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Introduction

A real-valued function µ on a group Γ is called a quasimorphism if
the condition

sup
γ1,γ2∈Γ

|µ(γ2)− µ(γ1γ2) + µ(γ1)| < ∞

holds. A quasimorphism is called homogeneous if the condition

µ(γn) = nµ(γ)

is satisfied for any γ ∈ Γ and n ∈ Z. By definition, homomorphisms
and bounded functions from Γ to R are quasimorphisms. We call a
quasimorphism trivial if the quasimorphism is obtained as a sum of a
homomorphism and a bounded function.

Quasimorphisms are related to various areas of mathematics, for
example, Topology, Geometry, Algebra, and Dynamical Systems. The
best known and earliest example of a homogeneous quasimorphism is
the translation number, which was defined by Poincaré [Poi85] in his
study on circle dynamics (see Example 1.4). Quasimorphisms also ap-
peared in the study of characteristic classes. The Milnor-Wood inequal-
ity ([Mil58]) states that the Euler number of flat SL(2,R)-bundles over
a surface has an upper bound, where a quasimorphism on the universal
covering group S̃L(2,R) played a crucial role in the proof.

Quasimorphisms have also played an essential role in the study on
bounded cohomology theory. Bounded cohomology of discrete groups
was defined by Johnson [Joh72]. After that, in the celebrated pa-
per [Gro82], Gromov introduced and studied bounded cohomology of
topological spaces. In [Gro82], the Milnor-Wood inequality was re-
formulated as follows: the real Euler class is a bounded cohomology
class and has the Gromov norm equal to 1/2. Quasimorphisms can
be used to show the non-triviality of the second bounded cohomol-
ogy (see also ICM-2006 proceeding [Mon06]). If we can construct a
non-trivial homogeneous quasimorphism on a group Γ, then we imme-
diately obtain a non-zero second bounded cohomology class of Γ. By
using this method, it has been proved that a number of groups that
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6 INTRODUCTION

admit the second bounded cohomology of infinite dimension (for exam-
ple, [Mit84] for the free groups and the non-amenable surface groups
and [EF97] for the non-elementary word-hyperbolic groups; see also
[Mon06]). In the last twenty years, many researchers have constructed
homogeneous quasimorphisms on transformation groups (for example,
[EP03], [GG04], [She14], and [BHW19]; see also ICM-2006 proceed-
ing [Ghy07]).

Let us consider a group extension

1 → K
i−→ Γ

p−→ G → 1.

Throughout this thesis, we identify the group K with the normal sub-
group i(K) of Γ under the map i. Let Q(K), Q(Γ), and Q(G) be the
space of the homogeneous quasimorphisms on K, Γ, and G, respec-
tively. Then there is an exact sequence (Lemma 1.5 and Remark
1.7)

0 → Q(G)
p∗−→ Q(Γ)

i∗−→ Q(K)Γ,

where Q(K)Γ denotes the subspace of Q(K) whose elements are invari-
ant under the conjugation action by Γ (see Definition 1.6).

The main concerns of this thesis are the following two problems of
homogeneous quasimorphisms: a descending problem and an extending
problem. The descending problem asks whether a given element of
Q(Γ) defines that of Q(G) or not, and the extending problem asks
whether a given element of Q(K)Γ is a restriction of that of Q(Γ) or
not. To deal with the above problems, we introduce and study two
spaces ND and NE defined below.

The space ND is defined by

ND = Q(Γ)
/(

p∗Q(G) +H1(Γ)
)

(0.0.1)

(see Definition 2.1). Here H1(Γ) is the first cohomology group of
Γ with coefficients in R, which is identified with the space of all ho-
momorphisms from Γ to R. Recall that a homomorphism is called
a trivial homogeneous quasimorphism. Thus a non-trivial element in
ND is represented by a non-trivial homogeneous quasimorphism on Γ
which does not descend to G. In this sense, we call ND the space of
non-descendible homogeneous quasimorphisms.

The space NE is the following (Definition 3.1):

NE = Q(K)Γ
/(

i∗Q(Γ) +H1(K)Γ
)
.(0.0.2)

Here H1(K)Γ is the subspace of H1(K) whose elements are invariant
under the conjugation action by Γ (see (1.2.3)). A non-trivial element
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in NE is represented by a Γ-invariant non-trivial homogeneous quasi-
morphism on K which does not extend to Γ. Thus we call NE the
space of non-extendable homogeneous quasimorphisms. The triviality
and non-triviality of this space has some applications to stable commu-
tator length and the virtual splitting of the surjection p : Γ → G (see
Section 3.1).

Let us briefly describe the content of each chapter.

Chapter 1. This chapter is devoted to preliminaries. We recall
definitions and basic properties of quasimorphisms, group and bounded
cohomology, characteristic classes, and transformation groups.

Chapter 2. This chapter is based on [KM20], which is a joint
work with Morimichi Kawasaki. In this chapter, we mainly focus on
the space ND of the group extension

0 → π1(G) → G̃
p−→ G → 1,(0.0.3)

where G is a connected topological group, p : G̃ → G is the universal
covering, and π1(G) is the fundamental group of G.

Let Gδ be the group G with the discrete topology and ι : Gδ → G
the identity homomorphism. Then the homomorphism ι induces the
continuous map Bι : BGδ → BG between the classifying spaces. Thus
we obtain the homomorphism

(Bι)∗ : H•
top(BG) → H•

top(BGδ) ∼= H•(G)

by pullback, where H•(−) and H•
top(−) denote the cohomology of

groups and topological spaces with coefficients in R, respectively. In
this thesis, we call a cohomology class a ∈ H•(G) a characteristic class
of foliated G-bundles if a ∈ Im(Bι)∗.

Let H•
b (G) be the bounded cohomology of G with coefficients in R

and
cG : H

•
b (G) → H•(G)

the comparison map (see Subsection 1.2.2). A class a ∈ H•(G) is called
bounded if a ∈ Im(cG). One of the main theorems of the celebrated
paper [Gro82] by Gromov is the following:

Theorem ([Gro82]). If G is an algebraic subgroup of GL(n,R),
then each characteristic class of foliated G-bundles is bounded, that is,
the following holds:

Im(Bι)∗ ⊂ Im(cG).

The above theorem does not necessarily hold for an arbitrary topo-
logical group. Therefore, when G is not an algebraic subgroup of
GL(n,R), one may ask whether a given characteristic class is bounded
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or not. If we ask the boundedness of characteristic classes of fiber
bundles, then we need to deal with homeomorphism groups or diffeo-
morphism groups as G. However, when G is such a group, there are
only a few characteristic classes that are known to be bounded or not
(the known examples are listed in Example 2.22).

Since the first real bounded cohomology is always trivial, the non-
trivial boundedness problem occurs when the degree of the class is
greater than or equal to two. So we consider classes in second coho-
mology groups. The study of the boundedness of characteristic classes
of foliated G-bundles can be rephrased as the study of the space

Im(Bι)∗ ∩ Im(cG) ⊂ H2(G).(0.0.4)

The following theorem clarifies a relation between the space (0.0.4) and
the space ND of non-descendible homogeneous quasimorphisms on the
universal covering group G̃.

Theorem A (Theorem 2.17). For the space ND for the group
extension 0 → π1(G) → G̃ → G → 1, there is an isomorphism

ND ∼= Im(Bι)∗ ∩ Im(cG).

Theorem A states that any bounded characteristic classes of fo-
liated G-bundles are characterized by non-trivial homogeneous quasi-
morphisms on G̃. In particular, if the space Q(G̃) is trivial, then we can
deduce that any non-zero characteristic classes of foliated G-bundles
are unbounded. Note that many researchers have constructed non-
descendible homogeneous quasimorphisms on the universal coverings
of diffeomorphism groups (for example, [Giv90], [Ost06], [OT09],
and [FOOO19]).

One of the applications is the following. Let Symp0(S
2 × S2, ωλ)

and Cont0(S
3, ξ) be the identity component of the symplectomorphism

group and the contact diffeomorphism group, respectively (see Section
1.4 and Subsection 2.4.1 for the definitions). If 1 < λ ≤ 2, there are
canonical characteristic classes

(oS2×S2)R ∈ H2
top(B Symp0(S

2 × S2, ωλ)) ∼= R
and

(oS3)R ∈ H2
top(B Cont0(S

3, ξ)) ∼= R,
which are defined by the coefficients change of the primary obstructions
to the construction of a cross-section.

Corollary (Corollary 2.23). The following properties hold:
(1) The class (Bι)∗(oS2×S2)R is bounded.
(2) The class (Bι)∗(oS3)R is unbounded.
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Chapter 3. In this chapter, Section 3.2 is based on [Mar20], and
Sections 3.3 and 3.4 are based on [KKM+21], where [KKM+21] is
a joint work with Morimichi Kawasaki, Mitsuaki Kimura, Takahiro
Matsushita, and Masato Mimura. Our main concern of this chapter is
the space NE .

Recall that, for a group extension 1 → K
i−→ Γ

p−→ G → 1, there is
an exact sequence

0 → Q(G)
p∗−→ Q(Γ)

i∗−→ Q(K)Γ.

Therefore, the non-descendibility of a homogeneous quasimorphism
µ ∈ Q(Γ) is equivalent to the non-triviality of the restriction µ|K = i∗µ.
In contrast, it is difficult to show the non-extendability of a given Γ-
invariant non-trivial homogeneous quasimorphism on K. In fact, there
has been only one such example found to the author’s knowledge. For
the identity component Symp0(Σg, ω) of the symplectomorphism group
and its normal subgroup Ham(Σg, ω) called the Hamiltonian diffeo-
morphism group, Py constrcuted in [Py06] a Symp0(Σg, ω)-invariant
homogeneous quasimorphism on Ham(Σg, ω). Kawasaki and Kimura
showed in [KK19] that Py’s homogeneous quasimorphism does not
extend to Symp0(Σg, ω).

There is another example to explain the difficulty of the extending
problem. In Section 3.2, we show the extendability of the Ruelle in-
variant. Let D be the closed unit disk and ω the standard symplectic
form. Let Γ = Symp(D,ω) be the symplectomorphism group and K
the subgroup that preserves the boundary pointwise. The Ruelle in-
variant R is a homogeneous quasimorphism on K, which was defined
in [Rue85]. It is known that the group K is contractible, and that the
fundamental group of Γ is isomorphic to Z.

The Ruelle invariant R is well defined since the group K is con-
tractible and the same definition does not seem to be applicable to Γ
since it is not. One may suspect that an extension of R does not exist
on Γ; however we can prove the following:

Theorem B (Theorem 3.8). There exists a homogeneous quasi-
morphism

R : Γ → R
satisfying R|K = R. In other words, the Ruelle invariant R is extend-
able to the group Γ.

As explained above, it is difficult to show the non-triviality of the
space NE . Note that the space NE is defined for a pair (Γ, K) of
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groups where K is a normal subgroup of Γ. To the best of the author’s
knowledge, there were no examples of finitely generated groups and its
normal subgroups that admit non-trivial NE . The following two theo-
rems (Theorem C and Theorem D) give the first examples of such
pairs of groups, which are derived from the low-dimensional hyperbolic
geometry.

Theorem C (Theorem 3.2). Let Γ be the surface group of genus
g ≥ 2 and K = [Γ,Γ] the commutator subgroup. Then the dimension
of the space NE is equal to one.

By the theorem of [Mit84], the surface group Γ admits infinite
dimensional Q(Γ). Moreover, since Γ/K ∼= Z2g, we have Q(Γ/K) ∼=
H1(Z2g) ∼= R2g (see Proposition 1.2). Together with the exact se-
quence

0 → Q(Γ/K) → Q(Γ) → Q(K)Γ,

the space Q(K)Γ is infinite-dimensional. Therefore, both numerator
and denominator of NE are infinite-dimensional. However, Theorem
C claims that the quotient space NE is finite-dimensional (more pre-
cisely, is just one-dimensional).

Theorem D (Theorem 3.3). Let Σg be a closed surface of genus
g ≥ 2 and f ∈ Homeo+(Σg) an orientation preserving homeomorphism.
Set Γ = π1(Xf ) and K = [Γ,Γ], where Xf is the mapping torus. If the
mapping class [f ] is a pseudo-Anosov element and in the Torelli group
Ig, then the dimension of the space NE is equal to 2g + 1.

For Theorem D, the similar phenomenon to Theorem C can
be observed. By the theorem of Thurston ([Thu86], [Ota96]), the
mapping class [f ] is a pseudo-Anosov element if and only if the map-
ping torus Xf admits a hyperbolic structure. Thus, by the theorem of
[EF97], the fundamental group Γ of Xf has infinite dimensional Q(Γ).
Therefore, as the case of Theorem C, the numerator and the denom-
inator of NE are infinite dimensional. However, Theorem D asserts
that the quotient NE is finite-dimensional if the mapping class is in the
Torelli group. The Torelli group is the subgroup of the mapping class
group which act trivially on the homology of the surface. It is known
that the Torelli group contains a pseudo Anosov element. Moreover,
pseudo Anosov elements are generic in the Torelli group in the sense
of Random Walk (see Remark 3.4).

