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Abstract

This thesis describes the author’s work on the study of image-based bronchoscope track-

ing for bronchoscopy navigation. In the United States and worldwide, the populations

death from lung cancer and bronchial cancer are the most among people who die from

other common cancers. Early diagnosis can effectively improve the survival rate of pa-

tients because the respiratory system is an essential organ of the human body. There

are many diagnosis methods, such as the use of computed tomography (CT) images

to diagnose the lesions; or the use of a flexible endoscope for pathological examina-

tion of the bronchial lumen (transBronchial Biopsy). However, during transBronchial

biopsy, since the field of view (FoV) of the camera is narrow and the obtained real bron-

choscopic (RB) images have high similarity in appearance. Bronchoscopist is easy to

get lost in the tree-like bronchus. Therefore, a navigation system is used to locate the

bronchoscope camera in three-dimensional (3D) bronchus and provide the necessary

3D information to the bronchoscopist during bronchoscopy.

A bronchoscopy navigation system works like a ‘car navigation system’. The bron-

choscopy navigation system shows the camera position of the bronchoscope in real-time

in CT image coordinate to navigate physicians during examination. The kernel part of

the navigation is bronchoscope tracking, which is used to estimate the camera pose of

the bronchoscope. Existing navigation systems either use video-CT-based tracking or an

additional electromagnetic (EM) sensor-based bronchoscope tracking. However, for the
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type of video-CT-based tracking, the tracking result suffers from the difference between

preoperative CT images and intraoperative images; and the EM sensor-based tracking is

easily affected by metallic surgical tools and patient movements. To accurately estimate

the camera pose, we use methods in computer vision to precisely estimate the camera

pose for each coming RB frame. We use a technique called simultaneous localization

and mapping (SLAM) to recover the camera pose of a bronchoscope. SLAM uses image

sequence as input. The 2D key points detected in the RB images are used to estimate

the camera pose and reconstruct the 3D surroundings. This technique calculates the

camera pose by minimizing the reprojection error of the 3D points on the image plane.

The original method is mainly designed for ordinary indoor/outdoor scenes, however,

the bronchus scene contains more complex scenes such as organ deformation caused

by patient breathing. Therefore, we improve the original SLAM before applying it for

bronchoscope tracking. The 3D position of the point is considered as a condition to

find 3D points, which are used to find accurate points for tracking. For validation, two

phantoms are used to create bronchoscopic videos. The deformation from the breath is

simulated by adding periodic force to the phantom. Experimental results showed that

the proposed method is more accurate and more stable than the original method. The

proposed method tracks more continuous frames as well. This method is described in

detail in Chapter 2.

The complex bronchus scene leads to additional difficulties in image-guided naviga-

tion tasks. Therefore, understanding of the operation field is critical during examination

or surgery. To this end, a segmentation method is proposed to extract the bronchial ori-

fice region, which is an important characteristic of the bronchus scene on RB video

frames, to assist the physicians. Previous works use image appearance and gradation

of the RB image for the segmentation task, which behaves poorly in scenes of existing

bubbles or changes in illumination. We use the distance between camera and bronchial

anatomical structure, which is represented as depth image, to segment the bronchial
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orifice region instead of a color image to overcome the previous works’ shortcomings.

According to the previous literature, depth image-based image-guided procedures per-

form better than color image-based procedures. Depth image is estimated using an

image-to-image translation network named cycle generative adversarial network (Cy-

cleGAN). CycleGAN is trained to find the relationship between the RB image domain

and the depth image domain. We segment the bronchial orifice region individually for

each image. We use the vertical and horizontal projection profile curves from the depth

image to decide the threshold value used for the binarization. The nonzero region in

the binarized image is considered as the bronchial orifice region. This algorithm is de-

scribed in detail in Chapter 3.

The existing navigation systems estimate the camera pose precisely for each frame,

However, the conventional bronchoscope tracking methods will gradually accumulate

tracking errors, which will lead the tracking procedure to fail easily. Therefore, a coarse

camera localization method is proposed to roughly localize the camera in the bronchi

branch using the changes in the anatomical structure of the bronchi. The bronchial

orifice is an important anatomical structure in bronchus and it changes with the level

of the bronchus. Therefore, the understanding of the changes in the bronchial orifice

will benefit a lot for the navigation system. The changes in the bronchial orifice are

used to estimate the current bronchial level. The orifice region is obtained by using

depth images, which are generated by an image-to-image translation network named

cycle generative adversarial network (CycleGAN). The camera movement direction is

obtained from the feature point-based camera pose estimation. The branching level is

estimated by considering the changes of the bronchial orifice and the camera moving

direction. Experimental results showed that the proposed method could estimate the

branching level with high accuracy. This method is described in detail in Chapter 4.

At last, the advantages and disadvantages of precise and coarse bronchoscope track-

ing are compared. From the comparisons, a conclusion that the characteristics based
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tracking will benefit the bronchoscope tracking is obtained. This is described in Chapter

5.
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Chapter 1

Introduction

This thesis summarizes the author’s work in real bronchoscopic (RB) image-based bron-

choscope tracking. In Section 1.1, the current status of lung/bronchus cancer and other

respiratory diseases worldwide is outlined; in Section 1.2, several existing methods for

the diagnosis of lung/bronchus disease; in Section 1.3, the past and current status of

bronchoscopy together with the advantages and disadvantages of bronchoscopy are ex-

plained; in Section 1.4, the bronchoscopy navigation system is explained from three

aspects: definition, component, and existing navigation systems; in Section 1.5, the

core part of the navigation: the bronchoscope tracking, is introduced; in Section 1.6,

the positioning and the purpose of this research are explained in detail; and finally, in

Section 1.7, the structure of this thesis is illustrated.

1.1 Lung and bronchus cancer

According to recent surveys by the American Cancer Society [1, 2, 5, 6], lung and

bronchus cancer occupy the leading causes of death from common cancer. There are

about 228,820 estimated new cases in 2020, accounting for approximately 12.7% of all

1
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Figure 1.1: Estimated new cases and deaths from common cancers in 2020[1, 2]: esti-
mated deaths from lung and bronchus cancer are in first place.

newly confirmed cases; there were 135,720 estimated deaths in 2020, accounting for

approximately 22.4% of deaths from cancer (as shown in Fig. 1.1). Moreover, patients

who died from lung/bronchus cancer occupy first place among deaths from cancer. Lung

cancer and bronchus cancer are important causes of cancer deaths in the United States

and worldwide [7, 8]. The respiratory system is an important organ of the human body,

therefore, diseases in this region are more likely to lead to patient death.

There are many causes of lung/bronchus diseases, among which smoking and sec-

ondhand smoke are the most critical. Moreover, with the onset of industrial society in

the 1860s, an increased number of respiratory system diseases, especially bronchus dis-

eases, has been observed due to the burning of fossil fuels/environmental destruction.

Therefore, an effective way to decrease the patient death rate is to reduce the num-

ber of patient deaths due to lung disease. To do so, the best way is to avoid the occur-
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rence of lung/bronchus diseases, such as avoiding nicotine exposure and maintaining

a healthy lifestyle. However, effective treatment is necessary to diagnose disease in its

early stages.

1.2 Types of diagnosis

Early diagnosis can effectively improve the survival rate of patients. According to the

literature [1], the five-year relative survival rate has a 20.5% (from 2010 to 2016)

benefit from early diagnosis. We classify the existing diagnosis methods of lung can-

cer into three types: medical images-based, which use medical images (such as Com-

puted Tomography (CT), X-ray, and Magnetic Resonance Imaging (MRI)) for diagnosis;

procedure-based, which uses an examination procedure such as bronchoscopy or trans-

bronchial biopsy to diagnosis lesion regions; and biomarker testing-based [9], which

uses samples of cells for diagnosis, such as cancer genetic testing and tumor marker

testing [10, 11].

1.2.1 Medical images-based diagnosis

With developments in science and technology, more and more imaging techniques are

used to obtain medical images for the diagnosis of diseases. There are many kinds

of medical imaging methods, such as X-ray (discovered in 1895) [12], CT (invented

in 1967) [13], MRI examination (1977/1978, the first MRI scanner) [14], and other

imaging techniques. CT images are obtained from a CT machine that records differences

in the absorption and transmittance of X-rays of different tissues. CT images allow

physicians to see inside the human body without cutting. CT images are processed to

find organ regions (lung/bronchus) and lesion regions with segmentation technologies

[15] in computer-aided diagnosis (CAD) [16, 17]. The CAD technique originated in
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the 1950s with the development of modern computers [18]. The CAD system makes it

easier to diagnose lung cancer in its earlier stages [19–21].

1.2.2 Procedure-based diagnosis

Procedure-based diagnosis allows physicians to observe a patient’s tissues in real-time

via devices such as a microscope or bronchoscope [22]. There are many procedures,

including microscopy, bronchoscopy, mediastinoscopy and mediastinotomy, and thora-

centesis. As an example, in a microscope-based procedure, a microscope is used to

inspect the tissues/cells obtained from a suspicious region for further investigation; in a

thoracentesis procedure, fluid is removed from the thoracic cavity by needle aspiration

for diagnostic and/or therapeutic purposes.

1.2.3 Biomarker testing-based diagnosis

Biomarker testing-based diagnosis uses genetic material such as protein or DNA to diag-

nosis lung cancer and control the treatment effect. Changes in genetic information such

as aggregated proteins determine the therapeutic effect. This type of diagnosis covers

three examination types: cancer genetic material examination, PD-L1 examination, and

serious injury sign examination.

1.3 Bronchoscopy

1.3.1 Introduction

Bronchoscopy, as an efficient way to diagnose bronchial diseases, has become very pop-

ular since the bronchoscope was invented. According to the literature [23], at least

500,000 bronchoscopies were performed each year during the 2000s. There are cur-
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Figure 1.2: Bronchus tree and several RB images obtained in different positions [3].

rently 1342 board-accredited fellows actively performing bronchoscopy in Japan, ac-

cording to a survey from the Japan Society for Respiratory Endoscopy (JSRE) [24].
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Years of experience has made bronchoscopy a safe procedure in the hospitals involved

in this survey [24]. In addition to diagnosing lung cancer, there are many other reasons

to perform a bronchoscopy: as part of a lung/bronchus examination; identification of a

lung infection; to remove a foreign body entering the trachea/main bronchi; and other

problems that arise in the lung and bronchus [25].

Before the bronchoscopy procedure, bronchoscopists use preoperative images (e.g.,

CT images) to diagnosis lesion regions and perform path planning with virtual en-

doscopy software (VES) [26, 27]. At the beginning of the procedure, the patient will

be given a sedative to decrease their breath and heart rates. In addition, medicine is

used to numb the patient’s throat because, during the examination, the bronchoscope

will be inserted into the bronchus via the throat. The patient is kept awake through-

out the procedure because the bronchoscopist will need the patient to respond to their

instructions. During a bronchoscopy procedure, bronchoscopists insert a bronchoscope

(usually a flexible bronchoscope) into the bronchus through the patient’s mouth or nose.

The patient’s bronchial internal information is displayed simultaneously on a monitor.

Bronchoscopists manipulate the bronchoscope via an external handle to move to the

target area while watching the bronchoscopic video via the monitor [28]. A typical

bronchoscopy procedure lasts about half an hour; however, additional time may be

needed if a biopsy (e.g., for biomarker testing) is required [25, 29]. Nevertheless, this

procedure takes less time for treatment and recovery than other surgeries. Patients will

recover and be able to return to work quickly after bronchoscopy.

1.3.2 History of bronchoscopy

The first bronchial examination appears to be the examination carried out by Gustav Kil-

lian in 1876 [30]. He used a rigid endoscope to examine a patient’s trachea and main

bronchi, and removed a foreign body (pork bone) from the bronchus [31, 32]. With the
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birth of endoscopes in 1807 [33], the process of bronchial examination has continued

to improve. In 1895, Alfred Kirstein reported an operation that used an endoscope to

visualize the vocal cords and proximal large airway [32]. There are many types of bron-

choscopes, which are classified into rigid (originated in 1897) [32], non-rigid/flexible

(originated in 1968) [34], and endobronchial ultrasound-guided transbronchial needle

aspiration (EBUS) (originated in 1992) [35–40].

The rigid bronchoscope is a hollow metal tube [41], as shown in the top left of Fig.

1.3. Due to its size and material, its explosive region is limited to the trachea and main

bronchus. The flexible bronchoscope is also a hollow tube; however, it is thinner and

longer and, most important, its tip can be oriented [42]. Therefore, it can be inserted

into the terminal bronchiole. Currently, most examinations use the flexible broncho-

scope. The EBUS bronchoscope is an upgraded flexible bronchoscope. Endobronchial

ultrasound (EBUS) probes are attached to the bronchoscope’s tip. The EBUS broncho-

scope is used to sample mediastinal lymph nodes during bronchoscopy.

The type of the bronchoscope is selected depending on the purpose of the examina-

tion. For example, a rigid bronchoscope is sufficient to remove a foreign object from the

bronchus; however, a flexible bronchoscope is necessary for the diagnosis of lesions in

the terminal bronchiole. For the sampling of mediastinal lymph nodes, an EBUS bron-

choscope is more suitable. Figure 1.3 illustrates examinations using the three types of

bronchoscope [4]. The focus of this thesis is the flexible bronchoscope.

1.3.3 Advantages of bronchoscopy

Bronchoscopy is an efficient method for examination; it has many benefits not only for

the bronchoscopist, but also for the patients [43–45]. Since the images obtained from

this examination type are more comprehensible to the human eye than other types, it is

easier for a bronchoscopist to obtain essential information from these images than from
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(a) Rigid bronchoscope-based

(b) Flexible bronchoscope-based

(c) Ebus bronchoscope-based

Figure 1.3: Illustration of three types of bronchoscope-based examinations (figures
from [4]). (a) shows a rigid bronchoscope-based examination; (b) shows a flexible
bronchoscope-based examination; and (c) shows an EBUS bronchoscope-based exami-
nation. The figure in the top right is an ultrasound image.

other image types (CT images, X-rays). Moreover, since this examination visualizes the

examining regions during the examination, bronchoscopists can appreciate any abnor-

malities easily in real-time. Abnormal tissue, organ deformation, and even bleeding can

be observed through the bronchoscope. Through the benefit of real-time observations,

bronchoscopists can perform operations, such as removing copious fluid and foreign

objects. Bronchoscopists can even take samples of tissues for follow-up inspection. Pa-

tients recover quickly and return to work in a shorter time than with traditional surgery.
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1.3.4 Shortcomings of bronchoscopy

However, there are some shortcomings of bronchoscopy based examination, especially

for flexible bronchoscope-based examination. Bronchoscopists, especially young physi-

cians, may lose their current field of view (FoV) during the examination, which is caused

by the following. First, the insertion cord of the bronchoscope is a soft structure, mak-

ing it difficult to locate the bronchoscope’s tip in the bronchus. Second, the bronchus

is a tree-like structure with many branches (as shown in Fig. 1.2). What’s more, the

bronchial lumen is very similar in appearance, which leads to high similarity in 2D bron-

choscopic images. Therefore, it is necessary to use a bronchoscopy navigation system to

help the doctor locate the current examination position.

1.4 Bronchoscopy navigation

1.4.1 Introduction

With the popularity of family cars, the term ”navigation” has gradually entered into the

public’s attention. Navigation originally means a technology that calculates the route

from the current location to a destination based on your current location and under-

standing of the surrounding environment (map) [46]. A driver uses the car navigation

system in the following way: firstly, he sets the destination where he want to go in

the car navigation system; secondly, the navigation system generates the best route

from the current location to the destination based on the existing map (Google map

[47–49] or other map [50–52]); thirdly, the navigation system continuously provides

direction hints during the journey. The principle of a surgical navigation system is sim-

ilar to that of a car navigation system. There are several types of navigation systems

in clinical application: navigation system for sinus surgery [53–57], navigation system

for coronary Artery Stenosis [58, 59], navigation system for knee arthroplasty [60–63],
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Table 1.1: Comparison of car navigation and bronchoscopy navigation

Item Car navigation Bronchoscopy navigation
Object Car Bronchoscope
User Driver Bronchoscopist
Map Google map (Previously downloaded) Segmented bronchus region

Target Destination Lesion areas
Path Path to destination Path to lesion
User Crossroads Bifurcation

Possbile trouble Accident and/or other unexpected event Bubble, blood, etc.

navigation system for abdominal surgery [64–68]. These systems assist the surgeon

in different ways in different scenarios. Among them, the bronchoscopy navigation sys-

tem is used during the examination of lung and bronchus. Physicians are assisted by the

preoperative information, the intraoperative information, and the generated navigation

information.

To illustrate the similarities and differences between a car navigation system and the

bronchoscopy navigation system, we compare the key factors of these two systems in

Table 1.1 1.1. To reach the lesion area (destination) smoothly, the navigation system

should include the components described in the following subsections.

