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Abstract

This paper studies provable security of symmetric-key schemes against adversaries that have quantum computers from
both theoretical and practical perspectives.

Provable security is a way to mathematically guarantee the security of a cryptosystem, by showing a theorem that
expresses the upper bound on the success probability of an adversary that has specified resources. Most of modern
cryptosystems are shown to be secure in the provable security paradigm under some assumptions, e.g., the hardness of
certain algebraic problems, or the existence of another secure cryptographic primitive. Sometimes security proofs are
provided in an ideal model where the oracle of an ideally random primitive, e.g., a truly random function, is publicly
available. Whether a cryptographic primitive can be built from another primitive is a central problem in the theory
of cryptology. In addition, if an existing scheme is proven to resist more powerful attacks than previously thought, or
if we can prove that a new efficient scheme is secure, the proofs have practical importance. Thus provable security is
important both theoretically and practically.

In symmetric cryptology, (tweakable) block ciphers, pseudorandom functions (PRFs), and hash functions play
central roles as fundamental underlying primitives to build other cryptosystems such as authenticated encryption
schemes. Hence the provable security of such schemes is well-studied.

One of the most important results on provable security is the one on the Luby-Rackoff construction. The Luby-
Rackoff construction, or the Feistel construction, is among the most important approaches to construct secure block
ciphers from secure pseudorandom functions (PRFs). The 3-round and 4-round Luby-Rackoff construction are proven
to be a pseudorandom permutation (PRP) and a strong PRP, i.e., they are secure against chosen-plaintext attacks (CPAs)
and chosen-ciphertext attacks (CCAs), respectively. Another important result on block ciphers is the one by Liskov,
Rivest, and Wagner. They showed constructions to convert secure block ciphers into secure tweakable block ciphers,
which are called the LRW constructions. As for constructions to convert Merkle-Damgard hash functions into message
authentication codes (MACSs) or PRFs in a provably secure manner, there has been a long line of research on HMAC
and NMAC. They are proven to be secure up to O(2"/?) computations when the output length is 7 bits.

On the other hand, their security has not been studied enough in the setting where adversaries have quantum
computers, and many important problems have yet to be solved. On the Luby-Rackoft construction, Kuwakado and
Morii showed that a quantum superposed chosen-plaintext attack (QCPA) can distinguish the 3-round construction from
arandom permutation in polynomial time. In addition, Ito et al. showed a quantum superposed chosen-ciphertext attack
(qCCA) that distinguishes the 4-round Luby-Rackoff construction. Since Kuwakado and Morii showed the result, a
problem of much interest has been how many rounds are sufficient to achieve provable security against quantum query
attacks. Though several years have passed since then, the problem still remains open. Similarly, since Kaplan et
al. showed the LRW construction can be broken with a polynomial-time qCPA, it has been open whether there exists a
mode of block ciphers to build quantum-secure tweakable block ciphers. For HMAC and NMAC, Song and Yun showed
that they are quantum pseudorandom functions (qQPRFs) under the standard assumption that the underlying compression
function is a gPRF. Their proof guarantees security up to O(2"/°) or O(2"¥/®) quantum queries. However, there is a gap
between the provable security bound and a simple distinguishing attack that uses O(2"/?) quantum queries.

This paper settles these problems. First, we prove that the 4-round Luby-Rackoff construction is secure up to
0(2"/%) quantum queries, where n is the length of inputs and outputs of the construction. We also prove that the bound
is tight by showing an attack that distinguishes the 4-round Luby-Rackoff construction from a random permutation with
0(2"/%) quantum queries. Our result is the first to demonstrate the tight security of a typical block-cipher construction
against quantum query attacks, without any algebraic assumptions.

Second, we show the first design of quantum-secure tweakable block ciphers based on quantum-secure block ciphers,
and present a provable security bound. Our construction is simple, and when instantiated with a quantum-secure n-bit
block cipher, it is secure against attacks that query arbitrary quantum superpositions of plaintexts and tweaks up to
0(2"/%) quantum queries.

Third, we close the gap between the security bound and the distinguishing attack of HMAC and NMAC. Specifically,
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we show that the tight bound of the number of quantum queries to distinguish HMAC or NMAC from a random function
is ®(2"/3) in the quantum random oracle model, where compression functions are modeled as quantum random oracles.

We use an alternative formalization of Zhandry’s compressed oracle technique to provide security proofs in the
quantum setting. In addition, to show the tight security bound of HMAC and NMAC, we introduce a new proof
technique based on the compressed oracle technique, focusing on the symmetry of quantum query records.

Furthermore, we show the classical indifferentiability of the SKINNY-HASH internal function. SKINNY-HASH
is a family of function-based sponge hash functions, and it was selected as one of the second round candidates of
the NIST lightweight cryptography competition. Its internal function is constructed from the tweakable block cipher
SKINNY. The construction of the internal function is very simple and the designers claim n-bit security, where n is
the block length of SKINNY. However, a formal security proof of this claim is not given in the original specification
of SKINNY-HASH. In this paper, we formally prove that the internal function of SKINNY-HASH has n-bit security,
i.e., it is indifferentiable from a random oracle up to O(2") queries, substantiating the security claim of the designers.
Though the result on the SKINNY-HASH internal function is a classical one, it is unlikely to be broken by quantum
attacks. In addition, when post-quantum security of the SKINNY-HASH internal function will be proved, the proof will
be based on our classical proof. Thus we believe it will help understanding post-quantum security of hash functions.

The results on the Luby-Rackoft construction and quantum-secure tweakable block ciphers are significant mainly
from a theoretical perspective. On the other hand, the results on HMAC and NMAC, and the SKINNY-HASH internal
function, are important mainly from a practical perspective.

iii



Contents

I Tntroduction

[L.5__An Alternative Formalization of the Compressed Oracle Technique|. . . . . . .. ... ... ... ..

assical Security Proof of the -

nternal Functions| . . . . . . . . ... ... ... ..

2.3 Basics of Quantum Computations| . . . . . .
2.4 (Oracle-Aided) Quantum Algorithms|. . . . .

[2.4.1  Information-Theoretic Model with a Single Quantum Oracle] . . . . . .. ... ... ... ..

[2.4.2  Information-Theoretic Model with Multiple Quantum Oracles| . . . . .. ... ... .. ...

W!-AMHMN eore

2.6 Security Definitions|. . . . . . ... .. ...

[2.6.1  Quantum Security in Single-Oracle Settings| . . . . . . . .. .. ... ... ... ... ...

[2.6.2  Quantum Security in Multiple-Oracle Settings| . . . ... ... .. ... ...........

|Z§§ Ez!assica! !ngiﬂerentiaﬁi!itz ......

seful Proof Tools in the Quantum SETHNE| . . . . . . . v v v v v i e e e e e

3 Compressed Oracle Technique|

3.1 'The Recordin Barr1er in the Quantum Settin,

iv

00 00 00 NN Ut Lt W=

14
14
14
14
16
16
17
17
18
18
18
19
20
20



[ Quantum Security of the 4-Round Luby-Rackoff Construction|
4.1 Technical Overviewl . . . . . . . . . . . . e
4.1.1  An Overview of a Classical Security Proof for LR3.| . . . . . . . .. ... ... ... .....
. uantum Chosen Plaintext Attackon LR3.|. . . . . . . . . . ... ... ... .. ... ..
4.1.3  Observation: Why the Classical Proof Does not Work?[ . . . . . ... ... ... ... ....
uantum Security Proot for LR4: The Basic Strategy| . . . . . . . . ... ... ... ...
[4.1.5 Adversary and Oracle’s States| . . . . . . . . .. .. . L L
{4.1.6  How to Prove the Two Properties|. . . . . . . . ... .. .. ... ... ... ... ... ..
4.2 Security Proofs| . . . . . ... e
4.2.1  Hardness of Distinguishing LR; from LRs| . . . . ... .....................
4.2.2  Hardness of Distinguishing LR} fromRF . . . ... ... ... ... ... ... ... ...

4.3 Matching Upper Bound| . . . . . . . . . . . .

[5Provably Quantum-Secure TBC|
5.1 A Quantum-Secure TBC| . . . . . . . . . . e

[5.1.2  LRWQ: A Quantum-Secure Construction| . . . . . . . . . . . . ... .. ... .. ......
5.2 gPRP Security Proof for LRWQ| . . . . . . . . . .

[3.2.1  Indistinguishability of Tweakable Random Permutation and Random Function| . . .. . . . .
[5.2.2  Notations, Definitions, and Some Basic Properties| . . . . . .. ... ... ... .......

D.2.3  Review of How to Show Quantum Oracle Indistinguishability with RstOE[. . . . . . . .. ..
524 Quantum Oracles and Databases for FSFsman and FSFbig | ....................

D.2.5 Proof of|Proposition I4f. . . . ... ... ... ... ...
5.2.6 Finishing the Proof of [Theorem T1]. . . . . . . . . . v v it e e e e

1ght Quantum Security Bound o an in the
6.1 On the Security Bound Given in [SY17 | .................................
6.2 Technical OVEIVIEW] . . . . o . o v v vt ot et e e e e

6.2.2  How to Show Quantum Indistinguishability?| . . . .. ... ... ...... ... ......
6.2. Proof Technique in|Chapter 4and|ChapterS|. . . . . . . .. .. .. ... ... ........
2.4 Anl

[6.2.6  Finishingthe Proof| . . . . . . . . . . .
6.3 Some Technical Lemmas| . . . . . . . . . . .

6.4.1 Good and Bad Databases

[6.4.2  One-to-One Correspondence for Good Databases| . . . . . . ... ... .. ... .......
[6.4.3  Equivalent Good Databases| . . . . . .. .. ... ...

4.4 Notations for Vectors] . . . . . . e e e

6.4.5 The Technically HardestPart . . . . .. ... ......... ... ... ........

6.4.6 Proof of|[Proposition 21|. . . . . . . . . ..
[6.5 Quantum Security Proofs for and NMAC| . . . ... ..
65.1 Proofofllemma2dl. . . . .. .. ... .. .

[7 Indifferentiability of the SKINNY-HASH Internal Functions|

8 Conclusions|

|A" Technical Terms, Abbreviations, and Notations|

B Listof Publications

35
36
36
36
36
37
37
38
39
40
57
60
60
60

64
64
64
65
66
67
67
69
71
73
85

126

133

142

145



List of Figures

|I1.1 ~ List of symmetric-key schemes. | . . . . . . . . . . . .. 2
[1.2 Thei-thround stateupdate.| . . . . . . . . . . . . . . 4
[1.3_The 3-round Luby-Rackoff construction.| . . . . . .. ... .. ... ... ............... 4
an ote that pad(M) = M ML . oo 6
(L. 5 "The sponge construct10n| ......................................... 9
[T.6 The SKINNY-HASH internal functions Fose and F384. - - « o v v v v oo e e e e e e e 10
1.7 Paper organization.| . . . . . . . . ... e e e 13
2.1 Indifferentiability games.| . . . . . . . . . . .. 20
|3.1 A quantum circuit that illustrates an adversary A that runs relative to RstOE. The register |00+ D27y at
the top corresponds to the oracle’s state. e second and third registers an ) are used to send
queries and receive answers, respectively. The register |0°) at the bottom corresponds to A’s private
| working space for offline computations.| . . . . ... ... ... L Lo 26
4.1 LR . . 37
T L 3
4.3 The functions LR} (illustrated on the left side) and LR} (illustrated on the right side). F,F’ : |
| {0, 1}'V4 x {0,1}"/* — {0,1}"/< and RF : {0, 1}" — {0, 1}" are independent random functions.|. . . . . 38
|4.4  Implementation of Oyp ;. In the security proof, Oy, is replaced with the recording standard oracle with |
| errors fOr fi. | . o o L e 40
.5 Implementationof LR3.| . . . . . . ... ... 41
[#.6  Tmplementation of O, ,. In the security proof, O is replaced with the recording standard oracle with |
| errorS fOr Fo | . o o o e e e e e e 41
@7 LRy andRF)| . . .. .. 57
5.1 The LRW constructions. LRW?1 is depicted on the left, and LRW2 is depicted on the right.|. . . . . . . 65
5.2 Specification of LRWQ[ET.| . . . . . . . . o e 65
5.3 Comparison of FSFgyna (M, T) and FSFyie (M,T).| . . . . . . ... ..o oo o 68
5.4 Implementation of FSFgm,y and FSFpie. “in” and “out” denote the registers to send queries and receive
answers, respectively. The functions fo, f1, fsman, and fpig will be implemented with the recording
standard oracle with errors in security proofs.| . . . . . ... ... oL o oo 72
|6.1 F]h and F,. h is a quantum random oracle that adversaries can directly access. f and g are random |
| functions that are independent from /.| . . . . . . . . . . . ... 88
[6.2  The situation that corresponds to the good database (Dy, Dy). The adversary has no information on
and a, expect that a |, ay, {3 are distinct. We say that another good database (D’,, D,’l) is equivalent to
(D}, Dy) it and only if (Dy, Dy) is equal to (Dy, Dj,) except for the choice of the values for @ and ;. | 90
|6.3 Implementations of F, " and F>. “in” and “out” denote the registers to send queries and receive answers,
respectively. The dotted lines (and [D¢), Dy, |Dg)) appear only when f, h, g are implemented with
RstOE, which correspond to the database registers.| . . . . . . .. ... ... ... ... ... ... . 95
6.4 HM(M)ingame Gil. . . . . .. ... 118
6.5 H(M)ingame G/| . .. .. . ... 118
I7.1 The real game G;. The lists Lx, Lk in, and Lk o (for K € {0, 1}%) are set to be empty at the beginning |
[ of the game] . . . . . . . . . . . 128

vi



[7.2  The modified versions of E(K, X) and E~'(K,Y) in the games G, and G3. The steps surrounded by a [
| square is performed in G3 but not performedin G,.| . . . . . . ... ... L oL 0oL 129
[7.3 The procedure RO and the modified versions of E(K,X), E”'(K,Y), and F% in the games G4 and
[ Gs. TheTist Lro is set to be empty at the beginning of the game. The step surrounded by a square is

includedin Gs butnotincluded in G4l - - « « « v v v v e 130
[7.4  The ideal game G¢ and the simulator S. The procedure RO is the same as that of G4 and Gs. The

procedures S(0, K, X) and S(1, K, X) are described separately so that the notations will be compatible

with those in G4 and Gs. S(0, -, -) simulates E(-,-) and S(1, -, -) simulates E-'(-,) . . . . ... ... 131

vii



Chapter 1

Introduction

1.1 Overview

Cryptography is one of the most important technologies for today’s information security. When we visit web sites of
which URL begins with “https”, use online meeting services, or pay with credit cards, cryptography is used to protect
our data.

Very roughly speaking, cryptographic schemes can be classified into two types: symmetric-key schemes and public-
key schemes. Symmetric-key schemes realize secure communication between two parties that have a common secret
key, which has to be shared in advance. On the other hand, public-key schemes do not require pre-shared secret key.

Public-key schemes often use algebraic structures such as integer factoring and discrete logarithm to realize the
high functionality that encryption key can be public, and their security is guaranteed under the assumption that certain
algebraic problems are hard to solve. Operations such as encryption and decryption of public-key schemes are relatively
slow since they require heavy computation to utilize algebraic properties. On the other hand, operations of symmetric-
key schemes are very fast because they do not require algebraic structures usually. For instance, our experiments show
a typical symmetric-key encryption scheme (AES-128 with CBC mode) requires only about 9 x 10~* milliseconds to
encrypt a single 2048-bit message on average, while 2048-bit RSA requires 5 x 1072 milliseconds.

Secure and efficient telecommunication is realized by combining the speed of symmetric-key schemes with the high
functionality of public-key schemes. Both of the two types of schemes are indispensable.

In general, there are two ways to guarantee security of a cryptographic scheme S. One is studying attacks on S. If
S is not broken after much efforts are devoted to cryptanalysis, the community reaches the consensus that S is secure.
The other one is showing provable security. In the provable security paradigm, the security of a scheme § is shown as
a theorem that provides an upper bound p(z, d) of the probability that an adversary A succeeds to break S, where the ¢
and d represent the amount computational resources such as time and data available to A. [J] Such a theorem strongly
guarantees the security of S in the sense that there does not exist any adversary of which success probability exceeds
the upper bound p(t, d) as long as the amount of available time and data are up to ¢ and d, no matter what strategy the
adversary takes.

Post-quantum security of symmetric-key schemes. In 1994, Shor showed quantum algorithms that efficiently solve
integer factoring and discrete logarithm problems [Sho94, [Sho97[], which lead to breaking widely used public-key
schemes such as RSA and elliptic curve cryptosystems in polynomial time. Since then, much efforts have been
devoted to realize schemes that will remain secure even after the realization of large-scale, reliable universal quantum
computers. The area to study such schemes is called post-quantum cryptography, which is currently one of the most
active research areas in cryptography. Though the power of today’s quantum computers is not strong enough to
break popular schemes such as 2048-bit RSA, the schemes that are broken by Shor’s algorithm should be replaced
with post-quantum ones soon because a significant technical breakthrough to build large-scale and reliable universal
quantum computers may be realized just today. National Institute of Standards and Technology (NIST, the United
States) is holding the standardization process for post-quantum public-key schemes such as public-key encryption,
key-establishment algorithms, and signatures [Nat16]]. Currently used public-key schemes such as RSA cryptosystems
will be replaced with post-quantum ones in a near future.

'For the experiments, we used the openssl speed [algorithm] command (algorithm = aes-128-cbc or rsa2048) with Ubuntu 20.04,
OpenSSL 1.1.1f, and AMD Ryzen 5 3500.
2What computational resources are taken into account in the theorem varies depending on how we model adversaries.



As mentioned before, both of symmetric-key and public-key schemes are indispensable for today’s information
security. In the post-quantum era, it is desirable that we have some evidence that symmetric-key schemes also have
post-quantum security. Studying post-quantum security of typical symmetric-key schemes is also an interesting problem
from the view point of cryptographic theories.

See for a list of typical symmetric-key primitives.  In those at higher levels are relatively
high-functioning ones, which are often built from relatively low-functioning ones at lower levels. For instance, some
message authentication codes are built from hash functions or (tweakable) block ciphers. Sometimes low-functioning
primitives are built from high-functioning ones to achieve a specific goal, e.g., data processing performance. (Note that
the words “high-functioning” and “low-functioning” are not technical terms with precise definition. We ambiguously
use them just for intuitive explanations. In addition, there is no special meaning to whether a primitive is located to
the left/right of another primitive in [Fig. T.1]) Recall that a mode of (tweakable) block ciphers is a construction that
converts block ciphers into other symmetric-key schemes, e.g., TBCs, MACs, and (authenticated) encryption schemes.
“Encryption mode” in the figure denotes a mode to build encryption schemes. Besides, “Permutation / Function” at the
bottom of the figure means public permutations and functions with fixed input/output length.

High-Functioning

Authenticated
Encryption

Encryption
Messgge Mode
Authentication
Code
1 Mode to build
Hash ] e o B Tweakable Block ]
Function Cipher (PRP)

[ Block Cipher (PRP) |

Luby-Rackoff

PRF
(Fixed I/O length)

HMAC/NMAC
[ internal function

] SKINNY-HASH

Low-Functioning Permutation / Function

Figure 1.1: List of symmetric-key schemes.

Next, we explain two attack models for adversaries with quantum computers. One model is that there exists an
adversary A that has a quantum computer and the classical keyed oracle of the target cryptographic scheme is available
to A. For instance, suppose we are considering about a block cipher Ej and the (classical) encryption oracle is available.
A can query arbitrary n-bit string x and the oracle returns Ej (x). A tries to break E; by making queries and using
its own quantum computer. This attack model is called Q1 model in [KLLN16b]. Another attack model is that A
has a quantum computer and the quantum keyed oracle of the target scheme is available. Here, the quantum oracle
of the block cipher Ej is the oracle such that, A can query arbitrary quantum superposition of 2n-bit strings such
as Xy @xy |x) |y), and the oracle returns the answer 3, , ax,y |x) |y @ Ex(x)) also in quantum superposition. The
quantum oracle of other schemes is defined in the same way. This attack model is called Q2 model, and attacks in the
Q2 model is called quantum query attacks.

If a scheme S is proven to be secure in the Q1 and Q2 model, S is said to have standard security and quantum
security, respectively [Zhal2al). | It is a problem of much interest whether a classically secure and efficient scheme also

3Please do not confuse the notions of standard/quantum security with the standard model or the quantum random oracle model [BDE*11]]. The
two notions are independent of the models, and it is possible that a scheme has quantum security in the standard model or standard security in the
quantum random oracle model. (The quantum random oracle model is the one where there exists the quantum oracle of an ideally random function
and the standard model is the one where existence of such ideal primitives are not assumed. The term “quantum random oracle” may denote another
notion in other research areas, but throughout the paper we assume that it denotes the quantum oracle of a random function, following the usual



has quantum security. In a future where much computations and communications are done in quantum superpositions,
some cryptographic schemes that rely on classical primitives will be running on quantum computers. Indeed, some
recently proposed quantum schemes are based on classical primitives. For instance, the candidate construction of
pseudorandom unitary operators by Ji et al. [JLS18] is constructed from pseudorandom permutations (PRPs). In such
a situation where classical cryptographic schemes are implemented on quantum computers, it is natural to assume that
adversaries mount quantum query attacks on them.

The focus of this paper. There already exist many interesting results on quantum attacks on various concrete symmetric-
key schemes [KM10, KMI12, [KLIN16a]. On the other hand, many basic and important problems about provable
(post-)quantum security of symmetric-key schemes such as the Luby-Rackoft constructions have yet to be solved. For
instance:

1. In the classical setting, the r-round Luby-Rackoff construction is proven to be secure against chosen-plaintext
attack (CPAs). However, it is open whether it becomes secure against quantum chosen-plaintext attacks (qCPAs)
for some r. Here, a qCPA on a block cipher Ej is a quantum query attack on Ej in the setting where the quantum
oracle of Ej is available.

2. Tt is unknown whether there exists a mode of block ciphers to build quantum-secure tweakable block ciphers.

3. Song and Yun showed that HMAC and NMAC are quantum-secure pseudorandom functions (qPRFs) under the
standard assumption that the underlying compression function is a qPRF [SY17]]. Their proof guarantees security
up to O(2"3) or 0(2"/%) quantum queries when the output length of HMAC and NMAC is n bits. However,
there is a gap between the provable security bound and a simple distinguishing attack that uses O(2"*/3) quantum
queries.

This paper settles these problems. That is, we show the following results.

1. A proof that the 4-round Luby-Rackoff construction is secure against qCPAs, i.e., it is a quantum-secure pseudo-
random permutation (QPRP). We also prove that our security bound is tight by showing a matching attack.

2. A new mode of operation to build tweakable block ciphers from block ciphers and a proof that it has quantum
security if the underlying block cipher is quantum-secure.

3. The tight quantum security proof of HMAC and NMAC in the quantum random oracle model (QROM) where
the compression function is modeled as a quantum random oracle.

To provide these results, we heavily use an alternative formalization of Zhandry’s compressed oracle technique [Zhal9].
Moreover, we give a classical security proof that the SKINNY-HASH internal function is indifferentiable from a random
oracle. Though we cannot prove its (post-)quantum security due to technical limitations, it will lead to understanding
post-quantum security of hash functions. See also about which result implies what kind of relations between
symmetric-key schemes.

The following five sections provide a more detailed overview of each result. [Section 1.2] [Section 1.3] and
overview the results on the 4-round Luby-Rackoff construction, the new mode to build quantum-secure
tweakable block ciphers, and HMAC/NMAC, respectively. [Section I.5|briefly explain the compressed oracle technique
and our alternative formalization. describes the result on the SKINNY-HASH internal function.

1.2 Tight qPRP Security Proof of the 4-Round Luby-Rackoff Construction

The Luby-Rackoff construction is one of the most important approaches to convert pseudorandom functions (PRFs)
into PRPs. It is also called the Feistel construction. Due to its efficiency and security, a significant number of block
ciphers including commonly used ones such as DES [Nat77] and Camellia [AIK*00] were designed on the basis of this
construction.
For families of functions f; := {fix : {0, 1}/ — {0, 1}"/2};c4 that are parameterized by k in a key space K
(1 <i < r), the r-round Luby-Rackoff construction LR, (f1, ..., f;) is defined as follows: First, keys ki, ..., k, are
chosen independently and uniformly at random from %. For each input xo = xor||xor, Where xor, xor € {0, 112, the
state is updated as
xi-nLlXa-nr = Xipllxir = X@-nrR @ fik; Xa-no)llxe-nr (1.1



X(i-1)L X(i-1)R

Figure 1.2: The i-th round state update.
Figure 1.3: The 3-round Luby-Rackoft construction.

fori = 1,...,r in a sequential order. The output is the final state x, = x,r||x,g. Then the resulting function becomes
a keyed permutation over {0, 1}" with keys in (%)". See also[Fig. 1.2]and see[Fig. 1.3]

In the classical setting, if each f; is a secure PRF, LR, becomes a secure PRP against chosen-plaintext attacks
(CPAs) for r > 3 and a secure PRP against chosen-ciphertext attacks (CCAs) for r > 4 [LR835)]. (That is, LR,- becomes
a strong PRP. Recall that a PRP Py is called a strong PRP if it is indistinguishable from a random permutation, even
if adversaries make queries not only to P but also its inverse P,:l .) However, in the quantum setting, Kuwakado and
Morii showed that LR3 can be distinguished in polynomial time from a truly random permutation by a qCPA [KM10]
(qCPA)fMoreover, Ito et al. showed that LR, can be distinguished in polynomial time by a quantum chosen-ciphertext
attack (qCCA) [IHM* 19] On the other hand, for any r, no quantum security proof of LR, is known.

Importance of Proving Quantum Security of the Luby-Rackoff Construction. As we mentioned in itis a
problem of much interest whether a classically secure and efficient scheme also has quantum security. Though Zhandry
have already shown that we can covert quantum-secure PRFs into quantum-secure PRPs by using constructions of format
preserving encryption [Zhal6], the conversion with the Luby-Rackoff constructions is much more efficient and thus
preferable. Hence, it is important to study whether quantum security proof for the r-round Luby-Rackoff construction is
feasible for some r, and if so, to determine the minimum number of » such that we can prove the post-quantum security
of LR;.

1.2.1 Our Contributions

As the first step to giving post-quantum security proofs for the Luby-Rackoff constructions, this paper shows that the
4-round Luby-Rackoff construction LRy is secure against qCPAs. Roughly speaking, a qCPA denotes an attack by an
adversary that has a quantum computer and can access the quantum encryption oracle O gy : |x) [y) = |x) |y & LR4(x)),
which allows the adversary to make quantum queries to LR4. In particular, we give a security bound of LRy against
gCPAs when all round functions are truly random functions. We also prove that the bound is tight by showing a
matching attack. Concretely, we show the following theorems.

Theorem 1 (Lower bound and upper bound, informal). If all round functions are truly random functions, then the
following claims hold.

1. LRy cannot be distinguished from a truly random permutation by gCPAs up to O(2"/®) quantum queries.

2. A quantum algorithm exists that distinguishes LRy from a truly random permutation with a constant probability
by making O(2"/%) quantum chosen-plaintext queries.

Theorem 2 (Construction of qPRP from qPRF, informal). Suppose that each f; is a secure PRF against efficient
quantum query attacks, for 1 < i < 4. Then LR4(f1, f2, f3, fa) is a secure PRP against efficient gCPAs.

The proofs are provided in

Remark 1. Secure PRFs against quantum query attacks can be constructed from post-quantum secure pseudorandom
generators or pseudorandom synthesizers, or based on the LWE assumption, as shown by Zhandry [Zhal2dl].

convention in cryptology.)

4Strictly speaking, the attack by Kuwakado and Morii works only when all round functions are keyed permutations. Kaplan et al. [KLLN16a]
showed that the attack works for more general cases.

5A qCCA on the block cipher E}, is a quantum query attack in the setting where not only the quantum oracle of Ej but also the quantum oracle
of Dy, is available.



1.3 Provably Quantum-Secure Tweakable Block Ciphers

Recall that a block cipher (BC) is a keyed permutation, i.e., it takes a plaintext and a key as input to output a ciphertext,
and a tweakable block cipher (TBC) takes additional input called a tweak. TBCs have wide applications in symmetric
key cryptography, as they can be used to construct message authentication codes and authenticated encryption schemes,
see e.g. [Rog04, IMPS17, BGIM19, IKMP20]. The notion of TBC was first formalized by Liskov, Rivest, and
Wagner [LRWO02, LRW11]]. They introduced two TBC constructions and proved that TBCs can be constructed from
BCs in the classical setting®] However, Kaplan et al. showed that these constructions are broken in polynomial time
when adversaries have access to quantum encryption oracles [KLLNT6al]’} There has been no proposal of modes of
BCs to build TBCs that are proven to be secure against quantum query attacks so far, and the existence of such modes
remains open. In this paper, we consider the following question:

Does there exist a mode to build quantum-secure TBCs from quantum-secure BCs?

1.3.1 Our Contributions

We give a positive answer to the question in the reduction-based provable security paradigm by giving the first
construction of quantum-secure TBCs from quantum-secure BCs. Our construction, which we call LRWQ, has a simple
structure and is based on one of the two constructions by Liskov, Rivest, and Wagner. If the underlying BC is an n-bit
BC with k-bit keys, then LRWQ becomes an n-bit TBC with 3k-bit keys and n-bit tweaks. We show that LRWQ is
indistinguishable from tweakable random permutations up to O(2"/¢) quantum querie in the setting that adversaries
can query arbitrary superpositions of plaintexts and tweaks, i.e., we prove security against qCPAs.

Our result is theoretically significant in the sense that we for the first time showed that quantum-secure tweakable
pseudorandom permutations (qﬁiﬁs) can be constructed from qPRPs (which establishes the fact that the existence
of qﬁ\{_ﬁ is theoretically equivalent to the existence of qPRP). The problem of whether a cryptographic primitive can
be constructed from another primitive (whether there exists a reduction) is fundamental and theoretically the most
important in cryptology. In addition, since guarantees that qlgﬁfs can be obtained from qPRFs through
4-round Feistel cipher, our result establishes the fact that qf’_lil;s can be obtained from qPRFs.

On a practical side, it is plausible to assume AES [NatO1] to be a qPRP given that there has been no devastating
quantum attack despite of recent efforts on quantum cryptanalysis on it. Thus, we can certainly obtain qﬁ?lS by
instantiating LRWQ with AES. This means that our result enables us to directly benefit from recent efforts for quantum
cryptanalysis on AES [GLRS16, BNS19, UNRV20].

Remark 2. To obtain a qlgf{f, one obvious approach is to verify whether existing native TBCs are quantum-secure
(or design new ones), instead of using our mode LRWQ. However, these two approaches do not negate the other,
but complement each other, i.e., our result gives another choice to construct qfl\{_}; for users. Even if there exists a
quantum-secure native TBC, this does not invalidate our result.

Remark 3. This paper does not provide security proofs against gCCAs, as our construction is broken if the decryption
oracle is available even in the classical setting, which is also the case for one of the original constructions by Liskov,
Rivest, and Wagner. Showing existence of TBCs that are secure against gCCAs is an interesting future work. Note
that TBCs that are secure against chosen-plaintext attacks (which is not secure against chosen-ciphertext attacks)
can be used to instantiate various efficient message authentication codes and authenticated encryption schemes, e.g.,
ZMAC [IMPS17], ZOTR [BGIM19], and Romulus [IKMP20]. Therefore, TBCs that are secure against qCPAs are
relevant[d

1.4 On Tight Quantum Security Bound of HMAC and NMAC in the QROM

Message authentication codes (MACs) are the most important symmetric-key schemes to achieve data integrity. Some of
them including block cipher based MACs such as CBC-MAC [BKR94,IBKROOLBR0O0O, BROS,IK03]] and PMAC [BRO2]

6Only a single construction is introduced in the journal version of the paper [LRW11], but an additional construction is also introduced in the
preliminary (conference) version of the paper [LRWO02].

7Kaplan et al. showed a quantum attack only for one of the two TBC constructions by Liskov, Rivest, and Wagner, but the attack can also be
applied to the other construction. See[Section 5.1.1]

8Here, we consider n as a security parameter.

9We note that the argument here is to illustrate the relevance of TBCs that are secure against CPAs. We are not claiming that the modes are
secure against quantum attacks. We also note that there are BC-based authenticated encryption modes that do not use the decryption of BCs, such as
CCM [WHEO02], GCM [MV04], and OTR [Minl4].



do not have quantum security, since there exist polynomial time attacks on them [KLLN16a]l. However, they have
standard security since their classical security proofs remain valid if adversaries are allowed to make only classical
queries to keyed oracles and the underlying block ciphers are post-quantum secure.

On the other hand, classical security proofs are not necessarily applicable to the (post-quantum) standard security
for hash based MACs where the proofs use idealized models such as the random oracle model (when underlying hash
functions are built on the Merkle-Damgard construction, e.g., SHA-2 [Natl5al) or the ideal permutation model (when
underlying hash functions are built on the sponge construction, e.g., SHA-3 [Nat15bl]). Since adversaries can implement
compression functions and permutations used in the hash functions on their own quantum computers to make quantum
queries, the security of hash based MACs should be proven in the corresponding idealized quantum models such as the
QROM [BDF*11]] or quantum ideal permutation model [AR17, [HY18].

The main focus here is to study the tight quantum pseudorandom function security (qQPRF security) of HMAC and
its variant NMAC [BCKO96], which are the most basic and important constructions to convert Merkle-Damgérd hash
functions into pseudorandom functions (PRFs) or MACs, in the QROM where compression functions are modeled as
quantum random oracles (QROs

1.4.1 HMAC and NMAC

For a compression function % : {0, 1}"*" — {0, 1}", the Merkle-Damgérd construction MD” is defined as follow Let
1V € {0, 1}" be a fixed public initialization vector. For each input message M € {0, 1}*, the construction pads M (with
a fixed padding function) and splits it into m-bit message blocks M[1], ..., M[£]. The state is first set as Sy := IV, and
iteratively updated as S;;+1 := h(M[i + 1]||S;), and Sy becomes the final output. We assume m > n, which is the case
for usual concrete hash functions such as SHA-2.
For a key length k < m, HMAC is defined to be the keyed function HMAC" : {0, l}k x {0, 1} x {0, 1}* — {0, 1}"
such that
HMAC" (K, IV, M) := MD"(IV, K |IMD" (1V, K || M)). (1.2)

Here, K;,, := (K||0" %) @ipad, K,,; := (K||0™*) @ opad, and ipad, opad € {0, 1} are fixed and public constants such
that ipad # opad. We sometimes write HMAC},‘((I V, M) to denote HMAC" (K, 1V, M) for simplicity. See also|Fig. 1.4

Kin M(1] M[2] M(e] M(1] M[2] M[e]

DD

HMACE(1V, M) K, h NMACE, x, (M)

Figure 1.4: HMAC and NMAC. Note that pad(M) = M[1]|| - - - |[|IM[£].

NMAC is a two-key variant of HMAC. Mathematically, it is a keyed function NMAC" : {0, 1} x {0, 1} x {0, 1}* —
{0, 1} defined by
NMAC" (K1, K2, M) := MD" (K», MD" (K|, M)). (1.3)
Here, K1, K, € {0, 1}" are chosen independently and uniformly at random We sometimes write NMAC;I’Q’ x, (M)
instead of NMAC" (K1, K5, M) for simplicity. See also

1.4.2 Quantum Security of HMAC and NMAC

Simple Quantum distinguishing attacks on HMAC and NMAC. There are two simple quantum attacks to distinguish
HMAC from a random function. Suppose that we are given an oracle O that is either of HMAC or a random function,
in addition to the quantum random oracle 4.

10“HMAC” is an abbreviation of “Hash-based MAC”. “N” of “NMAC” is the initial of “Nested”.
Un is the length of chaining values, and m is the length of message blocks.
12Note that there is no IV involved in NMAC.



The first attack is the one that tries to recover the secret key K. Once we succeed in recovering the correct key
K (when O is HMAC) or realizing that there is no plausible candidate for K (when O a random function), we can
distinguish HMAC from a random function. Since the exhaustive key search of k-bit keys can be done with O(2/?)
queries by using Grover’s algorithm [Gro96]), we can distinguish HMAC from a random function with O (2¥/?) quantum
queries.

The second attack uses a collision for O. Suppose that the padding function pad in the Merkle-Damgéard construction
satisfies the condition that there exists a function p : Z>o — {0, 1}* such that pad(M) = M||p(|M|), which is the case
for usual hash functions such as SHA-2. First, we try to find M, M’ € {0, 1}" such that O(M) = O(M’), which can be
done with O(2"/3) quantum queries by using the BHT algorithm [BHT97, BHT98]. When we find such messages, we
check whether O(M||0™) = O(M’||0™) holds. This equality holds with a constant probability if O is HMAC, but it
holds with a negligible probability if O is a random function. Thus, we can distinguish HMAC from a random function
with O(2""/3) quantum queries.

From the discussion above, HMAC can be distinguished with O(min{2"/3,2%/?}) quantum queries. This gives
an upper bound of the query complexity to distinguish HMAC. The attacks are also applicable for NMAC, and
O(min{2"/3,22"/2}) = 0(2"/3) is an upper bound of the query complexity to distinguish NMAC.

Previous Results on Quantum Security of HMUAC and NMAC. Song and Yun proved that HMAC and NMAC become
quantum-secure pseudorandom functions (qPRFs) against polynomial-time quantum adversaries in the standard model
under the assumption that A(:||K) : {0, 1}'* — {0, 1}"* is a qPRF when K € {0, 1}"* is randomly chosen [SY17]. They
for the first time showed that HMAC and NMAC are secure even in the quantum setting, which has great importance
in theory because it enables domain extension for qPRFs.

Roughly speaking, their proof guarantees security up to O(2"/) or O(2"/%) quantum queries when the underlying
function A is ideally random for each key K |'3| In other words, Q(2"/%) or Q(2"/%) is currently the best proven lower
bound of quantum query complexity to distinguish HMAC or NMAC from a random function.

Results in standard models and those in (quantum) random oracles are not directly comparable, but there exists a
large gap between the current best lower bound and the upper bound O(2"*/3) (when k is large enough) given in the
above distinguishing attacks.

The gap between Q(2"/%) (or Q(2"/8)) and O(2""/*) may not be significant in an ideal world where adversaries are
modeled as polynomial-time machines, but it is indeed significant in the real world applications, which we explain
below.

Closing the Gap. 1In the real world, closing the gap between Q(2"/°) (or Q(2"/®)) and O(2"/3) is relevant for the
following reasons.

Recall that there exist two security notions in the quantum setting: quantum security and standard security. The
standard security of HMAC will have practical importance in a very near future because it is quite reasonable to assume
that an adversary has a quantum computer on which % is implemented, but the attack target (HMAC) is implemented
on a classical device.

Now, the problem is that exiting results guarantee the security of HMAC and NMAC only up to O(2"/>) or O(2"/8)
queries, not only for the quantum security but also for the standard security (in the QROM). This is problematic since
when HMAC is instantiated with SHA-256, where n = 256, the security is not guaranteed after about 2"/5 ~ 22 (or
28 ~ 232 classical queries. It is completely unacceptable in practice, as the number is modest even with the current
standard, and is too small to guarantee a longer term security.

In theory, the security up to O(2"/?) queries can be guaranteed with the previous result if the security parameter is
changed from n to 5n/3 (or 8n/3), by replacing the underlying hash function with the one with a longer output length.
However, in the real world, it requires many years to change parameters or primitives of widely used symmetric-key
cryptosystems such as HMAC, or sometimes it is simply infeasible, as we illustrate below:

- Some small IoT devices (e.g., RFID tags) need MACs but do not have enough area for hardware implementation
of primitives with large parameters.

- Some banking systems are still using Triple-DES although 20 years have already passed after the standardization
of AES [ANSI17]. This is because even a small change (changing the block cipher) in financial systems is too
costly.

- Artificial satellites require MACs to prevent accepting commands from malicious attackers. Changing primitives
embedded as hardware is infeasible after satellites are launched into the outer space [SF12].

13Actually, the previous work [SY17] did not give concrete security bound, but we can reasonably deduce that the security is guaranteed up to
o@n/3) quantum queries. We have the bound 0(2"/5) instead of O(2"/3) if we assume a conjecture. We will elaborate this in



Hence, giving a precise security bound is relevant from a practical view point, and is one of the most important topics
to study in symmetric-key cryptography, even if the improvement will be from O(2"/3) (or 0(2"/8)) to 0(2"/3).

We also note that there has been a long line of research to close the gap for HMAC and NMAC in the classical
setting, and it was eventually addressed by Gazi et al. at CRYPTO 2014 [GPR14] showing the upper bound and the
matching lower bound. However, the analysis in the quantum setting does not reach this point, and closing the gap is
important also from a theoretical view point.

1.4.3 Our Contributions

We show the following theorem, which shows that the tight bound of the number of quantum queries to distinguish
HMAC or NMAC from a random function is in ®(2"/3) (when k is large enough).

Theorem 3 (Lower bound, informal). Suppose that the maximum length of messages that we can query to HMAC,
NMAC, or a random function RF (which is independent of h) is at most m - €. Then, the following claims hold in the
model where h is a quantum random oracle.

1. To distinguish HMAC from RF with a constant probability by making at most Q queries to HMAC or RF and at
most qy, queries to h, g, - >3 + Q - £33 > Q2"3), or qi + Q - £ > Q(2%/?) have to be satisfied.

2. To distinguish NMAC from RF with a constant probability by making at most Q queries to NMAC or RF and at
most qy, queries to h, gy, - 0>/ + Q - £33 > Q(2"/3) has to be satisfied.

Remark 4. Our tightness claim focuses on the number of quantum queries, neglecting the effect of the lengths of
the queries. Nevertheless, our result still has practical importance. For instance, when HMAC-SHA-256 is used to
authenticate TCP/IP packets on Ethernet, £ < 32 always holds since Maximum Segment Size (MSS) is about 1500-byte.
In such a use-case our result guarantees about 85-bit security (23 ~ 2% for n = 256), while previous works do only
about 52-bit security or 32-bit security (in the QROM).

Remark 5. Some readers may think that results in the standard model are always superior to those in the (Q)ROM, but
we emphasize that the standard model and (Q)ROM are theoretically incomparable.

1.4.4 Limitations and Future Directions

Our security bound is tight and any further improvement is impossible in terms of the number of queries. However,
there is a room for improvement in terms of the length of messages. When an adversary makes a single classical query
of very long length (e.g., a message of m - 2"/ bits, or equivalently £ = 2""/3) to the keyed oracle of HMAC or NMAC,
our result no longer guarantees any security. (Note that this does not invalidate the practical importance of our result.
See Remark [4] for details.) However, we do not find any quantum attack that actually breaks the security of HMAC or
NMAC by making only a few queries of which length is O(m - 2"/%), and we expect that there does not exist such an
attack. Improving the security bound in terms of message lengths is an interesting future work.

1.5 An Alternative Formalization of the Compressed Oracle Technique

One challenging obstacle to giving security proofs against adversaries that make quantum queries is that we cannot
record franscripts of quantum queries and answers. Most classical security proofs implicitly rely on the property that
we can copy and store queries made to oracles and their answers for free. However, it is highly non-trivial how to store
them in the quantum setting, since measuring or copying (parts of) quantum states will lead to perturbing them, which
may be detected by adversaries. (In we will briefly explain the reason that copying and recording queries
is important in classical security proofs, and why it is hard when adversaries make quantum queries.)

Zhandry’s compressed oracle technique [Zhal9] enables us to overcome the obstacle when oracles are truly random
functions. The technique is so powerful that it is applied to prove quantum security of lots of schemes, e.g., Fujisaki-
Okamoto transformation [Zhal9]] and Fiat-Shamir transformation [LZ19b]]. It is also applied to show the tight security
bound to find a multicollision of a random function [LZ19a]. His crucial observation is that we can record queries
and answers without affecting quantum states by appropriately forgetting previous records. In addition, he observed
that transcripts of queries can be recorded in an compressed manner, which enables us to simulate random functions
(random oracles) extremely efficiently.

Zhandry’s formalization enables us not only to record queries but also to compress recorded data, which leads to
efficient simulation of a random oracle. However, security proofs of symmetric-key mode of operations often involve



the analysis of information theoretic adversaries, where we do not care about efficient simulation of a random oracle,
and thus do not have to compress databases. With this in mind, we modify the construction of Zhandry’s compressed
standard oracle and give an alternative formalization of his technique without compressing databases that can be used
when we focus on (quantum) information theoretic security. All the quantum security proofs we will provide in later
chapters rely on the alternative formalization of the compressed oracle technique.

Our formulation is different from the original one not only in that efficient simulation of a random oracle is omitted
but also in that the encoding and decoding of databases are realized so that the intuition behind them is clear as much
as possible: Roughly speaking, when an adversary makes a query, the compressed oracle first decodes superposition of
databases into the uniform superposition of all functions, responds to the adversary, and then encodes the functions into
databases. The encoding and decoding in the original formulation are realized as a single theoretically sophisticated
unitary operator, but their link to the intuition behind the encoding and decoding is not apparent. On the other hand, we
represent the encoding and decoding as the composition of simple three unitary operators, each of which corresponds
to an intuitive and concrete manipulation, so that the intuition behind each operation is clear as much as possible.

Moreover, we scrutinize the properties of our modified oracle and observe that its behaviors can be described in
an intuitively clear manner by introducing some error terms. We also explicitly describe error terms, which enables
us to give mathematically rigorous proofs. We name our alternative oracle the recording standard oracle with errors,
because it records transcripts of queries and its behavior is described with error terms.

We believe that our alternative formalization and analyses for our oracle’s behavior help us understand Zhandry’s
technique better, which will lead to the technique being applied even more widely.

Details on the compressed oracle technique and the alternative formalization are provided in

1.6 Classical Security Proof of the SKINNY-HASH Internal Functions

The sponge construction is one of the most basic constructions to convert a function or permutation into a cryptographic
hash function. It is used in many modern cryptographic hash functions including SHA-3 [Nat15b].

The sponge construction based on F : {0,1}® — {0, 1}?, where F is a public permutation or a public function,
has two positive parameters r and ¢ such that » + ¢ = b. Given an input M € {0, 1}*, the hash value is computed
as follows: First, M is padded so that its length is a multiple of . Let M[1]||---||M[L] € {0, 1YL be the message
after padding, where M[i] € {0,1}" for each i. Second, the internal states sto,...,st;, € {0, l}b are computed
in a sequential order as sty := IV and st; := F(st;—1 & (M[i]||0°)) for 1 < i < L, where IV € {0,1}? is an
initialization vector. (This phase is called the absorbing phase.) Third, the internal states sty iy, ..., sfr+x—1 and the
output value H = H[1]---||H[h] € {0, 1}" (H[i] € {0,1}") are computed as sty; := F(stpii—1) forl <i < h-1
and H[i] := (the most significant r bits of sty ;—1). (This phase is called the squeezing phas) H is truncated if
necessary. See[Fig. 1.5
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Figure 1.5: The sponge construction.

14]n some concrete hash functions, the parameters » and ¢ are changed to other parameters " and ¢’ such that »’ + ¢’ = b in the squeezing phase.



The sponge construction is proven to be indifferentiable from a random oracle up to O(2¢/?) queries when F is
a random oracle or an ideal permutation [BDPAOS], and an appropriate padding function is chosen. That is, if a
cryptosystem is proven to be secure in the random oracle model, the security of the cryptosystem does not decrease
even if we replace the random oracle with the sponge construction, as long as the number of queries made to F through
the sponge construction or the direct computation of F (and F~!, if F is a permutation) is O(2¢/?).

Since the sponge construction is proven to be secure, to realize a secure cryptographic hash function, it is sufficient
to construct a secure function or permutation F. There are two possible ways to realize such F.

One approach is to design a dedicated function or permutation from scratch. Most sponge-based hash functions
including SHA-3 take this approach. For instance, SHA-3 uses a dedicated 1600-bit permutation as F. The other
approach is to construct F from well-established primitives such as block ciphers or tweakable block ciphers, which is
taken by the SKINNY-HASH function family.

1.6.1 SKINNY-HASH Internal Functions

SKINNY-HASH [BJK*20] is a family of function-based sponge constructions, which was the second-round candidate of
the NIST lightweight cryptography competition [Nat20]]. It consists of SKINNY-tk2-Hash and SKINNY-tk3-Hash,
which are the sponge constructions with b = 256 and b = 384, and the internal functions are built with the tweakable
block ciphers SKINNY-128-256 and SKINNY-128-384 [BJK™ 16|, respectively.

SKINNY-128-256 is a tweakable permutation E2%6 : {0, 1}!?% — {0, 1}!?8, where the tweakey 7k is chosen from
{0,1}%¢. Similarly, SKINNY-128-384 is a tweakable permutation £33* on {0, 1}'?%, where the tweakey 7k is chosen
from {0, 1}38%. ENtzk56 and E~t3,f4 are expected to be secure and suitable to instantiate ideal ciphers of which the block
length is 128 bits and the key lengths are 256 bits and 384 bits, respectively.

The internal functions Fase : {0, 1}2¢ — {0, 1}%¢ and Fsgs : {0, 1} — {0,1}*34 of SKINNY-tk2-Hash and
SKINNY-tk3-Hash are defined by

Fase(x) := EPC(eDIIEZ®(c2)

and
Fsa(x) 1= EZ*(eDIEB* () EP (c3),

respectively, where ¢y, ¢, ¢3 are distinct 128-bit constants (see [Fig. 1.6).
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Figure 1.6: The SKINNY-HASH internal functions F»s5¢ and Fzgg.

In the specification of SKINNY-HASH, the designers claim that “The function F,s¢ is indifferentiable from a 256-bit
random function up to O(2'?®) queries.” and “The same intuitive argument applies to F3g4. However, the bound is
worse than the one for F;s¢ by a factor of 3...”.

Their design and security claim are notable since F56 and F3g4 achieve n-bit security from an n-bit tweakable
block cipher although the designs of the functions are quite simple (just a few parallel applications of tweakable block
ciphers). On the other hand, when we build a compression function (to be used in the Merkle-Damgérd construction)

10



based on (tweakable) block ciphers, even the known approaches to achieve the same level of security require more
complex constructions [Nail 1|, [HK14].

Observe that F»56 and F3g4 do not give a perfect random function. If we write Fo56(x) = Yi||Y2, then ¥; = ¥> never
happens. Similarly, if we write F3g4(x) = Y[|%2||¥3, then for any i # j, ¥; = Y; is impossible. The n-bit security
claim comes from the intuition that these are the only events that make them different from a truly random function.
However, there is no formal proof for the n-bit security claim. Generally, it is highly favorable that a mode of operation
of (tweakable) block ciphers has formal security proofs when a security claim is provided.

1.6.2 Our Contributions

In this paper, we give a formal proof of the indifferentiability of the SKINNY-HASH internal functions Fs5¢ and F3g4 in
the ideal cipher model. In fact, we show a more general theorem: Let E be an n-bit block cipher with £n-bit key, where
¢ is a small constant. Define FE : {0, 1}¢" — {0, 1}*" be the function defined by

FE(x) := Ex(en)ll -+~ [|Ex(ce), (1.4)

where ¢y, . .., ¢cp are fixed distinct n-bit constants. We call FE the SHI function (“SHI function” is an abbreviation of
SKINNY-HASH Internal function). We show the following theorem.

Theorem 4 (Indifferentiability of the SHI function, informal). If E is an ideal cipher, the SHI function FE is in-
differentiable from a random oracle as long as the total number of queries made to E and its inverse E™' are in

o(2M).

This theorem shows that the SHI function has n-bit security, as claimed by the designers. Since the structure of
SKINNY-HASH internal functions and the generalization FF is quite simple and the security is very high, we believe
that more and more function-based sponge constructions will be developed and used in practical situations relying on
the SHI construction and our security proof.

Details of the result on the SHI function are provided in

Implications in Post-Quantum Cryptography. For the SHI function, this paper provides only a classical security
proof due to technical limitations. Nevertheless, we still think that the result has some implications in post-quantum
cryptography. Though we do not have any post-quantum security proof of the SHI function, it is unlikely to be broken
by quantum attacks. Hence we will be able to build post-quantum secure hash functions based on the SHI function.
The SHI function is an important example of an internal function for function-based sponge hash because there does
not exist many other instances. Thus it will also play an important role when we understand post-quantum security of
function-based sponge hash functions. Moreover, when post-quantum security of the SHI function will be proved, the
proof will be based on our classical proof. Therefore our result will help future studies on post-quantum security of
hash functions.

1.7 Summary of Contributions

In summary, we obtained results on post-quantum security in symmetric-key cryptography from the perspective of both
theory and practice. On the theoretical side, this paper provides answers to two theoretically important, unresolved
problems. One is whether the r-round Luby-Rackoff construction is a secure qPRP for some r > 4 and
[Chapter 4). The other is whether we can build a quantum-secure tweakable block cipher from a quantum-secure block
cipher (Section 1.3]and[Chapter 3). On the practical side, we prove the tight security bound of HMAC and NMAC in the
quantum random oracle model (Section 1.4] and [Chapter 6), and show a formal security proof of the SKINNY-HASH
internal function (Section 1.6|and [Chapter 7). Though the result on the SKINNY-HASH internal function is in the
classical setting, it has an implication in post-quantum security in the sense that quantum proofs will be based on our
classical proof. The results related to the compressed oracle technique (Section 1.5|and [Chapter 3) are technical ones
that help us prove quantum security.

The relationship between the results (except for the ones on the compressed oracle technique) are as follows. See
also The first result on the Luby-Rackoff construction shows how to convert qPRFs into gPRPs (quantum-
secure block ciphers) in an efficient manner. The second result shows how to achieve a quantum-secure TBC based on
qPRPs. Together with the result on the Luby-Rackoff construction, the second one also guarantees that we can build
a quantum-secure TBC if there exists a qPRF. The third result on HMAC and NMAC shows that we can achieve an
efficient and highly (quantum-)secure MACs from a hash function, or a compression function of fixed input-output
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length. The fourth result on the SKINNY-HASH internal function shows how to make a function of fixed input-output
length from a TBC in a provably secure manner.

1.8 Related Works

Other than the ones introduced above, security proofs against quantum query adversaries for symmetric key schemes
include a proof for standard modes of operations by Targhi et al. [ATTU16], one for the Carter-Wegman message authen-
tication codes (MACs) by Boneh and Zhandry [BZ13]], and one for Davies-Meyer and Merkle-Damgard constructions
by Hosoyamada and Yasuda [HY 18]]. Czajkowski et al. showed quantum security of random sponge, which can be seen
as a variant of CBC-MAC [CHS19]]. Zhandry showed the PRP-PRF switching lemma in the quantum setting [Zhal5].
Czajkowski et al. showed that the sponge construction is collapsing (collapsing is a quantum extension of the classical
notion of collision-resistance) when round functions are one-way random permutations or functions [CBH"18]]. Alagic
and Russell proved that polynomial-time attacks against symmetric-key schemes that use Simon’s algorithm can be pre-
vented by replacing XOR operations with modular additions on the basis of an algebraic hardness assumption [AR17].
However, Bonnetain and Naya-Plasecia showed that the countermeasure is not practical [BN18]]. For standard security
proofs (against quantum adversaries that make only classical queries) for symmetric-schemes, Mennink and Szepieniec
proved security for XOR of PRPs [MS17]. There are various notions on quantum MAC security such as EUF-qCMA
security [BZ13] and blind unforgeability [AMRS20]. There also exists another security notion for one-time MAC
security [GYZ17]. MACs built from qPRFs satisfy all these security notions. The SHI function is quite similar to a
function proposed in a previous work [CNL*08| Section 4.4]. The difference of the SHI function from the function
in [CNL*08] is that, while the domain and the range of the SHI function are the same since it is supposed to be used
in the sponge construction, the domain of the function in [[CNL*08] is larger than its range since it is supposed to
be used as a compression function in the Merkle-Damgard construction. In addition, while the previous work shows
collision-resistance, this paper shows the indifferentiability.