Theorem C and Theorem D are proved from a homological alge-
braic point of view, and we do not construct a non-extendable homoge-
neous quasimorphism in the proof. In Section 3.5, we give a description
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of a non-zero element of NE in Theorem C in terms of Poincaré’s
translation number (Theorem 3.30).
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ful discussions.





CHAPTER 1

Preliminaries

1.1. Quasimorphism

In this section, we review some besic notions about quasimorphisms.
We refer to [Cal09] and [Fri17] for details.

Definition 1.1. A real-valued function µ on a group Γ is called a
quasimorphism if

D(µ) = sup
γ1,γ2∈Γ

|µ(γ2)− µ(γ1γ2) + µ(γ1)| < ∞

holds. The value D(µ) is called the defect of µ. A quasimorphism µ is
homogeneous if the equality µ(γn) = nµ(γ) holds for any γ ∈ Γ and n ∈
Z. Let Q(Γ) denote the R-vector space consisting of all homogeneous
quasimorphisms on Γ.

Note that a homomorphism is a homogeneous quasimorphism of
defect zero. We call a quasimorphism trivial if it is a sum of a homo-
morphism and a bounded function. The following fact is well known.

Proposition 1.2. If Γ is amenable, then any homogeneous quasi-
morphism on Γ is a homomorphism. In particular, any homogeneous
quasimorphism on an abelian group is a homomorphism.

For a quasimorphism µ : Γ → R and γ ∈ Γ, the limit

µ = lim
n→∞

µ(γn)

n

always exists, and the difference µ − µ is a bounded function on Γ
(see [Cal09, Lemma 2.21]). By definition, the function µ : Γ → R is
a homogeneous quasimorphism. Namely, perturbing µ by a bounded
function, we can obtain a homogeneous quasimorphism µ : Γ → R.
This µ is called the homogenization of µ.

Example 1.3. The floor function b·c : R → R is a quasimorphism.
Moreover, the homogenization b·c : R → R is equal to the identity
homomorphism on R.

13



14 1. PRELIMINARIES

Example 1.4 (Poincaré’s translation number). Let Homeo+(S
1)

denote the group of orientation preserving homeomorphisms of the cir-
cle. Here we consider Homeo+(S

1) as a topological group with the
compact-open topology. The universal covering group H̃omeo+(S

1) is
identified with

H̃omeo+(S
1) = {γ ∈ Homeo(R) | γt = tγ},

where t : R → R is the translation by one, that is, t(x) = x + 1. Let
us define a function µ : H̃omeo+(S

1) → R by

µ(γ) = γ(0).

Then it turns out that the map µ is a quasimorphism on H̃omeo+(S
1).

The homogenization

µ(γ) = lim
n→∞

γn(0)

n
is called Poincaré’s translation number. Note that Poincaré’s transla-
tion number is not a homomorphism.

In considering homogeneous quasimorphisms on a group extension,
we shall use the following left exactness theorem.

Lemma 1.5 ([Cal09, Remark 2.90]). Let 1 → K
i−→ Γ

p−→ G → 1 be
an exact sequence of groups, then the induced sequence of homogeneous
quasimorphisms

0 → Q(G)
p∗−→ Q(Γ)

i∗−→ Q(K)

is exact.

Definition 1.6. Let K be a normal subgroup of a group Γ. An
element µ ∈ Q(K) is called Γ-invariant if the equality

µ(γ−1kγ) = µ(k)

holds for any k ∈ K and γ ∈ Γ. Let Q(K)Γ denote the R-vector space
of the Γ-invariant homogeneous quasimorphisms on K.

Remark 1.7. The exact sequence in Lemma 1.5 can be refined as

0 → Q(G)
p∗−→ Q(Γ)

i∗−→ Q(K)Γ.

Indeed, any element µ ∈ Q(Γ) is Γ-invariant, that is, µ satisfies the
equality

µ(γ−1
1 γ2γ1) = µ(γ2)

for any γ1, γ2 ∈ Γ (see [Cal09, Section 2.2.3]). Thus the image of the
map i∗ : Q(Γ) → Q(K) is contained in Q(K)Γ.
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The following property plays an essential role in Section 2.3.

Proposition 1.8 ([PR14, Proposition 3.1.4]). For an element
µ ∈ Q(Γ) and for any elements γ1, γ2 ∈ Γ satisfying γ1γ2 = γ2γ1,
the equality

µ(γ1γ2) = µ(γ1) + µ(γ2)

holds.

1.2. Group cohomology and bounded cohomology

In this section, we recall the notion of (bounded) cohomology of
discrete groups. We refer to [Bro82], [Cal09], and [Fri17] for details.

1.2.1. Group cohomology.

Definition 1.9. Let G be a group and (M,+) be a left G-module.
The set of all maps

Cn(G;M) = {c : Gn → M : map}

is called the group n-cochains of G with coefficients in M . For n > 0,
the coboundary map δ : Cn(G;M) → Cn+1(G;M) is defined by

δc(g1, . . . , gn+1) =g1 · c(g2, . . . , gn+1) +
n∑

j=1

(−1)jc(g1, . . . , gjgj+1, . . . , gn+1)

+ (−1)n+1c(g1, . . . , gn)

and δ : C0(G;M) → C1(G;M) by δm(g) = g ·m−m, where we identify
C0(G;M) with M . The group cohomology H•(G;M) of G with coeffi-
cients in M is the cohomology of the cochain complex (C•(G;M), δ).

Notation 1. In this thesis, if the coefficients is the trivial G-
module R, we abbreviate H•(G;R) to H•(G).

Example 1.10. In this example, we consider the trivial G-module
M . The 0-th cohomology H0(G;M) is isomorphic to M since δ =
0: C0(G;M) → C1(G;M) and C0(G;M) = M . The first cohomology
H1(G;M) is isomorphic to the homomorphisms Hom(G;M) from G to
M since the coboundary δ : C1(G;M) → C2(G;M) is defined by

δc(g1, g2) = c(g2)− c(g1g2) + c(g1).

An exact sequence 1 → M
i−→ E → G → 1 of groups is called a

central M-extension of G if the image i(M) is in the center of E. Two
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central M -extensions E1 and E2 are equivalent if there is a commutative
diagram

0 // M // E1
//

��

G // 1

0 // M // E2
// G // 1.

The following fact is well known, which gives a classification of the
equivalence classes of central M -extensions.

Proposition 1.11. Let M be a trivial G-module. The second
group cohomology H2(G;M) is bijective to the set of all equivalence
classes of central M -extensions of G;

H2(G;M) ∼= {central M -extensions of G}/ ∼ .

For a central M -extension E of G, the corresponding cohomology
class e(E) ∈ H2(G;M) is defined as follows (see [Bro82] for details).
Take a set-theoretical section s : G → E of the projection E → G. For
any g1, g2 ∈ G, the value s(g1)s(g2)s(g1g2)

−1 is in i(M) ∼= M . Thus we
obtain a cochain c ∈ C2(G;M) by setting

c(g1, g2) = s(g1)s(g2)s(g1g2)
−1.(1.2.1)

It can be shown that the cochain c is a cocycle, and its cohomology class
[c] does not depend on the choice of the section s. We set e(E) = [c].
This correspondence between a central M -extension E and the second
cohomology class e(E) gives the bijection in Proposition 1.11.

Proposition 1.12. Let 0 → M → E → G → 1 be a central M -
extension and e(E) the corresponding cohomology class in H2(G;M).
Let H be a group and f : H → G a homomorphism. The pullback
f ∗e(E) is equal to zero if and only if the homomorphism has a lift, that
is, there exists a homomorphism f̃ : H → E such that the diagram

E

��
H

f //

f̃
>>~~~~~~~~
G

commutes.
The proof of the following lemma is straightforward.
Lemma 1.13. For a commutative diagram

0 // M1
//

f

��

E1
//

��

G // 1

0 // M2
// E2

// G // 1
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of central extensions, the cohomology class f∗e(E1) ∈ H2(G;M2) is
equal to e(E2), where f∗ : H

2(G;M1) → H2(G;M2) is the change of
coefficients homomorphism.

It is known that the group cohomology H•(G;M) is canonically
isomorphic to the cohomology H•

top(BGδ;M) of the classifying space of
the discrete group Gδ. Here Gδ denotes the group G with the discrete
topology and H•

top(−;M) the cohomology of topological space with
coefficients in M . By this isomorphism, a group cohomology class
gives a characteristic class of foliated bundles, and vice versa.

Example 1.14. In this example, we only consider the case when
the coefficients is the trivial module R (see also Notation 1). The
above isomorphism H•(G) ∼= H•

top(BGδ) allows us to calculate the
cohomology of some groups.

(1) The classifying space B(Zn) is the n-dimensional torus (S1)n.
Thus the group cohomology H•(Zn) is isomorphic to the co-
homology Htop((S

1)n). In particular, we have

H1(Zn) ∼= Rn, H2(Zn) ∼= Rn(n−1)/2.

(2) The classifying space BFn of the rank n free group is the bou-
quet

∨
n S

1. Thus the group cohomology H•(Fn) is isomorphic
to Htop(

∨
n S

1). In particular, we have

H1(Fn) = Rn, H2(Fn) = 0.

(3) Let Σg be a closed oriented surface of genus g > 0 and Γg =
π1(Σg) the surface group. Then the classifying space BΓg is
homotopy equivalent to Σg. Thus the cohomology H•(Γg) is
isomorphic to H•

top(Σ). In particular, we have

H1(Γg) ∼= R2g, H2(Γg) ∼= R.

(4) Let X be a closed connected manifold. Let Homeo0(X) be
the identity component of the group of homeomorphisms of
X with the compact-open topology, and Homeo0(X)δ denotes
the same group with the discrete topology. The identity ho-
momorphism ι : Homeo0(X)δ → Homeo0(X) induces a con-
tinuous map

Bι : BHomeo0(X)δ → BHomeo0(X).

By the theorem of Thurston [Thu74], the map Bι induces an
isomorphism of cohomology.Let us consider the case when X
is the circle S1. Then the group Homeo0(S

1) coincides with
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the group Homeo+(S
1) of orientation preserving homeomor-

phisms. By the fact that the group Homeo+(S
1) is homotopy

equivalent to S1, we have
H•(Homeo+(S

1);Z) ∼= H•
top(BS1;Z) = Z[e],

where the class e ∈ H2
top(BS1;Z) = H2

top(CP∞;Z) is the Euler
class.

For a group extension, there is a spectral sequence called the Hochschild-
Serre spectral sequence (for simplicity, we only states the R-coefficients
case).

Theorem 1.15 ([HS53]). For a group extension 1 → K → Γ →
G → 1, there exists a first quadrant spectral sequence (Ep,q

r , dp,qr ) with
Ep,q

2
∼= Hp(G;Hq(K)) which converges to Hp+q(Γ)

Here the G-action on Hq(K) is defined as follows. The group Γ acts
on Cq(K) by

(γc)(k1, . . . , kq) = c(γ−1k1γ, . . . , γ
−1kqγ).(1.2.2)

This action induces a Γ-action on the cohomology Hq(K). It is known
that the action restricted to K is trivial, and therefore the action in-
duces the G-action on Hq(K). In this way, the cohomology Hq(K)
is considered as a left G-module. Let Hq(K)G denote the G-invariant
part of Hq(K). Then, in particular, any element f of H1(K)G satisfies
the equality

f(γ−1kγ) = f(k)(1.2.3)

for any γ ∈ Γ and k ∈ K. Thus the space H1(K)G is identified with
the space of all Γ-invariant homomorphisms from K to R.

Remark 1.16. Under the canonical isomorphism between H•(G)
and H•

top(BGδ), the Hochschild-Serre spectral sequence of a group ex-
tension

1 → K → Γ → G → 1

is isomorphic to the Serre spectral sequence of the fibration
BKδ → BΓδ → BGδ

of the classifying spaces.
For a first quadrant spectral sequence (Ep,q

r , dp,qr ), we obtain the
following exact sequence called the seven-term exact sequence:

0 → E1,0
2 → E1

∞ → E0,1
2

d0,12−−→ E2,0
2

→ Ker(E2
∞ → E0,2

2 ) → E1,1
2 → E3,0

2 .
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By applying this to the Hochschild-Serre spectral sequence, we ob-
tain the following.

Theorem 1.17 (Seven-term exact sequence of group cohomology).
For a group extension 1 → K

i−→ Γ
p−→ G → 1, there is an exact

sequence

0 → H1(G) → H1(Γ) → H1(K)G
τ−→ H2(G)(1.2.4)

→ Ker(i∗)
ζ−→ H1(G;H1(K)) → H3(G),

where i∗ : H2(Γ) → H2(K).

Remark 1.18. By the definition of the G-action on Hq(K), the
G-invariant part Hq(K)G is the same as the Γ-invariant part Hq(K)Γ.
In our setting in Chapter 3, it is more convenient to consider the G-
invariant part H1(K)G in (1.2.4) as the Γ-invariant part H1(K)Γ.

