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Abstract 

In the present era of high-throughput sequencing, quantitative trait loci 

(QTL) mapping is no longer limited by the number of genetic markers but rather 

by the genetic material being deployed. To uncover QTL that will facilitate crop 

improvements, a genetic resource for studying the genetic architecture of traits 

and adaptation to the environments is necessary. Nested association mapping 

(NAM) is a technique of genetic mapping that integrates QTL linkage mapping 

and genome-wide association study (GWAS). A NAM population consists of a 

group of recombinant inbred lines (RILs) derived from crosses between a 

common parent and multiple diversity donors. NAM approach can support 

joint-family QTL linkage analysis and GWAS in addition to classical single-

family QTL linkage analysis, and a combination of these methods is expected to 

have higher resolution gene mapping and power for QTL detection. Furthermore, 

the fixed nature of NAM RILs will facilitate analysis of genotype-environment 

(GxE) interactions. On the other hand, genomic selection (GS) is a new breeding 

approach for screening genotypes without field evaluations. For example, a 

breeding program can utilize GS in screening a large population having only 

genotype information based on models constructed using a part of the 

population. The NAM population is suitable for studying methods for 

constructing the models of genomic prediction. In the present study, a rice NAM 

population (aus-NAM) derived from crosses between T65, a japonica variety, as 

the common parent and 14 aus varieties as diversity donors was developed. 

Firstly, a NAM population consisting of 7 combinations (aus-NAM-I) was used 

to confirm the resolution of QTL mapping for days to heading (DTH), a highly 

heritable trait. Secondly, the population was expanded to 14 families (aus-NAM-

II), then the population was used to perform GWAS and genomic predictions.  
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The aus-NAM-I population contained 895 RILs derived from 7 diversity 

donors. Out of the 7 families, 5 were constructed from aus varieties: Kasalath 

(WNAM02), Kalo Dhan (WNAM29), Shoni (WNAM31), ARC5955 (WNAM35), 

and Badari Dhan (WNAM39), and 2 families, DV85 (WNAM72) and ARC10313 

(WNAM73) were generated at Kyushu University. Genotyping of aus-NAM-I 

was conducted using genotyping by sequencing (GBS), based on double-

digestion with KpnI and MspI restriction enzymes. The number of clean single 

nucleotide polymorphisms (SNPs) in each family ranged from 2868 to 4285. A 

total of 887 RILs were retained for downstream genetic analysis. Analysis for 

population structure revealed that WNAM29 (T65 x WRC29) was an isolated 

group, but generally, aus-NAM-I showed weak stratification among the RILs and 

was therefore considered sufficient for QTL mapping. As a model trait, DTH was 

recorded in normal cultivation season at Nagoya University`s Togo field in 2015. 

A total of 1,786 SNP markers from GBS were used to construct a common linkage 

map. Single-family QTL analysis detected significant QTL on chromosomes 5, 6, 

7, and 10. Joint-family QTL linkage analysis on the other hand detected similar 

QTL to those detected in the single-family analysis except on chromosomes 5, 

and new QTL on chromosomes 1, 2, and 3. The joint-family QTL peaks on 

chromosomes 6 and 7 appeared to be integrated peaks from single families in the 

population. For GWAS, parental DNA variants from whole-genome 

resequencing were firstly projected onto genotypes of each RIL to obtain 41,561 

SNPs. GWAS was thereafter performed using a mixed linear model considering 

the population structure and the degree of genotype relatedness (MLM (Q + K)), 

with pedigree information provided as covariates. GWAS results showed 

significant QTL on chromosomes 6, 7, and 10. The commonly detected QTL on 

chromosomes 6, 7, and 10 were considered to be RFT1, Hd3a, Hd1, Ghd7, and Ehd1 

and were used to evaluate mapping accuracy in aus-NAM-I. The peak harboring 
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Ehd1 spanned approximately 741kb and included the true position of Ehd1 locus. 

The QTL detected on chromosome 6 in WNAM39 using single-family analysis 

was in good agreement with the actual position of Hd1. Multiple sequence 

alignments confirmed that Badari Dhan (WNAM39) was the only donor parent 

with a functional allele of Hd1. Single-family QTL analysis and joint-family QTL 

linkage analysis correctly detected Hd1. However, in GWAS, a broad peak 

spanning wider than 6 Mbp including not only Hd1, but also RFT1/Hd3a was 

detected, and it was concluded that it would be difficult to identify genes 

underlying these QTL without prior information. For Ghd7 on chromosome 7, 

joint-family QTL analysis showed a single peak while the GWAS peak was 

unclear. These results indicated that single-family QTL analysis and joint-family 

QTL analysis performed better in gene mapping. GWAS could be used to detect 

marker-trait association in local regions though. In total, aus-NAM-I showed 

sufficient performance in QTL mapping. 

Next, aus-NAM-I was modified and expanded to 14 families (aus-NAM-II), 

by removing the 2 families DV85 (WNAM72) and ARC10313 (WNAM73) from 

aus-NAM-I and adding 9 new families. To genotype the increased population 

size, our group developed a new GBS method called iGBS (Vincent P. Reyes 

dissertation 2021). iGBS combines Illumina's index and GBS barcodes allowing 

more sample combinations compared to the conventional GBS that utilizes 

barcodes-only. The total number of RILs in aus-NAM-II population was 1,797. 

Traits used in the genetic analyses were evaluated in 2015, 2018, and 2019. The 

traits included DTH, culm length (CL), panicle length (PL), panicle rachis length 

(PRL), panicle number per plant (PN), panicle weight (PW), shoot weight (SW), 

number of primary branches per panicle (NPB), number of spikelets per panicle 

(NSPP), seed setting rate (SSR) and plant biomass (BM), BM was calculated as the 

summation of PW and SW. GWAS for DTH using aus-NAM-II detected known 
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QTL (Ehd1, Hd1, Hd3a / RFT1, HD9, DTH2, Ghd7, Se14, etc.) correctly, GWAS 

performed better than aus-NAM-I because of the increased population size and 

the crossing combinations. For other traits, known and novel QTL were detected 

as well. To evaluate the predictive ability of traits, 5-fold cross-validation was 

applied on 4 different genomic prediction models, (i) ridge regression best linear 

unbiased prediction (rrBLUP), (ii) Bayesian least absolute shrinkage regression 

(Bayesian LASSO, BL), (iii) Bayesian B (BayesB), and (iv) reproducing kernel 

Hilbert space regression (RKHS). The correlation coefficient (r) between observed 

and predicted phenotypes was regarded as the prediction accuracy for the model. 

The highest prediction accuracy for DTH in 2019 was 0.89 by RKHS model. In 

2018, the prediction accuracy for phenotypes ranged from 0.89 to 0.29 for DTH 

and SSR respectively while the range in 2015 was from 0.90 to 0.34 for CL and 

BM respectively. RKHS was the most robust among the 4 statistical models. 

Comparison of using different numbers of the markers in modeling indicated 

that 2,006 GBS markers were sufficient to obtain optimum predictive ability, any 

additional markers by methods like parental variants projection contributed little 

to improving predictive ability. Based on these results, the author proposes that 

DTH would be the target for performing genomic prediction in actual breeding 

programs.  

In conclusion, a rice NAM population was developed and established as a 

genetic resource in the present study. The NAM population showed sufficient 

performance in gene mapping and genomic prediction. It is expected that the 

immortal nature of the materials will facilitate a broad range of genetic analyses 

including gene discovery, modeling of traits, and analysis of genotype-

environment interaction. 
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Chapter 1 General Introduction 

Background 

Rice (Oryza sativa L.) is a perennial crop of economic importance and staple 

food for more than half of the world’s population (FAO 2006). It is believed that 

rice was domesticated approximately 8,000 to 10,000 years ago from wild rice (O. 

rufipogon Griff.) in East Asia (Doebley et al., 2006). Even though rice is a 

facultative short-day plant, through natural mutations and artificial selection, 

rice has evolved and adapted to a wide range of geographical areas and seasons. 

The key factor that enabled rice broad adaptations is linked to photoperiod 

sensitivity and flowering time also known as days to heading (DTH) (Yano et al. 

2000; Tsuji et al. 2008; Takahashi et al. 2009; Huang et al. 2012a).  

To improve rice productivity and futureproof ourselves against the effects of 

climate change on food production, it is important to identify the genes 

underlying quantitative trait loci (QTL), by which most of the agronomic traits 

are regulated. One way of achieving this is by finding significant DNA markers 

that tag the QTL. DNA markers tagging a QTL can be used for introgressions or 

stacking of novel variations into elite adapted lines, mostly from wild/exotic un-

adapted species. This process is commonly known as marker-assisted selection 

(MAS) (Moose and Mumm, 2008). Recently, methods that allow for the selection 

of candidate breeding materials based on the predicted trait values were 

proposed. These methods use DNA markers covering the whole genome even if 

no significant QTL is detected. This approach is commonly known as genomic 

selection (GS)  (Meuwissen et al., 2001).  
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Modern plant breeding is a predictive science driven by new technologies 

and knowledge with productivity/quality, time, and cost under consideration 

(Crossa et al., 2021). Recently, many genomics data have been made public 

(Kojima et al., 2005; Ebana et al., 2008; The 3000 rice genomes, 2014; Sun et al., 

2017). These genetic resources are useful for QTL mapping or breeding. Unlike 

the traditional phenotype-based selection, the new breeding approaches i.e. 

genomic selection (GS), utilize such free genomics datasets. GS has been touted 

as the promising approach for shortening breeding time and mitigating against 

the increasing cost of phenotyping. Evaluation of a genomic model predictive 

ability (PA), a key parameter in GS is an important issue. 

QTL mapping accuracy mainly depends on (1) recombination fraction 

between QTL and the available markers, (2) QTL heritability, and (3) the size of 

the mapping population. Other factors that influence QTL detection power 

include (1) population structure, (2) phenotypic variations, (3) genotype 

information quality, and (4) robustness of computer software (Singh and Singh, 

2015). The majority of the factors that affect QTL accuracy are directly associated 

with the genetic material deployed in the study, a controlled or structured 

mapping population is, therefore, a good starting point in the genetic analysis of 

traits. 
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Mapping Populations 

Mapping populations in rice are generally a group of lines obtained from 

controlled crosses between two or more founders. Mapping populations are 

suitable for QTL linkage mapping using the principles of Mendelian inheritance 

(Singh and Singh, 2015). Mapping populations are categorized into three main 

generations (Figure 1-1).  

The first-generation mapping population consists of bi-parental populations 

(BP), examples include (a) F2 (b) F2-derived F3 (F 2:3) (c) backcross populations e.g. 

(BC1, BC2) (d) Near isogenic lines (NILs) (e) recombinant inbred lines (RILs) (f) 

doubled haploid population (DH) (g) chromosome segment substitution lines 

(CSSLs). Most major genes/QTL in rice were genetically identified using bi-

parental populations (Yano et al., 2000; Ashikari et al., 2005; Yamamoto et al., 2012). 

The backcross progeny enables precise estimation of allelic effects thus used in 

QTL fine-mapping. The limited allele richness in BP i.e. only two possible alleles 

segregating for each locus is an apparent disadvantage. Efforts to address the 

issue through advanced inter-cross design (AIC) (Lee et al., 2002; Balint‐Kurti et 

al., 2010; Fitz Gerald et al., 2014) were not successful either, similar results could 

simply be achieved through increasing bi-parental population size. 

The second-generation mapping population came about with the advent of 

next-generation sequencing (NGS) technology, NGS enabled direct detection of 

genetic loci associated with traits, the so-called genome-wide association study 

(GWAS) (Ogura and Busch 2015). GWAS utilizes natural germplasm collections 

i.e. landraces, breeding lines, and varieties that have accumulated recombination 

events both recent or historic, this attribute gives GWAS a higher gene mapping 

resolution (Mogga et al. 2018; Yano et al. 2016; Norton et al. 2018). However, 

unaccounted population structures/stratifications and hidden relatedness make 
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GWAS prone to false associations. Additionally, the filtering of minor allele 

frequency (MAF) to thresholds like 0.02, or 0.05 for QTL integrity lowers GWAS 

detection of true effects that have large/small effects (Cockram and Mackay, 2018). 

The absence of pedigree information in GWAS diversity panels prohibits classical 

pedigree-based haplotype mapping, consequently, reduced accuracy to consider 

rare alleles in analysis (Xiao et al. 2017; Zhu et al. 2008; Korte and Farlow). These 

factors made the criteria for declaring “statistically significant” too strict and 

limited the statistical power of GWAS. To date, only major-effect QTL have been 

identified by plant GWAS studies such as OsSPL13 (Si et al., 2016), bZIP73(Liu et 

al., 2018) and four novel genes associated with agronomic traits(Yano et al., 2016).  

 The third-generation mapping populations include Nested Association 

Mapping (NAM) (Yu et al. 2008), Multi-parent Advanced Generation Inter-

Crosses (MAGIC) (Dell'Acqua et al. 2015), and Random-open-parent Association 

Mapping (ROAM) (Xiao et al. 2016). Multi-parental populations have advantages 

such as (i) allele richness from the diversity donors (ii) weak population structure 

due to additional recombination (historic and by artificial crossing), and (iii) 

flexibility to be used as a pre-breeding tool. 

 Various QTL mapping approaches have been proposed based on the 

mapping population category. In convectional QTL linkage analysis, BP with 

recent genetic recombination is utilized. This method requires few markers to 

find QTL but due to low allele richness in BP, linkage mapping is synonymous 

with low mapping resolutions. On the other hand, GWAS takes advantage of 

historic recombination (high allelic richness) to scan polymorphic DNA sites in 

linkage disequilibrium (LD) with the variation of trait resulting in high mapping 

resolution. However, GWAS requires extensive knowledge of population 

structures before analysis. 
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To take the advantage of both historic and recent recombination events such 

as low marker density requirements, high allele richness, high mapping 

resolution, and high statistical power NAM approach was proposed (McMullen 

et al., 2009). NAM population consists of independent RIL populations derived 

from crossing several diverse donor parents with a common parent (Yu et al., 

2008). The first NAM population to be constructed was in maize. Maize NAM 

contains 5000 RILs consisting of 25 families. The most successful commercial 

inbred line (B73) was used as the common parent (McMullen et al. 2009). The 

population was successfully used to profile the genetic architecture of agronomic 

traits, such as flowering time, leaf architecture, stalk strength, and plant height 

(Buckler et al. 2009; Tian et al. 2011; Peiffer et al. 2014). Following the successes 

in maize genetic analyses, NAM type populations were developed in other crops 

like rice (Fragoso et al. 2017), wheat (Bajgain et al. 2016), barley (Maurer et al. 

