Special math lectures

Spring Semester 2020

S. Richard

Teaching assistant: N. T'suzu

Contents

1 The basics

1.1 Graphso
1.2 Walks and paths
1.3 Cycles
1.4 Weighted graphs
1.5 Appendix
1.5.1 Strongly connected oriented graph and bipartiteness
1.5.2 Travelling Salesman Problem
1.5.3 (G), A(G), rad(G), diam(G), girth(G), and all that
2 Representations and structures
2.1 Matrix representations
2.2 Isomorphisms
2.3 Automorphisms and symmetries
24 Subgraphso
3 Trees
3.1 Trees and forests
3.2 Rooted trees
3.3 Traversals in binary trees L Lo
3.4 Applicationso
3.4.1 Arithmetic expression trees
3.4.2 Binary search trees oo
3.4.3 Huffman trees
3.4.4 Priority trees
3.5 Counting binary trees L
3.6 Appendix
3.6.1 Operations on binary search trees

3.6.2 An Improved Inserting Algorithm to Binary Search Trees

4 Spanning trees
4.1 Spanning trees and their growth
4.2 Depth-first and breadth-first search

3

\]

14
15
16
16
18
23

25
25
29
32
35

39
39
41
46
47
47
48
49
93
56
29
99
62

CONTENTS

4.3 Applications of DESo
4.4 Minimum spanning trees and shortest paths
4.5 Appendix
4.5.1 A few problems on spanning trees
4.5.2 Greedy algorithm
4.5.3 Application of graph theory in route search algorithm for route
guidance system in automobiles
454 Floyd—Warshall algorithm
Connectivity
5.1 Vertex and edge connectivity L.
5.2 Menger’s theoremo
5.3 Blocks and block-cutpoint graphs00
54 Appendix
5.4.1 Some inequalities

Optimal traversals

6.1 Eulerian trails oo
6.2 Postman tour L
6.3 Hamiltonian paths and cycles
6.4 The traveling salesman problem

Graph colorings

7.1 Vertex-colorings
7.2 Plane graphs
7.3 Map-colorings
74 Appendix
7.4.1 The five color theorem
7.4.2 Some problems related to plane graphs
Directed graphs
8.1 Strongly connected components
8.2 Tournaments
8.3 Project scheduling o
Flows
9.1 Capacity, flowsand cutso
9.2 Maximum flow problem oL
9.3 Applications
9.3.1 Flow and Menger’s theorem
9.3.2 Matching
9.3.3 Transversals
9.4 Appendix

9.4.1 Hall’'s marriage theorem

107
107
108
111
113

119
119
124
127
129
129
133

137
137
143
146

CONTENTS

10 Random graphs: the G(n,p) model

10.1
10.2
10.3
10.4

Basicresults
Components
Clustering coefficient and path lengths
Weaknesses

11 The configuration model

11.1
11.2
11.3

Construction, and basic properties.
Additional properties L
Community structure, or modularity

12 Epidemics on graphs

12.1

12.2
12.3
12.4

Basic models
12.1.1 The SI-model
12.1.2 The SIR-model
12.1.3 Othermodels
Percolation
Epidemic on graphs and percolation
Time dependent evolution L.

165
165
169
173
175

179
179
182
186

CONTENTS

Chapter 1

The basics

1.1 Graphs

In this section we provide the main definitions about graphs.

Definition 1.1 (Graph). A graph G consists in a pair G = (V, E) of two sets together
with a map i : E — V x V assigning to every e € E a pair (z,y) of elements of V.
Elements of V' are called vertices, elements of E are called edges. If i(e) = (x,y), the
vertices x and y are also called the endpoints of e.

We say that the graph is undirected or unori-
ented if we identify the pairs (z,y) and (y,z) in . e -
V' x V, while the graph is directed or oriented if O
we consider (z,y) distinct from (y,z) in V x V.

For undirected graphs, when i(e) = (x,y) we say 3 e
that the edge e links = to y or y to x, without

any distinction, or that e is an edge between x Fig. 1.1. One edge, two vertices
and y, or between y and x. For directed graphs, if

i(e) = (x,y) we often call = the initial vertex for e, or the origin of e, while y is called
the terminal vertex or the target. In this case, we alsoset o : £ — V andt : £ — V
with o(e) = z and t(e) = y such that i(e) = (o(e), t(e)), the origin and the terminal
maps, see Figure 1.2. Some authors also use head and tail for the terminal vertex and
the initial vertex, respectively. For directed or undirected graphs, we also say that x and
y are connected or adjacent whenever there exists an edge (directed or not) between
them.

One observes that Definition 1.1 allows any graph to have loops, when i(e) = (x, x),
and multiple edges between the same vertices, namely when for some fixed z,y € V
there exist ey, ..., e, with i(e;) = (x,y) for all j € {1,...,n}, see Figures 1.3 and 1.4.

Note that directed graphs are also called digraphs, and that graphs with loops and
/ or multiple edges are also called multigraphs. If a graph contains both directed edges

! According to this definition one should write G = (V, E, i) but shall keep the shorter and common
notation G = (V, E).

8 CHAPTER 1. THE BASICS

e &(e) (2] .
ofe) = ’
N
[2F
Fig. 1.2. Oriented edge Fig. 1.3. Loop Fig. 1.4. Multiple edges

(often represented by arrows) and undirected edges (just represented by a segment),
we call it a mized graph. Clearly, an undirected graph can be obtained from a directed
graph by forgetting the information about the direction (one simply identifies (x,y)
with (y,2z) in V x V), while a directed graph can be constructed from an undirected
one by assigning a direction to each edge (for example by fixing the origin of each edge).

Remark 1.2 (Simple graph). When a graph has no loop and no multiple edge, we say
that the graph is simple. In such a case, the set E can be identified with a subset of
V x V. Indeed, an edge can be simply written e = (x,y) since there is no ambiguity
about the indexation. In an undirected simple graph, the notations (x,y) and (y, x) would
represent the same edge, while for a directed simple graph they would not.

Definition 1.3 (Finite graph, order, and size). A graph G = (V,E) is finite if V
and E contain only a finite number of elements. A graph is infinite if either V or E
(or both) contain(s) an infinite number of elements. In the infinite case, it is assumed
that the sets V and E are countable. For finite graph, the order of G, denoted by |G/,
corresponds to the cardinality of V', while the size of G, denoted by ||G||, corresponds
to the cardinality of E.

Let us provide a few definitions related to vertices.
Definition 1.4 (Degree and neighbourhood). Let = be a vertex of a graph G = (V, E).

(i) The degree of x, or valence of x, denoted by deg(z), corresponds to the number
of edges connected at x, with a loop giving a contribution of 2,

(i) The set of neighbours of x, denoted by N(z), corresponds to the set of vertices
connected to x by an edge,

A vertex x with deg(z) = 1 is sometimes called
a leaf, and a vertex x with deg(z) = 0 is said to be
1solated. However, one has to be careful for graphs
admitting loops. Is a vertex having only one (or
more) loop(s) and no other link isolated or not ?
The answer depends on the authors. In principle,
we shall consider that a vertex which has no link
to any other vertex is isolated, even if it possesses
some loops.

Fig. 1.5. A 3-regular graph

1.1. GRAPHS

N}

Based on these notions, we define the minimum degree of a graph as §(G) :=
min{deg(z) | z € V} and the maximum degree of a graph as A(G) := max{deg(z) |
x € V'}. Also, a graph is k-regular if deg(x) = k for all x € V| see Figure 1.5.

Let us state an easy result based on the notion of degree.

Lemma 1.5 (Euler’s degree-sum theorem). The sum of the degrees of the vertices of a
finite graph is twice the number of edges.

Consider now a graph G = (V, E) and another graph G' = (V', E') with E' C FE
and V' C V, and with ¢ = i whenever it is defined. In this case G’ is called a subgraph
of GG, and one says that G contains G’. This notion is rather simple, but one can be
more precise.

Definition 1.6 (Induced subgraph). A subgraph G' C G is an induced subgraph if,
for all x,y € V' and all e € E with i(e) = (x,y) one has e C E'. We also say that V'
induces or spans G’ in G, and write G' = G[V'].

From this definition, one can define the sup-
pression of vertices. If G = (V, E) is a graph and if /7
U C V, then we write G — U for G[V'\ U]. In other
words, G — U corresponds to the graph containing
all vertices of V' \ U and all edges of G which do
not have an endpoint in U. For edges, if F' C FE,
one write G — F for the graph (V, E'\ F).

Remark 1.7 (Union of graphs). The notion of Fig. 1.6. An induced graph in pink
unton of two graphs needs to be defined with great

care. Indeed, let us consider Gy = (V1, E1) and Gy = (Va, Es). If we consider a disjoint
union (denoted by U), then G := G; UGy with G :== (V,E) and V. =V, UV,, E =
Ey U By, with no identification between some elements of the sets V;, or of the sets Ej,
forj € {1,2}. If we want to identify some elements, then one has to do it very precisely.

o~

One more important definition related to the division of a graph into two parts:

Definition 1.8 (Bipartite graph). A graph G = (V, E) is bipartite if the set of its
vertices can be divided into two subsets Vi and Vo such that any e € E has one endpoint
wn Vi and the other endpoint in Vy. The sets Vi and Vs are called the bipartition subsets.

L J It is rather clear that a bipartite graph can not have

any loop. On the other hand, multiple edges do not pre-
vent a graph to be bipartite. There exists also a kind of
duality between some graphs, as provided in the following
definition.

Definition 1.9 (Line graph). The line graph of an undi-
rected graph G = (V, E) (without loop) consists in a new
graph L(G) := (V' E') with V' = E and two vertices in V'
are adjacent if and only if they had a common vertex in G.

Fig. 1.7. Bipartite graph

10 CHAPTER 1. THE BASICS

The representation of a line graph is provided in Figure 1.8. Note that the definition
of a line graph for an undirected graph with loop does not seem to be completely clear
and standard.

(a) Original graph G (b) Line graph L(G)

Fig. 1.8. Graph and its line graph

Note taht there exist a lot of classical graphs which are presented in any book, as
for example in Section 1.2 of [GYA]. We shall not present these examples except when
necessary.

1.2 Walks and paths

As in the previous section, the following definitions depend slightly on the authors. We
always choose the definitions which look quite general and flexible.

Definition 1.10 (Walk). A walk W of length N on a graph G = (V, E) consists of
two sequences (x;)N.o C V and (e;)[L, C E with i(e;) = (xj_1,2;). We write W =
((a:j)j-vzo, (ej)j-vzl) for such a walk.

Note that another presentation for a walk is the following:
W = (xg,e1,21,€9,...,TN_1,En, TN)

with the requirement that i(e;) = (z;_1, ;) for j € {1,..., N}, see also Figure 1.9.

Let us observe that this definition is quite flexible. Indeed, there is no restriction
about intersection of a walk with itself. Also this definition is valid for directed and
undirected graphs: for the former, it means that a walk is always going in the direction
of the arrows. Note also that this definition of walk is compatible with loops and multiple
edges, and take them into account. We say that the above walk starts at (o and ends
at xy, or is from xg to . We also say that the walk is closed if zo = zy.

