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Abstract

This thesis is a summary of the works of the author. We discuss problems
whether a given set contains arithmetic progressions or not. By Szemerédi’s
theorem, any subset of positive integers with positive upper asymptotic den-
sity contains arbitrarily long arithmetic progressions. However, it is still
difficult to find long arithmetic progressions of a sparse set. We mainly in-
vestigate arithmetic progressions of Piatetski-Shapiro sequences and more
general sequences which have upper asymptotic density 0. Here for every
non-integral α > 1, the sequence of the integer parts of nα (n = 1, 2, . . .) is
called the Piatetski-Shapiro sequence with exponent α, and let PS(α) be the
set of those terms. We present three main results.

Firstly, in the case 1 < α < 2, we reveal the explicit density of the set of
n ∈ N such that the integer parts of (n+ rj)α (j = 0, 1, . . . , k − 1) forms an
arithmetic progression for all integers k ≥ 3 and r ≥ 1. This density is equal
to 1/(k− 1) which is independent of α and r. We get an extended result for
more general sequences. This work is collaborated with Yuuya Yoshida.

Secondary, fix a, b, c ∈ N. For every 2 < s < t, we study the set of
α ∈ [s, t] such that the Diophantine equation ax + by = cz has infinitely
many solutions (x, y, z) ∈ PS(α)3 with x, y, z pairwise distinct. We show
that the Hausdorff dimension of the set is greater than or equal to 1/s3. As
a consequence, there are uncountably many α > 2 such that PS(α) contains
infinitely many arithmetic progressions of length 3. This work is collaborated
with Toshiki Matsusaka.

Thirdly, we investigate Diophantine linear equations with two variables
in Piatetski-Shapiro sequences. Let a, b ∈ R with 0 ≤ b < a and a ̸= 1
satisfying that y = ax + b has infinitely many solutions of positive integers.
Then we reveal the Hausdorff dimension of the set of α ∈ [s, t] such that
y = ax + b has infinitely many solutions (x, y) ∈ PS(α)2. This dimension
is coincident with 2/s for all 2 < s < t. Furthermore, we show that for all
1 < α < 2, y = ax + b has infinitely many solutions (x, y) ∈ PS(α)2. As
a consequence, we obtain a partial result of the existence of a perfect Euler
brick.
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Chapter 1

Introduction

This thesis is a summary of the articles [SY21] (collaborated with Yuuya
Yoshida), [MS20] (collaborated with Toshiki Matsusaka), and [Sai20]. The
article [SY21] is on the distribution of arithmetic progressions of Piatetski-
Shapiro sequences and more general sequences. We will define Piatetski-
Shapiro sequences in Section 1.2. The article [MS20] is on linear Diophantine
equations with three variables in Piatetski-Shapiro sequences. The article
[Sai20] is on them with two variables. In this chapter, we present backgrounds
of these researches.

1.1 Problems on the existence of arithmetic

progressions

Let N be a set of all positive integers. Let k ∈ N. We say that a sequence
of real numbers (ai)

k−1
i=0 is an arithmetic progression of length k (k-AP for

short) if there exist a ∈ R and d > 0 such that

ai = a+ id

for all i = 0, 1, . . . , k − 1. We mainly discuss the following problems:

Problem 1.1.1. Fix any k ≥ 3. If a subset of real numbers is given, then
does the set contain an AP of length k, or not?

For example, if the set of all perfect squares is given, then this set consists
of the following elements:

1, 4, 9, 16, 25, 36, 49, 64, 81, . . .
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We can find that (1, 25, 49) is a 3-AP. Hence the set of all perfect squares
contains infinitely many 3-APs since (n2, 25n2, 49n2) is a 3-AP of perfect
squares for every n ∈ N. Euler showed that the set of all perfect squares does
not contain any 4-APs in 1780, according to the book written by Dickson
[Dic66, pp.440 and 635].

Many researchers have been approaching Problem 1.1.1 by Ramsey the-
ory. This theory focuses on the existence of given structures in a set with
large size. For example, van der Waerden firstly gave the Ramsey theoretical
result on APs in 1927. To assert this result, for all sets A and B we say
A ⊔B := A ∪B if A ∩B = ∅, and define [n] = {1, . . . , n} for all n ∈ N.

Theorem 1.1.2 ( [Van27]). Let r ∈ N. If N = C1 ⊔C2 ⊔ · · · ⊔Cr, then there
exists at least one i ∈ [r] such that Ci contains arbitrarily long APs.

Theorem 1.1.2 is called van der Waerden’s theorem. A proof of this
theorem also can be seen in [GRS90, Theorem 1 in Chapter 2]. The case
when r = 2 was conjectured by Baudet in 1926. By this theorem, we may
expect that if a given set had large density, then we would be able to find long
APs of the set. In 1936, Erdős and Turán started to study this implication.
More precisely, for all N, k ∈ N, they defined

rk(N) = max{#A : A ⊆ [N ] does not contain any APs of length k},

where #X denotes the number of elements in a set X. They proved that

Theorem 1.1.3 ( [ET36, Theorem II]). For all ε > 0, there exists N0 =
N0(ε) > 0 such that for all integers N ≥ N0, we have r3(N) < (4/9 + ε)N .

Note that r1(N) = 0 and r2(N) = 1 for all N ∈ N. Thus we assume
k ≥ 3. This is a non-trivial case. In the same article [ET36], Erdős-Turán
conjectured that r3(N)/N → 0 as N → ∞. This conjecture was affirmatively
solved by Roth [Rot52]. He applied the Hardy-Littlewood circle method.
Szemerédi studied more general cases when the length of APs is longer than
3. He reached at the following celebrated result which is called Szemerédi’s
theorem.

Theorem 1.1.4 ( [Sze75]). For all k ∈ N,

lim
N→∞

rk(N)

N
= 0. (1.1.1)

4



Hence, Szemerédi affirmatively solved generalizations of the Erdős-Turán
conjecture for arbitrary length. Further, Theorem 1.1.4 immediately implies

Theorem 1.1.5. If A ⊆ N satisfies

lim
N→∞

#(A ∩ [N ])

N
> 0, (1.1.2)

then A contains arbitrarily long APs.

Proof. Fix an arbitrary integer k ≥ 3. Let δ = limN→∞ #(A∩ [N ])/N . Then
there exists a sequence of positive integers N1 < N2 < · · · such that

#(A ∩ [Ni]) ≥
δ

2
Ni

for all i ∈ N. By Theorem 1.1.4, there exists i0 = i0(δ, k) ∈ N such that
#(A∩ [Ni]) ≥ rk(Ni) for all i ≥ i0. This implies that A contains a k-AP.

The inverse implication is also true, that is, Theorem 1.1.5 implies The-
orem 1.1.4. Thus Theorem 1.1.4 and Theorem 1.1.5 are equivalent. Theo-
rem 1.1.5 is also called Szemerédi’s theorem. The left-hand side of (1.1.2) is
called the upper asymptotic density of A.

From Theorem 1.1.5, we can find arbitrarily long APs of a set with posi-
tive upper asymptotic density. For example, let A be the set of all square-free
integers. Then A contains arbitrarily long APs since

lim
N→∞

#(A ∩ [N ])

N
=

6

π2
> 0.

However, it is still difficult to find long APs in a sparse set which has
upper asymptotic density zero. For example, let P be the set of all prime
numbers. By the prime number theorem, there exists an absolute constant
C > 0 such that

#(P ∩ [N ])

N
≤ C

1

logN

for all N ∈ N. Thus the upper asymptotic density of P is zero. It was a
long standing open problem whether P contains arbitrarily long APs or not.
Surprisingly, Green and Tao gave affirmative solution to this problem.

Theorem 1.1.6 ( [GT08, Theorem 1.1]). The set of all prime numbers con-
tains arbitrarily long APs.
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More precisely, Green and Tao showed a much stronger result as follows:

Theorem 1.1.7 ( [GT08, Theorem 1.2]). Let A ⊆ P. If A satisfies

lim
N→∞

#(A ∩ [N ])

#(P ∩ [N ])
> 0, (1.1.3)

then A contains arbitrarily long APs.

This theorem is called Szemerédi’s theorem in the primes. In this thesis,
we also focus on the existence of APs of sparse sets. We investigate to find
APs of Piatetski-Shapiro sequences and some general sequences which also
have upper asymptotic density zero.

1.2 Piatetski-Shapiro sequences

For all x ∈ R, let us ⌊x⌋ denote the integer part of x, and {x} denote the
fractional part of x.

Definition 1.2.1. For all non-integral α > 1, we say that (⌊nα⌋)∞n=1 is the
Piatetski-Shapiro sequence with exponent α. Define

PS(α) = {⌊nα⌋ : n ∈ N}.

A sequence (an)
∞
n=1 of integers is called a Piatetski-Shapiro sequence if there

exists a non-integral α > 1 such that an = ⌊nα⌋ for all n ∈ N.

This sequence is named in honor of Ilya Piatetski-Shapiro. He showed

Theorem 1.2.2 ( [PS53]). For all 1 < α < 12/11 = 1.0909 · · · , we have

#{p ∈ P ∩ [1, x] : there exists n ∈ N such that p = ⌊nα⌋} ∼ x1/α

log x
(1.2.1)

as x→ ∞.

A prime number formed as ⌊nα⌋ is called a Piatetski-Shapiro prime with
exponent α. We refer [GK91, Section 4.6] to the readers who want to study
this proof in English. Many researchers extended the range 1 < α < 12/11
in Theorem 1.2.2 [Kol67, Lei80, HB83, Kol85, LR92]. Most recently, Rivat
and Sargos proved that for all 1 < α < 2817/2426 = 1.1617 · · · (1.2.1) is
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true [RS01]. Interestingly, Deshouillers [Des76] showed that for Lebesgue
almost all α > 1

#{p ∈ P : there exists n ∈ N such that p = ⌊nα⌋} = ∞. (1.2.2)

It is conjectured that the range of the exponent in Theorem 1.2.2 would be
1 < α < 2 but we have not reached it. Remark that in the case α = 2, there
is no prime number p such that p = n2 for some n ∈ N.

In 1933, Segel started researches on additive structure of Piatetski-Shapiro
sequences earlier than the work by Piatetski-Shapiro.

Theorem 1.2.3 ( [Seg33]). Let α > 1. If k ≥ α22α, then for every suffi-
ciently large N ∈ N there exist x1, . . . , xk ∈ N ∪ {0} such that

⌊xα1 ⌋+ · · ·+ ⌊xαk⌋ = N.

This is an analogue of Waring’s problems. Many researchers studied War-
ing’s problem on Piatetski-Shapiro sequences. For example, see [AG16,AZ84,
Des73, Lis02]. We will discuss linear Diophantine equations in Piatetski-
Shapiro sequences with three variables and two variables in Chapters 4 and
5, respectively.

1.3 APs of Piatetski-Shapiro sequences and

main results

Let α > 1 be a non-integral real number. For all N ∈ N, we have

#(PS(α) ∩ [N ]) = #{n ∈ N : ⌊nα⌋ ≤ N} ≤
∑

nα≤N+1

1 ≤ (N + 1)1/α.

Therefore PS(α) has upper asymptotic density zero. We can not apply Sze-
merédi’s theorem to Piatetski-Shapiro sequences. Let us discuss the following
problem:

Problem 1.3.1. Given an integer k ≥ 3. Which does a non-integral α > 1
satisfy that PS(α) contain k-APs?

Remark that PS(α) = N for every 0 < α ≤ 1. Thus it is trivial that
PS(α) contains infinitely long APs in this case. Further, it is known that
PS(α) contains arbitrarily long APs for every 1 < α < 2. More strongly, we
have the following:
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Theorem 1.3.2. Let 1 < α < 2. For all integers k ≥ 3 and r > 0, there
exist infinitely many n ∈ N such that (⌊(n+ jr)α⌋)k−1

j=0 is an AP.

This result essentially follows from the work of Frantikinakis and Wierdl
[FW09, Proposition 5.1]. In the case when 1 < α < 2, we can analyze more
details on APs of Piatetski-Shapiro sequences. For example, we will give the
distribution of n ∈ N satisfying (⌊(n+ jr)α⌋)k−1

j=0 is an AP as follows:

Theorem 1.3.3 ( [SY21, Corollary 1.2]). For all 1 < α < 2, all integers
k ≥ 3, and r ∈ N, we have

lim
N→∞

1

N
#{n ∈ [N ] : (⌊(n+ jr)α⌋)k−1

j=0 is an AP} =
1

k − 1
. (1.3.1)

We will prove this theorem in Chapter 3. Remark that the right-hand side
of (1.3.1) is independent of α and r. Further, in the case α = 1, the right-hand
side of (1.3.1) is equal to 1 since {n ∈ N : (⌊(n+ jr)α⌋)k−1

j=0 is an AP} = N. In
the case α = 2, there is no n ∈ N such that (⌊(n+ jr)α⌋)k−1

j=0 is an AP since

(n+ r)2 − n2 = 2r + r2 ̸= 2r + 3r2 = (n+ 2r)2 − (n+ r)2.

Thus, the right-hand side of (1.3.1) is equal to 0 in this case. Hence we
may expect that the limit (1.3.1) would be decreasing with respect to α, but
actually, that is constant.

In the previous research of the author and Yoshida, they presented

Theorem 1.3.4 ( [SY19, Theorem 4]). Let A be a subset of N with pos-
itive upper asymptotic density. Then for all integers k ≥ 3, there exists
(a0, . . . , ak−1) ∈ Ak satisfying

(ai)
k−1
i=0 is a k-AP and (⌊aαi ⌋)k−1

i=0 is also a k-AP. (1.3.2)

Theorem 1.3.4 can be considered as Szemerédi’s theorem on Piatetski-
Shapiro sequences. Indeed, Theorem 1.3.4 implies that

Theorem 1.3.5. Let 1 < α < 2, and let A ⊆ PS(α). If A satisfies

lim
N→∞

#(A ∩ [N ])

#(PS(α) ∩ [N ])
> 0, (1.3.3)

then A contains arbitrarily long APs.
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Proof. Fix an arbitrary A ⊆ PS(α) with (1.3.3). Let B be the set of all
n ∈ N such that ⌊nα⌋ ∈ A. By (1.3.3), there exist δ > 0 and a sequence of
integers N1 < N2 < · · · such that

#(A ∩ [Nj]) ≥ δ ·#(PS(α) ∩ [Nj])

for every j ∈ N. Without loss of generality, we may assume that Nj ∈ PS(α)
for every j ∈ N. Let nj be the integer such that ⌊nαj ⌋ = Nj for every j ∈ N.
Then for every j ∈ N we have

#(B ∩ [nj]) =
∑

⌊nα⌋∈A,n≤nj

1 = #(A ∩ [⌊nαj ⌋]) = #(A ∩ [Nj])

≥ δ ·#(PS(α) ∩ [Nj]) = δnj.

This yields that B has positive upper asymptotic density. By Theorem 1.3.4,
A contains arbitrarily long APs.

Note that Theorem 1.3.5 is an analogue of the Green-Tao theorem (The-
orem 1.1.7) for Piatetski-Shapiro sequences. It is elementary to prove The-
orem 1.3.4 but the idea of this proof is important for the study of this the-
sis. For all finite sequences of integers P = (a(j))k−1

j=0 and for all functions
f : N → N, the author and Yoshida defined the semi-norm

NP (f) =
k−2∑
j=0

|(f ◦ a)(j + 2)− 2(f ◦ a)(j + 1) + (f ◦ a)(j)|. (1.3.4)

If NP (f(n)) = 0 and f is strictly increasing, then ((f ◦ a)(j))k−1
j=0 should

be a k-AP. Here, NP (·) satisfies the triangle inequality. Therefore if we set
f(n) = ⌊nα⌋, f1(n) = nα, and f2(n) = {nα}, then we have

NP (f) ≤ NP (f1) +NP (f2).

By this inequality, if NP (f1) and NP (f2) are small, then (⌊nα⌋)n∈P is a k-AP.
By this discussion, it is important to control the continuous part NP (f1) and
the fractional part NP (f2). In Chapters 3–5, we will use this idea.

In the previous article [SY19], we control the continuous part by Sze-
merédi’s theorem and Taylor’s expansion. To see this, we now evaluate
NP (f1). Let A be a subset of integers with positive upper density. Then
by Szemerédi’s theorem (Theorem 1.1.5) A contains infinitely many APs of
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length k, where k ≥ 3 is a fixed arbitrary integer. Let P be such an AP.
Then P = (dj + e)k−1

j=0 for some d > 0 and e ≥ 0. By Taylor’s expansion,

f1(dj + e) = f1(e) + djf ′
1(e) +Ok(df

′′(e)),

which implies that

NP (f1) =
k−2∑
j=0

|f1(d(j + 2) + e)− 2f1(d(j + 1) + e) + f1(dj + e)|

= Ok,α

(
k−2∑
j=0

deα−2

)
= Ok,α(de

α−2).

Therefore, there exists Ck,α > 0 such that NP (f1) ≤ Ck,αde
α−2. Recall

that 1 < α < 2. Hence 0 ≤ NP (f1) < 1/2 holds if we may take an AP
P = (dj + e)k−1

j=0 of A such that e ≥ (2Ck,αd)
1/(2−α). Actually, we can find

such an AP but it is slightly complicated. Thus we refer [SY19] to the readers
who want to know more details.

From this observation, one of important conditions is α < 2 in this dis-
cussion since the error term Ok,α(de

α−2) must be large for α ≥ 2. Moreover,
in the case α = 2, we mentioned that PS(2) (=the set of all squares) does
NOT contain any 4-APs in Section 1.1. Hence it seems that there is some
barrier at α = 2. Additionally, in the case α ≥ 3 and α ∈ N, it is known
that PS(α) (=the set of all αth powers) does not contain any 3-APs. This
result was partially solved by Euler (according to [Dic66, pp. 572-573]) and
Dénes [Dén52], and finally solved by Darmon and Merel [DM97]. From those
reasons, the author and Yoshida proposed the following question:

Question 1.3.6 ( [SY19, Question 13]). Is it true that

sup{α ≥ 1: PS(α) contains arbitrarily long arithmetic progressions} = 2?

We do not get any answer to this question here. Remark that we can
find 4-APs of Piatetski-Shapiro sequences with α > 2 by calculation. For
example,

(⌊22.2⌋, ⌊112.2⌋, ⌊152.2⌋, ⌊182.2⌋),
(⌊142.655015⌋, ⌊392.655015⌋, ⌊502.655015⌋, ⌊582.655015⌋),
(⌊272.720398⌋, ⌊892.720398⌋, ⌊1142.720398⌋, ⌊1322.720398⌋).
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We did not have any theoretical approaches to find APs of Piatetski-Shapiro
sequences with α > 2 even if the length of APs is 3. However, in Chapter 4,
we will show

Theorem 1.3.7 ( [MS20, Corollary 1.3]). For all 2 < s < t, there are
uncountably many α ∈ [s, t] such that PS(α) contains infinitely many 3-APs.

Surprisingly, by Theorem 1.3.7, the supremum of α such that PS(α) con-
tains infinitely many 3-APs is positive infinity. Further, we will discuss more
general linear Diophantine equations ax+by = cz where a, b, c ∈ N. Precisely,
we will show the positiveness of the Hausdorff dimension of the set of α ∈ [s, t]
such that ax + by = cz has infinitely many solutions (x, y, z) ∈ PS(α)3. Re-
mark that (x, z, y) is a 3-AP if and only if x+y = 2z, and x, z, y are distinct.
Hence results on 3-APs are special cases of results on ax+ by = cz.

Glasscock studied linear equations with two variables in Piatetski-Shapiro
sequences. Before stating, for all polynomials f(x1, . . . , xn) with real coeffi-
cients and for all sets X ⊆ R, we say that f(x1, . . . , xn) = 0 is solvable in X
if there are infinitely many (x1, . . . , xn) ∈ Xn such that

f(x1, . . . , xn) = 0 and x1, . . . , xn are pairwise distinct.

Let E ⊆ R, and let S(x) be a statement depending on x ∈ E. We say that
S(x) holds for Lebesgue almost all x ∈ E if {x ∈ E : S(x) does not hold} has
1-dimensional Lebesgue measure 0.

Theorem 1.3.8 ( [Gla17, Gla20]). Suppose a, b ∈ R, a /∈ {0, 1}, are such
that y = ax+ b is solvable in N. For Lebesgue almost all α > 1, the equation
y = ax+ b is solvable or not in PS(α) according as α < 2 or α > 2.

In addition, he gave the following result by Theorem 1.3.8.

Theorem 1.3.9 ( [Gla17, Corollary 1]). For Lebesgue almost all 1 < α < 2,
there exist infinitely many (k,m, ℓ) ∈ PS(α)3 such that all of

k, m, ℓ, k +m, m+ ℓ, ℓ+ k, k +m+ ℓ (1.3.5)

are in PS(α).

This result is related with a long-standing open problem whether there
exists (k, ℓ,m) ∈ N3 such that all of (1.3.5) are in PS(2) which is the set
of all squares. If there was such a tuple (k, ℓ,m) ∈ N3, we would prove
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the existence of a perfect Euler brick that is a rectangular cuboid of which
all the edges, face diagonals, and body diagonal have integral lengths. In
Chapter 5, we will discern more details of geometric structure of the set of
α ∈ [s, t] such that the equation y = ax + b is solvable in PS(α). We will
show that the Hausdorff dimension of this set is coincident with 2/s for all
real numbers 2 < s < t if 0 ≤ b < a and a ̸= 1. Further, by Dirichlet’s
approximation theorem, we will show that Theorem 1.3.9 is still true if we
replace “for Lebesgue almost all” with “for all”, that is,

Theorem 1.3.10 ( [Sai20, Corollary 1.3]). For all 1 < α < 2, there exist
infinitely many (k,m, ℓ) ∈ PS(α)3 such that all of (1.3.5) are in PS(α).

The rest of the thesis is organized as follows. First in Chapter 2, we intro-
duce notions of the uniform distribution and the Hausdorff dimension, and
describe some known useful results. In Chapter 3, we discuss Theorem 1.3.3
and related results. In Chapter 4, we investigate linear Diophantine equa-
tions with three variables in Piatetski-Shapiro sequences, and present a proof
of Theorem 1.3.7. Finally we study linear Diophantine equations with two
variables in Piatetski-Shapiro sequences, and give a proof of Theorem 1.3.10.

Notations

• Let Z be the set of all integers, Q be the set of all rational numbers, R
be the set of all real numbers, and C be the set of all complex numbers.

• For all intervals I of real numbers, IZ denotes I ∩ Z.

• For x ∈ R, let ⌈x⌉ denote the minimum integer n such that x ≤ n.

• Let
√
−1 denote the imaginary unit, and define e(x) = e2π

√
−1x for all

x ∈ R.

• We write O(1) for a bounded quantity. If this bound depends only on
some parameters a1, . . . , an, then for instance we write Oa1,a2,...,an(1).
As is customary, we often abbreviate O(1)X and Oa1,...,an(1)X to O(X)
and Oa1,...,an(X) respectively for a non-negative quantity X. We also
say f(X) ≪ g(X) and f(X) ≪a1,...,an g(X) as f(X) = O(g(X)) and
f(X) = Oa1,...,an(g(X)) respectively, where g(X) is non-negative.

• The class of Ck denotes the set of all real functions which can be k-th
order continuously differentiable.

12



Chapter 2

Preparations

2.1 Uniform distribution modulo 1 and Hardy

fields

To prove main results, the theory of uniform distribution modulo 1 is one of
key points. For x = (x1, x2, . . . , xd) ∈ Rd, define the notation

{x} = ({x1}, {x2}, . . . , {xd}).

Let (xn)
∞
n=1 be a sequence of Rd. We say that (xn)

∞
n=1 is uniformly distributed

modulo 1 if every convex set C ⊆ [0, 1)d satisfies that

lim
N→∞

1

N
#
{
n ∈ [N ] : {xn} ∈ C

}
= µ(C), (2.1.1)

where µ denotes the Lebesgue measure on Rd. It is known that (xn)
∞
n=1 is

uniformly distributed modulo 1 if and only if

lim
N→∞

1

N

N∑
n=1

e(⟨h,xn⟩) = 0 (2.1.2)

for all non-zero h ∈ Zd, where ⟨·, ·⟩ denotes the standard inner product
on Rd. One can also say that (xn)

∞
n=1 is uniformly distributed modulo 1 if

and only if (⟨h,xn⟩)∞n=1 is uniformly distributed modulo 1 for all non-zero
h ∈ Zd. Due to this equivalence, the following facts hold: if a sequence
(xn)

∞
n=1 =

(
(x1,n, . . . , xd,n)

)∞
n=1

is uniformly distributed modulo 1, then

13



• so is the sequence (xnA)∞n=1 for every integer matrix A of order d and
rank d;

• so is the sequence (xi,n)
∞
n=1 for every i ∈ [d].

For the details, see [KN74, Theorem 6.2].
Next, we describe Hardy fields which are convenient to extend Piatetski-

Shapiro sequences to more general ones. Let B be the set of all real-valued
functions on intervals [x0,∞), where the real numbers x0 depend on the func-
tions. The set B forms a ring under the induced addition and multiplication
by the following equivalence relation: two functions f1, f2 ∈ B are equivalent
to each other if and only if there exists x′0 ∈ R such that f1(x) = f2(x) for
all x ≥ x′0. Using this equivalence relation, we define Hardy fields as follows.