Remark 1.19. Other coefficients versions of the exact sequence
(1.2.4) also hold. For example, there is an exact sequence

0 → H1(G;Z) → H1(Γ;Z) → H1(K;Z)G τ−→ H2(G;Z)(1.2.5)

→ Ker(i∗)
ζ−→ H1(G;H1(K;Z)) → H3(G;Z),

where i∗ : H2(Γ;Z) → H2(K;Z).

The explicit descriptions of the maps τ and ζ are known.

Proposition 1.20 ([NSW08, (1.6.6) Proposition and (2.4.3) The-
orem]). For any G-invariant homomorphism f ∈ H1(K)G, there exists
a one-cochain F : Γ → R such that i∗F = f and that δF (γ1, γ2) de-
pends only on p(γ1) and p(γ2), that is, there exists a cocycle c ∈ C2(G)
satisfying

c(p(γ1), p(γ2)) = δF (γ1, γ2)

for any γ1, γ2 ∈ Γ. For such a cochain F , the equality

τ(f) = [c] ∈ H2(G)

holds.

Proposition 1.21 (Section 10.3 of [DHW12]). For an element
c ∈ Ker(i∗ : H2(Γ) → H2(K)), take a representing two-cocycle f ∈
C2(Γ) satisfying f |K×K = 0. Then(

ζ(c)(p(γ))
)
(k) = f(γ, γ−1kγ)− f(k, γ).



20 1. PRELIMINARIES

1.2.2. Bounded cohomology. In this subsection, we assume that
M is either the trivial G-module Z or R.

Definition 1.22. Let (C•
b (G;M), δ) be the subcomplex consisting

of all bounded functions. The cohomology H•
b (G;M) of the subcomplex

(C•
b (G;M), δ) is called the bounded cohomology of G with coefficients

in M . The inclusion C•
b (G;M) ↪→ C•(G;M) induces the map

cG : H
•
b (G;M) → H•(G;M)

called the comparison map. The kernel of cG is called the exact bounded
cohomology and denoted by EH•

b (G;M).

Notation 2. As Notation 1, we abbreviate H•
b (G;R) to H•

b (G)
and EH2

b (G;R) to EH2
b (G).

Example 1.23. The 0-th bounded cohomology H0
b (G;M) is iso-

morphic to M by definition. The first cohomology H1
b (G;M) is trivial

since any bounded homomorphism to M is trivial.

For the triviality of bounded cohomology, the following is known.

Proposition 1.24. If G is abelian, the bounded cohomology Hn
b (G)

is trivial for n > 0.

Example 1.25. By Proposition 1.24, the second real bounded
cohomology H2

b (Z) is trivial. In contrast, the second integral bounded
cohomology H2

b (Z;Z) is isomorphic to R/Z since there is an exact se-
quence

→ H1
b (Z) = 0 → H1(Z;R/Z) → H2

b (Z;Z) → H2
b (Z) = 0 →

and H1(Z;R/Z) ∼= H1
top(S

1;R/Z) ∼= R/Z.

For µ ∈ Q(G), the coboundary δµ is a bounded two-cocycle in
C2

b (G) by the definition of quasimorphism. Note that the bounded co-
cycle δµ is not necessarily a coboundary as a bounded cochain since the
homogeneous quasimorphism is not bounded if µ 6= 0. The following
fact is well known.

Proposition 1.26. The following sequence is exact:

0 → H1(G) → Q(G)
δ∗−→ H2

b (G)
cG−→ H2(G),(1.2.6)

where the map δ∗ is given by δ∗(µ) = [δµ].

Remark 1.27. The exact sequence (1.2.6) is equivalent to the fol-
lowing exact sequence:

0 → H1(G) → Q(G) → EH2
b (G) → 0.(1.2.7)
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Example 1.28. By the exact sequence (1.2.6), we can show that the
second bounded cohomology is infinite dimensional for some groups.

(1) For the free group F2, Brooks [Bro81] constructed infinitely
many homogeneous quasimorphisms on F2.

(2) Let X be a closed hyperbolic manifold and π1(X) the funda-
mental group. In [EF97], Epstein and Fujiwara constructed
infinitely many homogeneous quasimorphisms on π1(X) (more
generally, on the word-hyperbolic groups).

By using the above homogeneous quasimorphisms, it was shown that
the dimension of H2

b (G) is the cardinal of continuum (in [Mit84] for
G = F2 and in [EF97] for G = π1(X)). This implies that the bounded
cohomology and the ordinary group cohomology are quite different.

Theorem 1.29 ([Bou95]). For a group extension 1 → K → Γ →
G → 1, there is an exact sequence

0 → H2
b (G) → H2

b (Γ) → H2
b (K)Γ → H3

b (G).

Here the Γ-action on H•
b (K) is defined in the same way as in (1.2.2).

1.3. Characteristic classes

In this section, we recall the notion of characteristic class of fiber
bundles.

Definition 1.30. Let G be a topological group. A fiber bundle is
called a G-bundle if the structure group of the bundle has a reduction
to G. A foliated G-bundle is a fiber bundle whose structure group has
a reduction to the discrete group Gδ.

Let BG be the classifying space of G. We can regard a cohomology
class of BG as a characteristic class of G-bundles by the following
theorem.

Theorem 1.31. There is a bijective correspondence between char-
acteristic classes of G-bundles and cohomology classes of BG.

The identity homomorphism ι : Gδ → G induces the continuous
map Bι : BGδ → BG and therefore the homomorphism

(Bι)∗ : H•
top(BG;M) → H•

top(BGδ;M) ∼= H•(G;M),

where M is a trivial G-module.

Definition 1.32. An element a ∈ H•(G;M) is called a character-
istic class of foliated G-bundles if a ∈ Im(Bι)∗.
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There is a well-known characteristic class called the primary ob-
struction class, which is defined as an obstruction to the construction of
a cross-section. We briefly recall the definition of the obstruction class
of fibrations via the Serre spectral sequence (see [Whi78] for details).
Let F → E → B be a fibration, and for simplicity, we assume that
the base space B is one-connected, the fiber F is path-connected, and
the fundamental group π1(F ) is abelian. Let (Ep,q

r , dp,qr ) be the Serre
spectral sequence with coefficients in π1(F ). Since B is one-connected,
any local coefficient system is simple, and thus we have

Ep,q
2

∼= Hp
top(B;Hq

top(F ; π1(F ))).

Therefore we have
E2,0

2
∼= H2

top(B; π1(F ))

and
E0,1

2
∼= H1

top(F ; π1(F )).

Note that the cohomology H1
top(F ; π1(F )) is isomorphic to the space of

all self-homomorphisms Hom(π1(F ), π1(F )) on π1(F ). Then the deriva-
tion map d0,12 : E0,1

2 → E2,0
2 gives a map

d0,12 : Hom(π1(F ), π1(F )) → H2
top(B; π1(F ))

(here we abuse the symbol d0,12 ).
We are now ready to define the primary obstruction class of fibra-

tions.

Definition 1.33. Let F → E → B be a fibration such that
B is one-connected, F is path-connected, and π1(F ) is abelian. Let
(Ep,q

r , dp,qr ) be the Serre spectral sequence. The cohomology class

o = −d0,12 (idπ1(F )) ∈ H2
top(B; π1(F ))

is called the primary obstruction class.

Remark 1.34. It is known that the above definition is equivalent
to the classical definition of the obstruction to the construction of a
cross-section (see, for example, [Whi78, (6.10) Corollary and (7.9*)
Theorem]).

Remark 1.35. Let G be a connected topological group and G̃ the
universal covering group. By Theorem 1.31, the primary obstruction
class of G-bundles defines a cohomology class o in H2(BG; π1(G)).
This class is also obtained as follows. By taking classifying spaces of
the central extension

0 → π1(G) → G̃ → G → 1,
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we obtain the following fibration

Bπ1(G) → BG̃ → BG.(1.3.1)

Since we are assuming that G is connected, the base space BG is one-
connected. Note that the fundamental group of Bπ1(G) is isomorphic
to π1(G) and this is abelian. Then the primary obstruction class of the
fibration (1.3.1) is the class o ∈ H2(BG; π1(G)).

Let f : π1(G) → R be a homomorphism and

f∗ : H
•
top(−; π1(G)) → H•

top(−)

the change of coefficients map. Let (Ep,q
r , dp,qr ) be the Serre spectral

sequence of (1.3.1) with coefficients in R. Since E0,1
2

∼= H1
top(Bπ1(G)) ∼=

Hom(π1(G)) and E2,0
2

∼= H2
top(BG), the derivation d0,12 : E0,1

2 → E2,0
2

defines a homomorphism

d0,12 : Hom(π1(G),R) → H2
top(BG).

Proposition 1.36. Let (Ep,q
r , dp,qr ) be the Serre spectral sequence

of (1.3.1) with coefficients in R. For a homomorphism f : π1(G) → R,
an equality

−d0,12 (f) = f∗o ∈ H2
top(BG)

holds.

Proof. Let (E
′p,q
r , d

′p,q
r ) be the Serre spectral sequence of (1.3.1)

with coefficients in π1(G), then the equality −d
′0,1
2 (idπ1(G)) = o holds.

Since the derivation maps in the Serre spectral sequence are compatible
with the change of coefficients homomorphisms, we have the following
commutative diagram

Hom(π1(G), π1(G)) ∼= E
′0,1
2

d
′0,1
2 //

f∗
��

E
′2,0
2

∼= H2
top(BG; π1(G))

f∗
��

Hom(π1(G),R) ∼= E0,1
2

d0,12 // E2,0
2

∼= H2
top(BG).

Since f = f∗(idπ1(G)) ∈ Hom(π1(G),R), we obtain

−d0,12 (f) = −d0,12 (f∗(idπ1(G))) = f∗(−d
′0,1
2 (idπ1(G))) = f∗o

and the proposition follows. □
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1.4. Transformation groups

For a smooth manifold X, let Homeo(X) denote the group of home-
omorphisms of X with the compact-open topology and Diff(X) the
group of diffeomorphisms of X with the C∞-topology. Let Homeo0(X)
and Diff0(X) be the identity component of Homeo(X) and Diff(X),
respectively.

A symplectic manifold is a pair (X,ω) of a smooth manifold X and a
non-degenerate closed two-form ω ∈ Ω2(X) (called a symplectic form).

Definition 1.37. Let (X,ω) be a symplectic manifold. A diffeo-
morphism g : X → X is called a symplectomorphism if g∗ω = ω holds.
The group

Symp(X,ω) = {g ∈ Diff(X) | g∗ω = ω}
is called the symplectomorphism group.

Remark 1.38. On a symplectic manifold, there is another nat-
ural transformation group Ham(X,ω) called the Hamiltonian diffeo-
morphism group (see [Ban97], [MS98] for the definition). The Hamil-
tonian diffeomorphism group is a normal subgroup of Symp(M,ω).

Theorem 1.39 ([Ban78]). For a closed symplectic manifold (X,ω),
the Hamiltonian diffeomorphism group Ham(X,ω) and its universal
covering group H̃am(X,ω) are perfect.

Remark 1.40. It is known that the Hamiltonian diffeomorphism
group Ham(X,ω) coincides with Symp0(X,ω) for a closed symplectic
manifold (X,ω) whose first Betti number is equal to zero (see, for
example, [Ban97]). Thus, for such a symplectic manifold, the groups
Symp0(X,ω) and S̃ymp0(X,ω) are perfect.

In Section 2.4, we will consider the following symplectic manifold.
On the direct product S2 × S2, there is a symplectic form ωλ defined
by

ωλ = pr∗1ω0 + λ · pr∗2ω0,

where ω0 is the standard symplectic form on S2, λ a non-zero real
number, and pr1, pr2 : S

2×S2 → S2 are the first and second projection,
respectively. Gromov showed in [Gro85] that the symplectomorphism
group Symp0(S

2×S2, ω1) is homotopy equivalent to the group SO(3)×
SO(3). If 1 < λ ≤ 2, the homotopy type of Symp0(S

2 × S2, ωλ) is
determined in [Anj02].

Theorem 1.41 ([Anj02]). If 1 < λ ≤ 2, the symplectomorphism
group Symp0(S

2 × S2, ωλ) is homotopy equivalent to the space

Ω(Σ(S1 ∨ SO(3)))× S1 × SO(3)× SO(3),
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where the space Ω(Σ(S1 ∨ SO(3))) is the loop space of the suspension
of the smash product S1 ∨ SO(3).

Remark 1.42. For 1 < λ ≤ 2, the fundamental group π1(Symp0(S
2×

S2, ωλ)) is isomorphic to Z×Z/2Z×Z/2Z. Indeed, by Theorem 1.41,
the fundamental group is isomorphic to

π1(Ω(Σ(S
1 ∨ SO(3))))× Z× Z/2Z× Z/2Z

∼= π2(Σ(S
1 ∨ SO(3)))× Z× Z/2Z× Z/2Z.