2015), soybean (Song et al. 2017), sorghum (Bouchet et al. 2017), and rapeseed 

(Hu et al. 2018). Other NAM-based mating designs include near-isogenic lines 

(NIL-NAM) and double haploid (DH-NAM) (Singh and Singh, 2015; Li et al., 

2016; Nice et al., 2016). 
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Considerations for Constructing NAM Population 

Parents 

The choice of NAM parents should be selected bearing in mind that the NAM 

population can serve both as a genetic analysis tool and a resource for breeding. 

NAM population common parent is often selected from an elite variety that is 

environmentally adapted. The common parent should support multi-location 

evaluations and adoption as a new variety in farmers` fields (McMullen et al., 

2009). Donor parent/diversity founder, on the other hand, should be selected 

based on breeder/geneticist purpose i.e. the trait of interest. The diversity donors 

should contain maximum genetic diversity for the focal trait. They are often 

selected from adopted cultivars, germplasms, landraces, and wild species. 

Diversity donors may also be selected based on allelic diversity for biotic/abiotic 

stress tolerance (Kihupi, 2001; Travis et al., 2015; Norton et al., 2018). 

Mating Design  

The number of founders/ RILs per family affects recombination events/allele 

frequencies which in turn influence QTL mapping powers. Several mating 

designs have been proposed and implemented: (i) Recombinant inbred Line-

NAM (RIL-NAM). In this kind of design, the diversity donors are selected from 

established germplasms, the F2 generation is advanced using the single seed 

descent (SSD) method to obtain homozygosity, RIL-NAM constitutes single-

family RILs (McMullen et al., 2009; Kitony et al., 2021) and is the common type of 

NAM population, (ii)Backcross-NAM/Advanced Backcross-NAM (BC-

NAM/AB-NAM) populations, in this design, diversity donors are selected from 

un-adapted germplasms such as wild species or landraces. An example of this 

design is a backcross of 25 wild barley accessions with an elite variety (Nice et al., 
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2016). The smaller the recombinant region from the exotic donor parent the easier 

will be the genetic characterization and phenotyping in this type of design. (iii) 

Double Haploid-NAM (DH-NAM) populations, this is a special type of design 

only used in crops with advanced DH protocols (attain homozygosity within 

single generation development) such as maize (Gireesh et al., 2021).  

Phenotyping 

Because the size of  NAM population is often big, phenotype evaluations are 

conducted in un-replicated field designs with serpentine plot numbering 

(Federer and Crossa, 2012). Other field designs include; augmented randomized 

complete block design (RCBD) which is suitable when the number of genotypes 

is large and one-way elimination of heterogeneity is required; augmented split-

plot design, suitable when testing two different factors with varying importance 

like genotypes and spacing, etc. With the availability of resources and technical 

knowledge, high throughput phenotyping techniques such as using information 

communication technology ( barcodes, tablet terminals, etc.) are recommended 

options for NAM phenotyping (Araus and Cairns, 2014). 

Genotyping 

The knowledge about organism’s ploidy, genome size, heterozygosity, and 

repetitive sequences are necessary knowledge required to appropriately 

genotype NAM population (Ray and Satya, 2014). However, the development of 

next-generation sequencing (NGS) technology has eliminated most of the 

difficulty. Each RIL in the NAM population is often genotyped using low-cost 

sequencing techniques like genotyping by sequencing (GBS) or single nucleotide 

polymorphism (SNP) based arrays. After genotyping RILs, parental lines are 

genotyped using high-density sequencing techniques like whole-genome 
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shotgun sequencing. Parental genomic sequences are thereafter projected onto 

recombination blocks in a single family linkage map deriving moderate to high 

density genotyped NAM population. Since sequencing costs mainly vary 

according to the technology and the number of lanes used in a flow cell. With the 

advent of NGS, many options to cut costs for genotyping by pooling multiple 

samples have been developed (Nakano and Kobayashi, 2020). In a method 

reported by Poland et al.(Poland et al., 2012), the density of the markers and 

number of the samples pooled can be optimized by choosing appropriate 

restriction enzymes. Our group developed a combination of Poland-style GBS 

and Illumina's genuine index system (iGBS) for obtaining NAM genotypes in the 

present study (Vincent P. Reyes dissertation 2021).  

Statistical Methods 

To realize NAM's optimum statistical powers, all families should be 

analyzed together via joint-family QTL linkage analysis and GWAS (NAM-

GWAS). For joint-family QTL linkage mapping, two algorithms are available (i) 

Joint Inclusive Composite Interval Mapping (JICIM)(Li et al., 2011), which uses 

stepwise regression model or principal component regression to select co-factors 

used in the analysis (ii) Joint Composite Interval Mapping (JCIM)(Li et al., 2016), 

which uses the least absolute shrinkage and selection operator (LASSO) 

regression to select co-factors used in the analysis. Joint-family QTL linkage 

analysis can detect more than two alleles per locus compared to single-family 

linkage analysis (Buckler et al., 2009a; Ogut et al., 2015). In Arabidopsis NAM, 

JICIM detected more number of QTL and with higher LOD scores compared to 

single-family QTL analysis (Li et al., 2011). In rapeseed NAM, JCIM displayed 

higher detection power compared to single marker modeling (Li et al., 2016). 
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Natural population GWAS can outperform NAM-GWAS in QTL mapping 

when the size of a population is sufficient (Bouchet et al., 2017). However, 

increasing the number of founders can make NAM-GWAS very competitive 

(Gage et al., 2020). NAM-GWAS takes advantage of enriched rare alleles derived 

from one or few diversity donors to detect QTL. Compared to natural population 

GWAS, NAM-GWAS can best detect QTL in high/low heritability using a smaller 

population size due to controlled allelic diversity.  

Although NAM can benefit from both joint-family QTL linkage analysis and 

linkage disequilibrium (LD) (Lu et al., 2010). Contrasting results from an 

integrated approach have been reported such as the independent mapping of 

hypersensitive defense response (HR) in maize NAM-GWAS (Olukolu et al., 

2014) that showed 36 genes co-localizing within 23 QTL identified by joint-family 

QTL linkage analysis while leaf architecture analysis (Tian et al., 2011) displayed 

non-overlapping QTL between the joint-family linkage and LD mapping 

approaches. 

NAM Population Construction Limitations 

The likelihood of sterility (Wambugu et al., 2015) is high especially when 

donors are from genetically distant germplasms, this phenomenon can affect the 

sizes of NAM families and by extent allele frequencies. In addition, it takes a lot 

of time to stabilize segregation distortions in developed populations if present.  

Another limitation noticed in NAM type design was limited haplotype 

diversity. With 26 founders in maize NAM for example, a maximum of only 50 

recombinant haplotypes could be generated. To increase haplotypes in maize 

NAM, an additional number of donors (Gage et al., 2020) or reference/common 

parents was proposed  (Guo et al., 2010; Cockram and Mackay, 2018).  
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Applications of NAM Population 

Explore the Genetic Basis of Key Agronomic Traits 

NAM is a tailor-made mapping population that can effectively dissect the 

genetic basis of key agronomic traits, these traits may be controlled by rare and 

low effects alleles. Plant traits are mostly dependent on interactions between 

environments (E), genotypes (G), management practices (M), and microbes 

interactions(M) (hereafter: G × E x M x M) (Holland 2007). The genetically fixed 

nature of NAM RILs permits analysis of these interactions by repeated and multi-

locational trials. Flowering time for example was found to be influenced by 

additive effects by environment interaction, and several flowering time genes 

were profiled (Buckler et al., 2009a). Putative QTL for days to heading in rice were 

also confirmed using NAM population constructed using IR64 indica with 10 

diverse tropical japonica lines (Fragoso et al., 2017). Furthermore, NAM design 

using exotic donor germplasm has shown an opportunity to detect novel useful 

alleles for salinity tolerance (Saade et al., 2016). Simply put, NAM is suitable for 

calculating the sizes of QTL effects and testing scientists’ hypotheses for traits. 

Discriminate Linkage from Pleiotropy 

Co-inheritance of QTL and traits is influenced by either physical proximity 

of QTL (linkage) or multiple effects of a single QTL/gene (pleiotropy) (Gireesh et 

al., 2021). Genetic mating design in NAM allows genome shuffling during RIL 

development (Fragoso et al., 2017). The resultant recombination events in the 

NAM population enable us to distinguish linkage from pleiotropy effects on 

traits. A study on maize NAM (McMullen et al., 2009), showed a strong negative 

correlation between days to anthesis (DTA) and northern leaf blight (NLB) 

resistance in the founder lines (r = −0.59) compared to RIL-NAM (r = −0.32). The 
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authors concluded that NLB resistance and DTA were confounded by population 

structure and to some extent genetic linkage within families, rather than the 

pleiotropic effects of DTA on NLB resistance (Poland et al., 2011). 

Detect Segregation Distortions 

Genotype information in NAM can be used to identify recombination events 

and segregation distortions (SD). Due to NAM diversity donors, a high degree of 

recombination events and SD is expected. In rice, a total of 18.9 recombination 

events was detected while the recombination rate was close to the expected value 

of 4.1 cM: Mb (Chen et al., 2002; Fragoso et al., 2017). This advantage is common 

with usual RIL populations. On the other hand, SD regions should be taken into 

account when interpreting QTL results, because SD might result in false-positive 

or false-negative QTL.  

Genomic Selection  

Recent development in genome sequencing technologies has made it 

possible to use only high-throughput genetic markers (e.g. SNPs) to select lines 

with desired traits. This technique/model is known as genomic selection (GS) or 

genomic prediction (GP) (Meuwissen et al., 2001). Briefly, models are trained 

using a subset of data with phenotype and genotype information, marker effects 

are then estimated which are in turn used to model estimated breeding values 

(GEBVs) for lines. Based on GEBVs best performing lines (good ranking) are 

selected for onward evaluations. 

 Generally, genomic prediction methods differ in their assumptions for 

estimating variances in complex traits (Wang et al., 2018). Examples of GS 

methods include ridge-regression-based (rrBLUP), Bayesian-based, and machine 

learning-based and they vary mainly on prior at α (equation 1) (Wang et al. 2018). 
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Most of these methods are for estimating additive genetic effects. Since the 

number of markers (k) is often bigger than lines (n), GS methods treat marker 

effects as random to eliminate the insufficient degree of freedom and multi 

collinearity issues. The genomic prediction model is generally described by 

equation (1). 

𝑦 = 𝑋𝛽 + 𝑍𝛼 + 𝜀                      (1) 

where y is a vector of observation; β represents a vector of fixed effects (e.g. PCA) 

for which the prior distribution is often assumed flat, α is a vector of random 

effects, and ε is a vector of residuals. X and Z are matrices for fixed effect and 

random effects respectively.  The residuals distribution is assumed normal with 

a mean value of zero and covariance matrix represented by Rσ2ε , where R is an 

identity matrix, σ2ε has a scaled inverse chi-square distribution (Wang et al., 2018). 

Because prediction accuracy affects genetic gains (Li et al., 2018), several 

studies have used NAM populations to investigated factors affecting prediction 

accuracy (Xavier et al., 2016; Zhang et al., 2019). Accurate marker effects 

estimation is key to both genetic gain and prediction accuracy. The prediction 

accuracy is influenced by the following factors: the number of markers, statistical 

models, training population size, relationships between training and breeding 

population, the genetic architecture of the trait, the heritability of a 

trait(positively correlated with accuracy), and the interplay between all mention 

the factors with the environment (Spindel et al., 2015; Fragoso et al., 2017).  
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Studies in the Dissertation 

My research covered the development of an aus-derived nested association 

mapping (aus-NAM) population and its utilization in rice genetics. Briefly, in 

chapter 1, I introduced commonly used mapping populations and things to 

consider during the construction of the NAM type mapping populations. In 

chapter 2, I described the construction and genotyping of our first aus-derived 

nested association mapping population(aus-NAM-I). I also clarified the 

population structure of aus-NAM-I. In chapter 3, I analyzed phenotypic 

variations in aus-NAM-I RILs. I also characterized the genetic basis of DTH using 

single-family QTL mapping, joint-family QTL mapping, and the methods based 

on genome-wide association study (GWAS). In chapter 4, I described the 

modification and expansion of aus-NAM-I to construct aus-NAM-II. In chapter 5, 

I performed GWAS and genomic prediction (GP) using aus-NAM-II. The 

predictive ability discerned by various GP models was profiled. I concluded my 

dissertation by highlighting the prospects of implementing genomic selection 

using aus-NAM population. 
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Figure 

 
Figure 1-1. Common mapping populations. 

Common mapping populations. 1st generation includes bi-parental populations (BP), BP is 

created from crossing two founders followed by repeated selfing to create a new inbred line 

whose genome is a mosaic of the parental genomes. Recombination bins are often large, 

limiting mapping resolution. 2nd generation includes, diversity also called association 

panels (GWAS), GWAS populations are samples of natural variation from a larger, existing 

population that has accumulated historical recombination events and mutations. They 

frequently have greater recombination and allelic richness than 1st generation and 3rd 

generation populations but are often burdened with inherent population structure that can 

be difficult to control during analysis. 3rd generation includes; MAGIC populations are often 

derived from 8 or 16 parental lines (Only four are shown). NAM populations consist of 

several RIL families that share a common parent (shown in dark blue). This results in 

improved resolution and a greater number of alleles represented. 3rd generation populations 

have improved resolution and allelic richness relative to 1st generation populations. Black 

‘x’s indicate crosses between parents and circled ‘⊗’s indicate self-mating until inbred. 

Ellipses indicate many other individuals in the population or family(Gage et al., 2020). 
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Chapter 2 Development of aus-NAM-I Population 

in Rice 

Introduction 

Improvement of rice (Oryza sativa L.) production has been achieved by the 

development of new varieties and optimization of cultural practices. In rice, 

genome sequencing enhanced the identification of causal genes related to yield 

(Ikeda et al., 2013). Most of these genes/QTL were genetically identified using bi-

parental populations, combined with the development of backcrossed progeny 

(Yano and Sasaki, 1997). The backcross progeny enabled precise estimation of 

allelic effects thus fine-mapping of the target loci. However, limited allele 

richness is an apparent disadvantage in these types of gene mapping populations. 

 On the other hand, the development of next-generation sequencing (NGS) 

technology-enabled direct detection of genetic loci associated with traits, the so-

called genome-wide association study (GWAS) (Ogura and Busch, 2015). In 

plants, GWAS utilizes natural germplasm collections i.e. landraces, breeding 

lines, and varieties that have accumulated recombination events both recent or 

historic, this attribute gives GWAS a higher gene mapping resolution (Yano et al., 

2016; Mogga et al., 2018; Norton et al., 2018). However, unaccounted population 

structures or stratifications make GWAS prone to false associations. Additionally, 

the absence of pedigree information in diversity panels prohibits classical 

pedigree‐based haplotype mapping, consequently, reduced statistical powers 

(Korte and Farlow; Zhu et al., 2008; Xiao et al., 2017).  

