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Abstract

Autonomous driving systems have garnered extensive attention as a promis-

ing solution to various problems associated with transportation. To realize

high-level autonomous driving systems, large volumes of data must be

processed from external sensors with minimal delays to semantically perceive

the surroundings and circumstances of ego vehicles. Tasks that involve

data parallelism are often managed using graphics processing units (GPUs)

to accelerate computation using a technique known as “general-purpose

computing on GPUs.” However, whether a task can be accelerated using

GPUs is case specific. Moreover, in the actual deployment of on-board

autonomous driving systems, one must consider not only delays but also

concerns such as precision and severe power limitations.

The primary objective of this study is the exploration of methods to ac-

celerate perception tasks while fulfilling the criteria required for autonomous

driving systems. Hence, the validity of GPUs as acceleration units for the

perception tasks of autonomous driving systems are confirmed using two

concrete examples. Subsequently, some concerns regarding the application

of GPUs to on-board autonomous driving systems are considered, and a

possible solution model is proposed. Thereafter, a performance analysis

of a prototype model is presented to clarify the benefits of decentralized

processing, followed by a summary of the conclusions. In this study,

three concrete topics are addressed regarding perception tasks that use

GPUs: (1) traditional image-based object detection, (2) traffic-light-state

recognition, and (3) presentation of a decentralized processing model as well

as performance analysis of its prototype.

After providing an introduction and a discussion of related studies, the

application of GPUs for accelerating traditional pattern recognition tasks



is presented herein. In this study, traditional image-based object detection

tasks are considered. Because advanced driver-assistance systems, which

are widely implemented in many commercial vehicles, are typically based

on traditional pattern recognition techniques, the approaches for these

traditional techniques are expected to provide insights into the development

of autonomous driving systems. A detailed workflow of the object detection

algorithms is presented, with emphasis on how each component can be

accelerated using GPUs. Subsequently, evaluation results are provided to

quantify the performance improvements achieved via GPU-based implemen-

tations. Based on a detailed analysis of the workflow, it was discovered

that approximately 98 % of the entire computation exhibits properties that

have a high affinity for acceleration by GPUs. In the best scenario of GPU

implementation, a performance improvement of 8.6× was achieved compared

with a high-end central processing unit implementation, without changes

to the algorithm flow. Subsequently, the current mainstream image-based

object detection and traditional methods are compared. Based on the

comparison, it is concluded that applying the mainstream approach is

inevitable for implementing the perception modules of high-level autonomous

driving systems.

Thereafter, a scheme to recognize traffic light states from images is

reviewed to verify the practical application of GPUs to perception tasks.

Because autonomous self-driving vehicles are expected to share roads with

vehicles driven by people during the transition period for their introduction,

autonomous vehicles must be able to recognize a wide range of traffic

information, such as road signs and traffic lights. The proposed scheme

for traffic-light-state recognition comprises two main parts: (i) utilizing

ego-vehicle locations on high-definition three-dimensional maps to extract

regions of traffic lights from images; (ii) utilizing a deep-learning-based

recognizer that requires GPU acceleration. Using practical datasets obtained

from public driving experiments, the proposed scheme yielded an average

precision exceeding 97 % under favorable conditions. Moreover, if the

recognition targets were within a distance of 90 m, then a recognition recall

of approximately 90 % was achieved.

Possible concerns that may arise when applying GPUs to on-board
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autonomous driving systems are also discussed. As a countermeasure

to these concerns, a model of a decentralized processing system using

embedded-oriented GPUs as decentralized units is presented. To confirm the

validity of the proposed model, a prototype is implemented for image-based

object detection, and its performance analysis is discussed. The quantitative

evaluations show that an approximate delay of 27 ms on average occurred

between feeding an image to the system and receiving the object detection

results by the host. This indicates that although the measured delay includes

overhead from decentralized processing, frame dropping did not occur under

the experimental setup conditions. Moreover, the proposed model degraded

the network load of the host by several orders of magnitude, indicating its

robustness against system scaling. Based on quantitative evaluations, it is

concluded that autonomous driving systems can benefit from the proposed

decentralized processing scheme, even with delays involved.
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Chapter 1

Introduction

1.1 Background

1.1.1 Autonomous driving as an emerging technology

Autonomous driving systems have been suggested as a promising solution to

transportation problems, including the prevention of serious traffic accidents

and personal transportation modes in aging societies. A survey conducted

by the Cabinet Office of Japan in 2014 [1] revealed that rapidly aging

populations are a global concern; the survey indicated that the percentage

of people aged 65 and over increased from 5.1 % in 1950 to 7.7 % in 2010,

and the percentage is expected to increase to approximately 17.6 % by 2060.

In addition, the survey indicated that this increasing trend is expected to

continue in the latter half of the century. Personal transportation is therefore

a critical emerging problem in aging societies. People living in areas without

effective public transportation systems often rely on driving. However, many

older people have difficulty driving owing to the natural decline in their

physical and cognitive abilities.

The Society of Automotive Engineers (SAE) International of USA pub-

lished the “Levels of driving automation” (SAE J3016) [2] guideline in 2016,

and various companion guidelines have been developed in other countries; for

example, the Society of Automotive Engineers of Japan (JSAE) established

the “Taxonomy and definitions for terms related to driving automation
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Table 1.1: Summary of levels of driving automation

(cited and modified from ref. [2])

Level Name
Dynamic driving task (DDT) DDT

fallback

Operational

design

domain
Sustained

lateral and

longitudinal

vehicle

motion

control

Object and

event

detection

and

response

[Lv. 0–2] Driver performs part or all of the DDT

0
No Driving

Automation
Driver Driver Driver n/a

1
Driver

Assistance

Driver and

System
Driver Driver Limited

2

Partial

Driving

Automation

System Driver Driver Limited

[Lv. 3–5] System performs the entire DDT (while engaged)

3

Conditional

Driving

Automation

System System

Fallback-

ready

user

Limited

4

High

Driving

Automation

System System System Limited

5
Full Driving

Automation
System System System Unlimited

2



1.1. Background

systems for On-Road Motor Vehicles” [3] in 2018. Table 1.1 shows a

summary of the levels of driving automation established by the SAE; as

shown, a minimum of level three is typically required for autonomous driving

to be a solution to transportation problems in aging societies. According

to [2], levels three and above refer to cases wherein “the automated driving

system performs the entire dynamic driving task (DDT) on a sustained basis

while engaged”. In other words, autonomous driving systems with these levels

are responsible for continuously performing the entire driving task, including

steering, acceleration, and braking. To achieve such highly automated

systems, we consider driving tasks as a cycle of three primary elements,

i.e., perception, planning, and control, and implement modules such that the

elements function cooperatively. Perception tasks consider data captured by

external sensors and perform semantic understanding with respect to the

volatile surroundings and circumstances of ego vehicles. Subsequently, the

results are transferred to the two remaining tasks: planning tasks, which

determine the manner by which the ego vehicles should move, and control

tasks, which compute and transmit actual operations for movement (e.g.,

the steering angle and acceleration/deceleration amount) to the ego vehicles.

Whereas typical perception tasks are computationally intensive and take

large volumes of data (e.g., images from high-resolution cameras or point

clouds from LiDARs) as inputs, lengthy processing times are not tolerated

because processing delays during the perception tasks can directly cause

delays in the entire system, which may affect the safe driving conditions

of the system as the subsequent planning and control tasks depend on the

outputs of the perception tasks.

1.1.2 General-purpose computing on GPUs

Massively parallel computing with the assistance of graphics processing units

(GPUs) has recently garnered considerable attention for use in computation-

ally intensive applications. GPUs were initially designed as hardware devices

for accelerating graphics processing; however, the significant computing

capabilities of GPUs have enabled general-purpose solutions to computing

data-parallel workloads. Application of GPUs for computationally intensive

3



CHAPTER 1. INTRODUCTION

workloads instead of graphics is often referred to as general-purpose com-

puting on graphics processing units (GPGPUs). The emergence of GPGPU

technology has increased the popularity of GPUs in many scientific fields. In

particular, after the remarkable success of deep convolutional neural networks

(CNNs) in a competition for recognizing large-scale general scenes [4], GPUs

have been regarded as an essential device for supporting recent breakthroughs

in deep learning because their computing capabilities have been widely used

to train deep neural networks with a large number of parameters.

CUDA [5], which is a C-based integrated programming environment

developed by NVIDIA, is one of the most popular programming languages

for GPGPUs. Some of the representative features of CUDA are highlighted

below.

CUDA Threads

The minimum computational unit of the CUDA is a thread. During massively

parallel computing, thousands of threads are executed in parallel. The CUDA

employs a hierarchical structure to simultaneously control large numbers of

threads. A collection of threads is termed a block, and a collection of blocks

constitutes a grid. A grid is generated each time the central processing

unit (CPU) of a system issues a command to use the GPU, and the blocks

and threads in the grid are mapped in three dimensions. This hierarchical

structure of CUDA threads is illustrated in Fig. 1.1.

The CUDA assigns streaming multiprocessors (SMs) as GPU resources to

each block. Each SM contains multiple streaming processors (SPs), and each

thread is executed on an SP. In each SM, the computations are managed by

a unit called a warp, which is a collection of multiple threads executed in

a group; typically, a warp contains 32 threads. Because only one program

counter exists for each warp, if a block contains numerous threads but some

of them remain in an idle state owing to conditional branches, etc., then

the GPU resources are wasted, and the throughput is reduced. Hence,

programmers often combine multithreading on the CPU and CUDA threads

on the GPU such that the idle CUDA threads on the GPU are hidden

maximally.

4



1.1. Background

CPU 

GPU function 
1 

GPU function 
2 

GPU 
Grid 1 

Grid 2 

Block 
(0,0) 

Block 
(1,0) 

Block 
(2,0) 

Block 
(0,1) 

Block 
(1,1) 

Block 
(2,1) 

Block (1,1) 

Thread 
(0,1,0) 

Thread 
(1,1,0) 

Thread 
(2,1,0) 

Thread 
(0,0,0) 

Thread 
(1,0,0) 

Thread 
(2,0,0) 

Figure 1.1: Mapping of threads, blocks, and grids in CUDA.

CUDA Streams

Multiple CUDA operations can be performed simultaneously using CUDA

streams [6]. A stream is defined as a sequence of operations executed

in an issued order on the GPU, allowing multiple memory copies to be

operated between the CPU and GPU or multiple GPU functions to be

launched simultaneously. Although CUDA operations issued for a specified

CUDA stream, such as memory copies and execution of GPU functions, are

guaranteed to occur in the order of the issued operations, the order in which

the operations issued to other CUDA streams are executed is not restricted;

in fact, they are executed simultaneously to the maximum extent allowed by

the GPU resources.

5
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Table 1.2: Execution times for resizing an image using texture memory

(source image resolution: 640×480)

Target resolution 160×120 320×240 1280×960 2560×1920

Hardware 0.0603 ms 0.0697 ms 0.3337 ms 0.7244 ms

Software 0.0634 ms 0.0784 ms 0.4681 ms 1.2793 ms

Texture and Shared Memories

The CUDA provides different types of memory and allows programmers to

use preferred memory areas. Global memory is the standard memory that

can be read and written by a CUDA thread. Shared memory can be used as

a scratch pad memory to temporarily share data among threads. In addition,

texture memory exhibits the following features:

• read-only access from CUDA threads,

• fast access from CUDA threads, and

• interpolation by hardware—a remnant from the original design of GPUs

for graphics processing.

Table 1.2 shows the computing times required to resize the video

graphics array (VGA)-sized (640 × 480) images by bilinear interpolation.

In the table, Hardware indicates the case where the interpolated values are

automatically computed on the hardware using texture memory, whereas

Software represents the cases where the interpolation program is imple-

mented manually and computed as a GPU function. Regardless of the

image size, the computational speed is higher when hardware interpolation

based on texture memory is employed. The texture memory can be set

to return an interpolated value automatically when accessed by specifying

the pixel coordinates in an image [7]. This ability reduces the load on the

SPs and enables an efficient conversion because the values are automatically

interpolated by the GPU.

6



1.2. Contributions and structure of this study

Table 1.3: General characteristics for various types of external sensors lever-

aged in autonomous driving

sensor
typical

data source

advantages &

disadvantages
typical usage

camera visible ray

• reasonable cost

• spatially dense data

• affected by weather

conditions

detection / tracking /

recognition

LiDAR laser

• precise 3D data

• long sensing range

• high cost

• spatially sparse data

detection / tracking /

localization

radar radio wave

• reasonable cost

• working well at night

and bad weather

• affected by target re-

flectance

detection

GNSS satellites

• directly acquires lo-

cation

• unavailable at indoor

and tunnels

localization

1.2 Contributions and structure of this study

To achieve high-level autonomous driving systems, this study focuses on one

of the three primary elements of autonomous driving: perception tasks. To

determine ego vehicle behavior, including acceleration, deceleration, turn,

and lane change, high-level autonomous driving systems must perceive the

surroundings and circumstances of all directions using external sensors.

7
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Because each type of sensor has its own strengths and weaknesses, various

types of sensors are typically leveraged to increase the overall strength.

Representative sensors include cameras, LiDARs, radars, and GNSSs, and

their general characteristics are listed in Table 1.3. The following perception

tasks are typical examples where these sensors are used:

Detection: Vehicles and/or humans around the ego vehicle are detected

to avoid collision with them. Typically, data captured by cameras or

LiDARs are used to perform this task.

Tracking/Prediction: Tracking refers to assigning the correspondence

between objects detected in the current frame and those detected in the

previous frame for predicting their movement in the future frame. The

prediction results for the movement of other objects is used to plan the

ego vehicle behavior. In addition to the prediction of object movements,

this task also includes the prediction of object locations. Location

prediction is occasionally introduced into perception pipelines to

interpolate the temporal continuity of object locations when detection

tasks require a significant amount of time to complete.

Recognition: This task provides understanding regarding traffic informa-

tion provided to human drivers, such as traffic lights and traffic signs

(i.e., classifying the type of information to be adhered by the ego

vehicle). Visual information, such as images captured by cameras, is

often used for this task.

Localization: This task identifies the location of the ego vehicle. To control

the ego vehicle precisely, this task is essential.

Hence, the perception tasks for autonomous driving are a group of cooper-

ative tasks rather than a single type of task for understanding the driving

environment and determining the ego vehicle behavior.

Object detection is a typical perception task where objects such as

vehicles or pedestrians are identified from raw or preprocessed sensor data.

Although some recent studies [8–11] have performed object detection using

non-image sources, image-based object detection remains essential owing

8
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to the wide adoption of camera sensors, reasonable cost, and ability to

acquire spatially dense data. The deformable part model (DPM) [12] is

a representative object detection algorithm that was used to achieve high

detection accuracies in early studies. Because advanced driver-assistance

systems, which are widely implemented in many commercial vehicles, are

typically based on traditional pattern recognition techniques, the approaches

for these traditional techniques are expected to provide insights into the

development of autonomous driving systems. Despite its high detection

performance, its computational cost prevents its practical usage; this tradeoff

between detection accuracy and computational cost (i.e., execution time) is

one of the primary problems to be addressed for object detection tasks.

Recognizing traffic light states is another perception task that arises as a

characteristic task of autonomous driving. Autonomous driving vehicles are

expected to share roads with vehicles driven by people during the transition

period for their introduction, and autonomous vehicles must be able to

recognize a wide range of traffic information, such as traffic lights. Because

traffic lights installed on public roads are designed for the visual perception

of humans, image-based methods are the first option to manage this task.

However, images captured via vehicle-installed cameras typically contain

various objects unassociated with traffic light state recognition, which often

cause misrecognition. For autonomous driving systems, map information is

frequently used as prior knowledge of the driving environment. Particular

maps used in autonomous driving systems are referred to as high definition

maps, which can be categorized into two types: point-cloud maps, which

comprise a set of points (typically stored in three-dimensional coordinates)

representing the surface in the driving environment; and feature maps,

which are a series of information for road features, including poses (i.e.,

three-dimensional (3D) position and orientation) of traffic lights, traffic signs,

and utility poles, as well as information pertaining to lanes where autonomous

driving vehicles can be driven. By intuition, leveraging these high definition

maps will improve image-based traffic light recognition because the systems

can perform recognition based on their location on the maps, the direction

they are facing, and the potential locations of traffic lights.

In addition to perception algorithms, computation offloading and system

9
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scaling should be addressed for the actual deployment of autonomous driving

systems. To ensure automated driving safety, multiple external sensors are

typically installed in such systems. For example, if a system comprises six

full-HD cameras and five LiDARs, the amount of data for one frame (i.e., data

amount fed at a time) will be 1920×1080 (pixels)×3 (channels)×6 ≈ 35 (MB)

from cameras and approximately 200, 000 (points) × 4 (channels) × 5 ≈
4 (MB) from LiDARs when considering the amount of raw data for brevity.

Furthermore, the amount of data increases linearly with the number of

external sensors, which is a straightforward strategy to eliminate blind

spots. If these large volumes of data concentrate on a single unit, then

the computational and/or data transfer resources might saturate by only

processing perception tasks; this prevents the system from operating as

intended. Meanwhile, if decentralized processing is introduced to the system

to distribute the computational load, then additional latency caused by

its introduction should be considered; however, the effect is unclear and

developers are hesitant to adopt this approach.

For tasks involving data parallelism, GPUs are considered a promising

method for accelerating computations. Because of the continuous advance-

ments in programming languages such as the CUDA, GPUs are rapidly

evolving into general-purpose computational devices. However, because the

performance characteristics of GPUs are diverse [13], the validity of using

GPUs for specified tasks depends on the type of task, and it is necessary

to assess whether these tasks can benefit from GPU usage. Moreover,

traditional GPUs are known to be massively parallel computing devices that

consume significant quantities of power. In particular, power consumption

should be considered when deploying autonomous driving because a power

supply equipped for on-board systems is typically limited and not intended

to cover large power consumption.

The main contribution of this study is exploring methods to accelerate

perception tasks for autonomous driving using GPUs to fulfill the criteria for

high-level autonomous driving systems. Because the application of GPUs to

perception tasks for autonomous driving requires the consideration of several

issues, including validity to the tasks, power consumption, and effective

utilization, the following three research topics were investigated in this study:

10
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Topic 1: Object detection acceleration using GPUs, including the confirma-

tion of GPU validity for traditional pattern recognition tasks.

Topic 2: Practical verification of a scheme for traffic-light-state recognition

for autonomous driving using GPUs, and

Topic 3: Performance analysis of a prototype system for decentralized pro-

cessing using embedded-oriented GPUs.

In this study, the three topics mentioned above were investigated to

solve/reveal the aforementioned problems regarding autonomous driving

perception. Although, it is noteworthy that other topics, including object

detection from 3D data or the acceleration of planning algorithms, are equally

valuable for achieving high-level autonomous driving systems, topics other

than the above three are out-of-scope of this work.

1.3 Organization

The remainder of this dissertation is organized as follows: Relevant studies

are summarized in Chapter 2. The validity of using GPUs for specific

autonomous driving tasks is discussed in Chapter 3 and 4. In Chapter 5,

problems that arise when applying GPUs to on-board autonomous driving

systems and a possible solution are discussed; additionally, an analysis of

a prototype system for performing one of the perception tasks using GPUs

and the practical usage of GPUs in the actual deployment of autonomous

driving are presented. Some topics associated with this study are presented

in Chapter 6, and the conclusions are summarized in Chapter 7.