1.9 Paper Organization

The rest of the paper is organized as follows. describes notations, definitions, and some basic lemmas used
in later chapters. duscusses the compressed oracle technique and introduce an alternative formalization,
which is used in quantum security proofs in [Chapter 4] [Chapter 5| and [Chapter 6} [Chapter 4] proves that the 4-round
Luby-Rackoff construction is a qPRP and its tight quantum security bound is ©(2"/°). Chapter 5| shows the new
construction LRWQ that converts BCs into TBCs and proves that it is a quantum-secure TBC.[Chapter 6] proves that the
tight quantum security bound of HMAC and NMAC is ®(2"/3) in the QROM. Chapter 7| provides a formal security
proof that the SKINNY-HASH internal function is indifferentiable from a random oracle. concludes the
paper. Besides, a summary of important notations, technical terms and their abbreviations is provided in

and show the publication list in[Appendix B} See also[Fig. 1.7}
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Chapter 2

Preliminaries

This chapter describes notations, definitions, and some basic lemmas used in later chapters. Throughout the paper,
algorithms and oracles are quantum algorithms and quantum oracles except for|Chapter 7 unless otherwise noted.

2.1 Basic Notations

For any finite sets X and Y, let Func(X,Y) denote the set of all functions from X to Y, and let Perm(X) denote the set of
all permutations on X. For any n-bit string x, we denote the left-half n/2-bits of x by x;. and the right-half n/2-bits by
XR, respectively. We identify the set {0, 1} with the set of the integers {0, 1,...,2™ — 1}. For bit strings X € {0, 1}""*
and Y € {0, 1}", let X||Y € {0, 1} denote the concatenation of X and Y. For each bit string X of finite length, let
| X| denote the length of X in bits. For a positive integer m, GF(2™) denotes the finite field of order 2. We identify
the set of bit strings {0, 1}"* with the set of integers {0, 1,...,2™ — 1} unless otherwise noted. {0, 1}* denotes the set
LI:’:O{O, 11", where {0, 1}° denotes the set that includes only the empty string. For a positive integer m, ({0, 1}"™)*
denotes the set [[72,{0, 1}""". We say that a function f : Z>¢ — R is negligible if, for arbitrary constant ¢ > 0, there
exists a sufficiently large integer N such that | f(n)| < 1/n€ foralln > N.

2.2 Primitives

A keyed function F is a function from a product space {0, 11% x {0, 1} to another space {0, 1}", where {0, 1}* is called
the key space of F. We denote the function F (K, ) : {0, 1} — {0, 1}"* by Fx(-) for each key K € {0, 11k,

A block cipher (BC) is a keyed function E : {0, 1}* x {0, 1}" — {0, 1}"* such that Ex(-) is a permutation for each
key K. Let E~! denote the inverse of E defined by E~'(K, E(K, M)) = M for all M € {0,1}". We often write Ex (-)
and E¢'(-) instead of E(K,-) and E™! (K, -), respectively.

A tweakable block cipher (TBC) is a keyed function E {0, 1}* x {0, 1} x {0, 1}" = {0, 1} such that E(K,T,-) is
a permutation on {0, 1}" for each K € {0, 1} and T € {0,1}!. The space {0, 1}" is called the tweak space of E. Let
E~! denote the inverse of E defined by E-! (K, T, E(K, T,M)) = M forevery K, T, and M. We often write EIT{(M) and

(E~YE instead of E(K,T, M) and E-V(K, T, M), respectively.

2.3 Basics of Quantum Computations

This section briefly recalls basics of quantum computations. Note that the explanations in this section are not compre-
hensive. See textbooks such as [NC10] for complete explanations. How we model (oracle-aided) quantum algorithms
is described in the next section.

In the theory of classical computation, information and data such as a state of an algorithm are described by bits,
which are represented by elements in {0, 1} for some n. On the other hand, in the theory of quantum computation,
information and data are described by qubits, which are quantum systems that are represented by unit vectors of a
2"-dimensional Hilbert space H for some n. (In fact, this is an explanation for pure states. An explanation for more
general mixed states will be given later. Besides, two states |¢) and ¢ |¢) for ¢ € C* are identified.) The inner product
of two vectors |@), [) € H is denoted by (¢|i), and the norm of |@) is denoted by || |#) ||. The function {(p|-) : H — C
(i.e., the element in the dual space H*) is denoted by (¢|. In addition, by |¢) (/| we denote the operator defined by

19) Wl (Im)) = (& n) |#).
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We fix a basis of H and label the 2" basis vectors as [0 - - - 00),[0---01),...,|1---11), and call it the computational
basis. A classical bit string x € {0, 1}" is identified with the vector |x). By using the computational basis, arbitrary
(pure) quantum state |¢) is described as

)= > axlx), 2.1)
xe{0,1}m
where ag, a1, ..., an_1 € C satisfy 3, lay? = 1. The equation (2.1) implies that the quantum state |#) can take a
“superposition” of the classical states 0---00,0---01,...,1---11 € {0, 1}"* with the weight function «.

Suppose there exists another quantum system described with a 2"-dimensional Hilbert space H’. Then the joint
system of the two quantum systems is described with the tensor product H ® H’. We assume that its computational
basis is {|x) Iy)}xelo,l,n,ye{o,l}m, where the computational basis of H" is {|y)}yejo,1y». (We often omit writing the
symbol “®” and denote |x) ® |y) by |x) |y) or |xy), for simplicity.)

Very roughly speaking, arbitrary operation on quantum states is described by a combination of (i) unitary operators,
(i) embedding into a larger system, (iii) measurements, and (iv) partial trace. First, we explain (i)-(iii).

(i) The operation that is described by a unitary operator U changes a state |¢) to U |¢). The important characteristic
of this operation is reversibility. The original state |¢) can be obtained from U |¢) by applying the conjugate
operator U* (in practice it may be hard to implement U™, though).

(ii) An operation of embedding changes a state |¢) into another state |¢) ® [) € H ® H’ of a larger system for some
ly) e H'.

(iii) Let S := {P; : H — H}1<i<s be a set of operators such that (a) P! = P; for each i, (b) P;P; is equal to P; if
i = j and equal to O otherwise, and (c) X1 <;<¢ P; = I (I is the identity operator). The measurement with S is a
operation that changes |¢) into P; |¢) /|| P; |¢) || and outputs the information that we measured i, with probability
pi = ||P; |9) |2, This operation is irreversible.

Below we give a few examples of (iii).

Example 1: Measurement by the computational basis. Let S; := {Py := |x)(x|}xe(0,1}=. Then it is straightforward to
check S, satisfies the properties (a)-(c). When we measure |¢) with S., we obtain a classical bit string x and the state
changes to |x) with probability p, = ||(|x) (x|) [#) [|* = |lay |x) ]| = |ax|>. We call this measurement the measurement
with the computational basis.

Example 2: Partial measurement with the computational basis. Suppose |¢) is in H ® H’, where dim(H) = 2"
and dim(#H’) = 2™. The computational basis of H and H’ is {|x)}xe(o,1)» and {|¥)}ye0,1)m, respectively. ) can be
described as |¥) = Xy, Bx,y [X) |y), where B, , satisfies 3 ,, Iﬁ’x’yl2 = 1. Now, let S¢,, 1= {Py := [x) (x| ® Ln}xeio1)m,
where I,,, is the identity operator on H’. Then S, satisfies the properties (a)-(c). When we measure |¢) with S¢,
we obtain a classical bit string x with probability p} = [|(lx){x| ® L) W) I = | Zy Bay ) I I? = | 2y Bayl*.
Intuitively, the measurement with S.,, partially measures the leftmost n-qubits of |y) with the computational basis. We
call this measurement (and similar measurements that partially measure other qubits) the partial measurement with the
computational basis.

Before describing what partial trace is, here we explain mixed state and density operator. Suppose there are two
persons Alice and Bob, and Alice has a 2-qubit state |¢) = \sz [0) |+) + \/% [1) |-), where |+) = %(IO) + [1)) and
|-) = \/% (10) = |1)). If Alice partially measures the leftmost qubit of |¢), she will obtain O or 1 with probability 1/2
and the state changes to |0) |+) or |1) |—), respectively. After the measurement, if Alice does not tell the measurement
result to Bob, what Bob knows on Alice’s state is that it is |0) |+) or |1) |-) with probability 1/2. From Bob’s point of
view, this state cannot be described as a single vector. Such a state is called a mixed state and described by a density
operator. More generally, suppose that we have a mixed state that is equal to |;) with probability p; (1 < i < s,
> pi = 1). Then this state is described by the operator p = ; p; [¥;) (¥;|, which is called the density operator of
the mixed state. Two states with the same density operator are considered identical. In general, a density operator is
an Hermitian non-negative operator on H such that Tr(p) = 1, where Tr is the trace function (it is easy to check that
> Pi i) (il is indeed Hermitian non-negative and its trace is 1). Mixed states are the most general quantum states,
i.e., arbitrary quantum state can be regarded as a mixed state and described by a density operator. A state that can be
described by a unit vector |¢) is called a pure state. Note that a pure state |¢) can also be regarded as the mixed state of
the density operator |¢) (¢|. Recall that the trace norm || A|l;; of an operator A is defined by ||Ally := Tr (VA . A*). In

this paper the distance between two operators p and o is measured by the trace distance td(p, o) := %II p — 0|l (When
it can be defined).
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The operations (i)-(iii) are generalized to mixed states as follows. The unitary operator U changes a mixed state
p to UpU*. An embedding changes p to p ® |¢) (¥| for some |). When we measure a state p with the operators
S = {P;}1<j<:,» we obtain the information that we measured i with probability Tr(P;p) and the state changes to
Pip/Tr(P;p).

Next, we explain the partial trace operation.

(iv) Let o be the density operator of a state on the joint system H ® H’. Then there exist Ay, ..., Ay, By, ..., By,
where A; and B; are operators on H and H’, respectively, such that oo = Y} <;<; A; ® B;. The partial trace of o
on H’ is defined by trep () 1= Y 1<i<s Tr(Bi)A;. (trgy (o) becomes a density operator on H and this definition
does not depend on how we choose Ay, ..., Ay, By, ..., Bs.) Intuitively, this operation corresponds to discarding
qubits that correspond to H’.

Note that the partial trace of a pure state |i) (more precisely, the state [y/) (y/]) is not necessarily a pure state. Conversely,
for arbitrary mixed state p on H, there exists a quantum system associated with a Hilbert space #{’ and a pure state )
in H ® H’ such that tre; (| ) (&) = p holds. Such |¢) is called a purification of p.

Throughout the paper, we use the following notations. H denotes the Hadamard transform on 1-qubit states defined
by H |b) = \lrz(|0) + (=P 1)) for b € {0,1}. Note that H®" |x) = 2yefo, 1y (=1)*Y [y) holds for each x € {0, 1}",
where x - y denotes the dot product defined by (x; A y1) ® -+ @& (x, A yn) € {0, 1} (x; and y; are the i-th bits of x and
y, respectively). We denote the identity operator for an n-qubit quantum system by I, or just /. In addition, we denote
the vectors |¢) ® |0°) and |0°) ® |¢) by the same symbol |¢), if there will be no confusion. For a unitary operator U,
we denote the operators U ® I and I ® U by the same symbol U.

2.4 (Oracle-Aided) Quantum Algorithms

This section describes how to model quantum oracles and (oracle-aided) quantum algorithms. First, in
we consider the case where an adversary has an access to a single quantum oracle and we take only the number of
quantum queries into account as adversaries’ computational resources, i.e., we consider quantum information-theoretic
adversaries. [Section 2.4.2]explains how an information theoretic adversary is modeled when it has accesses to multiple
quantum oracles. [Section 2.4.3|treats the case when we take other computational resources such as time and the number
of available qubits.

In what follows, we assume that adversaries and the oracles are modeled as in this section when refer to the “quantum
setting”, unless otherwise noted. Besides, by “quantum security” we denote various security notions proven in the
quantum setting (see for concrete definitions of security notions in the quantum setting). Similarly, the
“classical setting” denotes the setting where all the algorithms including adversaries and oracles are classical ones, and
“classical security” denotes security notions proven in the classical setting.

2.4.1 Information-Theoretic Model with a Single Quantum Oracle

When a single quantum oracle is available and we ignore computational resources except for the number of queries,
following previous works [BDF*11,[SY17|[Zha12a]] we model an oracle-aided quantum algorithm A that makes at most
g quantum queries as a sequence of unitary operators (U, . . ., Uy) that act on an s-qubit state space (which is the state
space of A), where Uy corresponds to an initialization process and U; corresponds to A’s offline computation after the
i-th query, for i > 1. Without loss of generality we can assume that A does not make any intermediate measurements,
and A’s state space H 4 (a Hilbert space) is a joint system of an Aquery-qubit quantum system unery, an dangwer-qubit
quantum system Hypswer, and an (s — dquery — @answer)-qubit quantum system Hyork. Here, Houery, Hanswer, and Hyork
correspond to the register to send queries to oracles, the register to receive answers from oracles, and the register for
A'’s offline works, respectively. We also model a quantum oracle O as a unitary operator O (to process queries) with
its own quantum state space. O may have some (classical) randomness, and the unitary operator O may be chosen
randomly according to a distribution at the beginning of each game. If O has s’-qubit quantum states, joint quantum
states of A and O are (s + s’)-qubit quantum states. We denote O’s state space by Hp. When A makes the i-th
query, the unitary operator O; acts on Hyuery ® Hanswer ® Ho. Let [initg) and [initp) be the initial states of A and O,
respectively. We assume that |init ) is set to be |x) when A takes a classical bit string x as an input (when A does not
take any initial input, by convention we assume that the initial state of A is |0%) for some a). When we run A, the
unitary operators Up, O, Uy, O, . . ., U, act on the initial state |init#) ® |Initp) in a sequential order (the resulting quantum
state is |®) = U, 0 - - - OUy(|initz) ® [Initp))), A measures the first s-qubit of the state |®) with the computational basis
to obtain a classical s-bit string z, and finally outputs (a part of) z. We denote the event that A outputs a bit string x
after it runs relative to O by x « A°.

16



Examples. The quantum oracle Oy of a (fixed) function f : {0, 1} — {0, 1}" is modeled as the unitary operator
Or: |} |yy = [X) |y ® f(x)). (2.2)

Oy does not have its own state. When a quantum algorithm A runs relative to O, Hauery and Hanswer are defined as
m-qubit space and n-qubit space, respectively.

Let F be a family of functions from {0, 1} to {0, 1}". Suppose that a quantum algorithm A runs relative to the
quantum oracle O that first chooses f randomly from F (according to a distribution on F) and gives A a quantum
oracle access to f. In this case we assume that f is chosen randomly from F and ‘A runs relative to the quantum oracle
of f. When f is chosen just uniformly at random from the set of all the functions from {0, 1}"* to {0, 1}", then this is
the quantum oracle of a random function.

Remark 6. Even if a function f admits input messages M and M’ of which lengths differ, we assume that the quantum
oracle of Oy admits queries of superpositions of M and M'. In such a case, we assume that length |M| of each message
M is encoded with M. However, for ease of notation, we just write | M) instead of |(|M|, M)) for each message M.

2.4.2 Information-Theoretic Model with Multiple Quantum Oracles

Suppose that an adversary (A is given oracle accesses to multiple quantum oracles Oy, . . ., O, and A makes ¢ queries
to each oracle Oy, .. ., Oy in a sequential order. That is, for each 1 < j < s, after A makes the i-th query to O;, A
performs some offline computations, and them makes the i-th query to O;,. Similarly, after A makes the i-th query to
Oy, A performs some offline computations, and then makes the (i + 1)-th query to O;. Here we explain how to model

the behavior of ‘A and multiple quantum oracles Oy, . . ., Oy as sequential applications of unitary operators, in the case
that A makes queries in a sequential order as above.
The adversary A is modeled as the sequence of unitary operators (Up, Uy 1,. .., Us 1, Ur, ..., Us 4), where Uy ;

corresponds to the offline computation by A after the j-th query to O;. The state space of A is modeled in the same way
as before. The oracles are assumed to share a state space Hp. For each quantum oracle O;, let O; denote the unitary
operator to process queries. Let [init#) and |initp) be the initial states of A and the oracles, respectively. Then the
quantum state of A and the oracles before the final measurement becomes (]—[;.1:1 Us,jO -+ - Uy, jOI) Up |init4) ® [init).

By z « A%-95(x), we denote the event that A finally outputs the classical string z when A takes x as an input and
runs relative to the oracles Oy, . . ., Oy.

2.4.2.1 The Model of Adversaries of Which Queries are not in a Sequential Order

In the above model we considered the special case that the adversary queries to oracles Oy, . . ., O, in a sequential order.
However, even if an adversary 8 (given oracle accesses to Oy, . . ., Oy) does not make queries in such a sequential order,
the behavior of B can be captured with the above model: Suppose that 8 makes at most ¢; quantum queries to O; for
each i, and s is a constant. Then, we can make another adversary A such that A’s output distributions are the same
as that of 8, and A makes O(max{qy, ..., gs}) queries to each oracle in a sequential order as in the above model, by
appropriately increasing the number of queries. Thus all reasonable adversaries are captured by the above model.

2.4.3 Non-Information-Theoretic Model

When we take other computational resources such as time and the number of available qubits into account in addition to
the number of quantum queries, we model a quantum algorithm as a combination of classical algorithms and quantum
circuits. In this paper we consider the pure quantum circuit model and ignore the costs related to communication
complexity and error corrections. We regard that a quantum circuit of depth D runs in time D. We assume that each
quantum circuit is composed of (1) the Hadamard gate H, (2) the n/8-gate T, (3) the phase gate S, (4) the CNOT gate,
and (5) the oracle gate (if an oracle is available). We assume that each of basic gates runs in time O(1), in addition that
CNOT can act on arbitrary pair of qubits.

Remark 7. In practice, computational complexity of quantum algorithms would significantly vary depending on error
correction costs and quantum hardware architectures, or communication costs. Our model might overestimate quantum
algorithms’ abilities, but schemes that are proven to be secure in this model will remain secure in other more realistic
models.
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2.5 1deal Primitive Models

The random oracle model is the model where there exists the oracle of a random function RO (either of fixed input-length
and variable input-lengths), and adversaries have access to RO(-). The ideal permutation model is the model where
there exists the oracle of a random permutation P and its inverse P!, and adversaries have access to P(-) and P~ (")
(we sometimes refer to P as an ideal permutation). The ideal cipher model is the model where there exists the oracle
of an ideal cipher E (an ideal cipher is a block cipher such that, for each key K, E(K, ) is chosen independently at
random) and its inverse E~', and adversaries have access to E(-,-) and E~'(-, -).

In addition, a quantum random oracle (QRO) is defined to be the quantum oracle such that, f : {0, 1}"* — {0, [}"
is chosen uniformly at random at the beginning of each game (for some m and n), and quantum oracle access to Oy
is given to adversaries. The quantum random oracle model (QROM) is the model where a QRO is available to an
adversary.

In what follows, we refer to (i) a (quantum) random oracle (either of fixed input length and variable input lengths),
(ii) an ideal permutation, and (iii) an ideal cipher as ideal primitives.

2.6 Security Definitions

This section provides security definitions. Definitions for the setting where a quantum adversary has an access to a
single quantum oracle is given in[Section 2.6.1] Those for multiple quantum oracles (including security definitions in
the QROM) are given in[Section 2.6.2] [Section 2.6.3| gives definitions of indifferentiability in the classical setting.

2.6.1 Quantum Security in Single-Oracle Settings
2.6.1.1 Quantum Distinguishing Advantage

Let A be a quantum algorithm that makes at most g queries and outputs 0 or 1 as the final output, and let O; and O, be
some oracles. We consider the situation where O and O, are chosen randomly in accordance with some distributions.
We define the quantum distinguishing advantage of A by

AdvS', (A) =

pr [A%0 > 1] - pr [A%() - 1]‘ 2.3)

When we are interested only in the number of queries and do not consider other complexities such as the number
of gates (i.e., we focus on information theoretic adversaries), we use the notation

Advg 5, (q) = max {AdvE, (A}, 2.4)
where the maximum is taken over all quantum algorithms that make at most ¢ quantum queries.

2.6.1.2 Quantum PRF Advantage

Let RF denote the quantum oracle of a random function, i.e., the oracle such that a function f € Func({0, 1}, {0, 1}"*)
is chosen uniformly at random, and adversaries are given oracle access to Oy.

Let F = {Fr : {0,1}" — {0, 1}"*}rcx be a family of functions (i.e., a keyed function). Let us use the same symbol
¥ to denote the oracle such that & is chosen uniformly at random, and adversaries are given oracle access to O, . In
addition, let A be an oracle query algorithm that outputs O or 1. Then we define the quantum pseudorandom function
advantage (qPRF advantage) by

AV (A) 1= AdvEL(A).

Similarly, we define AdngF(q) by Adv(;fRF(q) = maxg {AdVgRF(ﬂ)} , where the maximum is taken over all

quantum algorithms A that make at most ¢ quantum queries.

2.6.1.3 Quantum PRP Advantage

Let RP denote the quantum oracle of a random permutation, i.e., the oracle such that a permutation P € Perm({0, 1}"*)
is chosen uniformly at random, and adversaries are given oracle access to Op.
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Let P = {P; : {0, 1}* — {0, 1}"*}xex be a family of permutations. We use the same symbol £ to denote the oracle
such that & is chosen uniformly at random, and adversaries are given oracle access to Op, . Let A be an oracle query
algorithm that outputs O or 1, and we define the quantum pseudorandom permutation advantage (QPRP advantage) by

AdvEF (A) = Advisho (A).

Similarly, we define AdvaP(q) by Adv‘;fRP(q) = max g {AdngP(?{)}, where the maximum is taken over all
quantum algorithms A that make at most ¢ quantum queries.
2.6.1.4 Quantum PRP Advantage

Let RP be the quantum oracle of a function P {0, 1} x{0, 1} - {0, 1}" such that P(T, -) is chosen from Perm({0, 1}"*)
uniformly at random for each T' € {0, 1}’ (i.e., P is a tweakable random permutation).

Let £ : {0, 1}¥x{0, 1} x{0, 1} — {0, 1}" be a tweakable block cipher, and A be an oracle-aided quantum algorithm.
By abuse of notation, let £ also denote the quantum oracle that chooses a key K € {0, 1}* uniformly at random and
gives a quantum oracle access to E(K, - -). Extending the classical security notion [LRWO02| LRW11]], we define the

quantum tweakable pseudorandom permutation advantage (or qf’_ﬁﬁ advantage for short) by

qPRP dist
AT () = AdvIL ().

Similarly, we define AdquRP(q) by AdvquP(q) ‘= maxa {AdV%PRP(?{)}, where the maximum is taken over all

quantum algorithms A that make at most ¢ quantum queries.

2.6.1.5 Security against Efficient Adversaries

An algorithm A is called efficient if it can be realized as a quantum circuit that has a polynomial number of quantum
gates in n. A keyed function ¥ (resp., a block cipher #, and a tweakable block cipher E) is a quantum-secure PRF
or gPRF (resp., a quantum-secure PRP or gPRP, and a quantum-secure PRP or qPRP) if the following properties are
satisfied:

1. Evaluation of ¥ (resp., P, and E) can be implemented on a quantum circuit that have a polynomial number of
quantum gates in n.

2. Adv(ngF(ﬂ) (resp., AdquRP(ﬂ) and AdquRP(ﬂ)) is negligible for any efficient algorithm A.

2.6.2 Quantum Security in Multiple-Oracle Settings
2.6.2.1 Quantum Distinguishing Advantage

For quantum oracles Oy, . .., Os and Oy, . . ., Og, we define the quantum distinguishing advantage of an adversary A by

AV, 0,000 (V) 1= [Pr[1 = A% 0] =Pr[1 « A% 0]

Oh Oh
adversaries that make at most q queries to each oracle.

In addition, we define Adv¥S'  (¢) := max {Advd“t 0010, )(3{)}, where the maximum is taken over all the
.oy S/ ]7"" S

2.6.2.2 Quantum PRF Advantage in the QROM

Let 4 be a QRO and F’ I’é be a keyed function that may depend on /. By the same symbol F I’é we denote the quantum
oracle such that the key K is chosen at random, and the quantum oracle access to F’ ,’; is given to adversaries. In addition,
let RF be the quantum oracle of a random function that is independent of 4. Then, we define the quantum-secure
pseudorandom function advantage (QPRF advantage) of A on F’ I’; by

qPRF dist
AV (A) = AV e (D).

In addition, we define AdquRF(q) = max {Adv‘ﬁRF (ﬂ)}, where the maximum is taken over all the adversaries that
K

make at most g quantum querles to each oracle.
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2.6.2.3 Quantum PRG Advantage in the QROM
Let i be a QRO and p" : {0, 1}f1 — {0, 1}*2 be a function that may depend on h. Then, we define the quantum PRG

advantage AdVEIZRG(ﬂ) of A on p" by
AdvgiRG(ﬂ) .= [Pr [Kl Sk e ﬂh(ph(Kl))] —Pr [Kz St e ﬂh(Kz)”.

2.6.3 Classical Indifferentiability

In this section, all the algorithms and oracles are classical ones. Let R be a classical ideal primitive. Let H be a
function that accesses to the oracle of another ideal primitive O, and suppose that the input and output lengths of H are
the same as those of R. Let S be an algorithm that has the same interface of input and output as O and has an oracle
access to R. Let Real>07 pe the game that runs A relative to (H O, 0), and finally returns what A .0 outputs. In
addition, let Idealg’ﬁ be the game that runs A relative to (R, S®), and finally returns what A% S* outputs. We define
the indifferentiability advantage of an adversary A against (H?, 0) and R with respect to the simulator S by

AV ) o (A = |Pr [1 < Rea ] —Pr[1 « Idealz’ﬂ” .

See also

Real Ideal

Figure 2.1: Indifferentiability games.

Definition 1 (Indifferentiability [MRHO4]). The function H 0 s said to be (ts,t 7, qa, O @, €)-indifferentiable from R
if there exists a simulator S such that (1) S runs in time at most ts, and (2) for any adversary A that runs in time t #,
makes at most . queries to O (resp., SX), and Q 7 queries to H? (resp., R),

Advi(‘ggf onrs(A) <€

holds.

We ambiguously say that H? is indifferentiable from R up to x queries if there exists a simulator S such that, for
arbitrary adversary A such that g4, 0 a4 < x, Advl(r}_c}f O)R s(A) is negligible.
The composition theorem [RSST1] assures that, if (i) the security of a primitive Q is defined with a single-stage

game, and (ii) H 9 is indifferentiable from a random oracle, then it suffice to prove the security of @ in the setting that
adversaries can access to R to prove the security of QH° in the setting that adversaries can access to (H%, 0).

2.6.4 Useful Proof Tools in the Quantum Setting

This section reviews some useful proof tools in the quantum setting for later use. Note that, in this section we take the
running time and the number of available qubits into account, in addition to the number of quantum queries, when we
estimate adversaries’ computational resources (see [Section 2.4.3|for details).

Switching Random Functions and Random Permutations. The following theorem is a quantum version of the RF-RP
switching lemma, which was shown by Zhandry [Zhal5].

20



Theorem 5 (Theorem 7 in [ZhalSl]). Let RF and RP denote quantum oracles of a random function from {0, 1}" to
{0, 1}"" and an n-bit random permutation, respectively. Let A be an oracle-aided quantum algorithm that makes at
most q quantum queries. Then AdvgéfRP (A) < 0(g?/2™) holds.

Simulating Random Functions in the Quantum Setting. For a positive integer k, k-wise independent hash function family
is afamily of functions H = {h; : X — Y }ies (Iisafiniteindex set) suchthat Pr;_s; [A; (x1) = y1 A -+ A hi(xg) = yi] =
1/1Y|¥ holds for arbitrary tuple (x1, ..., Xk, V1, - - -, yk) € X* x Y* such that x, # xg for @ # B.

Zhandry showed that a random function can be perfectly simulated with 2g-wise independent hash function families
against quantum algorithms that make at most g queries [Zhal2bl].

Theorem 6 (Theorem 3.1 in [Zhal2bl). Let A be an oracle-aided quantum algorithm that makes at most q quantum
queries. Let H = {h; : {0, 1} — {0, 1}*};e1 be a 2q-wise independent hash function family. By abuse of notation, let
H also denote the quantum oracle such that i € I is chosen uniformly at random and the quantum oracle access to the
function h; is given to A. Then AdVgRF(ﬂ) = 0 holds.

The set of polynomials over GF(2") of which degree is at most 2g — 1 (< 2") becomes a 2g-wise independent
hash function family (domains and ranges are GF(2") = {0, 1}"*). Let H = {h; : {0, 1}" — {0, 1}"*};¢; denote this hash
function family. Then H can be regarded as a function from 7 x {0, 1}"* to {0, 1}"*. We can built a quantum circuit with
depth O(g) and width O(q) (O suppresses factors of polynomials in 7) that computes the function H : (i, x) — h;(x).

Therefore, the following corollary follows from

Corollary 1. There exists a function family H = {h; : {0, 1} — {0, 1}"*};er such that (1) sampling i from I uniformly
at random can be done in time O(q), (2) H : (i, x) = h;(x) is implemented on a quantum circuit with depth 0((]) and
width O(q), and (3) AdV?fRF (A) = 0 holds for any quantum algorithm A that makes at most q quantum queries when
i is chosen uniformly at random.
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Chapter 3

Compressed Oracle Technique

This chapter provides an alternative formalization for the compressed oracle technique and its properties. All the
security proofs in the quantum setting of later chapters rely on the techniques explained in this chapter.

See also [Section 1.5|for an overview. [Section 3.1] briefly explains the reason that copying and recording queries is
important in classical security proofs, and why it becomes hard when adversaries make quantum queries.
gives an overview of the original technique by Zhandry. Then, in[Section 3.3| we describe our alternative formalization.

3.1 The Recording Barrier in the Quantum Setting

Lots of classical security proofs rely on the fact that the queries to oracles and the answers can be copied and recorded.
For instance, suppose we want to show the hardness of finding a collision of a random function f : {0, 1}" — {0, 1}"* in
the classical setting] Let A be a (classical) adversary that tries to find a collision of f by making exactly ¢ queries. f
is chosen randomly before A runs. Since we are in the classical setting, we can modify the oracle of f so that it will
copy and record A’s queries and the answers (this modification does not change the difficulty of finding a collision and
A cannot notice). Then the record can be represented as a sequence of pairs ((Xy,11),. .., (Xy, ¥;)), where X; is A’s
i-th query and Y; is the response (i.e., ¥; = f(X;)). A finds a collision if and only if ¥; = ¥; for some i and j such that
X; # X Thus we have

Pr [A finds a collision] = Pr [Yi =Y, for some i # j such that X; # Xj]

> Pr(Y;=YandY; =Y and X; # X;]
1<i<j<q,Y€{0,1}"
Pr[Y; =Y and X; # X;|Y; = Y] - Pr[}; = Y]
1<i<j<q,Y€{0,1}"

IA

Since f is a random function, Pr[¥; = Y] = 1/2" and Pr[¥; = Y and X; # X;|Y¥; = Y] < 1/2" hold for all i < j and all
Y € {0, 1}". Hence

. 14
Pr [A finds a collision] < Z Jon <5
1<i<j<q,Ye{0,1}"

[\

holds, which implies that the probability that A finds a collision is extremely small when g < 2"/2.

The above classical proof fully relies on the fact that we can record the sequence of queries and answers
(X1, 1), ..., (Xy, Yy)) without being noticed by A. However, in the quantum setting, we cannot copy and record
X; and Y; in general because this may perturb the adversary’s quantum states significantly, which may be detected by
the adversary. Below we explain why this is the case.

Recall that the quantum oracle of f is represented as the unitary operator Oy : |x) [y) = |x) |y ® f(x)). Let B be
the quantum adversary that tries to find a collision of the random function f by making O(2"/3) quantum queries to f
as follows.

Recall that a collision of f is a pair of distinct inputs (X, X’) such that f(X) = f(X’).
2To be precise there is a possibility that A finds and outputs a collision by chance even if ¥; # Y; holds for all i and j such that X; # Xj.
However, here we assume that A gives up and abort (which means that A failed to find a collision) in such a situation, for simplicity.
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1. B queries the state Y x (0,1} ‘/%7 | X} |0™) to the quantum oracle twice in a row. Now B has a 2n-qubit state |¢).

Then, B applies the Hadamard operator H®" on the leftmost n-qubit of |¢).

2. B measures the leftmost n-qubit and checks whether it is |0"). If it is |0"), proceed to the next step. If not, B
aborts (in this case $ fails to find a collision).

3. B runs the quantum collision-finding algorithm by Brassard et al. [BHT98, [ BHT97]], which finds a collision of a
random function with high probability by making O(2"/3) quantum queries (8 succeeds to find a collision).

Suppose that the oracle given to B is indeed the original Oy without any modification. Then, the transition of the
quantum state of $ in the first step is as follows.

1 Oy 1 Oy 1 H®"®I,
— |X)|0") — — X 1f(X)) — — [X)10") ———10")|0") (= |¢))
Xe%:],n V2n Xe%:l}n V21 Xe%],n V21

Hence the leftmost n-qubit of |¢) is always |0") in the second step, and B successfully finds a collision in the third
step.

Next, suppose Oy is modified in such a way that it copies and records queries and answers. Formally, the modified
oracle is represented by the operator

O; 11X 1Y) = XY & (X)) ® IX) | f(X)).

(The number of qubits stored in the oracle increases by 2n per each query. Note that this operator can be realized by a
combination of the embedding |X) |0") — |X) [0") ® [0")]0"), a query to Oy, and some other unitary operations.) If
the oracle given to B is O, the transition of the entire quantum state in the first step becomes as follows.

’

1 oy 1
— |X)[0") — — XD (X)) @ [X) | f (X))
Xe%l}" V2" xa%un Var
O’f 1
s — 1X)10" @ [X)1 (X)) 1X) £ (X))
H®"®I, ®Lsp, 1 "
_— 2—,,|Y>|O ) XY | FCOY XD f(XD) (= 1))

X,Ye{0,1}"

When B measures the leftmost n-qubits of |¢) in the second step, the probability that B obtains |0") is 1/2". Thus B
aborts and fails to find a collision with an overwhelming probability.

The above example demonstrates that the quantum state is perturbed and B can detect it if we copy and record
queries and answers in the quantum setting. In particular, the classical security proof we mentioned before does not
work in the quantum setting because there exist quantum adversaries such as 8 that can distinguish O and 0} (in other
words, the classical proof works because Oy and O} are indistinguishable for classical adversaries.). What Zhandry
showed in [Zhal9] is that this recording barrier in the quantum setting can be overcome to some extent, for the quantum
oracle of random functions.

3.2 An Overview of the Original Technique

First, Zhandry observed that the quantum oracle of a (fixed) function f : {0, 1}'™ — {0, 1}", which is described as the
unitary operator Oy : |x) |y) = |x) |y ® f(x)), can be implemented with an encoding of f and an operator stO that is
independent of f. In this section, we assume that each function f : {0, 1}"* — {0, 1}" is encoded into the (n2"*)-qubit
state | f) = |fO)|f (D] -l f(2"™ —1)). The operator stO is the unitary operator that acts on (n + m + n2™)-qubit
states defined as

stO @ [x} [y) ® |@o) -+ - |aam_1} = |x) [y & ax) ® |p) - - - |@2m_1), (3.1

where @, € {0, 1}" for each 0 < x < 2™ — 1. ]3] We can easily confirm that stO |x) |[y) |f) = |x) |y & f(x))|f) holds.
Here, |x) |y) corresponds to the first (m + n)-qubits of adversaries’ registers.

3“stO” is an abbreviation of “standard oracle”.
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When f is chosen uniformly at random and A runs relative to stO and |f) (i.e., A runs relative to the quantum
oracle of a random function), the whole quantum state before ‘A makes the (i + 1)-st quantum query becomes

|6.i41) = (U; ® DSO(U;—1 ® NstO - - - stO(Up ® 1) [0°) | ) (3.2

with probability 1/2"2" . Here, we assume that A has £-qubit quantum states.
1

The random choice of f can be implemented by first making the uniform superposition of functions 3’ o |fy =

H®"2" |0"2") and then measuring the state with the computational basis. So far we have considered the case that a
random function f is chosen at the beginning of games, but the output distribution of A will not be changed even if
we measure the | f) register at the same time as we measure A’s register. Thus, below we assume that all quantum
registers including those of functions are measured only once at the end of each game.

Then the whole quantum state before A makes the (i + 1)-st quantum query becomes

1

(¢is1) = D 167i01) = (U; @ DstO---stOUp ® D[ 10) ® ) 1], (3.3)
f f

Next, we change the basis of the y register and «; registers in (3.1)) from the standard computational basis {|u)},e(0,1}n
to the one called the Fourier basis { H®" |M>}ue{o,1}n by Zhandry [Zhal9]. In what follows, we use the symbol “ ™ to
denote the encoding of classical bit strings into quantum states by using the Fourier basis instead of the computational
basis, and we ambiguously denote H®" |u) by |u) for each u € {0, 1}". Then, it can be easily confirmed that

StO [x) [3) ® [@0) - - - [azm—1) = |x) [} ® [@g) - - - [ @ y) - -+ |azm 1) G4

holds. Intuitively, the direction of data writing changes after changing the basis: When we use the standard computational
basis, data is written from the function registers to adversaries’ registers as in (3.I). On the other hand, when we use
the Fourier basis, data is written in the opposite direction as in (3.4). With the Fourier basis, |¢;+1) can be written as

6i41) = (Ui ® DStOUs_; ® DstO - - -stO(Up @ 1) (|of> ® |67l2\'">) . (3.5)
Here, note that Y; | f) = H®"2" [0"2") = |0"2") holds. Thus

i) = D, @ 5y @ ID) (3.6)

xyzD
holds for some complex numbers @’ suchthat}, 7la’ ~ 12
xyzD yz xyzD
to A’s register to send queries to oracles, y is an n-bit string that corresponds to A’s register to receive answers
from oracles, z corresponds to A’s remaining register to perform offline computations, and D = @g| - - - ||@zm_; is a
concatenation of 2" strings of n bits.

Zhandry’s key observation is that, since stO adds at most one data to the B-register in each query, @, # 0" holds for
at most i indices x, and thus D can be regarded as a database with at most i non-zero entries. (Note that D may contain
fewer than i non-zero entries. For example, if a state |x) |y) is successively queried to stO twice, then the database will
remain unchanged since stO - stO = I.) We use the same notation D to denote the database and call it the Fourier
database since now we are using the Fourier basis for D. Each entry of the database D has the form (x, @y), where
x € {0, 1}, @, € {0, 1}, and @, # 0".

Intuitively, if the Fourier database D contains an entry (x, Qx), it means that A has queried x to a random function
f and holds some information about the value f(x). Hence D can be seen as a record of transcripts for queries and
answers. However, it is still not clear what kind of information A has about the value f(x), since we are now using
the Fourier basis. To clarify this information, let the Hadamard operator H®" act on each @, in D and obtain another
(superposition of) database D. Then, intuitively, D satisfies the condition in which “(x, @x) € D corresponds to the
condition that A has queried x to the oracle and received the value « in response.” We call D a standard database.

In summary, Zhandry observed that the quantum random oracle can be described as a stateful quantum oracle CstO.
The whole quantum state of an adversary ‘A and the oracle just before the (i + 1)-st query is

= 1, where each x is an m-bit string that corresponds

¢y = Y. awep lxy2) ® D), (3.7)

xyzD

“Note that the Hadamard operator H®" corresponds to the Fourier transformation over the group (Z/2Z)®".
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where each D is a standard database that contains at most i entries. Initially, the database D is empty. Intuitively, when
A makes a query |x, y) to the oracle, CstO does the following three-step procedurd?]

The Three-Step Procedure of CstO.
1. Look for a tuple (x, @x) € D. If one is found, respond with |x, y ® o).

2. If no tuple is found, create new registers initialized to the state \/% e, lax). Add the registers (x, ay) to D.
Then respond with |x, y & ay).

3. Finally, regardless of whether the tuple was found or added, there is now a tuple (x, @, ) in D, which may have to
be removed. To do so, test whether the registers containing @, contain 0" in the Fourier basis. If so, remove the
tuple from D. Otherwise, leave the tuple in D.

Intuitively, the first and second steps correspond to the classical lazy sampling, which do the following procedure:
When an adversary makes a query x to the oracle, look for a tuple (x, @) in the database. If one is found, respond with
ay (this part corresponds to the first procedure of CstO). If no tuple is found, choose @, uniformly at random from
{0, 1} (this part corresponds to creating the superposition # e, lay) in the second step of CstO), respond with a,
and add (x, @) to the database.

The third “test and forget” step is crucial and specific to the quantum setting. Intuitively, the third step forgets
data that is no longer used by the adversary from the database. By appropriately forgetting information, we can record
transcripts of queries and answers without perturbing quantum states.

3.2.1 Formalization with Compression

On the basis of above clever intuitions, Zhandry gave a formalized description of the compressed standard oracle CstO
(although we do not give the explicit description here). Note that, since each database D has at most i entries before the
(i + 1)-st query, D can be encoded in a compressed manner by using only O(i(m + n)) qubits. With this observation,
CstO is formalized in such a way that it has O (i(m + n))-qubit states before the (i + 1)-st query for each i, which enables
us to simulate a random oracle very efficiently on the fly, without an a priori bound on the number of queries (which
required computational assumption before Zhandry’s work).

3.3 Our Alternative Formalization

Next we give our alternative formalization. From now on, we represent each function f : {0, 1} — {0,1}" as an
(n + 1)2™-bit string (O] F(ON)[| (O £ ()]l - - - [](O]] £ (2™ — 1)). Remember that the whole quantum state after A makes
the i-th query is described as

At each query, we first “decode” superpositions of databases to superpositions of functions when an adversary makes
a query, then respond to the adversary, and finally “encode” again superpositions of functions to superpositions of
databases. Below we describe our encoding.

|<5,->=st0(Ui_1®1)sto---st0(Uo®1)(|of>®z ! |f>). (3.8)
7

3.3.0.1 Encoding Functions to Databases: Intuitive Descriptions

Modifying the idea of Zhandry, we apply the following operations to the | f)-register of |¢;) (i.e., just after the i-th
query).

1. First, for each x, we change the basis of the registers for the output value f(x) from the computational basis to
the Fourier basis. That is, we let the Hadamard operator H®" act on the f(x) register for all x. Now the state
becomes

Z a5y ® |D) (3.9)
xyzE

5 Note that this three-step procedure is a quoted verbatim from a preliminary full version of the original paper [Zhal8]] on IACR Cryptology
ePrint archive, except that the symbol y’ and 0 are used instead of @, and 0", respectively, in the original procedure.
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for some complex numbers a’ PE where each D = (Oll@o)|l - - - ||(O]|@am_1) is a concatenation of 2" strings of
xyz

(n+ 1) bits, and @, # 0" at most { indices x.

2. Next, we check and mark which x has been previously queried by A. Intuitively, @, # 0" means that A has
queried x before. Thus, for each x, we flip the bit just before @, if @, # 0”. Then each D changes to the bit
string (boll@o)|| - - - [(bam_1||@am—1), where by € {0, 1}, and b, = 1 if and only if @, # 0".

3. Now the information on which x has been previously queried by A is recorded in D. However, it is still not clear
what kind of information A has about the response value f(x), since we are now using the Fourier basis. To
clarify this information, for x that A has previously queried, we change the basis of the register @, back to the
computational basis. That is, for each x, we let the n-bit Hadamard transformation H®" act on |a@,) if and only
if by = 1. Then the quantum state becomes

107) = ), @ayen 16y2) @ D) (3.10)

xyzD

for some complex numbers ayy,p, where each D is a concatenation of 2™ strings of (n + 1) bits, (bgllao)|| - -
[|(bam_1|l@zm_1), such that b, # 0 holds for at most i indices x. Intuitively, b, # 0 means that A has queried x
to a random function f and has information that f(x) = a,. If b, = 0, then @, = 0" holds.

3.3.0.2 Encoding Functions to Databases: Formal Descriptions

The above three operations can be formally realized as actions of unitary operators on | f)-registers. The first one is
realized as IH := (I; ® H®")®2" | The second one is realized as Usoggle = (I1 ® 10")(0"| + X ® (1, — |0™) (0"]))®2",
where X is the 1-qubit operator such that X |0) = |1) and X |1) = |0). The third one is realized by the operator
CH := (CH®")®2" where CH := |0)(0| ® I, + |1) (1| ® H®".

We call the action of the unitary operator Ueye := CH - Uyoggle * IH and its conjugate Ug,,. encoding and decoding,
respectively.

Remark 8. In Zhandry’s paper [Zhal9|], Uenc and U;,. correspond to a single unitary operator StdDecomp’ that is
defined in a theoretically concise and sophisticated way. We use the encoding as the composition of three unitary
operators like above so that the intuition behind the encoding and decoding is clear as much as possible.

By using our encoding and decoding, the recording standard oracle with errors is defined as follows.

Definition 2 (Recording standard oracle with errors). The recording standard oracle with errors is the quantum oracle
such that queries are processed with the unitary operator RstOE defined by RStOE := (I ® Uepc) - stO - (I ® U,.) and

the initial state is |0"*D2™. (See also|Fig. 3.1))

|0(n+1)2"‘) o]
Pyl ] ps]
omy  — 1 & | | & I —
(@] (@] (@]
m m m
o —UH_HUH HU - HU—
0 1 2 q
|0?) — it — —

Figure 3.1: A quantum circuit that illustrates an adversary A that runs relative to RstOE. The register [07*D2™) at
the top corresponds to the oracle’s state. The second and third registers (|0"”) and |0")) are used to send queries and
receive answers, respectively. The register |0°) at the bottom corresponds to A’s private working space for offline
computations.

The original compressed oracle maintains only an O(i(m + n))-qubit state by compressing databases. On the other
hand, our oracle always has (n + 1)2™-qubit states since we do not consider any compression.
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3.3.1 Core Properties of RstOE

This subsection describes some useful properties of RstOE.
Note that [¢f;) = RStOE(U;_; ® I)RstOE - - - RstOE(Up ® 1)(|0¢) ® [0"*D2™Y) and |¢;) = (I ® UZ,.) |;) hold for
each i. Therefore, the following proposition holds.

Proposition 1. The recording standard oracle with errors is perfectly indistinguishable from the quantum oracle of a
random function.

The following proposition guarantees that each database contains at most i entries after i quantum queries.

Proposition 2. Leti > 1. Suppose that we measure the oracle states’ register of ;1) and obtained a database D.
Then D is valid, and contains at most i entries.

Proof. Let I4 and Ip denote the identity operators on the adversary’s states and databases, respectively (/4 ® Ip
becomes the identity operator on the entire state space). Recall that U; denotes the unitary operator for the adversary’s
offline computation after the j-th query.
First,
i) = (Ui-1 ® Ip) - RStOE) - - - (U1 ® Ip) - RStOE) [{f1)

holds fori > 2.
Second, recall that
RStOE = (Ja ® Uenc) - stO - (14 ® Uenc)*

holds. Since Ug, does not act on the adversary’s registers, and “Uyoggle - CH” in
(Uene)™ = H - Uyoggle - CH
does not change the state || (because the database register of | ) is all 0), we have
i) = (Ia ® Uenc) - (Ui-1 ® Ip) - $tO) -+ - (U1 ® Ip) - stO) - IH |i1)

fori > 2.
Next, define

stO’ := (H®" ® IH)stO(H®™ ® IH),
Uj:=H®"-U;-H®" forj = 1,...,i -2, and
U/, :=U_-H®",
Udne := (CH - Usoggle),
where H®™ acts on the adversary’s register to receive answers from the oracle. Then

i) = (Ia ® Uye) - (U ® Ip) - stO”) -+ - (U] ® Ip) - stO") - (H®" ® Ip) 1) (3.11)

follows.
Recall that
stO [x) [y} [S) = |x) |y @ sx) |S)

holds, where x € {0, 1}, y € {0, 1}, and S = (bollso) [I(D1lls)Il - - - [[(bam_ills2m—1), where b; € {0, 1} and s; € {0, 1}"
for each i € {0, 1}". On the other hand, straightforward calculations show that

stO" [x) [¥) IS) = [x) |y @ sx) IS & (V)x)

holds, where S & (y)x := (bollso)ll - - - [[(bxllsx @ Y)II - - - | (bam—1ls2m-1).
Since the database register of |¢/) is all 0, when we measure the state

(U, ®Ip)-stO)--- (U ® Ip) - stO") - (H®™ ® Ip) 1i/1),
we always obtain a bit string S of the form
S = (Ollso) 1Ol DII...[1(Ols2m 1),

where the number of j such that s; # 0 is at most (i —1). When U, = CH - Uggle acts on such a state |S), we
always obtain a (superposition of) valid database D with |D| < (i — 1). Since (3.11)) holds, this means that the claim of

[Propostiion 2 holds. :
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Next, we introduce notations that are required to describe important properties of RstOE. We call a bit string
D = (bollap)|l - - - [(bym_i||asm_1), where b, € {0,1} and a, € {0, 1}" for each x € {0, 1}, is a valid database if
ay # 0" holds only if b, = 1. We call D an invalid database if it is not a valid database. Note that, in a valid database,
by canbe 0 or 1 if @, = 0". We identify a valid database D with the partially defined function from {0, 1}"" to {0, 1}"
of which the value on x € {0, 1}"" is defined to be y if and only if b, = 1 and @, = y. We use the same notation D for
this function. If x is in the domain of D, we write D(x) #.L, and otherwise write D(x) =L. Moreover, we identify
D with the set {(x, D(x))}xedom(p) C {0, 1}* x {0, 1}", and we use the notations D U (x, @) and D \ (x’, @) to denote
the insertion of (x, @) into D and the deletion of (x’, @”) from D. For a valid database D that corresponds to the bit
string (bo||lao)|| - - - ||(bam_1||azm_1) such that D(x) =L (i.e., by = 0 and @, = 0") and y # 0", we denote the invalid
database that corresponds to the bit string (boll@o)!| - - - |[(Dx-1[l@x- DOV | (Dxs1ll@xs DI - - - [[(bam—1|l@am—1) by
D U [[x,y]. Unless otherwise noted, we always assume that D is valid.

The following proposition describes the core properties of RstOE.

Proposition 3 (Core Properties). Let D be a valid database and suppose that n is sufficiently large (n > 6 suffices).
Then, the following properties hold.

1. Suppose that D(x) = L. Then, for any y and a, there exists a vector |€) such that
RstOE |x) [y) ® [D U (x,@)) = [x) [y ® @) ® D U (x, @)) + |€)
and || le) || < 5/\/2_". More precisely,

RStOE |x, ) ® |IDU (x,@)) = |x,y® a) ® |D U (x, @)) (3.12)

1 1
+ —|x,y®a)||D) - — DU (x,7)) (3.13)
rosaln| 3 Fwoen)
1

1 invali
zylﬁlx,y@w@(ww%y»—my 9 G

\2n
1 o~ 1

+—n|x)|0")® 2 — |D U (x,0))— |D) (3.15)
gl 3 L )

holds, where |D;f‘va'id) is a superposition of invalid databases defined by

. (R
lDlnvalld> = ———|DuU [[x, 6H>

for each vy, and |0y = H®" |0n).

2. Suppose that D(x) = L. Then, for any y, there exists a vector |€") such that

1
RSOE|0) [1)® D)= > —=Ix)ly@a)® DU (na)+le) (3.16)
ac(o 1y V2"
and || |€") || < 2/V2". To be more precise,
€)= =i e(ID- Y —=IDUx) (3.17)
€Y= —|x - — X,y .
V2" yelo1y V2"

holds, where |0n) = H®" |0™).

An intuitive interpretation of [Proposition 3| The proposition shows that, when the adversary’s state is not superposed,
we can intuitively capture time evolutions of databases with only the (classical) lazy-sampling-like arguments by
ignoring the error terms |€) and |€’): When an adversary makes a query x to the oracle, RstOE looks for a tuple (x, @)
in the database. If one is found, respond with « (the first property in the above proposition). If no tuple is found, create
the superposition ﬁ 2a, lax), respond with a,, and add (x, @) to the database (the second property in the above

proposition).
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Note that this intuition for the classical lazy-sampling does not necessarily work when the adversary’s state is
superposed. This means that, intuitively, a record (x, @) in a database may be deleted or overwritten by another record
(x,7) when a quantum query is made.

For example, suppose that the database is empty, the adversary’s state is |x)[0")[9 and the adversary makes the
same query twice. At the first query, the adversary’s state is not superposed and the classical intuition works: Due to
the second property of the proposition, the state changes to Y, |x) |@) ® |(x, @)) up to a small error term |€’). This
intuitively means that « is randomly sampled and the data (x, «) is added to the database. At the second query, classical
intuition says that the data (x, @) will be kept in the database. However, now the adversary’s state is superposed and
the classical intuition does not work: Since RstOE - RstOE = I holds and the second query cancels the first query, the
database gets back to empty. This means that the sum of the error terms (in the first property of the proposition) must
be large at the second query.

Therefore, sometimes we can ignore the error terms and use the classical intuition, but sometimes we cannot.

Remark 9. Forinvalid databases, basically we can ignore them in security proofs since, when we measure the database
register while an adversary runs relative to the recording standard oracle with errors, we always obtain a valid database.