 To combine the advantage of bi-parental populations and diversity panels, 

multi-cross mating designs consisting of diverse donors were proposed. 

Examples of multi-cross designs include Nested Association Mapping (NAM) 
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(Yu et al., 2008), Multi-parent Advanced Generation Inter-Crosses (MAGIC) 

(Dell'Acqua et al., 2015), and Random-open-parent Association Mapping 

(ROAM) (Xiao et al., 2016). Multi-parent populations have advantages such as (1) 

allele richness coming from the diversity donors (2) weak population structure 

due to additional recombination (historic and by artificial crossing), and (3) 

flexibility to be used as a breeding utility. 

 The first NAM population was reported in maize (McMullen et al., 2009). The 

population was successfully used to profile the genetic architecture of agronomic 

traits, such as flowering time, leaf architecture, stalk strength, and plant height 

(Buckler et al., 2009b; Tian et al., 2011; Peiffer et al., 2014). Following the successes 

in maize, NAM populations were developed in other crops like rice (Fragoso et 

al., 2017), wheat (Bajgain et al., 2016), barley (Maurer et al., 2015), soybean (Song 

et al., 2017), sorghum (Bouchet et al., 2017), and Rapeseed (Hu et al., 2018). 

 Asian rice (O. sativa) is classified into five major varietal groups, namely, 

temperate japonica, tropical japonica, indica, aus, and aromatic (Garris et al., 2005). 

aus rice varieties are considered to have evolved from annual Oryza nivara found 

in Bangladesh, northeast India, Nepal, and northern Myanmar. Most of the aus 

varieties exhibit photoperiod insensitivity, a source of local environment 

adaptation (Travis et al., 2015). Moreover, aus is known to possess genetic 

properties for enhanced yield traits (Norton et al., 2018); tolerance to rice blast 

(Takehisa et al., 2009), bacterial blight (Kihupi, 2001), submergence (Xu et al., 

2006) and phosphorus (Gamuyao et al., 2012), etc.  

 In chapter 2, I describe the construction of our first aus derived nested 

association mapping population in rice, hereinafter referred to as aus-NAM-I.   
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Materials and Methods 

Plant Materials 

aus-NAM-I was built using a temperate japonica variety, Taichung 65 (T65) 

as the common female parent. Five aus cultivars, Kasalath, Kalo Dhan, Shoni, 

ARC5955, and Badari Dhan, kindly supplied by the National Agricultural 

Research Organization (NARO) Genebank, Tsukuba, Japan, were used as 

diversity donor parents (founders) (Kojima et al. 2005) (Figure 2-1). The five aus 

varieties were crossed with T65, and RILs were developed from F2 generation 

using single seed descent (SSD) method to obtain F5 in 2015. The RILs (F13) 

derived from T65 x DV85 and T65 x ARC10313 were generated at Kyushu 

University, Fukuoka, Japan, and kindly provided through National Bioresource 

Project. The 7 families of RILs were designated as WNAM02 (Kasalath), 

WNAM29 (Kalo Dhan), WNAM31 (Shoni), WNAM35 (ARC5955), WNAM39 

(Badari Dhan), WNAM72 (DV85), and WNAM73 (ARC10313). 

Genotyping  

For genotyping aus-NAM RILs, approximately 5 cm of leaf tissues from each 

line were sampled into paper envelopes. The samples were dried in an oven at 

53 °C overnight and then stored at 6 °C. Total DNA of RILs and founders were 

extracted using a modified Dellaporta method (Dellaporta et al., 1983). DNA 

qualities were checked by electrophoresis on a 0.6% agarose gel in 1x 

Tris/Borate/EDTA (TBE; 40mmol/L Tris, 20 mmol/L acetic acids, and 0.5 mmol/L 

EDTA-2Na). Quantiflour dsDNA system (Promega, WI, USA) was used for the 

quantification of the extracted total double-stranded DNA.  
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GBS libraries were prepared using reported protocols (Poland et al., 2012; 

Furuta et al., 2017). Briefly, 200 ng (20ng x 10µl) of individual samples of DNA 

were double-digested with KpnI and MspI enzymes (New England Biolabs, MA, 

USA), ligated to barcode adaptors, pooled (multiplexed), and purified using 

QIAquick PCR purification Kit (Qiagen). Flowcell primers were added to the 

pooled samples and amplified. The library was sequenced using Illumina MiSeq 

(Illumina, CA, USA).  

Raw sequences were processed using the TASSEL-GBS pipeline (Glaubitz et 

al., 2014) with default parameters, except (1) minimum allele frequency, higher 

than 0.02 (2) minimum locus coverage set to 0.3 (3) heterozygous sites and taxa 

that exceeded 0.125 were filtered out. Os-Nipponbare-IRGSP-1.0 (Kawahara et al., 

2013) was used as the reference for SNP identification. SNPs were further filtered 

based on parental polymorphism, sites that were polymorphic between parents 

but monomorphic in each parent were only included. Additionally, missing data 

were imputed using the FSFHap algorithm (Swarts et al., 2014). 

Population Structures Estimation 

 Genotype information obtained from GBS was used to estimate population 

stratifications. Probabilistic PCA (PPCA) algorithm in the Bioconductor package 

PCA methods (Stacklies et al., 2007)  and implemented on R(R Core Team, 2020) 

was deployed in this analysis.  
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Results  

aus-NAM-I Population 

Out of the seven families used in this study, five (WNAM02, WNAM29, 

WNAM31, WNAM35, and WNAM39) were newly developed. The aus-NAM-I 

population development scheme is shown in Figure 2-1 and the numbers of 

plants in F2 and F5 are listed in Table 2-1. Because of hybrid sterility and late 

heading, a substantial number of the plants in F2, F3, and F4 could not be 

harvested. The residual rate for families at F5 ranged from 46.8% to 74.4%. In 

total, 895 RILs ranging from 107 to 163 per family were obtained (Table 2-1). 

Genotyping 

The retained number of SNPs for onward analyses after the filtering process 

ranged from 2,868 to 4,285 in 7 families while 887 lines without excess 

heterozygosity (>0.125) were retained (Table 2-2).  

Population Structure 

Estimation of population structure using probabilistic principal component 

analysis (PPCA) showed fairly controlled stratification, the R2 values were: 0.067, 

0.044, 0.041, 0.038, 0.037 and 0.034 for PC1 to PC6 respectively (Figure 2-2 and 

Figure 2-3). WNAM29 formed an isolated group from other families (Figure 2-2). 
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Discussion 

The Development of aus-NAM-I Population 

NAM population brings the advantages of joint-family QTL linkage 

mapping and GWAS in dissecting the genetic basis of complex traits (Yu et al., 

2008; McMullen et al., 2009; Tian et al., 2011). In this study, we have developed 

and characterized aus derived NAM population using aus varietal group as 

diversity donors. Because of the hybrid sterility and late heading, a substantial 

number of lines were lost in the process of SSD. However, the population size 

allowed detections of known and novel QTL (Chapter 3).  

Genotyping of aus-NAM-I Population 

A GBS method (Poland et al., 2012; Furuta et al., 2017) was used to obtain 

marker genotypes for aus-NAM RILs. DNA was digested with KpnI and MspI 

enzymes (New England Biolabs, MA, USA), which are “rare cutter” and 

“common-cutter” respectively. An approximately 5000 sites were generated after 

digestion by the two enzymes and GBS. With the advancement of NGS and 

reducing the cost of sequencing, the use of more “frequent” cutters instead of 

KpnI or even whole-genome sequencing for all of the lines will be possible. 
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Population Structure 

While examining the population structure of aus-NAM, PPCA showed a 

weak stratification, with the half-sib RILs dispersed around the T65 (common 

female parent) and aus (diversity donor parent) (Figure 2-2 and Figure 2-3). This 

showed that aus-NAM retained the genetic diversity but fairly controlled the 

population structure (Myles et al., 2009). A similar low population structure was 

reported in oilseed rape NAM (Hu et al., 2018) and sorghum NAM (Bouchet et al., 

2017). 

Figures and Tables  

 
 

Figure 2-1. aus-NAM-I population development.  

Depiction of aus-NAM-I population construction, temperate japonica Taichung 65 

(T65) as the common female parent was crossed with 7 aus diversity donor 

parents. RILs were thereafter developed from F2 generation using single seed 

descent (SSD) method. Some families are not shown in the picture for the sake of 

visualization. The 7 families RILs were designated as WNAM2 (Kasalath), 

WNAM29 (Kalo Dhan), WNAM31 (Shoni), WNAM35 (ARC5955), WNAM39 

(Badari Dhan), WNAM72 (DV85) and NAM73 (ARC10313). Black ‘x’s indicate 

crosses between parents and circled ‘⊗’s indicate self-mating. Ellipses indicate 

other individuals in the population.  
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Figure 2-2. aus-NAM-I population structure (PC 1-3).  

Probabilistic principal component analysis (PPCA) was used to estimate 

population structure, (A) PC1 vs PC2, (B) PC1 vs PC3, and (C) PC2 vs PC3. 

Different shapes and colors represent different aus-NAM-I families. 
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Figure 2-3. aus-NAM-I population structure (PC 2-6). 

Probabilistic principal component analysis (PPCA) was used to estimate 

population structure, (A) PC2 vs PC3 (B) PC3 vs PC4 (C) PC5 vs PC6. Different 

shapes and colors represent different aus-NAM-I families. 
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Figure 2-4. Phenotype diversity in an aus-NAM population. 

The phenotype diversity was demonstrated by their plant height. WNAM02(Kasalath), 

WNAM04(Jena), WNAM26(Jhona), WNAM27(Nepal 8), WNAM28(Jarjan), 

WNAM29(Kalo Dhan), WNAM30(Anjana Dhan), WNAM31(Shoni), WNAM32(Tupa 

121), WNAM33(Surja Mukhi), WNAM34(ARC7291), WNAM35(ARC5955), 

WNAM36(Ratul), WNAM39(Badari Dhan), WNAM40(Nepal 55), WNAM72(DV85) 

and WNAM73(ARC10313) 
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Table 2-1. List of parents and RILs in aus-NAM-I population. 
1World Rice Core Collection (WRC)(Tanaka et al., 2020) 

Family name Founder's name WRC No.1 F2 F5 Residual rate 

WNAM02 Kasalath WRC02 233 109 46.78% 

WNAM29 Kalo Dhan WRC29 219 163 74.43% 

WNAM31 Shoni WRC31 174 121 69.54% 

WNAM35 ARC5955 WRC35 229 137 59.83% 

WNAM39 Badari Dhan WRC39 213 126 59.15% 

WNAM72 DV85 - - 107 - 

WNAM73 ARC10313 - - 132 - 
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Table 2-2. Taxa and SNPs in aus-NAM-I. 

Family 
No. of lines 

genotyped 

No. of lines retained  

after SNP discovery 

(TASSEL 5) 

No. of raw 

SNPs 

No. of retained 

SNPs after 

parental filter 

No. of retained 

SNPs after site 

filter (min allele 

freq 0.02) 

WNAM02 110 108 19434 4399 4285 

WNAM29 164 164 13708 3428 3336 

WNAM31 122 120 12756 2980 2852 

WNAM35 138 129 13756 3444 3346 

WNAM39 132 128 11033 3408 3325 

WNAM72 123 106 13522 3616 3510 

WNAM73 136 132 10075 2985 2868 

aus NAM-I  925 887       
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Chapter 3 QTL Mapping using aus-NAM-I 

Population 

Introduction 

 The majority of phenotypic variation of agricultural traits is determined by 

many loci with small effects. Detection of the genomic regions (QTL) that control 

these traits is referred to as QTL mapping. In the recent past, the advent of  DNA 

marker technologies has enabled the application of DNA markers in QTL 

mapping and selection (marker-assisted selection) (Reyes et al., 2021). The rich 

allele diversity present in multi-parental mapping populations like NAM has an 

advantage of high mapping power and resolutions compared to the classical bi-

parental populations when conducting QTL analysis (Stadlmeier et al., 2018). 

Since rice domestication in southeast Asia (Doebley et al., 2006), rice 

cultivation has expanded to wide geographical regions. The key factor that 

enabled rice adaptation is selection for photoperiod insensitivity both naturally 

and/or artificially (Izawa, 2007). Genetic studies of days to heading (DTH) also 

known as the flowering time in plants have revealed complex gene networks 

(Figure 3-1). In addition to roles in plants adaptations, DTH also influences crop 

yields, reproductive isolation, growth, and development. DTH is controlled by 

internal and external signals such as levels of phytohormones, temperature, and 

photoperiod (Zhu et al., 2017). 

Flowering time genes control the transition from vegetative meristem to 

floral meristem (Gaudinier and Blackman, 2020), The regulatory networks of 

flowering time genes are well characterized in rice (Figure 3-1) (Hayama and 

Coupland 2004; Tsuji et al. 2008). The first flowering time gene to be cloned in 

rice was Hd1 (Yano et al., 2000). Since then, over 12 flowering genes have been 
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isolated and mapped to specific pathways. Analysis of rice flowering genes 

revealed two main flowering pathways, Hd1–Hd3a and Ghd7–Ehd1–

Hd3a/RFT1(Matsubara and Yano, 2018). Detecting novel genes involved in 

flowering time is paramount for crop improvements, particularly in temperate 

environments where seasonal changes will require flowering time plasticity 

(Gaudinier and Blackman, 2020). 

The main objective of this study was to identify quantitative trait loci (QTL) 

controlling DTH and demonstrate the utility of aus-NAM-I for QTL mapping. 

Single-family QTL linkage mapping, joint-family QTL linkage mapping, and the 

methods based on genome-wide association study (GWAS) were deployed in the 

analyses. 
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Materials and Methods 

Plant Materials  

 Rice nested association mapping population (aus-NAM-I) containing 7 aus 

varieties as diversity donors and T65 as the common parent was utilized in this 

study. Details of the plant materials are presented in Chapter 2. 

Trait Evaluation and Statistical Analysis 

Field trials were conducted in the year 2015 at Togo Field, Nagoya University, 

Aichi, Japan (35°06'36.5"N, 137°05'06.3"E). Four seedlings per line per row were 

transplanted with a spacing of 20 cm between the hills and 30 cm between rows. 

Standard agronomic management was followed during the experiment, except 

no fertilizer was applied. 

 Days to heading (DTH) was calculated as the difference between the date of 

emergence of inflorescence and sowing. Phenotype values distributions across 

subpopulations were examined. To find trait means that were significantly 

different among aus-NAM families, a one-way analysis of variance (ANOVA) 

followed by Tukey HSD with a 95% confidence level was performed. All 

statistical analysis and visualization were performed using R version 4.0.3 (R 

Core Team, 2020). 