11
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Chapter 2

Related studies

2.1 Object detection

2.1.1 Traditional algorithms

Object detection is a fundamental challenge in intelligent applications,

including autonomous driving, and has been a primary area of research in

the field of computer vision for many years. Prior to 2000, mainstream

object detection techniques involved manual designs and utilization of image

content representations as detection objectives. Scale-invariant feature

transform (SIFT) [14], Haar-like [15], and the histogram of oriented gradients

(HOG) [16] are some of the popular representations used. The deformable

part model (DPM) [12], which is based on the HOG, is a typical object

detection algorithm that was used to achieve high detection accuracies in

early studies. As spreading recognition of its performance, the computational

cost of DPM has been highlighted as a significant limitation to its practical

use. The cascaded DPM [17] was introduced to reduce the computation

time of the original DPM via a cascade detector, which omits computations

for areas that would not include target objects; this approach improved

the speed of the DPM by 20 times compared with the model presented

in [18]. For example, the mean detection time per frame for a person model

reduced from 8.5 s to 682 ms. Yan et al. extended the cascaded DPM

to account for the relationships between neighboring detection windows,
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while introducing look-up tables of the HOG features to further reduce the

computational time [19]. Pedersoli et al. also reduced the computation

time of the DPM by introducing a hierarchical model of image resolutions

to reduce the area of an image for the detector [20], thereby increasing the

detection speed by approximately two times compared with that achieved

by [17], with a marginal decrease in the detection accuracy. Cho et al. focused

on automotive applications to which DPM is applicable and introduced

geometric constraints to improve the detector of the DPM, thereby achieving

higher accuracy and faster computation [21]; specifically, a detection rate of

14 fps for a 640 × 480 sized image, although only on pedestrian detection

under specific conditions was emphasized. Dean et al. applied a hash

technique to the look-up tables used in the DPM and enabled up to 100,000

object classes to be detected on a single machine [22]; they claimed that

the speed improvement achieved in the DPM was almost comparable to that

reported in [17].

The abovementioned studies contributed to the algorithmic improvement

of the DPM. However, the focus of this study is the original DPM algorithm,

with the exploration of the use of massively parallel computing with GPUs

and characterization of the DPM computations. Because the acceleration

of an algorithm using a GPU does not change the algorithm theoretically,

one of the advantages of the proposed method is the absence of accuracy loss

caused by algorithmic modification. More details regarding such acceleration

and its evaluation results are presented in a later chapter.

2.1.2 Cutting-edge methods using revived neural net-

work techniques

Owing to the successful application of deep CNNs in a competition for

recognizing large-scale general scenes [4, 23], the mainstream of object

detection has shifted toward the design and utilization of deep CNNs.

GPUs that provide massively parallel computing and various large-scale

datasets, including PASCAL VOC [24], MS COCO [25], ImageNet [23],

and KITTI [26], have been instrumental in this shift. Compared with

humans, CNNs can generate more complicated representations, and these

13
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representations (also referred to as features) have high expressiveness,

thereby affording high accuracies.

You only look once (YOLO) [27] and the single-shot multibox detector

(SSD) [28] are some of the popular detectors based on the deep CNN.

Their advantages include the combination of classifications and bounding-box

regressions into a single network to accelerate the inference time. These

methods and succeeding studies have inspired the realization of accurate

object detection in real time. As out-of-scope of this study but related

ones, object detection using point clouds from LiDARs has been reported

recently [8–10]. In these methods, object positions and orientations are

directly output in the coordinate system in which the planning of the ego

vehicle is performed. Because point clouds are unstructured data compared

with images, neural networks in these methods are leveraged to extract

features, followed by the conversion of the extracted features into forms

manageable by two-dimensional CNN-based object detectors, such as the

bird’s eye view. In another study [11], graph neural network techniques were

leveraged on point clouds to manage unstructured data directly, although

the inference speed can be further improved despite its good accuracy.

However, the complicated representations generated by neural networks

may complicate the improvement in accuracies and the analysis of error

causes. Owing to the increased utilization of deep CNNs, researchers

have focused more on improving their interpretability. For example,

gradient-weighted class activation mapping (Grad-CAM) [29] approach helps

one to visualize the basis of the network’s responses via heat maps that show

the contributions of different regions to responses. In other studies [30, 31],

the response reasons of deep neural networks to autonomous driving were

visualized. Although the interpretability of the deep CNN is beyond the

scope of this study, it is one of the key considerations for the further

development of autonomous driving systems.

2.2 GPUs as decentralized units

NVIDIA Corp. has introduced the Jetson series of GPUs, which satisfy vari-

ous requirements, including computing performance and power consumption

14
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Table 2.1: Comparison between several products from the Jetson series†.

TX1 TX2
AGX

Xavier
Nano

Release year 2016 2017 2018 2019

# of GPU cores 256 256 512 128

# of Tensor cores — — 64 —

GPU architecture Maxwell Pascal Volta Maxwell

Memory amount 4 GB 8 GB 16 GB 4 GB

Power
Under

10 W

7.5 W/

15 W

10W/15W/

30 W
5 W/10 W

DL accelerator — —

2×
NVDLA

engines

—

† Partially cited from https://developer.nvidia.com/

embedded/develop/hardware and modified.

limitations. Table 2.1 shows a comparison of the specifications of several

products from the Jetson series. This series of products has garnered

attention for its high computing performance and low power consumption,

and some relevant studies have been published.

The authors of [32] investigated the porting of deep learning (DL)-

approaches to a small and power-efficient device, focused on pedestrian

detection using DL, and analyzed the suitability of the Jetson TX1 mounted

on a mobile robot in comparison with a high-performance GPU (GTX Titan

X). Furthermore, the authors also investigated the effects of changing the

operation precision used in the CNN for pedestrian detection from the

typical 32-bit floating point to 16-bit floating point type, which resulted in

a 15× processing acceleration. Meanwhile, the authors of [33] proposed an

unmanned aerial vehicle (UAV) warning system using on-board and real-time

object detection. To fulfill the requirements of the system, such as minimal

power consumption, limited on-board processing power, and minimal weight,

the Jetson TX2 was employed. In another study, the authors of [34] evaluated

15
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various algorithms on visual simultaneous localization and mapping (visual

SLAM) to estimate the self-localization capabilities of mobile robots using

the Jetson TX2; they reported that the CPU load can be decreased and the

processing speed can be increased by employing an embedded GPU.

In addition to these studies, several studies regarding on-board processing

systems for perception tasks using the Jetsons products have been reported.

These studies primarily focused on the processing time of a single task

executed on a Jetson, i.e., embedded-oriented GPUs were used as the host

processors of the systems; however, such units are insufficient as hosts

for managing fully autonomous driving systems. Nevertheless, embedded-

oriented GPUs can be considered for application in autonomous driving

systems as edge devices, whereas their effects on system integration, including

delays caused by their introduction as decentralized processing platforms,

remain unclear. In a later chapter, the effect of introducing the Jetson

AGX Xavier is a decentralized processing platform is explored, as well as the

validity of decentralized processing on the perception of autonomous driving

systems.
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Chapter 3

GPU-Accelerated Object

detection

3.1 Accelerating traditional object detection

algorithm using GPUs

Object detection is a fundamental challenge in intelligent applications,

including autonomous driving. Since moving objects have non-uniform

shapes, complex algorithms are often required to recognize and classify them.

Although various sensors are available for object detection, one of the most

widely deployed and reasonable devices is a camera. Commercially available

cameras provide high-definition images containing meaningful information.

Recent trends in object detection have exploited sensor fusion techniques,

where data from different types of sensors are systematically fused to obtain

more information. With these techniques, however, cameras are mostly

needed for object detection.

Before the popularity of CNNs, the DPM algorithm [12] based on the

HOG [16] was dominantly used for image-based object detection. The HOG

is known to provide strong feature descriptions representing the gradient

orientations extracted from locations on a grid superposed on an image.

Complex moving objects, including cars and pedestrians, can be adequately

featured with the HOG even under bad weather conditions. The DPM

had demonstrated higher detection rates than existing algorithms of those
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days in in the Visual Object Class Challenge [24], which is an international

competition on object recognition technologies and logic hosted by PASCAL,

the image processing community in Europe. Although DPM demonstrated

high detection rates under various conditions [24], it is constrained by high

computational cost.

Advanced driver-assistance systems (ADASs) are widely implemented

in many commercial vehicles these days. Although these systems are

categorized into or under level two among the options in Table 1.1, the

technologies developed with such systems are expected to provide insights

into developing higher-level autonomous driving systems. ADASs that

support driver perceptions, including object detection, are typically based

on traditional pattern recognition.

In this section, a precise workflow analysis and GPU implementations

of a traditional pattern recognition algorithm for object detection are first

presented; then, an example of the effects of applying GPUs to perception

tasks is discussed as a preliminary study.

3.1.1 Preliminary analysis of DPM workflow

Deformable Part Models

The main characteristics of a DPM are summarized as follows: 1) flexible

recognition of vehicles with different wheel locations and body lengths,

2) vehicle recognition from any direction, and 3) recognition of various objects

with high success rates.

These characteristics are realized by flexibly incorporating similar local

features and their positional variations as part of the overall information

describing an object. Specifically, DPMs use the HOG [16] features with

two types of filters (root and part filters). The HOG features are robust to

illumination and local shape changes since color information is not required,

and the feature quantity in each local area is normalized. The root filter

stores the features of the entire object as a model, whereas the part filter

stores the features of a part of an object. Furthermore, the input images

are resized to create a pyramid structure to accommodate the sizes of the

recognized objects in an image. The DPM is schematically depicted in
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Input image�

HOG feature pyramid�

Resized image pyramid �

Root filter�

Part filter�

Detection result �

Figure 3.1: Overview of the DPM algorithm [18,35].

Fig. 3.1.

Although the DPM theoretically provides high detection rates, its

execution time caused by its high computational cost is often problematic.

Several studies [17, 20–22] have demonstrated improvements to the speed

of the DPM. However, the execution time of the DPM still remains an

open problem for runtime usage; in fact, an open-source code for fast

DPM implementation is not available. As a result, the real bottlenecks

to accelerating DPM computations and approaches to eliminate them are

unknown.

Workflow Breakdown

Fig. 3.2 shows the details of the sequential execution time for a VGA-sized

(640×480) image when the original DPM algorithm, implemented in C++

with a car model specified in PASCAL VOC 2007, was executed on an Intel

Xeon CPU E5-2687W v2. The execution times are averaged over ten samples.

19



CHAPTER 3. GPU-ACCELERATED OBJECT DETECTION

HOG 
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Figure 3.2: Breakdown of the execution time of a DPM implemented on a

single-threaded processor.

This DPM implementation requires more than 1500 ms per frame. Based on

the DPM analysis, it was found that approximately 98 % of the execution

time was spent on the following five processes:

HOG pyramid:

The input images are resized, and a quantity of the HOG features is

computed for each image to generate the “image feature pyramid”.

Root score:

Convolutions are computed between the root filter and detection

windows, which are partial images of the HOG features; the output

values of these computations are called “root scores”, which represent

the similarities between the HOG features and root filter.

Part score:

This step involves the same computations as those for the root filter,
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with the exception that the part filter is applied; the output values

of these computations are called “part scores”, which represent the

similarities between the HOG features and part filters.

dt:

Distance transforms [36] are obtained to sum up the scores from the

part filters. Since the DPM considers positional variations of the parts

of an object feature through the part filters, the best positions for the

part filters are identified at this stage.

Sum score:

The scores from the root and part filters are combined by means of

the dt to obtain a final score, which is compared to a threshold to

determine whether the given object is the recognition target.

In the program code, these processes are expressed by a loop structure

with iterative computations. The computation results from each iteration

are mostly independent of the results of other iterations. This indicates that

the program code of the DPM is data parallel and that GPUs are suited to

improve the computational speed for DPM. However, an appropriate method

to implement DPM on a GPU has not been suggested. Therefore, possible

schemes for implementing DPM on the GPU are explored, and the impact

of GPUs on DPM computations are evaluated.

3.1.2 GPU-based implementation of DPM

This section presents some schemes for GPU-based implementation of the

DPM. First, multiple parallelization schemes are proposed as guidelines for

implementing DPM on the GPU. In these schemes, the logic of the DPM

algorithm remains the same as that of the original implementation [18]. For

more details on the DPM, such as the equations used, readers are encouraged

to refer to the original work [18].

The proposed parallelization schemes are based on loop unrolling. Fig. 3.3

illustrates an example of unrolling for nested loops. To apply this loop

unrolling, data parallelism is basically required for the expressions executed

in the loop; the variables in the expressions executed iteratively have to
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……	


Nested loop	
 Unrolled loop	


Parallelized	

CUDA thread 

= calculate one iteration	


Figure 3.3: Concept of loop unrolling.

be independent over iteration (i.e., the variables at any iteration times are

not affected by other iterations). Since the aforementioned five processes of

DPM were revealed to have data parallelism by detailed workflow analysis,

it is possible to apply this loop unrolling and expected to be accelerated

their computation. Multiple factors are involved in loop unrolling; if the

loops are unrolled in the same manner as shown in Fig. 3.3, this algorithm

can be parallelized on a GPU using N ∗ M ∗ L threads. Another possible

scheme is that all the loops are not unrolled; instead, only the innermost

loop (k = 0 to L) to be offloaded to the GPU is unrolled, while the outer

loops are iterated on the CPU. A hybrid between these two schemes can also

be used to balance the tradeoffs between CPU and GPU workloads. These

strategies are available because the expressions in the loop are independent

over iterations. Therefore, loop-unrolling schemes can be classified into one

of the following three categories:

• Unrolling as many nested loops as possible and possibly producing idle
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threads on the GPU, depending on the number of iterations in the

nested loops.

• Unrolling only the innermost loop, and possibly causing the CPU to

execute many threads that would compete for GPU resources.

• Unrolling multiple inner loops, namely a hybrid between the above two

schemes, and relaxing the number of threads on the CPU while avoiding

many idle threads on the GPU.

The remainder of this section is devoted to the proposed parallelization

schemes based on loop unrolling. All these schemes utilize the texture

memory on the GPU. The shared memory on the GPU is not encouraged

for the proposed implementation as the size of the input data is much larger

than that of the shared memory, and the read-only data can be stored in

the texture memory. Single-precision floating-point values are used for input

data.

Root and Part Scores

Under the CUDA programming model, a block with a lot of idle threads can

degrade the performance of a GPU. The key to maximizing the performance,

therefore, is to retain the maximal number of active threads in each block.

For example, computation of the root and part scores, which consume

the most time in a DPM, as demonstrated in Section 3.1.1, is schematically

depicted in Fig. 3.4. Note that the root and part scores are obtained using the

same algorithm, although the areas to which the target objects are applied

are different. A total ofM filters is applied to N resized HOG feature images,

producing N×M score arrays. Note that the widths and heights of the score

arrays differ in reality with the z value (1 ≤ z ≤ N ×M), and the number

of elements on the x–y plane, where computations are performed, depend on

the value of z.

Data parallelism of each element enables the generated score arrays

to be efficiently computed on the GPU using CUDA threads. However,

if N × M is mapped in the z direction of the grid, the score arrays

must be mapped toward the maximum width (max width) and maximum
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Figure 3.4: Computation of a score array in DPM.

height (max height) in the x and y directions of the grid, respectively,

to compute the scores. This direct mapping of the scores to the CUDA

threads corresponds to a DPM implementation that loosely unrolls all the

computational loops of the iterative scores, which is termed loosely unrolled

parallelization hereafter. As shown in Fig. 3.5, the disadvantage of the loosely

unrolled parallelization scheme is that it may produce a large number of idle

threads within a block owing to variations in the widths and heights of the

x–y planes, thereby preventing the maximum utilization of the GPU.

To prevent an excessive number of CUDA threads, the CPU threads

are utilized with CUDA streams, although the aforementioned DPM im-

plementation is based on native mapping of the CUDA threads and score

arrays. Specifically, in the proposed DPM implementation, a dedicated

CUDA stream is assigned to each CPU thread on which the loosely unrolled

parallelization is applied individually. This hybrid scheme using both GPU
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Figure 3.5: Loosely unrolled parallelization of a score array.

and CPU threads is hereafter called tightly unrolled parallelization.

A schematic of the score array under tightly unrolled parallelization is

shown in Fig. 3.6; this scheme allows only cubes of the same size to be

unrolled together so that the idle threads within a block can be removed.

Although the utilization of GPU resources is optimized, the downside to

tightly unrolled parallelization is that it imposes a large number of CPU

threads on the host processor. For example, the number of CPU threads

required in the case shown in Fig. 3.6 is N ×M . Specifically, in this study,

the maximum values of N and M are 25 and 12, respectively, such that the

total number of CPU threads is 300. These values derived from the runtime

configuration, i.e., how many HOG images were calculated and how many

filters were applied. Since the CPU is not designed to execute a large number

of threads simultaneously, the speed of the resulting DPM computations may

degrade owing to overloading of the CPU capacity.
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Figure 3.6: Tightly unrolled parallelization of a score array.

The tightly unrolled parallelization scheme is improved in a heuristic way,

so full use of the GPU resources is compromised, but a balancing point can be

found between the CPU and GPU threads. This new parallelization scheme

called hybrid parallelization applies loosely unrolled parallelization partly to

a unit of filters (M), as shown in Fig. 3.7. This hybrid scheme increases

the number of idle threads on the GPU while reducing the number of CPU

threads to N at most, thereby relaxing the limitations of tightly unrolled

parallelization.

HOG Pyramid

Constructing the HOG pyramid is another bottleneck in the computation

of the DPM and comprises four stages: (i) resizing the input image,

(ii) generating histograms of the resized images, (iii) generating the norms,

and (iv) calculating the feature vectors of the images. Each stage of (ii) ,
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Figure 3.7: Hybrid parallelization of the score array.

(iii), and (iv) can be applied to each resized image and parallelized using a

large number of threads. Hence, each stage can be implemented as a GPU

kernel, and CPU threads can be created for each resized image; that is,

the CUDA streams are assigned individually to launch all the GPU kernels

simultaneously. A parallelization scheme for constructing the HOG pyramid

is shown in Fig. 3.8.

To reduce the computation time when resizing the input image, the

original DPM implementation [35] replaces the actual numerical computa-

tions, which obtain pixels of the resized images, with references to the static

interpolated values. This approach is reasonable for sequential processing;

however, a bilinear algorithm is used for the proposed GPU-based DPM

implementation because it provides the following features suited for GPU

programming: highly data-parallel computation, simple computational logic,

and hardware interpolation capability.

In particular, the third feature of the bilinear algorithm allows the use of
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Figure 3.8: Approach for constructing a HOG pyramid.

a hardware interpolation function of the GPU texture memory, as described

in Section 1.1.2.

Fig. 3.9 depicts the three implementation schemes for constructing the

HOG pyramid. Two variants of the GPU implementation are provided using

loosely and tightly unrolled parallelization schemes. Unlike the root and part

scores, all computational blocks for each of the resized images have a common

x–y plane, so hybrid parallelization need not be considered.

Distance Transforms and Score Summation

Listing 3.1: Pseudo-code structure of the distance transforms in DPM

1 for (level = intervals; level < L_MAX; level++) {

2 ...

3 for (jj = 0; jj < Num_of_components; jj++) {

4 ...

