if distinct elements x1, x2 ∈ X exist such that F (x1) = F (x2) with bounded error by making O( |X |2/3)
quantum queries to F.

Let [N] ⊂ {0, 1}n/2 denote the subset {0, 1, . . . , N − 1} for each integer 1 ≤ N ≤ 2n/2. By using the above fact,
we can deduce that for 1 ≤ N ≤ 2n/2 a quantum algorithm DN exists such that, given oracle access to a function
F : {0, 1}n/2 → {0, 1}n/2, it outputs 1 if distinct elements x1, x2 ∈ [N] exist such that F (x1) = F (x2), and it outputs 0
otherwise, with an error that is smaller than 1/30, by making O(|N |2/3) quantum queries. (We can make such DN by
iteratively running Ambainis’ algorithm O(1) times for F |[N ] : [N]→ {0, 1}n/2, which is the restriction of F to [N].)

Herewegive an analysis of the qPRFadvantage ofDN onRF◦RF, for each N . For a functionF : {0, 1}n/2 → {0, 1}n/2
and a subset Z ⊆ {0, 1}n/2, let collFZ denote the event that F has a collision in Z , i.e., there are distinct x1, x2 ∈ Z such
that F (x1) = F (x2). Then, we have that

Pr
F

[
¬collF[N ]

]
=

(
1 −

1
2n/2

)
·

(
1 −

2
2n/2

)
· · ·

(
1 −

N − 1
2n/2

)
=

N−1∏
j=1

(
1 −

j
2n/2

)
(4.62)

holds, where F is chosen from Func({0, 1}n/2, {0, 1}n/2) uniformly at random. In addition, when F1 and F2 are chosen
from Func({0, 1}n/2, {0, 1}n/2) uniformly at random, we have that

Pr
F1,F2

[
¬collF2◦F1

[N ]

]
= Pr

F2

[
¬collF2

F1 ([N ])
���¬coll

F1
[N ]

]
· Pr
F1

[
¬collF1

[N ]

]
=

(
Pr
F

[
¬collF[N ]

])2
. (4.63)

Now we have that

AdvqPRF
RF◦RF(DN ) = Advdist

RF,RF◦RF(DN ) =
�����
Pr
F

[
DF

N () → 1
]
− Pr

F1,F2

[
D

F2◦F1
N () → 1

] �����

≥
�����
Pr
F

[
collF[N ]

]
− Pr

F1,F2

[
collF2◦F1

[N ]

] �����
−

2
30
, (4.64)
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where we used the property that the error of DN is smaller than 1/30. In addition, from (4.63), it follows that
�����
Pr
F

[
collF[N ]

]
− Pr

F1,F2

[
collF2◦F1

[N ]

] �����
= Pr

F1,F2

[
collF2◦F1

[N ]

]
− Pr

F

[
collF[N ]

]
=

(
1 −

(
Pr
F

[
¬collF[N ]

])2)
−

(
1 − Pr

F

[
¬collF[N ]

])
= Pr

F

[
¬collF[N ]

] (
1 − Pr

F

[
¬collF[N ]

])
(4.65)

holds. Therefore, we have that

AdvqPRF
RF◦RF(DN ) ≥ Pr

F

[
¬collF[N ]

] (
1 − Pr

F

[
¬collF[N ]

])
−

2
30

(4.66)

holds. Now we show the following claim.

Claim 5. There exists a parameter N0 that is in O(2n/4), and

3
5
≥

N0−1∏
j=1

(
1 −

j
2n/2

)
≥

1
5

(4.67)

holds for sufficiently large n.

Proof. First, let us denote pN :=
∏N−1

j=1

(
1 − j

2n/2

)
. For each 1 ≤ N ≤ 2n/2, we have that

N−1∏
j=1

(
1 −

j
2n/2

)
≥

(
1 −

N
2n/2

)N
=

*.
,

(
1 −

N
2n/2

)− 2n/2
N +/

-

− N2
2n/2

(4.68)

holds. In addition,
N−1∏
j=1

(
1 −

j
2n/2

)
≤

N−1∏
j=1

(
e−

j

2n/2
)
= e−

N (N−1)
2·2n/2 (4.69)

holds. Thus

e−
N (N−1)
2·2n/2 ≥ pN ≥

*.
,

(
1 −

N
2n/2

)− 2n/2
N +/

-

− N2
2n/2

(4.70)

holds.
Next, let N0 := 2n/4 ·

√
2 log 2. Then

e−
N0 (N0−1)

2·2n/2 = e−
N0 ·N0
2·2n/2 +

(
e−

N0 (N0−1)

2·2n/2 − e−
N0 ·N0
2·2n/2

)
=

1
2
+

*.
,

(
1
2

) N0−1
N0
−

1
2

+/
-

(4.71)

holds, and thus e−
N0 (N0−1)

2·2n/2 ≤ 3/5 holds for sufficiently large n. In addition, since the function f (x) = (1 − x)−1/x

increases as x increases for 0 < x < 1 and limx→+0 f (x) = e holds, we have that(
1 −

N0

2n/2

)− 2n/2
N0
≤ e +

1
10

(4.72)

holds for sufficiently large n. Thus

*.
,

(
1 −

N0

2n/2

)− 2n/2
N0 +/

-

−
N2

0
2n/2

≥

(
e +

1
10

)− N2
0

2n/2

=

(
e +

1
10

)−2 log 2
≥

1
5

(4.73)

holds for sufficiently large n.
Therefore, for N0 := 2n/4 ·

√
2 log 2,

3
5
≥ pN0 ≥

1
5

(4.74)

holds for sufficiently large n. Hence the claim follows. �
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From the above claim and (4.62), a parameter N0 exists that is in O(2n/4), and

3
5
≥ Pr

F

[
¬collF[N0]

]
≥

1
5

(4.75)

holds for sufficiently large n. Hence, from (4.64) we have that

AdvqPRF
RF◦RF(DN0 ) ≥

1
5

(
1 −

3
5

)
−

2
30
=

1
75
≥ Ω(1). (4.76)

Therefore, if we let B := DN0 , this B satisfies the claim of the lemma, since (4.76) holds and DN0 makes at most
O((N0)2/3) = O((2n/4)2/3) = O(2n/6) quantum queries. �

Next we show the following proposition.

Proposition 9. A quantum algorithmA exists that makes O(2n/6) quantum queries and satisfies AdvqPRF
LR4

(A) = Ω(1)
.

Proof. Suppose that we are given an oracle access to O, which is either the 4-round Luby-Rackoff construction LR4 or
a random function from {0, 1}n to {0, 1}n. Recall that the function GO : {0, 1}n/2 → {0, 1}n/2 is defined by

GO (x) :=
(
O(0n/2, x)

)
R
⊕ x, (4.77)

where
(
O(0n/2, x)

)
R
is the right half n/2 bits of O(0n/2, x). We can implement a quantum circuit that computes GO

by making O(1) queries.4
Now we define a quantum algorithm A as the following three-step procedure.

1. Let B be the same algorithm as in Lemma 7.

2. Run B relative to GO .

3. If B returns 1, output 1. If B returns 0, output 0.

Here we analyze A. When O is the 4-round Luby-Rackoff construction LR4, we have that GO (x) = f3( f2(x ⊕
f1(0n/2))) ⊕ f1(0n/2) holds. Since we are considering the case that all round functions of LR4 are truly random
functions, the function distribution of GO will be the same as that of RF ◦ RF. On the other hand, when O is a random
function from {0, 1}n to {0, 1}n, the function distribution of GO will be the same as that of the truly random function
from {0, 1}n/2 to {0, 1}n/2. Thus, from Lemma 7 we have that

AdvqPRF
LR4

(A) = AdvqPRF
RF◦RF(B) = Ω(1) (4.78)

holds. In addition, since B makes at most O(2n/6) quantum queries and G makes only O(1) queries to O, A makes at
most O(2n/6) quantum queries. Therefore the claim of the proposition holds. �

Finally we prove Theorem 10.

Proof of Theorem 10. Let A be the same algorithm as in Proposition 9. Then, from Proposition 9 it follows that

AdvqPRP
LR4

(A) ≥ AdvqPRF
LR4

(A) − Advdist
RP,RF(A) ≥ Ω(1) −O(1/2n/2) = Ω(1), (4.79)

where we used the fact that, for any quantum adversary A ′ that makes at most q queries, the distinguishing advantage
Advdist

RP,RF(A ′) is upper bounded by O(q3/2n) for a random function and a random permutation from {0, 1}n to {0, 1}n
(see Theorem 5). Thus the claim of the theorem holds. �

4Here we have to truncate O’s outputs by using a technique observed in [HS18].
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Chapter 5

Provably Quantum-Secure TBC

This chapter shows a new construction LRWQ that converts quantum-secure block ciphers into quantum-secure tweak-
able block ciphers. The result of this chapter is significant to understand (post-)quantum security of symmetric-key
cryptography mainly from the theoretical perspective. Since Kaplan et al. showed the efficient quantum attack on
the LRW construction [KLLN16a], the problem of whether it is possible to make a quantum-secure TBC based on a
qPRP has been unresolved. This problem is of theoretical interest because TBCs play important roles to build efficient
symmetric-key schemes such as MACs and authenticated encryption schemes in the classical setting. This chapter
solves the problem by showing the new construction LRWQ is secure. Together with the results of Chapter 4, we can
deduce that a quantum-secure TBC exists if a qPRF exists. See also Section 1.3 for an overview of the result, and
Section 1.7 for the relationship of the results in this chapter with those in other chapters.

Section 5.1 reviews previous constructions and describes the new construction. Section 5.2 provides security proof
of the construction.

5.1 A Quantum-Secure TBC
Since our construction is a variant of the LRW constructions [LRW02], we first review them before introducing ours.

5.1.1 The LRW Constructions
Liskov, Rivest, and Wagner introduced constructions that convert (classically) secure block ciphers into (classically)
secure tweakable block ciphers, which are called the LRW constructions [LRW02].

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher and h be an almost 2-xor-universal hash function. Then the
first construction, which we denote by LRW1, is defined as

LRW1[E]TK (M) = EK (EK (M) ⊕ T ).

The second construction, which we denote by LRW2, is defined as

LRW2[E]T(K,h) (M) = EK (M ⊕ h(T )) ⊕ h(T ),

where h is a part of the key. See Fig. 5.11.
Roughly speaking, both LRW1 and LRW2 are shown to be secure up to about 2n/2 queries (if h is a 1/2n-almost

2-xor-universal hash function) in the classical setting. LRW2 is also proven to be secure even if the decryption oracle
is available to adversaries (That is, LRW2 is a tweakable strong pseudorandom permutation. LRW1 is not a tweakable
strong pseudorandom permutation since it is broken if the decryption oracle is available).

In the quantum setting, however, Kaplan et al. showed that LRW2 can be distinguished from a tweakable random
permutation in polynomial time (in n) if quantum queries to keyed oracles are allowed [KLLN16a].

An overview of their attack is as follows: Choose two tweaks T , T ′ and define a function FO by FO (M) :=
O(T, M) ⊕ O(T ′, M), where O is a quantum oracle such that O = R̃P or O = LRW2. Then, we can show that
FO (M ⊕ s) = FO (M) holds for s := h(T ) ⊕ h(T ′) and all M if O = LRW2, which implies that FO is a periodic
function, but FO is far from periodic when O = R̃P. Therefore, we can distinguish LRW2 from R̃P in polynomial time
by using Simon’s period finding quantum algorithm [Sim94, Sim97].

1We use the terms LRW1 and LRW2 following previous works [LST12, LS13].
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Figure 5.1: The LRW constructions. LRW1 is depicted on the left, and LRW2 is depicted on the right.
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Figure 5.2: Specification of LRWQ[E].

Similarly, we can distinguish LRW1 from a tweakable random permutation in polynomial time with Simon’s
algorithm: For LRW1, we choose two messages M , M ′, define a function GO by GO (T ) = O(T, M) ⊕ O(T, M ′),
and apply Simon’s quantum algorithm on GO instead of FO . When O = LRW1, the function GO has the period
EK (M) ⊕ EK (M ′). We see that the attack on LRW1 works with the same reasoning as Kaplan et al.’s attack on LRW2
works.

Note that the attack on LRW1 implies that we can efficiently find a collision for the function LRW1[E]( ·)
K (·) :

{0, 1}n × {0, 1}n → {0, 1}n in the quantum setting. If we can efficiently recover the value EK (M) ⊕ EK (M ′) and set
T ′ := T ⊕ EK (M) ⊕ EK (M ′), then LRW1[E]TK (M) = LRW1[E]T ′K (M ′) holds. Finding such a collision by polynomial-
time CPAs is hard in the classical setting.

5.1.2 LRWQ: A Quantum-Secure Construction
We next present our construction, LRWQ, which is a three-key block-cipher based tweakable block cipher. If the block
length of the underlying block cipher is n, both the block and tweak lengths of LRWQ become n.

Let E be an n-bit block cipher with k-bit keys. Then the tweakable block cipher LRWQ[E] : {0, 1}3k × {0, 1}n ×
{0, 1}n → {0, 1}n is defined as

LRWQ[E]T(K1,K2,K3) (M) = EK3 (EK1 (M) ⊕ EK2 (T )).

See Fig. 5.2. LRWQ is constructed based on LRW1. To prevent the quantum polynomial time attack in Sec-
tion 5.1.1, tweak is encrypted before added to EK1 (M). This works since intuitively, it is hard even for quantum
adversaries to find (M,T ) and (M ′,T ′) such that the corresponding outputs collide, i.e., LRWQ[E]T(K1,K2,K3) (M) =
LRWQ[E]T ′(K1,K2,K3) (M ′) holds.

Unlike the classical constructions LRW1 and LRW2, as we will show in Section 5.2, LRWQ is secure against quantum
attacks when it is instantiated with n-bit block ciphers that are secure against quantum attacks. LRWQ is the first mode
of block ciphers to build a tweakable block cipher that is provably secure against quantum attacks.
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5.1.2.1 Classical Security Analysis

Before going into the analysis in the quantum setting, we show that LRWQ is a secure tweakable block cipher in the
classical setting against chosen plaintext attacks up to O(2n/2) queries, and the security bound is tight. In addition, we
show that LRWQ is broken in time O(1) only with O(1) queries if the decryption oracle is available (i.e., LRWQ is
not a tweakable strong pseudorandom permutation), even in the classical setting. Define the distinguishing advantage
Advdist, the pseudorandom permutation advantage AdvPRP, and the tweakable pseudorandom permutation advantage
AdvP̃RP for classical adversaries in the same way as we did for quantum adversaries. Then the following proposition
holds.

Proposition 10. Let A be a classical adversary that makes at most q queries and runs in time τ. Then, there exist
three classical adversaries B1, B2, and B3 that make at most q queries and run in time Õ(τ + q) such that

AdvP̃RP
LRWQ[E](A) ≤

∑
i=1,2,3

AdvPRP
E (Bi) +O

(
q2

2n

)
(5.1)

holds. In addition, there exists a classical algorithm C that makes O(2n/2) queries and runs in time Õ(2n/2) such that
AdvP̃RP

LRWQ[E](C) = Θ(1). If the decryption oracle is also available to adversaries, there exists an algorithm C′ that
distinguishes LRWQ[E] from R̃P in time Õ(1) by making only O(1) queries with a constant probability.

This proposition can be shown in a straightforward manner, but we give a proof intuition below.
First, we give a proof intuition for (5.1). When E is an ideally random block cipher, AdvP̃RP

LRW1[E](A) is upper
bounded by O(q2/2n), as shown by Liskov, Rivest, and Wagner (See Theorem 1 of [LRW02]). Let LRW1′[E] be the
tweakable block cipher defined as LRW1′[E]((K1, K3),T, M) := EK3 (EK1 (M) ⊕ T ) (i.e., LRW1′ is a two-key version
of LRW1). Then, intuitively, LRW1′[E] is harder to distinguish from R̃P (a tweakable random permutation) than to
distinguish LRW1[E] from R̃P, but easier to distinguish than LRWQ[E]. Thus, roughly speaking, AdvP̃RP

LRWQ[E](A) ≤

AdvP̃RP
LRW1′[E](A) ≤ AdvP̃RP

LRW1[E](A) ≤ O(q2/2n) holds, which proves (5.1) when E is an ideally random block cipher.
It follows from standard hybrid arguments that (5.1) also holds for the case that E is not necessarily an ideally random
block cipher. (See also the proof of Proposition 13. In the classical setting, a random permutation can efficiently be
simulated by lazy sampling.)

Second, we show the existence of an algorithm C in Proposition 10. Let O be the encryption oracle, which is either
LRWQ[E] or a tweakable random permutation R̃P. Let C be a classical algorithm that runs the following procedure:
First, find a pair (M,T ) and (M ′,T ′) such that M , M ′ ∧ T , T ′ and O(T, M) = O(T ′, M ′) by querying random
elements to O, and store the answers in a list. If such a pair is not found after making about 2n/2 queries, stop and output
0. Second, check whether O(T ′, M) = O(T, M ′) holds (which can be done in time Õ(1) by making O(1) queries).
Finally, output 1 if O(T ′, M) = O(T, M ′), and output 0 if O(T ′, M) , O(T, M ′). Then this algorithm C runs in time
Õ(2n/2) and makes at most O(2n/2) queries. It is easy to see that C outputs 1 with an overwhelming probability when
O = LRWQ[E] and outputs 0 with an overwhelming probability when O = R̃P.

Third, we show that there exists an efficient classical chosen ciphertext attack on LRWQ. The algorithm C in the
previous paragraph finds a pair ((M,T ), (M ′,T ′)) such that M , M ′ ∧ T , T ′ and O(T, M) = O(T ′, M ′) by just
querying random elements to the encryption oracle, which costs O(2n/2) queries. However, if the decryption oracle
is available, we can modify C so that it can find such a pair with only O(1) queries as follows: First, query (T, M) to
the encryption oracle for some tweak T and plaintext M to get the answer C, and then query (T ′,C) to the decryption
oracle for another tweak T ′ to obtain the answer M ′. Then the pair ((M,T ), (M ′,T ′)) satisfies M , M ′ ∧ T , T ′ with
an overwhelming probability, and O(T, M) = O(T ′, M ′) = C holds. Let C′ be the algorithm that is defined in the
same way as C except that it finds such a pair ((M,T ), (M ′,T ′)) by only making O(1) queries as above. This modified
algorithm C′ runs in time Õ(1) and distinguishes LRWQ from R̃P by making only O(1) queries with an overwhelming
probability. Therefore, our construction LRWQ is broken (distinguished from a tweakable random permutation) in time
Õ(1) with only O(1) queries, if the decryption oracle is available.

5.2 qP̃RP Security Proof for LRWQ

Below, we give qP̃RP security proof for LRWQ. The goal is to show the following theorem.

Theorem 11. LetA be a quantum algorithm that runs in time τ, makes at most q quantum queries, and uses Q qubits.
Then there exist quantum algorithms B1, B2, and B3 that make at most O(q) quantum queries and run in time τ1, τ2,
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and τ3, respectively, such that

Advq̃PRP
LRWQ[E](A) ≤

∑
1≤i≤3

AdvqPRP
E (Bi) +O *

,

√
q6

2n
+
-

holds, where τ1 and τ2 are in Õ(τ + q2), τ3 is in Õ(τ + q), and Õ suppresses factors of polynomials in n. B1 and B2
use Õ(Q + q) qubits, and B3 uses Õ(Q) qubits.

5.2.1 Indistinguishability of Tweakable Random Permutation and Random Function
Before proving Theorem 11, we show the indistinguishability of a tweakable randompermutation and a random function.
Let R̃P : {0, 1}n × {0, 1}n → {0, 1}n be a tweakable random permutation, i.e., R̃P(t, ·) : {0, 1}n → {0, 1}n is a random
permutation for each t ∈ {0, 1}n. In addition, let RF : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n be a random function. The
goal of this subsection is to show the following proposition.

Proposition 11. Let A be a quantum algorithm that makes at most q quantum queries. Then,

Advdist
R̃P,RF

(A) ≤ O *
,

√
q6

2n
+
-

(5.2)

holds.

Let O1 and O2 be oracles of functions f1, f2 : X → Y that are chosen in accordance with distributions D1 and D2 on
Func(X,Y ), respectively. In addition, let DZ

1 be the distribution on Func(Z × X,Y ) such that, if we sample a function
F in accordance with DZ

1 , F (z, ·) ∈ Func(X,Y ) is sampled in accordance with D1 independently for each z ∈ Z . Let
DZ

2 be the distribution which is defined from D2 in the same way. Define OZ
1 and OZ

2 to be the oracles of functions
F1, F2 : Z × X → Y that are chosen in accordance with distributions DZ

1 and DZ
2 , respectively. Then the following

proposition, which was first essentially shown by Zhandry [Zha12a] and later generalized by Song and Yun [SY17],
holds. Note that, in the following proposition, we consider (quantum) information theoretic adversaries and do not care
whether they are efficient quantum algorithms.

Proposition 12 (Theorem 1.1 in [Zha12a], Theorem 3.3 in [SY17]). For any quantum query adversary A that makes
at most q quantum queries, there exists an adversary B that makes 2q quantum queries and satisfies

Advdist
OZ

1 ,O
Z
2

(A) ≤ 12
√

q3 · Advdist
O1,O2

(B). (5.3)

Combining Proposition 12 and Theorem 5, we can prove Proposition 11 as follows.

Proof of Proposition 11. Let X,Y , and Z be {0, 1}n. In addition, let O1, O2 denote the oracle of a random function
and a random permutation (from {0, 1}n to {0, 1}n), respectively. Then OZ

1 and OZ
2 become the oracles of R̃P and RF,

respectively. Then, from Proposition 12 and Theorem 5, it follows that a quantum adversary B exists that makes at
most 2q quantum queries and satisfies

Advdist
OZ

1 ,O
Z
2

(A) ≤ 12
√

q3 · Advdist
O1,O2

(B) = 12
√

q3 · AdvqPRF
RP (B) ≤ O

(√
q6/2n

)
, (5.4)

which completes the proof. �

Remark 16. The upper bound given in Proposition 11 is much larger than that in Theorem 5. We expect that the bound
in (5.2) is not tight, while a better provable security bound is not known.

5.2.2 Notations, Definitions, and Some Basic Properties
Here we introduce notations, definitions, and basic properties that are used to prove Theorem 11. Let f0, f1 : {0, 1}n →
{0, 1}n denote random functions. Let fsmall : {0, 1}n → {0, 1}n and fbig : {0, 1}3n → {0, 1}n also be random functions.
Let us define three functions FSum, FSFsmall, FSFbig : {0, 1}2n → {0, 1}n by

FSum(M,T ) := f0(M) ⊕ f1(T ),
FSFsmall(M,T ) := fsmall (FSum(M,T )) ,
FSFbig(M,T ) := fbig (M,T, FSum(M,T )) .
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Figure 5.3: Comparison of FSFsmall(M,T ) and FSFbig(M,T ).

See Fig. 5.3 for figures of FSum, FSFsmall, and FSFbig. Note that FSFsmall is defined in the same way as LRWQ[E]
except that it uses random functions instead of block ciphers. FSFbig is completely indistinguishable from a random
function since fbig is a random function.

Reduction to qPRF Security of FSFsmall. The following proposition shows that the problem of proving qP̃RP security
of LRWQ[E] can be reduced to the problem of proving qPRF security of FSFsmall when the underlying block cipher is
a secure qPRP.

Proposition 13. Let A be a quantum algorithm that runs in time τ, makes at most q quantum queries, and uses Q
qubits. Then there exist quantum algorithms B1, B2, and B3 that make at most O(q) quantum queries and run in time
τ1, τ2, and τ3, respectively, such that

Advq̃PRP
LRWQ[E](A) ≤

∑
1≤i≤3

AdvqPRP
E (Bi) + AdvqPRF

FSFsmall
(A) +O *

,

√
q6

2n
+
-

holds, where τ1 and τ2 are in Õ(τ + q2), τ3 is in Õ(τ + q), and Õ suppresses factors of polynomials in n. B1 and B2
use Õ(Q + q) qubits, and B3 uses Õ(Q) qubits.

Proof. Let hi : {0, 1}n → {0, 1}n be EKi or RFi , where RFi is a random function, for 1 ≤ i ≤ 3. Let LRWQ′[h1, h2, h3]
be the function that is the same as LRWQ[E] except that EKi is replaced with hi for each i (if hi = EKi for all i,
LRWQ′[h1, h2, h3] is completely the same as LRWQ[E]). Without loss of generality we assume that choosing a random
key for E and encryption with E can be done in time Õ(1) by using Õ(1) qubits.

Suppose that we are given access to a quantum oracle O3, which is either EK3 (the key K3 is chosen randomly)
or a random function RF3 : {0, 1}n → {0, 1}n. Then, we construct an algorithm B3 to distinguish EK3 from RF3 as
follows: First, B3 chooses keys K1 and K2 for E uniformly at random. Then B3 runs A, simulating the oracle of
LRWQ′[EK1, EK2, EK3 ] = LRWQ[E] or LRWQ′[EK1, EK2,RF3] by computing EK1 and EK2 by itself, and computing
EK3 or RF3 by making queries to O3. (If O3 is EK3 , then B3 perfectly simulates LRWQ[E]. Otherwise B3 perfectly
simulates LRWQ′[EK1, EK2,RF3].) Finally, B3 outputs whatA outputs. Then B3 runs in time Õ(τ + q), makes at most
O(q) quantum queries to O3, uses Õ(Q) qubits, and

Advdist
LRWQ[E],LRWQ′[EK1,EK2,RF3](A) = AdvqPRF

E (B3) ≤ AdvqPRP
E (B3) +O

(
q3

2n

)
(5.5)

holds, where we used Theorem 5 for the last inequality.
Next, suppose that we are given access to a quantum oracle O1, which is either EK1 (the key K1 is chosen randomly)

or a random function RF1 : {0, 1}n → {0, 1}n. Then, we construct an algorithm B1 to distinguish EK1 from RF1 as
follows: B1 runs A, simulating the oracle of LRWQ′[EK1, EK2,RF3] or LRWQ′[RF1, EK2,RF3] by simulating RF3 as
in Corollary 1, choosing K2 and computing EK2 by itself, and computing EK1 or RF1 by making queries to O1. (If O1
is EK1 , then B1 perfectly simulates LRWQ′[EK1, EK2,RF3]. Otherwise B1 perfectly simulates LRWQ′[RF1, EK2,RF3].)
Finally, B1 outputs what A outputs. Since Corollary 1 holds, it follows that B1 runs in time Õ(τ + q2), makes at most
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O(q) quantum queries to O1, uses Õ(Q + q) qubits, and

Advdist
LRWQ′[EK1,EK2,RF3],LRWQ′[RF1,EK2,RF3](A) = AdvqPRF

E (B1) ≤ AdvqPRP
E (B1) +O

(
q3

2n

)
(5.6)

holds. Similarly, we can show that there exists a quantum algorithm B2 that runs in time Õ(τ + q2), makes at most
O(q) quantum queries, uses Õ(Q + q) qubits, and

Advdist
LRWQ′[RF1,EK2,RF3],LRWQ′[RF1,RF2,RF3](A) ≤ AdvqPRP

E (B2) +O
(

q3

2n

)
(5.7)

holds.
Since the distribution of the function LRWQ′[RF1,RF2,RF3] is the same as that of FSFsmall,

AdvqPRF
LRWQ′[RF1,RF2,RF3](A) = AdvqPRF

FSFsmall
(A) (5.8)

follows. In addition,

Advdist
R̃P,RF

(A) ≤ O *
,

√
q6

2n
+
-

(5.9)

follows from Proposition 11.
Therefore, the claim of the proposition follows from (5.5), (5.6), (5.7), (5.8), and (5.9). �

The most difficult part in the security proof for LRWQ is to show qPRF security of FSFsmall, which is equivalent
to showing indistinguishability of FSFsmall and FSFbig since FSFbig is completely indistinguishable from a random
function, i.e., to show the following proposition.

Proposition 14. For a quantum algorithm A that makes at most q quantum queries,

AdvqPRF
FSFsmall

(A)
(
= Advdist

FSFsmall,FSFbig

)
≤ O *

,

√
q4

2n
+
-

(5.10)

holds.

5.2.3 Review of How to Show Quantum Oracle Indistinguishability with RstOE
Proposition 14 is somewhat similar to Proposition 5 in that both of them claim a single oracle O1 is indistinguishable
from another oracle O2, where O1 and O2 are the quantum oracles of functions that are made of random functions.
Thus, to prove Proposition 14, we use the same proof strategy as that for Proposition 5. In what follows we review the
proof strategy for Proposition 5. Note that this section focuses on quantum information-theoretic adversaries, and we
model quantum algorithms as in Section 2.4.1. We first describe the proof strategy formally, and then explain some
informal intuition behind it.

Goal. Suppose that there are functions F f1,..., fr ,Gg1,...,gs : X → Y that have access to functions f1, . . . , fr and
g1, . . . , gs in a black-box manner, respectively. Our goal is to give an upper bound on the distinguishing advantage of
an adversary A between F f1,..., fr and Gg1,...,gs when each f i and gj are random functions.

Oracle implementations using RstOE. Below, we assume that elements in X andY are encoded into m-bit strings and
n-bit strings for some positive integers m and n, respectively.

When each f i is a fixed function (but not a random function), let O f1,..., fr
F denote the quantum oracle of F f1,..., fr . We

assume that the unitary operator O f1,..., fr
F of the oracle O f1,..., fr

F is realized as a quantum circuit with oracle gates (that
make queries to f1, . . . , fr ) and suppose that ` ancilla qubits are used to compute F. The ancilla qubits are supposed to
be |0`〉 before and after each evaluation of F when f1, . . . , fr are some fixed functions. That is, we assume that O f1,..., fr

F

is a unitary operator such that O f1,..., fr
F : |x〉 |y〉 ⊗ |0`〉 7→ |x〉 |y ⊕ F f1,..., fr (x)〉 ⊗ |0`〉 holds, when each f i is fixed.

When f1, . . . , fr are random functions RF1, . . . ,RFr , we assume that they are implemented by using the recording
oracle with errors RstOE. We regard ORF1,...,RFr

F as the quantum oracle of which quantum states are combinations
of (superposed) valid databases for RF1, . . . ,RFr and the ` ancilla qubits. Then, the joint quantum state of A and
O

RF1,...,RFr
F is described as ∑

u,DBF ,ξ`

au,DBF ,ξ` |u〉 ⊗ |DBF 〉 |ξ`〉 ,
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where u corresponds to A’s state, each DBF = (D1, . . . , Dr ) denotes a (combined) database for RF1, . . . ,RFr , each
ξ` is a classical `-bit string, and au,DBF ,ξ` satisfies

∑
u,DBF ,ξ` |au,DBF ,ξ` |

2 = 1. Below, we just write OF instead of
O

RF1,...,RFr
F for simplicity.
Similarly, when g1, . . . , gs are random functionsRF′1, . . . ,RF

′
s , we assume that the quantum oracle OG of GRF′1,...,RF

′
s

are implemented by using RstOE. We assume that OG uses `′ ancilla qubits to compute G. We denote a (combined)
database for RF′1, . . . ,RF

′
s by DBG := (D′1, . . . , D′s), where D′i is a valid database for each RF′i .

Good and bad databases. Next, we classify valid databases for OF and OG into good and bad databases, which
correspond to good and bad transcripts in classical security proofs. The important point is that the classification is done
in such a way that there is a one-to-one correspondence between good databases for OF and those for OG . For each
good databaseDBF for OF , we denote the corresponding good database for OG by [DBF ]G . Similarly, for each good
database DBG for OG , we denote the corresponding database for OF by [DBG]F .

An upper bound of the oracle distinguishing advantage. Let A be an oracle-aided quantum algorithm that makes at
most q quantum queries. Let |ψi〉 (resp., |ψ ′i 〉) be the entire quantum state just before the i-th query when A runs
relative to OF (resp., OG). By abuse of notation, let |ψq+1〉 (resp., |ψ ′q+1〉) be the entire quantum state just before the
final measurement.

The technically hardest part to give an upper bound of Advdist
OF ,OG

(A) is to show that, for i = 1, . . . , q + 1, there
exist vectors |ψ

′good
i 〉, |ψ′badi 〉, |ψgood

i 〉, and |ψbad
i 〉 that satisfy the following properties.

1. |ψ ′i 〉 = |ψ
′good
i 〉 + |ψ

′bad
i 〉 and |ψi〉 = |ψ

good
i 〉 + |ψbad

i 〉.

2. There exists complex number a(i)
xyzDBG

such that

|ψ
′good
i 〉 =

∑
x,y,z

DBG :good database for OG

a(i)
xyzDBG

|x, y, z〉 ⊗ |DBG〉 , and (5.11)

|ψ
good
i 〉 =

∑
x,y,z

DBG :good database for OG

a(i)
xyzDBG

|x, y, z〉 ⊗ |[DBG]F 〉 (5.12)

hold, where x, y, and z correspond to A’s register to send queries to oracles, register to receive answers from
oracles, and register for offline computation, respectively.

3. It holds that |ψ
′bad
i 〉

 ≤
|ψ

′bad
i−1 〉

 + ε
′(i−1)
bad and |ψ

bad
i 〉

 ≤
|ψ

bad
i−1〉

 + ε
(i−1)
bad (5.13)

for some positive values ε
′(i−1)
bad and ε (i−1)

bad (we set |ψ′bad0 〉 = |ψbad
0 〉 = 0, |ψ′bad1 〉 = |ψbad

1 〉 = 0, and ε (0)
bad = ε

′(0)
bad = 0).

The following proposition ensures that we will obtain an upper bound of the distinguishing advantage of A when
we prove the existence of such vectors |ψ

′good
i 〉, |ψ′badi 〉, |ψgood

i 〉, and |ψbad
i 〉.

Proposition 15. Suppose that there exist vectors |ψ
′good
i 〉, |ψ′badi 〉, |ψgood

i 〉, and |ψbad
i 〉 that satisfy the above three

properties. Then, Advdist
OF ,OG

(A) ≤
∑

1≤i≤q ε
′(i)
bad +

∑
1≤i≤q ε

(i)
bad holds.

Though this proposition is essentially proved in Chapter 4, here we give a proof for completeness.

Proof. From (5.13), it follows that |ψ
′bad
q+1〉

 ≤
∑

1≤i≤q ε
′(i)
bad and

|ψ
bad
q+1〉

 ≤
∑

1≤i≤q ε
(i)
bad. In addition,

td
(
TrOF

(
|ψ

good
q+1 〉 〈ψ

good
q+1 |

)
,TrOG

(
|ψ
′good
q+1 〉 〈ψ

′good
q+1 |

))
= 0

follows from (5.11) and (5.12), where TrOF
and TrOG

denote the partial trace over the quantum systems of the oracle’s
states. Thus we have

Advdist
OF ,OG

(A) ≤ td
(
TrOF

(
|ψq+1〉 〈ψq+1 |

)
,TrOG

(
|ψ ′q+1〉 〈ψ

′
q+1 |

))
≤

|ψ
bad
q+1〉

 +
|ψ

′bad
q+1〉


≤

∑
1≤i≤q

ε
′(i)
bad +

∑
1≤i≤q

ε (i)
bad, (5.14)

which completes the proof. �
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Intuitions. Here we explain some intuitions behind the above proof strategy. First, when we define good and bad
databases, we choose good databases so that the following conditions will hold (in addition that there exists a one-to-one
correspondence between good databases for OF and those for OG).