Definition 2.1.1. A subfield of the ring B closed under differentiation is
called a Hardy field. We denote by H the union of all Hardy fields.

The notion of Hardy fields was first introduced by Bourbaki [Bou61],
and has been used in analysis, e.g., differential equations [Bos81, Bos82,
Bos87,Ros83a,Ros83b], difference and functional equations [Bos84b,Bos84a],
and uniform distribution modulo 1 [Bos94, BKS19, Fra09]. The set H is
so rich that H contains the set LE of all logarithmico-exponential func-
tions. A logarithmico-exponential function, which was introduced by Hardy
[Har24,Har12], is defined by a finite combination of the ordinary algebraic
symbols (viz. +,−,×,÷) and the functional symbols log(·) and exp(·) oper-
ating on a real variable x and on real constants. For instance, the function
xα = eα log x belongs to LE for all α ∈ R.

To investigate uniform distribution modulo 1, we need to estimate ex-
ponential sums in general. However, if a function f ∈ H is subpolynomial,
i.e., f(x) ≪ xn for some n ∈ N, then it is easy to investigate whether the
sequence (f(n))∞n=n0

is uniformly distributed modulo 1.

Proposition 2.1.2 (Boshernitzan [Bos94]). Let n0 ∈ N. For every subpoly-
nomial f ∈ H defined on the interval [n0,∞), the following conditions are
equivalent.

• (f(n))∞n=n0
is uniformly distributed modulo 1.

• For every polynomial p(x) ∈ Q[x], the ratio (f(x)−p(x))/ log x diverges
to positive or negative infinity as x → ∞, where the sign of infinity
depends on p.

14



The next corollary is a simple application of Proposition 2.1.2.

Corollary 2.1.3. Let n0 = ⌈ee⌉ = 16, and let f be a function in (3.2.3).
Then the sequence

(
(f(n), f ′(n))

)∞
n=n0

is uniformly distributed modulo 1.

Proof. Take a non-zero (h0, h1) ∈ Z2 arbitrarily. All we need is to show that
the sequence (h0f(n)+h1f

′(n))∞n=n0
is uniformly distributed modulo 1. It can

be easily checked that for every p(x) ∈ Q[x] the ratio (h0f(x) + h1f
′(x) −

p(x))/ log x diverges to positive or negative infinity as x → ∞. Since the
function h0f + h1f

′ belongs to H and is subpolynomial, Proposition 2.1.2
implies that the sequence (h0f(n) + h1f

′(n))∞n=n0
is uniformly distributed

modulo 1. Therefore, we conclude this corollary.

For the function f(x) = xα with α ∈ (d, d + 1) and d ∈ N, it can be
proved that the sequence

(
(f(n), f ′(n), f ′′(n)/2!, . . . , f (d)(n)/d!)

)∞
n=1

is uni-
formly distributed modulo 1 in the same way as the above corollary.

2.2 Discrepancy and exponential sums

Let (xn)
N
n=1 be a sequence composed of xn ∈ Rd for all n ∈ [N ]. We define

the discrepancy D((xn)
N
n=1) of the sequence (xn)

N
n=1 by

sup
0≤ai<bi≤1

i∈[d]

∣∣∣∣∣∣
#
{
n ∈ [N ] : {xn} ∈

∏
i∈[d][ai, bi)

}
N

−
∏
i∈[d]

(bi − ai)

∣∣∣∣∣∣ .
In order to evaluate an upper bound for the discrepancy, we use the following
inequality which is shown by Koksma [Kok50] and Szüsz [Szü52] indepen-
dently: there exists Cd > 0 which depends only on d such that for all K ∈ N,
we have

D((xn)
N
n=1) ≤ Cd

 1

K
+

∑
0<∥k∥∞≤K

k∈Zd

1

ν(k)

∣∣∣∣∣ 1N
N∑
n=1

e(⟨k,xn⟩)

∣∣∣∣∣
 , (2.2.1)

where we define

∥k∥∞ = max(|k1|, . . . , |kd|), ν(k) =
d∏
i=1

max(1, |ki|).
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This inequality is sometimes reffered as the Erdős-Turán-Koksma inequality.
We refer [DT97, Theorem 1.21] to the readers for more details on discrepan-
cies and a proof of (2.2.1). In particular, if d = 1, then for all K ∈ N

D((xn)
N
n=1) ≪

1

K
+

K∑
h=1

1

h

∣∣∣∣∣ 1N
N∑
n=1

e(hxn)

∣∣∣∣∣ . (2.2.2)

This is called the Erdős-Turán inequality of which a proof can be found
in [KN74, Theorem 2.5 in Chapter 2]. These inequalities reduce the estimate
of the discrepancy to that of exponential sums. Furthermore, the exponential
sum is evaluated by the following lemmas.

Lemma 2.2.1 (Kusmin-Landau). Let I = [a, b) be an interval with b−a ≥ 1,
and f : I → R be a C1-function such that f ′ is monotone. Let λ1 > 0.
Suppose that

λ1 ≤ min{|f ′(x)− n| : n ∈ Z}
for all x ∈ I. Then ∑

n∈IZ

e(f(n)) ≪ λ−1
1 .

Proof. See the book written by Graham and Kolesnik [GK91, Theorems 2.1].

Lemma 2.2.2 (van der Corput). Let I = [a, b) be an interval with b− a ≥ 1
and f : I → R be a C2-function. Let T > 0 and λ2 > 0. Suppose that

λ2 ≤ |f ′′(x)| ≤ Tλ2

for all x ∈ I. Then ∑
n∈IZ

e(f(n)) ≪T (b− a)λ
1/2
2 + λ

−1/2
2 ,

Proof. See the book written by Graham and Kolesnik [GK91, Theorems 2.2].

Lemma 2.2.3 (Sargos-Gritsenko). Let I = [a, b) be an interval with b−a ≥ 1
and f : I → R be a C3-function. Let T > 0 and λ3 > 0. Suppose that

λ3 ≤ |f ′′′(x)| ≤ Tλ3

for all x ∈ I. Then ∑
n∈IZ

e(f(n)) ≪T (b− a)λ
1/6
3 + λ

−1/3
3 .
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Lemma 2.2.3 was shown by Sargos [Sar95, Corollary 4.2] and Grisenko
[Gri96, Theorem] independently. In general, we have

Lemma 2.2.4 (van der Corput’s k-th derivative test). Let I = [a, b) be an
interval with b − a ≥ 1. Let f : I → R be a Ck-function, where k ≥ 4. Let
T > 0 and λk > 0. Suppose that

λk ≤ |f (k)(x)| ≤ Tλk

for all x ∈ I. Then∣∣∣∣∣∑
n∈IZ

e(f(n))

∣∣∣∣∣≪T,k

(
(b− a)λ

1/(2k−2)
k + (b− a)1−22−k

λ
−1/(2k−2)
k

)
.

Proof. See Titchmarsh’s book [Tit86, Theorem 5.13].

Using Lemmas 2.2.1–2.2.4, we will evaluate discrepancies.

2.3 Hausdorff dimension

We next introduce the Hausdorff dimension. For every U ⊆ R, we define the
diameter of U by diam(U) = supx,y∈U |x− y|. Fix δ > 0. For all F ⊆ R and
s ∈ [0, 1], we define

Hs
δ(F ) = inf

{
∞∑
j=1

diam(Uj)
s : F ⊆

∞∪
j=1

Uj, (∀j ∈ N) diam(Uj) ≤ δ

}
,

and Hs(F ) = limδ→+0Hs
δ(F ) is called the s-dimensional Hausdorff measure

of F . Remark that for all 0 ≤ s < t ≤ 1, we have Ht(F ) = 0 if Hs(F ) <∞.
Indeed, we assume that µ = Hs(F ) < ∞. Let 0 < δ < 1/2 be an arbitrary
small real number. We take a family (Uj)

∞
j=1 of subsets of real numbers such

that F ⊆
∪∞
j=1 Uj, diam(Uj) ≤ δ for all j ∈ N, and

∞∑
j=1

diam(Uj)
s ≤ µ+ 1.

We observe that
∞∑
j=1

diam(Uj)
t =

∞∑
j=1

diam(Uj)
sdiam(Uj)

t−s ≤ (µ+ 1)δt−s.
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This implies that Ht
δ(F ) ≤ (µ + 1)δt−s → 0 as δ → +0. Hence Ht(F ) = 0.

By this discussion, the set {(s,Hs(F )) : 0 ≤ s ≤ 1} should be described as

s

Hs(F )

s0

∞

10

Remark that this graph has the unique singularity at s = s0. We call this
point the Hausdorff dimension of F . More precisely, we define the Hausdorff
dimension of F by

dimHF = inf{s ∈ [0, 1] : Hs(F ) = 0}.

Note that the Hausdorff dimension can be defined on all metric spaces, but
we use only R in this article. By the definition, the following basic properties
hold:

• (Monotonicity) for all F ⊆ E ⊆ R, we have dimHF ≤ dimHE;

• (Countable stability) if F1, F2, . . . ⊆ R is a countable sequence of sets,
then we have dimH

∪∞
n=1 Fn = supn∈N dimHFn.

• (Bi-Lipschitz invariance) let F ⊆ R, and let f : F → R be a bi-Lipschitz
map, that is, there exist C1, C2 > 0 such that

C1|x− y| ≤ |f(x)− f(y)| ≤ C2|x− y|

for all x, y ∈ F . Then dimHF = dimHf(F ).

We refer the book written by [Fal14] for the readers who want to know
more details on fractal dimensions. In this book [Fal14, (4.3)], we can see a
general construction of Cantor sets and a technique to evaluate the Hausdorff
dimension of them as follows: Let [0, 1] = E0 ⊇ E1 ⊇ E2 · · · be a decreasing
sequence of sets, with each Ek a union of a finite number of disjoint closed
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intervals called k-th level basic intervals, with each interval of Ek containing
at least two intervals of Ek+1, and the maximum length of k-th level intervals
tending to 0 as k → ∞. Then let

F =
∞∩
k=0

Ek. (2.3.1)

Lemma 2.3.1 ( [Fal14, Example 4.6 (a)]). Suppose in the general construc-
tion (2.3.1) each (k − 1)-st level interval contains at least mk ≥ 2 k-th level
intervals (k = 1, 2, . . .) which are separated by gaps of at least δk, where
0 < δk+1 < δk for each k. Then

dimHF ≥ lim
k→∞

logm1 · · ·mk−1

− log(mkδk)
.

Since the Hausdorff dimension is stable under similarity transformations,
the initial interval E0 may be taken to be an arbitrary closed interval. More-
over, let E◦

k be the set of interior points of Ek for all k ∈ N. Then the
Hausdorff dimension of

∩∞
k=0E

◦
k is equal to that of

∩∞
k=0Ek. To see why,

let Nk be the boundary of Ek, that is, the set of all end points of k-th level
intervals. We easily see that

N := F \

(
∞∩
k=0

E◦
k

)
⊂

∞∪
k=0

Nk =: N∞.

Since each Nk is a finite set, the set N∞ is a countable set. By monotonicity,
and the fact that the Hausdorff dimension of a countable set is 0, we get

0 ≤ dimHN ≤ dimHN∞ = 0,

that is, dimHN = 0. Therefore by countable stability, we have

dimHF = max

{
dimH

( ∞∩
k=0

E◦
k

)
, dimHN

}
= dimH

( ∞∩
k=0

E◦
k

)
.

By summarizing this discussion, we have the following:

Lemma 2.3.2. Let E0 be any open interval, and let E0 ⊇ E1 ⊇ E2 · · · be a
decreasing sequence of sets, with each Ek a union of a finite number of disjoint
open intervals, and the maximum length of k-th level intervals tending to 0
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as k → ∞. Suppose each (k − 1)-st level interval contains at least mk ≥ 2
k-th level intervals (k = 1, 2, . . .) which are separated by gaps of at least δk,
where 0 < δk+1 < δk for each k. Then

dimH

∞∩
k=0

Ek ≥ lim
k→∞

logm1 · · ·mk−1

− log(mkδk)
.

By the bi-Lipschitz invariance of the Hausdorff dimension and the mean
value theorem, we immediately obtain

Lemma 2.3.3. Let U ⊆ R be an open set and let V ⊆ U be a compact set.
Let f : U → R be a continuously differentiable function satisfying |f ′(x)| > 0
for all x ∈ V . Then for all F ⊆ V , dimH f(F ) = dimH F .

For all γ ≥ 2 and sets X ⊆ R, define

A(X, γ) =

{
x ∈ X : there are infinitely many (p, q) ∈ Z× N

such that

∣∣∣∣x− p

q

∣∣∣∣ ≤ 1

qγ

}
.

In particular, if X = R and γ = 2, we know that A(R, 2) = R. This result is
referred as Dirichlet’s approximation theorem. In addition, in the case when
γ > 2 and X = [0, 1], the following result is known:

Theorem 2.3.4 (Jarńık’s theorem). For all γ > 2, we have

dimHA([0, 1], γ) = 2/γ.

Proof. See [Fal14, Theorem 10.3].

Lemma 2.3.5. For all non-empty and bounded open intervals J ⊆ R, we
have

dimH A(J, γ) = 2/γ.

Proof. There exist m ∈ Z and h ∈ N such that J ⊆ [m,m + h]. When x ∈
A(J, γ), there are infinitely many (p, q) ∈ Z × N such that |x− p/q| ≤ q−γ.
Then for all ε > 0, and for infinitely many (p, q) ∈ Z× N,∣∣∣∣x−m

h
− p−mq

qh

∣∣∣∣ ≤ 1

hqγ
≤ 1

qγ−ε
.
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Thus f(A(J, γ)) ⊆ A([0, 1], γ − ε) where f(x) = (x − h)/m. By the bi-
Lipschitz invariance and monotonicity of the Hausdorff dimension and The-
orem 2.3.4, we obtain

dimHA(J, γ) = dimHf(A(J, γ)) ≤ dimHA([0, 1], γ − ε) =
2

γ − ε
.

By taking ε→ +0, dimHA(J, γ) ≤ 2/γ.
We next show that dimHA(J, γ) ≥ 2/γ. There exist ℓ ∈ Z and M ∈ N

such that J ⊇ [ℓ/M, (ℓ + 1)/M ]. Take such ℓ and M . Then for all x ∈
A([0, 1], γ), there are infinitely many (p, q) ∈ Z×N such that |x− p/q| ≤ q−γ.
Then for infinitely many (p, q) ∈ Z× N, we have∣∣∣∣ℓ+ x

M
− ℓq + p

qM

∣∣∣∣ ≤ 1

M

1

qγ
≤ 1

qγ
.

This inequality and (ℓ+x)/M ∈ J imply that g(A([0, 1], γ)) ⊆ A(J, γ) where
g(x) = (ℓ + x)/M . By the monotonicity and bi-Lipschitz invariance of the
Hausdorff dimension and Theorem 2.3.4, we have dimHA(J, γ) ≥ 2/γ.
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Chapter 3

Distribution of finite sequences
represented by polynomials in
Piatetski-Shapiro sequences

This chapter is based on [SY21]. We define the d-th order difference operator
of sequences by

∆ra(n) := a(n+ r)− a(n), ∆m
r := ∆r ◦∆m−1

r (m = 2, 3, . . .).

for all finite sequences (a(n))k−1
n=0 of integers. A subset A of N is naturally

identified with a strictly increasing sequence of N, and vice versa. We study
the sets

Pk,d :=
{

(a(n))k−1
n=0 ⊆ N

strictly increasing
: (∆d

1a(n))
k−d−1
n=0 is a constant sequence

}
with integers d ≥ 1 and k ≥ d + 2. A sequence (a(n))k−1

n=0 of N belongs to
Pk,d if and only if (a(n))k−1

n=0 is represented as a(n) = p(n), n ∈ [0, k) ∩ Z, by
using some polynomial p(x) ∈ Q[x] of degree at most d. In particular, when
d = 1, a sequence belonging to Pk,1 is a k-AP.

3.1 Results on Piatetski-Shapiro sequences

We find that every PS(α) with α ∈ (d, d + 1) and d ∈ N contains infinitely
many sequences belonging to Pk,d. This fact can be deduced from the work
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of Frantzikinakis and Wierdl [FW09]. Precisely speaking, for all d ∈ N,
α ∈ (d, d+ 1), and integers k ≥ d+ 2 and r ≥ 1, there exist infinitely many
n ∈ N such that (⌊(n+ rj)α⌋)k−1

j=0 belongs to Pk,d. However, the asymptotic
density of such numbers n was not known. In this chapter, we show the
asymptotic density, which can be expressed as the volume of a convex set of
Rd+1.

Theorem 3.1.1 ( [SY21, Theorem 1.1]). Let d ∈ N. For all α ∈ (d, d + 1)
and all integers k ≥ d+ 2 and r ≥ 1,

lim
N→∞

1

N
#{n ∈ [N ] : (⌊(n+ rj)α⌋)k−1

j=0 ∈ Pk,d} = µ(Ck,d+1),

where µ denotes the Lebesgue measure on Rd+1 and the convex set Ck,d+1 of
Rd+1 is defined as

Ck,d+1 =

{
(yi)

d
i=0 ∈ Rd+1 : 0 ≤ y0 < 1, 0 ≤

d∑
i=0

(
j

i

)
yi < 1 (∀j ∈ [k − 1])

}
.

(3.1.1)
Also, µ(Ck,d+1) is bounded below by 1/

∏d
i=1

(
k−1
i

)
.

Note that for integers n, l ≥ 0 the binomial coefficient
(
n
l

)
is defined as(

n

l

)
=

(n)l
l!
,

where (x)l denotes the falling factorial: (x)l = x(x − 1) · · · (x − l + 1) if
l ∈ N, and (x)l = 1 if l = 0. Hence,

(
n
l

)
= 0 if 0 ≤ n < l. From the last

sentence in Theorem 3.1.1, it follows that µ(Ck,d+1) is positive. When d = 1,
Theorem 3.1.1 implies Theorem 1.3.3.

Proof of Theorem 1.3.3 assuming Theorem 3.1.1. Since the convex set Ck,2 is
equal to {(y0, y1) ∈ R2 : 0 ≤ y0 < 1, 0 ≤ y0 + (k − 1)y1 < 1}, Theorem 3.1.1
implies Theorem 1.3.3.

The lower bound 1/
∏d

i=1

(
k−1
i

)
of µ(Ck,d+1) is not equal to µ(Ck,d+1) in

general, although the two values are equal to each other when d = 1. Also,
the volume µ(Ck,d+1) can be computed by using a convex hull algorithm if nec-
essarily. The definition of Piatetski-Shapiro sequences uses the function xα,
which is generalized to a function f with certain properties (Theorems 3.2.1
and 3.2.2).
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Theorem 1.3.3 and Theorem 3.1.1 and can be regarded as the case when
the common difference r is fixed. We next consider the case when the common
difference r is not fixed.

Theorem 3.1.2 ( [SY21, Theorem 1.3]). Let d ∈ N. For all α ∈ (d, d + 1)
and all integers k ≥ d+ 2, there exist Aα,k, Bα,k > 0 and Nα,k ∈ N such that
for all integers N ≥ Nα,k,

Aα,kN
2−α/(d+1) ≤ #{P ⊆ [N ] : P ∈ Pk,1, (⌊nα⌋)n∈P ∈ Pk,d} (3.1.2)

≤ Bα,kN
2−α/(d+1).

Since the number of k-APs contained in [N ] is about N2/2(k − 1), the
asymptotic density of the set in (3.1.2) is zero. We give explicit values of
Aα,k and Bα,k in Section 3.4.

3.2 Results on Hardy fields

Recall that H denotes the union of all Hardy fields. The function xα used in
Theorems 3.1.1 and 3.1.2 is generalized to a function f ∈ H with xd log x ≺
f(x) ≺ xd+1. Such a function f satisfies that f ′(x) ≥ 1 for every sufficiently
large x > 0, since the relation f(x) ≻ xd log x implies f ′(x) ≻ xd−1 log x
(see Section 3.3). From now on, we assume that a differentiable function
f : [n0,∞) → R satisfies infx≥n0 f

′(x) ≥ 1 in order to make the sequence
(⌊f(n)⌋)∞n=n0

an increasing sequence. However, this assumption is not essen-
tial in any proofs of theorems.

Theorem 3.2.1 ( [SY21, Theorem 2.2]). Let n0, d ∈ N, and let f : [n0,∞) →
R be a differentiable function in H satisfying that

(a1) xd log x ≺ f(x) ≺ xd+1;

(a2) infx≥n0 f
′(x) ≥ 1.

Then, for all integers k ≥ d+ 2 and r ≥ 1,

lim
N→∞

1

N
#{n ∈ [n0, N ]Z : (⌊f(n+ rj)⌋)k−1

j=0 ∈ Pk,d} = µ(Ck,d+1), (3.2.1)

where µ denotes the Lebesgue measure on Rd+1 and the convex set Ck,d+1 of

Rd+1 is defined as (3.1.1). Also, µ(Ck,d+1) is bounded below by 1/
∏d

i=1

(
k−1
i

)
.
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Theorem 3.2.2 ( [SY21, Theorem 2.3]). Let n0, d ∈ N, and let f : [n0,∞) →
R be the same as Theorem 3.2.1. Then, for every integer k ≥ d+ 2,

#{P ⊆ [n0, N ]Z : P ∈ Pk,1, (⌊f(n)⌋)n∈P ∈ Pk,d}
≍c(·),k,d Nf

(d+1)(N)−1/(d+1) (N → ∞).
(3.2.2)

When d = 1, one can apply Theorems 3.2.1 and 3.2.2 to the following
functions:

xα, x(log x)β,
x2

(log x)γ
,

x2

(log log x)γ
, (3.2.3)

where α ∈ (1, 2), β > 1 and γ > 0. Note that all the above functions belong
to LE and a fortiori H. Hence, Theorems 3.1.1 and 3.1.2 are special cases of
Theorems 3.2.1 and 3.2.2, respectively. Also, the implicit constants of (3.2.2)
only depend on c(·), k and d. This fact is seen in Section 3.4 by giving explicit
values of the implicit constants. For special c(·), the explicit values can be
simplified, e.g., the case when f(x) = xα with α ∈ (d, d+1). For details, see
Remarks 3.4.6 and 3.4.7.

Finally, let us focus on PS(α) with α ∈ (1, 2). Recall that the asymptotic
density (1.3.1) is equal to 1/(k−1). However, Theorem 1.3.3 does not give us
any information about convergence speed. The convergence speed of (1.3.1)
is estimated as follows.

Theorem 3.2.3 ( [SY21, Theorem 2.4]). For all α ∈ (1, 2) and all integers
k ≥ 3 and r ≥ 1,

1

N
#{n ∈ [N ] : (⌊(n+ rj)α⌋)k−1

j=0 ∈ Pk,1}

=
1

k − 1
+Oα,k,r(F (N)) (N → ∞),

where

F (x) :=


x(1−α)/2 α ∈ (1, 5/4),

x(α−3)/14(log x)1/2 α ∈ [5/4, 11/6),

x(α−2)/6(log x)1/2 α ∈ [11/6, 2).

Theorem 3.2.3 gives an upper bound for the convergence speed of (1.3.1).
We show an extended statement (Proposition 3.5.1) in Section 3.5, which can
be applied to a short interval [N,N +L). Theorem 3.2.3 is derived from the
extended statement.
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So far, we have stated only asymptotic results. In general, an asymp-
totic result does not give the information how long an interval containing no
numbers n in the set in (1.3.1) is. Hence, we need a non-asymptotic result
in order to know such information. To state a non-asymptotic result, let us
define the minimum length Lα,k,r(x) as

Lα,k,r(x) = min{y ≥ 0 : ∃n ∈ [x, x+ y]Z, (⌊(n+ rj)α⌋)k−1
j=0 ∈ Pk,1}

for α ∈ (1, 2), x ≥ 1, and integers k ≥ 3 and r ≥ 1. The following theorem
gives an upper bound for Lα,k,r(x).

Theorem 3.2.4 ( [SY21, Theorem 2.5]). For all α ∈ (1, 2) and all integers
k ≥ 3 and r ≥ 1, we have Lα,k,r(x) ≪α,k,r (x

2−α) for all x ≥ 1.

At glance, the growth rate Oα,k,r(x
2−α) is strange because it becomes

smaller when α increases. However, for all α ∈ (1, 2) and all integers k ≥ 4
and r ≥ 1, the growth rate Oα,k,r(x

2−α) is best in a certain meaning. When
k = 3, we expect that Lα,3,r(x) = Oα,r(x

1−α/2) for all α ∈ (1, 2) and r ∈ N.
For details, see Section 3.6.

3.3 Key propositions

By using uniform distribution modulo 1, we obtain two propositions that
imply Theorems 3.2.1 and 3.2.2.

Proposition 3.3.1 ( [SY21, Proposition 3.3]). Let n0, d ∈ N, and let f : [n0,∞) →
R be a (d+ 1)-times differentiable function satisfying that

(A1) The (d+ 1)-st derivative f (d+1)(x) vanishes as x→ ∞;

(A2)
(
(f(n), f ′(n), f ′′(n)/2!, . . . , f (d)(n)/d!)