Remark 1.11. For simple graphs, a walk is uniquely defined by the sequence (:L“j)év:o
since multiple edges or loops are not allowed. The list of (ej)j-vzl is therefore not neces-
sary.

1.2. WALKS AND PATHS 11

Fig. 1.9. One walk with one loop included

For k € {1,2}, consider two walks W}, = ((azf)jyz’“o, (ef)jvz’“l) We say that these walks
are composable if x}y;, = x3, and in this case we define their composition. This operation
consists in defining the new walk W = W; W, with

W = ((x[l),...,:L'}Vl,:c%...:L'?VQ),(e%,...,e}vl,e%...e?%)).

This new walk is of length N; + Ny. One walk can also be concatenated: Consider
W = ((2;)}L0. (¢;))L;) and suppose that z; = 2 for some 0 < j < k < N. Then one
concatenated walk consists in removing x;41,..., 2, and e;41,..., e to the sequences
defining the walk W. One thus get a new walk starting at zy and ending at xy which
s “shorter” than the initial walk. Note that several concatenations might be possible
on a given walk, and do not always lead to the same resulting walk, see Figure 1.10

T

|
£
o \w

(a) Before concatenation) After concatenation

Fig. 1.10. One concatenation of a walk

The notion of walks is convenient because the addition of two composable walks is
again a walk. However, walks have some drawbacks because “the walker is allowed to
do some detours”. Let’s be more efficient !

Definition 1.12 (Trail and path). A trail is a walk with no repeated edges. A path is
a trail with no repeated vertices, except possibly the endpoints xo and x . The length of
a trail or of a path corresponds to the length of the corresponding walk.

12 CHAPTER 1. THE BASICS

Fig. 1.11. d(x,y) = 1 but d(y,z) = o0

Note that for multiple edges, one has to be careful when defining a trail, since edges
linking the same two vertices can still appear in a trail, if each of them does not appear
more than once. On the other hand, in a path this is not possible since two vertices
would appear at least twice.

The following notions could have been defined in terms of walks, but they are always
realized by a path. For that reason, it is more natural to express them in terms of paths.

Definition 1.13 (Distance in a graph). Given two vertices x,y in a graph G, the
distance d(z,y) between x and y corresponds to the length of the shortest path between
x and y. If there is no path from x toy, one sets d(x,y) = co.

It is clear that for undirected graphs, one has d(z,y) = d(y, z). For directed graphs,
d(z,y) can be different from d(y, x), see Figure 1.11.

Definition 1.14 (Eccentricity). The eccentricity ecc(-) : V' — [0,00] in a graph G =
(V, E) is defined as the distance between a given vertex x to the vertex farthest to x,
namely
= d .
ece(z) == maxd(z, y)

Two additional notions for a graph can be defined in terms of the eccentricity:
Definition 1.15 (Diameter and radius).

(i) The diameter diam(G) of a graph G = (V, E) is defined by the mazimal eccen-
tricity on the graph, namely

diam(G) := rilea‘;iecc(m) = max d(z,y).

(i) The radius rad(G) of a graph G = (V, E) is the minimum of the eccentricities,
namely

rad(G) := min ecc(x).

1.2. WALKS AND PATHS 13

In a very vague sense, one can think about these two notions respectively as the
diameter of a ball containing the entire graph, and as the maximum radius of a ball
contained in the graph and centered at the best place (the “center” of the graph, as
defined below).

Let us emphasize that these two concepts
can take the value co. It should also be noted
that these notions can be different for a di-
rected graph and for the subjacent undirected
graph, once the direction on the edges have
been removed. Related to the notion of radius
of a graph, one can also look for the “center”
of a graph.

Definition 1.16 (Central vertex). A central
vertex of a graph G is a vertexr with minimum
eccentricity, which means x is a central vertex

if ecc(z) = rad(G).

This definition does not imply that there is only one central vertex. In fact, one can
even construct graphs for which all vertices are the central vertex. Even if uniqueness
does not hold in general, existence always holds: there always exists at least one central
vertex (with the exception of the trivial graph with no vertex).

Paths can also be used for defining the notion of connected graphs.

Definition 1.17 (Connected). A undirected graph G = (V, E) is connected if for any
x,y € V there exists a path between x and y. A directed graph is connected if the
underlying undirected graph is connected.

Fig. 1.12. diam(G) = 4, rad(G) = 2

Fig. 1.13. One connected graph, one not connected graph

We observe that this definition fits with our definition of an isolated vertex (when
it has no link to any vertex different from itself). Indeed, any such point is isolated, and
any graph having such a vertex would not be connected. Note also that with Definition
1.17, the direction is suppressed. For directed graphs, some authors say that they are
weakly connected when they are connected with the notion defined above. This is in
contrast with the following definition, which is more useful for directed graphs:

Definition 1.18 (Strongly connected). An directed graph G = (V, E) is strongly con-
nected if for any x,y € V there exists one path from x to y.

14 CHAPTER 1. THE BASICS

Observe that for strongly connected graphs, the dis-
tances d(z,y) and d(y,x) are never equal to oo, for any
pair of vertices (z,y). However, these two quantities can

A/ T\\ still be different, see Figure 1.14.

Z 9
|/
N —— 1.3 Cycles

Fig. 1.14. Strongly con- The notion of closed walks has already been introduced, and

nected graph since paths are special instance of walks, closed paths are
also already defined. A name is given to non-trivial closed
paths (here non-trivial means a path not reduced to a single
vertex).

Definition 1.19 (Cycle). A cycle is a (non-trivial) closed path.

Observe that for simple graphs, a cycle has always a length of at least 3. On the
other hand, for graphs with loops or multiple edges, a cycle can be of length 1 (for a
loop) or of length 2 (between 2 vertices linked by multiple edges). If a graph has no
cycle, it is called acyclic, and we shall come back to them in Chapter 3. For graphs with
cycles, we can wonder what is the length of the shortest cycle ?

Definition 1.20 (Girth). The girth of a graph G is the length of the shortest cycle in
G, and it is denoted by girth(G). If G is acyclic, then its girth is co.

In the next statement, a characterization of bipartite graphs in terms of cycles is
provided. A proof is available in [GYA, Thm. 1.5.4].

Theorem 1.21. A undirected graph is bipartite if and only if it has no cycle of odd
length.

The following extension of this result has been proposed by Duc Truyen Dam, and
the proof (provided in the appendix of this section) has been provided by Chang Sun.

Theorem 1.22 (Strongly connected bipartite graphs). A strongly connected oriented
graph G s bipartite if and only if it has no cycle of odd length.

Let us now introduce a cycles with an additional prop-

—_- erty:
mw' Definition 1.23 (Hamiltonian cycle and graph). A cycle
that includes every vertex of a graph is called a Hamilto-
nian cycle. A graph having a Hamiltonian cycle is called a

Hamiltonian graph.

Fig. 1.15. A Hamiltonian
graph

1.4. WEIGHTED GRAPHS 15

Let us also stress that a Hamiltonian cycle has to go through every vertices, but
it will not use all edges of a graph in general (and is not allowed to use twice any
vertex). These cycles are important because their existience means that there exists a
closed path visiting all vertices once. Hamilltonian cycles are also related to the famous
travelling salesman problem, see Section 1.5.2. What is the analogue definition for edges
instead of vertices ? The answer is provided below. Note that we consider trails instead
of paths, which means that a vertex can be visited more than once, but any edge can
be used only once.

Definition 1.24 (Eulerian trail and graph).
(i) An Eulerian trail is a trail that contains every edge of a graph.
(11) An Eulerian tour is a closed Eulerian trail.
(ii) An Eulerian graph is a connected graph which possesses an Eulerian tour.

Let us remark that there are natural questions re-
lated to the above two notions. Given a connected graph
G = (V, E), does it posses a Hamiltonian cycle, or is it an
Eulerian graph 7 One answer for simple graphs is provided
in [Die, Thm. 1.8.1] while the proof for more general graphs
is given in [GYA, Thm. 4.5.11].

Theorem 1.25. A connected, undirected and finite graph
is Fulerian if and only if every vertex has even degree.

Let us finally gather in the next statement a few re-
sults which link some of the notions introduced so far. A
proof is provided in Section 1.5.3. We also recall that §(G)
and A(G) denote the minimal and the maximal degree of
a graph.

Fig. 1.16. Eulerian graph

Theorem 1.26. Let GG be a simple undirected finite graph.:

(i) G contains a path of length 6(G) and a cycle of length at least 6(G) + 1 (provided
i(G) > 2).

(11) If G contains a cycle, then girth(G) < 2diam(G) + 1.

(iii) Ifrad(G) =k and A(G) = d > 3, then G contains at most 7% (d — 1)* vertices.

1.4 Weighted graphs

Additional information can be encoded in a graph. In particular, a weight can be added
to each vertex and / or to each edge.

16 CHAPTER 1. THE BASICS

Definition 1.27 (Weighted graph). A weighted graph G = (V, E,w) is a graph (V, E)
together with two maps wy : V — R and wg : E — R. The notation w refers to the pair
(wy,wE).

Note that quite often, one considers these maps with value in (0, c0) instead of R,
and that the index V or F is often drop. We then have w : V — R and w : F — R,
and this does not lead to any confusion. Weighted graphs are very natural and useful
in applications. In this framework one has the following definition:

Definition 1.28 (Weighted length). The weighted length of a walk in a weighted graph
1s given by the sum of the weight on the corresponding edges.

Clearly, this definition is also valid for trails, paths or cycles, since they are special
instances of walks. For a graph without weights, it corresponds to the original notion
of length of a walk if one endows the graph with the constant weight 1 on every edge
(and on every vertex). Note that in a weighted graph, the shortest path (disregarding
weights) between two vertices might not be the one with the smallest weighted length.
In applications, one has therefore to specify which quantity has to be minimized: the
unweighted length, or the weighted length ? Of course, it will depend on the purpose.

1.5 Appendix

1.5.1 Strongly connected oriented graph and bipartiteness

Proof of Theorem 1.22. Necessity (=): Suppose G is bipartite, then each step in a walk
switches between the two bipartitions. Any closed walk (if exists) requires the walk to
end on the same side as it started, and this forces the total number of steps to be even.

Sufficiency (<): Let G be a graph with at least two vertices and no cycle of odd
length. Choose arbitrary xz,y € V. Let L; be a shortest y — x path, and let Ly be
a shortest © — y path. Let a; be the first vertex common to both paths from y (go
reversely with path Ls), and let a;,; be the first vertex common to both paths from
ay until one reaches a,, = x. Let C} be the cycles obtained by sections of L; and Lo
between a; and a;_1, see Figure 1.17.

Clearly, the length of the composition of Ly and Lo is d(y,) +d(z,y) = > ¢, with

k=1

cr being the length of Cj. Given that there exists no cycle with odd length, all ¢, are
even. Thus d(y, z) + d(x,y) is even and therefore d(y, z) = d(z,y) modulo 2.