1. The behavior of OF on a good databaseDBF is the same as that of OG on the corresponding database [DBF ]G .

2. The “probability” (in a quantum sense) that a good database DBF (resp., DBG) changes to a bad database at
each query to OF (resp., OG) is small.

The first condition ensures that the adversary cannot distinguish OF and OG as long as databases are good, which leads
to the existence of vectors |ψgood

i 〉 and |ψ
′good
i 〉 that satisfies (5.11) and (5.12) for each i. (Recall that, in the proof of

Proposition 15, (5.11) and (5.12) for i = q + 1 lead to the property that the adversary’s distinguishing advantage is
bounded by ‖ |ψbad

q+1〉 ‖ + |ψ
′bad
q+1〉 ‖.) The “probability” in the second condition corresponds to the terms

(
ε (i)
bad

)2
and(

ε
′(i)
bad

)2
. If we can show that

(
ε (i)
bad

)2
and

(
ε
′(i)
bad

)2
are very small, we can show the indistinguishability of OF and OG

through Proposition 15. In a later section, to show that the “probability” is really small, we decompose OF (resp., OG)
into a sequence of RstOE f1, . . . ,RstOE fr (resp., RstOEg1, . . . ,RstOEgs ), and prove that the “probability” that a good
database changes to a bad database is small at each query to RstOE fj (resp., RstOEg j ) for each j.

5.2.4 Quantum Oracles and Databases for FSFsmall and FSFbig

To use the proof strategy in the previous subsection, we describe how the quantum oracles of FSFsmall and FSFbig
are implemented with f0, f1, and fsmall or fbig, and define good and bad databases in such a way that there exists a
one-to-one correspondence between good databases for FSFsmall and those for FSFbig.

Implementations of the Quantum Oracles of FSFsmall and FSFbig. We assume that the quantum oracle of FSFsmall is
implemented as follows when f0, f1, and fsmall are given as quantum oracles. Suppose that |M,T〉 |Y 〉 is queried to the
oracle of FSFsmall. Here, |Y 〉 is the register to which the answer from the oracle will be added.

1. Query M to the oracle f0 to obtain the state

|M,T〉 |Y 〉 ⊗ | f0(M)〉 . (5.15)

2. Query T to the oracle f1 to obtain the state

|M,T〉 |Y 〉 ⊗ | f0(M)〉 | f1(T )〉 . (5.16)

3. Add f0(M) and f1(T ) to obtain the state

|M,T〉 |Y 〉 ⊗ | f0(M)〉 | f1(T )〉 ⊗ |FSum(M,T )〉 . (5.17)

4. Query FSum(M,T ) to the oracle of fsmall and add the answer to |Y 〉 to obtain

|M,T〉 |Y ⊕ FSFsmall(M,T )〉 ⊗ | f0(M)〉 | f1(T )〉 ⊗ |FSum(M,T )〉 . (5.18)

5. Uncompute Steps 1–3 to obtain |M,T〉 |Y ⊕ FSFsmall(M,T )〉.

We assume that the quantum oracle of FSFbig is implemented in the same way, except that the query in the fourth step
is (M,T, FSum(M,T )) to fbig instead of FSum(M,T ) to fsmall. See also Fig. 5.4.

In what follows, as explained in Section 5.2.3, we assume that the quantum oracles of the random functions f0,
f1, fsmall, and fbig are implemented by using the recording standard oracle with errors, and thus the oracles FSFsmall
and FSFbig keep the databases (and the ancillary qubits that are temporarily used in (5.15)–(5.18)) as their states. Let
OFSFsmall and OFSFbig denote the unitary operators of the oracles FSFsmall and FSFbig to respond to queries as above.

Good and bad databases. Here we define good and bad databases for FSFsmall and FSFbig in such a way that there
exists a one-to-one correspondence between good databases for FSFsmall and those for FSFbig.

Let D0, D1, Dsmall, and Dbig denote (valid) databases for f0, f1, fsmall, and fbig, respectively. The oracles FSFsmall
and FSFbig keep (quantum superpositions of) tuples of databases (D0, D1, Dsmall) and (D0, D1, Dbig), respectively.

We say that a tuple of bit strings E = (W0,W1, Z0, Z1,V,C), where Wi, Zi,V,C ∈ {0, 1}n, is an expansion if
V = Z0⊕ Z1. We say that a (combined) databaseDBsmall = (D0, D1, Dsmall) for FSFsmall (resp.,DBbig = (D0, D1, Dbig)
for FSFbig) is good if and only if it satisfies the following condition.
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Figure 5.4: Implementation of FSFsmall and FSFbig. “in” and “out” denote the registers to send queries and receive
answers, respectively. The functions f0, f1, fsmall, and fbig will be implemented with the recording standard oracle with
errors in security proofs.

For each entry (V,C) ∈ Dsmall (resp., (W0 | |W1 | |V,C) ∈ Dbig), there exists a unique expansionE = (W0,W1, Z0, Z1,
V,C) such that (W0, Z0) ∈ D0 and (W1, Z1) ∈ D1.

We call the unique expansion E the expansion of (V,C) in DBsmall (resp., the expansion of (W0 | |W1 | |V,C) in DBbig).
We say that a (valid) database is bad if it is not good.

Intuition behind good and bad databases. Intuitively, a valid database DBsmall = (D0, D1, Dsmall) for FSFsmall (resp.,
DBbig = (D0, D1, Dbig) for FSFbig) is bad if and only if, there exist an element (V,C) in the database Dsmall (which
records transcripts for fsmall) and two or more pairs ((W0, Z0), (W1, Z1)) ∈ D0 × D1 (D0 and D1 records transcripts for
f0 and f1, respectively) such that Z0 ⊕ Z1 = V (i.e., f0(W0) ⊕ f1(W1) = V ). Otherwise the database is good. Note that
the database is defined to be bad when such a pair exists even if W0 and W1 are not queried to f0 and f1 at the same
time: A natural definition of bad transcripts in the classical setting is that, a transcript is defined to be bad if and only if,
there exist a record (V,C = fsmall(V )) and two or more pairs of records ((W0, Z0 = f0(W0)), (W1, Z1 = f1(W1))) such
that Z0 ⊕ Z1 = V , and W0 and W1 are queried at the same time. However, in the quantum setting, the compressed oracle
technique (and the recording oracle with errors) cannot record the information about whether certain pair of inputs are
queried at the same time.2 Thus we defined good and bad databases as above.

A one-to-one correspondence between good databases. By the above definition, we can define a one-to-one corre-
spondence between the set of good databases for FSFsmall and that for FSFbig. We say that a valid database Dbig for
fbig is consistent if there does not exist distinct element (W0 | |W1 | |V,C) and (W ′

0 | |W
′
1 | |V

′,C ′) in Dbig that satisfy (i)
W0 = W ′

0 ∧ W1 = W ′
1 but V , V ′, or (ii) V = V ′ but C , C ′.3 Note that, if there exist valid databases D0 and

D1 such that DBbig := (D0, D1, Dbig) becomes a (combined) good database for FSFbig, Dbig is consistent. For a
consistent database Dbig for fbig, let [Dbig]small be the database for fsmall such that (V,C) ∈ [Dbig]small if and only if
(W0 | |W1 | |V,C) ∈ Dbig for some W0,W1 ∈ {0, 1}n. In addition, for a (combined) good database DBbig = (D0, D1, Dbig)
for FSFsmall, let [DBbig]small := (D0, D1, [Dbig]small). Then, the mapping DBbig 7→ [DBbig]small gives a one-to-
one correspondence between good databases for FSFbig and those for FSFsmall: For a (combined) good database
DBsmall = (D0, D1, Dsmall) for FSFsmall, let [Dsmall]big be the database for fbig such that (W0 | |W1 | |V,C) ∈ [Dsmall]big
if and only if (V,C) ∈ Dsmall and the expansion of (V,C) in Dsmall is (W0,W1, Z0, Z1,V,C) for some Z0, Z1 ∈ {0, 1}n.
Then the (combined) database [DBsmall]big := (D0, D1, [Dsmall]big) is a good database for FSFbig. It is easy to confirm
that the mapping DBsmall 7→ [DBsmall]big is the inverse of the mapping DBbig 7→ [DBbig]small, and vice versa.

2It may be realized by replacing the “undefined” indicator qubit in each entry of the f table in the state of stO by q zero qubits and toggle the
i-th of these qubits when the given input was submitted in i-th query. However, currently we do not have any idea on how to formalize it, while
appropriately removing some records from database.

3In fact the first condition (i) may not happen but such a database can theoretically exist. Here we exclude the condition (i) just for theoretical
completeness.

72



Regular and irregular states of oracles. We say that a state vector of the oracle FSFsmall is irregular if one of the
databases is invalid, or ancillary qubits used in (5.15)–(5.18) are not the all-zero state |00 · · · 0〉. We say that a state
vector is regular if it is not irregular. In addition, we say that a state vector of the oracle FSFsmall is pre-irregular if one
of the databases is invalid, or the least significant 2n qubits (the registers that correspond to f1(T ) and FSum(M,T ) in
(5.16)–(5.18)) are not |0n〉 |0n〉. We say that a state vector is preregular if it is not pre-irregular. Similarly, we define
(pre-)irregular and (pre)regular states for FSFbig.

The following lemma shows that the behavior of RstOE fbig on a consistent database Dbig is the same as that of
RstOE fsmall on the corresponding database [Dbig]small.

Lemma 8. Let Dbig and D′big be consistent databases for FSFbig. Then, for arbitrary M̃, T̃, M̃ ′, T̃ ′ ∈ {0, 1}n and
Ṽ, Ṽ ′, Ỹ, Ỹ ′ ∈ {0, 1}n,

〈D′big | 〈M̃
′ | |T̃ ′ | |Ṽ ′, Ỹ ′ | RstOE fbig |M̃ | |T̃ | |Ṽ, Ỹ 〉 |Dbig〉

= 〈[D′big]small | 〈M̃ ′ | |T̃ ′ | |Ṽ ′, Ỹ ′ | I2n ⊗ RstOE fsmall |M̃ | |T̃ | |Ṽ, Ỹ 〉 |[Dbig]small〉 (5.19)

holds.

Proof. It suffices to show the claim in the case that M̃ = M̃ ′, T̃ = T̃ ′, and Ṽ = Ṽ ′ hold, since oracles do not affect input
registers. Moreover, when RstOE fbig acts on |M̃ | |T̃ | |Ṽ, Ỹ 〉 |Dbig〉, O fbig affects only the register that contains information
about the element of M̃ | |T̃ | |Ṽ in Dbig, in addition to the Ỹ register. Hence it suffices to show the claim in the cases that
(i) Dbig is empty, or (ii) it has only a single entry (M̃ | |T̃ | |Ṽ,C) for some C. In the case (i), [Dbig]small is also empty, and
the equation follows from (3.16) and (3.17) in Proposition 3. In the case (ii), [Dbig]small has only a single entry (Ṽ,C),
and the equation follows from (3.12)–(3.15) in Proposition 3. �

5.2.5 Proof of Proposition 14
LetA be a quantum algorithm that makes at most q quantum queries. Let |ψi〉 and |ψ ′i 〉 denote the whole quantum states
of A and the oracle just before the i-th query when A runs relative to FSFsmall and FSFbig, respectively. (By |ψq+1〉
and |ψ ′

q+1〉 we denote the whole quantum states just before the final measurement whenA runs relative to FSFsmall and
FSFbig, respectively, by abuse of notation.)

The technically hardest part of proving Proposition 14 is to show the following proposition. In what follows, for
each summation symbol, we separate variables over which the summation is taken and the conditions imposed on the
variables by “;”, to simplify notations. For example, by

∑
α,β;α∈A,α+β∈B we indicate that the summation is taken over

all possible α and β such that α ∈ A and α + β ∈ B.

Proposition 16. For each 1 ≤ i ≤ q+1, there exist vectors |ψ
′good
i 〉, |ψ′badi 〉, |ψgood

i 〉, and |ψbad
i 〉 that satisfy the following

properties.

1. |ψ ′i 〉 = |ψ
′good
i 〉 + |ψ

′bad
i 〉 and |ψi〉 = |ψ

good
i 〉 + |ψbad

i 〉.

2. There exists complex number a(i)
MTYZD0D1Dbig

such that

|ψ
′good
i 〉 =

∑
M,T,Y,Z, (D0,D1,Dbig);

(D0,D1,Dbig):valid and good

a(i)
MTYZD0D1Dbig

|M,T〉 |Y 〉 |Z〉 ⊗ |D0, D1, Dbig〉 , (5.20)

and
|ψ

good
i 〉 =

∑
M,T,Y,Z, (D0,D1,Dbig);

(D0,D1,Dbig):valid and good

a(i)
MTYZD0D1Dbig

|M,T〉 |Y 〉 |Z〉 ⊗ |[D0, D1, Dbig]small〉 (5.21)

hold, where (M,T ), Y , and Z correspond to A’s register to send queries to oracles, register to receive answers
from oracles, and register for offline computation, respectively.

3. For each database (D0, D1, Dbig) in |ψ
′good
i 〉 (resp., (D0, D1, Dsmall) in |ψgood

i 〉) with non-zero quantum amplitude,
|D0 | ≤ 2(i − 1), |D1 | ≤ 2(i − 1), and |Dbig | ≤ i − 1 (resp., |Dsmall | ≤ i − 1).

4. |ψ
′bad
i 〉

 ≤
|ψ

′bad
i−1 〉

 +O
(√

i2

2n

)
and |ψ

bad
i 〉

 ≤
|ψ

bad
i−1〉

 +O
(√

i2

2n

)
hold.
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Let RstOE f0 , RstOE f1 , RstOE fsmall , and RstOE fbig be the recording standard oracle with errors for f0, f1, fsmall, and
fbig, respectively. Then, the unitary operators OFSFsmall and OFSFbig are decomposed into 7 unitary operators as

OFSFsmall = RstOE∗f0 · RstOE∗f1 · XOR∗ · RstOE fsmall · XOR · RstOE f1 · RstOE f0

and
OFSFbig = RstOE∗f0 · RstOE∗f1 · XOR∗ · RstOE fbig · XOR · RstOE f1 · RstOE f0,

respectively, where XOR denotes the unitary operation to add the values f0(M) and f1(T ) in Step 3 (state (5.17)) of the
implementation of the oracles, which is defined by XOR |a〉 |b〉 |c〉 = |a〉 |b〉 |c ⊕ a ⊕ b〉.

To show the proposition, we study how the states |ψ ′i 〉 and |ψi〉 change when the 7 unitary operators act, in a
sequential order. First, we show the following lemma.

Lemma 9 (Action of RstOE f0 ). Suppose that there exist i and vectors |ψ
′good
j 〉, |ψ′badj 〉, |ψgood

j 〉, and |ψbad
j 〉 that satisfy

the four properties in Proposition 16 for j = 1, . . . , i. Then, there exist vectors |ψ
′good,1
i 〉, |ψ

′bad,1
i 〉, |ψgood,1

i 〉, and |ψbad,1
i 〉

that satisfy the following properties.

1. RstOE f0 |ψ
′
i 〉 = |ψ

′good,1
i 〉 + |ψ

′bad,1
i 〉 and RstOE f0 |ψi〉 = |ψ

good,1
i 〉 + |ψbad,1

i 〉.

2. There exists complex number a(i),1
MTYZD0D1Dbig

such that

|ψ
′good,1
i 〉 =

∑
M,T,Y,Z, (D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0 (M ),⊥

a(i),1
MTYZD0D1Dbig

|M,T〉 |Y 〉 |Z〉
⊗ |D0, D1, Dbig〉 ⊗ |D0(M)〉 ,

(5.22)

and
|ψ

good,1
i 〉 =

∑
M,T,Y,Z, (D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0 (M ),⊥

a(i),1
MTYZD0D1Dbig

|M,T〉 |Y 〉 |Z〉
⊗ |[D0, D1, Dbig]small〉 ⊗ |D0(M)〉

(5.23)

hold, where (M,T ), Y , and Z correspond to A’s register to send queries to oracles, register to receive answers
from oracles, and register for offline computation, respectively.

3. For each database (D0, D1, Dbig) in |ψ
′good,1
i 〉 (resp., (D0, D1, Dsmall) in |ψgood,1

i 〉) with non-zero quantum ampli-
tude, |D0 | ≤ 2(i − 1) + 1, |D1 | ≤ 2(i − 1), and |Dbig | ≤ i − 1 (resp., |Dsmall | ≤ i − 1).

4. |ψ
′bad,1
i 〉

 ≤
|ψ

′bad
i 〉

 +O
(√

i2

2n

)
and |ψ

bad,1
i 〉

 ≤
|ψ

bad
i 〉

 +O
(√

i2

2n

)
hold.

Proof. Let Πvalid denote the projection onto the space spanned by the vectors that correspond to valid databases. Then,
by applying Proposition 3 to RstOE f0 , we have that

ΠvalidRstOE f0 |ψ
′good
i 〉

= ΠvalidRstOE f0

∑
M,T,Y,Z, (D0,D1,Dbig);

(D0,D1,Dbig):valid and good

a(i)
MTYZD0D1Dbig

|M,T〉 |Y 〉 |Z〉
⊗ |D0, D1, Dbig〉

= ΠvalidRstOE f0

∑
M,T,Y,Z,α, (D0,D1,Dbig);

(D0,D1,Dbig):valid
D0 (M )=⊥

(D0∪(M,α),D1,Dbig):good

a(i)
MTYZD0∪(M,α)D1Dbig

|M,T〉 |Y 〉 |Z〉
⊗ |D0 ∪ (M, α), D1, Dbig〉

+ ΠvalidRstOE f0

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid
D0 (M )=⊥

(D0,D1,Dbig):good

a(i)
MTYZD0D1Dbig

|M,T〉 |Y 〉 |Z〉
⊗ |D0, D1, Dbig〉

=
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0∪(M,α),D1,Dbig):good

a(i)
MTYZD0∪(M,α)D1Dbig

|M,T〉 |Y 〉 |Z〉
⊗ |D0 ∪ (M, α), D1, Dbig〉 ⊗ |α〉

(5.24)
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−
∑

M,T,Y,Z,α,γ, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0∪(M,α),D1,Dbig):good

1
2n

a(i)
MTYZD0∪(M,α)D1Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0 ∪ (M, γ), D1, Dbig〉 ⊗ |γ〉

(5.25)

+
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0,D1,Dbig):good

1
√

2n
a(i)
MTYZD0D1Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0 ∪ (M, α), D1, Dbig〉 ⊗ |α〉

(5.26)

+ |ε ′〉

holds, where

|ε ′〉 =
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0∪(M,α),D1,Dbig):good

1
√

2n
a(i)
MTYZD0∪(M,α)D1Dbig

|M,T〉 |Y 〉 |Z〉

⊗
*.
,
|D0〉 −

∑
γ

1
√

2n
|D0 ∪ (M, γ)〉+/

-
|D1, Dbig〉 ⊗ |α〉

(5.27)

+
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0∪(M,α),D1,Dbig):good

1
2n

a(i)
MTYZD0∪(M,α)D1Dbig

|M,T〉 |Y 〉 |Z〉

⊗
*.
,
2
∑
γ

1
√

2n
|D0 ∪ (M, γ)〉 − |D0〉

+/
-
|D1, Dbig〉 ⊗ |0̂n〉

(5.28)

+
∑

M,T,Y,Z, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0,D1,Dbig):good

1
√

2n
a(i)
MTYZD0D1Dbig

|M,T〉 |Y 〉 |Z〉

⊗
*.
,
|D0〉 −

∑
γ

1
√

2n
|D0 ∪ (M, γ)〉+/

-
|D1, Dbig〉 ⊗ |0̂n〉 .

(5.29)

The terms (5.24), (5.25), and (5.26) correspond to (the valid component of) the terms (3.12), (3.14), and (3.16),
respectively. In addition, the terms (5.27), (5.28), and (5.29) correspond to (the valid component of) the terms (3.13),
(3.15), and (3.17), respectively. Let us denote the terms (5.27), (5.28), and (5.29) by |(5.27)〉, |(5.28)〉, and |(5.29)〉,
respectively. Then

‖|(5.27)〉‖2 =
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0∪(M,α),D1,Dbig):good

1
2n

����a
(i)
MTYZD0∪(M,α)D1Dbig

����
2
+

∑
M,T,Y,Z,α,γ, (D0,D1,Dbig);

(D0,D1,Dbig):valid
D0 (M )=⊥

(D0∪(M,α),D1,Dbig):good

1
22n

����a
(i)
MTYZD0∪(M,α)D1Dbig

����
2

≤ O
(

1
2n

)
holds. Similarly we have ‖ |(5.29)〉‖2 ≤ O

(
1

2n

)
. In addition,

‖ |(5.28)〉‖2 ≤ 5
∑

M,T,Y,Z, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥

���������

∑
α;

(D0∪(M,α),D1,Dbig):good

a(i)
MTYZD0∪(M,α)D1Dbig

2n

���������

2

≤ 5
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0∪(M,α),D1,Dbig):good

����a
(i)
MTYZD0∪(M,α)D1Dbig

����
2

2n

≤ O
(

1
2n

)
,
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where we used the convexity of the function X 7→ X2. Hence

‖ |ε ′〉 ‖ ≤ O *
,

√
1
2n

+
-

(5.30)

holds.
In the same way, we can show

ΠvalidRstOE f0 |ψ
good
i 〉 =

∑
M,T,Y,Z,α, (D0,D1,Dbig);

(D0,D1,Dbig):valid
D0 (M )=⊥

(D0∪(M,α),D1,Dbig):good

a(i)
MTYZD0∪(M,α)D1Dbig

|M,T〉 |Y 〉 |Z〉
⊗ |D0 ∪ (M, α), D1, [Dbig]small〉 ⊗ |α〉

−
∑

M,T,Y,Z,α,γ, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0∪(M,α),D1,Dbig):good

1
2n

a(i)
MTYZD0∪(M,α)D1Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0 ∪ (M, γ), D1, [Dbig]small〉 ⊗ |γ〉

+
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0,D1,Dbig):good

1
√

2n
a(i)
MTYZD0D1Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0 ∪ (M, α), D1, [Dbig]small〉 ⊗ |α〉

+ |ε〉 , (5.31)

where |ε〉 is a vector such that ‖|ε〉‖ ≤ O
(√

1
2n

)
.

Now, set

|ψ
good,1
i 〉 := Πgood

(
ΠvalidRstOE f0 |ψ

good
i 〉 − |ε〉

)
, |ψbad,1

i 〉 := RstOE f0 |ψi〉 − |ψ
good,1
i 〉 , (5.32)

and
|ψ
′good,1
i 〉 := Πgood

(
ΠvalidRstOE f0 |ψ

′good
i 〉 − |ε ′〉

)
, |ψ

′bad,1
i 〉 := RstOE f0 |ψ

′
i 〉 − |ψ

′good,1
i 〉 , (5.33)

where Πgood denotes the projection onto the space spanned by the vectors that correspond to good databases. Then the
first, second, and third properties of Lemma 9 immediately follow from the corresponding properties in Proposition 16
and the definitions of |ψgood,1

i 〉 and |ψ
′good,1
i 〉.

Below, we show the fourth property. Let us denote the terms (5.24), (5.25), and (5.26) by |(5.24)〉, |(5.25)〉, and
|(5.26)〉, respectively. In addition, let Πbad denote the projection onto the space spanned by the vectors that correspond
to bad databases. Then,

Πbad |(5.24)〉 = 0 (5.34)

holds since all the databases in |(5.24)〉 are good.
On the term (5.25), we have that

Πbad |(5.25)〉 = −
∑

M,T,Y,Z,α,γ, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0∪(M,α),D1,Dbig):good
(D0∪(M,γ),D1,Dbig):bad

1
2n

a(i)
MTYZD0∪(M,α)D1Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0 ∪ (M, γ), D1, Dbig〉 ⊗ |γ〉

= −
∑

M,T,Y,Z,α,γ, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0∪(M,α),D1,Dbig):good

∃T ′s.t.D1 (T ′),⊥∧[Dbig]small (D1 (T ′)⊕α),⊥

(D0∪(M,γ),D1,Dbig):bad

1
2n

a(i)
MTYZD0∪(M,α)D1Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0 ∪ (M, γ), D1, Dbig〉 ⊗ |γ〉

(5.35)

−
∑

M,T,Y,Z,α,γ, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0∪(M,α),D1,Dbig):good

@T ′s.t.D1 (T ′),⊥∧[Dbig]small (D1 (T ′)⊕α),⊥
(D0∪(M,γ),D1,Dbig):bad

1
2n

a(i)
MTYZD0∪(M,α)D1Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0 ∪ (M, γ), D1, Dbig〉 ⊗ |γ〉

(5.36)
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holds.
Here we give an upper bound of the norm of the term (5.35). If a tuple (M, (D0 ∪ (M, γ), D1, Dbig)) satisfies

1. D0(M) = ⊥, and

2. (D0 ∪ (M, γ), D1, Dbig) is bad,

then the number of α that satisfies

1. (D0 ∪ (M, α), D1, Dbig) becomes good, and

2. there exists T ′ such that D1(T ′) , ⊥ and [Dbig]small(D1(T ′) ⊕ α) , ⊥

is at most |D1 | · |Dbig | ≤ 2(i − 1)2. Hence



∑
M,T,Y,Z,α,γ, (D0,D1,Dbig);

(D0,D1,Dbig):valid
D0 (M )=⊥

(D0∪(M,α),D1,Dbig):good
∃T ′s.t.D1 (T ′),⊥∧[Dbig]small (D1 (T ′)⊕α),⊥

(D0∪(M,γ),D1,Dbig):bad

1
2n

a(i)
MTYZD0∪(M,α)D1Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0 ∪ (M, γ), D1, Dbig〉 ⊗ |γ〉



2

=
∑

M,T,Y,Z,γ, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0∪(M,γ),D1,Dbig):bad

1
22n

����������

∑
α;(D0∪(M,α),D1,Dbig)is good, and

∃T ′s.t.D1 (T ′),⊥∧[Dbig]small (D1 (T ′)⊕α),⊥

a(i)
MTYZD0∪(M,α)D1Dbig

����������

2

≤
∑

M,T,Y,Z,γ, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0∪(M,γ),D1,Dbig):bad

2(i − 1)2

22n

∑
α;(D0∪(M,α),D1,Dbig)is good, and

∃T ′s.t.D1 (T ′),⊥∧[Dbig]small (D1 (T ′)⊕α),⊥

����a
(i)
MTYZD0∪(M,α)D1Dbig

����
2

=
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0∪(M,α),D1,Dbig):good

∃T ′s.t.D1 (T ′),⊥∧[Dbig]small (D1 (T ′)⊕α),⊥

����a
(i)
MTYZD0∪(M,α)D1Dbig

����
2
·

∑
γ;

(D0∪(M,γ),D1,Dbig)is bad

2(i − 1)2

22n

≤
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0∪(M,α),D1,Dbig):good

∃T ′s.t.D1 (T ′),⊥∧[Dbig]small (D1 (T ′)⊕α),⊥

����a
(i)
MTYZD0∪(M,α)D1Dbig

����
2
·

2(i − 1)2

2n

≤ O
(

i2

2n

)
(5.37)

holds, where we used the convexity of the function X 7→ X2 for the first inequality.
Next, we give an upper bound of the norm of the term (5.36). If a tuple (M, (D0 ∪ (M, α), D1, Dbig)) satisfies

1. D0(M) = ⊥,

2. (D0 ∪ (M, α), D1, Dbig) is good, and

3. there does not exist T ′ such that D1(T ′) , ⊥ and [Dbig]small(D1(T ′) ⊕ α) , ⊥,
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then the number of γ such that (D0 ∪ (M, γ), D1, Dbig) becomes bad is at most |D1 | · |Dbig | ≤ 2(i − 1)2. Hence



∑
M,T,Y,Z,α,γ, (D0,D1,Dbig);

(D0,D1,Dbig):valid
D0 (M )=⊥

(D0∪(M,α),D1,Dbig):good
@T ′s.t.D1 (T ′),⊥∧[Dbig]small (D1 (T ′)⊕α),⊥

(D0∪(M,γ),D1,Dbig):bad

1
2n

a(i)
MTYZD0∪(M,α)D1Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0 ∪ (M, γ), D1, Dbig〉 ⊗ |γ〉



2

=
∑

M,T,Y,Z,γ, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
@T ′s.t.D1 (T ′),⊥∧[Dbig]small (D1 (T ′)⊕α),⊥

(D0∪(M,γ),D1,Dbig):bad

���������

∑
α;

(D0∪(M,α),D1,Dbig):good

a(i)
MTYZD0∪(M,α)D1Dbig

2n

���������

2

≤
∑

M,T,Y,Z,γ, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
@T ′s.t.D1 (T ′),⊥∧[Dbig]small (D1 (T ′)⊕α),⊥

(D0∪(M,γ),D1,Dbig):bad

∑
α;

(D0∪(M,α),D1,Dbig):good

����a
(i)
MTYZD0∪(M,α)D1Dbig

����
2

2n

=
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1,Dbig):valid

D0 (M )=⊥
(D0∪(M,α),D1,Dbig):good

@T ′s.t.D1 (T ′),⊥∧[Dbig]small (D1 (T ′)⊕α),⊥

����a
(i)
MTYZD0∪(M,α)D1Dbig

����
2

·

���{γ
���(D0 ∪ (M, γ), D1, Dbig) : bad}���

2n

≤ O
(

i2

2n

)
(5.38)

holds, where we used the convexity of the function X 7→ X2 for the first inequality.
From (5.35)–(5.38),

‖Πbad |(5.25)〉‖ ≤ O *
,

√
i2

2n
+
-

(5.39)

follows.
Moreover,

‖Πbad |(5.26)〉‖2 =
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1,Dbig):valid and good

D0 (M )=⊥
(D0∪(M,α),D1,Dbig):bad

����a
(i)
MTYZD0D1Dbig

����
2

2n

=
∑

M,T,Y,Z, (D0,D1,Dbig);
(D0,D1,Dbig):valid and good

D0 (M )=⊥
(D0∪(M,α),D1,Dbig):bad

����a
(i)
MTYZD0D1Dbig

����
2
·

���
{
α

���(D0 ∪ (M, α), D1, Dbig) is bad
}���

2n

≤ O *
,

√
i2

2n
+
-

(5.40)

can be shown in a similar way as we showed (5.38).
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From (5.34), (5.39), and (5.40),

Πbad
(
ΠvalidRstOE f0 |ψ

′good
i 〉 − |ε ′〉

) ≤ O *
,

√
i2

2n
+
-

(5.41)

follows. Since this inequality and (5.30) hold,

|ψ
′bad,1
i 〉

 =
RstOE f0 |ψ

′
i 〉 − |ψ

′good,1
i 〉


=

ΠvalidRstOE f0 |ψ
′
i 〉 − Πgood

(
ΠvalidRstOE f0 |ψ

good
i 〉 − |ε ′〉

)
=

Πbad
(
ΠvalidRstOE f0 |ψ

′good
i 〉 − |ε ′〉

)
+ ΠvalidRstOE f0 |ψ

′bad
i 〉 + |ε ′〉


≤

Πbad
(
ΠvalidRstOE f0 |ψ

′good
i 〉 − |ε ′〉

) +
|ψ

′bad
i 〉

 +
|ε ′〉

≤
|ψ

′bad
i 〉

 +O *
,

√
i2

2n
+
-

(5.42)

holds, which implies that the fourth property holds for |ψ
′bad,1
i 〉4. We can prove the fourth property for |ψbad,1

i 〉 in the
same way. �

The following lemma shows how the states RstOE f0 |ψ
′
i 〉 and RstOE f0 |ψi〉 change when XOR ·RstOE f1 act on them.

Lemma 10 (Action of XOR · RstOE f1 ). Suppose that there exist i and vectors |ψ
′good
j 〉, |ψ′badj 〉, |ψgood

j 〉, and |ψbad
j 〉 that

satisfy the four properties in Proposition 16 for j = 1, . . . , i. Then, there exist vectors |ψ
′good,2
i 〉, |ψ

′bad,2
i 〉, |ψgood,2

i 〉, and
|ψbad,2

i 〉 that satisfy the following properties.

1. XOR · RstOE f1 · RstOE f0 |ψ
′
i 〉 = |ψ

′good,2
i 〉 + |ψ

′bad,2
i 〉 and XOR · RstOE f1 · RstOE f0 |ψ〉 = |ψ

good,2
i 〉 + |ψbad,2

i 〉.

2. There exists complex number a(i),2
MTYZD0D1Dbig

such that

|ψ
′good,2
i 〉 =

∑
M,T,Y,Z, (D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0 (M ),⊥∧D1 (T ),⊥

a(i),2
MTYZD0D1Dbig

|M,T〉 |Y 〉 |Z〉 ⊗ |D0, D1, Dbig〉

⊗ |D0(M)〉 |D1(T )〉 |D0(M) ⊕ D1(T )〉 ,

and

|ψ
good,2
i 〉 =

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0 (M ),⊥∧D1 (T ),⊥

a(i),2
MTYZD0D1Dbig

|M,T〉 |Y 〉 |Z〉 ⊗ |[D0, D1, Dbig]small〉

⊗ |D0(M)〉 |D1(T )〉 |D0(M) ⊕ D1(T )〉

hold, where (M,T ), Y , and Z correspond to A’s register to send queries to oracles, register to receive answers
from oracles, and register for offline computation, respectively.

3. For each database (D0, D1, Dbig) in |ψ
′good,2
i 〉 (resp., (D0, D1, Dsmall) in |ψgood,2

i 〉) with non-zero quantum ampli-
tude, |D0 | ≤ 2(i − 1) + 1, |D1 | ≤ 2(i − 1) + 1, and |Dbig | ≤ i − 1 (resp., |Dsmall | ≤ i − 1).

4. |ψ
′bad,2
i 〉

 ≤
|ψ

′bad
i 〉

 +O
(√

i2

2n

)
and |ψ

bad,2
i 〉

 ≤
|ψ

bad
i 〉

 +O
(√

i2

2n

)
hold.

This lemma can be shown in the same way as we showed Lemma 9. Thus we omit to write the proof.
The next lemma shows how the state changes when RstOE fbig and RstOE fsmall act on the states XOR · RstOE f1 ·

RstOE f0 |ψ
′
i 〉 and XOR · RstOE f1 · RstOE f0 |ψi〉, respectively.