1.4.2 Components of a navigation system

The bronchoscopy navigation system uses information obtained before and during the

surgery to generate navigation information to assist the doctor. Preoperative informa-

tion generally refers to preoperative images prepossessed by CAD technology. Intra-

operative information includes the inference of the endoscope’s current position and

the navigation path updated in real-time. Therefore, a bronchoscopy navigation system

mainly consists of displaying preoperative information, intraoperative position naviga-

tion (bronchoscope tracking), and patient-CT registration, integrating preoperative and

intraoperative information.



1.4. BRONCHOSCOPY NAVIGATION 11

Visualization of preoperative information

Preoperative information mainly refers to the medical images taken before the bron-

choscopy. Anatomical structure information is obtained through CAD technology [69–

71]. Images obtained before the operation are used as maps of the navigation system.

The bronchial area can be obtained by segmentation in CAD to locate the bronchus re-

gion and lesion. Bronchial naming technology can obtain the corresponding parts of

each branch, and the lesion area and location can be inferred and manually confirmed

by a lesion-area recognition algorithm. A volume rendering technique is used to render

the CT images into a virtual endoscopic image [72–74]. VES is used to visualize the

segmented CT images in most images. A screenshot of VES is shown in Fig. 1.4. In this

software, the CT images are viewed in three directions: axial, sagittal, and coronal. The

visualized image is shown in the center window. The parameters for volume rendering

are shown on the right.

Estimation of camera pose

The estimation of the camera pose is the core of the navigation system. It is essen-

tial to obtain the camera position in real-time since the camera position constantly

changes during the inspection. The technique of acquiring the camera pose is the so-

called bronchoscope tracking. The bronchoscope tracking procedure uses the pre- and

intra- operation information to estimate the current position of the camera. We investi-

gate the existing methods for bronchoscope tracking and classify them into four types:

(1) manual adjusted tracking (the real bronchoscope is tracked by synchronize the vir-

tual bronchoscope view according to the real bronchoscope view); (2) video-CT image

registration-based tracking (the camera pose is estimated by maximizing the similarity

between the virtual bronchoscope view and the real bronchoscope view iteratively); (3)

additional sensor-based tracking (the camera pose is estimated from the output of an
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Virtual bronchoscopy

Rendering parameter
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H: (looking 
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Figure 1.4: Screenshot of a virtual endoscopy software. This figure shows the CT im-
ages in axial, sagittal and coronal cross sections, the main interface shows rendered CT
volume; the camera pose is shows in yellow text in the left bottom; the body direction
is shown in right bottom.

additional sensor); and (4) deep learning-based tracking (the camera pose is estimated

by using massive paired image-pose data to train a deep learning model). We introduce

these methods in detail in the following chapters.

Patient-CT registration

Since the preoperative CT image coordinate system is different from the intraoperative

camera coordinate system, it is necessary to use the common information (such as land-

marks or anatomical structures) in the two coordinate systems for registration. The
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camera position and surgical tools during the operation will be displayed in the navi-

gation system using the registration results. Therefore, the accuracy of the registration

results will directly determine the visualization of the navigation information. Generally,

the registration step is needed to be performed once before the navigation starts. How-

ever, if the camera fails to track during the operation or the tracking error gets large,

the registration step may be performed again. We investigate the existing registration

methods in navigation systems and classify them into three types: (1) landmark-based

(the registration is carried out using anatomical landmarks or artificial markers for reg-

istration [75]); (2) centerline-based [76, 77] (the registration is carried out by using

the medial line extracted in preoperative CT images and the trajectory of the broncho-

scope camera); and (3) bronchoscope tracking-based [78] (the registration is carried

out simultaneously with the bronchoscope tracking procedure. Notably, video-CT-based

bronchoscope tracking achieves patient-CT registration and estimates the camera pose

simultaneously).

Other auxiliary functions

Several auxiliary functions are integrated with the main navigation function to pro-

vide better support to physicians. For example, the bronchial deformation exists during

bronchoscopy and it will cause the difference between preoperative and intraoperative

information. If a navigation system implements this function, the pre- and intra- op-

eration error can be reduced by simulating the bronchial deformation [79, 80]. Even

though more functions will make a complex navigation system, it is beneficial to the

bronchoscopist.
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Table 1.2: Types of bronchoscopy navigation systems

System name
Tracking
method Patient-CT registration Description

SuperDimension
[75, 82]

EM sensor-
based

Landmark (plastic sheath)-
based registration

Wide clinical
application

LungPoint [83]
Manual
tracking Image-based registration

Generates path to target,
Clinical application

Veran SPiNDrive [84]
EM sensor-

based Not mentioned
Lack of technique details
and clinical application

Bf-NAVI [85]
Manual
tracking Image-based registration

Virtual bronchoscopy
navigation for EBUS

1.4.3 Bronchoscopy navigation systems

The first bronchoscopy navigation system (BNS) [81] was developed in 1998, since

then, many solutions have been developed. Among these solutions, several BNSs have

been used clinically and most are still being researched. We conducted a survey to

investigate current navigation systems, including commercially available systems and

those under development. Several commercial platforms are shown in Table 1.2. There

are many navigation schemes under development. Since the performance of naviga-

tion systems is mainly based on the results of bronchoscope tracking, we investigated

the existing bronchoscope tracking methods. In the following section, we describe the

existing bronchoscope tracking methods in detail.

1.5 Bronchoscope tracking

Bronchoscope tracking manages to estimate the camera pose of the bronchoscope dur-

ing the examination. In addition to the tracking methods shown in Table 1.2, there are

many tracking methods under development. In this Section, we describe the state-of-

the-art bronchoscope tracking methods in detail.
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Existing bronchoscope tracking methods can be roughly classified into four types:

video-CT-based tracking [86–89], additional sensor-based (electromagnetic (EM) sen-

sor) tracking [90–93], hybrids of two methods [91, 94, 95], and deep learning-based

tracking.

Pose from video-CT registration

Video-CT-based bronchoscope tracking uses RB images and virtual bronchoscopic (VB)

images for camera pose estimation. RB images are color images obtained in real-time

from a bronchoscope; VB images are images rendered from preoperative CT images.

The camera pose is estimated by maximizing the image similarity between RB images

and VB images [78, 81, 95–97]. Deguchi et al. improved the image registration proce-

dure by using selected subblocks instead of the entire RB and VB images [86]. Subblocks

are selected according to the characteristic structures (folds, patterns, bifurcations, and

so on). Tracking performance is greatly improved in images containing rich charac-

teristic structures and is weak in textureless images. Luo et al. took more structural

information (such as luminance, the contrast between selected blocks) into considera-

tion while calculating the image similarity [89, 91]. Tracking accuracy decreased from

14.6 mm to 4.5 mm, and processing can be achieved in real-time using a GPU for accel-

eration.

In addition to the improvement of the similarity function, Shen et al. improved the

conventional video-CT-based method by using depth information for image registration

[98, 99]. The corresponding depth image of RB images is estimated using shape from

shading (SFS) [100], while the corresponding depth images of VB images are the pro-

jection of CT images on a virtual bronchoscope. The camera pose is estimated by finding

the maximum similarity between the two types of depth images. The depth image-based

registration decreased the influence of illumination artifacts.
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Pose from additional sensor

Sensor-based bronchoscope tracking uses the output of an EM sensor that is integrated

onto the camera tip of a bronchoscope for navigation. There are three ways to use the

sensor’s output: (1) transform the 3D output of the sensor from sensor coordinates into

real camera coordinates by using the result of a hand-eye calibration procedure before

the examination [101, 102]; (2) transform the 3D output directly into the coordinates

of CT images to generate virtual bronchoscopic images for navigation [103–105]; and

(3) hybrid tracking using the output of the sensor and the video-CT-based tracking

[87, 94, 106, 107]. Merritt et al. improved the similarity calculation procedure and the

procedure for generating virtual bronchoscopy, which increased bronchoscope tracking

accuracy while decreasing computation time [95].

Pose from deep learning

With the improvement of hardware and deep learning algorithms, deep learning has

become popular in recent years. Some research groups try to apply deep learning algo-

rithms to bronchoscope tracking [108–110] and even bronchoscopy navigation [111].

Shen et al. used deep images generated by deep learning to improve video-CT-based

tracking [108]. They changed the image matching process from the original color-based

image domain to the depth domain to improve the robustness of bronchoscopy track-

ing. The depth image corresponding to the color image is generated by the pre-trained

model; the depth image corresponding to the CT image is calculated using the depth

image definition. The image matching process is based on two depth images. The cam-

era pose is the pose of the virtual camera when the two depth images get the maximum

similarity.

Sganga et al. used a localization network based on a convolutional neural network

(CNN) to achieve bronchoscopy tracking [109]. The essence of this method also uses
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the idea of video-CT-based tracking. The similarity between the virtual image and the

real image is calculated to reduce the position difference between the virtual camera

and the real camera. The camera pose is estimated by minimizing the difference be-

tween the virtual camera and the real camera.

There are many applications of deep learning in bronchoscopy. McTaggart et al.

used a classification network to classify the RB images into informative or uninfor-

mative [111]. One image is judged as informative or uninformative according to its

imaging quality. The experimental results showed that the deep learning-based method

is superior to the traditional edge-based method.

1.6 Positioning of this study

This section shows the positioning of our study. As it is described in the previous Chap-

ter, the bronchoscopy navigation technique acts as an additional important method to

assist physicians during bronchoscopy. Bronchoscopy navigation is one of the most im-

portant components in computer-aided surgery (CAS), its performance such as accuracy

and robustness are vital to a patient’s life. Common bronchoscopy navigation systems

rely on the result of the bronchoscope tracking and the anatomical structure of the

bronchus. Therefore, this thesis mainly researched the bronchoscope tracking and the

bronchial anatomical structure extraction, which are listed in the following:

(1) RB image-based precise bronchoscope tracking for bronchoscopy navigation

(2) RB image-based bronchial orifice (BO) segmentation for scene understanding

(3) BO changes-based coarse bronchoscopy navigation

In the following section, we will introduce each topic in details by considering the

previous works.

(1) RB image-based precise bronchoscope tracking for bronchoscopy naviga-

tion
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Bronchoscope tracking is an essential part in a bronchoscopy navigation system. The

performance of bronchoscope tracking decides the performance of bronchoscopy nav-

igation. The previous video-CT-based bronchoscope tracking depends mainly on the

similarity of image structures between RB and VB images or additional sensor-based

tracking. However, for video-CT-based tracking, the difference between preoperative

and intraoperative images decreases the accuracy of bronchoscope tracking. The organ

deformation and bubbles that exist in RB images are caused from patient breathing,

which do not exist in VB images. These differences may lead lead to the increment of

the tracking error, and so as the navigation. Moreover, registration error increases in the

region lacking local texture information (such as bifurcations or folds). What’s more,

video-CT-based methods require a huge amount of computation time for VB images

generation and images registration, which makes it difficult to perform navigation in

real-time for most navigation applications. On the other hand, EM sensor-based track-

ing also have shortcomings [86, 87] even though there are some clinical applications.

The positional data obtained from EM sensor may have jitters, which results to unsta-

ble navigation results; a sensor may also be affected by metallic surgical tools in the

operating room; and a bronchoscope equipped with an EM sensor cannot be inserted

into terminal bronchi due to its excessive size [86, 87]. Therefore, We use the pure

RB images for bronchoscope tracking to decrease the difference between preoperative

and intraoperative. RB images are processed by camera tracking methods in computer

vision. Experimental results showed that it is feasible to use the proposed method for

bronchoscope tracking.

(2) RB image-based BO segmentation for scene understanding

Scene understanding is an important task in surgeries. It contains many sub-taskssuch

as image classification, textual annotation, and object segmentation [112]. Due to the

complexity of the bronchus scenes, object segmentation in the bronchus scenes, such

as the segmentation of the anatomical structure (the BO and the carina) and surgical
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tools is more meaningful. The BO region is one of the representative characteristics in

the bronchus scene which is important in both navigation bronchoscopy and surgery

assessment. Previous image appearance-based work used image appearance and the

gradation of the RB image to segment the orifice region, which behaved poorly in com-

plex scenes including bubbles or changes in illumination. Therefore, we propose a depth

image-based segmentation algorithm to obtain a better segmentation result of BO even

in the complex scenes. Experimental results show that the BO region is accurately seg-

mented in RB images.

(3) BO changes-based coarse bronchoscopy navigation

Conventional navigation systems based on the result of precise bronchoscope track-

ing, ex. video-CT-based and EM sensor-based bronchoscope tracking, in which the track-

ing error is accumulated and lead to the failed of navigation. To overcome the conven-

tional precise bronchoscope tracking-based navigation systems, we propose a coarse

navigation system which is based on the result of coarse bronchoscope tracking. This

bronchoscope tracking operates by using the BO region’s changes to estimate branch-

ing level. Preliminary experimental results showed that the branching level is correctly

estimated. To decrease the tracking errors accumulated during bronchoscope tracking,

a coarse navigation scheme is used to identify the branches in which a bronchoscope

is currently observed. Therefore, a branching level estimation algorithm based on the

changes of the extracted anatomical structure is proposed. Experimental results showed

that the accuracy of the proposed branching level estimation methods is 87.6 %.

1.7 Structure of this thesis

This thesis consists of five chapters. Chapter 1 describes the backgrounds of this re-

search, the definition and the history of navigation bronchoscopy, and the positioning

of this study.



20 CHAPTER 1. INTRODUCTION

Chapter 2 describes a pure RB image-based method (visual SLAM) for precise bron-

choscope tracking. We show the mechanism of visual SLAM, our effects to make it

suitable for bronchoscope tracking and the performance of improved visual SLAM in

bronchoscope tracking in this section. The root mean square error (RMSE) value of the

estimated camera pose was 3.02 mm while that of the original was 3.61 mm.

Chapter 3 describes a depth image-based BO segmentation method. We introduce

the proposed method from the preparation of the training dataset and the decision of

the BO region in depth images. This method is validated in several in-vivo videos. We

manually found BO regions as ground truth to evaluate the BO segmentation method.

The performance of the proposed method was shown in this Chapter.

Chapter 4 describes a new coarse bronchoscope tracking scheme by using the changes

in anatomical structure: BO to estimate the branching level. The number of the BO is

counted from the depth image, which is estimated by the deep learning method de-

scribed in Chapter 4. Meanwhile, the movement of the bronchoscope camera is esti-

mated from feature-based camera motion estimation. The branching level is estimated

from the aforementioned method. Experimental results showed the performance of the

proposed branching level estimation method.

Chapter 5 describes a comparison of these two tracking methods and the future work

of this research.



Chapter 2

Computer vision-based precise

bronchoscope tracking

This chapter describes the author’s work on computer vision-based bronchoscope track-

ing. Due to the complex anatomical structure of bronchi and the resembling inner

surfaces of airway lumina, bronchoscopic examinations require additional 3D naviga-

tional information to assist the physicians. A bronchoscopy navigation system provides

the position of the endoscope in CT images with augmented anatomical information.

To overcome the shortcomings of previous navigation systems, we propose using a tech-

nique known as visual simultaneous localization and mapping (SLAM) to improve bron-

choscope tracking in navigation systems. This chapter explains the proposed method

from three aspects: (1) image-guided bronchoscope tracking; (2) proposed method for

bronchoscope tracking; and (3) the performance of the proposed method.

21
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2.1 Background

The bronchoscopy navigation systems mainly contain the bronchoscope tracking part,

CT-patient registration part, and the visualization part. The structure of the navigation

system is shown in Fig. 2.1. As explained in the first Chapter, the bronchoscope tracking

part manages to estimate the bronchoscope’s camera pose. The patient-CT registration

part manages to find the coordinate relationship between preoperative CT images and

the intraoperative RB images. And the visualization part shows the integrated preoper-

ative and intraoperative information.

Conventional video-CT-based bronchoscope tracking is influenced by the difference

between two image types. Therefore, a tracking method that uses the pure broncho-

scope image may benefit the bronchoscope tracking procedure.

2.2 Introduction of computer vision

Computer vision is a field that lets computers know the world from digital video or

images[113–115]. It operates by extracting the useful information from the inputs

(video/images) and processing it according to the demonstrated theorem. It is a way

to quantify the world, analyze the world, and interpret the world from the digitized

‘eye’. Therefore, several methods in the computer vision field are used to estimate the

bronchoscope pose by using the RB images as input.

2.2.1 Methods to recover 3D from 2D

The 2D image doesn’t contain the 3D information completely, however, the camera pose

is expected to know in 3D. Therefore, the obtained 2D images are used to recover 3D

information.
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Figure 2.1: System structure of navigation system: preoperative CT images are used to
segment the bronchus, which is used as the input of the virtual bronchoscopy software
and patient-CT registration; the RB video is used to estimate the camera pose by us-
ing bronchoscope tracking (visual SLAM). The output of bronchoscope tracking are the
camera pose and bronchus shape. The bronchus shape are used for patient-CT registra-
tion together with the shapes from CT images. Camera pose is transformed using the
patient-CT registration result.