Let us now pick a vertex u from G, and define a partition (X, X;) of V as follows

Xo:={zr eV |d(u,z) =0 (mod 2)} ={z €V |d(z,u) =0 (mod 2)}
Xy ={zxeV|du,z) =1 (mod 2)} = {z €V |d(z,u) =1 (mod 2)}.

It remains to show that this partition defines a bipartition for G.
If (Xo, X1) is not a bipartition of GG, then there are two vertices in one of the sets,
say v and w that are joined by an edge. We denote this edge by e, and assume with no

1.5. APPENDIX 17

Fig. 1.17. Construction for the sufficiency part

loss of generality that this edge starts at v and ends at w. Let P; be a shortest u — v
path, and let P, be a shortest w — w path. By definition of the sets Xy and X, the
length of these paths are both even or both odd. Starting from vertex u, let z be the
last vertex common to both paths, see Figure 1.18.

P,

U -4

P

Fig. 1.18. For the proof of the bipartition

As both d(w, u) and d

,v) are odd or even, and d(u, z) = d(z,u) (mod 2), one has

(u
d(w, z) + d(z,v)
d(w,u) — (u) + d(u,v) — d(u, 2) (mod 2)

(d(w, u) + d(u,v)) — (d(u, 2) + d(z,u)) (mod 2)
0 (mod 2)

w
w

, U

Therefore, the cycle passing from w to z on P,, then from z to v on P, and finally

18 CHAPTER 1. THE BASICS

from v to u by e, is of length d(w, z) +d(z,v) +1 =1 (mod 2). It is thus a cycle of odd
length, which contradicts the assumption. Thus, (X, X7) is a bipartition for G. O

1.5.2 Travelling Salesman Problem

The material of this section has been studied and written by Quang Nhat Nguyen.

Definition 1.29 (Travelling Salesman Problem). Let G = (V, E,w) be a weighted
Hamiltonian graph, with V- = {x1,29,...,2,}, i : E — V X V determines the edges,
and w : E — R, determines the weighted edge lengths. The problem of finding its
shortest Hamiltonian cycle is called the Travelling Salesman Problem (abbrv. TSP).

Note: If G is undirected, the TSP is called symmetric TSP (sTSP). If G is directed,
the TSP is called asymmetric TSP (aTSP).

This is one of the classical problems in Computer Science, and is an introductory
problem to Dynamic Programming. The need of computer power arises when we con-
sider a large graph (eg. one that contains hundreds or thousands of vertices) and want
to find its shortest Hamiltonian cycle. Before discussing the approaches, let us introduce
the distance matriz.

Definition 1.30 (Distance matrix). The n x n matriz D with elements

D;; == min{w(e) |e € E, i(e) = (z;,x;)} if there exists such e

D;; := oo if there is no such e
is called the distance matrix of the weighted graph G.

In simpler terms, the element D;; denotes the shortest edge that originates at x;
and terminates at ;. It can be seen that if the graph G is undirected, the matrix D
is symmetric. If there is no edge from z; to x;, D;; = oo. If there are multiple edges
from x; to z;, we only consider the shortest edge because our concern is the shortest
Hamiltonian cycle.

A naive approach to this problem would be for the computer to consider all per-
mutations of the vertices, see if one permutation can make a cycle, and if it does then
record the cycle’s length for comparison. This method has a time complexity of O(n!),
and thus is not desirable when dealing with a large database.

Proposition 1.31. One can reduce the time complezity of O(n!) of the naive method
to O(n? x 2™) by implementing Bellman-Held-Karp Algorithm.

In the sequel, we study the Bellman-Held-Karp Algorithm. First, let us acknowledge
the following.

Proposition 1.32. The shortest Hamiltonian cycle does not depend on the choice of
the starting vertex.

1.5. APPENDIX 19

This is obvious because the Hamiltonian cycle has cyclic symmetry, thus changing
the starting vertex does not change the order of the other vertices in the cycle. Therefore,
let us start constructing the desired path from x;.

Definition 1.33. Let S C V\{x1} = {22, 23,...,2,} be a subset of size s(1 < s <
n —1). For each vertex x; € S, we define cost(x;,S) as the length of the shortest path
from x1 to x; which travels to each of the remaining vertices in S once. More precisely,
we 1mplement this function by the following recursion formula:

cost(z;, S) = rrzlg_n{cost(xj, S\{z:}) + Dj; } (1.1)

in which x; € S\{z;}. In case S has size 1, we define:
COSt(ZL‘Z‘, S) = Dli (12)

Using the above recursive formula, we can gradually construct the cost function for
subset S of size from 1 to n — 1. Because of this recursive feature, which means that
the current step is the base for the next step, the implementation of this algorithm in
a programming language is called Dynamic Programming.

When we reach subset S of size n — 1, which means S = V\{z;}, the only thing
left is to find:

Shortest Hamiltonian cycle = min{cost(z;, S) + D }
= min{cost(z;, V\{z1}) + Dar}

with z; € S = V\{x1}.

Proposition 1.34 (Time complexity of this algorithm). The time complexity of this
algorithm is: O(n* x 2m).

Proof. This algorithm considers 2"~ subsets of V\{z; }. For each subset, one computes
the cost function for all of its elements, which there are no more than n of them. For
each execution of the cost function, one again computes no more than n values based
on the values obtained from the previous step. In total, the time complexity of this
algorithm is: O(n? x 27). O

Remark 1.35. Compared to the naive method which has time complexity O(n!), the
time complezity of this algorithm, O(n* x 2™), is much better. For example, if n = 100:

O(n!) = O(100!) = 0(9.33 x 10*7)
O(n?* x 2™) = O(100% x 2'%°) = O(1.27 x 10**)

which is about 7.35 x 1023, or 0.7 septillion googols, times faster.

20 CHAPTER 1. THE BASICS

Fig. 1.19. Graph for a sample asymmetric TSP

Let us now illustrate the algorithm through the following sample problem.
The distance matrix can be generated as follows:

0 5 10 16 11
9 0 7 12 o~©
12 5 0 15 o
15 14 9 0 9
9 o0 oo 12 0

Now that we have the distance matrix, we can proceed with the recursive formula.
First, let us consider subsets S of size 1:

Subset S cost function Result
S = {1'2} COSt(Z‘g, {.TQ}) = D12 5

S = {l‘g} COSt(ZL‘g, {ZL‘3}) = D13 10
S = {x4} | cost(xy,{z4}) = D14 16
S = {x5} | cost(xs,{x5}) = D15 11

Table 1.1: Process for subsets S of size 1

Next we consider subsets S of size 2 as follows:

1.5. APPENDIX 21

Subset S cost function Result

S = {25} cost (g, {xa, x3}) = min{cost(z3, {z3}) + D32} =10+ 5 15

’ cost(xs, {wa, x3}) = min{cost(za, {w2}) + Doz} =5+ 7 12
cost(z2, {x2,x4}) = min{cost(zy, {xs}) + Do} =16+ 14 | 30
cost(xq, {xa, x4}) = min{cost(z2, {x2}) + Dos} = 5 + 12 17
cost(zz, {x2, x5}) = min{cost(xs, {x5}) + D52} =11 + 00 | o0
cost(zs, {2, x5 }) = min{cost (s, {z2}) + Dos} = 5+ oo 00
cost(z3, {x3,r4}) = min{cost(zy, {x4}) + Dyz} = 16 + 9 25
cost(xy, {x3,x4}) = min{cost(zs, {z3}) + D3s} = 10 + 15 25
cost(zs, {x3, x5}) = min{cost(xs, {x5}) + D53} =11 + 00 | o0
cost(zs, {x3, x5}) = min{cost(z3, {z3}) + D35} =10+ 00 | o0
cost(z4, {x4,x5}) = min{cost(zs, {x5}) + Dsa} = 11 +12 | 23
cost(zs, {x4, x5}) = min{cost(zq, {z4}) + Dys} = 16 +9 25

S = {IQ, 5134}

S = {$2,$5}

S = {l’g, I4}

S = {1’3, I5}

S = {1’4, I5}

Table 1.2: Process for subsets S of size 2

For the subsets S of size 3, we have the following table:

Subset S cost function Result
cost(xg, {xa, x3,24}) = min{25 + 5,25 + 14} 30
S ={wy, 3,14} | cost(xs, {x2,23,24}) = min{30 + 7,17 + 9} 26
cost(zy, {xg, x3,24}) = min{15 + 12,124+ 15} | 27
cost(xg, {2, x3,x5}) = min{oo, 0o} 00
S = {wy, w3, 25} cost (s, {xa, x5, x5}) = min{oo, oo} 00
cost(xs, {ra, x3,25}) = min{oo, 0o} 00
cost (g, {xa, T4, x5}) = min{23 + 14, 00} 37
S ={x9, x4, x5} cost(xy, {2, x4, 25}) = min{oo, 0o} 00
cost(xs, {xa, x4, x5}) = min{oo, 17 + 9} 26
cost(xs, {3, x4, x5}) = min{23 + 9,25 + oo} 32
S = {3, 14,25} cost(xy, {3, x4, 25}) = min{oo, 0o} 00
cost(xs, {3, x4, x5}) = min{25 + 00,25 + 9} 34

Table 1.3: Process for subsets S of size 3

Note: FExlanation for the first entry:

cost(za, {xa, x3, x4}) = min{cost(zs, {xs, x4}) + Dsa, cost(xy, {x3,24}) + Das}
= min{25 + 5,25 + 14} = 30

For the subsets S of size 4, which means S = {3, 3, x4, 25}, we have the following:

22 CHAPTER 1. THE BASICS

cost function Evaluation Result

min{cost(xs, {3, T4, T5}) + Dag,

cost{wa, {x2, x3, T4, 25}} cost(xy, {3, x4,25}) + Dyo, = min{32+5, 00, 00}

(
()
cost(xs, {rs, x4, 25}) + Ds2, }
min{cost (2, {2, T4, T5}) + Da3,
()

cost{xs, {xo, x3, T4, 25}} cost(zy, {xa, x4, 25}) + Dag, = min{37+7,00,00}
cost(xs, {2, ¥4, 75}) + Dss, }

min{cost(xg, {ZL’Q, xrs, l‘5}) + D24,
cost{xy, {xo, x3, 24,25} } cost(xs, {xa, x3,25}) + D3s, = min{oo, 00,00}
cost(ws, {2, ¥3, 5 }) + Dss, }

min{cost(xs, {2, x3,24}) + Dos,
cost{xs, {xs, x3, 24, 5}} cost(xs, {xa, x3,24}) + D35, = min{oo, 00,27+ 9}
cost(zy, {xa, x3,24}) + Dus, }

Table 1.4: Process for subsets S of size 4

For the final step, we have:

Shortest Hamiltonian cycle = min{cost{xz, {2, 23, 4,5} } + Doy,
cost{xs, {xe, T3, x4, 5} } + D31,
cost{wy, {x2, T3, 24,75} } + Du1,
cost{xs, {x2, x3, 24,25} } + D51}
= min{37 + 9,44 + 12, 00,36 + 9}
=45
This result means that this graph has at least three Hamiltonian cycles, and the
shortest one has length 45. To trace back the order of the vertices in the shortest one,

one simply trace back the vertices z; in the minimal cost functions cost(z;,.S). In this
sample problem, the back-tracing order will be:

Ty 4 T 4 Ty ¢ Tg < T3 < T

However, this back-tracing order is also correct:
X1 4= T 4= Ty < T3 4 Tg < T

So, the shortest Hamiltonian cycle has the following forward-going order:
Ty — T3 —> Tog —> Ty — T5 — T

or:
T1 —> T —> T3 —> Ty — Ty — T
One can easily look at Figure 1.19 and check that the above Hamiltonian cycles both

have length 45. This concludes the illustration of Bellman-Held-Karp Algorithm, which
is based on Dynamic Programming

1.5. APPENDIX 23

1.5.3 §(G), A(G), rad(G), diam(G), girth(G), and all that

The material of this section has been studied and written by Bui Tu Ha.