Lemma 11 (Action of RstOE fsmall and RstOE fbig ). Suppose that there exist i and vectors |ψ
′good
j 〉, |ψ′badj 〉, |ψgood

j 〉, and
|ψbad

j 〉 that satisfy the four properties in Proposition 16 for j = 1, . . . , i. Then, there exist vectors |ψ
′good,3
i 〉, |ψ

′bad,3
i 〉,

|ψ
good,3
i 〉, and |ψbad,3

i 〉 that satisfy the following properties.

4Note that all the databases of RstOE f0 |ψ
′good
i 〉 are valid, and thus ΠvalidRstOE f0 |ψ

′good
i 〉 = RstOE f0 |ψ

′good
i 〉 holds.
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1. RstOE fbig · XOR · RstOE f1 · RstOE f0 |ψ
′
i 〉 = |ψ

′good,3
i 〉 + |ψ

′bad,3
i 〉 and RstOE fsmall · XOR · RstOE f1 · RstOE f0 |ψi〉 =

|ψ
good,3
i 〉 + |ψbad,3

i 〉.

2. There exists complex number a(i),3
MTYZD0D1Dbig

such that

|ψ
′good,3
i 〉 =

∑
M,T,Y,Z, (D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0 (M ),⊥∧D1 (T ),⊥

a(i),3
MTYZD0D1Dbig

|M,T〉 |Y 〉 |Z〉 ⊗ |D0, D1, Dbig〉

⊗ |D0(M)〉 |D1(T )〉 |D0(M) ⊕ D1(T )〉 ,

and

|ψ
good,3
i 〉 =

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0 (M ),⊥∧D1 (T ),⊥

a(i),3
MTYZD0D1Dbig

|M,T〉 |Y 〉 |Z〉 ⊗ |[D0, D1, Dbig]small〉

⊗ |D0(M)〉 |D1(T )〉 |D0(M) ⊕ D1(T )〉

hold, where (M,T ), Y , and Z correspond to A’s register to send queries to oracles, register to receive answers
from oracles, and register for offline computation, respectively.

3. For each database (D0, D1, Dbig) in |ψ
′good,3
i 〉 (resp., (D0, D1, Dsmall) in |ψgood,3

i 〉) with non-zero quantum ampli-
tude, |D0 | ≤ 2(i − 1) + 1, |D1 | ≤ 2(i − 1) + 1, and |Dbig | ≤ i (resp., |Dsmall | ≤ i).

4. |ψ
′bad,3
i 〉

 ≤
|ψ

′bad
i 〉

 +O
(√

i2

2n

)
and |ψ

bad,3
i 〉

 ≤
|ψ

bad
i 〉

 +O
(√

i2

2n

)
hold.

Proof. From Lemma 10, it follows that there exist vectors |ψ
′good,2
i 〉, |ψ

′bad,2
i 〉, |ψgood,2

i 〉, and |ψbad,2
i 〉 that satisfy the four

properties in Lemma 10.
Define |ψ

′good,3
i 〉 := ΠvalidRstOE fbig |ψ

′good,2
i 〉, |ψ

′bad,3
i 〉 := RstOE fbig · XOR · RstOE f1 · RstOE f0 |ψ

′
i 〉 − |ψ

′good,3
i 〉,

|ψ
good,3
i 〉 := ΠvalidRstOE fsmall |ψ

good,2
i 〉, and |ψbad,3

i 〉 := RstOE fsmall · XOR · RstOE f1 · RstOE f0 |ψi〉 − |ψ
good,3
i 〉. Then the

first property obviously holds. The second property immediately follows from Lemma 8 and the second property in
Lemma 105. The third property follows from the third property in Lemma 10. On the fourth property, we have

|ψ
bad,3
i 〉

 =
RstOE fsmall · XOR · RstOE f1 · RstOE f0 |ψi〉 − ΠvalidRstOE fsmall |ψ

good,2
i 〉


=

ΠvalidRstOE fsmall

(
|ψ

good,2
i 〉 + |ψbad,2

i 〉
)
− ΠvalidRstOE fsmall |ψ

good,2
i 〉



≤
|ψ

bad,2
i 〉

 ≤
|ψ

bad
i 〉

 +O *
,

√
i2

2n
+
-
.

Thus the fourth property holds for |ψbad,3
i 〉. The fourth property for |ψ

′bad,3
i 〉 can be shown in the same way. �

The next lemma shows how the states RstOE fbig · XOR · RstOE f1 · RstOE f0 |ψ
′
i 〉 and RstOE fsmall · XOR · RstOE f1 ·

RstOE f0 |ψi〉 change when RstOE∗f1 · XOR∗ acts on them.

Lemma 12 (Action of RstOE∗f1 · XOR∗). Suppose that there exist i and vectors |ψ
′good
j 〉, |ψ′badj 〉, |ψgood

j 〉, and |ψbad
j 〉 that

satisfy the four properties in Proposition 16 for j = 1, . . . , i. Then, there exist vectors |ψ
′good,4
i 〉, |ψ

′bad,4
i 〉, |ψgood,4

i 〉, and
|ψbad,4

i 〉 that satisfy the following properties.

1. RstOE∗f1 ·XOR∗ ·RstOE fbig ·XOR ·RstOE f1 ·RstOE f0 |ψ
′
i 〉 = |ψ

′good,4
i 〉+ |ψ

′bad,4
i 〉 and RstOE∗f1 ·XOR∗ ·RstOE fsmall ·

XOR · RstOE f1 · RstOE f0 |ψi〉 = |ψ
good,4
i 〉 + |ψbad,4

i 〉.

2. There exists complex number a(i),4
MTYZD0D1Dbig

such that

|ψ
′good,4
i 〉 =

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0 (M ),⊥

a(i),4
MTYZD0D1Dbig

|M,T〉 |Y 〉 |Z〉
⊗ |D0, D1, Dbig〉 ⊗ |D0(M)〉 ,

5Note that all the databases in |ψ
′good,3
i 〉 and |ψgood,3

i 〉 with non-zero quantum amplitude are good, by definition of good database and the first
property of Proposition 3 (the equations (3.12)–(3.15))
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and

|ψ
good,4
i 〉 =

∑
M,T,Y,Z, (D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0 (M ),⊥

a(i),4
MTYZD0D1Dbig

|M,T〉 |Y 〉 |Z〉
⊗ |[D0, D1, Dbig]small〉 ⊗ |D0(M)〉

hold, where (M,T ), Y , and Z correspond to A’s register to send queries to oracles, register to receive answers
from oracles, and register for offline computation, respectively.

3. For each database (D0, D1, Dbig) in |ψ
′good,4
i 〉 (resp., (D0, D1, Dsmall) in |ψgood,4

i 〉) with non-zero quantum ampli-
tude, |D0 | ≤ 2(i − 1) + 1, |D1 | ≤ 2i, and |Dbig | ≤ i (resp., |Dsmall | ≤ i).

4. |ψ
′bad,4
i 〉

 ≤
|ψ

′bad
i 〉

 +O
(√

i2

2n

)
and |ψ

bad,4
i 〉

 ≤
|ψ

bad
i 〉

 +O
(√

i2

2n

)
hold.

Proof. From Lemma 11, it follows that there exist vectors |ψ
′good,3
i 〉, |ψ

′bad,3
i 〉, |ψgood,3

i 〉, and |ψbad,3
i 〉 that satisfy the four

properties in Lemma 11.
Let Πprereg denote the projection onto the space that is spanned by the vectors corresponding to preregular states.

Note that, when we measure the states RstOE∗f1 · XOR∗ · RstOE fbig · XOR · RstOE f1 · RstOE f0 |ψ
′
i 〉 and RstOE∗f1 · XOR∗ ·

RstOE fsmall · XOR · RstOE f1 · RstOE f0 |ψi〉, we always obtain preregular states (see (5.15)–(5.18)).
Define |ψ

′good,4
i 〉 := ΠgoodΠpreregRstOE∗f1 · XOR∗ |ψ

′good,3
i 〉, |ψ

′bad,4
i 〉 := RstOE∗f1 · XOR∗ · RstOE fbig · XOR · RstOE f1 ·

RstOE f0 |ψ
′
i 〉− |ψ

′good,4
i 〉, |ψgood,4

i 〉 := ΠgoodΠpreregRstOE∗f1 ·XOR∗ |ψgood,3
i 〉, and |ψbad,4

i 〉 := RstOE∗f1 ·XOR∗ ·RstOE fsmall ·

XOR · RstOE f1 · RstOE f0 |ψi〉 − |ψ
good,4
i 〉. Then the first property obviously holds.

Since XOR∗ = XOR, by applying the first property of Proposition 3 ((3.12)–(3.15)), we have

ΠpreregRstOE∗f1XOR∗ |ψ
′good,3
i 〉 = ΠpreregRstOE∗f1

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0 (M ),⊥∧D1 (T ),⊥

a(i),3
MTYZD0D1Dbig

|M,T〉 |Y 〉 |Z〉
⊗ |D0, D1, Dbig〉 ⊗ |D0(M)〉 |D1(T )〉

= ΠpreregRstOE∗f1
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0 (M ),⊥∧D1 (T )=⊥

a(i),3
MTYZD0D1∪(T,α)Dbig

|M,T〉 |Y 〉 |Z〉
⊗ |D0, D1 ∪ (T, α), Dbig〉 ⊗ |D0(M)〉 |α〉

=
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0 (M ),⊥∧D1 (T )=⊥

a(i),3
MTYZD0D1∪(T,α)Dbig

|M,T〉 |Y 〉 |Z〉
⊗ |D0, D1 ∪ (T, α), Dbig〉 ⊗ |D0(M)〉

+
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0 (M ),⊥∧D1 (T )=⊥

1
√

2n
a(i),3
MTYZD0D1∪(T,α)Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0〉
*.
,
|D1〉 −

∑
γ

1
√

2n
|D1 ∪ (T, γ)〉+/

-
|Dbig〉

⊗ |D0(M)〉

−
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0 (M ),⊥∧D1 (T )=⊥

1
2n

a(i),3
MTYZD0D1∪(T,α)Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0, D1 ∪ (T, α), Dbig〉 ⊗ |D0(M)〉

+
1

23n/2

∑
M,T,Y,Z,α, (D0,D1,Dbig);

(D0,D1∪(T,α),Dbig):valid and good
D0 (M ),⊥∧D1 (T )=⊥

a(i),3
MTYZD0D1∪(T,α)Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0〉 *
,
2
∑
δ

1
√

2n
|D1 ∪ (T, δ)〉 − |D1〉+

-
|Dbig〉

⊗ |D0(M)〉 .
(5.43)
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Similarly,

ΠpreregRstOE∗f1XOR∗ |ψgood,3
i 〉 =

∑
M,T,Y,Z,α, (D0,D1,Dbig);

(D0,D1∪(T,α),Dbig):valid and good
D0 (M ),⊥∧D1 (T )=⊥

a(i),3
MTYZD0D1∪(T,α)Dbig

|M,T〉 |Y 〉 |Z〉
⊗ |D0, D1 ∪ (T, α), [Dbig]small〉 ⊗ |D0(M)〉

(5.44)

+
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0 (M ),⊥∧D1 (T )=⊥

1
√

2n
a(i),3
MTYZD0D1∪(T,α)Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0〉
*.
,
|D1〉 −

∑
γ

1
√

2n
|D1 ∪ (T, γ)〉+/

-
|[Dbig]small〉

⊗ |D0(M)〉
(5.45)

−
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0 (M ),⊥∧D1 (T )=⊥

1
2n

a(i),3
MTYZD0D1∪(T,α)Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0, D1 ∪ (T, α), [Dbig]small〉 ⊗ |D0(M)〉

(5.46)

+
1

23n/2

∑
M,T,Y,Z,α, (D0,D1,Dbig);

(D0,D1∪(T,α),Dbig):valid and good
D0 (M ),⊥∧D1 (T )=⊥

a(i),3
MTYZD0D1∪(T,α)Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0〉 *
,
2
∑
δ

1
√

2n
|D1 ∪ (T, δ)〉 − |D1〉+

-
|[Dbig]small〉

⊗ |D0(M)〉
(5.47)

holds. Now, the second and third properties follows from the second and third properties of Lemma 11 and the equations
(5.43)–(5.47).

Let |(5.44)〉 , . . . , |(5.47)〉 denote the terms (5.44)–(5.47), respectively. Then

Πbad |(5.44)〉 = Πbad |(5.46)〉 = 0 (5.48)

since all the databases in (5.44) and (5.46) are good.
If a tuple (T, (D0, D1, Dbig)) satisfies that D1(T ) = ⊥ and (D0, D1, Dbig) is bad, then the number of α such that

1. (D0, D1 ∪ (T, α), Dbig) is good, and

2. there exists M ′ such that D0(M ′) , ⊥ and [Dbig]small(D0(M ′) ⊕ α) , ⊥

is at most |D0 | · |Dbig | ≤ 2i2. In addition, if a tuple (T, (D0, D1, Dbig)) satisfies that D1(T ) = ⊥ and (D0, D1, Dbig) is
bad, then there does not exist α such that

1. (D0, D1 ∪ (T, α), Dbig) is good, and

2. there does not exist M ′ such that D0(M ′) , ⊥ and [Dbig]small(D0(M ′) ⊕ α) , ⊥.

Therefore,



Πbad
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0 (M ),⊥∧D1 (T )=⊥

1
√

2n
a(i),3
MTYZD0D1∪(T,α)Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0, D1, [Dbig]small〉 ⊗ |D0(M)〉



2

=



∑
M,T,Y,Z,α, (D0,D1,Dbig);

(D0,D1,Dbig): bad
(D0,D1∪(T,α),Dbig):valid and good

D0 (M ),⊥∧D1 (T )=⊥
∃M′s.t.D0 (M′),⊥∧[Dbig]small (D0 (M′)⊕α),⊥

1
√

2n
a(i),3
MTYZD0D1∪(T,α)Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0, D1, [Dbig]small〉 ⊗ |D0(M)〉



2
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=
∑

M,T,Y,Z, (D0,D1,Dbig);
(D0,D1,Dbig): bad

D0 (M ),⊥∧D1 (T )=⊥

1
2n

�������������

∑
α;

(D0,D1∪(T,α),Dbig):good
∃M′s.t.D0 (M′),⊥∧[Dbig]small (D0 (M′)⊕α),⊥

a(i),3
MTYZD0D1∪(T,α)Dbig

�������������

2

≤
∑

M,T,Y,Z, (D0,D1,Dbig);
(D0,D1,Dbig): bad

D0 (M ),⊥∧D1 (T )=⊥

2i2

2n
∑
α;

(D0,D1∪(T,α),Dbig):good
∃M′s.t.D0 (M′),⊥∧[Dbig]small (D0 (M′)⊕α),⊥

����a
(i),3
MTYZD0D1∪(T,α)Dbig

����
2

≤ O
(

i2

2n

)
(5.49)

holds.
In addition, if a tuple (T, (D0, D1, Dbig)) satisfies that D1(T ) = ⊥ and (D0, D1∪ (T, γ), Dbig) is bad, then the number

of α such that

1. (D0, D1 ∪ (T, α), Dbig) is good, and

2. there exists M ′ such that D0(M ′) , ⊥ and [Dbig]small(D0(M ′) ⊕ α) , ⊥

is at most |D0 | · |Dbig | ≤ 2i2. Therefore,



Πbad
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0 (M ),⊥∧D1 (T )=⊥
∃M′s.t.D0 (M′),⊥∧[Dbig]small (D0 (M′)⊕α),⊥

1
√

2n
a(i),3
MTYZD0D1∪(T,α)Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0〉
*.
,

∑
γ

1
√

2n
|D1 ∪ (T, γ)〉+/

-
|[Dbig]small〉

⊗ |D0(M)〉



2

=



∑
M,T,Y,Z,α,γ, (D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):good
D0 (M ),⊥∧D1 (T )=⊥

(D0,D1∪(T,γ),Dbig): bad
∃M′s.t.D0 (M′),⊥∧[Dbig]small (D0 (M′)⊕α),⊥

1
2n

a(i),3
MTYZD0D1∪(T,α)Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0, D1 ∪ (T, γ), [Dbig]small〉 ⊗ |D0(M)〉



2

=
∑

M,T,Y,Z,γ, (D0,D1,Dbig);
(D0,D1∪(T,γ),Dbig): bad
D0 (M ),⊥∧D1 (T )=⊥

1
22n

�������������

∑
α;

(D0,D1∪(T,α),Dbig):good
∃M′s.t.D0 (M′),⊥∧[Dbig]small (D0 (M′)⊕α),⊥

a(i),3
MTYZD0D1∪(T,α)Dbig

�������������

2

≤
∑

M,T,Y,Z,γ, (D0,D1,Dbig);
(D0,D1∪(T,γ),Dbig): bad
D0 (M ),⊥∧D1 (T )=⊥

2i2

22n

∑
α;

(D0,D1∪(T,α),Dbig):good
∃M′s.t.D0 (M′),⊥∧[Dbig]small (D0 (M′)⊕α),⊥

����a
(i),3
MTYZD0D1∪(T,α)Dbig

����
2

≤
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):good
D0 (M ),⊥∧D1 (T )=⊥

∃M′s.t.D0 (M′),⊥∧[Dbig]small (D0 (M′)⊕α),⊥

2i2

2n
����a

(i),3
MTYZD0D1∪(T,α)Dbig

����
2

≤ O
(

i2

2n

)
(5.50)
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holds. Moreover, if a tuple (T, (D0, D1 ∪ (T, α), Dbig)) satisfies

1. D1(T ) = ⊥ and (D0, D1 ∪ (T, α), Dbig) is good, and

2. there does not exist M ′ such that D0(M ′) , ⊥ and [Dbig]small(D0(M ′) ⊕ α) , ⊥,

then the number of γ such that (D0, D1 ∪ (T, γ), Dbig) becomes bad is at most |D0 | · |Dbig | ≤ 2i2. Therefore,



Πbad
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0 (M ),⊥∧D1 (T )=⊥
@M′s.t.D0 (M′),⊥∧[Dbig]small (D0 (M′)⊕α),⊥

1
√

2n
a(i),3
MTYZD0D1∪(T,α)Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0〉
*.
,

∑
γ

1
√

2n
|D1 ∪ (T, γ)〉+/

-
|[Dbig]small〉

⊗ |D0(M)〉



2

=



∑
M,T,Y,Z,α,γ, (D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):good
D0 (M ),⊥∧D1 (T )=⊥

(D0,D1∪(T,γ),Dbig): bad
@M′s.t.D0 (M′),⊥∧[Dbig]small (D0 (M′)⊕α),⊥

1
2n

a(i),3
MTYZD0D1∪(T,α)Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0, D1 ∪ (T, γ), [Dbig]small〉 ⊗ |D0(M)〉



2

=
∑

M,T,Y,Z,γ, (D0,D1,Dbig);
(D0,D1∪(T,γ),Dbig): bad
D0 (M ),⊥∧D1 (T )=⊥

�������������

∑
α;

(D0,D1∪(T,α),Dbig):good
@M′s.t.D0 (M′),⊥∧[Dbig]small (D0 (M′)⊕α),⊥

a(i),3
MTYZD0D1∪(T,α)Dbig

2n

�������������

2

≤
∑

M,T,Y,Z,γ, (D0,D1,Dbig);
(D0,D1∪(T,γ),Dbig): bad
D0 (M ),⊥∧D1 (T )=⊥

∑
α;

(D0,D1∪(T,α),Dbig):good
@M′s.t.D0 (M′),⊥∧[Dbig]small (D0 (M′)⊕α),⊥

����a
(i),3
MTYZD0D1∪(T,α)Dbig

����
2

2n

=
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):good
D0 (M ),⊥∧D1 (T )=⊥

@M′s.t.D0 (M′),⊥∧[Dbig]small (D0 (M′)⊕α),⊥

����a
(i),3
MTYZD0D1∪(T,α)Dbig

����
2

·

���
{
γ

���(D0, D1 ∪ (T, γ), Dbig) is bad
}���

2n

≤ O
(

i2

2n

)
(5.51)

holds. From (5.50) and (5.51),


Πbad
∑

M,T,Y,Z,α, (D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0 (M ),⊥∧D1 (T )=⊥

1
√

2n
a(i),3
MTYZD0D1∪(T,α)Dbig

|M,T〉 |Y 〉 |Z〉

⊗ |D0〉
*.
,

∑
γ

1
√

2n
|D1 ∪ (T, γ)〉+/

-
|[Dbig]small〉

⊗ |D0(M)〉



2

≤ O
(

i2

2n

)
(5.52)
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follows.
Since (5.49) and (5.52) hold, we have

‖Πbad |(5.45)〉‖ ≤ O *
,

√
i2

2n
+
-
, ‖Πbad |(5.47)〉‖ ≤ O *

,

√
i2

2n
+
-
. (5.53)

Therefore,
ΠbadΠpreregRstOE∗f1XOR∗ |ψgood,3

i 〉
 ≤ O *

,

√
i2

2n
+
-

follows from (5.44)–(5.47), and (5.48) and (5.53). Thus we have
|ψ

bad,4
i 〉

 =
RstOE∗f1 · XOR∗ · RstOE fbig · XOR · RstOE f1 · RstOE f0 |ψi〉 − |ψ

good,4
i 〉


=

ΠpreregRstOE∗f1 · XOR∗
(
|ψ

good,3
i 〉 + |ψbad,3

i 〉
)
− ΠgoodΠpreregRstOE∗f1XOR∗ |ψgood,3

i 〉


≤
ΠbadΠpreregRstOE∗f1 · XOR∗ |ψgood,3

i 〉
 +

|ψ
bad,3
i 〉



≤
|ψ

bad,3
i 〉

 +O *
,

√
i2

2n
+
-
≤

|ψ
bad
i 〉

 +O *
,

√
i2

2n
+
-

which implies that the fourth property for |ψbad,4
i 〉 holds. The fourth property for |ψ

′bad,4
i 〉 can be shown in the same

way. �

Proof of Proposition 16. We prove the proposition by induction on i. The claim obviously holds when i = 1 by setting
|ψ
′bad
1 〉 = 0 and |ψbad

1 〉 = 0.
Suppose that the claim holds for i = 1, . . . , k for some k. Then, by Lemma 9, Lemma 10, Lemma 11, and

Lemma 12, there exist vectors |ψ
′good,4
k

〉, |ψ
′bad,4
k

〉, |ψgood,4
k

〉, and |ψbad,4
k
〉 that satisfy the first, second, and third

properties in Lemma 12, and

|ψ
′bad,4
k

〉
 ≤

|ψ
′bad
k 〉

 +O *
,

√
k2

2n
+
-
,

|ψ
bad,4
k
〉
 ≤

|ψ
bad
k 〉

 +O *
,

√
k2

2n
+
-

(5.54)

hold. Moreover, in the same way as we showed Lemma 12, we can show that there exist vectors |ψ
′good
k+1 〉, |ψ

′bad
k+1 〉,

|ψ
good
k+1 〉, and |ψ

bad
k+1〉 that satisfy the first, second, and third properties in Proposition 16, and

|ψ
′bad
k+1 〉

 ≤
|ψ

′bad,4
k

〉
 +O *

,

√
k2

2n
+
-
,

|ψ
bad
k+1〉

 ≤
|ψ

bad,4
k
〉
 +O *

,

√
k2

2n
+
-

(5.55)

hold6. From (5.54) and (5.55), it follows that |ψ
′good
k+1 〉, |ψ

′bad
k+1 〉, |ψ

good
k+1 〉, and |ψ

bad
k+1〉 also satisfy the fourth property of

Proposition 16. Therefore the claim of Proposition 16 also holds for i = k + 1, which completes the proof. �

Now we can show Proposition 14.

Proof of Proposition 14. Since FSFbig is completely indistinguishable from a random function, we have that

AdvqPRF
FSFsmall

(A) = Advdist
FSFsmall,FSFbig

(A)

holds. In addition, since Proposition 16 holds, by applying Proposition 15, we obtain

Advdist
FSFsmall,FSFbig

(A) ≤
∑

1≤i≤q
O *

,

√
i2

2n
+
-
+

∑
1≤i≤q

O *
,

√
i2

2n
+
-
≤ O *

,

√
q4

2n
+
-
, (5.56)

which completes the proof. �

5.2.6 Finishing the Proof of Theorem 11
Theorem 11 immediately follows from Proposition 13 and Proposition 14.

6RstOE∗
f1
XOR∗ in the proof of Lemma 12 corresponds toUkRstOE∗

f0
in this proof. Uk is the unitary operator that corresponds to A’s offline

computation after the k-th query.
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Chapter 6

Tight Quantum Security Bound of HMAC
and NMAC in the QROM

This chapter contributes to understanding (post-)quantum security of symmetric-key cryptography mainly from the
practical perspective. HMAC and NMAC are the most basic and important construction to convert Merkle-Damgård
hash functions into PRFs. There already exists a previous work on quantum security of HMAC and NMAC [SY17]
in the standard model, but it guarantees the security only up to O(2n/5) or O(2n/8) quantum queries in the QROM.
This chapter proves that O(2n/3) is the tight quantum security bound of HMAC and NMAC in the QROM (for short
messages). The gap between O(2n/3) and O(2n/5) (or O(2n/8)) is significant in practical use cases. The result of this
chapter shows that we can achieve a highly quantum-secure PRF and MAC from a hash function (or, a compression
function of fixed input-output length) by using HMAC and NMAC. See also Section 1.4 for a more detailed overview,
and Section 1.7 for the relationship of the results in this chapter with those in other chapters.

The organization of the chapter is as follows. Section 6.1 discusses about the security bound given in the previous
work [SY17]. Section 6.2 provides a technical overview of our security proofs. Section 6.3 introduces a few technical
lemmas that are used in later sections. Section 6.4 proves a proposition that is the technically hardest part in our proofs.
Section 6.5 provides the security proofs of HMAC and NMAC by using the result of Section 6.4. Note that this chapter
focuses on information-theoretic adversaries.

6.1 On the Security Bound Given in [SY17]
This section explains why the result in [SY17] guarantees security of NMAC up to O(2n/8) or O(2n/5) quantum queries
when the compression function is ideally random. (Almost the same arguments apply to HMAC.)

We can reasonably deduce that the security is guaranteed up to O(2n/8) quantum queries, and have the bound
O(2n/5) instead of O(2n/8) if we assume a conjecture.

First, we describe the original result on NMAC in the standard model (under the assumption that the compression
function is a qPRF), and then translate it into the corresponding claim in the quantum random oracle model where the
compression function is a random oracle.

6.1.0.1 The Original Result on NMAC

Let f : {0, 1}m × {0, 1}n → {0, 1}n be a function, and for each K ∈ {0, 1}n let fK denote the function fK (x) = f (x | |K ).
For an adversary A and the keyed function fK , define the qPRF advantage under random leakage by

AdvqPRF-rl
fK

(A) := ���Pr
[
1← A fK ,H (H (K ))

]
− Pr

[
1← Aρ,H (w)

] ��� , (6.1)

where ρ : {0, 1}m → {0, 1}n and H : {0, 1}n → {0, 1}n are random functions, and w
$
←− {0, 1}n.

In the previous work, Song and Yun showed the following proposition.

Proposition 17 (Theorem 5.2 in [SY17]). For any adversary A that makes at most Q quantum queries to NMAC or a
random function, where the length of each message is upper bounded by m · `, we can construct adversaries Ad and
Arl such that

AdvqPRF
NMAC f

K1,K2

(A) ≤ AdvqPRF
fK

(Ad) + 34(` + 1)
√

Q3 · AdvqPRF-rl
fK

(Arl), (6.2)
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where Ad makes at most Q quantum queries to fK or a random function, and Arl makes at most 4Q queries to fK or
a random function and at most 6Q queries to H .

6.1.0.2 Translation of Proposition 17 into the QROM

Now, suppose that f is a random oracle. Then, similarly to (6.1), we can define the qPRF advantage under random
leakage by

AdvqPRF-rl
fK

(A) := ���Pr
[
1← A fK , f ,H (H (K ))

]
− Pr

[
1← Aρ, f ,H (w)

] ��� , (6.3)

where ρ : {0, 1}m → {0, 1}n and H : {0, 1}n → {0, 1}n are random functions that are independent of f .
In what follows, let us assume m = n for simplicity. Then, the proposition in the QROM (where the compression

function f is a quantum random oracle) that correspond to Proposition 17 would be like the following proposition,
though we do not provide a formal proof.

Proposition 18. For any adversary A that makes at most Q quantum queries to NMAC or a random function and the
quantum random oracle f , where the length of each message is upper bounded by m · `, we can construct adversaries
Ad and Arl such that

AdvqPRF
NMAC f

K1,K2

(A) ≤ AdvqPRF
fK

(Ad) +O
(√
`2Q3 · AdvqPRF-rl

fK
(Arl)

)
, (6.4)

where Ad makes at most O(Q) quantum queries to fK or a random function and at most O(Q) quantum queries to
the random oracle f , and Arl makes at most O(Q) quantum queries to fK or a random function and at most O(Q)
quantum queries to the random oracles f and H .

Let AdvqPRF
fK

(Q) := maxA AdvqPRF
fK

(A) and AdvqPRF-rl
fK

(Q) := maxA AdvqPRF-rl
fK

(A), where the maximum is taken
over all adversaries that make at most Q queries to each oracle. Then,

AdvqPRF
fK

(Q) ≤ AdvqPRF-rl
fK

(Q) (6.5)

apparently holds since some information on K is leaked via H (when A runs relative to fK ).
Now, let us assume

AdvqPRF-rl
fK

(Q) = AdvqPRF
fK

(Q),

which may overestimate (but never underestimate) the security claim shown in Proposition 18. Then

AdvqPRF-rl
fK

(Q) = AdvqPRF
fK

(Q) ≤ O *
,

√
Q2

2n
+
-

(6.6)

holds by Lemma 13. Therefore,

AdvqPRF
NMAC f

K1,K2

(A) ≤ O *
,

4

√
`4 · Q8

2n
+
-
. (6.7)

follows from (6.4). When ` = O(1), the inequality (6.7) guarantees the security of NMAC only up to O(2n/8) queries.

6.1.0.3 The Bound O(2n/5) Based on a Conjecture

The final bound (6.7) is based on Lemma 13, which provides the current best qPRF security bound of fK in the QROM
as far as we know. However, we are not sure if the bound is tight because we do not know any distinguishing attack that
matches the bound of Lemma 13.

If we assume the following conjecture instead of (6.6), we obtain the bound O(2n/5) instead of O(2n/8).

Conjecture 1. It holds that AdvqPRF-rl
fK

(Q) = AdvqPRF
fK

(Q) ≤ O
(
Q2/2n

)
.1

If we assume this, from (6.4) we obtain

AdvqPRF
NMAC f

K1,K2

(A) ≤ O *
,

√
`2 · Q5

2n
+
-

(6.8)

instead of (6.7). When ` = O(1), the inequality (6.8) guarantees the security of NMAC only up to O(2n/5) queries.

1This bound matches the bound by the Grover search.
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6.2 Technical Overview
Let h : {0, 1}m+n → {0, 1}n be a quantum random oracle. The technically hardest part to prove the security bound of
HMAC and NMAC is to show the indistinguishability of the function Fh

1 (u, v) := h(v, f (u)) from a random function,
where u ∈ {0, 1}n, v ∈ {0, 1}m, and f : {0, 1}n → {0, 1}n is a random function that is independent of h. (Adversaries
have a direct oracle access to the quantum random oracle h, but only indirect access to f . That is, adversaries can query
to f only through queries to Fh

1 , and cannot observe the output values of f . See also Fig. 6.1.) Once we show the
indistinguishability of Fh

1 , the remaining proofs can be done with simpler proof techniques. It turns out that previous

`
hf̀

𝑢 𝑣

𝐹1
ℎ 𝑢, 𝑣

`

g

f̀

𝑢 𝑣

𝐹2 𝑢, 𝑣

𝑛 𝑚 𝑛 𝑚

𝑛 𝑛 𝑛 𝑛

Figure 6.1: Fh
1 and F2. h is a quantum random oracle that adversaries can directly access. f and g are random functions

that are independent from h.

techniques cannot be directly used to prove the indistinguishability of Fh
1 . Thus we introduce a technique which we call

equivalent databases.
Recall that we denote the distinguishing advantage of an adversaryA between (pair of) oracles (Oh

1 , h) and (O2, h)
by Advdist

(Oh
1 ,h), (O2,h)

(A), where h is a quantum random oracle and Oh
1 depends on h. Let RF be a random function that

is independent of h. As we described above, the technically hardest part to show the tight security bound of HMAC
and NMAC is to show the following proposition.

Proposition 19 (Technically hardest proposition to show, informal). If A makes at most q queries to each oracle,
Advdist

(Fh
1 ,h),(RF,h)

≤ O(
√

q3/2n) holds.

Let F2 be the function defined by F2(u, v) := g(u, v, f (u)), where g : {0, 1}n × {0, 1}m × {0, 1}n → {0, 1}n is another
random function (see also Fig. 6.1). Then, since g is a random function, Advdist

(Fh
1 ,h),(RF,h)

(A) = Advdist
(Fh

1 ,h), (F2,h)
(A)

holds. In what follows, we present an overview of how we show

Advdist
(Fh

1 ,h),(F2,h)
(A) ≤ O

(√
q3/2n

)
, (6.9)

instead of directly showing Proposition 19. 2 For bit strings x and y, we identify the concatenation x | |y and the pair
(x, y).

Following usual terminology on provable security in symmetric-key cryptology, we call (direct) queries to h offline
queries because h is an ideal model of a public function that adversaries can compute offline. In addition, we call
queries to Fh

1 and F2 online queries because the oracles of Fh
1 and F2 model the keyed functions that adversaries can

compute only by making online queries.

6.2.1 Classical Proof Intuitions
If our goal were to show the indistinguishability of Fh

1 and F2 in the classical setting, we could show it based on the
following idea by using the lazy sampling technique to f , g, and h:

If A cannot guess outputs of f , and outputs of f do not collide, then the outputs of Fh
1 and F2 seem

completely random and indistinguishable.

More precisely, a (classical) adversary A cannot distinguish Fh
1 and F2 as long as the following two bad events hit and

coll do not happen.3

2We consider F2 instead of RF so that there exists a useful correspondence between “good” databases for Fh
1 and those for F2, which we will

elaborate later.
3We use the symbols u and ζ to denote n-bit strings and v to denote an m-bit string.
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hit: A succeeds in guessing a previous output of f and queries it to h. That is, A has queried u| |v′ to the online
keyed oracle (Fh

1 or F2) before, and now A queries v | | f (u) to h (for some v ∈ {0, 1}m).

coll: A new output of f (which is sampled during an online query) happens to collide with either of (a) a previous
output of f , or (b) the least significant n-bit ζ of a previous offline query v | |ζ to h.