There are many methods to recover the 3D camera pose from 2D images. For ex-

ample, the structure from motion (SfM) technique is used to estimate the 3D positional

information by using 2D images as input. This method assumes that there are enough

shared views among these images. The 3D information is estimated by solving a func-

tion that minimizes the reprojection error of found 3D-2D matches. Recently, deep

learning-based methods train a network to find the relationship in prepared data. For

example, Visentini-Scarzanella et al. train a dual CNN network to continuously trans-

late the RB images into VB images and then translate them into the corresponding depth

images [116].
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2.2.2 Visual SLAM

Simultaneous localization and mapping (SLAM) is an approach to estimate the senor

pose and the environment from the sensor data. There are many types of SLAM scheme

according to the sensor used: Lidar, single camera (monocular), multi-camera (stereo

camera or RGB-D). The SLAM schemes that process visual information from camera/cameras

are defined as visual SLAM [117].

Through two decades of development, many excellent solutions have been pro-

posed since the first SLAM application appeared in 2003 [118]. These solutions have

been tested in minimally invasive surgery (MIS) [119–123]. However, the size of the

bronchus, especially the terminal bronchioles, limit the size of the bronchoscope. In

most scenes, only the size of an optical camera is allowed at the tip of the bronchoscope.

To examine the terminal branches as much as possible, the bronchoscope tip should be

as small as possible, therefore, a small monocular camera is used. At the beginning

of the study, a survey is carried to investigate the conventional visual SLAM solutions,

including their advantages and disadvantages, which are shown in Table 2.1. Many

solutions are aiming at the monocular camera, as shown in Table 2.1. In recent years,

deep learning-based methods have also become popular and are applied into SLAM ap-

proaches [46, 133–144]. Visual SLAM is originally designed to estimate camera poses

and reconstruct 3D environments around a camera by using video of real-world scenes.

However, bronchus scenes are different from ordinary scenes. Most real-world scenes

are static with rich textures, while bronchus scenes are textureless with complex tree

structures. The difference between each pixel in one frame is small, as is the difference

between adjacent frames. Such homogeneous scenes result in additional mismatches

during camera tracking and 3D reconstruction. Moreover, the illumination in bronchus

scenes changes strongly. Since the dense SLAM [126, 128] uses image pixels directly,

which may either be influenced by illumination or be computationally demanding. A
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Table 2.1: SLAM solutions and a introduction of the details

Name of scheme Implementation method Usage scenarios Memo

MonoSLAM [124]
Feature point-based
Extend Kalman filter

Indoors
(Kitchen)

First visual SLAM
in real-time

PTAM [125]
Feature point-based

Optimization
Indoors
(Desk)

For AR
application

DTAM [126]
Dense

Optimization
Indoors
(Desk) Run on GPU

SVO [127] Semi-direct
Micro Aerial

Vehicles
Use feature point

and/or whole pixel

LSD-SLAM [128]
Direct based
Optimization

Outdoor
(Road) Semi dense

DSO [129]
Feature point-based

Optimization
Indoors

and outdoors Best direct-based

ORB-SLAM [130–132]
Feature point-based

Optimization
Indoors

and outdoors
Best feature
point-based

feature-point-based SLAM scheme, monocular ORB-SLAM [130] is selected, for bron-

choscope tracking among the existing visual SLAM frameworks.

2.3 Purpose of this Chapter

In this Chapter, a new bronchoscope tracking method is proposed by using the visual

SLAM technique in the computer vision. Visual SLAM uses pure bronchoscopic images

as input to estimate the camera pose and the environment surrounding the camera.

The outputs of the visual SLAM are used for patient-CT registration and the virtual

bronchoscopy software. The structure of the system is shown in Fig. 2.1.

2.4 Proposed method for bronchoscope tracking

This Section explains the proposed method for bronchoscope tracking. Since the origi-

nal visual SLAM is designed for ordinary scenes, it is essential to change before applying
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it to the bronchus scene. The details of the proposed method are described in Section

2.4.2.

The scheme structure of visual SLAM-based navigation is shown in Fig. 2.2. In the

following section, the proposed tracking procedure and its evaluation are introduced

in three parts: (1) details of the original visual SLAM technique; (2) improvement of

local feature matching in coarse-to-fine tracking; and (3) quantitative evaluation of the

camera trajectory.

2.4.1 Visual SLAM for bronchoscope tracking

ORB-SLAM is a semi-dense tracking solution that extracts Oriented FAST and Rotated

BRIEF (ORB) [145] features in images for camera tracking and 3D reconstruction. ORB

is a method for keypoint detection and description that outperforms other methods in

processing time while keeping a good accuracy [145]. ORB-SLAM uses many successful

theory in previous literature, such as the usage of the bundle adjustment for the opti-

mization of the reprojection error[146, 147]; the usage of bag of words (BoW) for the

recognition of the visited place [148, 149]; and so on. ORB-SLAM is introduced from

three aspects: initialization of RB image coordinates; pose estimation of each frame;

and creation of new 3D points.

Initialization of RB image coordinate

To determine the coordinate system of a real bronchoscope, an initialization procedure

is used prior to tracking. This procedure estimates an initial relative pose between two

adjacent frames and finds an initial set of 3D points. As shown in Fig. 2.3, two adjacent

frames are selected to find the 2D-2D feature matches that are used to calculate relative

pose between two frames. The initialization procedure runs iteratively until a motion
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Figure 2.2: System structure of improved visual SLAM and its application to bron-
choscopy navigation. Visual SLAM is used as the bronchoscope tracking method; the
output of visual SLAM and processed CT images are used for patient-CT registration;
and the registration results together with the output of visual SLAM are used to trans-
form the camera pose from RB to VB to generate navigational information.

hypothesis that satisfies most 2D-2D matches is found.

Under this hypothesis, the origin of real bronchoscope coordinates is set as the center

of the first frame (Fig. 2.3). The reconstructed 3D points represent an initial estimation

of the bronchus lumen (the map). More details about the initialization of real broncho-

scope coordinates can be found in Fig. 2.3.

Finally, an estimate of the camera pose P and the bronchus lumen are obtained af-

ter initialization. The camera pose has 6 degrees of freedom, which has a format of
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0 1

, where t = [x y z]⊤ is the 3D camera position; and R is the camera orien-

tation in a rotation matrix. The bronchus lumen is represented by B = {bi}, where

bi is the i-th 3D coordinate of reconstructed points. The camera position t and a 3D

point bi have lost the scale information due to the normalization during initialization.

However, the scale information is recovered to compute the transformation from real

bronchoscope coordinates to the CT coordinate system via the patient-CT registration

procedure as described in Section 2.4.3.

Estimation of camera pose

The tracking procedure uses the reconstructed 3D points together with the feature

points in one frame for the estimation of the camera pose. This uses a coarse-to-fine

procedure: during the coarse portion of the procedure, a subset of reconstructed 3D

points is selected to find the corresponding 2D points in a frame, and the camera pose

is estimated using the found 3D-2D matches; the fine portion of the procedure uses the

3D points nearby to find additional 3D-2D matches to refine the obtained camera pose

[130].

During the coarse portion of the procedure, the found 3D-2D correspondences are

used to estimate the camera pose at the k-th frame F(k) using the following equation:

SP(k) = argmin
P

∑
j

ρ
(∥∥∥u(k)

j − f(P,bj)
∥∥∥), (2.1)

where ρ is the Huber influence function [130], and bj ↔ u(k)
j is the j-th 3D-2D match.

Function f is the projection function, which projects 3D point bj onto the k-th frame

using camera pose P. This equation finds the best camera pose that minimizes the re-

projection error on the k-th frame, and a set of 3D-2D matches (inlier matches) support
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Figure 2.3: Illustration of three-part procedure of visual SLAM. Initialization uses 2D-2D
matches in two frames for the initialization of real bronchoscopy coordinates; camera
tracking uses 3D-2D correspondence for estimation of the camera pose; and 3D point
creation uses the previous two frames to find new 3D points.

this pose. The pose of the k-th frame is denoted as SP(k).

After the camera pose is estimated in the coarse portion of procedure, a pose refine-

ment procedure is used to find more 3D-2D matches. The details of this procedure are

introduced in Section 2.4.2.
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Creation of new 3D points

For the p-th frame, assuming that its camera pose has been estimated, a set of candidate

frames are selected for the creation of new 3D points from previous frames according

to the number of shared 3D points. Each feature point is checked if its 3D position

has been recovered. For the unreconstructed feature points, the corresponding points

in other frames are matched using epipolar geometry. The 3D position of one match is

computed using

b = triangulate(u(p)
j ,u(q)

j ), for each u(p)
j ↔ u(q)

j (2.2)

where triangulate is the triangulation function that recovers the 3D position of 2D-2D

matches, F(q) satisfies
{
F(q) | F(p) ∩ F(q) < threshold

}
, and threshold is the number of

shared 3D points. Each correspondence is triangulated to find its 3D position, and this

3D point is validated against narrow criteria (reprojection error, parallax of two frames,

etc.) before it is used in the coming tracking procedure.

2.4.2 Improved pose refinement for bronchoscope tracking

The pose refinement procedure uses the 3D points near frame F(k) to refine the pose

obtained in equation 2.1. The refinement procedure contains three main steps: (1)

selection of candidate frames based on shared 3D points among the frames; (2) incre-

ment of 3D-2D matches in the candidate frames; and (3) final pose optimization using

the found 3D-2D matches. Due to the homogeneous bronchus scene, there are many

mismatched 3D-2D correspondences. Therefore, the search region of the 3D points are

limited to the front of the camera, which is achieved by using camera posture as a fac-

tor as a limitation while the procedure finds 3D-2D matches—which is called posture

guided feature matching [150].
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Candidate frame selection

This procedure selects the candidate frames used for finding 3D-2D matches. Frames

near F(k) are selected according to the shared 3D points in the previous tracking proce-

dure. One frame is judged as a candidate frame only if it has enough shared 3D points

with F(k) [130].

Increment of 3D-2D matches

3D points located in the selected candidate frames are collected and used to find their

corresponding points in F(k). To make the tracking procedure more suitable for bronchus

scenes, the 3D points in front of the camera at the moment (i.e., those that are visible)

are selected instead of using all 3D points. For a 3D point b, the corresponding point

on F(k) is searched in a region π(b,S P(k)) ± r, where r is the number of pixels. The

original visual SLAM uses the distance between the descriptors to make the decision,

which may result in mismatches in homogeneous bronchus scenes. The correspond-

ing point of b in the nearest frame to F(k) are used. One point should also satisfy∥∥π(b,S P(k))− π(b,S P(l))
∥∥ < d before it is considered as the corresponding point, where

d is a pre-set threshold of distance, and F(l) is the nearest candidate frame to F(k). This

is a stricter criterion than in the original ORB-SLAM. Therefore, more accurate 3D-2D

matches than the original visual SLAM are found.

Local bundle adjustment

With the found 3D-2D matches, a bundle adjustment procedure is used to find the

minimum reprojection error. This procedure is similar to the pose estimation procedure

described in Section 2.4.1, however, this procedure contains more 3D-2D matches that

help to refine the camera pose.
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2.4.3 Quantitative evaluation of tracking

For the quantitative evaluation of the camera pose, an investigation is carried to inves-

tigate the existing evaluation schemes. A general evaluation method uses data from an

additional sensor, however, sensor-based evaluation may suffer from electromagnetic

jitter and the much effect are needed on finding corresponding timestamps. Consider-

ing the scale to be ambiguous in visual SLAM results, the output of visual SLAM are

evaluated by using the bronchus shape information from CT images. The validation

technique contains three steps: (1) the creation of a ground truth by the comparison of

RB and VB; (2) transformation of the camera pose from real bronchoscope coordinates

to CT coordinates by using the results of patient-CT registration; and (3) calculation of

the root mean square error (RMSE) value between the transformed camera pose and

ground truth data.

Creation of ground truth

Several frames whose poses have been successfully estimated by visual SLAM are picked

and their camera pose in CT coordinates are saved as ground truth. To create the ground

truth of one frame, the pose of the virtual camera is updated manually to generate the

virtual bronchoscopic images that is most similar to this frame. The software described

by Nimura [151] is used in experiment to create virtual bronchoscopic images. The

pose of the virtual camera in the CT coordinates is selected as the ground truth of the

camera pose. For the sake of fairness, the ground truth data is checked by two engineers

and a physician. Four ground truth sets of camera poses are obtained.

Estimation of transformation

For the validation of camera poses, the camera pose is converted from visual SLAM to

CT coordinates. This procedure starts from the transformation estimation of two coor-
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dinates. CT coordinate is represented by a segmented bronchus shape. The bronchus

region in CT images are segmented using CAD technique; then the points located on

inner surface of the bronchus are exported as the bronchus shape. This procedure is

illustrated in Fig. 2.4. The shape from visual SLAM is used to find the corresponding

control points. The control points are selected manually in a bronchus shape from vi-

sual SLAM and CT images. Then these point-pairs are used to estimate a 7 degrees of

freedom transformation. This transformation between two shapes is estimated by using

CTS = argmin
T

1

N

N∑
i=1

∥∥∥p(i)
C − Tp(i)

S

∥∥∥, (2.3)

where p(i)
C is the i-th selected point in bronchus shape from segmented CT images,

p(i)
S is the corresponding point of p(i)

C in shape from visual SLAM. CTS has a format of

s

R t

0 1

, which contains the scale s, rotation R, and translation t. At least four pairs

(N >= 4) are needed to find the transformation.

Evaluation of tracking accuracy

The estimated camera pose (position) is evaluated by calculating the RMSE value be-

tween the ground truth and the transformed camera pose:

RMSE =

√√√√ 1

N

N∑
i=1

∥∥∥q(i)
gt −C TSt

(i)
S

∥∥∥2

, (2.4)

where q
(i)
gt is the i-th ground truth of the camera pose, t(i)S is the i-th camera position

from visual SLAM. Since the ground truth of the camera trajectory are created using

the selected RB images, there is no need to consider the aforementioned problems that

influence the evaluation results. Selected frames are well-distributed in the camera
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Figure 2.4: Flowchart of Generation of bronchus shape from CT images

trajectory.

2.5 Bronchoscopic video and CT images

Two rubber phantoms are used for evaluation of the proposed method. The videos for

processing are captured by using a bronchoscope (BF-200, Olympus, Tokyo) to explore

the bronchus phantoms. These videos are at 30 fps with a resolution of 444 × 440

pixels. These videos last from 1 to 4 minutes.

CT images of the rubber phantoms are taken using a helical CT scanner. The acqui-

sition parameters of these CT images are shown in Table 2.2.
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Table 2.2: The acquisition parameters of CT images

Case
Slice

size (pixels)
Pixel

size (mm)
Number
of slices

Thickness
(mm)

Reconstruction
pitch (mm)

Case 1 512 × 512 0.39 × 0.39 667 0.50 0.30
Case 2 512 × 512 0.63 × 0.63 709 1.00 0.50

( Kernel function is FC13 and the CT scaner type is Aquilion.
Aquilion: Aquillion 16, Toshiba Medical Systems Inc., Tokyo)

Table 2.3: Information of the ground truth

Trial Case Total frames GT’s FN Description

1 Case 1 3657 42 Static:TR→ LMB
2 Case 1 5372 56 Static:TR→ LMB→ TR→ RMB
3 Case 1 3313 27 Large deformation:TR→ LMB
4 Case 1 3111 22 Slight deformation:TR→ LMB

Average - 3863 37 -
GT’s FN: number of frames with ground truth; TR: trachea; LMB: left main bronchus;

RMB: right main bronchus.

2.6 Experimental setup

A conventional PC (3.00 GHz Intel Xeon processor, GTX 750 Ti graphics card, Ubuntu

16.04 operation system) was used to process the video sequence. 8 ex-vivo videos were

recorded by exploring two rubber bronchus phantoms with a bronchoscope (shown in

Fig. 2.5), and two of them had simulation of breath (deformation) from touching the

outside of the phantom. The frequency of breath in the third trial was about 0.4 per

second and in fourth trial was about 0.3 per second. Illustration of the simulation

procedure was shown in Fig. 2.6. Four trials were selected to make the ground truth of

the camera trajectory for quantity evaluation. Detailed information about the videos is

shown in Table 2.3. The bronchoscope camera was calibrated prior to the experiment

by using the calibration method of Zhang [152].
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Figure 2.5: The bronchoscope used in our experiment

Table 2.4: Comparison of tracking results between original visual SLAM and proposed
method (with ground truth)

Trial ORB-SLAM [130] Proposed method
TF RMSE TF RMSE

1 111 - 3306 2.78
2 5106 4.13 5129 4.03
3 2934 4.08 2938 2.87
4 2078 2.61 2083 2.39

Average 2557 3.61 3364 3.02
TF: successfully tracked frames.
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(a)

(b) (c)

(d) (e)

Figure 2.6: Illustration of the simulation of deformation. (a) observing from outside:
adding additional force to the bronchus phantom using hand; (b)-(e) show the de-
formed bronchus from inside. The blue arrow shows the direction of the force approxi-
mately.