)∞
n=1

is uniformly distributed mod-
ulo 1;

(A3) infx≥n0 f
′(x) ≥ 1.

Then, for all integers k ≥ d + 2 and r ≥ 1, the equality (3.2.1) holds. Also,
µ(Ck,d+1) is bounded below by 1/

∏d
i=1

(
k−1
i

)
.

Proposition 3.3.2 ( [SY21, Proposition 3.4]). Let n0, d ∈ N, and let f : [n0,∞) →
R be a (d+ 1)-times differentiable function satisfying that
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(B1) The (d + 1)-st derivative f (d+1)(x) eventually decreases, and vanishes
as x→ ∞;

(B2) limx→∞ xd+1f (d+1)(x) = ∞;

(B3) For every δ ∈ (0, 1), there exist c(δ) ≥ 1 and x0(δ) ≥ n0/δ such that
every x ≥ x0(δ) satisfies f

(d+1)(δx) ≤ c(δ)f (d+1)(x);

(B4) (f(n))∞n=n0
, (f ′(n))∞n=n0

, (f ′′(n)/2!)∞n=n0
, ..., (f (d)(n)/d!)∞n=n0

are uni-
formly distributed modulo 1;

(B5) infx≥n0 f
′(x) ≥ 1.

Then, for every integer k ≥ d+ 2, the equality (3.2.2) holds.

The above propositions do not use the notion of Hardy fields, but uni-
form distribution modulo 1 is used instead. In general, it is not so easy
to investigate uniform distribution modulo 1, but it is easy for f ∈ H as
stated in Proposition 2.1.2. This is why we have used the notion of Hardy
fields in Theorems 3.2.1 and 3.2.2. Propositions 3.3.1 and 3.3.2 are proved
in Section 3.4.

Before proving Theorems 3.2.1 and 3.2.2 while assuming Propositions 3.3.1
and 3.3.2, we remark some properties of functions in H [FW09]:

(H1) Every f ∈ H has eventually constant sign;

(H2) Every f ∈ H is eventually monotone;

(H3) For every f ∈ H, the limit lim
x→∞

f(x) exists as an element of R∪{±∞};

(H4) If f ∈ H and if g ∈ LE is eventually non-zero, then f/g ∈ H;

(H5) For every f ∈ H and every g ∈ LE that is eventually non-zero, the
limit lim

x→∞
f(x)/g(x) exists as an element of R ∪ {±∞};

(H6) If eventually positive f ∈ H and g ∈ LE satisfy f(x) ≻ g(x) (resp.
f(x) ≺ g(x)) and if lim

x→∞
f(x) = lim

x→∞
g(x) = ∞, then f ′(x) ≻ g′(x)

(resp. f ′(x) ≺ g′(x)).

(H7) If f ∈ H is eventually positive, then log f(·) ∈ H.
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Property (H1) is derived from the fact that f ∈ H is eventually zero or has
a reciprocal. Property (H2) follows from (H1) by considering the derivative
f ′ ∈ H. Property (H3) follows from (H2) and the monotone convergence
theorem. Property (H5) follows from (H3) and (H4). Property (H6) follows
from (H5) and L’Hospital’s rule. For (H7), see [Bos81, Theorem 5.3]. The
remaining (H4) is verified as follows. The set LE is a Hardy field by the
equivalence relation in Section 3.2 [Har24,Har12], and is contained in every
maximal Hardy field (a Hardy field F is called maximal if there are not any
Hardy fields strictly containing F) [Bos81, Bos82]. Also, for every Hardy
field F , there exists a maximal Hardy field containing F (use Zorn’s lemma).
Therefore, for f ∈ H and g ∈ LE in (H4), the ratio f/g belongs to H.

Proof of Theorems 3.2.1 and 3.2.2 assuming Propositions 3.3.1 and 3.3.2. Let
f : [n0,∞) → R be a differentiable function in H and satisfy (a1) and (a2).
All we need is to show (B1)–(B4) and (A2).

Proof of (B1) and (B2). The relation x−1 ≺ f (d+1)(x) ≺ 1 follows from
(a1) and (H6). Thus, f (d+1)(x) converges to +0 as x → ∞. This and (H2)
imply (B1). Also, since the relation f (d+1)(x) ≻ x−1 yields that xf (d+1)(x)
diverges to positive infinity as x→ ∞, so does xd+1f (d+1)(x).

Proof of (A2) and (B4). Properties (a1) and (H6) imply that xd−i log x ≺
f (i)(x) ≺ xd+1−i for all i ∈ [0, d]Z. This fact and Proposition 2.1.2 imply
(A2). Finally, (B4) follows from (A2) immediately.

Proof of (B3). All we need is to show that for every δ ∈ (0, 1),

lim
x→∞

f (d+1)(δx)

f (d+1)(x)
<∞. (3.3.1)

Let g(x) = 1/f (d+1)(x). Instead of (3.3.1), we show that for every β > 1,

lim
x→∞

g(βx)

g(x)
<∞, (3.3.2)

which is equivalent to (3.3.1). First, the relation 1 ≺ g(x) ≺ x follows from
x−1 ≺ f (d+1)(x) ≺ 1, and moreover the function log g(·) belongs to H due
to (H7). These facts and (H5) imply that the ratio log g(x)/ log x converges
to some finite γ ∈ [0, 1] as x → ∞. Since both log g(x) and log x diverge to
positive infinity, L’Hospital’s rule and (H5) yield that

lim
x→∞

xg′(x)

g(x)
= lim

x→∞

g′(x)/g(x)

1/x
= lim

x→∞

log g(x)

log x
= γ.
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Thus, there exists x0 > 0 such that xg′(x) ≤ (γ+1)g(x) for all x ≥ x0. Also,
since the relation g′(x) ≺ 1 holds due to (H6), the derivative g′ is eventually
decreasing due to (H2).

Let β > 1. The mean value theorem implies that g(βx) − g(x) = (β −
1)xg′(β′x) for some β′ = β′(x) ∈ (1, β). Since g′ is eventually decreasing,
every sufficiently large x ≥ x0 satisfies

g(βx)− g(x) = (β − 1)xg′(β′x) ≤ (β − 1)xg′(x) ≤ (β − 1)(γ + 1)g(x).

Therefore, the left-hand side in (3.3.2) is bounded above by (β− 1)(γ +1)+
1.

3.4 Proofs of Propositions 3.3.1 and 3.3.2

First, we begin with the proof of Proposition 3.3.1, which is a basis of sub-
sequent proofs.

Proof of Proposition 3.3.1. Without loss of generality, we may assume n0 =
1. Fix integers k ≥ d + 2 and r, d ≥ 1. Taylor’s theorem implies that for
every n ∈ N and j ∈ [1, k)Z there exists θ = θ(n, j) ∈ (n, n+ rj) such that

f(n+ rj) =
d∑
l=0

(rj)l

l!
f (l)(n) +

(rj)d+1

(d+ 1)!
f (d+1)(n+ θ). (3.4.1)

The falling factorials satisfy the formula xn =
∑n

i=0 S(n, i)(x)i, where S(n, i),
i ∈ [0, n]Z, denote the Stirling numbers of the second kind. Thus, (3.4.1) can
be rewritten as

f(n+ rj) =
d∑
i=0

ai

(
j

i

)
+

(rj)d+1

(d+ 1)!
f (d+1)(n+ θ),

where

ai = ai(n) :=
d∑
l=i

rl

l!
f (l)(n)S(l, i)i!. (3.4.2)

For convenience, we set s0 = 0 in this proof. For every s = (si)
d
i=1 ∈ Zd,

n ∈ N and j ∈ [1, k)Z, we have

f(n+ rj) =
d∑
i=0

(⌊ai⌋ − si)

(
j

i

)
+ δs, (3.4.3)
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where

δs = δs(n, j) :=
d∑
i=0

({ai}+ si)

(
j

i

)
+

(rj)d+1

(d+ 1)!
f (d+1)(n+ θ).

Let ε ∈ (0, 1/2) be arbitrary. Thanks to (A1), we can take x0 ≥ 1 such that
every x ≥ x0 satisfies

(r(k − 1))d+1

(d+ 1)!

∣∣f (d+1)(x)
∣∣ ≤ ε.

Now, let us show that

lim
N→∞

1

N
#{n ∈ [1, N ]Z : (⌊f(n+ rj)⌋)k−1

j=0 ∈ Pk,d} ≥ µ(C−
k,d+1(ε)), (3.4.4)

where the convex set C−
k,d+1(ε) is defined as

C−
k,d+1(ε) =

{
(yi)

d
i=0 ∈ Rd+1 : 0 ≤ y0 < 1, ε ≤

d∑
i=0

(
j

i

)
yi < 1−ε (∀j ∈ [1, k)Z)

}
.

(3.4.5)
If the relations s = (si)

d
i=1 ∈ Zd, n ≥ x0, and ({ai(n)} + si)

d
i=0 ∈ C−

k,d+1(ε)
hold, then 0 ≤ δs(n, j) < 1 and

⌊f(n+ rj)⌋ =
d∑
i=0

(⌊ai(n)⌋ − si)

(
j

i

)
for all j ∈ [1, k)Z. This implies the inclusion relation∪

s1,...,sd∈Z

{n ∈ [x0,∞)Z : ({ai(n)}+ si)
d
i=0 ∈ C−

k,d+1(ε)} (3.4.6)

⊂ {n ∈ N : (⌊f(n+ rj)⌋)k−1
j=0 ∈ Pk,d}.

The union (3.4.6) is disjoint because

1. the vectors (
(
j
i

)
)di=1 ∈ Rd, j ∈ [1, k)Z, span Rd;

2. thus, if (si)
d
i=1, (s

′
i)
d
i=1 ∈ Zd are not equal to each other, then

∑d
i=1

(
j
i

)
(si−

s′i) is a non-zero integer for some j ∈ [1, k)Z.
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Also, the vectors a(n) := (a0(n), a1(n), . . . , ad(n)), n ∈ N, can be expressed
as

a(n) = (f(n), f ′(n), f ′′(n)/2!, . . . , f (d)(n)/d!)A

by using the integer matrix A = (aij)0≤i,j≤d whose entry aij is equal to
riS(i, j)j! if i ≥ j, and zero if i < j. Note that A has full rank. Since
(a(n))∞n=1 is uniformly distributed modulo 1 thanks to (A2), it turns out
that

lim
N→∞

1

N
#{n ∈ [1, N ]Z : (⌊f(n+ rj)⌋)k−1

j=0 ∈ Pk,d}

≥ lim
N→∞

∑
s1,...,sd∈Z

1

N
#{n ∈ [x0, N ]Z : ({ai(n)}+ si)

d
i=0 ∈ C−

k,d+1(ε)}

=
∑

s1,...,sd∈Z

µ
(
C−
k,d+1(ε) ∩

d∏
i=0

[si, si + 1)
)
= µ(C−

k,d+1(ε)),

(3.4.7)

where all the sums in (3.4.7) are finite sums because of the boundedness of
C−
k,d+1(ε). Therefore, (3.4.4) holds.
Next, let us show that

lim
N→∞

1

N
#{n ∈ [1, N ]Z : (⌊f(n+ rj)⌋)k−1

j=0 ∈ Pk,d} ≤ µ(C+
k,d+1(ε)), (3.4.8)

where the convex set C+
k,d+1(ε) is defined as

C+
k,d+1(ε) =

{
(yi)

d
i=0 ∈ Rd+1 : 0 ≤ y0 < 1, −ε ≤

d∑
i=0

(
j

i

)
yi < 1+ε (∀j ∈ [1, k)Z)

}
.

(3.4.9)
Take an arbitrary integer m ≥ x0 such that (∆d

r⌊f(m+ rj)⌋)k−d−1
j=0 is a con-

stant sequence. Then the sequence (⌊f(m+ rj)⌋)k−1
j=0 is expressed as

⌊f(m+ rj)⌋ =
d∑
i=0

∆i
r⌊f(m)⌋ ·

(
j

i

)
due to Newton’s forward difference formula. Recalling the definition of ai(m)
and putting si = ⌊ai(m)⌋−∆i

r⌊f(m)⌋ for i ∈ [1, d]Z, we have that ⌊a0(m)⌋ =
⌊f(m)⌋ and

⌊f(m+ rj)⌋ =
d∑
i=0

(⌊ai(m)⌋ − si)

(
j

i

)
(∀j ∈ [0, k)Z).
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This and (3.4.3) imply that f(m + rj) = ⌊f(m+ rj)⌋ + δs(m, j) and 0 ≤
δs(m, j) < 1 for all j ∈ [1, k)Z, whence ({ai(m)}+ si)

d
i=0 ∈ C+

k,d+1(ε). There-
fore, we obtain the inclusion relation

{n ∈ [x0,∞)Z : (⌊f(n+ rj)⌋)k−1
j=0 ∈ Pk,d}

⊂
∪

s1,...,sd∈Z

{n ∈ N : ({ai(n)}+ si)
d
i=0 ∈ C+

k,d+1(ε)}.

Since (a(n))∞n=1 is uniformly distributed modulo 1 thanks to (A2), it turns
out that

lim
N→∞

1

N
#{n ∈ [1, N ]Z : (⌊f(n+ rj)⌋)k−1

j=0 ∈ Pk,d}

= lim
N→∞

1

N
#{n ∈ [x0, N ]Z : (⌊f(n+ rj)⌋)k−1

j=0 ∈ Pk,d}

≤ lim
N→∞

∑
s1,...,sd∈Z

1

N
#{n ∈ [1, N ]Z : ({ai(n)}+ si)

d
i=0 ∈ C+

k,d+1(ε)}

=
∑

s1,...,sd∈Z

µ
(
C+
k,d+1(ε) ∩

d∏
i=0

[si, si + 1)
)
= µ(C+

k,d+1(ε)),

(3.4.10)

which is just (3.4.8).
Finally, once letting ε→ +0 in (3.4.4) and (3.4.8), we conclude the limit

in Proposition 3.3.1. Also, the inequality µ(Ck,d+1) ≥ 1/
∏d

i=1

(
k−1
i

)
is derived

from the lemma below.

Lemma 3.4.1 ( [SY21, Lemma 4.1]). Let k ≥ d + 2 and d ≥ 1 be integers.
Then µ(Ck,d+1) ≥ 1/

∏d
i=1

(
k−1
i

)
.

Proof. Define the convex set C ′
k,d+1 as

C ′
k,d+1 =

{
(y0, y1, . . . , yd) ∈ Rd+1 : 0 ≤ y0 < 1, 0 ≤

j∑
i=0

(
k − 1

i

)
yi < 1 (∀j ∈ [1, d]Z)

}
.

We show the inclusion relation C ′
k,d+1 ⊂ Ck,d+1. Let (y0, y1, . . . , yd) ∈ C ′

k,d+1

and j ∈ [1, k)Z. Set the real numbers c0, c1, . . . , cd ≥ 0 as

cl =


(
j

l

)(
k − 1

l

)−1

−
(

j

l + 1

)(
k − 1

l + 1

)−1

l ∈ [0, d)Z,(
j

d

)(
k − 1

d

)−1

l = d.
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Then the inequality 0 ≤
∑d

i=0

(
j
i

)
yi < 1 in the definition of Ck,d+1 is equal to

the sum of the inequalities 0 ≤
∑l

i=0

(
k−1
i

)
yi < 1, l ∈ [0, d]Z, multiplied by

cl:

d∑
l=0

cl

l∑
i=0

(
k − 1

i

)
yi =

d∑
i=0

(
k − 1

i

)
yi

d∑
l=i

cl

=
d∑
i=0

(
k − 1

i

)
yi

(
j

i

)(
k − 1

i

)−1

=
d∑
i=0

(
j

i

)
yi.

Since j ∈ [1, k)Z is arbitrary, the point (y0, y1, . . . , yd) lies in Ck,d+1. There-
fore, C ′

k,d+1 ⊂ Ck,d+1. Finally, we conclude that µ(Ck,d+1) ≥ µ(C ′
k,d+1) =

1/
∏d

i=1

(
k−1
i

)
by easy calculation.

Remark 3.4.2 ( [SY21, Remark 4.2]). Let f(x) = x log x. Then the sequence(
(f(n), f ′(n))

)∞
n=1

is not uniformly distributed modulo 1 because (f ′(n))∞n=1

does not satisfy the second condition in Proposition 2.1.2. However, one can
show that for every convex set C ⊂ [0, 1)2 and every r ∈ N,

1

N
#{n ∈ [1, N ]Z : ({f(n)}, {rf ′(n)}) ∈ C}

→
∫∫

C

(
1≤{r logN}(y) +

1

e1/r − 1

)e(y−{r logN})/r

r
dxdy (N → ∞),

where 1≤c(y) = 1 if y ≤ c, and 1≤c(y) = 0 if y > c. This implies that for
every convex set C ⊂ [0, 1)2 and every r ∈ N,

1

(e1/r − 1)r
µ(C) ≤ lim

N→∞

1

N
#{n ∈ [1, N ]Z : ({f(n)}, {rf ′(n)}) ∈ C}

≤ lim
N→∞

1

N
#{n ∈ [1, N ]Z : ({f(n)}, {rf ′(n)}) ∈ C} ≤ e1/r

(e1/r − 1)r
µ(C).

Since the equalities a0(n) = f(n) and a1(n) = rf ′(n) hold due to (3.4.2) with
d = 1, it follows that for all integers k ≥ 3 and r ≥ 1,

1

(e1/r − 1)r(k − 1)
≤ lim

N→∞

1

N
#{n ∈ [1, N ]Z : (⌊f(n+ rj)⌋)k−1

j=0 ∈ Pk,1}

≤ lim
N→∞

1

N
#{n ∈ [1, N ]Z : (⌊f(n+ rj)⌋)k−1

j=0 ∈ Pk,1} ≤ e1/r

(e1/r − 1)r(k − 1)

in the same way as the proof of Proposition 3.3.1. The above both-hand
sides converge to 1/(k − 1) as r → ∞.
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Next, to prove Proposition 3.3.2, we need to evaluate exponential sums∑R
r=1 e(p(r)) for polynomials p(x). Such an evaluation is achieved by induc-

tion on the degree of p(x). The following lemma is often used to make the
degree of a polynomial decrease.

Lemma 3.4.3. Let z1, z2, . . . , zN ∈ C and H ∈ [1, N ]Z. Then∣∣∣∣∣
N∑
n=1

zn

∣∣∣∣∣
2

≤ N +H − 1

H2

(
H

N∑
n=1

|zn|2 + 2
H−1∑
h=1

(H − h)ℜ
N−h∑
n=1

zn+hzn

)
.

Proof. See [KN74, Lemma 3.1].

Lemma 3.4.4 ( [SY21, Lemma 4.4]). Let Nm, Rm ∈ N diverge to positive
infinity as m → ∞, and d ≥ 0 be an integer. For n ∈ N, let qn(x) be a
polynomial of degree less than d; let cn ∈ R and pn(x) = cnx

d + qn(x). If
(cn)

∞
n=1 is uniformly distributed modulo 1, then

lim
m→∞

1

NmRm

Nm∑
n=1

Rm∑
r=1

e(pn(r)) = 0.

Proof. We show the desired statement by induction on d. First, assume
d = 0. Then pn(x) = cn for all n ∈ N, and thus the uniform distribution
modulo 1 of (cn)

∞
n=1 implies that

lim
m→∞

1

NmRm

Nm∑
n=1

Rm∑
r=1

e(pn(r)) = lim
m→∞

1

Nm

Nm∑
n=1

e(cn) = 0.

Next, assuming that the desired statement is true for d−1 with d ≥ 1, we
show that the desired statement is also true for d. Take an arbitrary H ∈ N.
Lemma 3.4.3 yields the inequality∣∣∣∣∣

Rm∑
r=1

e(pn(r))

∣∣∣∣∣
2

≤ Rm +H − 1

H2

(
HRm + 2

H−1∑
h=1

(H − h)ℜ
Rm−h∑
r=1

e(∆hpn(r))
)
.
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The above and Cauchy-Schwarz inequalities imply that∣∣∣∣∣ 1

NmRm

Nm∑
n=1

Rm∑
r=1

e(pn(r))

∣∣∣∣∣
2

≤ 1

NmR2
m

Nm∑
n=1

∣∣∣∣∣
Rm∑
r=1

e(pn(r))

∣∣∣∣∣
2

≤ Rm +H − 1

H2NmR2
m

(
HNmRm + 2

H−1∑
h=1

(H − h)ℜ
Nm∑
n=1

Rm−h∑
r=1

e(∆hpn(r))

)

≤ Rm +H

H2NmR2
m

(
HNmRm + 2H

H−1∑
h=1

∣∣∣∣∣
Nm∑
n=1

Rm−h∑
r=1

e(∆hpn(r))

∣∣∣∣∣
)

≤ Rm +H

HRm

(
1 + 2

H−1∑
h=1

∣∣∣∣∣ 1

NmRm

Nm∑
n=1

Rm−h∑
r=1

e(∆hpn(r))

∣∣∣∣∣
)
.

(3.4.11)

Now, for all h, n ∈ N, the polynomial ∆hpn(x) is expressed as dhcnx
d−1 +

qh,n(x), where the degree of qh,n(x) is less than d − 1. Since (cn)
∞
n=1 is uni-

formly distributed modulo 1, so is (dhcn)
∞
n=1 for every h ∈ N. Thus, the

hypothesis by induction implies that for every h ∈ N

lim
m→∞

1

NmRm

Nm∑
n=1

Rm−h∑
r=1

e(∆hpn(r)) = 0.

It follows from (3.4.11) that

lim
m→∞

∣∣∣∣∣ 1

NmRm

Nm∑
n=1

Rm∑
r=1

e(pn(r))

∣∣∣∣∣
2

≤ 1/H.

Due to the arbitrariness of H, we find that the desired statement is true for
d.

Lemma 3.4.5 ( [SY21, Lemma 4.5]). Let d ≥ 0 be an integer and A be an in-
teger matrix of order d+1 and rank d+1; let x(n) = (x0(n), x1(n), . . . , xd(n)) ∈
Rd+1 and

y(n, r) = (y0(n, r), y1(n, r), . . . , yd(n, r)) = (x0(n), rx1(n), . . . , r
dxd(n))A

for n, r ∈ N. If Nm, Rm ∈ N diverge to positive infinity as m → ∞ and if
each entry (xi(n))

∞
n=1 of (x(n))∞n=1 is uniformly distributed modulo 1, then

35



for every convex set C ⊂ [0, 1)d+1,

lim
m→∞

#
{
(n, r) ∈ [1, Nm]Z × [1, Rm]Z : {y(n, r)} ∈ C

}
NmRm

= µ(C),

where µ denotes the Lebesgue measure on Rd+1.

Proof. If the following criterion holds, Lemma 3.4.5 follows in the same way
as Weyl’s theorem on uniform distribution. Weyl’s criterion: for every non-
zero h = (h0, h1, . . . , hd) ∈ Zd+1,

lim
m→∞

1

NmRm

Nm∑
n=1

Rm∑
r=1

e(⟨y(n, r),h⟩) = 0. (3.4.12)

Hence, taking a non-zero h ∈ Zd+1 arbitrarily, we show (3.4.12). For i, j ∈
[0, d]Z, denote the (i, j)-th entry of A by aij. For n ∈ N, regard ⟨y(n, r),h⟩
as a polynomial pn(r) of r:

pn(r) = ⟨y(n, r),h⟩ =
d∑
j=0

yj(n, r)hj =
d∑
i=0

rixi(n)
d∑
j=0

aijhj.

Take the maximum number i0 of all i ∈ [0, d]Z such that
∑d

j=0 aijhj is not
zero (such a number i exists because the square matrix A has full rank).
Then, for every n ∈ N, the degree of pn(x) is at most i0. Since (xi0(n))

∞
n=1 is

uniformly distributed modulo 1, so is the sequence (xi0(n)
∑d

j=0 ai0jhj)
∞
n=1.

Therefore, Lemma 3.4.4 implies (3.4.12), and we obtain Lemma 3.4.5.