Since the smash product of connected spaces is one-connected, so is the
space S1 ∨SO(3). Together with the Freudenthal suspension theorem,
we have

π2(Σ(S
1 ∨ SO(3))) ∼= π1(S

1 ∨ SO(3)) = 0.

A contact manifold is a pair (X, ξ) of a (2n+1)-dimensional smooth
manifold X and a maximally non-integrable hyperplane field ξ ⊂ TX,
that is, a defining local one-form α gives a local volume form α∧(dα)n.
The globally defined one-form α is called a contact form.

Definition 1.43. For a contact manifold (X, ξ), a diffeomorphism
g : X → X is called a contactomorphism if g preserves the contact
structure, that is, g∗ξ = ξ holds. Let Cont(X, ξ) denote the group of
contactomorphisms.

Theorem 1.44 ([Ryb10]). For a closed contact manifold (X, ξ),
the group Cont0(X, ξ) and its universal covering group C̃ont0(X, ξ) are
perfect.





CHAPTER 2

Non-descendible homogeneous quasimorphisms

This chapter is a part of the joint work with Kawasaki [KM20].
Let Γ and G be groups and p : Γ → G a surjective homomorphism. In
this section, we consider the homogeneous quasimorphisms on Γ which
do not descend to G. To do this, we introduce the following space:

Definition 2.1. For groups Γ, G and a surjective homomorphism
p : Γ → G, set

ND = Q(Γ)
/(

p∗Q(G) +H1(Γ)
)
.

In this chapter, we discuss the space ND and apply it to charac-
teristic classes of foliated bundles.

2.1. General principle

Definition 2.2. A subspace C(Γ) of C1(Γ) is defined by

C(Γ) = {F ∈C1(Γ)

| F (kγ) = F (γk) = F (γ) + F (k) for any γ ∈ Γ, k ∈ K}.(2.1.1)

We define a map D : C(Γ) → C2(G) by setting

D(F )(g1, g2) = F (γ2)− F (γ1γ2) + F (γ1),

where γj is an element of Γ satisfying p(γj) = gj.

Lemma 2.3 ([KM20]). The map D : C(Γ) → C2(G) is well defined.

Proof. Let γ′
j be another element of Γ satisfying p(γ′

j) = gj. Then
there exist elements k1, k2 ∈ K satisfying γ′

1 = k1γ1 and γ′
2 = γ2k2.

Then, by the definition of C(Γ), we have

F (γ′
2)− F (γ′

1γ
′
2) + F (γ′

1)

= F (γ2k2)− F (k1γ1γ2k2) + F (k1γ1)

= (F (γ2) + F (k2))− (F (k1) + F (γ1γ2) + F (k2)) + (F (k1) + F (γ1))

= F (γ2)− F (γ1γ2) + F (γ1).

This implies the well-definedness of the map D. □
27
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Lemma 2.4 ([KM20]). For any F ∈ C(Γ), the cochain D(F ) is a
cocycle.

Proof. Since p∗D(F ) = δF , we have

p∗(δD(F )) = δδF = 0.

By the surjectivity of p : Γ → G, we have δD(F ) = 0. □
Definition 2.5. A homomorphism d : C(Γ) → H2(G) is defined by

d(F ) = [D(F )] ∈ H2(G).

In the seven-term exact sequence (1.2.4), there is a map

τ : H1(K)Γ → H2(G)

(see Theorem 1.17 and Proposition 1.20). Recall that an ele-
ment f of H1(K)G is a G-invariant homomorphism, that is, f satisfies
f(γ−1kγ) = f(k) for any k ∈ K and γ ∈ Γ. The homomorphism
d defined in Definition 2.5 is related to the map τ as the following
commutative diagram (Proposition 2.7)

C(Γ)
d

%%KK
KKK

KKK
KK

i∗

��
H1(K)G τ

// H2(G).

For an element F of C(Γ), the restriction F |K = i∗F is in H1(K)G

since we have

F (k) = F (kγ)− F (γ) = F (γ · γ−1kγ)− F (γ) = F (γ−1kγ).

Thus we obtain a homomorphism i∗ : C(Γ) → H1(K)G.

Lemma 2.6 ([KM20]). The map i∗ : C(Γ) → H1(K)G is surjective.

Proof. Let s : G → Γ be a section of p : Γ → G satisfying s(idG) =
idΓ, where idG ∈ G and idΓ ∈ Γ be the unit elements of G and Γ,
respectively. Then, since an element γ · s(p(γ))−1 is in Ker(p : Γ → G),
we regard the element γ · s(p(γ))−1 as that of K under the injection
i : K → Γ. For an element f of H1(K)G, define fs : Γ → R by

fs(γ) = f(γ · s(p(γ))−1).

Note that the restriction of fs to K is equal to f . Moreover, the
equalities

fs(kγ) = f(kγ · s(p(kγ))−1) = f(kγ · s(p(γ))−1)

= f(k) + f(γ · s(p(γ))−1) = fs(k) + fs(γ)
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and

fs(γk) = f(γk · s(p(γk))−1) = f(γk · s(p(γ))−1)

= f(γkγ−1) + f(γ · s(p(γ))−1)

= f(k) + f(γ · s(p(γ))−1) = fs(k) + fs(γ)

hold, where we use the G-invariance of f . Thus the map fs is an
element of C(Γ) and the surjectivity follows. □

Proposition 2.7 ([KM20]). The diagram

C(Γ)
d

%%KK
KKK

KKK
KK

i∗

��
H1(K)G τ

// H2(G).

commutes.

Proof. By Definition 2.5 and Proposition 1.20, we obtain the
proposition. □

2.2. A diagram via bounded cohomology and quasimorphism

In this section, we refine the commutative diagram in Proposition
2.7 in view of bounded cohomology and homogeneous quasimorphisms.
A cohomology class a ∈ H2(G) is called bounded if a is in the image of
the comparison map cG : H2

b (G) → H2(G).

Proposition 2.8 ([KM20]). There is a commutative diagram

C(Γ) ∩Q(Γ)
db //

d

&&NN
NNN

NNN
NNN

i∗

��

H2
b (G)

cG
��

H1(K)G τ
// H2(G).

Proof. For an element F ∈ C(Γ) ∩ Q(Γ), the cocycle D(F ) ∈
C2(G) is bounded since

D(F )(g1, g2) = F (γ2)− F (γ1γ2) + F (γ1)

for any g1, g2 ∈ G and F is a quasimorphism. Thus D : C(Γ) → C2(G)
induces a homomorphism

db : C(Γ) → H2
b (G)

satisfying d = cG ◦ db : C(Γ) ∩Q(Γ) → H2(G). □
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Remark 2.9. For a central extension

0 → A
i−→ Γ

p−→ G → 1,

the space Q(Γ) is contained in C(Γ). Indeed, by the definition of central
extension, elements a ∈ A and γ ∈ Γ satisfy aγ = γa. Thus, by
Proposition 1.8, any homogeneous quasimorphism µ ∈ Q(Γ) satisfies

µ(aγ) = µ(γa) = µ(a) + µ(γ).

This implies Q(Γ) ⊂ C(Γ). Moreover, any homomorphism f : A → R is
G-invariant since γ−1aγ = aγ−1γ = a for any γ ∈ Γ and a ∈ A. Thus,
together with Proposition 2.8, we obtain a commutative diagram

Q(Γ)
db //

d

$$JJ
JJ

JJ
JJ

J

i∗

��

H2
b (G)

cG
��

H1(A) τ
// H2(G).

Remark 2.10. In this remark, we temporary use the symbol Q′(Γ)
to denote the set of all (not necessarily homogeneous) quasimorphisms.
If we use Q′(Γ) rather than Q(Γ), the same statement as Proposition
2.8 also holds.

Lemma 2.11. If the pullback i∗µ of a homogeneous quasimorphism
µ ∈ Q(Γ) is a homomorphism on K, then µ is contained in C(Γ).

Proof. For any γ ∈ Γ, k ∈ K, and n ∈ N, the equalities

(kγ)n = k · γkγ−1 · γ2kγ−2 · · · · · γn−1kγ−(n−1) · γn

and
(γk)n = γn · γ−(n−1)kγn−1 · · · · · γ−2kγ2 · γ−1kγ · k

hold. Since the pullback i∗µ is Γ-invariant homomorphism, we have

µ(k · γkγ−1 · γ2kγ−2 · · · · · γn−1kγ−(n−1)) = µ(kn)

and
µ(γ−(n−1)kγn−1 · · · · · γ−2kγ2 · γ−1kγ · k) = µ(kn).

Thus we obtain

n · |µ(kγ)− µ(k)− µ(γ)| = |µ((kγ)n)− µ(kn)− µ(γn)| ≤ D(µ)

and

n · |µ(γk)− µ(γ)− µ(k)| = |µ((γk)n)− µ(γn)− µ(kn)| ≤ D(µ),

and these imply the equalities µ(kγ) = µ(k)+µ(γ) and µ(γk) = µ(γ)+
µ(k). □
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Theorem 2.12 ([KM20]). For a group extension Γ of G, the ho-
momorphism d : C(Γ) → H2(G) induces an isomorphism

(C(Γ) ∩Q(Γ))/(H1(Γ) + p∗Q(G)) → Im(τ) ∩ Im(cG).

Proof. Let us consider the following commutative diagram whose
rows and columns are exact:

H1(K)Γ // Q(K)Γ / / H2
b (K)Γ

H1(Γ)

OO

// Q(Γ)

OO

δ∗ // H2
b (Γ)

OO

// H2(Γ)

H1(G)

OO

// Q(G)

p∗

OO

// H2
b (G)

p∗

OO

cG // H2(G)

p∗

OO

H1(K)Γ,

τ

OO

where the exactness of each row and each column comes from Remark
1.7, Theorem 1.17, and Theorem 1.29. By the definition of db, we
have p∗db(µ) = δ∗(µ) for µ ∈ C(Γ)∩Q(Γ). Thus the map p∗ : H2

b (G) →
H2

b (Γ) gives an isomorphism

p∗ : H2
b (G)

∼=−→ δ∗(C(Γ) ∩Q(Γ)).

Therefore, in this diagram, the map d is given as the composite

cG ◦ (p∗)−1 ◦ δ∗ : C(Γ) ∩Q(Γ) → H2(G).

It is easily checked by the diagram chasing that the kernel Ker(d) is
equal to H1(Γ)+p∗Q(G). The surjectivity of the map d : C(Γ)∩Q(Γ) →
Im(τ)∩ Im(cG) follows from Lemma 2.11 and a diagram chasing argu-
ment. □

Remark 2.13. For a central extension Γ of G, the homomorphism
d : C(Γ) → H2(G) induces an isomorphism

Q(Γ)/(H1(Γ) + p∗Q(G)) → Im(τ) ∩ Im(cG).

since C(Γ)∩Q(Γ) = Q(Γ) (see Remark 2.9). The domain is exactly the
space ND of the non-descendible homogeneous quasimorphisms.

2.3. On universal covering groups

Let G be a connected topological group, G̃ the universal covering
group of G, and π1(G) the fundamental group of G. Then, these groups
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define a group extension

0 → π1(G)
i−→ G̃

p−→ G → 1.(2.3.1)

Because the exact sequence (2.3.1) is a central extension, there exists
a commutative diagram

Q(G̃)
db //

d

&&LL
LLL

LLL
LLL

i∗

��

H2
b (G)

cG

��
H1(π1(G)) τ

// H2(G).

(2.3.2)

by Remark 2.9. Thus the homomorphism d : Q(G̃) → H2(G) induces
an isomorphism

ND = Q(G̃)/(H1(G̃) + p∗Q(G)) → Im(τ) ∩ Im(cG)(2.3.3)

by Remark 2.13.
Now we give a geometric meaning of the space Im(τ)∩ Im(cG). By

considering the classifying spaces of the central extension (2.3.1) with
the discrete topology, we obtain the following commutative diagram of
fibrations

Bπ1(G) // BG̃δ //

��

BGδ

Bι

��
Bπ1(G) // BG̃ // BG.

In what follows, we regard the pullback (Bι)∗ as a homomorphism

(Bι)∗ : H•
top(BG) → H•(G)

under the isomorphism H•
top(BGδ) ∼= H•(G).

Lemma 2.14 ([KM20]). Let (Ep,q
r , dp,qr ) be the cohomology Serre

spectral sequence of the fibration Bπ1(G) → BG̃ → BG. Then the
equality

(Bι)∗ ◦ d0,12 = τ : H1(π1(G)) → H2(G)

holds, where we identify E0,1
2 with H1(π1(G)).

Proof. Let (δEp,q
r , δdp,qr ) be the Hochschild-Serre spectral sequence

of the central extension (2.3.1). Note that it is isomorphic to the Serre
spectral sequence of the fibration Bπ1(G) → BG̃δ → BGδ (Remark
1.16). Thus, by the naturality of the Serre spectral sequence, we obtain

(Bι)∗ ◦ d0,12 = δd0,12 = τ

and the lemma follows. □
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Remark 2.15. Let (Ep,q
r , dp,qr ) be the Serre spectral sequence used

in Lemma 2.14, then the map d0,12 is an isomorphism. Indeed, the
spectral sequence induces an exact sequence

0 → H1
top(BG) → H1

top(BG̃) → H1
top(Bπ1(G))

d0,12−−→ H2
top(BG) → H2

top(BG̃).