Genotyping of aus-NAM-I RILs  

GBS libraries were prepared using reported protocols (Poland et al., 2012; 

Furuta et al., 2017) and sequenced using Illumina MiSeq (Illumina, CA, USA). 

Raw reads were processed using TASSEL-GBS pipeline (Glaubitz et al., 2014) 

Genotyping details are presented in Chapter 2. 
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Whole-Genome Resequencing of aus-NAM-I Founders 

 DNA of the founders was extracted using the cetyltrimethylammonium 

bromide (CTAB) method then fragmented using Covaris Model S2 (Covaris, MA, 

USA), and used to construct sequencing library by TruSeq DNA LT kit (Illumina, 

CA, USA). Sequencing was conducted by using Illumina Miseq with Miseq 

Reagent Kit v3 (600 cycles). Variants calling was conducted following the 

standard protocol of Genome Annotation ToolKit (GATK)(DePristo et al., 2011) 

using Os-Nipponbare-IRGSP-1.0 (Kawahara et al., 2013) as the reference.  

Projection of Parental Variants  

 SNPs from parental read sequences were projected onto each RIL. Projections 

were performed in two steps (1) employ GBS markers as skeletons (2) check 

adjacent skeleton markers, if homozygous and have the common allele type as 

one of the parents; project the parental SNPs onto the intervals, otherwise set the 

intervals as missing.  

Single-family QTL Mapping 

Genotype files in HapMap format were converted to ABH parent-based 

format, where A represented T65, B represented aus genotype while 

heterozygotes and missing were represented by H and “-” respectively. Kosambi 

mapping function in the R/qtl package (Arends et al., 2010) was used to obtain 

genetic distances in (cM). QTL mapping was performed based on interval 

mapping using the ‘hk’ method implemented in R/qtl. The additive effects of a 

marker were calculated as ‘((average of aus) – (average of T65)) / 2’. Positive and 

negative additive effects values implied that aus and T65 allele increased trait 

values respectively. The logarithm of odds (LOD) value of 3 was fixed as the 
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significance threshold for QTL although LOD of 3.04 was obtained as the 

empirical threshold (type I error of 0.05) based on 1000 permutation tests 

(Churchill and Doerge, 1994). 

Joint-family QTL Mapping 

For joint-family QTL linkage mapping, genotype information in a common 

genetic map and DTH were subjected to Joint Inclusive Composite Interval 

Mapping (JICIM) algorithm (Li et al., 2011). Missing phenotypes were replaced 

by the mean of the trait, 1 cM step was selected and QTL significance threshold 

was obtained from 1000 permutation tests with a type I error of 0.05. Genotype 

file was converted into a numeral format where T65 genotype was represented 

by 0, aus genotype represented by 2, while heterozygous genotypes and missing 

genotypes were represented by 1 and -1 respectively. Positive and negative 

additive effects values mean that aus and T65 allele increased the trait values 

respectively. 

Genome-Wide Association Analysis 

TASSEL (Trait Analysis by aSSociation, Evolution, and Linkage) software 

(Bradbury et al., 2007) was used for QTL association mapping using two GWAS-

based methods, General Linear Model (GLM) and Mixed Linear Model(MLM). 

Principal components (Q) were used to account for population structure and 

genomic kinship (K) was used to account for hidden relatedness in MLM (Q+K). 

In addition, pedigree information (family) was given to TASSEL software as 

covariates in MLM (Q+K). The significance threshold was determined using 

Bonferroni with the equation: P ≤ 1/N (α =0.05) where N is the number of markers 

(Haynes, 2013). 
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Results 

Phenotypic Characteristics 

The mean values of DTH in each family in aus-NAM-I varied from 88 days 

to 105 days with potential transgressive segregation in some families observed 

i.e. WNAM31 RILs DTH average was extreme compared to both parents Figure 

3-2. Analysis of variance showed a statistically significant difference among the 

RILs families with an F value of 73.52 and a P-value < 2 x 10-16. 

Linkage Map and Projection of Parental Variants 

For joint-family QTL mapping, common 1,786 non-redundant SNP markers, 

sufficiently covering all the 12 rice chromosomes were discerned and used for 

QTL analysis. The average distance between markers ranged from 0.41 cM to 0.86 

cM (Table 3-1). For projections, parental variants obtained from whole-genome 

resequencing (4,643,123 SNPs) were firstly thinned then projected onto each of 

the individual family skeleton linkage maps. A total of 41,561 SNPs were 

obtained and thereafter utilized in GWAS.  

QTL Detected by Single Family Analysis, Joint Family Analysis, 

and GWAS-based Methods 

Single-family QTL analysis detected a total of 14 significant additive QTL on 

chromosomes: 5, 6, 7, and 10 (Figure 3-3 and Table 3-2). The QTL individually 

explained 12% to 36% of the trait variances. Among the QTL detected, 8 and 6 

contained alleles from T65 and aus loci increasing days to heading respectively. 

QTL on chromosome 10 was commonly detected across the seven families, with 

WNAM73 possessing the highest LOD score (11.81) (Table 3-2). 
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Joint-family QTL linkage mapping identified a total of 19 QTL (Figure 3-4 

and Table 3-3). Some of the joint-family QTL overlapped with QTL in single-

family, such as QTL on chromosomes 6, 7, and 10. The peak on chromosome 10 

was detected as a single peak. The peaks on chromosomes 6 and 7 looked like a 

combination of all the 7 populations, resulting in 2 separate peaks on each 

chromosome. In addition, 14 putative QTL spanning relatively wide regions 

were detected on chromosomes 1, 2, and 3 (Figure 3-4). On the other hand, a 

significant QTL on chromosome 5 in WNAM72 (Figure 3-3 F) was not detected 

in joint-family QTL analysis.  

GWAS by naive GLM revealed significant QTL signals in all chromosomes 

(Figure 3-5) while MLM(Q+K) identified significant SNPs on chromosomes: 6, 7, 

and 10 (Figure 3-6). The total number of SNPs in MLM(Q+K) that met the 

negative logarithm P-value (-LogP) of 5.9 (Bonferroni threshold at alpha 0.05) 

was 188 SNPs. 

Evaluation of Mapping Accuracy 

The QTL commonly detected by three mapping methods on chromosomes 6, 

7, and 10 included the region of RFT1 (Izawa et al., 2002), Hd3a (Kojima et al., 

2002), Hd1 (Yano et al., 2000), Ghd7 (Xue et al., 2008), and Ehd1 (Doi et al., 2004). 

Assuming that Hd1, Ghd7, and Ehd1 were the genes underlying the detected QTL, 

these loci were used to evaluate the accuracy of gene mapping in aus-NAM.  

A major QTL on chromosome 10 was identified in every individual family 

(Figure 3-3 and Table 3-2). This QTL corresponded to Ehd1 (Os10g0463400) (Doi 

et al., 2004) which is located between 17076098 bp to 17081344 bp on chromosome 

10. The peak was detected at the marker position from 16626134bp to 17367103bp 

in single-family QTL mapping (Figure 3-3), while joint-family QTL analysis 
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identified marker position 16772764bp as the peak (Figure 3-4). MLM (Q+K) 

detected a peak spanning from 17095439 to 17164368 bp (Figure 3-7C). All of the 

statistical methods successfully detected Ehd1. 

Closely to Hd1 on chromosome 6 (9,335,377 bp to 9,337,570 bp), a significant 

QTL was detected in WNAM39 (Badari Dhan) (Figure 3-3E). This peak was 

flanked by the markers S06_8837126 and S06_9318022 in joint-family QTL linkage 

analysis with a LOD score of 7.84 (Figure 3-4 chr.6). In MLM (Q+K), the marker 

S06_9338330 was contained in association mapping with a -LogP value of 11.6 

(Figure 3-7A). To better understand the individual family contribution to the 

joint peak on chromosome 6 (Figure 3-3), additive effects at this locus were 

further analyzed. Multiple alignments of the amino acid sequences deduced 

using the genomic sequences confirmed loss-of-function in aus varieties except 

for Badari Dhan (Figure 3-8). Additionally, Badari Dhan allele had the highest 

additive effect values (6.72 days) compared to the rest, Table 3.4. 

Another signal in the vicinity of RFT1 and/or Hd3a on chromosome 6 was 

also detected by GWAS (Figure 3-6 and Figure 3-7), although the signal did not 

reach the significance threshold. 

Ghd7 is located between 9,184,534 bp to 9,187,187 bp on chromosome 7 (Xue 

et al., 2008; Yamamoto et al., 2012). Single-family QTL analysis showed that 

WNAM02 (T65 x Kasalath) and WNAM35 (T65 x ARC5955) had a significant 

QTL at the vicinity of Ghd7 (Figure 3-3A and Figure 3-3D). Therefore, it was 

hypothesized that Kasalath (WNAM02) and ARC5955 (WNAM35) possess 

functional (late) alleles for Ghd7. The peak corresponding to Ghd7 in joint-family 

QTL was from 8.93Mbp to 9.35Mbp on chromosome 7, which contained the Ghd7 

locus (Figure 3-4). MLM (Q+K) detected a cluster of markers around Ghd7 locus 

with -LogP values greater than 5, surrounded by the markers that showed higher 
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-LogP values than the significance threshold, and thus the position of Ghd7 was 

not clear. In WNAM39, a QTL near Ghd7 was detected where aus allele had a 

negative additive effect that was opposite from other families, this peak was also 

detected in joint-family QTL mapping. 

Discussion 

Accuracy of QTL Mapping using aus-NAM-I Population 

To date, over 40 flowering QTL have been identified in rice (Yamamoto et al. 

2012). In this study, Ehd1 (Doi et al. 2004) was detected as the most common major 

QTL. The mapped positions of the QTL on chromosome 10 corresponded to the 

actual position of Ehd1 (Figure 3-3, Figure 3-4, Figure 3-5, and Figure 3-7C). 

Another heading time locus, Hd1 (Yano et al. 2000) was detected only in 

WNAM39, and analysis of deduced amino acid sequence confirmed that the 

founder of WNAM39 (Badari Dhan) was the only variety possessing functional 

allele of Hd1 (Figure 3-8). The effect of a functional allele of Hd1 in the 

environment of this study (long-day) was to delay heading, and it matched the 

observed result. However, the Hd1 peak in GWAS (Figure 3-7A) was not 

surrounded by markers with smaller –Log10(P) values like Ehd1. This was 

probably because of the sequence difference between Badari Dhan family and 

others, signals of linked markers were diluted by other families. Without prior 

information, Hd1 would not be mapped to a precise position using MLM (Q+K).  

Unlike Ehd1, it was not possible to discriminate alleles at Hd3a, RFT1, and Ghd7 

despite the previous reports (Kojima et al. 2002; Xue et al. 2008; Izawa et al. 2002). 

However, it should be noted that joint-family QTL mapping precisely mapped 

the peaks of Ehd1, Hd1, Ghd7, and a combined peak of RFT1/Hd3a (Figure 3-4). 

The joint-family QTL mapping approach has been reported to amplify small 
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effects signals found on individual family RILs (Fragoso et al. 2017). The results 

in the present study indicated that joint-family QTL mapping is advantageous in 

the precision of QTL positioning compared with MLM (Q+K).  

A QTL tightly linked to Ghd7 was detected in WNAM02 and WNAM35. 

Another QTL near but not tightly linked to Ghd7 (11.0Mb on chromosome 7, 

2.08Mb apart from Ghd7 (8.93Mb)) was detected in WNAM39, where the 

functional allele of Hd1 segregated. This QTL showed an opposite additive effect 

as that expressed in WNAM02 and WNAM35. Ghd7 was reported to have the 

ability to switch its additive effects by epistasis with Hd1 (Fujino et al. 2019). The 

underlying gene in the QTL detected in WNAM39 remains unclear. A well-

saturated linkage map will facilitate the characterization of genes underpinning 

this QTL. 
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Figures and Tables 

 
Figure 3-1. Genes in rice photoperiodic flowering pathways.  

Arrowheads denote up-regulation; Bars denote down-regulation. Genes that 

were cloned by QTL analysis of natural variation are shown in the highlighted 

boxes (Matsubara et al., 2014).  
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Figure 3-2. Days to heading frequency distributions.  

Violin plots showing frequency distributions of DTH. Yellow and blue dots 

represent aus and T65 founders respectively. Black dots show the RILs average 

in each family. Groups with no significant difference by Tukey HSD with a 95% 

confidence level are represented by the same letters above the plots. 
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Figure 3-3. Interval mapping for days to heading in aus-NAM-I. 

Interval mapping using R/QTL scanone function (A) WNAM02, (B) WNAM29, 

(C) WNAM31, (D) WNAM35, (E) WNAM39, (F) WNAM72, and (G) WNAM73. 

The black solid lines correspond to the LOD score profile (y-axis) as a function of 

distance in cM across each chromosome (x-axis). Horizontal dotted lines in all 

panels indicate the LOD significance threshold value of 3. 
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Figure 3-4. Joint-family QTL and additive effects in aus-NAM-I.  

LOD profiles detected by the JICIM algorithm were plotted on top panels while 

additive effects are shown on bottom panels. The scanning step was 1 cM and the 

dotted horizontal line (6.51) represents the significance threshold obtained from 

1000 permutation tests with a type I error of 0.05. Different line colors in the 

additive effects panel represent different families. The positions of known loci 

(RFT1, Hd3a, Hd1, Ehd1) are shown in the panels of chromosomes 6, 7, and 10.  
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Figure 3-5. GWAS for DTH using GLM in aus-NAM-I. 

Manhattan plot and quantile-quantile (QQ) plot for days to heading. The red 

horizontal line marks the threshold (5.9). A QQ plot is shown in the right panel, 

where the expected P-values vs. the observed P-values are plotted on a -log10 

scale. 

 

 
Figure 3-6. GWAS for DTH using MLM (Q+K) in aus-NAM-I.  

Manhattan plot and quantile-quantile (QQ) plot for days to heading. The red 

horizontal line marks the threshold (5.9). A QQ plot is shown in the right panel, 

where the expected P-values vs. the observed P-values are plotted on a -log10 

scale. 
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Figure 3-7. Local GWAS for days to heading in aus-NAM-I. 

The Manhattan scatter plots using MLM (Q+K) show a local association of days 

to heading (A) chromosome 6, (B) chromosome 7, and (C) chromosome 10. The 

panels at the bottom are magnification around RFT/Hd3a, Hd1, Ghd7, and Ehd1 

loci. 
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Figure 3-8. Accuracy for Hd1 mapping.  

The figure shows amino-acid sequences alignment of Hd1 in functional alleles 

of Nipponbare and Ginbouzu and Badari Dhan. Regions of the 2 ZF-B box and 

CCT motif are indicated. The sequence of Badari Dhan contained 6 non-

synonymous mutations, but it was considered that the allele retains function. 
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Table 3-1. Joint-family linkage map statistics in aus-NAM-I.  