Now, let us show Proposition 3.3.2. Since (3.2.2) consists of the following
inequalities:

(liminf) lim
N→∞

#{P ⊂ [1, N ]Z : P ∈ Pk,1, (⌊f(n)⌋)n∈P ∈ Pk,d}
Nf ′′(N)−1/(d+1)

> 0,

(limsup) lim
N→∞

#{P ⊂ [1, N ]Z : P ∈ Pk,1, (⌊f(n)⌋)n∈P ∈ Pk,d}
Nf ′′(N)−1/(d+1)

<∞,

we prove the above inequalities. Also, note that f (d+1)(x) > 0 for every
sufficiently large x > 0 because of (B2).
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Proof of Proposition 3.3.2 (liminf). Without loss of generality, we may as-
sume n0 = 1. Fix integers k ≥ d+2 and d ≥ 1, and let N ∈ N be sufficiently
large. Take arbitrary ε ∈ (0, 1) and 0 < δ1 < · · · < δt < δt+1 = 1. Put

Ri = Ri(N) =
⌊(ε(d+ 1)!)1/(d+1)

k − 1
f (d+1)(δiN)−1/(d+1)

⌋
for i ∈ [t] and N ∈ N. Then all x ≥ δiN and r ∈ [1, Ri]Z satisfy

0 <
(r(k − 1))d+1

(d+ 1)!
f (d+1)(x)

(B1)

≤ (Ri(k − 1))d+1

(d+ 1)!
f (d+1)(δiN) ≤ ε. (3.4.13)

Now, the following inequality holds:

#{P ⊂ [1, N ]Z : P ∈ Pk,1, (⌊f(n)⌋)n∈P ∈ Pk,d}
≥ #{(n, r) ∈ [1, N − (k − 1)Rt]Z × [1, Rt]Z : (⌊f(n+ rj)⌋)k−1

j=0 ∈ Pk,d}
≥ #{(n, r) ∈ [1, N ]Z × [1, Rt]Z : (⌊f(n+ rj)⌋)k−1

j=0 ∈ Pk,d} − (k − 1)R2
t

(a)

≥
t∑
i=1

Mi(N)− (k − 1)R2
t ,

(3.4.14)

where for i ∈ [1, t]Z and N ∈ N the value Mi(N) is defined as

Mi(N) = #{(n, r) ∈ (δiN, δi+1N ]Z × [1, Ri]Z : (⌊f(n+ rj)⌋)k−1
j=0 ∈ Pk,d},

and the monotonicity R1 ≤ R2 ≤ · · · ≤ Rt is used to obtain (a). For n, r ∈ N
and i ∈ [0, d]Z, define the real number ai = ai(n, r) as the right-hand side in
(3.4.2). Then the vectors a(n, r) := (a0(n, r), a1(n, r), . . . , ad(n, r)), n, r ∈ N,
can be expressed as

a(n, r) = (f(n), rf ′(n), r2f ′′(n)/2!, . . . , rdf (d)(n)/d!)A,

where the integer matrix A = (aij)0≤i,j≤d is defined as aij = S(i, j)j! if i ≥ j,
and aij = 0 if i < j. Also, define the convex set C−

k,d+1(ε) as

C−
k,d+1(ε) =

{
(yi)

d
i=0 ∈ Rd+1 : 0 ≤ y0 < 1, 0 ≤

d∑
i=0

(
j

i

)
yi < 1−ε (∀j ∈ [1, k)Z)

}
.

Due to (3.4.13), the same argument as the proof of Proposition 3.3.1 implies
that if integers n ≥ δiN and r ∈ [1, Ri]Z and a vector (sj)

d
j=1 ∈ Zd satisfy
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({aj(n, r)}+ sj)
d
j=0 ∈ C−

k,d+1(ε), then (⌊f(n+ rj)⌋)k−1
j=0 belongs to Pk,d, where

s0 := 0. Thus,

#{P ⊂ [1, N ]Z : P ∈ Pk,1, (⌊f(n)⌋)n∈P ∈ Pk,d}
Nf (d+1)(N)−1/(d+1)

(3.4.14)

≥
t∑
i=1

Mi(N)

Nf (d+1)(N)−1/(d+1)
− (k − 1)R2

t

Nf (d+1)(N)−1/(d+1)

≥
t∑
i=1

∑
s1,...,sd∈Z

M ′
i(δi, δi+1, N)

Nf (d+1)(N)−1/(d+1)
− (k − 1)R2

t

Nf (d+1)(N)−1/(d+1)
, (3.4.15)

where for i ∈ [1, t]Z, N ∈ N and y > x ≥ 0 the value M ′
i(x, y,N) is defined

as

M ′
i(x, y,N) = #{(n, r) ∈ (xN, yN ]Z×[1, Ri]Z : ({aj(n, r)}+sj)dj=0 ∈ C−

k,d+1(ε)}.

The absolute value of the second term of (3.4.15) is bounded above by

(k − 1)R2
t

Nf (d+1)(N)−1/(d+1)
≤ k − 1

Nf (d+1)(N)−1/(d+1)
· (ε(d+ 1)!)2/(d+1)

(k − 1)2
f (d+1)(δtN)−2/(d+1)

(B1)

≤ f (d+1)(N)−2/(d+1)

Nf (d+1)(N)−1/(d+1)
· (ε(d+ 1)!)2/(d+1)

k − 1
≤ 1

Nf (d+1)(N)1/(d+1)
· (d+ 1)!

k − 1

N→∞−−−→
(B2)

0.

Also, the following inequality holds:

M ′
i(δi, δi+1, N)

Nf (d+1)(N)−1/(d+1)

(B3)

≥ M ′
i(δi, δi+1, N)

c(δi)1/(d+1)Nf (d+1)(δiN)−1/(d+1)

=
M ′

i(0, δi+1, N)−M ′
i(0, δi, N)

c(δi)1/(d+1)Nf (d+1)(δiN)−1/(d+1)

=
M ′

i(0, δi+1, N)

δi+1NRi

· c(δi)
−1/(d+1)δi+1Ri

f (d+1)(δiN)−1/(d+1)
− M ′

i(0, δi, N)

δiNRi

· c(δi)
−1/(d+1)δiRi

f (d+1)(δiN)−1/(d+1)
.

Once taking the limit N → ∞ in the above inequality, Lemma 3.4.5 implies
that

lim
N→∞

M ′
i(δi, δi+1, N)

Nf (d+1)(N)−1/(d+1)

≥ µ
(
C−
k,d+1(ε) ∩

d∏
j=0

[sj, sj + 1)
)
· (ε(d+ 1)!)1/(d+1)c(δi)

−1/(d+1)

k − 1
(δi+1 − δi).
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Therefore, letting N → ∞ in (3.4.15), we obtain

lim
N→∞

#{P ⊂ [1, N ]Z : P ∈ Pk,1, (⌊f(n)⌋)n∈P ∈ Pk,d}
Nf (d+1)(N)−1/(d+1)

≥
t∑
i=1

∑
s1,...,sd∈Z

µ
(
C−
k,d+1(ε) ∩

d∏
j=0

[sj, sj + 1)
)
· (ε(d+ 1)!)1/(d+1)c(δi)

−1/(d+1)

k − 1
(δi+1 − δi)

= µ(C−
k,d+1(ε))(ε(d+ 1)!)1/(d+1)

t∑
i=1

c(δi)
−1/(d+1)

k − 1
(δi+1 − δi) > 0,

where the last inequality is derived from µ(C−
k,d+1(ε)) ≥ (1−ε)d+1/

∏d
i=1

(
k−1
i

)
>

0 (see Lemma 3.4.1).

Remark 3.4.6 ( [SY21, Remark 4.6]). Let us consider the special case
f(x) = xα with α ∈ (d, d+1). Then we can take c(δ) in (B3) as c(δ) = δα−d−1.
Thus,

lim
N→∞

#{P ⊆ [1, N ]Z : P ∈ Pk,1, (⌊nα⌋)n∈P ∈ Pk,d}
((α)d+1)−1/(d+1)N2−α/(d+1)

≥ µ(C−
k,d+1(ε))(ε(d+ 1)!)1/(d+1)

t∑
i=1

δ
1−α/(d+1)
i (δi+1 − δi).

Since ε ∈ (0, 1) and 0 < δ1 < · · · < δt < δt+1 = 1 are arbitrary, we obtain

lim
N→∞

#{P ⊆ [1, N ]Z : P ∈ Pk,1, (⌊nα⌋)n∈P ∈ Pk,d}
N2−α/(d+1)

≥ Ck,d

((d+ 1)!

(α)d+1

)1/(d+1)
∫ 1

0

x1−α/(d+1) dx

= Ck,d

((d+ 1)!

(α)d+1

)1/(d+1) 1

2− α/(d+ 1)
=: Ãα,k,

where

Ck,d = sup
0<x<1

µ(C−
k,d+1(x))x

1/(d+1) ≥ sup0<x<1(1− x)d+1x1/(d+1)∏d
i=1

(
k−1
i

)
because the inequality µ(C−

k,d+1(x)) ≥ (1− x)d+1/
∏d

i=1

(
k−1
i

)
is derived from

Lemma 3.4.1. Therefore, the constant Aα,k in Theorem 3.1.2 is an arbitrary
value in the interval (0, Ãα,k).
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Proof of Proposition 3.3.2 (limsup). Without loss of generality, we may as-
sume n0 = 1. Fix integers k ≥ d+2 and d ≥ 1, and take an arbitrary β > 1.
Due to (B2), we can take an integer N0 ≥ x0(1/β) such that every x ≥ N0

satisfies that f (d+1)(x) > 0 and 1 + (k − 1)R(x)/x < β, where

R(x) :=
( 2dc(1/β)

k − d− 1

)1/(d+1)

f (d+1)(x)−1/(d+1).

First, we show that if integers n ≥ N0 and r ≥ 1 satisfy (⌊f(n+ rj)⌋)k−1
j=0 ∈

Pk,d, then r < R(n) by contradiction. Suppose that integers m0 ≥ N0 and
r0 ≥ 1 satisfied that (⌊f(m0 + r0j)⌋)k−1

j=0 ∈ Pk,d and r0 ≥ R0 := R(m0). The
derivative of the function

g(x) := ∆d
xf(m0 + (k − d− 1)x)−∆d

xf(m0)

=
d∑
i=0

(
d

i

)
(−1)if(m0 + (k − 1− i)x)−

d∑
i=0

(
d

i

)
(−1)if(m0 + (d− i)x)

is equal to

g′(x) =
d∑
i=0

(
d

i

)
(−1)i(k − 1− i)f ′(m0 + (k − 1− i)x)

−
d∑
i=0

(
d

i

)
(−1)i(d− i)f ′(m0 + (d− i)x)

= (k − 1)∆d
xf

′(m0 + (k − d− 1)x) +
d∑
i=0

(
d

i

)
(−1)i+1if ′(m0 + (k − 1− i)x)

− d∆d
xf

′(m0)−
d∑
i=0

(
d

i

)
(−1)i+1if ′(m0 + (d− i)x).
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Using the equality
(
d
i

)
i = d

(
d−1
i−1

)
, we have

g′(x) = (k − 1)∆d
xf

′(m0 + (k − d− 1)x) + d
d∑
i=1

(
d− 1

i− 1

)
(−1)i+1f ′(m0 + (k − 1− i)x)

− d∆d
xf

′(m0)− d
d∑
i=1

(
d− 1

i− 1

)
(−1)i+1f ′(m0 + (d− i)x)

= (k − 1)∆d
xf

′(m0 + (k − d− 1)x) + d

d−1∑
i=0

(
d− 1

i

)
(−1)if ′(m0 + (k − 2− i)x)

− d∆d
xf

′(m0)− d

d−1∑
i=0

(
d− 1

i

)
(−1)if ′(m0 + (d− 1− i)x)

= (k − 1)∆d
xf

′(m0 + (k − d− 1)x) + d∆d−1
x f ′(m0 + (k − d− 1)x)

− d∆d
xf

′(m0)− d∆d−1
x f ′(m0)

= (k − 1)∆d
xf

′(m0 + (k − d− 1)x) + d∆d−1
x f ′(m0 + (k − d− 1)x)

− d∆d−1
x f ′(m0 + x).

The mean value theorem implies that for all x > 0 there exist θ1, . . . , θd ∈
(0, x), θ′1 ∈ [0, (k − d− 2)x] and θ′2 . . . , θ

′
d ∈ (0, x) such that

g′(x) = (k − 1)x∆d−1
x f ′′(m0 + (k − d− 1)x+ θ1)

+ d(k − d− 2)x∆d−1
x f ′′(m0 + x+ θ′1)

= · · ·
= (k − 1)xdf (d+1)(m0 + (k − d− 1)x+ θ)

+ d(k − d− 2)xdf (d+1)(m0 + x+ θ′)

(a)
> 0,

where θ = θ1 + · · ·+ θd and θ
′ = θ′1 + · · ·+ θ′d; the inequality (a) follows from

the fact that f (d+1)(y) > 0 for all y ≥ N0. Thus, g′(x) is positive, and g(x)
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increases. Recalling that (⌊f(m0 + r0j)⌋)k−1
j=0 belongs to Pk,d, we have

2d = ∆d
r0
⌊f(m0 + (k − d− 1)r0)⌋ −∆d

r0
⌊f(m0)⌋+ 2d

> ∆d
r0
f(m0 + (k − d− 1)r0)−∆d

r0
f(m0)

(b)

≥ ∆d
R0
f(m0 + (k − d− 1)R0)−∆d

R0
f(m0)

(c)
= (k − d− 1)R0∆

d
R0
f ′(m0 + θ0)

(c)
= · · · (c)

= (k − d− 1)Rd+1
0 f (d+1)(m0 + θ)

= 2dc(1/β)
f (d+1)(m0 + θ)

f (d+1)(m0)
,

(3.4.16)

where the monotonicity of g and the inequality r0 ≥ R0 have been used
to obtain (b); the mean value theorem has been used to obtain (c); θ0 ∈
(0, (k − d − 1)R0), θ1, . . . , θd ∈ (0, R0), and θ = θ0 + θ1 + · · · + θd. Put
β0 = 1 + (k − 1)R0/m0. Since the inequality β0 < β holds due to m0 ≥ N0,
it follows that

f (d+1)(m0 + θ)
(B1)

≥ f (d+1)(m0 + (k − 1)R0) = f (d+1)(β0m0)

≥ f (d+1)(βm0)
(B3)

≥ c(1/β)−1f (d+1)(m0).

(3.4.17)

Thus, (3.4.16) and (3.4.17) yield that

2d > 2dc(1/β)
f (d+1)(m0 + θ)

f (d+1)(m0)
≥ 2dc(1/β)

c(1/β)−1f (d+1)(m0)

f (d+1)(m0)
= 2d,

which is a contradiction. Therefore, if (⌊f(n+ rj)⌋)k−1
j=0 ∈ Pk,d, n ≥ N0 and

r ≥ 1, then r < R(n).
Next, we show Proposition 3.3.2 (limsup). Let N ∈ N be sufficiently

large. Since the inequality

#{P ⊂ [1, N ]Z : P ∈ Pk,1, (⌊f(n)⌋)n∈P ∈ Pk,d}
≤ #{(n, r) ∈ [1, N ]Z × [1, N ]Z : (⌊f(n+ rj)⌋)k−1

j=0 ∈ Pk,d}
≤ #{(n, r) ∈ [1, N0]Z × [1, N ]Z}+#{(n, r) ∈ [N0, N ]Z × [1, N ]Z : r < R(n)}

≤ N0N +
N∑

n=N0

R(n)
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holds, it follows that

lim
N→∞

#{P ⊂ [1, N ]Z : P ∈ Pk,1, (⌊f(n)⌋)n∈P ∈ Pk,d}
Nf (d+1)(N)−1/(d+1)

≤ lim
N→∞

f (d+1)(N)1/(d+1)

N

N∑
n=N0

R(n)
(B1)

≤ lim
N→∞

f (d+1)(N)1/(d+1)R(N)

=
( 2dc(1/β)

k − d− 1

)1/(d+1)

<∞.

Remark 3.4.7 ( [SY21, Remark 4.7]). Let us consider the special case
f(x) = xα with α ∈ (d, d+1). Then we can take c(δ) in (B3) as c(δ) = δα−d−1.
Thus,

lim
N→∞

#{P ⊂ [1, N ]Z : P ∈ Pk,1, (⌊nα⌋)n∈P ∈ Pk,d}
((α)d+1)−1/(d+1)N2−α/(d+1)

≤ lim
N→∞

f (d+1)(N)1/(d+1)

N

N∑
n=1

( 2dc(1/β)

k − d− 1

)1/(d+1)

f (d+1)(n)−1/(d+1)

= lim
N→∞

Nα/(d+1)−2

N∑
n=1

( 2dβd+1−α

k − d− 1

)1/(d+1)

n1−α/(d+1)

=
( 2dβd+1−α

k − d− 1

)1/(d+1) 1

2− α/(d+ 1)
.

The arbitrariness of β > 1 yields

lim
N→∞

#{P ⊂ [1, N ]Z : P ∈ Pk,1, (⌊nα⌋)n∈P ∈ Pk,d}
N2−α/(d+1)

≤
( 2d

(α)d+1(k − d− 1)

)1/(d+1) 1

2− α/(d+ 1)
=: B̃α,k.

Therefore, the constant Bα,k in Theorem 3.1.2 is an arbitrary value in the
interval (B̃α,k,∞).

3.5 Further analysis: discrepancy and short

intervals

In this section, we show Theorems 3.2.3 and 3.2.4. These theorems are
derived from the following proposition.
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Proposition 3.5.1 ( [SY21, Proposition 5.1]). Let α ∈ (1, 2) and c > 0, and
let k ≥ 3 and r ≥ 1 be integers. Then, there exists N0 = N0(α, k, r) ∈ N
such that for all N ∈ [N0,∞)Z and L ∈ [1, cN ]Z,

1

L
#{n ∈ [N,N + L)Z : (⌊(n+ rj)α⌋)k−1

j=0 ∈ Pk,1} −
1

k − 1

≪α,k,r,c


N (α−2)/6(logN)1/2 +N (2−α)/2/L1/2 α ∈ (1, 2),

N (α−3)/14(logN)1/2 +N (2−α)/2/L1/2 α ∈ (1, 3/2),

(N (α−3)/14 +N (3−α)/6/L1/2)(logN)1/2 α ∈ [3/2, 11/6).

(3.5.1)

Remark 3.5.2 ( [SY21, Remark 5.2]). The first one of (3.5.1) is the best
of the three cases when α ∈ (1, 5/4] ∪ [11/6, 2); the second one of (3.5.1) is
the best of the three cases when α ∈ (5/4, 3/2). However, it depends on the
growth rate of L whether the third one of (3.5.1) is the best of the three cases
when α ∈ [3/2, 11/6). For instance, if L = N and α ∈ [3/2, 11/6), then the
third one of (3.5.1) is the best of the three cases; but if ε ∈ (0, (2 − α)/3),
L = N2−α+ε and α ∈ [3/2, 11/6), then the first one of (3.5.1) is the best of
the three cases.

Proposition 3.5.1 is an asymptotic formula for the number of integers
n ≥ 1 in a short interval such that (⌊(n+ rj)α⌋)k−1

j=0 is an AP. We prove
Proposition 3.5.1 at the end of this section. Note that (3.5.1) is meaningless
when L = L(N) is sufficiently smaller than N . This is because in the case,
the right-hand side in (3.5.1) diverges to positive infinity as N → ∞. Before
proving Proposition 3.5.1, let us show Theorems 3.2.3 and 3.2.4 by using
Proposition 3.5.1.

Proof of Theorem 3.2.3 assuming Proposition 3.5.1. Let α ∈ (1, 2), and let
k ≥ 3 and r ≥ 1 be integers. Also, define the set Q as

Q = {n ∈ N : (⌊(n+ rj)α⌋)k−1
j=0 ∈ Pk,1}. (3.5.2)

Then Proposition 3.5.1 implies that

#(Q∩ [x, 2x))

x
=

1

k − 1
+Oα,k,r(F0(x)),

where

F0(x) :=


x(α−2)/6(log x)1/2 + x(1−α)/2 α ∈ (1, 5/4) ∪ [11/6, 2),

x(α−3)/14(log x)1/2 + x(1−α)/2 α ∈ [5/4, 3/2),

(x(α−3)/14 + x−α/6)(log x)1/2 α ∈ [3/2, 11/6).
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Noting the ranges of α, we have F0(x) ≪ F (x), where F is defined in
Theorem 3.2.3. Let N ∈ N be sufficiently large and take M ∈ N with
2M ≤ N < 2M+1. Then

0 ≤ #(Q∩ [1, N ])

N
− 1

N

M∑
m=1

#(Q∩ [2−mN, 21−mN)) ≤ 2/N,

1

N

M∑
m=1

#(Q∩ [2−mN, 21−mN)) =
M∑
m=1

2−m

k − 1
+Oα,k,r

( M∑
m=1

2−mF (2−mN)
)

=
1− 2−M

k − 1
+Oα,k,r(F (N)) =

1

k − 1
+Oα,k,r(1/N + F (N)).

Therefore, Theorem 3.2.3 holds.

Proof of Theorem 3.2.4 assuming Proposition 3.5.1. Let α ∈ (1, 2), and let
k ≥ 3 and r ≥ 1 be integers. Define the set Q as (3.5.2). Thanks to
the first inequality of (3.5.1), there exist constants C = C(α, k, r) > 0 and
N0 = N0(α, k, r) ∈ N such that for all N ∈ [N0,∞)Z and L ∈ [1, N ]Z,∣∣∣∣#(Q∩ [N,N + L))

L
− 1

k − 1

∣∣∣∣ ≤ CE0(N,L), (3.5.3)

where E0(N,L) := N (α−2)/6(logN)1/2+N (2−α)/2/L1/2. Without loss of gener-
ality, we may assume that N (α−2)/6(logN)1/2 < 1/2C(k−1) for every integer
N ≥ N0. Putting L = L(N) = ⌈4C2(k − 1)2N2−α⌉, we have

E0(N,L) <
1

2C(k − 1)
+

1

2C(k − 1)
=

1

C(k − 1)

for every integer N ≥ N0. Therefore, for every integer N ≥ N0, the left-hand
side in (3.5.3) is less than 1/(k− 1), whence #(Q∩ [N,N +L)) > 0. Finally,
the length L′ = L′(N) := max{N0 + L(N0), L} = Oα,k,r(N

2−α) satisfies that
#(Q∩ [N,N + L′)) > 0 for all N ∈ N.

To prove Proposition 3.5.1, we need to estimate the convergence speed of
(2.1.1) for a uniformly distributed sequence. For this purpose, let us apply
discrepancies. For a sequence (xn)

N
n=1 of Rd, define the isotropic discrepancy

JN as

JN = J ((xn)
N
n=1) = sup

C⊆[0,1)d
convex

∣∣∣∣∣#
{
n ∈ [N ] : {xn} ∈ C

}
N

− µ(C)

∣∣∣∣∣ ,
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where µ denotes the Lebesgue measure on Rd. Let DN be the discrepancy of
(xn)

N
n=1. Although the inequality DN ≤ JN is trivial, the following reverse

inequality holds [KN74, Theorem 1.6, Chapter 2]:

JN ≤ (4d
√
d+ 1)D

1/d
N (3.5.4)

for every d,N ∈ N and x1, . . . ,xN ∈ Rd. Thanks to (3.5.4), it suffices to
give an upper bound for the discrepancy in order to estimate the conver-
gence speed of (2.1.1). The Erdős-Turán-Koksma inequality (2.2.1) is useful
to evaluate discrepancies. Thanks to this inequality, it suffices to evaluate
exponential sums in order to find upper bounds for discrepancies.

Lemma 3.5.3 ( [SY21, Lemma 5.7]). Let α ∈ (1, 2), r ∈ N, and c > 0.
Then, there exists N0 = N0(α, r) ∈ N such that for all N ∈ [N0,∞)Z and

L ∈ [1, cN ]Z, the discrepancy D(N,L) of the sequence
(
(nα, rαnα−1)

)N+L−1

n=N
satisfies

D(N,L) ≪α,c


N (α−2)/3 logN +N2−α/L α ∈ (1, 2),

N (α−3)/7 logN +N2−α/L α ∈ (1, 3/2),

(N (α−3)/7 +N (3−α)/3/L) logN α ∈ [3/2, 11/6).

Proof. Let f(x) = xα. The inequality (2.2.1) with d = 2 implies that for all
L,N,K ∈ N,

D(N,L) ≪ 1

K
+

∑
|h0|,|h1|≤K
(h0,h1) ̸=(0,0)

1

ν(h0, h1)

∣∣∣∣∣ 1L
N+L−1∑
n=N

e(h0f(n) + h1rf
′(n))

∣∣∣∣∣ .
Taking an integer

N0 = N0(α, r)

≥ max{(2r)3/(1+α), 23/(2−α), (4r)3/2(2−α), (2r)7/(4+α), 27/(3−α), (4r)7/(11−6α)},

we evaluate the right-hand side above in two ways.
Step 1. Let us show that for all N ∈ [N0,∞)Z and L ∈ [1, cN ]Z,

D(N,L) ≪α,c N
(α−2)/3 logN +N2−α/L. (3.5.5)

Take N ∈ [N0,∞)Z and L ∈ [1, cN ]Z arbitrarily, and put K = ⌊N (2−α)/3⌋.
Then, note that rK/N ≤ rN−(1+α)/3 ≤ rN

−(1+α)/3
0 ≤ 1/2 and logK ≥ log 2.
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Consider the case when |h0|, |h1| ≤ K and h0 ̸= 0. When x ∈ [N,N +L− 1],
the function g(x) = h0f(x) + h1rf

′(x) satisfies that

|g′′(x)| ≤ |h0| f ′′(x)(1 + rK |f ′′′(x)/f ′′(x)|)
≪ |h0|Nα−2(1 + rK/N) ≪ |h0|Nα−2,

|g′′(x)| ≥ |h0| f ′′(x)(1− rK |f ′′′(x)/f ′′(x)|)
≫α |h0| (N + L)α−2(1− rK/N) ≫c |h0|Nα−2.