Since G̃ is one-connected, the classifying space BG̃ is two-connected.
Thus the cohomologies H1

top(BG̃) and H2
top(BG̃) are trivial, and this

implies that the derivation map d0,12 is an isomorphism.

Corollary 2.16 ([KM20]). If H1(G̃) is trivial, the homomor-
phism

(Bι)∗ : H2
top(BG) → H2(G)

is injective.

Proof. The map τ is injective since the sequence

0 → H1(G) → H1(G̃) → H1(π1(G))
τ−→ H2(G) → H2(G̃)

is exact and H1(G̃) is trivial. Thus Lemma 2.14 and Remark 2.15
say that the map (Bι)∗ is injective. □

The following is the main theorem of this section.

Theorem 2.17 ([KM20]). The homomorphism d : Q(G̃) → H2(G)
induces an isomorphism

ND = Q(G̃)/(H1(G̃) + p∗Q(G)) → Im(Bι)∗ ∩ Im(cG).

Proof. We have Im(Bι)∗ = Im(τ) by Lemma 2.14 and Remark
2.15. Thus, the isomorphism (2.3.3) implies the theorem. □

Corollary 2.18 ([KM20]). If the first cohomology H1(G̃) is triv-
ial, then the homomorphism d induces the isomorphism

Q(G̃)/p∗Q(G) → Im(Bι)∗ ∩ Im(cG).

In particular, if µ ∈ Q(G̃) does not descend to G, then the class d(µ) ∈
H2(G) is non-trivial.

Corollary 2.19 ([KM20]). Let X be a closed manifold and G =
Homeo0(X) the identity component of Homeo(X), then there is an
isomorphism

Q(G̃)/p∗Q(G) → Im(cG).
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Proof. Because the map (Bι)∗ : H•(BG) → H•(BGδ) is isomor-
phic [Thu74] and the universal covering group G̃ is perfect [KR11],
the corollary follows. □

For a homogeneous quasimorphism, the corresponding characteris-
tic class is given as follows.

Proposition 2.20 ([KM20]). For an element µ ∈ Q(G̃), the
equality

d(µ) = −(Bι)∗(µ|π1(G))∗o

holds, where o ∈ H2
top(BG; π1(G)) is the primary obstruction class.

Proof. Let (Ep,q
r , dp,qr ) be the Serre spectral sequence of the fibra-

tion Bπ1(G) → BG̃ → BG. By using Proposition 1.36, we obtain

(Bι)∗d0,12 (µ|π1(G)) = −(Bι)∗(µ|π1(G))∗o.

On the other hand, by using Lemma 2.14 and the commutative dia-
gram (2.3.2), we obtain

(Bι)∗d0,12 (µ|π1(G)) = τ(µ|π1(G)) = τ(i∗(µ)) = d(µ).

Therefore the equality d(µ) = −(Bι)∗(µ|π1(G))∗o holds. □

Example 2.21. For the group G = Homeo+(S
1), the spaces ap-

pearing in the isomorphism ND ∼= Im(Bι)∗ ∩ Im(cG) ⊂ H2(G) are
completely described as follows. By the theorem of Thurston and the
isomorphism H2(BG) ∼= R[e], we have Im(Bι)∗ = H2(G) ∼= R[e], where
the class e is the Euler class. Since the Euler class is bounded and the
comparison map cG : H

2
b (G) → H2(G) is injective by the theorem of

Matsumoto-Morita [MM85], we have Im(cG) = H2(G). Therefore we
have

Im(Bι)∗ ∩ Im(cG) = H2(G) = R[e].

Since the group G is uniformly perfect and the universal covering
G̃ is perfect, we have Q(G) = 0 and H1(G̃) = 0. Moreover, by the
theorem of Ghys [Ghy01], the space Q(G̃) is isomorphic to R[µ], where
µ is Poincaré’s translation number. Thus we have

ND = Q(G̃)
/(

p∗Q(G) +H1(G̃)
)
= Q(G̃) ∼= R[µ],

and the isomorphism d : ND → Im(Bι)∗ ∩ Im(cG) sends µ to −e by
Proposition 2.20.
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2.4. Applications

In this section, two applications of Theorem 2.17 and Proposi-
tion 2.20 are given.

It is an interesting and difficult problem to determine whether a
given characteristic class is bounded or not. The Milnor-Wood inequal-
ity ([Mil58], [Woo71]) asserts that the Euler class of flat SL(2,R)-
bundles is bounded. It was shown that any element of Im(Bι)∗ is
bounded for any real algebraic subgroups of GL(n,R) ([Gro82]).

To the best of the author’s knowledge, the boundedness of charac-
teristic classes for homeomorphism groups is known only for the fol-
lowing specific examples.

Example 2.22.
• The Euler class of Homeo+(S

1) is bounded [Woo71].
• Any non-zero second cohomology class of Homeo0(R2) is un-

bounded [Cal04].
• Any non-zero second cohomology class of Homeo0(T

2) is un-
bounded, where T 2 is a two-dimensional torus [MR18].

• Let M be a closed Seifert-fibered 3-manifold such that the
inclusion SO(2) → Homeo0(M) defined by the rotation of the
fibers induces an inclusion of π1(SO(2)) as a direct factor in
π1(Homeo0(M)). Then several second cohomology classes of
Homeo0(M) are unbounded [Man20].

2.4.1. On the boundedness of characteristic classes. By us-
ing Proposition 2.20 and Theorem 2.17, we show the boundedness
and unboundedness of characteristic classes of foliated Symp0(S

2 ×
S2, ωλ)-bundles and foliated Cont0(S

3, ξ)-bundles.
Let (S2 × S2, ωλ) be the symplectic manifold defined in Section

1.4. If 1 < λ ≤ 2, the fundamental group π1(Symp0(S
2 × S2, ωλ)) is

isomorphic to Z× Z/2Z× Z/2Z (see Remark 1.42). Let

oS2×S2 ∈ H2(B Symp0(S
2 × S2, ωλ);Z× Z/2Z× Z/2Z)

denote the primary obstruction class (see Remark 1.35). By the
change of coefficients homomorphism induced from

φ : Z× Z/2Z× Z/2Z → R ; (n, a, b) 7→ n,

we obtain a cohomology class

(oS2×S2)R = φ∗(oS2×S2) ∈ H2(B Symp0(S
2 × S2, ωλ)).

Let us consider the contact manifold (S3, ξ) with the standard con-
tact structure ξ. Because the fundamental group π1(Cont0(S

3, ξ)) is
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isomorphic to Z ([Eli92]), we obtain the primary obstruction class

oS3 ∈ H2(B Cont0(S
3, ξ);Z).

By the change of coefficients homomorphism induced from the inclusion
Z ↪→ R, we obtain a cohomology class

(oS3)R ∈ H2(B Cont0(S
3, ξ)).

Now we have similar two characteristic classes (oS2×S2)R and (oS3)R.
By using Theorem 2.17 and Proposition 2.20, we can clarify the
difference between these classes in terms of boundedness.

Corollary 2.23 ([KM20]). The following properties hold.
(1) The cohomology class

(Bι)∗(oS2×S2)R ∈ H2(Symp0(S
2 × S2, ωλ))

is bounded.
(2) The cohomology class

(Bι)∗(oS3)R ∈ H2(Cont0(S
3, ξ))

is unbounded.

Proof. (1) Ostrover introduced in [Ost06] a homogeneous quasi-
morphism µλ on S̃ymp0(S

2×S2, ωλ) that does not descend to Symp0(S
2×

S2, ωλ). Since π1(Symp0(S
2 × S2, ωλ)) ∼= Z × Z/2Z × Z/2Z and the

restriction µλ|π1(Symp0(S
2×S2,ωλ)) is a non-trivial homomorphism to R,

there exists a non-zero constant a such that

φ = aµλ|π1(Symp0(S
2×S2,ωλ)) : π1(Symp0(S

2 × S2, ωλ)) → R.

Thus, by Proposition 2.20, we have

(Bι)∗(oS2×S2)R = (Bι)∗φ∗(oS2×S2)

= (Bι)∗(aµ|π1(Symp0(S
2×S2,ωλ)))∗oS2×S2

= −ad(µ|π1(Symp0(S
2×S2,ωλ)))

Since the class d(µ|π1(Symp0(S
2×S2,ωλ))) is bounded, so is (Bι)∗(oS2×S2)R.

(2) It was shown in [FPR18] that there are no homogeneous quasi-
morhpisms on C̃ont(S3, ξ)0, that is, Q(C̃ont(S3, ξ)0) = 0. Thus, by
Theorem 2.17, we have

Im(Bι)∗ ∩ Im(cG) = 0.

By the perfectness of C̃ont(S3, ξ)0 and Corollary 2.16, the map (Bi)∗

is injective and thus the class (Bι)∗(oS3)R is non-zero. This implies that
the class (Bι)∗(oS3)R is unbounded. □



2.4. APPLICATIONS 37

2.4.2. Non-extendability of homomorphisms on π1(G). In
Subsection 2.4.1, we used the space Q(G̃) to show the (un)boundedness
of characteristic classes. In this section, on the contrary, we use the
unboundedness of characteristic classes to study homogeneous quasi-
morphisms on G̃.

Let T = S1 × S1 be the two-dimensional torus and Homeo0(T ) the
identity component of the homeomorphism group. In [Ham65], it was
shown that the fundamental group π1(Homeo0(T )) is isomorphic to Z2.

Corollary 2.24 ([KM20]). Any non-zero homomorphism from
π1(Homeo0(T )) ∼= Z2 to R cannot be extended to a homogeneous quasi-
morphism on H̃omeo0(T ).

Proof. It is enough to show that the space Q(H̃omeo0(T )) is equal
to p∗Q(Homeo0(T )), where p : H̃omeo0(T ) → Homeo0(T ) is the uni-
versal covering. Because the universal covering H̃omeo0(T ) is perfect
[KR11], we have

Q(H̃omeo0(T ))/p
∗Q(Homeo0(T )) = Im(Bι)∗ ∩ Im(cG)

by Corollary 2.18. Since the non-zero classes of Im(Bι)∗ are un-
bounded [MR18], we have

Q(H̃omeo0(T ))/p
∗Q(Homeo0(T )) = 0

and the corollary holds. □





CHAPTER 3

Non-extendable homogeneous quasimorphisms

In this chapter, Section 3.2 is based on [Mar20], and Section 3.3
and Section 3.4 are based on a part of the joint work with Morim-
ichi Kawasaki, Mitsuaki Kimura, Takahiro Matsushita, and Masato
Mimura [KKM+21].

Let Γ be a group and K a normal subgroup of Γ. For a given
homogeneous quasimorphism µ on K, it is natural to ask whether µ
can be extended to that on Γ or not. Recall that the inclusion map
i : K → Γ induces the map

i∗ : Q(Γ) → Q(K)Γ,

where Q(K)Γ is the space of all Γ-invariant homogeneous quasimor-
phisms on K (see Remark 1.7). Therefore the Γ-invariance is a neces-
sary condition for a homogeneous quasimorphism on K to be extended
to that on Γ. In order to discuss the extension problem under the
assumption of Γ-invariance, we introduce the following space.

Definition 3.1. For a group Γ and its normal subgroup K, set

NE = Q(K)Γ
/(

i∗Q(Γ) +H1(K)Γ
)
,(3.0.1)

where i∗ : Q(Γ) → Q(K)Γ is the pullback by the inclusion i : K → Γ.

Let Σg be a closed oriented surface of genus g ≥ 2 and Γg = π1(Σg)
the surface group. The main results of this chapter are the following
theorems.

Theorem 3.2. Let Γ = Γg be the surface group of genus g ≥ 2
and K = [Γ,Γ] the commutator subgroup. Then the dimension of the
space NE is equal to one.

For an orientation preserving homeomorphism f ∈ Homeo+(Σg),
let Xf denote the mapping torus.

Theorem 3.3. Set Γ = π1(Xf ) and K = [Γ,Γ]. If the mapping
class [f ] is a pseudo-Anosov element and in the Torelli group Ig, then
the dimension of the space NE is equal to 2g + 1.

39
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Here the Torelli group Ig is the subgroup of the mapping class group
Mg consisting of the elements which act trivially on Htop

• (Σg;Z). The
Torelli group Ig is trivial when g = 1, not finitely generated when g = 2
([MM86]), and finitely generated when g ≥ 3 ([Joh83]).

Remark 3.4. It is known that the Torelli group Ig contains pseudo-
Anosov elements for g ≥ 2 (see [FM12, Corollary 14.3] for example).
Moreover, in the sense of Random Walk, pseudo-Anosov elements are
generic in the Torelli group for g ≥ 3 ([LM12] [MS13]).