 

Chromosome 
No. of 

markers 
Genetic length(cM) Average spacing (cM) Maximum spacing (cM) 

1 230 150.06 0.66 11.41 

2 157 127.16 0.82 13.36 

3 219 132.04 0.61 11.22 

4 136 97.62 0.72 16.1 

5 179 100.04 0.56 8.46 

6 136 98.67 0.73 12.34 

7 113 96.87 0.86 14.37 

8 113 92.14 0.82 9.66 

9 112 71.26 0.64 7.76 

10 166 67.28 0.41 8.08 

11 115 90.82 0.8 9.98 

12 110 75.98 0.7 11.04 

Overall 1786 1199.94 0.68 16.1 
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Table 3-2. QTL in aus-NAM-I using single-family QTL analysis. 

Family1 chr2 position3  LOD4 a5 PVE6 SNP marker 

WNAM02 10 34.784954 9.54 -9.45 0.35 S10_16626134 

  7 42.869937 3.04 5.86 0.13 S07_13768989 

WNAM29 10 36.342898 9.57 -6.03 0.25 S10_17367103 

  7 54.815808 5.87 4.72 0.16 S07_19401587 

WNAM31 10 35.788232 9.38 -7.98 0.31 S10_16808215 

WNAM35 10 36.179895 5.00 -6.22 0.18 S10_17171636 

 6 67.389475 3.25 -5.06 0.12 S06_23867930 

  7 42.276444 5.02 6.42 0.18 S07_9436160 

WNAM39 10 36.179895 7.27 -12.10 0.23 S10_17200086 

  6 45.828088 7.81 12.52 0.25 S06_9324594 

WNAM72 10 34.784954 10.20 -9.55 0.36 S10_16626134 

 5 77.858431 3.92 6.34 0.16 S05_24089993 

  6 12.908983 3.41 6.15 0.14 S06_3043159 

WNAM73 10 35.788232 11.81 -8.77 0.34 S10_16808215 

1 aus-NAM-I family. 

2 Chromosome number. 

3 Position along the chromosome in cM. 

4 QTL logarithm of odds 

5 Additive effects of the marker calculated as ‘((average of aus) – (average of T65)) 

/ 2’. Positive values indicate that aus parent alleles increased the trait value and 

vice versa. 

6 Percentage of phenotypic variance explained by QTL. 
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Table 3-3. QTL in aus-NAM-I using joint-family QTL analysis. 

Chr Pos Left marker Right marker LOD1 PVE2 

LOD for WNAM: 

2 29 31 35 39 72 73 

1 41.144 S01_8932051 S01_9243217 9.76 1.21 0.14 3.80 1.15 0.71 0.30 2.58 1.08 

1 54.144 S01_12059573 S01_12574351 7.72 1.05 0.07 1.60 0.55 1.68 0.00 1.45 2.37 

1 125.14 S01_38216481 S01_38471034 7.10 1.13 0.15 1.99 0.01 2.64 0.23 0.40 1.68 

2 27.56 S02_5835680 S02_6788077 10.19 1.83 1.50 2.03 0.18 3.15 3.22 0.05 0.07 

2 34.56 S02_8446962 S02_8635149 13.34 2.38 1.63 2.54 0.24 3.68 4.70 0.30 0.25 

2 36.56 S02_8785972 S02_9401106 13.81 2.58 1.81 1.52 0.42 4.46 5.17 0.22 0.20 

2 45.56 S02_11641918 S02_12015489 12.40 2.98 0.09 0.08 0.03 4.77 7.03 0.17 0.23 

2 49.56 S02_16916875 S02_17920669 12.06 4.18 0.07 0.02 0.10 3.18 8.40 0.24 0.04 

3 4.6551 S03_1504686 S03_1680047 8.74 1.09 0.01 2.76 2.08 2.12 0.03 1.52 0.23 

3 26.655 S03_6481871 S03_6797449 29.86 2.89 5.71 11.44 2.44 4.83 0.57 3.49 1.38 

3 30.655 S03_7615673 S03_7920537 31.89 3.55 3.60 11.20 2.87 5.83 0.87 4.87 2.65 

3 36.655 S03_9368445 S03_9433259 21.59 2.64 3.48 5.10 1.76 4.41 0.19 4.64 2.01 

3 53.655 S03_14087144 S03_14687036 19.86 5.00 0.67 1.07 0.78 0.01 0.56 7.77 9.00 

3 66.655 S03_16837159 S03_17302066 27.70 4.74 0.87 0.94 0.70 0.65 0.02 10.42 14.10 

3 68.655 S03_20983648 S03_21066372 28.73 4.70 1.15 0.90 1.10 0.39 0.06 10.03 15.11 

6 12.603 S06_2279056 S06_2984376 9.54 1.39 0.50 1.65 1.57 0.86 1.57 2.73 0.66 

6 45.603 S06_8837126 S06_9318022 7.84 2.95 0.21 0.03 0.12 0.22 5.61 0.08 1.57 

7 42.143 S07_8936752 S07_9350535 6.74 1.67 2.45 0.82 0.04 1.52 1.90 0.00 0.00 

10 35.383 S10_16626134 S10_16772764 30.69 3.83 4.41 6.35 2.99 1.93 6.11 5.21 3.69 

1 Joint-family QTL logarithm of odds 

2 Percentage of phenotypic variance explained by QTL. 
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Table 3-4. Additive effects in aus-NAM-I using joint-family QTL analysis. 

Chr Pos Left marker Right marker LOD1 PVE2 

Additive effects3 for WNAM: 

2 29 31 35 39 72 73 

1 41.144 S01_8932051 S01_9243217 9.76 1.21 0.78 2.89 1.71 1.72 1.57 4.13 2.12 

1 54.144 S01_12059573 S01_12574351 7.72 1.05 0.53 1.90 1.24 2.60 -0.01 2.99 3.05 

1 125.14 S01_38216481 S01_38471034 7.10 1.13 0.76 -2.11 0.19 -3.26 -1.70 -1.98 -2.61 

2 27.56 S02_5835680 S02_6788077 10.19 1.83 -2.42 -2.16 -0.71 -3.63 -4.98 -0.55 -0.54 

2 34.56 S02_8446962 S02_8635149 13.34 2.38 -2.52 -2.46 -0.80 -3.91 -5.96 -1.36 -1.04 

2 36.56 S02_8785972 S02_9401106 13.81 2.58 -2.76 -1.89 -1.05 -4.27 -6.21 -1.16 -0.91 

2 45.56 S02_11641918 S02_12015489 12.40 2.98 -0.59 -0.43 -0.27 -4.30 -6.96 -1.01 -0.96 

2 49.56 S02_16916875 S02_17920669 12.06 4.18 -0.53 0.19 -0.50 -3.57 -8.72 -1.21 -0.41 

3 4.6551 S03_1504686 S03_1680047 8.74 1.09 0.21 2.42 2.32 2.88 -0.49 2.98 0.98 

3 26.655 S03_6481871 S03_6797449 29.86 2.89 4.49 4.65 2.69 4.30 2.11 4.49 2.93 

3 30.655 S03_7615673 S03_7920537 31.89 3.55 3.72 4.56 3.10 4.67 2.62 5.26 5.00 

3 36.655 S03_9368445 S03_9433259 21.59 2.64 3.73 3.28 2.23 4.12 1.21 5.08 4.12 

3 53.655 S03_14087144 S03_14687036 19.86 5.00 1.85 1.62 1.45 0.20 2.23 6.50 8.62 

3 66.655 S03_16837159 S03_17302066 27.70 4.74 1.91 1.46 1.34 -1.62 0.40 7.31 7.12 

3 68.655 S03_20983648 S03_21066372 28.73 4.70 2.17 1.41 1.67 -1.26 0.69 7.11 7.37 

6 12.603 S06_2279056 S06_2984376 9.54 1.39 1.44 2.08 2.15 2.04 3.57 4.09 1.73 

6 45.603 S06_8837126 S06_9318022 7.84 2.95 0.93 -0.27 0.56 -0.98 6.72 -0.68 -2.51 

7 42.143 S07_8936752 S07_9350535 6.74 1.67 3.11 1.34 0.34 2.45 -3.84 -0.14 0.10 

10 35.383 S10_16626134 S10_16772764 30.69 3.83 -4.15 -3.60 -2.72 -2.78 -6.59 -5.31 -3.88 

 

1 Joint-family QTL logarithm of odds 

2 Percentage of phenotypic variance explained by QTL. 

3 Positive and negative additive effects values mean that aus and T65 alleles 

increased trait values respectively. 

  



55 
 

Chapter 4 Expansion of aus-Derived NAM 

Population in Rice (aus-NAM-II)  

Introduction 

The number of markers is no longer a limitation in QTL mapping but the 

genetic material employed (Stadlmeier et al., 2018). A large mapping population 

with more founders has a higher representation of rare alleles, an important 

factor for crop improvement (Kremling et al., 2018; Valluru et al., 2019; Gage et al., 

2020). In the models used for genomic selection in practical breeding programs, 

population size is more important than marker density (Xu et al., 2018). Further 

expansion of our aus-NAM-I (Chapter 2) was conducted in this study. The 

extended and modified population contained 14 families and herein referred to 

as aus-NAM-II. To genotype the increased population size, our group developed 

a new GBS method called iGBS (Vincent P. Reyes dissertation 2021). From the 

new method, approximately 500M reads could be generated using HiSeqX 

(Illumina, CA, USA) at a comparable cost to the 25M reads generated by Illumina 

MiSeq (Illumina, CA, USA).   

 

 

 

 

 

 



56 
 

Materials and Methods 

Plant Materials 

A temperate japonica variety, Taichung 65 (T65), was used as the common 

female parent. The five aus cultivars Kasalath, Kalo Dhan, Shoni, ARC5955, and 

Badari Dhan (kindly supplied by the National Agricultural Research 

Organization (NARO) Genebank, Tsukuba, Japan) were used as diversity donor 

parents (founders) [28]. The five aus varieties were crossed to T65, and RILs were 

derived from the F2 generation using single-seed descent (SSD) to obtain F5 in 

2015. The 5 families of RILs were designated as WNAM02 (Kasalath), WNAM29 

(Kalo Dhan), WNAM31 (Shoni), WNAM35 (ARC5955), and WNAM39 (Badari 

Dhan). The nine new additional families were constructed in a similar way as the 

first five families. They were designated as WNAM04 (Jena), WNAM27 (Nepal 

8), WNAM28 (Jarjan), WNAM30 (Anjana Dhan), WNAM32 (Tupa 121), 

WNAM33 (Surja Mukhi), WNAM34 (ARC7291), WNAM36 (Ratul) and 

WNAM40 (Nepal 55) 

 

Phenotyping 

A total of eleven rice traits were evaluated and measured in normal season 

field conditions at Nagoya University Togo field. Days to Heading (DTH) was 

recorded at Nagoya University Togo field, DTH was calculated as the difference 

between the emergence of inflorescence and sowing date. At the maturity stage, 

plants above the ground were sampled and dried in a well-ventilated vinyl house 

for one month. The following additional traits values were recorded: Culm 

Length (CL), Panicle Length (PL), Panicle Rachis Length (PRL), Panicle Number 
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Per Plant (PN), Panicle Weight (PW), Shoot Weight (SW), Number of Primary 

Branches Per Panicle (NPB), Number of Spikelets Per Panicle (NSSP) and Seed 

setting rate (SSR). Plant biomass (BM) is a summation of PW and SW. 

Correlation Analysis  

 The correlation between traits was estimated using R (R Core Team, 2020) by 

Pearson method and visualized in corrplot package (v0.84) (Wei and Simko, 

2017). 

Genotyping  

Nine new families in aus-NAM-II were sequenced using Illumina HiSeqX 

(Illumina, CA, USA). GBS library was prepared following protocol in Chapter 2 

except Illumina ‘index’ was added to the sequences of flowcell primers. Raw 

sequences were processed using the TASSEL-GBS pipeline (Glaubitz et al., 2014) 

as explained in Chapter 2. 

Estimation of Population Structure  

The cleaned genotype information obtained from GBS was used to estimate 

population stratifications. Probabilistic PCA (PPCA) algorithm in the 

Bioconductor package PCA methods (Stacklies et al., 2007)  and implemented on 

R(R Core Team, 2020) was deployed.  
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Results 

aus-NAM-II Population 

The aus-NAM-II population development scheme is shown in Figure 4 1 out 

of the 14 families, 9 WNAM04, WNAM27, WNAM28, WNAM30, WNAM32, 

WNAM33, WNAM34, WNAM36, and WNAM40 were newly developed. The 

numbers of plants in F2 and F5 are listed in Table 4-1. Because of hybrid sterility 

and late heading, a substantial part of the plants in F2 through F5 could not be 

harvested. The residual rate at F5 ranged from 46.8% to 74.4% (Table 4-1). In total, 

1,797 RILs, ranging from 54 to 169 per family were obtained (Table 4-1). 

Correlation of Phenotypes 

Correlations of phenotypes in 2015 (10 traits) and 2018 (Eleven traits) are 

shown in Figure 4-2 . Positive correlation between SW and DTH was observed in 

2015 and 2018 while PN and NPB were negatively correlated. SSR positively 

correlated with PW and conversely to SW. Because BM was a component of SW 

and PW, a strong positive correlation was displayed as expected. The correlation 

trends between traits in 2015 and 2018 were generally almost similar.  

Genotyping 

The retained number of SNPs for onward analyses in aus-NAM-II after 

filtering for ‘MAF = 0.02’, ‘max-missing = 0.5’, and ‘thin = 64bp’, ranged from 

2,522 to 5,019.  The number of genotypes without excess heterozygosity (>0.125) 

was 1,818 (Table 4-2). 

 

 



59 
 

Population Structure 

Estimation of population structure using probabilistic principal component 

analysis (PPCA) showed substantial controlled stratification, the R2 values were: 

0.096, 0.060,0.057, 0.053, 0.051 and 0.049 for PC1 to PC6 respectively. (Figure 4-3 

and Figure 4-4). 

Discussion 

Correlation of aus-NAM-II Traits 

The correlation pattern of traits in 2015 and 2018 appeared similar. This 

suggested common environmental effects and uniform plots. Moreover, DTH 

was positively correlated to SW in both years, the delayed heading time likely 

enabled plants to accumulate photosynthates during the vegetative period thus 

getting higher SW. Pleiotropy or linkage disequilibrium is thought to be the 

source of traits correlations(Hill, 2013). The correlations of traits are useful for 

handling selection responses in plant breeding. 