Thus, Lemma 2.2.2 implies that

1

L

N+L−1∑
n=N

e(h0f(n) + h1rf
′(n)) ≪α,c |h0|1/2N (α−2)/2 + |h0|−1/2N (2−α)/2/L.

Therefore, it follows that

∑
|h0|,|h1|≤K

h0 ̸=0

1

ν(h0, h1)

∣∣∣∣∣ 1L
N+L−1∑
n=N

e(h0f(n) + h1rf
′(n))

∣∣∣∣∣
≪α,c

∑
|h0|,|h1|≤K

h0 ̸=0

|h0|1/2N (α−2)/2 + |h0|−1/2N (2−α)/2/L

ν(h0, h1)

≪
( K∑
h1=1

1

h1
+ 1
) K∑
h0=1

(
h
−1/2
0 N (α−2)/2 + h

−3/2
0 N (2−α)/2/L

)
≪ (logK)(K1/2N (α−2)/2 +N (2−α)/2/L) ≪ (N (α−2)/3 +N (2−α)/2/L) logN.

Next, consider the case when 1 ≤ |h1| ≤ K and h0 = 0. When x ∈
[N,N + L− 1], the function g(x) = h1rf

′(x) satisfies that

|g′(x)| = r |h1| f ′′(x) ≤ 2rKNα−2 ≤ 2rN (2/3)(α−2) ≤ 2rN
(2/3)(α−2)
0 ≤ 1/2,

|g′(x)| ≫α |h1| (N + L)α−2 ≫c |h1|Nα−2.

This yields that min{|g′(x)−m| : m ∈ Z} = |g′(x)| for all x ∈ [N,N+L−1].
Thus, Lemma 2.2.1 implies that

1

L

N+L−1∑
n=N

e(h1rf
′(n)) ≪α,c |h1|−1N2−α/L.
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Therefore, it follows that

∑
1≤|h1|≤K
h0=0

1

ν(h0, h1)

∣∣∣∣∣ 1L
N+L−1∑
n=N

e(h0f(n) + h1rf
′(n))

∣∣∣∣∣
≪α,c

∑
1≤|h1|≤K

|h1|−1N2−α/L

|h1|
≪ N2−α/L.

(3.5.6)

Summarizing the above two cases, we have

D(N,L) ≪ 1

K
+

∑
|h0|,|h1|≤K
(h0,h1 )̸=(0,0)

1

ν(h0, h1)

∣∣∣∣∣ 1L
N+L−1∑
n=N

e(h0f(n) + h1rf
′(n))

∣∣∣∣∣
≪α,c N

(α−2)/3 + (N (α−2)/3 +N (2−α)/2/L) logN +N2−α/L

≪ N (α−2)/3 logN +N2−α/L,

which is just (3.5.5).
Step 2. Assume α ∈ (1, 11/6). Let us show that for all N ∈ [N0,∞)Z and
L ∈ [1, cN ]Z,

D(N,L) ≪α,c

{
N (α−3)/7 logN +N2−α/L α ∈ (1, 3/2),

(N (α−3)/7 +N (3−α)/3/L) logN α ∈ [3/2, 11/6).
(3.5.7)

Take N ∈ [N0,∞)Z and L ∈ [1, cN ]Z arbitrarily, and put K = ⌊N (3−α)/7⌋.
Then, note that rK/N ≤ rN−(4+α)/7 ≤ rN

−(4+α)/7
0 ≤ 1/2 and logK ≥ log 2.

Consider the case when |h0|, |h1| ≤ K and h0 ̸= 0. When x ∈ [N,N +L− 1],
the function g(x) = h0f(x) + h1rf

′(x) satisfies that

|g′′′(x)| ≤ |h0f ′′′(x)| (1 + rK |f ′′′′(x)/f ′′′(x)|)
≪ |h0|Nα−3(1 + rK/N) ≪ |h0|Nα−3,

|g′′′(x)| ≥ |h0| f ′′′(x)(1− rK |f ′′′′(x)/f ′′′(x)|)
≫α |h0| (N + L)α−3(1− rK/N) ≫c |h0|Nα−3.

Since 0 < |h0|Nα−3 ≤ KNα−3 ≤ N (6/7)(α−3) < 1, Lemma 2.2.3 implies that

1

L

N+L−1∑
n=N

e(h0f(n) + h1rf
′(n)) ≪α,c |h0|1/6N (α−3)/6 + |h0|−1/3N (3−α)/3/L.
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Therefore, it follows that

∑
|h0|,|h1|≤K

h0 ̸=0

1

ν(h0, h1)

∣∣∣∣∣ 1L
N+L−1∑
n=N

e(h0f(n) + h1rf
′(n))

∣∣∣∣∣
≪α,c

∑
|h0|,|h1|≤K

h0 ̸=0

|h0|1/6N (α−3)/6 + |h0|−1/3N (3−α)/3/L

ν(h0, h1)

≪
( K∑
h1=1

1

h1
+ 1
) K∑
h0=1

(
h
−5/6
0 N (α−3)/6 + h

−4/3
0 N (3−α)/3/L

)
≪ (logK)(K1/6N (α−3)/6 +N (3−α)/3/L) ≪ (N (α−3)/7 +N (3−α)/3/L) logN.

Next, consider the case when 1 ≤ |h1| ≤ K and h0 = 0. When x ∈
[N,N + L− 1], the function g(x) = h1rf

′(x) satisfies that

|g′(x)| = r |h1| f ′′(x) ≤ 2rKNα−2 ≤ 2rN (6α−11)/7 ≤ 2rN
(6α−11)/7
0 ≤ 1/2,

|g′(x)| ≫α,c |h1|Nα−2.

This yields that min{|g′(x) − m| : m ∈ Z} = |g′(x)| for all x ∈ [N,N +
L − 1]. From the same calculation as Step 1, the inequality (3.5.6) follows.
Summarizing the above two cases, we have

D(N,L) ≪ 1

K
+

∑
|h0|,|h1|≤K
(h0,h1 )̸=(0,0)

1

ν(h0, h1)

∣∣∣∣∣ 1L
N+L−1∑
n=N

e(h0f(n) + h1rf
′(n))

∣∣∣∣∣
≪α,c N

(α−3)/7 + (N (α−3)/7 +N (3−α)/3/L) logN +N2−α/L

≪ (N (α−3)/7 +N (3−α)/3/L) logN +N2−α/L

≪

{
N (α−3)/7 logN +N2−α/L α ∈ (1, 3/2),

(N (α−3)/7 +N (3−α)/3/L) logN α ∈ [3/2, 11/6),

which is just (3.5.7).
Finally, combining (3.5.5) and (3.5.7), we obtain Lemma 3.5.3.

Proof of Proposition 3.5.1. Take N0 = N0(α, r) ∈ N in Lemma 3.5.3. Let
f(x) = xα,

N ′
0 = N ′

0(α, k, r) = max
(
N0,

⌈(
r2(k − 1)2α(α− 1)

)1/(2−α)⌉)
,
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N ∈ [N ′
0,∞)Z and L ∈ [1, cN ]Z. Then

ε = ε(N) :=
r2(k − 1)2

2
f ′′(N) ∈ (0, 1/2).

The discrepancy and isotropic discrepancy of the sequence
(
(a0(n), a1(n))

)N+L−1

n=N
are denoted by D(N,L) and J(N,L) respectively, where a0(n) and a1(n) are
defined by (3.4.2) with d = 1. Note that a0(n) = f(n) and a1(n) = rf ′(n).
Also, define the set Q as (3.5.2). Recall the proof of Proposition 3.3.1. The
sets C∓

k,2(ε) defined by (3.4.5) and (3.4.9) with d = 1 satisfy the inclusion
relations ∪

s1∈Z

{n ∈ [N,∞)Z : ({a0(n)}, {a1(n)}+ s1) ∈ C−
k,2(ε)} ⊂ Q,

Q∩ [N,∞) ⊂
∪
s1∈Z

{n ∈ N : ({a0(n)}, {a1(n)}+ s1) ∈ C+
k,2(ε)}. (3.5.8)

Thus, we have that

#(Q∩ [N,N + L))

L

≥
∑
s1∈Z

#{n ∈ [N,N + L)Z : ({a0(n)}, {a1(n)}+ s1) ∈ C−
k,2(ε)}

L

≥
∑
s1∈Z

(
µ
(
C−
k,2(ε) ∩

(
[0, 1)× [s1, s1 + 1)

))
− J(N,L)

)
≥ µ(C−

k,2(ε))− C−
k J(N,L)

and

#(Q∩ [N,N + L))

L

≤
∑
s1∈Z

#{n ∈ [N,N + L)Z : ({a0(n)}, {a1(n)}+ s1) ∈ C+
k,2(ε)}

L

≤
∑
s1∈Z

(
µ
(
C+
k,2(ε) ∩

(
[0, 1)× [s1, s1 + 1)

))
+ J(N,L)

)
≤ µ(C+

k,2(ε)) + C+
k J(N,L)

for some C∓
k ∈ N, since all the above sums are finite sums. (Indeed, we

can take C∓
k = 2, but this fact is not used here). Now, the sets C∓

k,2(ε) are
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simplified as

C−
k,2(ε) = {(y0, y1) ∈ R2 : 0 ≤ y0 < 1, ε ≤ y0 + (k − 1)y1 < 1− ε},

C+
k,2(ε) = {(y0, y1) ∈ R2 : 0 ≤ y0 < 1, −ε ≤ y0 + (k − 1)y1 < 1 + ε},

whence µ(C∓
k,2(ε)) = (1∓ 2ε)/(k − 1). Thus,∣∣∣∣#(Q∩ [N,N + L))

L
− 1

k − 1

∣∣∣∣ ≤ 2ε

k − 1
+ max{C∓

k } · J(N,L).

Using the inequality (3.5.4) and Lemma 3.5.3, we obtain∣∣∣∣#(Q∩ [N,N + L))

L
− 1

k − 1

∣∣∣∣ ≤ 2ε

k − 1
+ max{C∓

k } · 2(8
√
2 + 1)D(N,L)1/2

≪k,r N
α−2 +D(N,L)1/2

≪α,c


N (α−2)/6(logN)1/2 +N (2−α)/2/L1/2 α ∈ (1, 2),

N (α−3)/14(logN)1/2 +N (2−α)/2/L1/2 α ∈ (1, 3/2),

(N (α−3)/14 +N (3−α)/6/L1/2)(logN)1/2 α ∈ [3/2, 11/6),

where the inequality (x + y)1/2 ≤ x1/2 + y1/2 for x, y ≥ 0 has been used to
obtain the last inequality.

3.6 Optimality of the growth rate Oα,k,r(x
2−α)

Throughout this appendix, let f(x) = xα. As stated in Theorem 3.2.3,
the relation Lα,k,r(x) = Oα,k,r(x

2−α) holds. We show that the growth rate
Oα,k,r(x

2−α) is best for every k ≥ 4 in the following meaning.

Proposition 3.6.1 ( [SY21, Proposition A.1]). For all α ∈ (1, 2) and all
integers k ≥ 4 and r ≥ 1,

lim
x→∞

Lα,k,r(x)

x2−α
≥ k − 3

α(α− 1)r(k − 1)
. (3.6.1)

Proof. Let k ≥ 4 and r ≥ 1 be integers, and let α ∈ (1, 2) and β ∈ (0, k −
3). Since (rf ′(n))∞n=1 is uniformly distributed modulo 1 and the inequality
1/(k−1) < 1− (β+1)/(k−1) holds, there exist infinitely many N ∈ N such
that

1

k − 1
≤ {rf ′(N)} ≤ 1− β + 1

k − 1
. (3.6.2)
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Take a sufficiently large N ∈ N that satisfies (3.6.2) and

ε = ε(N) :=
(k − 1)2r2

2
f ′′(N) ∈ (0, 1). (3.6.3)

Now, define the set Q as (3.5.2), and take m ∈ [0, Lα,k,r(N)]Z such that
N +m ∈ Q. Recall the proof of Proposition 3.3.1. The set

C+
k,2(ε) = {(y0, y1) ∈ R2 : 0 ≤ y0 < 1, −ε ≤ y0 + (k − 1)y1 < 1} (3.6.4)

satisfies the inclusion relation (3.5.8), where a0(n) and a1(n) are defined by
(3.4.2) with d = 1. Note that a0(n) = f(n) and a1(n) = rf ′(n). Due to
(3.5.8), the vector ({f(N +m)}, {rf ′(N +m)}+ s1) lies in C+

k,2(ε) for some
s1 ∈ Z. The integer s1 is equal to 0 or −1, which is proved at the end of this
proof.

If s1 = −1, then the inequalities −ε ≤ {f(N +m)} + (k − 1)({rf ′(N +
m)} − 1) < 1 and (3.6.2) and the mean value theorem imply that

1− 1 + ε

k − 1
≤ {rf ′(N +m)} ≤ {rf ′(N)}+ rmf ′′(N)

≤ 1− β + 1

k − 1
+ rLα,k,r(N)f ′′(N),

whence Lα,k,r(N)f ′′(N) ≥ (β − ε)/r(k − 1). If s1 = 0, then the inequalities
−ε ≤ {f(N +m)}+ (k − 1){rf ′(N +m)} < 1 and (3.6.2) yield

{rf ′(N +m)} < 1

k − 1
≤ {rf ′(N)} ≤ 1− β + 1

k − 1
.

Since f ′ and f ′′ are increasing and decreasing functions respectively, the mean
value theorem implies that

β + 1

k − 1
≤ rf ′(N +m)− rf ′(N) ≤ rmf ′′(N) ≤ rLα,k,r(N)f ′′(N),

whence Lα,k,r(N)f ′′(N) ≥ β/r(k − 1). Since ε = ε(N) vanishes as N → ∞,
it turns out that

lim
x→∞

Lα,k,r(x)

x2−α
≥ β

α(α− 1)r(k − 1)
.

Letting β → k − 3, we obtain (3.6.1).
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We show that if (x0, x1 + s1) ∈ C+
k,2(ε), (x0, x1) ∈ [0, 1)2 and s1 ∈ Z, then

s1 ∈ {0,−1}. (The assumption k ≥ 3 suffices here.) The definition of C+
k,2(ε)

yields that

(k − 1)s1 ≤ x0 + (k − 1)(x1 + s1) < 1 + ε < 2,

0 ≤ x0 + (k − 1)(x1 + s1) < 1 + (k − 1)(1 + s1),

whence −3/2 ≤ −k/(k − 1) < s1 < 2/(k − 1) ≤ 1. Therefore, the integer s1
is equal to 0 or −1.

When k = 3, the above proof does not work well, since there does not
existN ∈ N satisfying (3.6.2). The relation Lα,3,r(x) = Oα,r(x

1−α/2) probably
holds, but we do not have its proof. However, if Lα,3,r(x) = Oα,r(x

1−α/2)
holds, then the growth rate Oα,r(x

1−α/2) is best in the following meaning.

Proposition 3.6.2 ( [SY21, Proposiiton A.2]). For all α ∈ (1, 2) and r ≥ N,

lim
x→∞

Lα,3,r(x)

x1−α/2
≥

√
2− 1√

α(α− 1)r
.

To prove Proposition 3.6.2, we need to choose infinitely many N ∈ N
with certain properties instead of (3.6.1). For this purpose, let us show the
following lemmas.

Lemma 3.6.3 ( [SY21, Lemma A.3]). Let α ∈ (1, 2) and r ∈ N. Then there
exist infinitely many N ∈ N such that 0 ≤ {f ′(N)} − 1/2r < f ′′(N − 1).

Proof. Take an arbitrary N ∈ N such that f ′′(N) < 1/2r and Nf ′′(2N) > 1.
Since the inequality f ′(2N) − f ′(N) > Nf ′′(2N) > 1 holds, some m ∈ Z
satisfies f ′′(N) < 1/2r + m < f ′′(2N). Also, the sequence (f ′(N + n))Nn=0

increases and the difference f ′(N + n + 1) − f ′(N + n) is bounded above
by f ′′(N) < 1/2r. Thus, we can take the minimum n ∈ [1, N ]Z such that
f ′(N + n− 1) < 1/2r +m ≤ f ′(N + n) < 1 +m. Then it follows that

0 ≤ {f ′(N + n)} − 1/2r < f ′(N + n)− f ′(N + n− 1) < f ′′(N + n− 1).

The arbitrariness of N implies Lemma 3.6.3.

Lemma 3.6.4 ( [SY21, Lemma A.4]). Let α ∈ (1, 2) and r ∈ N. For all
c0 > 2r1/2 and c1 > r−1/2, there exist infinitely many N ∈ N such that
{f(N)} < c1f

′′(N)1/2 and 0 ≤ {f ′(N)} − 1/2r < c0f
′′(N)1/2.
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Proof. Let c0 > 2r1/2 and c1 > r−1/2. Take a sufficiently large N ∈ N
such that 0 ≤ {f ′(N)} − 1/2r < f ′′(N − 1) (see Lemma 3.6.3). Also, take
s ∈ [1, 2r]Z such that −1/2r < {f(N)} − s/2r ≤ 0. Defining nm = 2rm− s
and xm = f(N + nm) −m − nm⌊f ′(N)⌋ for m ∈ [1,M + 1]Z, we verify the
following facts.

1. 0 < xm+1 − xm < 2rf ′′(N − 1) + 4r2(M + 1)f ′′(N) for all m ∈ [1,M ]Z.

2. xM+1 − x1 > 2r2M2f ′′(N + 2r(M + 1))− 2r2f ′′(N).

3. −1/2r < x1 − ⌊f(N)⌋ < 2rf ′′(N − 1) + 2r2f ′′(N).

Fact (1):

xm+1 − xm > 2rf ′(N)− 1− 2r⌊f ′(N)⌋ = 2r{f ′(N)} − 1 ≥ 0,

xm+1 − xm < 2rf ′(N + nm+1)− 1− 2r⌊f ′(N)⌋
< 2r(f ′(N) + nm+1f

′′(N))− 1− 2r⌊f ′(N)⌋
< 2r{f ′(N)} − 1 + 2rnm+1f

′′(N)

< 2rf ′′(N − 1) + 4r2(M + 1)f ′′(N).

Fact (2):

xM+1 − x1 > f(N + nM+1)− f(N + n1)−M − 2rM⌊f ′(N)⌋
= f(N + nM+1)− f(N + n1)− 2rMf ′(N) +M(2r{f ′(N)} − 1)

≥ f(N + nM+1)− f(N + n1)− 2rMf ′(N)

>
(
f(N) + nM+1f

′(N) +
n2
M+1

2
f ′′(N + nM+1)

)
−
(
f(N) + n1f

′(N) +
n2
1

2
f ′′(N)

)
− 2rMf ′(N)

=
n2
M+1

2
f ′′(N + nM+1)−

n2
1

2
f ′′(N)

> 2r2M2f ′′(N + 2r(M + 1))− 2r2f ′′(N).

Fact (3):

x1 − ⌊f(N)⌋ = f(N + n1)− 1− n1⌊f ′(N)⌋ − ⌊f(N)⌋
> f(N) + n1f

′(N)− 1− n1⌊f ′(N)⌋ − ⌊f(N)⌋
= {f(N)}+ n1{f ′(N)} − 1

≥ {f(N)}+ n1/2r − 1 = {f(N)} − s/2r > −1/2r
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and

x1 − ⌊f(N)⌋ = f(N + n1)− 1− n1⌊f ′(N)⌋ − ⌊f(N)⌋

< f(N) + n1f
′(N) +

n2
1

2
f ′′(N)− 1− n1⌊f ′(N)⌋ − ⌊f(N)⌋

= {f(N)}+ n1{f ′(N)}+ n2
1

2
f ′′(N)− 1

< {f(N)}+ n1(1/2r + f ′′(N − 1)) +
n2
1

2
f ′′(N)− 1

< {f(N)} − s/2r + n1f
′′(N − 1) +

n2
1

2
f ′′(N)

≤ n1f
′′(N − 1) +

n2
1

2
f ′′(N) < 2rf ′′(N − 1) + 2r2f ′′(N).

Now, we have the following two cases:

1. x1 − ⌊f(N)⌋ ≥ 0,

2. x1 − ⌊f(N)⌋ < 0.

Case (1). The sufficiently large N satisfies that

{f(N + n1)} = {x1}
Fact (3)
< 2rf ′′(N − 1) + 2r2f ′′(N) < c0f

′′(N + n1)
1/2,

{f ′(N + n1)} < {f ′(N)}+ n1f
′′(N) < 1/2r + f ′′(N − 1) + 2rf ′′(N)

< 1/2r + c1f
′′(N + n1)

1/2,

{f ′(N + n1)} > {f ′(N)} ≥ 1/2r.

Case (2). Take 1 < β < β′ = min{c0/2r1/2, c1/r−1/2} and put M =
⌈βf ′′(N)−1/2/2r3/2⌉ = O(N1−α/2). Since the sufficiently large N satisfies

xM+1 − x1 >
f ′′(N + 2r(M + 1))

2rf ′′(N)
− 2r2f ′′(N)

=
β

2r

( N

N + 2r(M + 1)

)2−α
− 2r2f ′′(N) >

1

2r
,

we can take the minimum m ∈ [1,M ]Z such that xm+1 − ⌊f(N)⌋ ≥ 0. Then
the sufficiently large N satisfies that

{f(N + nm+1)} = {xm+1} < xm+1 − xm
Fact (2)
< 2rf ′′(N − 1) + 4r2(M + 1)f ′′(N)

< 2r1/2β′f ′′(N + nm+1)
1/2 ≤ c0f

′′(N + nm+1)
1/2
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and

{f ′(N + nm+1)} < {f ′(N)}+ nm+1f
′′(N) < 1/2r + f ′′(N − 1) + 2r(M + 1)f ′′(N)

< 1/2r + r−1/2β′f ′′(N + nm+1)
1/2 ≤ 1/2r + c1f

′′(N + nm+1)
1/2,

{f ′(N + nm+1)} > {f ′(N)} ≥ 1/2r.

Therefore, Lemma 3.6.4 holds.

Proof of Proposition 3.6.2. Let c0 > 2r1/2, c1 > r−1/2 and 0 < c2 <
√
c21 + 1/r−

c1. Thanks to Lemma 3.6.4, we can take a sufficiently large N ∈ N such that

1. {f(N)} < c0f
′′(N)1/2,

2. 0 ≤ {f ′(N)} − 1/2r < c1f
′′(N)1/2,

3. rc1f
′′(N)1/2 < 1/2.

Moreover, the inequality

4. 0 ≤ {rf ′(N)} − 1/2 < rc1f
′′(N)1/2

follows from (2) and (3). Set ε = ε(N) = 2r2f ′′(N) ∈ (0, 1), which is just
(3.6.3) with k = 3. We show that Lα,3,r(N) > c2f

′′(N)−1/2 by contradiction.
Suppose that Lα,3,r(N) ≤ c2f

′′(N)−1/2. Take m ∈ [0, Lα,3,r(N)]Z such that
(⌊f(N +m+ rj)⌋)2j=0 is an AP. Since the set C+

k,2(ε) defined by (3.6.4) satis-
fies the inclusion relation (3.5.8), the vector ({f(N+m)}, {rf ′(N+m)}+s1)
lies in C+

k,2(ε) for some s1 ∈ Z. The integer s1 is equal to 0 or −1 (see the
end of the proof of Proposition 3.6.1).

If s1 = 0, then the inequalities −ε ≤ {f(N +m)}+ 2{rf ′(N +m)} < 1,
m ≤ Lα,3,r(N) ≤ c2f

′′(N)−1/2 and (4) yield that

{rf ′(N +m)} < 1/2 ≤ {rf ′(N)} < 1/2 + rc1f
′′(N)1/2

and thus

1/2− rc1f
′′(N)1/2 < rf ′(N +m)− rf ′(N) ≤ rmf ′′(N) ≤ rc2f

′′(N)1/2,

which is a contradiction because N is sufficiently large.
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Next, consider the case s1 = −1. Then the inequalities −ε ≤ {f(N +
m)}+ 2({rf ′(N +m)} − 1) < 1, m ≤ Lα,3,r(N) ≤ c2f

′′(N)−1/2 and (4) yield
that

1− {f(N +m)}+ ε

2
≤ {rf ′(N +m)} ≤ {rf ′(N)}+ rmf ′′(N)

< 1/2 + rc1f
′′(N)1/2 + rc2f

′′(N)1/2,

whence
{f(N +m)} > 1− ε− 2r(c1 + c2)f

′′(N)1/2. (3.6.5)

Since Taylor’s theorem implies that

f(N +m) = f(N) +mf ′(N) +
m2

2
f ′′(N + θ)

for some θ ∈ [0,m], the inequalities (1) and m ≤ Lα,3,r(N) ≤ c2f
′′(N)−1/2

yield that

{f(N +m)} ≤ {f(N)}+ {mf ′(N)}+ m2

2
f ′′(N + θ)

< c0f
′′(N)1/2 + {mf ′(N)}+ c22/2.