Our proof for the classical indistinguishability would be as follows: First, we show that Fh
1 and F2 are completely

indistinguishable as long as hit and coll do not happen. Second, we show that Pr[hit] and Pr[coll] are small. Let
colli denote the event that coll happens at the i-th query. Then, by using the randomness of outputs of f , we
can show Pr [colli] ≤ O(i/2n) for each i, which implies that Pr [coll] ≤

∑
1≤i≤q Pr [colli] ≤

∑
1≤i≤q O(i/2n) =

O(q2/2n). Similarly, Pr [hit] ≤ O(q2/2n) can be shown. (Actually there exists a qualitative difference between the
proof for Pr [coll] ≤ O(q2/2n) and that for Pr [hit] ≤ O(q2/2n), which will be explained later). Hence we can show
Advdist

(Fh
1 ,h), (F2,h)

(A) ≤ Pr [coll] + Pr [hit] ≤ O(q2/2n) in the classical setting.

6.2.2 How to Show Quantum Indistinguishability?
When we show the quantum indistinguishability of Fh

1 and F2, it is natural to combine the above classical idea with
some quantum proof techniques developed in previous works. Indeed, our first idea toward a quantum proof is to
combine the above classical idea with a quantum technique used in Chapter 4 and Chapter 5. 4 However, actually it
turns out that they cannot be simply combined. The issue is attributed to our situation where we have to deal with the
bad event hit that “A’s offline query to h collides with a previous output of f in the online oracle”.

Below, we explain (1) an overview of the quantum proof technique in Chapter 4 and Chapter 5, (2) what kind of
issue arises if we combine the above classical idea with the previous quantum technique, and that (3) we can solve the
issue by introducing a new proof technique which we name equivalent databases.

6.2.3 Proof Technique in Chapter 4 and Chapter 5
Roughly speaking, we showed quantum oracle indistinguishability of certain two oracles in Chapter 4 and Chapter 5 as
follows.

1. Suppose that random functions from which the oracles are built (in our case, f , g, and h) are implemented by
using RstOE so that we can use intuitions of classical lazy sampling in quantum proofs to some extent (let D f ,
Dg, and Dh denote databases associated with RstOE for f , g, and h, respectively, which correspond to transcripts
of queries in the classical setting).

2. Based on classical proof ideas of using good and bad events, define the notion of good and bad for tuples of
databases (in our case, (D f , Dh) for Fh

1 and (D f , Dg, Dh) for F2) in such a way that

(a) There exists a one-to-one correspondence between good databases for one oracle (in our case, good databases
(D f , Dh) for Fh

1 ) and good databases for the other oracle (in our case, good databases (D f , Dg, Dh) for F2).

(b) The behavior of one oracle (in our case, Fh
1 ) on a good database is the same as that of the other oracle (in

our case, F2) on the corresponding good database.

3. By using (a) and (b), show that the oracles (in our case, the pairs of the oracles (Fh
1 , h) and (F2, h)) are completely

indistinguishable as long as databases are good.

4. Show that the probability (in some sense) that good databases change to bad databases is very small at each query.

Note that, unlike the classical setting, even if the record “x has been queried to f and responded with y” is stored in a
database D f for f , there is a possibility that the record will be overwritten as “x has not been queried to f before”, or
“x has been queried to f and responded with y′” for some y′ such that y , y′. Hence it is not necessarily trivial how
to define good and bad databases in such a way that we can formally prove both of (a) and (b) hold.

Next, we explain what kind of issue happens when we apply the above idea to our situation. In short, the issue lies
in the last one of the above four steps.

4 In Zhandry’s paper that introduced the compressed oracle technique, quantum indifferentiability of the fixed-input-length Merkle-Damgåd
construction is proved [Zha19]. Note that the variable-input-length Merkle-Damgåd construction that is used in HMAC and NMAC is not
indifferentiable in the random oracle model even in the classical setting [CDMP05]. In addition, the security bound of the indifferentiability is proved
up to O(2n/4) (but not O(2n/3)) quantum queries in [Zha19]. Thus, we start from the proof technique used in Chapter 4 and Chapter 5 instead
of [Zha19].
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6.2.4 An Issue with Our Situation
In Chapter 4 and Chapter 5, each adversary can access to only a single keyed oracle. Roughly speaking, a good database
changes to bad only when a fresh value x is (indirectly) queried to a random function RF, and the newly sampled value
y := RF(x) happens to collide with an existing record in a database (i.e., a bad event that correspond to coll in our
situation).

On the other hand, in our situation, a good database also changes to bad when an adversary succeeds to query v | |ζ
to h such that ζ collides with a previous output of f (i.e., hit occurs).

This difference causes an issue to prove that the “bad” probability is small. Unlike the lazy sampling that always
chooses values uniformly at random, (quantum) adversaries can choose offline (quantum) queries to h arbitrarily and
adaptively. Thus, an adversary may have strong ability to succeed to cause hit, even if the probability of coll is small.

Note that how to deal with adaptive queries to offline queries is not an easy issue even in the classical setting. To
reduce the arguments on adaptive queries into those on non-adaptive arguments, sophisticated proof techniques such as
the coefficients H technique [Pat08] are usually used.

6.2.5 How to Solve the Issue
Our key intuition to solve the issue is, for arbitrary good database (D f , Dh) for Fh

1 that an adversary A is trying to
change to be bad, there would be sufficiently many good databases (D′f , D′

h
) thatA cannot distinguish from (D f , Dh).

Suppose that (I)A is running relative to Fh
1 and h, and has made (i − 1) queries in total, (II) both of the bad events

coll and hit have not happened, and (III) now A chooses a bit string ṽ | | ζ̃ to query to h, trying to cause hit at the i-th
query.

Let D f and Dh be the current databases for f and h (before the i-th query). Then there exist u1, . . . , us, α1, . . . ,
αs ∈ {0, 1}n (s ≤ i − 1) such that D f = ((u1, α1), . . . , (us, αs)). Intuitively, α j is equal to f (u j ). Since bad events have
not happened yet, D f does not contain any collision (i.e., αi , α j for i , j).

Let hiti denote the event that hit occurs at the i-th query (to h). Then, hiti occurs when A successfully chooses a
value ṽ | | ζ̃ such that ζ̃ = α j holds for some j. Our current goal is to prove that Pr [hiti] is very small.

To achieve this goal, we show that Pr
[
hiti

���A chooses ṽ | | ζ̃
]
is very small for arbitrary ṽ | | ζ̃ , by focusing on the

freedom of the choices of the values f (u1) = α1, . . . , f (us) = αs . Intuitively, even if the value α j (= f (u j )) in the
element (u j, α j ) ∈ D f is replaced with another value α′j , A does not notice since A does not observe output values of
f . This means that the choices of the values f (u1) = α1, . . . , f (u) = αs have some degree of freedom, even afterA has
chosen which value ṽ | | ζ̃ to query to h. We use this degree of freedom to bound the probability Pr

[
hiti

���A chooses ṽ | | ζ̃
]

(actually we will show a stronger result).
To provide a proof based on the above intuition, we introduce the notion of equivalent databases as follows.

Definition 3 (Equivalent database, informal). A (good) database (D′f , D′
h

) is said to be equivalent to (D f , Dh) if
|D′f | = |D f |, |D′h | = |Dh |, and (D′f , D′

h
) is equal to (D f , Dh) except for the choices of the output values of f .

We present an example to illustrate the intuition on equivalent databases. Let D f := ((u1, α1), (u2, α2)) and
Dh := ((v1 | |α1,w1), (v (1)

2 | |α2,w
(1)
2 ), (v (2)

2 | |α2,w
(2)
2 ), (v3 | |ζ3,w3)). This corresponds to the situation where u1 | |v1,

u2 | |v
(1)
2 , u2 | |v

(2)
2 have been queried to Fh

1 , and v3 | |ζ3 has been queried to h. See also Fig. 6.2. The adversary observes
that Fh

1 (u1 | |v1) = w1, Fh
1 (u2 | |v

(1)
2 ) = w(1)

2 , Fh
1 (u2 | |v

(2)
2 ) = w(2)

2 , and h(v3 | |ζ3) = w3, but does not know the values
α1 = f (u1) and α2 = f (u2). Suppose α1, α2, ζ3 are distinct, which implies that (D f , Dh) is a good database. Then,
another good database (D′f , D′

h
) is equivalent to (D f , Dh) if and only if there exist α′1 and α′2 such that α′1, α

′
2, ζ3 are

distinct, D′f = ((u1, α
′
1), (u2, α

′
2)), and D′

h
= ((v1 | |α

′
1,w1), (v (1)

2 | |α
′
2,w

(1)
2 ), (v (2)

2 | |α
′
2,w

(2)
2 ), (v3 | |ζ3,w3)).

`
hf̀𝑢1

𝑣1

𝑤1𝛼1?
`
hf̀𝑢2

𝑣2
(1)

𝑤2
1𝛼2?

`
hf̀𝑢2

𝑣2
(2)

𝑤2
2𝛼2?

`
h

𝑣3

𝑤3𝜁3

Figure 6.2: The situation that corresponds to the good database (D f , Dh). The adversary has no information on α1 and
α2 expect that α1, α2, ζ3 are distinct. We say that another good database (D′f , D′

h
) is equivalent to (D′f , D′

h
) if and only

if (D f , Dh) is equal to (D f , Dh) except for the choice of the values for α1 and α2.

90



Let Equiv(D f , Dh) be the set of good databases that are equivalent to (D f , Dh). Then, intuitively, the following
properties hold:

1. The probability that a database happens to become (D f , Dh) (after A made (i − 1) queries) is equal to the
probability that the database happens to become (D′f , D′

h
), for any (D′f , D′

h
) ∈ Equiv(D f , Dh).

2. The ratio between (I) the number of (D′f , D′
h

) ∈ Equiv(D f , Dh) that leads to the bad event hiti (i.e., α j = ζ̃ for
some j) and (II) the size of the entire set Equiv(D f , Dh) is at most about ≈ |D f |/2n ≤ O(i/2n). 5

From the above two properties it follows that, for arbitrary ṽ | | ζ̃ and arbitrary good (D f , Dh),

Pr
[
hiti

���A chooses ṽ | | ζ̃ ∧ database is equivalent to (D f , Dh)
]
≤ O

(
i/2n

)
holds. This implies that Pr [hiti] ≤ O(i/2n).

The above explanations are in fact based on classical intuitions. To show they also work in the quantum setting, we
carefully analyze quantum amplitude (complex coefficients) of state vectors.

6.2.6 Finishing the Proof
Now we have Pr [hiti] ≤ O( i

2n ) in the quantum setting. We can also show Pr [colli] ≤ O( i
2n ) with the technique in

Chapter 4 and Chapter 5.
In the classical setting, the distinguishing advantage is upper bounded by Advdist

(Fh
1 ,h),(F2,h)

(A) ≤ Pr [hit]+Pr [coll] ≤∑
1≤i≤q Pr [hiti] +

∑
1≤i≤q Pr [colli] . On the other hand, roughly speaking, the quantum distinguishing advantage is

upper bounded by Advdist
(Fh

1 ,h),(F2,h)
(A) ≤

∑
1≤i≤q

√
Pr [hiti] +

∑
1≤i≤q

√
Pr [colli]. Therefore, we obtain the bound as

Advdist
(Fh

1 ,h), (F2,h)
(A) ≤

∑
1≤i≤q O

(√
i/2n

)
+

∑
1≤i≤q O

(√
i/2n

)
≤ O

(√
q3/2n

)
in the quantum setting, instead of the

classical bound O(q2/2n).
The intuition behind the notion of equivalent databases might seem simple or even trivial, though, the important

point is that we can provide a rigorous proof that the intuition actually works in the quantum setting through RstOE.
(Recall that it was unclear how to record quantum queries before the development of the compressed oracle technique.)

As we mentioned before, it is quite important to show the tight security bound in symmetric cryptology because
even the improvement from O(2n/5) (or O(2n/8)) to O(2n/3) has significant importance in the real world. Bad events
like hit that an adversary succeeds to guess an output of a random function often appear in classical provable security
for symmetric-key cryptosystems. To deal with such bad events when showing quantum tight security bounds, proof
techniques like our equivalent databases seem indispensable. We believe that our technique broadens the applicability
of quantum provable security in symmetric-key cryptology.

6.3 Some Technical Lemmas
Here we introduce two technical lemmas for later use.

Lemma 13 (Lemma 2.2 of [SXY18]). Let h : {0, 1}m+n → {0, 1}n be a quantum random oracle. For a random key
K ∈ {0, 1}k (k < m + n), define Fh

K : {0, 1}m+n−k → {0, 1}n by Fh
K (x) = h(x | |K ). Then, for each quantum adversary

A that makes at most qh quantum queries to h, AdvqPRF
Fh
K

(A) ≤ O
(
qh/2k/2

)
holds.

Lemma 14. Let h : {0, 1}m+n → {0, 1}n be a quantum random oracle, and k ≤ m. Let ∆ ∈ {0, 1}m and IV ∈ {0, 1}n be
public constants such that ∆ , 0m. Define ρh : {0, 1}k → {0, 1}2n by ρh (K ) = h(K | |0m−k | |IV ) | |h((K | |0m−k ⊕∆) | |IV ).
Then, for any quantum adversary A that makes at most qh quantum queries to h, AdvqPRG

ρh
(A) ≤ O

(
qh/2k/2

)
holds.

Lemma 14 can easily be shown by slightly modifying the proof of Lemma 13 (Lemma 2.2 in [SXY18]), but we
give a proof below for completeness.

5This holds due to the following reasoning. For simplicity, assume that nothing has been directly queried to h before, and D f has (i − 1) entries
(u1, α1), . . . , (ui−1, αi−1) (other cases can be shown similarly). Then |Equiv(D f , Dh ) | is equal to the number of choices of the tuple (α1, . . . , αi−1)
such that αj , αk for j , k. Hence |Equiv(D f , Dh ) | =

( 2n
i−1

)
. In addition, the number of (D′

f
, D′

h
) ∈ Equiv(D f , Dh ) such that αj = ζ̃ for some

j is (i − 1) ·
( 2n
i−2

)
. Thus the ratio is (i − 1) ·

( 2n
i−2

)
/
( 2n
i−1

)
=

(i−1)
(2n−i+2) ≤ O(i/2n ).
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6.3.1 Proof of Lemma 14
To show Lemma 14, we use the following lemma.

Lemma 15 (Lemma C.1 in [SY17]). For a bit string K ∈ {0, 1}k that is uniformly chosen at random, let g̃K : {0, 1}k →
{0, 1} be the function such that g̃K (x) = 1 if and only if x = K . In addition, let g̃⊥ : {0, 1}k → {0, 1} be the function
such that g̃⊥(x) = 0 for all x. Then, for a quantum adversary A that makes at most q quantum queries to g̃K or g̃⊥,

Advdist
gK ,g⊥

(A) ≤ O
( q

2k/2
)

(6.10)

holds.

First, we show that the lemma below follows from Lemma 15.

Lemma 16. Let∆ ∈ {0, 1}m be a public constant such that∆ , 0m and suppose that k ≤ m. Let grel(∆)
K : {0, 1}m → {0, 1}

be the function such that grel(∆)
K (x) = 1 if and only if x = K | |0m−k or x = (K | |0m−k )⊕∆ (K ∈ {0, 1}k is chosen uniformly

at random). In addition, let g⊥ : {0, 1}m → {0, 1} be the function such that g⊥(x) = 0 for all x. Then, for any quantum
adversary A that makes at most q quantum queries to grel(∆)

K or g⊥,

Advdist
grel(∆)
K ,g⊥

(A) ≤ O
( q

2k/2
)

(6.11)

holds.

Proof. We construct an adversary B to distinguish g̃K and g̃⊥ that makes at most O(q) queries from the adversary A
to distinguish grel(∆)

K and g⊥ as follows: B is given access to the quantum oracle of a Boolean function G (G = g̃K or
g̃⊥). First, B runs A. When A queries x to its oracle, B performs the following procedure and responds to A:

1. If k < m, and both of the least significant (m − k) bits of x (which we denote by [x]lsb(m−k)) and x ⊕ ∆ (which
we denote by [x ⊕ ∆]lsb(m−k)) are not equal to 0m−k , respond to A with 0.

2. If k = m, or [x]lsb(m−k) = 0m−k , or [x ⊕ ∆]lsb(m−k) = 0m−k , then:

(a) Set b1 ← 0 and b2 ← 0.
(b) If k = m or [x]lsb(m−k) = 0m−k , query the most significant k bits of x (which we denote by [x]msb(k)) to G,

and set b1 ← G([x]msb(k)).
(c) If k = m or [x ⊕ ∆]lsb(m−k) = 0m−k , query the first k bits of x ⊕ ∆ (which we denote by [x ⊕ ∆]msb(k)) to G,

and set b2 ← G([x ⊕ ∆]msb(k)).
(d) Respond to A with b1 ∨ b2.

Finally B returns A’s last output as its own output.
Then, B perfectly simulates grel(∆)

K or g⊥ depending on whether G = g̃K or g̃⊥, and B makes at most O(q) quantum
queries. Thus

Advdist
grel(∆)
K ,g⊥

(A) = Advdist
g̃K ,g̃⊥

(B) ≤ O
( q

2k/2
)

(6.12)

follows from Lemma 15. �

Next we show the following lemma.

Lemma 17. Let h : {0, 1}n+m → {0, 1}n be a quantum random oracle, and let k ≤ m. For a randomly chosen key
K ∈ {0, 1}k and a public constant ∆ ∈ {0, 1}m such that ∆ , 0m, define a keyed function Fh

K : {0, 1} × {0, 1}n → {0, 1}n
by, for each b ∈ {0, 1} and x ∈ {0, 1}n,

Fh
K (b, x) :=




h(K | |0m−k | |x) if b = 0,
h((K | |0m−k ⊕ ∆) | |x) if b = 1.

(6.13)

Then, for any quantum algorithm A that makes at most qh quantum queries to h,

AdvqPRF
Fh
K

(A) ≤ O
( qh

2k/2
)

(6.14)

holds.
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Proof. Let H0 : {0, 1} × {0, 1}n → {0, 1}n be a random function that is independent of h. In addition, let Hh,H0
1 :

{0, 1}m+n → {0, 1}n be a function defined by, for each α ∈ {0, 1}m and x ∈ {0, 1}n,

Hh,H0
1 (α | |x) :=




h(α | |x) if α , K | |0m−k and α , K | |0m−k ⊕ ∆,
H0(0, x) if α = K | |0m−k,
H0(1, x) if α = K | |0m−k ⊕ ∆.

(6.15)

Then the distribution of the functions (Fh
K, h) and the distribution of the functions (H0, Hh,H0

1 ) are the same. Thus

AdvqPRF
Fh
K

(A) = Advdist
(Fh

K ,h), (H0,h)
(A)

≤ Advdist
(Fh

K ,h), (H0,H
h,H0
1 )

(A) + Advdist
(H0,H

h,H0
1 ), (H0,h)

(A)

= Advdist
(H0,H

h,H0
1 ), (H0,h)

(A) (6.16)

holds.
We construct an adversary B to distinguish grel(∆)

K and g⊥ from the adversary A to distinguish (H0, Hh,H0
1 ) and

(H0, h) as follows: B is given access to the quantum random oracle of a Boolean function G (G = grel(∆)
K or g⊥). B

first samples random functions h′ : {0, 1}m+n → {0, 1}n and H ′0 : {0, 1} × {0, 1}n → {0, 1}n, and runs A. When A
makes a query to the first oracle (which is supposed to be H0), B responds by using H ′0. When A makes a query α | |x
(α ∈ {0, 1}m and x ∈ {0, 1}n) to the second oracle (which is supposed to be Hh,H0

1 or h), B runs the following procedure
and respond to A:

1. Query α to G.

2. If G(α) = 0, B responds to A with h′(α | |x).

3. If G(α) = 1 and [∆]lsb(m−k) , 0m−k , then

(a) If [α]lsb(m−k) = 0m−k , B responds to A with H ′0(0, x).

(b) If [α]lsb(m−k) , 0m−k , B responds to A with H ′0(1, x).

4. If G(α) = 1 and [∆]lsb(m−k) = 0m−k , then

(a) If α < α ⊕ ∆ (here we regard α and α ⊕ ∆ as integers in {0, . . . , 2k − 1}), B responds to A with H ′0(0, x).
(b) If α > α ⊕ ∆, B responds to A with H ′0(1, x).

Finally B returns A’s last output as its own output.
Then, B perfectly simulates (H0, Hh,H0

1 ) and (H0, h) depending on whether G is grel(∆)
K or g⊥, and B makes at most

O(qh) quantum queries. Thus

Advdist
(H0,H

h,H0
1 ),(H0,h)

(A) = Advdist
grel(∆)
K ,g⊥

(B) ≤ O
( qh

2k/2
)

(6.17)

follows from Lemma 16, which completes the proof. �

Now we show Lemma 14.

Proof of Lemma 14. Lemma 14 immediately follows from Lemma 17, since adversaries to distinguish ρh (K ) and a
random 2n-bit string can be regarded as special adversaries to distinguish Fh

K and a random function that query only
(0, IV ) and (1, IV ) to Fh

K (or the random function). �

6.4 Main Technical Proposition
The goal of this section is to show the following proposition, which is the technically hardest part to show quantum
security of HMAC and NMAC. Note that the proposition is a formal restatement of Proposition 19 in Section 6.2.
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Proposition 20. Let h : {0, 1}m+n → {0, 1}n be a quantum random oracle. Let f : {0, 1}n+m′ → {0, 1}n be a random
function, and Fh

1 : {0, 1}n+m′ × {0, 1}m → {0, 1}n be the function defined by Fh
1 (u, v) := h(v, f (u)). Let A be an

algorithm that runs relative to the quantum oracle of Fh
1 and the quantum random oracle h, or the quantum oracle of a

random function RF and the quantum random oracle h. Suppose thatA makes at most qh quantum queries to h and Q
quantum queries to Fh

1 or RF. Let q := max{Q, qh }, and suppose that q is in o(2n/3). Then

AdvqPRF
Fh

1
(A) ≤ O

(√
q3/2n

)
(6.18)

holds.

Recall that F2 is the function defined by F2(u, v) := g(u, v, f (u)), where g : {0, 1}n+m′ × {0, 1}m × {0, 1}n → {0, 1}n

is another random function (see Fig. 6.1). Then, since g is a random function, AdvqPRF
Fh

1
(A) = Advdist

(Fh
1 ,h), (F2,h)

(A)

holds. To simplify proofs, instead of directly showing (6.18), we show that Advdist
(Fh

1 ,h), (F2,h)
(A) ≤ O

(√
q3/2n

)
holds.

In addition, we give a proof for the case m′ = 0. The claims for m′ > 0 can be shown in the same way. We assume
that A makes queries to Fh

1 and h (or, F2 and h) in a sequential order and model the adversary and oracles as in
Section 2.4.2. In particular, by convention we assume that A’s (2i − 1)-th query is made to Fh

1 (or F2) and 2i-th query
is made to h for 1 ≤ i ≤ q. (For instance, A first queries to Fh

1 (or F2) and second queries to h.) We call queries to Fh
1

and F2 online queries and queries to h offline queries since, in practical settings, computations of h are done offline on
adversaries’ (quantum) computers.

We assume that the unitary operators to process queries to Fh
1 and F2 are implemented as follows:

Quantum oracle of Fh
1 .

1. Take |u, v〉 |y〉 as an input, where u, y ∈ {0, 1}n and v ∈ {0, 1}m.

2. Query u to f and obtain
|u, v〉 |y〉 ⊗ | f (u)〉 . (6.19)

3. Query (v, f (u)) to h and add the answer into the y register to obtain

|u, v〉 |y ⊕ Fh
1 (u, v)〉 ⊗ | f (u)〉 . (6.20)

4. Uncompute Step 2 to obtain |u, v〉 |y ⊕ Fh
1 (u, v)〉 .

We assume that the quantum oracle of F2 is implemented in the same way as Fh
1 , except that the query (v, f (u)) to h in

Step 3 is replaced with the query (u, v, f (u)) to g. See also Fig. 6.3.
We show the hardness of distinguishing Fh

1 and F2 by using the recording standard oracle with errors (RstOE): We
assume that the quantum oracles of f , g, and h are implemented by using RstOE (quantum queries are processed with
RstOE). Let RstOE f , RstOEg, and RstOEh be the recording standard oracle with errors for f , g, and h, respectively.
We use the symbols D f , Dg, and Dh to denote databases for f , g, and h, respectively. Then the unitary operator
OFh

1
(resp., OF2 ) to process queries to Fh

1 (resp., F2) can be decomposed as OFh
1
= RstOE∗f · RstOEh · RstOE f (resp.,

OF2 = RstOE∗f · RstOEg · RstOE f ). See also Fig. 6.3 for the intuition about which registers the different RstOEs act.

6.4.1 Good and Bad Databases
Here we introduce the notion of good and bad databases for Fh

1 and F2. When we use the symbols u, ζ, v,w, we assume
that u, ζ,w ∈ {0, 1}n and v ∈ {0, 1}m.

We say that a (pair of) valid databases (D f , Dh) for Fh
1 is good if and only if it satisfies the following property.

1. For each (u, ζ ) ∈ D f , there exist v ∈ {0, 1}m and w ∈ {0, 1}n such that ((v, ζ ),w) ∈ Dh .

2. For (u, ζ ) and (u′, ζ ′) in D f such that u , u′, ζ , ζ ′ holds (there is no collision for f ).

We say that (D f , Dh) is bad if it is not good.
Similarly, we say that a (tuple of) valid databases (D f , Dg, Dh) for F2 is good if and only if it satisfies the following

properties.

1. For each (u, ζ ) ∈ D f , there exist v ∈ {0, 1}m and w ∈ {0, 1}n such that ((u, v, ζ ),w) ∈ Dg.
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Figure 6.3: Implementations of Fh
1 and F2. “in” and “out” denote the registers to send queries and receive answers,

respectively. The dotted lines (and |D f 〉 , |Dh〉 , |Dg〉) appear only when f , h, g are implemented with RstOE, which
correspond to the database registers.

2. For each ((u, v, ζ ),w) ∈ Dg, (u, ζ ) ∈ D f .

3. For (u, ζ ) and (u′, ζ ′) in D f such that u , u′, ζ , ζ ′ holds (i.e., there is no collision for f ).

4. For each ((v, ζ ),w) ∈ Dh and (u′, ζ ′) ∈ D f , ζ , ζ ′ holds (i.e., the most significant n bits of inputs to h and the
outputs of f do not collide).

We say that (D f , Dg, Dh) is bad if it is not good.

Intuition Behind Good Databases. Intuitively, a database (D f , Dh) for Fh
1 is defined to be good if and only if D f does

not contain collisions (the second condition on Fh
1 ). The first condition on Fh

1 is included so that a weird situation such
as “u has been queried to f , but (v, f (u)) has not been queried to h for any v” will not happen for good databases.
Similarly, a database (D f , Dg, Dh) for F2 is defined to be good if and only if D f does not contain collisions (the third
condition condition on F2) and the least significant n bits of inputs to h do not collide with outputs of f (the fourth
condition on F2). The first and second conditions on F2 is included so that weird situations such as “u has been queried
to f , but (u, v, f (u)) has not been queried to g for any v” or “(u, v, ζ ) has been queried to g, but u has not been queried
to f ” will not happen for good databases.

6.4.2 One-to-One Correspondence for Good Databases
For a good database (D f , Dg, Dh) for F2, let Dg ? Dh be the valid database for h such that ((v, ζ ),w) ∈ Dg ? Dh if
and only if ((v, ζ ),w) ∈ Dh or ((u, v, ζ ),w) ∈ Dg for some u. Then (D f , Dg ? Dh) becomes a good database for Fh

1 .
Let us denote (D f , Dg ? Dh) by [(D f , Dg, Dh)]1. Then, it can easily be shown that the map [·]1 : (D f , Dg, Dh) 7→
[(D f , Dg, Dh)]1 = (D f , Dg?Dh) is a bijection between the set of good databases for F2 and that for Fh

1 . Let [·]2 denote
the inverse map of [·]1.

The bijections extend to (partially defined) isometries between the state spaces. Let HA be the state space of
the adversary, and HD f Dh

(resp., HD f DgDh
) be the state space of the databases for Fh

1 (resp., Fh
2 ). In addition, let

V (1)
good ⊂ HD f Dh

(resp., V (2)
good ⊂ HD f DgDh

) be the subspace spanned by good databases. Then, the linear map from
HA ⊗ V (1)

good toHA ⊗ V (2)
good that maps |η〉 ⊗ |D f , Dh〉 to |η〉 ⊗ |[D f , Dh]2〉 for |η〉 ∈ HA and a good database (D f , Dh)

becomes an isometry. We denote this isometry and its inverse also by [·]2 and [·]1, respectively.
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6.4.3 Equivalent Good Databases
Next, we define the notion of equivalent databases. First, we define the notion for equivalent good databases for Fh

1 .
Let (D f , Dh) be a good database for Fh

1 , and let

S :=
{
ζ ∈ {0, 1}n���∃v,w s.t. ((v, ζ ),w) ∈ Dh and (u, ζ ) < D f for all u

}
.

We say that another good database (D′f , D′
h

) is equivalent to (D f , Dh) if and only if they are the same except for the
output values of f , i.e., there exists a permutation π on {0, 1}n such that

1. π(ζ ) = ζ for all ζ ∈ S,

2. (u, ζ ) ∈ D f if and only if (u, π(ζ )) ∈ D′f , and

3. ((v, ζ ),w) ∈ Dh if and only if ((v, π(ζ )),w) ∈ D′
h
holds.

We define that a good database (D′f , D′g, D′
h

) for F2 is equivalent to another good database (D f , Dg, Dh) in the same
way, except that S is defined as S := {ζ ∈ {0, 1}n |∃v,w s.t. ((v, ζ ),w) ∈ Dh } and the following condition is additionally
imposed.

3+. ((u, v, ζ ),w) ∈ Dg if and only if ((u, v, π(ζ )),w) ∈ D′g hold.

Remark 17. As explained in Section 6.2, intuitively, two good databases are defined to be equivalent if and only if any
adversary cannot distinguish them.

Remark 18. By definition of equivalent databases, if a good database (D f , Dg, Dh) for F2 is equivalent to another
good database (D′f , D′g, D′

h
), then D′

h
= Dh holds.

6.4.4 Notations for State Vectors
Let |φ2i−1〉 be the whole quantum state just beforeA’s i-th query to Fh

1 whenA runs relative to Fh
1 and h. In addition,

let |φ2i〉 be the whole quantum state just before A’s i-th query to h when A runs relative to Fh
1 and h. Define |ψ2i−1〉

and |ψ2i〉 similarly when A runs relative to F2 and h. For ease of notation, let |φ2q+1〉 and |ψ2q+1〉 be the quantum
states just before the final measurement when A runs relative to (Fh

1 , h) and (F2, h), respectively.

6.4.5 The Technically Hardest Part
The following proposition is the technically hardest part to show Proposition 20.

Proposition 21. For each j = 1, . . . , 2q + 1, there exist |φgoodj 〉, |φbadj 〉, |ψ
good
j 〉, and |ψbad

j 〉 that satisfy the following
properties:

1. |φ j〉 = |φ
good
j 〉 + |φbadj 〉 and |ψ j〉 = |ψ

good
j 〉 + |ψbad

j 〉.

2. |φgoodj 〉 ∈ HA ⊗ V (1)
good and |ψ

good
j 〉 ∈ HA ⊗ V (2)

good.

3. |φgoodj 〉 =
[
|ψ

good
j 〉

]
1
.

4. There exists a complex number a( j)
uvyzD f DgDh

such that

|ψ
good
j 〉 =

∑
u,v,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ):good

a( j)
uvyzD f DgDh

|u, v〉 |y〉 |z〉 ⊗ |D f , Dg, Dh〉 (6.21)

and a( j)
uvyzD f DgDh

= a( j)
uvyzD′

f
D′gD

′
h

if (D f , Dg, Dh) and (D′f , D′g, D′
h

) are equivalent, where (u, v), y, and z

correspond to A’s register to send queries, register to receive answers from oracles, and register for offline
computations, respectively.6

6To be precise we have to use the symbol (v, ζ ) instead of (u, v) when j = 2i because we always use the symbol v | |ζ to denote an input to h.
However, here we use (u, v) to simplify notations. In the proof we use the symbol a(2i)

vζ yzD f DgDh
instead of a(2i)

uvyzD f DgDh
.
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5. For a good database (D f , Dg, Dh) with non-zero coefficient in |ψgood
2i−1〉 (resp., in |ψ

good
2i 〉), |Dg | ≤ i − 1, |D f | ≤

2(i − 1), and |Dh | ≤ i − 1 hold (resp., |Dg | ≤ i, |D f | ≤ 2i, and |Dh | ≤ i − 1 hold).

6. ‖ |φbadj 〉 ‖ ≤ ‖ |φ
bad
j−1〉 ‖ + O

(√
j/2n

)
and ‖ |ψbad

j 〉 ‖ ≤ ‖ |ψ
bad
j−1〉 ‖ + O

(√
j/2n

)
hold (we regard that ‖ |φbad0 〉 ‖ =

‖ |ψbad
0 〉 ‖ = 0).

Intuitive Interpretation of Proposition 21. The first and second properties show that |φ j〉 and |ψ j〉 are divided into
good and bad components. The third property shows that the good component of |φ j〉 matches to that of |ψ j〉 through
the isometry [·]1, which intuitively means thatA cannot distinguish the two oracles as long as databases are good. The
fourth property shows that the coefficients of equivalent databases are perfectly equal, which intuitively means that A
cannot distinguish equivalent good databases. The fifth property shows the upper bound of the size of databases. The
sixth property shows that the chance for good databases change to bad is very small at each query.

Overview of the Proof of Proposition 21. The proposition is shown by induction on j. The claim for j = 1 obviously
holds by setting |φbad1 〉 = |ψ

bad
1 〉 = 0. Inductive steps are separated into two cases.

(Online queries): If the claim for j = 2i−1 (i.e., before the i-th query to Fh
1 or F2) holds, then the claim for j = 2i

(i.e., after the query) holds.

(Offline queries): If the claim for j = 2i (i.e., before the i-th query to h) holds, then the claim for j = 2i + 1 (i.e.,
after the query) holds.

Proof for online queries. Recall that OFh
1
(resp., OF2 ) are decomposed as OFh

1
= RstOE∗f · RstOEh · RstOE f (resp.,

OF2 = RstOE∗f · RstOEg · RstOE f ). We show that Properties 1–6 listed in Proposition 21 hold at each action of
RstOE f , RstOEh (resp., RstOEg), and RstOE∗f . A state vector after an action of RstOE can be decomposed into three
components.7

(i) The one that was (pre-)good before the action and still remains (pre-)good.

(ii) The one that was (pre-)good before the action but changed to bad.

(iii) The one that was already bad before the action.

Roughly speaking, we define (i) to be a new good vector, and the sum of (ii) and (iii) to be a new bad vector.8 Then
Properties 1 and 4 of Proposition 21 can easily be shown.

To show that Properties 3 and 4 still hold for the new good vector, we keep track of how the coefficients of basis
vectors change by using Proposition 3. We also utilize symmetry of equivalent databases to show Property 4.