5 for (kk = 0; kk < numpart[jj]; kk++) {
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Figure 3.9: GPU-based implementation schemes using the bilinear algo-

rithm, with tightly unrolled (left) and loosely unrolled (center)

parallelizations compared to a CPU-based multithreaded scheme

(right).

6 /***************************/

7 /* Distance transformation */

8 for (x = 0; x < dims[1]; x++) {

9 ...

10 }

11 for (y = 0; y < dims[0]; y++) {

12 ...

13 }

14 /* Distance transformation */

15 /***************************/

16 } // for (kk)

17 } // for (jj)

18 } // for (level)

Listing 3.1 is an overview of the pseudo-code for the distance transforms

(dt), which are performed by the 8th to 13th lines of code represented by two

consecutive loops. After computing the responses of the part filters to the

HOG features, spatial uncertainty is considered to the part filter responses

by this transformation. Briefly, this transformation searches the highest

response of the filters from neighbor locations considering deformation cost

(i.e., how far the highest response locates from the current position) [18].

More details are described in [18, 36, 37]. The three outer loops repeat

the distance transforms; hence, the dt section of the algorithm contains
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quadruple loops. Computations in each iteration of these loops exhibit data

parallelism; therefore, all the loops in Listing 3.1 are unrolled.

Listing 3.2: Pseudo-code structure of the score summations in DPM (simpli-

fied)

1 // Get where calculation should be started

2 const int y_base = ...;

3 const int x_base = ...;

4 for (ii = 0; ii < Image_width; ii++) {

5 ...

6

7 for (jj = 0; jj < Image_height; jj++) {

8 ...

9

10 float score = score[...]; // get compared score

11 int y = y_base + jj;

12 int x = x_base + ii;

13 ...

14

15 float *target = ...; // get update location

16 if (score > *target) {

17 // update value according to the condition

18 *target = score;

19 }

20 } // for (jj)

21 } // for (ii)

Listing 3.2 shows the structural overview of the pseudo-code for the score

summations (sum score). Since the structure of the score summation code

is similar to that for the distance transforms, the same scheme (that is,

unrolling all the loops and parallelizing all the iterations on CUDA threads)

is adopted.

Leveraging Texture Memory

As described in Section 1.1.2, the texture memory is constrained by read-only

access, but the access speed is significantly greater than that of the global

memory. Therefore, the texture memory is used only for data that are

referenced by CUDA threads (i.e., never modified). Table 3.1 shows the
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Table 3.1: Data that can be stored in the texture memory.

DPM Part Target Data

HOG pyramid (create resize image pyramid) input image

HOG pyramid (create HOG pyramid) resized image pyramid

root/part scores HOG features, model filter

data used in the DPM that can be stored in the texture memory. The

proposed GPU-based DPM implementation also uses texture memory for

these data. To leverage the texture memory, mainly two steps are required;

replacing the copy destination from the global memory on GPU to the texture

memory when moving data from CPU to GPU, and switching memory access

operations to the dedicated fetch operations. By these simple modifications,

CUDA threads enjoy the benefit of the fast data fetching from the texture

memory on GPU. If data type stored on the texture memory is supported

one (e.g., float in CUDA C++), automatic (hardware implemented)

data interpolation is also available. As an example of the automatic data

interpolation using the texture memory, Listing 3.3 shows code snippets

in CUDA C++ to perform bilinear resizing of the input image, which

corresponds to the first row (“HOG pyramid (create resize image pyramid)”)

on Table 3.1.
Listing 3.3: Code snippet to perform image resizing using GPU texture

memory

1 // Texture memory to stored input image.

2 // Some configurations (e.g., setting the flag for automatic

interpolation) are performed on the host (CPU) side code↪→

3 texture<float, cudaTextureType2DLayered,

cudaReadModeElementType> org_image;↪→

4

5 // Lookup table to store accumulated image size (i.e.,

accumulated memory amount)↪→

6 texture<int, cudaTextureType1D, cudaReadModeElementType>

image_idx_incrementer;↪→

7

8 // Function body
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9 __global__

10 void resize (

11 int src_height, int src_width, float *dst_top,

12 int dst_height, int dst_width, float hfactor,

13 float wfactor, int level) {

14 // Specify indices of this CUDA thread

15 int dst_x = blockIdx.x*blockDim.x + threadIdx.x;

16 int dst_y = blockIdx.y*blockDim.y + threadIdx.y;

17 int channel = blockIdx.z;

18

19 // Get destination where this CUDA thread should treat

20 float *dst = dst_top + tex1Dfetch(image_idx_incrementer,

level)↪→

21 + channel * dst_height * dst_width;

22

23 // Get source image location where to see

24 float src_x_decimal = wfactor * dst_x + 0.5f;

25 float src_y_decimal = hfactor * dst_y + 0.5f;

26

27 // Execute interpolation using the dedicated fetch operation

28 // with desired index and store the result

29 if (dst_x < dst_width && dst_y < dst_height) {

30 dst[dst_y*dst_width + dst_x] =

(float)tex2DLayered(org_image, src_x_decimal,

src_y_decimal, channel);

↪→

↪→

31 }

32 }

3.1.3 Results of DPM acceleration using GPUs

To quantify the performance of the GPU-based DPM implementation,

the effects of the following factors were evaluated: (i) type of GPU,

(ii) parallelization scheme, (iii) texture and shared memories, (iv) image

sizes, (v) object classes, (vi) number of threads, (vii) resizing algorithms,

(viii) memory copies between the CPU and GPU, and (ix) detection accuracy

after applying the GPU-based implementations.
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Experimental Setup

An Intel Xeon CPU, E5-2687W v2, with eight cores and operating at

3.40 GHz was used as the host processor. Multithreaded programs on the

CPU were implemented using the POSIX Thread Library (pthread). The

DPM was implemented using CUDA on various NVIDIA GPUs, including

(i) GeForce GTX 560 Ti, (ii) GeForce GTX 680, (iii) GeForce GTX TITAN,

(iv) GeForce GTX TITAN Black, and (v) Tesla K20Xm. These GPUs

were chosen from the popular lines of NVIDIA products; therefore , they

reflect state-of-the-art performances of the proposed DPM implementation

schemes. The CUDA code was compiled using the nvcc compiler with the

common options: nvcc -cubin -Xptxas -v --maxrregcount 32.

In addition, the performances of different GPU architectures with different

specifications within the same GPU architecture can be compared. Since the

newer GPUs provide greater performances, it is expected that future GPUs

may allow further improvements to DPM performance.

The code for the DPM and its target models used herein can be obtained

from the author’s website1. Since the original code was written in MATLAB,

it was re-implemented in C++ and extended to CUDA for the GPU-based

DPM implementation.

The car and pedestrian models were used in the evaluations. The numbers

of resized HOG feature-quantity images (N) and filters (M) were fixed at

N = 25 and M = 12, in accordance with the original code. In the evaluation

of the proposed GPU-based DPM implementation, the sizes of the input

images and types of filters were changed to assess the performance scalability

with respect to input data, instead of changing the values directly.

Effects of the Types of GPUs

The key specifications of the GPUs used in the experiments are listed in

Table 3.2. Fig. 3.10 and Table 3.3 show the execution times of the DPM on

various GPUs compared with those on CPUs for a car model from VOC

2007 [24] as the object class. Eleven VGA images (640 × 480 pixels)

are used as the input data, and the average execution times are derived.

1http://people.cs.uchicago.edu/ rbg/latent-release5/
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Table 3.2: Key specifications of GPUs used in the evaluations.

Released

# of

CUDA

cores

Base

clock

[MHz]

Memory

band-

width

[GB/s]

Architecture

GTX 560

Ti
Jan. 2011 384 823 128.3 Fermi

GTX 680 Mar. 2012 1536 1006 192.3 Kepler

Tesla

K20Xm
Nov. 2012 2688 732 249.6 Kepler

GTX

TITAN
Feb. 2013 2688 836 288.4 Kepler

GTX

TITAN

Black

Feb. 2014 2880 889 336.0 Kepler

The data for “Xeon (single)” denotes the original sequential execution of

the DPM, while the “Xeon (multi)” data refers to the multithreaded DPM

implementation on the same CPU, where only the HOG pyramid and score

computations are parallelized to maximize the DPM performance. This

indicates that parallelizing the computations of the distance transforms and

score summations significantly decreases the performance owing to multicore

characteristics. The “Xeon (SSE)“ data denotes the execution time for the

same code as “Xeon (multi)“, but the compilation was achieved using an

Intel C++ Compiler with -O3 -fast options to accelerate CPU-based

computations. The other items represent the results from the corresponding

GPUs, where hybrid parallelization was applied for score computations and

HOG pyramid construction, which was experimentally determined to be the

best combination in terms of performance.

The above results demonstrate the significant advantages of GPUs in

terms of execution times. The execution time of the DPM for C++

implementation was 1541ms and that achieved by multithreaded imple-
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Figure 3.10: Execution times of the DPM program on GPUs and CPUs.

mentation was also at most 771ms. In contrast, using GPUs allows the

DPM to perform at best in 178ms, which is an approximately 8.6-fold

improvement over the C++ implementation and 4.3-fold improvement over

the multithreaded implementation. Additionally, the execution time of the

DPM for vector parallelization (SSE) using an Intel C++ Compiler is 578ms,

for which the proposed GPU implementation is still approximately 3.2 times

faster. Comparing GPUs in Table 3.2, GTX TITAN Black achieved the

best performance. The recent trend of GPUs released from NVIDIA is to

have more CUDA cores, lower base clock, and wider memory bandwidth

to process many numbers of single instruction for multiple data efficiently.

Obeying this trend, GTX TITAN Black, which is the latest GPU used in

this evaluation, has the most number of CUDA cores and widest memory

bandwidth. Although the most time-consuming parts of the DPM are

computationally intensive, some of them contain considerable data access

operations. Hence, it is assumed that both of high computational and

memory access efficiency of GTX TITAN Black result in its performance.

As shown in Fig. 3.10 and Table 3.3, compared with the sequential

implementation of “Xeon (single)”, the functions have longer execution times
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Table 3.3: Actual execution times corresponding to Fig. 3.10 (in millisec-

onds).

Xeon

(sin-

gle)

Xeon

(multi)

Xeon

(SSE)

GTX

560

Ti

GTX

TI-

TAN

Tesla

K20Xm

GTX

680

GTX

TI-

TAN

Black

others 24.83 32.85 21.54 39.26 36.48 46.38 36.75 37.67

sum

score
101.32 151.21 22.30 33.83 42.84 36.65 31.51 29.80

dt 149.21 215.46 108.88 43.94 35.32 40.08 42.63 32.56

part

score
900.30 221.21 315.65 142.46 49.38 56.58 60.42 46.34

root

score
31.48 51.42 32.24 8.37 6.83 5.29 4.17 2.86

HOG

pyra-

mid

334.67 99.56 77.79 82.82 65.43 41.49 40.29 29.02

total 1541.82 771.70 578.40 350.67 236.27 226.46 215.78 178.26

in the “Xeon (multi)” multithreaded implementation. This is attributed

to the fact that multithreaded implementation incurs an overhead for

creation of new CPU threads. Note that the number of CPU threads

required for root score is fewer than that required for part score.

Similarly, a specific function such as part score of vector parallelization,

labeled “Xeon (SSE)”, is slowed compared with that of the multithreaded

implementation. In this case, it is assumed that a lot of instructions are

offloaded to the SSE unit in part score because of the large computational

requirement; therefore, the SSE unit is saturated and the overhead of

parallelization exceeds the acceleration effect brought by parallelization. The

same phenomenon may also occur on the GPU; if too many threads are

created on the GPU, the computational performance would be significantly

degraded.
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Figure 3.11: Breakdown of the execution times on two platforms.

The breakdowns of the execution times for the multithreaded and

GPU-based implementations are shown in Fig. 3.11a and 3.11b, respectively.

Note that only the results for the GTX TITAN Black are presented

here owing to space constraints. Comparing these results with those in

Fig. 3.2 clearly shows that the percentages of the computationally in-

tensive data-parallel parts (HOG pyramid, root/part scores, dt,

and sum score) are significantly lower for GPU implementation than the

multicore case, which characterizes the performance improvements with the

GPU for DPM.

A previous study [38] demonstrated that a multithreaded DPM imple-

mentation would yield a shorter execution time than GPU-based DPM

implementation for one of the bottlenecks, namely the HOG pyramid,

because hybrid parallelization was not applied. This finding indicates

that numerous idle threads were generated on the GPU, thereby wasting

GPU resources; hence, the performance of the GPU code was not optimal.

On the other hand, the results of the present work prove that hybrid

parallelization, based on a balancing point between the CPU and GPU

threads, increases the speed of HOG pyramid construction by approximately

four times than that with multithreaded implementation. This confirms that
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Figure 3.12: Effects of the parallelization schemes on part score computa-

tions.

the proposed hybrid parallelization successfully improves GPU-based DPM

implementation performance.

Effects of Parallelization Schemes

The three proposed parallelization schemes are compared as follows. In

particular, the part score and image resizing computations, which are two of

the major procedures under DPM, are focused on. Note that image resizing

cannot utilize hybrid parallelization as the computations do not involve the

z-plane, whereas the computations of the part scores allow comparisons

among the three schemes.

Execution times for the computation of scores with the proposed GPU

parallelization schemes are compared with those for the CPU multithreaded

implementation in Fig. 3.12.

With regard to the part score computations, while the algorithm needs

to read data from the HOG images and model filters to compute the

pixelwise similarities, the computations of the similarities themselves can be

parallelized, as discussed in Section 3.1.2. Hence, such computations involve

both numerical calculations and data accesses. Among the proposed GPU
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Figure 3.13: Effects of different parallelization schemes on image resizing.

schemes, hybrid parallelization outperforms the others, except in the case of

the GTX 680, although this is considered to be within the acceptable range

of errors. A comparison of the loosely and tightly unrolled parallelization

schemes indicates that neither dominates the other, meaning that fewer

idle threads do not necessarily improve computational performance. Hence,

the hybrid parallelization scheme is recommended for accelerating DPM

computations, which creates N CPU threads to launch M GPU CUDA

threads, where N and M are the numbers of resized images and model filters,

respectively, as described in Fig. 3.7. Note that N and M are determined

at the time of model training (or learning) performed before detection; thus,

these are fixed values on detection, which is the acceleration target of this

work.

The execution times for image resizing, which is part of the HOG

pyramid Construction step, by loosely and tightly unrolled parallelization are

compared with those of the CPU multithreaded implementation in Fig. 3.13.

Note that hybrid parallelization is not applied to image resizing as the

computational blocks do not have a z dimension; that is, each resized image

is represented in the x–y plane.

The image resizing procedures first access multiple pixel values in

the input image and then compute the corresponding pixel values. As
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Figure 3.14: Effects of texture memory on part score computations.

discussed in Section 1.1.2, the pixel values can be automatically computed by

hardware using the texture and shared memories. Therefore, image resizing

involves intensive data accesses rather than numerical computations. This

characterization of image resizing, as opposed to part-scores computation,

explains why the parallelization schemes may not really matter from the

viewpoint of execution time.

Effects of Texture and Shared Memories

The effects of texture memory on the part score computations and HOG

pyramid construction are demonstrated in Figs. 3.14 and 3.15, respectively.

Note that the texture memory is used for read-only data; as discussed in

Section 1.1.2, although the texture memory is constrained in terms of only

being read from the CUDA threads, its access speed is greater than that of

global memory. Thus, if only data referencing is needed, the execution times

of the GPU kernels can be reduced by storing data in the texture memory.

In the computation of HOG features, the edge intensities and edge

gradients are computed from each pixel of the resized image to generate
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Figure 3.15: Effects of texture memory on HOG feature computations.

a histogram. This task includes normalization of the histograms and

other processes, implying more numerical computations than data accesses,

while image resizing is by itself highly data intensive. The part score

computations involve both numerical calculations and data accesses , as

mentioned above. Therefore, the execution time for part score computation

is significantly reduced when using texture memory, whereas that for HOG

feature computation is not reduced much owing to a small number of memory

accesses. Note that in some cases, the HOG feature computation performance

is degraded when using texture memory; this is because the overhead incurred

by referencing texture memory could outweigh the number of data access

reductions.

In CUDA, the texture memory is used as a read-only cache for the

global memory, while the shared memory is used as temporary memory. To

complement the effects of memory usage, a variant of the GPU-based DPM

implementation using shared memory was evaluated. With the exception of

HOG pyramid construction, the DPM does not require shared memory.

The effects of shared memory on HOG pyramid construction are shown
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Figure 3.16: Effects of shared memory on HOG feature computations.

in Fig. 3.16. The execution times before applying shared memory are labeled

“w/o shared memory”, while those using shared memory are labeled as “w/

shared memory k × k”, where k × k denotes the number of cells in the

image computed by a block. A higher number of cells per block requires

a higher number of threads per block, thereby increasing the efficiency of

shared memory usage.

Except for the GTX 560 Ti, the introduction of shared memory did

not contribute to considerable performance improvement. According to

the CUDA Profiler, the HOG pyramid construction is marked as “Kernel

Performance is Bound By Compute”, i.e., the execution time for HOG

pyramid construction is not dominated by memory accesses. The impact

of shared memory, therefore, was not significant. In the case of the GTX 560

Ti, however, some effects were observed because this GPU is not designed to

have a high memory bandwidth, meaning that shared memory may resolve

this bottleneck.
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Figure 3.17: Effects of input image resolution on various GPUs.

Effects of Image Size

The execution times of the accelerated DPM on various GPUs for changes

in the input image resolution within the range of {320 × 240, 640 × 480,

800× 600, 1024× 768, and 1280× 960} are shown in Fig. 3.17.

For an input image resolution of 1280 × 960 pixels, the execution time

achieved by the GTX 560 Ti, a ten-year-old GPU, is approximately 1314 ms,

whereas that on the GTX TITAN Black, the best performer, is approximately

651 ms. These results represent a roughly two-fold difference in the execution

times of the GPUs. Among the GPUs considered, only the GTX 560 Ti

is based on the Fermi architecture [39], while the others are based on the

Kepler architecture [40]. Compared to the Fermi architecture, the Kepler

architecture has superior performance for multiple CUDA streams owing

to its improved technology, including Hyper-Q [40]. Therefore, it is not

surprising that advances in GPU architectures have enabled a two-fold

improvement in computing performance over the past decade.

The execution times corresponding to various image resolutions shown in

Fig. 3.17 are depicted in Fig. 3.18. The proportion of execution time required

for the GPU kernel is approximately 48% for an input image resolution of

320 × 240 pixels on the GTX 560 Ti, 67% for 640 × 480 pixels, and more

than 70% for higher resolutions. The exception to this trend is the GTX
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Figure 3.18: Breakdown of the execution times for different image resolutions

on the worst- and best-performing GPUs.

TITAN Black, whose proportion of GPU kernels is approximately 26% for

an input image resolution of 320 × 240 pixels and 40% for higher resolutions.

Regardless of the GPU type, the ratio of execution time for memory copies

(data copies between the GPU and CPU and within the GPU) to the total

execution time is lower than the other processes. Thus, for the tested

workload (accelerated DPM), a performance bottleneck occurs owing to the

numerical computation, and increasing the speed of numerical computations

may effectively improve the performance of the DPM.

The execution times of the proposed accelerated DPM for RGB color and

grayscale images are compared in Fig. 3.19. An input image resolution of

640 × 480 pixels was used with the various GPUs.