Proof of [Proposition 3| Recall that RstOE is decomposed as

RStOE = (/ ® CH) - (I ® Upgggle) - (I @ IH)StO(I @ IH*) - (I ® Utf)gg]e) - (I ® CH"), (3.18)
and that each D is described as a bit string (bo||@g)|| - - - ||(bam_1||@am_1), where by € {0, 1} and a, € {0, 1}"* for each

x € {0, 1}™.
We begin with showing the first property. Since now the operator RstOE does not affect the registers of entry of
x"in D for x" # x, it suffices to show that the claim holds when D is empty. In addition, without loss of generality,

we can assume that x = 0™. Now D U (x, @) corresponds to the bit string (1||@)][(0]|0™)]] - - - ||(0]|0™). We have that
Ugne = H'U%, 1 CH" = IHUggg1eCH and
(=D 7o
Ugne ID U (x, @) = HUigggte | | 1y | ® (@ |0||0">)
ue{0,1}n V2r i=1
> o (o) o 5
=1IH — |0llu) | ® ( I0|I0">> +H (—(|1I|0”> - IOI|0”>)) ® ( IOIIO"))
uef{0,1}n \/z_n i=1 \/2_;1 i=1
2m—1 .
= 0]y ® <® 10) |o">> +len), (3.19)
i=1
where [0) := H®"0") and |e1) = =(11) = 0))10") @ (&), 10) 107)). Thus, we have that
2m—1 .
SO(I®U:) % y)® DU (x,a)) = |x,y®a)®|0a)® ((X) 10) |on>) +stO(|x, ) ® |€1)). (3.20)
i=1

Note that, from (3.19), it follows that

271
Uenc (|0||a> ® <® 10) |0A">) + IEl)) =[DU (x,a)). (3.21)
i=1

Therefore,

(I ® Uenc) stO (I @ Ug,,.) %, y) ® |ID U (x, @))
2m_]

= (I ® Uenc) (Ix, yea)®|0fa)® <® 10) |0A">> +stO(lx, y) ® |€1>))
i=1
2m -

= (I ® Uenc) <|x,y ®a)®[0e) ® <® 10) |o71>> +lryea) e |el>)

i=1
— (I ® Uene) (Ix,y ® @) ® |€1)) + (I ® Uenc)stO(|x, y) ® |€1))
=|lx,y®a)®|DU(x,a))+|€e) (3.22)

6|x) corresponds to the register to send queries to the oracle and |0™) corresponds to the register to receive answers from the oracle.
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holds, where |€2) = — (I @ Uene) (|x, y ® @) ® |€1)) + (I ® Uenc)stO(]x, y) ® |€1)). Now we have that

(I ® Uenc)stO(Ix, y) ® [€1))
2m ]
= (I ® CH - Ugggge - IH \/_Z— xy®y) e () -0 |y>®(® |0>|07,>)
i=1

(_

2 -]
=({U®CH- Utoggle) Ix yey)e((l)-10) ®|6)® (® 10)10") )

_(I®CH)—Z(

2m—1
Ix yey)e(0)-[1)e |5)®(® 10)10") )

2mM—1
+U® CH)— Z Sleyeyne(n-oelne (@ 10) |o">)

1 1 . 2m_| .y
‘/2_"2‘\/2_"|x y697>® |O>®(H® |y> |1>®|y> <® 10) |0 )
2 1 2m_]
7wy e @ (IDe (H0M) 108 0") (®Io>|0">)
1

2M—1
|x, y€97>®|0>® H®" |7> <® |0>|0">>

i=1

1 2m_] )
_ @Z@'X’y®7>®'l>®'7>®<® 10y [0 >>
2

1
i3 xww@(Z—uw(x 6)>—|D>)

2m—1

1 1 (
=— — |5,y ®y)®[0)® |6> |0y [0™)
1

2mM—1
- nyenelheye (@ 10) |0">>

|xyey>®(2—wu<x 6>>—|D>>

2m—1
|xyeay>®|0>®<z (\/_ |6>) <®|0>|0">

S5#0n
1 . 2m—1 n
+@; — |xye>y>®|0>®(—|o >) <®|0>|0 )
1

2m—1
- |x, y®y>®|1>®|y>®(® 10)10) )

i=1

|xyeay>®(2—|0u(x 6>>—|D>>

_ 1 1 invalid
= Z =X,y ®y)® D))
Y

Van 2
v Linyenen
n e o XLYyoy
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@Z—mew@wu(x )

~ 1
+2—n|x>|o >®<;ﬁ|Du<x,6)>—|D>>

= Z \an [x,y®y)® <|D U (x,7y)) — |Dlnva||d>>

x/z_n
+ - 0107 ® (22 — DU (x,6)) - |D)), (3.23)
2" 5 V2
where
1 oy 1
| Dl (Z( s |0>|6>) (®|0>|0">)= 3 (‘/)_ DU [x.])
6#0" i=1 o#0" 2"
for each y.

In addition, we have that
2)"
Uenc l€1) = (CHUtogglelH)v_(Il> —10) 10" ® (® 10y 10™) )
2m_|
= CH—(|1> - 0N 10" ® 10) 10™)
= (@)

1 R 2m_|
= —= (0" - 10)0") @ ((X) 10) |0">>

“Zn i=1
1 1 1
= — I DU(xy))— — D 3.4
@;@| (57 = 7= 1D) (3.24)
holds. Thus,
(I ® Uspe) |x @a>®|e>:L|x o a) ZLu)u(x » |- D) (3.25)
enc , Y 1 \/2_" » Y . \/2_n ,Y .

holds. Therefore,

RStOE |x, ) ® |[D U (x,@)) = |x,y® a)® |D U (x,@))

1 1
T ’ D - _D ’
+@|xyea>(| ) (;\/24 u(xy»))

Z — xyen e (DU (xy) - D))

\/2_"
o Ix)ld;’)®(226:\/% ID U (x,6)) — |D)) (3.26)

holds, and this proves the first property.

Next, we show the second property. Since now the operator RstOE does not affect the registers of entry of x” in D
for x” # x, it suffices to show that the claim holds when D has no entry. In addition, we can without loss of generality
assume that x = 0™. Now D corresponds to the bit string (0[/0™)|(0]|0™)]| - - - ||(0]|0™), and we have that

U:nc |D) = IHUtoggleCH |D)

1 2m—1 N
= —10 0) [07) |. 3.27
( Z] 7 >|a>)®((i§:§1)| )| >) (3.27)

ae{0,1}"

31



Hence, it holds that

2m—1

# 1 —~

StO(I ® Ugye) 1, y) ® D) = —=luyea) e |0>|a>®<® 10) |0">). (3.28)
ac{0,1}" 2 i=1

In addition, we have that

(I ® Uenc)stOU ® Ugye) |, y) ® |D)

1 2m—1 .
= (1®(CHUtoggle|H))( 3= |x,yeaa>®|0>|a>®(® |0>|0">))

ae{o,l}n\/z_" i=1
=<1®<CHUmggle>>( 3 L|x,y@a>®( S e |0>|u>)®(2®] |0>|0">))
c(0.1)m V2r ue(01)n V2r izl
:(1®CH)( > L|x,y@a>®( > (_1)M|1>|u>)®<2é)1 |0>|0">))
ac(o1}n V2 uelol)n V2 izl

1 1 2]
+ (I ® CH) —lxny®a)® (—(I0> - ® |0">) ®( |0) |0">))

2mM—1
2 %|x,y@a>®|l>|a>®((§)|0>|0">>

ae(0,1)n

1 1 N 2" —1
— x5y a)® (——(0)]0") — 1) ]0")) | ® 0) 10"
+a€{0,1},,x/2_n'” @) (@<|>| =11 >>) (®|>| >)

i=1

1
—xny®a)®|DU (x,a))

ae{0,1}" \/2_'1
1 -~ 1
+—=0I0Me(ID)- ) ——=IDU(x,y)) (3.29)
Eoe(o -3
holds. Therefore, the second property also holds. O

Let RstOE be the recording oracle with errors for a random function f : {0, 1}* — {0, 1}". We also show the
following proposition for later use.

Proposition 4. Let y be a fixed n-bit string, and

ly) = Z Cx,a,D lx, y)® DU (x,a)) ® |¢x,a,D>
x€{0,1}"",ae{0,1}",D
D(x)=1
D ol D)W y)
x€{0,1}",D
D(x)=1

be a vector such that || [Y) || < 1, || Wxp) | < 1, and |||y}, , p) | < 1 for each x, @, and D. Here, |x) and |y) are the
registers to send queries to f and receive the responses, respectively, and |Yx.a.p), ¥, ;,) correspond to an additional
quantum system on which RstOE does not affect. In addition, cy o p and c;, p, are complex numbers such that

2
|cx,a,D| <1
x€{0,1}Y",aef{0,1}"*,D
D(x)=L
and
’ 2
Z lexpl” < 1.
xe(0,1)™,D
D(x)=L
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Let T4 be the orthogonal projection onto the vector space spanned by valid databases. Then there exists a vector |€)
such that || |€) || < 10/v2" and

I1y4igRStOE |¢¥) = Z CxaD %Y@ a)® DU (X,)) ® YxaD)
x€{0,1)",@e{0,1}",D
D(x)=1
1
_ Z —CxaD |5,y ©Y)® DU (x,7) ® Yxa.0)
x€{0,1}™,a,y€(0,1})*,D
D(x)=1
1
+ Z Cp =y ®@®IDU (% a) @ Iy p)
x€{0,1}",ae{0,1}",D 2
D(x)=1
+ le)

hold.

An intuitive interpretation of Intuitively, this proposition shows that, when an adversary’s register to
receive responses from the oracle (i.e., the |y) register) is not superposed, we can ignore the effect that an existing
record (x, @) will be deleted from a database. (Nevertheless, we cannot ignore the effect that an existing record (x, @)
will be overwritten with another record (x, y).)

Proof of Proposiiiond Let

lpo) := Cxa0 %,y ® @) ® DU (x,@)) ® [Yxa,0),
xe{0, 1}, ae{0,1}*,D
D(x)=1
1 1
|p1) = D Coap—=I%y®a)®(ID)=| > —=IDUEY)||®WraD),
x€{0,1}",aef{0,1}*,D \/Z_n ye{0, 1} \/2_n
D(x)=1
|¢2) 1= = > Coap—= > == 15y &7 ® (1D U (x,7) = IDI*)) @ Y an),
xef{0,1}",ae{0,1}",D @ Y \/Z_n
D(x)=1
1 -~ 1
|¢3) 1= Cranzy 010 @2 Y —=IDUx8)~ID)|® Wrap).

xel0.1) et (0.1 sefo1y V2"
D(x)=1

’ ’ 1 ’
\64) = > ¢p =%y @ @) @D U (x.0)) @ 1Y), ).
xe{0, 1}, ae{0,1}"*,D \/2_
D(x)=1
= > = wlmeID- Y = DU
. X, ) X, .
x€{0,1)".D ‘/2_" ve{o,1}n \/Z_n
D(x)=L

Then
RSIOEIW) = D) le+ ) 1#)

0<i<3 0<i<l

follows from [Proposition

Upper bounding | |¢1) .
First, for distinct tuples (x, a, D) # (x’,a’, D”) such that D(x) = L and D(x’) = 1,

1
yeaye(IDy-| > —=IDU(xy)
76{0,1}"\/2_’1

is orthogonal to

’ ’ ’ 1 ’ !’
Ix,y®a)y®||D") - E ID"U (X", y)]]-
2’1
ve(0, 1}

<‘
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Thus

e 17 < 2/2") - > lexa,nl” < 2/2" (330)
x€{0,1}",ac{0,1}*,D
D(x)=1
holds.
Upper bounding || |#3) |l
We have that
cxanl) Salevanl _ 5
x,a,D a 1Cx,a,D
g2 <5 > (Z o ) <5 ) s (3.31)
x€{0,1}",D \ « x€{0,1}",D
D(x)=L1 D(x)=L

holds, where we used the convexity of the function X +> X? for the second inequality.

Upper bounding || |#/) .

We have that 5 5
’ 2 ’ 2
oDl < % 20 kol < 5 (3.32)
xe{0,1},D
D(x)=1
holds.
Now the claim of the proposition holds by setting |€) := |¢1) + |¢§3) + |¢i). O
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Chapter 4

Quantum Security of the 4-Round
Luby-Rackoff Construction

This chapter provides technical details of our results on the 4-round Luby-Rackoff construction. The result of this
chapter contributes to understanding (post-)quantum security of symmetric-key schemes mainly from the theoretical
perspective. The Luby-Rackoff construction is the most important scheme to convert PRFs to PRPs. Thus the problem
of whether the r-round Luby-Rackoff construction is a secure qPRP for some r is theoretically significant. However,
the problem has been unresolved since Kuwakado and Morii showed the 3-round quantum distinguisher [KM10]. We
solve it by proving that the 4-round construction is indeed a secure qPRP. See also for an overview, and
[Section 1.7)for the relationship of the results in this chapter with those in other chapters.

First, we briefly recall the definition of the Luby-Rackoff constructions. Fixr > 1,andfor 1 <i <r,let f; := {fix :
{0, 1}/ — {0, 1}"/2}; 5 be afamily of functions parameterized by key & in a key space . Then, the Luby-Rackoff con-
struction for fi, ..., f is defined as a family of n-bit permutations LR, (f1, . . ., f) := {LRy(f1,k,, - - "fr,kr)}k],...,kre‘K
with the key space (%)". For each fixed key (ki, ..., k), LR-(fik,>- .., frk, ) is defined by the following procedure:
First, given an input x( € {0, 1}", divide it into n/2-bit strings xoz, and xog. Second, iteratively update n-bit states as

(XG-1)L» X(i—1)R) P (XiL, XiR) := (X-1)R ® fik; (XG-1)L)> X(i-1)L) 4.1

for 1 <i < r. Finally, return the final state x, := x,.||x,gr as the output.

The resulting function LR, (f1,k,>-.., frk.) : Xo — X, becomes an n-bit permutation owing to the property
of the Feistel network. Each f;, is called the i-th round function. When we say that an adversary is given or-
acle access to LR, (f1,..., fr), we consider the situation in which keys ky,..., k, are first chosen independently
and uniformly at random, and then the adversary runs relative to the stateless oracle Or, ;. kpseenfibr) |x) [y)
[x) |y & LR, (f1,k5 - - -» fr.k,)(x)). When each round function is chosen from Func({0, 1)/2,{0, 1}"/2) uniformly at
random (i.e., each f; is the set of all functions Func({0, 112,40, 1}/2) for all i), we use the notation LR, for short.

The goal of this chapter is to show|[Theorem I|and|Theorem 2| which are restated below.

Theorem 7 (Lower bound and upper bound, informal (Restatement of [Theorem 1))). If f1,..., f4 are truly random
functions, then the following claims hold.

1. LRy cannot be distinguished from a truly random permutation by gCPAs up to O(2"/®) quantum queries.

2. A quantum algorithm exists that distinguishes LRy from a truly random permutation with a constant probability
by making O(2"/%) quantum chosen-plaintext queries.

Theorem 8 (Construction of qPRP from qPRF, informal (Restatement of[Theorem 2))). Suppose that each f; is a secure
PRF against efficient quantum query attacks, for 1 < i < 4. Then LR4(f1, f2, f3, f4) is a secure PRP against efficient
qCPAs.

The current chapter is organized as follows. [Section 4.1|provides an informal technical overview. gives
formal security proofs. shows the matching upper bound.
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4.1 Technical Overview

It is straightforward to show that[Theorem 8| follows from the second claim of In addition, the second claim
of can be achieved by a simple quantum polynomial speed-up of existing classical attacks. In what follows,
we present a rough overview on how we show the first claim of

We assume that all round functions in the Luby-Rackoff constructions are truly random functions, and we focus on
the number of queries when we consider computational resources of adversaries.

To have a good intuition on our proof in the quantum setting, it would be better to intuitively capture how LR3 is
proven to be secure against classical CPAs, how the quantum attack on LR3 works, and what problem will be hard even
for quantum adversaries. Thus, we first give some observations about these questions, and then provide a high-level
overview on the quantum security proof of LR4.

4.1.1 An Overview of a Classical Security Proof for LR3.

Here we give an overview of a classical proof for the security of LR3 against chosen plaintext attacks in the classical
setting. For simplicity, we consider a proof for PRF security of LRj3.

Let bad, be the event that an adversary makes two distinct plaintext queries (xor, Xor) # (x(;, X(g) to the real
oracle LR3 such that the corresponding inputs x7 and xi . to the second round function f, are equal, i.e., inputs to f,
collide. In addition, let bads be the event that inputs to f3 collide, and define bad := bad, Vv bads.

If bad, (resp., bads) does not occur, then the right-half (resp., left-half) n/2 bits of LR3’s outputs cannot be
distinguished from truly random n/2-bit strings. Thus, unless the event bad occurs, adversaries cannot distinguish LR3
from random functions.

If the number of queries of an adversary A is at most g, we can show that the probability that the event bad occurs
when A runs relative to the oracle LRj3 is in O(q2/2"/ 2). Thus we can deduce that LRj3 is indistinguishable from a
random function up to O(2"/4) queries.

4.1.2 Quantum Chosen Plaintext Attack on LR3.

Next, we give an overview of the quantum chosen plaintext attack on LR3; by Kuwakado and Morii [KM10]. Note that
we consider the setting in which adversaries can make quantum queries. The attack distinguishes LR3 from a random
permutation with only O(n) queries.

Fix ao # @, € {0,1}"/2 and for i = 0, 1, define gi : {0, 1?2 - {0, 1}/? by gi(x) = (LR3(a;, x))r @ @;, where
(LR3(a;, x))g denote the right half n/2-bits of LR3(a;, x). In addition, define G : {0,1} x {0, 1}/ — {0, 1}"/?
by G(b,x) = gp(x). Then, go(x) = gi(x ® s) can be easily confirmed to hold for any x € {0,1}"/2, where s =
fi(ag) ® fi(ay). Thus G(b, x) = G((b, x) & (1, 5)) holds for any b and x, i.e., the function G has the period (1, s).

If we can make quantum queries to G, then we can find the period (1, s) by using Simon’s period finding algo-
rithm [Sim94, [Sim97], making O(n) queries to G. In fact G can be implemented on an oracle-aided quantum circuit
C' by making O(1) queries to LR3]]]

Roughly speaking, Simon’s algorithm outputs the periods with a high probability by making O(n) queries if applied
to periodic functions, and outputs the result that “this function is not periodic” if applied to functions without periods.

If we are given the oracle of a random permutation RP, the circuit C?F will implement an almost random function,
which does not have any period with a high probability. Thus, if we run Simon’s algorithm on CR", with a high
probability, it does not output any period. Therefore, we can distinguish LR3 from RP by checking if Simon’s period
finding algorithm outputs a period.

4.1.3 Observation: Why the Classical Proof Does not Work?

Here we give an observation about why quantum adversaries can distinguish LR3; from random permutations even
though LRj is proven to be indistinguishable from a random permutation in the classical setting.

We observe that quantum adversaries can make the event bad, occur: Once we find the period 1||s = 1| f1(@p) ®
f2(ay) given the real oracle LR3, we can force collisions on the input of f,. Concretely, take x € {0, 12 arbitrarily
and set (xoL, Xor) := (@0, X), (x{;,X(g) := (@1, x ® s). Then the corresponding inputs to f, become f(ap) & x for
both plaintexts. Thus the classical proof idea does not work in the quantum setting.

'Here we have to truncate outputs of O without destroying quantum states, which is pointed out to be non-trivial in the quantum setting [KLLN16al.
However, this “truncation” issue can be overcome by using a technique described in [HS18].
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4.1.4 Quantum Security Proof for LR,;: The Basic Strategy

As we explained above, the essence of the quantum attack on LRj is finding collisions for inputs to the second
round function f>. On the other hand, finding collisions for inputs to the third round function f3 seems difficult
even for quantum (chosen-plaintext) query adversaries. This implies that the left part of the output of LR3, which is
X3, = X2r ® f3(x21), always looks completely random for adversaries. (Recall that x;; and x;g denote the left-half
and right-half n/2 bits of the internal state after the i-th round, respectively.)

Having these observations, our idea is that even quantum adversaries would have difficulty in noticing that the
third state update (xaz, xor) — (x2r ® f3(x21), x21) of LR3 is modified as (xor, xor) — (F(x2r, X2R), X21.), Where
F {0, 1)% x {0, 1}* — {0, 1}"/? is a random function. We denote this modified function by LR; (see and
will show that it is hard to distinguish LR} from LR;.

Figure 4.1: LR}

Next, let LR;’ denote a modified version of the 2-round Luby-Rackoff construction such that the first and second
state update operations are modified as (xor, xor) — (F1(xor, Xor), Xor) and (xir,x1r) — (F2(x1L, X1R), X1L),
respectively, where Fi, F : {0, 1)/2 x {0, 1}"/2 — {0, 1}"/? are independent random functions (see [Fig. 4.2). Then, we
intuitively see that LR/’ is hard to distinguish from a random function RF from {0, 1}" to {0, 1}".

Figure 4.2: LRY

Once we show the above two properties, i.e.,
1. LR; is hard to distinguish from LR3, and

2. LRY is hard to distinguish from RF,

we can prove with simple and easy arguments: Define functions LR} and LR}” as in[Fig. 4.3] Then, by
applying the first property twice we can show that LR, and LR} are indistinguishable. In addition, LR} and LR} are

indistinguishable from the second property. Since the distribution of the function LR}” is equal to that of a random
function, indistinguishability of LR4 and a random function follows.

In other words, those two properties are technically the most difficult parts to show in our proof for[Theorem 8

4.1.5 Adversary and Oracle’s States

We show the two properties by heavily using (our alternative formalization of) the compressed oracle technique. See

for the details of the compressed oracle technique.
As in [Chapter 2] We assume that an oracle-aided quantum algorithm (A has three quantum registers and its state is

described as a superposition
Z Xx,y,z | x, Y, 7).

X, ¥,2

|x) and |y) corresponds to the registers to send queries to the oracle and receive the answers, respectively, and |z)
corresponds to the register for A’s offline computation. Recall that the quantum oracle of a (fixed) function f is
modeled by the unitary operator Oy : |x) [y) = |x) |y & f(x)).
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Figure 4.3: The functions LR} (illustrated on the left side) and LR}” (illustrated on the right side). F, F’ : {0, 132 x
{0, 1}2 — {0, 1}"/? and RF : {0, 1} — {0, 1}"* are independent random functions.

When A runs relative to the quantum oracle of a random function, we can use the compressed oracle technique.
Recall that the compressed oracle maintains a state called database, which corresponds to the record of queries and
answers in the classical lazy sampling. Before making any queries, the database is empty. When A queries a value
x and x is not found in the database (i.e., x has not been queried before), the oracle makes the uniform superposition
2.y |y, responds with y, and adds the data (x, y) into the database. (Making the uniform superposition corresponds
sampling y uniformly at random in the classical lazy sampling.) When A queries a value x and a pair (x, y) is found
in the database (i.e., x has been queried before and the previous answer was y), the oracle responds with y. The entire
state of A and the oracle is described as

> aryen vy, )@ 1D),

x,y,2,D
where each D is a database that keeps some pairs (x1, y1), . .., (x;, i)-

Remark 10. The compressed oracle technique looks close to the classical lazy sampling. However, there is actually a
large difference between them. In the compressed oracle technique, records in a database are sometimes removed or
overwritten when A makes queries, unlike the classical lazy sampling. If the oracle does not remove the records in
databases appropriately, the quantum state may be perturbed and A may notice that the oracle is recording queries
and answers. We do not explain the details on when records are deleted in this section, but this difference is crucial for
recording queries in the quantum setting.

4.1.6 How to Prove the Two Properties

Next, we explain how we show the first property, i.e., the indistinguishability of RF3 and RF}. Since RF3 (resp., RF})
depends on three random functions f1, f>, and f3 (resp., fi, f2, and F), the oracle keeps three databases D, D», and
Ds (resp., D1, D, and Dp). As we mentioned before, we expect that the two oracles are indistinguishable unless a
collision occurs for inputs to f3. We define that a database (D1, D,, D3) for RF3 is “bad” when the database contains
the information that there is a collision for inputs to f3. Similarly, we define that a database (D1, D,, Df) for RF; is
“bad” when the database contains the information that there is a collisions at left-half inputs to . We define a database
is “good” if it is not bad.

Let |;) (resp., |l//}>) be the entire state of A and the oracle LR3 (resp., LRg) just before the j-th query. Then,
roughly speaking, |/;) can be decomposed as i) = Iw?md) + Iw.?ad), where |¢?°°d> contains good databases and |y%*)
contains (mainly) bad databases. |/) can be decomposed in the same way.

Roughly speaking, we have the following observations:

(a) There is a natural one-to-one correspondence between the good databases for LR; and those for LR}. More
precisely, for a good database (Dj, D>, D3) for LR3, there exists D such that (Dy, Dy, DF) is a good database
for LR;, which we denote by [(D1, D,, D3)]F. Similarly, for a good database (D;, Dy, D) for LRg, there exists
D5 such that (D1, Dy, D3) is a good database for LR3.

(b) The behavior of the oracle LR3 on a good database (D1, D,, D3) is the same as that of LRg on [(Dy, Dy, D3)]F
unless they change to bad.

(c) The chance that a good database change to bad is very small.
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Intuitively, (a) and (b) guarantee that Iw?md) and Ic,[/;.g°°d) are always the same for each j when we ignore the state
of databases, which implies that ‘A cannot distinguish LR3 and LRg as long as databases are good. In addition, (c)
shows that the “bad” components || Iw;’ad> || and || Iz,b;.bad) || are always small, which implies that LR3 and LR} are indeed
indistinguishable.

For the indistinguishability of LR}’ and RF are shown in the similar way except that we define “bad” databases as,
roughly speaking, the ones that contain “collisions at left-half inputs to F>”.

Our proof is much more complex than the classical one, though, we give rigorous and careful analyses.

Remark 11. Ifwe try to show the quantum security of the 3-round Luby-Rackoff construction with similar ideas (e.g.,
try to show that quantum adversaries cannot notice when we replace the second and third round of LR3 with LR} ), we
will be able to show that adversaries cannot distinguish as long as databases are good, but will not be able to prove the
claim that the chance that good databases change to bad is small.

The next section provides formal security proofs based on the intuition explained above.

4.2 Security Proofs

The goal of this section is to show the following theorem, which gives the quantum query lower bound for the problem
of distinguishing the 4-round Luby-Rackoff construction LR4 from a random permutation RP, when all round functions
are truly random functions. This theorem is the formal version of the first half of

PRP .
Theorem 9. AdvER4 (@) isinO (\/q3/2"/2).
Before showing the theorem, we prove the following corollary, which is the formal version of

Corollary 2. Let f; be a quantumly secure PRF for each 1 < i < 4. Then, the 4-round Luby-Rackoff construction
LR4(f1, f2, f3, f4) is a quantumly secure PRP.

Proof. Let RFy,...,RF4 be independent random functions from {0, 1}"/? to {0,1}/2. Fori = 0,...,4, let G; :=
II;Rf;d(g?), gy, 8y, 8)"), where g = f;if j > i and g\ = RF; if j <i. Then Go = LRa(f1, f2, f3, f4) and G4 = LRy
old.

For each 1 < i < 4 and any efficient adversary A, we can construct an efficient adversary $B; such that
Adv(gil,(},« (A = Adv}PRF(Bi). Below, we explain how we construct 8; when i = 2. Suppose that B, is given
an oracle g, which is either f> or RF,. First, B, runs A. B, simulates the oracle of G := LR4(RFy, 8, f3, fa) by
simulating RFy, f3, and f4 by itself and making queries to . When A makes queries, B, responds with G. Finally, B,
returns (A’s final output as its own output. Because truly random functions can be efficiently simulated against efficient
quantum adversaries [Zhal2b], we can make B, efficient. We have Adv‘gfsz (A) = Adv%PRF(Bz) because G = G| if
g = fr,and G=G,if g = RF,. 8B; for other i can be constructed in the same wa A

Now we have

PRP di PRP
AdViEl (A < 124Adv(;j[ G, (F) + AdVIERT ()
<i<
= Z AdvaF(Bl-) + Advig (A).
1<i<4

The first term of the right hand side of the above inequality is negligible since f; is a quantumly secure PRF for each i.
The second term is also negligible by Hence the corollary follows. m

In the rest of this section, we assume that all round functions in the Luby-Rackoff constructions are truly random
functions, and we focus on the number of queries when we consider computational resources of adversaries.

As we explained in technically the most hardest parts to show the quantum security of LRy is to show
the indistinguishability of LR3 and LR}, and the indistinguishability of LR}’ and a random function.

Recall that LR; is defined in the same way as LR3 except that the third state update (x27, xor) — (X2r® f3(x2r.), X21.)
of LR3 is modified as (x2z, x2r) — (F(xar, Xar), X21.), where F : {0, 1}*/2x {0, 1}*/2 — {0, 1}*/2 is a random function.
LR’ denote a modified version of the 2-round Luby-Rackoft construction such that the first and second state update
operations are modified as (xoz, xor) — (F1(xoL, Xor), Xor) and (x1z, x1r) — (F2(x11, X1R), X1L), respectively, where
Fi, F> {0, 1}Y% x {0, 1}¥/? — {0, 1}"/? are independent random functions.

2When i = 1, we do not need efficient simulation of a random function.
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4.2.0.1 Organization of the Rest of
Section 4.2.1|shows that LR} is hard to distinguish from LR3. [Section 4.2.2|shows that LR}’ is hard to distinguish from

RF. [Section 4.2.3| proves by combining the results in[Section 4.2.1]and [Section 4.2.7]

4.2.1 Hardness of Distinguishing LR’, from LR;

Here we show the following proposition.
Proposition 5. Advﬂg;,m; (q)isinO (\/q3/2"/2).

First, let us discuss the behavior of the quantum oracles of LR3 and LR}. Let A be an adversary that makes at most
¢ quantum queries.

4.2.1.1 Quantum Oracle of LR;

Let us define the unitary operator Oyp; that computes the state update of the i-th round by

Oup.i  |XG-1)L» X(-1)R) 1YL, YR) P 1X (=)L, X(i=1)R) | (YL, YR) ® (fi(X(i=1)L.) ® X(i=1)R> X(i=1)L)) -

Ovyp.; can be implemented by making one query to f; (see|Fig. 4.4).

lyr) ( [yr @ x@-1)1)

lyn) — P D v @ fixa-n1) ® Xa-nr)
[x(i-1)L) — Ji [xGi-1)L)
lx(i-1)r) lx(i-1)r)

Figure 4.4: Implementation of Oup,;. In the security proof, Oy is replaced with the recording standard oracle with
errors for f;.

Now O¢g, can be implemented as follows by using {Oup.; }1<i<3:

1.
2.

6.

Take |x) |y) = |xor, Xor) |y1, YR) as an input.

Compute the state (x1z, x1r) by querying |xoz, xor) |0") to Oyp.1, and obtain

|XoL, Xor) 1YL, YR) ® |X1L, XIR) -

. Compute the state (x2r, x2r) by querying |x1z, x1r) [0") to Oyp.2, and obtain

|XoL, XoR) 1YL, YR) ® |X1L, X1R) ® |X2L, X2R) -

Query |x21, X2r) YL, YR) t0 Ouyp .3, and obtain

[x) |y ® LR3(x)) ® |x11, X1R) ® |X2L, X2R) .

. Uncompute Steps 2 and 3 to obtain

1) |y ® LR3(x)) .

Return |x) |y & LR3(x)).

The above implementation is illustrated in
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lv) |y © LR3(x))
0 |9ues |, o
|0>— 1 OUP.Z OUPAZ I - |0)
0 0
|X)— UP.1 UP.1 | |X)

Figure 4.5: Implementation of LRj3.

lyr) ——————P— 1z @ x21)

[y} — lyL @ F(x21, X28))
[x2) — OF x21)
[x2r) — [x2r)

’

Figure 4.6: Implementation of O{, ;.

errors for F.

In the security proof, O is replaced with the recording standard oracle with

4.2.1.2 Quantum Oracle of LR},

The quantum oracle of LR/ is implemented in the same way as LR3, except that the third round state update oracle Oyp.3
is replaced with another oracle O{j, , defined as

Olp.3 & 1%20, XoR) YL, YR) = |%21, X2R) |(YL, YR) @ (F (X2, X2R), X21.)) .

O{p 5 is implemented by making one query to OF, i.e., the quantum oracle of F (see|Fig. 4.6).

In what follows, we assume that the oracles of the functions f; and F are implemented as the recording standard
oracle with errors, and we use D1, Dy, D3, and DF to denote (valid) databases for fi, f2, f3, and F, respectively. In
particular, after the i-th query of an adversary to LR3, the joint quantum states of the adversary and functions can be
described as

> Gryepupyny 13,2y ® D1 D)) D3 (4.6)
x,¥,2,D1,D2,D3

for some complex numbers dvx,y ;. p,, D, Dy SUch that 3, - p. p, by Ax,y,2.D1,D,.D; |> = 1. Here, x, y, and z correspond
to the adversary’s register to send queries to oracles, receive answers from oracles, and perform offline computations,
respectively. (If the oracle is LR%, then the register |D3), which corresponds to f3, is replaced with |Dg), which
corresponds to F'.)

Next, we define good and bad databases for LR; and LR;. Intuitively, we say that a tuple (Dj, D», D3) (resp.,
(D1, D2, DF)) for LRj (resp., LR}) is bad if and only if it contains the information that some inputs to f3 (resp., the
left halves of some inputs to F) collide. Roughly speaking, we define good and bad databases in such a way that a
one-to-one correspondence exists between good databases for LR3 and those for LR, so that adversaries will not be
able to distinguish LR} from LR;3 as long as databases are good.

4.2.1.3 Good and Bad Databases for LR;

Here we introduce the notion of good and bad for each tuple (D1, Dy, D3) of valid database for LR3. We say that
(D1, Dy, D3) is good if, for each entry (x27,7%) € D3, there exists exactly one pair ((xor, @), (x11, 8)) € D1 X D, such
that 8 ® xor, = x2r. We say that (Dy, D,, D3) is bad if it is not good.

4.2.1.4 Good and Bad Databases for LR;

Next we introduce the notion of good and bad for each tuple (D1, Dy, DF) of valid database for LRg. We say that a valid
database DF is without overlap if each pair of distinct entries (x3r, x2r,y) and (xéL, xéR, v’) in DF satisfies xp7, # xéL.
We say that (Dy, D, Df) is good if DF is without overlap, and for each entry (x27, X2r, ¥) € DF, there exists exactly
one pair ((xor, @), (x11, B)) € D1 X D, such that 8 @ xor, = xpr and xog = x17,. We say that (D, Dy, Df) is bad if it

is not good.
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4.2.1.5 Compatibility of Dy with D3

For a valid database Df for F without overlap, let [Dr]3 be the valid database for f3 such that (x7, x2r,y) € DF if
and only if (x27, xor ® ¥) € [Dr]3. We say that a valid database D3 for f3 is compatible with D if D3 = [DF]3.

Remark 12. For each good database (D1, D2, D3) for LR3, a unique Dg without overlap exists such that [Dp]z =
Ds and (Dy, Dy, DF) is a good database for LR, by the definition of good databases. Similarly, for each good
database (D1, D, Df) for LR, (D1, Dy, [Drl3) becomes a good database for LR3. That is, there exists a one-to-one
correspondence between good databases for LR and those for LR},

Here we prove the following lemma for later use, which shows that the behavior of O{}, , for D without overlap is
the same as that of Oyp 3 for [Dr]3.

Lemma 1. It holds that

(X571, X5 1, YR ® (D O(p 5 |X21, X2R, YL, YR) ® | D)
= (X}, X5 V1 Yr| ® {[Dp13| Oup 3 |x21, X2R, Y, YR) ® [[DF13) 4.7

for any xa1, X2R, YL, VR, xéL, xéR, Y7, Yg €10, 12 and any valid databases Dr and Dy, without overlap.

Proof. 1t suffices to consider the case that xé L = XL, xéR = Xx2R, and yg, = yg because the both sides of (@.7) become
zero if these three equations do not hold. Since the database Ol’jP_3 affects only the entry of (x7, x2r) in Dr when
it acts on |x2r, X2r, YL, YR) @ |DF), it suffices to show the claim for the cases that (1) Dr has only a single entry
(x21, X2R, @), Or (2) DF has no entry (i.e., Dr = 0).

First, we show the claim for the first case where Dr = {(x2r,x2r,@)}. In this case, by the first property of

we have that

Olp s 1X20, X2, YL, YR) ® |IDF) = |X21, X2r, YL ® @, YR @ X21) ® |(X21, X2R, @))

1 1
+ X271, X2R, VL D @, YR D X 0) - X271, X2R,
W| 2L, X2R, VL YR 2L>(| ) (zyl N [(x21, X2R 7))))

1 1
NI ; \/ﬁ [X21, X2R, YL © ¥, YR ® X21) ® |(X2L, X2R, ¥))

1 = 1
* 5 [x2, X2R) [0™) [yR © X21.) ® (2; N [(x21, X2, 6)) — |(Z))>
+ |invalid) (4.8)

holds, where 0 is the empty database and |invalid) is a vector containing invalid databases. In addition, we have that
[Drls = {(x21, @ ® x2r)}, and

Oup.3 |xX21, X2R, Y1, YR) ® |[DF13) = |x21, X2R, YL © @, YR © X21) ® |(X21, @ © X2R))

1 1
+ —— |x2r, X2r, YL ® @, YR ® x21.) | |0) — — (%21, 7))

1 1
- NI Z NI |X2L, X2R, YL © Y ® X2R, YR © X21) ® |(X2L,7))
¥

1
\/271/2

1 —~
+ W |x2L, x2R) 10™) [yR GBXZL)@(Z; |(x2r,6)) — |®>)

+ |invalid”)
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= |x21, X2R, YL © @, YR © Xx21) ® |[(x2L, X2R, @)]3)

1 1
+ —— |x21, X2R, VL ® @, VR D X 0) — — |[(x21, X2R, Y ® X
W| 20, X2R, YL YR ® x210.) | |0) Zy: Wl[( 2L, X2R, Y 2R)]3>)

\/2’1_/ Z — |x2L, X2R, YL ® Y ® X2Rr, YR ® X21.) ® |[(x2L, X2R, ¥ ® X2R)13)
1
, on @ ® T , X2R, 0 ® - 10
*+ a7z 1XaL, X2r) 0" [yR @ X21) ( \/_ [[(x2, X2r, 6 ® X2R)]) — | ))
+ |invalid”)

= |x21, X2R, YL ® @, YR © X21.) ® |[(X21, X2R, @)]3)

1
+ ’_2n/2 |X2L, X2R> YL D «, YR [23) _X2L> |(D> Z - |[(-x2Ls XoR, 7)]3)
‘1/—2 Ll ® 7. yr ® Xa1) ® [[(X21, 28, V)13)
2 & oo 2L, X2R, YL © Y, YR © X2L 2L, X2R> Y13
2n/2 |x22, X2R) 10™) [yR © X21.) ®( Z o [[(x2L, X2R, 0)]3) — |®>)
+ |invalid”y, “4.9)

where |invalid’) is a vector containing invalid databases. From @8] and (@.9), the claim immediately follows for the
first case that Dg = {(x21, X2r, @)}.
We can similarly show that the claim holds for the second case where Dr is empty by straightforward calculations

using the second property of m

4.2.1.6 Technical Core to Prove the Indistinguishability of LR; and LR}

Let |y;) and |¢) be the joint quantum states of the adversary A and the oracle just before making the i-th query when
A runs relative to LR3 and LR], respectively. In addition, by [41) and I(//‘; 12 we similarly denote the states just before
the final measurement, by abuse of notation. Then

W) = > Cx.y.2.D1.D2.Ds 15,5 2) @ 1 D1) D) | D3)
X,,2,D1,D2,D3
(D1,D7,D3) : valid database

holds for some complex number cy.y, - p, p,,p; such that

Cx,y,2,01,00,05|° = 1.
x,¥,2,D1,D2,D3
(D1,Dy,D3) : valid database
Here, x = xor||xor, ¥ = yr||yr, and z correspond to A’s registers to send queries, receive answers, and perform offline
computations, respectively (xoz, Xor, Y, Yr € {0,1}"/?). Note that | D], |D>| < 2(j — 1), and |D3| < j — 1 hold for
each summand of |i/;), since each query to the recording standard oracle with errors RstOE affects only the qubits that
correspond to a single entry of each database. |¢) can be decomposed on the computational basis in the same way.

Showing the following proposition is the technical core to prove

Proposition 6. For each j = 1,...,q + 1, there exist vectors Itﬁ?md), ijk.’ad% Izp;.gmd), Iw}bad), and complex number
(0]

4.y,2,D1,Dy,Df: such that

0> = W% + ), ) = Iy 22 + 1),

wh = > al) poppy 15,2 ® D1, Do [DE), (4.10)

ay ,¥,2,D1,
x,¥,2,D1,D2,Df
(D1,Dy,DF) : good

%) = > ay |x, ¥, 2) ® | D1, D2, Dp), (4.11)

x s Ys 2, D,Dy,Dr
x,¥,2,D1,D2,DF
(D1,D2,DF) : good
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the vector |D1, D>, D) in Iglr;.good) (resp., |D1, D2, [DF13) in ijgmd)) has non-zero quantum amplitude only if |D1| <
2= 1), |D2| £2(j — 1), and |Df| < j — 1, and

g 1 < [|lwe*h]| + 0 (\/ 2,,'/2), Iy P2 11 < [l + 0 (\/ 2,1'/2) (4.12)

hold (we set [y22%) = 0 and |yP*) = 0).

Intuition on the claim of the proposition. Intuitively, equations (#.10) and (@.11)) show that the adversary A can-
not distinguish the oracles as long as databases are good: Roughly speaking, the vectors |¢jg.°°d> and ngood) are
the components of |¢;) and |y}) with good databases. Due to ({#.I0) and (@.IT), the coefficient of each basis

vector |x,,z) ® | Dy, Dy, [Drl3) in |zpjg.°°d) is exactly equal to that of |x,y,z) ® |Dy, Dy, Dr) in |zp;.g°°d), where
(D1, Dy, [DF13) is the good database for LR3 that corresponds to (Dy, Dy, D3) for LRg. This implies that we have

td (trz)123 (|1//g°°d) (z//g°°d|) tro,e (|z// g°°d) W g°°d|)) 0, which intuitively means that LRz and LR’ are indistinguish-
able for A as long as databases are good (Here, trp,,, and trp,,,. denote the partial trace operatlons over the databases
for LR3 and LR;, respectively.)

Equation (@.12) shows that, at each query, the chance that good databases change to bad is exponentially small.
This means that the trace distance td (trz)]23 (qu+1) Wg+1 I) , roLe (W;H) <l,0;+1 |>) which is an upper bound of A’s

distinguishing advantage, is quite close to td (trz)123 (Il!/go ) )(lﬁgioldl) (g (|l// good ) (l//qgf I)) 0.

Therefore, it suffices to prove the above proposition to show the indistingu1shab1hty of LR3 and LRj.

Proof intuition for [Proposition 6] Recall that a database (D1, D2, D) for LRs (resp., (D1, Da, D) for LRY) is defined
to be bad if and only if inputs to D3 collide (resp., the left halves of inputs to D collide). Roughly speaking, “good”
and “bad” vectors correspond to the states with good and bad databases, respectively.

If we were in the classical setting, databases would correspond to transcripts, and we would define the “good” and
“bad” vectors to be the (classical) states with good and bad transcripts, respectively. As long as transcripts are good, the
behaviors of the oracles LR3 and LR} are the same and they are indistinguishable. Basically we can also use a similar

intuition in the quantum setting for “good” states, and thus there exists complex number ai”;’z’ D1.Dy.Dp that satisfies
(@T0) and @IT).

For the inequalities (#.12)) on “bad” states, when a classical adversary A makes the j-th query to LR3 (resp., LRY),
a good classical state (good transcript) changes to a bad state (bad transcript) only if a new query is made to f; or f5,
and the input to f3 (resp., the left half of the input to F) collides with a previous input to f3 (resp., the left half of a
previous input to F). Such a “bad” event happens with a probability p in O(j/2"). In the quantum setting, roughly
speaking, the difference between the norms of the j-th bad vector |l,0]t.)ad> (resp., Iz//;.bad)) and the (j — 1)-th bad vector

|¢j/bad) (resp., |¢/ bad)) corresponds to /p, which is in O(4/j/2"). Thus we obtain @.12).

A very rough proof intuitions is as stated. However, to be more precise, an existing record (x, @) in a database
may later be deleted or overwritten with a different record in the quantum setting, and the effect of such deletion and
overwriting is too large to be ignored. Therefore, we have to perform more careful and quantum-specific analysis.

4.2.1.7 Technical Lemmas for Bounding “bad” Norms

Before describing the formal proof of we provide some technical lemmas to bound the norms of “bad”
vectors.

Intuitively, when a value x is queried to RstOEy; (RstOEy, denotes the recording standard oracle with errors for f;),
a good database (D, D, D3) for LR3 changes to bad when some of the following events happen.

1. x is not recorded in D;. A new record (x, @) is added to D; for some «, and (D; U (x, @), D,, D3) becomes bad.
2. There exists a record (x, @) in Dy, but it is deleted at the query, and (D \ (x, @), Dy, D3) becomes bad.

3. There exists a record (x, @) in Dy, but it is overwritten with a new record (x,y) for some 7y at the query, and
(D1 \ (x,@)) U (x,7), D2, D3) becomes bad.

The events that good databases change to bad at queries to other functions can be classified similarly’} The same
arguments also hold for LR.

3In fact, a good database does not change to bad at queries to RstOEg, in our proof due to the definition of good databases.

44



Below, we show four lemmas to bound the norms of “bad” vectors that correspond to the above three events.
[Lemma 2|and [Lemma 3| correspond to the first and second events. For the third event, we further divide it into two
different cases.

(a) For each (Dy, Dy, D3) and a such that D (x) = L and (D U (x, @), D2, D3) is good, the number of y such that
(D1 U (x,7), Dy, D3) becomes bad is small. (Here, D U (x, @) corresponds to D in the above discussions.)

(b) Foreach (D, D,, D3) and @ such that D;(x) = L and (D;U(x, @), D,, D3) is good, (D U (x, v), D>, D3) becomes
bad for almost all y # @. However, for each (D1, D>, D3) and v such that Di(x) = L and (D U (x, @), D3, D3)
is bad, the number of « such that ([)1 U (x, @), Dy, D3) becomes good is small.

The cases (a) and (b) correspond to|Lemma 5|and|[Lemma 4] respectively. We describe the lemmas in the most general
way as possible so that they can be used for other future applications.

In what follows, S denotes a bit string that corresponds to a database, the adversary’s state, and the oracle’s state.
The bit strings a and 7y are in {0, 1}7/2. Rgood and Rpag are some relations. In security proofs, Rgoed (T€sp., Rpaqg) will
be relations such that databases are good (resp., bad) and some additional conditions are satisfied.

Lemma 2. Let as be a complex number such that ¥ |as)? < O(1). Let

1
) := SZ;‘ as = 1) |ar) .

S €Rgood A(S,@) €Rpad

Suppose that the number of a such that (S, @) € Rpaq is at most X for each S € Ryood. Then

X
) sO(w/W)

holds.

Proof. The claim holds since

2
o= Y Y e MG E Rl o (T,

n/2 n/2 on
S,Cl 2 SeRgood 2
SERgood A(S,a@) €Rpad

Lemma 3. Let as o be a complex number such that ¥ , |ds,a|2 < O(1). Let

1

|§) := ase——=15).

SZ,(I: \2on/2
(S,a) ERgood/\S €Rpad

If the number of a such that (S, @) € Ryood is at most X for each tuple S € Rpaq, then

X
161 <\ 375

holds.

Proof. The claim holds since we have

Nyl = >

2
Za/:(S,a)eRgood as. o

X Do as . 2
< Z Zt.(s,d)ERgoodl S,tl _ X Z |as,(z|2 SO( X )’

[~ n/2 ~ on/2 n/2
SERbad 2" S ERbad 2 2 S,(l/ 2
(S,a) ERgood AS €Rpag
where we used the convexity of the square function for the first inequality. O
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Lemma 4. Let as o be a complex number such that 3 g , |Cls,a|2 <0(). Let

1
|#) = >, as.0 575 1017
S,a,y
(S,a) ERgocud/\(Sa'y)ERbad

If the number of 'y such that (S,y) € Rpaq is at most X for each tuple (S, @) € Ryood, then

X
161 <\ 375

holds.

Proof. The claim holds since

Hey k=" >,

2
2 a(S,a) €Rgooq US.cx

2
Z Y a:(S.a)€Rgooa |95.a

/2 /2
S,y 2n S,y n
(S,7) €Rpad (S,7) €Rpad
2 2
_ Z las.a|” - HyI(S,y) € Rpad}l < las.ol|” - X - ( X )
= n/2 - n/2 - n/2
(S.@) €Rgood 2 (S.0) €Rgo00 2 2

holds.
Lemma 5. Let ag,, be a complex number such that ¥ , Ias,al2 < O(1). Let
1
) := > as.0 573 1) ).

S,y
(S, @) €Rgood A(S,¥) €Rpad

If the number of a such that (S, @) € Ryood is at most X for each tuple (S,y) € Rpaq, then

[ X

holds.
Proof. The claim holds since we have

2
2 Zar:(S,a)eR ood A4S,
o) II7 = E 2

n/2
Sy 2 Sy
(S,7) €Rvad (S,7) €Rpad

X 1 » X 1 5
=37 25 SZ |as.a] SW'ZWSZ'“S’“'
Y y @

es
(S, @) €Rgood A(S,Y) €ERpad

X- Za:(S,ar)ERgood |aS,af|2
Z (2n/2)2

X X
<m0 <o(o5).

where we used the convexity of the square function for the first inequality.

4.2.1.8 Proof of

We show the proposition by induction on j. Remember that the oracles of LR3 and LR} are decomposed as Orr, =

’

Oup.1 - Oup.a - Oyup.s - Oyp.a - Oup.1 and 0|_|:{'3 = Ouyp.1 - Oup.a - 0UP.3 - Oyp.a - Oup.1. We éheck how the quantum states
change when Oyp 1, Oup.2, Oup.3 (resp., O{JP.3)’ Oup.2, and Oyp.1 act on |y ;) (resp., |¢j’.>) in a sequential order. The

claim obviously holds for j = 1 by setting Izﬁ?wd> :=|¢1) and Izﬁ/lQOOd) := [i]). Below we show the claim on [/, ) and

|l//]’.+1> holds if the claim on |y ) and | ) holds for k = 1,.. ., j.

Recall that, in addition to database registers, the quantum oracle O\ g, uses ancillary 2n-qubit registers to compute
the intermediate state after the first and second rounds (see (4.3)) and (@.4))). We say that a state vector |D;) |D2) |D3) ®
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|x1) ® |x2) for Orr,, where |x1) ® |x2) is the ancillary 2n qubits, is regular if x; = 0", x, = 0", and the database is
valid. We define regular states for Orr;, similarly. Since the encoding operator Uy, of RstOE for f; (1 < i < 3) and
F does not act on the ancillary 2n- qublt registers, we always obtain regular vectors when we measure [¢;) and W )
Similarly, we say that a state vector |D1)|D2) |D3) ® |x1) ® |x2) for Oy, is preregular if x, = 0" and the database is
valid, and define preregular states for O g, similarly. When we measure the states just before the first action of Oup.»
or just after the second action of Oyp 2, we always measure preregular vectors. In this proof, for the sake of brevity, we
do not write (a part of) the ancillary qubits that are used to compute the intermediate states, as long as they are |0™) for
some m.

Let Ilgooq and Ilpag denote the projections onto the vector space spanned by the vectors that correspond to good
databases and bad databases, respectively. Let Ilieq and Ilyereg be the projections onto the spaces spanned by the vectors
that correspond to regular and preregular states, respectively.

Action of the first Oyp ;.
Here we show the following claim.

Claim 1 (Action of the first Oyp.;). There exist vectors Ia,l/g°°d b, |l//]k~)ad’1>, |¢;~g°°d’1>, % 0ad 1y hat satisfy the following
properties.

d, 1 bad, 1 ’good, 1 ’bad, 1
1. Oupt gy = W30 + [y °% ) and Oup.t W) = 1y %) + 1y 2% 0).
U1
x,¥,2,D1,

good, 1\ _ (;)l
= 3 a b, 163.2)® D1, Do, [DFls)
x,¥,2,D1,D2,DF
(D1,D3,DF) : good

2. There exists complex number a DD, SUch that
2, UF

Di(xp)#L
® |X1L, X1R),
‘good, 1\ _ (;)1
weeth= Y dD b, 165, 2) ® 1Dy, Dy, Dr)
X,y,Z,Dl,Dz,DF
(D1,D2,DF) : good
Dy(xp)#L
® |X1L, X1R) -

3. The vector |D1, D2, D) in Iw;goc’d’l) (resp., | D1, D2, [DE13) in It//?oc’d’l)) has non-zero quantum amplitude only if
D] <2(j—-1)+1,|D3| <2(j—1),and |Dr| < j— 1.

4. |.p;’ad’ Yl and || |z//;.bad’ Y\l are upper bounded as

ad, a J ‘bad, ° .
I I < |||wbd>||+0<\/2n/z) ™50 < ”"”bd>”+0(\/zn/2)

Here, x11, = D1(xL) ® xR and x1g = xr, for each summand ofllpngOd’l) and ijg(md’l).

Proof. Since the response of the first Oyp,; is written into an auxiliary register that is initially set to be |0/2,0/2), by
applyingto RStOE of ) there exist vectors |€), |€’) such that || [€} |l || €} || < O(y/1/272), and

MyaigOup.1 |l//?°°d>

a?) b pupy 1%3.2)® D1, Dy, [Drls) @ lxg @ Di(xL), x1)

x,y,2,D1,D2,DF
(D1,D2,DF) : good
Di(xp)#L

1
=D phen.oune 222 ® 1D\ (L Di(x1) U (x1.). Do, [DF 1) © lxg ® . x1)

X,¥,2,%,D1,D2,DF
(D1,D2,DF) : good
Di(xp)#L

[1
+ Z 07 fc’;le Dy 1% Y:2) ® D1 U (xr, @), D2, [DFl3) ® |xp © @, xL)

x,y,2,D1,D2,DF,
(D1,D2,DF) : good
Dy(xp)=L

+ |e) (4.13)
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and

"good
[yaiaOup.1 ¥ jg )
)
= > Ay ppupy 15,2 ® D1, Dy, DpY® [xg & D(xL), x1)
x,y,2,D1,D2,DF
(Dy1,Dy,DF) : good
Dy(xp)#L

1 .
= D phanuown, 122 ® 1D (5L Di(x) U (x1.7). D2, D) @ xg © . x1)
X,¥,2,Y,D1,D2,DF
(D1,D3,DF) : good
Dy(xp)#L

+ ! a(i)
on/2 X,y,2,D1,D2,DF
X,¥,2,D1,D2, D,
(D1,D3,DF) : good
Dy (xp)=L

+ |€") (4.14)

|x,¥,2) ® |D1 U (x1, @), D2, DF) ® |Xxg © @, xL)

hold.
Now, let

w221 1= Tlgoog (MuaiaOup.1 W) = l€)), W'Y = Oup.t lyy) — 4,

I 52941 1= Tlgooa (MuaicOup.1 1 2% = 1€)), 124" = Oup.t I}y — Iy 2.

Then the first property of the claim holds by definition, and the second and third properties immediately follow from
([#.13) and (@.14) and the assumption on |y;) and |y/}). Below we bound the norms of the bad vectors.
On the first term of the right hand side of (#.14), we have

Taa(the first term of the right hand side of @14)) = 0 (4.15)

since all the databases are good.
On the second term of the right hand side of (#.14), we have

— Ipad (the second term of the right hand side of (@))

1 i
- Wagy,zplu(xw)’mm X, y,2) ® |Dy U (x1,7), D2, D) ® |xg ® 7, x1)
X,¥,2,0,Y,D1,D2,DF
(D1U(xL,@),Dy,DF) : good
Di(xp)=L
(D1U(xL,y),D2,DF) : bad

_ D)
n/2 7 x%,y,2,D1U(xL,@),D2,DF

1%, y,2) ® D1 U (xL,¥), D2, D) ® |Xr ® 7, XL) (4.16)

X,¥,2,,Y,D1,D2,DF
(D1U(xL,@),D2,DF) : good
Di(xp)=L
(D1U(xL,y),D2,DF) : bad
Dy (x1L)#LAIDF I3(x21)#L

L
+ Z 2n/2ax,y,Z,DlU(XL,IZ),Dz,DF Ixa Y, Z>® |Dl U (XL’ 7)’ DZ, DF> ® |XR 697’ xL>,
x,y,z,a,y,Dl,Dz,DF
(D1U(x,),Dy,DF) : good
Di(xp)=L
(D1U(xL,y),D2,DF) : bad
Dy (x11.)=LV(D2(x1L)#LAIDF 3(x21.)=1)

4.17)

where x17 := @ ® xg, and xp;, := Dy(x11) ® xp when Dy (x17) # L.
Here we give an upper bound of the norm of the term @.I6). If a tuple (x, (D; U (xr,7), D2, D)) satisfies the
conditions

L. Di(xp) =1,
2. (D1 U (x1,7), Dy, D) is bad,

then the number of « such that
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1. (D1 VU (xr, @), D>, DF) becomes good,
2. Dy(x11) # L (here, xi7 := @ & xg), and
3. [Drla(xar) # L (here, xop := Da(x1.) ® x),

is at most |D,| < 2(j — 1). Hence, by applying[Cemma 5] we have

2(j—1)
@I sO( YT ) (4.18)

Next, we give an upper bound of the norm of the term @]) For each tuple (x, @, (D1, D2, Df)) that satisfies
L. Di(xp) = 1,
2. (D1 VU (xp,@), Dy, DF) is good, and
3. Dy(x1r) = Lor Dy(xir) # L A[Drl3(xar) = L (here, x1r := @ ® xg and x5, := Dr(x11) ® xL),

the number of y such that (D U (xz,7), D2, Dr) becomes bad is at most |Dg| < j — 1. Thus, by applying[Cemma 4]
we have

i-1
@I < 0( T ) (4.19)
From (@.16)-@.19),

H (the second term of the right hand side of (@D) “ <0 ( #) (4.20)

follows.