Remark 3.5. Three-manifolds we consider in Theorem 3.3 are
basic examples in the following sense: any closed hyperbolic three-
manifold is obtained as a mapping torus up to finite-sheeted cover.
This is known as the virtual fibering conjecture, which was proposed
by Thurston [Thu82] and solved by Agol [Ago13].

3.1. Backgrounds and motivations

In this section, we explain why we consider the space NE . The
notions introduced in this subsection will not appear in the subsequent
sections.

The extendability of Γ-invariant homogeneous quasimorphisms has
been studied in [Ish14], [Sht15], [KK19] and [KKMM20]. Let Σg

be a closed surface of genus g ≥ 2 and ω a symplectic form. Py
constructed in [Py06] a Symp0(Σg, ω)-invariant homogeneous quasi-
morphism on the Hamiltonian diffeomorphism group Ham(Σg, ω). In
[KK19], Kawasaki and Kimura showed that Py’s homogeneous quasi-
morphism is non-extendable, and this was the only known example of
non-extendable homogeneous quasimorphisms at the present moment.
Theorem 3.2 and Theorem 3.3 give many pair of groups that admit
non-extendable homogeneous quasimorphisms.

The triviality and the non-triviality of the space

NE = Q(K)Γ
/(

i∗Q(Γ) +H1(K)Γ
)
.(3.1.1)

have several applications below. Ishida showed in [Ish14] that any
Γ-invariant homogeneous quasimorphism on K can be extended to Γ
when G = Γ/K is a finite group. In other words, the map i∗ : Q(Γ) →
Q(K)Γ is surjective. In [KKMM20], Kawasaki, Kimura, Matsushita,
and Mimura extended it as follows: if the projection Γ → G has a
virtually splitting, that is, there exists a finite index subgroup Λ of G
and a section homomorphism s : Λ → Γ, then the map i∗ : Q(Γ) →
Q(K)Γ is surjective. Thus, the non-triviality of the space (3.1.1) gives
an obstruction to the existence of virtual splittings.
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Another application is to the stable commutator length. Let [Γ,Γ]
be the commutator subgroup of Γ. The commutator length clΓ(x) of
x ∈ [Γ,Γ] is the minimal number of commutators whose product is
equal to x. The stable commutator length sclΓ(x) is defined as

sclΓ(x) = lim
n→∞

clΓ(x
n)

n
.

Note that the commutator length clΓ satisfies subadditivity, and thus
the limit exists (see [Cal09] for details). By the pioneering work
[Bav91] by Bavard, the following relation between sclΓ and the space
Q(Γ) has been clarified.

Theorem 3.6 (Bavard’s duality theorem [Bav91]). For x ∈ [Γ,Γ],
the equality

scl(x) = sup
[µ]∈Q(Γ)/H1(Γ)

|µ(x)|
2D(µ)

(3.1.2)

holds. If the space Q(Γ)/H1(Γ) is trivial, then we regard the right-hand
side as zero.

In [KK19], a variant of the (stable) commutator length called the
mixed (stable) commutator length was introduced. Let Γ be a group
and K a normal subgroup of Γ. For γ ∈ Γ and k ∈ K, we call an
element [γ, k] = γkγ−1k−1 a mixed commutator. Let [Γ, K] denote the
subgroup of Γ which is generated by the mixed commutators. The
mixed commutator length clΓ,K(x) of x ∈ [Γ, K] is the minimal number
of mixed commutators whose product is equal to x, and the mixed
stable commutator length sclΓ,K(x) is defined by

sclΓ,K(x) = lim
n→∞

clΓ,K(x
n)

n
.

In [KKMM20], the following mixed version of Bavard’s duality theo-
rem was proven, which clarifies a relation between sclΓ,K and the space
Q(K)Γ.

Theorem 3.7 ([KKMM20, Theorem 1.2]). For x ∈ [Γ, K], the
equality

sclΓ,K(x) = sup
[µ]∈Q(K)Γ/H1(K)Γ

|µ(x)|
2D(µ)

(3.1.3)

holds. If the space Q(K)Γ \ H1(K)Γ is trivial, then we regard the
right-hand side as zero.
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By definition, sclΓ,K(x) is greater than or equal to sclΓ(x) for x ∈
[Γ, K]. Moreover, by comparing Theorem 3.6 with Theorem 3.7,
we may show the difference of sclΓ and sclΓ,K if there exists a Γ-
invariant non-extendable homogeneous quasimorphism on K. In fact,
Kawasaki and Kimura showed in [KK19] that there exists an ele-
ment x ∈ [Γ, K] such that sclΓ(x) = 0 and sclΓ,K(x) > 0 for Γ =
Symp0(Σg, ω) and K = Ham(Σg, ω) by using Py’s homogeneous quasi-
morphism on Ham(Σg, ω).

3.2. Extendable homogeneous quasimorphisms

To explain the difficulty of the extending problem, we present an
example of an extendable homogeneous quasimorphism.

Let us consider the symplectomorphism group

Γ = Symp(D,ω)

of the closed unit disk D = {(x, y) ∈ R2 | x2+y2 ≤ 1} with the standard
symplectic form ω = dx ∧ dy. It is known that the homomorphism

p : Γ → Diff+(S
1)

is surjective, which is obtained by restricting the domain to the bound-
ary. Let K be the kernel of the map p, then we obtain a group extension

1 → K
i−→ Γ

p−→ Diff+(S
1) → 1.

On the group K, there is a homogeneous quasimorphism called the
Ruelle invariant [Rue85]. In this section, we show that the Ruelle
invariant is an extendable homogeneous quasimorphism.

We consider the C∞-topology on the group K. Then it is known
that the group K is contractible. Take an element k of K and a path
{kt}t∈[0,1] in K with k0 = id and k1 = k. For any point x ∈ D,
let ut(x) ∈ R2 \ {(0, 0)} denote the first column of the differential
dkt(x) ∈ SL(2,R). Then the variation of the angle of ut(x) depends
on x and the homotopy class of the path {kt}t∈[0,1] relatively to the
fixed ends. Since K is contractible, the variation of the angle of ut(x)
depends only on the endpoint k ∈ K. Therefore we use the symbol
Angk(x) to denote the variation of the angle. This defines a continuous
function

Angk : D → R.(3.2.1)

For k, l ∈ K and a path {lt}t∈[0,1] which satisfies l0 = id and l1 = l, an
inequality

(3.2.2) |Angkl(x)− Angl(x)− Angk(l(x))| < 1/2
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holds for any x ∈ D, where we consider the variation of the full rotation
as one. Define a function r : K → R by

r(k) =

∫
D

Angk · ω,

where ω is the symplectic form. By the above inequality (3.2.2) and the
condition l∗ω = ω for l ∈ K, the function r : K → R is a quasimorphism
on K. Let R = r denote the homogenization of r. This homogeneous
quasimorphism R : K → R is called the Ruelle invariant.

As explained above, the definition of the Ruelle invariant R relies
on the fact that the group K is contractible. Because the fundamental
group of Γ is isomorphic to Z, we cannot apply the definition of R to
the group Γ. However, we will show the following.

Theorem 3.8 ([Mar20, Theorem 4.4]). There exists a homoge-
neous quasimorphism

R : Γ → R
satisfying R|K = R. In other words, the Ruelle invariant R is extend-
able to the group Γ.

To show Theorem 3.8, we explicitly construct the homogeneous
quasimorphism R : Γ → R. To do this, first we construct a homoge-
neous quasimorphism on the universal covering group Γ̃ rather than
Γ.

Let q : Γ̃ → Γ be the universal covering of Γ. Let us consider the
universal covering group Γ̃ as the group of homotopy classes (relative
to the fixed ends) of paths on Γ starting at the identity. For an element
α of Γ̃, we can define a continuous function

Angα : D → R

in the same way as in (3.2.1). More precisely, we define Angα as follows.
For a path {αt}t∈[0,1] representing α ∈ Γ̃ and a point x ∈ D, let ut(x)
denote the first column of the differential dαt(x) ∈ SL(2,R). Then we
define Angα(x) as the variation of the angle of the vector ut(x). Note
that the value Angα(x) is independent of the choice of the representing
path {αt}t. This function also satisfies the inequality

|Angαβ(x)− Angβ(x)− Angα(β1(x))| < 1/2,

where β ∈ Γ̃ and β1 = q(β) ∈ Γ is the projection of β. Thus we obtain
a quasimorphism r̃ : Γ̃ → R by

r̃(α) =

∫
D

Angα · ω
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and a homogeneous quasimorphism R̃ : Γ̃ → R as the homogenization
of r̃.

Lemma 3.9. The homogeneous quasimorphism R̃ : Γ̃ → R does not
descend to Γ, that is, R̃ is not contained in the image of the pullback
q∗ : Q(Γ) → Q(Γ̃).

Proof. By Lemma 1.5, it is enough to show that the restriction
R̃|π1(Γ) is non-zero. We define ρn,t : D → D by

ρn,t(z) = e2πint · z,

where we consider D as the subspace of C. Then the path {ρn,t}t∈[0,1]
in Γ defines an non-zero element ρn = [{ρn,t}t∈[0,1]] of π1(Γ). Moreover,
the correspondence between the element ρn ∈ π1(Γ) and the integer
n ∈ Z gives an isomorphism π1(Γ) ∼= Z. For any n ∈ Z, we have
Angρn(z) = n for any z ∈ D by the definition of Ang, and therefore we
have r̃(ρn) = 2πn. By the definition of the homogenization, we have

R̃(ρ) = lim
n→∞

r̃(ρn)

n
= 2π.

Thus the lemma follows. □

Proof of Theorem 3.8. Let us consider the following commu-
tative diagram:

0

��

0

��
Z

��

Z

��

1 // K̃ = K
ĩ // Γ̃

p̃ //

q

��

D̃iff+(S
1) //

��

1

1 // K
i // Γ

p //

��

Diff+(S
1) //

��

1

1 1

where p̃ : Γ̃ → D̃iff+(S
1) is defined by the restriction of a path αt : D →

D to the boundary. Let µ : D̃iff+(S
1) → R be Poincaré’s translation

number. Then the pullback p̃∗µ : Γ̃ → R is a homogeneous quasimor-
phism which satisfies p̃∗µ(ρn) = n. Let us consider the homogeneous
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quasimorphism

R̃− 2πp̃∗µ : Γ̃ → R.

Note that the homogeneous quasimorphism R̃− 2πp̃∗µ is equal to zero
on π1(Γ) = Z. Therefore, by Lemma 1.5, there exists a homogeneous
quasimorphism R ∈ Q(Γ) such that the equality

q∗R = R̃− 2πp̃∗µ

holds. By the definition of R̃ and the Ruelle invariant R, we have

ĩ∗R̃ = R. Moreover, by the exactness of 1 → K
ĩ−→ Γ̃

p−→ Γ → 1, we
have

ĩ∗(2πp̃∗µ) = 0.

Therefore we obtain

i∗R = ĩ∗q∗R = ĩ∗(R̃− 2πp̃∗µ) = R.

This implies that the Ruelle invariant is extendable to Γ. □

3.3. Exact sequences

In this section, we show the following:

Theorem 3.10 ([KKM+21]). For a group extension 1 → K
i−→

Γ
p−→ G → 1, there are two exact sequences

(1) 0 → NE → EH2
b (K)Γ/i∗EH2

b (Γ)
α−→ H1(Γ;H1(K)),

(2) H2
b (G) → Ker(i∗)∩ Im(cΓ)

β−→ EH2
b (K)Γ/i∗EH2

b (Γ) → H3
b (G),

where EH2
b (K)Γ is the Γ-invariant part of EH2

b (K), cΓ : H
2
b (Γ) →

H2(Γ) is the comparison map, and i∗ : H2(Γ) → H2(K).

If H2
b (G) = H3

b (G) = 0, then the two exact sequences (1) and (2)
of Theorem 3.10 can be combined into one as follows.

Corollary 3.11 ([KKM+21]). If H2
b (G) = H3

b (G) = 0, there is
an exact sequence

0 → NE → Ker(i∗) ∩ Im(cΓ)
α◦β−−→ H1(Γ;H1(K)).

Remark 3.12. By Corollary 3.11, we have

dimR NE ≤ dimR H
2(Γ)

if H2
b (G) = H3

b (G) = 0. Thus, for a free group and its commutator
subgroup, the space NE is trivial.
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To prove Theorem 3.10, we define a map

ϕ : EH2
b (K)Γ → H1(Γ;H1(K)).

For an element c ∈ EH2
b (K)Γ, take a quasimorphism µ : K → R sat-

isfying c = [δµ]. Since c is Γ-invariant, the equality γ[δµ] = [δµ] holds
for any γ ∈ Γ. Thus, for any γ ∈ Γ, there exists a bounded one-cochain
bγ ∈ C1

b (K) such that the equality
γδµ = δµ+ δbγ(3.3.1)

holds. The bounded one-cochain bγ is unique. Indeed, if δbγ = δcγ,
then bγ − cγ is a bounded homomorphism to R. This implies that
bγ = cγ.