Table 2.5: Comparison of tracked frame number between original visual SLAM and
proposed method (without ground truth)

Trial Case Frame No. Moving trajectory ORB-SLAM [130] Proposed method

1 Case 1 3300 TR→ LMB 1903 4842
2 Case 1 5010 TR→ RMB 2305 3125
3 Case 2 7000 TR→ LMB 1023 1153
4 Case 2 7100 TR→ RMB→ TR→ LMB 1111 6982
TR: trachea; LMB: left main bronchus; RMB: right main bronchus; TF: successfully

tracked frames.
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2.7 Experiment results

2.7.1 Calibration results

The calibration procedure was performed prior to the validation experiment. This pro-

cedure was achieved by using the bronchoscope to capture the images of a chessboard.

The chessboard was shown in Fig. 2.7. The calibration procedure was performed sev-

eral times to obtain a high calibration accuracy. The rectified chessboard and RB image

was shown in Figs. 2.7 and 2.8. As shown in Fig. 2.7, the lines in chessboard were par-

allax to each other after calibration, which meant the calibration procedure had good

result.

2.7.2 Tracking results

To validate the tracking performance of the proposed method, the original and the

improved visual SLAM were used to process the recorded videos. For better understand

of the tracking procedure, the tracking procedure of the two methods were compared

at the same frame, which were shown in Fig. 2.9 (left used the original visual SLAM

and right used the proposed method). In this figure, the bronchoscopic images used

for tracking, the 3D points used for pose estimation, the current position of the camera,

etc. were shown. The current position of the camera is shown as a blue triangle. In

this figure, the camera were located in the right main bronchus at the selected moment.

while the camera pose from the original visual SLAM had gone out of the bronchus

lumen.

The performance of visual SLAM in bronchoscope tracking were evaluated in three

aspects: (1) the number of successfully tracked frames, (2) the tracking accuracy as

compared to the ground truth, and (3) the processing time of each frame.
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Figure 2.7: Chessboard used in calibration procedure and the rectified chessboard im-
age.

Comparison of successfully tracked frames

The number of continuously tracked frames were recorded while processing each trail.

More successfully tracked frames reflects a more robust visual SLAM as well as fewer

tracking errors. Successfully tracked frames are defined as instances if the number of

3D-2D matches after pose estimation is larger than 30. The number of successfully

tracked frames were shown in both the original SLAM and the improved visual SLAM

in Table 2.4 and 2.5. The total number of successfully tracked frames was about 29,559

frames in all 37,863 frames, which corresponds the 78.1% of all acquired frames (in-

cluding the trials in Table 2.4 and 2.5). The proposed method showed more successfully
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Figure 2.8: Example of the original RB image and the rectified RB image using calibra-
tion result.

tracked frames than the original method.

The number of successfully tracked frames in the other four trials were showed in

Table 2.5. For these four trials, no ground truth of camera pose were created. Table 2.5

showed for the comparison of successfully tracked frames of the two methods.

Tracking accuracy

The accuracy of visual SLAM-based bronchoscope tracking was evaluated using the eval-

uation method described in Section 2.4.3. Root mean square error (RMSE) value was

calculated with respect to the ground truth to evaluate the proposed method. These
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Figure 2.9: Comparison of tracking and reconstruction during visual SLAM-based bron-
choscope tracking. The left image uses the original visual SLAM and the right image
uses the proposed method. The reconstructed points are shown as black points; the
camera trajectory is the green line; the current position of the camera is shown as a
blue triangle; and the image in the middle top of the figure shows the k-th frame (k =
4854 in this trial). The camera pose from the original visual SLAM is obviously wrong
because it had gone out of the bronchus.

results were shown in Table 2.4. The average RMSE of the proposed method was 3.02

mm, which outperformed the original ORB-SLAM (3.61 mm).

The transformed camera pose was visualized in the CT coordinates for quality valida-

tion Figs. 2.10 and 2.11, some of example images were shown in Fig. 2.12. Virtual bron-

choscopic images were generated by using the volume rendering method [73, 74, 153]



42 CHAPTER 2. COMPUTER VISION-BASED PRECISE BRONCHOSCOPE TRACKING

Figure 2.10: Case 1: estimated camera trajectory in bronchus (transformed to CT coor-
dinate)

implemented in the software named “PLUTO”, as described by Nimura [151]. To vi-

sualize the bronchus surface, the color and opacity values for each voxel in the input

CT image were set according to the CT value. The opacity value of voxels with values

greater than -900 H.U. was set to nonzero and the opacity of the other voxels was set

to zero. The color in these voxels was set to orange. Script is needed to write to load

the transformed camera pose P
(i)
S and set the pose of the virtual bronchoscope in this

software. The rendered VB image size was set to same as the size of the RB images

(444 × 440 pixels). The field of view angle of the virtual bronchoscope was set to 100

degrees in diagonal. The virtual bronchoscopic images were generated and saved to

files for validation.
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Figure 2.11: Case 4: estimated camera trajectory in bronchus (transformed to CT coor-
dinate)

Processing time

The proposed method took about 80 ms to process one frame, which is a rate with great

potential for real-time tracking. A possible way to decrease the processing time is to

limit the number of used feature points in one frame to a reasonable number and im-

plement the program onto a GPU board to accelerate the processing time. The proposed

tracking scheme spent approximately 80 ms to estimate the camera pose of one frame,

which is a little faster than the original visual SLAM, as shown in Fig. 2.13. This is

because our proposed method found fewer 3D-2D matches during pose estimation due

to a stricter criterion. Notice that the other settings of the two methods, such as the

number of feature points expected to extract per frame, were set to the same values.
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Figure 2.12: Camera trajectory from visual SLAM. The camera trajectory is shown in CT
coordinates and the RB images together with VB images for comparison.

2.8 Discussions

Our proposed bronchoscope tracking scheme shows good tracking performance in phan-

tom cases. The proposed method uses more accurate 3D-2D matches for tracking by

limiting the size of a 3D region, thereby improving the accuracy of the tracking. Fig-

ure 2.14 showed an example of the comparison of two tracking procedures. More red

area was observed in the left figure. The green line showed the camera trajectory, and

the red points were the 3D points used in equation 2.1 in pose estimation. More red

points meant that more 3D-2D matches were found and used. Based on the experimen-
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Figure 2.13: Processing time of each frame in original visual SLAM and proposed
method for second trial. The average processing time of each frame was 0.21 s for
the original SLAM and 0.08 s for the improved SLAM.

tal results, this tracking scheme can deal with a bronchus scene that lacks characteristic

bronchus information (such as bifurcations), and it can deal with non-rigid deformation

well. The tracking results in static and dynamic bronchus scenes demonstrated that the

proposed method is suitable for bronchoscope tracking.

Tracking in scenes with deformation

The third and fourth trials in Table 2.4 showed that our proposed method behaves

well in scenes with deformation. Both the third and fourth trials showed the RMSE val-

ues of the proposed method were smaller than those of the original visual SLAM. The
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Figure 2.14: Screenshot of two methods while tracking (left, original visual SLAM; right
improved visual SLAM). The black points in the two images show the reconstructed
points; the green line shows the camera trajectory; and the red points show the 3D
points used during pose estimation. As can be seen, there are more candidate 3D points
for pose estimation in the left image than in the right image. Fewer red points means
fewer 3D points were selected. As described in Section 2.4.2, an additional candidate
point selection procedure is used to select the candidate 3D points. Since stricter condi-
tions were used while selecting candidate points, the proposed method selected fewer
points.

third trial had a larger RMSE value because the simulation of breath was larger than in

the fourth trial.

However, the existing deformation lead to fewer reconstructed 3D points, which

made the registration procedure more difficult than in the other trials, as it became
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Figure 2.15: Comparison of reconstructed 3D points in first trial (left) and third trial
(right). Due to the non-rigid deformation, some 3D points located in these region
couldn’t be reconstructed. Here, points located in black circle are lacking.

more difficult to select control points for registration. Figure 2.15 shows that there

were fewer reconstructed 3D points in the fourth trial than in the first trial. In exper-

iments, two bronchus phantoms for bronchoscope examination training were used to

validate the proposed method. These phantoms do not simulate any anatomical struc-

ture changes, such as deformation by breathing motion or tumors. In future work, it

should be considered to develop more precise bronchus phantoms that can simulate

such deformation or anatomical changes, and use such phantoms for further experi-

ments.
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Investigation of tracking failure

The reason of tracking failure are investigated. As shown in Table 2.4, the RMSE of

the second trial was larger than that of other trials. The image sequence of this trial was

much longer than that of the other trials. The longer image sequence led to more out-

liers during tracking, and thus the larger accumulated error. It has been concluded that

the outlier matches exist mainly in two procedures: 3D-2D matches in the pose estima-

tion procedure and 2D-2D matches when creating more 3D points. For the generation

of 3D-2D matches, more narrow criteria is used while searching for 3D-2D matches in

coarse-to-fine pose estimation, and this lead to a small reprojection error while tracking

as well as lower processing time (as shown in Fig. 2.13). The results of the proposed

method demonstrate this.

Outliers existing in 2D-2D matches will lead to the outliers in reconstructed 3D

points. As shown in Fig. 2.16, some points around the bronchi (as shown in the red

circle) were reconstructed incorrectly. The 3D points are reconstructed by using 2D-2D

matches in frames (see Section 2.4.1). The outliers in the 3D points may be caused by

the mismatches in the 2D-2D matches. For the outliers in the red circle in Fig. 2.16, the

2D-2D match results in the frames that observed the bronchi area are investigated. An

example of two frames used for reconstruction is shown in Fig. 2.17. This figure showed

several matched feature points that were used for 3D reconstruction. The reconstructed

3D points had been checked against the narrow criteria before being accepted as new

3D points. However, the mismatches still could be found in the 2D-2D matches (as

shown in the enlarged part of Fig. 2.17: in the 431st frame, the two feature points are

mostly in the same position; however, in the 400th frame, they are apart from each other

by several pixels). Therefore, an additional outlier elimination procedure may help to

avoid such 3D points. If there are fewer outliers in the 3D points, according to equation

2.1, both the 3D position bj and the camera pose will be more accurate. As a result,

there will be an additional reduction of the RMSE value.
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Figure 2.16: Example of outliers in point cloud of bronchus from visual SLAM of pro-
posed method. The points in the red dotted line are considered as outliers.

2.8.1 Limitations of the proposed method

There are two limitations of the proposed method. One limitation is that the tracking

accuracy will be decreased by large deformations. Visual SLAM-based tracking and

reconstruction assumes that movement of the bronchus between two frames is very

small. Therefore, deformation may cause errors in 3D reconstruction results. As a

solution, compensation to deformation may be considered to further reduce its influence

on bronchoscope tracking. Another limitation is that large specular reflection will also

decrease the tracking accuracy when the bronchoscope hits or almost hits the bronchus

wall; the strong light will lead to large specular reflection in the scene. It will become



50 CHAPTER 2. COMPUTER VISION-BASED PRECISE BRONCHOSCOPE TRACKING

The 2D-2D matches is enlarged to show the mis-matches more clearly

Figure 2.17: Two frames with 2D-2D matches drawing on them. The 2D-2D matches
between the 400th frame and the 431st frame are picked as an example. A region of in-
terest was enlarged for further examination. The two feature points in the 431st frame
were in same position, however the feature points in the 400th frame were apart from
each other. To improve the tracking accuracy, an additional outlier elimination proce-
dure should be used to detect and remove the outlier matches.

difficult to extract feature points from these scenes. An additional specular detection

procedure is needed to prevent these frames from being processed.

2.8.2 Future work

It is our next goal to validate the proposed method with in-vivo cases. Due to the

lack of a camera calibration procedure as well as the lack of a ground truth in a clinical
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scene, the evaluation of the method in-vivo is still being developed. As mentioned in the

discussion, the existing outliers in the 3D reconstructed points lead to a large tracking

error. Therefore, the elimination of the existing outliers should also be considered in

the future.

2.9 Summary

This chapter describes a new patient-specific bronchoscopy navigation scheme with

bronchoscope tracking based on the output of improved visual simultaneous localization

and mapping (SLAM). Visual SLAM uses only pure bronchoscopic images for tracking.

Information from past images is stored to estimate the camera pose instead of using

the image similarity between RB and VB, which will not be influenced by the difference

between pre- and intra- operation information. Also, visual SLAM has better tracking

results in areas with less structure. We improved the coarse-to-fine procedure in vi-

sual SLAM to find more accurate 3D–2D matches to make the technique more suitable

for homogeneous bronchial lumen and evaluated the proposed method with more cases

and trials; the tracking accuracy was evaluated by manually creating the ground truth of

the camera pose. The transformed camera pose was visualized as virtual bronchoscopy

for qualitative evaluation. The proposed method provides a new way for bronchoscope

tracking and may be used in navigation in the future.



52 CHAPTER 2. COMPUTER VISION-BASED PRECISE BRONCHOSCOPE TRACKING



Chapter 3

Depth image-based bronchial orifice

segmentation

This section describes the authors work on anatomical structure extraction in bronchus.

In this section, a bronchial orifice (BO) segmentation method on RB video frames by

using depth images is proposed. The BO structure is one of the anatomical character-

istics in the bronchus, which is critical in clinical applications such as bronchus scene

description and navigation path generation. This method utilizes the distance between

the bronchoscope camera and the bronchus lumen, which is represented by a depth

image. First several related works on image segmentation are introduced; next the

depth image-based BO segmentation is introduced; and finally the experiment results

are showed.

3.1 Background

During bronchoscopy, since the anatomical structure of the bronchus is complex and the

bronchus scene is homogeneous, it is difficult to understand the current operative field.

53
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Figure 3.1: RB images obtained from different bronchus branches. The BO region
are segmented manually. Different orifice shape and number is observed in different
branches.

Therefore, scene understanding is an important task in surgeries. This research field

contains many sub-tasks such as image classification, textual annotation, and object

segmentation [112]. Due to the complexity of the bronchus scenes, object segmenta-

tion in the bronchus scenes, such as the segmentation of the anatomical structure (the

BO and the carina) and surgical tools is more meaningful. Moreover, precise BO seg-

mentation will benefit the development of clinical applications such as the generation

of navigation path, quality assessment of a surgery, etc. [154, 155]. An example of the

orifice region is shown in Fig. 3.1. The expected orifice region are manually segmented.
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3.2 Previous work

Several research groups work on scene understanding by applying the segmentation

method on endoscopic videos. These methods are roughly classified into classical seg-

mentation method and deep learning-based method, which are introduced in the fol-

lowing section.

3.2.1 Classical segmentation method

Classical method-based use the appearance of endoscopic images and the geometry

shape of the surgery tools for segmentation. Tonet et al. segmented the laparoscopic

instrument from the endoscopic image by considering the geometric features and the

color strip of the tool [156], the color strip of the instrument is obtained prior to the

segmentation task. Zabulis et al. proposed an improved version of the mean shift-based

method to detect the orifice region in the image obtained from a capsule endoscope

[157]. Their method extracted up to two orifices in an endoscopic image. Sanchez et

al. showed an image appearance-based method to find the center of the lumen [154].

They used the intensity of pixels and its gradient in an endoscopic image to construct

a 2D feature space. They observed the distribution of the features and used the found

local maxima in each cluster of feature space as the lumen center. The parameters used

in this procedure were concluded from a slight dataset. However, lumen shapes may

change due to the deformation of the organ, which may decrease the performance of the

algorithm. Asari proposed a gastrointestinal lumen segmentation method by using the

differential region growing method (DRG) on the gray-scale image [158]. A two-stage

DRG is used to segment the lumen and shows good performance.
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3.2.2 Deep learning for segmentation

The deep learning-based segmentation uses the manually created data to train a model

to represent the feature of the desired region. Morimitsu et al. used a deep learning

model named LSTM U-Net to segment the blood vessels in laparoscopic videos. This

network contiguously estimated the inferior mesenteric artery (IMA) region by using

the previous frames [159]. Pakhomov et al. used an improved fully convolutional

network (FCN) to segment the surgery tool’s shaft, tool’s manipulator, and background

from real laparoscopic video [160]. Bravo et al. used two convolutional neural networks

(CNN) to detect the polyp region in the colonoscopic video [161]. The segmentation

procedure was divided into polyp classification and localization parts. Images showing

high probabilities of having polyp were used as the input of the localization part for

a robust segmentation. However, conventional image appearance-based methods have

many shortcomings. Firstly, the color image-based methods are sensitive to the changes

in illumination. Secondly, they may have a poor performance in complex scenes such

as bubble exists or the deformation of the organ [108, 155]. And deep learning-based

methods need additional labor in the preparation of the training data.