(3.6.6)

Also, the inequalities (2) and m ≤ Lα,3,r(N) ≤ c2f
′′(N)−1/2 yield that

0 ≤ m{f ′(N)} −m/2r < c1mf
′′(N)1/2 ≤ c1c2,

whence
{mf ′(N)} ≤ {m/2r}+ c1c2 ≤ 1− 1/2r + c1c2. (3.6.7)

Recall the definition of ε = ε(N). Using (3.6.5)–(3.6.7), we have

1− 2r2f ′′(N)− 2r(c1 + c2)f
′′(N)1/2 < {f(N +m)}

< c0f
′′(N)1/2 + (1− 1/2r + c1c2) + c22/2,

whence

1/2r − c1c2 − c22/2 < 2r2f ′′(N) + (c0 + 2r(c1 + c2))f
′′(N)1/2. (3.6.8)

Since the assumption 0 < c2 <
√
c21 + 1/r − c1 implies 1/2r − c1c2 − c22/2 >

0, the inequality (3.6.8) is a contradiction because N is sufficiently large.
Therefore,

lim
x→∞

Lα,3,r(x)

x1−α/2
≥ c2√

α(α− 1)
.
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Finally, letting c2 →
√
c21 + 1/r − c1 and c1 → r−1/2, we obtain Proposi-

tion 3.6.2.

Finally, let us show the following proposition that supports Lα,3,r(x) =
Oα,r(x

1−α/2).

Proposition 3.6.5 ( [SY21, Proposition A.5]). Let α ∈ (1, 2) and r ∈ N, and
let w(x) be an arbitrary positive-valued function such that xα/2−1w(x) → 0
and w(x) → ∞ as x→ ∞. Then

lim
M→∞

#{N ∈ [1,M ]Z : Lα,3,r(N) ≤ N1−α/2w(N)}
M

= 1.

Proof. For N,L ∈ N, define D(N,L) as the discrepancy of the sequence
(f(n))N+L−1

n=N . Let L = L(N) = ⌈N1−α/2w(N)⌉ and K = K(N) = ⌈N (2−α)/3⌉.
The inequality (2.2.2) and Lemma 2.2.2 imply that for every N ∈ N,

D(N,L) ≪ 1

K
+

1

L

K∑
h=1

1

h

∣∣∣∣∣
N+L−1∑
n=N

e(hf(n))

∣∣∣∣∣
≪α,w(·) 1/K +K1/2Nα/2−1 +N1−α/2/L≪ N (α−2)/3 + 1/w(N).

Thus, there exists C > 0 such that for every N ∈ N,

D(N,L) ≤ C(N (α−2)/3 + 1/w(N)).

Now, let ε ∈ (0, 1/6) be arbitrary. Define the sets C−
3,2(ε), V0, V1 and V as

C−
3,2(ε) = {(y0, y1) ∈ R2 : 0 ≤ y0 < 1, 0 ≤ y0 + 2y1 < 1− ε},

V0 =
{
N ∈ N : {rf ′(N)} < 1/2− 3ε

}
,

V1 =
{
N ∈ N : 1/2 + ε < {rf ′(N)} < 1− ε

}
,

V = {N ∈ N : Lα,3,r(N) ≤ N1−α/2w(N)}.

Due to the assumptions xα/2−1w(x) → 0 and w(x) → ∞, we can taking a
positive number x0 such that

1. C(x(α−2)/3 + 1/w(x)) < 2ε for all x ≥ x0,

2. rα(α− 1)xα/2−1w(x) < ε for all x ≥ x0,

3. 2r2f ′′(x) ≤ ε for all x ≥ x0.
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Let us show the inclusion relation (V0 ∪ V1) ∩ [x0,∞) ⊂ V below.
First, assume N ∈ V0 ∩ [x0,∞). Then the set W0 := {n ∈ [0, L)Z : ε <

{f(N + n)} < 3ε} satisfies

#W0/L ≥ 2ε−D(N,L) = 2ε− C(N (α−2)/3 + 1/w(N))
(1)
> 0.

Take an element m ∈ W0 ̸= ∅. Then the assumption N ∈ V0 implies that

{rf ′(N +m)} ≤ {rf ′(N)}+ rmf ′′(N) < 1/2− 3ε+ rα(α− 1)(L− 1)Nα−2

< 1/2− 3ε+ rα(α− 1)Nα/2−1w(N)
(2)
< 1/2− 2ε.

Thus,

0 ≤ {f(N +m)}+ 2{rf ′(N +m)} < 3ε+ 2(1/2− 2ε) = 1− ε,

whence ({f(N+m)}, {rf ′(N+m)}) ∈ C−
3,2(ε). Therefore, (⌊f(N +m+ rj)⌋)2j=0

is an AP (see the proof of Proposition 3.3.1). Since the inequality Lα,3,r(N) ≤
m < L holds, it turns out that N lies in V.

Next, assume N ∈ V1 ∩ [x0,∞). The set W1 := {n ∈ [0, L)Z : 1 − 2ε <
{f(N + n)} < 1 − ε} is also not empty in the same way as W0 ̸= ∅. Take
an element m ∈ W1. Since the difference rf ′(N +m) − rf ′(N) is bounded
above by

rmf ′′(N) ≤ rα(α− 1)(L− 1)Nα−2 < rα(α− 1)Nα/2−1w(N)
(2)
< ε,

the assumption N ∈ V1 implies {rf ′(N +m)} ≥ {rf ′(N)} > 1/2 + ε. This
and 1− 2ε < {f(N +m)} < 1− ε yield that

{f(N +m)}+ 2({rf ′(N +m)} − 1) < 1− ε,

{f(N +m)}+ 2({rf ′(N +m)} − 1) > 1− 2ε+ 2(1/2 + ε− 1) = 0,

whence ({f(N+m)}, {rf ′(N+m)}−1) ∈ C−
3,2(ε). Therefore, (⌊f(N +m+ rj)⌋)2j=0

is an AP (see the proof of Proposition 3.3.1). Since the inequality Lα,3,r(N) ≤
m < L holds, it turns out that N lies in V.

The inclusion relation (V0 ∪ V1) ∩ [x0,∞) ⊂ V has been proved above.
Since the sequence (rf ′(N))∞N=1 is uniformly distributed modulo 1 and the
sets V0 and V1 are disjoint, it follows that

lim
M→∞

#(V ∩ [1,M ])

M
≥ lim

M→∞

#(V0 ∩ [1,M ])

M
+ lim

M→∞

#(V1 ∩ [1,M ])

M

≥ (1/2− 3ε) + (1/2− 2ε) = 1− 5ε.

Letting ε→ +0, we obtain Proposition 3.6.5.
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Chapter 4

Linear Diophantine equations
with three variables in
Piatetski-Shapiro sequences

This chapter is based on [MS20]. We investigate the solvability in PS(α) of
linear Diophantine equations with three variables.

4.1 Results for α > 2

For any fixed a, b, c ∈ N, does the equation

ax+ by = cz (4.1.1)

have infinitely many pairwise distinct solutions (x, y, z) ∈ PS(α)3, where
α > 2? By the result of Glasscock [Gla17, Gla20] (Theorem 1.3.8), if the
equation y = θx + η has infinitely many solutions (x, y) ∈ N2, then for
Lebesgue-a.e. α > 1 it is solvable or not in PS(α) according as α < 2 or
α > 2. As a direct consequence, for Lebesgue-a.e. 1 < α < 2, the equation
z = (a/c)x+ (b/c) is solvable in PS(α) for all a, b, c ∈ N with gcd(a, c)|b. In
other words, the equation (4.1.1) with gcd(a, c)|b is solvable in PS(α). On
the other hand, for α > 2, we did not know at all whether the equation
(4.1.1) is solvable in PS(α) or not.

Our main result provides an answer to this question. We consider the
set of α in a short interval [s, t] ⊂ (2,∞) so that (4.1.1) is solvable. The
following theorem asserts that its Hausdorff dimension is positive.
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Theorem 4.1.1 ( [MS20, Theorem 1.1]). Let a, b, c ∈ N. For all real numbers
2 < s < t, we have

dimH({α ∈ [s, t] : ax+ by = cz is solvable in PS(α)})

≥


(
s+

s3

(2 + {s} − 21−⌊s⌋)(2− {s})

)−1

if a = b = c

2

(
s+

s3

(2 + {s} − 21−⌊s⌋)(2− {s})

)−1

otherwise.

Note that the lower bound in either case is greater than 1/s3 for all
2 < s < t. The positiveness of the Hausdorff dimension implies that this set
is uncountable for any closed interval [s, t] ⊂ (2,∞). Moreover, we can easily
conclude the following.

Corollary 4.1.2 ( [MS20, Corollary 1.2]). For any closed interval I ⊂
(2,∞), the set of α ∈ I such that ax + by = cz is solvable in PS(α) is
uncountable and dense in I.

In particular, for a = b = 1, c = 2, a pairwise distinct tuple (x, z, y)
satisfying (4.1.1) forms an arithmetic progression of length 3. Therefore
Corollary 4.1.2 implies Theorem 1.3.7. Glasscock posed a related question
to the equation (4.1.1) for a = b = c = 1.

Question 4.1.3 ( [Gla17, Question 6]). Does there exist an αS > 1 with
the property that for Lebesgue-a.e. or all α > 1, the equation x + y = z is
solvable or not in PS(α) according as α < αS or α > αS?

By Corollary 4.1.2, the case with “all α > 1” in Question 4.1.3 is false
since the supremum of α > 0 such that (4.1.1) is solvable in PS(α) is positive
infinity. However, the case with “Lebesgue-a.e.” in Question 4.1.3 is still
open.

4.2 Lemmas I

Let us consider the solvability of the equation (4.1.1). In this and subsequent
sections, we fix a, b, c, d ∈ N with d ≥ 2 and β, γ ∈ R with d < β < γ < d+1.
Unless it causes confusion, we do not indicate their dependence hereinafter.
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Take a large parameter x0 = x0(a, b, c, d, β, γ) > 0. For all integer x ≥ x0,
we define

Ja,b,c(x) =



((
b

cx2 log x
+
a

c

)1/γ

x,
(a
c

)1/β
x

)
N

\ (xN) if c < a,

((
a

c− b(x2 log x)−1

)1/β

x,
(a
c

)1/γ
x

)
N

if a < c,

(
21/γ

(
x+

1

x⌈log x⌉

)
, 21/βx

)
N

if a = b = c,

where let IN denote I ∩ N for all intervals I of real numbers, and let xN =
{xn : n ∈ N}. Note that Ja,b,c(x) is non-empty if x0 is sufficiently large. In
the case when a = c and b ̸= c, Ja,b,c(x) is not defined above, however this
case comes down to the case when a ̸= c by switching the roles of (a, x) and
(b, y). Thus the three cases in the definition of Ja,b,c(x) are sufficient.

Lemma 4.2.1 ( [MS20, Lemma 3.1]). Assume that a ̸= c. Then there exists
C > 0 such that for all integers x ≥ x0 and for all z ∈ Ja,b,c(x), we can find
α = α(x, z) ∈ (β, γ) so that axα + b = czα, and∣∣∣∣α− log(a/c)

log(z/x)

∣∣∣∣ ≤ C

x2 log x
. (4.2.1)

Proof. Fix any x ≥ x0 and z ∈ Ja,b,c(x). For all u ∈ R, define a continuous
function f(u) = axu + b− czu. We prove the claim by considering two cases
a > c and c > a.

Case a > c. Let

α0 =
log(a/c)

log(z/x)
, α1 =

log(a/c+ b/(cx2 log x))

log(z/x)
.

Then, z ∈ Ja,b,c(x) implies β < α0 < α1 < γ. It follows that f(α0) = b > 0.
If necessary, by taking a larger x0, we have

f(α1) = xα1(a+ bx−α1 − c(z/x)α1) ≤ xα1(a+ b/(x2 log x)− c(z/x)α1) = 0.
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Therefore, by the intermediate value theorem, there exists a zero α = α(x, z)
of f such that β < α0 ≤ α ≤ α1 < γ. Since log(1+u) ≤ u for all u ∈ (−1,∞),
we have

|α1 − α0| =
log(1 + b/(ax2 log x))

log(z/x)
≤ b

ax2 log x
· 1

log(z/x)
.

By this inequality and 1/ log(z/x) ≪a,c,γ 1, we obtain (4.2.1).
Case c > a. Let

α0 =
log(c/a)

log(x/z)
, α′

1 =
log(c/a− b/(ax2 log x))

log(x/z)
.

Since z ∈ Ja,b,c(x), β < α′
1 < α0 < γ and x ≪a,b,c,β,γ z hold. Then by the

calculation in Case a > c, f(α0) = b > 0. Further x ≪ z implies z−α
′
1 ≤

z−β ≪ x−β. Thus if x0 is sufficiently large, we have z−α
′
1 ≤ 1/(x2 log x),

which yields that

f(α′
1) = zα

′
1(a(x/z)α

′
1 + bz−α

′
1 − c) ≤ zα

′
1(a(x/z)α

′
1 + b/(x2 log x)− c) = 0.

Therefore, by the intermediate value theorem, there exists a zero α = α(x, z)
of f such that β < α′

1 ≤ α ≤ α0 < γ. Since | log(1 − u)| ≤ 2u for all
u ∈ (0, 1/2),

|α0 − α′
1| =

| log(1− b/(cx2 log x))|
log(x/z)

≤ 2b

cx2 log x
· 1

log(x/z)

provided x0 is sufficiently large. By this inequality and 1/ log(x/z) ≪a,c,γ 1,
we obtain (4.2.1).

Lemma 4.2.2 ( [MS20, Lemma 3.2]). There exists C > 0 such that for all
integers x ≥ x0 and z ∈ J1,1,1(x), we can find α = α(x, z) ∈ (β, γ) so that
xα + (x+ (x⌈log x⌉)−1)

α
= zα, and∣∣∣∣α− log 2

log(z/x)

∣∣∣∣ ≤ C

x2 log x
. (4.2.2)

Proof. Take any x ≥ x0 and z ∈ J1,1,1(x). For all u ∈ R, define a continuous
function f(u) = xu + (x+ (x⌈log x⌉)−1)u − zu, and set

α0 =
log 2

log(z/x)
, α1 =

log 2

log

(
z

x+ (x⌈log x⌉)−1

) .
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By z ∈ J1,1,1(x), β < α0 < α1 < γ holds. By the definitions of α0 and α1, we
have

f(α0) > zα0

(
1

2
+

1

2
− 1

)
= 0, f(α1) < zα1

(
1

2
+

1

2
− 1

)
= 0.

Therefore, by the intermediate value theorem, there exists a zero α = α(x, z)
of f such that α0 ≤ α ≤ α1. Further, we conclude (4.2.2) since

|α1 − α0| ≤
γ2

log 2
log

(
1 +

1

x2 log x

)
≤ γ2

log 2
· 1

x2 log x
.

Lemma 4.2.3 ( [MS20, Lemma 3.3]). Let ε > 0 be an arbitrarily small real
number. For all X, Y, Z ∈ N, and α ∈ R with β < α < γ, if we have

aXα + bY α = cZα, (4.2.3)

then there exists n0 ∈ N such that

a⌊(n0X)α⌋+ b⌊(n0Y )α⌋ = c⌊(n0Z)
α⌋, (4.2.4)

max({(n0X)α}, {(n0Y )α}, {(n0Z)
α}) < 1

2
, (4.2.5)

n0 ≪ε (X + Y )γ
2/((2+{β}−21−⌊β⌋)(2−{γ}))+ε. (4.2.6)

Proof. Choose X, Y, Z ∈ N and α with β < α < γ satisfying (4.2.3). For all
n ∈ N,

c⌊(nZ)α⌋ = c(nZ)α − c{(nZ)α} = a⌊(nX)α⌋+ b⌊(nY )α⌋+ δ(n),

where define δ(n) = a{(nX)α}+ b{(nY )α} − c{(nZ)α}. Let

A =

{
n ∈ N : |δ(n)| < 1, max({(nX)α}, {(nY )α}, {(nZ)α}) < 1

2

}
,

and note that any n ∈ A satisfies (4.2.4) and (4.2.5). Let us show the
existence of n ∈ A satisfying (4.2.6). Take a small ξ = ξ(d, β, γ, ε) > 0 and
take a sufficiently large parameter R = R(a, b, c, d, β, γ, ε). Set

N =
⌈
R(X + Y )γ

2/((2+{β}−21−⌊β⌋)(2−{γ}))+ε
⌉
, (4.2.7)
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and set ψ = {β} − 2 + (2d+2 − 2)(1/2d − 2ξ). Since this is reformulated to

ψ = 2 + {β} − 21−⌊β⌋ +O(ξ), (4.2.8)

we have 0 < ψ < β < α for a small enough ξ. Moreover, we let L(h1, h2) =
(h1X

α + h2Y
α)/c.

Case 1. We firstly discuss the case when

|L(h1, h2)| ≥ N−ψ (4.2.9)

holds for all h1, h2 ∈ Z with 0 < max{|h1|, |h2|} ≤ N ξ. In this case, define

A1 =

{
n ∈ N : 0 ≤ {(nX)α/c} < 1

4ac
, 0 ≤ {(nY )α/c} < 1

4bc

}
. (4.2.10)

Then we have A1 ⊆ A. Indeed, take any n ∈ A1. We see that

(nX)α = c⌊(nX)α/c⌋+ c{(nX)α/c}. (4.2.11)

Since the first term on the right-hand side of (4.2.11) is an integer and the
second term belongs to [0, 1) by n ∈ A1, we get {(nX)α} = c{(nX)α/c}. This
yields that {(nX)α} < 1/(4a). Similarly, {(nY )α} < 1/(4b) holds. Further,

{(nZ)α} = {a(nX)α/c+ b(nY )α/c} ≤ a{(nX)α/c}+ b{(nY )α/c} < 1

2c
.

Hence we have

|δ(n)| ≤ a{(nX)α}+ b{(nY )α}+ c{(nZ)α} < 1

4
+

1

4
+

1

2
= 1.

Therefore A1 ⊆ A holds.
We now evaluate the distribution of A1. Let D1(N) be the discrepancy

of the sequence ((nX)α/c, (nY )α/c)N<n≤2N . The inequality (2.2.1) with
K = ⌊N ξ⌋ implies that

D1(N) ≪ N−ξ +
∑

0<∥(h1,h2)∥∞≤Nξ

1

ν(h1, h2)

∣∣∣∣∣ 1N ∑
N<n≤2N

e(L(h1, h2)n
α)

∣∣∣∣∣ .
For all u ∈ R, define f(u) = L(h1, h2)u

α. For each N < u ≤ 2N ,

|L(h1, h2)|Nα−(d+2) ≪ |f (d+2)(u)| ≪ |L(h1, h2)|Nα−(d+2).
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Therefore Lemma 2.2.4 with k = d+ 2 yields that

1

N

∑
N<n≤2N

e(L(h1, h2)n
α)

≪ (|L(h1, h2)|Nα−(d+2))1/(2
d+2−2) +

(|L(h1, h2)|Nα−(d+2))−1/(2d+2−2)

N1/2d

≪ (L(N ξ, N ξ)N{γ}−2)1/(2
d+2−2) +

N (2−{β}+ψ)/(2d+2−2)

N1/2d
,

where in the last inequality we used that α−d < {γ} and d+2−α < 2−{β}.
By the definition of ψ, it follows that (2−{β}+ψ)/(2d+2−2)−1/2d = −2ξ.
Then

1

N

∑
N<n≤2N

e(L(h1, h2)n
α) ≪

(
(X + Y )γN{γ}−2+ξ

)1/(2d+2−2)
+N−2ξ.

Therefore, since ∑
0<∥(h1,h2)∥∞≤Nξ

1

ν(h1, h2)
≪ (logN ξ)2 ≪ξ N

ξ/(2d+2−2),

we have

D1(N) ≪ξ N
−ξ +

(
(X + Y )γN{γ}−2+2ξ

)1/(2d+2−2)
. (4.2.12)

Let E1(N) be the right-hand side of (4.2.12). By the definition of the dis-
crepancy,

#(A1 ∩ (N, 2N ])

N
=

1

16abc2
+Oξ (E1(N)) .

By (4.2.7), we have

(X + Y )γN{γ}−2+2ξ ≪ R{γ}−2+2ξ(X + Y )e. (4.2.13)

Here the exponent e of (X+Y ) on the right-hand side of (4.2.13) is negative
since

e = γ + ({γ} − 2 + 2ξ)

(
γ2

(2 + {β} − 21−⌊β⌋)(2− {γ})
+ ε

)
= γ

(
1− γ

2 + {β} − 21−⌊β⌋

)
− ε(2− {γ}) +O(ξ)

≤ γ · 2 + {β} − γ

2 + {β} − 21−⌊β⌋ − ε(2− {γ}) +O(ξ) < 0
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holds for a small enough ξ. This yields that

E1(N) ≪ξ R
−ξ +R({γ}−2+2ξ)/(2d+2−2).

Therefore if ξ is sufficiently small andR is sufficiently large, then the following
holds:

1

16abc2
+Oξ (E1(N)) ≥ 1

32abc2
.

Hence, in this case, #(A ∩ (N, 2N ]) ≥ #(A1 ∩ (N, 2N ]) ≥ N/(32abc2) > 0,
which implies that there exists n0 ∈ A satisfying (4.2.6).

Case 2. We next discuss the case when (4.2.9) is false, that is to say,
there exist h1, h2 ∈ Z with 0 < max{|h1|, |h2|} ≤ N ξ such that

|L(h1, h2)| < N−ψ. (4.2.14)

We observe that h1 and h2 are non-zero and that h1 has the opposite sign of
h2, since if not, 1/c ≤ |L(h1, h2)| < N−ψ holds, which causes a contradiction
when R is sufficiently large. Thus we may assume that h1 < 0 < h2 by
multiplying the both sides of (4.2.14) by |(−1)| if necessary. Let h′1 = −h1,
and θ = L(h1, h2)/h2.

In the case θ ≥ 0, by letting

A2 =

{
n ∈ [1, Nψ/α/(8bc)1/α] ∩ N : 0 ≤ {(nX)α/(ch2)} <

1

8abcN ξ

}
,

(4.2.15)
A2 ⊆ A holds. To see why, suppose n ∈ A2. Then (nX)α/c = h2⌊(nX)α/(ch2)⌋+
h2{(nX)α/(ch2)}, of which the first term is an integer and the second term
belongs to [0, 1). This yields that {(nX)α/c} = h2{(nX)α/(ch2)}. Thus we
obtain 0 ≤ {(nX)α/c} < 1/(4ac). Further, since

(nY )α/c =
h′1
ch2

(nX)α + nαθ = h′1⌊(nX)α/(ch2)⌋+ h′1{(nX)α/(ch2)}+ nαθ,

h′1⌊(nX)α/(ch2)⌋ ∈ Z, 0 ≤ h′1{(nX)α/(ch2)}+ nαθ <
1

8bc
+

1

8bc
=

1

4bc
,

we have {(nY )α/c} = h′1{(nX)α/(ch2)}+nαθ and 0 ≤ {(nY )α/c} < 1/(4bc).
Hence, we obtain A2 ⊆ A1 ⊆ A.
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We next evaluate the distribution of A2. Let V = Nψ/α/(2(8bc)1/α), and
D2(N) be the discrepancy of the sequence ((nX)α/(ch2))V <n≤2V . Then by
the inequality (2.2.1) with K = ⌊N2ξ⌋,

D2(N) ≪ 1

N2ξ
+

∑
0<|h|≤N2ξ

1

|h|

∣∣∣∣∣ 1V ∑
V <n≤2V

e((h/(ch2))X
αnα)

∣∣∣∣∣ .
From Lemma 2.2.4 with k = d+ 2, the following holds:

D2(N) ≪ 1

N2ξ

+
∑

0<|h|≤N2ξ

1

|h|

( |h|Xα

ch2
V α−d−2

)1/(2d+2−2)

+

(
|h|Xα

ch2
V α−d−2

)−1/(2d+2−2)

V 1/2d

 .

We see that ∑
0<|h|≤N2ξ

1

|h|

(
|h|Xα

ch2
V α−d−2

)1/(2d+2−2)

≤ (XγV {γ}−2)1/(2
d+2−2) · 2

∑
1≤h≤N2ξ

h−1+1/(2d+2−2)

≪ (XγV {γ}−2)1/(2
d+2−2) ·N2ξ/(2d+2−2).

In addition, by d− α < 0 and h2 ≤ N ξ, we see that

∑
0<|h|≤N2ξ

1

|h|
·

(
|h|Xα

ch2
V α−d−2

)−1/(2d+2−2)

V 1/2d

≤
(
ch2
Xα

)1/(2d+2−2)

V (2+d−α)/(2d+2−2)−1/2d · 2
∞∑
h=1

h−1−1/(2d+2−2)

≪ N ξ · V 1/(2d+1−1)−1/2d = N ξV (−1+2−d)/(2d+1−1).