Proof of Theorem 1.26. Observe that since the graph G is simple and undirected, a
path is uniquely defined by the enumeration of the successive vertices. In this proof,
the description of the paths will be done accordingly.

(i) Let 0(G) = k. Start at any vertex wvg. If & > 1 then v, is adjacent to some
vertex v1. The path (vg,v;) has length 1. If & > 2 then v; is adjacent to a vertex
vy # vo. The path (v, v1,v2) has length 2. If k& > 3 then v, is adjacent to a vertex
vg & {vo,v1}. The path (vg, vy, va,v3) has length 3. We repeat this argument until we
have chosen vy, adjacent to v_1 and vy, & {vo,v1,...,Ux_2}. As a result, G contains the
path (vg,v1, v, ..., vy), whose length is k = §(G).

Assume that the longest path in G'is M = (vg, vy, ..., Upm—1, U). Note that v, cannot
be adjacent to a vertex x ¢ {vg,v1,...,vm_1} because it would produce a path longer
than M, a contradiction. Then we have v,, adjacent to at least k vertices belonging
to the set {vg, vy, ..., v;m_1}. Consequently, at least one of these k vertices is in the set
H = {vo,v1, ..., Uy} When v,, is adjacent to one vertex in H, it produces a cycle of
length > k + 1 (The equality holds for the case v,, and v, are adjacent). Thus, if
0(G) > 2 then G contains a cycle of length at least 6(G) + 1.

(ii) Let C be the shortest cycle in G. By definition, the length of C' is girth(G).
Assume that girth(G) > 2diam(G)+2. Then, there exists two vertices x and y in C such
that the two paths between = and y in C' are the path of length diam(G) + 1, called P,
and the other path whose length is at least diam(G) + 1. The distance between = and y
in Cis de(z,y) = diam(G) + 1. Let dg(x, y) be the distance between x and y in G and
it corresponds to the shortest path Ps; in G between these two vertices. Observe that
de(z,y) < diam(G) (based on the definition of diameter) while d¢(z, y) = diam(G) 4+ 1.
As a result, Pg is not a subgraph of C. P; and P have two independent vertices in
common, namely z; and z3, which satisfy the following condition: The path contained
in Pg; between z; and 29 and the path contained in Pg between z; and 25 do not have
any vertex in common, except z; and z5. In some graphs, it is possible to choose z; =
or zo = y. However, it is not always true for any graph. For example, the graph shown
in Figure 1.20 has z; and 2, different from x and y.

X @)) [® ®
Z1 o ® Z2

P

Fig. 1.20. A shorter cycle

24 CHAPTER 1. THE BASICS

The composition of the path contained in Pg; between z; and 2z, and the path
contained in Py between z; and zy forms a cycle of length: L < dg(x,y) + de(z,y) =
diam(G) + ((diam(G) + 1) = 2diam(G) + 1. Thus, this cycle is even shorter than C,
which is a contradiction. Therefore, the assumption is not correct and we have proved
girth(G) < 2diam(G) + 1. One example that the equality holds: G is a cycle having
(2n + 1) vertices, then diam(G) = n and girth(G) = 2n + 1 = 2diam(G) + 1.

(iii) Let ¢ be a central vertex of G. Let V; be the set of vertices of G at distance i
from ¢, with ¢ € {0,1,...,k}. Then V(G) = UV;. By induction, we are going to prove
that for any i € {0,1, ..., k},

Viea| < d(d — 1)’ (13)
It is clear that |Vi| < d = |V;] < d(d — 1)°, which means that (1.3) is correct for i = 0.
For i € {1,....,k — 1} , we are going to show that if |V;| < d(d —1)""! is true then
|Vig1] < d(d — 1) is true. Indeed, observe that for i > 1, each vertex in V; is connected
to at most (d — 1) vertices in V; 1, see Figure 1.21. As a consequence, one has

Vit < (d = 1) |V < (d—1)d(d — 1) = d(d — 1)".
maximum .
(d-1) vetices ® ¢ T g
inVizq
® x; € V}'

®x;_; €EVi,y

Fig. 1.21. Maximal number of adjacent vertices in V; 4

Thus, for the number of vertices contained in GG one has when d > 3:

k k—1 k—1
V() = |UVi| =1+> Vi <1+ dd—1)=1+dY (d—1)
=1 =0 i=0
d—1)"—1 d . d p 2
—l4d—t— =14 ——((d= 1) = 1) = ——(d— 1) — ———
s y s ek el e (Ut Vet Bl s 1 A
d
— (d-1)*.
<g—2@-1

Therefore, G contains at most d%‘lQ(d — 1)* vertices.]

Chapter 2

Representations and structures

In this chapter, we first introduce a few ways to encode the information contained in a
graph. Then, we develop the notion of isomorphisms, and list some invariant structures
of a graph.

2.1 Matrix representations

Since linear algebra contains a large set of powerful tools, it is rather natural to use
this theory for analyzing graphs. There exist several ways to represent a graph with
matrices. The figures about adjacency matrices are borrowed from [2]. Note that in
these figures, vertices are denoted by v; while in the text they are written z;.

Definition 2.1 (Adjacency matrix). Let G = (V, E) be a finite graph, and set V =

{z1,...,zn}. The adjacency matrix Ag of G is a N x N matriz with entries
aj, = #{e € E|i(e) = (x;,z1)}
with the convention that (z;,xy) = (xk,x;) if the G is undirected, and that a loop

satisfying i(e) = (x;,x;) is counted twice for an undirected graph, but only once for a
directed graph.

oo o o = O
[R e T I N R e R
=R T =R T]
(=R =
WO = o O
o WMo o O O

Fig. 2.1. Adjacency matrix of an undirected graph

25

26 CHAPTER 2. REPRESENTATIONS AND STRUCTURES

o O O
oo o =
- o <o
o O =

- e
L4 *

Uy Uy
Fig. 2.2. Non symmetric adjacency matrix

It easily follows from this definition that the adjacency matrix of an undirected
graph is a symmetric matrix, since a;, = a;, see Figure 2.1 . Note that this is not true
in general for a directed graph. However, let us define the indegree and the outdegree
of a vertex of a directed graph:

deg,, () = #{e € E | i(e) = (y, z) with y arbitrary} (2.1)

and
deg, () = #{e € E | i(e) = (z,y) with y arbitrary}. (2.2)

Clearly, one has deg;, (z) + deg,(z) = deg(z). Then, if G is a directed graph, the
following relations hold, see Figure 2.2:

Z a’jk‘ — degout ([If]) and Z ajk‘ == degin(xk')'
- -

J

Note also that the convention of counting twice a loop for undirected graph is coherent
with the degree 2 attached to a loop in Definition 1.4, see Figure 2.3. However, this
choice has also some drawbacks, and the convention is not universal. For example,
this convention leads to wrong result in the next statement about the powers of the
adjacency matrix.

o oo o N o
S O = = O N
o o~ N~ O
_ o N R = o
w o o o o Q
o w e~ o o o

= o O =

o o o

= o o @

= R

Fig. 2.3. Adjacency matrices in the presence of loops

2.1. MATRIX REPRESENTATIONS 27

Proposition 2.2. Let G be a graph and let Ag be the adjacency matriz (with the
convention that a loop provides a contribution 1 on the diagonal also for undirected
graphs). For any r € N the entry (Ag)jk of the r™ power of Aq is equal to the number
of walks of length r from x; to xy.

Proof provided by A. Suzuki. Let Ag be a N x N adjacency matrix. When r = 1, (A’é)jk
is the number of walks of length 1 from x; to z;, by the definition of the adjacency matrix.
Then, let r € N be given and suppose (ATG)].k is the number of walks of length r from

x;j to xj. Consider (Agrl)jk,
multiplication of entries of two matrices.

Z (ATG>jl (Aé'>lk' (2.3)

=1

and let us compute this entry by using the summation of

(45,

By the assumption and definitions mentioned above, (Ag)ﬂ is the number of walks of

length r from z; to z;, and (A};)lk is the number of walks of length 1 from x; to xy.
Hence, (Ag)jl (Ag) ;i 18 the number of walks of length r + 1 consisting of two walks, one
is the walk of length 7 from z; to x; and another one is the walk of length 1 from z;
to xy. It follows that >, (Ag)ﬂ (A%) ;, indicates the number of all walks of length r +1
from x; to x. Thus, we can regard the Lh.s. of (2.3) as the number of walks of length

r 4 1 from z; to x. One finishes the proof by an induction argument. n

Let us also mention that adjacency matrices can also be used for checking if two
graphs are isomorphic, see the following sections. Indeed, if Ag and Ag correspond to
the adjacency matrices of two finite graphs with the same order, then a reordering of the
vertices on one graph should lead to two identical adjacency matrices if the graphs are
isomorphic. However, this approach is very time and energy consuming, and therefore
very inefficient.

We now provide another tool involving matrices. Unfortunately, the definition is
not exactly the same for directed or undirected graphs. Also, these definitions depend
slightly on the authors, especially for the value associated with a loop.

Definition 2.3 (Incidence matrix of an undirected graph). Let G = (V, E) be a finite
undirected graph with V- = {x1,...,any} and E = {e1,...,en}. The incidence matriz
I of G consists in the N x M matriz with entries

0 if z; s not an endpoint of ey,
tje =41 if x; is an endpoint of ey,
2 ifes is aloop at x;.
The following properties can be easily inferred from this definition:

Lemma 2.4. For the incidence matrix of a finite undirected graph the following rela-

tions hold:
M N
Z ij0 = deg(x;) and Z B = 2.
=1 j=1

28 CHAPTER 2. REPRESENTATIONS AND STRUCTURES

a b ¢ d e f g h

wy/2 2 1 0 0 0 0 1

I.— v[0O O 1T 1 1 100
G pu—

wl{0O 0 0 0 0 0 1 1

x\0O 0 0 1 1 1 1 0

Fig. 2.4. Incidence matrix of an undirected graph, see Fig. 2.6.4 of [GYA]

For a directed graph, the incidence matrix is defined as follows:

Definition 2.5 (Incidence matrix of a directed graph). Let G = (V| E) be a finite
directed graph with V- = {xy,...,xy} and E = {ey,...,ex}. The incidence matriz I
of G consists in the N x M matriz with entries

0 if ; 1is not an endpoint of ey,

if x; is the target of ey,

Gy =
i —1 if x; is the origin of ey,
2 if eg is a loop at x;.
a b ¢ d e f g h
u /2 2 1 0 o 0 0 -1
Jo= ¥ 0O 0 -1 1 1 -1 0 0
: wl|l0 0 0 0 0 0 1 1
x\0 0O O -1 -1 1 -1 20

Fig. 2.5. Incidence matrix of an undirected graph, see Fig. 2.6.5 of [GYA]
Note that one of the undesirable features of these matrices is that they contain many
zeros. One can be more economical by keeping only the non-zero information but one
loses the power of matrices. The incidence tables corresponds to new representations.