Property 6 is proven by showing the norm of the component (iii) is in O(
√

i/2n). Intuitively, this corresponds to
showing the probability that the event coll in Section 6.2 happens at the query is O(i/2n). We carefully prove it by
using Proposition 3, taking into account that records in databases may be deleted or overwritten.

Proof for offline queries. The proof for offline queries are similar9, except that showing (iii) ≤ O(
√

i/2n) corresponds
to showing Pr [hiti] ≤ O(i/2n) in Section 6.2. To formally prove the bound, we use the inductive hypothesis that
Property 4 holds for j = 2i.

Before proving Proposition 21, we show that Proposition 20 follows from Proposition 21.

Proof of Proposition 20. Let trD1 (resp., trD2) denote the partial trace operations over the quantum states of the databases
for (Fh

1 , h) (resp., (F2, h)). Then

Advdist
Fh

1 ,F2
(A) ≤ td

(
trD1(|φ2q+1〉 〈φ2q+1 |), trD2(|ψ2q+1〉 〈ψ2q+1 |)

)
≤ td

(
trD1(|φgood2q+1〉 〈φ

good
2q+1 |), trD2(|ψgood

2q+1〉 〈ψ
good
2q+1 |)

)
(6.22)

+
|φ

bad
2q+1〉

 +
|ψ

bad
2q+1〉

 (6.23)

7Pre-good databases are defined in a complete proof of Proposition 21 presented in Section 6.4.6 in the supplementary materials.
8To be more precise, we sometimes include small “good” terms into the new bad vector so that the analysis will be easier.
9Actually the proof for offline queries are even simpler because the offline oracle is just a single random oracle h while the online oracles consist

of two random functions.
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holds. By Property 3 of Proposition 21, the term (6.22) is equal to zero. In addition,

(6.23) ≤
∑

1≤ j≤2q+1
O

(√
j/2n

)
+

∑
1≤ j≤2q+1

O
(√

j/2n
)
≤ O

(√
q3/2n

)
follows from Property 6 of Proposition 21. Hence Proposition 20 follows. �

6.4.6 Proof of Proposition 21
As mentioned before, we show the proposition by induction on j. The claim for j = 1 obviously holds by setting
|φbad1 〉 = |ψ

bad
1 〉 = 0. Inductive steps are separated into the proof for online queries (i.e., the proof for j = 2i under the

hypothesis on j = 2i − 1) and the one for offline queries (i.e., the proof for j = 2i + 1 under the hypothesis on j = 2i).
First we prove the former by decomposing OFh

1
(resp., OF2 ) as OFh

1
= RstOE∗f · RstOEh · RstOE f (resp., OF2 =

RstOE∗f · RstOEg · RstOE f ), and showing Properties 1–6 in the proposition hold at each action of RstOE f , RstOEh

(resp., RstOEg), and RstOE∗f . (See also Fig. 6.3 about the decompositions.)
Before providing the proof, we define pre-good and pre-bad databases in addition to good and bad databases, and

see that the one-to-one correspondence between good databases and the notions on equivalent databases are naturally
extended to pre-good databases.

6.4.6.1 Pre-Good and Pre-Bad Databases

We say that a (pair of) valid database (D f , Dh) for Fh
1 is pre-good if and only if it satisfies the following properties:

1. (D f , Dh) is good, or

2. There exists an element (u, ζ ) ∈ D f such that (D f \ (u, ζ ), Dh) is good and ((ζ, v),w) < Dh for all v and w, and
(u′, ζ ) < D f for all u′ , u.

We say that (D f , Dh) is pre-bad if it is not pre-good.
Similarly, we say that a (tuple of) valid database (D f , Dg, Dh) for F2 is pre-good if and only if it satisfies the

following properties:

1. (D f , Dg, Dh) is good, or

2. There exists an element (u, ζ ) ∈ D f such that (D f \(u, ζ ), Dg, Dh) is good and ((v, ζ ),w) < Dh∧((u, v, ζ ),w) < Dg

holds for all v and w, and (u′, ζ ) < D f for all u′ , u.

We say that (D f , Dg, Dh) is pre-bad if it is not pre-good.

Intuition Behind Pre-Good Databases. Intuitively, a database is pre-good if and only if one of the following conditions
hold: (i) It is just good, or (ii)A queried some value (u, v) to Fh

1 (resp., F2), the query u to f has already been processed
inside Fh

1 (resp., F2) and a new output value f (u) is sampled but the query (v, f (u)) to h (resp., (u, v, f (u)) to g) has
not been processed yet, and the database is likely to become good.

6.4.6.2 One-to-one Correspondence for Pre-Good Databases

Here we re-define the one-to-one correspondence and the isometries [·]1 and [·]2 so that they are defined not only on
good databases but also on pre-good databases.

For a pre-good database (D f , Dg, Dh) for F2, let Dg?Dh be the valid database for h such that ((v, ζ ),w) ∈ Dg?Dh

if and only if ((v, ζ ),w) ∈ Dh or ((u, v, ζ ),w) ∈ Dg for some u. Then (D f , Dg ? Dh) becomes a pre-good database for
Fh

1 . Let us denote (D f , Dg ?Dh) by [(D f , Dg, Dh)]1. Then, it can easily be shown that the map [·]1 : (D f , Dg, Dh) 7→
[(D f , Dg, Dh)]1 = (D f , Dg ? Dh) is a bijection between the set of pre-good databases for F2 and the set of pre-good
databases for Fh

1 . Let [·]2 denote the inverse map of [·]1.
The bijections extend to (partially defined) isometries between the state spaces. Again, let HA denote the state

space of the adversary, and HD f Dh
(resp., HD f DgDh

) denote the state space of the databases for Fh
1 (resp., Fh

2 ). In
addition, let V (1)

pre-good ⊂ HD f Dh
(resp., V (2)

pre-good ⊂ HD f DgDh
) be the subspace spanned by pre-good databases. Let

Haux be the state space that corresponds to the auxiliary qubits used by the oracles (see (6.19) and (6.20)). Then, the
linear map fromHA ⊗V (1)

pre-good ⊗Haux toHA ⊗V (2)
pre-good ⊗Haux that maps |η〉 ⊗ |D f , Dh〉 ⊗ |ξ〉 to |η〉 ⊗ |[D f , Dh]2〉 ⊗ |ξ〉
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for |η〉 ∈ HA , |ξ〉 ∈ Haux, and a pre-good database (D f , Dh) becomes an isometry. We denote this isometry and its
inverse also by [·]2 and [·]1, respectively.

The above mappings [·]1 and [·]2 are generalizations of those on good databases define in Section 6.4. Note that
[(D f , Dg, Dh)]1 is good if and only if (D f , Dg, Dh) is good.

6.4.6.3 Equivalent Pre-Good Databases

Let (D f , Dh) be a good database for Fh
1 . Recall that another good database (D′f , D′

h
) is equivalent to (D f , Dh) if and

only if they are the same except the output values of f , i.e., there exists a permutation π on {0, 1}n such that

1. π(ζ ) = ζ for all ζ ∈ S,

2. (u, ζ ) ∈ D f if and only if (u, π(ζ )) ∈ D′f , and

3. ((v, ζ ),w) ∈ Dh if and only if ((v, π(ζ )),w) ∈ D′
h
hold,

where
S :=

{
ζ ∈ {0, 1}n���∃v,w s.t. ((v, ζ ),w) ∈ Dh and (u, ζ ) < D f for all u

}
.

Next, we extend the notion for pre-good databases for Fh
1 . By definition, arbitrary pre-good database has the form

(D f ∪ (u, ζ ), Dh) such that (D f , Dh) is good. Let (D′f ∪ (u′, ζ ′), D′
h

) be another pre-good database such that (D′f , D′
h

)
is good. We say that (D f ∪ (u, ζ ), Dh) is equivalent to (D′f ∪ (u′, ζ ′), D′

h
) if and only if

4. (D f , Dh) is equivalent to (D′f , D′
h

) in the above sense, and

5. u = u′ ∧ ζ ′ = π(ζ ), where π is the permutation defined above for (D f , Dh).

We define that a pre-good database (D′f , D′g, D′
h

) for F2 is equivalent to another pre-good database (D f , Dg, Dh) in
the same way, except that S is defined as S := {ζ ∈ {0, 1}n |∃v,w s.t. ((v, ζ ),w) ∈ Dh } and the following condition is
additionally imposed.

3+. ((u, v, ζ ),w) ∈ Dg if and only if ((u, v, π(ζ )),w) ∈ D′g hold.

6.4.6.4 Regular and Irregular States

Let |φ〉 be a joint quantum state of A and the oracle ((Fh
1 , h) or (F2, h)) that is not in superposition10. We say that the

state |φ〉 is irregular when the database in |φ〉 is invalid, or the auxiliary n qubits that are temporarily used in the oracle
(the rightmost register | f (u)〉 in (6.19) and (6.20)) is not |0n〉. We say that |φ〉 is regular if it is not irregular.

6.4.6.5 Remarks on Other Notations

In what follows, to simplify notations on summations, we denote the sum over variables x1, . . . , xs that satisfies
predicates P1(x1, . . . , xs), . . . , Pt (x1, . . . , xs) by

∑
x1,...,xs ;P(x1,...,xs ),...,Pt (x1,...,xs ) . That is, we separate the symbols of

variables over which the summation is taken and the conditions that the variables satisfy by “;”. For example, the
summation over α, β, γ ∈ {0, 1}n that satisfy α ⊕ β = 0n and β ⊕ γ = 0n is denoted by

∑
α,β,γ;α⊕β=0n,β⊕γ=0n .

LetΠvalid andΠinvalid denote the orthogonal projections onto the vector space spanned by valid and invalid databases,
respectively. Let Πgood and Πbad denote the orthogonal projections onto the vector space spanned by good and bad
databases, respectively. Let Πpre-good and Πpre-bad denote the orthogonal projections onto the vector space spanned by
pre-good and pre-bad databases, respectively. Let Πreg and Πirreg denote the orthogonal projections onto the vector
space spanned by regular and irregular databases, respectively.

Remark 19. Note that a good database can be pre-good and bad because the set of pre-good databases is wider than
that of good databases, and we say that a database is bad if it is not good. In the proofs below, we sometimes use the
fact that Πbad |D f , Dg, Dh〉 = |D f , Dg, Dh〉 (resp., Πbad |D f , Dh〉 = |D f , Dh〉) holds for a database (D f , Dg, Dh) (resp.,
(D f , Dh)) that is pre-good and bad, without any notice.

Next we prove the following lemma, which shows how the quantum states |φgood2i−1〉 and |ψ
good
2i−1〉 change when RstOE f

acts on them.
10That is, even if we measure |φ〉 with computational basis, |φ〉 does not change.
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Lemma 18 (Action of RstOE f ). Suppose that there exist |φgood2i−1〉, |φ
bad
2i−1〉, |ψ

good
2i−1〉, and |ψ

bad
2i−1〉 that satisfy the properties

of Proposition 21. Then there exist |φgood,12i−1 〉, |φ
bad,1
2i−1 〉, |ψ

good,1
2i−1 〉, and |ψ

bad,1
2i−1 〉 that satisfy the following properties:

1. RstOE f |ψ2i−1〉 = |ψ
good,1
2i−1 〉 + |ψ

bad,1
2i−1 〉 and RstOE f |φ2i−1〉 = |φ

good,1
2i−1 〉 + |φ

bad,1
2i−1 〉.

2. |φgood,12i−1 〉 ∈ HA ⊗ V (1)
pre-good ⊗ Haux and |ψgood,1

2i−1 〉 ∈ HA ⊗ V (2)
pre-good ⊗ Haux.

3. |φgood,12i−1 〉 =
[
|ψ

good,1
2i−1 〉

]
1
.

4. There exists complex number a(2i−1),1
uvyzD f DgDh

such that the following properties (a) and (b) hold:

(a) It holds that

|ψ
good,1
2i−1 〉 =

∑
u,v,y,z,D f ,Dg,Dh ;

(D f ,Dg,Dh ): pre-good
D f (u),⊥

a(2i−1),1
uvyzD f DgDh

|u, v〉 |y〉 |z〉 ⊗ |D f , Dg, Dh〉 ⊗ |D f (u)〉 ,

where (u, v), y, and z correspond to A’s register to send queries, register to receive answers from oracles,
and register for offline computations, respectively. (The rightmost register |D f (u)〉 corresponds to the
auxiliary qubits used in the oracle. See (6.19) and (6.20).)

(b) a(2i−1),1
uvyzD f DgDh

= a(2i−1),1
uvyzD′

f
D′gD

′
h

if (D f , Dg, Dh) and (D′f , D′g, D′
h

) are equivalent.

5. For a pre-good database (D f , Dg, Dh) with non-zero coefficient in |ψgood,1
2i−1 〉, |Dg | ≤ i − 1, |D f | ≤ 2(i − 1) + 1,

and |Dh | ≤ i − 1 hold.

6. ‖ |φbad,12i−1 〉 ‖ ≤ ‖ |φ
bad
2i−1〉 ‖ +O

(√
i/2n

)
and ‖ |ψbad,1

2i−1 〉 ‖ ≤ ‖ |ψ
bad
2i−1〉 ‖ +O

(√
i/2n

)
hold.

Remark 20. Intuitive interpretation of the lemma is almost the same as that for Proposition 21 (see the explanation
below Proposition 21 for details) except that the fourth property is divided into 4-(a) and 4-(b) in the above lemma,
where 4-(a) says that there is an auxiliary register D f (u) and the coefficient a(2i−1),1

uvyzD f DgDh
in |ψgood,1

2i−1 〉 is non-zero only
if D f (u) , ⊥.

Proof. First, note that property 3 and 4 of Proposition 21 imply that

|φ
good
2i−1〉 =

[
|ψ

good
2i−1〉

]
1
=

∑
u,v,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ):good

a(2i−1)
uvyzD f DgDh

|u, v〉 |y〉 |z〉 ⊗ |D f , Dg ? Dh〉 (6.24)

holds.
Let Π⊥ and Π6⊥ be the orthogonal projections onto the spaces spanned by the vectors |u, v〉 |y〉 |z〉 ⊗ |D f , Dg, Dh〉

(or, |u, v〉 |y〉 |z〉 ⊗ |D f , Dh〉) such that D f (u) = ⊥ and D f (u) , ⊥, respectively.
Recall that |ψgood

2i−1〉 is represented as in (6.21). By applying the first property in Proposition 3 in a straightforward
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manner, we have

ΠvalidRstOE fΠ6⊥ |ψ
good
2i−1〉 = ΠvalidRstOE f

∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good
D f (u)=⊥

a(2i−1)
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉
⊗ |D f ∪ (u, α), Dg, Dh〉

=
∑

u,v,y,z,α,D f ,Dg,Dh ;
(D f ∪(u,α),Dg,Dh ): good

D f (u)=⊥

a(2i−1)
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉
⊗ |D f ∪ (u, α), Dg, Dh〉 ⊗ |α〉

(6.25)

+
∑

u,v,y,z,α,D f ,Dg,Dh ;
(D f ∪(u,α),Dg,Dh ): good

D f (u)=⊥

1
√

2n
a(2i−1)
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉

⊗
*.
,
|D f 〉 −

∑
γ

1
√

2n
|D f ∪ (u, γ)〉+/

-
|Dg, Dh〉 ⊗ |α〉

(6.26)

−
∑

u,v,y,z,α,γ,D f ,Dg,Dh ;
(D f ∪(u,α),Dg,Dh ): good

D f (u)=⊥

1
2n

a(2i−1)
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉

⊗ |D f ∪ (u, γ), Dg, Dh〉 ⊗ |γ〉

(6.27)

+
1
2n

∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good
D f (u)=⊥

a(2i−1)
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉

⊗
*.
,
2
∑
γ

1
√

2n
|D f ∪ (u, γ)〉 − |D f 〉

+/
-
|Dg, Dh〉 ⊗ |0̂n〉 ,

(6.28)

where the terms (6.25)-(6.28) correspond to (3.12)-(3.15), respectively. Similarly, by applying the second property in
Proposition 3 we have

ΠvalidRstOE fΠ⊥ |ψ
good
2i−1〉 = ΠvalidRstOE f

∑
u,v,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good

D f (u)=⊥

a(2i−1)
uvyzD f DgDh

|u, v〉 |y〉 |z〉 ⊗ |D f , Dg, Dh〉

=
∑

u,v,y,z,α,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good

D f (u)=⊥

1
√

2n
a(2i−1)
uvyzD f DgDh

|u, v〉 |y〉 |z〉

⊗ |D f ∪ (u, α), Dg, Dh〉 ⊗ |α〉

(6.29)

+
1
√

2n
∑

u,v,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good

D f (u)=⊥

a(2i−1)
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉

⊗
*.
,
|D f 〉 −

∑
γ

1
√

2n
|D f ∪ (u, γ)〉+/

-
|Dg, Dh〉 ⊗ |0̂n〉 ,

(6.30)

where the terms (6.29) and (6.30) correspond to (3.16) and (3.17), respectively. Since (6.24) holds, in the same way we
have

ΠvalidRstOE fΠ6⊥ |φ
good
2i−1〉 =

∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good
D f (u)=⊥

a(2i−1)
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉
⊗ |D f ∪ (u, α), Dg ? Dh〉 ⊗ |α〉

(6.31)

+
∑

u,v,y,z,α,D f ,Dg,Dh ;
(D f ∪(u,α),Dg,Dh ): good

D f (u)=⊥

1
√

2n
a(2i−1)
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉

⊗
*.
,
|D f 〉 −

∑
γ

|D f ∪ (u, γ)〉+/
-
|Dg ? Dh〉 ⊗ |α〉

(6.32)

−
∑

u,v,y,z,α,γ,D f ,Dg,Dh ;
(D f ∪(u,α),Dg,Dh ): good

D f (u)=⊥

1
2n

a(2i−1)
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉

⊗ |D f ∪ (u, γ), Dg ? Dh〉 ⊗ |γ〉

(6.33)
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+
1
2n

∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good
D f (u)=⊥

a(2i−1)
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉

⊗
*.
,
2
∑
γ

1
√

2n
|D f ∪ (u, γ)〉 − |D f 〉

+/
-
|Dg ? Dh〉 ⊗ |0̂n〉

(6.34)

and

ΠvalidRstOE fΠ⊥ |φ
good
2i−1〉 =

∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ,Dg,Dh ): good
D f (u)=⊥

1
√

2n
a(2i−1)
uvyzD f DgDh

|u, v〉 |y〉 |z〉
⊗ |D f ∪ (u, α), Dg ? Dh〉 ⊗ |α〉

(6.35)

+
1
√

2n
∑

u,v,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good

D f (u)=⊥

a(2i−1)
uvyzD f DgDh

|u, v〉 |y〉 |z〉

⊗
*.
,
|D f 〉 −

∑
γ

1
√

2n
|D f ∪ (u, γ)〉+/

-
|Dg ? Dh〉 ⊗ |0̂n〉 .

(6.36)

Define |ψgood,1
2i−1 〉, |ψ

bad,1
2i−1 〉, |φ

good,1
2i−1 〉, and |φ

bad,1
2i−1 〉 by

|ψ
good,1
2i−1 〉 := |(6.25)〉 + Πpre-good |(6.29)〉 , |ψbad,1

2i−1 〉 := RstOE f |ψ2i−1〉 − |ψ
good,1
2i−1 〉 ,

|φ
good,1
2i−1 〉 := |(6.31)〉 + Πpre-good |(6.35)〉 , |φbad,12i−1 〉 := RstOE f |φ2i−1〉 − |φ

good,1
2i−1 〉 .

Remark 21. The intuition behind the definitions of |ψgood,1
2i−1 〉 is as follows. Roughly speaking, the two terms |(6.25)〉 and

|(6.29)〉 reflect classical intuition of lazy sampling, and other terms represent the difference between classical behavior
and quantum-specific behavior of oracle. Since now the output of f is written into the auxiliary register that is set to
be 0, the behavior of the RstOE f is very close to that of the classical random oracle, and the effect of quantum-specific
behavior of the oracle is very small. Therefore we define |ψgood,1

2i−1 〉 to be the pre-good components of |(6.25)〉 and |(6.29)〉
(note that all the databases in |(6.25)〉 are good and Πpre-good |(6.25)〉 = |(6.25)〉 holds). |ψbad,1

2i−1 〉 is defined in such a
way that property 1 of the lemma holds. The intuition behind |φgood,12i−1 〉 and |φ

good,1
2i−1 〉 is the same.

Property 1, 4-(a), 5 of the lemma immediately follow from the definition of |ψgood,1
2i−1 〉, |ψ

bad,1
2i−1 〉, |φ

good,1
2i−1 〉, and |φ

bad,1
2i−1 〉.

Property 2 of the lemma holds since all the databases in |(6.25)〉 and |(6.31)〉 are good, and those inΠpre-good |(6.29)〉
and Πpre-good |(6.35)〉 are pre-good.

Property 3 of the lemma holds because, for each basis vector |ũ, ṽ〉 | ỹ〉 | z̃〉 ⊗ |D̃ f , D̃g, D̃h〉 ⊗ |γ̃〉 in |(6.25)〉 (resp.,
in Πpre-good |(6.29)〉), its coefficient is equal to the coefficient of [|ũ, ṽ〉 | ỹ〉 | z̃〉 ⊗ |D̃ f , D̃g, D̃h〉 ⊗ |γ̃〉]1 = |ũ, ṽ〉 | ỹ〉 | z̃〉 ⊗
|D̃ f , D̃g ? D̃h〉 ⊗ |γ̃〉 in |(6.31)〉 (resp., in Πpre-good |(6.35)〉).

For property 4-(b), note that all the databases in |(6.25)〉 are good while those in Πpre-good |(6.29)〉 are pre-good and
bad. In particular, it can be checked that the coefficient a(2i−1),1

uvyzD f DgDh
in |ψgood,1

2i−1 〉 can be represented as

a(2i−1),1
uvyzD f DgDh

= a(2i−1)
uvyzD f DgDh

if (D f , Dg, Dh) is good,

and

a(2i−1),1
uvyzD f DgDh

=
1
√

2n
a(2i−1)
uvyz(D f \(u,D f (u)))DgDh

if (D f , Dg, Dh) is pre-good and bad,

and (D f \ (u, D f ), Dg, Dh) is a good database in the latter equation. Therefore property 4-(b) follows from property 4
of Proposition 21.

Below we prove that property 6 of the lemma holds for |φbad,12i−1 〉 by showing the norms of the terms |(6.32)〉 - |(6.34)〉,
Πpre-good |(6.35)〉, and |(6.36)〉 are small. 11

11The term Πpre-good |(6.35)〉 corresponds to the classical situation where a fresh value of f is sampled and causes a bad event. Other terms
correspond to the difference between classical behavior and quantum-specific behavior of the oracle.
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Upper bounding the norm of |(6.32)〉.
Summands of the term (6.32) are orthogonal to each other. Hence

‖ |(6.32)〉‖2 ≤ O
(

1
2n

)
·

∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good
D f (u)=⊥

����a
(2i−1)
uvyzD f ∪(u,α)DgDh

����
2
= O

(
1
2n

)
·

Π6⊥ |φ
good
2i−1〉


2
≤ O

(
1
2n

)
(6.37)

holds.

Upper bounding the norm of |(6.33)〉.
We have

‖ |(6.33)〉‖2 =



∑
u,v,y,z,α,γ,D f ,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good
D f (u)=⊥

1
2n

a(2i−1)
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉

⊗ |D f ∪ (u, γ), Dg ? Dh〉 ⊗ |γ〉



2

=
∑

u,v,y,z,γ,D f ;
D f (u)=⊥

1
22n



∑
α,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good

a(2i−1)
uvyzD f ∪(u,α)DgDh

|Dg ? Dh〉



2

=
∑

u,v,y,z,γ,D f ;
D f (u)=⊥

1
22n

∑
D′

h



∑
α,Dg,Dh ;

Dg?Dh=D
′
h

(D f ∪(u,α),Dg,Dh ): good

a(2i−1)
uvyzD f ∪(u,α)DgDh

|D′h〉



2

=
∑

u,v,y,z,γ,D f ;
D f (u)=⊥

1
22n

∑
D′

h

��������������

∑
α,Dg,Dh ;

Dg?Dh=D
′
h

(D f ∪(u,α),D′
h

): good

a(2i−1)
uvyzD f ∪(u,α)DgDh

��������������

2

. (6.38)

For each fixed tuple (u, α, D f , D′
h

), there exist at most only one pair (Dg, Dh) such that Dg ? Dh = D′
h
and (D f ∪

(u, α), D′
h

) becomes good. Let us denote this pair by
(
Dg[u, α, D f , D′

h
], Dh[u, α, D f , D′

h
]
)
(when such a pair exists).

In addition, for each fixed tuple (u, D f , D′
h

), the number of α such that (D f ∪ (u, α), D′
h

) becomes good is at most
|D′

h
| ≤ O(i). Therefore, for summands of (6.38) we have

∑
D′

h

��������������

∑
α,Dg,Dh ;

Dg?Dh=D
′
h

(D f ∪(u,α),D′
h

): good

a(2i−1)
uvyzD f ∪(u,α)DgDh

��������������

2

=
∑
D′

h

���������

∑
α;

(D f ∪(u,α),D′
h

): good

a(2i−1)
uvyzD f ∪(u,α)Dg [u,α,D f ,D

′
h

]Dh [u,α,D f ,D
′
h

]

���������

2

≤
∑
D′

h

O(i) ·
∑
α;

(D f ∪(u,α),D′
h

): good

����a
(2i−1)
uvyzD f ∪(u,α)Dg [u,α,D f ,D

′
h

]Dh [u,α,D f ,D
′
h

]
����
2

= O(i) ·
∑
D′

h

∑
α,Dg,Dh ;

Dg?Dh=D
′
h

(D f ∪(u,α),D′
h

): good

����a
(2i−1)
uvyzD f ∪(u,α)DgDh

����
2
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= O(i) ·
∑

α,Dg,Dh ;
(D f ∪(u,α),Dg?Dh ): good

����a
(2i−1)
uvyzD f ∪(u,α)DgDh

����
2
, (6.39)

where we used convexity of quadratic functions for the inequality. From (6.38) and (6.39),

‖|(6.33)〉‖2 ≤ O(i) ·
∑

u,v,y,z,γ,D f ;
D f (u)=⊥

1
22n

∑
α,Dg,Dh ;

(D f ∪(u,α),Dg?Dh ): good

����a
(2i−1)
uvyzD f ∪(u,α)DgDh

����
2

= O
(

i
2n

)
·

∑
u,v,y,z,α,D f ,Dg,Dh ;

D f (u)=⊥
(D f ∪(u,α),Dg?Dh ): good

����a
(2i−1)
uvyzD f ∪(u,α)DgDh

����
2
·

*.
,

∑
γ

1
2n

+/
-

= O
(

i
2n

)
·

Π6⊥ |φ
good
2i−1〉


2
· 1 ≤ O

(
i

2n

)
(6.40)

follows.

Upper bounding the norm of |(6.34)〉.
On the term (6.34), we have that

‖ |(6.34)〉‖2 =
1

22n



∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good
D f (u)=⊥

a(2i−1)
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉

⊗
*.
,
2
∑
γ

1
√

2n
|D f ∪ (u, γ)〉 − |D f 〉

+/
-
|Dg ? Dh〉 ⊗ |0̂n〉



2

≤ O
(

1
22n

) 

∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good
D f (u)=⊥

a(2i−1)
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉

⊗ |D f 〉 ⊗ |Dg ? Dh〉 ⊗ |0̂n〉



2

= O
(

1
22n

) ∑
u,v,y,z,D f ,Dg,Dh ;

D f (u)=⊥

���������

∑
α;

(D f ∪(u,α),Dg,Dh ): good

a(2i−1)
uvyzD f ∪(u,α)DgDh

���������

2

≤ O
(

1
22n

) ∑
u,v,y,z,D f ,Dg,Dh ;

D f (u)=⊥

*...
,

2n
∑
α;

(D f ∪(u,α),Dg,Dh ): good

����a
(2i−1)
uvyzD f ∪(u,α)DgDh

����
2+///

-

= O
(

1
2n

) ∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good
D f (u)=⊥

����a
(2i−1)
uvyzD f ∪(u,α)DgDh

����
2

= O
(

1
2n

)
·

Π6⊥ |φ
good
2i−1〉


2
≤ O

(
1
2n

)
(6.41)

holds, where we used convexity of quadratic functions for the second inequality.

Upper bounding the norm of Πpre-bad |(6.35)〉.
When (D f , Dg, Dh) is good and D f (u) = ⊥, the number of α such that (D f ∪ (u, α), Dg ? Dh) becomes pre-bad is at
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most |D f | + |Dh | ≤ O(i). Therefore,

Πpre-bad |(6.35)〉
2
=



∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ,Dg,Dh ): good
D f (u)=⊥

(D f ∪(u,α),Dg,Dh ):pre-bad

1
√

2n
a(2i−1)
uvyzD f DgDh

|u, v〉 |y〉 |z〉

⊗ |D f ∪ (u, α), Dg ? Dh〉 ⊗ |α〉



2

=
∑

u,v,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good

D f (u)=⊥

����a
(2i−1)
uvyzD f DgDh

����
2 ∑

α;
(D f ∪(u,α),Dg,Dh ):pre-bad

1
2n

≤ O
(

i
2n

)
·

∑
u,v,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good

D f (u)=⊥

����a
(2i−1)
uvyzD f DgDh

����
2

= O
(

i
2n

)
·

Π⊥ |φ
good
2i−1〉


2
≤ O

(
i

2n

)
(6.42)

holds.

Upper bounding the norm of |(6.36)〉.
For the term (6.36), since the summands are orthogonal to each other we have

‖|(6.36)〉‖2 =



1
√

2n
∑

u,v,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good

D f (u)=⊥

a(2i−1)
uvyzD f DgDh

|u, v〉 |y〉 |z〉

⊗
*.
,
|D f 〉 −

∑
γ

1
√

2n
|D f ∪ (u, γ)〉+/

-
|Dg ? Dh〉 ⊗ |0̂n〉



2

≤ O
(

1
2n

)
·

∑
u,v,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good

D f (u)=⊥

����a
(2i−1)
uvyzD f DgDh

����
2

= O
(

1
2n

)
·

Π⊥ |φ
good
2i−1〉


2
≤ O

(
1
2n

)
(6.43)

holds.

Upper bounding the norm of |φbad,12i−1 〉.
Sincewe always obtain a valid databasewhenwemeasureRstOE f |φ2i−1〉, we haveRstOE f |φ2i−1〉 = ΠvalidRstOE f |φ2i−1〉.
Thus, from (6.37), (6.40), (6.41), (6.42), and (6.43).

|φ
bad,1
2i−1 〉

 =
RstOE f |φ2i−1〉 − |φ

good,1
2i−1 〉


=

ΠvalidRstOE f |φ2i−1〉 − |φ
good,1
2i−1 〉


≤

|φ
bad
2i−1〉

 +
ΠvalidRstOE f |φ

good
2i−1〉 − |φ

good,1
2i−1 〉


≤

|φ
bad
2i−1〉

 + ‖ |(6.32)〉‖ + ‖|(6.33)〉‖ + ‖ |(6.34)〉‖ +
Πpre-bad |(6.35)〉 + ‖ |(6.36)〉‖

≤
|φ

bad
2i−1〉

 +O *
,

√
i

2n
+
-

(6.44)

follows. Hence the sixth property of the lemma for |φbad,12i−1 〉 holds. The sixth property of the lemma for |ψbad,1
2i−1 〉 can be

shown in the same way. �
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Next we prove the following lemma, which shows that the behavior of RstOEg on a pre-good database for F2 is the
same as that of RstOEh on the corresponding pre-good database for Fh

1 .

Lemma 19. Let (D f , Dg, Dh) and (D′f , D′g, D′
h

) be pre-good databases for F2. Then, for each u, u′, ζ, ζ ′, y, y′ ∈ {0, 1}n

and v, v′ ∈ {0, 1}m,

〈u′, v′, ζ ′, y′ | 〈D′f , D′g, D′h | RstOEg |u, v, ζ, y〉 |D f , Dg, Dh〉

= 〈u′, v′, ζ ′, y′ | 〈D′f , D′g ? D′h | RstOEh |u, v, ζ, y〉 |D f , Dg ? Dh〉 (6.45)

holds, where RstOEg acts on |u, v, ζ, y〉 and |Dg〉, and RstOEh acts on |v, ζ, y〉 and |Dg ? Dh〉. (|u, v, ζ〉 corresponds to
an input to g, and |v, ζ〉 corresponds to an input to h. The answers to the queries are written (added) to |y〉 register.)

Proof. Since RstOEg and RstOEh do not change the registers |u〉, |v〉, |ζ〉, and |D f 〉, both sides of (6.45) are 0 when
(u, v, ζ, D f ) , (u′, v′, ζ ′, D′f ). Below we show the equation when (u, v, ζ, D f ) = (u′, v′, ζ ′, D′f ).

RstOEg does not act on the |Dh〉 register. In addition, RstOEg does not affect the register that corresponds to the
element ((ũ, ṽ, ζ̃ ), w̃) in Dg when (ũ, ṽ, ζ̃ ) , (u, v, ζ ). Therefore, it suffices to show the equation when (i) Dh = ∅ and
Dg = {((u, v, ζ ),w)} (Dg has only a single entry), or (ii) Dh = ∅ and Dg = ∅.

In the case (i), Dg?Dh = {((v, ζ ),w)} holds, and the equation (6.45) follows from the first property in Proposition 3.
In the case (ii), Dg ? Dh = ∅ holds, and the equation (6.45) follows from the second property in Proposition 3. �

Next we prove the following lemma, which shows how the quantum states RstOE f |φ
good
2i−1〉 and RstOE f |ψ

good
2i−1〉

change when RstOEh and RstOEg act on them.

Lemma 20 (Actions of RstOEh in OFh
1
and RstOEg in OF2 ). Suppose that there exist vectors |ψgood

2i−1〉, |ψ
bad
2i−1〉, |φ

good
2i−1〉,

and |φbad2i−1〉 that satisfy the properties of Proposition 21. Then there exist |ψgood,2
2i−1 〉, |ψ

bad,2
2i−1 〉, |φ

good,2
2i−1 〉, and |φ

bad,2
2i−1 〉 that

satisfy the following properties.

1. RstOEgRstOE f |ψ2i−1〉 = |ψ
good,2
2i−1 〉 + |ψ

bad,2
2i−1 〉 and RstOEhRstOE f |φ2i−1〉 = |φ

good,2
2i−1 〉 + |φ

bad,2
2i−1 〉 hold.

2. |φgood,22i−1 〉 ∈ HA ⊗ V (1)
pre-good ⊗ Haux and |ψgood,2

2i−1 〉 ∈ HA ⊗ V (2)
pre-good ⊗ Haux.

3. |φgood,22i−1 〉 =
[
|ψ

good,2
2i−1 〉

]
1
.