It was anticipated that the execution time with the grayscale image would

be shortened because of reduction in the amount of data. However, the GTX

TITAN Black, which exhibits the largest improvement, achieves an execution

time reduction of only approximately 14 ms for the grayscale images, i.e.,

from 178 ms to 164 ms. This negligible reduction may be attributed to

the fact that the HOG features are not dominated by color information, as
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Figure 3.19: Effects of color and grayscale images.

Table 3.4: File sizes of model filters for pedestrians and vehicles.

Root Filter Part Filter

Vehicle 48K 206K

Pedestrian 39K 165K

described in Section 3.1.1; furthermore, the differences in the numbers of

colors in the input images are not sufficient to significantly influence the

execution times between RGB and grayscale images.

Effects of Object Classes

The execution times of the accelerated DPM when the object detection

targets, such as vehicles and pedestrians, differ are compared in Fig. 3.20.

An input image resolution of 640 × 480 pixels was used in both cases.

Regardless of the GPU type, the execution time required to recognize

pedestrians is shorter than that for vehicles. In this experimental evaluation,

the DPM program stores the model filters for the corresponding object classes
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Figure 3.20: Effects of object classes (vehicle and pedestrian).

in csv format, and these files are read during program execution. As listed

in Table 3.4, the file sizes are smaller for the pedestrian models than those

for the vehicle models. Although the DPM algorithm uses two filters, i.e.,

root and part filters, the same is true for both filters. It is hypothesized that

these differences in model sizes are responsible for the differences in execution

times of the score computations, which consequently reflect upon the overall

execution time.

Effects of the Number of Threads

For all GPUs, the execution times for all scenarios are least when the

maximum number of threads per block is either 128 or 256. The GPUs allow

numerical computations and memory accesses to overlap by dispatching the

active threads whenever ready on each core, thus mitigating the latencies in

memory accesses. When the GPU kernels are executed, GPU resources are

allocated to each block, as noted in Section 1.1.2; hence, when the number of

threads per block is low, the memory latencies cannot be hidden because the

corresponding execution times are long, as observed from Figs. 3.22 and 3.21.
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Figure 3.21: Effects of maximum number of threads per block in loosely

unrolled parallelization.
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Figure 3.22: Effects of maximum number of threads per block in tightly

unrolled parallelization.

Additionally, it is inferred that if the maximum number of threads per block

exceeds some optimal number, the computation cost for each thread exceeds

47



CHAPTER 3. GPU-ACCELERATED OBJECT DETECTION

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

100

200

300

400

500

600

QVGA
(320x240)

VGA
(640x480)

SVGA
(800x600)

XGA
(1024x768)

Quad_VGA
(1280x960)

Ex
ec

ut
io

n 
tim

e 
[m

s]

original
bilinear (sequential)
bilinear (multicore)
bilinear (GPU)
max rate of improvement

Figure 3.23: Effects of resizing algorithms.

the latency of memory access, creating another bottleneck that increases the

execution time.

Effects of Resizing Algorithms

The resizing algorithms used for the input images to generate the HOG pyra-

mids are compared in Fig. 3.23. The following algorithms were implemented:

(1) algorithm implemented in the original DPM [35] (labeled as “original”),

(2) bilinear interpolation algorithm written in the C language (labeled

as “bilinear (sequential)”), (3) parallelized bilinear interpolation algorithm

using pthreads (labeled as “bilinear (multicore)”), and (4) parallelized

bilinear interpolation algorithm using CUDA (labeled as “bilinear (GPU)”).

It is interesting to note that the original algorithm [35] is faster than

the bilinear interpolation algorithm if implemented in C language, i.e.,

using a single-thread implementation. However, the original algorithm

does not provide parallelism (owing to implementation constraints), so it

cannot use GPUs effectively. On the other hand, the bilinear interpolation

algorithm is highly parallelizable and can be implemented using pthreads and

CUDA. When the input image size was Quad VGA, the execution time of
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Figure 3.24: Data flow in DPM.
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Figure 3.25: Effects of memory copies between the host and device memories

for the GTX 560 Ti (left) and GTX TITAN Black (right).

the GPU-accelerated bilinear interpolation algorithm was approximately 30

times less than that of the original algorithm; the reason for this improvement

is largely attributed to the fact that data parallelism and the simplicity of

bilinear interpolation are suitable for GPU implementation, while a certain

performance benefit is gained from the hardware-interpolating function of

the texture memory.

Effects of Memory Copies

In a DPM computation such as that shown in Fig. 3.24, two pieces of data are

exchanged between the computing blocks. Since a GPU is used to implement

each computing block as an individual GPU kernel, these data must be

managed so that the output of one kernel can be input into the next kernel

because each GPU kernel is self-contained (i.e., they do not communicate
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with the other kernels). The most straightforward DPM implementation

is to copy the data between the host and device memories, as is typically

used in CUDA programming; that is, the output of one kernel is copied to

the host memory accessible to the CPU and is copied again to the device

memory accessible to the GPU so as to enable reading by the next kernel.

Another scheme for implementing DPM is to share the pointers to these data

among the GPU kernels. This scheme is preferred because the overhead from

memory copies can be reduced.

The effects of the memory copies on the execution times of the accelerated

DPM are shown in Fig. 3.25. It was demonstrated using two GPUs,

i.e., the GTX 560 Ti (older Fermi) and GTX TITAN Black (relatively

newer Kepler), whether the different characteristics of these GPUs could be

observed through the changes in their architectures. The rate of improvement

achieved by reduction of the memory copies on the GTX 560 Ti is up to

8.6%, whereas that on the GTX TITAN Black is approximately 20% under

identical conditions. This characterization can be reasoned as follows. As

seen in Fig. 3.18, the GTX 560 Ti spends the most time executing GPU

kernels rather than memory copies, while the GTX TITAN Black reduces

this time to almost an equal percentage as that of the memory copies

(owing to its improved compute cores). The overhead for the memory

copies thus contributes more to the total performance of the GPU than the

total execution time on the GTX TITAN Black. This observation indicates

that the overhead for memory copies could become more significant as the

performances of the compute cores improve with GPU architecture.

Effects of GPU Implementation on the Detection Rates

To verify the accuracy of the proposed GPU implementation, the detection

rates between CPU and GPU implementations of the DPM are compared as

follows.

The VOC 2007 [24] dataset is used with the following experiments.

1. Extract 1,000 random images allowing duplicates from the images for

car model training in the VOC 2007 dataset.

2. Process the extracted images by CPU implementation of DPM and
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save the image indices and number of detected objects for each image.

3. Repeat the same process for GPU implementation of DPM.

4. Compare the results.

Comparing the computation results for the CPU and GPU implementa-

tions reveals that the results match for 964 of the 1,000 extracted images,

while 36 images do not match, although the differences in the mismatched

results are trivial. A possible reason for this mismatch may be the

differences in the precisions of the floating-point calculations between the

CPU and GPU. Although recent GPUs adopt the IEEE Standard for Binary

Floating-Point Arithmetic (IEEE 754-1875 [41]), in some cases, the results

of floating-point calculations of the GPU do not match with those of the

CPU owing to the uniquely expanded calculation function of GPUs [42].

Since the DPM estimates the target object on the basis of a threshold, even

sparse errors can affect the detection rates if they occur around the threshold.

Nonetheless, the rounded values of the computation results obtained by both

the CPU and GPU implementations are the same since errors can occur only

in the case of low-order bits, and approximately 96% of the detection results

obtained by the two algorithms are matched. It can therefore be concluded

that the proposed GPU-based DPM implementation is superior in terms of

the execution time.

3.1.4 Results of GPU-accelerated traditional object

detection

This section presented the GPU-based DPM implementation schemes to

validate GPU applicability to one of the traditional pattern recognition

task. The performance improvements using GPUs are illustrated here, along

with their detailed quantitative evaluations using different setups for DPM

acceleration on a GPU. From the analysis, the DPM comprises five major

computing blocks, namely the HOG pyramid, root score, part score, dt, and

sum score, that account for about 98% of the total computations, all of which

exhibit loop processing.
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Multiple implementation schemes were provided here based on the mas-

sively parallel compute threads using event streams and texture memory. The

best scenario of GPU implementation achieved a performance improvement

of 8.6× over a high-end CPU implementation. This achievement is significant

because the algorithm remained unchanged but significantly improved in

speed, whereas prior works could only speed up the algorithm at the expense

of decreased detection rates.

Although a large performance improvement was achieved, the results

also imply that there is a limit to accelerating the computational speeds

of traditional pattern recognition algorithms with GPUs. The best scenario

of GPU implementation required a total execution time of approximately

179 ms (≈ 5.6 frames per second (fps)). At this processing rate, frame

drops occur when images are input at the rates of commonly used sensors for

autonomous driving (typically at least over 10 fps). Moreover, the perception

performances are not sufficient to perceive the complex surroundings and

circumstances in driving environments. These factors prevent adopting the

DPM in the high-level autonomous driving modules.

3.2 Paradigm shift forming current main-

stream

In computer vision, the term features often refers to information that

describes the contents of an image. For many years, image processing

techniques, including object detection, relied on hand-crafted features, which

were designed by humans to fit specific purposes. To improve the processing

speed and accuracy, hand-crafted features such as SIFT [14], Haar-like [15],

and HOG [16] have been proposed and have significantly contributed to the

growth of the field. However, the growth of image processing performance

using hand-crafted features has gradually stagnated. Since around 2012,

with the improvements in the computational capabilities of computers and

the availability of large-scale data, neural network techniques have been

revived for image processing because these techniques can generate more

complex features from large amounts of training data and often surpass
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Figure 3.26: Winning scores of the ILSVRC classification tasks; the values

are cited from [23].

human recognition capabilities. This trend can be easily seen in the error

rate transitions of object category classifications in the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) [23], which is a major benchmark

for object category classification and detection containing hundreds of object

categories and millions of images. Fig. 3.26 shows the winning scores (Top-5

classification error rates: the rate for which the algorithm’s predictions with

the top-five confidence scores do not contain true classes) of the ILSVRC for

five consecutive years. In the ILSVRC2012 competition, the algorithm that

utilized a large-scale deep CNN [4] won by a large margin. This victory was

a turning point for deep-learning techniques , which have attracted attention

since then as possible solutions to a wide range of problems.

These deep-learning tendencies have also affected field of object detection.

Table 3.5 shows a comparison of the detection accuracies and processing

speeds of some representative object detection algorithms. The object de-

tection algorithms using deep-learning techniques can be roughly categorized

into two groups, namely two-stage and one-stage detectors [44]. The faster

53



CHAPTER 3. GPU-ACCELERATED OBJECT DETECTION

Table 3.5: Performance comparison of detection algorithms; the detection

mean average precisions (mAPs) are cited from or calculated using

the reference papers’ values for PASCAL VOC2007 data. The fps

values, except for DPM, are cited from [28]. For the DPM, the fps

is obtained from the best scenario in Table 3.3. Note that the fps

values are only given for reference since the execution times may

vary according to various factors, including the implementation-

framework used and hardware settings.

DPM [12]
Faster-

RCNN [43]
YOLO [27] SSD [28]

traditional

pattern

recognition

base

deep-learning base

Proposed 2008 2015 2016 2016

detection mAP 21.3 73.2 66.4 74.3

fps (for reference) 5.6 7 21 46
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region-based CNN (Faster-RCNN) [43] is a representative two-stage detector

that typically achieves high localization and object recognition accuracies.

On the other hand, YOLO [27] and SSD [28] are grouped under one-stage

detectors, whose typical distinctive feature is the high inference speed.

Comparisons with and without deep-learning techniques show that the de-

tection accuracy (“detection mAP” in Table 3.5) is significantly improved by

introducing deep learning regardless of one-/two-stage detectors. Moreover,

these three deep-learning-based algorithms are faster than GPU-accelerated

DPM, especially one-stage detectors that achieve real-time inference speeds

(typically 10–30 fps). As noted in Section 1.1, in high-level autonomous

driving systems, the perception tasks have to be processed with small delays

as well as high accuracies such that the subsequent modules can decide

appropriate driving behaviors. From the perspective of detection accuracy

and speed, it can be concluded that applying deep-learning techniques is

inevitable for implementing the perception modules of high-level autonomous

driving systems.
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Chapter 4

Traffic light recognition using

High Definition Map Features

4.1 Motivation

It is common knowledge that vehicle-to-roadside-infrastructure (V2I) and

vehicle-to-vehicle (V2V) communications help improve traffic safety and

autonomous driving functionalities. These systems share information such as

traffic light states and the positions of obstacles with roadside infrastructure

or other vehicles. However, full deployment of such communication systems

still require considerable time for full implementation because of the extra

equipment needed or replacements for existing vehicles or infrastructures.

During this transition period, autonomous self-driving vehicles and vehicles

driven by people will be sharing roads. Under such conditions, autonomous

vehicles must be able to recognize traffic information, such as road signs and

traffic lights, and respond accordingly.

Camera sensors are typically employed in object recognition tasks. For

instance, several traffic light detection and recognition methods [45–49] and

traffic sign recognition methods [50, 51] have been presented. Traffic light

recognition systems for autonomous vehicles must be sufficiently fast and

accurate. Generally, cameras installed in vehicles capture a wide variety of

objects unrelated to the task of traffic light recognition, such as billboards

and roadside trees; these objects are considered “noise” for traffic light
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recognition and can cause a significant reduction in the detection accuracy.

High-resolution cameras can be used to improve recognition accuracy;

however, they require longer processing times, which is not ideal for real-time

driving. Most previous works contribute to the problem of traffic light

state recognition using images only. Hence, their recognition performance

would be decreased caused by noisy objects that unrelated to traffic light

state recognition mentioned above. The negative effect from such unrelated

objects will get worse in urban areas, whereas high-level autonomous driving

systems should consider driving in such regions. Furthermore, state recog-

nizers should be robust against the variety of visual appearance, including

perspective and illuminance variation since these changes frequently occur in

images captured by vehicle-installed cameras.

This chapter presents a review of a scheme to recognize traffic light states

from images to demonstrate practical verification of GPU applicability to

perception tasks. The scheme uses a region of interest (ROI) to extract

only the image sections containing traffic lights so that robustness against

unrelated noisy objects is maintained. To achieve this, localization results

from the 3D map are used to extract the traffic light positions in 3D space.

Using an intrinsically and extrinsically calibrated camera, the positions of

these traffic lights are projected onto the image space, the surrounding areas

in the image are extracted, and the data is fed to custom classifiers to obtain

the traffic light status. GPUs are applied to one of the classifiers using deep-

learning techniques which typically have a large capacity for perspective and

illuminance variation. The results of quantitative evaluations indicate that

the classifier using the deep-learning techniques achieve higher accuracies and

are more reliable under preferable conditions compared with the classifier

using traditional morphological processing.

4.2 Proposed scheme and assumptions

The proposed traffic light color state recognition method can be divided into

the following subtasks:

I) Extraction of regions from camera images that include traffic lights,
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and

II) Color state recognition using the extracted regions.

To clarify this problem, an overview of 3D maps and an ROI extraction

technique are first presented. Then, the morphological and deep-learning

traffic light state classification methods are discussed.

4.2.1 3D High Definition Maps

The proposed scheme assumes that the two 3D maps described below are

given in advance. The first one is an accurate 3D point-cloud map, which is

an aggregation of measured points with 3D coordinate values that represent

the shape information around the driving environment. Combining this map

with the position estimation method described in the following section, the

ego-vehicle’s position on the map coordinate system can be obtained. The

second one constitutes a 3D feature map that is similar to the HERE HD Live

Map [52]; it comprises detailed information (i.e., high definition map features)

regarding traffic-related objects, including 3D position and orientation of

traffic lights, traffic signs, and utility poles, as well as information for

lane, road paint, and cross walk area. By putting them together the

proposed scheme acquires ever-changing geometrical relationships between

traffic objects to be recognized and the ego vehicle.

The 3D feature map used in this study mainly contains the following

information for individual traffic lights:

• IDs for each of the bulbs comprising the traffic light,

• Horizontal and vertical angles in the direction that the traffic light bulb

is facing,

• ID of the pole where the traffic light bulb is installed,

• Class of the traffic light bulb, i.e., pedestrian or traffic, and

• ID of the lane nearest to the traffic light.
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Since the 3D feature map contains independent road features (i.e., points

in space, vectors defining direction, traffic light bulbs, etc.), knowing that

this feature map was built with a point cloud allows formation of complete

instances of traffic lights and relating them to the vehicle driving path

through comparisons with the lights in the direction facing away from the

ego vehicle.

4.2.2 ROI Extraction

The ROI extraction is achieved with a camera, a LiDAR sensor, a localization

method, and a map. A LiDAR is a sensor that emits ultraviolet, radiant, or

infrared laser beams similar to radio waves used in conventional radar sensors.

Similarly, it can be used to measure the distance between the sensor and other

objects by analyzing the flight time of the emitted rays. Compared to radio

waves, laser wavelengths are shorter by an order of magnitude, which enables

a LiDAR to measure smaller objects and acquire detailed shape information.

A 360◦ LiDAR sensor was employed to estimate the sensor position accurately

in a given 3D point-cloud map by comparing the measured shape information

to the map. Once the location was known on the point-cloud map, the

corresponding 3D feature map was used to obtain the positions of the traffic

lights. The ROI extraction process is as follows:

Step 1) estimate the LiDAR position on a 3D map,

Step 2) estimate the camera position on the 3D map,

Step 3) project the 3D traffic light position coordinates onto a camera image,

and

Step 4) extract the ROI according to the projected traffic light position.

To estimate the LiDAR position on a 3D map (Step 1), the shape of the

surrounding environment is measured first. The LiDAR position on the 3D

map is acquired by comparing this shape to a 3D point-cloud map using

normal distribution transform (NDT) [53, 54]. During experimentation, it

was observed that NDT could estimate the LiDAR position accurately. The
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range of localization errors is of the order of centimeters; therefore, it can be

assumed that the localization precision is acceptable on 3D maps.

The proposed method also requires the 3D positional relationship between

the LiDAR and camera (also referred to as “extrinsic parameters”). We

employ the method proposed in [55] to acquire this relationship. This

work obtains these extrinsic parameters from multiple LiDAR sensors using

multiple planes. According to the reported results, the calibration results

contain certain errors but these are almost negligible.

Bearing in mind that both localization and calibration contain errors,

the proposed method is designed to be resilient to errors to a certain degree.

However, as discussed in Section 4.4, excessive calibration errors will reduce

the recognition accuracy because the ROI extraction would fail to capture

the traffic lights in the ROIs.

The positional relationships between the LiDAR sensor and camera

are calculated in advance and used to estimate the camera position on

the map (Step 2). This relationship has six degrees of freedom that

represent translations and rotations in 3D space. These extrinsic parameters

remain constant as long as the sensors are fixed to the vehicle body. The

camera position on the 3D map is calculated using the location obtained by

NDT (Step 1), and the relative position between the LiDAR and camera

sensor is given as follows:

pcam = R(α, β, γ) · pLID + T (x, y, z) (4.1)

where:

pcam denotes the camera position in the 3D map coordinate system,

pLID denotes the position of the LiDAR sensor in the 3D map

coordinate system,

(x, y, z) denotes the relative translations,

(α, β, γ) denotes the relative rotation angles about each axis,

T (x, y, z) is a translation matrix, and

R(α, β, γ) is a rotation matrix.