In addition, on the third term of the right hand side of (@I4), for each (x, Dy, D2, Df) such that (D1, Do, Df) is
good and Dj(x) = L, the number of @ such that (D U (xr, @), D>, D) becomes bad is at most O(j). Hence, by

applying we have

H (the third term of the right hand side of @[)) ” <0 (\ | #) . 4.21)
From (@.I5), @.20), and @.21),

HHbad (MyaiaOup.1 |¢’;-g°°d> - |€/>)H < 0( 2,{/2) (4.22)

follows. Since I1y4igOup.1 |zp]’.) = Oup.1 |zp]’.), we have

10225 = [oue. 1)) - 102

= [MuaisOup 1 (172 + 1 P2) = 2|

= ‘ MvaigOur.1 lw}900d> - W’lgom’l)H + | IyaiqOup.1 W}bad)”

= ||MyaiaOup.1 |z//;_900d> ~ Tgood (MvaiaOup.1 |w;_900d> 1) + [l 7]
= ”Hbad (HvalidOUP.l W;-gmd) - IE'))” + ”|¢}bad)H

<o(y/3a) e

Similarly, we can also show “Izﬁjt.’ad’l)H <0 (,/217) + Hln,//?ad)”. Therefore, the fourth property of the claim also

holds. O
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Action of the first Oyp.».
The following claim can be shown by applying on f> in the same way as we showed the claim for the
action of the first Oyp.; by applying[Proposition 4|on f;.

Claim 2 (Action of the first Oyp.,). There exist vectors Igl/?md’zh Iw]pad’zh |¢;~g°°d’2>, Iw}bad’z) that satisfy the following
properties.

1. Oup2Ovup.1 lY)) = |¢Jg-°°d’2> + W?ad’Z) and Oup.2Oup.1 lY}) = |lﬁjg°°d’2> + W;-bad’z).

(U2

2. There exists complex number a vz D

Dy.Dp such that

ood,2 ),2
7747y = Z a)(c],y,z,Dth,DF 1x,y,2) ® |D1, D2, [DF13) ® [X1L, X1R) ® [X2L, X2R)
x,¥,2,D1,D2,DF
(D1,D2,DF) : good
Dy(xp)#LDa(x1L)#L
‘good,2\ _ ()2
;) = Ay pyDyDp 1% Y:2) © D1, Do, D) @ |X11, X1R) © |X2L, X2R) -
x,¥,2,D1,D2,DF
(D1,D3,DF) : good
Di(xp)#L,Dy(x1L)#L

3. The vector |Dy, D>, D) in |a,//’.g°°d’2) (resp., |Dy, Dy, [DFl3) in Iw?OOd’Z)) has non-zero quantum amplitude only if
IDi| <2(j—-1)+1,|D3] £2(j—1)+1,and |Dp| < j— 1. '

4. 11122y || and || [y 24?) || are upper bounded as

122 | < 1112 | + 0 (\/2,{7), P22y 1| < 11y || + 0 (\/ - /2) .

Here, x1, = Di(xr) ® XR, X1r = X1, X2 = D2(x11) ® x1r, and xR
’good,2
I 7%

Action of Oyp 3 and O{jp, 5.

Here we show the following claim.

A

x1L for each summand of Ilj/?md’z) and

Claim 3 (Action of Oup 3 and O(y, ;). Let [¢/9°°*) := TaiaOup 3 [Y9°°4%), [¥2°) := Oup 30up 20U 1 1))~ 1 2H),

j 5°°%%) = ThaigOup.s [y 2°%%), and |y ) := Oup30up20Up.1 W) — 1Y/ ). Then the following properties
hold. '

U3

1. There exists complex number Ay DDy Dr such that
ood,3 ),3
203y = > al’? o ppy 1532 ® D1, Dy, [DF13) @ x12, X18) ® X212, X28).

x,y,2,D1,D2,DF
(D1,D2,DF) : good
Dy (xp)#LDo(x1L)#L
’‘good,3\ _ U3
;) = a4y DDy Dp 1% Y 2) @ D1, Do, D) @ |X11, X1R) ® |X2L, X2R) -
x,¥,2,D1,D2,DF
(D1,D2,DF) : good
Dy(xp)#L,Da(x1L)#L

. e vector |Dy, Dy, Dg) in a,b/. ) (resp., | Dy, Do, [Drl3)yin [Y5 as non-zero quantum amplitude only i
2. Th |Dy, Dy, D) i |Jg°°d3>( |D1, Dy, [DF13) |f°°d3>)h litude onl
ID1| <2(j—-1)+1,|Dy| <2(j—1)+ 1, and |Df| < j.

311y [l and | |¢;bad’3> | are upper bounded as

222 1| < 11122y 1] + 0(\/2,{,2), 1 P23y 11 < g2y 1] + 0(\/ 2,{,2).

Here, x1p, = D1(x1) ® xR, X1r = X1, Xor, = Da(x1L) ® x1r, and x2gr = x1L for each summand 0f|l//?0°d’3> and

’good, 3
I 7257

IA
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Remark 13. Intuitively, a good database does not change to bad as long as it does not change to an invalid database
when xy1, is queried to f3 (or (xar, X2R) is queried to F), due to the definition of good databases. This is the reason
why |1//?°°°L3) and Iz,bjg°°d’3) are defined as above.

Proof. First, for each summand |x, y, z) ® |D1, D3, DF) ® |x11, X1Rr) ® |X21, X2R) Of Iw;goc’d’z), we have that

HpadlvaidOfp 5 1%, . 2) ® |D1, D2, D) ® |x1L, X1R) ® |X21, X2R) = 0

by definition of good databases. Therefore, we have

‘good,3\ _ ’good,2\ __
Hpaa [ ") = ToaglvaiaOpp 3 1 ) =0,

which implies
10°°%) = Tgoog ).
Similarly,
| 2%°%%) = Mgooq |9 37°4%)

holds. Now the first property of the claim follows from the second property in the claim for the first action of Oyp.» and
The second property of the claim follows from the third property in the claim for the first action of Ouyp.».
Moreover, we have

|||l//;’ad,3>H = HOUP.3OUP,20UP_1 ) — Iw?ood,3>“
= )HvalidOUPSOUP.zOUP.] ¢} — HyaiaOup.3 |wjg_ood,2>||
= ) yaiaOup.3 |l//?ad’2)“

< Jlwe=]

< Iy 11+ 0(\/ #) 4.23)

where we used the fourth property in the claim for the first action of Oyp > in the last inequality. Similarly, H Idf;.bad’3>H <

I |l,0;-bad> l+0 ( ﬁ) follows. Therefore, the third property of the claim holds. o

Action of the second Oyp.».
Next, we show the following claim.

Claim 4 (Action of the second Oup.2). Let [y 3°°**) := TgooaTTpreregOup.2 [1/5°°*), 192°%4) := Oup.20Up.30UP 20Up.1 18-

d4, |, ’good4 ’g00d,3 "bad, ’good,4
ng-oo 1Y jgoo ) = IgoodITpreregOup.2 [t jgoo ), and |y jbad *) := Oup.20up30UP20UP.1 Wi — Iy jgoo ). Then the
following properties hold.

, ().
1. There exists complex number a vy2.D1. D2 Dy such that
ood,4 i), 4
et = 3 a by 60.2) ® D1, Do [DEIR) @ X1, X1R),

x,y,2,D1,D2,DF
(D1,D2,DF) : good
Di(xp)#L

’good,4 ), 4
ng )= a,(;f;,z,Dl,Dz,DF lx, ¥, 2) ® |D1, D2, DF) ® |X1L, X1R) -

x,¥,2,D1,D2,DF
(D1,D2,DF) : good
D (xp)#L

2. The vector |Dy, D>, Df) in It//;QOOd’4) (resp., |Dy, Dy, [DEl3) in Iw?OOd’4)) has non-zero quantum amplitude only if
|D1| <2(j = 1) + 1, |Da| < 2j, and |Df| < j. '

311y [l and | |¢;.bad*4> | are upper bounded as

5411 < 11w 1+ 0 (\/ZZT)’ P4 1< 1y 29 )+ 0 (\/#) :
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Here, x11, = D1(x) ® xg and x1r = x, for each summand ofleg.OOdA) and Ia,[/jg°°d’4).

Proof. The first property follows from the first property of and the first property in the claim on the

actions of Oyp.3 and OI,JP.S' In addition, the second property follows from the second property in the claim on the

actions of Ouyp 3 and O}, ;. Below, we show the third property.
LetIlp,.; and I1p,., be the projections onto the spaces spanned by the vectors |x, y, z) ® | D1, D2, D3)® |x11, X1r) ®

|x2r, x2Rr) such that D3(x2r) # L and D3(x21) = L, respectively.

Remark 14. Before going into details, here we provide an intuition behind the following analysis. Roughly speaking,
we will bound the norm of the vectors that are good before the application of the second Oyp» but become bad after
that, depending on D3(x2p) # L and D3(xpp) = L. Intuitively, D3(x1) # L and D3(xyp) = L imply that the
value x»p, is entangled with the database for f3 or is not, respectively. Therefore we need different analysis depending
on D3(x3r) # L and D3(xp1) = L. In addition, we can focus on the vectors that are bad and preregular after
the application of Oup.» because, when we measure the entire state after the second application of Ouyp., we always
obtain a preregular state. In summary, our first goal is to bound the norms of pagllyreregOup.211p,: 1 Iw?md’3) and

good,3
l_Ibaderereg OUP.2HD3:L |lﬁj )

We have

d,3
Myt W5%)

N3
= ag;,Z’D],DZ,DF |x, ¥, 2) ® |D1, D2, [DF13) ® |X1L, X1R) ® |X2L, X2R)
x,¥,2,D1,D2,DF
(D1,D2,DF) : good
D (xp)#LDo(x1L)#L
[Drl3(x2L)#L
a(j),3
x,¥,2,D1,D2U(x1L,@), DF

lx, ¥, 2) ® |D1, Dy U (x11, @), [DF13) ® | X1, X1R) ® |X2L, X2R)
x,y,2,&,D1,D2,DF
D (xp)#L,Do(x1L)=1
(D1,D2U(x1L,@),DF) : good
[DFl3(x2L)#L

where x17 := D{(xL) ® xR, X|R = XL, X2 := @ ® X|R, and xpg := x for each summand in the right hand side. Now
we have that

00d,3
Hbaderereg OUPAZHD_;:,L |lﬂjg )

),3
= IlpagTpreregOup.2 Z a)(c],;,z,Dl,DzU(ML,(t),DF |x,y,2) ® | D1, D2 U (x11, @), [DF]3)

X,9,2,a,D1,D2,DF ®|xX1L, X ® | X271, X
PR EeDLDADr [X12, X1R) ® |X21, X2R)
(D1,DyU(x1L,a),DF) : good
[Drl3(x2L)#L

i),3
= MpaaTTprereg Al Dy 16352 ® D1, D2 U (1L, @), Dely @24
X,9,2,,D1,D2,DF n n
D1 (x0)# LDy (x11)=L ® |x1L, x1R) ® |07, 0™7)
(D1,D2U(x1L,),DF) : good
[Drl3(x2L)#L
1 .3
+ l_Ibaderereg ——a lx,y,2) (4.25)

\Voniz 4.y.2.D1.D2U(x1L.a). D
X,9,2,0,D1,D2,DF

Dy (xp)#L,Da(x1)=L

1
(D1,DyU(x1,a),DF) : good D D> — ——|DyU D
G001 ) ® D) |1D2) ;W' 2 U (x1,7)) | I[DF13)

® |x1, X1R) ® [0"/2,0™/%)

T s
~ HpadlTprereg on/2 4x,y,2,D1,D,U(xi 1,@), D %3, 2) (4.26)
,V,2,@,Y,D1,D2,D -
vt ®|D1) (1D2 U (x11.7)) = D)) [[DF13)

D,,D DpF): d
(Pr.Dafa ) D) oo ®|xiL, x1r) ® la ®7,0"%)

Z T s
+ HpadlIprereq n/2 4x.y,2.D1,D2U(x11.a). D X,y 2) 4.27)
X,¥,2,@,D1,D2,D 1
Dy (xp)#L,Dy(x11)=1
(D1 Dk ) D) - g00d ® D) (2 )\ 5 P2V (a0 - |D2>) ILDF1s)
= V2

[DFl3(xL)#L £
® |x1L, X1R) ® |01/2,0™/%)
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holds, where the second equation follows from the first property of to f» (the term (@#24) corresponds
to the term “|x) |y @ @) ® |D U (x, ))” in the proposition, and the terms @.23)), (#.26), #.27) correspond to the three

terms (3.13)-(B-13)).

On the term (4.24), we have

@23 =0 (4.28)

since all databases are good.
On the term (#.23), we have

Z L i3
@D = Hbaderereg Wax,y,Z,D],DZU(XlL,Q)’DF lx,y,2)
x,¥,2,a,D1,D2,DF
Dy (xp)#L,Da(x1L)=1

1
(D1,D2VU(xL,a),DF) : good _
AR ®|D1)|1D2) Zy:—«/ﬁ D2 (1, 7)) | I1DF 1)

® |x1L, X1R) ® [0"2,0™/%)

L3 n/2 /2
=Hbad Z Wax,y,z,DthU(mL,a),Dp |x»y,Z>® |D17 DZ’ [DF]3>®|X1L9X1R>®|O 90 >
X,3,2,a,D1,D02,Dp

Dy (xp)#L,Da(x1L)=1
(D1,D2U(xL,@),DF) : good
[DFl3(x2L)#L

(4.29)

L3
- Hbad Z Wa)((l,,)v’,z,Dl,DzU(X]L,(l),DF |)C, Y, Z> ® |D19 D2 U (-les 7)’ [DF]3> (430)

X, ¥,2,@,y,D1,D2,DF n/2 nn/2
DI{XL)¢J_,D2(XIL)=J_ ®|x1L, X1R) ® |0 / ,0 / ).
(D1,D7U(x1,@),DF) : good
[DFl3(xoL)#L

First, we upper bound the norm of the term (@.29). Foreach (x, y, z, Dy, D2, D) suchthat Dy (xz) # Land Da(x;.) = L
(recall that x;; := xg ® D;i(xr)), the number of @ such that [Dgr]3(xyr) # L (recall that xo; := x7 & @) and
(D1, D> U (x1, @), D) becomes good is at most |Dg| < j. Hence, by applying[Cemma 3| we have

J
@291l < 0<\/ 2n,2). (4.31)

Second, we upper bound the norm of the term (#30). If a tuple (x, (D1, D2 U (xL,7y), DF)) satisfies the conditions

1. Dy(xp) # L,
2. (D1,D U (x1L,7v), DF) is bad,
then the number of @ such that
1. (D1,Dy U (x1L, @), DF) becomes good,
2. Dy(x11) = L (here, x1z := D1(x1) ® xg), and
3. [Dfrls(x2r) # L (here, xo1. := a & x1),

is at most |Dp| < j. Hence, by applying[Cemma 35| we have
IE30I < 0 (#) . 432)
From (29)-{L3D)

IEDI < 0( 25/2> (4.33)

follows.
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On the term (#.26), we have

Z L o3
@ = ~Ilbaqlprereq n/2 Ay y,2,D1,D:U(x11,0),DF x, . 2)
,Y:2,0,Y,D1,D2,D N
Dyt o Da ey L ® D) (ID2 U (x11,7)) — IDY™) I[DF15)

(D1,DyU(xL,@),DF) : good 02
[DF13(x2p)#L ®|x1L, X1R) ® | ® ¥, 0"7)

1 .3
= ~Tlpad > T3y y.0s0y 15032 @1D1 D2 U (11, @), [DFIs)

X,,2,@,D1,D2,DF n/2 on/2
DSeOEEPE @ XL, xir) ® [072%,0"%)
(D1,D2U(x1L,@),DF) : good

[DFl3(x2L)#L

=0, (4.34)

where the second equality holds since ITyereg cancels the terms with invalid databases and those with @ @ y # 0"/2, and
the last equality holds since Ilpag cancels good databases.
On the term ( , first we have

Z T 53
@D = Hpaallprereg n/2 Ay y,2,D1,D2U(x1 1,0), DF %, 3, 2)
x,¥,2,&,D1,D2,DF
D )#FLD =1
Do )= ® |D1>( § =5 D2V (11, 6)) - |D2>> I[DF13)
[DFl3(x2L)#L

® |X1L,X1R> ® |0"/2, 0"/2)

2
S DDy 802 @ 1DL D2 U (112 8). [DFL)  (4.35)

X,,2,@,0,D1,D2,DF n/2 on/2
Dy(x1)#L,Ds(x11)=L ® |x1L, x1R) ® [07/7,0"7),

(D1,D2U(xL,@),DF) : good
[DFl3(x2L)#L

= Ipag

1 3
- Hbad Z —'ﬁ )(CI; z,D1,D2U(x),@),DF |-x, Y, Z> ® |D17 D2s [DF]3> (436)
x,y,2,,D1,D2,Df 2 n/ n/2 (n/2
Dy (xp)#LD(x11)=L ®lxiL, x1r) ® 077, 0M%)

(D1,D2VU(xL,a),DF) : good
[DF ]3(X2L)¢J-

= oy E30) -

- @29). 4.37)

J
@2 < 0(,/2n/2) (4.38)
follows from (#31) and #.32).

From (@#.24)-(4.28), @.33) (@.34), and (@.38),

Va2

Hence

”HbadnpreregOUP.ZHDp:,L |¢]good,3>|‘ < 0( 2,{/2) (4'39)

follows.
In the same way as we obtained [@.24)—[@.27), by applying the first property of [Proposition 3|to f» we have

good,3
l_lbaderereg OUP.QHD3:L |WJ >

3
= MpaallpreregOup.2 > al? L by 16022 ® DL Dy U (x11, @), [DF1s)

x,¥,2,a,D1,D2,Dp R |x X ® |x X
psebEEbr | [X1L, X1R) ® |X2L, X2R)
(D1,D2U(x1,a),DF) : good
[DFl3(x2L)=1

3
= Tpaaprereg > al iy B3 ®1DLDU (i), [DEl)  (440)

x,y,2,a,D1,D2,D R (X1, X ® On/2 On/2
Di(xp)#L,Dy(x1)=1 | 1 1R> | ’ >
(D1,DyU(x1L,@),DF) : good

[DFls(x2L)=1
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+ l_Ibaderereg
x,¥,2,a,D1,D2,D
Dy (xp)#L,Da(x1)=L
(D1,D2U(x1L,a),DF) : good
[Drl3(x2L)=1

- l_Ibaderereg
X,¥,2,@,Y,D1,D2,DF
Dy (xp)#L,Da(x1L)=L1
(D1,DyU(x1L,a),DF) : good
[Drl3(x2L)=1

+ Hpadprereg
x,¥,2,a,D1,D2,D
Dy (xp)#L,Da(x1L)=L1
(D1,D2U(x1L,@),DF) : good
[DFl3(x2L)=1

On the term (#.40), we have

since all databases are good.
On the term (4.41)), we have

@ =Ilpad Hprereg

x¥,2,&,D1,D2,DF
Dy (xp)#L,Da(x11)=L

(D1,D2U(x1L,a),DF) : good

[DFls(x2r)=1

1

=Ilpag
x,,2,@,D1,D2,D
Dy (xp)#L,Da(x1)=L
(D1,DyU(x1L,a),DF) : good
[Drl3(x2L)=1

— Ipad
X,¥,2,@,Y,D1,D2,DF
Dy (xp)#L,Dy(x1L)=L

—aqa
\ani2 x,y,2,D1,

L3

a
\oni2 x,y,2,D1,

()3
DyU(x1,@),Df |~x7 Yy, Z> (441)

® [D1)|1D2) - 2:———HhULMbw>HDHﬁ

®umﬁm>®ww%m”>

a? X, , 2) (4.42)

2n/2 a, ,¥,2,D1,D2U(x1L,@),DF

®Dy) (ID2 U (x11,7)) — |DIV)) |[DF15)
®|x1L, X1r) ® | ®y,0"?)

v)3 |x, , 2) (4.43)

2172 “x.3,2,D1,D,U(x11,0), D

®1D1) (235 7z 102 U (x12.0)) = 1D2) 1D 1)

® x1L, x1r) ® 072, 0/2) |

(4.44)

EI =0

DyU(x1L,@),DF |.X, Vs Z)
®|D)| 1D2) - Z S |D2 U G y)) [P Ts)

®umwm>®mw%m”>
(4.45)

3
a’” |x, v, 2)

\V2n/2 %x.y,2,D1,D2U(x11,0), DF
® |Dy, D2, [Dr13) ® |x11, x18) © [0™/%,0"/2)

U3 |x, , 2) (4.46)

on/2 aX,y,Zle’DZU(le»‘Y)sDF

® |D1, D2 U (x11,7), [DF13) ® |x11, X18) ® |07/2,07/2) .

(D1,D2U(x1L,@),DF) : good
[Drl3(x2L)=1

The term (@.43) is zero since all databases are good. Below, we give an upper bound of the norm of the term (4.46)
Note that, for each tuple (x, @, (D1, D>, Dr)) that satisfies

1. Dy(xp) # L,
2. (D1,Dy U (x11, @), DF) is good, and

3. [Dfrls(xar) = L (here, x11. := Di(x1) ® xg and xp7 := a & x1.),
the number of y such that (D U (xr,7), D>, Dr) becomes bad is at most |Dr| < j. Hence, by applying[Cemma 4] we

J (4.47)

H@E®H£0( i

have

From (@A5)-@47).

(4.48)

I@AD] < 0(\/%)

follows.
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On the term (#.42), we can show

@42 =0 (4.49)

in the same way as we showed ([#39).
On the term (4.43)), we have

BT = s - 00 - —— - @I

V2n/2
Hence
J
IEA3)) < 0( zn,z) (4.50)
holds.
From (@ .40)—#.44) and (@.48)—@#.50)),
good,3 J
[ Moa Mprereg Oup 2Tp-1. [9/°°%%)|| < 0( zn,z) 451)
follows.
Therefore,

o0od,3
”HbadnpreregoUP.2 |¢jg >H

00d,3 o0od,3
< HHbadereregoUP.ZHDF:J_ W/;] >|| + ”HbadnpreregOUP.ZHDF:J_ |¢Jg >H

J
< 0( 2n/2) (4.52)

follows from (#39) and @.31).

Since Oyp.2Oup.30up.20up.1 ;) = preregOup.20uP.30UP.20UpP.1 |¥;),

=]

= HOUP.ZOUP.SOUP.ZOUP.I [ ;) — HgoodITpreregOup.2 |!//?°°d’3>“

= |‘HprereQOUP.ZOUPJOUP.ZOUP.1 ;) — HgooaIlpreregOup.2 |¢?°°d’3>”
= || MoreregOup 2 (1927°%%) + 18°%%)) = MgooalTareregOup 2 1494

0o0d,3 bad,3
< HHbadereregoUP.Z |¢/g >” + ”HpreregoUP.Z |';0 >“

<oy/5z )+ bl <o (5 )« s

follows from the claim on the action of Oyp.3 and OUP - We can show

i < oy ) s

in the same way, and the third property of the claim also holds. O

Action of the second Oyp.| (and Uj).

Recall that U; denotes the unitary operator that corresponds to A’s offline computation after the j-th query. Let |lpg°c1)d)
UjMaoosiegOur. 1057, W32 = vrj) = W), W27 = UplgonalliegOup.t ), and 1y ) 1= W)~

|¢/ g°°d> Then we can show these |wg° 2 Iwbad) |¢/ g°°d> and |y bad) satisfy the desired properties in L in

the same way as we showed the clalm on the action of the secon(f Oup.a. O
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4.2.1.9 Finishing the Proof of [Proposition §
Proof of [Proposition 3| Let Izﬁ?md), 2, |l//;.g°°d), and |y P*%) be the vectors as in Then

: —
12| < 12 0(,/2,{/2> < 0( 2{1/2) (4.54)

<j<q

)|Iw;bf‘f>” < 0(‘/2{13/2) (4.55)
holds.

Recall that trg,,, and trp,,, denote the partial trace operations over the databases for LR3 and LR?, respectively.
Then

follows. Similarly,

td (troy,s (WY W) trppy (W25 (0. 52%1)) = 0 (4.56)
follows from (@.10) and (. 1T).

Therefore

AQVE o () <1 (o, (1Wge) Waal) trop, (104,00 W) l))

< 0 o (S5 ) s (W50 0251) 25 220

j3
0 ( > /2) (4.57)

holds, which completes the proof. O

IA

4.2.2 Hardness of Distinguishing LR7 from RF

The goal of this subsection is to show the following proposition.
ege dist P
Proposition 7. AdVLIRS"Z',RF(‘I) is in O (\/q3/2"/ 2).

Let Fy : {0,1}"/2 x {0, 1}*/% — {0,1}"/? and F; : {0, 1}"/2 x{0,1}"/? x {0, 1}"/? — {0, 1}"/? be independent random
functions. Let RF” : {0, 1}/% x {0, 1}/ — {0, 1}"/2 x {0, 1}"*/? be the function defined by

RF'(xL, xg) := (Fy(X1L, X1R, XR), X1L)s

where (x11, x1r) := (Fi(xL, xR), xr) (see[Fig. 4.7). Note that RF’ is in fact a random function since F; and FZ’ are

F’Z

Figure 4.7: LR} and RF’.
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random functions. In what follows, we show

Advlg) e () < O (W)

instead of showing Advfgi,’RF(q) <0 (\/q3/2"/2>.
We use the same proof strategy as in|Section 4.2.1] That is, we define good and bad databases for LR}’ and RF” in
such a way that

1. There exists a one-to-one correspondence between good databases for LR} and those for RF’.

2. The behavior of the oracle LR} on a good database is almost the same as that of the oracle RF” on the corresponding
good database.

3. “Good” states change to “bad” states with a small probability.

Intuitively, we define “bad” databases as those with collisions on the leftmost (r2/2) bits of the input to F, or F,, and
“good” databases as those without such collisions.

4.2.2.1 Quantum Oracle of LR}
Let us define the unitary operator Oyp_; that computes the state update of the first round by
Oup.i : |XG-1)L X(-D)R) 1YL, YR) P |X(i=1)L> X(i=)R) | (YL, YR) © (Fi (X(i—1)L» X(i=1)R)> X(i=1)L)) -

Ovyp.; can be implemented by making one query to F;. Then OLerr can be implemented as follows by using Oyp.; and
Oup.2:

1. Take |x) |y) = |xor, Xor) |y, Yr) as an input.
2. Compute the state (xiz, X1r) by querying |xoz, Xor) |0") to Oyp.1, and obtain

|xoL, X0R) 1YL, YR) ® |X1L, X1R) -

3. Query |x1r, X1R) |yL, YR) t0 Oyp.2, and obtain

|x) |y ® LRY (X)) ® [x11, X1R) -

4. Uncompute Step 2 to obtain
lx) |y & LRY'(x)) .

5. Return [x) [y & LR} (x)).

4.2.2.2 Quantum Oracle of RF’

The quantum oracle of RF’ is implemented in the same way as LR/, except that the second round state update oracle

Ovyp.» is replaced with another oracle OI’JP_2 defined as

O(po  1X0R, X1L, X1R) [YL, YR) = |X0R: X1L, X1R) |(YL, YR) ® (Fy(X1L, X1R, X0R), X1L)) -

In what follows, we assume that the oracles of Fj, F>, and Fz’ are implemented with the recording standard oracle
with errors, and we use D, D», and Dé to denote (valid) databases for F, F>, and Fz’, respectively.

4.2.2.3 Good and Bad Databases for LR’/

Here we introduce the notion of good and bad for each tuple (D1, D;) of valid database for LR&’. We say that a valid
database D, is without overlap if each pair of distinct entries (xz, x1g, 8) and (xiL, xiR, B’) in D, satisfies x|, # xiL.
We say that (Dq, D) is good if D, is without overlap, and for each entry (xr, x1r, 8) € D, there exists exactly one
entry (xor, Xor, @) € Dp such that @ = x1r and x1gr = xor. We say that (Dy, D») is bad if it is not good.
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4.2.2.4 Good and Bad Databases for RF’

Next, we introduce the notion of good and bad for each tuple (D, Dé) of valid database for RF’. In addition, we say
that a valid database D), is without overlap if each pair of distinct entries (x11, X1r, Xor, 8) and (x],, X > Xog> 8°) in D}
satisfies x17, # xiL. We say that (D, Dé) is good if Dé is without overlap, and for each entry (xz, x|r, Xxor, 8) € D),
there exists exactly one entry (xor, Xor, @) € D such that @ = x17 and x|g = xor. We say that (D, Dé) is bad if it is
not good.

In addition, we say that a valid database D] for F is normal if D}(x1, X1r, Xor) # L, then D} (x],, X1r, Xor) = L
for all x{, # xiz. Note that, for each good database (Dy, D}) for RF’, D] becomes normal by definition.

4.2.2.5 Compatibility of D’ with D,

For a valid and normal database Dé for Fz’ without overlap, let [Dé]z be the valid database for F; such that (x;z, x1r, 8) €
D, if and only if there is a unique xog such that (xiz, x1r, Xor, 8) € Dj. Then [D]], is without overlap. We say that a
valid database D, for F, without overlap is compatible with Dé if D, = [Dé]z.

Remark 15. For each good database (D1, Dy) for LRY, a unique Dé without overlap exists such that [Dé]z = D; and
(D1, D}) is a good database for RF’, by the definition of good databases. Similarly, for each good database (D, D))
for RF’, (D1, [D}]2) becomes a good database for LRY. That is, there exists a one-to-one correspondence between
good databases for LR’ and those for RF’.

The following lemma shows that the behavior of O, , on a valid and normal databases D] for F; without overlap
is the same as that of Oyp > on the corresponding database [Dé]z for F>.

Lemma 6. It holds that

(Xor, £1L, X1R, YL, YR| ® (D3] O(jp 5 |X0R: X1L, X1R: YL, YR) ® | D)

= (FoRr, X11, ¥1r, Y1, TR| ® ([D}12] Oup2 |X0R, X1, X1R, YL, YR) ® |[D5]2)

¥ = = 508 n/2 : ’ Y ’
Jfor any xoRr, X1, X1R, YL, YR, X0R, X1L, X1R, L, YR € {0, 1}"'* and any valid and normal databases D} and Dj for F,
without overlap.

We omit to write the proof since the lemma can be shown in the same way as we showed [Lemma 1]

Let A be an adversary that makes at most ¢ quantum queries. Let [¢;) and I:,DJ’.) be the joint quantum states of
A and the oracle just before making the j-th query when A runs relative to LR} and RF’, respectively. In addition,
by |¥4+1) and |¢/(’1 1) we similarly denote the states just before the final measurement, by abuse of notation. Then the
following proposition holds.

Proposition 8. For each j = 1,...,q + 1, there exist vectors ijg.wd), Ilﬂ?ad), I;D}gmd), Iw}bad% and complex number
0))
a

x5 DD, such that

) = w9 + w5, Iy = w2 + ly P,

ood )

W= > alyp o l%n2) @IDLIDD),
x,y,z,Dl,Dé
(D1,D}) : good

‘goody _ )

= L all o ey @IDLD)),
x,y,2,D1,D},
(D1,D}) : good

the vector |Dq, Dé) in Iw}gom) (resp., | D1, [Dé]z) in ijg.OOd)) has non-zero quantum amplitude only if |D1| < 2(j — 1)
and |D}| < j -1, and

1952 | < [|los2y] + 0(\/ 2,{/2), w21 < [l 2] + 0( 2,{/2)

hold (we set |y82%) = 0 and |y 22%) = 0).
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The proposition can be shown in a similar way as we showed and thus we omit to write the entire
proof. Since here only two random functions are involved in each oracle while three random functions are involved
in each oracle in the proof becomes simpler: When we prove [Proposition 8] we can skip showing the
claims that correspond to those for the actions of Oyp.» in the proof of [Proposition 6|

Now we can show that Advfgf, re(A) <0 (\/6]3/ 2n/ 2) follows from [Proposition §|in the same way as we showed

that [Proposition 3| follows from Therefore [Proposition 7] holds.

4.2.3 Proof of Theorem 9,

This subsection finishes our proof of by using the results given in Sections .2 T and #.2.2]

Proof of[Theorem 9 First, let us modify LRy4 in such a way that the state updates of the third and fourth rounds are
replaced with (x27, x2r) = (X3, X3r) = (F(x21,%2r), X21) and (x3r, X3r) & (X4r, X4r) = (F'(X31,X3R), X3L),
respectively, where F, F” : {0, 1}"/? x {0, 1}/ — {0, 1}"/? are random functions. Recall that the modified function is
denoted by LR}’ In addition, recall that LR}” is the composition of LR, with a random function RF : {0, 1}" — {0, 1}"
(see[Fig.4.3).

Then, by applying twice, we can show that

3
i q
Advi () < 0( o /2) (4.58)
holds. In addition,
3
dist q
AdVLRX»'—RZ'(q) < 0( 2"/2) 4.59)
follows from and _
Adv{, o(q) =0 (4.60)
A

holds since LR; is a permutation.

From [Theorem 3| (#.38)), (#.59), and (@.60), we have

3
Adv{E po(g) < Advfgimg(q) + Advﬁﬁi’mx,(q) + Adv‘E‘RSz,,,RF(q) +Advat oo (q) < O (, / W)

which completes the proof of the theorem. O

4.3 Matching Upper Bound

Here we show that the query lower bound derived from [Theorem 9]is tight by showing the matching upper bound (i.e.,
we show the latter half of [Theorem 7). Again, we consider the case that all round functions of LR are truly random
functions, and show the following theorem.

Theorem 10. A quantum algorithm A exists that makes O(2"V°) quantum queries and satisfies AdVE};l:P(ﬂ) =Q(1).

Proof intuition. Intuitively, our distinguishing attack is just a quantum version of a classical collision-finding-based
distinguishing attack [[Pat91]]. A classical attack distinguishes LR4 from a random permutation by finding a collision of
a function that takes values in {0, 1}*/2, which requires O(W) = 02" queries in the quantum setting. However,
finding a collision of the function requires only O(W) = 0(2""/%) queries in the quantum setting, which enables us
to build a O(2"/%)-query quantum distinguisher. (Note that we can generally find a collision of random functions from
{0, 1}"/2 to {0, 1}"/? with O(V2"/2) = 0(2"/®) quantum queries [Zhal3].)

4.3.1 Proof of Theorem 10|

First, we describe an overview of a classical attack [Pat91]]. Let us denote the composition of two independent random
functions from {0, 1}’*/? to {0, 1}"/? by RF o RF.

60



4.3.1.1 An Overview of a Classical Attack

Suppose that we are given an oracle access to O, which is either the 4-round Luby-Rackoff construction LR4 or a random
permutation from {0, 1}" to {0, 1}". Let us define a function G : {0, 1}/ — {0, 1}"/2 that depends on O by

GO(x) := (00", x))R o x, 4.61)

where (0(0”/2, x))R is the right half 1/2 bits of O(0"/2, x). We can implement G by making O(1) queries.

When O is the 4-round Luby-Rackoff construction LRy, we have that GO(x) = f3(fa(x @ f1(0V2)) & f1(0™?)
holds. Thus, if all round functions of LRy are truly random functions, the function distribution of GO will be the same
as that of the composition of two independent random functions RF o RF. On the other hand, when O is a random
permutation from {0, 1}" to {0, 1}", the function distribution of G2 will be almost the same as that of the truly random
function RF from {0, 1}*/? to {0, 1}"/2.

Since RF o RF has twice as many collisions as RF, we can distinguish LR4 from a truly random permutation by
making O((2"/%)1/2) = 0(2*) queries to G©°.

4.3.1.2 Conversion of the Classical Attack to a Quantum Attack

Next, we explain how to convert the classical attack above into a quantum attack that makes O(2"/¢) quantum queries
and prove [Theorem 10} The following lemma is crucial. It shows that we can distinguish RF o RF from RF by making
o((2"*)13) = 0(2"/®) quantum queries.

Lemma 7. Let us denote the composition of two independent random functions from {0, 1}/? t0 {0, 1}’¥/? by RF o RF.
Then, a quantum algorithm B exists that makes O(2"/°) quantum queries and satisfies Advgl;l:f{F(B) = Q(1). That is,
an algorithm exists that distinguishes RF o RF from a random function with a constant probability, by making O (2"/%)

quantum queries.

Proof. We use the following fact that is shown by Ambainis [Amb04} |Amb07].

Fact 1 ([Amb04, Amb07]). Let X and Y be finite sets, and F : X — Y be a function. Then there is a quantum algorithm
that judges if distinct elements x1,x, € X exist such that F(x1) = F(xy) with bounded error by making O(|X|*3)
quantum queries to F.

Let [N] c {0, 1}"/? denote the subset {0,1,..., N — 1} for each integer 1 < N < 2¥/2. By using the above fact,
we can deduce that for 1 < N < 22 a quantum algorithm Dy exists such that, given oracle access to a function
- {0, 1}”/2 — {0, 1}"/2, it outputs 1 if distinct elements x1, x, € [/N] exist such that F(x;) = F(x7), and it outputs 0
otherwise with an error that is smaller than 1/30, by making O(|N [2/3) quantum queries. (We can make such Dy by
iteratively running Ambainis’ algorithm O(1) times for F|n) : [N] — {0, 112 which is the restriction of F to [N].)
Here we give an analysis of the qPRF advantage of Dy on RFoRF, foreach N. Fora function F : {0, 1}/ — {0, 1}*/2
and a subset Z C {0, 1}/2, let collg denote the event that F has a collision in Z, i.e., there are distinct x1, x, € Z such
that F(x;) = F(x,). Then, we have that

1 2 N .
I;_r[ﬂcoll[FN]]=(1—W)~(1—W)---( - 2n/2) ]_[( zn/z) (4.62)

J=

holds, where F is chosen from Func({0, 1}"/2, {0, 1}"/?) uniformly at random. In addition, when F; and F; are chosen
from Func ({0, 1372 {0, 1}/ 2) uniformly at random, we have that

2
F20F1 _ F2 F1 . - F] - - F
Pr[eollz] = Pr[eol?  [eollfy | - Br [eollfy | = (r [eolfy]) - (4.63)
Now we have that

Ady gll):Rl:lF(DN) = Advgi;fRFoRF(DN) =

gr [z){f,() - 1] - Ff?z [lev*zom O — 1]‘

_2 (4.64)

> |Pr [cofy] - P [collfZoF1] 0

[N]
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where we used the property that the error of Dy is smaller than 1/30. In addition, from (@.63)), it follows that

= AL [coll3i] = Pr [colfy] = (1 - (I;r [~collfy, ] )2) - (1 ~ e [~coly ]])

=Pr [ﬁcouﬁ\,]] (1 ~Pr [ﬁcon[FN]]) (4.65)

[N]

Pr [confjv]] - P [conFZ"Fl]

holds. Therefore, we have that

qPRF F F
AQVRE (D) 2 Pr ool | (1= Pr [=oollfy, ) - = (4.66)
holds. Now we show the following claim.
Claim 5. There exists a parameter Ny that is in 02", and
No-1 .
3 J 1
2 H(l—m)zg 4.67)
=
holds for sufficiently large n.
Proof. First, let us denote py := H;.V:_ll ( Zni/z) For each 1 < N < 22, we have that
2
N-1 , N _2M2\Tong2
N N N
(1 522) = (1 2%) ((_) ) s
j=1
holds. In addition,
N-1 i Nol N
1- < (e 2"/2) =e 2272 (4.69)
2n/2
j=1 j=1
holds. Thus )
_2Y2\Ton2
_N(N-D) N N
e 222 > DN = ((1 — W) ) (4.70)
holds.
Next, let Ny := 24 . v2log?2. Then
No-1
_ No(Ng-D NNy _ No(Np-1) _ Ng'Ng 1 1 Nog 1
e 2T = 272 ¢ (e 221/ — ¢ 202 ) =5+ ((E) - E) 4.71)

Ny(Np-1)
holds, and thus e~ 27 < 3/5 holds for sufficiently large n. In addition, since the function f(x) = (1 — x)™1/*

increases as x increases for 0 < x < 1 and lim,_, .o f(x) = e holds, we have that

_an/?
N() No 1
(1— 2n/2) < e+m (4.72)
holds for sufficiently large n. Thus
NG )
n/2\ " su/2 N,
1 No Rl > le+ L) + )7 > ! 4.73)
- — e+ — =le+— - .
2n/2 - 10 10 -5
holds for sufficiently large n.
Therefore, for Ny := 2™/* - \2 log 2,
3 1
32PN 23 4.74)
holds for sufficiently large n. Hence the claim follows. O
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From the above claim and ({#.62), a parameter Ny exists that is in 0(2"/4), and

3 - 1
< 2 Pr[colfy ] = 5 (4.75)
holds for sufficiently large n. Hence, from (4.64) we have that
1 3 2 1
AdVEZee (D) 2 5 (1 - 5) - 35 = 75 2 Q). (4.76)

Therefore, if we let B := Dy, this B satisfies the claim of the lemma, since holds and Dy, makes at most
O((No)*?) = 0((2"*)?3) = 0(2"/®) quantum queries. O

Next we show the following proposition.

Proposition 9. A quantum algorithm A exists that makes O(2™'®) quantum queries and satisfies AdVE];TF(.?{) =Q(1)

Proof. Suppose that we are given an oracle access to O, which is either the 4-round Luby-Rackoff construction LR4 or
a random function from {0, 1}" to {0, 1}"*. Recall that the function G© : {0, 1}"/2 — {0, 1}"/? is defined by

GO (x) := (00", x))R @ x, 4.77)

where (O(O”/ 2, x)) is the right half n/2 bits of O(0"/2, x). We can implement a quantum circuit that computes G©
by making O(1) queries [
Now we define a quantum algorithm (A as the following three-step procedure.

1. Let B be the same algorithm as in[Lemma 7
2. Run B relative to G©.
3. If B returns 1, output 1. If B returns 0, output 0.

Here we analyze ‘A. When O is the 4-round Luby-Rackoff construction LR4, we have that GO x) = f3(falx®
£1(0"2))) @ f1(0™?) holds. Since we are considering the case that all round functions of LR, are truly random
functions, the function distribution of G© will be the same as that of RF o RF. On the other hand, when O is a random
function from {0, 1}" to {0, 1}"*, the function distribution of G will be the same as that of the truly random function

from {0, 1}"/2 to {0, 1}"/2. Thus, from [Lemma 7|we have that

AdviE " (A) = Advige (B) = Q(1) (4.78)

holds. In addition, since 8 makes at most O(2"/%) quantum queries and G makes only O(1) queries to O, A makes at
most 0(2"/%) quantum queries. Therefore the claim of the proposition holds. O

Finally we prove
Proof of[Theorem 10| Let A be the same algorithm as in[Proposition 9} Then, from [Proposition 9]it follows that

AdviE T (A) 2 Advp (A) — AV o (A) 2 Q(1) - 0(1/2"2) = Q(1), (4.79)
where we used the fact that, for any quantum adversary A’ that makes at most ¢ queries, the distinguishing advantage
AdvgléfRF(ﬂ’) is upper bounded by 0(q3/ 2™) for a random function and a random permutation from {0, 1}" to {0, 1}"

(see[Theorem 3)). Thus the claim of the theorem holds. mi

4Here we have to truncate O’s outputs by using a technique observed in [HS18].
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Chapter 5

Provably Quantum-Secure TBC

This chapter shows a new construction LRWQ that converts quantum-secure block ciphers into quantum-secure tweak-
able block ciphers. The result of this chapter is significant to understand (post-)quantum security of symmetric-key
cryptography mainly from the theoretical perspective. Since Kaplan et al. showed the efficient quantum attack on
the LRW construction [KLLN16a], the problem of whether it is possible to make a quantum-secure TBC based on a
gqPRP has been unresolved. This problem is of theoretical interest because TBCs play important roles to build efficient
symmetric-key schemes such as MACs and authenticated encryption schemes in the classical setting. This chapter
solves the problem by showing the new construction LRWQ is secure. Together with the results of we can
deduce that a quantum-secure TBC exists if a qPRF exists. See also for an overview of the result, and
[Section 1.7)for the relationship of the results in this chapter with those in other chapters.

[Section 5.1]reviews previous constructions and describes the new construction. [Section 5.2]provides security proof

of the construction.

5.1 A Quantum-Secure TBC

Since our construction is a variant of the LRW constructions [LRWO2]}, we first review them before introducing ours.

5.1.1 The LRW Constructions

Liskov, Rivest, and Wagner introduced constructions that convert (classically) secure block ciphers into (classically)
secure tweakable block ciphers, which are called the LRW constructions [LRWO2]].

Let E : {0,1}* x {0,1}* — {0, 1}"* be a block cipher and % be an almost 2-xor-universal hash function. Then the
first construction, which we denote by LRW1, is defined as

LRWA[E]L (M) = Ex(Ex(M) & T).
The second construction, which we denote by LRW2, is defined as
LRW2[E]{y ,,, (M) = Eg(M & h(T)) & h(T),

where h is a part of the key. See
Roughly speaking, both LRW1 and LRW2 are shown to be secure up to about 2"/> queries (if /4 is a 1/2"-almost

2-xor-universal hash function) in the classical setting. LRW2 is also proven to be secure even if the decryption oracle
is available to adversaries (That is, LRW2 is a tweakable strong pseudorandom permutation. LRW1 is not a tweakable
strong pseudorandom permutation since it is broken if the decryption oracle is available).

In the quantum setting, however, Kaplan et al. showed that LRW2 can be distinguished from a tweakable random
permutation in polynomial time (in n) if quantum queries to keyed oracles are allowed [KLLN16al.

An overview of their attack is as follows: Choose two tweaks 7 # T’ and define a function F O by FO(M) :=
O(T,M) ® O(T’,M), where O is a quantum oracle such that O = RP or O = LRW2. Then, we can show that
FO(M & 5) = FO(M) holds for s := h(T) ® h(I”") and all M if O = LRW2, which implies that F© is a periodic
function, but F9 is far from periodic when O = RP. Therefore, we can distinguish LRW2 from RP in polynomial time
by using Simon’s period finding quantum algorithm [[Sim94], [Sim97].

'We use the terms LRW1 and LRW2 following previous works [LST12}[LS13].
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Figure 5.1: The LRW constructions. LRW1 is depicted on the left, and LRW2 is depicted on the right.

Figure 5.2: Specification of LRWQ[ET].

Similarly, we can distinguish LRW1 from a tweakable random permutation in polynomial time with Simon’s
algorithm: For LRW1, we choose two messages M # M’, define a function G° by GO(T) = O(T, M) ® O(T, M"),
and apply Simon’s quantum algorithm on G instead of FO. When O = LRW1, the function G has the period
Ex(M) ® Ex(M’). We see that the attack on LRW1 works with the same reasoning as Kaplan et al.’s attack on LRW2
works.

Note that the attack on LRW1 implies that we can efficiently find a collision for the function LRW1 [E]?C) :
{0, 1} x {0, 1} — {0, 1} in the quantum setting. If we can efficiently recover the value Ex (M) @ Ex(M’) and set
T :=T®Ex(M)® Eg(M’), then LRW1 [E];(M) = LRW1 [E];'(M’) holds. Finding such a collision by polynomial-
time CPAs is hard in the classical setting.

5.1.2 LRWQ: A Quantum-Secure Construction

We next present our construction, LRWQ, which is a three-key block-cipher based tweakable block cipher. If the block
length of the underlying block cipher is n, both the block and tweak lengths of LRWQ become n.

Let E be an n-bit block cipher with k-bit keys. Then the tweakable block cipher LRWQ[E] : {0, 1}°K x {0, 1}" x
{0,1}" — {0, 1} is defined as

LRWQIET ., &, o) (M) = Ex,(Ex, (M) & Ex,(T)).

See LRWQ is constructed based on LRW1. To prevent the quantum polynomial time attack in

tweak is encrypted before added to E,(M). This works since intuitively, it is hard even for quantum
adversaries to find (M,T) and (M’,T’) such that the corresponding outputs collide, i.e., LRWC)[E](TKl K K3)(M ) =
LRWQIE](¢ & g, (M) holds.

Unlike the classical constructions LRW1 and LRW2, as we will show in[Section 5.2] LRWQ is secure against quantum
attacks when it is instantiated with n-bit block ciphers that are secure against quantum attacks. LRWQ is the first mode
of block ciphers to build a tweakable block cipher that is provably secure against quantum attacks.
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5.1.2.1 Classical Security Analysis

Before going into the analysis in the quantum setting, we show that LRWQ is a secure tweakable block cipher in the
classical setting against chosen plaintext attacks up to O(2"/?) queries, and the security bound is tight. In addition, we
show that LRWQ is broken in time O(1) only with O(1) queries if the decryption oracle is available (i.e., LRWQ is
not a tweakable strong pseudorandom permutation), even in the classical setting. Define the distinguishing advantage
Adv®*, the pseudorandom permutation advantage Adv"R?, and the tweakable pseudorandom permutation advantage

Adv"RP for classical adversaries in the same way as we did for quantum adversaries. Then the following proposition
holds.

Proposition 10. Let A be a classical adversary that makes at most q queries and runs in time 7. Then, there exist
three classical adversaries By, B,, and B that make at most q queries and run in time O(t + q) such that

_ 2
AdviRl e () < Y AdVERP(BiHO(;]—n) (5.1)
i=1,2,3

holds. In addition, there exists a classical algorithm C that makes 0(2"'%) queries and runs in time O(2"'?) such that
Advfg\],)vo[E](C ) =0(). If t}f, decryption oracle is also available to adversaries, there exists an algorithm C’ that
distinguishes LRWQ[E] from RP in time O(1) by making only O(1) queries with a constant probability.

This proposition can be shown in a straightforward manner, but we give a proof intuition below.

First, we give a proof intuition for (5.I). When E is an ideally random block cipher, Advfg\f\,ﬂ g)(A) is upper
bounded by O(g?/2"), as shown by Liskov, Rivest, and Wagner (See Theorem 1 of [LRWO02]). Let LRW1’[E] be the
tweakable block cipher defined as LRW1'[E]((K}, K3),T, M) := Ek,(Ex,(M) & T) (i.e., LRW1’ is a two-key version
of LRW1). Then, intuitively, LRW1’[E] is harder to distinguish from RP (a tweakable random permutation) than to
distinguish LRW1[E] from RP, but easier to distinguish than LRWQ[E]. Thus, roughly speaking, Advfg\lfvo[ (A <

Advfg\ﬁnm(ﬂ) < Adviap g (A) < 0(g*/2") holds, which proves (5.T) when E is an ideally random block cipher.
It follows from standard hybrid arguments that (5.1)) also holds for the case that E is not necessarily an ideally random
block cipher. (See also the proof of In the classical setting, a random permutation can efficiently be
simulated by lazy sampling.)

Second, we show the existence of an algorithm C in[Proposition 10} Let O be the encryption oracle, which is either
LRWQ[E] or a tweakable random permutation RP. Let C be a classical algorithm that runs the following procedure:
First, find a pair (M,T) and (M’,T") such that M # M’ AT # T’ and O(T, M) = O(T’, M’) by querying random
elements to O, and store the answers in a list. If such a pair is not found after making about 2"/2 queries, stop and output
0. Second, check whether O(T’, M) = O(T, M’) holds (which can be done in time O(1) by making O(1) queries).
Finally, output 1 if O(T’, M) = O(T, M’), and output 0 if O(T’, M) # O(T, M"). Then this algorithm C runs in time
0(2"?) and makes at most O(2"*/?) queries. It is easy to see that C outputs 1 with an overwhelming probability when
O = LRWQ[E] and outputs 0 with an overwhelming probability when O = RP.

Third, we show that there exists an efficient classical chosen ciphertext attack on LRWQ. The algorithm C in the
previous paragraph finds a pair (M, T), (M’,T’)) such that M # M’ AT # T’ and O(T, M) = O(T’, M’) by just
querying random elements to the encryption oracle, which costs O(2"/?) queries. However, if the decryption oracle
is available, we can modify C so that it can find such a pair with only O(1) queries as follows: First, query (7, M) to
the encryption oracle for some tweak T and plaintext M to get the answer C, and then query (7”, C) to the decryption
oracle for another tweak 7’ to obtain the answer M’. Then the pair (M, T), (M’,T")) satisfies M # M’ AT # T’ with
an overwhelming probability, and O(T, M) = O(T’,M’) = C holds. Let C’ be the algorithm that is defined in the
same way as C except that it finds such a pair ((M,T), (M’,T’)) by only making O(1) queries as above. This modified
algorithm C’ runs in time O(1) and distinguishes LRWQ from RP by making only O(1) queries with an overwhelming
probability. Therefore, our construction LRWQ is broken (distinguished from a tweakable random permutation) in time
O(1) with only O(1) queries, if the decryption oracle is available.

5.2 qF?ﬁIJ3 Security Proof for LRWQ

Below, we give qf)_liﬁ security proof for LRWQ. The goal is to show the following theorem.

Theorem 11. Let A be a quantum algorithm that runs in time T, makes at most q quantum queries, and uses Q qubits.
Then there exist quantum algorithms B, By, and B; that make at most O(q) quantum queries and run in time Ty, T,
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and T3, respectively, such that

6
[PRP PRP
Advin e (A) < Z AdvY (B)+0<\/ 2n,

1<i<3

holds, where T\ and T are in O(t + ¢%), 3 is in O(t + q), and O suppresses factors of polynomials in n. B; and B,
use O(Q + q) qubits, and B3 uses O(Q) qubits.

5.2.1 Indistinguishability of Tweakable Random Permutation and Random Function

Before pr0v1ngm we show the indistinguishability of a tweakable random permutation and a random function.
Let RP : {0, 1} x {0, 1}"* — {0, 1}" be a tweakable random permutation, i.e., RP(t 9 1 {0,1}" — {0, 1}" is a random
permutation for each ¢ € {0, 1}"*. In addition, let RF : {0, 1}"* x {0, 1}"* x {0, 1}"* — {0, 1}"* be a random function. The
goal of this subsection is to show the following proposition.