4. There exists complex number a(2i−1),2
uvyzD f DgDh

that satisfies the following properties (a) and (b).

(a) It holds that

|ψ
good,2
2i−1 〉 =

∑
u,v,y,z,D f ,Dg,Dh

(D f ,Dg,Dh ): pre-good
D f (u),⊥

a(2i−1),2
uvyzD f DgDh

|u, v〉 |y〉 |z〉
⊗ |D f , Dg, Dh〉 ⊗ |D f (u)〉 ,

where (u, v), y, and z correspondsA’s register to send queries, the register to receive answers from oracles,
and the register for offline computations, respectively.

(b) a(2i−1),2
uvyzD f DgDh

= a(2i−1),2
uvyzD′

f
D′gD

′
h

holds if (D f , Dg, Dh) and (D′f , D′g, D′
h

) are equivalent,

5. For a pre-good database (D f , Dg, Dh) with non-zero coefficient in |ψgood,2
2i−1 〉, |Dg | ≤ i, |D f | ≤ 2(i − 1) + 1, and

|Dh | ≤ i − 1 hold.

6. ‖ |ψbad,2
2i−1 〉 ‖ ≤ ‖ |ψ

bad
2i−1〉 ‖ +O

(√
i/2n

)
and ‖ |φbad,22i−1 〉 ‖ ≤ ‖ |φ

bad
2i−1〉 ‖ +O

(√
i/2n

)
hold.

Proof. By Lemma 18, there exist vectors |ψgood,1
2i−1 〉, |ψ

bad,1
2i−1 〉, |φ

good,1
2i−1 〉, and |φ

bad,1
2i−1 〉 that satisfy the six properties in

Lemma 18.
Define |ψgood,2

2i−1 〉, |ψ
bad,2
2i−1 〉, |φ

good,2
2i−1 〉, and |φ

bad,2
2i−1 〉 by

|ψ
good,2
2i−1 〉 := ΠvalidRstOEg |ψ

good,1
2i−1 〉 ,

|ψbad,2
2i−1 〉 := RstOEgRstOE f |ψ2i−1〉 − |ψ

good,2
2i−1 〉 ,

|φ
good,2
2i−1 〉 := ΠvalidRstOEh |φ

good,1
2i−1 〉 ,

|φbad,22i−1 〉 := RstOEhRstOE f |φ2i−1〉 − |φ
good,1
2i−1 〉 .
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Remark 22. The intuition behind the definition of |ψgood,2
2i−1 〉 is as follows. First, by definition of pre-good databases,

all pre-good databases in |ψgood,1
2i−1 〉 remain pre-good (as long as it does not become invalid) after the action of RstOEg

due to the following reasoning: If a database in |ψgood,1
2i−1 〉 is pre-good and bad before the query, then the current query

to RstOEg is fresh and the database becomes good after the query. If a database in |ψgood,1
2i−1 〉 is good before the query,

then the current query to RstOEg has been recorded in Dg. The record may be overwritten (resp., removed) after the
query, but the resulting database remains good (resp., changes to pre-good) by definition of good (resp., pre-good)
databases. In particular, databases do not change to pre-bad. Thus we define |ψgood,2

2i−1 〉 as above. |ψ
bad,2
2i−1 〉 is defined so

that property 1 of the lemma will hold. The intuition behind the definition of |φgood,22i−1 〉 and |φ
good,2
2i−1 〉 is the same.

Then, property 1, 4-(a), and 5 of the lemma follows by the definition of |ψgood,2
2i−1 〉, |ψ

bad,2
2i−1 〉, |φ

good,2
2i−1 〉, and |φ

bad,2
2i−1 〉.

As explained in the above remark, all pre-good database remain pre-good (as long as it does not become invalid)
after the action of RstOEh in OFh

1
(and RstOEg in OF2 ). Hence property 2 of Lemma 20 follows from property 2 of

Lemma 18.
Recall that property 3 of Lemma 18 guarantees that the coefficient of each basis vector in |φgood,12i−1 〉 is equal to that

of the corresponding basis vector in |ψgood,1
2i−1 〉. Lemma 19 assures that the same thing holds for |φgood,12i−1 〉 and |ψ

good,2
2i−1 〉.

Hence property 3 of the Lemma 20 also holds.
From property 6 in Lemma 18 it follows that

|ψ
bad,2
2i−1 〉

 =
RstOEgRstOE f |ψ2i−1〉 − |ψ

good,2
2i−1 〉


=

ΠvalidRstOEgRstOE f |ψ2i−1〉 − |ψ
good,2
2i−1 〉


=

ΠvalidRstOEg

(
|ψ

good,1
2i−1 〉 + |ψ

bad,1
2i−1 〉

)
− ΠvalidRstOEg |ψ

good,1
2i−1 〉



≤
|ψ

bad,1
2i−1 〉

 ≤
|ψ

bad
2i−1〉

 +O *
,

√
i

2n
+
-

holds,12 and similarly |φ
bad,2
2i−1 〉

 ≤
|φ

bad
2i−1〉

 +O
(√

i/2n
)
also holds. Hence property 6 of Lemma 20 also holds.

In what follows, we show that property 4-(b) of Lemma 20 holds. Suppose that (D f , Dg, Dh) and (D̃ f , D̃g, D̃h) are
equivalent pre-good databases for F2 such that |Dg | ≤ i, |D f | ≤ 2(i − 1) + 1, and |Dh | ≤ i − 1 hold, and there exists u
such that D f (u) , ⊥ and D̃ f (u) , ⊥. Below we show a(2i−1),2

uvyzD f DgDh
= a(2i−1),2

uvyzD̃ f D̃g D̃h
for arbitrary v, y, and z.

If both of (D f , Dg, Dh) and (D̃ f , D̃g, D̃h) are good, then by definition of good databases and definition of equivalent
databases, there exists an integer s ≥ 0 and ui ∈ {0, 1}n, Xi,Yi ∈ {0, 1}n, v ( j)

i ∈ {0, 1}m, w( j)
i ∈ {0, 1}n for i = 1, . . . , s

and j = 1, . . . , ti (ti is a positive integer for each i) such that

1. ui , ui′ , Xi , Xi′ , Yi , Yi′ for i , i′,

2. v
( j)
i , v

( j′)
i for each i and j , j ′,

and

D f = {(ui, Xi)}1≤i≤s , Dg =
{((

ui, v
( j)
i , Xi

)
,w

( j)
i

)}
1≤i≤s,1≤ j≤ti

, (6.46)

D̃ f = {(ui,Yi)}1≤i≤s , D̃g =
{((

ui, v
( j)
i ,Yi

)
,w

( j)
i

)}
1≤i≤s,1≤ j≤ti

(6.47)

hold.
If both of (D f , Dg, Dh) and (D̃ f , D̃g, D̃h) are pre-good and bad, there exist additional elements u0, X0,Y0 ∈ {0, 1}n

such that u0 , ui , X0 , Xi , Y0 , Yi for i ≥ 1, and

D f = {(ui, Xi)}0≤i≤s , Dg =
{((

ui, v
( j)
i , Xi

)
,w

( j)
i

)}
1≤i≤s,1≤ j≤ti

, (6.48)

D̃ f = {(ui,Yi)}0≤i≤s , D̃g =
{((

ui, v
( j)
i ,Yi

)
,w

( j)
i

)}
1≤i≤s,1≤ j≤ti

(6.49)

hold (note that (D f , Dg, Dh) and (D̃ f , D̃g, D̃h) are not equivalent if one of them is good and the other is bad).
Regardless whether (D f , Dg, Dh) is good or (D f , Dg, Dh) is pre-good and bad, there exists a unique i such that

u = ui holds. In addition, there exist a non-negative integer s′ and ζ1, . . . , ζs′ ∈ {0, 1}n, η1, . . . , ηs′ ∈ {0, 1}m,
ξ1, . . . , ξs′ ∈ {0, 1}n such that

12For the second equality, we used the fact that we always obtain a valid database when we measure the state RstOEgRstOE f |ψ2i−1〉, which
implies that RstOEgRstOE f |ψ2i−1〉 = ΠvalidRstOEgRstOE f |ψ2i−1〉 holds.
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1. (ηi, ζi) , (ηi′, ζi′ ) for i , i′,

2. ζi , Xα and ζi , Yβ hold for arbitrary i ∈ {1, . . . , s′} and α, β ∈ {1, . . . , s},
and

Dh = D̃h = {((ηi, ζi) , ξi)}1≤i≤s′ (6.50)
holds.

Let π be a permutation on {0, 1}n such that π(Xi) = Yi for each Xi and π(ζi) = ζi for each ζi . For arbitrary D′g such
that (D f , D′g, Dh) is pre-good, define a database (D′′f , D′′g , D′′

h
) by

1. D′′
h
= Dh ,

2. D′′f = D̃ f , and

3. ((u′′, v′′, ζ ′′),w′′) ∈ D′′g if and only if ((u′′, v′′, π−1(ζ ′′)),w′′) ∈ D′′g .
Then (D′′f , D′′g , D′′

h
) is a pre-good database that is equivalent to (D f , D′g, Dh) Let us denote this database (D′′f , D′′g , D′′

h
)

by π[D f , D′g, Dh].
Since (a) of the fourth property in Lemma 18 holds, by the definition of |ψgood,2

2i−1 〉,

a(2i−1),2
uvyzD f DgDh

=
(
〈u, v, y, z | ⊗ 〈D f , Dg, Dh | ⊗ 〈D f (u) |

)
|ψ

good,2
2i−1 〉

=
∑

y′,D′g ;
(D f ,D

′
g,Dh ): pre-good

〈u, v, y, z | ⊗ 〈D f , Dg, Dh | ⊗ 〈D f (u) | RstOEg |u, v, y′, z〉 ⊗ |D f , D′g, Dh〉 ⊗ |D f (u)〉
·
(
〈u, v, y′, z | ⊗ 〈D f , D′g, Dh | ⊗ 〈D f (u) |

)
|ψ

good,1
2i−1 〉

=
∑

y′,D′g ;
(D f ,D

′
g,Dh ): pre-good

c
[
y′, D f , D′g, Dh → y, D f , Dg, Dh

]
· a(2i−1),1

uvy′zD f D
′
gDh

follows, where we put

c
[
y′, D f , D′g, Dh → y, D f , Dg, Dh

]
:= 〈u, v, y, z | ⊗ 〈D f , Dg, Dh | ⊗ 〈D f (u) | RstOEg |u, v, y′, z〉 ⊗ |D f , D′g, Dh〉 ⊗ |D f (u)〉 .

Now, for arbitrary y′ and D′g such that (D f , D′g, Dh) is pre-good,

a(2i−1),1
uvy′zD f D

′
gDh
= a(2i−1),1

uvy′zπ[D f D
′
gDh ] (6.51)

holds by the fourth property in Lemma 18, and

c
[
y′, D f , D′g, Dh → y, D f , Dg, Dh

]
= c

[
y′, π[D f , D′g, Dh]→ y, π[D f , Dg, Dh]

]
(6.52)

follows from the first property of Proposition 3. In addition, the followings hold:
I. π[D f , Dg, Dh] = (D̃ f , D̃g, D̃h) holds.

II. π[·] is a bijection between the set of pre-good databases of the form (D f , D′g, Dh) (for some D′g) and the set of
pre-good databases of the form (D̃ f , D′′g , D̃h) (for some D′′g ).

Therefore we have

a(2i−1),2
uvyzD f DgDh

=
∑

y′,D′g ;
(D f ,D

′
g,Dh ): pre-good

c
[
y′, D f , D′g, Dh → y, D f , Dg, Dh

]
· a(2i−1),1

uvy′zD f D
′
gDh

((6.51) and (6.52))
=

∑
y′,D′g ;

(D f ,D
′
g,Dh ): pre-good

c
[
y′, π[D f , D′g, Dh]→ y, π[D f , Dg, Dh]

]
· a(2i−1),1

uvy′zπ[D f D
′
gDh ]

(from I)
=

∑
y′,D′g ;

(D f ,D
′
g,Dh ): pre-good

c
[
y′, π[D f , D′g, Dh]→ y, D̃ f , D̃g, D̃h

]
· a(2i−1),1

uvy′zπ[D f D
′
gDh ]

(from II)
=

∑
y′,D′′g ;

(D̃ f ,D
′′
g,D̃h ): pre-good

c
[
y′, D̃ f , D′′g , D̃h → y, D̃ f , D̃g, D̃h

]
· a(2i−1),1

uvy′zD̃ f D
′′
g D̃h

= a(2i−1),2
uvyzD̃ f D̃g D̃h

, (6.53)
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which shows that property 4-(b) of Lemma 20 also holds. �

Next we prove the following lemma, which shows how the quantum states RstOEh · RstOE f |φ
good
2i−1〉 and RstOEg

· RstOE f |ψ
good
2i−1〉 change when RstOE∗f acts on them.

Lemma 21 (Action of RstOE∗f ). Suppose that there exist vectors |ψgood
2i−1〉, |ψ

bad
2i−1〉, |φ

good
2i−1〉, and |φ

bad
2i−1〉 that satisfy the

sixth properties of Proposition 21. Then there exist vectors |ψgood,3
2i−1 〉, |ψ

bad,3
2i−1 〉, |φ

good,3
2i−1 〉, and |φ

bad,3
2i−1 〉 that satisfy the

following properties:

1. RstOE∗fRstOEgRstOE f |ψ2i−1〉 = |ψ
good,3
2i−1 〉 + |ψ

bad,3
2i−1 〉 holds, and RstOE∗fRstOEh · RstOE f |φ2i−1〉 = |φ

good,3
2i−1 〉 +

|φbad,32i−1 〉 holds.

2. |φgood,32i−1 〉 ∈ HA ⊗ V (1)
good and |ψ

good,3
2i−1 〉 ∈ HA ⊗ V (2)

good.

3. |φgood,32i−1 〉 =
[
|ψ

good,3
2i−1 〉

]
1
.

4. There exists complex number a(2i−1),3
uvyzD f DgDh

such that the following properties (a) and (b) hold:

(a) It holds that
|ψ

good,3
2i−1 〉 =

∑
u,v,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ):good

a(2i−1),3
uvyzD f DgDh

|u, v〉 |y〉 |z〉 ⊗ |D f , Dg, Dh〉 , (6.54)

where (u, v), y, and z correspond to A’s register to send queries, register to receive answers from oracles,
and register for offline computations, respectively.

(b) If (D f , Dg, Dh) and (D′f , D′g, D′
h

) are equivalent good databases, then a(2i−1),3
uvyzD f DgDh

= a(2i−1),3
uvyzD′

f
D′gD

′
h

holds.

5. For a good database (D f , Dg, Dh) with non-zero coefficient in |ψgood,3
2i−1 〉, |Dg | ≤ i, |D f | ≤ 2i, and |Dh | ≤ i − 1

hold.

6. ‖ |φbad,32i−1 〉 ‖ ≤ ‖ |φ
bad
2i−1〉 ‖ +O

(√
i/2n

)
and ‖ |ψbad,3

2i−1 〉 ‖ ≤ ‖ |ψ
bad
2i−1〉 ‖ +O

(√
i/2n

)
hold.

Proof. By Lemma 20, there exist vectors |φgood,22i−1 〉, |φ
bad,2
2i−1 〉, |ψ

good,2
2i−1 〉, and |ψ

bad,2
2i−1 〉 that satisfy the six properties in

Lemma 20.
For each tuple (u, v, y, z, D f , Dg, Dh) such that

1. |Dg | ≤ i, |D f | ≤ 2i, and |Dh | ≤ i − 1,

2. (D f , Dg, Dh) is good, and

3. D f (u) = ⊥,

let α be an n-bit string such that (D f ∪ (u, α), Dg, Dh) is pre-good, and define

a(2i−1),3
uvyzD f DgDh

:=
√

2na(2i−1),2
uvyzD f ∪(u,α)DgDh

. (6.55)

Due to property 4-(b) of Lemma 20, the definition (6.55) is independent from the choice of α.
In addition, for each tuple (u, v, y, z, D f , Dg, Dh) such that

1. |Dg | ≤ i, |D f | ≤ 2i, and |Dh | ≤ i − 1 hold,

2. (D f , Dg, Dh) is good,

3. D f (u) , ⊥,

define

a(2i−1),3
uvyzD f DgDh

:= a(2i−1),2
uvyzD f DgDh

. (6.56)

When the conditions |Dg | ≤ i, |D f | ≤ 2i, and |Dh | ≤ i − 1 are not satisfied, let

a(2i−1),3
uvyzD f DgDh

:= 0. (6.57)
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Define |ψgood,3
2i−1 〉 by the equation (6.54), where the coefficients a(2i−1),3

uvyzD f DgDh
are those defined in (6.55), (6.56),

and (6.57). In addition, define |φgood,32i−1 〉 by |φ
good,3
2i−1 〉 :=

[
|ψ

good,3
2i−1 〉

]
1
. Define |ψbad,3

2i−1 〉 and |φ
bad,3
2i−1 〉 by |ψ

bad,3
2i−1 〉 :=

RstOE∗fRstOEgRstOE f |ψ2i−1〉 − |ψ
good,3
2i−1 〉 and |φ

bad,3
2i−1 〉 := RstOE∗fRstOEhRstOE f |φ2i−1〉 − |φ

good,3
2i−1 〉.

Remark 23. The intuition behind the definition of |ψgood,3
2i−1 〉 is as follows. Roughly speaking, we defined |ψgood,3

2i−1 〉 in
such a way that Πpre-goodRstOE f |ψ

good,3
2i−1 〉 will be close to |ψ

good,2
2i−1 〉. Suppose we have |ψ

good,3
2i−1 〉 that satisfies (6.54) and

let RstOE f act on it (rather than we have |ψgood,2
2i−1 〉 and let RstOE∗f act on it). Then, since this RstOE f writes outputs

into an auxiliary register, the behavior of RstOE f is close to the classical lazy sampling. Intuitively, the followings will
hold if Πpre-goodRstOE f |ψ

good,3
2i−1 〉 = |ψ

good,2
2i−1 〉.

1. Databases |D f , Dg, Dh〉 with D f (u) , ⊥ are not changed by RstOE f , and (6.55) holds.

2. Databases |D f , Dg, Dh〉 with D f (u) = ⊥ are changed to
∑
α

1√
2n
|D f ∪ (u, α), Dg, Dh〉 by RstOE f , and (6.56)

holds.

This is the reason that we defined a(2i−1),3
uvyzD f DgDh

and |ψgood,3
2i−1 〉 like above. We provided definitions based on |ψgood,3

2i−1 〉

rather than |ψgood,2
2i−1 〉, unlike previous lemmas, because it makes the proof for property 4-(b) simple (or just trivial). We

defined |ψbad,3
2i−1 〉, |φ

good,3
2i−1 〉, and |φ

bad,3
2i−1 〉 in such a way that property 1-5 of the lemma will be satisfied.

Then, property 1, 2, 3, 4-(a), and 5 of Lemma 21 immediately follow from the definitions of |ψgood,3
2i−1 〉, |ψ

good,3
2i−1 〉,

|φbad,32i−1 〉, and |φ
bad,3
2i−1 〉. In addition, property 4-(b) of Lemma21 follows from the definition of the coefficients a(2i−1),3

uvyzD f DgDh

and property 4-(b) of Lemma 20. Below we show that property 6 of Lemma 21 holds.

Remark 24. Later, we will show that |φ
bad,3
2i−1 〉

 is upper bounded by
|φ

bad,2
2i−1 〉

+
|φ

good,3
2i−1 〉 − ΠregRstOE∗f |φ

good,2
2i−1 〉

. In
what follows, our main goal is to show that |φ

good,3
2i−1 〉 − ΠregRstOE∗f |φ

good,2
2i−1 〉

 is in O(
√

i/2n).

By applying the first property of Proposition 3, and by definition of regular states13, we have

ΠregRstOE∗fΠgood |φ
good,2
2i−1 〉 = ΠregRstOE f

∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ):good
D f (u)=⊥

a(2i−1),2
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉
⊗ |D f ∪ (u, α), Dg ? Dh〉 ⊗ |α〉

=
∑

u,v,y,z,α,D f ,Dg,Dh ;
(D f ∪(u,α),Dg,Dh ): good

D f (u)=⊥

a(2i−1),2
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉
⊗ |D f ∪ (u, α), Dg ? Dh〉

(6.58)

+
∑

u,v,y,z,α,D f ,Dg,Dh ;
(D f ∪(u,α),Dg,Dh ): good

D f (u)=⊥

1
√

2n
a(2i−1),2
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉

⊗
*.
,
|D f 〉 −

∑
γ

1
√

2n
|D f ∪ (u, γ)〉+/

-
|Dg ? Dh〉

(6.59)

−
∑

u,v,y,z,α,D f ,Dg,Dh ;
(D f ∪(u,α),Dg,Dh ): good

D f (u)=⊥

1
2n

a(2i−1),2
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉

⊗ |D f ∪ (u, α), Dg ? Dh〉

(6.60)

+
1

23n/2

∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good
D f (u)=⊥

a(2i−1),2
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉

⊗
*.
,
2
∑
γ

1
√

2n
|D f ∪ (u, γ)〉 − |D f 〉

+/
-
|Dg ? Dh〉 ,

(6.61)

where the terms (6.58)-(6.61) correspond to (3.12)-(3.15), respectively.

13Recall that a state is regular if and only if it does not contain invalid databases and the auxiliary register is set to be 0. In particular, the projection
Πreg nullifies the terms with invalid databases and those of which auxiliary register is non-zero.
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On the term (6.58).
LetΠ6⊥ be the orthogonal projection onto the space spanned by the vectors |u, v〉 |y〉 |z〉 |D f , Dg, Dh〉 such that D f (u) , ⊥.
Then

|(6.58)〉 = Π6⊥ |φgood,32i−1 〉 (6.62)

holds.

Upper bounding the norm of the terms (6.59) and (6.61).
First we have



∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good
D f (u)=⊥

1
√

2n
a(2i−1),2
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉 |D f , Dg ? Dh〉



2

=



∑
u,v,y,z,α,D f ,Dg,Dh,D

′
h

;
(D f ∪(u,α),Dg,Dh ): good

D f (u)=⊥
Dg?Dh=D

′
h

1
√

2n
a(2i−1),2
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉 |D f , D′h〉



2

=
∑

u,v,y,z,D f ;
D f (u)=⊥

1
2n

∑
D′

h

��������������

∑
α,Dg,Dh ;

Dg?Dh=D
′
h

(D f ∪(u,α),D′
h

): good

a(2i−1),2
uvyzD f ∪(u,α)DgDh

��������������

2

. (6.63)

For each database (D f , D′
h

) such that D f (u) = ⊥ for Fh
1 , the number of α such that (D f ∪ (u, α), D′

h
) becomes good is

at most |D′
h
| ≤ O(i). Hence we can show

∑
D′

h

��������������

∑
α,Dg,Dh ;

Dg?Dh=D
′
h

(D f ∪(u,α),D′
h

): good

a(2i−1),2
uvyzD f ∪(u,α)DgDh

��������������

2

≤ O(i) ·
∑

α,Dg,Dh ;
(D f ∪(u,α),Dg,Dh ): good

����a
(2i−1),2
uvyzD f ∪(u,α)DgDh

����
2

(6.64)

in the same way as we showed (6.39). From (6.63) and (6.64), it follows that



∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good
D f (u)=⊥

1
√

2n
a(2i−1),2
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉 |D f , Dg ? Dh〉



2

≤
∑

u,v,y,z,D f ;
D f (u)=⊥

O
(

i
2n

)
·

∑
α,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good

����a
(2i−1),2
uvyzD f ∪(u,α)DgDh

����
2

= O
(

i
2n

) ∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good
D f (u)=⊥

����a
(2i−1),2
uvyzD f ∪(u,α)DgDh

����
2

≤ O
(

i
2n

)
·

|φ
good,2
2i−1 〉


2
≤ O

(
i

2n

)
(6.65)
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holds. We can show



∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good
D f (u)=⊥

1
√

2n
a(2i−1),2
uvyzD f ∪(u,α)DgDh

|u, v〉 |y〉 |z〉

⊗
*.
,

∑
γ

1
√

2n
|D f ∪ (u, γ)〉+/

-
|Dg ? Dh〉



2

≤ O
(

i
2n

)
·

|φ
good,2
2i−1 〉


2
≤ O

(
i

2n

)
(6.66)

in the same way. Now,

‖ |(6.59)〉‖ ≤ O *
,

√
i

2n
+
-
and ‖ |(6.61)〉‖ ≤ O *

,

√
i

2n
+
-

(6.67)

follow from (6.65) and (6.66).

Upper bounding the norm of the term (6.60).
We have that

‖ |(6.60)〉‖2 =
1

22n

∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ∪(u,α),Dg,Dh ): good
D f (u)=⊥

����a
(2i−1),2
uvyzD f ∪(u,α)DgDh

����
2
≤

1
22n

|φ
good,2
2i−1 〉


2
≤ O

(
1

22n

)
(6.68)

holds since all summands are orthogonal to each other.
Now, from (6.58) - (6.61), (6.62), (6.67), and (6.68),

Π6⊥ |φ
good,3
2i−1 〉 − ΠregRstOE∗fΠgood |φ

good,2
2i−1 〉

 ≤ O *
,

√
i

2n
+
-

(6.69)

follows.

Remark 25. So farwe have shown Π6⊥ |φ
good,3
2i−1 〉 − ΠregRstOE∗fΠgood |φ

good,2
2i−1 〉

 is small. Next wewill prove ‖Π⊥ |φ
good,3
2i−1 〉

− ΠregRstOE∗fΠbad |φ
good,2
2i−1 〉 ‖ is small, which will lead to showing that |φ

good,3
2i−1 〉 − ΠregRstOE∗f |φ

good,2
2i−1 〉

 is small.

Next, let Π⊥ be the orthogonal projection onto the space spanned by the vectors |u, v〉 |y〉 |z〉 |D f , Dg ? Dh〉 such
that D f (u) = ⊥. Then, by applying the second property in Proposition 3, we have

RstOE fΠ⊥ |φ
good,3
2i−1 〉 =

∑
u,v,y,z,α,D f ,Dg,Dh ;

(D f ,Dg,Dh ): good
D f (u)=⊥

1
√

2n
a(2i−1),3
uvyzD f DgDh

|u, v〉 |y〉 |z〉

⊗ |D f ∪ (u, α), Dg ? Dh〉 ⊗ |α〉

(6.70)

+
1
√

2n
∑

u,v,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good

D f (u)=⊥

a(2i−1),3
uvyzD f DgDh

|u, v〉 |y〉 |z〉

⊗
*.
,
|D f 〉 −

∑
γ

1
√

2n
|D f ∪ (u, γ)〉+/

-
|Dg ? Dh〉 ⊗ |0̂n〉 ,

(6.71)

where the terms (6.70) and (6.71) correspond to (3.16) and (3.17), respectively.

On the term Πpre-good |(6.70)〉.
By the equation (6.55),

Πpre-good |(6.70)〉 = Πbad |φ
good,2
2i−1 〉 (6.72)

holds.14

14 Note that here we are focusing on pre-good and bad databases. See also Remark 19.
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Upper bounding the norms of the terms Πpre-bad |(6.70)〉 and |(6.71)〉.
For a good database (D f , Dg, Dh) for F2, let NumPreGood(D f , Dg, Dh) be the number of α such that (D f ∪

(u, α), Dg, Dh) becomes pre-good. Then we have ���NumPreGood(D f , Dg, Dh)��� ≥ 2n − |D f | − |Dh | ≥ 2n − 2i, and

����a
(2i−1),3
uvyzD f DgDh

���� =

���������

√
2n

NumPreGood(D f , Dg, Dh)

∑
α;

(D f ∪(u,α),Dg,Dh ): pre-good

a(2i−1),2
uvyzD f ∪(u,α)DgDh

���������

≤

���������

√
2n

2n − 2i

∑
α;

(D f ∪(u,α),Dg,Dh ): pre-good

a(2i−1),2
uvyzD f ∪(u,α)DgDh

���������

(6.73)

holds. Thus we have that

Π⊥ |φ
good,3
2i−1 〉


2
=



∑
u,v,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good

D f (u)=⊥

a(2i−1),3
uvyzD f DgDh

|u, v〉 |y〉 |z〉 ⊗ |D f , Dg ? Dh〉



2

=
∑

u,v,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good

D f (u)=⊥

����a
(2i−1),3
uvyzD f DgDh

����
2

(6.73)
≤

∑
u,v,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good

D f (u)=⊥

���������

√
2n

2n − 2i

∑
α;

(D f ∪(u,α),Dg,Dh ): pre-good

a(2i−1),2
uvyzD f ∪(u,α)DgDh

���������

2

=
∑

u,v,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good

D f (u)=⊥

*
,

√
2n

2n − 2i
+
-

2
���������

∑
α;

(D f ∪(u,α),Dg,Dh ): pre-good

a(2i−1),2
uvyzD f ∪(u,α)DgDh

���������

2

convexity
≤

∑
u,v,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good

D f (u)=⊥

*
,

√
2n

2n − 2i
+
-

2

· 2n
∑
α;

(D f ∪(u,α),Dg,Dh ): pre-good

����a
(2i−1),2
uvyzD f ∪(u,α)DgDh

����
2

= O(1) ·
∑

u,v,y,z,α,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good

D f (u)=⊥
(D f ∪(u,α),Dg,Dh ): pre-good

����a
(2i−1),2
uvyzD f ∪(u,α)DgDh

����
2

≤ O(1) · Πbad |φ
good,2
2i−1 〉


2

(6.74)

holds, where “convexity” denotes convexity of square functions. 15 Therefore

Π⊥ |φ
good,3
2i−1 〉

 ≤
Πbad |φ

good,2
2i−1 〉

 · O (1) ≤ O(1) (6.75)

holds.
Since (6.75) holds, we can show

Πpre-bad |(6.70)〉 ≤ O *
,

√
i

2n
+
-
·

Π⊥ |φ
good,3
2i−1 〉

 ≤ O *
,

√
i

2n
+
-

(6.76)

15Note that Πbad do not cancel pre-good and bad databases.
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and

‖ |(6.71)〉‖ ≤ O *
,

√
i

2n
+
-
·

Π⊥ |φ
good,3
2i−1 〉

 ≤ O *
,

√
i

2n
+
-

(6.77)

in the same way as we showed (6.42) and (6.43) in the proof of Lemma 18, respectively.
Now it follows that

RstOE fΠ⊥ |φ
good,3
2i−1 〉 − Πbad |φ

good,2
2i−1 〉

 =
( |(6.70)〉 + |(6.71)〉) − Πbad |φ

good,2
2i−1 〉


=

Πpre-good |(6.70)〉 + Πpre-bad |(6.70)〉 + |(6.71)〉 − Πbad |φ
good,2
2i−1 〉


(6.72)
=

Πpre-bad |(6.70)〉 + |(6.71)〉
(6.76) and (6.77)

≤ O *
,

√
i

2n
+
-

(6.78)

holds.
Since ΠregΠ⊥ |φ

good,3
2i−1 〉 = Π⊥ |φ

good,3
2i−1 〉 holds by definition of |φgood,32i−1 〉,

Π⊥ |φ
good,3
2i−1 〉 − ΠregRstOE∗fΠbad |φ

good,2
2i−1 〉

 =
Πreg

(
Π⊥ |φ

good,3
2i−1 〉 − RstOE∗fΠbad |φ

good,2
2i−1 〉

)
≤

Π⊥ |φ
good,3
2i−1 〉 − RstOE∗fΠbad |φ

good,2
2i−1 〉


(6.78)
≤ O *

,

√
i

2n
+
-

(6.79)

holds.
From (6.69) and (6.79), it follows that

|φ
good,3
2i−1 〉 − ΠregRstOE∗f |φ

good,2
2i−1 〉

 ≤
Π6⊥ |φ

good,3
2i−1 〉 − ΠregRstOE∗fΠgood |φ

good,2
2i−1 〉


+

Π⊥ |φ
good,3
2i−1 〉 − ΠregRstOE∗fΠbad |φ

good,2
2i−1 〉



≤ O *
,

√
i

2n
+
-

(6.80)

holds.
Since we obtain a regular database whenever we measure the state RstOE∗fRstOEh · RstOE f |φ2i−1〉,

ΠregRstOE∗fRstOEhRstOE f |φ2i−1〉 = RstOE∗fRstOEhRstOE f |φ2i−1〉 (6.81)

holds. Therefore, from property 1 and 6 in Lemma 20, (6.80), and (6.81),

|φ
bad,3
2i−1 〉

 =
RstOE∗fRstOEhRstOE f |φ2i−1〉 − |φ

good,3
2i−1 〉


(6.81)
=

ΠregRstOE∗fRstOEhRstOE f |φ2i−1〉 − |φ
good,3
2i−1 〉


property 1
=

ΠregRstOE∗f
(
|φ

good,2
2i−1 〉 + |φ

bad,2
2i−1 〉

)
− |φ

good,3
2i−1 〉


≤

|φ
good,3
2i−1 〉 − ΠregRstOE∗f |φ

good,2
2i−1 〉

 +
|φ

bad,2
2i−1 〉


property 6
≤

|φ
good,3
2i−1 〉 − ΠregRstOE∗f |φ

good,2
2i−1 〉

 +
|φ

bad
2i−1〉

 +O *
,

√
i

2n
+
-

(6.80)
≤ O *

,

√
i

2n
+
-
+

|φ
bad
2i−1〉

 (6.82)

follows, which implies that property 6 of Lemma 21 for |φbad,32i−1 〉 holds. We can show property 6 of the lemma for
|ψbad,3

2i−1 〉 in the same way. �

Proof of Proposition 21. We show the claim by induction on j. The claim for j = 1 obviously holds by setting
|φ

good
1 〉 = |φ1〉, |ψgood

1 〉 = |ψ1〉, |φbad1 〉 = 0, and |ψbad
1 〉 = 0.
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From (2i − 1) to 2i. Here we show that the claim holds for j = 2i if the claim holds for j = 1, . . . , 2i−1. By Lemma 21,
there exist vectors |ψgood,3

2i−1 〉, |ψ
bad,3
2i−1 〉, |φ

good,3
2i−1 〉, and |φ

bad,3
2i−1 〉 that satisfy the six properties in Lemma 21.

Let U2i−1 denote the unitary operator that corresponds to the offline computation by A between the (2i − 1)-th
query (the i-th query to Fh

1 or F2) and the 2i-th query (the i-th query to h), and define

|ψ
good
2i 〉 := U2i−1 |ψ

good,3
2i−1 〉 , |ψbad

2i 〉 = U2i−1 |ψ
bad,3
2i−1 〉 ,

|φ
good
2i 〉 := U2i−1 |φ

good,3
2i−1 〉 , |φbad2i 〉 = U2i−1 |φ

bad,3
2i−1 〉 .

Then, the six properties in Proposition 21 for j = 2i immediately follow from the six properties in Lemma 21. Hence
the claim holds for j = 2i.