To project the 3D traffic light position coordinates on a camera im-

age (Step 3), traffic light coordinates in the 3D camera coordinate system
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(sx, sy, sz) are obtained via transformation into the 3D map coordinate

system. These coordinates are projected onto the image plane coordinates

(u, v) using the camera’s focal length (fx, fy) and center of the image (cx, cy)

as follows.

u = sx
fx
sz

+ cx, v = sy
fy
sz

+ cy (4.2)

The ROIs are extracted from the images (Step 4) according to the

coordinates calculated in Step 3. Note that the ROI extraction process

tolerates a certain level of numerical errors that occur in Step 1–Step 3

and the extrinsic calibration error mentioned above. Fig. 4.1 shows the

specifications of the ROI with some margins. In the proposed scheme, the

radius of each traffic light blob in the real world is assumed as 30 cm. By

exploiting the 3D pose of the traffic lights and a vehicle-mounted camera on

the 3D map, the radius of the traffic light projected on the image plane can

be estimated (r in Figure 4.1). To tolerate the numerical errors, a margin of

1.5r from the projected edge of the traffic light was adopted. An overview

of the ROI extraction technique used in the proposed scheme is shown in

Fig. 4.2.

4.2.3 Morphological Processing

Morphological processing manipulates and analyzes the brightness values of

pixels in the ROI, as explained in Section 4.2.2.

First, images are converted from the RGB to HSV color space. The HSV

color space is more closely related to human chromatic sensation than the

RGB space; thus, the conversion allows easier determination of the color value

thresholds. A mask image is then generated using the H, S, and V threshold

conditions set for each traffic light color to extract the regions that include

a colored (illuminated) light. The generated candidate regions may contain

areas that do not correspond to a traffic light because some pixel blocks that

satisfy the threshold conditions but are not actually traffic lights could be

from other objects in the images. We assume that the traffic lights projected

onto the image plane are round; therefore, an additional threshold condition

based on the degree of circularity is applied to each candidate region. The
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Figure 4.1: Proposed ROI extraction definition.

degree of circularity R is expressed as follows:

R =
4π × S

L2
(4.3)

where S and L denote the area and perimeter of the region, respectively. The

degree of circularity represents the extent to which a region is circular (values

closer to 1 indicate a region more similar to a circle). If several candidate

regions remain after applying the degree of circularity threshold, the region

with the highest degree of circularity is selected and a mask is applied to

filter areas outside the region. Table 4.1 shows the threshold values that were

experimentally determined for the morphological processing method.

This mask image is overlaid on the input ROI to obtain the pixel values

assumed to represent the traffic light. This recognition process infers the

color state of a target traffic light by searching for the most dominant color

in the range of pixel values. Fig. 4.3 shows the processing workflow up to

this point.
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Figure 4.2: ROI extraction overview.

4.2.4 Deep-Learning-Based Detector

Deep CNNs may be applied to obtain the location and class of the traffic

signals. An SSD [28] was used in this work. The SSD was originally developed

as an object detection method using CNN, and one of its remarkable

features is the fast inference time. Moreover, the SSD detection accuracy

is comparable to those of other state-of-the-art object detection algorithms

(e.g., Faster-RCNN [43]) and works effectively with lower resolution images

because it exploits hierarchical feature maps. While the shapes of the traffic

lights in the extracted ROIs (Section 4.2.2) are almost similar, the SSD can

distinguish each traffic light color state as a different object because the color

element weights are increased when sufficient samples are provided during the

training phase. Hence, this object detection algorithm was applied to traffic

light color state recognition.

As discussed in Section 4.1, the traffic light recognition techniques in

autonomous driving require high processing speeds to recognize the traffic
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Table 4.1: Threshold values used in morphological processing.

Note that “H” is represented in the range of 0 to 360 cyclically,

while “S”, “V”, and “R” are in the linear range of 0 to 1.

Light color
H

S V R
lower upper

Red 340 50

Yellow 50 70

Green 80 190

0.37 0.55 0.75

Color Space Conversion

Extract Candidate Region

Narrow down the Candidates

Search Dominant Color

Mask with
multiple candidates

ROI

HSV image

Mask image

Light State

Data

Process

Figure 4.3: Flow diagram for morphological recognition.

lights in front of a vehicle traveling at typical speeds, e.g., 60 km/h in Japan.

High recognition accuracy is also required because the results significantly

influence vehicle control (e.g., deceleration when approaching intersections).
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Figure 4.4: Flow of recognition with the SSD approach.

The size of the ROI image (Section 4.2.2) is reduced when the traffic lights

are projected onto the image plane from greater distances. It is therefore

preferable for a traffic light recognition algorithm to work with low-resolution

inputs to plan vehicle behaviors in advance. Hence, the SSD algorithm can

be considered suitable for this purpose. The recognition flow with the SSD

algorithm is shown in Fig. 4.4. Note that the SSD outputs bounding boxes

(i.e., locations of objects) and classes since it is an object detection method,

whereas the objective of this study is to only acquire the classes (states) of

traffic lights inside a given ROI. Therefore, all bounding boxes from the SSD

results are ignored and the class with the highest detection score is adopted

as the recognized state for the ROI.
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4.3 Implementation

This section presents the detailed implementation for the traffic light color

recognition described in Section 4.2.

4.3.1 Autoware Implementation

All functions described in Section 4.2 were implemented using Auto-

ware [56, 57], which is an open-source research and development platform

for autonomous driving based on the robot operating system (ROS) [58].

Autoware modularizes the functions required for autonomous driving as

individual processes, and ROS provides efficient interprocess communication,

which allows users to send and receive user-defined data structures flexibly.

The proposed traffic light recognition module employed the modules

integrated with Autoware for localization and 3D Maps to achieve the

expected functionality. Fig. 4.5 shows an overview of the connections between

the data acquired by the Autoware modules and the proposed method’s

functionality.

As shown on the right side of Fig. 4.5, the proposed method is divided

into two parts (i.e., “Feature Projection” and “Light State Recognition”),

which were implemented as individual ROS nodes. The “Feature Projection”

process performs ROI extraction using a 3D map and the localization result

(Section 4.2.2); this process receives data from Autoware, such as camera

information (image size and focal length), traffic light coordinates in a 3D

map, positional relationship between the vehicle-mounted LiDAR and camera

sensor, and estimated LiDAR position on the 3D map. Then, it outputs the

ROI information, which indicates the positions of the traffic lights in the

given image.

The “Light State Recognition” process corresponds to morphological

processing (Section 4.2.3) and deep learning (Section 4.2.4). These nodes

receive the ROI information obtained by the feature projection process and

images captured by the camera. The target region is extracted from the

camera image according to the ROI information, followed by the recognition

process. Note that the formats of the input and output data are uniform

for reusability among all recognition methods that comply with the defined
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Light State Recognition
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Camera Image
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Light State

Autoware Data Proposed Method
Functions

Figure 4.5: Overview of data connections between Autoware and the pro-

posed method.

messages.

4.3.2 Color State Training and Recognition by SSD

The Caffe [59]-based implementation1 of SSD (Section 4.2.4) was used as

the basis for this work. As shown in the “Training Phase” (Fig. 4.4), the

traffic light color states and traffic light positions in each image were used

as the training data when the SSD learned the network parameters. Noise,

including other vehicles in the front of the vehicle and/or roadside trees due to

vibration while driving and occlusions may be present in these ROIs acquired

from real autonomous driving environments. Therefore, to create a training

dataset, images were collected using a vehicle-mounted camera during on-

road driving experiments and labeled with the color state and traffic light

1https://github.com/weiliu89/caffe/tree/ssd
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Figure 4.6: Breakdown of the training dataset.

position information. Some training data examples are shown in Table 4.2.

During the SSD training phase, the exact bounding box coordinates enclosing

the traffic lights in the ROI were fed along with the color states. This is

similar to general training schemes for object detection methods. The aim

here was for the SSD to learn the features of the traffic lights without the

margin areas in the extracted ROI. In other words, the aim was to degrade

the sensitivity to background features. Fig. 4.6 shows the training datasets

and a breakdown of the color states considered in this work.

Although a previous study [28] reported that the SSD algorithm

can achieve a higher detection rate with low-resolution input compared

with state-of-the-art detection algorithms, including Fast R-CNN [60] and

YOLO [27], the lowest image resolution considered in the study was 300×300

pixels. However, a traffic light recognition system for autonomous driving

must frequently handle smaller resolution images (Table 4.2) for reasons

described in Section 4.2.4. Evaluations of the recognition accuracy transition

are discussed using multiple input resolutions in Section 4.4.
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Table 4.2: Training data examples for traffic light recognition.

Image

Size[
width

height

]
State

Exact

Light Position
x

y

width

height


Remarks

(Not used

in training)

[
74

50

]
Green


15

23

57

38

 –

[
52

35

]
Yellow


5

12

36

24

 –

[
76

50

]
Red


11

19

57

36

 –

[
109

70

]
Unknown


31

23

93

46



Turned off

owing to

camera

frame rate

and signal

blinking

frequency

[
68

46

]
Unknown


0

0

68

46


Occluded

by vehicle

in front
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Table 4.3: Interframe filter for morphological processing.

Each digit of the “GYR result of current frame” is 1 if there is

a region that fulfills the conditions for the corresponding color

(green, yellow, and red) in a current ROI.

GYR result of current frame

Previous

result
000 001 010 011 100 101 110 111

Green Green UNK Yellow Yellow Green Green Yellow UNK

Yellow Yellow Red Yellow Red UNK UNK Yellow UNK

Red Red Red UNK Red Green Red Green UNK

UNK UNK Red Yellow Red Green Red Yellow UNK

* UNK: Unknown

4.3.3 Interframe Filter

As traffic lights are designed for human visual assessments, it can be assumed

that the color state does not change faster than a camera’s frame rate.

Moreover, the general traffic lights in Japan change their color states in

the order of green, yellow, and red. By considering these assumptions,

the original filters [61] were modified to reduce false recognitions in a

few frames; the filters were designed to consider the order of color state

changes. The final output recognition results do not change until a fixed

number of the same recognition results have been acquired with the filter.

Note that different filters were created for the morphological processing and

deep-learning recognizers (Sections 4.2.3 and 4.2.4, respectively) because each

method demonstrated different recognition tendencies.

Table 4.3 details the interframe filter for the morphological recognizer,

with which all the traffic light colors (green, yellow, and red) are estimated

independently. In this process, a threshold-based assessment is primarily

used to estimate the color pixel blocks that correspond to a traffic light.

As discussed in Section 4.2.3, some blocks may fulfill the HSV and degree of

circularity threshold conditions and eventually be considered final candidates.

In Table 4.3, combinations of the estimates of each of the light colors in a
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Table 4.4: Interframe filter for machine learning recognition method.

Result of current frame

Previous

result
Green Yellow Red Unknown

Green Green Yellow Yellow Green

Yellow Unknown Yellow Red Yellow

Red Green Red Red Red

Unknown Green Yellow Red Unknown

current ROI are represented by the “GYR result of current frame”. For

example, “110” indicates that the input ROI contains regions that satisfy

the conditions for luminous green and yellow lights. The interframe filter

returns the current color state by comparing the previous recognition result

to that of the current frame.

Table 4.4 shows the interframe filter for the SSD recognizer, which is an

end-to-end process that takes an image as input and outputs the recognition

result; thus, its recognition results are limited to only four patterns: green,

yellow, red, and unknown. In addition, the SSD recognizer can improve

the recognition accuracy for an individual frame via learning, whereas the

morphological recognizer cannot. Thus, compared to the morphological

recognizer’s interframe filter, the SSD recognizer’s interframe filter better

upholds the recognized suggestion for the current frame as the final result

(e.g., the SSD recognizer’s suggestion for the current frame can be the

final result more straightforwardly as compared with the morphological

recognizer’s suggestion).

4.4 Evaluation of the proposed scheme using

practical data

To quantify the performance of the proposed traffic light recognition scheme,

the effects of the following factors were evaluated: 1. ROI extraction,
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Table 4.5: Evaluation dataset.

Daytime Sunset

Driving duration 596 s 328 s

Image resolution 1368 (w) × 1096 (h) 1368 (w) × 1096 (h)

# of frames 8946 4929

# of extracted frames 3347 1505

# of target signals 8 5

# of state changes 6 4

2. Distance from the recognition target, 3. GPU usage, and 4. Number of

images in the training dataset for the SSD recognizer.

4.4.1 Experimental Setup

An Intel Core i7-6700K operating at 4.0GHz with four cores was used

as the host processor. The GPU used for program acceleration was an

NVIDIA GeForce GTX 980 Ti (CUDA version 8.0). As the evaluation

dataset, captured images from a vehicle-mounted camera during driving on

public roads were used. Image collection was performed on several roads

in the morning and at sunset. The evaluation dataset was then created by

extracting frames in which target traffic lights were present. An overview of

the evaluation dataset is shown in Table 4.5. A breakdown of the color states

in each evaluation dataset is shown in Fig. 4.7.

4.4.2 Effect of ROI Extraction on Recognition Accu-

racy

Fig. 4.8 shows the recognition accuracy for the daytime and sunset datasets

obtained by the two recognition methods. The term “Accuracy” represents

the number of recognition results that agree with the ground truth states of

the evaluation dataset (expressed as a percentage). ROI extraction improves

the accuracy for nearly all datasets and recognition method combinations.

Therefore, it is concluded that confining the processing region by extracting
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Figure 4.7: Proportions of the ground truth images in each evaluation

dataset.
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an ROI is beneficial for traffic light recognition. The accuracy of the SSD

recognizer with the evaluation dataset was up to 86.9%, which is a significant

improvement. Note that Set 6 (Fig. 4.6) was used for the following SSD

recognizer evaluations unless noted otherwise.

Fig. 4.9 shows the recognition precision (bars) and recall (lines). Here,

“Precision” is the proportion of the number of correct results with respect to

all recognizer outputs, and “Recall” is the proportion of the number of correct

recognitions with respect to the total number of images whose ground truths

correspond to the states in the evaluation dataset. Tables 4.6 and 4.7 show

the detailed information for the recognition results expressed as confusion

matrices.

As shown in Tables 4.6(d) and 4.7(d), the SSD recognizer without ROI

extraction outputs “Unknown” for all inputs. This is assumed to be caused

by the clipped-out images used to train the SSD network (Table 4.2).

Note that the SSD recognizer without ROI extraction is omitted from the

subsequent discussion because all of its outputs were “Unknown”, which

makes it impossible to discuss its recognition tendencies.

Fig. 4.9(a) shows that all recognizers demonstrated similar tendencies,

i.e., the recall was lowest for the yellow state and increased in ascending order

for the green and red states. The evaluation dataset inherently contains fewer

yellow state images than the other states; thus, a moderate false recognition

may have caused a significant reduction of the recall proportion. For the

SSD recognizer, the lower recall for the yellow state was presumably due

to the fact that the training dataset included fewer yellow state images, as

shown in Fig. 4.6. The morphological recognizer without ROI extraction

produced a lower precision for the red state than that with ROI extraction

for the daytime dataset. In addition, by comparing the “Red” columns

in Tables 4.6(a) and 4.6(b), the morphological recognizer without ROI

extraction was observed to be predisposed to output red for any input. This

tendency seems to indicate that processing without ROI extraction caused

false recognition because the recognizer considered non-traffic light regions

(e.g., the tail lights of other vehicles) as red traffic lights.

In contrast, as shown in Fig. 4.9(b), the recall values of all the recognizers

were reduced for the sunset evaluation dataset. This may have been caused
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Figure 4.9: Recognition precision and recall by color for each dataset.
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Table 4.6: Confusion matrices for each recognition method (daytime

dataset).

(a) Morphology w/ ROI extraction

Green Yellow Red Unknown Recall
Green 936 0 17 518 63.6%
Yellow 6 18 0 21 40.0%
Red 0 7 1536 269 84.8%

Unknown 0 0 0 19 100.0%
Precision 99.4% 72.0% 98.9% 2.3%

Gr
ou

nd
Tr

ut
h

Prediction

(b) Morphology w/o ROI extraction

Green Yellow Red Unknown Recall
Green 715 0 363 393 48.6%
Yellow 9 10 13 13 22.2%
Red 0 0 1721 91 95.0%

Unknown 0 0 0 19 100.0%
Precision 98.8% 100.0% 82.1% 3.7%

Prediction

Gr
ou

nd
Tr

ut
h

(c) SSD w/ ROI extraction

Green Yellow Red Unknown Recall
Green 1132 0 44 295 77.0%
Yellow 11 21 0 13 46.7%
Red 0 0 1735 77 95.8%

Unknown 0 0 0 19 100.0%
Precision 99.0% 100.0% 97.5% 4.7%

Prediction

Gr
ou

nd
Tr

ut
h

(d) SSD w/o ROI extraction

Green Yellow Red Unknown Recall
Green 0 0 0 1471 0.0%
Yellow 0 0 0 45 0.0%
Red 0 0 0 1812 0.0%

Unknown 0 0 0 19 100.0%
Precision 0.0% 0.0% 0.0% 0.6%

Prediction

Gr
ou

nd
Tr

ut
h
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Table 4.7: Confusion matrices for each recognition method (sunset dataset).

(a) Morphology w/ ROI extraction

Green Yellow Red Unknown Recall
Green 589 0 217 53 68.6%
Yellow 38 22 0 0 36.7%
Red 0 2 385 196 66.0%

Unknown 0 0 0 3 100.0%
Precision 93.9% 91.7% 64.0% 1.2%

Prediction

Gr
ou

nd
Tr

ut
h

(b) Morphology w/o ROI extraction

Green Yellow Red Unknown Recall
Green 573 0 215 71 66.7%
Yellow 0 0 60 0 0.0%
Red 0 0 534 49 91.6%

Unknown 0 0 3 0 0.0%
Precision 100.0% 0.0% 65.8% 0.0%

Prediction

Gr
ou

nd
Tr

ut
h

(c) SSD w/ ROI extraction

Green Yellow Red Unknown Recall
Green 585 0 141 133 68.1%
Yellow 11 13 36 0 21.7%
Red 0 0 353 230 60.5%

Unknown 0 0 0 3 100.0%
Precision 98.2% 100.0% 66.6% 0.8%

Prediction

Gr
ou

nd
Tr

ut
h

(d) SSD w/o ROI extraction

Green Yellow Red Unknown Recall
Green 0 0 0 859 0.0%
Yellow 0 0 0 60 0.0%
Red 0 0 0 583 0.0%

Unknown 0 0 0 3 100.0%
Precision 0.0% 0.0% 0.0% 0.2%

Prediction

Gr
ou

nd
Tr

ut
h
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by pixel value saturation resulting from strong solar backlight. Even if the

sunlight was not directly incident on the camera, significant HSV changes

caused by automatic white-balance corrections triggered by an overly bright

backlight could be another reason for the reduced recall. Regardless of

whether ROI extraction was employed, the morphological recognizers were

predisposed to incorrectly recognize the green state as red state, as suggested

by a comparison of the “Green” rows in Tables 4.7(a) and 4.7(b). This

implies that the morphological recognizers have less flexibility relative to

environmental changes, such as strong backlight. On the other hand,

Table 4.7(c) shows that the SSD recognizer achieves higher precisions for

nearly all the states than the morphological recognizer for the same input

images. It is conceivable that if appropriate data are included in the

training dataset, then the SSD recognizer can identify traffic lights using

other information, such as shapes and the order of colors, when the HSV

values change slightly owing to the backlight. Thus, collecting a feasible

training dataset is important for the SSD recognizer.