3.3 Purpose of this Chapter

In this Chapter, a new BO segmentation method is proposed based on the depth image

estimated from deep learning. The depth image is estimated from an image-to-image

network named cycle generative adversarial network (CycleGAN) [162] from a bron-

choscopic video. Then the depth image pixels are used to decide the threshold value

for image binarization since the depth range differs in branches. The obtained binary

image shows the BO region.
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3.4 Proposed method

The goal of this topic is to segment the BO regions on RB video frames. With an as-

sumption that the bronchoscope will always observe the orifice region during the ex-

amination, the distance between the bronchoscope and the inner surface of the lumen,

which is represented by depth images, is used to extract the orifice region in the RB

image. As shown in Fig. 3.2, the proposed method mainly consists of two steps: (1)

CycleGAN-based depth image estimation, which estimates depth images from RB im-

ages, and (2) depth image-based orifice region segmentation, which finds the orifice

region by binarizing the depth image based on projection-based threshold decision.

3.4.1 Depth image estimation

Due to the fact that the depth image is unavailable from the bronchoscope, the depth im-

ages are estimated from the RB images. An image-to-image translation network named

cycle generative adversarial network (CycleGAN) [162] is utilized to estimate depth

images. This network has shown good performance in previous work for the generation

of real colonoscopic images from the virtual colonoscopic images [163]. Furthermore,

it doesn’t need the paired data for training, which suits the bronchus scene. The proce-

dure of the depth image estimation is introduced from three aspects: (1) introduction

of CycleGAN for image domain translation; (2) preparation of training data, and (3)

CycleGAN-based depth image estimation.

Introduction of CycleGAN for image domain translation

CycleGAN consists of several networks for image domain translation. It contains two

image generators and two image discriminators. Image generators are based on an

improved U-Net[164] (each convolution layer is followed by the instance normalisation
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Figure 3.2: Flowchart of the proposed method for BO segmentation. The RB image
is used as the input, depth image is estimated using CycleGAN; the orifice region is
segmented using depth image; the white region show the segmented orifice.

[165]); the discriminators are based on a 4-layer convolutional neural network (CNN).

The C-to-D image generator manages the translation from color RB images to depth

images and the D-to-C image generator manages the translation from depth images to

color RB images. Two discriminators are used to judge whether an image is generated

image (fake image) or real image (prepared data) in two image domain, respectively

(Fig. 3.3 (a)). CycleGAN contains two sub procedures: the forward procedure and

backward procedure. In forward procedure, an RB image in RB image domain R is

translated into a fake depth image in depth image domain D, the fake depth image

is translated back to R as a reconstructed RB image; in backward procedure, a depth

image in D is translated into R as a fake RB image, this fake image is translated back

to D as a reconstructed depth image. This two procedure are shown in Fig. 3.3 (b).

Cycle-consistency loss is used to encourage the appearance of the reconstructed image

similar to the original image. The training procedure of CycleGAN is to find a overall

loss that contains the aforementioned loss functions (loss of two generators, loss of two

discriminators and two cycle-consistency loss). A detailed description of CycleGAN is

reported in literature [162, 163].
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Figure 3.3: Illustration of CycleGAN and its two sub procedures. Generator is used to
translate an image from original image domain to target domain. Discriminator is used
to judge if an image comes from prepared data or generated by generator. Two sub
procedure are the forward and backward procedure. Cycle-consistency loss is used to
encourage the appearance of the reconstructed image similar to the original image.

Training dataset preparation

We defined two image domains, RB image domain R and depth image domain D, for

CycleGAN. The preparation of the training images in R and D is described in the fol-

lowing section.

Preparation of RB images

The RB images were obtained from RB videos. Since the original images from a

bronchoscope have different imaging conditions, we adopt a data-cleansing procedure

[163] to remove images with poor imaging quality. According to the literature [163],

the data-cleansing procedure benefits the quality of image domain translation. An RB

image is removed if one of the following events occurs: observation of a strange color;

the camera hits (or nearly hits) the bronchial lumen (high specular reflections); the

presence of bubbles. We show several examples of the removed and the remaining

images in Fig. 3.4.



60 CHAPTER 3. DEPTH IMAGE-BASED BRONCHIAL ORIFICE SEGMENTATION

Preparation of depth images

The depth images are the virtual depth images generated by a virtual bronchoscopy

system [74] from preoperative CT images. A virtual depth image is an image that stores

the distances from the virtual bronchoscope’s viewpoint to the surface of the bronchus

lumen in CT images. The bronchoscope is moved along the centerline of the bronchus to

generate virtual depth images at various viewpoints. We explore at least three branching

levels when generating the virtual depth images: the trachea, the left and right main

bronchi, and the truncus intermedius of the bronchus. The procedure of generating

virtual depth image is shown in Fig. 3.5. An example of the depth image is shown in

Fig. 3.4 (c).

CycleGAN for RB-to-depth image translation

We use CycleGAN to estimate the mapping X from the RB image domain R to the

depth image domain D. During CycleGAN’s training procedure, an image R in R is

translated to an image D̂ in D using a U-Net-like generator [163]. Since there are

two types of depth images (translated by a generator and prepared in advance), an

adversarial discriminator is used to distinguish which type of depth image belongs to.

The generator is trained to change the images’ appearance in an original domain (e.g.,

R) to that of a target domain (e.g., D). Details on CycleGAN for image translation can

be found in the literature [162, 163].

CycleGAN-based depth image estimation

The prepared training data are used to train CycleGAN. The trained C-to-D image gen-

erator is used to estimate depth image from RB image.
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Existing bubble Existing image blur RB image (one orifice)

RB image (three orifices)

(c) Generated virtual depth image (a) Ignored RB image (b) Selected RB image 

Depth image (two orifices)

Depth image (one orifice)

Figure 3.4: Several examples of ignored images and selected images while preparing
training data. (a) ignored RB images; (b) selected RB images; (c) generated virtual
depth images. The ignored images are the images existing poor image condition such
as image blur, bubble and so on. The selected images are images showing good image
condition. The depth images are generated from CT images.

3.4.2 Depth image-based BO segmentation

The depth image is used for the segmentation of the BOs. As a matter of fact, points lo-

cated in the orifice region are farther from the bronchoscope than other regions. There-

fore, a threshold value is used to process the depth image in order to find the orifice

region. Furthermore, since the depth range differs a lot in different branching levels,

an image pixel projection-based method is adopted to decide the threshold individually

for each depth image instead of using a fixed value.
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Bronchus segmentation

Virtual endoscopy software

Calculate distance to camera

Save to local

Virtual depth image

CT image

Figure 3.5: Illustration of the generation of virtual depth image from CT image. A
virtual endoscopy software is used to check the bronchus region while the generation
of virtual depth image.

There are three steps to decide the threshold for each depth image. The first step is

to obtain the distribution of pixel values in the depth image at vertical and horizontal

directions, which is achieved by calculating the average projection profile in two di-

rections. The width of the depth image is denoted as W and the height is denoted as

H. The average projection profile of pixel value in the horizontal direction is obtained

by using Ix(m) =
∑H

n=1 D(m,n) and in the vertical direction is Iy(n) =
∑W

m=1 D(m,n),

where D(m,n) is the pixel value at the m-th column and the n-th row in depth image

D. Two curves Ix(m) and Iy(n) show the distribution of the values. The second step
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is to find the local minimum values in each curve. Since the orifice region is farther

from bronchoscope, the orifice region is observed as lower pixel value area in projec-

tion curve, which corresponds to the wave trough of the curves. The carina region

corresponds to the peak between trough. An example is shown in Fig. 3.6. In this fig-

ure, two orifice regions are observed in the RB image, which correspond to two ‘darker’

regions in the depth image. The average projection pixel value in vertical and horizon-

tal direction are calculated in depth image. The wave trough region in the projected

profile correspond to the ‘darker’ region in depth image. The third step is to decide the

threshold value to extract the orifice regions. The local minimum values in Ix(m) and

Iy(n) are sought by comparing the neighborhood value on curves. The found value set

is marked as V = {V1, V2, · · · , VN}. The threshold value th is decided by using equa-

tion th = max (V). We use a smoothing procedure before find the local minima. Note

that this procedure is not necessary. An example of curves after smoothing procedure is

shown in Fig. 3.6 (c). The smooth procedure removes the jitters in curve and decrease

the possibility of finding the wrong local minimum value which do not correspond to

orifice regions. The found local minimum value are marked in stars on curves.

The found threshold value is used to perform image binarization on the depth im-

age. The orifice regions are considered as the regions in which the pixel intensity is not

equal to zero.

3.5 Experiments and results

The proposed method was implemented in the Ubuntu 16.04 system with an Intel Xeon

Gold 6134 processor (8 cores at 3.2 GHz) and integrates with an NVIDIA Tesla V100

GPU card. We use three in-vivo cases and one ex-vivo case for the training. The total

number of the RB images used in experiment was 4,398 (3,131 for training and 1,267

for testing) and the total number of the depth images was 4,151. We crop the obtained
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(b) Curves in two directions without smoothing

Horizontal direction Vertical direction

(c) Curves in two directions after smoothing(a) RB image and depth image

Figure 3.6: RB image, the corresponding depth image and the projection profile in two
directions before/after smoothing. The found local minimum values are marked on
curves. Curves after smoothing show accurate results.

RB images to 256×256 pixels for training. We set the training epoch to 200 with a 10

batch size.

3.5.1 Quantitative evaluation

We used the proposed method to perform the BO segmentation from in-vivo videos

obtained during the examination. We manually labelled BO regions as ground truth

for quantitative evaluation and implemented two previous methods to segment the BO

region from RB images. These two methods are: method (1) use Otsu thresholds [166]
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on a grayscale RB image to obtain the threshold value for binarization; method (2) use

U-Net [164] trained from color RB images and manually created label images. U-Net

was implemented with the Dice loss as the loss function. We created a tiny dataset of

three in-vivo cases, including about 130 frames, to train the U-Net model.

We compared the performance of these methods for BO segmentation. The Dice

score was used to measure the accuracy of these methods. The Dice values in four cases

of different methods was shown in Table. 3.1. The average Dice score of the proposed

method was 77% in 219 frames.

3.5.2 Qualitative evaluation

For qualitative evaluation, we selected several frames to investigate the segmentation

results in various scenes. We show the segmented results of the first and the second

cases in Fig. 3.8. The BO regions segmented by the proposed method were marked

blue in RB images.

To show the segmentation results of different methods, we randomly selected several

frames of the third and the fourth cases. The selected frames and the segmentation

results of different methods were shown in Fig. 3.9. We showed the RB images, the

results from the proposed method (marked as ’Ours’), the results from the Otsu (marked

as ’Otsu’); the results from U-Net-based segmentation (marked as ’U-Net’); and ground

Table 3.1: Quantitative evaluation result of different methods

Case Frame number Otsu [166] U-Net [164] Proposed method

1 77 0.46 0.67 0.81
2 68 0.46 0.60 0.79
3 27 0.60 0.63 0.72
4 47 0.54 0.62 0.76

Avg. 54 0.52 0.63 0.77
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Figure 3.7: Boxplots of Dice score from different segmentation methods in four cases.
The proposed method shows higher average value than other two methods.

truths (marked as ’GT’).

3.5.3 Processing time of the proposed method

We measured the processing time of the proposed method in about 20000 frames. The

processing time per frame contains the generation of the depth image, threshold deci-

sion, and visualization of the segmentation result. The average computation time for

each part was 0.005 seconds (GPU), 0.002 seconds (CPU), and 0.006 seconds (CPU).

The total processing time per frame was 0.013 seconds.
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Figure 3.8: Examples of segmented BO regions in four cases. Each row indicates same
in-vivo case. Numbers under each image shows frame number. The number of BOs
ranges from one to three. Most of the BO region was well segmented by the proposed
method.
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3.6 Discussion

As shown in Table 3.1 and Fig. 3.7, the proposed method has the highest Dice score

among the three methods. The proposed method shows the best performance of the

three methods in our experiment. Meanwhile, as shown in Fig. 3.7, the proposed

method shows smallest variance in three methods. We conclude with the following two

advantages of the proposed method comparing to the previous methods.

3.6.1 Advantage of the proposed method

Accurate segmentation for each BO

The proposed method can segment each BO region individually. There are two or three

BO regions in typical bronchoscopic scene. As shown in Figs. 3.8 and 3.9, the proposed

method segmented almost each BO region while the previous methods did not separate

each BO region. From Fig. 3.9, we can observe that the Otsu-based segmentation finds

some false positive regions as the BO region. We think this is because Otsu method did

not obtain appropriate threshold to segment the BO regions for bronchus scene. The BO

regions from the U-Net-based method behaves better than the Otsu-based segmentation.

However, U-Net-based segmentation cannot identify each BO region as shown in the

frame (3-3690) and (4-6426) of Fig. 3.9. Moreover, it is necessary to prepare the

training data, which costs huge labor to label the BO region manually. It may have

better performance if more training data are used. The proposed method shows the

best segmentation result. We think this is because the proposed method is based on the

depth image instead of the color image. In the depth images, the BO regions tend to

have lower pixel value than the carina region. Since the threshold used for segmentation

is lower than the pixels in the carina region, only the region farther than the carina

region is segmented as BO region.
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Figure 3.9: Comparison of the results from the different segmentation methods.Frames
are selected from cases one and two. We showed the original image (Original), results
from the proposed method (Ours), results from the Otsu method (Otsu), results from
U-Net (U-Net) and ground truth (GT). The results of the proposed method have the
most similar appearance with ground truth.

Robust to the complex image conditions

The proposed method shows good segmentation results in images with poor image

quality. We think it is the benefit of using depth images. The influence of poor image

quality has disappeared in the depth image. We show two example of RB images with

poor image quality, the segmentation results, the generated depth images, and results

from other methods in Fig. 3.10. The first row shows an image existing image blur
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Original image Depth image 

(heat map)

Propose method Otsu U-Net

Original image Depth image 

(heat map)
Propose method Otsu U-Net

Figure 3.10: Examples of segmented BO regions in images showing poor image qual-
ity. Image in the first row contains bubble; image in the second row contains surgical
tool. We show the original RB image, estimated depth image in heat map, result from
the proposed method, result from Otsu method and result from U-Net. The proposed
method show better segmentation result.

and strange color. The second row shows an image existing surgical tool. We also show

the generated depth images of each image. These poor image conditions have disap-

peared in the depth images. Therefore, the poor image conditions will not influence the

threshold procedure, the proposed method obtains good segmentation result.

3.6.2 Limitation of the proposed method

One of the shortcomings of the proposed method is that it doesn’t judge whether the

BO region exists or not. Since we assume the BO region always appears in the RB im-

age, the proposed method will always try to find the BO region in the current view, as

shown in Figs. 3.11 (a) and (b). A possible solution is to use an online image selection
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Original image Depth image BO region Original image Depth image BO region

Original image Depth image BO region Original image Depth image BO region

(a) (b)

(c) (d)
Figure 3.11: Examples of images showing poor results. In image (a) and (b) no BO
region are observed; in (c) and (d), BO regions are mis-segmented (black ellipse).

procedure. For example, a CNN model is used to find an ‘uninformative frame’ that is

either too dark or too blurry, etc [111].

The proposed method uses depth images estimated from CycleGAN. However, in

some images, the depth image is not correctly estimated. This leads to the mis-segmentation

of the BO region. Examples are shown in Figs. 3.11 (c) and (d). The region in the black

ellipse is obviously mis-segmented. Therefore, an improvement of CycleGAN structure

and create more training data may improve the accuracy of the estimated depth image.

3.7 Summary

This paper presented a BO segmentation method by using depth images obtained from

CycleGAN. The proposed segmentation method showed promising results. Future work

includes application of the segmentation result in a bronchoscopy navigation system

and further improvement of the segmentation procedure.
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Chapter 4

Deep learning-based branching level

localization

This chapter describes the author’s work on how to use the extracted anatomical struc-

ture to estimate the level of the branch. In the previous chapter, the depth image esti-

mation method is introduced, this chapter describes our work of using depth-image to

estimate the branching level for bronchoscopy navigation since it is vital to identify the

examining branches in the bronchus tree during examinations.

4.1 Introduction

As described in the Introduction Chapter, a bronchoscope navigation system (BNS)

[78, 81, 86] is used during bronchoscopy and transbronchial lung biopsies (TBLB) to

assist bronchoscopists. Current BNSs rely on precise bronchoscope tracking results, i.e.,

these methods estimate the camera pose precisely for each frame. The precise tracking

methods can be roughly divided into conventional and novel methods. Conventional

methods include video-CT-based methods [78, 81, 86, 108], additional sensor-based

73
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methods [84, 93, 103, 104], and a hybrid of the two method types [94, 95]. Video-

CT-based tracking estimates the camera pose via image registration. The camera pose

is obtained from the registration between RB and virtual bronchoscopic (VB) images.