From 2i to 2i + 1. Here we show that the claim holds for j = 2i + 1 if the claim holds for j = 1, . . . , 2i. Let Πhit be
the orthogonal projection onto the space that is spanned by the vectors |v, ζ〉 |y〉 |z〉 ⊗ |D f , Dg, Dh〉 (or, |v, ζ〉 |y〉 |z〉 ⊗
|D f , Dh〉) such that (u, ζ ) ∈ D f for some u16. In addition, let Π¬hit := I − Πhit.

Let U2i denote the unitary operator that corresponds to the offline computation by A between the 2i-th query (the
i-th query to h) and the (2i+1)-st query (the (i+1)-st query to Fh

1 or F2). We define |ψgood
2i 〉, |ψ

bad
2i 〉, |φ

good
2i 〉, and |φ

bad
2i 〉 by

|ψ
good
2i+1〉 := U2iΠvalidRstOEhΠ¬hit |ψ

good
2i 〉 , |ψ

bad
2i+1〉 := |ψ2i+1〉−|ψ

good
2i+1〉 , |φ

good
2i+1〉 := U2iΠvalidRstOEhΠ¬hit |φ

good
2i 〉 , |φ

bad
2i+1〉 :=

|φ2i+1〉 − |φ
good
2i+1〉 .

Then property 1 of Proposition 21 for j = 2i + 1 holds by definition of |ψgood
2i 〉, |ψ

bad
2i 〉, |φ

good
2i 〉, and |φ

bad
2i 〉. Property

2, 3, 4, 5 for j = 2i + 1 can be shown by checking how the coefficients of basis vectors in Π¬hit |ψgood
2i 〉 and Π¬hit |φ

good
2i 〉

change when RstOEh act on them (by applying Proposition 3 on RstOEh). 17
Below we show that property 6 holds for j = 2i + 1.
For a good database (D f , Dg, Dh) for F2, let Equiv(D f , Dg, Dh) be the set of good databases that are equivalent

to (D f , Dg, Dh). Let R be a complete system of representatives of the equivalence relation on good databases for
F2 (i.e., R is a set of good databases for F2 such that the set of all good databases for F2 is decomposed into the
disjoint union

∐
(D̃ f ,D̃g,D̃h )∈R Equiv(D̃ f , D̃g, D̃h)). In addition, for a good database (D f , Dg, Dh) for F2 and ζ , let

EquivHitζ (D f , Dg, Dh) be the set of good databases (D′f , D′g, D′
h

) such that (D′f , D′g, D′
h

) is equivalent to (D f , Dg, Dh)
and (u, ζ ) ∈ D′f for some u. Then the following claim holds.

Claim 6. For each ζ and each good database (D f , Dg, Dh) ∈ R such that a(2i)
vζyzD f DgDh

, 0 for some v, ζ, y, z,

���EquivHitζ (D f , Dg, Dh)���
���Equiv(D f , Dg, Dh)���

≤ O
(

i
2n

)
holds. 18

Proof. Let
S :=

{
ζ ′ ∈ {0, 1}n��∃v,w s.t. ((v, ζ ′),w) ∈ Dh

}
,

and
ΠS :=

{
π : {0, 1}n → {0, 1}n��π is a permutation and π(ζ ′) = ζ ′ for all ζ ′ ∈ S

}
.

Then, a good database (D′f , D′
h
, D′

h
) is equivalent to (D f , Dg, Dh) if and only if there exists π ∈ ΠS such that

1. Dh = D′
h
,

2. (u, ζ ′) ∈ D f if and only if (u, π(ζ ′)) ∈ D′f , and

3. ((u, v, ζ ′),w) ∈ Dg if and only if ((u, v, π(ζ ′)),w) ∈ D′g holds.

16This projection corresponds to the event hit in Section 6.2.
17Intuitively, the behavior of RstOEh on Π¬hit |ψ

good
2i 〉 is the same as that of RstOEh on Π¬hit |φ

good
2i 〉.

18In (6.21) we used the symbol a(2i)
uvyzD f DgDh

for ease of notations, but here we use a(2i)
vζ yzD f DgDh

(“uv” is replaced with “vζ”) because we
use the symbol v | |ζ to denote an input to h.
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Therefore we have
���EquivHitζ (D f , Dg, Dh)���

���Equiv(D f , Dg, Dh)���
= Pr
π

$
←−ΠS

[
There exists (u, ζ ′) ∈ D f such that π(ζ ′) = ζ

]
.

The probability on the right hand side is upper bounded as

Pr
π

$
←−ΠS

[
There exists (u, ζ ′) ∈ D f such that π(ζ ′) = ζ

]
≤

∑
(u,ζ ′)∈D f

Pr
π

$
←−ΠS

[
π(ζ ′) = ζ

]
=

∑
(u,ζ ′)∈D f

|{π ∈ ΠS |π(ζ ′) = ζ }|
|ΠS |

=
∑

(u,ζ ′)∈D f

(2n − |S | − 1)!
(2n − |S |)!

=
|D f |

2n − |Dh |
≤ O

(
i

2n

)
.

Hence the claim follows. �

Now we have

Πhit |ψ
good
2i 〉


2
=



∑
v,ζ,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good
∃u s.t. (u,ζ )∈D f

a(2i)
vζyzD f DgDh

|v, ζ〉 |y〉 |z〉 ⊗ |D f , Dg, Dh〉



2

=
∑

v,ζ,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good
∃u s.t. (u,ζ )∈D f

����a
(2i)
vζyzD f DgDh

����
2

=
∑

(D̃ f ,D̃g,D̃h )∈R

∑
v,ζ,y,z,D f ,Dg,Dh ;

(D f ,Dg,Dh )∈Equiv(D̃ f ,D̃g,D̃h )
∃u s.t. (u,ζ )∈D f

����a
(2i)
vζyzD f DgDh

����
2

property 4
for j = 2i
=

∑
(D̃ f ,D̃g,D̃h )∈R

∑
v,ζ,y,z,D f ,Dg,Dh ;

(D f ,Dg,Dh )∈Equiv(D̃ f ,D̃g,D̃h )
∃u s.t. (u,ζ )∈D f

����a
(2i)
vζyzD̃ f D̃g D̃h

����
2

=
∑

(D̃ f ,D̃g,D̃h )∈R

∑
v,ζ,y,z

���EquivHitζ (D̃ f , D̃g, D̃h)���
����a

(2i)
vζyzD̃ f D̃g D̃h

����
2

(Claim)
≤ O

(
i

2n

)
·

∑
(D̃ f ,D̃g,D̃h )∈R

∑
v,ζ,y,z

���Equiv(D̃ f , D̃g, D̃h)���
����a

(2i)
vζyzD̃ f D̃g D̃h

����
2

property 4
for j = 2i
= O

(
i

2n

)
·

∑
(D̃ f ,D̃g,D̃h )∈R

∑
v,ζ,y,z,D f ,Dg,Dh ;

(D f ,Dg,Dh )∈Equiv(D̃ f ,D̃g,D̃h )

����a
(2i)
vζyzD f DgDh

����
2

= O
(

i
2n

)
·

∑
v,ζ,y,z,D f ,Dg,Dh ;
(D f ,Dg,Dh ): good

����a
(2i)
vζyzD f DgDh

����
2

= O
(

i
2n

)
·

|ψ
good
2i 〉


2
≤ O

(
i

2n

)
. (6.83)
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Therefore we have
|ψ

bad
2i+1〉

 =
|ψ2i+1〉 − |ψ

good
2i+1〉


=

U2iRstOEh |ψ2i〉 −U2iΠvalidRstOEhΠ¬hit |ψ
good
2i 〉


=

ΠvalidRstOEh |ψ2i〉 − ΠvalidRstOEhΠ¬hit |ψ
good
2i 〉


≤

|ψ2i〉 − Π¬hit |ψ
good
2i 〉

 =
|ψ

good
2i 〉 + |ψ

bad
2i 〉 − Π¬hit |ψ

good
2i 〉



≤
|ψ

bad
2i 〉

 +
Πhit |ψ

good
2i 〉

 ≤
|ψ

bad
2i 〉

 +O *
,

√
i

2n
+
-
,

where we used the fact that we always obtain a valid database when we measure the state RstOEh |ψ2i〉, for the third
equality. Hence the sixth property for |ψbad

2i+1〉 holds. We can show that the sixth property for |φbad2i+1〉 holds in the same
way. �

6.5 Quantum Security Proofs for HMAC and NMAC
The goal of this section is to show the following proposition, which is the formal version of Theorem 3.

Proposition 22. Let h : {0, 1}m+n → {0, 1}n be a quantum random oracle. Suppose that the padding function
pad : {0, 1}∗ → ({0, 1}m)+ for the Merkle-Damgård construction satisfies that: (i) pad is injective, (ii) there exists a
function p : Z≥0 → {0, 1}∗ such that pad(M) = M | |p(|M |)19. Let A be a quantum adversary that runs relative to two
quantumoraclesOh and h, whereOh maydepend on h20. Suppose that the lengths ofmessages thatA queries toOh after
the padding are at most m · ` when Oh is HMACh

K or NMACh
K1,K2

. In addition, suppose thatA makes at most Q queries

to Oh and qh queries to h. Then AdvqPRF
HMACh

K

(A) ≤ O
(√

(qh+Q)3`5

2n +
qh+Q`

2k/2

)
and AdvqPRF

NMACh
K1,K2

(A) ≤ O
(√

(qh+Q)3`5

2n

)
hold.

Recall that HMACh
K (resp., NMACh

K1,K2
) is the composition of the functions MDh (IV, Kin | |·) and MDh (IV, Kout | |·)

(resp., MDh (K1, ·) and MDh (K2, ·)). Let us call the first and second functions the inner function and the outer function,
respectively. In addition, letMD

′h : {0, 1}n× ({0, 1}m)+ → {0, 1}n be the function that is defined in the same way asMDh

but without padding. Then, to prove Proposition 22, it suffices to prove the claim in the case that the inner function of
HMACh

K (resp., NMACh
K1,K2

) is replaced with MD
′h (IV, Kin | |·) (resp., MD

′h (K1, ·)) and the lengths of messages queried
by A is always a multiple m and at most ` · m, since this change does not decrease adversaries’ ability to distinguish.

Thus, in what follows, we prove Proposition 22 in the case where HMACh
K and NMACh

K1,K2
are modified as above.

We show it by introducing (2` + 2) games G0,H,G0,N,Gi (1 ≤ i ≤ `), G′i (1 ≤ i ≤ `).

GameG0,H . This is the game that the adversary is given oracle access to the quantum oracle ofHMACh
K , in addition to h.

Game G0,N . This is the game that the adversary is given oracle access to the quantum oracle of NMACh
K1,K2

, in addition
to h.

Game Gi for 1 ≤ i ≤ `. In the game Gi , the adversary is given quantum oracle access to the function Hh
i (in addition

to h) that is defined as follows. Let M := M[1]| | · · · | |M[ j] (M[t] ∈ {0, 1}m for each t) be an input message for Hh
i .

1. If j < i, Hh
i (M) := gj (M) for a random function gj : {0, 1}mj → {0, 1}n.

2. If j = i, Hh
i (M) := fout ( f i (M)) for a random function f i : {0, 1}mi → {0, 1}n and fout : {0, 1}n → {0, 1}n.

3. If j > i, first Si := f i (M[1]| | · · · | |M[i]) is computed, and then St := h(M[t]| |St−1) is iteratively computed for
i < t ≤ j, and finally Hh

i (M) is set as Hh
i (M) := fout (Sj ).

See also Fig. 6.4.

Game G′i for 1 ≤ i ≤ `. In the game G′i , the adversary is given quantum oracle access to the function H
′h
i (in addition

to h) that is defined as follows. Let M := M[1]| | · · · | |M[ j] (M[t] ∈ {0, 1}m for each t) be an input message for H
′h
i .

19These conditions are satisfied for usual concrete hash functions such as SHA-2. Recall that ( {0, 1}m )+ is the set of bit strings of length positive
multiple of m bits.

20Oh will be HMACh
K , NMACh

K1,K2
, or a random function.
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`ℎ𝑓𝑖

𝑀 1 ||⋯ ||𝑀 𝑖 𝑀 𝑖 + 1

`

𝑀 𝑗

𝑓𝑜𝑢𝑡 𝐻𝑖
ℎ 𝑀

𝑔𝑗 𝐻𝑖
ℎ 𝑀𝑀

𝑓𝑖 𝑓𝑜𝑢𝑡 𝐻𝑖
ℎ 𝑀𝑀

𝑗 = 𝑖

𝑗 < 𝑖

𝑗 > 𝑖

ℎ

Figure 6.4: Hh
i (M) in game Gi .

`
𝑓𝑖

𝑀 1 ||⋯ ||𝑀 𝑖 𝑀 𝑖 + 1

`

𝑀 𝑗

𝑓𝑜𝑢𝑡 𝐻′𝑖
ℎ 𝑀

𝑔𝑗 𝐻′𝑖
ℎ 𝑀𝑀

𝑗 = 𝑖

𝑗 < 𝑖

𝑗 > 𝑖

𝑔𝑖 𝐻′𝑖
ℎ 𝑀𝑀

ℎ ℎ

Figure 6.5: H
′h
i (M) in game G′i .

1. If j ≤ i, H
′h
i (M) := gj (M) for a random function gj : {0, 1}mj → {0, 1}n.

2. If j > i, first Si := f i (M[1]| | · · · | |M[i]) is computed, and then St := h(M[t]| |St−1) is iteratively computed for
i < t ≤ j, and finally H

′h
i (M) is set as H

′h
i (M) := fout (Sj ). Here, f i : {0, 1}mi → {0, 1}n and fout : {0, 1}n →

{0, 1}n are random functions.

See also Fig. 6.5. Since the lengths of messages queried byA is at most m · `, G′` becomes the ideal game thatA runs
relative to a random function and h.

For the distinguishing advantage between G0,N and G1, the following lemma holds.

Lemma 22 (G0,N and G1). Advdist
(NMACh

K1,K2
,h), (Hh

1 ,h)
(A) is in O

(√
(qh +Q`)3/2n

)
.

Proof. Recall that each message for NMAC is first processed with MD
′h (K1, ·)21 and second with MDh (K2, ·). In

addition, the length of messages processed with MDh (K2, ·) is fixed to be n. Let MD
h

(K2, ·) : {0, 1}n → {0, 1}n be
the function that is the same as MDh (K2, ·) but the domain is restricted to {0, 1}n. Recall that we call MD

′h (K1, ·) and
MD

h
(K2, ·) the inner function and the outer function, respectively. Then, the difference between NMACh

K1,K2
and the

function Hh
1 in G1 are: (i) The first application of h in the inner function in NMACh

K1,K2
(i.e., the function h(·| |K1)) is

replaced with a random function f1 in Hh
1 . (ii) The outer function in NMACh

K1,K2
is replaced with a random function

fout in Hh
1 .

Let H̃h
1 be the function that is the same as Hh

1 except that the random function f1 is replaced with h(·| |K1)
(K1 ∈ {0, 1}n is chosen uniformly at random). Then, for a quantum adversary A to distinguish (NMACh

K1,K2
, h)

from (H̃h
1 , h) that makes at most Q quantum queries to NMACh

K1,K2
or H̃h

1 and at most qh quantum queries to h, we

can construct another adversary B to distinguish (MD
h

(K2, ·), h) from ( fout, h) that makes at most O(Q) queries to
MD

h
(K2, ·) or fout and at most O(qh +Q`) quantum queries to h as follows.
B is given quantum oracle access to Oh (Oh = MD

h
(K2, ·) or Oh = fout ) and h. First, B chooses K1 ∈ {0, 1}n

uniformly at random, and runsA. WhenA makes a query to the second oracle (which is supposed to be h), B responds
by querying to h. When A queries a message M to the first oracle (which is supposed to be NMACh

K1,K2
or H̃h

1 ), B
computes the value T := Oh (MD

′h (K1, M)) by making queries to Oh and h, and responds to A with T . Finally B
returns A’s output as its own output.

ThenB makes at mostO(Q) queries to Oh and at mostO(qh+Q`) queries to h. In addition, B completely simulates
NMACh

K1,K2
or H̃1 depending on Oh = MD

h
(K2, ·) or Oh = fout . Thus

Advdist
(NMACh

K1,K2
,h), (H̃h

1 ,h)
(A) = Advdist

(MD
h

(K2, ·),h), ( fout,h)
(B) = AdvqPRF

MD
h

(K2, ·)
(B) (6.84)

holds.
21Remember that the definition of NMACh

K1,K2
is slightly modified during the proof of Proposition 22.
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Below we consider two cases depending on whether |pad(M) | = m for M ∈ {0, 1}n.

Proof for the case that |pad(M) | = m for M ∈ {0, 1}n.

In this case, MD
h

(K2, M) = h(pad(M) | |K2) holds for all M ∈ {0, 1}n. Thus, from Lemma 13,

AdvqPRF

MD
h

(K2, ·)
(B) = AdvqPRF

h(pad( ·) | |K2) (B) ≤ O
(

qh +Q`
2n/2

)
(6.85)

follows. From (6.84) and (6.85),

Advdist
(NMACh

K1,K2
,h), (H̃h

1 ,h)
(A) ≤ O

(
qh +Q`

2n/2

)
(6.86)

holds.
In the same way as we showed (6.86), we can show that

Advdist
(H̃h

1 ,h),(Hh
1 ,h)

(A) ≤ O
(

qh +Q`
2n/2

)
(6.87)

holds (that is, we can replace h(·| |K1) in the inner function of H̃h
1 with the random function f1). Hence

Advdist
(NMACh

K1,K2
,h), (Hh

1 ,h)
(A) ≤ O

(
qh +Q`

2n/2

)
(6.88)

follows from (6.86) and (6.87).

Proof for the case that |pad(M) | = m · j ( j > 1) for M ∈ {0, 1}n.
We show the claim for the case that |pad(M) | = 2m for M ∈ {0, 1}n. Other cases can be shown in the same way.

Let f̂out : {0, 1}m × {0, 1}m → {0, 1}n be the function defined by f̂out (u, v) := h(v | |ρ(u)), where ρ : {0, 1}m →
{0, 1}n is a random function. Let fbig : {0, 1}m × {0, 1}m → {0, 1}n be another random function.

Now,

Advdist
(MD

h
(K2, ·),h), ( f̂out◦pad,h)

(B) ≤ O
(

qh +Q`
2n/2

)
(6.89)

follows from Lemma 1322, and

Advdist
( f̂out◦pad,h),( fbig◦pad,h)

(B) ≤ O *
,

√
(qh +Q`)3

2n
+
-

(6.90)

follows from Proposition 20. In addition,

Advdist
( f̂out◦pad,h),( fbig◦pad,h)

(B) = Advdist
( f̂out◦pad,h), ( fout,h)

(B) (6.91)

holds since pad : M 7→ pad(M) is injective for M ∈ {0, 1}n and fbig is a random function. From (6.89), (6.90), and
(6.91),

AdvqPRF

MD
h

(K2, ·)
(B) = Advdist

(MD
h

(K2, ·),h), ( fout,h)
(B) ≤ O *

,

√
(qh +Q`)3

2n
+
-

(6.92)

follows.
Since (6.87) also holds when |pad(M) | > m for M ∈ {0, 1}n,

Advdist
(NMACh

K1,K2
,h),(Hh

1 ,h)
(A) ≤ O *

,

√
(qh +Q`)3

2n
+
-

(6.93)

follows from (6.84), (6.87), and (6.92). �

For the distinguishing advantage between G0,H and G1, the following lemma holds.

22The difference between MD
h

(K2, ·) and f̂out ◦ pad is that h( · | |K2) in the former is replaced with ρ in the latter.
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Lemma 23 (G0,H and G1). Advdist
(HMACh

K ,h),(Hh
1 ,h)

(A) is in O(
√

(qh +Q`)3/2n + (qh +Q`)/2k/2).

Proof. Let N̂MAC
h

K1,K2 be the function that is defined in the same way as NMACh
K1,K2

but the outer function MDh (K2, ·)
is replaced with the function MD

′′h (K2, ·), where MD
′′h : {0, 1}n × {0, 1}∗ → {0, 1}n is defined in the same way as MDh

but the padding function is replaced from pad to pad′′, which is defined by pad′′(M) = M | |p(|M | +m). Then we have

Advdist
(HMACh

K ,h), (Hh
1 ,h)

(A) ≤ Advdist
(HMACh

K ,h), (N̂MAC
h

K1,K2,h)
(A) + Advdist

(N̂MAC
h

K1,K2,h), (Hh
1 ,h)

(A), (6.94)

and we can show

Advdist
(N̂MAC

h

K1,K2,h), (Fh
1 ,h)

(A) ≤




O
(√

qh+Q`

2n/2

)
if |p(m + n) | = 2m,

O
(√

(qh+Q`)3

2n

)
if |p(n + m) | = m · j ( j > 2),

(6.95)

in the same way as we proved Lemma 22.

Upper bounding the term Advdist
(HMACh

K ,h), (N̂MAC
h

K1,K2,h)
(A).

Let ρh : {0, 1}k → {0, 1}2n be the function defined by

ρh (K ) := h((K | |0m−k ⊕ ipad) | |IV ) | |h((K | |0m−k ⊕ opad) | |IV ). (6.96)

For a quantum adversary A to distinguish (HMACh
K, h) from (N̂MAC

h

K1,K2, h) that makes at most Q quantum queries

to HMACh
K or N̂MAC

h

K1,K2 and at most qh quantum queries to h, we construct another adversary B to distinguish the
bit string ρh (K ) (K is chosen uniformly at random) from a truly random 2n-bit string by making O(qh +Q`) quantum
queries to h, as follows.
B is given quantum oracle access to h, and given a bit string X ∈ {0, 1}2n, which is ρh (K ) (K ←$ {0, 1}k) or chosen

uniformly at random. Let X1 and X2 be the most significant n-bit and the least significant n-bit of X , respectively.
First, B runs A. When A makes a query to the second oracle (which is supposed to be h), B responds by querying
to the oracle of h. When A queries a message M to the first oracle (which is supposed to be HMACh

K or N̂MAC
h

K1,K2 ),

B computes the value T := N̂MAC
h

X1,X2 (M) by making queries to h, and responds to A with T . Finally B returns A’s
output as its own output.

Then, B perfectly simulates HMACh
K or N̂MAC

h

K1,K2 depending on whether X is ρh (K ) (K ←$ {0, 1}k) or chosen
uniformly at random, which implies that Advdist

(HMACh
K ,h),(N̂MAC

h

K1,K2,h)
(A) = AdvqPRG

ρh
(B). In addition, B makes at most

O(qh +Q`) quantum queries to h. Thus, from Lemma 14,

Advdist
(HMACh

K ,h), (N̂MAC
h

K1,K2,h)
(A) = AdvqPRG

ρh
(B) ≤ O

(
qh +Q`

2k/2

)
(6.97)

follows.
The claim of Lemma 23 follows from (6.94), (6.95), and (6.97). �

For the distinguishing advantage between Gi and G′i for 1 ≤ i ≤ `, the following lemma holds.

Lemma 24 (Gi and G′i). Advdist
(Hh

i ,h), (H′hi ,h)
(A) is in O(

√
q3`3/2n), where q = max{Q, qh }.

Here we provide a rough proof overview. Details of the proof is provided later in Section 6.5.1.
Proof Overview. First, let us slightly modify the definition of H

′h
i . For a message M = M[1]| | · · · | |M[i] of

length m · i, the value H
′h
i (M) was defined as H

′h (M) := gi (M) for a random function gi , but here we re-define
H
′h
i (M) := f ′out (M, f i (M)), where f ′out : {0, 1}mi × {0, 1}n → {0, 1}n is another random function. This modification

does not change the distribution of H
′h
i since f ′out is random.

Our proof strategy for Lemma 24 is similar to that for Proposition 20, and we use RstOE to show the indistinguisha-
bility. In fact proving Lemma 24 is easier than proving Proposition 20 because the following difference exists between
Proposition 20 and Lemma 24.
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1. In the proof of Proposition 20, a function to which adversaries can directly query in one construction (i.e., h in
Fh

1 ) is replaced with another function to which adversaries can query only indirectly in the other construction
(i.e., g in F2).

2. On the other hand, in Lemma 24, a function to which adversaries can query only indirectly in one construction
(i.e., fout in Hh

i of Gi) is replaced with another function to which adversaries can query only indirectly in the
other construction (i.e., f ′out in H

′h
i of G′i).

In the proof of Proposition 20, we had to assure that the probability that an adversary directly queries to h a value that
is recorded in a database is very small (i.e., the probability of the bad event hit in Section 6.2 is very small). This is the
reason that we introduced the notion of equivalent databases. On the other hand, in Lemma 24, adversaries can query
to both of fout and f ′out only indirectly (adversaries do not have full control on inputs to fout and f ′out ). In particular,
we can define bad events in Lemma 24 in such a way that whether they happen or not do not depend on the values of
A’s queries, and their probability can be bounded by using the randomness of outputs of random functions (like coll in
Section 6.2). Therefore we do not have to introduce the notion of equivalent databases in Lemma 24. Hence it easier
to prove Lemma 24 than to prove Proposition 20.

For the distinguishing advantage between G′i and Gi+1 for 1 ≤ i < `, the following lemma holds.

Lemma 25 (G′i and Gi+1). Advdist
(H′hi ,h),(Hh

i+1,h)
(A) is in O

(√
(qh +Q`)3/2n

)
.

Proof. Let f
′h
i+1 : {0, 1}m(i+1) → {0, 1}n be the function defined by f

′h
i+1(M[1]| | · · · | |M[i+1]) := h(M[i+1]| | f i (M[1]| | · · · | |M[i])).

For an adversary A to distinguish (H
′h
i , h) from (Hh

i+1, h) that makes at most Q quantum queries to H
′h
i or Hh

i+1
and at most qh quantum queries to h, we construct another adversary B to distinguish ( f

′h
i+1, h) and ( f i+1, h) by making

O(Q) quantum queries to f
′h
i+1 or f i+1 and O(qh +Q`) quantum queries to h, as follows.

B is given a quantum oracle access to Oh , which is f
′h
i+1 or f i+1, in addition to a quantum oracle access to h. First,

B chooses functions g̃j : {0, 1} jm → {0, 1}n for j = 1, . . . , i and fout : {0, 1}n → {0, 1}n uniformly at random, and runs
A. When A makes a query to the second oracle (which is supposed to be h), B responds by querying to h. When A
queries M = M[1]| | · · · | |M[ j] to the first oracle (which is supposed to be H

′h
i or Hh

i+1), B responds to A as follows:

1. If j ≤ i, B computes T = g̃j (M) by itself, and responds to A with T .

2. If j > i, B computes Si+1 := Oh (M), Su := h(M[u]| |Su−1) for u = i + 2, . . . , j, and T := fout (Sj ), by making
queries to Oh and h. Then B responds to A with T .

Finally, B returns A’s output as its own output.
Then B perfectly simulates H

′h
i or Hh

i+1 depending on whether Oh = f
′h
i+1 or Oh = f i+1, which implies that

Advdist
(H′hi ,h), (Hh

i+1,h)
(A) = Advdist

( f ′h
i+1,h), ( fi+1,h)

(B). In addition, B makes at most O(Q) quantum queries to f
′h
i+1 or f i+1

and O(qh +Q`) quantum queries to h. Therefore

Advdist
(H′hi ,h), (Hh

i+1,h)
(A) = Advdist

( f ′h
i+1,h), ( fi+1,h)

(B) ≤ O *
,

√
(qh +Q`)3

2n
+
-

(6.98)

follows from Proposition 20. �

Proof of Proposition 22. The claim of the proposition immediately follows from Lemma 22, Lemma 23, Lemma 24,
and Lemma 25. �

6.5.1 Proof of Lemma 24
As mentioned in the proof overview below Lemma 24, in this proof we modify the definition of H

′h
i a little bit. Let

M = M[1]| | · · · | |M[i] be a message of length m · i. On this input, the value H
′h
i (M) was defined as H

′h (M) := gi (M)
for a random function gi , but here we re-define it as

H
′h
i (M) := f ′out (M, f i (M)), (6.99)

where f ′out : {0, 1}mi × {0, 1}n → {0, 1}n is another random function. Since f ′out is random, this modification does not
change the distribution of the function H

′h
i . This subsection gives a proof only for the case i = 1. The proof for i > 1

can be done in the same way.
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As in Section 2.4.2, we assume thatA makes queries to Hh
1 and h (or, Hh′

1 and h) in a sequential order. In particular,
we assume thatA’s (2i − 1)-th query is made to Hh

1 (or Hh′

1 ) and 2i-th query is made to h for 1 ≤ i ≤ q. (For instance,
A first queries to Hh

1 (or Hh′

1 ) and second queries to h.) We call queries to Hh
1 and Hh′

1 online queries, and queries to
h offline queries since computations of h is done offline on adversaries’ (quantum) computers in practical settings.

Recall that, when a message M is queried to an oracle, we implicitly assume that the length of the message |M | is
encoded with M like |(|M |, M)〉 (see also Remark 6). Since Hh

1 and H
′h
1 take messages of different length as inputs,

we carefully describe how we implement them. We assume that the unitary operators to process queries to Hh
1 and Hh′

1
are implemented as follows.

Quantum Oracle of Hh
1 .

1. Take |M〉 |y〉 as an input, where y ∈ {0, 1}n and M ∈ {0, 1}mj for some 1 ≤ j ≤ `. For ease of notations, let us
define M[t] := 0m for j + 1 ≤ t ≤ `.

2. Query M[1] to f1 and obtain
|M〉 |y〉 ⊗ |S1〉 , (6.100)

where S1 := f1(M[1]).

3. For t = 2, . . . , `, iteratively compute St := h(M[t]| |St−1) by querying M[t]| |St−1 to h, to obtain

|M〉 |y〉 ⊗ |S1〉 · · · |S`〉 . (6.101)

4. Copy Sj into an additional register to obtain

|M〉 |y〉 ⊗ |S1〉 · · · |S`〉 ⊗ |Sj〉 . (6.102)

5. Query Sj (in the rightmost register) to fout and add the result to y to obtain

|M〉 |y ⊕ Hh
1 (M)〉 ⊗ |S1〉 · · · |S`〉 ⊗ |Sj〉 . (6.103)

6. Uncompute Steps 2 - 4 to obtain |M〉 |y ⊕ Hh
1 (M)〉.

Remark 26. Some readers may wonder why we compute not only S1, . . . , Sj but also Sj+1, . . . , S` , and copy Sj into
an auxiliary register. Those operations may seem redundant, but we perform them so that the implementation will be
independent of the length of the message. (Among Steps 1-5, only Step 4 depends on the message lengths |M |.)

Quantum Oracle of H
′h
1 .

1. Take |M〉 |y〉 as an input, where y ∈ {0, 1}n and M ∈ {0, 1}mj for some 1 ≤ j ≤ `. For ease of notations, let us
define M[t] := 0m for j + 1 ≤ t ≤ `.

2. Query M[1] to f1 and obtain
|M〉 |y〉 ⊗ |S1〉 , (6.104)

where S1 := f1(M[1]).

3. For t = 2, . . . , `, iteratively compute St := h(M[t]| |St−1) by querying M[t]| |St−1 to h, to obtain

|M〉 |y〉 ⊗ |S1〉 · · · |S`〉 . (6.105)

4. Copy Sj into an additional register to obtain

|M〉 |y〉 ⊗ |S1〉 · · · |S`〉 ⊗ |Sj〉 . (6.106)

5. If j = 1, query (M[1], S1) to f ′out and add the result to y to obtain

|M〉 |y ⊕ H
′h
1 (M)〉 ⊗ |S1〉 · · · |S`〉 ⊗ |Sj〉 . (6.107)
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6. If j > 1, query Sj (in the rightmost register) to fout and add the result to y to obtain

|M〉 |y ⊕ H
′h
1 (M)〉 ⊗ |S1〉 · · · |S`〉 ⊗ |Sj〉 . (6.108)

7. Uncompute Steps 2 - 4 to obtain |M〉 |y ⊕ H
′h
1 (M)〉.

We show the hardness of distinguishing Hh
1 and H

′h
1 by using the recording standard oracle with errors (RstOE).

We assume that the quantum oracles of f1, h, fout , and f ′out are implemented by using RstOE (quantum queries are
processed with RstOE). Let RstOE f1 , RstOEh , RstOE fout , and RstOE f ′out

be the recording standard oracle with errors
for f1, h, fout , and f ′out , respectively. We use the symbols D f1 , Dh , D fout , and D f ′out

to denote databases for f1, h,
fout , and f ′out , respectively.

Let OHh
1
be the unitary operator to process queries to Hh

1 implemented as above. Then, OHh
1
can be decomposed as

OHh
1
= RstOE∗f1 · RstOE∗h · · ·RstOE∗h︸                  ︷︷                  ︸

`−1 times

·CP · Oout · CP · RstOEh · · ·RstOEh︸                  ︷︷                  ︸
`−1 times

·RstOE f1, (6.109)

where Oout = RstOE fout and CP denotes the unitary operator to perform the copy operation in Step 4.
Similarly, let OH

′h
1

be the unitary operator to process queries to H
′h
1 implemented as above. In addition, let Π1 be

the orthogonal projection onto the space spanned by the vectors of messages |M〉 such that |M | = 1. Then, OH
′h
1

can
be decomposed as

OH
′h
1
= RstOE∗f1 · RstOE∗h · · ·RstOE∗h︸                  ︷︷                  ︸

`−1 times

·CP · O′out · CP · RstOEh · · ·RstOEh︸                  ︷︷                  ︸
`−1 times

·RstOE f1, (6.110)

where O′out := Π1 ⊗ RstOE f ′out
+ (I − Π1) ⊗ RstOE fout .

6.5.1.1 Good and Bad Databases

Based on the description above, we introduce the notion of good and bad databases for Hh
1 and H

′h
1 .23

We say that a (tuple of) valid database (D f1, Dh, D fout ) for Hh
1 is good if and only if it satisfies the following

properties.

1. For (u, ζ ) and (u′, ζ ′) in D f1 such that u , u′, ζ , ζ ′ holds (there is no collision for f1).

2. For ((v, ζ ),w) and ((v′, ζ ′),w′) in Dh such that (v, ζ ) , (v′, ζ ′), w , w′ holds (there is no collision for h).

3. For all (u, ζ ) ∈ D f1 and ((v, ζ ′),w) ∈ Dh , ζ , w holds (there is no collision between outputs of f1 and h).

4. For each (α, β) ∈ D fout , there exists (u, α) ∈ D f1 for some u, or there exists ((v, ζ ), α) ∈ Dh for some v and ζ .

We say that (D f1, Dh, D fout ) is bad if it is not good.
Similarly, we say that a (tuple of) valid database (D f1, Dh, D fout , D f ′out

) for H
′h
1 is good if and only if it satisfies the

following properties.