4.4.3 Effects of Distance from Target on Recognition

Recall

In Fig. 4.10, the horizontal axis is the distance from the target traffic light

to be recognized, the left vertical axis is the area (square pixels) of the

extracted ROI, and the right vertical axis is the recognition recall. Here,

both recognizers (morphological and SSD) used the ROI images as inputs.

As shown in Fig. 4.10(a), the ROI area and recognition recall for both

recognizers increase with decreasing distances from the target traffic lights.

For intervals less than 120 m from the target, both recognizers yielded similar

curves and converged to their maximum recall values. In contrast, the

morphological recognizer outperformed the SSD recognizer in terms of recall

in the interval from 120 m to 150 m from the target. The mean area of

the ROI in this interval for the daytime dataset was approximately 673.5

square pixels, which means that each ROI had approximately 25 pixels to

a side. In this case, the target traffic lights were represented by only a few

pixels, and the available features of the traffic lights were limited to color
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Figure 4.10: Recognition recall shifts relative to distances from the target

traffic lights.
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information only. The SSD recognizer seemed to learn the color information

and features, such as traffic light edge information. The recall inversion in

the interval from 120 m to 150 m from the target was presumably caused by

the lack of edge information and by confining the determination criteria to

only the color information.

In contrast to Fig. 4.10(a), the morphological recognizer often out-

performed the SSD recognizer relative to recalls for the sunset dataset

(Fig. 4.10(b)). A possible reason for this is the errors in traffic light projection

to an image plane when extracting the ROIs. In the sunset evaluation

dataset, many traffic lights were observed only after curves in the roads.

If these traffic lights are projected onto an image plane while navigating

the vehicle through curves, the traffic light was not completely captured

in the ROI owing to LiDAR-camera calibration errors. In this case, the

morphological recognizer could identify the traffic light states as long as lit

lights were included in the ROIs, while the SSD recognizer was unable to

obtain the same results because it uses additional information (other than

color) to recognize the states. In the interval from 30 m to 60 m from the

target, the recalls of both recognizers were reduced. This is presumably

because of solar glare through the cloud cover that was captured by the

camera in this distance interval. Moreover, some lit lights were not contained

in the ROI owing to the ROI extraction error mentioned previously, which

rendered it difficult for both the recognizers to identify the traffic lights.

The proposed scheme only focuses on the software processes, which assume

that input images are given. A strategy combined with hardware functions,

including automatic camera exposures, may be a promising solution to

improve the robustness of the proposed scheme under difficult-to-recognize

conditions, such as in the sunset dataset used in this work.

4.4.4 Effects of ROI Extraction on Recognition Speed

Fig. 4.11 shows the recognition time of each recognizer with and without ROI

extraction. The average recognition time of the morphological recognizer

without ROI extraction was approximately 84.9 ms (approximately 0.51 ms

with ROI extraction). For the SSD recognizer, the average recognition time
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Figure 4.11: Effects of ROI extraction on recognition time.

was approximately 18.5 ms and 17.9 ms without and with ROI extraction,

respectively. Note that the time required for ROI extracting and processing

is not included in these recognition times. The morphological recognizer

improved the recognition speed by approximately 166.5 times when using

ROI extraction because it contains a process that depends on the input

image resolution, e.g., color conversion from RGB to HSV and searching

contours. In contrast, the SSD recognizer demonstrated similar recognition

times regardless of whether ROI extraction was employed. This was owed to

the fact that the SSD recognizer considers fixed-size images as inputs, which

makes the processing time independent of the input image resolution because

the input images are resized to fixed dimensions.

4.4.5 Effects of GPU on SSD Recognition Speed

In Fig. 4.12, the execution time of the SSD recognizer with GPU acceleration

is compared with those without a GPU. The execution time of the SSD

recognizer with ROI extraction and GPU acceleration was approximately

17.9 ms (18.5 ms without ROI extraction). On the other hand, if GPU

acceleration was not available, the execution times of the SSD recognizer for
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Figure 4.12: Effects of GPU on recognition time.

the two settings were approximately 2392.2 ms and 2397.9 ms. As noted in

the previous section, the SSD execution time is not dependent on input image

resolution because the images are resized to a fixed resolution. However,

the experimental results indicate a 133.6 times poorer execution time in the

absence of GPU acceleration. Therefore, GPU acceleration is necessary for

applying SSD to autonomous driving. In addition, the acceleration rates vary

significantly according to the type of GPU used [62]. Thus, appropriate GPUs

must be selected for practical use in consideration of energy consumption and

sufficient processing speed.

4.4.6 Effects of the Number of Images in the Training

Data on Recognition Accuracy

Variations in the recognition accuracies of the SSD recognizer relative to

the number of images in the training dataset are shown in Fig. 4.13. The six

sample points correspond to the recognition accuracies of the results obtained

with the training dataset shown in Fig. 4.6. Briefly, a training dataset with

more images results in greater accuracy. The accuracy improvement appears

to converge up to Set 5 (Fig. 4.6), which contains 290 images. The training
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Figure 4.13: Recognition accuracy shifts relative to the number of images in

the training dataset.

datasets for Sets 1 to 5 include images extracted from data recorded during

daytime driving. In contrast, Set 6 contained both daytime and traffic lights

images exposed to solar backlight. Recognition accuracy improvements were

observed with both datasets when the training results obtained using Set

6 were applied to the SSD recognizer. Thus, the data quantity, diversity,

and practicality relative to the recognition targets in the training datasets

contribute considerably toward recognition accuracy.

4.4.7 Discussion

The work conducted by Fairfield et al. presented a method to recognize

the color states of traffic lights that exploited a prior map of the 3D traffic

light locations and camera images [63], which is a technique similar to that

presented herein. They reported that the recognition precision and recall of

their method were 99 % and 62 %, respectively. In contrast, the recognition

precision of the proposed scheme exceeded 97 % for each color state (red,

yellow, and green) for the daytime dataset (Table 4.6(c)). Moreover, the

recognition recall was approximately 90 % when the recognition targets were
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within a distance of 90 m (Fig. 4.10(a)). While simple comparisons are

inadequate because of the different datasets evaluated, the proposed method

roughly achieved a comparable level of recognition precision and improved

recall of 1.4 times under favorable conditions.

One of the limitation of the proposed method is that the color states

of the traffic lights may not be recognized if their 3D positions are not

previously known. It is noted here that newly installed traffic lights are not

contained in the 3D map. The solution to this problem includes a concept

such as “connected vehicles”, which indicate vehicles that have an internet

connection. If the information regarding a newly installed traffic light is

updated on the 3D map in the corresponding server, the connected vehicles

can download the latest 3D maps information and recognize the color states

of the newly installed traffic lights.

Another limitation of this work is that the proposed method in inappli-

cable if the features of the traffic lights are not available owing to pixel value

saturation resulting from strong solar backlight. This is a general limitation

for all recognition methods using camera sensors. To avoid traffic accidents

caused by such limitations, hierarchical connections may be installed between

the recognition and vehicle control modules. For example, even if pixel

value saturation occurs in a vehicle-mounted camera, the vehicle can stop

behind other vehicles at intersections with the help of other modules, such as

collision avoidance modules, that use alternative detection mechanisms, such

as LiDAR sensors. In such cases, the collision avoidance modules should be

at near-hierarchy levels to the control modules than traffic light recognition

modules.

4.5 Interim conclusions on traffic light recog-

nition

To demonstrate a practical verification of GPU applicability to perception

tasks, this section presented a scheme to recognize traffic light states during

driving. The proposed scheme consists of two main parts, namely utilizing

the ego-vehicle location on 3D maps to extract the ROI images of traffic
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lights and utilizing a CNN-based recognizer that requires GPU acceleration.

For comparison, recognizers using morphological and CNN-based processing

were evaluated quantitatively for their recognition tendencies. The presented

scheme requires 3D maps as prior information, which is unlike the case in

several preceding studies that considered traffic light recognition using only

camera images. Such a fusion can be considered as one of the key criteria

for traffic-light-state recognition modules of high-level autonomous driving

systems because the actual driving environment may be massively diverse,

and the vehicle-mounted cameras are highly likely to capture various types

of noise.

Two image datasets, i.e., daytime and sunset, were compiled during public

driving experiments and used to train models and evaluate the proposed

methods. The experimental results indicate that ROI extraction improves

the recognition accuracies for both methods, thus providing more reliable

recognition. The SSD recognition method outperformed the morphological

processing method in terms of recognition precision and recall for almost

all states of the evaluation datasets. The SSD recognizer achieved more

than 97 % average precision (i.e., red, yellow, and green identification)

under favorable conditions. Moreover, when the recognition targets were

within a distance of 90 m, the SSD recognizer achieved approximately 90 %

recognition recall.

The proposed recognition scheme can tolerate calibration and localization

errors to a certain extent. However, when the errors are too large, the

classifications tend to be incorrect. To obtain better results, a different

and more accurate calibration method may be considered [64–66]. Finally,

increasing the number of images in the training dataset can improve the

average recognition precision and resilience to varying lighting conditions.
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Chapter 5

Distributed Perception

Architecture Using GPUs

The previous chapter has demonstrated that GPUs benefit perception tasks

for autonomous driving because of their massively parallel computing power.

However, some specific problems should be considered when applying GPUs

to on-board autonomous driving systems. In this chapter, these problems

are presented,and a possible solution is discussed.

5.1 Problems that may arise when applying

GPUs to autonomous driving systems

As shown in Chapter 1, perception tasks are typically computationally

intensive and require large quantities of data as inputs. However, their

lengthy processing times are not tolerated by systems classified as level three

and above because the outputs of these tasks become inputs to the following

tasks (i.e., planning and control). When considering the actual deployment

of autonomous driving systems, vehicle-mounted systems that perform

online processing have severe limitations, including low power consumption.

Perception tasks suffer from these limitations, and the tradeoffs between the

limitations and processing speed are points of concern. Moreover, system

scaling must also be considered; to ensure the safety of autonomous driving,

multiple external sensors must be used to sense all surrounding circumstances



5.2. Possible solution to the problems

of ego vehicles. As the number of external sensors to eliminate blind spots

increases, the data quantities to be processed linearly also increase, in

addition to the required computational resources. To realize safe autonomous

driving systems, tolerance to such data-quantity scaling is essential.

Many reported studies [67–72] have provided insights that promote

application of GPUs to autonomous driving systems. In particular, GPU

resource multitasking [70–72] is needed in such systems because there are

numerous tasks that require GPU acceleration. From another perspective,

introducing multiple GPUs is a possible solution to handle the system

scaling problems noted above. However, the power consumed by traditional

GPUs, including those assessed in Sections 3.1 and 4, is generally known

to be comparatively large since these modules are designed for servers and

desktops. When using GPUs in autonomous driving systems, the power

consumption problem must be addressed.

5.2 Possible solution to the problems

Embedded oriented GPUs, including the Jetson series [73–76] supplied by

NVIDIA Corp. and Mali series [77] designed by ARM Ltd., have received

much attention lately because they provide massively parallel computing

capacities with low power consumption compared with traditional GPUs.

In particular, the Jetson series of GPUs were developed as embedded

platforms for autonomous machines. Although the Jetson series includes

powerful devices, none of them are individually sufficient to handle all

tasks in autonomous driving systems, because large quantities of data and

computational resources are required for the entire system, which may exceed

the capacity of a single Jetson. However, the data and computational

resources required for a host machine can be suppressed with a decentralized

system that offloads parts of the perception tasks onto edge devices, such

as the Jetson, and feeds solely processed results to the host. Although

there are reported works [32–34, 78] on processing performances on edge

devices, they are solely focused on processing times, which are delays of

the internal edges (i.e., many studies tend to focus on non-system-wide

performances). Therefore, there is a need to discuss problems that may occur
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when introducing decentralized processing in autonomous driving, including

delay caused by data transfer, throughput of the entire system, and tolerance

against system scaling.

To discuss the validity of decentralized processing for autonomous driving,

a prototype decentralized processing system that offloads parts of the per-

ception tasks for autonomous driving onto edge devices was constructed, and

the processing performance of the whole system, including delays caused by

the decentralized processing, are explored. Based on the evaluation results,

the validity of decentralized processing for autonomous driving systems is

discussed. As noted above, typical autonomous driving systems consist of

perception, planning, and control tasks. If the computational burden of all

the tasks is concentrated on a specific unit (i.e., centralized unit) in a system,

the entire system throughput may be degraded, which can cause serious

traffic accidents during autonomous driving. In particular, typical perception

tasks require large amounts of resources since they are computationally

intensive. Therefore, the main aim of the proposed decentralized processing

system is to avoid concentrating the computational burden on any specific

unit of the autonomous driving system.

5.3 Model of a decentralized processing sys-

tem for autonomous driving

In this section, the model and assumptions of a decentralized processing

system is presented for autonomous driving. To discuss the validity of

the model, a prototype was constructed and evaluated, as will be detailed

later. It may not be appropriate to apply decentralized processing to all

perception tasks in autonomous driving systems since its validity depends on

the processing content. The target types of perception tasks in this study are

assumed to have certain attributes, namely “all direction sensing” and “tasks

divisible into subtasks”, which have frequently emerged in the context of

autonomous driving. This is because an architecture that divided perception

tasks for surrounding circumstances (i.e., all direction) into subtasks and

offloaded them onto decentralized units was employed.
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Figure 5.1: System model of decentralized processing.

As the evaluation target, a model comprising one host PC and multiple

Jetsons connected to cameras individually was assumed. Every Jetson

performs object detection on images captured with the connected cameras,

and all the detection results are concentrated at the host PC via the network.

Fig. 5.1 depicts an overview of the proposed model. As shown in Fig. 5.1,

the host PC is connected to the Jetsons devices through a hub, and each

Jetson is solely in charge of processing for the one specified camera. This

configuration is considered to be typical for perception with a decentralized

processing system. By evaluating the performance of this configuration,

the validity of decentralized processing is explored. Furthermore, since the

performance is vague that is required to edge devices of the perception for

autonomous driving systems, exploring a rough indication of the performance

requirement for such edge devices is also intended through comparing two

kinds of Jetson at the later evaluation. Image-based object detection is one

of the perception tasks suited to GPU acceleration. One-stage detectors

proposed in recent years, including the SSD [28] and YOLOv3 [79], perform
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bounding box proposal and classification in a single network and enable

object detection in almost real time. These CNNs contain computationally

intensive operations, and the massively parallel computational capabilities of

GPUs support the fast processing of such operations. The YOLOv3-416 [79]

written in TensorRT [80] was employed as the object detection task executed

on each Jetson. For decentralized processing, it would be common to assign

tasks according to the processing capacities and network bandwidths of

each of the decentralized processing units. However, if the perception of

surrounding circumstances can be divided into subtasks perceiving small

regions and distributed thereafter onto decentralized units, each unit would

theoretically handle an equal load. Additionally, the processing capacity

and network bandwidth of each decentralized unit should be equal since a

common device series (i.e., Jetson) is used. Hence, this model uniformly

distributes the perception subtasks among all the decentralized units and

does not consider complex task assignments.

The Jetson AGX Xavier [75] device was employed as the decentralized

processing platform in this model. The Jetson series consists of a CPU,

GPU, dynamic random access memory (DRAM), and power management

integrated circuit (PMIC), which are all intended to run various applications

with speed while consuming less power. Combining the massively parallel

computational capacities of GPUs with TensorRT [80] is effective for acceler-

ating inference processing with deep neural networks (DNNs). TensorRT

is a software development kit (SDK) provided by NVIDIA Corp. that

maximizes the throughput using weights quantization, which is an emerging

technique to accelerate the inference speeds of DNNs. The Jetson series

allows software configuration of the system settings, including operating

frequency and number of online cores. Although users can configure these

values, some presets are available; this function is called power mode. These

presets are useful to balance computational power with power consumption

because the power consumed by each Jetson device can be roughly estimated

according to the usage mode. This estimated power consumption is also

referred to as the power budget. Seven presets are available for the Jetson

AGX Xavier, and Table 5.1 presents some of these.
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Table 5.1: Part of the power-mode presets for the Jetson AGX Xavier†. The

“15 W” mode is the factory default.

Property
Mode Name

EDP 10 W 15 W

Power Budget n/a 10 W 15 W

Mode ID 0 1 2

Online CPUs 8 2 4

CPU Max Freq. (MHz) 2265.6 1200 1200

GPU TPCs* 4 2 4

GPU Max Freq. (MHz) 1377 520 670

DLA** cores 2 2 2

DLA Max Freq. (MHz) 1395.2 550 750

VA*** cores 2 0 1

VA Max Freq. (MHz) 1088 0 550

Memory Max Freq. (MHz) 2133 1066 1333

† Cited from https://github.com/dusty-nv/

jetson-presentations/blob/master/20181004_Jetson_

AGX_Xavier_New_Era_Autonomous_Machines.pdf
* TPC: Texture processor cluster
** DLA: Deep-learning accelerator
*** VA: Vision accelerator

5.4 Implementation details of a prototype of

decentralized processing system

This section presents the detailed schemes for the prototype decentralized

processing system. First, the platforms used to build the decentralized

processing system and their features are described. Second, the techniques for

deep-learning inference on GPUs are explained with respect to accelerating

the process to achieve real-time object detection. The remainder of this

section presents the configurations of the decentralized processing platforms

and their performance evaluations.
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5.4.1 Robot operating system (ROS) implementation

The ROS [58] and Autoware [56, 81] were used as platforms to implement

the decentralized processing system. The ROS is a middleware that provides

useful tools and libraries to develop robot applications; it is well suited for

decentralized processing because it employs a publisher–subscriber model to

implement the interprocess communications. Owing to this characteristic,

the functions of systems such as camera drivers and object detectors can be

developed as modules and easily interconnected for cooperative operation.

Autoware is an open-source software for autonomous driving based on the

ROS; it contains function modules for perception, planning, and control in

autonomous driving, including driver programs for various types of cameras.

A camera driver module provided by Autoware was employed to acquire

images from each of the cameras.

With regard to the ROS, the term “node” refers to an individual

component module of a system, and the term “topic” refers to the actual

data that are published (i.e., transmitted) by the nodes. Users can attach

timestamps to topics programmatically. In the presented system, the camera

drivers attach the current time for each published image topic. Object

detection nodes inherit the timestamps of the subscribed (i.e., received)

image topics and reattach them to the corresponding output topics. To

determine the communication and processing delays, the timestamps of the

topics published by the detection nodes and the instantaneous times at which

the evaluation node received the topics were compared. By subtracting these

timestamps from the receiving times, the delays from image acquisition to the

arrival of the detection results at the host were obtained. On decentralized

processing, time deviation among each unit (including the host) is the

fundamental concern. For the presented system, the host and the edges

should synchronize their time to maintain the consistency in timestamps

of ROS topics concentrated from the edges to the host. Time consistency

is essential because perception results for a frame are often considered in

time-series on the host, and the host uses timestamps to identify moments to

be markers, including when each image is captured and when each perception

process is completed. For this reason, to synchronize the time between the
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host and the Jetsons, a network time protocol (NTP) server on the host and

NTP clients on each Jetson were installed.