Development of aus-NAM-II Population 

Rice aus-NAM-II population containing fourteen families and 1790 RILs was 

constructed in this study. The new population with additional founders was 

expected to have, a higher number of recombinant haplotypes just like MAGIC 

populations (Ladejobi et al., 2016) as well as wider coverage of rare alleles, an 

important property in QTL mapping for crop improvement (Kremling et al., 2018; 

Valluru et al., 2019). The big size of aus-NAM-II population was also expected to 

mitigate over-estimation of QTL effects “Beavis effect”, a common problem in 

small-sized mapping populations (Utz et al., 2000). According to the 

retrospectives of maize NAM populations (Gage et al., 2020), the authors 
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recognized the importance of expanding NAM populations, they suggested that 

two to four times the original NAM size will enable the parental variety to share 

rapid LD decay which will, in turn, facilitate high-resolution gene mapping. 

Genotyping of aus-NAM-II Population 

The first five families (WNAM02, WNAM29, WNAM31, WNAM35, and 

WNAM39) were sequenced using MiSeq (Illumina, CA, USA) while the 

remaining nine families were sequenced using HiSeqX (Illumina, CA, USA). The 

potential number of the markers obtained by the restriction enzyme used in this 

study (KpnI-MspI) was estimated at approximately 5000. This number is 

sufficient to model the phenotypes based on rrBLUP related methods (Xu et al., 

2018), hence, enough for gene mapping. Therefore, the choice of the enzyme was 

appropriate for aus-NAM-II.  

Population Structure 

PPCA using the expanded population (aus-NAM-II) showed that RILs were 

evenly distributed including the fifteen parents. I presumed that no strong 

population structure was present in aus-NAM-II. A large population (14 families) 

and the common T65 parent considerably destroyed the population structure. 

Controlled crossing of varieties was previously reported to destroy population 

structure, this increases the power to detect QTL (Myles et al., 2009) 
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Figures and Tables 

 
Figure 4-1. aus-NAM-II population development.  

Depiction of aus-NAM-II population construction, temperate japonica Taichung 

65 (T65) as the common female parent was crossed with 14 aus diversity donor 

parents. RILs were thereafter developed from F2 generation using single seed 

descent (SSD) method to obtain F5. Some families are not shown in the picture 

for the sake of visualization. The 14 families RILs were designated as 

WNAM2(Kasalath), WNAM4(Jena), WNAM27(Nepal 8), WNAM28(Jarjan), 

WNAM29(Kalo Dhan), WNAM30(Anjana Dhan), WNAM31(Shoni), 

WNAM32(Tupa 121), WNAM33(Surja Mukhi), WNAM34(ARC7291), 

WNAM35(ARC5955), WNAM36(Ratul), WNAM39(Badari Dhan), 

WNAM40(Nepal 55). Black ‘x’s indicate crosses between parents and circled ‘⊗’s 

indicate self-mating. Ellipses indicate many other individuals in the population. 
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Figure 4-2. Correlations of phenotypes in 2015 and 2018.  

The color of the dots indicates the correlation coefficient values corresponding to 

the bar on the right. 
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Figure 4-3. aus-NAM-II population structure (PC 1-3).  

Probabilistic principal component analysis (PPCA) was used to estimate 

population structure, (A) PC1 vs PC2, (B) PC1 vs PC3, and (C) PC2 vs PC3. 

Different shapes and colors represent different aus-NAM-II families. 
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Figure 4-4. aus-NAM-II population structure (PC 2-6).  

Probabilistic principal component analysis (PPCA) was used to estimate population 

structure, (A) PC2 vs PC3 (B) PC3 vs PC4 (C) PC5 vs PC6. Different shapes and colors 

represent different aus-NAM-II families. 
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Table 4-1. List of RILs in aus-NAM-II population. 
1World Rice Core Collection (WRC)(Tanaka et al., 2020) 

Family name Founder's name WRC No.1 F2 F5 Residual rate 

WNAM02 Kasalath WRC02 233 109 46.78% 

WNAM29 Kalo Dhan WRC29 219 163 74.43% 

WNAM31 Shoni WRC31 174 121 69.54% 

WNAM35 ARC5955 WRC35 229 137 59.83% 

WNAM39 Badari Dhan WRC39 213 126 59.15% 

WNAM04 Jena035 WRC04 - 129 - 

WNAM27 Nepal 8 WRC27 - 145 - 

WNAM28 Jarjan WRC28 - 151 - 

WNAM30 Anjana Dhan WRC30 - 169 - 

WNAM32 Tupa 121 WRC32 - 88 - 

WNAM33 Surja Mukhi WRC33 - 86 - 

WNAM34 ARC7291 WRC34 - 151 - 

WNAM36 Ratul WRC36 - 168 - 

WNAM40 Nepal 555 WRC40 - 54 - 
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Table 4-2. Taxa and SNPs in aus-NAM-II population.  

Family 
No. of lines 

genotyped 

No. of  

lines after 

basic 

filtering 

No. of raw 

SNPs 

No. of lines 

after MAF 

0.02 ,max-

missing 0.5 

and thin 64bp 

No. of 

SNPs after 

MAF 

0.02 ,max-

missing 0.5 

and thin 

64bp 

WNAM02 114 110 19434 110 4399 

WNAM04 135 131 9871 131 2799 

WNAM27 151 147 11265 147 3211 

WNAM28 157 153 11546 153 2522 

WNAM29 170 166 13768 166 3732 

WNAM30 175 171 13635 171 3919 

WNAM31 126 122 12756 122 2980 

WNAM32 94 90 12293 90 3700 

WNAM33 92 88 10975 88 3359 

WNAM34 157 153 18098 153 5019 

WNAM35 135 131 13756 131 3444 

WNAM36 174 170 11345 170 3276 

WNAM39 134 130 11033 130 3408 

WNAM40 60 56 11333 56 3555 
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Chapter 5 GWAS and Genomic Predictions using 

aus-NAM-II Population 

Introduction 

In plants genetics, genome-wide association study (GWAS) is a method to 

uncover QTL associated with traits variations, usually by statistically examining 

the relationship between whole-genome sequence variants and traits (Nordborg 

and Weigel, 2008). GWAS can be advantageous to plants because of the 

possibility to develop fixed populations thus genotype once and phenotype 

many times for different traits (Xiao et al., 2017). In the recent past, many GWAS 

studies have been conducted in plants using natural populations, for example, 

rice (Huang et al., 2010) and maize (Li et al., 2013). However, GWAS power to 

detected QTL has been dismal due to uncounted population structures (Zhou 

and Huang, 2019). To circumvent the problem, a nested association mapping 

(NAM) population was proposed (McMullen et al., 2009) and since then several 

GWAS studies have been conducted using NAM populations (Tian et al., 2011).   

Modern plant breeding is a predictive science driven by new technologies 

and knowledge (Crossa et al., 2021). Predictive ability (PA) is one of the key 

factors determining the application of genomics-based breeding, and prediction 

models are designed to improve PA. Traditionally, organism selection was based 

on phenotypes, with the advent of quantitative genetics and statistics, the best 

linear unbiased prediction (BLUP) method that utilizes phenotypic and pedigree 

information was proposed (Henderson, 1985; Bernardo, 1996). Because this 

method was time-consuming and costly, marker-assisted selection (MAS) was 

championed as an alternative (Fujino et al., 2019). MAS success relied on QTL 

with large effects (Bernardo and Yu, 2007). However, quantitative traits are 

complex and influenced by many genes with small effects that are not significant 
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in QTL analysis, and interacts with environments (Yonemaru et al., 2010). As a 

new genotypes selection alternative, methods using molecular markers without 

the need of computing QTL statistical significance were proposed (Meuwissen et 

al., 2001; Nakaya and Isobe, 2012) This approach is commonly referred to as 

genomic selection (GS).  

The hypothesis behind GS is that with high-density markers, each QTL 

should be associated with at least one marker. GS ranks individuals for selection 

based on their estimated breeding values (GEBVs). GS can be applied at any stage 

of the breeding cycle providing much-needed flexibility to breeders. In addition, 

GS is a promising technology for traits that are difficult or expensive to measure 

like milling quality (Monteverde et al., 2018). 

GS models use two types of population (i) Training population (TP) which 

has genotype and phenotype data (ii) Breeding population or validation 

population which has genotype information only. Since genetic data are mostly 

high-dimensional i.e. more marker number (p) than individuals (n), the so called 

large-p-with-small-n problem (Bellman, 1961). Various prediction methods 

employ different dimension reduction and selection on the many parameters(p).  

The various statistical models implemented use the TP, where marker effects are 

firstly estimated (Jonas and de Koning, 2013 ). The marker effects are then used 

to calculate GEBVs of individuals in the breeding populations. The response to 

selection can be evaluated in plant breeding by the genetic gain achieved in GS. 

Genetic gain can be calculated using equation (2): 
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(2) 

Where Rt denotes a genetic gain over time, i represent selection intensity, r 

corresponds to selection accuracy measured as the correlation between actual 

breeding values and estimated breeding values. In the case of repeated 

measurements, accuracy is adjusted by dividing it by the square root of the 

narrow-sense heritability (h). σA denotes the genetic variance brought about by 

diversity in the population and y is the number of years in the breeding cycle (Li 

et al., 2018). 

To achieve optimum genetic gain, selection intensity, accuracy and genetic 

variance should be improved i.e. through increasing the population size and 

accounting for environmental artifacts correctly (Xu et al., 2020). For GEBVs 

obtained from markers, optimum accuracy depends on the choice of models 

which rely on the genetic architectures of traits, sample size and linkage 

disequilibrium(Campos et al., 2013). 

As the development of computing and quantitative genetics improves and 

the cost of sequencing reduces, attempts for the implementation of GS in crops 

continue to rise. Genomic predictions have been applied to many rice traits such 

as heading dates, grain yield, plant height, milling quality, arsenic concentration, 

and biomass (Onogi et al., 2016; Monteverde et al., 2018; Frouin et al., 2019; Toda 

et al., 2020). Recently, genetic researches have elucidated that incorporating trait-

related data i.e. growth-related (Toda et al., 2020), environments data 

(Monteverde et al., 2018), and phenological data i.e. heading date (Onogi et al., 

2016) improves genomic predictions. Despite several studies of genomic 

predictions in rice, this study, to the best of my knowledge, is the first to apply 

genomic prediction in aus derived NAM population. 
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In this chapter, I evaluated the accuracy of four genomic prediction methods. 

The performance of several methods and markers size impacts on genomic 

prediction was examined. 

Materials and Methods 

Genotype and Phenotype Data 

Genotype and phenotype information used here are described in Chapter 4 

of this dissertation. 

GWAS 

For GWAS, the GWAS function implemented in the rrBLUP package 

(Endelman, 2011) was utilized. This function performs GWAS based on a mixed 

model (Yu et al., 2006) as shown in equation (3). 

 

(3) 

Where β vector of fixed effects (e.g. PCA), τ models additive SNP effect as a fixed 

effect; g models genetic background of each line as a random effect with variance 

explained by [g] = Kσ2.  ε is residuals with variance explained by [ε] = Iσ2. Two 

sets of marker genotype data were prepared: (i) Fourteen families merged GBS 

SNPs (ii) Fourteen families merged GBS SNPs plus the parental variants 

projected onto it. GWAS with Q (population structure) with K (kinship 

relatedness) was executed in this study. Minor allele frequency was set to 0.05 

and the number of principal components (n. PC) was set to 4. To visualize the 

results, the qqman package was used (Turner, 2018). Since GWAS performs 

hypothesis testing for each of the large number of SNPs, the significance level 

was calculated using the p. adjust function with the false discovery rate (FDR) set 
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to 0.05 (5%). Based on FDR <0.05, SNPs that were considered significant were 

highlighted in green color on the Manhattan plots. The Linkage disequilibrium 

(LD) values between pairs of SNPs were determined from the squared correlation 

coefficients (r2) values using plink (Purcell et al., 2007) with following settings (--

ld-window-kb 43000 --ld-window 100000), LD decay pattern was rendered 

according to the Hill and Weir function (Weir and Hill, 1980). 

Methods for Genomic Prediction 

In this study, methods in rrBLUP (Endelman, 2011) and BGLR (Pérez and 

Campos, 2014) packages were utilized. The results were visualized using ggplot2 

package. Of the four methods used, three were parametric; (rrBLUP, BayesB, and 

Bayesian LASSO) and one non-parametric method (RKHS). The general equation 

for the parametric model is described by equation (4). 

 

(4) 

 

Where y is a vector for n observed phenotypes, X is a matrix of fixed effects of 

size n× q, β is a q × 1 vector of fixed effects, m is the number of markers (SNPs), 

Zk corresponds to vector for genotype indicator variable, γk is the additive genetic 

effect of marker k, and residual errors is represented by ε, n × 1 vector with an 

assumed N (0, Iσ2) distribution. The genotypic indicators of marker k for 

individual j (where j = 1, 2.. n) are defined as − 1, 0, 1 i.e. homozygote of the minor 

allele, heterozygote, and the homozygote of the major allele, respectively (Xu et 

al., 2018). 
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Genetic Relationship Matrices 

Kinship coefficients between RILs were estimated from genomic data. A 

realized genomic relationship matrix (G) was calculated as described by Van 

Raden (VanRaden, 2008) and shown in equation (5). 

 

(5) 

where M and P are two matrices of dimension n (number of individuals) × p 

(number of markers). In matrix M, homozygote, the heterozygote, and the other 

homozygote are represented by −1, 0, and 1 respectively. P denotes the matrix 

containing the allele frequencies in this form:  2(pi – 0.5), where pi is the observed 

allele frequency at the marker i for all individuals. The use of minor allele 

frequency scales G to the expected additive genetic relationship (Bartholome et 

al., 2016). 

Bayesian Least Absolute Shrinkage and Selection Operator 

(Bayesian LASSO) 

The BGLR package implements many Bayesian-based regression methods, 

the algorithms are based on Gibbs sampler with scalar updates(Pérez and 

Campos, 2014). The BGLR Bayesian LASSO (BL) was selected for analysis in this 

study because of its computing speed and the few prior assumptions assigned to 

the model. The default BGLR Bayesian LASSO parameters were applied to run 

the model. The marker effects in BGLR Bayesian LASSO  are assigned double 

exponential distribution (Figure 5-1) (Heslot et al., 2012; Pérez and Campos, 2014).  
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BayesB 

BGLR BayesB model uses a mixed prior distribution with mass at zero and a 

slab that has scaled t distribution (Figure 5-1)(Meuwissen et al., 2001).  The prior 

used in BGLR BayesB has the potential to be used for variable selection due to 

assigning non-null prior for marker effects to be zero (Pérez and Campos, 2014). 

BGLR BayesB variance can summarized as γk ~ N (0; σ2 γk), where σ2 γk = 0 with 

prob = π and σ2 γk ~ χ−2(v, S) with prob = 1 ‐ π. The package`s default parameters 

were used(Pérez and Campos, 2014). 