Definition 2.6 (Incidence table of an undirected graph). Let G = (V, E) be a finite
undirected graph with V.= {x1,...,anx} and E = {ey,...,en}. The incidence table
Iv.g(G) lists, for each vertex x;, all edges e, having x; as one endpoint.

For directed graphs, the tables have to be duplicated.

Definition 2.7 (Incidence tables of a directed graph). Let G = (V, E) be a finite
directed graph with V. = {x1,...,anx} and E = {ey,...,en}. The incoming incidence
table iny.g(G) lists, for each vertex x;, all edges e, having x; as a final point (target),
while the outgoing incidence table outy.p(G) lists, for each vertex x;, all edges e, having
x; as an initial point (origin).

2.2. ISOMORPHISMS 29

=
O T Qo
® O
Bal

I><|§Iw::
Q Q o o

-
(e}

Fig. 2.6. Incidence table of an undirected graph, see Ex. 2.6.6 of [GYA]

a b ¢ w: a b h
d e outy . (G) = _L c f

r: d e g

inv.g (G) =

= |8 = |2
~

S~

>

.

Fig. 2.7. Incidence tables for the graph of Figure 2.5, see Ex. 2.6.7 of [GYA]
2.2 Isomorphisms

Our general aim is to provide some efficient tools for deciding when two graphs contain
the same information, even if they are represented quite differently. What characterizes
a graph is its pattern of connections, and the direction on edges for directed graphs, but
the way they are represented does not matter. For example, the two graphs of Figure
2.8 correspond to the same graph, even if they do not look similar.

5] 7
) "

4 5
0 1

Fig. 2.8. Two representations of the same graph, see. Fig. 2.1.1 of [GYA]

We say that these two pictures represent the same graph because any vertex has
the same adjacent vertices on both representations. Clearly, if the graph has loop(s)
or multiple edges, or if the graph is directed, we would like to have these properties
similarly represented in the two pictures. The correct notion encoding all the necessary
information is provided in the next definition.

30 CHAPTER 2. REPRESENTATIONS AND STRUCTURES

Definition 2.8 (Isomorphism of graph). Let G = (V,E) and G' = (V', E') be two
graphs, with internal map denoted respectively by i and by i'. A map f: G — G’ is an
isomorphism of graphs if f = (fy, fg) with fy -V — V' and fg: E — E' satisfy

(i) fv and fg are bijections,

(it) For any e € E with i(e) = (z,y) in V x V, one has i'(fg(e)) = (fv(z), fv(y))
in V' x V'. Whenever such an isomorphism exists, we say that G and G’ are
isomorphic, and write G =2 G'.

Fig. 2.9. Isomorphism of a graph with loops and multiple edges

Note that this definition holds for the general definition of a graph provided in
Definition 1.1, see Figures 2.9 and 2.10. Once again, if the graph is undirected, the
pairs (x,y) and (y, z) are identified in V' x V', and the same for the pairs (fv(x), fv(y))
and (fv(y), fv(:v)) in V' x V', but this property does not hold for directed graphs. In
the special case of simple graphs, as presented in Remark 1.2, the above definition can
be slightly simplified since an edge is uniquely defined by its endpoints, see Figure 2.11.
Observe finally that another way to present the second condition of Definition 2.8 is to
say the following diagram is commutative:

E—" s VxV

le lfvva

E—=V'xV.

T ¥ L

Fig. 2.10. a) and d) are isomorphic, b) and c¢) are isomorphic

2.2. ISOMORPHISMS 31

Fig. 2.11. Isomorphism of a simple graph

Remark 2.9. One observes that the notion of isomorphisms is an equivalence relation.
Indeed, G = G (reflexive property) by considering the identify map for the graph iso-
morphism; if G = G, then G' = G (symmetric property) because f~' also defines an
isomorphism of graph; if G = G’ (through a map f) and G' = G" (through a map '),
then G = G" (transitive property) because the composition of maps f' o f also defines
an isomorphism of graph, as it can be easily checked.

Deciding when two graphs are isomorphic is a hard and famous problem, the so-
called graph-isomorphism problem. Except for very small graphs, it is very time con-
suming. However, by looking at specific quantities, one can often easily show that two
graphs are not isomorphic. Such quantities are presented in the next definition.

Definition 2.10 (Graph invariant). A graph invariant is a property of a graph which
15 preserved by isomorphisms.

In other terms, such a quantity is the same in any representation of a graph. Thus, if
this quantity is not the same in two graphs, one can directly say that these two graphs
are not isomorphic. Let us list a few quantities which are clearly graph invariants,
additional examples will appear in this chapter. We recall that the notation N(x) for
the set of neighbours of x has been introduced in Definition 1.4. For simplicity, we shall
also drop the indices V and F in fy and fg and write f for both functions. This should
not lead to any confusion.

Proposition 2.11 (Graph invariants 1). Let G = (V,E) and G' = (V', E’) be two
graphs, and let f : G — G’ be an isomorphism of graph. The following quantities are
graph invariants:

(i) The order and the size (see Definition 1.3), with the convention that these quan-
tities can take the value oo,

(ii) The degree (see Definition 1.4), namely deg(f(z)) = deg(z) for any x € V,
(11i) The degrees of neighbours, namely

{deg(y) |y € N(x)} = {deg(¥/) | ¥ € N(f(x))}

32 CHAPTER 2. REPRESENTATIONS AND STRUCTURES

foranyx eV,

(iv) The length of a walk, a trail or a path in G and their respective image in G’
through f (see Definitions 1.10 and 1.12),

(v) The diameter, the radius and the girth (see Definitions 1.15 and 1.20).

Let us observe that for directed graphs, a refined version of (i) and (iii) exists.
We recall that the notion of indegree and outdegree have been introduced in (2.1) and
(2.2), respectively. Then, for directed graphs, a more precise version of (i7) and (7i7)
says that the following quantities are directed graphs invariants:

(ii’) The indegree and outdegree, namely deg;,(f(x)) = degy,(z), and deg,, (f(z)) =
deg,(x) for any x € V,

(11i°) The indegrees and outdegrees of neighbours, namely

{deg,(y) | y € N(z)} = {deg,,(¥) | ¥ € N(f(x))}

and
{deg,.i(y) | y € N(x)} = {deg,..(¥') | v € N(f(x))}

foranyx e V.

2.3 Automorphisms and symmetries

Identifying the symmetries of a graph is often useful, even if it is not an easy task.
Clearly, symmetries should not depend on the representation but should again be an
intrinsic property. The following definition contains the necessary notion for dealing
with symmetries of a graph.

Definition 2.12 (Automorphism). Let G be a graph. An isomorpism from G to G is
called an automorphism.

Clearly, any graph possesses an automorphism, the identity map. In addition, by the
properties of the equivalence relation mentioned in Remark 2.9, one observes that the
set of automorphisms of a graph is in fact a group: the composition of automorphisms
is associative, and every automorphism has an inverse (it corresponds to the map f~!
mentioned in Remark 2.9). One speaks about the automorphisms group of a graph. The
main idea now is to look at the size of this group. If this group is big, then the graph
has several symmetries, while if the group contains only the identity element, then the
graph has no symmetry at all. Before looking at one concrete example, let us mention
that symmetries are often related to permutations.

Figure 2.12 contains three representations of the same graph, called the Petersen
graph. At first glance, it is not easy to see that these three graphs are isomorphic,
but this can be checked by looking at the edges connected at any vertex. Then, what

2.3. AUTOMORPHISMS AND SYMMETRIES 33

about automorphisms ? It is clear on the picture (a) that any rotation by 27k/5 with
k € {0,1,2,3,4} defines an automorphism. A reflection symmetry by a vertical axis
is also clear on figure (a). On figures (b) and (c) a reflection symmetry by a vertical
axis is also clear, but these three reflection symmetries do not correspond to the same

automorphisms of G.
1
/.
o

Fig. 2.12. Three representations of the Petersen graph, see. Fig. 2.2.3 of [GYA]

Let us try to describe these automorphisms by using a convenient notation. More
information on the permutation group can be found in the Appendix A.4 of [GYA] or
in Wikipedia [1]. One way to describe the rotation by 27 /5 of figure (a) is to write

(01234)(567809)

describing the action of the automorphism: 0 —+ 1,1 — 2,2 - 3,3 — 4,4 — 0 and
5—6,6—>77—8 8—=9 9— 5. In a similar way, the three mentioned reflection
symmetries can be described by (1 4)(2 3)(6 9)(7 8)(0)(5), (0 5)(1 8)(2 3)(4 7)(6)(9)
and (0 2)(34)(57)(89)(1)(6).

Whenever a group acts on an object, a useful concept is the one of orbit. Here,
we keep in mind the action of the automorphism group acting on a graph, but the
definition is more general. Note that since GG is already used for a graph, we use the
notation H for the group in the next definition.

Definition 2.13 (Orbit). Let H be a group acting on a set X, with an action denoted by
h(z) € X forz € X and h € H. For any x € X the orbit of = is the set {h(x) | h € H}
and is denoted by Orb(z).

In other words, Orb(z) corresponds to all points taken by x when a group H acts on
this point. It is easily observed that for any x,y € X one has either Orb(z) = Orb(y) or
Orb(z)NOrb(y) = 0, and no other alternative. Let us consider the graph given in Figure
2.13. This graph has again several automorphisms obtained by reflection symmetries
by a vertical axis, a horizontal axis, but also the one obtained by the combination of
these two automorphisms. If we list them with the notation introduced above one gets

(1)(2)(3)(4)(5)(6)(7)(8)
(18)(27)(3)(4)(5)(6)
(1)(2)(3 5)(4 6)(7)(8)
(18)(27)(35)(46).

34 CHAPTER 2. REPRESENTATIONS AND STRUCTURES

d

0b

Fig. 2.13. A graph with several symmetries

Let us now describe the orbits of the vertices and of the edges under the group generated
by these four automorphisms. For this example, the verter orbits are

Orb(1) = Orb(8) = {1,8}, Orb(2) = Orb(7) = {2, 7},
Orb(4) = Orb(6) = {4,6}, Orb(3) = Orb(5) = {3, 5},
while the edge orbits are
Orb(a) = Orb(b) = {a,b}, Orb(c) = Orb(d) = {¢,d},
Orb(e) = Orb(f) = Orb(g) = Orb(h) = {e, f.g,h}, Orb(i) = {i}.
Observe that these notions apply to directed graphs as
well, but the orientation is one more ingredient to take into . —< ®
account. For example, the graph represented in Figure 2.14
has a group of automorphism reduced to the identity only.
Let us still state some easy properties of elements on A

orbits. These properties can be deduced from Proposition N
2.11.