In recent years this type has been extensively researched. Deguchi et al. improved the

registration function by using anatomical structure [86]. Shen et al. used depth images

to perform RB-VB registration and argued that depth images perform more robustly

against illumination or bubbles than color images [98]. However, image similarity-

based tracking is time-consuming, and the difference in RB and VB images leads to

tracking error. Additional sensor-based bronchoscope tracking uses the output of an

electromagnetic (EM) sensor to calculate the camera pose [84, 93, 103, 104], which is

widely used in clinical applications [82, 84]. Hybrid tracking fuses the output of video-

CT-based and additional sensor-based tracking [94, 95]. However, EM-sensor-based

tracking is easily affected by metallic surgical tools, and the terminal bronchi cannot be

examined due to the excessive size of the bronchoscope tip. Recently, pure RB image-

based [130, 167] and deep learning-based [108, 109] bronchoscope tracking are be-

coming widely used. Pure RB image-based tracking (e.g., simultaneous localization and

mapping) is used to estimate the camera’s pose from the RB image by minimizing the

reprojection error of 3D points in camera frames [130, 167]. The application of deep

learning for tracking is still being explored. For example, it can be used to improve con-

ventional tracking schemes [108] or to train a positioning network to locate RB images

in CT images [109].

Unfortunately, precise bronchoscope tracking-based navigation fails easily due to

the accumulated tracking error. Therefore, a bronchial branch localization-based bron-

choscopy navigation scheme [155, 168] is proposed to overcome the shortcomings of

conventional precise bronchoscope tracking methods. Since the bronchus has a tree-

like structure, providing the depth of the branching level from the trachea is the core

of this type of navigation system. Gil Debora et al. developed a branch level by loa-
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cating the bronchoscope in bronchus tree [155]. They used color image to extract the

BO and generate the navigational information by proviing the anatomical structure of

the bronchi. Shinohara et al. developed a branch identifying system that provides the

anatomical name of the branch under examination [168]. The branching name is es-

timated by using RB image and pre-generated VB images in their eigenspace. Unlike

conventional precise bronchoscope tracking-based navigation systems, this type of sys-

tem localizes the bronchoscope in the bronchial branches. We plan to use only color

RB images to build a navigation system rather than using both CT and RB images. We

estimate the current branching level by integrating the number of BOs and the camera-

moving direction. The number of BOs is estimated from depth images rather than color

RB images. This is because a color image-based system [169] behaves poorly if there

are bad imaging conditions such as strong illumination or bubbles [98]. The camera-

moving direction is calculated using the results of feature point-based camera-motion

estimation. These information is used to decide the current branching level.

4.2 Purpose of this Chapter

In this Chapter, a branching level estimation method is proposed based on the changes

of the BO region and the camera moving direction. The BO regions are segmented from

the depth images, which are estimated from CycleGAN by using bronchoscopic video.

The camera moving direction is estimated from the feature point-based camera motion

estimation. The branching level is estimated by using the changes of the orifice region

and the camera moving direction.
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Figure 4.1: Example of the relationship between the BO and branching level. We select
RB images in four locations to show the BO. Figures at the bottom show the branching
level changes concerning the BO region and camera motion.

4.3 Proposed method

4.3.1 Overview

We estimate the current branching level, which represents the number of branches

passed from the trachea, by using the changes in the BOs. The BO is one of the com-

monly observed anatomical structures in the bronchus scene, and its appearance in the

RB image is related to the branches. We illustrate two possibilities for the BO’s changes

and the related changes of the branching level in Fig. 4.1 and summarize them as

follows.

(1) The number of BOs remains the same (bottom-left figure). In this case, the cam-

era stays at the same branching level regardless of the camera’s moving direction.
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Table 4.1: Possible outcomes for changes of BO number, camera-moving direction, and
branching level

Change of BOs Increase Decrease Same

Camera-moving
direction Forward Backward Forward Backward Forward Backward

Change of
branching level Same Previous Next Same Same Same

Bronchoscope video

(1) Bronchial orifice 

number counting

(2) Camera-moving 

direction estimation

(3) Branching 

level decision

Estimated branching 

level in bronchus tree

Zero level

First level

Second level

Third level

Current level

Figure 4.2: Flowchart of branching level estimation algorithm. RB video is used as
input and branching level is output. There are three processes: counting the number of
BOs, estimating the camera-moving direction, and estimating the branching level. The
different branching levels are shown in different colors.

(2) The number of BO changes (bottom-right figure). In this case, the branching

level changes as the number of BO changes. If the camera moves forward (e.g., from B

to C), the branching level increases; if the camera moves backward (e.g., from C to B),

the branching level decreases.

All possible relationships involving the BO’s changes, camera motions, and branch-

ing level’s changes are shown in Table 4.1.

We propose a branching level estimation method using only RB images. In the train-
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ing phase, virtual depth images generated from CT images and RB images are used.

The proposed branching level estimation algorithm is carried out using three processes

(Fig. 4.2): (1) counting the BOs using depth images to determine the number of BOs in

the RB image; (2) estimating the camera-moving direction using the results of feature

point-based motion estimation; and (3) deciding the branching level by considering the

changes in BOs and camera-moving direction.

4.3.2 Depth image-based BO counting

We used a depth image to identify the number of BOs instead of a color image because

depth images behave more robustly in image-guided procedures [98]. We have used

CycleGAN for depth iamge estimation in Chapter 3, since most of the depth image

estimation procedure are same. We only introduce this estimation procedure briefly in

this Chapter. The depth image-based BO counting algorithm is introduced from two

perspectives: (1) CycleGAN for RB-to-depth translation; and (2) BO counting.

We use the prepared RB images and virtual depth images as the input of CycleGAN to

find mapping X, represented by a trained generator. This generator is used to generate

depth images by using RB images as input.

Depth image-based BO counting

The generated depth images are used to count the number of BOs. Since the BO region

is farther from the camera position than the other regions, the BO region has a darker

value in the depth image. An example is shown in Fig. 4.3: two BOs are observed in the

RB image as well as in the depth image (red circles in Fig. 4.3). We count the number

of BOs by counting the darker regions in the depth image.

The counting procedure works like the procedure of finding local minima described

in Chapter 3. We vertically and horizontally project the image pixels and use their
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Figure 4.3: Examples of RB image, depth image, and vertical/horizontal projection
profile of pixels in depth image. Red ovals approximately show BO region in depth
image. Green dotted lines show projection from depth image in each direction. Darker
region in depth image corresponds to wave trough in curve. We mark the desired
local minimum values with stars. Other local minimum values are detected due to
the influence of cartilage rings.

intensity profile of depth image D to find the number of darker regions. Here, we denote

the pixel value at pixel (i, j) in a depth image as D (i, j). The i-th projected value in the

vertical direction Ix(i) is calculated using Ix(i) =
∑H

j=1 D(i, j), where H is the image

height. The j-th projection value in the horizontal direction Iy(j) is calculated using

Iy(j) =
∑W

i=1 D(i, j), where W is the image width. As shown in Fig. 4.3, the darker

region, which represents the BOs in the depth image, corresponds to the wave trough

of curves Ix(i) and Iy(j) (stars in Fig. 4.3). Therefore, we calculate the local minima of

the curves to obtain the number of BOs.

However, one different thing between the counting of BO and the segmentation of

the BO is that the former procedure need more accurate calculation. Therefore, we
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perform a smoothing operation to accurately find the local minimum values: use down-

sampling and a mean filter to process the depth image; use polygon fitting [170] to fit

two curves. We seek the local minimum values by using the derivative of Ix(i) and Iy(j).

The local minima in Ix(i) and Iy(j) are denoted as Nx and Ny. The number of BOs is

obtained to select the largest value from Nx and Ny. We describe O(m) as the number of

BOs for the m-th frame. O(m) ranges from one to three in our experiment.

4.3.3 Estimation of camera-moving direction

The camera-moving direction is estimated based on the results of the feature point-

based camera-motion estimation. It follows two steps: (1) camera-motion estimation

and (2) the decision of camera-moving direction.

Camera-motion estimation

We estimate the camera motion between two frames based on the extracted feature

points in frames. For two frames, the (m− k)-th frame and the m-th frame (k is a con-

stant value), their camera transformation is estimated using three steps: (1) Find the

corresponding feature points among two frames. We use Oriented FAST and Rotated

BRIEF (ORB) [145] features to represent the extracted key points. We compare the fea-

ture points’ location in the image and compute the Hamming distance of the descriptor

of two feature points to find the correspondence in two frames. (2) Estimate the funda-

mental matrix using the paired feature points under a RANSAC scheme. (3) Recover the

camera motion using the fundamental matrix. The camera motion between two frames

is obtained by the decomposition of an essential matrix, which is calculated from the

fundamental matrix and the camera’s intrinsic parameters [171]. The translation vec-

tor t = (x, y, z)T (each axis is in [−1, 1]) represents the movements from the (m− k)-th

frame to the m-th frame in three directions. It is used to determine the camera-moving
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direction.

Determination of camera motion

The camera-moving direction M (m) from the (m − k)-th frame to the m-th frame is

determined using

M (m) =


forward h < z < 1

backward −1 ≤ z ≤ −h

others −h < z < h,

where h is a pre-set threshold. This equation decides whether the camera-moving di-

rection among two frames is forward, backward, or others (no obvious movement is

found).

4.3.4 Branching level estimation

We list the possible changes of branching level with respect to the BO number’s changes

and the camera-moving direction in Table 4.1. The branching level is decided according

to this table.

A state vector is used to represent the status of each frame, which is defined as

S(m) =
(
O(m),M (m), L(m)

)
for the m-th frame, where L(m) is the current branching

level. O(m) is estimated in Section 4.3.2, and M (m) is calculated based on the camera-

moving direction result from Section 4.3.3. M (m) is the camera-moving direction of one

frame using its previous neighboring frames. We use the direction that appears most

often in the previous five frames to calculate M (m). The current branching level L(m)

is decided by considering the history status, M (m) and O(m). The branching level is

estimated according to Table 4.1: O(m) equals O(m−1), O(m) is larger than O(m−1), and

O(m) is smaller than O(m−1).
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(1) When O(m) equals O(m−1), the bronchoscope is in the same branching level.

(2) When O(m) is larger than O(m−1), there are two possibilities according to M (m):

if M (m) = forward, the camera stays in the same bronchus; if M (m) = backward, the

camera returns to the previous branch.

(3) When O(m) is smaller than O(m−1), there are two possibilities according to M (m):

if M (m) = forward, the camera moves to the next branch; if M (m) = backward, the

camera stays in the same branch.

The state vector is updated for each frame. The branching level, which is initialized

before the estimation starts, is manually decided by the bronchoscopist. When the

estimation is started in the trachea, we initialize the branching level to 0.

4.4 Experiment setting and results

We performed branch-level estimation using the proposed method. We used virtual

depth images and color RB images in the experiment. The RB videos were obtained

from different patients during bronchoscopy by physicians at two hospitals. The in-vivo

RB images were taken using two types of bronchoscope (BF-240 and BF-260, Olympus,

Tokyo), and the CT images were taken using a CT scanner (XVision, Toshiba Medical

Systems, Tokyo). The phantom RB images used for training were taken using a bron-

choscope (BF-200, Olympus, Tokyo) and the CT images were taken using a CT scanner

(Aquilion 16, Toshiba Medical Systems, Tokyo). The original size of the RB image was

410 × 370 pixels. These CT images were taken several days before bronchoscopy. In-

formation on the CT images was shown in Table 4.2. They were used to generate virtual

depth images. The image size of the virtual depth image was 256 × 256 pixels.

We implemented our proposed method on a Ubuntu system with an Intel Xeon Gold

6134 processor (8 cores at 3.2 GHz). CycleGAN was trained on an NVIDIA Tesla V100

GPU. We used three in-vivo cases and a phantom case to prepare the training dataset.
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Table 4.2: Acquisition parameters of CT images

Case Type
Slice

size (pixels)
Pixel

size (mm)
Number
of slices

Slice spacing
(mm)

Thickness
(mm)

1 In-vivo 512 × 512 0.63 × 0.63 183 1.00 5.00
2 In-vivo 512 × 512 0.63 × 0.63 76 2.00 2.00
3 In-vivo 512 × 512 0.63 × 0.63 195 1.00 2.00
4 Phantom 512 × 512 0.39 × 0.39 667 0.30 0.50

Table 4.3: Parameter settings in experiment (2)

CycleGAN training Moving direction estimation

Image size
(pixels) Optimizer Epoch Batch k (frame) h

256 × 256 Adam 200 10 2 0.1

The numbers of RB images were 1050, 324, 1015 in in-vivo cases and 742 in the phan-

tom case; the numbers of virtual depth images were 732, 595, 1044 in in-vivo cases

and 968 in the phantom case. We used another four cases for validation. The param-

eters of the experiment are shown in Tables 4.3 and 4.4. The networks were trained

in 200 epochs with 10 mini-batches. The size of all images for training was set to 256

× 256 pixels, which was decided according to the literature [163]. We found that the

depth image generated within 200 epochs is sufficient for BO-counting tasks, although

more epochs are useful for finding better results. We performed image domain transla-

tion using the found generator. The generated depth images and the RB images were

used to estimate the branching level. The parameters used in the smoothing procedure

and camera-moving direction estimation were decided by using the training data of an

in-vivo case. The parameters in the smoothing procedure were manually decided by

comparing the number of BOs from smoothed curves and the manually created ground

truth of the BO number; the parameters are manually adjusted by comparing the ob-

tained camera-moving direction to the ground truth.
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Table 4.4: Parameter settings in experiment (2)

Smoothing procedure

Down-sampled image size (pixels) Kernel of mean filter

128 × 128 (5, 5)

4.4.1 Evaluation of depth image-based BO counting

We evaluated the BO-counting accuracy by comparing the estimated number of BOs

with the manually counted BOs in each image. The algorithm’s accuracy, which is

defined as the percentage of correctly counted frames among the total processed frames,

was shown in Table 4.5. The average accuracy in all cases was 89.1 %.

4.4.2 Evaluation of branching level estimation

We evaluated the branching level estimation method using four in-vivo videos. We

manually created a ground truth of the branching level for each frame. The algorithm’s

accuracy is defined as the percentage of continuously correctly counted frames (from

the first frame to the frame whose branching level is not correctly estimated) among all

processed frames. The proposed method’s accuracy in the four cases is shown in Table

4.5. The average accuracy of the branching level estimation was 87.6 %. Screenshots of

several results are shown in Figs. 4.4 and 4.5. We showed the RB image, the generated

depth image (in a heat map), and the visualization of the estimated branching level in

the bronchus tree.

We investigated the processing time per frame of the proposed method in four cases

containing 2765 frames. The processing time for one frame includes loading the im-

age to memory, estimating the depth image, counting the BOs, estimating the camera-

moving direction and the branching level, and visualizing the results. The average

processing time was about 61 ms per frame, including 47 ms for the camera-moving
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Figure 4.4: Example of estimated branching level in different cases: Left figure shows
an example of entire interface; right figure shows several snapshots at different frames
in different cases. Numbers below each snapshot denote frame number, number of
estimated BOs, and estimated branching level. (For example, 6158/2/1 indicates that
the current frame number is 6158, the detected BO number is two, and the current
branching level is one.) Current branching level is shown in red, and visited levels are
shown in blue. RB and depth images (visualized in heat map) are shown at top for
quality evaluation.

Table 4.5: Accuracy of proposed method for branching level estimation

Case no. No. of images
Accuracy of bronchial
BO number counting

Accuracy of
branching level estimation

1 990 88.3 % 99.9 %
2 1015 95.2 % 83.7 %
3 290 77.0 % 69.6 %
4 470 95.7 % 97.0 %

Average 691 89.1 % 87.6 %
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Frame no. 1405 1540 1646 1819 1853 2061 2140 2382

P GT P GT P GT P GT P GT P GT P GT P GT

No. of O 2 2 1 1 2 2 1 1 1 1 1 1 1 1 2 2

No. of L 1 1 2 2 1 1 2 2 2 2 2 2 1 1 2 2

Far

Near

Figure 4.5: Results of proposed method in in-vivo: O and L denote number of BO
regions and estimated branching levels. P means estimated value from algorithms, and
GT means the manually created ground truth. In this case, the moving trajectory of the
bronchoscope is trachea → left main bronchus → trachea → left main bronchus.

direction estimation (CPU), 5 ms for the depth information prediction (GPU), 3 ms for

counting the BOs (CPU), and 6 ms for estimation of the branching level (CPU).

4.5 Discussion

As shown in Table 4.5, average accuracy in the proposed branching level estimation

method is 87.6 %. The estimation results in Figs. 4.4 and 4.5 show that the branching

level is correctly estimated. We investigated the performance of several image-guided

navigation schemes. Previous works [78, 81, 86, 108] estimated the precise camera po-

sition from RB images for navigation. Through decades of development, bronchoscope

tracking has achieved high accuracy (e.g., 3.0 mm [167], 2.4 mm [109], and 3.18 mm

[108]). On the other hand, we estimate the location of the bronchoscope in branching

level for branch localization-based navigation. The two navigation types are different,

and thus a direct comparison cannot be made. Our work is similar to a navigation

scheme described previously [155]. We developed a new type of branching level nav-

igation scheme using depth images rather than color images. Some of the advantages
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and limitations of the proposed method are outlined in the following section.