Proposition 11. Let A be a quantum algorithm that makes at most g quantum queries. Then,
dist q6
AdVﬁ”P,RF(ﬂ) <0 ‘,2_" (5.2)

Let O; and O, be oracles of functions fi, f> : X — Y that are chosen in accordance with distributions D; and D, on
Func(X,Y), respectively. In addition, let DlZ be the distribution on Func(Z x X, Y) such that, if we sample a function
F in accordance with DIZ , F(z,-) € Func(X,Y) is sampled in accordance with D; independently for each z € Z. Let
DZZ be the distribution which is defined from D, in the same way. Define OIZ and OZZ to be the oracles of functions
Fi,F, : Zx X — Y that are chosen in accordance with distributions DIZ and D2Z , respectively. Then the following
proposition, which was first essentially shown by Zhandry [Zhal2a] and later generalized by Song and Yun [SY17],
holds. Note that, in the following proposition, we consider (quantum) information theoretic adversaries and do not care
whether they are efficient quantum algorithms.

holds.

Proposition 12 (Theorem 1.1 in [Zhal2al, Theorem 3.3 in [SY17]). For any quantum query adversary A that makes
at most q quantum queries, there exists an adversary B that makes 2q quantum queries and satisfies

AV 2 (A) < 12\¢ - AdvE o, (B). (5.3)

Combining [Proposition 12|and [Theorem 5| we can prove as follows.

Proof of[Proposition T1] Let X,Y, and Z be {0,1}". In addition, let Oy, O, denote the oracle of a random function
and a random permutatlon (from {0, 1} to {0, 1}"), respectively. Then OZ and OZ become the oracles of RP and RF,
respectively. Then, from [Proposition 12| and [Theorem 5] it follows that a quantum adversary B exists that makes at
most 2g quantum queries and satisfies

Adv‘g;t 0z () < 124 7% AQVE, (B) = 124/ - Advi"(B) < 0 (\1416/2"), (5.4)

which completes the proof. o

Remark 16. The upper bound given in[Proposition I1|is much larger than that in[Theorem 5| We expect that the bound
in (5.2)) is not tight, while a better provable security bound is not known.

5.2.2 Notations, Definitions, and Some Basic Properties

Here we introduce notations, definitions, and basic properties that are used to prove[Theorem T1] Let fo, f1 : {0, 1}" —
{0, 1}"* denote random functions. Let fsmay : {0, 1}" — {0, 1} and fhig : {0, 113" — {0, 1}" also be random functions.
Let us define three functions FSum, FSFp11, FSFpig @ {0, 1}2” — {0, 1}"* by
FSum(M,T) := fo(M) ® f1(T),
FSFsman (M, T) := feman (FSUM(M,T)),
FSFhig (M. T) = fuig (M. T, FSUM(M.T)) .
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Figure 5.3: Comparison of FSFsyan (M, T) and FSFy; (M, T).

See for figures of FSum, FSFgman, and FSFy;,. Note that FSFyp,y is defined in the same way as LRWQ[E]
except that it uses random functions instead of block ciphers. FSFy;, is completely indistinguishable from a random
function since fyg is a random function.

Reduction to qPRF Security of FSFgman. The following proposition shows that the problem of proving qf’ﬁ? security
of LRWQIET] can be reduced to the problem of proving qPRF security of FSFyn, when the underlying block cipher is
a secure qPRP.

Proposition 13. Let A be a quantum algorithm that runs in time T, makes at most q quantum queries, and uses Q
qubits. Then there exist quantum algorithms B, B,, and B3 that make at most O(q) quantum queries and run in time
T1, T, and T3, respectively, such that

6
PRP PRP PRF [q
AdV gy (A) < Z AdvE T (B) + Advige  (A) + 0( 2n)

1<i<3

holds, where 1| and T are in O(t + %), 13 is in O(t + q), and O suppresses factors of polynomials in n. By and B,
use O(Q + q) qubits, and B3 uses O(Q) qubits.

Proof. Let h; : {0,1}" — {0, 1}" be Ek, or RF;, where RF; is a random function, for 1 <i < 3. Let LRWQ'[Ay, hy, h3]
be the function that is the same as LRWQ[E] except that Ek, is replaced with h; for each i (if h; = Ek, for all i,
LRWQ'[A1, ho, h3] is completely the same as LRWQ[E]). Without loss of generality we assume that choosing a random
key for E and encryption with E can be done in time O(1) by using O(1) qubits.

Suppose that we are given access to a quantum oracle Oz, which is either Eg, (the key K3 is chosen randomly)
or a random function RF3 : {0,1}" — {0, 1}". Then, we construct an algorithm $5 to distinguish Ek, from RF3 as
follows: First, B3 chooses keys K| and K; for E uniformly at random. Then B3 runs A, simulating the oracle of
LRWQ'[Ek,, Ek,. Ex,] = LRWQ[E] or LRWQ'[Ek,, Ek,, RF3] by computing Ek, and Ek, by itself, and computing
Ek, or RF3 by making queries to O3. (If O3 is Ek,, then B3 perfectly simulates LRWQ[E]. Otherwise 83 perfectly
simulates LRWQ'[Ek,, Ek,, RF3].) Finally, 85 outputs what A outputs. Then B5 runs in time O(r + q), makes at most
O(q) quantum queries to O3, uses 0(Q) qubits, and

3
d PRF PRP q
Adv LIF;\t/vo ]LRWQ,[EKI’EKZ,RF3](ﬂ) = Adv‘}5 (B3) < Adqu (B3)+0 (2_") 5.5

holds, where we used [Theorem 5| for the last inequality.

Next, suppose that we are given access to a quantum oracle Oy, which is either E, (the key K| is chosen randomly)
or a random function RF; : {0, 1}" — {0, 1}". Then, we construct an algorithm $B; to distinguish Ex, from RF; as
follows: B; runs A, simulating the oracle of LRWQ'[E,, Ek,, RF3] or LRWQ'[RF}, Ek,, RF3] by simulating RF5 as
in[Corollary T} choosing K> and computing Ek, by itself, and computing Ex, or RF; by making queries to O;. (If O;
is Ex,, then By perfectly simulates LRWQ’.[EK , Ex,, RF3]. Otherwise B perfectly simulates LRWQ'[RF, Ek,, RF3].)
Finally, 8 outputs what (A outputs. Since Corollar? 1| holds, it follows that B; runs in time O (7 + qz), makes at most

68



O(g) quantum queries to Oy, uses O(Q + ¢) qubits, and

3
di _ qPRF gPRP q
Ade‘Fi\‘NQ/[EKI,EKTRH]’LRWQ,[RF]’EKZ,RR](ﬂ) =Adv,  (8)) <Adv, (B8)+0 (27) (5.6)

holds. Similarly, we can show that there exists a quantum algorithm %, that runs in time O(t + ¢*), makes at most
O(g) quantum queries, uses O(Q + ¢) qubits, and

3
di qPRP q
AdVLngNQ’[RFl,EKZ,RFg],LRWQ’[RFI,RFz,RFg](ﬂ) SAdvy " (B) +0 (27) CN))

holds.
Since the distribution of the function LRWQ’[RF, RF,, RF3] is the same as that of FSFgma1,

qPRF _ qPRF
AdeRWQ’[RFl,RFz,RF3](‘ﬂ) - AdVFSqu (A (5.8)

[ 6

dist q

Advﬁls,RF(ﬂ) < 0( —2n) 5.9
follows from [Proposition

Therefore, the claim of the proposition follows from (5.3), (5.6), (3.7), (3-8), and (3.9). O

The most difficult part in the security proof for LRWQ is to show qPRF security of FSFgn,y, which is equivalent
to showing indistinguishability of FSFna and FSFyig since FSFyg is completely indistinguishable from a random
function, i.e., to show the following proposition.

follows. In addition,

Proposition 14. For a quantum algorithm A that makes at most q quantum queries,

o 4
Advg];];::mall(ﬂ) (= Advgg::small,FSFbig) < 0( | Z_n) 610

holds.

5.2.3 Review of How to Show Quantum Oracle Indistinguishability with RstOE
is somewhat similar to in that both of them claim a single oracle O is indistinguishable

from another oracle O,, where O; and O, are the quantum oracles of functions that are made of random functions.

Thus, to prove we use the same proof strategy as that for [Proposition 5] In what follows we review the
proof strategy for [Proposition 5] Note that this section focuses on quantum information-theoretic adversaries, and we

model quantum algorithms as in We first describe the proof strategy formally, and then explain some
informal intuition behind it.

Goal.  Suppose that there are functions Fliufr G81-28s © X — VY that have access to functions fi,..., fr and
g1, - .., 8s in a black-box manner, respectively. Our goal is to give an upper bound on the distinguishing advantage of
an adversary A between F/i:-~/ and G&-~& when each f; and g 7 are random functions.

Oracle implementations using RstOE. Below, we assume that elements in X and Y are encoded into m-bit strings and
n-bit strings for some positive integers m and n, respectively.

When each f; is a fixed function (but not a random function), let O‘Q""’f’ denote the quantum oracle of F- fioenfr  We
assume that the unitary operator 0§f’ of the oracle O]FC‘""’f" is realized as a quantum circuit with oracle gates (that
make queries to f1, .. ., f,-) and suppose that £ ancilla qubits are used to compute F. The ancilla qubits are supposed to
be IO[ ) before and after each evaluation of ' when f1,. .., f, are some fixed functions. That is, we assume that OQf v
is a unitary operator such that OJ;f’ x|y ® |06y > |x) ly @ Fli-Jr (x)) ® |0¢) holds, when each fi is fixed.

When f1, ..., f, are random functions RFy, ..., RF,, we assume that they are implemented by using the recording
oracle with errors RstOE. We regard O?F"""RFV as the quantum oracle of which quantum states are combinations
of (superposed) valid databases for RFy, ..., RF, and the ¢ ancilla qubits. Then, the joint quantum state of A and
OI_FEF"""RFr is described as

u,DBp& 1) ® |DBF)Er),
u, DBFr,&e
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where u corresponds to A’s state, each DBr = (Dy, ..., D,) denotes a (combined) database for RFj, ..., RF,, each
£¢ is a classical ¢-bit string, and a,, pgy &, satisfies 3, g, 2 Iau,ggp,g,lz = 1. Below, we just write O instead of
OEFI""‘RF’ for simplicity.

Similarly, when g, . . ., g, are random functions RFi, ..., RF;, we assume that the quantum oracle O¢g of GRF-eo

are implemented by using RStOE. We assume that Og uses ¢’ ancilla qubits to compute G. We denote a (combined)
database for RF}, ..., RF; by DBg := (D, ..., D), where D] is a valid database for each RF;.

RF,

Good and bad databases. Next, we classify valid databases for O and Og into good and bad databases, which
correspond to good and bad transcripts in classical security proofs. The important point is that the classification is done
in such a way that there is a one-to-one correspondence between good databases for Or and those for Og. For each
good database DB for Of, we denote the corresponding good database for Og by [DBFr]s. Similarly, for each good
database DB for Og, we denote the corresponding database for O by [DBglF.

An upper bound of the oracle distinguishing advantage. Let A be an oracle-aided quantum algorithm that makes at
most g quantum queries. Let [if;) (resp., [//)) be the entire quantum state just before the i-th query when A runs
relative to OF (resp., Og). By abuse of notation, let [y44+1) (resp., I:,l/; +1) be the entire quantum state just before the
final measurement.

The technically hardest part to give an upper bound of Advd's‘ 0, (A is to show that, for i = 1,...,q + 1, there

exist vectors Ilﬁigwd), |y ;bad>s |lﬁ?°°d), and Izﬁ?ad) that satisfy the following properties.

Ly = |¢,;good> i |w;bad> and |y;) = |w?ood> 4 ybed,

2. There exists complex number axyZ DB such that
"900d A
|y, 2% = > a?) g, 159,20 ® [DBG), and (5.11)
X, ¥,Z
D B :good database for O
g .
9 = > al) g, 62,2 @ [DBGIF) (5.12)
X,¥,2

D B :good database for O

hold, where x, y, and z correspond to A’s register to send queries to oracles, register to receive answers from
oracles, and register for offline computation, respectively.

3. It holds that

|||¢’ bad>H < |||¢’bad>H +E'(t 1) and |||¢’bad>|| < lebad>H + l(nladl) (5.13)
for some positive values eb(a’;l) and eg’;dl) (we set |w0 bady — Ingad) =0, Il//]bad) = |¢/§’ad) =0, and eg;)d = b(:g 0).

The following proposition ensures that we will obtain an upper bound of the distinguishing advantage of A when
we prove the existence of such vectors Ilﬂigmd), |y bady, W?wd), and |y*2%).

Proposition 15. Suppose that there exist vectors Iw;gmd), I(p;.bad), Iw:t’md), and Izp?ad) that satisfy the above three
g o ,
properties. Then, Adv " st 06 (A < 2icizq Eb(alc)j + Dl<i<gq el();)d holds.

Though this proposition is essentially proved in [Chapter 4} here we give a proof for completeness.

Proof. From (5.13)), it follows that H|lﬂ;bf?>“ < lei<q bad ) and HllpSidl)” < Yi<iz<q eé’gd. In addition,

td (Tro, (1055 W), Trog (w255 w 205°)) = 0

follows from (3.11) and (5.12), where Tro,. and Tro, denote the partial trace over the quantum systems of the oracle’s
states. Thus we have

AQVGY o (A) <1 (Trop (Wgen) Waril) Trog (1W0. ) Whal)) < w3 + [lv )]

< Z e + Z el (5.14)

1<i<qg 1<i<q

which completes the proof. O
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Intuitions. Here we explain some intuitions behind the above proof strategy. First, when we define good and bad
databases, we choose good databases so that the following conditions will hold (in addition that there exists a one-to-one
correspondence between good databases for O and those for Og).

1. The behavior of O on a good database DB is the same as that of Og on the corresponding database [DBf]¢.

2. The “probability” (in a quantum sense) that a good database DB (resp., DB) changes to a bad database at
each query to O (resp., Og) is small.

The first condition ensures that the adversary cannot distinguish Or and Og as long as databases are good, which leads

to the existence of vectors |z//?°°d) and |t//;.900d) that satisfies (3.11)) and (5.12)) for each i. (Recall that, in the proof of
Proposition 15| (5.11) and (5.12) for i = ¢ + 1 lead to the property that the adversary’s distinguishing advantage is

, 2
bounded by || |l//2‘1dl> Il + qubf?> l.) The “probability” in the second condition corresponds to the terms (ef);)d) and

. 2 eV 2
€pa d) . If we can show that (eg d) and (eb(a’(;) are very small, we can show the indistinguishability of O and Og
through [Proposition 15] In a later section, to show that the “probability” is really small, we decompose OF (resp., Og)
into a sequence of RstOEg, ..., RstOE; (resp., RstOEg,, ..., RstOE, ), and prove that the “probability” that a good

database changes to a bad database is small at each query to RstOE; (resp., RstOE,, ) for each j.

5.2.4 Quantum Oracles and Databases for FSF;,,;; and FSFy;,

To use the proof strategy in the previous subsection, we describe how the quantum oracles of FSFyy, and FSFy;e
are implemented with fy, f1, and fsman or fhig, and define good and bad databases in such a way that there exists a
one-to-one correspondence between good databases for FSFy,y1 and those for FSFy.

Implementations of the Quantum Oracles of FSFynan and FSFy,. We assume that the quantum oracle of FSFgp,y is
implemented as follows when fy, f1, and fsmai are given as quantum oracles. Suppose that |M, T) |Y) is queried to the
oracle of FSFgyay. Here, |Y) is the register to which the answer from the oracle will be added.

1. Query M to the oracle fj to obtain the state

IM,T)|Y)®|fo(M)). (5.15)
2. Query T to the oracle £ to obtain the state
(M, T)|Y)® | fo(M)) | /1(T)). (5.16)
3. Add fo(M) and f,(T) to obtain the state
M, T)IY) ®|fo(M))|f1(T)) ® [FSum(M,T)) . (5.17)

4. Query FSum(M, T) to the oracle of fsman and add the answer to |Y) to obtain
IM,T)|Y & FSFsman(M, T)) ® | fo(M)) | f1(T)) ® |FSum(M,T)) . (5.18)

5. Uncompute Steps 1-3 to obtain |M, T) |Y & FSFgnan (M, T)).

We assume that the quantum oracle of FSFy;e is implemented in the same way, except that the query in the fourth step
is (M, T,FSum(M,T)) to fpig instead of FSUM(M, T) to feman. See also

In what follows, as explained in we assume that the quantum oracles of the random functions fj,
f1, fsmai, and fpig are implemented by using the recording standard oracle with errors, and thus the oracles FSFgyan
and FSFy;, keep the databases (and the ancillary qubits that are temporarily used in (5.13)—(5.18)) as their states. Let
OFsF,, and Ofsr,, denote the unitary operators of the oracles FSFsma and FSFypig to respond to queries as above.

Good and bad databases. Here we define good and bad databases for FSFy, and FSFyg in such a way that there
exists a one-to-one correspondence between good databases for FSFyay and those for FSFy;,.

Let Dy, D1, Dsman, and Dyg denote (valid) databases for fo, fi, fsmai, and fyig, respectively. The oracles FSFpan
and FSFy;g keep (quantum superpositions of) tuples of databases (Do, D1, Dgman) and (Do, D1, Dyig), respectively.

We say that a tuple of bit strings & = (Wy, Wy, Zy, Z1,V,C), where W;, Z;,V,C € {0,1}", is an expansion if
V = Zy® Z,. We say that a (combined) database D Bsman = (Do, D1, Dsmair) for FSFgman (resp., D Byig = (Do, D1, Drig)
for FSFyig) is good if and only if it satisfies the following condition.
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Figure 5.4: Implementation of FSFsy, and FSFye. “in” and “out” denote the registers to send queries and receive
answers, respectively. The functions fo, f1, fsman, and fpig will be implemented with the recording standard oracle with
errors in security proofs.

Foreachentry (V,C) € Dgman (resp., (Wo||[W1]|V, C) € Dyg), there exists aunique expansion & = (Wo, Wy, Zo, Zi,
V, C) such that (Wy, Zy) € Dy and (W4, Z;) € D;.

We call the unique expansion & the expansion of (V, C) in D Bsmay (resp., the expansion of (Wol|W1||V, C) in DByg).
We say that a (valid) database is bad if it is not good.

Intuition behind good and bad databases. Intuitively, a valid database D Bgmai = (Do, D1, Dsman) for FSFgman (resp.,
DByig = (Do, D1, Dyig) for FSFyg) is bad if and only if, there exist an element (V, C) in the database Dgmay (Which
records transcripts for fgman) and two or more pairs ((Wy, Zy), (W1, Z1)) € Do X D1 (Do and D records transcripts for
fo and f1, respectively) such that Zy ® Z; = V (i.e., fo(Wp) & f1(W;) = V). Otherwise the database is good. Note that
the database is defined to be bad when such a pair exists even if Wy and W, are not queried to fy and f; at the same
time: A natural definition of bad transcripts in the classical setting is that, a transcript is defined to be bad if and only if,
there exist a record (V, C = fsmai(V)) and two or more pairs of records ((Wy, Zg = fo(Wp)), (W1, Z1 = f1(W71))) such
that Zo® Z, =V, and Wy and W are queried at the same time. However, in the quantum setting, the compressed oracle
technique (and the recording oracle with errors) cannot record the information about whether certain pair of inputs are
queried at the same time[] Thus we defined good and bad databases as above.

A one-to-one correspondence between good databases. By the above definition, we can define a one-to-one corre-
spondence between the set of good databases for FSFgy,y and that for FSFyie. We say that a valid database Dyg for
Joig is consistent if there does not exist distinct element (Wo||W, ||V, C) and (W[|W/[||V’,C’) in Dy that satisty (i)
Wy = Wé AW = Wl’ but V.+ V' or(ii) V = V' but C # C’ Note that, if there exist valid databases D, and
D such that DBpig := (Do, D1, Dyig) becomes a (combined) good database for FSFy;e, Dpig is consistent. For a
consistent database Dyig for fhig, let [Dpiglsman be the database for fsman such that (V, C) € [Dyiglsman if and only if
(WolIW1]1V, C) € Dyig for some Wy, W; € {0, 1}". In addition, for a (combined) good database D Byg = (Do, D1, Dypig)
for FSFgmai, let [DBpiglsman = (Do, D1, [Dyiglsman). Then, the mapping DByig — [DBpiglsman gives a one-to-
one correspondence between good databases for FSFpi; and those for FSFy,: For a (combined) good database
DBsman = (Do, D1, Dsman) for FSFgma, let [Dsmall]big be the database for fbig such that (Wy||W1[|V,C) € [Dsmall]big
if and only if (V, C) € Dgmar and the expansion of (V, C) in Dgmqy is (Wo, Wy, Zo, Z1, V, C) for some Zy, Z; € {0, 1}".
Then the (combined) database [D Bgsmailoig := (Do, D1, [Dsmailvig) is a good database for FSFy,g. It is easy to confirm
that the mapping D Bsmai = [D Bsmailbig is the inverse of the mapping D Byig = [D Bpiglsmai, and vice versa.

2]t may be realized by replacing the “undefined” indicator qubit in each entry of the f table in the state of stO by g zero qubits and toggle the
i-th of these qubits when the given input was submitted in i-th query. However, currently we do not have any idea on how to formalize it, while
appropriately removing some records from database.

3In fact the first condition (i) may not happen but such a database can theoretically exist. Here we exclude the condition (i) just for theoretical
completeness.
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Regular and irregular states of oracles. We say that a state vector of the oracle FSFgyay is irregular if one of the
databases is invalid, or ancillary qubits used in (5.15)—(5.18) are not the all-zero state |00 - - - 0). We say that a state
vector is regular if it is not irregular. In addition, we say that a state vector of the oracle FSFgyq is pre-irregular if one
of the databases is invalid, or the least significant 2n qubits (the registers that correspond to f1(7") and FSum(M, T) in
BI16)-(G.18)) are not |0™) |0"). We say that a state vector is preregular if it is not pre-irregular. Similarly, we define
(pre-)irregular and (pre)regular states for FSFpjg.

The following lemma shows that the behavior of RstOE fig ON @ consistent database Dyg is the same as that of
RstOEy,,, on the corresponding database [Dyiglsma-

Lemma 8. Let Dyg and Déig be consistent databases for FSFys. Then, for arbitrary M, T,M',T" € {0,1}" and
7T e (0,1,
<Dl;ig| <M'| |T’||‘~/" Y’| RSTOEﬁ)ig |M||T||‘~/, Y) | Dpig)
= <[D};ig]small| <M'||T’||‘~/', Y’| b, ® RstOEg, ., |M||T| |‘7, Y} I[ Doiglsmai) (5.19)

holds.

Proof. Tt suffices to show the claim in the case that M = M’, T = 7', and V = V"’ hold, since oracles do not affect input
registers. Moreover, when RstOEy,  acts on |M||IT||V,Y) | Dyig), Oy, affects only the register that contains information
about the element of M||T||V in Dyig, in addition to the Y register. Hence it suffices to show the claim in the cases that
(i) Dyig is empty, or (ii) it has only a single entry (M||T|V, C) for some C. In the case (i), [ Dpiglsma is also empty, and
the equation follows from (3.16) and (3.17) in Eroposition 31 In the case (ii), [Dpiglsman has only a single entry (V,0),
and the equation follows from (3.12)—(3.15)) in[Proposition 3} |

5.2.5 Proof of |Proposition 14|

Let A be a quantum algorithm that makes at most g quantum queries. Let [;) and |¢) denote the whole quantum states
of A and the oracle just before the i-th query when A runs relative to FSFy, and FSFyg, respectively. (By [¥g11)
and Izp; +1) We denote the whole quantum states just before the final measurement when A runs relative to FSFpan and
FSFyig, respectively, by abuse of notation.)

The technically hardest part of proving is to show the following proposition. In what follows, for
each summation symbol, we separate variables over which the summation is taken and the conditions imposed on the
variables by “;”, to simplify notations. For example, by 3, g.0ca.0+gep We indicate that the summation is taken over
all possible @ and 8 suchthata € Aand a + 8 € B.

Proposition 16. Foreach 1 <i < g+ 1, there exist vectors Ilﬂ;-goc’d), |y ;bad% |lﬂ?°0d), and |zﬁ?ad) that satisfy the following
properties.

L |y} = |w;900d> + |w;bad> and ;) = hp?ood) £ [ybe,

: (@)
2. There exists complex number a1+, DoD1 Do such that

’ d .
v = Z axI)TYZDODIDbig M, T)|Y)|Z) ® | Do, D1, Drig) (5.20)
M.T.Y,Z,(Do,Di,Dyig);
(Do, D1, Dig):valid and good

and

d .
7% = Z aE\I/I)TYZDODIDbig M, T)|Y)|Z) ® |[Do, D1, Doiglsmai) (5.21)
M,T,Y,Z,(Dy,D1,Dyig);
(Do, D1, Dyjg):valid and good

hold, where (M, T), Y, and Z correspond to ‘A’s register to send queries to oracles, register to receive answers
from oracles, and register for offline computation, respectively.

3. For each database (Do, D1, Dyg) in |tﬁ;g°°d) (resp., (Do, D1, Dgmall) in W?OOd Y) with non-zero quantum amplitude,
|Dol <2(i — 1), IDi| <2(i — 1), and | Dyig| < i — 1 (resp., |Dsmanil <i—1).

=) < ]« o () and g <z + 0 (V&) ot
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Let RstOE;, RstOEy;, RstOEg, ,,, and RstOEg,, be the recording standard oracle with errors for fo, f1, fsman, and
Joig» respectively. Then, the unitary operators OfsF,,,, and Orsr,;, are decomposed into 7 unitary operators as

OFSFsmau = RStOE;% . RSTOE}] - XOR* - RStOEféma” - XOR - RStOEﬁ . RStOEf('J

and
OFsFy;, = RstOE;ZO . RstOE;i1 - XOR* - RstOEg,, - XOR - RstOEy, - RstOE;,

respectively, where XOR denotes the unitary operation to add the values fo(M) and f1(T) in Step 3 (state (5.17)) of the
implementation of the oracles, which is defined by XOR |a) |b) |c) = |a) |b) |c ® a & D).

To show the proposition, we study how the states |¢/) and [if;) change when the 7 unitary operators act, in a
sequential order. First, we show the following lemma.

Lemma 9 (Action of RstOEy). Suppose that there exist i and vectors It//;-gmd), |l!/;-bad>, |l//?00d), and |¢I;)ad> that satisfy

the four properties in or j = 1,...,i. Then, there exist vectors |¢/l.g°°d’1 )2 Iz,bibad’l), |1//?°°d’1 ), and It,//?adJ)

that satisfy the following properties.
’ 1 7
1. RStOEf |y!) = |y, 2°°%"y + |y 22!y and RtOE ; ) = [¢9%°%") + [y 1.

. ()1
2. There exists complex number a v, DoD1 Dg such that

‘good, 1y _ (@),1

204t = > Ay zpopi ey 1M T) 1Y) 12) (5.22)

M.,T,Y,Z,(Do,Di,Dypig); Do, D1, Dy, Do(M)),

(Do, D1, Dyig):valid and good ® | 0 1 b|g> ® | 0( )>

Do(M)#L
and |
good, 1\ _ (i),1

2oty = > Aty 2Dopi g 1M T 1Y) 12) (5.23)

M,T.Y,Z,(Do,D1,Dpig); Dy, Dy, Dy; Do(M

(D, Dy, Dygg)-valid and éood ® |[ 0, 1 b|g]sma||> ® | 0( )>
Do(M)#1

hold, where (M, T), Y, and Z correspond to A’s register to send queries to oracles, register to receive answers
from oracles, and register for offline computation, respectively.

3. For each database (Do, D1, Dyig) in I(//;g°°d’l) (resp., (Do, D1, Dgman) in Iw?OOd’l) ) with non-zero quantum ampli-
tude, |Dg| < 2(i — 1) + 1, |Dy| £2(i - 1), and |Dyig| < i~ 1 (resp., |Dsman| <i—1).

] < ]+ 0 (Vo) and =] < g+ 0 () ot

Proof. Let 144 denote the projection onto the space spanned by the vectors that correspond to valid databases. Then,

by applying [Proposition 3]to RstOEj;, we have that

aigRStOE ; [¢7,%°°%)

= IlyaigRstOE Z a;’l)TYZDODIDbig M, TY|Y)|Z)
M.T.Y,Z,(Do,D1,Dyjg); ® | Do, D1, Dyig)
(Do, D1, Dyig):valid and good
= . . (i)
= MyaigRStOE, > iy 201 g 1Mo T) VY1 Z)
M.T.Y,Z,a,(Do,D1,Dig); Do U (M Di. D
(Do D1 Dogg)valid ®|Do U (M, @), D\, Dyig)
Do(M)=J_
(DoU(M ), D1, Dyig):good
+ MaigRStOE; Z al(\l/I)TYZDODlDbig M, T)|Y)|Z)
M,T,Y,Z,(DO»Dthig); ® |DO’ D19 Dbig>
(Do, Dy, Dyig):valid
Do(M)=1
(Do, D1, Drig):good
= (@)
- Z AMTYZDouM, @)Dy Dy M T IV 1Z) (5.24)
M,T.Y,Z,a,(Do,D1,Dyig); Do U (M Di. Dw
(Do.Dy. Dojg)valid ® |Dy U (M, @), Dy, Dyig) ® |a)
Do(M)=J.

(DoU(M,a),D1,Dyig):good
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M.T.Y,Z,a,y,(Do,D1,Dyig);
(Do,D],Dbig)ivalid
Dy(M)=L
(DoU(M,a),D1, Dyig):good

21 IMTYZDyu(M. @)D Dyig

1 .
0 IM,T)|Y)|Z)

®|Do U (M, ), D1, Doig) ® lv)

(G

* \/z_naMTYZDODIDbig M, T)|Y)I|Z)
M.T.Y.Z,a,(Do. D1 Dyi):
(DO’DI’waZ)ivlﬂidbg ® |Do U (M, @), Dy, Dyig) ® |)
Do(M)=1
(Do, D1, Dyig):good
+ €’y
holds, where
€)= ) M. T)|Y)12)
= 3 MTYZDouU(M.)D1 Dyg
M.T.Y,Z,a,(Do,D1,Drig);
(Dg, D1, Dyig):valid 1
Do=1 ®(1Do) = > — Do U (M. 7)) |ID1, Dig) ® lar)
(DoU(M,@),D1, Dpig):good > \/2_"
0!
+ 1 EMTYZDgU(M, @)D Dg M, T)|Y)|Z)
M.T.Y,Z,a,(Do,D1,Drig); 1
(Do, D1, Dyig):valid —~
“Do(M)EL 9|22 757 1PoU (M) = D) | D1, Do) © 0
P 2

(DoU(M,@), D1, Dyig):good

1
+

M.T.Y,Z,(Do,D1,Dyig);
(DO,DI,Dbig):valid
Dy(M)=L
(Do, Dy, Dyig):good

0 |M,T)|Y)|Z)

\/—naMTYZD()DIDbig

1 —~
®( Do) — ) —= Do U (M,y))|ID1, Dpig) ® |0").

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

The terms (3.24), (5.23)), and (5.26) correspond to (the valid component of) the terms (3.12), (3:14), and (3.16),
respectively. In addition, the terms (5.27), (5.28), and (5.29) correspond to (the valid component of) the terms (3.13)),

(B:13), and (B-17), respectively. Let us denote the terms (5.27), (5.28), and (5.29) by |(5-27)), |(5.28)), and |(5.29)),

respectively. Then

2 L o g Lo ?
NEZ71° = Z on AMTYZDyU(M,e) D Dyig 21 |AMTYZDyU(M,a) D Dyg
M.T.Y,Z,a,(Do, D1, Dyig); M.T.Y,Z,a,y,(Do,D1,Dyig);
(D(),D],Dbig)ivalid (D(),D],Dbig)ivalid
Do(M)=L Do(M)=L
(DoU(M, @), D1, Dyig):good (DoU(M, @), D1, Dyig):good
1
<0O|—
<0\5
holds. Similarly we have [[[GZI))I* < O () . In addition,
) 2
20
B2 < 5 D D MT2Z Do (M. D1 Dol
< o
M.T.Y,Z,(Do,D1,Dyig); a;
(Do, D1, Dyig):valid (DoU(M, ), D1, Dig):good
Do(M)=1
. 2
o
MTYZD()U(M,Q)D]Dbig
<5
< o
M.T.Y,Z,a,(Do,D1,Dyig);

(Do, D1, Dyig):valid

Do(M)=

1

(DoU(M, @), D1, Dyig):good

1
SOz—n,
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where we used the convexity of the function X ~ X2. Hence
holds.

, 1
e < 0(\/2—") (5.30)
In the same way, we can show

good\ __ (i)
MvaigRStOE ; [7°) = > Aty 2Dty Do M- T) 1Y 12)
M.T.Y,Z,a,(Do,D1,Dyig); DoU (M D1. Dy
(Do, D1, Dg)-valid 9 ®|Do U (M, @), Dy, [ b|g]small> ® |a)
Do(M)=1
(DoU(M ,a),D1, Dyig):good

1.
(@)
B Z 21 AMTY ZDoU(M, @)D, Dyg IM,T)|Y)|Z)

M.T.Y,Z,a,y,(Do,D1,Dpig); )
(Do. D1, Diyg)-valid 9 ®|Do U (M, ), Dy, [Db|g]small> ® ly)
Do(M)=1
(DoU(M ), D1, Dyig):good

1 .
* Z x/z_nal(\ll)TYZDoDlDb;g M, TY|Y)|Z)
M.T.Y,Z,a,(Do,D1,Dyig);
(D(),Dl,Dbig):valid ? ® |D0 U (M’ (Y), Dl» [Dbig]small> ® |a>
Do(M)=1
(Do, D1, Drig):good

+1e), (5.31)

where |€) is a vector such that |||€)]] < O (\/2%) .
Now, set
w241 = Tlgoog (ThaiaRStOE; [9°°%) = [€)).  [yP*") := RStOE, g} — [y9°°4), (5.32)
and
’good, 1 ’good ’ | ’ ’good, 1
,8°°*1) = Mgooa (MuaiaRSIOE [, 5°°%) — 1€7),  1y;"**") := RstOE ly)) — 1y, **"), (5.33)

where Ilgo0q denotes the projection onto the space spanned by the vectors that correspond to good databases. Then the

first, second, and third properties of immediately follow from the corresponding properties in [Proposition 16|
and the definitions of wa’ood’l) and Iwigood’l).

Below, we show the fourth property. Let us denote the terms (3.24), (3.23), and (5.26) by |(3.24)), |(5.23)), and
|(5.26)), respectively. In addition, let IT,aq denote the projection onto the space spanned by the vectors that correspond
to bad databases. Then,

Mpad |(E-24)) = 0 (5.34)

holds since all the databases in |(5.24)) are good.
On the term (5.23)), we have that

1 .
— (@)
Hbad |@> - - Z 2_naMTYZD()U(M,(I)D1Dbig |M’ T> |Y> |Z>

M.T.)Y,Z,a,y,(Do,D1,Dyig); )
(D(),Dl,Db;g):valid 9 ® |D0 U (Ms 7), Dl’ Dblg> ® |7>

Do(M)=1
(DoU(M,@), D1, Dyig):good
(DoU(M,y), D1, Dpig):bad

1 .
_ (@)
- Z 2—naA;TYZD0U(M’a)DIDmg M, T)|Y)Y|Z) (5.35)

M.T.Y,Z,a,y,(Do,D1,Dpig); )
(Do, D1, Dyig):valid ¢ ®|Do U (M, y), D1, Db|g> ®1y)
Dy(M)=L
(DoU(M ,a),D1, Dyig):good
HT/S.LDI(T’)iJ./\[Dbgg]Sma”(D](T/)@d)iJ_

(DoU(M,y), D1, Dyig):bad

1 .
@)
- Z 1 EMTYZDgU(M, @) D) Dug M, T)Y)|Z) (5.36)
e " ®1Do U (M, 7), D1, Deig) ® 7)
Do(M)=1

(DoU(M,a), Dy, Dyig):good
AT'5.6.D1 (T")# LA[Dyiglsman (D1 (T") @) # L
(DoU(M,y),D1,Dypig):bad
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holds.

Here we give an upper bound of the norm of the term (5.35). If a tuple (M, (Do U (M, y), D1, Dyjg)) satisfies

1. Do(M) = 1, and
2. (Do U (M,7), Dy, Dyj) is bad,
then the number of « that satisfies
1. (Do U (M, @), D1, Dyig) becomes good, and
2. there exists 7’ such that D{(T") # L and [Dyiglsman(D1(T") ® @) # L

is at most |D| - |Dyigl < 2(i — 1)2. Hence

(DoU(M, ), D1, Dig):good
AT's.t.D(T")# LA[Dyiglsman(D1 (T") ®a)# L
(DoU(M,y), D1, Dyig):bad

1 .
— 1
- 22n AMTYZDyU(M,e) D Dy
M,T.Y,Z,y,(Do,D1,Dyig); a;(DoU(M,a),D1, Dyjg)is good, and
(Do, D1, Dyig):valid AT's.t.D 1 (T")#LA[Dyiglsman (D1 (T") @a)# L
Do(M)=L1
(DoU(M,y), D1, Dypig):bad
2(i — 1)? o
< _ a
= n MTYZDoU(M,a) D) Dy
M.T.Y,Z,y,(Do,D1,Drig); a;(DgU(M,a),D1, Dyig)is good, and
(Do, D1, Dyig):valid AT's.t.D1(T")#LA[Driglsman (D1 (T") @) # L
Do(M)=L
(DoU(M,y), D1, Dyig):bad
. 2
- 0] 2 26-17
= AMTYZDoU(M,a) D) Dy 22n
M.T.Y,Z,a,(Dy,D1,Dyig); Vs )
(Do, D1, Dpig):valid (DoU(M,y),D1,Dyig)is bad

Do(M)=1
(DoU(M,a), D1, Dyig):good
ATs.t.D1 (T")# LA[Dyiglsman (D1 (T") ®a)# L

(@)
AMTYZDyU(M, ) D) Dy

IA

M,T,Y,Z,CX, (DQ,D] ,Dbig);
(D(),Dl,Db;g)ZValid
Do(M)=1
(DoU(M ,a),D1, Dypig):good
AT’s.t.D((T")#LA[Dyiglsman (D1 (T")®a)# L

e

IA

LG
3 AMTY ZDoU(M,a)Dy Dy M- T YD 12)
M.T.Y,Z,a,y,(Do,D1, Drig);
(Do, D1, Dig):valid
Do(M)=1

2 2(i—1)2
T

holds, where we used the convexity of the function X ~ X? for the first inequality.
Next, we give an upper bound of the norm of the term (5.36). If a tuple (M, (Do U (M, @), Dy, Dyig)) satisfies

1. Do(M) =1,

2. (Do U (M, @), D1, Dyjg) is good, and

3. there does not exist 7’ such that D1 (T”) # L and [Dyiglsman (D1 (T") ® @) # L,
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then the number of y such that (Do U (M, ), D1, Dpig) becomes bad is at most | D1| - | Dypjg| < 2(i — 1)2. Hence

2

1 .
(i)
21 EMTYZDoU(M, @)Dy Dyig M. T)|Y)|Z)

M.T.Y,Z,a,y,(Do,D1,Dyig); )
(Do, D1, Dyg):valid $ ®|Do U (M, ), D1, Db'9> ®ly)
Dy(M)=L
(DoU(M,a),D1,Dyig):good
BT75..D\ (T")#LA[Doiglsman (D1 (T") &) # L
(DoU(M,y),D1,Dyig):bad

o)
Z MTYZD()U(M,O’)D]Dbig

2}’!

M.T.Y,Z,y,(Do,Di,Dpig); @,
(Do, D1, Dyig):valid (DoU(M, @), D1, Dyig):good
Do(M)=1

BT75.0.D\ (T")#LA[Dyiglsman (D1 (T") @) # L

(DoU(M,y),D1, Dypig):bad
O

MTYZDyU(M,a)D) Dy

2 7

IA

M.T.Y,Z,y,(Do,D1,Dyig); a;
(Do, Dy Dyig):valid (DoU(M. @), Dy, Dyig):good
Dy(M)=1
ﬂT'SLDI (T,)¢J-/\[Dng]smaH(Dl (THea)#L
(DoU(M,y),D1,Dyig):bad

2
_ a
MTYZDoU(M,a)D) Dy
M, T,Y,Z,a,(Dy,D1,Dypig); .
DD Do |(7|(Do U (M. 7), D1, Dyig) : bad}]
Do(M)=1 ’ on

(DoU(M,@), D1, Dyig):good
FT7s.t.D; (T")# LA Dyiglsman (D1 (T") @) # L

l'2
< i
—0(2n)

holds, where we used the convexity of the function X +» X? for the first inequality.

From (535)-(539).
2
I Moaq | B3I < 0(\/;—,[ )

. 2
a 1
MTYZDyD) Dyyg

Thog |GZE))I1* = > o

M,T.Y,Z,a,(Do,D1,Dyig);
(Dg, D1, Dypig):valid and good
Do(M)=1
(D()U(M,(l),D],Dbyg)Zbad

follows.
Moreover,

o 2 |{a|(Do U (M, @), Dy, Dysg) is bad}

AMTYZDoD) Dyig o
M.T.Y,Z,(Do,D1,Dyjg);
(Do, D1, Dyig):valid and good
Do(M)=1
(DoU(M,a),D1,Dpig):bad

0] 2
< —
< o

can be shown in a similar way as we showed (5.38).
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From (5.34), (5.39), and (5.40)),

Moo (MuaiaRStOE , 4,22 — 1€))]| < 0( ;—2) (5.41)

follows. Since this inequality and (5.30) hold,

”W;badJ)“ = HRstOEﬁJ !y — W;good,l)H
= |Hva|idRstOEfo [¢/{ = Tgooa (HvalidRStOEﬁ) |¢,?Ood> 3 |E,>)”
= || loaa (ThvaiaRStOE; 16%°) — I€')) + MuaigRStOE; [4;%%) + |€)
< ||loag (TuaraRStOE ; 1% = 1€7)|| + [l + ll1e”

, 2
< [llw =] + 0(\/;) (5.42)

holds, which implies that the fourth property holds for |1//;.bad’1 We can prove the fourth property for |zpt.’ad’l> in the

same way. O

The following lemma shows how the states RstOEj |¢/) and RstOE, [1/;) change when XOR - RstOEj; act on them.

Lemma 10 (Action of XOR - RstOEy, ). Suppose that there exist i and vectors Iz,//;goc’d ) |¢/;.bad ), |z,bj9°°d ), and |d/]k.’ad> that

satisfy the four properties in or j = 1,...,i. Then, there exist vectors Ilﬁigwd’2>, ly ibad’2>, |'ﬁ?°°d’2>, and

|zp?ad’2) that satisfy the following properties.

1. XOR - RStOEy - RStOE; [¢//) = [ 2°%?) + |/°®*?) and XOR - RStOE; - RStOE, [y) = [y¥%°%7) + [y2*42),

(0).2

2. There exists complex number a MTYZDyD) Do such that
’g00d,2 i),
I 2047 = > a2y 2DoDi ey 1M T) 1Y) 12) ® D, D1, Diig)
M.T.Y,Z,(Do. D1, Drig); ®|Do(M)) |Di(T)) |Do(M) & Di(T)),

(Do, D1, Dyig):valid and good
Do(M)#LAD(T)#L

and

d,2 ),2
w22y = D v zpopie, 1M T) 1Y) 12) & 11Do, D1, Disgleman)
M, T,Y,Z,(Dy,D,Dyig);
ALY DD @ Do(M))Y Dy(T)) IDo(M) @ Dy (T))
Do(M)#LAD(T)#L

hold, where (M, T), Y, and Z correspond to ‘A’s register to send queries to oracles, register to receive answers
from oracles, and register for offline computation, respectively.

3. For each database (Do, D1, Dyig) in |d/;.g°°d’2) (resp., (Do, D1, Dgman) in |(J/?°°d’2) ) with non-zero quantum ampli-
tude, |Dg| <2(i— 1)+ 1, |[Dy| £2(i—1) + 1, and |Dyg| <i—1(resp., |Dsman| <1 —1).

) < ]+ 0 (o) anc =] < Juwpes] 0 (5 ) ot

This lemma can be shown in the same way as we showed [Lemma 9] Thus we omit to write the proof.
The next lemma shows how the state changes when RstOEg, and RstOEg, ,, act on the states XOR - RstOEj; -
RstOEy |/) and XOR - RstOEy, - RstOE |i/;), respectively.

Lemma 11 (Action of RstOE, ,, and RStOE, ). Suppose that there exist i and vectors Iglr;.gmd), Iw}bad) |¢/?°°d>, and

ijk.’ad> that satisfy the four properties in for j = 1,...,i. Then, there exist vectors |l!/ig°°d’3>, |¢ibad’3>,
good,3 ,and bad3y shat satisfy the following properties.
i i 8 prop

“Note that all the databases of RStOE; [y7,%°*) are valid, and thus TyaigRStOE , Iy, %) = RstOE, /.9 holds.
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1. RStOEyg, - XOR - RStOEj; - RStOE [¢)) = [y, %°°*%) + [y,"**®) and RstOEy,,,, - XOR - RStOE; - RstOE, [y/;) =
|l!/good,3> + |wpad,3>
i i :

. (0),3
2. There exists complex number a7, DoD1 Dog such that

’good,3 i),3
Iy 204 = > a2y 2DoDr g 1M T) 1Y) 12) ® Do, D1, Diig)

M.T.Y,Z,(Dy,D),Dyig); Do(M)) |D(T)) |Do(M D(T)),
Do Desyeicam o ® |Do(M)) |D1(T)) |Do(M) & Di(T))
Do(M)£LAD, (T)%1

and

w23y = Dy zpepie, 1M T) 1Y) 12) & 11D0, D1, Digleman)

M.T.Y,Z,(Do,D1,Doig); ® |Do(M)) |D1(T)) |Doy(M) & D1 (T
ATXZ DD @ [Do(M)) D1 (T)) 1Do(M) @ Dy ()
Do(M)#LAD(T)#L
hold, where (M, T), Y, and Z correspond to ‘A’s register to send queries to oracles, register to receive answers
from oracles, and register for offline computation, respectively.

3. For each database (Do, D1, Dyig) in It//:.g°°d’3> (resp., (Do, D1, Dgman) in It//?OOd’S) ) with non-zero quantum ampli-
tude, |Do| <2(i = 1) + 1, [D1] £2(i = 1) + 1, and | Dyig| < i (resp., | Dsmanl < i).

4 [y < =] + 0 (@) and l92%%)|| < [[ly==9 + 0 (J;) hold

Proof. From|Lemma 10} it follows that there exist vectors Iw;gom’z), |l!f;bad’2>, |t,0?°°d’2), and Itp;’ad’2> that satisfy the four
properties in|Lemma 10

Define |y, 2°°%%) := IaigRstOE, v, 2%, |y;*?) := RstOEy, - XOR - RstOEj - RstOEj [y)) — |y, 2*),
[p9°%%) i= MyaiaRStOE,, [49%°*%), and [y***3) := RstOEy,, - XOR - RStOE; - RStOEj |;) — [¢9°°®?). Then the
first property obviously holds. The second property immediately follows from and the second property in

Cemma 10p] The third property follows from the third property in On the fourth property, we have
1923 = ||RstOE,, - XOR - RstOE; - RStOEy; [y/i) — IuaiaRStOE f [087°%%)|
= | MVaiaRStOE oy (177°%%) + 1022)) = TyaiaRSIOE 4 103°*%)|

<= o=+ o =)

bad,3
i

The next lemma shows how the states RstOE, - XOR - RstOEy, - RstOEy, [//) and RstOE, - XOR - RstOEy; -
RstOEj; ;) change when RstOE}1 - XOR™ acts on them.

"bad,3

). The fourth property for |y, ) can be shown in the same way. O

Thus the fourth property holds for |

Lemma 12 (Action of RstOE}, - XOR"). Suppose that there exist i and vectors Iw;-goool ), W}bad ), W?OOd ), and Iw]t?ad) that

satisfy the four properties in or j = 1,...,i. Then, there exist vectors ItI/[QOOd’A'), Ilﬂibad’4>, |lﬁ?00d’4>, and

|¢?ad’4) that satisfy the following properties.

1. RStOE}, - XOR® - RstOEy,, - XOR - RstOE; - RstOE ; [y/) = I 2% + |y P2y and RStOE}, - XOR* - RstOEy,,, -
XOR - RStOEj; - RStOE ; |y) = [y 2% + |y22%4),

. (i),4
2. There exists complex number a, v, DoD1 Dg such that

‘good,4\ _ (i),4
|y, )= ANTYZDD Dy M TV Y 1Z)
M.T.Y,Z,(Do, D1, Doig): ® | Do, D1, Dyi) ® | Do(M)).
(Do, Dy, Dyg)-valid and good Do, D1, Doig) @ [ Do (M)
Do(M)#L

5Note that all the databases in |z//;g°°d’3) and |z//?°°d’3> with non-zero quantum amplitude are good, by definition of good database and the first

property of [Proposition 3] (the equations 3-12)~@15))
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and

good, 4\ _ (@),4
2oty = > Aty 2popi ey 1M T) 1Y) 12)
M.T,Y,Z,(Do,D1,Dyig); Do, D1, Dy Do(M
PR et o ® |[Do, D1, Dyiglsman) ® [Do(M))
Do(M)+L

hold, where (M, T), Y, and Z correspond to ‘A’s register to send queries to oracles, register to receive answers
from oracles, and register for offline computation, respectively.

3. For each database (Do, D1, Dyig) in I(//;g°°d’4) (resp., (Do, D1, Dgman) in Iw?OOdA) ) with non-zero quantum ampli-
tude, |Do| < 2(i = 1) + 1, |D1| < 2i, and | Dyig| < i (resp., | Dsmanl < i).

“W,bad 4>H < HW/’bad>H +0 (\/7) and ”Il,//bad 4>H < ”W,bad)” +0 (\/2:1) hold.

Proof. From|Lemma 11} it follows that there exist vectors Ilﬁ;goc’d’3>, Ilﬁ;bad’3>, |lﬁ?°°d’3>, and Izp?ad’3) that satisfy the four
properties in|Lemma 11

Let ITyrereg denote the projection onto the space that is spanned by the vectors corresponding to preregular states.
Note that, when we measure the states RStOE}. - XOR" - RstOE,; - XOR - RstOE; - RStOEy; |¢//) and RstOE} - XOR" -
RstOEy,., - XOR - RstOEy - RstOE; |y;), we always obtain preregular states (see (5.13)— @

Define |y 2°%*) := MgoodlTpreregRStOE), - XOR® |y 9003, |y P4y o= RStOE’, - XOR" - RstOEy, - XOR - RStOEj; -
RStOE £ [r/) — [ 3%y, [19°°%Y = Myoog Torereg RSTOE™ - XOR® [9°°%%Y, and [°2%*) := RstOE* - XOR* - RstOE ;. -
-fo i i i g P! g fi i i fi - fsmall
XOR - RStOE; - RstOE; [;) — |w?°°d’4). Then the first property obviously holds.
ince = s aj ing the first property of |Proposition A2)—(3. , we have
Since XOR* = XOR, by applying the first property of [P ition 3| (B-12)-(3-13)), we h

* * ’good,3 *
Hprereg RSTOEﬁ XOR hﬁigoo > = 1_Iprereg RStOEf] Z aj\l/l);YZD()DlDb. IM’ T> |Y> |Z>

M,T,Y,Z,(Dg,D1,Dyig); Do, D1, Dy Do(M)) |D(T
(Do Do Dot aer o ® | Do, D1, Dyig) ® |Do(M)) |D1(T))
Do(M)#LAD(T)#L
_ * MoK
= 1_[prereg RStOEﬁ Z MTYZDODIU(T @) Dyig |M’ T> |Y> |Z>
M,T,Y,Z,(Y,(D(),DI,Dbi );
(Do, Dy U(T0), Digg)-valid and good ®1Do, D1 U (T, @), Drig) ® | Do (M) |e)
Do(M)#LAD;(T)=L
_ (l) 3
= D Uy 2Dy T Doy M TY Y |Z)
M.T.Y,Z,a,(Do, D1, Dyig); .
(Do, D1U(T, @), Dyig):valid and good ®[Do, D1 V(T @), Drig) ® [Do(M))
Do(M)#LAD(T)=1

1 3
* Z N l(\ll)TYZDoDIU(Ta)Db\ IM.TY|Y)|Z)
M.T.Y,Z,a,(Dy,D1,Dyig);

(Do, D1U(T, @), Dpig):valid and good

Do(M)#LAD,(T)=L ® Do) [ ID1) = ) ——=ID1 U (T,y))||Drig)
® |Do(M))
L M, T)[Y)2)
- Z on aMTYZDoDIU(T,CY)Dbig ’
M.,T,Y,Z,a,(Do, Dy, Dyig): ® | Do, Dy U (T, @), Dyig) ® |Do(M))

(Do, D1U(T, ), Dpig):valid and good
Do(M)#LAD(T)=1

+ L a(l) 3
23n/2 MTYZDoDU(T, a/)Db
M.T.Y,Z,a,(Do,D1,Dyig);

(Do, D1U(T, @), Dyig):valid and good - @ | D) (2 Z ﬁ |D; U (T, 6)) — |D1)) | Doig)

M, T)\Y)|Z)
Do(M)#LAD;(T)=L

® |D0(M)> -
(5.43)
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Similarly,

* % ,000d,3\ _ (i),3
TpreregRSTOE, XOR® [y 9°%7) = Z Ay 20Dy oDy M- T 1Y) 1Z) (5.44)

M.T.Y,Z,a,(Do,D1,Dbig); Do. D1 U (T Dy Do(M
(DO,DIU(T,a),Dbig):validangdgood ®|Do, D1 U (T, @), [ blg]small>®| o(M))

Do(M)#LAD(T)=1

IO%
+ Z \/z—naMTYZDODIU(T,a)Dbig IM,T)|Y)|Z)
M.,T,Y,Z,a,(Do,D1,Dyig);

(Do, D1U(T, ), Dpig):valid and good 1
Do(M)#1LAD(T)=1 ® Do) | 1D1) - ; _\/2_" |Dy U (T, %)) | [ Doiglsmal)
® |Do(M))
(5.45)
1 .
()3
B Z 30 AMTYZDoD\U(T ) Dysg M, T)|Y)|Z)
M,T.Y,Z,a,(Do,D1, Dyig); ® | Do, D1 U (T, @), [ Dyiglsman) ® 1Do(M))

(Do, D1U(T, ), Dyig):valid and good
Dy(M)#LAD(T)=1

(5.46)

1 .
(@),3
+ 73n/2 Z AMTYZDoDU(T, ) D M, T)IY)|Z)

M.T.Y,Z,a,(Do,D\,Dyig);

1
(Do, D1U(T @), Dyig):valid and good _ _ .
D) Dighvalid and so0d. @ | D) (2; 5 101V (T.6)) |Dl>> I Doigsman?

® |Do(M))
(5.47)

holds. Now, the second and third properties follows from the second and third properties of| and the equations

Let |(3:44)), . . ., |(3.47)) denote the terms (5.44)—(5.47), respectively. Then
Hoag [(3-44)) = Tpaq [(546)) = 0 (5.48)

since all the databases in (5.44) and (5.46)) are good.
If a tuple (T, (Do, D1, Dyig)) satisfies that D1 (T) = L and (Do, D1, Dyig) is bad, then the number of « such that

1. (Do, D1 U (T, @), Dyig) is good, and
2. there exists M’ such that Do(M’) # L and [Dyiglsman(Do(M’) ® @) # L

is at most |Dy| - | Dpigl < 2i%. In addition, if a tuple (T, (Do, D1, Dyig)) satisfies that D (T) = L and (Do, D1, Dyig) is
bad, then there does not exist @ such that

1. (Dy, D1 U (T, @), Dyig) is good, and
2. there does not exist M’ such that Do(M") # L and [Dyiglsman(Do(M’) ® @) # L.