Hence we have

D2(N) ≪ 1

N2ξ
+
(
XγN2ξV {γ}−2

)1/(2d+2−2)
+N ξV (−1+2−d)/(2d+1−1)

≪ 1

N2ξ
+
(
XγN2ξ+ψ({γ}−2)/γ

)1/(2d+2−2)
+N ξ+ψ(−1+2−d)/(γ(2d+1−1)).
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Let E2(N) be the most right-hand side. Now by (4.2.7), we have

XγN2ξ+ψ({γ}−2)/γ ≪ R2ξ+ψ({γ}−2)/γ(X + Y )e
′
. (4.2.16)

The exponent e′ of (X + Y ) on the right-hand side of (4.2.16) is equal to

e′ = γ +

(
2ξ +

ψ

γ
({γ} − 2)

)(
γ2

(2 + {β} − 21−⌊β⌋)(2− {γ})
+ ε

)
= γ − γ · 2 + {β} − 21−⌊β⌋ +O(ξ)

2 + {β} − 21−⌊β⌋ − ε · ψ
γ
(2− {γ}) +O(ξ)

= −ε · ψ
γ
(2− {γ}) +O(ξ),

where we used (4.2.8). This yields that for a small enough ξ,

E2(N) ≪ N−2ξ + (R2ξ+ψ({γ}−2)/γ(X + Y )e
′
)1/(2

d+2−2)

+N ξ+ψ(−1+2−d)/(γ(2d+1−1))

≪ N−2ξ.

Therefore, if necessary, by making ξ smaller and R larger, we get

#(A2 ∩ (V, 2V ])

V
=

1

8abcN ξ
+O(E2(N)) ≥ 1

16abcN ξ
> 0.

Hence, there exists n0 ∈ A such that

n0 ≪ε ((X + Y )ψ/α)γ
2/((2+{β}−21−⌊β⌋)(2−{γ}))+ε,

which implies the inequality (4.2.6) since ψ < α. In the case θ < 0, let
θ′ = L(h1, h2)/h1 > 0. By switching the roles of (θ,Xα) and (θ′, Y α) and
repeating a similar argument to the case θ ≥ 0, we also find n0 ∈ A satisfying
(4.2.6).

Lemma 4.2.4 ( [MS20, Lemma 3.4]). For all α > 0 and X,Y, Z ∈ N, define

η(α,X, Y, Z) = min

{
log ((⌊Wα⌋+ 1)W−α)

logW
: W = X, Y, Z

}
.

For all α > 0 and X, Y, Z ∈ N, if a⌊Xα⌋+ b⌊Y α⌋ = c⌊Zα⌋ holds, then for all
τ ∈ (α, α + η(α,X, Y, Z)), we have

a⌊Xτ⌋+ b⌊Y τ⌋ = c⌊Zτ⌋.
Proof. The claim is clear since we observe that

⌊Xα⌋ = ⌊Xτ⌋, ⌊Y α⌋ = ⌊Y τ⌋, ⌊Zα⌋ = ⌊Zτ⌋
for all τ ∈ (α, α+ η(α,X, Y, Z)).
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4.3 Lemmas II

Let 2 ≤ β < γ, and let a, b, c ∈ N as in the previous section. Let x0 > 0
be a large parameter. For each x ≥ x0, let K(x) ⊆ N be a non-empty finite
set. For each x ≥ x0 and z ∈ K(x), let θ(x, z) and ℓ(x, z) be positive real
numbers, and define an interval I(x, z) = (θ(x, z), θ(x, z)+ℓ(x, z)). For each
x ≥ x0, define

Gx =
∪

z∈K(x)

I(x, z).

Let us consider the following conditions:

(C1) for all integer x ≥ x0, K(x) does not contain any multiples of x;

(C2) for all integers x ≥ x0 and z ∈ K(x), if z ̸= maxK(x), then z + 1 ∈
K(x) or z + 2 ∈ K(x);

(C3) there exists Q1 > 0 such that for all x ≥ x0,

max
(
inf{|β − α| : α ∈ Gx}, inf{|γ + x−2 − α| : α ∈ Gx}

)
≤ Q1x

−1;

(C4) there exists a real number κ ∈ (0,∞)\{1} such that for all x ≥ x0 and
z ∈ K(x),

θ(x, z) =
log κ

log(z/x)
+O

(
1

x2 log x

)
;

(C5) there exist Q2, Q3 > 0 and q > 2 such that for all x ≥ x0 and z ∈ K(x),

Q2x
−q ≤ ℓ(x, z) ≤ Q3x

−β;

(C6) for all integer x ≥ x0, Gx ⊆ (β, γ + x−2) holds;

(C7) for all integers x ≥ x0 and z ∈ K(x), there exists a pairwise distinct
tuple (X(x, z), Y (x, z), Z(x, z)) ∈ N3 such that for all τ ∈ I(x, z),

a⌊X(x, z)τ⌋+ b⌊Y (x, z)τ⌋ = c⌊Z(x, z)τ⌋, X(x, z) ≥ x.

Proposition 4.3.1 ( [MS20, Proposition 4.1]). Suppose that there exist x0,
K(x), θ(x, z), and ℓ(x, z) satisfying (C1) to (C7). Let q be as in (C5). Then
we have

dimH({α ∈ [β, γ] : ax+ by = cz is solvable in PS(α)}) ≥ 2

q
.
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Remark 4.3.2 ( [MS20, Remark 4.2]). The idea of the proof of Proposi-
tion 4.3.1 comes from the proof of Jarńık’s theorem (Theorem 2.3.4) in the
book written by Falconer [Fal14, Theorem 10.3].

The goal of this section is to prove Proposition 4.3.1. Suppose that there
exist x0, K(x), θ(x, z), and ℓ(x, z) satisfying the conditions (C1) to (C7),
and choose such x0, K(x), θ(x, z), and ℓ(x, z). Take constants Q1, Q2, Q3,
κ, q which appear in the conditions (C3) to (C5). Let x1 > 0 and U1 > 0 be
large parameters depending on a, b, c, d, β, γ, Q1, Q2, Q3, κ, x0, q. We do
not indicate the dependence of those parameters, hereinafter. Let p denote
a variable running over prime numbers.

Lemma 4.3.3 ( [MS20, Lemma 4.3]). There exists B1 > 0 such that for
all p ≥ x1 and distinct z, z′ ∈ K(p), two intervals I(p, z) and I(p, z′) are
separated by a gap of at least B1p

−1 if x1 is sufficiently large.

Proof. By the conditions (C4) and (C6), for all p ≥ x1 and z ∈ K(p), we
have

β

2
≤ log κ

log(z/p)
≤ 2γ (4.3.1)

if x1 is sufficiently large. This implies that

p≪ z ≪ p. (4.3.2)

By the condition (C4) and the inequalities (4.3.1) and (4.3.2), there exists
B0 > 0 such that

|θ(p, z)− θ(p, z′)| =

∣∣∣∣∣ log κlog z
p

− log κ

log z′

p

+O

(
1

p2 log p

)∣∣∣∣∣
≥

| log κ|| log z′

z
|

| log z
p
|| log z′

p
|
+O

(
1

p2 log p

)
≥ β2

4| log κ|
log

(
z + 1

z

)
+O

(
1

p2 log p

)
≥ B0p

−1

for all p ≥ x1 and all z, z′ ∈ K(p) with z < z′. Further, since ℓ(p, z) ≤ Q3p
−2

holds by (C5), there exists B1 > 0 such that for all p ≥ x1 and distinct
z, z′ ∈ K(p), two intervals I(p, z) and I(p, z′) are separated by a gap of at
least

B0p
−1 −Q3p

−2 ≥ B1p
−1 (4.3.3)

if x1 is sufficiently large.
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Now we call the open interval I(p, z) (z ∈ K(p)) a basic interval of Gp

for all p ≥ x1. For each U ≥ U1, define

HU =
∪

U<p≤2U
p: prime

Gp.

For all U < p ≤ 2U , we also call the basic interval of Gp basic interval of HU .

Lemma 4.3.4 ( [MS20, Lemma 4.4]). There exist B2, B3 > 0 such that for
any U ≥ U1, all distinct basic intervals of HU are separated by gaps of at
least B2U

−2, and the length of each basic interval of HU is at least B3U
−q if

U1 is sufficiently large.

Proof. We take distinct prime numbers p and p′ with U < p, p′ ≤ 2U . Then,
for all z ∈ K(p) and z′ ∈ K(p′), the condition (C4), the inequality (4.3.1),
and the mean value theorem imply that

|θ(p, z)− θ(p′, z′)| ≥
∣∣∣∣ log κ

log(z/p)
− log κ

log(z′/p′)

∣∣∣∣+O

(
1

U2 logU

)
≥ β2

4| log κ|

∣∣∣∣zp − z′

p′

∣∣∣∣min

{
p

z
,
p′

z′

}
+O

(
1

U2 logU

)
.

Wemay assume that p′/z′ > p/z. By the condition (C1), z and p are coprime,
which yields that |zp′ − z′p| ≥ 1. Therefore we obtain∣∣∣∣zp − z′

p′

∣∣∣∣min

{
p

z
,
p′

z′

}
=

∣∣∣∣zp − z′

p′

∣∣∣∣ pz ≥ 1

p′z
≫ U−2

by the inequalities (4.3.2) and U < p, p′ ≤ 2U . Therefore for all U ≥ U1, we
have

|θ(p, z)− θ(p′, z′)| ≫ 1

U2
(4.3.4)

if U1 is sufficiently large. Further, for all U < p ≤ 2U and z ∈ K(p), we have
by (C5) that ℓ(p, z) ≪ U−β, where β ≥ 2. Hence there exists D1 > 0 such
that for all distinct prime numbers U < p, p′ ≤ 2U , z ∈ K(p), and z′ ∈ K(p′),
the intervals I(p, z) and I(p′, z′) are separated by gaps of at least D1U

−2. By
combining with Lemma 4.3.3, there exists D2 > 0 such that distinct basic
intervals of HU are separated by gaps of at least D2U

−2. Furthermore by
(C5), for all U < p ≤ 2U and z ∈ K(p), we have Q2 · 2−qU−q ≤ ℓ(p, z).
In conclusion, we find that all distinct basic intervals of HU are separated
by gaps of at least B2U

−2, and have length of at least B3U
−q, where we let

B2 = D2 and B3 = Q2 · 2−q.

72



Lemma 4.3.5 ( [MS20, Lemma 4.5]). There exists B4 > 0 such that the
following statement holds: for every U ≥ U1, if an open interval I ⊂ (β, γ +
p−2) satisfies

3B4/diam(I) < U < p ≤ 2U, (4.3.5)

then the open interval I completely includes at least

U2

6B4 logU
· diam(I) (4.3.6)

basic intervals of HU .

Proof. By (C4), (4.3.1), and (4.3.2), there exists D3 > 0 such that for every
z ∈ K(p) and the minimum z′ ∈ K(p) with z′ > z,

|θ(p, z)− θ(p, z′)| =
∣∣∣∣ log κ

log(z/p)
− log κ

log(z′/p)
+O

(
1

p2 log p

)∣∣∣∣
≤ 4γ2

| log κ|
· 1
z
· |z − z′|+O

(
1

p2 log p

)
≤ D3p

−1. (4.3.7)

Here we apply (C2) when we deduce the last inequality. From (C3) ,(C6)
and (4.3.7), there exists B4 > 0 such that

(β, γ + p−2) ⊆
(
β, β +B4p

−1
)
∪

 ∪
z∈K(p)

(
θ(p, z), θ(p, z) + B4p

−1
)

∪
(
γ + p−2 −B4p

−1, γ + p−2
)
.

Therefore for all U ≥ U1 and U < p ≤ 2U , any open interval I ⊂ (β, γ+p−2)
satisfying (4.3.5) completely includes at least B−1

4 p·diam(I)−2 ≥ (3B4)
−1U ·

diam(I) basic intervals of Gp. Hence, by the prime number theorem, the open
interval I completely includes at least (4.3.6) basic intervals of HU for a large
enough U1.

Proof of Proposition 4.3.1. Let B3 and B4 be constants as in Lemma 4.3.4
and Lemma 4.3.5, respectively. Let u1 = max(U1, 2). For every k = 2, 3, . . .,
we put

uk = max{ukk−1, ⌈3(B4/B3)u
q
k−1⌉},

and B5 = B3/(6B4). Let E1 be the open interval (β, 2γ). For every k =
2, 3, . . ., let Ek be the union of basic intervals of Huk which are completely
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included by Ek−1. Let F be the intersection of all Ek’s. Define m1 = 1, and
for k ≥ 2, define

mk =
u2k

6B4 log uk
B3u

−q
k−1 = B5

u2ku
−q
k−1

log uk
.

Lemma 4.3.4 implies that each (k−1)-st level interval of F has length at least
B3u

−q
k−1. Then, by Lemma 4.3.5, each (k − 1)-st level interval of F contains

at least mk k-th level intervals. In addition, by Lemma 4.3.4, disjoint k-th
level intervals of F are separated by gaps of at least δk = B2u

−2
k . Therefore,

Lemma 2.3.2 implies that

dimH F

≥ lim
k→∞

log (m1m2 · · ·mk−1)

− log(δkmk)

= lim
k→∞

2 log uk−1 + log
(
Bk−2

5 u−q1 (u2 · · ·uk−2)
2−q(log u2)

−1 · · · (log uk−1)
−1
)

q log uk−1 + log log uk − log(B2B5)
.

Since uk ≥ ukk−1 for all k ≥ 2, we have log uk ≥ k! log u1 and uk ≥ uk−1.
Further, for a large enough k ≥ 1, uk = ukk−1 holds. Thus for a large enough
k ≥ 1, we see that

2 log uk−1 = 2k−1 log uk, q log uk−1 = qk−1 log uk,∣∣log (Bk−2
5 u−q1 (u2 · · ·uk−2)

2−q(log u2)
−1 · · · (log uk−1)

−1
)∣∣ ≪ log uk−2.

Therefore, since log uk−2/ log uk = 1/(k(k − 1)) → 0 as k → ∞, we get

dimH

(
∞∩
k=1

Ek

)
≥ 2

q
.

We finally show that for any τ ∈ F , the equation ax+ by = cz is solvable
in PS(τ) and τ ∈ [β, γ]. If this claim is true, we get the conclusion of
Proposition 4.3.1 by the monotonicity of the Hausdorff dimension.

Take any τ ∈ F . It is clear that τ ∈ [β, γ] since the condition (C6) yields
Huk ⊆ (β, γ+u−2

k ), which implies F ⊆ [β, γ]. Further, by (C7), for all k > 1,
there exist a prime number uk < pk ≤ 2uk and zk ∈ K(pk) such that we find
a pairwise distinct tuple (X(pk, zk), Y (pk, zk), Z(pk, zk)) ∈ N3 such that

a⌊X(pk, zk)
τ⌋+ b⌊Y (pk, zk)

τ⌋ = c⌊Z(pk, zk)τ⌋, X(pk, zk) ≥ pk.

Since X(pk, zk) ≥ pk ≥ uk → ∞ as k → ∞, the equation ax + by = cz is
solvable in PS(τ).
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4.4 Proof of Theorem 4.1.1

Fix any a, b, c ∈ N. Without loss of generality, we may assume that either
a ̸= c or a = b = c = 1. Let ε > 0 be an arbitrarily small real number. Let
d = ⌊s⌋ and choose real numbers β, γ with d ≤ s < β < γ < min{t, d + 1}.
Let x0 = x0(a, b, c, d, β, γ) be from Section 4.2. By the monotonicity of the
Hausdorff dimension, we have

dimH({α ∈ [s, t] : ax+ by = cz is solvable in PS(α)})
≥ dimH({α ∈ [β, γ] : ax+ by = cz is solvable in PS(α)}). (4.4.1)

Take α(x, z) as in Lemma 4.2.1 and Lemma 4.2.2. Let K(x) = Ja,b,c(x),
θ(x, z) = α(x, z). We give ℓ(x, z) later. Let us check the conditions (C1) to
(C7), and apply Proposition 4.3.1.

Case a > c. By Lemma 4.2.1, for all x ≥ x0 and z ∈ Ja,b,c(x),

axα(x,z) + b = czα(x,z)

holds. Thus by Lemma 4.2.3, there exists n0 = n0(x, z) ∈ N such that

a⌊(n0x)
α⌋+ b⌊nα0 ⌋ = c⌊(n0z)

α⌋, (4.4.2)

max({(n0x)
α}, {(n0)

α}, {(n0z)
α}) < 1/2, (4.4.3)

n0 ≪ε x
γ2/((2+{β}−21−⌊β⌋)(2−{γ}))+ε. (4.4.4)

Define η as in Lemma 4.2.4. Let ℓ(x, z) = η(α(x, z), n0x, n0, n0z). The
condition (C1) is clear from the definition of Ja,b,c(x). The condition (C2) is
also clear since we find at most one multiple of x in any 3-consective integers
if x0 ≥ 3. Lemma 4.2.1 implies (C4). By Lemma 4.2.4, for each x ≥ x0 and
z ∈ Ja,b,c(x), each τ ∈ (α(x, z), α(x, z) + ℓ(x, z)) satisfies

a⌊(n0x)
τ⌋+ b⌊nτ0⌋ = c⌊(n0z)

τ⌋, n0x ≥ x.

Therefore we have (C7). Let us show (C3), (C5), (C6).
We show (C3). Let x be an integer with x ≥ x0. For each i ∈ {1, 2}, let

z1,i =

⌊(
b

cx2 log x
+
a

c

)1/γ

x

⌋
+ i, z2,i = ⌊(a/c)1/βx⌋ − i.
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Note that Ja,b,c(x) does not contain multiples of x. Thus we do not know
whether z1,i, z2,i ∈ Ja,b,c(x) for each i ∈ {1, 2}. However, by (C2), there exist
i1, i2 ∈ {1, 2} such that z1,i1 , z2,i2 ∈ Ja,b,c(x). Lemma 4.2.1 implies that

α(x, z1,i1) =
log(a/c)

log(z1,i1/x)
+O

(
1

x2 log x

)
.

Here we have

log(z1,i1/x) = log

((
b

cx2 log x
+
a

c

)1/γ

+O(x−1)

)

=
1

γ
log(a/c) + log

(
1 +O

(
b

aγx2 log x

)
+O(x−1)

)
=

1

γ
log(a/c) +O(x−1).

Therefore

α(x, z1,i1) =
log(a/c)

1
γ
log(a/c) +O(x−1)

+O

(
1

x2 log x

)
= γ +O(x−1).

Similarly, we have α(x, z2,i2) = β +O(x−1). Hence we obtain (C3).
We next show (C5). For all x ≥ x0 and z ∈ Ja,b,c(x), x < z holds by the

definition of Ja,b,c(x). Recall that

ℓ(x, z) = η(α(x, z), n0x, n0, n0z) =
log ((⌊Wα⌋+ 1)W−α)

logW
,

where W is one of n0x, n0, or n0z. By β < α(x, z), we have ℓ(x, z) ≤
log(1+(n0x)

−β) ≤ x−β. Further, by the facts (4.4.3), (4.4.4), 1 < x < z ≪ x,
and α < γ, we have

ℓ(x, z) ≥ log(1 + 2−1W−α)

logW
≫ 1

(n0z)γ log(n0z)
≫ε x

−q,

where let

q = q(β, γ, ε) = (γ + ε)

(
γ2

(2 + {β} − 21−⌊β⌋)(2− {γ})
+ 1 + ε

)
.
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Therefore (C5) holds (with Q3 = 1). The remaining condition (C6) is clear
since β < α(x, z) < γ and α(x, z)+ ℓ(x, z) < γ+ x−2 by (C5) (with Q3 = 1).

Case c > a. Define n0 = n0(x, z), ℓ(x, z), q(β, γ, ε) by the same way
in Case a > c. The condition (C1) is clear since z < x by the definition
of Ja,b,c(x). The condition (C2) is also clear since Ja,b,c(x) forms a set of
consecutive integers. Lemma 4.2.1 implies (C4). Similarly to the discussion
in Case a > c, we have (C5), (C6), and (C7). Let us show the remaining
condition (C3). Let x be an integer with x ≥ x0. Let

z1 =

⌊(
a

c− b(x2 log x)−1

)1/β

x

⌋
+ 1, z2 = ⌊(a/c)1/γx⌋ − 1.

We observe that z1, z2 ∈ Ja,b,c(x) if x0 is sufficiently large. Lemma 4.2.1
implies that α(x, z1) = β + O (x−1) and α(x, z2) = γ + O (x−1). Therefore
we have (C3).

Case a = b = c = 1. By Lemma 4.2.2, for all x ≥ x0 and z ∈ J1,1,1(x), by
letting X = X(x, z) = x2⌈log x⌉, Y = Y (x, z) = x2⌈log x⌉+1, Z = Z(x, z) =
zx⌈log x⌉, we have

Xα(x,z) + Y α(x,z) = Zα(x,z).

Therefore, from Lemma 4.2.3, there exists n0 = n0(x, z) ∈ N such that

⌊(n0X)α⌋+ ⌊(n0Y )α⌋ = ⌊(n0Z)
α⌋,

max({(n0X)α}, {(n0Y )α}, {(n0Z)
α}) < 1/2, (4.4.5)

n0 ≪ε (X + Y )γ
2/((2+{β}−21−⌊β⌋)(2−{γ}))+ε.

Defining r = r(γ, β, ε) = γ2/((2 + {β} − 21−⌊β⌋)(2− {γ})) + ε, we obtain

n0 ≪ε x
(2+ε)r. (4.4.6)

Let ℓ(x, z) = η(α(x, z), n0X,n0Y, n0Z) from Lemma 4.2.4.
The condition (C1) is clear since x < z < 2x by the definition of J1,1,1(x).

The condition (C2) is also clear since J1,1,1(x) forms a set of consecutive
integers. Lemma 4.2.2 implies (C4). By Lemma 4.2.4, for all x ≥ x0, z ∈
J1,1,1(x), each τ ∈ (α(x, z), α(x, z) + ℓ(x, z)) satisfies

⌊(n0X)τ⌋+ ⌊(n0Y )τ⌋ = ⌊(n0Z)
τ⌋, n0X ≥ x.
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Therefore (C7) holds. Therefore it suffices to show (C3), (C5), and (C6).
Let us show (C3). Take any integer x ≥ x0. Let

z1 =
⌊
21/γ(x+ (x⌈log x⌉)−1)

⌋
+ 1, z2 = ⌊21/βx⌋ − 1.

It follows that z1, z2 ∈ J1,1,1(x) if x0 is sufficiently large. Then Lemma 4.2.2
implies that α(x, z1) = γ + O (x−1) and α(x, z2) = β + O (x−1). Therefore
we have (C3).

We next show (C5). Let x be an integer with x ≥ x0 and z ∈ J1,1,1(x).
It is clear that x < z and X(x, z) < Y (x, z) < Z(x, z). Recall that

ℓ(x, z) = η(α(x, z), n0X,n0Y, n0Z) =
log ((⌊Wα⌋+ 1)W−α)

logW
,

where W is one of n0X,n0Y , or n0Z. Therefore, by β < α, we have ℓ(x, z) ≤
log(1 + (n0Z)

−β) ≤ Z−β ≤ x−β. Further, by the facts in (4.4.5) and (4.4.6)
and α < γ, we obtain

ℓ(x, z) ≥ log(1 + 2−1W−α)

logW
≫ 1

(n0Z)γ log(n0Z)
≫ε x

−(2+ε)(γ+ε)(r+1).

Hence, (C5) holds. The condition (C6) is clear since β < α(x, z) < γ and
α(x, z) + ℓ(x, z) < γ + x−2 by (C5).

By summarizing the above discussion, define

Da,b,c(β, γ, ε) =


2

(2 + ε)(γ + ε)(r(β, γ, ε) + 1)
if a = b = c,

2

q(β, γ, ε)
otherwise.

Case a > c, Case c > a, Case a = b = c = 1, and Proposition 4.3.1 imply
that

dimH({α ∈ [β, γ] : ax+ by = cz is solvable in PS(α)}) ≥ Da,b,c(β, γ, ε).

Therefore, by (4.4.1) and by letting ε→ +0, γ → β, β → s, we have

dimH({α ∈ [s, t] : ax+ by = cz is solvable in PS(α)}) ≥ Da,b,c(s, s, 0).

By the definitions of q and r, we get the conclusion of Theorem 4.1.1.
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Chapter 5

Linear Diophantine equations
with two variables in
Piatetski-Shapiro sequences

This chapter is based on [Sai20]. We investigate the solvability in PS(α) of
linear Diophantine equations with two variables.

5.1 Improvements on Glasscock’s results

Recall that Glasscock studied the solvability in PS(α) of the equation

y = ax+ b (5.1.1)

for fixed a, b ∈ R with a /∈ {0, 1}. As a result, he reached Theorem 1.3.8.
The goal of this chapter is to put forward the following theorem which is

an improvement on Glasscock’s result in the case when 0 ≤ b < a.

Theorem 5.1.1 ( [Sai20, Theorem 1.1]). Let a, b ∈ R, with a ̸= 1 and
0 ≤ b < a. Assume that the equation y = ax + b is solvable in N. Then for
all 1 < α < 2, the equation y = ax + b is solvable in PS(α). Moreover, for
all s, t ∈ R with 2 < s < t, we have

dimH{α ∈ (s, t) : y = ax+ b is solvable in PS(α)} = 2/s.

We avail of two main improvements when 0 ≤ b < a. Firstly, in the
case when 1 < α < 2, we arrive at the same conclusion as Glasscock’s result
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even if we replace “for Lebesgue almost every” with “for all”. Secondly,
in the case when α > 2, his result is equivalent to stating that the set
{α ∈ (s, t) : y = ax+ b is solvable in PS(α)} has Lebesgue measure 0 for all
2 < s < t. However, from Theorem 5.1.1, we find that the set has a Hausdorff
dimension of exactly 2/s. Hence we can discern more details concerning the
geometric structure of the set. We will show Theorem 5.1.1 in Section 5.4.