4.5.1 Advantages of proposed method

Simplified patient-CT registration

One advantage of the proposed method is the simplicity with which the estimated

branching level can be registered to bronchus trees. Conventional navigation systems

using bronchoscope tracking require precise patient-CT registration ([86, 103, 167]).

The proposed method requires no complex registration procedure.

No accumulation of tracking errors

Another advantage of the proposed method is that no tracking errors are accumulated

during processing. The proposed method estimates the passed branching level from

the trachea. Since the branching level changes by an integer as the branch changes,

the accumulation of tracking errors can be prevented. Therefore, the proposed method

tracks more frames than does the previous precise bronchoscope-tracking navigation.

Handling scenes with complex imaging conditions

The proposed method shows robustness against various imaging conditions such as bub-

bles/froth and strong illumination. We think this is because the depth image performs

better than the color image in the BO-counting process. As shown in the 1881st frame

in Case 2 of Fig. 4.4, the estimated branching level is correct even though bubbles are

observed.
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Applicability of data from multiple bronchoscopes

The proposed method uses depth images for the BO-counting task. Since variations

in RB images greatly decreased in the depth images, our method performs well with

different types of devices. We assume that the conventional bronchoscope images are

used as input. Furthermore, the proposed method works well for images captured by

different devices of the same manufacturer (Olympus, Tokyo). In our future work,

we will test images obtained by other bronchoscopes of different manufacturers for

validation.

4.5.2 Investigation of failed frames

We investigated the images that failed to estimate the branching levels. The first reason

is the miscounting of BOs. The BO-counting method was robust in most scenes, but

the jitter in the curves was not entirely eliminated. The second reason is that when the

bronchoscope hits the bronchial wall, the BO counting fails. We show an example where

branching level estimation fails in Fig. 4.6. The RB images in this example are taken

from Case 3 when the estimation of branching level goes wrong. This 6195th RB image

shows that the bronchoscope nearly hit the bronchial wall, which leads to the failure of

BO counting (since there are no local minima in the vertical and horizontal projection

profiles). In the frames before this frame, one BO is observed and the camera-moving

direction is forward. According to the algorithm, the branching level increases by one

in this situation. However, the camera actually stays at the same branching level. To

decrease the failures from miscounting BOs, an image classification procedure may be

used to detect and remove images of poor quality.
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4.5.3 Investigation of smoothing procedure in BO counting

We investigated the contributions of each step in the smoothing procedure by check-

ing the BO’s number after each smoothing step. We show one example of the detected

local minima after each smoothing step in the vertical projection profile in Fig. 4.7.

The detected local minima were marked in each smoothing step using a star. The de-

tected number of BOs was nine in the vertical projection of the original depth image

(corresponding to (b)), six after the down-sampling (corresponding to (c)), three after

the image blur and down-sampling (corresponding to (d)), and two after the final step

(corresponding to (e)). If the depth image is used directly, some values of the local

minima are miscount as the number of BOs; however, they are from the cartilage ring

(corresponding to (b) in Fig. 4.7). After the down-sampling procedure is applied, these

miscounted values are eliminated (corresponding to (c) in Fig. 4.7). After the down-

sampling and image blur procedures are applied, the detected local minima decreased

(corresponding to (d) in Fig. 4.7). Finally, two local minima are correctly detected after

these smoothing steps. We consider that the down-sampling step and the polygon-fitting

step make more contributions to the smoothing procedure.

4.5.4 Future work

In this paper, we described our research on the estimation of branching levels based on

the changes of BOs. The proposed method is still in the preliminary stage so it cannot

be used in clinical application. According to physicians’ comments, bronchoscopy will

be of great benefit if the name of the bronchus is provided. In addition, if BO shape

information (e.g., diameter of BO) is provided, the diagnosis of bronchial disease (e.g.,

bronchiectasis) will be easier. Also, it would be more helpful if a navigation system

integrated the diagnostic report-generation function, which would automatically record

the locations of the abnormal tissues and branches passed during bronchoscopy. There-
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6192nd frame 6195th frame

Figure 4.6: Examples of RB images that failed in branching level estimation. The num-
ber of BOs in the 6192nd frame is one, while the number of BOs in the 6195th frame is
unknown. This is because the camera nearly hit the bronchial wall, so we cannot obtain
useful information.

(a) RB image 
(b) Vertical projection 

of original depth image
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(c) Vertical projection 

after down-sampling

(d) Vertical projection 

(down-sampling + image 

blur)

(e) Vertical projection 

(down-sampling +

image blur + fitting)

Figure 4.7: Example of the vertical projection profile and found local minima after each
smoothing operation. The found local minima are marked using stars on the curves.
The number of local minimum values are nine for (b), six for (c), three for (d), and two
for (e). There are two BOs in this RB image.

fore, additional functions should be implemented before clinical application. We will

utilize the estimated depth image to segment the BO region and use it for branch name
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estimation and the diagnosis of the bronchial disease. The navigation system we want

to develop will provide navigational information, such as the name of the branch, in

real-time to physicians.

4.6 Summary

This Chapter describes a new type of patient-specific bronchoscopy navigation scheme

that uses the anatomical structure to estimate the branching level. This method only

uses color RB images to estimate the branching level instead of traditional video-CT im-

age registration based or additional sensor-based bronchoscope tracking. The proposed

method behaves robustly to scenes showing poor imaging conditions such as strong il-

lumination changes and bubbles. Since this method is still in its preliminary stage, the

performance is still need to be improved. However, the proposed method provides a

new approach for bronchoscopy navigation. In the future, more functions are expected

to be implemented to make it a bronchoscopy navigation system.
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Chapter 5

Conclusions and future work

This chapter briefly concludes the topics introduced in the previous Chapters at the

beginning of the Chapter. Then discusses the advantages and disadvantages of the

involved two tracking types. Finally, the promising directions of bronchoscope tracking

in the future are discussed.

5.1 Summary

This thesis described the study on image-guided bronchoscope tracking for bronchoscopy

navigation. More than 140 years ago, the endoscope application in bronchus examina-

tion made it possible to see the inside of the human bronchus. More than 100 years ago,

the invention of X-ray photography made it possible to visualize the inside of the hu-

man body. As time goes by, more and more medical imaging techniques were invented

and applied to clinical applications. These techniques have benefited bronchoscopy. Ac-

cording to the application, the diagnosis techniques are classified into computer-aided

diagnosis (CAD) and computer-aided surgery (CAS). CAD procedure determines the

presence or absence of lesions, and the decisions on treatment type are made based
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on the result of the CAD procedure. CAS procedure is used to assist physicians during

surgery. This study aims at the CAS procedure by using RB images.

In Chapter 2, the pure RB image-based bronchoscope tracking is described. Bron-

choscope tracking is an important component in bronchoscopy navigation. The previous

video-CT-based method behaves weakly in regions lacking texture and suffers from the

difference between preoperative VB and intraoperative RB images; additional sensor-

based tracking can’t enter the terminal bronchus due to the limitation of device size.

Therefore, a pure RB image-based bronchoscope tracking is proposed using the visual

SLAM technique in computer vision. This technique uses 3D-2D matches to estimate

the camera pose and surroundings from a monocular video. To make it suitable for the

bronchus scene, finding 3D-2D matches is improved with the stricter conditions. The

experiment results in the phantom case show promising results of the proposed method.

Moreover, the proposed method shows better performance in dealing with scenes of ex-

isting simulated deformation.

In Chapter 3, a deep-leaning-based anatomical structure segmentation method is

described. The BO region is an important anatomic structure in the bronchus scene.

Previous works use image appearance and geometry shape to extract the orifice region

from RB images, which behaves poorly in scenes existing complex imaging condition.

To overcome the shortcomings of the previous method, the orifice region is segmented

using a depth image, which is estimated from CycleGAN. Experimental results showed

that the proposed method has a higher DICE score than the previous methods com-

paring to ground truth; the proposed method segments each orifice region in complex

imaging conditions.

In Chapter 4, a branching level estimation method is described. The conventional

bronchoscope tracking method estimates the camera pose for each frame. Since the

tracking procedure is based on the previous tracking results, the tracking error accu-

mulates as the tracking of the new frames. To decrease the tracking error, a branching
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level estimation method is used. This method monitors the changes in the BO region.

Once the orifice has changed among frames, the camera moving direction is used to

decide the current branching level. This method uses the depth images estimated from

CycleGAN to count the orifice region and shows good performance in poor imaging

conditions. The proposed method shows the potential for bronchoscopy navigation.

5.2 Comparison of two tracking type

5.2.1 System complexity

Tracking complexity

The precise bronchoscope tracking-based systems precisely estimate each frame’s cam-

era pose, which could provide the pose of the bronchoscope camera with high accuracy.

With the estimated camera pose and the registration result between CT images and RB

images coordinate, the corresponding VB images could be generated and used for more

augmented reality (AR) applications. However, on the other hand, this type of tracking

is time-consuming and a waste of resources. Besides, CT images are required before

the examination while in the case of emergency CT images are unavailable. Moreover,

in several cases of bronchoscopy, there is no need to know the bronchoscope position

in high accuracy. The precise bronchoscope tracking schemes, such as video-CT-based

tracking and visual SLAM-based tracking, show good accuracy. Both of the tracking

methods needs a huge amount of time for computation.

On the other side, the coarse bronchoscope localization only shows key navigational

information, such as the branching level and anatomic structure changes during bron-

choscopy. This type of navigation occupies fewer computer resources and provides es-

sential information for navigation, which may be welcomed in the future.
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Registration procedure

The registration procedure of the precise bronchoscope tracking-based systems needs

a lot of effects to perform registration. The transformation in registration involves six

or more degrees of freedom (DoF), including the translation in position and rotation in

orientation. Once the unexpected scene happens, such as the patient movement, track-

ing error becoming larger, the registration procedure should be refined immediately to

avoid further tracking error. However, in the clinical scene, these scenes easily tend to

happen.

On the other hand, the coarse bronchoscope localization-based navigation system

does not consider the camera pose in each frame. The registration is performed by con-

sidering the branching level. In the future, more functions are added to this system,

which however, will not increase the complexity of registration procedure.

5.2.2 Tracking accuracy

The precise bronchoscope tracking-based navigation scheme has been researched for

decades. Therefore, there are many efficient solutions aiming at solving different scenes.

The accuracy of the CT-image registration-based schemes have achieved high accuracy

(e.g., 3.0 mm [167], 2.4 mm [109], and 3.18 mm [108]). The tracking accuracy is

quite high in these applications.

On the other hand, the coarse bronchoscope tracking method has not been so widely

researched. Therefore, navigation systems based on this type of tracking have quite

huge of potential applications clinically in the future.



5.3. FUTURE WORK 97

5.2.3 Robustness

Since the conditions in RB image are very complex, the robustness of the navigation

system is quite crucial. The conventional precise bronchoscope tracking-based naviga-

tion systems use color RB images, which may suffer from the difference between VB

and RB images. The differences in RB and VB images will decrease tracking accuracy

and finally lead to tracking failure.

The coarse bronchoscope localization-based navigation systems show robust in im-

ages existing poor imaging conditions. The proposed branching level estimation method

is based on the depth image, in which the influence of the imaging conditions has

been greatly decreased. Therefore, depth image-based tracking behaves more robustly.

What’s more, since the coarse bronchoscope localization-based scheme identifies the

branching names, the tracking error of this system type will not accumulate like an

exponential explosion.

5.3 Future work

This thesis describes two types of bronchoscopy navigation systems: precise broncho-

scope tracking-based and coarse bronchoscope localization-based navigation system. In

the following section, we will introduce the future work of two types of navigation sys-

tems respectively.

The precise bronchoscope tracking-based navigation has been developed for quite

a long time. The currently widely used navigation system is EM sensor-based method

navigation and in the future several years. However, in recent years, deep learning-

based methods have been deeply researched. Several applications of the image-guided

CAD systems have been developed and applied in clinical applications. The video-CT

image registration-based bronchoscope tracking has many researches. In the future, the
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precise bronchoscope tracking-based navigation systems will become more robust and

overcome more difficulties. The registration procedure will be easier to operate and the

navigation system will be integrated with more functions. Moreover, the time cost of

the whole system will be decreased. Physicians will use this type of navigation system

more easily.

On the other hand, the bronchial branch localization-based navigation type still

needs to get more attention to make it a clinical application. However, this type of

navigation system has promising performance. As we mentioned in Chapter 4, if this

type of navigation system could integrate more functions, physicians will be more will-

ing to use it. In the future, this type of navigation system may become popular after

more functions are integrated.

As conclusion, both of the conventional navigation system and popular schemes use

the special anatomical structure of the bronchus and the existing prior knowledge about

the bronchus. In the future, we think a specialised navigation system considering these

points will have better performance in clinical applications and more tend to be wel-

comed.



Acknowledgement

Firstly, I would like to express my sincere gratitude to my supervisor, Prof. Dr. Kensaku

Mori. Without his guidance, encouragement, and support, I could have never finished

this study. He has been an excellent advisor and has always directed me in doing my

fundamental research that will make a difference. Moreover, he has a deep understand-

ing of professional knowledge, and a meticulous attitude in academic research. He

helps me a lot not only in academic research but also in daily life.

I would also like to convey my heartfelt thanks to Prof. Dr. Masahiro Oda for his

help during my doctoral study. The care and greetings from him have increased my

confidence. Without his kind guidance, I could not finish my doctoral study smoothly. I

am also very grateful to Prof. Dr. Katashi Nagao, Prof. Dr. Hiroaki Kudou and Prof. Dr.

Daisuke Deguchi who gave me precious comments and were also willing to review my

thesis. They have made my thesis better.

I want to express my special appreciation to Prof. Dr. Yuichiro Hayashi and Prof. Dr.

Takayuki Kitasaka (Aichi Institute of Technology). Their rich knowledge and experience

regarding my work were a great assistance to resolve my various doubts in regards to

my dissertation. Their wisdom thinking and kindness support have greatly decreased

the difficulties during my study. I have benefited a lot from them.

I owe my sincere gratitude to Prof. Dr. Hirotoshi Honma (Sapporo-Kosei General

Hospital), Prof. Dr. Hirotsugu Takabatake (Sapporo Minami-Sanjo Hospital), Prof. Dr.

99



100 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Masaki Mori (Sapporo-Kosei General Hospital), and Prof. Dr. Hiroshi Natori (Keiwakai

Nishioka Hospital) for their helpful medical advice, their encouragement and their valu-

able materials. The remote video conference every Tuesday’s night has been an expec-

tant time to discuss the questions in research.

I am deeply grateful to my seniors at Mori laboratory: Dr. Chenglong Wang and

Dr. Hirohisa Oda. Their insightful comments and suggestions in regard to my study

since the Autumn of 2015. I would also like to thank all my colleagues those who are

undergraduate and those who have graduated from Mori laboratory. Studying with

them have been a unforgettable memory. There are other valuable memories such as

lab travel, the special events happened in Mori laboratory.

I owe a great deal to all the organizations, who generously sponsored my study, in-

cluding Chinese and Japanese government; Ministry of Education, Culture, Sports, Sci-

ence and Technology (MEXT); the grant from Murata Science Foundation; the Olympus

Corporation and other organizations. Their support and help have made this research

work easier.

Finally I would like to extend my indebtedness to my parents, my wife and other

relationships. Thanks for their support, continuous understanding, warmness encour-

agement and sacrifice, throughout the whole study period.



Bibliography

[1] Rebecca L Siegel, Kimberly D Miller, and Ahmedin Jemal. Cancer statistics, 2020.

CA: a cancer journal for clinicians, 70(1):7–30, 2020.

[2] National Cancer Institute. Cancer stat facts: Lung and bronchus cancer. https:

//seer.cancer.gov/statfacts/html/lungb.html. Accessed at Nov. 15, 2020.

[3] Olympus Corporation. The bronchus through the bronchivideoscope poster.

https://www.olympusprofed.com/pulm/bronchoscopy/1158/. Accessed at Nov.

24, 2020.

[4] Your Practice Online. Bronchoscopy. https://www.ypo.education/

medical-tests/bronchoscopy-t312/video/. Accessed at Nov. 24, 2020.

[5] Rebecca L Siegel, Kimberly D Miller, and Ahmedin Jemal. Cancer statistics, 2019.

CA: a cancer journal for clinicians, 69(1):7–34, 2019.

[6] Kathleen A Cronin, Andrew J Lake, Susan Scott, Recinda L Sherman, Anne-

Michelle Noone, Nadia Howlader, S Jane Henley, Robert N Anderson, Albert U

Firth, Jiemin Ma, et al. Annual report to the nation on the status of cancer, part

I: National cancer statistics. Cancer, 124(13):2785–2800, 2018.

[7] Rui-Mei Feng, Yi-Nan Zong, Su-Mei Cao, and Rui-Hua Xu. Current cancer situa-

101

https://seer.cancer.gov/statfacts/html/lungb.html
https://seer.cancer.gov/statfacts/html/lungb.html
https://www.olympusprofed.com/pulm/bronchoscopy/1158/
https://www.ypo.education/medical-tests/bronchoscopy-t312/video/
https://www.ypo.education/medical-tests/bronchoscopy-t312/video/


102 BIBLIOGRAPHY

tion in China: good or bad news from the 2018 global cancer statistics? Cancer

Communications, 39(1):22, 2019.