Reproducing Kernel Hilbert Space (RKHS) 

 BGLR RKHS utilizes the Gauss kernel function to fit the model, the model is 

described by equation (6). 

 

(6) 

where μ is mean of population and α corresponds to covariance matrix Khσ2α; ε 

is residuals with distribution ε~N (0, Inσ2); Kh is a kernel function that represents 

the correlation between individuals and is represented by the equation (7). 

 

(7) 

where dij is the squared Euclidean distance between individuals i and j calculated 

based on their genotypes, and the smoothing parameter h is defined as h = 2/d* 

and d* is the mean of dij, h value was fixed to 0.5 in this study. BGLR RKHS can 

handle epistasis and is solved using a Gibbs sampler in a Bayesian framework, 

or using a mixed linear model (Wang et al., 1994). 
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Ridge Regression with rrBLUP 

Marker effects and GEBVs for traits were predicted using rrBLUP ‘mixed. 

solve’ function(Endelman, 2011). The basic model in rrBLUP is described by 

equation (8) 

𝑦 = 𝑊𝐺𝑢 + 𝜀                (8) 

Where y is observation, u is a vector of marker effects with distribution u~N (0, 

Iσ2u), G is genotype matrix and W design matrix relating to observation(y). BLUP 

solution for marker effects can be described by  u ̂=Z'(ZZ' +  λI) − 1 y; where Z = 

WG and the ridge parameter λ =σ 
2
𝑒/σ 

2
𝑢 is the ratio of residual and marker 

effects variances(Searle et al., 2006). ‘mixed. solve’ function calculates maximum 

likelihood solutions (ML/REML) for mixed models where a single variance 

component apart from residual error has a relationship with ridge regression. 

  Cross-Validation 

For each dataset in the study, RILs were randomly sampled into five groups. 

Each model was trained on 4/5 of the data subsets and accuracy tested on the 

remaining 1/5 of the subset. The cross-validation was replicated 10 times before 

the average prediction accuracy for each trait was calculated. Prediction accuracy 

(r values) was defined as the linear correlation between true phenotypic records 

and the predicted individual's breeding value (Pearson, 1895). 
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Results 

Linkage Disequilibrium (LD) Decay 

After filtering SNPs and performing imputations, the merged 56,042 SNPs 

were analyzed for the distance at which LD was half of its maximum value. The 

squared correlation coefficient (r2) values of the pairwise LD were plotted using 

a nonlinear regression curve against physical distance (kb) to estimate the LD 

decay pattern. The regression curve pattern showed that LD decayed to half 

(r2 < 0.26) within 2.86 Mb (Figure 5-2).  

GWAS for DTH in 2019  

Days to heading (DTH) was the only trait evaluated trait in 2019. GWAS for 

DTH using 2006 GBS SNPs (marker set 1) and 78,154 projected markers (marker 

set 2) were profiled. The number of SNPs that were considered significant (false 

discovery rate (FDR) set to 0.05) were: 63 and 395 for marker set 1 and marker set 

2 respectively. For marker set 1, significant SNPs were detected on chromosomes 

4 (S04_253061326), 6 (S06_3043159), 7 (S07_15686122) and 10 (S10_17200086). The 

candidate genes were annotated based on QTARO database (Yamamoto et al., 

2012). QTL detected on chromosomes 6 and 10 were considered RFT1 and Ehd1 

respectively (Table 5-1), and QTL linked to peaks on chromosomes 4 and 7 were 

probably novel. Marker set 2 showed two additional candidate genes DTH2 and 

Hd9 for S02_29724553 and S03_1825245 respectively (Table 5-1 and in Figure 5-3). 
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GWAS for Phenotypes in 2018  

Manhattan and QQ plots for 2018 are shown in Figure 5-4. There was an 

outstanding QTL approximately 16Mbp to 17Mbp on chromosome 10 for DTH 

using both marker sets, herein referred to as qDTH10. Other chromosomes with 

significant SNPs associated with traits were: Marker set 1, DTH (chromosomes 1, 

4, 6 and 7), CL (1, 5, 6 and 10), PL (2, 3, 4, 6, and 11), PRL (4 and 11), PN (4), SW 

(5, 6 and 10), NSPP (3, 4 and 7) and BM (10). For marker set 2: DTH (2, 3, 6 and 

7), CL (2, 3, 5, 8 and 9), PL (2, 4 and 6), PRL (2, 4, 5 and 6), PN (1, 2, 3, 4, 5, 7 and 

12), PW (6), SW (1, 5, 6, 7, 9 and 10), NSPP (3, 4, 7, 8 and 11) and BM (10) (Table 

5-2). 

GWAS for Phenotypes in 2015  

Manhattan and QQ plots for 2015 are shown in Figure 5-5. The chromosomes 

with significant SNPs associated with traits variations were as follows: Marker 

set 1, DTH (chromosomes 6, 7 and 10), CL (1 and 5), PL (4), and PRL (8) while the 

chromosomes of significant SNPs in the marker set 2, DTH (3, 6, 7 and 10), CL (1, 

6 and 12), PL (4 and 6), PRL (4 and 8), PN (2, 4 and 12), PW (8), SW (10) and NPB 

(2) (Table 5-3). 
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GP for DTH in 2019  

Four statistical models (i) Bayesian B (BayesB), (ii) Bayesian least absolute 

shrinkage and selection operator (BL), (iii) reproducing kernel Hilbert space 

regression (RKHS), and (iv) ridge regression best linear unbiased prediction 

(rrBLUP) were explored. The prediction accuracies for DTH from the models 

tested are shown in Figure 5-6. The highest average accuracy ‘r’ was 0.894 by 

RKHS model while the least prediction accuracy was 0.757 by BL model (Table 

5-4). When only significant GWAS markers (63 SNPs) in marker set 1 (Table 5-1) 

were utilized as the explanatory variables in the model, prediction accuracy ‘r’ 

dropped to 0.61 (Figure 5-6 C). 

GP for Phenotypes in 2018  

Prediction accuracies for traits evaluated in 2018 using  BayesB, BL, RKHS, 

rrBLUP models are shown in  Figure 5-7. The highest and lowest accuracies were 

DTH and SSR with correlation coefficients (r) of 0.894 and 0.292 respectively. 

RKHS model yielded the highest prediction accuracy while rrBLUP was the least 

performing model (Table 5-4). 

 

GP for Phenotypes in 2015  

Prediction accuracies for traits evaluated in 2015 using BayesB, BL, RKHS, 

rrBLUP models are shown in  Figure 5-8. The highest and lowest accuracies were 

CL and BM with correlation coefficients (r) of 0.903 and 0.345 respectively. The 

model with the highest accuracy was RKHS while rrBLUP was the least 

performing model (Table 5-5). 
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Discussion 

Improved Statistical Power of GWAS Using aus-NAM-II 

To test GWAS power for discovering QTL, marker-trait association analysis 

was performed for DTH in 2019, eleven traits in 2018, and ten traits in 2015. 

Several QTL were detected confirming NAM population design improved 

GWAS power (McMullen et al., 2009; Zhou and Huang, 2019), some of the QTL 

co-localized with reported QTL. There was one stable QTL for DTH on 

chromosome 10 (qDTH10), qDTH10 was detected across the 3 years. Besides 

qDTH10, another stable QTL for PL was detected across 2 years (2015 and 2018), 

the QTL was located at around 24Mbp on chromosomes 4 (Table 5-2 and Table 

5-3).  

Predictive Ability for Traits 

To explore the potentials of genomic prediction using aus-NAM-II 

population, four models that vary in hypotheses for marker effects sizes and 

parameters dimension reduction were evaluated. The prediction results 

suggested that the RKHS model which is based on kernel matrix thus can handle 

epistasis in addition to additive effects, was the best performing in most traits. 

Similar findings were reported in the japonica diversity panel and advanced 

breeding lines with japonica genetic backgrounds (Frouin et al., 2019). 

The level of predictive ability for DTH and CL using five-fold cross-

validations was similar to other rice studies (Isidro et al., 2015; Spindel et al., 2015; 

Onogi et al., 2016) and other crops too (Guo et al., 2014; Cantelmo et al., 2017). The 

prediction accuracy for BM was low as expected i.e. a trait with low heritability 

and the fact that BM accumulated experimental noises from the summation of 
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PW and SW, similar results were observed in SSR. Other traits examined in this 

study showed mid to high-level prediction accuracy. 

Within the cross-validation folds, predictive ability was slightly different, 

this phenomenon has been reported as well and it was attributed to differences 

in linkage disequilibrium and allele frequencies between the datasets. I also 

surveyed prediction accuracies using only significant markers that were detected 

in GWAS, this phenomenon mimics MAS in away i.e. significant QTL only(Reyes 

et al., 2021). The reduced DTH prediction accuracies when significant QTL were 

only utilized elucidates that marker number is not the only important factor in 

genomic prediction, other factors such as the genetic architecture of the traits play 

a major role.  

In summary, traits that were detected to have significant QTL in GWAS 

showed higher predictive abilities generally, this suggests that future research 

aimed at improving genomic predictions should include the available QTL 

information as was previously proposed (VanRaden, 2008; Zhang et al., 2014) or 

incorporate other omics data such as crop models (Onogi et al., 2016).  
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Figures and Tables 

 

 
Figure 5-1. BGLR package regression prior assumptions.  

Regression coefficients for priors to determine the size of shrinkage in 

estimating marker effects. Gaussian prior induces shrinkage like that of ridge 

regression, double exponential prior induces shrinkage that depends on the 

size of the effect and used in BL, BayesB utilizes a mixture of priors which can 

induce variable selections.  
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Figure 5-2. Linkage disequilibrium (LD) decay pattern. 

LD pattern was calculated based on Hill and Weir function with Kb values on 

the x-axis and r2 values on the y-axis. Estimates of LD over genetic distance 

were conducted for all chromosomes in 1,709 RILs with 56,042 SNPs. The red 

curve indicates the LD decay pattern that was estimated by fitting a trend line 

based on a nonlinear regression of r2 on physical distance. Vertical dotted lines 

corresponded to LD halving distance (2.86Mb). 

 

  



82 
 

 

 

 

 

 

GWAS (Marker set 1 (2006 SNPs)) GWAS (Marker set 2 (78154 SNPs)) 

  

Figure 5-3. GWAS for days to heading in 2019 using aus-NAM-II.  

Manhattan plots for (A) marker set 1; 2006 GBS SNPs (B) marker set 2; 78,154 

projected SNPs. The GWAS results were obtained using a mixed linear model 

with principal components (Q) and genomic kinship (K) as covariates (MLM 

(Q+K)). The blue horizontal line marks the threshold for genome-wide 

significance on a -log10 scale. SNPs were considered significant using false 

discovery rate (FDR) set to 0.05 (5%) and highlighted in green color. A quantile-

quantile (QQ) plot is shown in the right panel, where the observed P-values (Y-

axis) against the expected P-values (X-axis) under the null hypothesis of no 

association are plotted on a -log10 scale. Each black dot denotes SNP. 
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Figure 5-4. GWAS for phenotypes in 2018 using aus-NAM-II. 

Manhattan plots for (A) marker set 1; 2006 GBS SNPs (B) marker set 2; 78,154 

projected SNPs. The GWAS results were obtained using a mixed linear model 

with principal components (Q) and genomic kinship (K) as covariates (MLM 

(Q+K)). The blue horizontal line marks the threshold for genome-wide 

significance on a -log10 scale. SNPs were considered significant using false 

discovery rate (FDR) set to 0.05 (5%) and highlighted in green color. A quantile-

quantile (QQ) plot is shown in the right panel, where the observed P-values (Y-

axis) against the expected P-values (X-axis) under the null hypothesis of no 

association are plotted on a -log10 scale. Each black dot denotes SNP.  
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Figure 5-5. GWAS for phenotypes in 2015 using aus-NAM-II. 

Manhattan plots for (A) marker set 1; 2006 GBS SNPs (B) marker set 2; 78,154 

projected SNPs. The GWAS results were obtained using a mixed linear model 

with principal components (Q) and genomic kinship (K) as covariates (MLM 

(Q+K)). The blue horizontal line marks the threshold for genome-wide 

significance on a -log10 scale. SNPs were considered significant using false 

discovery rate (FDR) set to 0.05 (5%) and highlighted in green color. A quantile-

quantile (QQ) plot is shown in the right panel, where the observed P-values (Y-

axis) against the expected P-values (X-axis) under the null hypothesis of no 

association are plotted on a -log10 scale. Each black dot denotes SNP.  
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Figure 5-6. Genomic prediction for days to heading in 2019. 

(A) Marker set 1; 2006 GBS SNPs (B) Marker set 2; 78,154 projected SNPs (C) 

Significant markers from GWAS (63 SNPs). Prediction accuracy was obtained by 

Pearson correlation of the observed phenotypes against the predicted 

phenotypes using four models: Bayesian B (BayesB), Bayesian least absolute 

shrinkage and selection operator (BL), reproducing kernel Hilbert space 

regression (RKHS), and ridge regression best linear unbiased prediction 

(rrBLUP). The scatter plot on the right of each plot shows the distribution of 

observed phenotypes (X-axis) against predicted phenotypes(Y-axis) using 

rrBLUP with its correlation coefficient (r) shown on the top. 
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Figure 5-7. Genomic prediction for eleven traits in 2018. 

(A) Marker set 1; 2006 GBS SNPs (B) Marker set 2; 78,154 projected SNPs. 

Prediction accuracy was obtained by Pearson correlation of the observed 

phenotypes against the predicted phenotypes using four models: Bayesian B 

(BayesB), Bayesian least absolute shrinkage and selection operator (BL), 

reproducing kernel Hilbert space regression (RKHS), and ridge regression best 

linear unbiased prediction (rrBLUP). The scatter plot on the right of each plot 

shows the distribution of observed phenotypes (X-axis) against predicted 

phenotypes(Y-axis) using rrBLUP with its correlation coefficient (r) shown on the 

top. 
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Figure 5-8. Genomic prediction for ten traits in 2015. 

(A) Marker set 1; 2006 GBS SNPs (B) Marker set 2; 78,154 projected SNPs. 

Prediction accuracy was obtained by Pearson correlation of the observed 

phenotypes against the predicted phenotypes using four models: Bayesian B 

(BayesB), Bayesian least absolute shrinkage and selection operator (BL), 

reproducing kernel Hilbert space regression (RKHS), and ridge regression best 

linear unbiased prediction (rrBLUP). The scatter plot on the right of each plot 

shows the distribution of observed phenotypes (X-axis) against predicted 

phenotypes(Y-axis) using rrBLUP with its correlation coefficient (r) shown on the 

top. 
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Table 5-1. GWAS and candidate genes in 2019 using aus-NAM-II. 