Definition 3.13. A cochain ϕµ ∈ C1(Γ;H1(K)) is defined by

ϕµ(γ) = µ− γµ+ bγ.

Note that the cochain ϕµ is well defined by (3.3.1).

Lemma 3.14 ([KKM+21]). A map

ϕ : EH2
b (K)Γ → H1(Γ;H1(K)); [δµ] 7→ [ϕµ]

is well defined.

Proof. For γ1, γ2 ∈ Γ, we have

δbγ1γ2 =
γ1γ2δµ− δµ = γ1(γ2δµ− δµ) + γ1δµ− δµ

= γ1δbγ2 + δbγ1 = δ(γ1bγ2 + bγ1),

and therefore bγ1γ2 − (γ1bγ2 + bγ1) is a bounded homomorphism, that is,
the equality bγ1γ2 =

γ1bγ2 + bγ1 holds. Thus we obtain

ϕµ(γ1γ2) = µ− γ1γ2µ+ bγ1γ2

= γ1(µ− γ2µ+ bγ2) + µ− γ1µ+ bγ1

= γ1(ϕµ(γ2)) + ϕµ(γ1),

and this implies that the cochain ϕµ ∈ C1(Γ;H1(K)) is a cocycle.
Next we show that the class ϕ([δµ]) = [ϕµ] does not depend on

the choice of µ. Take another quasimorphism µ′ : K → R satisfying
[δµ′] = [δµ] = c. Since µ−µ′ ∈ H1(K)+C1

b (K), there exist h ∈ H1(K)
and b ∈ C1

b (K) satisfying µ− µ′ = h+ b. Then we have δµ = δµ′ + δb,
and hence

γ(δµ′) = γ(δµ)− γ(δb) = δµ+ δbγ − γ(δb) = δµ′ + δ(bγ + b− γb).
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Thus we obtain

(ϕµ′ − ϕµ)(γ) = (µ′ − γµ′ + (bγ + b− γb))− (µ− γµ+ bγ)

= γh− h = δh(γ).

This implies that the class [ϕµ′ ] is equal to [ϕµ] in H1(Γ;H1(K)). □
Lemma 3.15 ([KKM+21]). The sequence

0 → H1(K)Γ → Q(K)Γ → EH2
b (K)Γ

φ−→ H1(Γ;H1(K))

is exact.

Since the proof of the lemma is straightforward, we omit it.

Proof of Theorem 3.10 (1). Let us consider the following com-
mutative diagram:

0 // H1(Γ) //

i∗

��

Q(Γ) / /

i∗

��

EH2
b (Γ)

//

i∗

��

0

��
0 // H1(K)Γ // Q(K)Γ // EH2

b (K)Γ
φ // H1(Γ;H1(K)).

Taking cokernel of the vertical maps, we obtain an exact sequence

H1(K)Γ/i∗H1(Γ) → Q(K)Γ/i∗Q(Γ)

→ EH2
b (K)Γ/i∗EH2

b (Γ) → H1(Γ;H1(K)),

where the exactness at Q(K)Γ/i∗Q(Γ) comes from the snake lemma and
the exactness at EH2

b (K)Γ/i∗EH2
b (Γ) from a standard diagram chasing.

Since the cokernel of the map H1(K)Γ/i∗H1(Γ) → Q(K)Γ/i∗Q(Γ) is
equal to Q(K)Γ

/(
i∗Q(Γ) +H1(K)Γ

)
, we obtain the exact sequence

0 → Q(K)Γ
/(

i∗Q(Γ) +H1(K)Γ
)

→ EH2
b (K)Γ/i∗EH2

b (Γ)
α−→ H1(Γ;H1(K)).

□
Proof of Theorem 3.10 (2). Let us consider the following com-

mutative diagram whose rows are exact:

0 // EH2
b (Γ)

//

i∗

��

H2
b (Γ)

//

i∗

��

Im(cΓ) //

i∗

��

0

0 // EH2
b (K)Γ // H2

b (K)Γ / / H2(K)Γ.

By Theorem 1.29, the kernel of the map i∗ : H2
b (Γ) → H2

b (K)Γ is
isomorphic to H2

b (G), and there exists an injection from the cokernel
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of i∗ : H2
b (Γ) → H2

b (K)Γ to H3
b (G). Thus, by the snake lemma, we

obtain the exact sequence

H2
b (G) → Ker(i∗) ∩ Im(cΓ)

β−→ EH2
b (K)Γ/i∗EH2

b (Γ) → H3
b (G).

□

To show the non-triviality of the space NE , the following theorem
is essential, which clarifies the relation between Corollary 3.11 and
the seven-term exact sequence.

Theorem 3.16 ([KKM+21]). The following diagram commutes:

Ker(i∗) ∩ Im(cΓ)
α◦β //

� _

��

H1(Γ;H1(K))

Ker(i∗)
ζ // H1(G;H1(K)),

p∗

OO
(3.3.2)

where α ◦ β is the map in Corollary 3.11 and ζ in the seven-term
exact sequence (1.2.4).

Proof. First we describe the map

α ◦ β : Ker(i∗) ∩ Im(cΓ) → EH2
b (K)Γ/i∗EH2

b (Γ) → H1(Γ;H1(K))

explicitly. Let c be an element of Ker(i∗) ∩ Im(cΓ). Take a bounded
representative f ∈ C2

b (Γ) of c. Since i∗c = 0 ∈ H2(K), we can take a
one-cochain µ ∈ C1(K) satisfying f |K×K = δµ. Since f is bounded,
µ is a quasimorphism on K. Then by the definition of connecting
homomorphism in the snake lemma, we obtain β(c) = [δµ].

Recall that there exists a unique bounded function bγ : K → R
satisfying

δbγ = γδµ− δµ.

Next we show the equality bγ(k) = f(γ, γ−1kγ)− f(k, γ). Set aγ(k) =
f(γ, γ−1kγ)− f(k, γ). Let k and l be elements of K. Since δf = 0, we
have

δaγ(k, l) = δaγ(k, l) + δf(γ, γ−1kγ, γ−1lγ)

+ δf(k, l, γ)− δf(k, γ, γ−1lγ)

= (γf)(k, l)− f(k, l)

= (γ(δµ)− δµ)(k, l)

= δbγ(k, l).

By the uniqueness of bγ, we have aγ = bγ.
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Now we shall complete the proof of Theorem 3.10 (3.3.2). For c ∈
Ker(i∗)∩Im(cΓ), take a bounded 2-cocycle f of G and a quasimorphism
µ : K → R such that f |K×K = δµ. Define µΓ ∈ C1(Γ) by

µΓ(γ) =

{
µ(γ) γ ∈ K

0 otherwise.

Then f − δµΓ is a cocycle such that (f − δµΓ)|K×K = 0. Thus Propo-
sition 1.21 implies

((p∗ζ(c))(γ))(k) =(ζ(c)(p(γ)))(k)

=(f − δµΓ)(γ, γ
−1kγ)− (f − δµΓ)(k, γ)

=f(γ, γ−1kγ)− f(k, γ)− µΓ(γ
−1kγ) + µΓ(kγ)

− µΓ(γ) + µΓ(γ)− µΓ(kγ) + µΓ(k)

=µ(k)− γµ(k) + bγ(k)

=(µ− γµ+ bγ)(k)

=ϕµ(γ)(k).

This implies α ◦ β(c) = p∗ ◦ ζ(c). □

3.4. Examples

In this section, we prove Theorem 3.2 and Theorem 3.3.

3.4.1. Preliminary. First we recall the definition of group homol-
ogy.

Definition 3.17. Let Cn(G;Z) be the free Z-module generated by
Gn. The boundary operator ∂ : Cn(G;Z) → Cn−1(G;Z) is defined by

∂(g1, . . . , gn) =(g2, . . . , gn) +
∑
i

(−1)i(g1, . . . , gigi+1, . . . , gn)

+ (−1)n(g1, . . . , gn−1).

The homology H•(G;Z) of the chain complex (C•(G;Z), ∂) is called
the group homology of G.

Note that the first group homology H1(G;Z) is isomorphic to the
abelianization Gab = G/[G,G].

Let n be an integer greater than one, and set

ei = (0, · · · , 1, · · · , 0) ∈ Zn
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for 1 ≤ i ≤ n. For 1 ≤ i < j ≤ n, let us define Ai,j ∈ C2(Zn) by

Ai,j

(∑
k

mkek,
∑
l

nlel

)
= minj.(3.4.1)

It is easily shown that the cochain Ai,j is a cocycle. Recall that the
cohomology H2(Zn) is isomorphic to Rn(n−1)/2 (see Example 1.14).

Lemma 3.18. The family {[Ai,j]}1≤i<j≤n ⊂ H2(Zn) ∼= Rn(n−1)/2 is
a basis.

Proof. For 1 ≤ k < l ≤ n, let us define a group two-chain σk,l ∈
C2(Zn) by

σk,l =(ek, el) + (ek + el,−ek)− (ek,−ek) + (0, 0).

By definition, the chain σk,l is a cycle. Moreover, we have

〈Ai,j, σk,l〉 =

{
1 (i, j) = (k, l)

0 otherwise,

where 〈Ai,j, σk,l〉 is the pairing. Thus the classes [Ai,j] are non-zero and
linearly independent, and the lamma follows. □

Remark 3.19. Since Ai,j is also a Z-coefficients group cocycle, it
defines an element of H2(Zn;Z). Moreover, by the arguments same as
in the proof of Lemma 3.18, we can show that the classes [Ai,j] are free
generators of H2(Zn;Z) ∼= Zn(n−1)/2.

We will use the following theorem in the proof of Theorem 3.2
and Theorem 3.3.

Theorem 3.20 ([Gro82, 1.2.(C)]). Let X be a closed hyperbolic
manifold, then the comparison map

cπ1(X) : H
n
b (π1(X)) → Hn(π1(X))

is surjective for n ≥ 2.

3.4.2. On the surface groups. In this subsection, we prove The-
orem 3.2. Let

Γg = 〈a1, . . . , a2g | [a1, a2] . . . [a2g−1, a2g]〉

be the surface group. Set Γ = Γg and K = [Γ,Γ], then there is a group
extension

1 → K
i−→ Γ

p−→ Z2g → 0,(3.4.2)
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where p is the abelianization homomorphism. Note that the map
p : Γg → Z2g sends ai to ei for each 1 ≤ i ≤ 2g. Recall that there
is an exact sequence

H2(Z2g)
p∗−→ Ker(i∗)

ζ−→ H1(Z2g;H1(K)),(3.4.3)

which is a part of the seven-term exact sequence of (3.4.2). Here Ker(i∗)
is a subspace of H2(Γ) ∼= R.

Lemma 3.21. The map p∗ : H2(Z2g) → Ker(i∗) is non-zero. In
particular, Ker(i∗) is isomorphic to R.

Proof. We show that the class p∗[A1,2] ∈ Ker(i∗) ⊂ H2(Γ) is non-
zero. It is known that the generator of H2(Γ;Z) ∼= Z is represented by
the following group two-cycle:

σ =(a1, a2) + (a1a2, a
−1
1 ) + (a1a2a

−1
1 , a−1

2 ) + (a1a2a
−1
1 a−1

2 , a3)

(3.4.4)

+ · · ·+ (a1a2a
−1
1 · · · a2g, a−1

2g−1) + (a1a2a
−1
1 · · · a2ga−1

2g−1, a
−1
2g )

− (2g + 1)(idΓ, idΓ)−
∑
i

(ai, a
−1
i )

(see [Dup78] for example). The pushforward p∗(σ) ∈ C2(Z2g) is equal
to

(e1, e2) + (e1 + e2,−e1) + (e2,−e2) + (0, e3)

+ · · ·+ (e2g−1 + e2g,−e2g−1) + (e2g,−e2g)

− (2g + 1)(0, 0)−
∑
i

(ei,−ei).

By definition of A1,2, we have

〈p∗A1,2, σ〉 = 〈A1,2, p∗σ〉 = 1.