5.4.2 Deep-learning inference using TensorRT and

weights quantization

As noted in Section 5.3, the YOLOv3 written in TensorRT was employed

in the proposed system. TensorRT is an SDK for high-performance

deep-learning inference provided by NVIDIA Corp. To improve the inference

performance, the SDK adjusts the existing trained models against the GPUs

on which the models are executed. Changes to the operation precision

can be performed using TensorRT. Although all the inference calculations

are performed in single-point floating precision (FP32) by default, some

of the calculations can be replaced by half this precision (FP16) or 8-bit

integer precision (INT8) via explicit specification during execution. If

the operation precision is changed to FP16 or INT8, then TensorRT

generates an adjusted-precision inference engine; using the generated engine

for inference is expected to improve the throughput and decrease resource

consumption [80]. Since NVIDIA Corp. has recently released some GPUs

that contain exclusive cores to process INT8 operations, the operational

throughput may be significantly improved and resource consumption may

be degraded solely by shifting to the INT8 operation precision. Because

the available value range and granularity are quite different between the

single-point floating and 8-bit integer precisions, calibrations are required

to generate the INT8 inference engine. During the calibration process,

TensorRT executes an FP32 inference engine for multiple inputs to explore

the internal value range of the FP32 engine and scale it to that of the

8-bit integer range. The amount of resource consumption and detection

performance in the cases of the FP32 and INT8 inference engines were

evaluated. To generate the INT8 inference engine, the 2017 validation image

set [82] of MS COCO [25] was used for calibration.
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5.4.3 Jetson settings

To explore the potential capabilities of the proposed system, the minimum

delays that could be achieved when operating the Jetsons at full capacity

were measured. Additionally, changes in the power consumption for changes

in the operation precision were measured. To this end, the power budget

of each Jetson was set to “n/a” (i.e., mode name “EDP” , as shown in

Table 5.1); then, the effects of power budget settings on the object detection

task performance are shown in Section 5.5.5.

5.5 Performance analysis

To quantify the performance of the proposed decentralized processing system

for environmental perception during autonomous driving, the following items

were evaluated:

1. Delays based on decentralized processing

2. Effects of weights quantization on resource and power consumptions

3. Limitations of centralized processing

4. Effects of weights quantization on detection performances of different

series of edge devices

5.5.1 Experimental setup

The following setups were deployed to evaluate the system.

Host PC (centralized environment)

• CPU: Intel core i7-8750H @ 2.20GHz (12 cores/24 threads)

• Memory: 16 GB

• GPU: NVIDIA GeForce GTX 1060M (1280 CUDA cores, 6 GB

memory)

• Networking: 10/100/1000 BASE-T Ethernet
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Jetson AGX Xavier (decentralized environment)

• CPU: ARM v8.2 64-bit

• Memory: 16 GB

• GPU: NVIDIA Volta GPU (512 CUDA cores with 64 tensor cores)

• Networking: 10/100/1000 BASE-T Ethernet

Jetson Nano (for comparison)

• CPU: ARM A57 64-bit

• Memory: 4 GB

• GPU: NVIDIA Maxwell GPU (128 CUDA cores)

Cameras

• Device: Blackfly S GigE from FLIR Systems, Inc.

• Frame rate (set to): 20 fps

• Image size (set to): 1280(W) × 960(H) × 3(bytes/pixel)

Hub

• NETGEAR GS108PEv3

• Number of 10/100/1000 Base-T RJ45 ports: 8 (4 PoE 802.3af

Ports included)

Object detection results

• Self-defined ROS topic

• Approximately 1 KB per detected object, including bounding box,

detection score, and detected object category

5.5.2 Delays based on decentralized processing

Fig. 5.2 depicts the connection diagram for the evaluations. The measured

delays are as follows:
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Figure 5.2: Connection diagram to evaluate data delays on decentralized

processing. In cases 3 and 4, the camera driver and object

detection modules were offloaded to the edge devices to measure

the effects of decentralized processing.
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Case 1: Elapsed time until the host PC subscribes the images published by

the camera driver node running on the same host.

Case 2: Elapsed time until the host PC subscribes the results published by

the object detection node running on the same host. A camera driver

node was also running on the same host in this case.

Case 3: Elapsed time until the host PC subscribes the images published by

the camera driver node running on the edge device.

Case 4: Elapsed time until the host PC subscribes the results published by

the object detection node running on the edge device. A camera driver

node was running on the edge device in this case.

During evaluations, the capture rate of each camera was set to 20 fps; this

capture rate is assumed to be sufficient for autonomous driving systems

because some kinds of sensor devices, such as the 360◦ LiDAR units, operate

at 10 fps, and the systems must work in synchrony with such devices.

To measure the individual delays, the differences between the timestamps

of the target topics (i.e., the time at which the image data were fed to

the system by the driver node) and the moment at which the host PC

received these topics were considered, as described in Section 5.4.1. Since

the implementations were on the ROSs, the image data were not available

to the other functions (i.e., the other ROS nodes) until the camera driver

node fed the data to the ROS network. Hence, the measured delays

represent the time elapsed between the instants at which the image data

were available and the instants at which the desired data reached the host.

Fig. 5.3 indicates the delays measured for each case of Fig. 5.2. In Case 1,

where the image data were published and subscribed inside the host, the

average delay was approximately 1.47 ms. In Case 3, where the image data

were published by the edge device and subscribed by the host, the average

delay was approximately 10.4 ms. These correspond to the image transfer

delays when solely the camera driver was offloaded to the edge device (i.e.,

decentralized unit). The simple offloading of the camera driver was observed

to increase the delay by approximately ten times. Since systems using

decentralized processing sometimes suffer from such delays, system-wide
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Figure 5.3: Delay comparisons with and without decentralized processing.

98



5.5. Performance analysis

evaluations should be considered to benefit from decentralized processing.

When image publishing and object detection were performed on a single

host, i.e., Case 2, the measured average delay was approximately 21.0 ms.

This delay is assumed to roughly correspond to the time elapsed for object

detection. However, as the exact elapsed time for object detection varies

depending on the GPU, Case 4 was considered to measure the total delay

when offloading the camera driver and object detection modules to the edge

device. When image publishing and object detection were performed on the

edge device (Case 4), an average delay of approximately 27.0 ms was observed

for the detection results to reach the host. Although the largest delay was

observed in Case 4, the measurements revealed that the object detection

results could reach the host without frame drops even with offloading to

the decentralized edge devices when the camera capture rate was 20 fps

(=50 ms/frame).

5.5.3 Effects of weights quantization on resource and

power consumptions

Fig. 5.4 depicts the consumption of GPU computational resources on each

platform when the FP32 and INT8 inference engines were used. The left

side of the figure shows the measurement results for a GPU on the host, and

the right side shows the results for a GPU on the edge device. In the host,

although approximately 46.8% of the resources were occupied when the FP32

inference engine was in operation, this utilization decreased to approximately

27.8% when the INT8 inference engine was in operation. In the edge device,

these average usages were approximately 86.3% and 34.4% for the FP32 and

INT8 inference engines, respectively. As shown in Fig. 5.4, the quantized

network decreased consumption of the GPU computational resources during

inference on both the host and edge device. Especially on the edge device,

the average GPU computational resources consumed by the INT8 inference

engine was approximately 2.51 times lower than that consumed by the FP32

inference engine. The consumption rates were different between the host

and the edge device. This might partially result from the difference in

the number of cores in each GPU; however, this suggests that TensorRT
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Figure 5.4: GPU computational resource utilization for different operation

precisions wherein object detections are executed on the host

(left) and edge device (right).
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Figure 5.5: GPU memory utilization for different operation precisions mea-

sured during the experiments in Fig. 5.4.

performed different adjustments for each GPU on the host and edge device

when generating inference engines.

Fig. 5.5 indicates the memory consumed during the experiments in

Fig. 5.4. Note that the measurements for the host (left side of the figure)

indicate consumption of GPU memory, whereas the measurements for the

edge device (right side of the figure) indicate the total system memory

consumption. This is because there is no interface to measure solely the

GPU memory consumption on the edge device. Reusing GPU memory region

once allocated is generally recommended to maximize performance because

GPU memory allocation is an expensive operation [83]. The standard

deviations of memory consumption observed for both GPUs were nearly

zero. A possible reason for is that the memory regions were reused in the

engines generated by TensorRT. Similar to the computational resources, the

memory consumptions degraded on both GPUs when the network weights

were quantized. Specifically, on the edge device, the average consumption
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Figure 5.6: Power consumed by the GPU for different operation precisions

measured during the experiments in Fig. 5.4.

reduced by approximately 1.77 times.

The power consumed by the GPUs for the experiments in Fig. 5.4 is

illustrated in Fig. 5.6. The same trends of the effects of weights quantization

for power consumption were observed: it decreased on both GPUs. The

lowest average power consumption was 7.31 W, which was achieved with a

combination of edge processing and inference with the INT8 engine.

5.5.4 Limitations of centralized processing

To identify the limitations of centralized processing, the ROS topic (i.e.,

object detection results) rates were measured for different numbers (one to

six) of running object detection nodes on the host. These measurements were

performed with the settings of Case 2 in Fig. 5.2. To simulate a situation

wherein a single host processed data from multiple cameras, multiple object

detection nodes subscribed images published by a single camera driver node
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Figure 5.7: Output rates of object detection results in the centralized

environment.
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Figure 5.8: Utilization of GPU computational resources on the host for

different numbers of tasks.
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in these measurements. Fig. 5.7 indicates these measurement results; when

the number of object detection nodes exceeded three, the topic rate was

lower than 20 fps. Because the camera capture rate was set to 20 fps,

frame dropping occurred. Fig. 5.8 demonstrates the consumption of GPU

computational resources in this experiment. As shown in Fig. 5.7, frame

dropping is observed when 4—6 nodes are operating, and the average GPU

resource consumption is over 80 % for these situations. This result suggests

that centralized processing could decrease the performances of perception

tasks if it is in charge of multiple sensors.

5.5.5 Effects of weights quantization on detection per-

formances of different series of edge devices

The effects of changes in operation precision of the network on the detection

accuracy and speed are presented in this section. Additionally, the execution

times for object detection with different devices from the Jetson series

are compared later. Although the Jetson Nano has a smaller body and

lower power consumption, the Jetson AGX Xavier is superior in terms of

computational power. By comparing these two, a more appropriate one for

the edge devices for autonomous driving systems is explored.

Table 5.2 indicates the average precision and recall values for object

detection achieved by the FP32 and INT8 inference engines. The MS

COCO 2014 validation image set [84] was used to calculate the average

precision and recall values. To simulate the environmental perception of

autonomous driving, data from six specific categories (car, pedestrian,

bus, truck, bicycle, motorcycle) contained in the dataset were

used to calculate the metrics. The value of each item was slightly lowered

after changing the operation precision from FP32 to INT8. The SSD512 [28],

which is another state-of-the-art detector, achieved mAP-50 = 0.485 for the

MS COCO 2015 test image set. Although a direct comparison is not fair

because the datasets used were different, the INT8 inference engine achieved

a detection accuracy comparable to that of the other state-of-the-art detector.

Fig. 5.9 illustrates the inference times of object detection achieved by

each power mode preset using inference engines with different operation
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Table 5.2: Precision and recall comparisons for different operation pre-

cisions for six specific categories on the MS COCO val 2014

dataset.

Metrics IoU range(1 area(2 maxDets(3 FP32 INT8

0.50 all 100 0.552 0.498

0.75 all 100 0.373 0.353

0.50:0.95 small 100 0.098 0.069

0.50:0.95 medium 100 0.343 0.304

Average Precision

0.50:0.95 large 100 0.587 0.583

0.50:0.95 all 1 0.237 0.226

0.50:0.95 all 10 0.372 0.342

0.50:0.95 all 100 0.375 0.344

0.50:0.95 small 100 0.114 0.077

0.50:0.95 medium 100 0.381 0.335

Average Recall

0.50:0.95 large 100 0.645 0.635

(1 IoU: Intersection over union
(2 According to https://cocodataset.org/

#detection-eval,the definitions of object area sizes

are as follows: small: area < 322 pixels, medium:

322 < area < 962 pixels, large: 962 pixels < area
(3 maxDets: thresholds on maximum detections per image
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Figure 5.9: Execution time comparisons for power budget and operation

precision on the Jetson AGX Xavier.
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precisions. With the help of tensor cores and deep-learning accelerators

(DLAs), which can rapidly process FP16 and INT8 operations, the execution

time for each power mode preset was significantly improved by changing the

operation precision. Furthermore, the execution time differences between

the power mode presets were also significant. Therefore, the differences in

the maximum frequencies of the GPUs and DLAs for each of the power

mode presets mainly caused the performance differences. Since the “EDP”

mode (i.e., the mode with power budget “n/a”) places no restrictions on the

Jetson resources, results labeled “n/a” in Fig. 5.9 can be seen as maximum

performances that this device can achieve. The power budget “n/a” with the

INT8 inference engine achieved an average inference time of approximately

24.5 ms (≈ 40.8 fps). Note that evaluation results until here were measured

under the “EDP” mode if without being noted, therefore the presented

configuration achieved low power consumption illustrated in Fig. 5.6 as well

as fast processing. For comparison, similar measurements were obtained

using the Jetson Nano [76]; the results are demonstrated in Fig. 5.10. Two

power-mode presets are provided for the Jetson Nano, and the power budgets

for these presets are 5 W and 10 W, respectively (10 W is the factory

default). Because the Jetson Nano contains four-times fewer CUDA cores

than the Jetson AGX Xavier, the overall processing speed was lower as well.

Moreover, changing the operation precision did not improve the inference

speed significantly. This is because the GPUs on the Jetson Nano are based

on the Maxwell architecture, which does not contain any tensor cores or

DLAs. From the viewpoint of autonomous driving, an execution time of

approximately 260 ms (≈ 3.8 fps), which is the highest processing speed

achieved by the Jetson Nano, cannot be accepted as an on-board processing

delay. Through comparisons, it was concluded that the Jetson AGX Xavier

is preferable to the Nano at this point.
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Chapter 6

Discussion

6.1 GPU-accelerated perception algorithms

Based on the studies presented in Chapter 3, it can be inferred that GPUs

are effective for autonomous driving perception tasks from the perspective of

computational acceleration.

Object detection algorithms are rapidly progressing, and the employment

of deep-learning-based object detectors is inevitable because they typically

outperform traditional pattern recognition algorithms in terms of execution

speed and accuracy. However, it is noteworthy that deep-learning-based

object detectors basically perform statistical inferences based on training

data. Therefore, the quantity and variety of training data directly affects the

generalization capabilities of detection. Because the conditions of the driving

environment, including visual scenes and lighting, are largely diverse given

limited training data, proving tests are vital toward the actual deployment

of autonomous driving systems.

Another consideration is the reliability and interpretability (trans-

parency) of the deep-learning-based method. Because deep-learning methods

are typically end-to-end approaches (in other words, they directly output

information in the desired format from the input), they are often used

as black-box modules, in which the relationships (reasons) between the

model inputs and outputs are unclear. This prevents developers from

identifying error causes during the development phase and renders it difficult
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to measure the reliability of a system during deployment. From the

perspective of the interpretability of the inference process, traditional pattern

recognition or rule-based methods are often superior to deep-learning-based

methods. Depending on the case, such as when a target can be described

in terms of strict rules, end-to-end methods and their combinations with

rule-based inference (e.g., inter-frame filters for traffic-light-state transitions,

as mentioned in Section 4.3.3) should be considered. The interpretability of

deep-learning-based methods is gradually gaining importance, and consider-

able relevant research efforts are in progress [29–31]. Measuring the system

reliability is one of the key for autonomous driving systems at levels three and

above because such systems must address the unreliable states of the systems

(passing back vehicle control to the driver at level three or managing with the

available system at levels four and five). Therefore, techniques to improve the

interpretability of deep-learning-based methods are critical for autonomous

driving.

6.2 Decentralized processing using

embedded-oriented GPUs

This section presents the validity of decentralized processing for environmen-

tal perception tasks in autonomous driving.

As shown in the experimental setup (see Section 5.5.1), the image size

was set to 1280(W) × 960(H), and the frame rate was set to 20 fps for

the camera configuration. Moreover, a self-defined ROS topic was deployed

to transfer the object detection results of approximately 1 KB per object.

Briefly, the amount of data input to the system by a single camera was

1280 (W) × 960 (H) × 3 (bytes/pixel) × 20 (fps) = 73728000 ≈ 70 MB/s

under this configuration. By contrast, when only the object detection results

were transferred, the amount of data decreased by a few orders of magnitude

and was 1×N (objects/frame)×20 (fps) ≈ 20N KB/s. A comparison of the

amount of data transferred is presented in Table 6.1. Considering the network

load of the host machine, the decentralized processing was more tolerant to

system scaling because the amount of data increased linearly based on the
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Table 6.1: Comparison of network traffic amounts with and without decen-

tralized processing under experimental settings.

Processing type Breakdown

approx.

Total

(MB/s)

Height

(pixel)

Width

(pixel)

byte /

pixel
fps

w/o decentralized

(i.e., centralized) 960 1280 3 20
70

data-size /

object (KB)

objects /

frame
fps

w/ decentralized
1 N* 20

0.02N

* Because the number of detected objects per frame is not fixed, this N

represents a dynamic value.

number of external sensors.

To recognize the circumstances surrounding the ego vehicle, the system

was assumed to have multiple cameras equipped with standard field of

view (FOV) lenses that detected objects by processing the captured images.

Typically, a standard FOV camera lens has a view angle of 25◦–50◦. In

such cases, at least six to seven cameras are required to capture all the

directions. Wide FOV cameras, including fisheye cameras, may alternatively

be used to capture the surroundings using fewer cameras. The authors of [85]

published a dataset for autonomous driving that included images captured

using fisheye cameras and reported a baseline object detection experiment

using the faster R-CNN [43] and fisheye-camera images, where the detection

accuracies were significantly lower than those achieved using other datasets.

It was observed that accurate object detection using fisheye-camera images

might be difficult owing to significant lens distortions (“the orientation of

objects in the periphery of images being very different from central region”).

For autonomous driving perception systems, one-stage detectors, including
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YOLOv3, may be preferable to two-stage detectors, including the faster

R-CNN, because fast and online object detection is required. Meanwhile,

one-stage detectors typically suffer from lower accuracies of bounding box

regressions compared with two-stage detectors [44]. Hence, it is suggested

that the accuracies of one-stage detectors may be reduced if wide-FOV

images with large distortions are applied as inputs. As such, processing

images containing slight distortions captured using multiple cameras may be

a promising approach for accurately detecting objects in the surroundings.

If a single machine is responsible for all the cameras, then frame

dropping may be an issue because of the heavy burden of data transfer and

computation. Assuming that a centralized system comprising a single host

machine responsible for six cameras is set to the same configurations as the

experimental setup, the transferred image data can theoretically occupy a

constant 420 MB/s of the system network. Such a system will suffer from

frame dropping, as shown in Fig. 5.7, as well as the high occupancy rate of the

network. By contrast, if decentralized units are introduced to each camera,

then the network burden decreases to 0.12N (MB/s), where N is the number

of detected objects per frame and is typically under 100 even for images

captured while driving in an urban area with complex surroundings. With an

additional assumption of N= 100 (objects/frame), the network burden would

be 12 MB/s, which is 35 times lower than that of the centralized system. The

host machine experiences little computational burden for object detection

because it is offloaded to the decentralized units, and the other tasks can

safely utilize the host resources. With respect to autonomous driving, frame

dropping and resource occupation by a single task prevent the appropriate

operation of the entire system and may cause serious accidents. Therefore,

using multiple cameras to capture the surroundings and processing images

using decentralized computational resources instead of a single machine may

be desirable; these approaches are expected to be a realistic for actual

deployment in autonomous driving systems.