Therefore,
2
1 N3
Hbad Z \/Z_nag\il)}YZD()DIU(T,(I)Dbig |M9 T> |Y> |Z>
M.T,Y,Z,a,(Do, D1, Dyig);
(Do, DyU(T 0), Digg) valid and good ® | Do, D1, [Dyiglsman) ® [Do(M))
Do(M)#LAD (T)=L
2

- 3 a3 M. T 1Y) |2)
= \/z—naMTYZDODIU(T,a)Dbig ’

M,T,Y,Z,a,(D[),Dl,Dbi );
(Do D1, Doig): bad ® | Do, D1, [ Dyiglsmaiy ® [Do(M))
(Do, D1U(T,a), Dyig):valid and good
Dy(M)#LAD(T)=1
AM’s.t.Do(M")# LA[Dyiglsmai (Do (M) &a)#L
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1

= — (@),3
= on Z AMTYZDyD U(T, @)Dy
M,T.Y,Z,(Do,D1,Dyig); a;
(Do, D1, Dyig): bad (Do, D1U(T, @), Dpig):good
Do(M)#1LAD(T)=1 AM’s.t.Do(M")# L A[Doiglsman (Do(M") ®a)# L
) 2
< 2" 203
= on MTYZDoD,U(T,@)Dyig
M.T,Y,Z,(Dy,D1,Dyig); a@;
(D, D1, Dyig): bad (Do, D1U(T, ), Dyig):good
Do(M)#1LAD(T)=1 AM’s.t.Do(M")# L[ Dyiglsmain (Do(M") ®a)# L
l'Z
< —
<0 ( 2n) (5.49)

holds.

In addition, if a tuple (7, (Do, D1, Dypig)) satisfies that D{(T') = L and (Do, D1 U (T, ), Dyig) is bad, then the number
of @ such that

1. (Dy, D1 U (T, @), Dyig) is good, and
2. there exists M’ such that Do(M’) # L and [Dyiglsman(Do(M’) ® @) # L

is at most | Dg| - | Dpigl < 2i. Therefore,

2
n 3 L3 M, T) 1Y) 12)
bad @aMTYZDODI U(T,@)Dyg '
M.T.Y,Z,a,(Dy,Dy, Dyig);
(Do, D1U(T, ), Dpig):valid and good 1
Dy(M)#1AD (T)=1 ® Do} | > —= D1 U (T, 7)) | I Daiglsman)
AM’s.t.Do(M")# L A[Dpiglsman (Do(M") ®a)# L p \2n
® |Do(M))
2
- 2 M, T) ¥} 12)
= 21 CMTYZDD (T ) Dig 1™
A?i;’gi?gé?gi;’gﬁ;’ ® |Do, D1 U (T, ), [Dbig]small> ® |Do(M))
Do(M)#LAD(T)=1
(Do, D1U(T,y), Drig): bad
AM’s.t.Do(M’)# LA[Dyiglsmai (Do (M")&a)#L
2
_ 1 Z (i3
- 22n AMTYZDoD U(T, @)Dy
M,T.Y,Z,y,(Do,D1,Dyig); @;
(Do, D1U(T ,y), Dyig): bad (Do, D U(T,a), Dyig):good
Do(M)#LAD|(T)=L AM’s.t.Dg (M’)#J_/\[Dbig lsmail (Do(M") ®a)#L
%) 2
< 27 3 L3
= 22n MTYZDoDU(T, ) Dy
M,T,Y,Z,y,(Do,D1,Drig); a;
(D, D1 U(T,y), Dyig): bad (Do, D1U(T, ), Dyig):good
Do(M)#LAD(T)=L AM’s.t.Do(M’)# LA[Dyiglsmai (Do (M) ®a)# L
) 2
< 27| o3
= o |4MTYZDyDU(T.a)Dyg
M.,T.Y,Z,a,(Do,D1,Dyig);
(Do, D1U(T, ), Dpig):good
Do(M)#LAD,(T)=L
HMlS.t.D()(M')#L/\[Dbig]smau(Do(M’)GBO{)#J_
12
<0 (2—n) (5.50)
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holds. Moreover, if a tuple (T, (Do, D1 U (T, @), Dyig)) satisfies
1. D{(T) = L and (Dgy, D1 U (T, ), Dyig) is good, and
2. there does not exist M’ such that Do(M’) # L and [Dyiglsman(Do(M’) ® @) # L,
then the number of y such that (Do, D1 U (T, ¥), Dyig) becomes bad is at most [Dy| - | Dpig| < 2i2. Therefore,

2
n 3 L3 M, T) 1Y) 12)
bad @aMTYZDODlu(T,(z)Dbig ’
M,T.Y,Z,a,(Do,D1,Dyig);
(Do, D U(T,a), Dyig):valid and good 1
Do(M)#-LADy (T)=L ® Do) D" — ID1 U (T, %)) | I Diglsma)
IM’s.t.Do(M")#LA[Dpiglsman (Do(M") @a)# L p V2n
® |Do(M))
2
- EOx IM.T)IY)12)
= 2n CMTYZDD U(T a)Dyg 1™
Afg)%?jﬁ;f?gé;;z;ﬂ%); ® | Do, Dy U (T, y), [ Doiglsman) ® |Do(M))
Do(M)#LAD; (T)=L
(Do, D1U(T ), Drig): bad
AM’s..Dy(M")#LA[Doiglsman (Do (M) @) # L
2
(@),3
B Z AMTYZDyD (T, @)Dy
- n
M,T.Y,Z,y,(Do,D1,Dyig); @; 2
(Do, D1U(T y), Dyig): bad (Do, D1U(T ), Dyig):good
Do(M)#LAD; (T)=L AM’s.t.Do(M")# LA[Dyiglsman (Do (M") ®a)# L
(i),3 2
AMTYZDyD1U(T, @)Dy

IA

2 T
M.T.Y,Z,y,(Do,D1,Duig); @;
(Do, D1U(T,y), Dyig): bad (Do, D1U(T, ), Dig):good
Do(M)#LAD(T)=1 AM's.t.Do(M")#LA[ Dpiglsman (Do(M’)®a)#.L

_ 03 2
= AMTYZDoD1U(T, @) Dyig
M.T,Y,Z,a,(Do, D1, Duig); .
(Do, D) (T’ 2), Digg):200d [{7|(Do. D1 U (T 7). Dyig) is bad}|
Do(M)#LAD,(T)=L . o
IM’s.t.Do(M’)#LA[Dpiglsman (Do(M") @a)# L
2
i
<o(3)
holds. From (5.50) and (3.531)),
2
H L3 IM.T)IY)|12)
bad —AMTYZDoD,U(T,@)Dyg '™
M.T.Y.Z.a.(Do. Dy, Dyg):
(Do, D1U(T @), Dyjg):valid and good 1
DoM)#ADIT)=1 & [Do)| D —=1D1 U (T,7)) | I Doiglsma)
y V2!
® |Do(M))
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follows.

Since (3.49) and (5.32) hold, we have

Mpaq |S- 45D < 0(\/7) Mpaq |EA7P)II < 0<\/7) (5.53)

”HbadnpreregRStOEf XOR* |¢9°°°'3>” < 0( ;)

Therefore,

follows from (3.44)—(5.47), and (5.48) and (5.53). Thus we have
5] - [RtOE;, - XOR - Ro0Es, - XOR RO, et i) - )|
= ||MTpreregRSOE; - XOR® (16/9°°*%) + [42%?)) — MgooalTprereg RStOE XOR" |22
< [ MoadTpreregRSIOE - XOR* [y + [[l23)|

<Jop=nf+o( V2 ) < o=l <o {Z)

which implies that the fourth property for Itp?ad’4) holds. The fourth property for Iw;badA) can be shown in the same

way. mi
Proof of[Proposition 16 'We prove the proposition by induction on i. The claim obviously holds when i = 1 by setting
%) = 0 and [yp*) = 0

Suppose that the claim holds for i = ,k for some k. Then, by |Lemma 9| [Lemma 10} |[Lemma 11} and
i:emma 121, there exist vectors |y ‘good, 4) |¢/ ‘bad 4) |wg°°d 4) and |¢/bad4) that satisfy the first, second, and third

properties in[Lemma 12| and

ol < = o). ool < i o5 ) 559

hold. Moreover, in the same way as we showed we can show that there exist vectors [y goody |y Pady,

k+1 k+1
|1//2T;d) and IJ,//]ET{) that satisfy the first, second, and third propertles in [Proposition 16} and

izl < Bl +o(y/%). el < he=l+ o5 559

hol From (5.54) and (5.53), it follows that |lﬂ;<gfi) b, Iy 22, Iwgiold>, and |29) also satisfy the fourth property of
Therefore the claim of [Proposition 16]also holds for i = k + 1, which completes the proof. mi

Now we can show
Proof of [Proposition 14 Since FSFy;, is completely indistinguishable from a random function, we have that

PRF is
Advig' (A) = Advig

FSF smalls FSFbig (A

holds. In addition, since [Proposition 16| holds, by applying[Proposition 15} we obtain
dist i i q4
AdVEE rse, (D < DL Ol |+ D0 0V <05 ) (5.56)
1<i<q 1<i<q

which completes the proof. O

5.2.6 Finishing the Proof of
immediately follows from [Proposition 13|and [Proposition 14}

SRStOE}, XOR" in the proof of corresponds to Uy RstOE, in this proof. Uy is the unitary operator that corresponds to A’s offline
computation after the k-th query.
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Chapter 6

Tight Quantum Security Bound of HMAC
and NMAC in the QROM

This chapter contributes to understanding (post-)quantum security of symmetric-key cryptography mainly from the
practical perspective. HMAC and NMAC are the most basic and important construction to convert Merkle-Damgéard
hash functions into PRFs. There already exists a previous work on quantum security of HMAC and NMAC [SY17]
in the standard model, but it guarantees the security only up to O(2"/%) or O(2"/®) quantum queries in the QROM.
This chapter proves that O(2"/3) is the tight quantum security bound of HMAC and NMAC in the QROM (for short
messages). The gap between O(2"/3) and O(2"/%) (or O(2"/?)) is significant in practical use cases. The result of this
chapter shows that we can achieve a highly quantum-secure PRF and MAC from a hash function (or, a compression
function of fixed input-output length) by using HMAC and NMAC. See also for a more detailed overview,
and [Section 1.7 for the relationship of the results in this chapter with those in other chapters.

The organization of the chapter is as follows. discusses about the security bound given in the previous
work [SY17]. [Section 6.2] provides a technical overview of our security proofs. [Section 6.3|introduces a few technical
lemmas that are used in later sections. [Section 6.4]proves a proposition that is the technically hardest part in our proofs.

[Section 6.5] provides the security proofs of HMAC and NMAC by using the result of Note that this chapter
focuses on information-theoretic adversaries.

6.1 On the Security Bound Given in [SY17]

This section explains why the result in [SY17] guarantees security of NMAC up to O(2"/®) or O(2"/3) quantum queries
when the compression function is ideally random. (Almost the same arguments apply to HMAC.)

We can reasonably deduce that the security is guaranteed up to O(2"/8) quantum queries, and have the bound
0(2"/3) instead of O(2"/8) if we assume a conjecture.

First, we describe the original result on NMAC in the standard model (under the assumption that the compression
function is a qPRF), and then translate it into the corresponding claim in the quantum random oracle model where the
compression function is a random oracle.

6.1.0.1 The Original Result on NMAC

Let f: {0, 1" x {0, 1}* — {0, 1}"* be a function, and for each K € {0, 1}" let fx denote the function fx(x) = f(x||K).
For an adversary A and the keyed function fx, define the gPRF advantage under random leakage by

AdvE (A = Pr[1 e« ARH (HEK))| - Pr[1 « A )], ©.1)

where p : {0, 1}" — {0,1}* and H : {0, 1}'* — {0, 1}"* are random functions, and w i {0, 1}".
In the previous work, Song and Yun showed the following proposition.

Proposition 17 (Theorem 5.2 in [SY17]]). For any adversary ‘A that makes at most Q quantum queries to NMAC or a
random function, where the length of each message is upper bounded by m - {, we can construct adversaries Ay and
A, such that

AT () < AR 30 1O AT 62
K. Ky
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where Ay makes at most Q quantum queries to fx or a random function, and A,; makes at most 4Q queries to fx or
a random function and at most 6Q queries to H.

6.1.0.2 Translation of into the QROM

(V] ’ i f 1 ’ ’ i 1 j @9 we can deﬁ]le tlle qI R ad n age unde] |a][(l()||l
1 akage by I va

) (6.3)

where p : {0, 1} — {0, 1}" and H : {0, 1}"* — {0, 1}" are random functions that are independent of f.

In what follows, let us assume m = n for simplicity. Then, the proposition in the QROM (where the compression
function f is a quantum random oracle) that correspond to would be like the following proposition,
though we do not provide a formal proof.

Proposition 18. For any adversary A that makes at most Q quantum queries to NMAC or a random function and the
quantum random oracle f, where the length of each message is upper bounded by m - £, we can construct adversaries
Ay and Ay such that

AT () < AV (A + 0 (\/€2Q3 : Advii’RF'rl<ﬂrz)), ©4)

;
NMACL

where Ay makes at most O(Q) quantum queries to fx or a random function and at most O(Q) quantum queries to
the random oracle f, and A,; makes at most O(Q) quantum queries to fx or a random function and at most O(Q)
quantum queries to the random oracles f and H.

Let Advqll:RF(Q) 1= max g Ade;RF (A) and Adv%lzRF'ﬂ(Q) ‘= max g AdV;ERF_ﬂ(ﬂ), where the maximum is taken
over all adversaries that make at most Q queries to each oracle. Then,

Adv;i:RF(Q) < Adv;:RF'f‘(Q) (6.5)

apparently holds since some information on K is leaked via H (when (A runs relative to fx).
Now, let us assume PREAL oRE
AdvI(Q) = AV (0),

which may overestimate (but never underestimate) the security claim shown in Then

2
Adv;i::RF'ﬂ(Q) - Adv;:RF(Q) <0 (\/g—n) (6.6)
holds by Lemma|[T3] Therefore,
4.8
gPRF a0
Advl (s 0( i ) 6.7)

follows from (6.4). When ¢ = O(1), the inequality (6.7) guarantees the security of NMAC only up to O(2"/8) queries.

6.1.0.3 The Bound O(2"/°) Based on a Conjecture

The final bound is based on Lemma[I3] which provides the current best gPRF security bound of fx in the QROM
as far as we know. However, we are not sure if the bound is tight because we do not know any distinguishing attack that
matches the bound of Lemma[T3]

If we assume the following conjecture instead of (6.6)), we obtain the bound O(2"/°) instead of O (2"/8).

Conjecture 1. It holds that Adv%lzRF'rl (Q) = Advi Q) < 0 (0*/2")

If we assume this, from (6.4) we obtain

AR ) < 0( (6.8)

Y
NMACK .,

{72 . QS
on

instead of (6.7). When ¢ = O(1), the inequality (6.8)) guarantees the security of NMAC only up to O(2"*/3) queries.

I'This bound matches the bound by the Grover search.
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6.2 Technical Overview

Let 2 : {0, 1} — {0, 1}" be a quantum random oracle. The technically hardest part to prove the security bound of
HMAC and NMAC is to show the indistinguishability of the function F lh(u, v) := h(v, f(u)) from a random function,
where u € {0,1}",v € {0, 1}, and f : {0, 1}" — {0, 1}" is a random function that is independent of s. (Adversaries
have a direct oracle access to the quantum random oracle £, but only indirect access to f. That is, adversaries can query
to f only through queries to F”, and cannot observe the output values of f. See also ) Once we show the

indistinguishability of F”, the remaining proofs can be done with simpler proof techniques. It turns out that previous

g

_‘v“ F,(u,v)

Figure 6.1: F lh and F;. h is a quantum random oracle that adversaries can directly access. f and g are random functions
that are independent from #.

techniques cannot be directly used to prove the indistinguishability of F’ lh Thus we introduce a technique which we call
equivalent databases.
Recall that we denote the distinguishing advantage of an adversary A between (pair of) oracles (O™, h) and (O, h)

by AdV‘(h(;th 1.0l (A), where h is a quantum random oracle and (){1 depends on 4. Let RF be a random function that
1), (0,

is independent of h. As we described above, the technically hardest part to show the tight security bound of HMAC
and NMAC is to show the following proposition.

Proposition 19 (Technically hardest proposition to show, informal). If A makes at most q queries to each oracle,
dist 3
Adv(Flh,h),(RF,h) < 0O(Wq?/2™) holds.

Let F; be the function defined by F>(u, v) := g(u, v, f(u)), where g : {0, 1} x {0, 1} x {0, 1} — {0, 1}"* is another

: : : : : dist _ dist
random function (see also |[Fig. 6.1). Then, since g is a random function, AdV(Fl",h),(RF,h)(ﬂ) = AdV(F]h,h),(Fz,h)(ﬂ)

holds. In what follows, we present an overview of how we show

dist .
Adv(?{',h),(Fz,h)(ﬂ) <0 (\/‘1 /2 ) (6.9)

instead of directly showing [ For bit strings x and y, we identify the concatenation x||y and the pair
(x, ).

Following usual terminology on provable security in symmetric-key cryptology, we call (direct) queries to & offline
queries because h is an ideal model of a public function that adversaries can compute offline. In addition, we call
queries to F, lh and F, online queries because the oracles of F lh and F, model the keyed functions that adversaries can
compute only by making online queries.

6.2.1 Classical Proof Intuitions

If our goal were to show the indistinguishability of F]h and F, in the classical setting, we could show it based on the
following idea by using the lazy sampling technique to f, g, and A:

If A cannot guess outputs of f, and outputs of f do not collide, then the outputs of Flh and F, seem
completely random and indistinguishable.

More precisely, a (classical) adversary A cannot distinguish F’ lh and F; as long as the following two bad events hit and
coll do not happen[|

2We consider F instead of RF so that there exists a useful correspondence between “good” databases for F' lh and those for F», which we will
elaborate later.
3We use the symbols # and ¢ to denote n-bit strings and v to denote an m-bit string.
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hit: A succeeds in guessing a previous output of f and queries it to 4. That is, A has queried u||v’ to the online
keyed oracle (Flh or F,) before, and now A queries v|| f («) to h (for some v € {0, 1}'™).

coll: A new output of f (which is sampled during an online query) happens to collide with either of (a) a previous
output of f, or (b) the least significant n-bit { of a previous offline query v||{ to A.

Our proof for the classical indistinguishability would be as follows: First, we show that Flh and F, are completely
indistinguishable as long as hit and coll do not happen. Second, we show that Pr[hit] and Pr[coll] are small. Let
coll; denote the event that coll happens at the i-th query. Then, by using the randomness of outputs of f, we
can show Pr[coll;] < O(i/2") for each i, which implies that Pr[coll] < ., Prlcoll;] < i<, O@/2") =
O(g?/2™). Similarly, Pr[hit] < O(g*/2") can be shown. (Actually there exists a qualitative difference between the
proof for Pr[coll] < O(q2 /2™) and that for Pr [hit] < O(q2 /2™), which will be explained later). Hence we can show

Adv‘(j;f‘h N h)(?{) < Prcoll] + Pr[hit] < O(¢?/2") in the classical setting.
1), (P,

6.2.2 How to Show Quantum Indistinguishability?

When we show the quantum indistinguishability of Flh and F,, it is natural to combine the above classical idea with
some quantum proof techniques developed in previous works. Indeed, our first idea toward a quantum proof is to
combine the above classical idea with a quantum technique used in [Chapter 4] and [Chapter 5] [f] However, actually it
turns out that they cannot be simply combined. The issue is attributed to our situation where we have to deal with the
bad event hit that “A’s offfine query to & collides with a previous output of f in the online oracle”.

Below, we explain (1) an overview of the quantum proof technique in [Chapter 4| and [Chapter 5| (2) what kind of
issue arises if we combine the above classical idea with the previous quantum technique, and that (3) we can solve the
issue by introducing a new proof technique which we name equivalent databases.

6.2.3 Proof Technique in (Chapter 4/ and |[Chapter 35|

Roughly speaking, we showed quantum oracle indistinguishability of certain two oracles in[Chapter 4/and [Chapter 5|as
follows.

1. Suppose that random functions from which the oracles are built (in our case, f, g, and &) are implemented by
using RstOE so that we can use intuitions of classical lazy sampling in quantum proofs to some extent (let Dy,
Dy, and Dy, denote databases associated with RstOE for f, g, and A, respectively, which correspond to transcripts
of queries in the classical setting).

2. Based on classical proof ideas of using good and bad events, define the notion of good and bad for tuples of
databases (in our case, (Dy, Dy,) for Flh and (Dy, Dg, Dy,) for F3) in such a way that

(a) There exists a one-to-one correspondence between good databases for one oracle (in our case, good databases
(Dy, Dy) for F, lh) and good databases for the other oracle (in our case, good databases (Dy, Dg, Dy,) for F>).

(b) The behavior of one oracle (in our case, F' lh) on a good database is the same as that of the other oracle (in
our case, F>) on the corresponding good database.

3. By using (a) and (b), show that the oracles (in our case, the pairs of the oracles (F] h h) and (F, h)) are completely
indistinguishable as long as databases are good.

4. Show that the probability (in some sense) that good databases change to bad databases is very small at each query.

Note that, unlike the classical setting, even if the record “x has been queried to f and responded with y” is stored in a
database Dy for f, there is a possibility that the record will be overwritten as “x has not been queried to f before”, or
“x has been queried to f and responded with y’” for some y” such that y # y’. Hence it is not necessarily trivial how
to define good and bad databases in such a way that we can formally prove both of (a) and (b) hold.

Next, we explain what kind of issue happens when we apply the above idea to our situation. In short, the issue lies
in the last one of the above four steps.

4 In Zhandry’s paper that introduced the compressed oracle technique, quantum indifferentiability of the fixed-input-length Merkle-Damgad
construction is proved [Zhal9]. Note that the variable-input-length Merkle-Damgéad construction that is used in HMAC and NMAC is not
indifferentiable in the random oracle model even in the classical setting [CDMPO03]|. In addition, the security bound of the indifferentiability is proved
up to O(2"*/*) (but not O(2"/3)) quantum queries in [Zhal9]. Thus, we start from the proof technique used in lChapter 4| and lChapter 5| instead
of [Zhal9].
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6.2.4 An Issue with Our Situation

In[Chapter 4]and [Chapter 3} each adversary can access to only a single keyed oracle. Roughly speaking, a good database
changes to bad only when a fresh value x is (indirectly) queried to a random function RF, and the newly sampled value
y := RF(x) happens to collide with an existing record in a database (i.e., a bad event that correspond to coll in our
situation).

On the other hand, in our situation, a good database also changes to bad when an adversary succeeds to query v||{
to h such that { collides with a previous output of f (i.e., hit occurs).

This difference causes an issue to prove that the “bad” probability is small. Unlike the lazy sampling that always
chooses values uniformly at random, (quantum) adversaries can choose offline (quantum) queries to A arbitrarily and
adaptively. Thus, an adversary may have strong ability to succeed to cause hit, even if the probability of coll is small.

Note that how to deal with adaptive queries to offline queries is not an easy issue even in the classical setting. To
reduce the arguments on adaptive queries into those on non-adaptive arguments, sophisticated proof techniques such as
the coefficients H technique [PatOS] are usually used.

6.2.5 How to Solve the Issue

Our key intuition to solve the issue is, for arbitrary good database (Dy, Dy,) for F lh that an adversary (A is trying to
change to be bad, there would be sufficiently many good databases (D7, D;) that A cannot distinguish from (Dy, D).

Suppose that (I) A is running relative to F’ lh and A, and has made (i — 1) queries in total, (I) both of the bad events
coll and hit have not happened, and (III) now A chooses a bit string #|| to query to &, trying to cause hit at the i-th
query.

Let Dy and Dy, be the current databases for f and & (before the i-th query). Then there exist uy, ..., u, a1y, ...,

€ {0,1}" (s <i—1)such that Dy = ((u1, @1), ..., (us, ay)). Intuitively, a; is equal to f(u;). Since bad events have
not happened yet, Dy does not contain any collision (i.e., a; # a; fori # j).

Let hit; denote the event that hit occurs at the i-th query (to 4). Then, hit; occurs when A successfully chooses a
value 7| such that { = a; holds for some j. Our current goal is to prove that Pr [hit;] is very small.

To achieve this goal, we show that Pr [hiti‘ﬂ chooses 7| ] is very small for arbitrary ¥||Z, by focusing on the

freedom of the choices of the values f(u1) = a1,..., f(us) = a. Intuitively, even if the value o;(= f(u;)) in the
element (uj, @;) € Dy is replaced with another value aj’., A does not notice since A does not observe output values of
f. This means that the choices of the values f(u;) = a1, ..., f(u) = ag have some degree of freedom, even after A has

chosen which value 7|| to query to 2. We use this degree of freedom to bound the probability Pr [hiti ~]
(actually we will show a stronger result).

To provide a proof based on the above intuition, we introduce the notion of equivalent databases as follows.

Definition 3 (Equivalent database, informal). A (good) database (D}, D;) is said to be equivalent to (Dy, Dy) if
|D}| = |Dy|, |D”1| = |Dy,|, and (D’,, D;l) is equal to (Dy, Dy,) except for the choices of the output values of f.

We present an example to illustrate the intuition on equivalent databases. Let Dy := ((u1, 1), (uz, a2)) and
Dy = ((villay, wr), (vél)llag, wél)), (v§2)||a'2, wéz)), (v3ll£3,w3)). This corresponds to the situation where u||vy,
us| Ivél), us| |v£2) have been queried to F”, and v3||£3 has been queried to 4. See also The adversary observes
that FI'(u|lvi) = wi, Fl@alv$?) = wi”, Flua|v§?) = wi?, and h(vs]1¢3) = w3, but does not know the values
a1 = f(u) and az = f(u2). Suppose ay, @y, {3 are distinct, which implies that (D, Dy,) is a good database. Then,
another good database (D, D;l) is equivalent to (Dy, Dy,) if and only if there exist a; and aé such that a/;, a/é, {3 are

. L. 1 1 2 2
distinct, D} = ((u1, @}, (uz, @3)), and D}, = (vl wp), 0 llag wi), 02 llag wi®), (3113, w3)).

121

e
@ h @ h e

u;n

Figure 6.2: The situation that corresponds to the good database (Dy, D). The adversary has no information on a1 and
a; expect that @, @, {3 are distinct. We say that another good database (DJQ, D, ) is equivalent to (D7, Dy ) if and only
if (Dy, Dy) is equal to (Dy, D) except for the choice of the values for @y and .
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Let Equiv(Dy, Dy,) be the set of good databases that are equivalent to (Dy, D). Then, intuitively, the following
properties hold:

1. The probability that a database happens to become (Dy, Dy,) (after A made (i — 1) queries) is equal to the
probability that the database happens to become (D%, D;), for any (D7, D;) € Equiv(Dy, Dy).

2. The ratio between (I) the number of (D7, D;) € Equiv(Dy, Dy) that leads to the bad event hit; (i.e., a; = Z for
some j) and (II) the size of the entire set Equiv(Dy, Dy,) is at most about ~ |Dy|/2" < O(i/2").

From the above two properties it follows that, for arbitrary 7| IZ and arbitrary good (Dy, Dy,),
Pr [hiti‘ﬂ chooses || A database is equivalent to (Dy, Dh)] <0 (i/2")

holds. This implies that Pr [hit;] < O(i/2").
The above explanations are in fact based on classical intuitions. To show they also work in the quantum setting, we
carefully analyze quantum amplitude (complex coefficients) of state vectors.

6.2.6 Finishing the Proof

Now we have Pr [hit;] < 0(2%) in the quantum setting. We can also show Pr [coll;] < 0(2’%) with the technique in
[Chapter 4|and [Chapter 5]

In the classical setting, the distinguishing advantage is upper bounded by Adv?;;fﬁ1 I).(Fok) (A) < Pr[hit]+Pr[coll] <
|-, (F2,

Yi<i<q Prihit;] + 31 <i<q Pricoll;]. On the other hand, roughly speaking, the quantum distinguishing advantage is

upper bounded by Adv‘(iifth ). (Fy h)(ﬂ) < Yi<i<q VPr[hit;] + 31 i<, VPr[coll;]. Therefore, we obtain the bound as
), (Fy,

Adv‘(j;f‘h .(Fy h)(ﬂ) < Yi<i<q O (\/i/Z”) + Xi<i<qg O (\/i/Z”) <0 (\/q3/2") in the quantum setting, instead of the
1 h), (Fa,

classical bound O(g*/2").

The intuition behind the notion of equivalent databases might seem simple or even trivial, though, the important
point is that we can provide a rigorous proof that the intuition actually works in the quantum setting through RstOE.
(Recall that it was unclear how to record quantum queries before the development of the compressed oracle technique.)

As we mentioned before, it is quite important to show the tight security bound in symmetric cryptology because
even the improvement from 0(2"/°) (or 0(2"/8)) to O(2""/3) has significant importance in the real world. Bad events
like hit that an adversary succeeds to guess an output of a random function often appear in classical provable security
for symmetric-key cryptosystems. To deal with such bad events when showing quantum tight security bounds, proof
techniques like our equivalent databases seem indispensable. We believe that our technique broadens the applicability
of quantum provable security in symmetric-key cryptology.

6.3 Some Technical Lemmas

Here we introduce two technical lemmas for later use.

Lemma 13 (Lemma 2.2 of [SXY18]]). Let h : {0, 1} — {0, 1}"* be a quantum random oracle. For a random key
e {0, 1} (k < m +n), define F,h< {0, 1Yk 0, 1) by F,h< (x) = h(x||K). Then, for each quantum adversary
A that makes at most g, quantum queries to h, AdV(;P,FF(ﬂ) <0 (qh/ 2K/ 2) holds.
K
Lemma 14. Let h : {0, 1} — {0, 1}"* be a quantum random oracle, and k < m. Let A € {0, 1} and IV € {0, 1}" be
public constants such that A # 0™. Define p" : {0, 1}¥ — {0, 1}** by p*(K) = h(K||0" || IV)||h((K]|0™ & A)||IV).
Then, for any quantum adversary A that makes at most q;, quantum queries to h, Advgl;RG (A)<O0 (qh/ 2K/ 2) holds.

can easily be shown by slightly modifying the proof of (Lemma 2.2 in [SXY18]), but we

give a proof below for completeness.

5This holds due to the following reasoning. For simplicity, assume that nothing has been directly queried to h before, and D¢ has (i — 1) entries

(u1, 1), . . ., (ui-1, @;—1) (other cases can be shown similarly). Then |Equiv(D s, Dy )| is equal to the number of choices of the tuple (a1, . . ., @;-1)
such that @j # ay for j # k. Hence |[Equiv(Dy, Dy )| = (12111) In addition, the number of (D}, D;q) € Equiv(Dy, Dp,) such that @; = Z for some
Jis = 1)+ (7). Thus the ratiois (i = 1) - (75)/ (7)) = ity < OG/2™).
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6.3.1 Proof of Lemma 14
To show [Lemma 14] we use the following lemma.

Lemma 15 (Lemma C.1 in [SY17]). For a bit string K € {0, 1} that is uniformly chosen at random, let gk : {0, J L
{0, 1} be the function such that gx (x) = 1 if and only if x = K. In addition, let g, : {0, 1}* > {0, 1} be the Sfunction
such that g, (x) = 0 for all x. Then, for a quantum adversary A that makes at most q quantum queries to gx or g,,

AV (A) <0 (2,(;’/2) (6.10)

holds.
First, we show that the lemma below follows from [Cemma 13}

Lemma 16. Let A € {0, 1} be a public constant such that A # 0" and suppose that k < m. Let g;?(A) {0, 1} — {0, 1}
be the function such that g™ (x) = 1 ifand only if x = K||0"* or x = (K||0"*)®A (K € {0, 1}¥ is chosen uniformly
at random). In addition, let g, : {0, 1}" — {0, 1} be the function such that g, (x) = 0 for all x. Then, for any quantum

adversary A that makes at most q quantum queries to g;m) org.,

QY () <0 (ﬁ) 6.11)

holds.

Proof. We construct an adversary 8 to distinguish gx and g, that makes at most O(gq) queries from the adversary A
to distinguish g;?'(A) and g, as follows: B is given access to the quantum oracle of a Boolean function G (G = gk or
g.). First, B runs A. When A queries x to its oracle, 8 performs the following procedure and responds to A:

1. If k < m, and both of the least significant (m — k) bits of x (which we denote by [x]isb(m—k)) and x @ A (which
we denote by [x @ Alisbm-k)) are not equal to ok, respond to A with 0.

2. If k = m, or [xX]isbm—rk) = 0"7K, or [x & Alibm—r) = 0", then:

(a) Setb; <« 0and by « 0.

(b) If & = m or [x]isb(m—-k) = omk, query the most significant k bits of x (which we denote by [x]msbk)) to G,
and set by « G([x]msb(k)).

(c) If k = mor [x ® Alisb(m—k) = 0™~ query the first k bits of x & A (which we denote by [x ® Almsb(x)) to G,
and set by < G([x © Almsb(x))-

(d) Respond to A with by V b,.

Finally B returns A'’s last output as its own output.
Then, B perfectly simulates g;m) or g, depending on whether G = gk or g, , and 8 makes at most O(g) quantum

queries. Thus

AV, () = AdVES (8) <0 (35) 6.12)

follows from m]
Next we show the following lemma.

Lemma 17. Ler h : {0, 1} — {0, 1}" be a quantum random oracle, and let k < m. For a randomly chosen key
K € {0, 1}k and a public constant A € {0, 1} such that A # O™, define a keyed function FI@ {0, 1} x {0, 1}'* — {0, 1}"
by, for each b € {0, 1} and x € {0, 1},

h(K||0m* ifb =0,
FlL(b,x) = (Kl _,'('x) i (6.13)
h((K[I0"F @ A)llx)  ifb=1.
Then, for any quantum algorithm A that makes at most qy, quantum queries to h,
GPRF qn
AV () < 0 (2k7) (6.14)

holds.
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Proof. Let Hy : {0,1} x {0,1}" — {0, 1}" be a random function that is independent of 4. In addition, let H?’HO :

{0, 1} — {0, 1}"* be a function defined by, for each @ € {0, 1} and x € {0, 1}",

h(allx) ifa # K|[|0" % and @ # K||0" @ A,
" (allx) = { Ho(0.x)  if & = KIJ0" %, (6.15)
Ho(L,x) ifa=K||0"*®A.

Then the distribution of the functions (F, &) and the distribution of the functions (Ho, H ]h’HO) are the same. Thus

gPRF _ dist
AdvFI,z (A) = Adv, e, oy (D)
< A dist A dist
- dV(F,’;Jz),(Ho,H]’"”0)(ﬂ)+ dV(Ho,Hf"”O)xHo,h)(ﬂ)
= Adv¥® (A) (6.16)

h,H,
(Ho,H," "), (Ho,h)

holds.
We construct an adversary B to distinguish g}?'(A) and g, from the adversary A to distinguish (Hy, H{"HO) and

(Ho, h) as follows: B is given access to the quantum random oracle of a Boolean function G (G = g;?'(A) org,). 8B
first samples random functions A’ : {0, 1} — {0, 1}"* and Hé - {0,1} x {0, 1}'* — {0,1}", and runs A. When A
makes a query to the first oracle (which is supposed to be Hp), B responds by using Hj. When A makes a query a||x

h,Hy

(a € {0,1}" and x € {0, 1}"") to the second oracle (which is supposed to be H

and respond to A:

or h), B runs the following procedure

1. Query a to G.
2. If G(a) = 0, B responds to A with A’ (a||x).
3. If G(a) = 1 and [Alisbm—r) # 0™, then
(@) If [@]iso(m—k) = 0%, B responds to A with H}(0, x).
(b) If [alisbom—k) # 0%, B responds to A with H{(1,x).
4. If G(a) = 1 and [Alibon-r) = 0", then

(a) If @ < @ ® A (here we regard @ and a @ A as integers in {0, . . L2k-1)), B responds to A with H(’)(O, X).
(b) If @ > @ ® A, B responds to A with Hj(1, x).

Finally B returns A'’s last output as its own output.

Then, B perfectly simulates (H, th’HO) and (Hy, h) depending on whether G is gre'(A)

or g, and 8 makes at most

K
O(qp) quantum queries. Thus
dist — dist < q_h)
dv(Ho,HI’”H"),(HO,h)(ﬂ) Advg,;,(m,gL (B)<O0 (Zk/2 (6.17)
follows from which completes the proof. ]

Now we show
Proof of[Lemma 14 Lemma 14 immediately follows from [Lemma 17} since adversaries to distinguish p”(K) and a

random 2n-bit string can be regarded as special adversaries to distinguish F 1}; and a random function that query only
(0,1IV)and (1,1V) to F I’} (or the random function). |

6.4 Main Technical Proposition

The goal of this section is to show the following proposition, which is the technically hardest part to show quantum
security of HMAC and NMAC. Note that the proposition is a formal restatement of [Proposition 19]in[Section 6.2}
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Proposition 20. Ler i : {0, 1} — {0, 1}" be a quantum random oracle. Let f : {0, 1m0, 1} be a random
function, and Flh {0, 1) % {0, 11 — {0, 1} be the function defined by Flh(u, v) := h(v, f(u)). Let A be an
algorithm that runs relative to the quantum oracle of F lh and the quantum random oracle h, or the quantum oracle of a
random function RF and the quantum random oracle h. Suppose that A makes at most qn quantum queries to h and Q
quantum queries to Flh or RF. Let q := max{Q, q1,}, and suppose that q is in 0(2"'3). Then

Adv;’?FF(ﬂ) <0 (w/q3 /2") (6.18)

holds.

Recall that F> is the function defined by F>(u, v) := g(u, v, f(u)), where g : {0, 1}"*’”/ x {0, 1} x {0, 1}" — {0, 1}"

is another random function (see |[Fig. 6.1)). Then, since g is a random function, Adv(ﬁzp(ﬂ) = Adv‘(i;fth (s h)(ﬂ)
[h), (Fa,

1
holds. To simplify proofs, instead of directly showing (6.18]), we show that Adv?}jlﬁ,’ 1y, h)(ﬂ) <0 (w/q3 /2n) holds.

In addition, we give a proof for the case m’ = 0. The claims for m” > 0 can be shown in the same way. We assume
that A makes queries to Flh and & (or, F> and h) in a sequential order and model the adversary and oracles as in
In particular, by convention we assume that A’s (2i — 1)-th query is made to F’ lh (or F>) and 2i-th query
ismade to i for 1 <i < g. (For instance, A first queries to F’ lh (or F,) and second queries to #.) We call queries to F lh
and F, online queries and queries to h offline queries since, in practical settings, computations of 4 are done offline on
adversaries’ (quantum) computers.

We assume that the unitary operators to process queries to F lh and F; are implemented as follows:

Quantum oracle of F. lh
1. Take |u,v)|y) as an input, where u, y € {0, 1} and v € {0, 1}".

2. Query u to f and obtain
lu, v) [y) ® | f(u)). (6.19)

3. Query (v, f(u)) to h and add the answer into the y register to obtain

lu,v) |y @ Fi'(u,v)) ® | f () - (6.20)

4. Uncompute Step 2 to obtain [u, v) |y & F{'(u,v)).

We assume that the quantum oracle of F; is implemented in the same way as F*, except that the query (v, f(u)) to h in

Step 3 is replaced with the query (u, v, f (1)) to g. See also[Fig. 6.3]

We show the hardness of distinguishing F’ lh and F, by using the recording standard oracle with errors (RstOE): We
assume that the quantum oracles of f, g, and & are implemented by using RstOE (quantum queries are processed with
RstOE). Let RstOEf, RstOE, and RstOE,, be the recording standard oracle with errors for f, g, and A, respectively.
We use the symbols Dy, Dy, and Dy, to denote databases for f, g, and h, respectively. Then the unitary operator
0 Fi (resp., OF,) to process queries to Flh (resp., F>) can be decomposed as O Fh= RstOE;; - RstOEy, - RstOE (resp.,
OF, = RstOE} - RstOE, - RstOEy). See alsofor the intuition about which registers the different RstOEs act.

6.4.1 Good and Bad Databases

Here we introduce the notion of good and bad databases for F’ lh and F,. When we use the symbols u, £, v, w, we assume
that u, ,w € {0, 1}" and v € {0, 1}"".
We say that a (pair of) valid databases (Dy, Dy,) for F, lh is good if and only if it satisfies the following property.

1. For each (u, ) € Dy, there exist v € {0, 1} and w € {0, 1}"* such that ((v, {), w) € Dy,.
2. For (u,¢) and (u’,{’) in Dy such that u # u’, { # {’ holds (there is no collision for f).

We say that (Dy, Dy,) is bad if it is not good.
Similarly, we say that a (tuple of) valid databases (D, Dg, Dy,) for F is good if and only if it satisfies the following
properties.

1. For each (u, {) € Dy, there exist v € {0, 1} and w € {0, 1}"* such that ((u, v, {),w) € Dy.
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(b) Implementation of F;.

Figure 6.3: Implementations of F 1’1 and F>. “in” and “out” denote the registers to send queries and receive answers,
respectively. The dotted lines (and |Dy), |Dy), |Dg)) appear only when f, h, g are implemented with RstOE, which
correspond to the database registers.

2. For each ((u,v,{),w) € Dg, (u,{) € Dy.
3. For (u,¢) and (u’,{’) in Dy such that u # u’, { # {’ holds (i.e., there is no collision for f).

4. For each ((v,{),w) € Dy and (u’,{") € Dy, { # {’ holds (i.e., the most significant n bits of inputs to / and the
outputs of f do not collide).

We say that (Dy, Dg, Dy,) is bad if it is not good.

Intuition Behind Good Databases. Intuitively, a database (Dy, Dy,) for F lh is defined to be good if and only if Dy does
not contain collisions (the second condition on F' lh). The first condition on F’ lh is included so that a weird situation such
as “u has been queried to f, but (v, f(«)) has not been queried to / for any v will not happen for good databases.
Similarly, a database (Dy, Dg, Dy) for F, is defined to be good if and only if Dy does not contain collisions (the third
condition condition on F,) and the least significant n bits of inputs to & do not collide with outputs of f (the fourth
condition on F»). The first and second conditions on F> is included so that weird situations such as “u has been queried
to f, but (&, v, f(u)) has not been queried to g for any v’ or “(u, v, {) has been queried to g, but u has not been queried
to f” will not happen for good databases.

6.4.2 One-to-One Correspondence for Good Databases

For a good database (Dy, Dg, D) for F>, let Dg x Dy, be the valid database for & such that ((v,{), w) € Dg x Dy, if
and only if ((v,{),w) € Dy, or ((u,v,{),w) € Dy for some u. Then (Dy, Dg * Dy,) becomes a good database for Flh
Let us denote (Dy, Dg * Dp,) by [(Dy, Dg, Dp)11. Then, it can easily be shown that the map [-] : (Dy, Dg, Dy) =
[(Df, Dg, Dp)11 = (Dy, Dg % Dy,) is a bijection between the set of good databases for F and that for F° lh Let [-], denote
the inverse map of [-];.

The bijections extend to (partially defined) isometries between the state spaces. Let H# be the state space of
the adversary, and Hp D), (resp., Hp Dy p,,) be the state space of the databases for F lh (resp., th). In addition, let

Vgggd C Hp,p, (resp., Vg(ozo)d C Hp,p,p,) be the subspace spanned by good databases. Then, the linear map from

Ha ® Vg(olgd toHg @ Vg(fgd that maps |7) ® | Dy, D) to |17) ® |[[Dy, Dy12) for |17y € Hz and a good database (Dy, Dy,)
becomes an isometry. We denote this isometry and its inverse also by [-], and [-];, respectively.
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6.4.3 Equivalent Good Databases
Next, we define the notion of equivalent databases. First, we define the notion for equivalent good databases for F’ lh
Let (Dy, Dy,) be a good database for F; h . and let

s:={celo, 1}")3v,w S.t. ((v,). ) € Dy and (u,{) ¢ Dy for all u} .

We say that another good database (D}, D,’l) is equivalent to (Dy, Dy) if and only if they are the same except for the
output values of f, i.e., there exists a permutation 7 on {0, 1}" such that

1. n(¢{) =¢forall €S,
2. (u,{) € Dy if and only if (u, 7({)) € D%, and
3. ((»,{),w) € Dy, if and only if ((v,7({)), w) € D, holds.

We define that a good database (D;., D;,, D;l) for F, is equivalent to another good database (Dy, Dg, Dy,) in the same

way, except that S is defined as S := {Z € {0, 1}"|Tv, w s.t. ((v, ), w) € Dy} and the following condition is additionally
imposed.
3. ((u,v, ), w) € Dyg if and only if ((u, v, 7({)), w) € Dy hold.

Remark 17. As explained in intuitively, two good databases are defined to be equivalent if and only if any
adversary cannot distinguish them.

Remark 18. By definition of equivalent databases, if a good database (Dy, Dg, Dy,) for F, is equivalent to another
good database (D", Dé, D;l), then D;; = Dy, holds.
6.4.4 Notations for State Vectors

Let |¢2;—1) be the whole quantum state just before A’s i-th query to Flh when A runs relative to F’ lh and A. In addition,
let |¢2;) be the whole quantum state just before A’s i-th query to 2 when A runs relative to F, lh and h. Define |2;-1)
and [¢;) similarly when A runs relative to F> and h. For ease of notation, let |¢>411) and [244+1) be the quantum
states just before the final measurement when A runs relative to (F’ h k) and (F», h), respectively.

6.4.5 The Technically Hardest Part
The following proposition is the technically hardest part to show

Proposition 21. For each j = 1,...,2q + 1, there exist |¢?00d>, |¢?ad), |lﬁ?°°d>, and IW;.’ad) that satisfy the following
properties:

1. 1¢j) = |¢?°°d> + ¢ and |y ;) = |¢,§1°°d> + [ybed),

d 1 d 2
2. 165 € Ha ® Vyooy and [y$°°) € Ha ® Voo,

3 |¢?ood> — [|l!/]good>]1'

o)

4. There exists a complex number UiyyzDy Dy Dy such that
W= Al pp,p, 1171912 ® IDf, Dy, Dy ©.21)

u,v,y,2,D¢,Dg,Dp;
(Dy,Dg,Dy):good

and af{’v)yszDgDh = afl’V)yZD}DéD;l if (Dy, Dg, Dy) and (D’., D;, D;) are equivalent, where (u,v), y, and z

correspond to A’s register to send queries, register to receive answers from oracles, and register for offline
computations, respectively|q

6To be precise we have to use the symbol (v, £) instead of (i, v) when j = 2i because we always use the symbol v||{ to denote an input to A.

@0 instead of a*?)

However, here we use (u, v) to simplify notations. In the proof we use the symbol uv;yszDgDh wvyzDyDg Dy
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5. For a good database (Dy, Dg, Dy) with non-zero coefficient in Iwg?ff) (resp., in |l//g;.)0d>), [Dg|l <i-1, |Dy| <

2(i = 1), and |Dy| < i — 1 hold (resp., |Dg| < i, |Dy¢| < 2i, and |Dy,| < i~ 1 hold).

6. 11185 1| < 1118229 | + O (Vi727) and 1| 12 || < || 14%9) || + O (G72") hold (we regard that || |45} || =
1w [l = 0).

Intuitive Interpretation of The first and second properties show that |¢;) and |y;) are divided into
good and bad components. The third property shows that the good component of |¢;) matches to that of [¢;) through

the isometry [-];, which intuitively means that A cannot distinguish the two oracles as long as databases are good. The
fourth property shows that the coefficients of equivalent databases are perfectly equal, which intuitively means that A
cannot distinguish equivalent good databases. The fifth property shows the upper bound of the size of databases. The
sixth property shows that the chance for good databases change to bad is very small at each query.

Overview of the Proof of [Proposition 21} The proposition is shown by induction on j. The claim for j = 1 obviously
holds by setting |¢t1’ad) = |¢rk1’ad> = 0. Inductive steps are separated into two cases.

(Online queries): If the claim for j = 2i — 1 (i.e., before the i-th query to Flh or F;) holds, then the claim for j = 2i
(i.e., after the query) holds.

(Offline queries): If the claim for j = 2i (i.e., before the i-th query to %) holds, then the claim for j = 2i + 1 (i.e.,
after the query) holds.

Proof for online queries. Recall that O (resp., OF,) are decomposed as O, = RstOE’ - RstOE;, - RstOE (resp.,
F 2 F| f f

OF, = RstOE} - RstOE, - RstOE;). We show that Properties 1-6 listed in [Proposition 21| hold at each action of

RstOEf, RstOEy, (resp., RstOE,), and RstOE;Z. A state vector after an action of RstOE can be decomposed into three
components[’]

(i) The one that was (pre-)good before the action and still remains (pre-)good.
(ii) The one that was (pre-)good before the action but changed to bad.
(iii) The one that was already bad before the action.

Roughly speaking, we define (i) to be a new good vector, and the sum of (ii) and (iii) to be a new bad vectorﬁ Then
Properties 1 and 4 of can easily be shown.
To show that Properties 3 and 4 still hold for the new good vector, we keep track of how the coefficients of basis
vectors change by using We also utilize symmetry of equivalent databases to show Property 4.
Property 6 is proven by showing the norm of the component (iii) is in O(+i/2"). Intuitively, this corresponds to
showing the probability that the event coll in happens at the query is O(i/2"). We carefully prove it by
using taking into account that records in databases may be deleted or overwritten.

Proof for offline queries. The proof for offline queries are similarEL except that showing ||(iii)|| < O(+i/2") corresponds
to showing Pr[hit;] < O(i/2") in Section [6.2] To formally prove the bound, we use the inductive hypothesis that
Property 4 holds for j = 2i.

Before proving we show that [Proposition 20| follows from [Proposition 21]
Proof of[Proposition 20 Lettrp (resp., trpz) denote the partial trace operations over the quantum states of the databases
for (F", h) (resp., (F», h)). Then

dist
AV (A) <1 (trp1(B2g+1) (Dag1 Do D2 (Wrg1) W)
e
good good good good
< td (trp1 (16500 (@5t D> 2 (1W5os Y Wieo D) (6.22)
bad bad
+ [zl + sz (6:23)
7Pre-good databases are defined in a complete proof of |Proposition 21|presented in|Section 6.4.6/in the supplementary materials.

8To be more precise, we sometimes include small “good” terms into the new bad vector so that the analysis will be easier.
9Actually the proof for offline queries are even simpler because the offline oracle is just a single random oracle & while the online oracles consist
of two random functions.
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holds. By Property 3 of the term (6.22) is equal to zero. In addition,
(6.23) < Z 0(\/j/2") + Z 0(1/j/2n) < 0( /qs/zn)

1<j<2g+1 1<j<2g+1
follows from Property 6 of Hence [Proposition 20| follows. i

6.4.6 Proof of [Proposition 21|

As mentioned before, we show the proposition by induction on j. The claim for j = 1 obviously holds by setting
|¢22d) = |ybad) = 0. Inductive steps are separated into the proof for online queries (i.e., the proof for j = 2i under the
hypothesis on j = 2i — 1) and the one for offline queries (i.e., the proof for j = 2i + 1 under the hypothesis on j = 2i).

First we prove the former by decomposing O Fh (resp., OF,) as O Fh= RstOE} - RstOE, - RstOEy (resp., OF, =
RstOE} - RstOE, - RstOEf), and showing Properties 1-6 in the proposition hold at each action of RstOE, RstOE,
(resp., RstOE,), and RStOE}. (See also about the decompositions.)

Before providing the proof, we define pre-good and pre-bad databases in addition to good and bad databases, and
see that the one-to-one correspondence between good databases and the notions on equivalent databases are naturally
extended to pre-good databases.

6.4.6.1 Pre-Good and Pre-Bad Databases
We say that a (pair of) valid database (Dy, Dy) for F lh is pre-good if and only if it satisfies the following properties:
1. (Dy, Dy) is good, or

2. There exists an element (u, {) € Dy such that (D¢ \ (4, {), D) is good and (({,v),w) ¢ Dy, for all v and w, and
W', {) ¢ Dy forall u’” # u.

We say that (Dy, Dy) is pre-bad if it is not pre-good.
Similarly, we say that a (tuple of) valid database (Dy, Dg, Dy) for F, is pre-good if and only if it satisfies the
following properties:

1. (Dy, Dg, Dy,) is good, or

2. Thereexists an element (u, {) € Dy suchthat (Ds\(«, {), Dg, Dy)is goodand ((v, {), w) ¢ DpA((u, v, {),w) ¢ Dg
holds for all v and w, and (u’, {) ¢ Dy for all u’ # u.

We say that (Dy, Dg, Dy,) is pre-bad if it is not pre-good.

Intuition Behind Pre-Good Databases. Intuitively, a database is pre-good if and only if one of the following conditions
hold: (i) Itis just good, or (ii) A queried some value (u,v) to F lh (resp., F), the query u to f has already been processed
inside F]h (resp., F») and a new output value f(u) is sampled but the query (v, f(u)) to h (resp., (u, v, f(u)) to g) has
not been processed yet, and the database is likely to become good.

6.4.6.2 One-to-one Correspondence for Pre-Good Databases

Here we re-define the one-to-one correspondence and the isometries [-]; and [-], so that they are defined not only on
good databases but also on pre-good databases.

For a pre-good database (Dy, Dg, Dy,) for F>, let Dg % Dy, be the valid database for & such that ((v, {), w) € Dg *x Dy,
if and only if ((v, {),w) € Dy, or ((u, v, {),w) € D for some u. Then (Dy, Dy *x D) becomes a pre-good database for
Flh Let us denote (D¢, Dy x Dy,) by [(Df, Dg, Dy,)]1. Then, it can easily be shown that the map [-]; : (Dy, Dg, Dp,)
[(Df, Dg, Dp)11 = (Dy, Dg x Dp,) is a bijection between the set of pre-good databases for > and the set of pre-good
databases for Flh. Let [-], denote the inverse map of [-];.

The bijections extend to (partially defined) isometries between the state spaces. Again, let H{# denote the state
space of the adversary, and Hp D), (resp., Hp Dy p,,) denote the state space of the databases for F lh (resp., th). In

addition, let Vp(rz_good C Hp,p, (resp., Vp(r?_good C Hp,p,p,) be the subspace spanned by pre-good databases. Let
Hyux be the state space that corresponds to the auxiliary qubits used by the oracles (see (6.19) and (6.20)). Then, the

linear map from T{ﬂ@Vp(l) & Haux to Wy;@Vp(z) ® Haux that maps |17) ® [ Dy, D) ® |€) to [7) @ |[Dy, Dpla) ® &)

re-good re-good
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for [n) € Ha, &) € Haux, and a pre-good database (D, D) becomes an isometry. We denote this isometry and its
inverse also by [-], and [-];, respectively.

The above mappings [-]; and [-], are generalizations of those on good databases define in Note that
[(Dy, Dg, Dp)]1 is good if and only if (D, Dg, Dy,) is good.
6.4.6.3 Equivalent Pre-Good Databases

Let (Dy, Dy) be a good database for F; 1’”‘ Recall that another good database (DJQ, D;’l) is equivalent to (Dy, Dy,) if and
only if they are the same except the output values of f, i.e., there exists a permutation 7 on {0, 1}"* such that

1. r({)=¢forall { € S,
2. (u,{) € Dy if and only if (v, 7({)) € D, and
3. ((v,{),w) € Dy, if and only if ((v,7({)), w) € D, hold,

where
S :={¢ € {0.1)"[Fv,w st ((v.{). w) € Dy and (. {) ¢ Dy forall u} .