Lemma 2.14.

> ——> o

Fig. 2.14. No symmetry
(11) All edges in one orbit have the same pair of degrees at their endpoints (and the

same indegrees and outdegrees for directed graphs).

(1) All vertices in one orbit have the same degree (and
the same indegree and outdegree for directed graphs),

Let us check what are the vertex orbits and the edge orbit of Figure 2.12 7 Quite
surprisingly, this graph has only one vertex orbit (containing all vertices) and one edge
orbit (containing all edges). It means that given two vertices z and y, there exists one
automorphism sending x on y, and a similar observation holds for any pair of edges. In
such a case, we speak about a verter transitive graph and a edge transitive graph.

2.4. SUBGRAPHS

2.4 Subgraphs

35

Some properties of a graph can be determined by the existence of some subgraphs inside

1t.

One example is Theorem 1.21 about undirected bipar-
tite graphs and the existence of cycles of odd length. In this
section we gather several notions related to subgraphs, not
all these notions are related to each others.

Definition 2.15 (Clique). Let G = (V, E) be an undirected
graph and consider a subset S C V. This set S is called a
clique if for any x,y € S with x # y there exists e € E with

i(e) = (z,y). ~s
Note that the first part of the definition means that /’\/
every two distinct vertices in S are adjacent. One speaks _ \

about a a mazimal clique S if there is no clique S” with S C

S" C V, see Figure 2.15. Observe also that this requirement
is a maximality condition, and that some authors include
this requirement in the definition of a clique. The notion of

Fig. 2.15. 1 clique, 1 max-
imal clique

clique is interesting for the next definition.

Definition 2.16 (Clique number). The clique number w(G) of a graph G corresponds
to the number of vertices of a largest clique in G.

Fig. 2.16. w(G) =4

Note that there might be several cliques containing
w(@G) vertices. Thus, there is no uniqueness for the “largest”
clique, but the clique number is uniquely defined. In a vague
sense, this clique number gives the maximal number of ver-
tices which are tightly connected to each others, see Figure
2.16. Two concepts complementary to the notions of clique
and clique number are:

Definition 2.17 (Independent set and independence num-
ber). Let G = (V, E) be an undirected graph and consider a
subset S C V. This set S is called independent if no pair of
vertices in S 1s connected by any edge in G. The indepen-
dence number «(G) of a graph G corresponds to the number
of vertices of a largest independent set in G.

As before, there is no uniqueness for the largest inde-

pendent set in GG, but the independence number is uniquely defined. Note that these
last notions extend directly to directed graphs. However, for the notion of a clique, it is
not so clear what would be the most useful extension ? Should we use the notion of a
clique in the underlying undirected graphs (when orientation is suppressed), or should

36 CHAPTER 2. REPRESENTATIONS AND STRUCTURES

A
~ \/ /

Fig. 2.17. Independence number: a(G) =5

we look for pair of edges connected by directed edges in both directions ? The choice
of the most suitable notion would certainly depend on the applications.
A somewhat related (but more global) notion is provided in the next definition.

Definition 2.18 (Component). A component of a graph G is a mazimal connected

subgraph of G.
)
<] O ?F =

Fig. 2.18. A graph with 4 components

In other words, a connected subgraph G’ is a component of G if G’ is not a proper
subgraph of any connected subgraph of GG. Here, proper simply means different. It thus
follows that any graph is made of the disjoint union of its components. The number of
components of G will be denoted by ¢(G).

Since orientation does not play any role in the definition of connected graphs, it
also does not play any role in the definition of a component. Note that an alternative
definition could be provided in terms of paths: For any pair of vertices in one component
there exists a path (with the direction on the edges suppressed) having these vertices
as endpoints, and the edges for all these possible paths belong to same component of
the graph.

Recall that the suppression of a vertex or an edge from a graph has been introduced
in Sectionl.1. Together with the notion of component, we can now select some vertices
or edges which are more important than others. More precisely, the following definitions
identify the most vulnerable parts of a graph, see also Figures 2.19 and 2.20.

Definition 2.19 (Vertex-cut and cut-vertex). Let G = (V| E) be a graph.

(1) A vertex-cut is a set of vertices U C V such that G — U has at least one more
component than G.

2.4. SUBGRAPHS 37

LN
\
G
\
% e
N B
/ N
X
\ G
\\ "

Fig. 2.19. Graph with two cut-vertices Fig. 2.20. Graph with three cut-edges

(i) A vertex x € V is called a cut-vertex or a cutpoint if {z} is a vertez-cut.
Definition 2.20 (Edge-cut and cut-edge). Let G = (V, E) be a graph.

(i) An edge-cut is a set of edges F C E such that G — F has at least one more
component than G.

(i1)) An edge e € E is called a cut-edge or a bridge if {e} is an edge-cut.

These notions will be used again when graph’s connectivity will be discussed. For
the time being, let us simply complement the content of Proposition 2.11 with a few
more graph invariants.

Proposition 2.21 (Graph invariants 2). Let G = (V,E) and G' = (V', E’) be two
graphs, and let f : G — G’ be an isomorphism of graph. The following quantities are
graph invariants:

(i) For undirected graphs, the clique number and the independence number, namely

w(G@) = w(G") and a(G) = a(G'),
(i) The number of components, namely ¢(G) = ¢(G'),
(11i) The number of distinct cutpoints or bridges.

More generally, if G possesses n distinct subgraphs having a certain property, then G’
has to possess n distinct subgraphs having the same property.

38

CHAPTER 2. REPRESENTATIONS AND STRUCTURES

Chapter 3

Trees

Trees play a central role in graph theory, and are at the root of many algorithms. We
first present the theoretical part, and subsequently describe several applications.

3.1 Trees and forests

We first provide the definition of a tree in the general setting that we have introduced
so far. Usually, trees and directed trees are treated separately.

Definition 3.1 (Tree). A tree is a connected graph whose underlying undirected graph

has no cycle.

Note first that the acyclicity condition prevents any tree to have a loop or any
multiple edges. For that reason, trees are always simple graphs, as defined in Remark

1.2.

For undirected graphs the above definition reduces
to a connected and acyclic graph. For directed graphs,
this definition does not see the orientation on the edges.
Indeed, the notion of connected graph is based on the
underlying graph, and the acyclicity property is also
imposed on the underlying undirected graph. Note also
that for directed graphs, the absence of cycle for the
underlying undirected graph is stronger than the ab-
sence of cycles for the directed graph see Figure 3.1
which is an acyclic digraph but with a cyclic underly-
ing undirected graph. Acyclic digraphs have also sev-
eral applications, see [3]. For simplicity, we shall simply
say that a directed graph has no undirected cycle when-
ever the underlying undirected graph has no cycle. Di-
rected graphs which are trees are also called oriented
trees, polytrees, or singly connected network. In the se-

Fig. 3.1. An acyclic digraph

quel, whenever we want to emphasize that the tree considered is also an oriented graph,

39

40

CHAPTER 3. TREES

we shall call it an oriented tree, and accordingly an unoriented tree will be a tree with

no orientation on its edges, see Figure 3.7.

ek

Fig. 3.2. Three trees: two unoriented, one oriented

Recall that a leaf is a vertex of degree 1. It is not
difficult to observe (and prove) that any finite tree con-
taining at least one edge has also at least two leaves.
In other words, a non-trivial tree must have at least
two leaves ©. Also, if a tree is made of n vertices, it
contains exactly n — 1 edges. Note that a graph with
no undirected cycle is called a forest, see Figure 3.3,
and that such a forest is made of the disjoint union of
trees, each of them defining a component of the graph,
see Definition 2.18. Some authors use the terms poly-
forest or oriented forest whenever the trees are oriented
trees.

We now provide some equivalent definitions of a
tree. The proof is provided in [GYA, Thm. 3.1.8] for
undirected graphs.

(5

Fig. 3.3. One forest

Proposition 3.2. Let G be a graph with n vertices. The following statements are equiv-

alent:

(1) G is a tree,

(i1) G contains no undirected cycle and has n — 1 edges,

(111) G is connected and has n — 1 edges,

(iv) G is connected and every edge is a cut-edge, see Definition 2.20,

(v) Any two vertices of G are connected by exactly one unoriented path (when the

orientation on the edges is disregarded),

3.2. ROOTED TREES 41

(vi) G contains no undirected cycle, and the addition of any new edge e on the graph
generates a graph with exactly one undirected cycle.

Recall that the notion of a central vertex has been introduced in Definition 1.16.
Such a vertex has the property of being at a minimum distance to all other vertices, and
therefore is located at a “strategic position”. This position is usually not unique, and
examples with several central vertices are easy to construct. For trees, the situation is
completely different. In fact, the following statement has already been proved in 1869,
but note that it applies only to unoriented trees.

Theorem 3.3. For any unoriented finite tree, there exists only one or two central
vertices.

The proof is not difficult but relies on several lemmas, see pages 125 and 126 of
[GYA]. Let us just emphasize the main idea: If z is a central vertex in an unoriented
tree, then x is still a central vertex in the induced tree obtained by removing all leaves.
By the process of removing leaves iteratively, one finally ends up with a tree consisting
either of one single vertex, or of two vertices connected by an edge. This unique vertex
or the two vertices correspond to the central vertices of the initial unoriented tree.

Note that this almost unicity of the central vertex of a tree can be used for the
definition of the root of a tree. Before introducing rooted trees, and for fun, let us
introduce one more notion:

Definition 3.4 (Irreducible tree). An irreducible tree, or series-reduced tree is an
unoriented tree in which there is no vertex of degree 2.

Note that there exists a classification of such trees, modulo isomorphisms. The table
of the ones with less that 12 is provided in Figure 3.4.

3.2 Rooted trees

In a tree, it is sometimes important to single out one vertex. This idea is contained in
the next definition.

Definition 3.5 (Rooted tree). A rooted tree is tree with a designated vertex called the
root.

On drawings, the root of a rooted tree is often
put at a special place (top, bottom, left or right of
the picture), see figure 3.5. Note that in this defi-
nition, the choice of the root is arbitrary. However,
in applications there often exists a natural choice
for the root, based on some specific properties of
this vertex. We mention a few examples in the next
definition, but other situations can take place.

Fig. 3.5. Two trees with root r

42 CHAPTER 3. TREES

N o >R HE R > o< MK HEK
T e S - > > o

oo o g oF He B HE R X< > B
- oL >¥- HE - BE YYk SUK < S
v v SHEERsHon ok 8 R

P R e
o DR

o 3 >R -H s SR oH oY
>

Fig. 3.4. Irreducible graphs with less than 12 vertices, see [4]

Definition 3.6 (Shortest path tree, arborescence and anti-arborescence).