The increased power consumption caused by the decentralization of

computational resources remains a concern. As shown in Fig. 5.6, the power

consumption of the GPU can be decreased using an embedded GPU and

network weights quantization. It is noteworthy that the values presented
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herein indicate the power consumption of the GPU exclusively and do not

include those of other components that may consume excess power, such as

DRAM. As described in Section 5.4.3, no limitations were set with respect

to the power budget of the edge device in the experiments detailed in

Section 5.5.2. The power consumption of the entire system is assumed

to become lower when limitations were set for the power budget because

the power budget affects the configuration for the whole components of the

edge device, including maximum frequencies of CPU/GPU/memory and the

number of online cores. For example, as shown in Fig. 5.9, the average

inference time was approximately 46.1 ms (≈ 21.7 fps) in the case involving

a 15 W power budget (factory default for the Jetson AGX Xavier) and an

INT8 inference engine. Hence, it is assumed that the inference process itself

can exceed 20 fps even with the limitation of the power budget. Meanwhile,

as shown in Figs. 5.4–5.6, using the INT8 inference engine decreases the

consumption of computational resources, memory, and power; moreover, a

maximal operation of approximately 40 fps was achieved. As an alternative

to set limitations on the power budget, using a single edge device to manage

multiple (a few) cameras may also suppress the total power consumption per

camera.

Increased system complexity is another concern in decentralized process-

ing. In general, decentralized processing increases the system’s complexity,

which occasionally results in the deterioration of the system’s reliability

(i.e., the ability of the system to function without failure). The software

complexity of the proposed system did not increase significantly with the

introduction of decentralized processing because of the ROS; however, the

hardware complexity increased, which was in fact inevitable. The robustness

of the system against failure should also be considered. For autonomous

driving systems at levels four and above, system failure during driving must

be managed by the systems themselves (e.g., stopping the car in a safe place)

as the driving tasks are not to depend on human drivers [2]. In centralized

processing systems, the margins of the computational resources to manage

failure are estimated to be limited because a single computational unit must

address all processing requirements. By contrast, the resource margins are

considered to be relatively sufficient if a decentralized processing approach
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is employed because the computational burden can be prevented from being

concentrated on a specific section of the system. Hence, a decentralized

system can offer higher safety against failure than a centralized system.

One of the limitations of this study with regard to the prototype

decentralized processing system is that driving at high velocities, such as

driving on highways with no velocity limits, was not considered. Because

the prototype considered only the velocity limit for driving in urban

areas, such as 60 km/h, the camera frame rate was set to 20 fps in the

experimental setup; this configuration is not adequate for driving at high

velocities. More specifically, including the camera frame rate, network

protocol, and ROS topic (i.e., transferred data) format, should be considered

from the perspective of processing speed to relax this limitation. However,

the advantages of decentralized processing, including reduction in power

consumption and non-concentration of the computational burden, can be

utilized to construct autonomous driving systems.

The price of GPUs applied as components of autonomous driving systems

is another concern. In fact, the costs of GPUs employed in this study

were not trivial; however, the price of GPUs should decrease as the

application of GPUs widens. With regard to LiDARs, a typical external

sensor for the environmental perception of autonomous driving systems, some

manufacturers offer LiDARs at relatively affordable costs, such as under $500.
A possible cause for this price decline is the increase in demand for LiDARs in

the autonomous driving domain. A similar price decline is hoped for GPUs

(particularly for embedded-oriented ones) along with an increase in their

application; it might be desirable that the price range of future devices are

affordable, i.e., similar to that of the Jetson Nano (currently around $200),
while affording computational power comparable to that of the Jetson AGX

Xavier. Moreover, the same level of computational power tends to be offered

at a lower price in the future (e.g., the same or higher level computational

power of supercomputers a few decades ago can currently be obtained at an

affordable price). Hence, the price of GPUs was not regarded as a concern

or limitation in this study.
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Chapter 7

Conclusion

7.1 Summary of contributions

This dissertation presents methods to accelerate perception tasks for au-

tonomous driving using GPUs to fulfill the criteria of high-level autonomous

driving systems. By exploring three current research topics, this study aims

to validate GPU usage for autonomous driving.

Object detection is a typical perception task, which is a task of identifying

objects, such as vehicles or pedestrians, from raw or preprocessed sensor

data. Although image-based object detection is vital to autonomous driving

systems, its high computational cost prevents its practical usage, and this

tradeoff between detection accuracy and computational cost is one of the

primary problems to be addressed in object detection tasks. In Chapter 3,

the GPU implementation schemes for traditional object detection tasks

are presented. The performance improvements achieved using GPUs as

well as detailed quantitative evaluations with different setups to accelerate

traditional object detection algorithms on GPUs are presented. The

implementation schemes were based on massively parallel computing threads

using event streams and texture memory. In the best-case scenario, the

proposed GPU implementation achieved an 8.6× performance improvement

compared with a high-end CPU implementation, while maintaining the

detection accuracy.

Recognizing traffic light states is another perception task in autonomous
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driving. Image-based methods are the first option to manage this task

because traffic lights are designed for the visual perception of humans; how-

ever, images captured via vehicle-installed cameras typically contain various

objects that are unassociated with traffic light state recognition, thereby

causing misrecognition. Hence, leveraging high definition maps as prior

knowledge for the driving environment is a promising approach. The scheme

for recognizing traffic light states from images is reviewed in Chapter 4. The

scheme comprises two main aspects: (i) utilizing ego-vehicle locations on 3D

high definition maps to extract ROI images of traffic lights; (ii) utilizing a

CNN-based recognizer that requires GPU acceleration. ROI image extraction

leveraging high definition maps significantly reduced unrelated objects for

traffic light recognition and enabled the CNN-based recognizer to exhibit

its recognition performance; furthermore, it was revealed that the GPUs

resulted in a 130× faster execution of the CNN-based recognizer. Under

favorable conditions, this scheme achieved an average precision exceeding

97 % for recognizing traffic light states using data acquired during public

driving experiments. Moreover, if the recognition targets were within 90 m,

then a maximum recognition recall of approximately 90 % could be achieved.

Computation offloading and system scaling are also concerns in the actual

deployment of autonomous driving systems because the concentration of

computational and/or data transfer prevents the system from operating as

intended. In Chapter 5, computation offloading and system scaling problems

were explored. Furthermore, as a possible solution to these problems, a

model of a decentralized processing system that utilizes embedded-oriented

GPUs to fulfill the criteria of high-level autonomous driving systems

was presented. Additionally, the validity of the decentralized processing

model was discussed. To clarify the effects of introducing decentralized

processing, including the delays caused by the data transfer and throughput

of the entire system, a prototype system that performs object detection

on embedded-oriented GPUs was constructed and evaluated. Quantitative

evaluations showed an average delay of approximately 27 ms between feeding

an image to the system and observing object detection results at the host,

indicating that even though the measured delay included overheads from

decentralized processing, frame dropping did not occur during the detection
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task when the camera capture rate was approximately 20 fps. In addition

to computational offloading, the experimental evaluations demonstrated that

the network load of the host can be reduced by several orders of magnitude.

Based on the quantitative evaluations, it can be concluded that autonomous

driving systems can reap the benefits of decentralized processing, even with

the resulting delays.

7.2 Future direction

In this study, the potential of GPU acceleration of computations for

autonomous driving was explored. Although GPUs should benefit perception

tasks for autonomous driving, the perception accuracy depends on the

algorithms because the methods investigated to apply GPUs in this study

do not change the basic algorithm flow. Therefore, identifying methods to

improve the perception accuracy is essential for expanding the applicable

area of autonomous driving. Such an improvement may be achieved using a

single perception algorithm or a sophisticated pipeline comprising subdivided

tasks. In this regard, deep-learning-based methods are highly promising; the

interpretability of those methods (i.e., explainable AI or XAI ) is crucial for

obtaining social acceptance as well as further accuracy improvements.

Regarding accelerating computations using GPUs, the derivation of the

potential capacities of GPUs as well as the evolution of GPUs should be

considered. Because one of the key features for achieving fast computation

on GPUs is to hide memory access latency by processing executable threads

simultaneously, the number of CUDA threads per unit (i.e., warp) is a typical

parameter to be adjusted to derive the GPU’s performance. As another

example, DLA, which is a dedicated unit for processing deep-learning-related

computations efficiently, has recently been installed on GPUs as a result

of widespread deep-learning usage. As shown by the evaluation results in

Chapter 5, leveraging such GPU capacities is essential to fulfill the criteria

of autonomous driving systems, such as fast computation and low power

consumption.

Owing to the steady development of the performance of GPUs over the

past decade, further considerations are necessitated prior to their practical
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deployment. For example, this study demonstrated that a combination

of embedded-oriented GPUs and network weights quantization can reduce

power consumption considerably, and that object detection inference can be

achieved with approximately 7.3 W per camera on average (see Chapter 5).

However, further power consumption reductions may be necessitated because

of the significant number of components that require electrical power

in high-level autonomous driving systems. In such situations, setting

limitations on the power consumed by decentralized units is one of the

viable countermeasures. Because power consumption and computational

capacity generally exhibits a tradeoff relationship, power limitations are

necessitated to balance performance with other considerations. Additionally,

verification tests have gradually become vital for gaining social acceptance

toward autonomous driving. Hence, the continuous investigation of practical

settings and verification/validation tests may encourage the development and

acceptance of high-level autonomous driving technologies.

I hope that the findings presented herein can facilitate the acceleration

of task computations while satisfying the criteria for the implementation of

high-level autonomous driving systems in the future.
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Automatic Camera and Range Sensor Calibration using a single Shot.

In Proc. of the IEEE International Conference on Robotics and Automa-

tion, pages 3936–3943, 2012.

[66] Davide Scaramuzza, Ahad Harati, and Roland Siegwart. Extrinsic

Self Calibration of a Camera and a 3D Laser Range Finder from

Natural Scenes. In Proc. of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 4164–4169, 2007.

[67] S. Kato, J. Aumiller, and S. Brandt. Zero-Copy I/O Processing for

Low-Latency GPU Computing. Proc. of the IEEE/ACM International

Cnference on Cyber-Physical Systems, pages 170–178, 2013.

[68] A. Nguyen, Y. Fujii, Y. Iida, T. Azumi, N. Nishio, and S. Kato. Reducing

Data Copies between GPUs and NICs. Proc. of the IEEE International

Conference on Cyber-Physical Systems, Networks, and Applications,

pages 37–42, 2014.

[69] Y. Iida, M. Hirabayashi, T. Azumi, N. Nishio, and S. Kato. Connected

Smartphones and High-Performance Servers for Remote Object Detec-

tion. Proc. of the IEEE International Conference on Cyber-Physical

Systems, Networks, and Applications, pages 71–76, 2014.

[70] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. TimeGraph:

GPU scheduling for real-time multi-tasking environments. Proc. of the

USENIX Annual Technical Conference, pages 1–14, 2011.

[71] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt. Gdev: First-Class

GPU Resource Management in the Operating System. Proc. of the

USENIX Annual Technical Conference, pages 1–12, 2012.

[72] C. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel. PTask:

Operating System Abstractions to Manage GPUs as Compute Devices.

Proc. of the ACM Symposium on Operating Systems Principles, pages

233–248, 2011.



130

[73] NVIDIA. Jetson TX1. https://developer.nvidia.com/

embedded/jetson-tx1.

[74] NVIDIA. Jetson TX2. https://developer.nvidia.com/

embedded/jetson-tx2.

[75] NVIDIA. Jetson AGX Xavier. https://developer.nvidia.com/

embedded/jetson-agx-xavier.

[76] NVIDIA. Jetson Nano. https://developer.nvidia.com/

embedded/jetson-nano.

[77] arm. Mali series. https://www.arm.com/en/products/

silicon-ip-multimedia.

[78] Sparsh Mittal. A Survey on optimized implementation of deep learning

models on the NVIDIA Jetson platform. Journal of Systems Architec-

ture, 2019.

[79] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.

arXiv preprint arXiv:1804.02767, 2018.

[80] NVIDIA. TensorRT. https://developer.nvidia.com/

tensorrt.

[81] The Autoware Foundation. Autoware. https://gitlab.com/

autowarefoundation/autoware.ai.

[82] COCO Consortium. COCO 2017 Val images. http://images.

cocodataset.org/zips/val2017.zip.

[83] NVIDIA. CUDA C++ BEST PRACTICES GUIDE. https:

//docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_

Guide.pdf, 2019.

[84] COCO Consortium. COCO 2014 Val images. http://images.

cocodataset.org/zips/val2014.zip.

https://developer.nvidia.com/embedded/jetson-tx1
https://developer.nvidia.com/embedded/jetson-tx1
https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-agx-xavier
https://developer.nvidia.com/embedded/jetson-agx-xavier
https://developer.nvidia.com/embedded/jetson-nano
https://developer.nvidia.com/embedded/jetson-nano
https://www.arm.com/en/products/silicon-ip-multimedia
https://www.arm.com/en/products/silicon-ip-multimedia
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://gitlab.com/autowarefoundation/autoware.ai
https://gitlab.com/autowarefoundation/autoware.ai
http://images.cocodataset.org/zips/val2017.zip
http://images.cocodataset.org/zips/val2017.zip
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://images.cocodataset.org/zips/val2014.zip
http://images.cocodataset.org/zips/val2014.zip


131

[85] Senthil Yogamani, Ciarán Hughes, Jonathan Horgan, Ganesh Sistu,

Padraig Varley, Derek O’Dea, Michal Uricár, Stefan Milz, Martin Simon,

Karl Amende, et al. WoodScape: A multi-task, multi-camera fisheye

dataset for autonomous driving. arXiv preprint arXiv:1905.01489, 2019.



132

List of Publications by the

Author

Research achievements related to the disserta-

tion

Journal papers

1. Manato Hirabayashi, Shinpei Kato, Masato Edahiro, Kazuya Takeda,

and Seiichi Mita, “Accelerated Deformable Part Models on GPUs”,

IEEE Transactions on Parallel & Distributed Systems, Vol. 27, No. 6,

pp. 1589–1602, Jun. 2016.

2. Manato Hirabayashi, Adi Sujiwo, Abraham Monrroy, Shinpei Kato,

and Masato Edahiro, “Traffic Light Recognition using High-Definition

Map Features”, Journal of Robotics and Autonomous Systems, Vol.

111, pp. 62–72, Jan. 2019.

3. Manato Hirabayashi, Yukihiro Saito, Kosuke Murakami, Akihito

Ohsato, Shinpei Kato, and Masato Edahiro , “Vision-based Sensing

Systems for Autonomous Driving: Centralized or Decentralized?”,

Journal of Robotics and Mechatronics, Vol. 33, No. 3, pp. 686–697,

Jun. 2021

International conferences

1. Manato Hirabayashi, Shinpei Kato, Masato Edahiro, Kazuya Takeda,

Taiki Kawano, and Seiichi Mita, “GPU Implementations of Object



133

Detection using HOG Features and Deformable Models”, in Proc. of

the IEEE 1st International Conference on Cyber-Physical Systems,

Networks, and Applications, pp. 106–111, 2013.

Other research achievements

International conferences

1. Yuki Iida, Manato Hirabayashi, Takuya Azumi, Nobuhiko Nishio, and

Shinpei Kato, “Connected Smartphones and High-Performance Servers

for Remote Object Detection”, in Proc. of the IEEE 2nd International

Conference on Cyber-Physical Systems, Networks, and Applications,

pp. 71–76, 2014.

2. Yuki Kitsukawa, Manato Hirabayashi, Shinpei Kato, and Masato

Edahiro, “Exploring the Problem of GPU Programming for Data-

Intensive Applications: A Case of Multiple Expectation Maximization

for Motif Elicitation”, in Proc. of the 5th Symposium on Information

and Communication Technology, pp. 256–262, 2014.

3. Abraham Monrroy, Manato Hirabayashi, Shinpei Kato, Masato

Edahiro, Takefumi Miyoshi, and Satoshi Funada, “Hexa Cam: An

FPGA-Based Multi-view Camera System”, in Proc. of the IEEE 3rd

International Conference on Cyber-Physical Systems, Networks, and

Applications, pp. 48–53, 2015.

International workshop

1. Manato Hirabayashi, Shinpei Kato, Masato Edahiro, and Yuki

Sugiyama, “Toward GPU-Accelerated Traffic Simulation and Its Real-

Time Challenge”, in Proceedings of the 1st International Workshop on

Real-Time and Distributed Computing in Emerging Applications, pp.

1–6, 2012.


	Abstract
	1 Introduction
	1.1 Background
	1.1.1 Autonomous driving as an emerging technology
	1.1.2 General-purpose computing on GPUs

	1.2 Contributions and structure of this study
	1.3 Organization

	2 Related studies
	2.1 Object detection
	2.1.1 Traditional algorithms
	2.1.2 Cutting-edge methods using revived neural network techniques

	2.2 GPUs as decentralized units

	3 GPU-Accelerated Object detection
	3.1 Accelerating traditional object detection algorithm using GPUs
	3.1.1 Preliminary analysis of DPM workflow
	3.1.2 GPU-based implementation of DPM
	3.1.3 Results of DPM acceleration using GPUs
	3.1.4 Results of GPU-accelerated traditional object detection

	3.2 Paradigm shift forming current mainstream

	4 Traffic light recognition using High Definition Map Features
	4.1 Motivation
	4.2 Proposed scheme and assumptions
	4.2.1 3D High Definition Maps
	4.2.2 ROI Extraction
	4.2.3 Morphological Processing
	4.2.4 Deep-Learning-Based Detector

	4.3 Implementation
	4.3.1 Autoware Implementation
	4.3.2 Color State Training and Recognition by SSD
	4.3.3 Interframe Filter

	4.4 Evaluation of the proposed scheme using practical data
	4.4.1 Experimental Setup
	4.4.2 Effect of ROI Extraction on Recognition Accuracy
	4.4.3 Effects of Distance from Target on Recognition Recall
	4.4.4 Effects of ROI Extraction on Recognition Speed
	4.4.5 Effects of GPU on SSD Recognition Speed
	4.4.6 Effects of the Number of Images in the Training Data on Recognition Accuracy
	4.4.7 Discussion

	4.5 Interim conclusions on traffic light recognition

	5 Distributed Perception Architecture Using GPUs
	5.1 Problems that may arise when applying GPUs to autonomous driving systems
	5.2 Possible solution to the problems
	5.3 Model of a decentralized processing system for autonomous driving
	5.4 Implementation details of a prototype of decentralized processing system
	5.4.1 Robot operating system (ROS) implementation
	5.4.2 Deep-learning inference using TensorRT and weights quantization
	5.4.3 Jetson settings

	5.5 Performance analysis
	5.5.1 Experimental setup
	5.5.2 Delays based on decentralized processing
	5.5.3 Effects of weights quantization on resource and power consumptions
	5.5.4 Limitations of centralized processing
	5.5.5 Effects of weights quantization on detection performances of different series of edge devices


	6 Discussion
	6.1 GPU-accelerated perception algorithms
	6.2 Decentralized processing using embedded-oriented GPUs

	7 Conclusion
	7.1 Summary of contributions
	7.2 Future direction

	Acknowledgement
	Bibliography
	List of publications by the author