[8] Keisuke Onoi, Yusuke Chihara, Junji Uchino, Takayuki Shimamoto, Yoshie

Morimoto, Masahiro Iwasaku, Yoshiko Kaneko, Tadaaki Yamada, and Koichi

Takayama. Immune checkpoint inhibitors for lung cancer treatment: A review.

Journal of clinical medicine, 9(5):1362, 2020.

[9] Akbar Khanmohammadi, Ali Aghaie, Ensieh Vahedi, Ali Qazvini, Mostafa Ghanei,

Abbas Afkhami, Ali Hajian, and Hasan Bagheri. Electrochemical biosensors for

the detection of lung cancer biomarkers: A review. Talanta, 206:120251, 2020.

[10] National Cancer Center. Lung cancer: examination. https://ganjoho.jp/

public/cancer/lung/diagnosis.html. Accessed at Dec. 15, 2020.

[11] Ting Zhou, Zhonghan Zhang, Fan Luo, Yuanyuan Zhao, Xue Hou, Tingting Liu,

Kai Wang, Hongyun Zhao, Yan Huang, and Li Zhang. Comparison of first-line

treatments for patients with extensive-stage small cell lung cancer: a system-

atic review and network meta-analysis. JAMA network open, 3(10):e2015748–

e2015748, 2020.

[12] Bertram Eugene Warren. X-ray Diffraction. Courier Corporation, 1990.

[13] Thorsten M Buzug. Computed tomography. In Springer Handbook of Medical

Technology, pages 311–342. Springer, 2011.

[14] James Mattson and Merrill Simon. The pioneers of NMR and magnetic resonance

in medicine: The story of MRI. Bar-Ilan University Press, 1996.

[15] Takayuki Kitasaka, Kensaku Mori, Jun-ichi Hasegawa, and Jun-ichiro Toriwaki.

A method for extraction of bronchus regions from 3d chest x-ray ct images by

https://ganjoho.jp/public/cancer/lung/diagnosis.html
https://ganjoho.jp/public/cancer/lung/diagnosis.html


BIBLIOGRAPHY 103

analyzing structural features of the bronchus. FORMA-TOKYO-, 17(4):321–338,

2002.

[16] Heang-Ping Chan, Lubomir M Hadjiiski, and Ravi K Samala. Computer-aided

diagnosis in the era of deep learning. Medical physics, 47(5):e218–e227, 2020.

[17] Hiroshi Fujita. AI-based computer-aided diagnosis (AI-CAD): the latest review to

read first. Radiological physics and technology, 13(1):6–19, 2020.

[18] Juri Yanase and Evangelos Triantaphyllou. A systematic survey of computer-

aided diagnosis in medicine: Past and present developments. Expert Systems

with Applications, 138:112821, 2019.

[19] Maryellen Lissak Giger, Kunio Doi, and Heber MacMahon. Image feature analysis

and computer-aided diagnosis in digital radiography. 3. automated detection of

nodules in peripheral lung fields. Medical Physics, 15(2):158–166, 1988.

[20] Muzzamil Javaid, Moazzam Javid, Muhammad Zia Ur Rehman, and Syed Ir-

tiza Ali Shah. A novel approach to cad system for the detection of lung nodules in

ct images. Computer methods and programs in biomedicine, 135:125–139, 2016.

[21] Xin-Wei Xu, Kunio Doi, Takeshi Kobayashi, Heber MacMahon, and Maryellen L

Giger. Development of an improved cad scheme for automated detection of lung

nodules in digital chest images. Medical Physics, 24(9):1395–1403, 1997.

[22] Jun-Gang Li, Wen-Xin Li, Jing-Ying Xu, Xiao-Qing Cai, Rui-Li Liu, Yong-Jun Li,

Qun-Fen Zhao, and Qing-Nuan Li. Comparative study of pathological lesions

induced by multiwalled carbon nanotubes in lungs of mice by intratracheal in-

stillation and inhalation. Environmental Toxicology: An International Journal,

22(4):415–421, 2007.



104 BIBLIOGRAPHY

[23] Armin Ernst, Gerard A Silvestri, and David Johnstone. Interventional pulmonary

procedures: guidelines from the american college of chest physicians. Chest,

123(5):1693–1694, 2003.

[24] Hirohisa Horinouchi, Fumihiro Asano, Kenichi Okubo, Yoshinori Okada, Yoshi-

nobu Ohsaki, Yuko Komase, Toshinori Hashizume, Mitsutomo Kohno, and Motoi

Aoe. Current status of diagnostic and therapeutic bronchoscopy in japan: 2016

national survey of bronchoscopy. Respiratory investigation, 57(3):238–244, 2019.

[25] Olympus Corporation. Bronchoscopy. https://www.mayoclinic.org/

tests-procedures/bronchoscopy/about/pac-20384746#:~:text=Common%

20reasons%20for%20needing%20bronchoscopy,provide%20treatment%20for%

20lung%20problems. Accessed at Nov. 15, 2020.

[26] Atilla P Kiraly, James P Helferty, Eric A Hoffman, Geoffrey McLennan, and

William E Higgins. Three-dimensional path planning for virtual bronchoscopy.

IEEE Transactions on Medical Imaging, 23(11):1365–1379, 2004.
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[28] The Johns Hopkins University. Bronchoscopy. https://www.hopkinsmedicine.

org/health/treatment-tests-and-therapies/bronchoscopy#:~:text=

Bronchoscopy%20is%20a%20procedure%20to,)%2C%20and%20into%20the%

20airways. Accessed at Dec. 25, 2020.

[29] Eladio Rodriguez-Diaz, Samer Kaanan, Christopher Vanley, Tauseef Qureshi, and

Irving J Bigio. Towards optical spectroscopy-guided lung biopsy: demonstration

of tissue-type classification. Journal of Biophotonics, page e202100132, 2021.

https://www.mayoclinic.org/tests-procedures/bronchoscopy/about/pac-20384746#:~:text=Common%20reasons%20for%20needing%20bronchoscopy,provide%20treatment%20for%20lung%20problems.
https://www.mayoclinic.org/tests-procedures/bronchoscopy/about/pac-20384746#:~:text=Common%20reasons%20for%20needing%20bronchoscopy,provide%20treatment%20for%20lung%20problems.
https://www.mayoclinic.org/tests-procedures/bronchoscopy/about/pac-20384746#:~:text=Common%20reasons%20for%20needing%20bronchoscopy,provide%20treatment%20for%20lung%20problems.
https://www.mayoclinic.org/tests-procedures/bronchoscopy/about/pac-20384746#:~:text=Common%20reasons%20for%20needing%20bronchoscopy,provide%20treatment%20for%20lung%20problems.
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/bronchoscopy#:~:text=Bronchoscopy%20is%20a%20procedure%20to,)%2C%20and%20into%20the%20airways
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/bronchoscopy#:~:text=Bronchoscopy%20is%20a%20procedure%20to,)%2C%20and%20into%20the%20airways
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/bronchoscopy#:~:text=Bronchoscopy%20is%20a%20procedure%20to,)%2C%20and%20into%20the%20airways
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/bronchoscopy#:~:text=Bronchoscopy%20is%20a%20procedure%20to,)%2C%20and%20into%20the%20airways


BIBLIOGRAPHY 105

[30] Tanmay S Panchabhai and Atul C Mehta. Historical perspectives of bronchoscopy.

connecting the dots. Annals of the American Thoracic Society, 12(5):631–641,

2015.

[31] Francesco Petrella, Alessandro Borri, Monica Casiraghi, Sergio Cavaliere, Stefano

Donghi, Domenico Galetta, Roberto Gasparri, Juliana Guarize, Alessandro Par-

dolesi, Piergiorgio Solli, et al. Operative rigid bronchoscopy: indications, basic

techniques and results. Multimed Man Cardiothorac Surg, 2014:1–6, 2014.

[32] HD Becker and BR Marsh. Interventional bronchoscopy. Anonymous. History of

the rigid bronchoscope. Karger Publishers, pages 2–15, 2000.

[33] Rainer ME Engel. Philipp bozzini—the father of endoscopy. Journal of Endourol-

ogy, 17(10):859–862, 2003.

[34] Teruomi Miyazawa. History of the flexible bronchoscope. Interventional bron-

choscopy, 30:16–21, 2000.

[35] HD Becker. Endobronchial ultrasound-a new perspective in bronchoscopy. Lung

cancer, 1(16):112–113, 1996.

[36] Andrew RL Medford, JA Bennett, CM Free, and S Agrawal. Endobronchial ul-

trasound guided transbronchial needle aspiration. Postgraduate medical journal,

86(1012):106–115, 2010.

[37] Felix JF Herth, Ralf Eberhardt, Peter Vilmann, Mark Krasnik, and Armin Ernst.

Real-time endobronchial ultrasound guided transbronchial needle aspiration for

sampling mediastinal lymph nodes. Thorax, 61(9):795–798, 2006.

[38] Xiaonan Zang, Ronnarit Cheirsilp, Patrick D Byrnes, Trevor K Kuhlengel, Cather-

ine Abendroth, Thomas Allen, Rickhesvar Mahraj, Jennifer Toth, Rebecca Bas-



106 BIBLIOGRAPHY

com, and William E Higgins. Image-guided ebus bronchoscopy system for lung-

cancer staging. Informatics in Medicine Unlocked, page 100665, 2021.

[39] Daniel P Steinfort, Felix JF Herth, Louis B Irving, and Phan T Nguyen. Safe

performance of diagnostic bronchoscopy/ebus during the sars-cov-2 pandemic.

Respirology, 25(7):703–708, 2020.

[40] Sebastian F Ameriso, Pierre Amarenco, Lesly A Pearce, Kanjana S Perera, George

Ntaios, Wilfried Lang, Daniel Bereczki, Shinichiro Uchiyama, Scott E Kasner,

Byung-Woo Yoon, et al. Intracranial and systemic atherosclerosis in the navi-

gate esus trial: Recurrent stroke risk and response to antithrombotic therapy.

Journal of Stroke and Cerebrovascular Diseases, 29(8):104936, 2020.

[41] Anushirvan Minokadeh and William C. Wilson. Chapter 49 - emergency airway

management. In Allen Jeremias and David L. Brown, editors, Cardiac Intensive

Care (Second Edition), pages 598 – 631. W.B. Saunders, Philadelphia, second

edition edition, 2010.

[42] Ko Pen Wang, Atul C Mehta, J Francis Turner, KoPen Wang, and Ko Pen Wang.

Flexible bronchoscopy. Wiley Online Library, 2012.

[43] Bronchoscopy procedure. https://www.jerseyshoreuniversitymedicalcenter.

com/services/gastroenterology/bronchoscopy-procedure/#:~:text=The%

20benefits%20of%20bronchoscopy%20include,can%20be%20removed%20from%

20lungs. Accessed at Dec. 15, 2020.

[44] Pyng Lee. Indications and limitations of bronchoscopy. In Journal of Thoracic

Oncology, volume 2, pages S278–S281, 2007.

[45] Physician P.C. Health & Breathing Center MXBowen. The advan-

https://www.jerseyshoreuniversitymedicalcenter.com/services/gastroenterology/bronchoscopy-procedure/#:~:text=The%20benefits%20of%20bronchoscopy%20include,can%20be%20removed%20from%20lungs
https://www.jerseyshoreuniversitymedicalcenter.com/services/gastroenterology/bronchoscopy-procedure/#:~:text=The%20benefits%20of%20bronchoscopy%20include,can%20be%20removed%20from%20lungs
https://www.jerseyshoreuniversitymedicalcenter.com/services/gastroenterology/bronchoscopy-procedure/#:~:text=The%20benefits%20of%20bronchoscopy%20include,can%20be%20removed%20from%20lungs
https://www.jerseyshoreuniversitymedicalcenter.com/services/gastroenterology/bronchoscopy-procedure/#:~:text=The%20benefits%20of%20bronchoscopy%20include,can%20be%20removed%20from%20lungs


BIBLIOGRAPHY 107

tages of navigational bronchoscopy. https://www.mxbowenppc.com/2016/01/

the-advantages-of-navigational-bronchoscopy/. Accessed at Nov. 24, 2020.

[46] Stefan Milz, Georg Arbeiter, Christian Witt, Bassam Abdallah, and Senthil Yoga-

mani. Visual SLAM for automated driving: Exploring the applications of deep

learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 247–257, 2018.

[47] Md Mahmud Hasan, Beibut Amirgaliyev, Dastan Rakhatov, Almas Tuyakbayev,

and Chingiz Kenshimov. Real time road mapping for the driving safety purposes.

In 2015 International Conference on Connected Vehicles and Expo (ICCVE), pages

60–61. IEEE, 2015.

[48] Mike Zdeb. Driving distances and times using SAS® and google maps. In SAS

Global Forum, volume 2010, 2010.

[49] Michelle Birdsall. Google and ite: The road ahead for self-driving cars. Institute

of Transportation Engineers. ITE Journal, 84(5):36, 2014.

[50] Hao Yu, Shu Yang, Weihao Gu, and Shaoyu Zhang. Baidu driving dataset and

end-to-end reactive control model. In 2017 IEEE Intelligent Vehicles Symposium

(IV), pages 341–346. IEEE, 2017.

[51] Jun Liu, Jihua Xiao, HongJie Cao, and Jiakai Deng. The status and challenges of

high precision map for automated driving. In China Satellite Navigation Confer-

ence, pages 266–276. Springer, 2019.

[52] Hongzhu Ruan, Xiaofeng Ji, and Chuan Feng. The empirical research on infor-

mation behavior characteristics and satisfaction of drivers based on smart phone.

Procedia engineering, 137:343–351, 2016.

https://www.mxbowenppc.com/2016/01/the-advantages-of-navigational-bronchoscopy/
https://www.mxbowenppc.com/2016/01/the-advantages-of-navigational-bronchoscopy/


108 BIBLIOGRAPHY

[53] Martin J Citardi and Pete S Batra. Intraoperative surgical navigation for endo-

scopic sinus surgery: rationale and indications. Current opinion in otolaryngology

& head and neck surgery, 15(1):23–27, 2007.

[54] Simon Leonard, Ayushi Sinha, Austin Reiter, Masaru Ishii, Gary L Gallia, Rus-

sell H Taylor, and Gregory D Hager. Evaluation and stability analysis of video-

based navigation system for functional endoscopic sinus surgery on in vivo clini-

cal data. IEEE transactions on medical imaging, 37(10):2185–2195, 2018.

[55] Alexander G Chiu and Winston C Vaughan. Revision endoscopic frontal si-

nus surgery with surgical navigation. Otolaryngology–Head and Neck Surgery,

130(3):312–318, 2004.

[56] Simon Leonard, Austin Reiter, Ayushi Sinha, Masaru Ishii, Russell H Taylor,

and Gregory D Hager. Image-based navigation for functional endoscopic sinus

surgery using structure from motion. In Medical Imaging 2016: Image Process-

ing, volume 9784, page 97840V. International Society for Optics and Photonics,

2016.

[57] Anand Velusamy, Aishwarya Anand, and Nazrin Hameed. Navigation assisted

frontal sinus osteoplastic flap surgeries–a case series. Indian Journal of Otolaryn-

gology and Head & Neck Surgery, pages 1–5, 2021.
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[149] Raúl Mur-Artal and Juan D Tardós. Fast relocalisation and loop closing in

keyframe-based slam. In 2014 IEEE International Conference on Robotics and

Automation (ICRA), pages 846–853. IEEE, 2014.

[150] Wang Cheng, Oda Masahiro, Hayashi Yuichiro, Kitasaka Takayuki, Takabatake

Hirotsugu, Mori Masaki, Honma Hirotoshi, Natori Hiroshi, and Mori Kensaku.

Improvement of robustness of SLAM-based bronchoscope tracking by posture

guided feature matching. In International Journal of Computer Assisted Radiology

and Surgery (CARS), volume 13, pages 11–12, 2018.

[151] Yukitaka Nimura. Pluto: a common platform for computer-aided diagnosis. Med

Imag Tech, 26(3):187–191, 2008.

[152] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transac-

tions on pattern analysis and machine intelligence, 22(11):1330–1334, 2000.



BIBLIOGRAPHY 123

[153] Marc Levoy. Display of surfaces from volume data. IEEE Computer graphics and

Applications, 8(3):29–37, 1988.

[154] Carles Sánchez, Jorge Bernal, Debora Gil, and F Javier Sánchez. On-line lumen

centre detection in gastrointestinal and respiratory endoscopy. In Workshop on

Clinical Image-Based Procedures, pages 31–38. Springer, 2013.

[155] Debora Gil, Antonio Esteban-lansaque, Agnés Borràs, Esmitt Ramı́rez, and Carles
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