Next, we extend the notion for pre-good databases for F’ lh By definition, arbitrary pre-good database has the form
(Dy U (u, {), Dy) such that (D, Dy,) is good. Let (D} U (', {"), D;) be another pre-good database such that (D7, D; )
is good. We say that (Dy U (&, {), Dy,) is equivalent to (D]Q U@, D;l) if and only if

4. (Dy, Dy) is equivalent to (D7, D; ) in the above sense, and
5. u=u"AN{" =mn({), where r is the permutation defined above for (Dy, Dy,).

We define that a pre-good database (D]Q, Dy, Dy) for F, is equivalent to another pre-good database (Dy, Dy, Dj) in
the same way, except that § is defined as S := {{ € {0, 1}*|Av,w s.t. ((v,),w) € Dy} and the following condition is
additionally imposed.

3*. (v, (), w) € Dy if and only if ((u, v, 7({)), w) € D, hold.

6.4.6.4 Regular and Irregular States

Let |¢) be a joint quantum state of A and the oracle ((F’ " h) or (F», h)) that is not in superpositio We say that the
state |¢) is irregular when the database in |¢) is invalid, or the auxiliary n qubits that are temporarily used in the oracle
(the rightmost register | f («)) in (6.19) and (6.20)) is not |0"). We say that |¢) is regular if it is not irregular.

6.4.6.5 Remarks on Other Notations

In what follows, to simplify notations on summations, we denote the sum over variables xi,..., x; that satisfies
predicates Py(x1,...,Xs), .., Pr(X1,.. ., Xs) BY D x i P(x1hnxe),.n Pr(x1.oxg)- LDAL 18, We separate the symbols of
variables over which the summation is taken and the conditions that the variables satisfy by “;”. For example, the

summation over @, B,y € {0, 1}" that satisfy @ ® 8 = 0" and 8 & y = 0" is denoted by 3, 5.0 ep=0"g@y=0" -

Let ITyajig and Iyaig denote the orthogonal projections onto the vector space spanned by valid and invalid databases,
respectively. Let Ilgooq and Ilpag denote the orthogonal projections onto the vector space spanned by good and bad
databases, respectively. Let ITpre-good and Ilpre-pag denote the orthogonal projections onto the vector space spanned by
pre-good and pre-bad databases, respectively. Let Ileq and Ilireg denote the orthogonal projections onto the vector
space spanned by regular and irregular databases, respectively.

Remark 19. Note that a good database can be pre-good and bad because the set of pre-good databases is wider than
that of good databases, and we say that a database is bad if it is not good. In the proofs below, we sometimes use the
fact that Npag | Dy, Dg, D) = | Dy, Dg, Dy) (vesp., lpad | Dy, D) = | Dy, Dy)) holds for a database (Dy, Dg, Dy,) (resp.,
(Dy, Dp,)) that is pre-good and bad, without any notice.

Next we prove the following lemma, which shows how the quantum states |¢g?f?) and |4//g;’f‘lj) change when RstOE¢
acts on them.

10That is, even if we measure |¢) with computational basis, |¢) does not change.
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Lemma 18 (Action of RstOE). Suppose that there exist |¢g?f(f ) 16529)), |w§’§’f‘f>, and Y529 ) that satisfy the properties

of \Proposition 21} Then there exist |¢g?f?’1), |¢g?f’ll ), Iwg??f’l), and IlﬁSff’ll) that satisfy the following properties:

d, 1 , d, 1
1. RStOEy |yai—1) = 30!y + 1y22% 1) and RtOEf [¢ai—1) = 6307 ) + 162241,

good, 1 (1) good, 1 2)
2. |¢2i—1 )€ ﬂﬂ ® Vpre good ® Haux and |l'[/2i—l )€ 7_{52( ® Vpre -good ® Haux.

310550 = [t h],

(2i-1),1

4. There exists complex number a, 2Dy Dy

Dy such that the following properties (a) and (b) hold:

(a) It holds that

s = >, do bt oy 16V) 1) 12) ® Dy, Dg, Di) ® D)),
u,v,y,2,Df,Dg,Dp;
(Dyf,Dg,Dy,): pre-good
Df (u)#L

where (u,v), y, and z correspond to A’s register to send queries, register to receive answers from oracles,
and register for offline computations, respectively. (The rightmost register |Dy(u)) corresponds to the
auxiliary qubits used in the oracle. See (6.19) and (6:20).)

2i-1),1 2i-1),1 .
(b) a,(lvlyZAngDh = aiwlyzé}D, D, if (D, Dg, Dy) and (D’, o D},) are equivalent.

5. For a pre-good database (Dy, Dg, Dy) with non-zero coefficient in Iwg?f?’l), [Dgl <i—1,|Dfl £2G -1 +1,
and |Dy| <i—1 hold.
6. 1152 I < 116528 | + O (Vi72?) and 115D 11 < 1HyS2) ) Il + O (Vi72?) hold.

Remark 20. Intuitive interpretation of the lemma is almost the same as that for [Proposition 21| (see the explanation
below [Proposition 21| for details) except that the fourth property is divided into 4-(a) and 4-(b) m the above lemma,
where 4-(a) says that there is an auxiliary register D¢ (u) and the coefficient a®- |l//g°° ) is non-zero only

uvyzDygDg Dh 2i-1
lfo (u) # L.
Proof. First, note that property 3 and 4 of [Proposition 21|imply that
good good (2i-1)
1652 = [1w3°D] | = DL At b, V)19 12) @ IDg, Dg % Dy (6.24)

u,v,y,2,Df,Dg,Dp;
(Dg,Dg,Dy):good

holds.

Let II, and II; be the orthogonal projections onto the spaces spanned by the vectors |u, v) |y) |z) ® |Dy, Dg, Dy)
(or, [u, v) |y) |2) ® | Dy, Dy,)) such that D¢ (u) = L and D¢ (u) # L, respectively.

Recall that |¢g°°d) is represented as in (6.21). By applying the first property in in a straightforward
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manner, we have

d 2i—1
TaigRStOET1; 32" = TaigRStOE > it b oy, Dy 116 V) 1) 12)
u,v,y,z,a,Dy,Dg,Dy; )
(DfU(u,ar),Dg,Di): good ® |Df v (u’ (X), Dg’ Dh>
Df(u)=J_
_ (2i-1)
= ; L abuuan,o, lu, v) |y) 12) (6.25)
u,v,y,2,a, 0 f, Dp
(DfU(u,(y),Dg,Di): good ®|Dy U (@), Dg, Dp) @ |}
Dy (u)=L
1 i
* D —a ) lu,v) 1) 12) (6.26)

\/2_” uvyzD¢U(u,a)Dg Dy
u,v,y,2,a,Df,Dg,Dp;

(DfU(u,g),(D)g,Dh):good olipry Z 1 DU i e
r=t fr = f u,y g Uh a
\2on
Y
1 .
Qi-1)
a Z 2_nauvyszU(u,a)DgDh lu, v) |y) |2) (6.27)
u,v,y,2,a,¥,D¢,Dg,Dp; )
(DfU(u,(z),Dg,Dh&): good ® ID)‘ U (u,y), Dg: Dyp) ® |y)
Dy(u)=1
1 .
Qi-1)
*on woyaDy U a) Dy Dy 1 V) 1) 12)
WY,2,a,D¢,D o, Dy
([?f‘L)J(yu,Za(;,Dz,D;Z)I ghood > 1 DU oolip. b 6;[
Dyw=L ® Z\/Z—nl ¢ U (u,y)) = |Dy) [|Dg, Dy ® |0"),
Y
(6.28)

where the terms (6.25)-(6.28) correspond to (3.12)-(3-13)), respectively. Similarly, by applying the second property in
Proposition 3 we have

d i—
MaigRStOE,ML, W5%) = haiaRSOE; > alich) ) ) v} 1y)12) ® Dy, Dy, Dy

u,v,,2,D¢,Dg,Dp;
(Dg,Dg,Dy): good
Df (u)=L

I i-1
= \Eafm Dy gy 1V 19 12) (6.29)
u,v,y,2,a,D,Dg,Dy;
(Df,Dg,Dh): good ® |Df U (L{, (Y), Dg’ Dh> ® |(Z>
Df(u)=J_

1 Qi-1)
+ ﬁ auvyszU(u,(l)DgDh |M, V> |)’> |Z> (630)
u,v,y,2,Df,Dg,Dp;

Df,Dg,Dy,): good 1 -
O e ® |Df>—zﬁ|0fu<u,y>> |Dg. Dy) ® 107),
Y

where the terms (6.29) and (6.30) correspond to (3:16) and (3.17), respectively. Since (6.24) holds, in the same way we
have

d 2i—-1
TyaigRStOE /T, [¢5°)) = > sy Dy 87 19)12) (631)
By G Dy Dy oo @10y 0 (@), Dg x D) @ )
Dy (MS:L
1 .
(2i-1)
+ D T3 ey, oy, 18V )12 (632)

u,v,3,2,,Df,Dg,Dp;
(DfU(u,@),Dg,Dy): good

Dy ()= ®(1Ds) = ). 1Df U ) |IDg % Dy) @ )
Y
L i-n
- 31 QuivyeDyUGwa) Dy Dy |, v |y) 1z) (6.33)
(;;S(EZ)VDD;DDS?SM ®|Df U (u,7), Dg * D) ® |y)
Df(u)=J_
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1 .
(2i-1)
+ 2_n uvyzDgU(u,a)Dg Dy |u’ V> |y> |Z>

u,v,y,z,a,Dy,Dg,Dy; 1

D ,a),Dq,Dyp): d —~

o ®(2) o IDf U (7)) — |Dy) | IDg * Dp) ® |07

Y
(6.34)
and
1 .
MaiaRStOE, T1. [¢5°]) = D T Cnradyn,ny 16V 1) 12) (6.35)
u,v,y,2,a,D¢,Dg,Dp;
(Df’Dg’th): good' ® Dy U (u, @), Dg * D) ® |a)
Df(u)=J.
1 .
2i-1)
+— a lu, v} |y)[2)
D¢D,D,
Va2 3.5 DD i R e 1 ~
O D 2 JIRREDY T 10 Y @) |IDg x Dy @ 107)
Y

(6.36)

ood, 1 bad, 1 ood, 1 bad, 1
Define [y 2%y, [y2241), [¢9°°%1), and [¢52%!) by

22041y = |[@23)) + Mpre-good IGZ9)),  1W22%4') := RStOEy [Waim1) — W30,
169°°%1y := |@3TD) + Mpre-good (E33)), 16529y := RStOEy |¢i-1) — 120"

Remark 21. The intuition behind the definitions of |l//g?fcf’ 1) is as follows. Roughly speaking, the two terms |(6:23)) and
|(6:29)) reflect classical intuition of lazy sampling, and other terms represent the difference between classical behavior
and quantum-specific behavior of oracle. Since now the output of f is written into the auxiliary register that is set to

be 0, the behavior of the RstOEy is very close to that of the classical random oracle, and the effect of quantum-specific
behavior of the oracle is very small. Therefore we define |y3%°*") to be the pre-good components of [(6:23)) and |(629))

2i-1
(note that all the databases in |(6.25)) are good and Tgre-gooq 1(6:23)) = |(6.23)) holds). Ilﬁg?f’ll) is defined in such a
way that property 1 of the lemma holds. The intuition behind Iqﬁg?fcf’l) and Iqﬁg?fcli’l) is the same.

Property 1, 4-(a), 5 of the lemma immediately follow from the definition of Il//g?f?’l), |¢§l-af’11 )s |¢g?f?’1), and |¢g?‘_j’ll ).

Property 2 of the lemma holds since all the databases in |(6.25))) and |(6.31))) are good, and those in ITyre-good 1(6-29))
and Ipre-good 1(6:33) are pre-good.

Property 3 of the lemma holds because, for each basis vector |&, ) |¥) |Z) ® |13f, [)g, Dp) ® |7) in |(6:23)) (resp.,
in Tlpre-good |(6-29))), its coefficient is equal to the coefficient of [|i, ¥) [7) |Z) ® | Dy, Dg, Dp) ® 19011 = i, 7 |$) 12) ®
|Df» Dg *Dp)y® |¥) in M@)) (resp., in Ipre-good |@>)

For property 4-(b), note that all the databases in |(6.23)) are good while those in ITyre-good |(6.29)) are pre-good and
bad. In particular, it can be checked that the coefficient ailzviy_ zl)le DD in Iwg?f‘lj’l) can be represented as

Qi-1),1 _@i-D . ' ,
auvyszDgDh - auvyszDgDh if (Df’ Dg’ Dh) 18 gOOd’

and

) 1 )
(2i-1),1 _ (2i-1) . .
UypryeDy Dy Dy = @auvyz (D\w.Dy @)Dy Dy if (Dy, Dg, Dy,) is pre-good and bad,

and (Dy \ (u, Dy), Dg, Dy,) is a good database in the latter equation. Therefore property 4-(b) follows from property 4

of Proposition 21
Below we prove that property 6 of the lemma holds for |¢22%') by showing the norms of the terms |(632)) - |(634)).

2i-1
Hpre-good 1(6-33)), and [(6-36)) are small.

""The term ITpre-good I@) corresponds to the classical situation where a fresh value of f is sampled and causes a bad event. Other terms
correspond to the difference between classical behavior and quantum-specific behavior of the oracle.
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Upper bounding the norm of [(6.32))).

Summands of the term (6:32) are orthogonal to each other. Hence
1 i

uvyzDgU(u,a)Dg Dy

2 1 ood. 112 1

=0(27)'||“L|¢3i_1>” <O|z)| (63D

u,v,,2,a,Df,Dg,Dp;

(DfU(u,a@),Dg,Dy,): good
Df(u)=J_

holds.

Upper bounding the norm of |(6.33)).

We have
2
IETMI? = L g ) 1y) 12)
- on auvyszU(u,a)DgDh uvy1yriz
u,v,y,2,@,Y,D¢,Dg,Dp;
(DfU(u.0).D Dy ): good ®|Ds U w,y), Dy % D) @ 1)
Dy(u)=1
2
_ RS @i-1) D, * Dy)
- 22n auvyszU(u,a)DgDh 4 h
u,v,y,2,Y, Dy @,Dg,Dp;
Dy(u)=L (DfVU(u,a),Dg,Dy): good
2
1 Qi-1) )
- Z 221 Z Z DypryeD U Dy Dy [P
u,v,y,2,Y, Dy Dy, @,Dg,Dp;
Df(u)=J_ Dg)\'D;,=D;1
(DyU(u,@),Dg,Dy,): good
2
= L a*-l (6.38)
- 22n uvyzDsUu,a)DgDp| - :
u,v,y,z,¥,Dr; D, a,Dg,Dp;
Dy (u)=1 Dg*Dy,=D),
(DfU(u,a),D;l): good

For each fixed tuple (u, @, Dy, D;l), there exist at most only one pair (Dg, D) such that D, % Dy, = D;l and (Dy U
(u, @), D;l) becomes good. Let us denote this pair by (Dg[u, a, Dy, D;l], Dy[u, o, Dy, D;l]) (when such a pair exists).
In addition, for each fixed tuple (u, Dy, D;), the number of @ such that (D¢ U (u, @), D; ) becomes good is at most
|D; | < O(i). Therefore, for summands of (6.38) we have

2
a(2i—1)
uvyzDygU(u,a)Dg Dy,
D, @,Dg,Dp;
Dg*Dy,=D;,
(DfU(u,a),D;l): good
2

=20 X daa
- uvyzDyU(u,a)Dglu,a,Dy,D; 1Dy [u,@,Dy, D} ]

D, @;

" (DpU(u,@),D}): good

2

Soo X |
= uvyszU(u,(y)Dg[u,ur,Df,DL]Dl,[u,a/,Df,D;l]

D/ @;

h (DyU(u,a),D},): good

2
_ N (2i-1)
=03) Z Z uvyzDrU(u,)Dg Dy,
D, a,Dg,Dp;
DgxDy,=D),

(DfU(u,@),D) ): good

’
h
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(2i-1)

uvyzDyU(u,a)Dg Dy, (6.39)

=00 2.
@,Dg,Dp;
(DfU(u,@),Dg*Dp,): good

where we used convexity of quadratic functions for the inequality. From (6.38) and (6.39),

(2i-1)
uvyzDygU(u,a)Dg Dpy

DI <00 Y 5 3

u,v,y,2,, Dy} a,Dg,Dp;
Dy(u)=1 (DfU(u,@),Dg*Dy,): good

(2i-1)

auvyszU(u,a)Dg Dy,

ol 2 1
=05 ) Zz_n
u,v,,2,a,D¢,Dg,Dp; Y

Dy(u)=1
(DfU(u,@),Dg*Dy,): good

P (2L) g1 <0 (ZL) (6.40)

follows.

Upper bounding the norm of |(6:34)).
On the term (6.34), we have that

1 .

2 2i-1

”M@»” = 22n : : aiwlyz)DfU(u,a)DgDh lu,v) |y> 12)
u,v,y,z,a,D,Dg,Dy;

(DfU(u,@),Dg, Dy, ): good 1 B ~
D)oL ® 2;—@ IDf U (,7)) = Dy} | IDg % Dy) ® |07

2

1 .
(2i-1)
<05 2 Govgeyotuarpyy 17 V)12
V3,2, D, Dg,Dy; A
(Ii-vu{u,zaciDg,Di): g00d ®|Dy) ® |Dg * Dp) @ 07)
Df(u)=J_

1 42D
22n uvyzDygU(u,a)Dg Dy,
u,v,y,2,D¢,Dg,Dp;

a;
D)=L (DfU(u,a),Dg,Dy): good

< 0(2%) > 2" >

u,v,y,2,Df,Dg,Dp; a;
Dy(u)=1 (DyU(u,@),Dg,Dy,): good

(2i-1)
uvyzDgU(u,a)Dg Dy

-0 1 e
on uvyzD¢U(u,a)Dg Dy
u,v,y,2,@,Df,Dg,Dp;

(DfU(u,@),Dg,Dp): good
Dy(u)=L

~0(5) - Ins1egf <o) @4

|2

2"
holds, where we used convexity of quadratic functions for the second inequality.

Upper bounding the norm of Ipre-pag [(6-33))-
When (Dy, Dg, Dy,) is good and D¢ (u) = L, the number of @ such that (Dy U (u, ), Dg % Dy,) becomes pre-bad is at
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most |Dy| +|Dp| < O(i). Therefore,

2
[Lpe-ca 1633 = D L O ) )2
pre-bad = \/— uvyszD D, 1BV 1Y) IZ
u,v,9,2,¢,Df,Dg,Dp;
(Dy.Dg.Dy): good ®|Dr U (u, @), Dg *x Dp) ® |a)
Dy (u)=L
(DfU(u,@),Dg, Dy, ):pre-bad
_ Qi-1) D 1
- uvyzDygDg Dy on
u,v,y,2,Df,Dg,Dp; a;
(Df,Dg,Dy): good (DfU(u,@),Dg,Dy,):pre-bad
Dy(u)=1
i Qi-1)
<0 (2_") ) uvyzDyDg Dy,
u,v,y,2,Df,Dg,Dp;
(Dg,Dg,Dy): good
Dy(u)=L
coft) el o)
holds.
Upper bounding the norm of [(6.36)).
For the term (6.36), since the summands are orthogonal to each other we have
2
1 .
2 2i-1
NE3MI*=|—= D, A .y 18 VY 1V 12)
2 u,v,y,2,D¢,Dg,Dp; ) 1
(Df,Dg,Dy): good _ T
o JIREDY T3 Pr U ) [1Dg % Dy @ 107)
Y
2
<0 1 Qi-1)
- on uvyzDygDg Dy,
u,v,y,2,D¢,Dg,Dp;
(Df,Dg,Dy): good
Dy(u)=L
ood 1
= ( ) . 1629 < 0 (2n) (6.43)

holds.

Upper bounding the norm of | ¢g?dll>

Since we always obtain a valid database when we measure RstOE ¢ |¢2;_1), we have RstOE ¢ [¢2;_1) = IlyaigRStOEf [¢2;_1).

Thus, from (6.37), (6.40), (6.41), (6.42), and (6.43).

o = -7

= [[MaiaRStOE  [-1) — 1621
< [lig524)]| + | MvansRstoE I¢g°°d> ~ 1o

< |15 + M@3D)I + 11@33 + N EIDH + |[More-oaa 1G] + 111E3ED)I

<Nzl +o(\) o

bad, 1

follows. Hence the sixth property of the lemma for |¢bad 1) holds. The sixth property of the lemma for |y,.;™,") can be
shown in the same way. O
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Next we prove the following lemma, which shows that the behavior of RstOE, on a pre-good database for F> is the
same as that of RstOE;, on the corresponding pre-good database for F lh

Lemma 19. Let (Dy, Dg, Dy,) and (D7, D;,, D,’l) be pre-good databases for F>. Then, for eachu,u’,,’,y,y’ € {0, 1}"
and v,v’ € {0, 1},

W', v, ', y'| (D}, Dg, D} | RstOEg u,v, £, y) Dy, Dg, Dp)
= W',v',{",y'|{D}, Dy *x D}| RstOEy, |u, v, {, y) |Dg, Dg * Dp) (6.45)

holds, where RstOE, acts on |u, v, {,y) and | Dg), and RstOE;, acts on |v, {, y) and |Dg % Dy). (|u,v, {) corresponds to
an input to g, and |v, {) corresponds to an input to h. The answers to the queries are written (added) to |y) register.)

Proof. Since RstOE, and RstOE,, do not change the registers |u), |[v), |}, and |Dy), both sides of (6.43) are 0 when
(w,v, &, Dy) # (', v', ', D}). Below we show the equation when (u, v, {, Dy) = (u’,v', ’, D}).

RstOE, does not act on the |Dy,) register. In addition, RstOE, does not affect the register that corresponds to the
element ((i, ¥, Z ), W) in Dg when (i, 9, f ) # (u,v, ). Therefore, it suffices to show the equation when (i) D;, = 0 and
Dg = {((u,v,{),w)} (Dg has only a single entry), or (ii) D, = 0 and Dg = 0.

In the case (i), Dg % Dp, = {((v, {), w)} holds, and the equation (6.43)) follows from the first property in[Proposition 3|
In the case (ii), Dy * Dj, = 0 holds, and the equation (6.43)) follows from the second property in [Proposition 3} O

Next we prove the following lemma, which shows how the quantum states RstOEf |¢g?fclj) and RstOE, |l/lg?f?>
change when RstOE” and RstOE ¢ act on them.

Lemma 20 (Actions of RstOE;, in O Fh and RstOE, in OF,). Suppose that there exist vectors Ilﬁg?fclj), Wg?ijl)’ I¢§?ﬁ’?>,

and |¢k2);‘.1f1) that satisfy the properties of|Proposition 21| Then there exist Il//g?f;ﬂ), W;?f’lz% |¢g?f?’2), and |¢2?f’12) that

satisfy the following properties.

1. RStOEGRSOE [¢2i-1) = [W5°0?) + |y2%%?) and RStOE;RStOE [¢ai-1) = [¢37°07) + [¢5°%7) hold.

good,2 (1) good,2 2)
2. 15, )EHa® Vore-good © Haux and |5,"1") € Ha ® Vore-good © Haux-

good,2\ _ good,2
310550 = (W),

4. There exists complex number a,(fv’y_zll))i DD, that satisfies the following properties (a) and (b).
(a) It holds that
d,2 2i-1),2
o) = > e b by 11V ) 12)
u,v,y,2,Df,Dg,Dp,
(Df,Dg,Dh):pi-good ®|Df’Dg’ Dh>® |Df(u)>’
Dy(u)#L

where (u,v), y, and 7 corresponds A’s register to send queries, the register to receive answers from oracles,
and the register for offline computations, respectively.

2i-1), 2i-1), . .

(b) a,(lvlyz%iDgDh = aiw’yz%;DéD;l holds if (Dy, Dg, D) and (D’, Dé, D;z) are equivalent,

5. For a pre-good database (Dy, Dg, Dy,) with non-zero coefficient in Iwg?_of’z), |Dg| <i, IDf| <2 —1) + 1, and
|Dp| <i-1 hold.

6. IS I < IHwS2 ) Il + O (Vi727) and I11¢5242) 1| < 1116529} 1| + O (Vi727) hold.

Proof. By Lemma 18|, there exist vectors Id/g?f?’l), I(J/;’f’ll), |¢§§’j"1“>, and |¢g?f’11) that satisfy the six properties in
Lemma [8]

o0od,2 bad,2 0od,2 bad,2
Define [3: 1), [y ). 163y ) and |$52%7) by

W571) = ThaigRStOE, W37 ).

2i—1 2i—1
2
W5rei') = RSIOEGRSIOEy [y2int) — W3°)).
9 1
|¢gff‘1” ) = IlvaigRstOE, |¢g?f(1t )
|62292) .= RStOE;,RSIOE |r_1) — [63°%")
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Remark 22. The intuition behind the definition of Iwgffcfg) is as follows. First, by definition of pre-good databases,

all pre-good databases in Iwg?f?’l) remain pre-good (as long as it does not become invalid) after the action of RstOE,

due to the following reasoning: If a database in |1//g?ff’ l) is pre-good and bad before the query, then the current query

to RstOE, is fresh and the database becomes good after the query. If a database in Iwg?ffJ) is good before the query,

then the current query to RstOE, has been recorded in Dg. The record may be overwritten (resp., removed) after the
query, but the resulting database remains good (resp., changes to pre-good) by definition of good (resp., pre-good)

databases. In particular, databases do not change to pre-bad. Thus we define |¢gfff’2) as above. It,//gfff) is defined so
that property 1 of the lemma will hold. The intuition behind the definition of |¢g?‘_)‘f’2) and |¢g?‘_)‘f’2) is the same.

Then, property 1, 4-(a), and 5 of the lemma follows by the definition of |1//g?f?’2), Iw;?f’lz), |¢g?f[lj’2), and |¢k2)?f’12>.
As explained in the above remark, all pre-good database remain pre-good (as long as it does not become invalid)
after the action of RstOE;, in O Fh (and RstOE, in OF,). Hence property 2 of follows from property 2 of

Recall that property 3 of Lemma 18 guarantees that the coefficient of each basis vector in |¢g?f?’l> is equal to that

of the corresponding basis vector in Il//glc.’ff’ ! ). [Lemma 19| assures that the same thing holds for |¢g°°d’ l) and |l//g°°d’2).

2i-1 2i-1
Hence property 3 of the[Lemma 20]also holds.
From property 6 in it follows that

|\|w§?i’f>|| - ”RstOEgRstOEf Waio1) — |x//§,‘.’ff’2>\|

= ”HvandRStOEgRstOEf [Waim1) — |‘/’g?ff’2>”
=|

d, 1 , d, 1
MaigRStOE, (13 + w5r%')) = MuaiaRstOE, w3t )|

< [l || < [[lwdn] + 0(\/;)

holds and similarly |||¢g?f’12)H < qubg;f‘fl)” +0 (W) also holds. Hence property 6 of also holds.

In what follows, we show that property 4-(b) of holds. Suppose that (D¢, Dg, Dj) and ([)f, [)g, Dy,) are
equivalent pre-good databases for F> such that |Dg| <7, |Dy| < 2(i — 1) + 1, and |Dy| < i — 1 hold, and there exists u
Qi-1),2 _ Qi-1,2

such that D¢(u) # L and D¢ (u) # L. Below we show N awyZ Dy Dy D for arbitrary v, y, and z.

If both of (Dy, Dy, Dp,) and (Df, ﬁg, Dy,) are good, then by definition of good databases and definition of equivalent
databases, there exists an integer s > 0 and u; € {0, 1}", X;, ¥; € {0, 1}, vfj) e {0, 1}, wi(’) e {0, 1} fori=1,...,s
and j = 1,...,1; (#; is a positive integer for each i) such that

1. u; * uj, Xi * Xi" Yl * Yi' f()ri * i/’
2. vg'i) # vfjl) for eachi and j # j’,
and

Dy = {(uis X0 1<y De = {((wev”. X0) W)} o2 (6.46)

Df = {(ui’Y")}lﬁiSS’Dg = {((u[, ij)’Yi)’WEj))}]<i<s 1<j<t; (6.47)

siss,ly)=s

hold.
If both of (D¢, Dg, Dy) and (Dy, Dy, Dy,) are pre-good and bad, there exist additional elements uo, Xo, ¥y € {0, 1}"
such that ug # u;, Xg # X;, Yo # Y; fori > 1, and

Dy = {(ui, Xi)Yo<i<s» Dg = {((”i, Vi(j)’Xi)’Wzg)

Dy = {(ui Y)}o<i<s» Dg = {((”i’ V,'U)’Yi)’wiw

(6.48)

(6.49)
hold (note that (Dy, Dg, D) and (Dy, Dy, D) are not equivalent if one of them is good and the other is bad).

Regardless whether (Dy, Dg, Dy,) is good or (Dy, Dg, Dy,) is pre-good and bad, there exists a unique i such that
u = u; holds. In addition, there exist a non-negative integer s’ and (1,...,¢{y € {0,1}", n1,...,ny € {0,1}™,
&1, ..., & € {0, 1}" such that

12For the second equality, we used the fact that we always obtain a valid database when we measure the state RstOE g RstOEf |1)5;-1), which
implies that RstOEg RSTOEf [¥2i-1) = Myaiq RStOEg HStOEf [¢/2; 1) holds.
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1. (i, &) # i, &iv) fori #i7,
2. {; # Xo and {; # Y hold for arbitrary i € {1,...,s'}and @, B € {1, ..., s},

and
Dy, = Dy, = {((0i: £) - <isy (6.50)
holds.
Let 7 be a permutation on {0, 1}" such that 7(X;) = Y; for each X; and 7 (¢;) = ¢; for each ¢;. For arbitrary Dg, such
that (Dy, Dy, Dy,) is pre-good, define a database (D}’, D¢, D) by

1. D}/ = Dy,
2. D}’ = Df, and

3. (v, "), w") € DY if and only if ((u”,v", 7~ ({"")), w") € DY.

Then ( D}’» Dg’ D;lf) is a pre-good database that is equivalent to (Dy, Dé, Dy,) Let us denote this database ( D}" Dé" D}/l/)
by [Dy, Dg,, Dy].

Since (a) of the fourth property in holds, by the definition of |¢/g?ff’2>,

it popy = (7,3, 21 ® (Dy, Dy, Dyl @ (Dy)]) W51
= Z (,v,y,2| ® (D, Dg, Dp| ® (D (u)| RStOE, 1, v, ", 2) ® | Dy, D}y, Dp) ® | Dy (1))
(DD B g0 (v, ', 2l ® (Dy, D}, Dyl ® Dy @)]) WS
D M RN R g
y.Dg;

(Df,D’g,Dh): pre-good
follows, where we put
c [Y', Dy, Dy, Dy — y, Dy, Dy, Dh] =, v,y,2| ®(Dy, Dg, Dp| ® (Dy(u)| RStOE |, v, y’, 2) ® | Dy, Dy, D) ® | Dy (u)) .
Now, for arbitrary y” and Dé such that (Dy, Dé, Dy,) is pre-good,

Qi-1),1 @i-11
uvy'zDs DDy~ Yuvy'zalDy Dy Dy (6.51)

holds by the fourth property in and
¢ [y, Dy, Dy Diy > y, Dy, Dy, Dy| = ¢ |y, 7Dy, D}, Da] — y, n[Dy, Dy, Di]] 6.52)
follows from the first property of In addition, the followings hold:
L. n[Dy, Dg, Dy] = (Dy, Dg, D) holds.
II. n[-]is a bijection between the set of pre-good databases of the form (Dy, Dg,, Dy,) (for some D;,) and the set of
pre-good databases of the form (Dy, Dg, Dp,) (for some D).

Therefore we have

2i-1),2 _ ’ ’ L, Q2i-1),1
auvyszDgDh - Z ¢ [y ’ Df’ Dg’ Dh - Df’ Dg’ Dh] auvy’szD"gDh
y'.Dyg;
(Df,Dé,D,,): pre-good
(@31p and (6:57)) / / Qi-1),1
- Z C[y ’ﬂ[Df’Dg,Dh] _>y9ﬂ[Df3Dg’Dh]:| 'auvy'zn[Dng,Dh]
y'Dy:
(Df,D%,Dh ): pre-good
(fr({n D ’ ’ ~ ~ S (2i-1),1
- Z ¢ [y ’ﬂ[Df’ Dg’ Dyl = Df’ Dg’ Dh] ' auvy/ur[DfD;,th]
YDy
(Df,Dé,,Dh): pre-good
(fror_nII) Z c [ ’ D D" D N D Ij D ] .a(2i—l),l
= y ’ fs g’ h y» fs 8 h uvy’szD;th
y.Dg;
(f)_f,D;ﬁ,E;,): pre-good
_ (2i-1),2
- auvyzD-fD~gD~h’ (6.53)
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which shows that property 4-(b) of also holds. m
Next we prove the following lemma, which shows how the quantum states RstOE;, - RstOE s |¢g?f‘f> and RstOE,
- RstOEf It,//g?ff) change when RStOE} acts on them.

Lemma 21 (Action of RStOE®). Suppose that there exist vectors [y, [y239 ), |69°°%), and |#52 Y that satisfy the

2i-1 2i-1 2i-1 2i-1
sixth properties of Then there exist vectors Iz//g?f?’3), |l//t2)?f’13 ) |¢g?fcf’3), and |¢g?f’l3) that satisfy the
following properties:
% L3 X * L3
1. RStOE;RStOE,RSOE Y2 1) = W31 + W5’y holds, and RstOE;RStOE), - RStOE |¢ni-1) = |¢57°1°) +
165247 holds.

good,3 (1) good,3 (2)
2. |¢2i—1 YeEHA® Vgood and |¢,2i—1 YEHA® Vgood'

good,3\ _ good,3
3165507 = (W],

4. There exists complex number al(lzvly_z%i DD, such that the following properties (a) and (b) hold:
(a) It holds that
d,3 i-1),
WSS = D b b, 6 312 @ IDg, Dy, Di), (6.54)

uv,y,2,D¢,Dg,Dp;

(Dy,Dg,Dy):good
where (u,v), y, and z correspond to A’s register to send queries, register to receive answers from oracles,
and register for offline computations, respectively.

. 2i-1),3 2i-1),3
(b) If (Dy, Dg, Dy) and (D%, Dy, D)) are equivalent good databases, then a,(dv'yzngg D, = alivlyzl)i}D:g D, holds.

5. For a good database (Dy, Dg, Dy,) with non-zero coefficient in |z//g:.)f?’3), [Dg| <6, |Dy| <24, and |Dp| <i -1
hold.

6. 1152200 < 1116529 1l + O (Vif2?) and 1150 I < 11 wS2, ) 1| + O (Vi727) hold.

Proof. By Lemma ZOI, there exist vectors |¢§§.’i’?’2>, I¢§?§”ﬁ>, Iwg?f?’z), and Ilpgf'f’lz) that satisfy the six properties in
[Lemma 20l
For each tuple (&, v, y, z, Dy, Dg, Dp,) such that

1. |Dg| <1i,|Dyf| £ 2i,and |Dp| <i—1,
2. (Dy, Dg, Dy) is good, and
3. Df(u) =1,

let o be an n-bit string such that (Dy U (u, @), Dg, Dy,) is pre-good, and define

(2i-1),3 .— Afon ,2i-1),2
auvyszDgD;, =V2 auvyszU(u,a/)DgDh‘ (655)

Due to property 4-(b) of the definition (6.33) is independent from the choice of a.
In addition, for each tuple (u,v, y, z, D¢, Dg, Dy,) such that

1. |Dg|l <, |Dy| < 2i,and |Dp| <i—-1hold,
2. (Dy, Dg, Dy) is good,
3. De(u) # 1,

define

(2i-1),3 L (2i-1),2
uvyzDgDgDy * ™ “uvyzDyDgDy* (6.56)

When the conditions |Dg| < i, |Dy| < 2i, and |Dp,| < i — 1 are not satisfied, let

(2i-1),3 —
b pypy = 0 (6.57)
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Define [¢3°°0?) by the equation (6:34), where the coefficients a> 113 are those defined in (6.53), (6-36),

uvyszDgDh
. d.3 d,3 d,3 , , 3y .
and (637). In addition, define [¢3;°1°) by [#3°1°) := [lwS°1 )], Define [y5:%’) and [652%) by lwhe%?) :=
RStOE} RStOE,RStOE  lyi-1) — w51 and ¢52%7) := RStOE;RStOE,RStOE [¢i1) — 165:°1).
Remark 23. The intuition behind the definition of |gbg°°d 3) is as follows. Roughly speaking, we defined |l//g:’°f’3> in
such a way that Tpre.good RStOE £ Iz//gt.oof 3y will be close to Iz,bgfof 2, Suppose we have Iz//gtoof 3y that satisfies (6.54) and

let RstOEy act on it (rather than we have Ilﬁgwd 2) and let RstOE"; act on it). Then, since this RstOE; writes outputs
into an auxiliary register, the behavior of RStOEf is close to the classical lazy sampling. Intuitively, the followings will

hold if Hpre-good RStOE ¢ |l!/gl°ff3> = |l//g,°_0f2>

1. Databases | D¢, Dg, Dy) with Dy (u) # L are not changed by RstOEy, and (6.53)) holds.

2. Databases |Dy, Dg, D) with Dy(u) = L are changed to Y, |Df U (u, @), Dg, Dyy by RstOEy, and (6.56)

\/27
holds.
This is the reason that we defined a'(dzv'y_zl)D; D Dy @ and |l//g°°d 3) like above. We provided definitions based on |1//g:)°?’3)
rather than |l//g°°d 2) unlike previous lemmas, because it makes the proof for property 4-(b) simple (or just trivial). We

defined |',l/'°.ad 3), |¢g(.)°d 3), nd |¢bad 3Y in such a way that property 1-5 of the lemma will be satisfied.
good,3> |wgood,3>,

2i-1 2i-1
Then, property 1, 2, 3, 4-(a), and 5 of immediately follow from the definitions of [y, 52
|¢2?f’13 ), and |¢g?f’13 ». In addition, property 4-(b) of| follows from the definition of the coefficients aftzvly_;gi DD,

and property 4-(b) of Below we show that property 6 of holds.
Remark 24. Later, we will show that ”Iqﬁb?dj)” is upper bounded by ”Iqﬁbad’2>” + |‘|¢g°°d’3> — IregRStOE | good, 2)” In

2i—1 2i—1 2i—1 21 1
what follows, our main goal is to show that |(|¢g§’f‘f’3> — TiegRStOE}, | |92 2)” is in O(\i/2").

By applying the first property of and by definition of regular state{™] we have

d,2 2i-1),2
1_Ireg RstOE’ Hgood |¢goo > - Hreg RStOEf Z al(wlyz[))fu(u,a)DgD;, |u’ v> |y> |Z>

u,v,y,2,a,D¢,Dg,Dp; DU D, x D,
(Dfu(u,a),Dg,Di):good ®l S (@), 8 h ® )
Df(b{):i
(2i-1),2
- Z auvyszU(u,a)DgDh |u’ V> |y> |Z> (658)
u,v,y,2,0,Df,Dg,Dp; Ds U D, x D
(DfU(u,a),Dg,Di): good ® l f (Lt, (l), 8 h>
Df(u)=J_

L oi-ne2
—V_na;v’yz By by 116 7) 1V)12) (6.59)
u,v,y,z,a,Dy,Dg,Dy; 2

(DyU(u,@),Dg,Dy): good |D > Z 1 |D ( )) |D D >
Dy(u)=1 ® - — U (u,y * Dy
f ~ \/Z_n f 8
1 .
(2i-1),2
- > 7 Gy Ut Dy 16 V) 19 12) (6.60)
u,v,y,2,a,D¢,Dg,Dp;
(DfU(u,n),Dg,DZ): a00d ® |Df U (u, @), Dg * Dyp)
Dy(uw)=L
1 .
(2i-1),2
+ 23n/2 uvyzDgU(u,a)Dg Dy, |u’ v> |y> |Z>
u,v,y,2,@,D¢,Dg,Dp; 1
(DfVU(u,a),Dg,Dy): good 2 DsU —\D D.xD
Dy (- ® Zyl_@' F U (7)) = Dy | IDg * Dp),

(6.61)
where the terms (6.38))-(6.61) correspond to (3.12)-(3.13)), respectively.

13Recall that a state is regular if and only if it does not contain invalid databases and the auxiliary register is set to be 0. In particular, the projection
Iieg nullifies the terms with invalid databases and those of which auxiliary register is non-zero.
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On the term (6.58).

LetII, be the orthogonal projection onto the space spanned by the vectors |u, v) |y) [z) | Dy, Dg, Dy ) suchthat Dy (u) # L.

Then w3
1@©:38)) = T 14527 (6.62)
holds.

Upper bounding the norm of the terms (6.39) and (6.61).
First we have

2
1 (2i-1),2 D
An auvyszU(u,a/)DgDh lu, v) |y) 12} | Dy, Dg * Dp)
u,v,y,2,0,D,Dg,Dp; 2
(DyU(u,@),Dg,Dy,): good
Dy(u)=1
2
= 1 (2i-1),2 D D/
h /Z_n auvyzD_fU(u,a)DgDh |u’ v) |y> |Z> | 1 h>
u,v,,2,0,D,Dg,Dpy, D}, ;
(DyU(u,@),Dg,Dp): good
Dr(u)=L
Dy*D},=D),
2
_ Z 1 Z Z 422 663
- D 2n ) = uvyzDgU(u,@)DgDp | * .
u,v,y, 2,0, ;1 @,Dg,Dy;
Dy@u)=1 DgxDy,=D),

(Dy U(u,a),D;): good

For each database (Dy, D,’1) such that Dy (u) = L for Flh, the number of @ such that (Dy U (u, @), D;L) becomes good is
atmost |D; | < O(i). Hence we can show

2
(2i-1),2 (2i-1),2 2
i—1), . -1,
Z Z auvyszU(u,a)DgDh < 0(1) Z auvyszU(u,(x)DgDh (664)
D’ a,Dy,Dy; a,Dg,Dy,;
h gD o
Dg*Dyp=Dj, (DyU(u,@),Dg,Dy,): good

(Dy U(u,a),D;’): good

in the same way as we showed (6.39). From (6.63) and (6.64), it follows that

1 .
(2i-1),2
T vy, y V) ) 12) 1Dy Dy % Di)

u,v,y,2,a,Df,Dg,Dp;
(DfU(“’(Y)’Dg’ Dy,): good
Dy (u)=L1

i
2, 0 (2—) ' 2.
u,v,y,2,Df; a,Dg,Dp;
Dp(u)=L (DyU(u,@),Dg,Dy): good
(DyU(u,@),Dg,Dy): good

i
o (2—n)
Dy(u)=L

<0 (ZL) e < 0 (2L) (6.65)

2i-1),2
uvyzDgU(u,a)Dg Dy,

IA

a I

(2i-1),2
uvyzD¢U(u,a)Dg Dy

’2

u,v,y,2,,Df,Dg,Dp;
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holds. We can show

2
1 .
(2i-1),2 good,2
T Civsa vty 1 1Y) 12) <0 ( ) o2 <0( ) (6.66)
u,v,y,2,a,Dy,Dg,Dy;
R i ® L 1D, Uy 1D, % Dy
(u)=1 _
AL ; \/2_71 f M,'y 8 h

in the same way. Now,

@51l < 0(\/2,,) and [[[(€.6I)II < 0(\/;) (6.67)
follow from (6.63)) and (6.66).

Upper bounding the norm of the term (6.60).

We have that
i 1
2 _ (2i-1),2 good,2
XN u;yszU(u,a)DgDh < oo 62 < ( o ) (6.68)
u,v,y,z,a,Dy,Dg,Dy;
(DfU(u,@),Dg,Dy): good
Dy(u)=1
holds since all summands are orthogonal to each other.
Now, from (6.58) - (6-61), (6.62). (6.67), and (6.68),
i

HHL |¢Qood 3y HregRstOE Mgood |¢g?0? 2>|| < 0< 2") (6.69)
follows.
Remark 25. So far we have shown ”H,L |¢g°°d Iy - IT;egRstOE? good |¢g?°? 2)“ is small. Nextwe will prove ||I1 |¢g°°d 3

— I;eqRStOE?, Hbad |¢g°°d 2} || is small, which will lead to showing that ”|¢g°°d 3) ey RstOE* |¢g°°d 2)” is small.

Next, let IT, be the orthogonal projection onto the space spanned by the vectors |u, v) |y) |z) [Df, Dg x Dp,) such
that Dy(u) = L. Then, by applying the second property in[Proposition 3} we have

1
RStOE/I1, |$2°°%7) = > iy by 1V 19 12) (6.70)
u,v,y,2,a,D,Dg,Dy; \/_
(Dy,Dg,Dy,): good ®|Dr U (u, @), Dg *x Dp) ® |a)
Dy(u)=L
1 .
(2i-1),3
t > a5 by 16V 1) 12) (6.71)
u,v,y,2,Df,Dg,Dp; 1
(Dg,Dg,Dy): good _ o
Dyt ®|1Dy) ; 757 |Pr 0 @y |IDg % Di) @ 107,

where the terms (6.70) and (6.71) correspond to (3:16) and (3.17), respectively.

On the term Iyre-good |(6-70)).
By the equation (6.55)),

pre good Mm)) = 1—Ibad |¢900d 2) (6.72)
holds[™

14 Note that here we are focusing on pre-good and bad databases. See also Remark
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Upper bounding the norms of the terms Igre-baq [(6.70)) and [(6.71)).
For a good database (Dy, Dy, Dp,) for F», let NumPreGood(Dy, Dg, D) be the number of « such that (Dy U

(u, @), Dg, Dy, ) becomes pre-good. Then we have |NumPreGood(Df, Dy, Dh)| > 2" — |Dy| = |Dp| 2 2" - 2i, and

Qi-1)3 _ O Z Qi-1),2
uvyzDgDg Dy NumPreGood(Df, Dgs Dh) L uvyzDyU(u,a)Dg Dy,
(DfU(u,a/),Dg,’Dh): pre-good
V2" Qi-1),2
= om 9 Z auvyszU(u,a)DgDh (673)
a;
(DfU(u,@),Dg,Dy,): pre-good

holds. Thus we have that

2
good.3, 12 _ Qi-1),3 »
L 16520 = > A by 16 V) 19) 12 @ 1Dy, Dy % D)
u,v,y,2,Df,Dg,Dp;
(Dg,Dg,Dy): good
Df(u)=J_
_ (i-1),3
- uvyzDysDg Dy,

u,v,y,2,Df,Dg,Dp;
(Dyf,Dg,Dy): good

Dy(u)=1
2
@ Z V2 Z 4212
- o _2j uvyzDgU(u,a)Dg Dy
uv,y,2,D5,Do,Dy; ! a;
V.2, D 5D g, Dp; >
(Df,Dg,D/,)éggood (DfU(u,a),Dg,Dy,): pre-good
Df(u)=J_
2
v2n ? :
— Z a(2171),2
- o 2 - uvyzDygU(u,a)Dg Dy
u,v,y,2,D¢,Dg,Dp; a@;
(Dy,Dg,Dy,): good (DfU(u,a),Dg,Dy,): pre-good
Df(u):i
2
i 2
Conv<ex1ty V2n on Z 2i-1),2
- o _ 9 uvyzDgU(u,a)Dg Dy,
uv,y,2,D5,Dg,Dy; !
WV Y G f s g, s

a;
(Df,Dg,Dy): good (DyU(u,a),Dg,Dy,): pre-good

Dy(u)=1

=0(1)- Z

u,v,y,z,a,D,Dg,Dy;
(Df,Dg,Dy): good
Df(u):i
(DfU(u,@),Dg,Dy,): pre-good

(2i-1),2
uvyzDygU(u,a)Dg Dy,

< 0(1) - |[Toaa 14543 (6.74)

holds, where “convexity” denotes convexity of square functions. [3] Therefore

T2 16520 < [[Moaa 163252)]| - © (1) < 0(1) (6.75)

holds.
Since (6.73) holds, we can show

[More-bea IETO))| < O (\/22) e < 0 (\/ZZ) (6.76)

I5Note that Ipaq do not cancel pre-good and bad databases.
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and

IET) < 0(\/7 ) I 16375 < 0(\/:) ©6.77)

in the same way as we showed (6:42) and (6.43)) in the proof of respectively.
Now it follows that

|RStOETT, 19521 = Toag 1¢3:°1 )| = [|(1ET0D) + 166TTD)) — Toaa 165712
= [[More-goor 1ETO) + Mo bt BT + 1 ETT) — Thag 65775
D | Ly s {ETD) + 1ETTY)

B8 ad 77 (,/ ) (6.78)
2}’!
holds.

Since Tregl1, [3°°0%) = I1, [¢37°) holds by definition of [¢3°°%),

T2 16520 — THregRStOE  TToaa 65| = [|TTreg (T 1495°)) — RStOE} Mogq [45°1%)) |

”Hl |¢good 3) — RstOE* Hbad |¢g§>oclj 2>||

e®, (\/2’:") (6.79)

holds.
From (6.69) and (6.79), it follows that

1652 — ThegRstOES 16370 )]| < || 1937°1) ~ TleegRStOE TTgaos 145

+ [T 1652°1) — TiogRStOE  TToaa [65°%)|
i
<0 (w / 2n> (6.80)
holds.

Since we obtain a regular database whenever we measure the state RstOE} RstOEy, - RstOEf |¢2;-1),
Mieq RstOE}ZRstOEh RstOE |¢i—1) = RstOE;Z RstOE;, RsStOE |¢2;-1) (6.81)
holds. Therefore, from property 1 and 6 in[Cemma 20] (6-80), and (6-81),
165295 = ”RstOE RStOE,RStOE ¢i-1) — 651
Hnreg RStOE;RstOE, RStOE  |¢2i1) — |93 3>||
property 1 ”HregRstOE* (|¢good 2> + |¢k2)?d12>) good 3>H
< H|¢good 3> _ HregRstOE |¢good 2>” |||¢bad 2>H

gt gt oo

2o <\/7) + 1852 (6.82)

follows, which implies that property 6 of 1{ for |¢bad 3) holds. We can show property 6 of the lemma for

bad3y in the same way. O
|¢21—1 y

Proof 0 We show the claim by induction on j. The claim for j = 1 obviously holds by setting
1437°%) = 1610, W77 = o), 148%) = 0, and [y = 0
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From (2i — 1) to 2i. Here we show that the claim holds for j = 2i if the claim holds for j = 1,...,2i — 1. By[Lemma 2 I|,

there exist vectors Ilﬁg?f? 3) nga d13> |¢9°°d 3) and |¢gad13) that satisfy the six properties in|Lemma 21l

Let Up;—;1 denote the unitary operator that corresponds to the offline computation by A between the (2i — 1)-th
query (the i-th query to F lh or F3) and the 2i-th query (the i-th query to /), and define

W0 1= Uniy S0, 0529 = Uniy 224,
69°°) 1= Unioy 1692907, [6529) = Uniy 192°%7) .

Then, the six properties in [Proposition 21|for j = 2i immediately follow from the six properties in[Lemma 21} Hence
the claim holds for j = 2i.

From 2i to 2i + 1. Here we show that the claim holds for j = 2i + 1 if the claim holds for j = 1,...,2i. Let Ily; be
the orthogonal projection onto the space that is spanned by the vectors |v, {} |y) |z) ® |Dy, Dg, Dp) (o1, |v, ) |y) |2) ®
|Dy, D)) such that (u, () € Dy for some 14{1_3} In addition, let I := 1 — Iy.

Let Uy; denote the unitary operator that corresponds to the offline computation by A between the 2i-th query (the
i-th query to /1) and the (2i+1)-st query (the (i +1)-st query to F/* or F;). We define Iz,bgmd) ly5ady, |¢g°°d) and |¢52) by
W30%) 1= UniTlyaigRSIOE Tyt [$37°) [w829) ) 1= Ygi41)— w;’f’f‘b, 16520 = Unill,aiaRStOE, Ty |937°7) , |95 ) :=
|faiet) = 95501 -

Then property 1 of for j = 2i + 1 holds by definition of Iwgmd) ly5ady, |¢g°°d) and |¢52%). Property
2,3,4,5 for j = 2i + 1 can be shown by checking how the coefficients of basis vectors in IT_; Iz,//goo Y and I |¢>g°°d>
change when RstOE, act on them (by applying [Proposition 3|on RstOEy,). [7]

Below we show that property 6 holds for j = 2i + 1.

For a good database (Dy, Dg, Dy,) for F», let Equiv(Dy, Dg, Dy) be the set of good databases that are equivalent
to (Dy, Dg, Dp,). Let R be a complete system of representatives of the equivalence relation on good databases for
F, (i.e., R is a set of good databases for F, such that the set of all good databases for F, is decomposed into the
disjoint union (5, 5,.5,)cn Equiv(Dy, Dy, Dy)). In addition, for a good database (D, Dg, D) for F» and £, let
EquivHit, (Dy, Dg, Dp) be the set of good databases (D, Dé, D;l) such that (D, Dé, D;l) is equivalent to (D, Dg, Dp,)
and (1, () € DJQ for some u. Then the following claim holds.