1. For (u, ζ ) and (u′, ζ ′) in D f1 such that u , u′, ζ , ζ ′ holds (there is no collision for f1).

2. For ((v, ζ ),w) and ((v′, ζ ′),w′) in Dh such that (v, ζ ) , (v′, ζ ′), w , w′ holds (there is no collision for h).

3. For all (u, ζ ) ∈ D f1 and ((v, ζ ′),w) ∈ Dh , ζ , w holds (there is no collision between outputs of f1 and h).

4. For each (α, β) ∈ D fout , there exists ((v, ζ ), α) ∈ Dh for some v and ζ .

5. For each ((u, α), β) ∈ D f ′out
, (u, α) ∈ D f1 holds.

We say that (D f1, Dh, D fout , D f ′out
) is bad if it is not good.

Intuition Behind Good and Bad Databases. Intuitively, a database (D f1, Dh, D fout ) for Hh
1 is defined to be good if

and only if D f1 does not contain collisions (the first condition on Hh
1 ), Dh does not contain collisions (the second

condition on Hh
1 ), and there is no collision of output values between D f1 and Dh (the third condition on Hh

1 ). The
fourth condition on Hh

1 is included so that a weird situation such as “α has been queried to fout , but both of f1 and h
have not returned the value α as output” will not happen for good databases. Good databases for H

′h
1 are defined in the

same way. Intuitively, a good database changes to bad if and only if an output value of f1 or h is randomly sampled at
a query, and collide with a previous output of f1 or h.

23We use the symbols u, ζ, w, α, β, u′, ζ ′, w′, α′, β′ to denote n-bit strings, and use the symbols v, v′ to denote m-bit strings.
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6.5.1.2 One-to-One Correspondence for Good Databases

For a good database (D f1, Dh, D fout , D f ′out
) for H

′h
1 , let D̃ fout be the valid database for fout such that (α, β) ∈ D̃ fout

if and only if (α, β) ∈ D fout or ((u, α), β) ∈ D f ′out
for some u. Then (D f1, Dh, D̃ fout ) becomes a good database

for Hh
1 . Let us denote (D f1, Dh, D̃ fout ) by [(D f1, Dh, D fout , D f ′out

)]uni (uni is an abbreviation of “unify”). Then, it is
easy to check that the map [·]uni : (D f1, Dh, D fout , D f ′out

) 7→ [(D f1, Dh, D fout , D f ′out
)]uni is a bijection between the set

of good databases for H
′h
1 and the set of good databases for Hh

1 . Let [·]sep (sep is an abbreviation of “separate”)
denote the inverse map of [·]uni, i.e., the map from the set of good databases for Hh

1 to that for H
′h
1 defined by

[[(D f1, Dh, D fout , D f ′out
)]uni]sep = (D f1, Dh, D fout , D f ′out

).
The bijections extend to (partially defined) isometries between the state spaces. Let HA be the state space of the

adversary, andHDB (resp.,H ′DB) be the state space of the databases for Hh
1 (resp., H

′h
1 ). In addition, let Vgood ⊂ HDB

(resp., V ′good ⊂ H
′
DB) be the subspace spanned by good databases. Then, the linear map fromHA ⊗Vgood toHA ⊗V ′good

that maps |η〉 ⊗ |D f1, Dh, D fout 〉 to |η〉 ⊗ |[D f1, Dh, D fout ]sep〉 for |η〉 ∈ HA and a good database (D f1, Dh, D fout ) for Hh
1

becomes an isometry. We denote this isometry and its inverse also by [·]sep and [·]uni, respectively.

6.5.1.3 Notations for State Vectors

Recall that, when an adversaryA is given oracle accesses to Hh
1 (or H

′h
1 ) and h, we assume that the (2i − 1)-th query is

made to Hh
1 (or H

′h
1 ) and the 2i-th query is made to h for 1 ≤ i ≤ q. Let |φ2i−1〉 be the whole quantum state just before

A’s i-th query to Hh
1 when A runs relative to Hh

1 and h. In addition, let |φ2i〉 be the whole quantum state just before
A ′s i-th query to h when A runs relative to Hh

1 and h. Define |ψ2i−1〉 and |ψ2i〉 similarly when A runs relative to H
′h
1

and h. For ease of notation, let |φ2q+1〉 and |ψ2q+1〉 be the quantum states just before the final measurement when A
runs relative to (Hh

1 , h) and (H
′h
1 , h), respectively.

We can show that Lemma 24 follows from the proposition below in the same way as we showed Proposition 20
follows from Proposition 21.

Proposition 23. For each j = 1, . . . , 2q + 1, there exist vectors |φgoodj 〉, |φbadj 〉, |ψ
good
j 〉, and |ψbad

j 〉 that satisfy the
following properties:

1. |φ j〉 = |φ
good
j 〉 + |φbadj 〉 and |ψ j〉 = |ψ

good
j 〉 + |ψbad

j 〉 hold.

2. |φgoodj 〉 ∈ HA ⊗ Vgood and |ψgood
j 〉 ∈ HA ⊗ V ′good.

3. |φgood2i−1〉 =
[
|ψ

good
2i−1〉

]
uni

4. For a good database (D f1, Dh, D fout , D f ′out
) with non-zero coefficient in |ψgood

2i−1〉 (resp., in |ψ
good
2i 〉), |D f1 | ≤ 2(i−1),

|Dh | ≤ (2` + 1)(i − 1), |D fout | ≤ i − 1, and |D f ′out
| ≤ i − 1 hold (resp., |D f1 | ≤ 2i, |Dh | ≤ (2` + 1)(i − 1) + 2`,

|D fout | ≤ i, and |D f ′out
| ≤ i hold).

5. ‖ |φbadj 〉 ‖ ≤ ‖ |φ
bad
j−1〉 ‖+O

(
`
√

j`/2n
)
and ‖ |ψbad

j 〉 ‖ ≤ ‖ |ψ
bad
j−1〉 ‖+O

(
`
√

j`/2n
)
hold (we regard that ‖ |φbad0 〉 ‖ =

‖ |φbad0 〉 ‖ = 0).

Intuition behind the claim of this proposition is almost the same for that of Proposition 21 (see explanations below
Proposition 21), except that Proposition 23 does not contain a claim on equivalent databases (such as property 4 of
Proposition 21).

As we mentioned above, in Proposition 23, a good database changes to bad only when a randomly chosen output of
a random function happens to collide with an existing element in databases, like coll in Section 6.2. In particular, there
does not exist a bad event that corresponds to hit in Section 6.2. This is the reason that Proposition 23 does not contain
a claim on equivalent databases (recall that equivalent databases are introduced to deal with bad events like hit).

Proposition 23 can be shown in a similar way as we showed Proposition 21 by decomposing OHh
1
and OH

′h
1

as
in (6.109) and (6.110), respectively, and checking how the quantum states change when RstOE f1 , RstOEh , RstOE fout ,
RstOE f ′out

, RstOE∗h , and RstOE∗f1 act in a sequential order. In fact the proof of Proposition 23 is even simpler than the
proof of Proposition 21: Proposition 23 can be proven only with the proof techniques used in Chapter 4 and Chapter 5
because it does not contain claims on equivalent databases.

Hence, in what follows, we omit writing the details and explain only the differences between the proofs of
Proposition 23 and Proposition 21. The main differences are summarized as follows.

D1. Proposition 23 does not contain a claim on equivalent databases (such as property 4 of Proposition 21).
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D2. The oracles OHh
1
and OH

′h
1

in Proposition 23 take inputs of various lengths while the length of inputs to the
oracles in Proposition 21 are fixed.

D3. The oracles OHh
1
and OH

′h
1

in Proposition 23 invoke random functions many (about 2`) times whereas the oracles
in Proposition 21 do at most only 3 times.

As mentioned before, the difference D1 just simplify some parts of the proof. To translate the proof of Proposition 21
into a proof of Proposition 23, what we have to do about the differences D1 is just to ignore the arguments on property
4 of Proposition 21.

The second difference D2 may look like it make the proof of Proposition 23 complex, but actually it does not. Each
message M is encoded with its length |M | like |(|M |, M)〉, and the vector |(|M |, M)〉 is orthogonal to the vector of
another message |(|M ′ |, M ′)〉 if |M ′ | , |M |. In addition, the oracles do not affect the message register. Thus, to show
the five properties of Proposition 23, it suffices to prove such properties hold when the lengths of all the messages are
fixed and equal. When |M | ≥ 2m (i.e., M consists of two or more blocks), apparently the behaviors of the oracles
OHh

1
and OH

′h
1

on M are the same as long as databases are good because Hh
1 (M) = H

′h
1 (M). When |M | = m (i.e., M

consists of a single block), we can also prove that the behaviors of OHh
1
and OH

′h
1

are the same as long as databases
are good in a way similar to the proof of Proposition 21. Hence properties 1-4 of Proposition 23 can be shown. The
proof for property 5 of Proposition 23 is similar to that for property 6 of Proposition 21, except that the upper bounds
of ‖ |φbadj 〉 ‖ and ‖ |ψ

bad
j 〉 ‖ are slightly different. This difference is attributed to D3, which we explain below.

The difference D3 increases the number of total queries made to h to O(`q), and the number of elements in
the database of h at the i-th query to OHh

1
(resp., OH

′h
1
) or at the i-th offline query to h becomes O(` · i). Hence,

roughly speaking, the norm of the “bad” vector increases by O(
√
`i/2n) (but not O(

√
i/2n)) at each query to h during

the i-th query to OHh
1
(resp., OH

′h
1
) or the i-th offline query to h. In addition, h and f1 are invoked O(`) times

in total at each query to OHh
1
(resp., OH

′h
1
). Hence the upper bound of ‖ |φbadj 〉 ‖ in property 5 of Proposition 23 is

‖ |φbad
j−1〉 ‖+O

(
`
√

j`/2n
)
but not ‖ |φbad

j−1〉 ‖+O
(√

j/2n
)
(resp., the upper bound of ‖ |ψbad

j 〉 ‖ is ‖ |ψ
bad
j−1〉 ‖+O

(
`
√

j`/2n
)

but not ‖ |ψbad
j−1〉 ‖ +O

(√
j/2n

)
), unlike property 6 of Proposition 21.
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Chapter 7

Indifferentiability of the SKINNY-HASH
Internal Functions

This chapter provides a formal proof that the SKINNY-HASH internal function (the SHI function) is indifferentiable
from the random oracle. The SHI function is a function of fixed input-output length based on a tweakable block cipher,
which is used in a function-based sponge hash called SKINNY-HASH [BJK+20]. The designers of the SKINNY-HASH
claim that the SHI function is indifferentiable from a random oracle, but they do not provide formal security proofs. We
prove that the SHI function is indeed provably secure as claimed by the designers by showing a formal security proof.
See also Section 1.6 for a more detailed overview.

The result of this chapter is practical rather than theoretical: It shows we can achieve an efficient and highly secure
construction to build functions of fixed input-output length from tweakable block ciphers in practical use cases. Unlike
previous chapters, this chapter provides only a classical security proof due to technical limitations. Nevertheless, we
still think that the result has some implications in post-quantum cryptography. Though we do not have any post-quantum
security proof of the SHI function, it is unlikely to be broken by quantum attacks. Hence we will be able to build
post-quantum secure hash functions based on the SHI function. The SHI function is an important example of an internal
function for function-based sponge hash because there does not exist many other instances. Thus it will also play an
important role when we understand post-quantum security of function-based sponge hash functions. Moreover, when
post-quantum security of the SHI function will be proved, the proof will be based on our classical proof. Therefore our
result will help future studies on post-quantum security of hash functions. See also Section 1.7 for the relationship of
the results in this chapter with those in other chapters.

Let E denote an n-bit ideal cipher with `n-bit keys, where ` is a small constant. Recall that the SHI function FE is
defined as

FE (x) := Ex (c1) | | · · · | |Ex (c` ), (7.1)

where c1, . . . , c` are fixed distinct n-bit constants.
The goal of this chapter is to prove the following theorem, which shows that the SHI function is indifferentiable from

a random oracle up to O(2n) queries. Together with the composition theorem, this theorem assures that the security of
the sponge construction does not decrease when its internal function is instantiated with the SHI function up to O(2n)
queries.

Theorem 12. There exists a simulator S that satisfies the following conditions.

1. S makes at most 1 query to RO and returns an output in time O(1) at each invocation of S.

2. For an arbitrary adversaryA that makes at most QA queries to HE and makes qA queries to E and E−1 in total,

Advindiff
(FE, (E,E−1)),RO,S (A) ≤

`2(qA + `QA )
2n

holds.

Intuition of the Proof for Theorem 12. Intuitively, we construct a simulator S as follows1.

1Our intuition for the simulator is based on “Rationale of F256 and F384” in the original specification [BJK+20]. Note that the original explanation
in [BJK+20] is very rough (only two paragraphs) and it is not trivial how to derive a formal security proof from that.
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When an adversary A queries a value (K, X ) to E that A has already queried before, S just returns the previous
result stored in a list LK .

When A queries a fresh value (K, X ) to E such that A has never queried (K, Z ) for any Z to E nor E−1, S first
queries K to the random oracle RO : {0, 1}n` → {0, 1}n` , and simulates the values EK (c1), . . . , EK (c` ) as EK (c1) | | · · ·
| |EK (c` ) := RO(K ). S stores the pairs (c1, EK (c1)), . . . , (c`, EK (c` )) into LK . If X = ci for some i, then S returns the
value EK (ci) toA. If X , ci for all i, then S picks a value Y from {0, 1}n \ {EK (c1), . . . , EK (c` )} uniformly at random,
simulates the value EK (X ) as EK (X ) := Y , stores the pair (X,Y ) into the list LK , and returns Y to A.

When A queries a value (K, X ) to E such that A has already queried (K, Z ) for some Z to E or E−1 before but
(X,Y ) < LK for anyY ,S choosesY from {0, 1}n` randomly in such a way thatY , Y ′ holds for every pair (X ′,Y ′) ∈ LK ,
stores the pair (X,Y ) into the list LK , and returns Y to A.

Queries to E−1 are simulated in the same way.
The above simulation fails only when S queries K to the random oracle RO, and RO(K ) = Y1 | | · · · | |Ỳ (Yi ∈ {0, 1}n

for each i) happens to satisfy Yi = Yj for some i , j. Roughly speaking, the probability of this event can be upper
bounded by O(1/2n) for each K , and thus the failure probability of S is always negligibly small if the number of queries
made byA is smaller than 2n. Note that such an event never holds in the real world since, if we divide FE (K ) ∈ {0, 1}n`
into n-bit blocks as FE (K ) = Y1 | | · · · | |Ỳ , then Yi = EK (ci) never matches Yj = EK (cj ) for i , j, for arbitrary K .

Our contribution in this chapter is to provide a formal proof that the above intuition is correct.

Proof of Theorem 4. We show the theorem with the code-based game-playing proof technique [BR06], by introducing
6 games G1, . . . ,G6.

Game G1. G1 is the real game, where the adversary A runs relative to the oracles FE , E, and E−1. We assume that
the oracle of the ideal cipher E is implemented by using lazy sampling. See Fig. 7.1 for details.

Games G2 and G3. G2 is identical to G1 except that, when a value (K, X ) (resp., (K,Y )) is queried to E (resp.,
E−1) such that (K, Z ) has not been queried to E nor E−1 for any Z , the values EK (c1), . . . , EK (c` ) are sampled before
answering to the query. In addition, the sampling of EK (c1), . . . , EK (c` ) are performed as follows:

1. Choose Y1, . . . , Ỳ ∈ {0, 1}n independently and uniformly at random.

2. If Yi = Yj holds for some i , j, set flag to be bad, and re-sample Y1, . . . , Ỳ in such a way that Yi , Yj holds for all
i , j.

3. Set EK (ci) := Yi for i = 1, . . . , `.

The procedure FE is not changed from G1. G3 is identical to G2 except that the re-sampling of Y1, . . . , Ỳ is not
performed even if flag is set to be bad. See Fig. 7.2 for details.

Games G4 and G5. In the game G4, compared to G3, a random oracle RO is introduced, and the sampling of Y1, . . . , Ỳ
in E and E−1 when LK is empty is replaced with the query of K to the random oracle RO. FE is not changed in G4.
The game G5 is identical to G4 except that FE is modified in such a way that FE (T ) := RO(T ). See Fig. 7.3 for details.

Game G6. G6 is the ideal game. In G6, A runs relative to RO and SRO instead of FE and (E, E−1), where S is a
simulator defined as in Fig. 7.4. Given an input (b, K, Z ) ∈ {0, 1} × {0, 1}n` × {0, 1}n, S simulates E(K, Z ) if b = 0 and
E−1(K, Z ) if b = 1. The behavior of S is the same as that of E and E−1 in the games G4 and G5.

Below we give an upper bound of the indifferentiability advantage Advindiff
(FE, (E,E−1)),RO,S (A). First, by definition of

the games,
���Pr

[
1← GAi

]
− Pr

[
1← GAi+1

] ��� = 0 (7.2)

holds for i = 1, 3, 4, 5.
On the difference between G2 and G3, let SetBad(i) denote the event that flag is set to be bad at the i-th query to E

127



Game GA1
x ← AFE,(E,E−1)

return x

Procedure E(K, X )
if there exists Y such that (X,Y ) ∈ LK

return Y
else

Y
$
←− {0, 1}n \ LK,out

LK,in ← LK,in ∪ {X }
LK,out ← LK,out ∪ {Y }
LK ← LK ∪ {(X,Y )}
return Y

Procedure E−1(K,Y )
if there exists X such that (X,Y ) ∈ LK

return X
else

X
$
←− {0, 1}n \ LK,in

LK,in ← LK,in ∪ {X }
LK,out ← LK,out ∪ {Y }
LK ← LK ∪ {(X,Y )}
return X

Procedure FE (T )
S ← E(T, c1) | | . . . | |E(T, c` )
return S

Figure 7.1: The real game G1. The lists LK , LK,in, and LK,out (for K ∈ {0, 1}n`) are set to be empty at the beginning of
the game.

or E−1 (note that 1 ≤ i ≤ qA + ` · QA holds since one invocation of FE makes ` queries to E). Then, for each i,

Pr [SetBad(i)] = Pr
Y1,...,Y`

$
←−{0,1}n

[
Yj = Yk for some 1 ≤ j < k ≤ `

]

≤
∑

1≤ j<k≤`
Pr

Yj,Yk
$
←−{0,1}n

[
Yj = Yk

]

=
∑

1≤ j<k≤`

∑
W ∈{0,1}n

Pr
Yj,Yk

$
←−{0,1}n

[
Yj = W ∧ Yk = W

]

=
∑

1≤ j<k≤`

∑
W ∈{0,1}n

1
22n ≤

`2

2n

holds. Therefore

���Pr
[
1← GA2

]
− Pr

[
1← GA3

] ��� ≤ Pr [flag← bad in G2] ≤
∑

1≤i≤qA+`QA

Pr [SetBad(i)] ≤
`2(qA + `QA )

2n
(7.3)

holds.
From (7.2) and (7.3),

Advindiff
(FE, (E,E−1)),RO,S (A) = ���Pr

[
1← GA1

]
− Pr

[
1← GA6

] ��� ≤
∑

1≤i≤5

���Pr
[
1← GAi

]
− Pr

[
1← GAi+1

] ��� ≤
`2(qA + `QA )

2n
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Procedure E(K, X )
if LK is empty

Y1, . . . , Ỳ
$
←− {0, 1}n

if Yi = Yj for some i , j
flag← bad

for i = 1, . . . , ` do:
Yi

$
←− {0, 1}n \ {Y1, . . . ,Yi−1}

LK,in ← LK,in ∪ {c1, . . . , c` }
LK,out ← LK,out ∪ {Y1, . . . , Ỳ }
LK ← LK ∪ {(c1,Y1), . . . , (c`, Ỳ )}

if there exists Y such that (X,Y ) ∈ LK

return Y
else

Y
$
←− {0, 1}n \ LK,out

LK,in ← LK,in ∪ {X }
LK,out ← LK,out ∪ {Y }
LK ← LK ∪ {(X,Y )}
return Y

Procedure E−1(K,Y )
if LK is empty

Y1, . . . , Ỳ
$
←− {0, 1}n

if Yi = Yj for some i , j
flag← bad

for i = 1, . . . , ` do:
Yi

$
←− {0, 1}n \ {Y1, . . . ,Yi−1}

LK,in ← LK,in ∪ {c1, . . . , c` }
LK,out ← LK,out ∪ {Y1, . . . , Ỳ }
LK ← LK ∪ {(c1,Y1), . . . , (c`, Ỳ )}

if there exists X such that (X,Y ) ∈ LK

return X
else

X
$
←− {0, 1}n \ LK,in

LK,in ← LK,in ∪ {X }
LK,out ← LK,out ∪ {Y }
LK ← LK ∪ {(X,Y )}
return X

Figure 7.2: The modified versions of E(K, X ) and E−1(K,Y ) in the games G2 and G3. The steps surrounded by a
square is performed in G3 but not performed in G2.
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Procedure RO(T )
if there exists W s.t. (T,W ) ∈ LRO

return W
else

W
$
←− {0, 1}n`

LRO ← LRO ∪ {(T,W )}
return W

Procedure E(K, X )
if LK is empty

Y1 | | · · · | |Ỳ ← RO(K ) (here, Yi ∈ {0, 1}n for each i)
LK,in ← LK,in ∪ {c1, . . . , c` }
LK,out ← LK,out ∪ {Y1, . . . , Ỳ }
LK ← LK ∪ {(c1,Y1), . . . , (c`, Ỳ )}

if there exists Y such that (X,Y ) ∈ LK

return Y
else

Y
$
←− {0, 1}n \ LK,out

LK,in ← LK,in ∪ {X }
LK,out ← LK,out ∪ {Y }
LK ← LK ∪ {(X,Y )}
return Y

Procedure E−1(K,Y )
if LK is empty

Y1 | | · · · | |Ỳ ← RO(K ) (here, Yi ∈ {0, 1}n for each i)
LK,in ← LK,in ∪ {c1, . . . , c` }
LK,out ← LK,out ∪ {Y1, . . . , Ỳ }
LK ← LK ∪ {(c1,Y1), . . . , (c`, Ỳ )}

if there exists X such that (X,Y ) ∈ LK

return X
else

X
$
←− {0, 1}n \ LK,in

LK,in ← LK,in ∪ {X }
LK,out ← LK,out ∪ {Y }
LK ← LK ∪ {(X,Y )}
return X

Procedure FE (T )
S ← E(T, c1) | | . . . | |E(T, c` )

S ← RO(T )
return S

Figure 7.3: The procedure RO and the modified versions of E(K, X ), E−1(K,Y ), and FE in the games G4 and G5. The
list LRO is set to be empty at the beginning of the game. The step surrounded by a square is included in G5 but not
included in G4.
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Game GA6
x ← ARO,SRO

return x

Procedure S(0, K, Z )
if LK is empty

Y1 | | · · · | |Ỳ ← RO(K ) (here, Yi ∈ {0, 1}n for each i)
LK,in ← LK,in ∪ {c1, . . . , c` }
LK,out ← LK,out ∪ {Y1, . . . , Ỳ }
LK ← LK ∪ {(c1,Y1), . . . , (c`, Ỳ )}

if there exists Y such that (X,Y ) ∈ LK

return Y
else

Y
$
←− {0, 1}n \ LK,out

LK,in ← LK,in ∪ {X }
LK,out ← LK,out ∪ {Y }
LK ← LK ∪ {(X,Y )}
return Y

Procedure S(1, K,Y )
if LK is empty

Y1 | | · · · | |Ỳ ← RO(K ) (here, Yi ∈ {0, 1}n for each i)
LK,in ← LK,in ∪ {c1, . . . , c` }
LK,out ← LK,out ∪ {Y1, . . . , Ỳ }
LK ← LK ∪ {(c1,Y1), . . . , (c`, Ỳ )}

if there exists X such that (X,Y ) ∈ LK

return X
else

X
$
←− {0, 1}n \ LK,in

LK,in ← LK,in ∪ {X }
LK,out ← LK,out ∪ {Y }
LK ← LK ∪ {(X,Y )}
return X

Figure 7.4: The ideal game G6 and the simulatorS. The procedureRO is the same as that of G4 and G5. The procedures
S(0, K, X ) and S(1, K, X ) are described separately so that the notations will be compatible with those in G4 and G5.
S(0, ·, ·) simulates E(·, ·) and S(1, ·, ·) simulates E−1(·, ·).
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follows.
By definition of the simulator S (Fig. 7.4), at each invocation of S, it makes at most one query to RO and returns

an output in time O(1). Therefore the claim of the theorem holds. �
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Chapter 8

Conclusions

In this paper we studied post-quantum security of symmetric-key schemes from the perspective of both theory and
practice. First, in Chapter 3 we overviewed the compressed oracle technique and provided an alternative formalization,
which we heavily used to prove quantum security in other chapters.

On the theoretical side, this paper provided answers to two theoretically important, unresolved problems. One is
whether the r-round Luby-Rackoff construction is a secure qPRP for some r ≥ 4. The Luby-Rackoff construction is the
most important scheme to convert PRFs to PRPs. Thus the problem of whether the r-round Luby-Rackoff construction
is a secure qPRP for some r is theoretically significant. However, the problem has been unresolved since Kuwakado
and Morii showed the 3-round quantum distinguisher [KM10]. In Chapter 4 we solved the problem affirmatively by
proving that the 4-round Luby-Rackoff construction is a qPRP. We also showed that its tight quantum security bound is
Θ(2n/6), where n is the input and output length of the Luby-Rackoff construction.

The other theoretical problem that we solved is whether we can make a quantum-secure tweakable block cipher
from a quantum-secure block cipher. Since Kaplan et al. showed the efficient quantum attack on the LRW construc-
tion [KLLN16a], the problem has been unresolved. This problem is of theoretical interest because TBCs play important
roles to build efficient symmetric-key schemes such as MACs and authenticated encryption schemes in the classical
setting. In Chapter 5 we solved the problem by showing the new construction LRWQ is secure. Together with the results
of Chapter 4, we can deduce that a quantum-secure TBC exists if a qPRF exists.

On the practical side, we showed the tight security bound of HMAC and NMAC in the quantum random oracle
model. HMAC and NMAC are the most basic and important construction to convert Merkle-Damgård hash functions
into PRFs. There already exists a previous work on quantum security of HMAC and NMAC [SY17] in the standard
model, but it guarantees the security only up to O(2n/5) or O(2n/8) quantum queries in the QROM. In Chapter 6 we
proved that O(2n/3) is the tight quantum security bound of HMAC and NMAC in the QROM (for short messages).
The gap between O(2n/3) and O(2n/5) (or O(2n/8)) is significant in practical use cases. This result shows that we can
achieve a highly quantum-secure PRF and MAC from a hash function (or, a compression function of fixed input-output
length) by using HMAC and NMAC.

As another practical result, we also provided a formal proof that the SKINNY-HASH internal function (the SHI
function) is indifferentiable from a random oracle in Chapter 7. The SHI function is a function of fixed input-
output length based on a tweakable block cipher, which is used in a function-based sponge hash called SKINNY-
HASH [BJK+20]. The designers of the SKINNY-HASH claim that the SHI function is indifferentiable from a random
oracle, but they do not provide formal security proofs. We proved that the SHI function is indeed provably secure as
claimed by the designers, by showing a formal security proof. The result on the SHI function shows we can achieve an
efficient and highly secure construction to build functions of fixed input-output length from tweakable block ciphers in
practical use cases. Unlike other results, only a classical security proof is provided for the SHI function due to technical
limitations. Nevertheless, we still think that the result has some implications in post-quantum cryptography. Though
we do not have any post-quantum security proof of the SHI function, it is unlikely to be broken by quantum attacks.
Hence we will be able to build post-quantum secure hash functions based on the SHI function. The SHI function is
an important example of an internal function for function-based sponge hash because there does not exist many other
instances. Thus it will also play an important role when we understand post-quantum security of function-based sponge
hash functions. Moreover, when post-quantum security of the SHI function will be proved, the proof will be based on
our classical proof. Therefore our result will help future studies on post-quantum security of hash functions.
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Future Works
On the Luby-Rackoff construction, we showed security only against qCPAs but it is still unknown whether the r-round
Luby-Rackoff construction becomes secure against qCCAs. Hence it is an interesting future work to prove the security
against qCCAs for some r ≥ 5. On quantum-secure TBCs, an interesting future work is to investigate howwe can build a
mode of operations to build TBCs that are secure against qCCAs, because our construction can be broken by a (classical)
CCA. On HMAC and NMAC, our bound is tight for short messages but it does not seem tight for exponentially long
messages. Thus it is worth investigating whether we can improve the security bound for long messages. On the SHI
function, an important future work is definitely to prove indifferentiability in the quantum setting.

There is a common technical issue to tackle with the problems raised above, except for the one on HMAC and
NMAC. The issue is how to treat the quantum oracles of ideally random permutations and ciphers that allow queries to
inverse oracles. In the quantum setting, this paper focused on the situation where the quantum oracle of a permutation
P or a cipher E allows adversaries to make queries to P and E but not to P−1 nor E−1. The biggest reason of this is that,
when the inverse oracles are available to adversaries, the compressed oracle technique cannot be applied1 and proving
quantum security becomes extremely difficult. To solve the above problems (except for HMAC and NMAC) in future
works, new proof techniques will be required.

There still exist lots of important and interesting problems on post-quantum security in symmetric-key cryptogra-
phy. It is important to keep studying them to contribute to the development of secure and efficient information and
communications technology in the post-quantum era.

1 At the time of writing this paper (July 2021), to the best of author’s knowledge, there is no published work that successfully extend the
compressed oracle technique to random permutations (and ideal ciphers) that allows inverse queries in such a way that it can be widely applied to
prove quantum security of various cryptographic schemes (though, some preprint papers argue about such extensions [Cza21, Ros21]).
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Appendix A

Technical Terms, Abbreviations, and
Notations

Term Abbreviation /
Notation Explanation

- {0, 1}∗ The set of all the bit strings (including the empty string).
- ({0, 1}m)+ The set of all the bit strings of which length is a multiple

of m (the empty string is not included).
- ‖ · ‖ The Euclidean norm of vectors.
- ‖ · ‖tr The trace norm of matrices.
- Adv Advantage of adversaries for various security notions. See

Section 2.6 for concrete definitions.
- Func(X,Y) The set of all functions from X to Y .
- GF (2m) The Galois field of order 2m.
- H The Hadamard transform.
- I The identity operator.
- Perm(X) The set of all permutations on X .
- td(·, ·) The trace distance function.
- xL The left-half n/2 bit of the n-bit string x ∈ {0, 1}n.
- xR The right-half n/2 bit of the n-bit string x ∈ {0, 1}n.
- x ⊕ y (Bit-wise) XOR operation of bit strings x and y of the

same length.
- x | |y Concatenation of the bit strings x and y.
Block cipher BC A keyed function E : {0, 1}k × {0, 1}n → {0, 1}n such that

E(K, ·) is a permutation on {0, 1}n for each K ∈ {0, 1}k .
Chosen ciphertext attack CCA An attack on a cipher by making queries to the encryption

and the decryption oracles.
Chosen plaintext attack CPA An attack on a cipher by making queries to the encryption

oracle.
HMAC HMAC A construction to convert hash functions of the Merkle-

Damgård construction into MACs as in (1.2).
Initialization vector IV A fixed constant to initialize the state of a scheme.
Keyed function - A function F : {0, 1}k × {0, 1}n → {0, 1}n.
Least significant m bits (of x ∈
{0, 1}n)

lsb[x] The sub-string xn−m+1 · · · xn of the bit string x =
x1 · · · xn, where xi ∈ {0, 1} for all i.

LRW constructions LRW2 / LRW1 The constructions to convert secure BCs into secure TBCs
by Liskov, Rivest, and Wagner [LRW02, LRW11]. (See
Fig. 5.1.)

LRWQ construction LRWQ Our new construction to convert quantum-secure BCs into
quantum-secure TBCs. (See Fig. 5.2.)
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Term Abbreviation /
Notation Explanation

Merkle-Damgård construction MDh A construction to convert a compression function h of
fixed input-output length into a cryptographic hash func-
tion that supports variable length inputs, which is defined
as in Section 1.4.1

Message authentication code MAC a symmetric cryptographic scheme that provides authen-
ticity.

Most significant m bits (of x ∈
{0, 1}n)

msb[x] The sub-string x1 · · · xm of the bit string x = x1 · · · xn,
where xi ∈ {0, 1} for all i.

NMAC NMAC A two-key variant of HMAC defined as in (1.3).
Pseudorandom function PRF A keyed function that is (computationally) indistinguish-

able from a random function for classical adversaries (i.e.,
a secure keyed function).

Pseudorandom permutation PRP A keyed permutation that is (computationally) indistin-
guishable from a random permutation for classical adver-
saries that perform CPAs (i.e., a BC that is secure against
CPAs).

Quantum chosen plaintext attack qCCA An attack on a cipher that makes quantum queries to the
encryption and decryption oracles.

Quantum chosen plaintext attack qCPA An attack on a cipher that makes quantum queries to the
encryption oracle.

Quantum-secure pseudorandom
function

qPRF A PRF that is secure against adversaries that makes quan-
tum queries (i.e., a keyed function that is secure against
quantum query attacks).

Quantum-secure pseudorandom
permutation

qPRP A PRP that is secure against adversaries that makes quan-
tum queries (i.e., a BC that is secure against qCPAs).

Quantum-secure tweakable pseudo-
random permutation

qP̃RP A P̃RP that is secure against adversaries that makes quan-
tum queries (i.e., a TBC that is secure against qCPAs that
query not only plaintexts but also tweaks to the encryption
oracle).

Quantum random oracle QRO The quantum oracle of a public random function. (See
Section 2.4.1 for the definition of the quantum oracle of a
random function)

Quantum random oracle model QROM The ideal security proof model where a QRO exists.
Random oracle RO The oracle of a public random function
Recording standard oracle with er-
rors

RstOE The oracle defined in Definition 2

r-round Luby-Rackoff construction LRr A construction to convert keyed functions into keyed per-
mutations (block ciphers) defined as in (1.1).

SKINNY-HASH - The instantiation of the sponge construction designed by
Bierle et al. [BJK+20].

SKINNY-HASH internal function SHI The internal function used in the SKINNY-HASH which
is based on the TBC SKINNY, and its generalization that
converts TBCs into functions of fixed input-output length.
(See Fig. 1.6)

Sponge construction - A construction to convert a function F of fixed input-
output length into a cryptographic hash function that sup-
ports variable length inputs. We call F an internal func-
tion. (See Fig. 1.5.)

Standard oracle stO The oracle defined as in (3.1).
Tweakable block cipher TBC A function E : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n such

that E(·,T, ·) is a block cipher for T ∈ {0, 1}t .
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Term Abbreviation /
Notation Explanation

Tweakable pseudorandom permuta-
tion

P̃RP A tweakable keyed permutation (i.e., a tweakable block
cipher) that is (computationally) indistinguishable from
a tweakable random permutation against classical adver-
saries that queries messages and tweaks to the oracle.
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