(i) A shortest path tree is an unoriented tree for which the root is the unique central
vertex,

(11) An arborescence or out-tree is a rooted oriented tree with all edges pointing away
from the root, and an anti-arborescence or in-tree is a rooted oriented tree with
all edges pointing towards the root,

Let us illustrate these definitions: In Figure 3.6, the first tree is a rooted unoriented
tree without any special property, the second tree corresponds to a shortest path tree,
while the third tree is an arborescence. Note that underlying graphs for the first and
the second tree are the same, only the choice of a specific vertex as a root makes them
look different. As a consequence, these two trees are isomorphic as graphs, but not as
rooted trees (for which the two roots should be in correspondence).

Let us now introduce some names related to vertices.

Definition 3.7. Let G be an unoriented rooted tree, or an arborescence, with root
denoted by r.

(i) The height, or the depth, or the level of a vertex x corresponds to the distance
d(r,z),

3.2. ROOTED TREES 43

/ ~ I
r\ . @ f/\.

.70

Fig. 3.6. Three trees

(11) The height of the tree is the greatest level, or equivalently the length of the longest
path with one endpoint at r,

(i1i) The ancestors or ascendants of a vertexr x is the set of all vertices contained in
the path from r to x, while the descendants of x is the set of all y having x as
an ancestor. One speaks about proper ancestors of x and proper descendants of
x when x is not included in these sets,

(iv) The parent of a vertex x is the ancestor y satisfying d(r,y) = d(r,x) — 1, and a
child of x is a descendant y satisfying d(r,y) = d(r,z) + 1, with the convention
that the root has no parent, and a leaf has no child,

(v) Two vertices having the same parent are called siblings,

(vi) An internal vertex of a tree is a vertex which possesses at least one child.

It is easily observed that a vertex x has only one parent but is allowed to have
several children. Let us also mention that these notions can also be applied to anti-
arborescence, if the distance d(r,z) is replaced by d(z,r), and the directions of paths
are reversed. In the sequel we shall usually not mention anti-arborescences, but keep in
mind that any information on arborescences can be adapted to anti-arborescences. On
the other hand, one observes that the notions introduced above do not really fit with
arbitrary oriented rooted trees, since given an arbitrary vertex x, the distances d(r,x)
and d(z,r) could be infinite.

Let us now discuss the regularity of trees.

Definition 3.8 (p-ary tree, complete p-ary tree). Let p be a natural number.

(i) A p-ary tree is an unoriented rooted tree or an arborescence, in which every vertex
has at most p children, and at least one of them possesses p children,

(i1) A complete p-ary tree is an unoriented rooted tree or an arborescence in which
every internal vertex has p children, and each leave of the tree has the same depth.

Another useful notion can be defined for the rooted trees considered so far. Note
however that it is an additional structure which is added repeatedly to the children of
each vertex.

44 CHAPTER 3. TREES

Fig. 3.7. A 3-ary tree and a complete 2-ary tree

Definition 3.9 (ordered tree). An ordered tree is an unoriented rooted tree or an
arborescence in which the children of each vertex are assigned with a fixed ordering.

On drawing, the ordering is often represented by the respective position of the
children of any given vertex. The primary example of an ordered tree is the binary tree,
a 2-ary tree with possibly a left child and a right child for each vertex. Another example
is the ternary tree, a 3-ary tree with children distinguished into left child, mid child and
right child.

l\
(5] O .
T R '{z%
O (2 G)
)

Fig. 3.8. One binary tree and one ternary tree

Let us now list a few applications of rooted trees, more will be presented in the
following sections. The forthcoming pictures are all borrowed from [GYA, Sec. 3.2].

Example 3.10 (Decision tree). A decision tree is a decision support tool that uses
a tree-like model of decisions and their possible consequences, including chance event
outcomes, resource costs, and utility. It often lists all possible sequences, and provides
a final weight (for example probability or cost) to each path in the tree, see Figure 3.9
and [5].

Example 3.11 (Tree data structure). Trees are widely used whenever data contains a
hierarchical structure, see Figure 3.10. The notion of parent and children can then be
used efficiently.

3.2. ROOTED TREES 45

) (7))
J \ /J—...— = —at o

(70-) (71-) (72-) —oo—
| S N A .

R ! =, I/.l_\.
720 (721) (722)

p.

o (7211)
(7210) (72L.1)

Fig. 3.10. Classification in libraries is often based on a tree data structure

Example 3.12 (Sentence parsing). Rooted trees can be used to parse a sentence in any
language, see Figure 3.11. For such an application, a predefined structure of the tree is
applied to a sentence.

sentence

f

subject phrase predicatle phrase
1 / f
noun verb object phrase
|
adjective noun
| : !
sammy has two ears

Fig. 3.11. Parsing a sentence

Let us finally mention one application of the notion of shortest path tree provided
in Definition 3.6. Given a connected unoriented graph and choosing one vertex =z, it
is always possible to realize one shortest path tree with root x. Note that this tree is
usually not unique, but allows us to get a good representation of the distance between
x and any other vertex of the graph.

46 CHAPTER 3. TREES

3.3 Traversals in binary trees

In this section we introduce a basic tool for encoding or decoding some information
stored in binary trees, see the left picture in Figure 3.8. Most of the constructions apply
to more general ordered p-ary trees as well. Note that this section and the following
ones are very much oriented towards computer science.

Definition 3.13 (Graph traversal). A graph traversal or a graph search is the process
of visiting systematically each vertex in a graph.

Here “visiting” means either collect the data, or compare or perform the data, or
update the data stored at a vertex. Since each vertex are visited successively, a graph
traversal also corresponds to endowing the vertices of a graph with a global ordering.
For a general graph, a traversal can be almost arbitrary, but for trees (and in particular
for binary trees) some traversals are rather natural. Note that we consider planar trees
in the sense that the order on the tree is indexed by left and right. As a consequence,
given a vertex of the graph, its left subtree and its right subtree are clearly defined, see
Figure 3.12.

The general recursive pattern for traversing a binary e
tree is this: Go down one level to the vertex z. If = exists
(is non-empty) execute the following three operations in
a certain order: (L) Recursively traverse x’s left subtree,

(R) Recursively traverse s right subtree, (N) Process the - /
current node z itself. Return by going up one level and !
arrive at the parent of x. The following examples are the /
most used traversals:

Definition 3.14 (Traversal of binary trees). Let G be a 4
binary tree, with the root represented at the top.

(i) The level-order traversal consists in enumerating the
vertices in the top-to-bottom, left-to-right order, &v

(11) The pre-order traversal or NLR is defined recursively
by 1) process the root, 2) perform the pre-order traver-
sal of the left subtree, 3) perform the pre-order traver- Fig. 3.12. Left and right
sal of the right subtree, subtrees

(17i) The in-order traversal or LNR is defined recursively
by 1) perform the in-order traversal of the left subtree, 2) process the root, 3) per-
form the in-order traversal of the right subtree,

(iv) The post-order traversal or LRN is defined recur-
swely by 1) perform the post-order traversal of the
left subtree, 2) perform the post-order traversal of the
right subtree, 3) process the root .

3.4. APPLICATIONS 47
Let us illustrate these traversals with

Figure 3.13 from [6].

(i) Level-order traversal:
F7 B7 G7 A? D? I7 C7 E7 H7

(ii) Pre-order traversal (NLR) in red:
F,B,A, D, CE, G, H,

(iii) In-order traversal (LNR) in yellow:
A, B,C,D,E F, G HI,

(iv) Post-order traversal (LRN) in green:
A, C,E,D,B HIG,F.

In the next section we gather sev-

Fig. 3.13. Traversals of a binary tree eral applications of binary trees. Traver-
sals will also play a role for reading a tree.

3.4 Applications

In applications, the letter T' is often used for trees instead of the letter G which was
more natural for general graph. In this section, we follow this general trend and use the
letter T instead of G.

3.4.1 Arithmetic expression trees

Let us first look at an application of the in-order traversal for arithmetic expressions.
A similar application holds for boolean expressions.

Definition 3.15 (Arithmetic expression tree). An arithmetic expression tree is a binary
tree, with arithmetic expressions (operators) at each internal vertex, and constants or
variables at each leaf.

Clearly, such a tree can be read by the different traversals introduced in Definition
3.14. In this setting, the most natural traversal is the in-order traversal. However, when
printing the expression contained in such a tree, opening and closing parentheses must
be added at the beginning and ending of each expression. As every subtree represents a
subexpression, an opening parenthesis is printed at its start and the closing parenthesis
is printed after processing all of its children. For example, the arithmetic expression
tree resented in Figure 3.14 corresponds to the expression ((5 +z)/ — 8) * (4%), see
also [7]. Note that following the in-order traversal, one should write 8— and not —8.
However, the sign — is in fact slightly misleading since it represents here the operation
“take the opposite”. When applied to the number 8, the outcome is indeed —8. The
operation “take the opposite” or “take the inverse” are called unary operators because
they require only one child, and not two children as most of the other operations.

48 CHAPTER 3. TREES

Fig. 3.14. An arithmetic expression tree

3.4.2 Binary search trees

We now introduce an application of binary trees for the efficient search of data. In the
next definition, we consider a totally ordered set S, which means a set S with a binary
operation < satisfying the following three conditions for any a,b,c € S:

(i) Antisymmetry: If a < b and b < a, then a = b,
(ii) Transitivity: If a < b and b < ¢, then a < ¢,
(iii) Connexity: Either a < b or b < a.

Clearly, N, Z or R are totally ordered sets, but introducing this notion gives us more
flexibility. When a < b we say that a is smaller than b, or that b is larger than a.

Definition 3.16 (Binary search trees (BST)). Binary search trees (BST), also called
ordered or sorted binary trees is a binary tree where each vertex x contains a value
from a totally ordered set, and such that

o Vertices of the left subtree of x contain values which are smaller than or equal to
the value contained in the verter x,

e Vertices in the right subtree of x contain values which are larger than or equal to
the value contained in the vertex x.

If the totally ordered set is denoted by S, the valued at the vertex x, namely an
element of S, is often called a key. We then say that the key at = has to be larger than
the key at each vertex of the left subtree, and smaller than the key at each vertex of
its right subtree. Two examples of binary search trees are presented in Figure 3.15. Let
us emphasize that binary search trees do not consist only in the values of the keys:
the structure of the tree and accordingly the position of each vertex is important. For
example, even though the two binary search trees of Figure 3.15 contain the same keys,
they are very different and exhibit different responses to a research algorithm. It takes

3.4. APPLICATIONS 49

only four comparisons to determine that the number 20 is not one of the key stored
in the left tree of Figure 3.15, while the same conclusion is obtained only after nine
comparisons in the right tree.

22

Fig. 3.15. Two binary search trees, see Figure 3.4.1 of [GYA]

In practice, BST have a better behaviour if the two subtrees at each vertex contain
roughly the same number of vertices. In such a case, we say that the binary tree is
balanced.

It is easily observed that the smallest key in a BST is always stored in the most left
vertex. This can be found starting from the root and proceeding always to the left until
one reaches a vertex with no left-child. Similarly, the largest value is always attached to
the most right vertex. This vertex can be found starting from the root and proceeding
always to the right until a vertex with no right-child is reached.