Claim 6. For each { and each good database (D¢, Dg, Dy,) € R such that a‘(}zgz D;D,D # 0 for some v, ¢, y, z,

|EquivHit, (Dy, Dy, D) < 0( ; )

|[Equiv(Dy, Dg, D) 2
holds. [13
Proof. Let
S:={Z €{0, 1} Fv,ws.t. (v,{"),w) € Dy},
and

IIg := {x : {0, 1}" — {0, 1}"|r is a permutation and 7(¢") = ¢’ forall ¢’ € S} .
Then, a good database (D7, D;, D;) is equivalent to (Dy, Dg, Dy,) if and only if there exists 7 € I1s such that
1. Dy =Dy,
2. (u,{") € Dy if and only if (v, 7({")) € D%, and
3. ((u,v,{"),w) € Dy if and only if ((u, v, 7({")), w) € Dslz holds.
16This projection corresponds to the event hit in

7Intuitively, the behavior of RstOE;, on IT it Iz//goo yis the same as that of RstOE;, on I1_pj |¢g°°d).
18]n (6.21)) we used the symbol au‘l)yszD Dy for ease of notations, but here we use ai(; 2Dy Dg Dy, (“uv” is replaced with “v{”) because we
use the symbol v||{ to denote an input to .
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Therefore we have

EquivHit, (Dy, Dg, Dp,)
‘ AN | = Pr [There exists (u, ") € Dy such that 7({) = §] .
‘EqU|V(Df, Dga Dh)| n(iHS

The probability on the right hand side is upper bounded as

Pr [There exists (u,{") € Dy such that 7({") = g“] < Z Pr [#({") =<]
i (0.ENeDy nitig

n<Ilg
_ l{r € Us|n({") = L}
B II
wiren, [TLs|
_ 2" -1S|-1! Dyl - ( i )
- n _ ' on _ An ]
e, Q" —1SP! 2" — | Dyl 2
Hence the claim follows. O
Now we have
2
good 2 _ 2i)
[T S| = Y Db, O 1) 12) @ IDs, Dy, Di)
v,4,¥,2,D5,Dg,Dp;
(Dg,Dg,Dy): good
Jus.t. (u,{)eDy
_ en) 2
- V,(yZDngDh
v,4,y,2,D¢,Dg,Dp;
(Dg,Dg,Dy): good
dus.t. (u,{)eDy
_ D 42 2
- v{yzDsDg Dy,
(Dy,Dg,Dp)eR v,$,y,2,Df,Dg,Dp;
(Dy,Dg,Dp)€Equiv(Dy,Dg,Dy,)
Jus.t. (u,{)eDy
property 4
forj_: 2i Z a(Zi) 2
- oL viyzDy Dy Dy,
(Dy¢,Dg,Dp)eR v,4,y:2,Df,Dg,Dp;
(Dy,Dg,Dp)€Equiv(Dy,Dg,Dy,)
Jus.t. (u,{)eDy
2
B s R R X (2i)
= Z Z |EqU|vH|t{(Df, Dy, Dh)| av(yszDgD,,
(D_f,Dg,Dh)ER V.42
ol Equiv(Dy. Dy Dy)|[a®” ’
- o’ Z Z | quiv(Dy. D, h)| av{yz[)fﬁgf)h
(Df,Dg,Dh)GRVs{aYsZ
property 4
forj =2 RN Z i) ?
- on v{yzDyDgDy,
(Df,Dg,Dh)ER v,{,y,2,Df,Dg,Dp;
(Dg,Dg,Dp)€Equiv(Dy,Dg,Dyy)
; 2
_ ! (20)
= 0 (2_n) . avgyszDgD,,’
v,4,y,2,Df,Dg,Dp;
(Df,Dg,Dy): good
i 2 i
_ . good -
= 0 (27) s < 0 (zn)' (6.83)
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Therefore we have
sz = sy = S|
HU21 RstOE, [y2:) — UaiTlyaidRStOE, TTpit |¢,9°°d>H
= || FlvaiaRSIOE  1020) — TyaigRStOE [ 127
< [lwae) = T 2| = 2% + 1082 = T 1w 52°)|

< ol =) < ol o 3

where we used the fact that we always obtain a valid database when we measure the state RstOEy, |y2;), for the third
equality. Hence the sixth property for [/529 ) holds. We can show that the sixth property for |#52%,) holds in the same
way. O

6.5 Quantum Security Proofs for HMAC and NMAC

The goal of this section is to show the following proposition, which is the formal version of

Proposition 22. Let h : {0,1}™" — {0,1}" be a quantum random oracle. Suppose that the padding function
pad : {0, 1}* — ({0, 1}™)* for the Merkle-Damgdrd construction satisfies that: (i) pad is injective, (ii) there exists a
function p : Zso — {0, 1}* such that pad(M) = M||p(IM|)™} Let A be a quantum adversary that runs relative to two
quantum oracles O and h, where O" may depend on Suppose that the lengths of messages that A queries to O™ after
the padding are at most m - € when O" is HMAC;I’< or NMAC’I’(I, K- In addition, suppose that A makes at most Q queries

h : qPRF @nt+Q36 | qn+Qt qPRF (qn+Q)3¢3
to O" and gy, queries to h. Then AdeMAC,;( A)<LO (\l o + 5 ) andAdVNMAC,, A)<LO (\/ 2

K|.K,
hold.

Recall that HMAC},‘( (resp., NMAC’}Q’KZ) is the composition of the functions MD" (IV,K;||-) and MD" IV, Kourll*)

(resp., MD" (Ky,-) and MD" (K>, +)). Let us call the first and second functions the inner function and the outer function,
respectively. In addition, let MD” : {0, 1) x ({0, 1})* — {0, 1}" be the function that is defined in the same way as MD"
but without padding. Then, to prove [Proposition 22| it suffices to prove the claim in the case that the inner function of
HMAC’I’< (resp., NMAC}I’{I’ Kz) is replaced with MD " (IV, K,,||-) (resp., MD/h(K 1, -)) and the lengths of messages queried
by A is always a multiple m and at most € - m, since this change does not decrease adversaries’ ability to distinguish.

Thus, in what follows, we prove in the case where HMAC},Q and NMAC’,“Q’ K, are modified as above.
We show it by introducing (2¢ + 2) games Go,p, Go,n, Gi (1 <1 <), G} (1 <i < ¢).

Game G ;. This is the game that the adversary is given oracle access to the quantum oracle of HMAC” , in addition to /.

Game G y. This is the game that the adversary is given oracle access to the quantum oracle of NMAC". in addition

to h.

K,K>’

Game G; for 1 <i < {. In the game G;, the adversary is given quantum oracle access to the function H lh (in addition
to h) that is defined as follows. Let M := M[1]||-- - ||M[j] (M[¢] € {0, 1}’ for each t) be an input message for Hf.

1. If j <1, H.h(M) := g;(M) for a random function g; : {0, 1y - {0, 1},

2. Ifj =i, Hh(M) = four (fi(M)) for a random function f; : {0, 1} — {0, 1}" and f,,; : {0, 1}* — {0, 1}".
3. If j > i, first S; := fy(M[1]]|---||M[i]) is computed, and then S, := h(M[t]||S;—1) is iteratively computed for
i <t < j,and finally H"(M) is set as H" (M) := four (S)).
See also[Fig. 6.4]
Game G/ for 1 <i < {. In the game G/, the adversary is given quantum oracle access to the function H;h (in addition
to h) that is defined as follows. Let M := M[1]||-- - ||M[j] (M[¢] € {0, 1}’ for each t) be an input message for H;h.

19These conditions are satisfied for usual concrete hash functions such as SHA-2. Recall that ({0, 1}"*)™ is the set of bit strings of length positive
multiple of m bits.
200" will be HMAC’IQ, NMAC’IQ K, Ora random function.
1. K3
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i —{fi F{oue - o d i
I>1 >
[]II -|IM[i] Mt+1] M[1] ||ML] M[i+1] M[j]
h i-— won L » El-_ o
Figure 6.4: Hl.h (M) in game G;. Figure 6.5: H;h (M) in game Gj.

1. Ifj <1, Hlfh(M) := gj(M) for a random function g; : {0, 1y - {0, 1},

2. If j > i, first S; := fl(M[1]|| - ||IM[i]) is computed, and then S, := h(M[t]||S;-1) is iteratively computed for
i<t<j,and ﬁnally H (M) is set as H (M) := four(Sj). Here, f; : {0,1} mi_5 (0,1} and fou : {0, 1)"
{0, 1}"* are random functlons

See also|Fig. 6.5} Since the lengths of messages queried by A is at most m - £, G}, becomes the ideal game that A runs
relative to a random function and 4.
For the distinguishing advantage between G y and G, the following lemma holds.

. . 3
ol CAREY (V(gn + 003727 .

Lemma 22 (Go y and G;). Adv"s!

Proof. Recall that each message for NMAC is first processed with MD™" (K], - and second with MD* (K>, -). In

——h
addition, the length of messages processed with MD" (K>, -) is fixed to be n. Let MD (Ka,-) : {0,1}* — {0,1}" be
the function that is the same as MD" (K3, -) but the domain is restricted to {0, 1}"*. Recall that we call MD" (Ky,+) and

mh(l(z, -) the inner function and the outer function, respectively. Then, the difference between NMAC}I’Q’ K and the
function H]h in G are: (i) The first application of 4 in the inner function in NMAC}I‘Q’K2 (i.e., the function A(:||K})) is
replaced with a random function f] in Hfl. (ii) The outer function in NMAC'I’Q’ k, is replaced with a random function
Sfour in H lh

Let H{l be the function that is the same as Hh except that the random function f| is replaced with h(:||K;)
(K1 € {0,1}" is chosen uniformly at random). Then for a quantum adversary A to distinguish (NMACK Ky h)
from (H!, h) that makes at most Q quantum queries to NMAC}I’Q’ K, OF th and at most g, quantum queries to i, we

can construct another adversary 8B to distinguish (Wh (K>, +), h) from (fous, h) that makes at most O(Q) queries to
——h
MD (K3, -) or f,y,: and at most O(g, + Qf) quantum queries to % as follows.
——h
B is given quantum oracle access to O" (O" = MD (K>, -) or O" = f,,,) and h. First, B chooses K; € {0, 1}"

uniformly at random, and runs ‘A. When A makes a query to the second oracle (which is supposed to be /), B responds
by querying to s. When A queries a message M to the first oracle (which is supposed to be NMAC’I’Q, K, Of H f’), B

computes the value 7' := O"(MD”" (K}, M)) by making queries to O" and h, and responds to A with T. Finally 8
returns A’s output as its own output.
Then B makes at most O(Q) queries to O" and at most O (g, + Q¢) queries to h. In addition, 8 completely simulates

NMAC}I’Q’K2 or A, depending on O" = Wh (K»,-) or O" = f,.;. Thus

Advdist o (A) = AdvEs B) = Adv"Y (B 6.84
V(NMAC’IQI,KQ””’(Hf”h)( ) V(MDh(KZa‘)ah)»(foutah)( )= VD" (K», >( ) (6:84)

holds.

2IRemember that the definition of NMAC;I‘(], K is slightly modified during the proof of |Proposition 22|
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Below we consider two cases depending on whether |pad(M)| = m for M € {0, 1}".

Proof for the case that |pad(M)| = m for M € {0, 1}".
In this case, MD (K, M) = h(pad(M)||K2) holds for all M € {0, 1}". Thus, from|Lemma 13|

gPRF _ GPRF qn + Q¢
AGIEE () = ADVITL k) (B) < 0( o (6.85)
follows. From (6.84) and (6.83),
dist gn + Qf
Aot iy <O ( o (6.86)
holds.
In the same way as we showed (6.86), we can show that
dist gn + Q¢
AQVE, | () <O ( i (6.87)
holds (that is, we can replace A(-||K) in the inner function of H {’ with the random function f;). Hence
dist qn + Qf
AV et gy D <0 ( T ) (6.88)

follows from (6.86) and (6.87).

Proof for the case that |pad(M)| =m - j (j > 1) for M € {0, 1}"".
We show the claim for the case that [pad(M)| = 2m for M € {0, 1}". Other cases can be shown in the same way.

Let fum {0, 1} x {0, 1} — {0, 1}" be the function defined by ﬁ,m(u,v) = h(v||p(u)), where p : {0,1}" —
{0, 1}" is a random function. Let fp;e : {0, 1} X {0, 1} — {0, 1}"* be another random function.

Now,

) +QC
dviist, ) @) <092 (6.89)
(MD" (K2, )., (four opad, ) 2n/?
follows from and
dist (Qh + Q€)3
Adv(ﬁmorxad,h),(fbigOPad,h)(B) < 0( on (6.90)
follows from In addition,
dist _ dist
AV vopaci) (forgopadiy B = AV oot G D) 690

holds since pad : M + pad(M) is injective for M € {0, 1}" and fp;g is a random function. From (6.89), (6.90), and

@©91).

. ¥ 00

AdVTRF (8) = Adv 8) <049t 2D” 6.92

vmh(Kz,')( ) V<W"<I<z,-),h),cﬁm,h>( )= 2n (652)
follows.

Since (6.87) also holds when |pad(M)| > m for M € {0, 1}",
dist (qn + 00)3
Adv(rI\TMAc’,;lM,h),(H{l,h)(ﬂ) < 0( o (6.93)
follows from (6.84)), (6.87), and (6.92). m|

For the distinguishing advantage between Go g and G, the following lemma holds.

22The difference between Wk (K>, ) and ﬁ,m o pad is that i (-||K3) in the former is replaced with p in the latter.
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Lemma 23 (Go  and G)). Adv‘(m Al i, (th’h)(f() is in O(\(qn + Q0)3/2" + (qi, + Q) [2K/?).

/\h
Proof. Let NMACg g, be the function that is defined in the same way as NMACZ]’ k, but the outer function MD" (K>, -)

is replaced with the function MD"" (K3, +), where MD"" {0, 1} x {0, 1}* — {0, 1}" is defined in the same way as MD"
but the padding function is replaced from pad to pad”’, which is defined by pad”’ (M) = M||p(|M| + m). Then we have

AdvdiSt (ﬂ) < AdVdiSl

dist
n , 0 (A) + Adv
(HMACY,,h),(H[',h) (HMAC’IQ»h)a(NMACKI,szh)

s | (A, (6.94)
(NMAC . &,-), (H[', 1)

and we can show

0(\/15:8)  ifpGm + m] = 2m,

Adv_, (A) < (6.95)
(NMAC, k., (F[', ) 0 (,/%—HQW) if lo(n+m)| =m-j(j>2),
in the same way as we proved
Upper bounding the term Adv%™ (A).

(HMAC!. 1), (\MAC ., &)
Let ph {0, 1}* - {0, 1}2" be the function defined by

P (K) = h((K110™™* @ ipad)||1V)||A((K110"* & opad)||1V). (6.96)

__—_h
For a quantum adversary A to distinguish (HMAC'%, ) from (NMAC K.K,» 1) that makes at most O quantum queries

to HMACP;< or I\WA\C},;1 k, and at most g, quantum queries to h, we construct another adversary 8 to distinguish the
bit string p(K) (K is chosen uniformly at random) from a truly random 2#-bit string by making O(gj, + Qf) quantum
queries to A, as follows.
$ is given quantum oracle access to &, and given a bit string X € {0, 1}2", which is ph (K) (K P {0, l}k) or chosen
uniformly at random. Let X; and X, be the most significant n-bit and the least significant n-bit of X, respectively.
First, B runs A. When ‘A makes a query to the second oracle (which is supposed to be /), B responds by querying
h

to the oracle of . When A queries a message M to the first oracle (which is supposed to be HMAC}IQ or NMAC K1.K>)»
_——h
8B computes the value T := NMACy, « (M) by making queries to /, and responds to A with T. Finally B returns A’s
output as its own output.
_—_h
Then, B perfectly simulates HMAC’}( or NMACg, g, depending on whether X is ph (K) (K P {0, 1}*) or chosen

uniformly at random, which implies that Adv3st . (A = AdvqiRG (8). In addition, 8 makes at most
(HMAC’,‘(,h),(NMACKIYKZ,h) o

O(gn + Q0) quantum queries to h. Thus, from[Lemma 14]

- +QC
Adv3 . (A) = AdvER9(B) < 0 (q” A ZQ ) (6.97)
(HMAC!: ), (NMAC k.| x,.h) P 2K/
follows.
The claim of [Lemma 23] follows from (6.94), (6.93), and (6.97). o

For the distinguishing advantage between G; and G for 1 < i < ¢, the following lemma holds.

Lemma 24 (G; and G)). Adv((izt{’,h),(H,."',h)(ﬂ) is in O(\q3€3/21), where g = max{Q, g ).
Here we provide a rough proof overview. Details of the proof is provided later in

Proof Overview.  First, let us slightly modify the definition of H;h. For a message M = MI[1]||---||M[i] of

length m - i, the value Hlfh (M) was defined as H"(M) := g;(M) for a random function g;, but here we re-define

H;h(M) = fl. (M, fi(M)), where f) . : {0, 1™ % {0, 1}* — {0, 1}"* is another random function. This modification

does not change the distribution of Hlfh since f},,, is random.

Our proof strategy for[Lemma 24]is similar to that for[Proposition 20] and we use RstOE to show the indistinguisha-

bility. In fact proving is easier than proving [Proposition 20| because the following difference exists between
[Proposition 20]and [Lemma 24]
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1. In the proof of a function to which adversaries can directly query in one construction (i.e., & in
F, l”) is replaced with another function to which adversaries can query only indirectly in the other construction
(i.e., gin Fy).

2. On the other hand, in a function to which adversaries can query only indirectly in one construction
(.e., four in H lh of G;) is replaced with another function to which adversaries can query only indirectly in the
other construction (i.e., f},, in H;" of G).

In the proof of we had to assure that the probability that an adversary directly queries to / a value that
is recorded in a database is very small (i.e., the probability of the bad event hit in[Section 6.2]is very small). This is the
reason that we introduced the notion of equivalent databases. On the other hand, in adversaries can query
to both of f,,, and f;,,, only indirectly (adversaries do not have full control on inputs to f,,; and f,,,). In particular,
we can define bad events in [Cemma 24]in such a way that whether they happen or not do not depend on the values of
A’s queries, and their probability can be bounded by using the randomness of outputs of random functions (like coll in

[Section 6.2)). Therefore we do not have to introduce the notion of equivalent databases in Hence it easier

to prove[Cemma 24 than to prove [Proposition 20
For the distinguishing advantage between G; and G; for 1 < i < ¢, the following lemma holds.

Lemma 25 (G, and Gi.1). Adv‘(j;;tf,,’h)’(Hihwh)(ﬂ) is in O (\/(gn + Q03/2").

Proof. Let £, : {0, 1}0*D — {0, 1)" be the function defined by f;", (M[1]]| - - - [|M[i+1]) := h(M[i+1]]| fi(M[1]]| - - - || M[i])).
For an adversary (A to distinguish (H;h, h) from (Hﬁrl, h) that makes at most Q quantum queries to H;h or H l.h+1

and at most g, quantum queries to s, we construct another adversary 8 to distinguish ( flffl, h) and (fi+1, h) by making

O(Q) quantum queries to f;’jl or f;+1 and O(gn + Qf) quantum queries to 4, as follows.

B is given a quantum oracle access to O", which is f;ﬁl or f;+1, in addition to a quantum oracle access to h. First,
B chooses functions g; : {0, 1}/ — {0,1}" for j = 1,...,i and fo,; : {0, 1} — {0, 1}"* uniformly at random, and runs
A. When A makes a query to the second oracle (which is supposed to be /), B responds by querying to . When A
queries M = M[1]|| - - ||M[j] to the first oracle (which is supposed to be H;h or Hl.hﬂ), B responds to A as follows:

1. If j <i, B computes T = g;(M) by itself, and responds to A with T.

2. If j > i, B computes S;;1 := O"(M), S, := h(M[ul||Sy_y) foru =i +2,.. o Jj,and T := f,,,(S;), by making
queries to O" and h. Then B responds to A with T.

Finally, B returns A’s output as its own output.

Then B perfectly simulates H;h or Hl.h+1 depending on whether O" = ;fl or O" = f;1, which implies that
Adv¥st (A) = Adv®s! (8). In addition, B makes at most O(Q) quantum queries to fgfl or fi+1

(H]",h),(H" 1) ), (fier )
and O(gy + Q¢) quantum queries to h. Therefore

. ; ()3
dlSt/ — dlS/t < (gn + O )
AdV(Hihvh)’(Hﬁwh)(ﬂ) Adv(ﬁf’l,h),(f,-ﬂ,h)(g) <0 o (6.98)
follows from i
Proof of[Proposition 22| The claim of the proposition immediately follows from [Cemma 22| [Cemma 23] [Cemma 24]
and [Lemma 25| |

6.5.1 Proof of [Lemma 24

As mentioned in the proof overview below , in this proof we modify the definition of H;h a little bit. Let
M = M[1]|| - - - ||M[i] be a message of length m - i. On this input, the value H;h (M) was defined as H" (M) = gi(M)
for a random function g;, but here we re-define it as

H(M) := f},,(M, fi(M)), (6.99)

where £/, : {0, 1} x {0, 1} — {0, 1}" is another random function. Since f,,,, is random, this modification does not
change the distribution of the function H;h. This subsection gives a proof only for the case i = 1. The proof fori > 1
can be done in the same way.
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As in we assume that A makes queries to H' {’ and & (or, H {’ and h) in a sequential order. In particular,
we assume that A’s (2i — 1)-th query is made to th (or H?’) and 2i-th query is made to & for 1 <i < ¢. (For instance,
A first queries to H]h (or H]h') and second queries to h.) We call queries to H]h and th' online queries, and queries to
h offline queries since computations of 4 is done offline on adversaries’ (quantum) computers in practical settings.

Recall that, when a message M is queried to an oracle, we implicitly assume that the length of the message |M]| is
encoded with M like |(|M|, M)) (see also . Since H {1 and Hih take messages of different length as inputs,
we carefully describe how we implement them. We assume that the unitary operators to process queries to H' f’ and H {’
are implemented as follows.

Quantum Oracle of th.

1. Take |M)|y) as an input, where y € {0,1}"* and M € {0, 1} for some 1 < j < £. For ease of notations, let us
define M[t] :=0"forj+1 <t < <.

2. Query M[1] to f; and obtain
M) 1y) ® [S1), (6.100)

where S := f1(M[1]).

3. Fort=2,...,¢, iteratively compute S; := h(M|[t]||S;-1) by querying M[¢]||S;-1 to h, to obtain

|M) |y) @ [S1)---1Se) (6.101)

4. Copy S; into an additional register to obtain

M) |y) @ [S1)---1Se) ®1S)) - (6.102)

5. Query S; (in the rightmost register) to f,,, and add the result to y to obtain

IM)ly ® HE (M) ® [S1) -+ |Se) ®1S;) . (6.103)

6. Uncompute Steps 2 - 4 to obtain |M) |y & H{“ (M)).

Remark 26. Some readers may wonder why we compute not only Sy, ..., S; but also Sj.1, ..., S¢, and copy S; into
an auxiliary register. Those operations may seem redundant, but we perform them so that the implementation will be
independent of the length of the message. (Among Steps 1-5, only Step 4 depends on the message lengths |M|.)

Quantum Oracle of H;h.

1. Take |M)|y) as an input, where y € {0,1}"* and M € {0, 1}"¥ for some 1 < j < £. For ease of notations, let us
define M[t] :=0"forj+1 <t <¢.

2. Query M[1] to f; and obtain
M) y) ®1S1), (6.104)

where S := fi(M[1]).
3. Fort =2,...,¢, iteratively compute S; := h(M[t]|S;-1) by querying M[t]]|S; to h, to obtain

[M)1y)®|S1)---1Se) . (6.103)

4. Copy S; into an additional register to obtain

M) |y) @ [S1)---1Se) ®S;) - (6.106)

5. If j =1, query (M[1], S}) to f/,, and add the result to y to obtain

M)y ® H"(M))®|S1)---1S¢) ® IS . (6.107)
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6. If j > 1, query S; (in the rightmost register) to f,,, and add the result to y to obtain
MY |y ® H"(M)) @ 1S1)- ISy ®1S)) . (6.108)

7. Uncompute Steps 2 - 4 to obtain [M) |y & Hih (M)).

We show the hardness of distinguishing H f’ and H ;h by using the recording standard oracle with errors (RstOE).
We assume that the quantum oracles of fi, &, four, and f,,, are implemented by using RstOE (quantum queries are
processed with RstOE). Let RstOEy, RstOE,, RstOE, ,, and RstOEy; = be the recording standard oracle with errors
for f1, h, four, and f},,, respectively. We use the symbols Dy, Dy, Dy, ,, and Dy 1o denote databases for f1, hk,
Sfour, and f ., respectively.

LetO HP be the unitary operator to process queries to H f’ implemented as above. Then, O Hh Can be decomposed as

OH];. = RstOE}ii - RstOE}, - - - RstOE,, -:CP - Oy, - CP - RstOEy, - - - RstOE, -RstOE;, (6.109)

-1 times £—1 times

where O,,; = RstOE;, , and CP denotes the unitary operator to perform the copy operation in Step 4.
Similarly, let O,,» be the unitary operator to process queries to H ih implemented as above. In addition, let IT; be
1

the orthogonal projection onto the space spanned by the vectors of messages |M) such that |[M| = 1. Then, Op» can
1
be decomposed as

OH;h = RstOE}, - RstOE,, - - - RstOE}, -CP - Oy,,, - CP - RstOEy, - - - RstOE,, RstOEy;, (6.110)
£—-1 times £—1 times
where O,,,, := I, ® RstOE; + (I —I1;) ® RstOEy, ,, .

6.5.1.1 Good and Bad Databases

Based on the description above, we introduce the notion of good and bad databases for H lh and H ;h
We say that a (tuple of) valid database (Dy, Dy, Dy,,,,) for H]h is good if and only if it satisfies the following
properties.

1. For (u,{) and (u’, ") in Dy, such that u # u’, { # £’ holds (there is no collision for fi).
2. For ((v,{),w) and ((v/, ¢”),w’) in Dy, such that (v, ) # (v/,¢’), w # w’ holds (there is no collision for £).
3. Forall (u,{) € Dy and ((v,{’), w) € Dy, { # w holds (there is no collision between outputs of f; and h).

4. For each (a, B) € Dy,,,, there exists (u, @) € Dy, for some u, or there exists ((v, ), @) € Dy, for some v and .

We say that (Dy,, Dy, Dy, ) is bad if it is not good.
Similarly, we say that a (tuple of) valid database (Dy, Dy, Dy, ,,, Dy ) for Hih is good if and only if it satisfies the
following properties.

1. For (u,¢) and (u’,{’) in Dy, such that u # u’, { # ¢’ holds (there is no collision for f7).
2. For ((v,{),w) and ((v/, {’), w’) in Dy, such that (v, ) # (v/,{’), w # w’ holds (there is no collision for £).
3. Forall (u,{) € Dy, and ((v,{’),w) € Dy, { # w holds (there is no collision between outputs of f; and ).
4. For each (a, B) € Dy,,,,, there exists ((v, (), @) € Dy, for some v and {.
5. For each ((u, @), B) € Dy; ., (u, @) € Dy holds.

We say that (Dy,, Dy, Dy, Df(,’m) is bad if it is not good.

Intuition Behind Good and Bad Databases. Intuitively, a database (Dg, Dy, Dy,,,,) for H lh is defined to be good if
and only if Dy does not contain collisions (the first condition on H' lh), Dy, does not contain collisions (the second
condition on th), and there is no collision of output values between Dy and Dy, (the third condition on th). The
fourth condition on H lh is included so that a weird situation such as “a has been queried to f,,;, but both of f; and &

have not returned the value @ as output” will not happen for good databases. Good databases for H ;h are defined in the
same way. Intuitively, a good database changes to bad if and only if an output value of f; or /4 is randomly sampled at
a query, and collide with a previous output of f; or k.

23We use the symbols u, £, w, @, B, u’, ', w’, @, B’ to denote n-bit strings, and use the symbols v, v’ to denote m-bit strings.
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6.5.1.2 One-to-One Correspondence for Good Databases

For a good database (Dy, Dy, Dy, ,,, Dy: ) for H", let Dy, be the valid database for f,,; such that (o, B) € Dy, ,,
if and only if (@, 8) € Dy, or (u,@),B) € Df,ﬁm for some u. Then (Dy, Dy, Dy,,,) becomes a good database
for H!'. Let us denote (Dg, Dy, Dy,,,) by [(Dy, Dy, Dy,,,» Dyz )luni (uni is an abbreviation of “unify”). Then, it is
easy to check that the map [-luni : (Dg, Dy, Dy,,,,» Dfém) ~ [(Dy, Dy, Dy, Df(;m)]um is a bijection between the set
of good databases for Hih and the set of good databases for H{?. Let [-]sep (sep is an abbreviation of “separate”)

denote the inverse map of [-]yn;, i-e., the map from the set of good databases for H{’ to that for Hih defined by
[([(D#, Dn, Dy, s Dz Iunilsep = (Dg;, Dn, Dy, Dy ).

The bijections ex{‘etnd to (partially defined) 1som(é'{;1es between the state spaces. Let H 4 be the state space of the
adversary, and Hpp (resp., H 1) be the state space of the databases for H, h (resp., H /h) In addition, let Vyooq C 'HDB
(resp., V! good © H/ ) be the subspace spanned by good databases. Then, the linear map from H 5 ® Vgood to HA @V, good
that maps 1) ® |Dg;, Dy, Dy, ) to 1) @ |[Dy;, Dy, Dy, Isep) for [7) € Ha and a good database (D, Dy, Dy, ) for th

becomes an isometry. We denote this isometry and its inverse also by [-]sep and [-]uni, respectively.

6.5.1.3 Notations for State Vectors

Recall that, when an adversary A is given oracle accesses to H f’ (or H Y‘) and h, we assume that the (2i — 1)-th query is
made to H {’ (or H Y‘) and the 2i-th query is made to h for 1 <i < q. Let |¢;_1) be the whole quantum state just before
A’s i-th query to H {’ when A runs relative to H {’ and A. In addition, let |¢y;) be the whole quantum state just before
A'’s i-th query to & when A runs relative to H {1 and h. Define |¢5;_1) and |¢;) similarly when A runs relative to H 1"
and h. For ease of notation, let |¢244+1) and |¥24+1) be the quantum states just before the final measurement when A
runs relative to (H", h) and (H", h), respectively.

We can show that follows from the proposition below in the same way as we showed
follows from

Proposition 23. For each j = 1,...,2q + 1, there exist vectors |¢?°°d), |¢§?ad), Ilﬁ?wd), and Iw]l?ad) that satisfy the
Jfollowing properties:

L 16> = 16%°%) + 1652 and 1) = W) + 12 hold,

2. 1¢%°) € Haa ® Vgooa and 19y € Ha @ V.

good\ __ good
316570 = [W5D]

4. Fora good database (Dy;, Dy, Dy, .., Dﬁ;m) with non-zero coefficient in |l,bg?°cli) (resp., in |t//g°°d)) Dyl <2(3-1),
|Dpl < €+ 1)(i = 1), Dy, | <i—1,and |Dy | <i—1hold(resp., |Dg| < 2i, |Dp| < 20+ 1) - 1) +2¢,

Dy, | < i, and |Dyg;, | < i hold).

5. 11182 1 < 111859 1+0 (€3/TE727) and || 102 | < 1| 19529 1| +0 (€JE727) hold (we regard that || |637) || =
165 1 = 0).

Intuition behind the claim of this proposition is almost the same for that of (see explanations below
[Proposition 21)), except that does not contain a claim on equivalent databases (such as property 4 of
Proposition 21}

As we mentioned above, in a good database changes to bad only when a randomly chosen output of
arandom function happens to collide with an existing element in databases, like coll in In particular, there
does not exist a bad event that corresponds to hit in This is the reason that[Proposition 23] does not contain
a claim on equivalent databases (recall that equivalent databases are introduced to deal with bad events like hit).

n be shown in a similar way as we showed [P by decomposing Opn and O i3S
in (6.109) and (6.110), respectively, and checking how the quantum states change when RstOEy, RstOEh, RstOEfom,
RstOEy , RstOE,, and RStOE;Z] act in a sequential order. In fact the proof of |Propos1t1on 23|is even simpler than the
proof of [Proposition 21} [Proposition 23|can be proven only with the proof techniques used in|Chapter 4]and [Chapter 5|
because it does not contain claims on equivalent databases.

Hence, in what follows, we omit writing the details and explain only the differences between the proofs of
[Proposition 23|and |Proposition 21} The main differences are summarized as follows.

DI. does not contain a claim on equivalent databases (such as property 4 of [Proposition 21).
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D2. The oracles O H" and Oy in [Proposition 23| take inputs of various lengths while the length of inputs to the
1
oracles in[Proposition 21]are fixed.

D3. The oracles O H' and O H" in invoke random functions many (about 2¢) times whereas the oracles
in[Proposition 21|do at most on y 3 times.

As mentioned before, the difference D1 just simplify some parts of the proof. To translate the proof of
into a proof of what we have to do about the differences D1 is just to ignore the arguments on property

4 of [Proposition

The second difference D2 may look like it make the proof of complex, but actually it does not. Each
message M is encoded with its length |M| like |(|M|, M)), and the vector |(|M|, M)) is orthogonal to the vector of
another message |(|[M’|, M")) if [M’| # |M|. In addition, the oracles do not affect the message register. Thus, to show
the five properties of it suffices to prove such properties hold when the lengths of all the messages are
fixed and equal. When |M| > 2m (i.e., M consists of two or more blocks), apparently the behaviors of the oracles
OHh and Oy Hh on M are the same as long as databases are good because Hh (M) = /h H"(M). When |M| =m (ie., M
con51sts of a single block), we can also prove that the behaviors of OHh and o i Are the same as long as databases
are good in a way similar to the proof of [Proposition 21] Hence propertles 1-4 of [Proposition 23| can be shown. The

proof for property 5 of [Proposition 23] is similar to that for property 6 of [Proposition 21] except that the upper bounds
of || |¢§.’""d) || and || |¢;""‘d) || are slightly different. This difference is attributed to D3, which we explain below.

The difference D3 increases the number of total queries made to /& to O(£q), and the number of elements in
the database of & at the i-th query to Oth (resp., Opn) or at the i-th offline query to i becomes O(¢ - i). Hence,
1

roughly speaking, the norm of the “bad” vector increases by O(+/{i/2™) (but not O(Vi/2™")) at each query to & during
the i-th query to O HY (resp., OHIh) or the i-th offline query to A. In addition, & and f; are invoked O({) times

in total at each query to OHh (resp., Oy H ). Hence the upper bound of || |¢t.’ad) || in property 5 of [Proposition 23| is
I11¢%29) 11+0 (€4/j€72") butnot || [¢524) | +O (4/7/27) (resp., the upper bound of || |¢%2%) || is | [$223) ||+ O (£+/j€/2")

but not || |zp]t.’f‘1‘> l+0 (\/ /2")), unlike property 6 of [Proposition 21
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Chapter 7

Indifferentiability of the SKINNY-HASH
Internal Functions

This chapter provides a formal proof that the SKINNY-HASH internal function (the SHI function) is indifferentiable
from the random oracle. The SHI function is a function of fixed input-output length based on a tweakable block cipher,
which is used in a function-based sponge hash called SKINNY-HASH [BJK*20]. The designers of the SKINNY-HASH
claim that the SHI function is indifferentiable from a random oracle, but they do not provide formal security proofs. We
prove that the SHI function is indeed provably secure as claimed by the designers by showing a formal security proof.
See also for a more detailed overview.

The result of this chapter is practical rather than theoretical: It shows we can achieve an efficient and highly secure
construction to build functions of fixed input-output length from tweakable block ciphers in practical use cases. Unlike
previous chapters, this chapter provides only a classical security proof due to technical limitations. Nevertheless, we
still think that the result has some implications in post-quantum cryptography. Though we do not have any post-quantum
security proof of the SHI function, it is unlikely to be broken by quantum attacks. Hence we will be able to build
post-quantum secure hash functions based on the SHI function. The SHI function is an important example of an internal
function for function-based sponge hash because there does not exist many other instances. Thus it will also play an
important role when we understand post-quantum security of function-based sponge hash functions. Moreover, when
post-quantum security of the SHI function will be proved, the proof will be based on our classical proof. Therefore our
result will help future studies on post-quantum security of hash functions. See also for the relationship of
the results in this chapter with those in other chapters.

Let E denote an n-bit ideal cipher with £n-bit keys, where £ is a small constant. Recall that the SHI function F¥ is
defined as

FE(x) := Ex(c)ll -+ || Ex(co), (7.1)

where cy, . . ., c¢ are fixed distinct n-bit constants.

The goal of this chapter is to prove the following theorem, which shows that the SHI function is indifferentiable from
a random oracle up to O(2") queries. Together with the composition theorem, this theorem assures that the security of
the sponge construction does not decrease when its internal function is instantiated with the SHI function up to O(2")
queries.

Theorem 12. There exists a simulator S that satisfies the following conditions.
1. S makes at most 1 query to RO and returns an output in time O(1) at each invocation of S.

2. For an arbitrary adversary A that makes at most Q # queries to HX and makes g queries to E and E™" in total,

indi C(ga+ Q)
diff A A
AQV e gy po.s (A < o

holds.

Intuition of the Proof for[Theorem 12] Intuitively, we construct a simulator S as followqT]

'QOur intuition for the simulator is based on “Rationale of F»s¢ and F3g4” in the original specification [BJK*20||. Note that the original explanation
in [BJK*20] is very rough (only two paragraphs) and it is not trivial how to derive a formal security proof from that.
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When an adversary A queries a value (K, X) to E that A has already queried before, S just returns the previous
result stored in a list Lg.

When A queries a fresh value (K, X) to E such that A has never queried (K, Z) for any Z to E nor E~!, S first
queries K to the random oracle RO : {0, 11" — {0, 1}"¢, and simulates the values Ex (c1), . .., Ex(c¢) as Ex(c1)|| - -
||[Ex (c¢) := RO(K). S stores the pairs (c1, Ex(c1)), ..., (ce, Ex(ce)) into Lg. If X = ¢; for some i, then S returns the
value Ek (¢;) to A. If X # ¢; for all i, then S picks a value Y from {0, 1} \ {Ek (c}), .. ., Ex(c¢)} uniformly at random,
simulates the value Ex (X) as Ex(X) :=Y, stores the pair (X, Y) into the list Lg, and returns Y to A.

When A queries a value (K, X) to E such that A has already queried (K, Z) for some Z to E or E~! before but
(X,Y) ¢ Lk forany Y, S chooses Y from {0, 1}"¢ randomly in such a way that Y # ¥’ holds for every pair (X’,Y’) € Lg,
stores the pair (X, Y) into the list Lk, and returns Y to A.

Queries to E~! are simulated in the same way.

The above simulation fails only when S queries K to the random oracle RO, and RO(K) = Y| -- - ||¥ (¥; € {0, 1}"
for each i) happens to satisfy ¥; = Y; for some i # j. Roughly speaking, the probability of this event can be upper
bounded by O(1/2") for each K, and thus the failure probability of S is always negligibly small if the number of queries
made by A is smaller than 2". Note that such an event never holds in the real world since, if we divide F E(K) € {0, 1}
into n-bit blocks as FE(K) = || - - - ||¥, then ¥; = Ex (¢;) never matches Y; = Ex(c;) fori # j, for arbitrary K.

Our contribution in this chapter is to provide a formal proof that the above intuition is correct.

Proof of[Theorem 4] 'We show the theorem with the code-based game-playing proof technique [BRO6], by introducing
6 games Gy, . . ., Gg.

Game G;. G is the real game, where the adversary A runs relative to the oracles F E E,and E~'. We assume that
the oracle of the ideal cipher E is implemented by using lazy sampling. See[Fig. 7.1|for details.

Games Gy and G3. Gj is identical to G except that, when a value (K, X) (resp., (K,Y)) is queried to E (resp.,
E~1 such that (K, Z) has not been queried to E nor E~! for any Z, the values Ex (c1), ..., Ex(c¢) are sampled before
answering to the query. In addition, the sampling of Ex(cy), ..., Ex(cg) are performed as follows:

1. Choose 11, ..., Y, € {0, 1}"* independently and uniformly at random.

2. If ¥; = ¥; holds for some i # j, set flag to be bad, and re-sample V3, . . ., ¥y in such a way that ¥; # ¥; holds for all
i#].

3. Set Ex(c;) ;=Y fori=1,...,¢.

The procedure F¥ is not changed from G;. Gj is identical to G, except that the re-sampling of Vi, ..., ¥, is not
performed even if flag is set to be bad. See[Fig. 7.2] for details.

Games G4 and Gs. In the game G4, compared to G3, a random oracle RO is introduced, and the sampling of 13, ..., Y,
in E and E~! when Lk is empty is replaced with the query of K to the random oracle RO. FE is not changed in Gj.
The game Gs5 is identical to G4 except that F’ £ is modified in such a way that F E(T) := RO(T). See] ig. 7.3|for details.

Game Gg. G is the ideal game. In Gg, A runs relative to RO and SF© instead of FZ and (E, E™'), where S is a
simulator defined as in Given an input (b, K, Z) € {0, 1} x {0, 1} x {0, 1}"*, S simulates E(K, Z) if b = 0 and
E~Y(K, Z) if b = 1. The behavior of S is the same as that of E and E~! in Fhe_: games G4 and Gs.

Below we give an upper bound of the indifferentiability advantage Advl(rl’fgﬂj (E.E-1)).RO, s(A). First, by definition of
the games,

|Pr[1 <—G;"‘] —Pr[l <—G;"";1]| =0 (7.2)

holds fori = 1, 3,4, 5.

On the difference between G, and Gj3, let SetBad(i) denote the event that flag is set to be bad at the i-th query to E
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Game G}
x — AFFEET
return x

Procedure E(K, X)

if there exists Y such that (X,Y) € Lk
return Y

else

Y 401"\ L ou
Lk in < Lk,in U {X}
LK,out — LK,out ui{Y}
Lk « Lx U{(X,Y)}
return Y

Procedure £~ (K,Y)
if there exists X such that (X,Y) € Lg
return X
else
X & 40,17\ Licsn
LK,in — LK,in U {X}
LK,out — LK,out ui{Y}
Lg « Lg U{(X,Y)}
return X

Procedure FE(T)
S« ET,c)ll... [IE(T,ce)
return S

Figure 7.1: The real game G;. The lists Lg, Lk in, and Lk ou (for K € {0, 1)) are set to be empty at the beginning of
the game.

or E! (note that 1 <i < g4 + € - Q # holds since one invocation of F¥ makes ¢ queries to E). Then, for each i,

Pr[SetBad(i)] = Pr [¥ = ¥ for some 1 < j < k < (]
Yl,...,Y,<i{0,1}n

IA

o[y =n)
$
1<j<k<C Y}, Yi (0,1}

Pr [ =WAk=W|
1<j<k<tWe{0,1}" Y, Y : {0, 1}

)y ZTSn

1<j<k<t Wel0,1}n

holds. Therefore
2(qa +€0x)

[Pr[1 « G| - Pr[1 « GJ"]| < Prlfiag « bad in G] < Z Pr[SetBad(i)] < o (7.3)
1<i<ga+tQx
holds.
From and (7.3),
AV oo = e[l G B[t 63| = 3 e[ 6] -pe 1 - 674 ] < C9a 0
1<i<5
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Procedure E(K, X)
if Lk is empty
Yi... Y & {0, 1)
if Y; =Y, forsomei # j
flag « bad
fori=1,...,{do:

Y 10,17\ (M. Vi)
Lk,in < LiinY{ct,....ce}
LK,out — LK,out uin,.... Y}
Lk < Lg U{(c,N),...,(ce, Yr)}
if there exists Y such that (X,Y) € Lg
return Y

else

Y 0,17\ Lic.ou
Lk,in < Lgin U {X}
LK,out — LK,out Uiy}
Lx « Lxg U{(X,Y)}
return Y

Procedure E~' (K, Y)
if Lk is empty

Yio. . Y & (0, 1)

ifY; = Y; for somei # j
flag < bad

fori=1,...,¢do:

Y 10,17\ (Hy. . V)
Lg,in < LgjinU{ct,...,ce}
Lk, out < Lg,out YY1, ..., Y}
Lx « Lx U{(c1.11),...,(ce. Yr)}
if there exists X such that (X,Y) € Lk
return X

else

X &40\ L
Lk in < Lig,in U{X}
Lk out < Lk out YU {Y)
LK «— LK U {(X,Y)}
return X

Figure 7.2: The modified versions of E(K, X) and E~Y(K,Y) in the games G, and G3. The steps surrounded by a
square is performed in G3 but not performed in G,.
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Procedure RO(T)

if there exists W s.t. (T, W) € Lgro
return W

else

W & 0, 1t
Lro < Lro U {(T, W)}
return W

Procedure E(K, X)
if Lk is empty
Yill--- 1Yy « RO(K) (here, Y; € {0, 1}" for each i)
Lg,in < Lgin U{ct,...,ce)
Lk, out < Lg,out YN, ..., Y}
Lg « Lx U{(c,1N),....(ce. Xp)}
if there exists Y such that (X,Y) € Lk
return Y
else

Y 40,1\ Liou
Lk,in < Lk in U {X}
LK,out — LK,out ui{Y}
LK «— LK U {(X,Y)}
return Y

Procedure £~'(K,Y)
if Lk is empty
Yill--- 1Yy « RO(K) (here, Y; € {0, 1}" for each i)
Lk < LxinY{ct,...,ce}
Lk out < Lg,ou YU {Y,..., Y}
Lg « Lx U{(cr, N, ..., (co, Yo)}
if there exists X such that (X,Y) € Lk
return X
else

X &40\ Lican
LK,in — LK,in U {X}
LK,out — LK,out ui{Y}
Lk « Lx U{(X,Y)}
return X

Procedure FZ(T)
S ET, c)Il... IIET,ce)

return S

Figure 7.3: The procedure RO and the modified versions of E(K, X), E -1 (K,Y), and FE in the games G4 and Gs. The
list Lro is set to be empty at the beginning of the game. The step surrounded by a square is included in G5 but not
included in G4.
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Game G

RO
X — ﬂRO,S
return x

Procedure S(0, K, Z)
if Lk is empty
Yil|-- - ||1Yy « RO(K) (here, Y; € {0, 1}" for each i)
Lgin < LginY{ct,...,ce}
Lk,out < Li,out U {11,..., Y}
Lx « Lx U{(c1,11),...,(ce, Yr)}
if there exists Y such that (X,Y) € Lk
return Y
else

Y 4011\ L ou
LK,in — LK,in U {X}
LK,out — LK,out ui{Y}
Lk « Lxk U{(X,Y)}
return Y

Procedure S(1,K,Y)
if Lk is empty
Yill--- 1Yy <« RO(K) (here, Y; € {0, 1}" for each i)
Lk in < Lk,in U {c1,...,ce}
Lk out < Lk, out U h,....Y}
Lg « Lg U{(c, 1), ..., (ce, Yp)}
if there exists X such that (X,Y) € Lk
return X
else

X E40.11"\ Lican
LK,in — LK,in U {X}
LK,out — LK,out ui{Y}
Lx « Lk U{(X,Y)}
return X

Figure 7.4: The ideal game G¢ and the simulator S. The procedure RO is the same as that of G4 and G5. The procedures
S(0, K, X) and S(1, K, X) are described separately so that the notations will be compatible with those in G4 and Gs.
S(0, -, -) simulates E(-, -) and S(1, -, -) simulates E~! (-, -).

131



follows.
By definition of the simulator S (Fig. 7.4), at each invocation of S, it makes at most one query to RO and returns
an output in time O(1). Therefore the claim of the theorem holds. O
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Chapter 8

Conclusions

In this paper we studied post-quantum security of symmetric-key schemes from the perspective of both theory and
practice. First, in[Chapter 3| we overviewed the compressed oracle technique and provided an alternative formalization,
which we heavily used to prove quantum security in other chapters.

On the theoretical side, this paper provided answers to two theoretically important, unresolved problems. One is
whether the r-round Luby-Rackoff construction is a secure qPRP for some r > 4. The Luby-Rackoff construction is the
most important scheme to convert PRFs to PRPs. Thus the problem of whether the 7-round Luby-Rackoff construction
is a secure qPRP for some r is theoretically significant. However, the problem has been unresolved since Kuwakado
and Morii showed the 3-round quantum distinguisher [KM10]. In we solved the problem affirmatively by
proving that the 4-round Luby-Rackoff construction is a gPRP. We also showed that its tight quantum security bound is
©(2"/%), where n is the input and output length of the Luby-Rackoff construction.

The other theoretical problem that we solved is whether we can make a quantum-secure tweakable block cipher
from a quantum-secure block cipher. Since Kaplan et al. showed the efficient quantum attack on the LRW construc-
tion [KLLN16al], the problem has been unresolved. This problem is of theoretical interest because TBCs play important
roles to build efficient symmetric-key schemes such as MACs and authenticated encryption schemes in the classical
setting. In[Chapter 5|we solved the problem by showing the new construction LRWQ is secure. Together with the results
of we can deduce that a quantum-secure TBC exists if a qPRF exists.

On the practical side, we showed the tight security bound of HMAC and NMAC in the quantum random oracle
model. HMAC and NMAC are the most basic and important construction to convert Merkle-Damgérd hash functions
into PRFs. There already exists a previous work on quantum security of HMAC and NMAC [SY17] in the standard
model, but it guarantees the security only up to O(2"*/>) or O(2"/®) quantum queries in the QROM. In we
proved that O(2"/3) is the tight quantum security bound of HMAC and NMAC in the QROM (for short messages).
The gap between O(2"/?) and O(2"/3) (or O(2"/3)) is significant in practical use cases. This result shows that we can
achieve a highly quantum-secure PRF and MAC from a hash function (or, a compression function of fixed input-output
length) by using HMAC and NMAC.

As another practical result, we also provided a formal proof that the SKINNY-HASH internal function (the SHI
function) is indifferentiable from a random oracle in The SHI function is a function of fixed input-
output length based on a tweakable block cipher, which is used in a function-based sponge hash called SKINNY-
HASH [BJK*20]. The designers of the SKINNY-HASH claim that the SHI function is indifferentiable from a random
oracle, but they do not provide formal security proofs. We proved that the SHI function is indeed provably secure as
claimed by the designers, by showing a formal security proof. The result on the SHI function shows we can achieve an
efficient and highly secure construction to build functions of fixed input-output length from tweakable block ciphers in
practical use cases. Unlike other results, only a classical security proof is provided for the SHI function due to technical
limitations. Nevertheless, we still think that the result has some implications in post-quantum cryptography. Though
we do not have any post-quantum security proof of the SHI function, it is unlikely to be broken by quantum attacks.
Hence we will be able to build post-quantum secure hash functions based on the SHI function. The SHI function is
an important example of an internal function for function-based sponge hash because there does not exist many other
instances. Thus it will also play an important role when we understand post-quantum security of function-based sponge
hash functions. Moreover, when post-quantum security of the SHI function will be proved, the proof will be based on
our classical proof. Therefore our result will help future studies on post-quantum security of hash functions.
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Future Works

On the Luby-Rackoff construction, we showed security only against qCPAs but it is still unknown whether the r-round
Luby-Rackoff construction becomes secure against qCCAs. Hence it is an interesting future work to prove the security
against qCCAs for some r > 5. On quantum-secure TBCs, an interesting future work is to investigate how we can build a
mode of operations to build TBCs that are secure against qCCAs, because our construction can be broken by a (classical)
CCA. On HMAC and NMAC, our bound is tight for short messages but it does not seem tight for exponentially long
messages. Thus it is worth investigating whether we can improve the security bound for long messages. On the SHI
function, an important future work is definitely to prove indifferentiability in the quantum setting.

There is a common technical issue to tackle with the problems raised above, except for the one on HMAC and
NMAC. The issue is how to treat the quantum oracles of ideally random permutations and ciphers that allow queries to
inverse oracles. In the quantum setting, this paper focused on the situation where the quantum oracle of a permutation
P or a cipher E allows adversaries to make queries to P and E but not to P~! nor E~'. The biggest reason of this is that,
when the inverse oracles are available to adversaries, the compressed oracle technique cannot be applied”and proving
quantum security becomes extremely difficult. To solve the above problems (except for HMAC and NMAC) in future
works, new proof techniques will be required.

There still exist lots of important and interesting problems on post-quantum security in symmetric-key cryptogra-
phy. It is important to keep studying them to contribute to the development of secure and efficient information and
communications technology in the post-quantum era.

I At the time of writing this paper (July 2021), to the best of author’s knowledge, there is no published work that successfully extend the
compressed oracle technique to random permutations (and ideal ciphers) that allows inverse queries in such a way that it can be widely applied to
prove quantum security of various cryptographic schemes (though, some preprint papers argue about such extensions [Cza21l|Ros21]).
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Appendix A

Technical Terms, Abbreviations, and
Notations

Term Abbreviation / Explanation
Notation

- {0, 1}* The set of all the bit strings (including the empty string).

- ({0, 1}™)* The set of all the bit strings of which length is a multiple
of m (the empty string is not included).

- -1l The Euclidean norm of vectors.

- Il - [l The trace norm of matrices.

- Adv Advantage of adversaries for various security notions. See
for concrete definitions.

- Func(X.,Y) The set of all functions from X to Y.

- GF(2™) The Galois field of order 2.

- H The Hadamard transform.

- 1 The identity operator.

- Perm(X) The set of all permutations on X.

- td(-, -) The trace distance function.

- X1 The left-half n/2 bit of the n-bit string x € {0, 1}".

- XR The right-half n/2 bit of the n-bit string x € {0, 1}".

- xX®y (Bit-wise) XOR operation of bit strings x and y of the
same length.

- x|ly Concatenation of the bit strings x and y.

Block cipher BC A keyed function E : {0, 1} x {0, 1} — {0, 1}" such that
E(K,-) is a permutation on {0, 1} for each K € {0, 11k,

Chosen ciphertext attack CCA An attack on a cipher by making queries to the encryption
and the decryption oracles.

Chosen plaintext attack CPA An attack on a cipher by making queries to the encryption
oracle.

HMAC HMAC A construction to convert hash functions of the Merkle-
Damgard construction into MACs as in (I.2).

Initialization vector v A fixed constant to initialize the state of a scheme.

Keyed function - A function F : {0, 1} x {0, 1} — {0, 1}".

Least significant m bits (of x € Isb[x] The sub-string x,_;+1 - x, of the bit string x =

{0, 1}") X1+ X, Where x; € {0, 1} for all i.

LRW constructions LRW2 / LRW1 The constructions to convert secure BCs into secure TBCs
by Liskov, Rivest, and Wagner [LRWO2, [LRW11]]. (See
Fies1)

LRWQ construction LRWQ Our new construction to convert quantum-secure BCs into

quantum-secure TBCs. (See )
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Abbreviation /

Term Notation Explanation

Merkle-Damgard construction MD” A construction to convert a compression function s of
fixed input-output length into a cryptographic hash func-
tion that supports variable length inputs, which is defined
asin

Message authentication code MAC a symmetric cryptographic scheme that provides authen-
ticity.

Most significant m bits (of x € msb[x] The sub-string x; - - - x,,, of the bit string x = x1---x,,

{0, 1}™) where x; € {0, 1} for all i.

NMAC NMAC A two-key variant of HMAC defined as in (T.3).

Pseudorandom function PRF A keyed function that is (computationally) indistinguish-
able from a random function for classical adversaries (i.e.,
a secure keyed function).

Pseudorandom permutation PRP A keyed permutation that is (computationally) indistin-
guishable from a random permutation for classical adver-
saries that perform CPAs (i.e., a BC that is secure against
CPAs).

Quantum chosen plaintext attack qCCA An attack on a cipher that makes quantum queries to the
encryption and decryption oracles.

Quantum chosen plaintext attack qCPA An attack on a cipher that makes quantum queries to the
encryption oracle.

Quantum-secure  pseudorandom gPRF A PRF that is secure against adversaries that makes quan-

function tum queries (i.e., a keyed function that is secure against
quantum query attacks).

Quantum-secure  pseudorandom qPRP A PRP that is secure against adversaries that makes quan-

permutation tum queries (i.e., a BC that is secure against qCPAs).

Quantum-secure tweakable pseudo- qlilﬁ’ A PRP that is secure against adversaries that makes quan-

random permutation tum queries (i.e., a TBC that is secure against qCPAs that
query not only plaintexts but also tweaks to the encryption
oracle).

Quantum random oracle QRO The quantum oracle of a public random function. (See
[Section 2.4.T]for the definition of the quantum oracle of a
random function)

Quantum random oracle model QROM The ideal security proof model where a QRO exists.

Random oracle RO The oracle of a public random function

Recording standard oracle with er- RstOE The oracle defined in

rors

r-round Luby-Rackoff construction LR, A construction to convert keyed functions into keyed per-
mutations (block ciphers) defined as in (I.I).

SKINNY-HASH - The instantiation of the sponge construction designed by
Bierle et al. [BJK™20].

SKINNY-HASH internal function SHI The internal function used in the SKINNY-HASH which
is based on the TBC SKINNY, and its generalization that
converts TBCs into functions of fixed input-output length.
(See

Sponge construction - A construction to convert a function F of fixed input-
output length into a cryptographic hash function that sup-
ports variable length inputs. We call F an internal func-
tion. (See @ )

Standard oracle stO The oracle defined as in (3:1).

Tweakable block cipher TBC A function E : {0, 1}* x {0, 1}* x {0, 1} — {0, 1}" such
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that E(-, T, -) is a block cipher for T € {0, 1}*.



Term

Abbreviation /
Notation

Explanation

Tweakable pseudorandom permuta-
tion

PRP
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A tweakable keyed permutation (i.e., a tweakable block
cipher) that is (computationally) indistinguishable from
a tweakable random permutation against classical adver-
saries that queries messages and tweaks to the oracle.
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