Only one top SNP per chromosome is shown. SNPs were considered significant 

by false discovery rate (FDR) set to 0.05 (5%). 

Year 
Marker 
set 

Trait SNP CHR bp P-value 
Candidate 
QTL/gene 

2019 Set 1 DTH S10_17200086 10 17,200,086 1.82E-26 Ehd1 

   S06_3043159 6 3,043,159 1.60E-14 RFT1 

   S07_15686122 7 15,686,122 4.83E-05  
   S04_25306132 4 25,306,132 0.00017  

 Set2  S06_3043159 6 3,043,159 2.05E-12 RFT1 

   S10_17173439 10 17,173,439 6.34E-09 Ehd1 

   S07_16134353 7 16,134,353 6.56E-09  
   S03_1825245 3 1,825,245 1.04E-05 Hd9 
      S02_29724553 2 29,724,553 8.81E-05 DTH2 
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Table 5-2. GWAS and candidate genes in 2018 using aus-NAM-II. 

Only one top SNP per chromosome is shown. SNPs were considered significant 

by false discovery rate (FDR) set to 0.05 (5%). 

Year 
Marker 

set 
Trait SNP CHR bp P-value Candidate QTL/gene 

2018 Set 1 DTH S10_17200086 10 17,200,086 1.02E-31 Ehd1 

   S06_3043159 6 3,043,159 2.11E-12 RFT1 

   S07_15686122 7 15,686,122 2.14E-05  

   S04_25306132 4 25,306,132 5.26E-05  

   S01_40094852 1 40,094,852 0.00076 OsMADS51 

 Set 2  S06_3043159 6 3,043,159 1.92E-12 RFT1 

   S10_17179241 10 17,179,241 2.94E-11 Ehd1 

   S07_10940592 7 10,940,592 2.56E-08 Ghd7 

   S02_29724553 2 29,724,553 4.11E-05 Hd7 

   S03_2313919 3 2,313,919 0.00036 Se14 

 Set 1 CL S01_38613725 1 38,613,725 2.92E-10  

   S05_24022772 5 24,022,772 3.50E-07  

   S10_16772764 10 16,772,764 3.70E-07  

   S06_25796053 6 25,796,053 0.0002  

 Set 2 CL S05_25485871 5 25,485,871 1.48E-07  

   S02_33844696 2 33,844,696 5.39E-07  

   S08_2514430 8 2,514,430 1.13E-06  

   S09_17869824 9 17,869,824 3.10E-05  

   S03_21448627 3 21,448,627 3.85E-05  

 Set 1 PL S04_24036340 4 24036340 1.04E-07  

   S06_28256890 6 28256890 3.04E-05  

   S11_11239016 11 11239016 7.98E-05  

   S02_32639480 2 32639480 0.000121  

   S03_19841279 3 19841279 0.000232  
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 Set 2 PL S02_31613748 2 31613748 5.72E-14  

   S04_24036340 4 24036340 1.33E-13  

   S06_28558740 6 28558740 2.12E-07  

 Set 1 PRL S04_24036340 4 24036340 4.06E-05  

   S11_2186339 11 2186339 2.32E-05  

 Set 2 PRL S04_24036340 4 24036340 1.45E-10  

   S02_32660615 2 32660615 8.06E-08  

   S05_1478272 5 1478272 1.54E-05  

   S06_28256890 6 28256890 1.95E-05  

 Set 1 PN S04_28029034 4 28029034 2.42E-05  

 Set 2 PN S03_27742608 3 27742608 2.68E-08  

   S04_29988729 4 29988729 3.93E-08  

   S02_4533105 2 4533105 1.39E-06  

   S12_25924704 12 25924704 1.41E-05  

   S07_345435 7 345435 1.69E-05  

   S01_25149006 1 25149006 3.86E-05  

   S05_2763539 5 2763539 7.41E-06  

 Set 2 PW S06_20720431 6 20720431 1.73E-08  

 Set 1 SW S10_17200086 10 17200086 5.76E-08  

   S05_25224751 5 25224751 1.51E-05  

   S06_3043159 6 3043159 2.16E-05  

 Set 2 SW S07_10940592 7 10940592 5.10E-06  

   S09_6634648 9 6634648 9.29E-06  

   S01_39971552 1 39971552 1.32E-05  

   S06_3082602 6 3082602 1.82E-05  

   S05_25485871 5 25485871 4.69E-05  

   S10_16237006 10 16237006 6.01E-05  

 Set 1 NPB S06_2279056 6 2279056 1.99E-05  

   S01_28910188 1 28910188 2.00E-05  
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   S02_12973181 2 12973181 2.34E-05  

   S04_28661829 4 28661829 0.000131  

   S11_22953724 11 22953724 0.000205  

   S06_2611918 6 2611918 0.000228  

   S08_25135358 8 25135358 0.000397  

   S12_1376568 12 1376568 0.00066  

 Set 2 NPB S08_25425641 8 25425641 7.17E-09  

   S11_23196408 11 23196408 8.22E-09  

   S02_33164470 2 33164470 1.39E-07  

 Set 1 NSPP S07_28878093 7 28878093 3.70E-08  

   S04_28029034 4 28029034 1.09E-06  

   S03_17911107 3 17911107 9.53E-06  

 Set 2 NSPP S07_28878093 7 28878093 4.72E-23  

   S11_23196408 11 23196408 3.30E-12  

   S04_34909036 4 34909036 2.63E-07  

   S08_25425641 8 25425641 2.14E-06  

   S03_27784127 3 27784127 8.27E-06  

 Set 1 BM S10_17973467 10 17973467 8.39E-06  

  Set 2 BM S06_20720431 6 20720431 8.41E-08   
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Table 5-3. GWAS and candidate genes in 2015 using aus-NAM-II. 

Only one top SNP per chromosome is shown. SNPs were considered significant 

by false discovery rate (FDR) set to 0.05 (5%). 

Year 
Marker 

set 
Trait SNP CHR bp P-value 

Candidate 

QTL/gene 

2015 Set 1 DTH S10_17367103 10 17,367,103 3.38E-14 Ehd1 

   S06_3043159 6 3,043,159 2.61E-05 RFT1 

   S07_14908092 7 14,908,092 0.00015  

 Set 2 DTH S07_16134353 7 16,134,353 4.33E-11  

   S06_17269895 6 17,269,895 3.14E-08  

   S10_17173439 10 17,173,439 3.94E-06 Ehd1 

   S03_29567496 3 29,567,496 0.00034 OsPIPK1 

 Set 1 CL S01_38216481 1 38216481 2.41E-07  

   S05_24022772 5 24022772 2.80E-05  

 Set 2 CL S06_26004369 6 26004369 1.52E-06  

   S12_4149852 12 4149852 3.09E-05  

   S01_38216481 1 38216481 5.14E-05  

 Set 1 PL S04_24036340 4 24036340 4.43E-06  

 Set 2 PL S04_24036340 4 24036340 5.11E-11  

   S06_28256890 6 28256890 3.28E-05  

 Set 1 PRL S08_27350299 8 27350299 6.42E-06  

 Set 2 PRL S08_27802432 8 27802432 3.43E-07  

   S04_22392948 4 22392948 3.55E-06  

 Set 2 PN S02_6620524 2 6620524 2.71E-06  

   S04_30514855 4 30514855 6.50E-06  

   S12_27269291 12 27269291 1.29E-05  

 Set 2 PW S08_27802432 8 27802432 3.21E-05  

 Set 2 SW S10_17175989 10 17175989 2.35E-05  

  Set 2 NPB S02_33164470 2 33164470 2.02E-08   
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Table 5-4. Prediction accuracy for traits in 2019 and 2018. 

Prediction accuracy was deduced by Pearson correlation coefficients between 

predicted and observed traits. The coefficients were averaged from 5-fold cross 

validation in marker set 1 (2006 GBS SNPs) and marker set 2 (78,154 projected 

SNPs). 

Year Marker set Trait BayesB BL RKHS rrBLUP 

2019 Set 1 DTH 0.8064 0.8058 0.8758 0.8525 

 set 2  0.7662 0.7584 0.846 0.7825 

2018 Set 1 DTH 0.8052 0.8102 0.883 0.846 

  CL 0.778 0.7784 0.87 0.809 

  PL 0.7264 0.7304 0.8172 0.7535 

  PRL 0.6634 0.6788 0.7654 0.6895 

  PN 0.6314 0.652 0.7638 0.645 

  PW 0.5696 0.611 0.6578 0.552 

  SW 0.6352 0.6642 0.75 0.6515 

  NPB 0.7438 0.7414 0.8448 0.779 

  NSPP 0.7234 0.7318 0.8334 0.7585 

  BM 0.5672 0.6116 0.6762 0.543 

  SSR 0.4776 0.5432 0.5516 0.385 

 set 2 DTH 0.7876 0.7774 0.8574 0.7955 

  CL 0.7406 0.746 0.8114 0.748 

  PL 0.6438 0.6312 0.7144 0.6275 

  PRL 0.6056 0.606 0.693 0.5895 

  PN 0.6468 0.643 0.6996 0.6345 

  PW 0.5124 0.5292 0.5592 0.4715 

  SW 0.6324 0.65 0.7128 0.627 

  NPB 0.6686 0.6522 0.749 0.6605 

  NSPP 0.6756 0.6602 0.7232 0.643 

  BM 0.5672 0.59 0.6378 0.5505 

    SSR 0.3966 0.4358 0.4378 0.2955 
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Table 5-5. Prediction accuracy for traits in 2015. 

Prediction accuracy was deduced by the Pearson correlation coefficients between 

predicted and observed traits. The coefficients were averaged from 5-fold cross 

validation in marker set 1 (2006 GBS SNPs) and marker set 2 (78,154 projected 

SNPs). 

Year 

Marker 

set Trait BayesB BL RKHS rrBLUP 

2015 set 1 DTH 0.8222 0.809 0.8424 0.8608 

  CL 0.8334 0.8252 0.876 0.8681 

  PL 0.7874 0.7904 0.848 0.8349 

  PRL 0.7442 0.7482 0.8054 0.7717 

  PN 0.7712 0.7616 0.8294 0.7805 

  PW 0.7052 0.729 0.7136 0.6996 

  SW 0.6598 0.7004 0.6514 0.5806 

  NPB 0.7888 0.7752 0.8372 0.835 

  NSPP 0.6456 0.7168 0.6828 0.5951 

  BM 0.6252 0.6764 0.6018 0.5354 

 set 2 DTH 0.754 0.747 0.8146 0.7708 

  CL 0.759 0.748 0.7966 0.7649 

  PL 0.7568 0.752 0.8066 0.6813 

  PRL 0.7572 0.7488 0.8146 0.6095 

  PN 0.7614 0.7466 0.8116 0.6751 

  PW 0.7486 0.7478 0.8062 0.5067 

  SW 0.758 0.7544 0.7846 0.4449 

  NPB 0.7594 0.7456 0.8164 0.6736 

  NSPP 0.7584 0.7436 0.8042 0.5212 

    BM 0.7572 0.7454 0.805 0.3513 
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Chapter 6 General Conclusions 

Summary 

An aus-NAM population was developed and reported in this dissertation. 

The population structure analysis of aus-NAM-II showed a weak stratification, 

with half-sib RILs dispersed around the T65 and aus diversity donors. This 

confirmed that the aus-NAM-II population successfully expanded genetic 

diversity and destroyed population structure, thus suitable for analyzing the 

genetic architecture of complex traits. QTL mapping using aus-NAM-I 

population discerned several known QTL and novel candidate QTL (Kitony et al., 

2021), this elucidated that our genetic mapping approaches and genetic material 

employed were useful. Moreover, the GWAS confirmed that genotype 

projections from dense parental variants publicly available such as WRC (Tanaka 

et al., 2020) onto RILs genotyped with a low-cost GBS was a feasible alternative 

for increasing marker size.  

In terms of prediction accuracy, this study verified that sample size, marker 

type/density, prediction model and the relationship between training population 

and testing population were important. Reproducing kernel Hilbert space 

regression (RKHS) method which accommodates markers with large and null 

effects at the same time capture epistasis was the most robust model. The 

genomic prediction results were encouraging for the implementation of genomic 

selection in a practical rice breeding program. 

Unlike association panels (Huang et al., 2010), aus-NAM combines useful 

traits derived from multiple donor lines (aus) into an elite rice variety (T65). 

Overall, the immortal nature of aus-NAM RILs allows evaluations in various 

environments. Thus, could be used to reveal QTL functions in detail.  
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Challenges, Limitations and Opportunities  

The biggest challenge in this work like in any other large-scale genetic 

mapping population is the high-throughput genotyping and phenotyping 

required. However, with the advent of NGS, automation of laboratory work by 

robots, and computers are expected to mitigate the limitations thus genotyping 

will no longer be a problem. As a caveat, the large datasets generated by high-

throughput sequencing can sometimes lead to computing issues, mostly in terms 

of computer memory/storage, and visualization, the use of intuitive desktop 

applications is practically not possible. Moreover, the varying data formats and 

tuning parameters required by different tools can be a challenge, however, basic 

knowledge of Linux scripts and R scripts can come in handy here. 

On the other hand, digital tools (barcodes and tablet terminals) were utilized 

for phenotyping in this study. The devices successfully saved time and labor 

(unpublished). It should be noted though that time/labor for phenotyping is not 

expected to reduce anytime soon unless cutting-edge technologies are innovated 

such as computer vision and robotics. More efforts to fill the “genotype-

phenotype gap”(Santini et al., 2021) are necessary. 
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Future Perspectives 

In most of the actual breeding programs, several breeding targets are 

determined before the commission of the project. DTH is usually included in the 

targets because it affects the adaptation of new varieties to environments and 

cropping systems. As presented in this study, DTH is one of the most predictable 

traits by genomic prediction (GP) models. Therefore, the author proposes that 

DTH would be the target for performing GP in actual breeding programs. For 

example, when using a scheme of population breeding (bulk method), thousands 

of F4 or F5 plants as the materials for starting selection can be generated. The 

application of GBS to these thousands of plants is realistic because of the 

advancement of GBS. If parts of these generations could be used for genomic 

predictions, plants with suitable DTH can be selected based on GP genomic 

estimated breeding values (GEBVs). This would eliminate most of the 

unnecessary plants with non-suitable heading time before planting in fields. 

The immortal nature of the NAM RILs brings advantages for repeated and 

multi-locational testing. This will show whether the genetic analysis using a 

broad range of phenotypes can reveal the desired or undesired results from 

breeders` perspectives as suggested by QTL analysis/genomic predictions. 

Furthermore, multi-environment trials can be used to improve the robustness of 

the prediction models. Incorporating crop growth models and other omics such 

as eRD-GWAS (Lin et al., 2017) can as well be explored using NAM population 

in the future. 
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