From the first improvement, we obtain Theorem 1.3.10.

Proof of Theorem 1.3.10 assuming Theorem 5.1.1 . Fix an arbitrary α ∈ (1, 2).
By Theorem 5.1.1, the equation y = 2x is solvable in PS(α). Let x1 <
x2 < · · · and y1 < y2 < · · · be solutions (x, y) = (xn, yn) ∈ PS(α)2 to
y = 2x. By [FW09, Proposition 5.1], for every sufficiently large n, there ex-
ists an ∈ PS(α) such that all an, an + xn, an +2xn are in PS(α). Therefore,
for every sufficiently large n, by substituting (kn,mn, ℓn, ) = (an, xn, xn), all

kn, mn, ℓn, kn +mn, mn + ℓn, ℓn + kn, kn +mn + ℓn

belong to PS(α).

Remark that the method of this proof can be seen in [Gla17, Corollary 1].
We next discuss the solvability in PS(α) of the equation

ax+ by = cz (5.1.2)

for fixed a, b, c ∈ N. As a corollary of Theorem 5.1.1, the following holds:

Corollary 5.1.2 ( [Sai20, Corollary 1.3]). Let a, b, c ∈ N with gcd(a, c)|b,
a > b and a ̸= c. Then, for all 1 < α < 2, the equation ax + by = cz is
solvable in PS(α). Further, for all 2 < s < t, we have

dimH{α ∈ (s, t) : ax+ by = cz is solvable in PS(α)} ≥ 2

s
. (5.1.3)

Indeed, from the condition gcd(a, c)|b, the equation ax+b = cz is solvable
in N. By dividing both sides by c, we have the equation z = (a/c)x +
(b/c) whose coefficients a/c and b/c satisfy the conditions in Theorem 5.1.1.
Moreover, if the equation ax + b = cz is solvable in PS(α), then by letting
y = 1 = ⌊1α⌋, we see that the equation ax + by = cz is solvable in PS(α).
Therefore we conclude Corollary 5.1.2 from Theorem 5.1.1.

The lower bounds (5.1.3) in Corollary 5.1.3 are better than Theorem 4.1.1
for all 2 < s < t. In particular, we find that the left-hand side of (5.1.3) goes
to 1 as s→ 2 + 0 from Corollary 5.1.3 if a, b, c are restricted.
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5.2 Lemmas

The goal of this section is to show a series of lemmas so as to evaluate
discrepancies and calculate the Hausdorff dimension.

Lemma 5.2.1 ( [Sai20, Lemma 3.1]). For every non-integral α > 1, integer
k ≥ 4, and real numbers η > 0 and V ≥ 1, if ηV α−k < 1 holds, then we have

D((ηnα)V <n≤2V ) ≪α,k (ηV
α−k)1/(2

k−1) + η−1/(2k−2)V (k−α)/(2k−2)−22−k

.

Proof. Fix any α, k, η, V given in Lemma 5.2.1 which satisfy ηV α−k < 1.
Let fh(x) = hηxα for every h ∈ N and x > 0. Then we have

hηV α−k ≪α,k |f (k)
h (x)| ≪α,k hηV

α−k

for all V < x ≤ 2V . Therefore, the following holds from the Erdős-Turán
inequality (2.2.2) and Lemma 2.2.4 with I = (V, 2V ], f = fh : for all K ∈ N,

D((ηnα)V <n≤2V )

≪ K−1 +
K∑
h=1

1

h

∣∣∣∣∣ 1V ∑
V <n≤2V

e(hηnα)

∣∣∣∣∣
≪α,k K

−1 +
K∑
h=1

1

h

∣∣∣(hηV α−k)1/(2k−2)
+ V −22−k (

hηV α−k)−1/(2k−2)
∣∣∣

≪α,k K
−1 + (KηV α−k)1/(2

k−2) + η−1/(2k−2)V (k−α)/(2k−2)−22−k

.

Hence by substituting K = ⌈(η−1V k−α)1/(2
k−1)⌉, we get the lemma.

Lemma 5.2.2 ( [Sai20, Lemma 3.2]). Let α > 1 be a non-integral real num-
ber, γ ∈ R with 0 < γ − α < 1, and let A > 0 be a real number. Then there
exist Q0 = Q0(α, γ, A) > 0, ξ0 = ξ0(α, γ) > 0, and ψ = ψ(α, γ) < 0 such
that for all Q ≥ Q0 and 0 < ξ ≤ ξ0, we have

D((AQαnα)V <n≤2V ) ≪α,γ,A Q
ψ

where V = Q(γ−α−ξ)/α.

Proof. Fix any α, γ, A given in Lemma 5.2.2. Let Q0 = Q0(α, γ,A) > 0 be
a sufficiently large parameter, and ξ0 = ξ0(α, γ) > 0 be a sufficiently small
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parameter. Take arbitrary real numbers 0 < ξ ≤ ξ0 and Q ≥ Q0. Then there
exists an integer k = k(α, γ) ≥ 4 such that

γ(k − 3)

γ + k − 3
< α <

γk

γ + k
. (5.2.1)

Indeed, let g(k) = γ(k − 3)/(γ + k − 3). Then g(k) is strictly increasing for
all k ≥ 4. Since g(4) = γ/(γ + 1) and limk→∞ g(k) = γ, we have

α ∈ (1, γ) ⊆
∞∪
k=4

(g(k), g(k + 3)).

Therefore, there exists an integer k ≥ 4 satisfying (5.2.1). Let us fix such an
integer as k = k(α, γ) ≥ 4. By the condition V = Q(γ−α−ξ)/α, we observe
that

AQαV α−k = AQψ1

where ψ1 := α + (γ − α− ξ)(α− k)/α. Then we have

ψ1 = ((γ + k)α− γk)/α− ξ(α− k)/α ≤ ((γ + k)α− γk)/(2α) < 0

by α < γk/(γ + k), 0 < ξ ≤ ξ0, and the assumption that ξ0 = ξ0(α, γ)
is sufficiently small. Therefore AQαV α−k < 1 holds since Q0 is sufficiently
large and Q ≥ Q0. Thus we may apply Lemma 5.2.1 with η = AQα and
V = Q(γ−α−ξ)/α to obtain

D((AQαnα)V <n≤2V ) ≪α,γ,A (QαV α−k)1/(2k−1) +Q−α/(2k−2)V (k−α)/(2k−2)−22−k

= Qψ1/(2k−1) +Qψ2 ,

where

ψ2 := − α

2k − 2
+
γ − α− ξ

α

(
k − α

2k − 2
− 4

2k

)
.

Then we have

ψ2 =
−α22k + (γ − α)(k − α)2k − 4(γ − α)(2k − 2)

2k(2k − 2)α
+Oα,γ(ξ)

=
(γk − (γ + k − 4)α− 4γ)2k + 8(γ − α)

2k(2k − 2)α
+Oα,γ(ξ).
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Therefore the inequalities α > γ(k − 3)/(γ + k − 3), k ≥ 4, γ − α < 1,
1 < α < γ and 0 < ξ ≤ ξ0 imply that for sufficiently small ξ0 > 0,

ψ2 <
−2k · γ2/(γ + k − 3) + 8

2k(2k − 2)α
+Oα,γ(ξ0)

<
−2k/(k − 2) + 8

2k+1(2k − 2)α
≤ 0.

Therefore, there exists ψ = ψ(α, k) < 0 so that

D((AQαnα)V <n≤2V ) ≪α,γ,A Q
ψ.

We next present lemmas on the Hausdorff dimension. Recall the definition
of A(J, γ) in Section 2.3

Lemma 5.2.3 ( [Sai20, Lemma 3.4]). Let I ⊆ (1,∞) be a non-empty and
bounded open interval, and let γ > 2 and a > 0 be real numbers with a ̸= 1.
Define

E(I, γ; a) =
{
α ∈ I : there are infinitely many (p, q) ∈ Z× N

such that

∣∣∣∣a1/α − p

q

∣∣∣∣ ≤ 1

qγ

}
.

Then we have dimHE(I, γ; a) = 2/γ.

Proof. For all u > 0, let f(u) = a1/u. Fix a compact set V ⊆ R with I ⊆ V .
Clearly, f is continuously differentiable and |f ′(u)| > 0 for all u ∈ V . By
the definitions, f(E(I, γ; a)) = A(f(I), γ). Since f(I) is also a bounded open
interval, Lemma 2.3.3 and Lemma 2.3.5 imply that

dimH E(I, γ; a) = dimH f(E(I, γ; a)) = dimHA(f(I), γ) =
2

γ
.
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5.3 Key Propositions

In this section, we show two key propositions by applying rational approxi-
mations.

Proposition 5.3.1 ( [Sai20, Proposition 4.1]). Let a, b ∈ R with a ̸= 1 and
a > 0. For all 1 ≤ β < γ, we have

{α ∈ (β, γ) : y = ax+ b is solvable in PS(α)} ⊆ E((β, γ), β; a).

Proof. Fix β, γ ∈ R with 1 ≤ β < γ. Take any α ∈ (β, γ) such that the
equation y = ax + b is solvable in PS(α). Then there are infinitely many
(p, q) ∈ N× N such that ⌊pα⌋ = a⌊qα⌋+ b, which implies that

p

q
=

(
a+

b+ {pα} − a{qα}
qα

)1/α

= a1/α +Oa,b(q
−α).

Hence, there exist C = C(a, b) > 0 such that for infinitely many (p, q) ∈ N2,∣∣∣∣a1/α − p

q

∣∣∣∣ ≤ C

qα
≤ 1

qβ
.

This yields that α ∈ E((β, γ), β; a).

Proposition 5.3.2 ( [Sai20, Proposition 4.2]). Let a, b ∈ R with a ̸= 1 and
0 ≤ b < a. Suppose that y = ax+ b is solvable in N. Then for all 1 ≤ β < γ
with ⌊β⌋ < β < γ < ⌊β⌋+ 1, we have

E((β, γ), γ; a) ⊆ {α ∈ (β, γ) : y = ax+ b is solvable in PS(α)}.

Proof. Since the equation y = ax + b is solvable in N, there exist distinct
solutions (x1, y1), (x2, y2) ∈ N2 of the equation. Then since y2−y1 = a(x2−x1)
and (x1, y1) ̸= (x2, y2), we have a ∈ Q. In addition, b ∈ Q holds from
b = y1 − ax1. Thus we may let a = a1/a2, b = b1/b2, (a1, a2, b2 ∈ N,
b1 ∈ N ∪ {0}). By letting c = a2b2, d = a1b2, e = a2b1, a pair (x, y) ∈ N2

satisfies the equation cy − dx = e if and only if (x, y) satisfies the equation
y = ax+b. Therefore we now discuss the solvability in PS(α) of the equation
cy − dx = e. Take any α ∈ E((β, γ), γ; a) = E((β, γ), γ; d/c). Let us show
that the equation cy − dx = e is solvable in PS(α).

84



By the definition, there is a sequence ((pn, qn))
∞
n=1 ∈ (Z× N)N such that

for all n ∈ N, ∣∣(d/c)1/α − pn/qn
∣∣ < q−γn ,

where q1 < q2 < · · · . Since (d/c)1/α > 0 and d/c ̸= 1, there exists n0 =
n0(d, c) ∈ N such that for all n ≥ n0, we obtain pn > 0 and pn ̸= qn.

From the solvability in N, there exist u, v ∈ N such that cu− dv = e. By
the division algorithm, there exist r, v′ ∈ Z such that v = cr+ v′, 0 ≤ v′ < c.
Hence by replacing u− dr and v′ with u and v respectively, we obtain

cu− dv = e, 0 ≤ v < c. (5.3.1)

Take a sufficiently small parameter ξ = ξ(α, γ) > 0, and take a sufficiently
large parameter n1 = n1(α, γ, c, d, ε) ∈ N. Let ε be a real number with 0 <
ε < min(1/2, (d− e)/c). Note that b < a implies e = a2b1 < a1b2 = d. Hence

we verify the existence of ε. Take n ∈ N with n ≥ n1. Let Vn = q
(γ−α−ξ)/α
n .

Define

I =

[
v

c
,
v

c
+

1

c

)
∩
[
u

d
+
ε

d
,
u

d
+

1

d
− ε

d

)
, (5.3.2)

Bn =

{
x ∈ N :

{
(qnx)

α

c

}
∈ I

}
.

Here the interval [
u

d
+
ε

d
,
u

d
+

1

d
− ε

d

)
is non-empty by ε < 1/2. If n1 is large enough and ξ is small enough, then
by the definition of the discrepancy and Lemma 5.2.2 with V = Vn, Q = qn,
A = 1/c, there exists ψ = ψ(α, γ) < 0 such that

#(Bn ∩ (Vn, 2Vn])/Vn = diam(I ∩ [0, 1)) +Oα,γ,c(q
ψ
n ).

Here we show diam(I ∩ [0, 1)) > 0. Indeed, by (5.3.1), we obtain

u

d
+
ε

d
=
v

c
+

e

cd
+
ε

d
>
v

c
.

Moreover, the inequality ε < (d− e)/c yields that

u

d
+
ε

d
=
v

c
+

1

c
+
e− d

cd
+
ε

d
<
v

c
+

1

c
≤ 1.
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Hence diam(I ∩ [0, 1)) > 0. Therefore there exists a large enough n1 =
n1(α, γ, c, d, e, ε) ∈ N such that for all n ≥ n1, we get #(Bn∩(Vn, 2Vn])/Vn ≥
diam(I ∩ [0, 1))/2, which means that Bn ∩ (Vn, 2Vn] is non-empty.

Hence we may take x ∈ Bn ∩ (Vn, 2Vn] where n ≥ n1. Then

(qnx)
α = c

⌊
(qnx)

α

c

⌋
+c

{
(qnx)

α

c

}
=

(
c

⌊
(qnx)

α

c

⌋
+ v

)
+

(
c

{
(qnx)

α

c

}
− v

)
.

The first term on the most right-hand side is an integer, and the second is
in [0, 1) from the definition of Bn. Therefore we have

⌊(qnx)α⌋ = c

⌊
(qnx)

α

c

⌋
+ v.

Let θ = pn/qn − (d/c)1/α. By the mean value theorem, there exist C =

C(c, d, α) > 0 and θ′ ∈ R with |θ′| ≤ |θ| such that (pn/qn)
α = ((d/c)1/α +

θ)α = d/c+ Cθ′. Therefore,

(pnx)
α =

(
pn
qn

)α
(qnx)

α = d

⌊
(qnx)

α

c

⌋
+ d

{
(qnx)

α

c

}
+ Cθ′(qnx)

α

=

(
d

⌊
(qnx)

α

c

⌋
+ u

)
+

(
d

{
(qnx)

α

c

}
− u

)
+ Cθ′(qnx)

α.

The first term on the most right-hand side is an integer, and the second term
is in [ε, 1 − ε) by x ∈ Bn. Further, if necessary, we replace n1 with a larger
one, and by x ∈ (Vn, 2Vn], the third term is evaluated by

|Cθ′(qnx)α| ≤ 2αC
qαnq

γ−α−ξ
n

qγn
≤ 2αCq−ξn ≤ 2αCq−ξn1

< ε.

Hence we obtain

⌊(pnx)α⌋ = d

⌊
(qnx)

α

c

⌋
+ u.

By the above discussion, if x ∈ Bn ∩ (Vn, 2Vn] and n ≥ n1, then

c⌊(pnx)α⌋−d⌊(qnx)α⌋ = cd

⌊
(qnx)

α

c

⌋
+ cu−dc

⌊
(qnx)

α

c

⌋
−dv = cu−dv = e,

which means that (⌊(qnx)α⌋, ⌊(pnx)α⌋) ∈ N2 is a solution of the equation
cy − dx = e. Therefore the equation cy − dx = e is solvable in PS(α) since
Bn ∩ (Vn, 2Vn] is non-empty for all n ≥ n1.
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Remark 5.3.3 ( [Sai20, Remark 4.3]). In the case when 0 ≤ a ≤ b, the
interval I in (5.3.2) should be empty. Indeed, a ≤ b implies d = a1b2 ≤
a2b1 = e. Thus we observe that

u

d
−
(
v

c
+

1

c

)
=
e− d

cd
≥ 0,

which implies I = ∅. Because of this technical problem, we restrict the
coefficients a, b to 0 ≤ b < a.

5.4 Proof of Theorem 5.1.1

Fix a, b ∈ R with a ̸= 1 and 0 ≤ b < a. In the case α ∈ (1, 2), we apply
Proposition 5.3.2 with β = 1 and γ = 2. Then

E((1, 2), 2; a) ⊆ {α ∈ (1, 2) : y = ax+ b is solvable in PS(α)}.

By Dirichlet’s approximation theorem, E((1, 2), 2; a) = (1, 2). Therefore the
equation y = ax+ b is solvable in PS(α) for all α ∈ (1, 2).

We next discuss the case when α > 2. Fix s, t ∈ R with 2 < s < t. By
applying Proposition 5.3.1 with β = s and γ = t, and applying Lemma 5.2.3,
we have

dimH{α ∈ (s, t) : y = ax+ b is solvable in PS(α)} (5.4.1)

≤ dimH E((s, t), s; a) = 2

s
.

Further, let δ > 0 be an arbitrarily small parameter. By applying Proposi-
tion 5.3.2 with β = s and γ = min{s+δ, ⌊s⌋+1, t}, and applying Lemma 5.2.3,
we obtain

dimH{α ∈ (s, t) : y = ax+ b is solvable in PS(α)}

≥ dimH E((s, γ), γ; a) = 2

s+ δ

for every small enough δ > 0. Therefore we get the theorem by taking
δ → +0.

Remark 5.4.1 ( [Sai20, Remark 5.1]). Let α ∈ (β, γ) where β and γ satisfy
1 ≤ β < γ and ⌊β⌋ < β < γ < ⌊β⌋ + 1. If a1/α ∈ Q, then it is clear
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that for infinitely many (p, q) ∈ Z × N we have |a1/α − p/q| ≤ q−γ. By
Proposition 5.3.2, the equation y = ax + b is solvable in PS(α). Therefore,
for all a, b ∈ R with a ̸= 1 and 0 ≤ b < a, and for all non-integral α > 1
satisfying a1/α ∈ Q, the equation y = ax+ b is solvable in PS(α).

Remark 5.4.2 ( [Sai20, Remark 5.2]). We apply Proposition 5.3.1 and
Lemma 5.2.3 to show the inequality (5.4.1). Note that the condition 0 ≤
b < a is not required in Proposition 5.3.1 and Lemma 5.2.3. Hence, for all
a, b ∈ R with a ̸= 1 and a > 0, and for all s, t ∈ R with 2 < s < t, we obtain

dimH{α ∈ (s, t) : y = ax+ b is solvable in PS(α)} ≤ 2

s
.
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Chapter 6

Future works

In this chapter, we give some open problems related with this thesis.

6.1 The case when 1 < α < 2

We have investigated distributions of finite sequences represented by polyno-
mials in PS(α), and especially done the case α ∈ (1, 2) in detail. We have not
proved the convergence in the proof of Theorem 3.1.2, but the middle-hand
side in (3.1.2) divided by N2−α/(d+1) probably converges to some positive
number as N → ∞. It is a future work. As other natural questions, we have
the positive-density version and prime-number version.

Question 6.1.1 ( [SY21, Question 6.1] Positive-density version). Let d ∈ N
and α ∈ (d, d + 1); let A ⊂ N be a set with positive density, and k ≥ d + 2
and r ≥ 1 be integers. Then does

#{P ⊂ A ∩ [1, N ] : P ∈ Pk,1, (⌊nα⌋)n∈P ∈ Pk,d} ≍ N2−α/(d+1) (N → ∞)
(6.1.1)

hold?

Question 6.1.2 ( [SY21, Question 6.2] Prime-number version). How about
the case when A in Question 6.1.1 is replaced with the set of all prime num-
bers? In this case, what is suitable as the right-hand side in (6.1.1)?

Actually, we can replace the first term n in (3.2.1) with a prime number
p: for every f ∈ H that satisfies the same assumptions as Theorem 3.2.1,

lim
N→∞

1

π(N)
#{p ∈ [n0, N ]Z : (⌊f(p+ rj)⌋)k−1

j=0 ∈ Pk,d} = µ(Ck,d+1), (6.1.2)
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where π(N) denotes the number of prime numbers less than or equal to N .
The proof of this statement is the same as that of Theorem 3.2.1 because
for every subpolynomial f ∈ H defined on the interval [n0,∞), the sequence
(f(p))pprime≥n0 is uniformly distributed modulo 1 if and only if (f(n))∞n=n0

is
uniformly distributed modulo 1 [BKS19]. In (6.1.2), it is only guaranteed that
the first term p is prime. In order to make all terms p, p+ r, . . . , p+ (k− 1)r
prime, we need to study whether (f(p))p∈Sk,r∩[n0,∞) is uniformly distributed
modulo 1 or not, where Sk,r is the set of all prime numbers p such that all
p, p+ r, . . . , p+ (k − 1)r are prime. Of course, r must be restricted to some
extent depending on k. The set Sk,r is related to twin prime pairs (when
(k, r) = (2, 2)), sexy prime triplets (when (k, r) = (3, 6)), and generally
prime k-tuples. It is known that there exists an even number r such that
S2,r is infinite [Pol14,May15], but it is still open whether Sk,r is infinite for
general k and admissible r.

Finally, we focus on an asymptotic formula when α runs over the interval
(1, 2).

Question 6.1.3 ( [SY21, Question 6.3] Asymptotic formula when α run-
ning). Fix a sufficiently large N ∈ N and integers k ≥ 3 and r ≥ 1. Let

DN,k,r(α) =
1

N
#{n ∈ [1, N ]Z : (⌊(n+ rj)α⌋)k−1

j=0 ∈ Pk,1}.

Can we find any asymptotic formulas of DN,k,r(α) when α runs over the
interval (1, 2)?

Figure 6.1 illustrates the behavior ofDN,k,r(α) by numerical computation,
where the points (α,DN,k,r(α)) are plotted for all α ∈ {1 + 0.001i : i ∈
[0, 1000]Z}. In view of this figure, DN,k,r(α) would be approximated by the
sum of continuous waves and discrete errors. In order to theoretically observe
a phenomenon like this figure, it is probably needed to further analyze the

distribution of the sequence
(
(nα, αnα−1)

)N
n=1

modulo 1.

6.2 The case when α > 2

Question 6.2.1. Does there exist α > 2 such that the set of Piatetski-Shapiro
primes with exponent α contains infinitely many 3-APs.
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Figure 6.1: The behavior of DN,k,r(α) for (N, k, r) ∈ {100, 1000} × {3, 4} ×
{1, 2}. The abscissa and ordinate denote values of α and DN,k,r(α), respec-
tively.

Recall that we say that a prime number p is a Piatetski-Shapiro prime
with exponent α if there exists n ∈ N such that p = ⌊nα⌋. That was intro-
duced in Chapter 1. Mirek [Mir15] proved that for every α ∈ (1, 72/71), the
set of all Piatetski-Shapiro primes with exponent α contains infinitely many
3-APs. Note that we know the existence of Piatetski-Shapiro primes with
exponent α > 2 from (1.2.2).

Question 6.2.2 (Roth’s theorem on Piatetski-Shapiro sequences with α > 2).
Does there exist α > 2 such that any A ⊆ PS(α) with

lim
N→∞

#(A ∩ [N ])

#(PS(α) ∩ [N ])
> 0

contains infinitely many 3-APs?

In the case when 1 < α < 2, the answer to Question 6.2.2 is “YES” by
Theorem 1.3.5. By Fourier analytic methods, Green showed Roth’s theorem
on prime numbers, that is, if A ⊆ P satisfies (1.1.3), then A contains infinitely
many 3-APs [Gre05].
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Question 6.2.3. Fix an arbitrary a, b, c ∈ N. What is the exact Hausdorff
dimension of the set

{α ∈ [s, t] : ax+ by = cz is solvable in PS(α)}? (6.2.1)

We only have lower bounds of the Hausdorff dimension of the set (6.2.1).
In general, the lower bounds are 1/s3 by Theorem 4.1.1. Further, by Corol-
lary 5.1.2, the lower bounds become 2/s if a, b, and c are restricted. The
author expects that we would get better lower bounds. The Hausdorff di-
mension of (6.2.1) would be 3/s for all a, b, c ∈ N.

Question 6.2.4. Define

ds(n) = dimH{α ∈ [s,∞) : x1 + · · ·+ xn−1 = xn is solvable in PS(α)}

for all real numbers s ≥ 1 and n ∈ N. Fix any s ≥ 1. Then is it true that
ds(n) is increasing with respect to n?

This question is related with the Waring problems on Piatetski-Shapiro
sequences. If we ignored pairwise distinctness in the definition of “solvable”,
we would have ds(n) = 1 for every n ≥ (s+ε)22s+ε+1 by Theorem 1.2.3. By
this observation, the answer to Question 6.2.4 would be “YES”. The author
expects that ds(n) would be 1 for all 1 ≤ s < n, and would be n/s for all
n ≤ s.
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