Thus the class p∗[A1,2] ∈ Ker(i∗) is non-zero, and the lemma follows.
□

Remark 3.22. The map

p∗ : H1(Z2g;Z) → Ker(i∗ : H2(Γ;Z) → H2(K;Z))

sends [A1,2] ∈ H2(Z2g;Z) to the generator of H2(Γ;Z) by the arguments
same as in the proof of Lemma 3.21.
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Proof of Theorem 3.2. By Corollary 3.11 and Theorem
3.16, we obtain commutative diagram whose rows are exact:

0 // NE // Ker(i∗) ∩ Im(cΓ)
α◦β //

� _

�

H1(Γ;H1(K))

H2(Z2g)
p∗ // Ker(i∗)

ζ // H1(Z2g;H1(K))

OO

where i∗ : H2(Γ) → H2(K). By Theorem 3.20, the comparison map
cΓ : H

2
b (Γ) → H2(Γ) is surjective. Thus we have Ker(i∗) ∩ Im(cΓ) =

Ker(i∗). By Lemma 3.21, the kernel Ker(i∗) is equal to H2(Γ) ∼= R
and contained in the image of p∗ : H2(Z2g) → Ker(i∗). Therefore the
map ζ is zero. By the commutativity of the diagram above, the map
α ◦ β is also zero. By the exactness of the first low, we have NE ∼=
Ker(i∗) ∩ Im(cΓ) ∼= R. □

3.4.3. On the fundamental group of mapping tori. In this
subsection, we prove Theorem 3.3. Let Σg be a closed oriented surface
of genus g ≥ 2 and Mg = π0(Homeo+(Σg)) the mapping class group.
For a homeomorphism f ∈ Homeo+(Σg), let

Xf = Σg × [0, 1]/(x, 0) ∼ (f(x), 1)

denote the mapping torus. Let Γg be the surface group and f∗ : Γg → Γg

the pushforward. Under the presentation

Γg = 〈a1, . . . , a2g | [a1, a2] . . . [a2g−1, a2g]〉,

the presentation of the group Γ is given by

Γ = 〈a1, . . . , a2g, a2g+1 |[a1, a2] . . . [a2g−1, a2g],

a2g+1ai = (f∗ai)a2g+1 for all 1 ≤ i ≤ 2g〉

since the fundamental group Γ of the mapping torus Xf is isomorphic
to the semidirect product Γg of∗ Z.

By the Nielsen-Thurston classification, any element of Mg is peri-
odic, reducible, or pseudo-Anosov. Moreover, this classification deter-
mines the geometry on the mapping torus. If the mapping class of f is
pesudo-Anosov, the following holds (for other cases, see also [FM12]).

Theorem 3.23 ([Thu86], [Ota96]). The mapping class [f ] ∈ Mg

is a pseudo-Anosov element if and only if the mapping torus Xf admits
a hyperbolic structure.

In this subsection, we set Γ = π1(Xf ) and K = [Γ,Γ].
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Lemma 3.24 ([KKM+21]). If the mapping class [f ] is a pseudo-
Anosov element and in the Torelli group Ig, then the abelianization
Γ/K is isomorphic to Z2g+1. In particular, the dimension of H2(Γ/K)
is equal to g(2g + 1).

Proof. By Theorem 3.23, the mapping torus Xf is K(Γ, 1)-
manifold, and thus the homology of Xf is isomorphic to the group
homology of Γ. Since Γ/K is the abelianization of Γ, we have

Γ/K = H1(Γ;Z) ∼= Htop
1 (Xf ;Z).

A part of the homology five-term exact sequence of the fibration

Σg → Xf → S1

gives the following exact sequence:

0 → Htop
1 (Σg;Z)Z → Htop

1 (Xf ;Z) → Htop
1 (S1;Z) → 0.

Note that the Z-action on Htop
1 (Σg;Z) is defined by the pushforward

f∗ : H
top
1 (Σg;Z) → Htop

1 (Σg;Z). Since the element [f ] is in the Torelli
group, the action on H1(Σg;Z) is trivial, and therefore Htop

1 (Σg;Z)Z =
Htop

1 (Σg;Z). Thus we have Γ/K ∼= Htop
1 (Xf ;Z) = Z2g+1. □

Remark 3.25. The abelianization homomorphism p : Γ → Z2g+1

sends ai to ei for each i.

By Lemma 3.24, we have the group extension

1 → K
i−→ Γ

p−→ Z2g+1 → 0.(3.4.5)

Thus we obtain the exact sequence

H2(Z2g+1)
p∗−→ Ker(i∗) → H1(Z2g+1;H1(K))

by the seven-term exact sequence of (3.4.5). Note that the space Ker(i∗)
is the subspace of H2(Γ) ∼= R2g+1.

Lemma 3.26. The image of the map p∗ : H2(Z2g+1) → Ker(i∗) is
isomorphic to R2g+1. In particular, the map p∗ is surjective.

Proof. Let Ai,j ∈ C2(Z2g+1) be the group two-cocycles defined
by (3.4.1). We show that the classes p∗[A1,2] and p∗[Ai,2g+1] for each
1 ≤ i ≤ 2g are non-zero and linearly independent. Let σ ∈ C2(Γ) be a
group two-cycle defined by the formula (3.4.4). Then the class p∗[A1,2]
is non-zero by the argument same as in the proof of Lemma 3.21.
Recall that the relation a2g+1aia

−1
2g+1 = f∗ai for each 1 ≤ i ≤ 2g. Since

the mapping class [f ] is in the Torelli group, the class (f∗ai) · a−1
i is in

the commutator subgroup [Γg,Γg], where we consider Γg as a normal
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subgroup of Γ. Thus there exists a group two-chain ui ∈ C2(Γg) such
that ∂ui = (f∗ai) · a−1

i . Let us define a group two-cycle σi ∈ C2(Γ) by

σi = (f∗ai, a2g+1)− (a2g+1, ai) + ((f∗ai) · a−1
i , ai)− ui.

Since the mapping class [f ] is in the Torelli group, the projection
p∗(f∗ai) is equal to ei for each 1 ≤ i ≤ 2g. Thus we have

p∗σi = (ei, e2g+1)− (e2g+1, ei) + (0, ei)− p∗ui.

Note that p∗ui ∈ C2(Z2g+1) does not contain the term e2g+1. Thus we
have

〈Ai,2g+1, σj〉 =

{
1 i = j

0 otherwise,
(3.4.6)

and therefore the class p∗[Ai,2g+1] ∈ H2(Z2g+1) is non-zero. We now
show that the classes p∗[A1,2] and p∗[Ai,2g+1] are linearly independent.
Assume that the class rp∗[A1,2] +

∑
i rip

∗[Ai,2g+1] is equal to zero. By
taking the pairing with the homology class [σ] ∈ H2(Γ) defined above,
we have r = 0. Then the condition (3.4.6) implies the equality ri = 0
for each i. □

Proof of Theorem 3.3. By Corollary 3.11 and Theorem
3.16, we obtain the following commutative diagram whose rows are
exact:

0 // NE // Ker(i∗) ∩ Im(cΓ)
α◦β //

� _

�

H1(Γ;H1(K))

H2(Z2g+1)
p∗ // Ker(i∗)

ζ // H1(Z2g+1;H1(K))

OO

where i∗ : H2(Γ) → H2(K). By Theorem 3.20 and Theorem 3.23,
the comparison map cΓ : H

2
b (Γ) → H2(Γ) is surjective. Thus we have

Ker(i∗) ∩ Im(cΓ) = Ker(i∗) ∼= R2g+1. Since the map p∗ is surjective by
Lemma 3.26, the map ζ is zero. By the commutativity of the diagram
above, the map α ◦ β is also zero. By the exactness of the first low, we
have NE ∼= Ker(i∗) ∩ Im(cΓ) ∼= R2g+1. □

3.5. Explicit construction of a homogeneous quasimorphism

We return to the case of the surface group. Let Γ = Γg be the
surface group of genus g ≥ 2 and K = [Γ,Γ] the commutator subgroup.
By Theorem 3.2, the dimension of the space

NE = Q(K)Γ
/(

i∗Q(Γ) +H1(K)Γ
)
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is equal to one. In this section, we describe a non-zero element in NE
in terms of Poincaré’s translation number.

Let e ∈ H2(Homeo+(S
1);Z) be the Euler class, that is, the coho-

mology class corresponding to the central extension

0 → Z → H̃omeo+(S
1)

π−→ Homeo+(S
1) → 1

(see also Proposition 1.11). Let ρ : Γ → Homeo+(S
1) be a homomor-

phism such that the class ρ∗e ∈ H2(Γ;Z) is non-zero. It is known that
there exists such a homomorphism ρ, e.g., a maximal representation.

Lemma 3.27. Let i : K → Γ be the inclusion. Then the map ρ ◦
i : K → Homeo+(S

1) has a lift ρ̃ : K → H̃omeo+(S
1), that is, the

diagram

K
ρ̃ //

i

��

H̃omeo+(S
1)

π

��
Γ

ρ // Homeo+(S
1)

(3.5.1)

commutes.

Proof. By Remark 3.22, we have Ker(i∗) = H2(Γg;Z) for the
map i∗ : H2(Γ;Z) → H2(K;Z). Thus the class i∗ρ∗e is equal to zero.
By Proposition 1.12, there exists a lift ρ̃ of ρ ◦ i. □

Remark 3.28. We can also construct a lift ρ̃ explicitly. Since the
commutator subgroup K = [Γg,Γg] is an infinite-rank free group, we
take a generating set {aj}j∈N of K. Set

aj = [γ1,j, γ2,j] . . . [γnj−1,j, γnj ,j].

Let s : Homeo+(S
1) → H̃omeo+(S

1) be a section. We define a homo-
morphism ρ̃ : K → H̃omeo+(S

1) by

ρ̃(aj) = [sρ(γ1,j), sρ(γ2,j)] . . . [sρ(γnj−1,j), sρ(γnj ,j)],

then this ρ̃ is a lift of ρ|K : K → Homeo+(S
1). Note that this lift ρ̃ is

independent of the choice of the section s.

Let µ ∈ Q(H̃omeo+(S
1)) denote Poincaré’s translation number. By

the lift ρ̃, we obtain a homogeneous quasimorphism ρ̃∗µ on K.

Proposition 3.29. There exists a homomorphism h ∈ H1(K) such
that the sum ρ̃∗µ+ h is Γ-invariant.
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Proof. By Lemma 3.21 and the seven-term exact sequence of 1 →
K → Γ → Z2g → 0, we have ζ(ρ∗eR) = 0. Here ζ is the map in the
seven-term exact sequence and eR ∈ H2(Homeo+(S

1)) is the real Euler
class. Let eb ∈ H2

b (Homeo+(S
1)) be the bounded Euler class, that is, eb

is the element satisfies cHomeo+(S1)(eb) = eR. It is known that Poincaré’s
translation number µ satisfies [δµ] = −π∗eb. Therefore we have

−i∗ρ∗eb = −ρ̃∗π∗eb = [δ(ρ̃∗µ)].

Note that the class [δ(ρ̃∗µ)] is Γ-invariant since it is in the image of
i∗ : H2

b (Γ) → H2
b (K)Γ. By Theorem 3.10 (3.3.2), we have

α([δ(ρ̃∗µ)]) = p∗ζ(ρ∗eR) = 0.

By the definitions of the maps ϕ and α (see Lemma 2.3 and the proof
of Theorem 3.10 (1)), we have

0 = α([δ(ρ̃∗µ)]) = [ϕρ̃∗µ] ∈ H1(Γ, H1(K)).

By the equality [ϕρ̃∗µ] = 0, there exists an element h ∈ H1(K) such
that the equality

ϕρ̃∗µ(γ) =
γh− h(3.5.2)

holds for any γ ∈ Γ. By the definition of ϕρ̃∗µ (Definition 3.13), for
any γ ∈ Γg, there exists a unique bounded function bγ : K → R such
that the equality

ϕρ̃∗µ(γ) = ρ̃∗µ− γ(ρ̃∗µ) + bγ(3.5.3)

holds. By (3.5.2) and (3.5.3), we obtain
γ(ρ̃∗µ+ h)− (ρ̃∗µ+ h) = bγ.(3.5.4)

Since the left-hand side of (3.5.4) is a homogeneous quasimorphism and
the right-hand side of (3.5.4) is a bounded function, we have

γ(ρ̃∗µ+ h)− (ρ̃∗µ+ h) = 0,

and this implies that the homogeneous quasimorphism ρ̃∗µ + h is Γ-
invariant. □

Theorem 3.30. Let ρ̃∗µ+h ∈ Q(K)Γ be a Γ-invariant homogeneous
quasimorphism, where h ∈ H1(K). Then ρ̃∗µ + h gives a non-zero
element of NE .

Proof. Assume that there exist elements µ′ ∈ Q(Γ) and h′ ∈
H1(K)Γ such that the equality

ρ̃∗µ+ h = i∗µ′ + h′
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holds. Then we have [δ(ρ̃∗µ)] = i∗[δµ′] ∈ H2
b (K). Moreover, by the

diagram (3.5.1), we have
[δ(ρ̃∗µ)] = ρ̃∗[δµ] = −ρ̃∗π∗eb = i∗(−ρ∗eb).

Thus we obtain i∗[δµ′] = i∗(−ρ∗eb) ∈ H2
b (K). By Theorem 1.29

and the triviality of the second bounded cohomology of Γ/K ∼= Z2g,
the map i∗ : H2

b (Γ) → H2
b (K)Γ is injective. Thus the equality [δµ′] =

−ρ∗eb ∈ H2
b (Γ) holds, and therefore the image cΓ(ρ

∗eb) ∈ H2(Γ) is
equal to zero. This contradicts the assumption ρ∗e 6= 0. Indeed, we
have

cΓg(ρ
∗eb) = ρ∗(cHomeo+(S1)eb) = ρ∗eR ∈ H2(Γ).

Moreover, since the change of coefficients map
f : H2(Γ;Z) → H2(Γ)

is injective, the class ρ∗eR = f(ρ∗e) is non-zero. □
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