More generally, the vertex corresponding to a certain key can be found by a simple
iteration process, excluding always either a left subtree or a right subtree from the
rest of the search. For a balanced tree containing n vertices, such a search requires an
average of O(ln(n)) operations!. Indeed, for a balanced tree, the relation between the
height h of the tree and the number n is of the form 2" = n, which means that a leaf
can be reached in about log,(n) steps.

Two other primary operations can be performed on BST, namely the insert oper-
ation and the delete operation. The first one consists in adding a vertex corresponding
to a prescribed new key by first looking at the right position for this new vertex. The
second operation consists in eliminating a vertex but keeping the structure of a BST.
These operations are described in Section 3.6.1, see also [8] for additional information.

3.4.3 Huffman trees

In this section we discuss the use of binary trees for creating efficient binary codes.

!For a strictly positive function ¢, the notation f € O({(n)) means that | JgEZ; | < ¢ for some ¢ < 0o

% = 0. These notations give us an indication about the

growth property of the function f without looking at the details.

and all n, while f € O(C(n)) means lim,_, o L

20 CHAPTER 3. TREES

Definition 3.17 (Binary code). A binary code is a bijective map between a set of
symbols (or alphabet) and a set of finite sequences made of 0 and 1. Each sequence is
called a bit string or codeword.

In this definition, the set of symbols can be arbitrary, like a set of letters, a set of
words, a set of mathematical symbols, and so on. Also, the finite sequences of 0 and
1 can either be all of the same length, or have a variable length. In the latter case,
it is important that a given sequence does not correspond to the first part of another
sequence. In that respect, the following definition is useful:

Definition 3.18 (Prefix code). A prefix code is a binary code with the property that
no bit string is the intial part of any other bit string.

It is quite clear that an ordered tree can be associated with any binary code. For
this, it is sufficient to associate the value 0 to the edge linking a father to the left child
(if any), and a value 1 to the edge linking a father to the right child (if any). In such a
construction, the difference between a binary code and a prefix code is clearly visible:
in the former case a symbol can be associated to any vertex, while in the latter case a

symbol is only associated to leaves, see Figure 3.16.
/

X At
\

-
o

S

Fig. 3.16. Trees of a binary code and of a prefix code

c

a b 3

m

The code ASCII is a binary code in which each bit string has a fixed length. On the
other hand, the example presented in Figure 3.17 corresponds to a prefix code together
with the associated binary tree.

For some applications it would be be quite natural to use short codewords for sym-
bols which appear frequently. For example, in a prefix code for an English text, one
would like to associate a short bit string to the letter e which appears quite often, and
accept a longer bit string for a letter which is much more rare. One efficient way to
realize such a prefix code is to use the Huffman code. It is based on one additional infor-
mation associated with any symbol: its frequency or its weight. The following definition
is based on the notion of weighted length for weighted graphs already introduced in
Definition 1.28. We shall also use the information about the height or depth of a vertex,

3.4. APPLICATIONS 51

letter | a b c d € f q
c:odewo-rd‘ﬁ(][] 0010 0011 0101 011 100 101

Fig. 3.17. A prefix code and the corresponding tree, see Figure 3.5.1 of [GYA]

as introduced in Definition 3.7. Recall that the depth corresponds to the length d(r, x)
of the path between the root r and a vertex x. In the present setting, this length is also
equal to the number of elements of the codeword associated to a vertex.

Definition 3.19 (Weighted depth). Let T' be a tree with leaves {x1,xs, ..., x,}, and let
{wi}, C [0,00) be weights associated with the leaves. Then the weighted depth w(T)
of the tree is defined by

w(T) := Zwid(r, ;).

Input: a set {sy,--- s} of symbols; a list {w,--- ,w;} of weights,
where w; is the weight associated with symbol ;.
Output: a binary tree representing a prefix code for a set of symbols whose
codewords have minimum average weighted length.
Initialize F to be a forest of isolated vertices, labeled s¢,--- , s, with
respective weights wy, ..., w;.
Fori=1tol—-1
Choose from forest F' two trees, T' and T”, of smallest weights in F.
Create a new binary tree whose root has T and T as its left and
right subtrees, respectively.
Label the edge to T" with a 0 and the edge to 7" with a L.
Assign to the new tree the weight w(T) + w(T")
Replace trees T and T" in forest F' by the new tree.
Return F.

Fig. 3.18. Huffman algorithm, from Algorithm 3.5.1 of [GYA]

52 CHAPTER 3. TREES

2 05 1 1 25 15 15
. ° ° ™ ™ ™ ° ®
Iteration O: a b ¢ d e f £
Iteration 1: a m d £ I £
b c
2 25 25 15 15
® 0 1 ® L] ®
Iteration 2: a ¢ 4 £
0 1 d
b c
2 25 25 30
® []
. 0 1 e m
Iteration 3:
0 1 d f £
b c
Iteration 4:
Iteration 5:

Final Iteration:

Fig. 3.19. Application of Huffman algorithm, from Example 3.5.3 of [GYA]

Note that if the weight w; associated to a leaf x; is related to the frequency of the
letter corresponding to that leaf, and if ZZ w; = 1, then the weighted depth provides
an information about the length of the transcription of the text with this prefix code:
the weighted depth corresponds to the average length of the bit strings used for the
transcription.

Now, given a list of symbols S := s1, S, ..., 2; and a list of weights {wq,wa, ..., w;},
the Huffman algorithm corresponds to constructing a tree 7" which minimizes the
weighted depth w(7). Note however that the solution is not unique, and the lack of
unicity appears rather clearly in the algorithm presented in Figure 3.18. The resulting
tree is called a Huffman tree and the resulting prefix code is called a Huffman code.

3.4. APPLICATIONS 23

Clearly, these outcomes depend on the given weights. An example of such a construc-
tion is provided in Figure 3.19. Let us finally mention the result which motivates the
construction presented above:

Theorem 3.20 (Huffman’s theorem). Given a list of weights {wy,ws, ... ,w;}, the Huff-
man algorithm presented in Figure 3.18 generates an binary tree T" which minimaizes the
weighted depth w(T') among all binary trees.

3.4.4 Priority trees

Let us present one more application of binary trees. First of all, we introduce some
ideas more related to computer science.

Definition 3.21 (Abstract data type). An abstract data type is a set of objects together
with some operations acting on these objects.

Two such objects are quite common: 1) A queue, which is a set of objects that
are maintained in a sequence which can be modified by the addition of new objects
(enqueue) at one end of the sequence and the removal of objects (dequeue) from the
other end of the sequence. A queue is also called FIFO (First In, First Out), and a
representation of a queue is provided in Figure 3.20a. 2) A stack, which is a set of
objects that are maintained in a sequence which can be modified by the addition of
new object on the top of the sequence (push operation) or removed also on the top of
the sequence (pop operation). A stack is also called LIFO (Last In, First out), and a
representation of a stack is provided in Figure 3.20b.

LIAN
7_\ h\, Push y
[3]- Push
push 'y

5
Back Front Push\ E
[1] 1

I 1
\’ Dequeue 8]
Enqueue Y (P01 @
/[Pop 3]

o]
~ofefelo]

{ Fop '\i‘

i

4] ,

[P 2]
[P0
(1] [0

(a) A queue (b) A stack

Fig. 3.20. Two standard abstract data types

We now generalize these two examples.

Definition 3.22 (Priority queue). A priority queue is a set of objects, each of which
is assigned a priority, namely an element of a totally ordered set. The operation of
addition (enqueue) consists simply in adding one more object together with its priority
to the set, while the operation of removal (dequeue) consists always in removing the
object with the largest priority. If two objects share the largest priority, an additional
selection rule has to be prescribed.

54 CHAPTER 3. TREES

Note that the queue and the stack already mentioned as special instances of priority
queues. In the former one, the lowest priority is always given to the newest object, while
in the latter the largest priority is always given to the newest object. One can always
represent a priority queue in a linked list, with the links sorted by decreasing priorities.
Note that a linked list is also an abstract data type consisting in a set of objects, where
each object points to the next in the set, see Figure 3.21. However, a better suited and
more efficient implementation of a priority queue can be obtained with priority trees, as
introduced below. A priority tree corresponds in fact to the most natural representation
of a priority queue.

12| #1199 e——»137 &>

Fig. 3.21. A linked list, with a terminal object (terminator) represented by a box

For priority trees, recall first that complete p-ary trees were introduced in Definition
3.8. We now weaken a little bit the completeness requirement.

Definition 3.23 (Left-completeness). A binary tree of height h is called left-complete
if the following conditions are satisfied:

(1) Every vertex of depth h — 2 or less has two children,
(ii) There is at most one vertex at depth h — 1 that has only one child (a left-one)

(iii) No vertex at depth h — 1 has fewer children than another vertex at depth h — 1 to
its right.

An example of a left-complete binary tree of
height 3 is presented in Figure 3.22. In the sequel

we shall endow the vertices of such a tree with one /
additional information. However, in order to keep
the greatest generality, let us first introduce a no-
tion slightly weaker than the totally ordered set
already mentioned. A partially ordered set S con-
[

sists in a set S with a binary operation < satisfying

the following three conditions for any a,b,c € S:)]
Fig. 3.22. A left-complete binay

(i) Reflexivity: a < a, tree

(ii) Antisymmetry: If a < b and b < a, then a = b,

(iii) Transitivity: If a < b and b < ¢, then a < c.

3.4. APPLICATIONS 25

Clearly, a totally ordered set is also a partially ordered set, but the converse is not
true. The main difference with a totally ordered set is that some elements a and b, the
relations a < b and b < a could both be wrong. In such a case, we say that a and b
are not comparable. An example of partially ordered set is provided by the set of all
subsets of R with A < B if A C B, for any subsets A and B of R. For example, with
intervals one has (1,2) < (0,4), but (0,4) and (1,5) are not comparable.

We can now introduce a general definition of priority trees:

Definition 3.24 (Priority tree). A priority tree is a left-complete binary tree whose
vertices are labeled by the elements, called priorities, of a partially ordered set and such
that no vertex has a priority larger than its parent.

(Q. 10‘
(0’5)(\. (3.%)
() ® o (4,6)
\@ (5 \@ / (18 (s53)
% (1 13) / ® (1 , 1)
(a) The alphabetical total ordering (b) The inclusion partial ordering

Fig. 3.23. Two examples of priority trees

Two examples of priority trees are presented in Figure 3.23. Note that Figure 3.23a
is based on a totally ordered set, while Figure 3.23b is based on a partially ordered set.
Note also that even though a vertex can not have a larger priority than its parent, it
can have a larger priority than a sibling of its parent. From the definition, the piorities
of a parent and of a child are always comparable, but the priorities of two siblings, or
of elements which are further away, do not need to be comparable.

By comparing the definition of priority queue and of priority trees, it is quite clear
that a priority queue can be represented in a priority tree. In fact, only special intances of
priority trees are used for representing priority queues: the ones for which the priorities
are chosen in a totally ordered sets?.

When a priority queue is represented by a priority tree, the dequeue operation
consists simply in extracting the root of the tree, but how can one obtain again a
priority tree 7 In fact, the removal and the addition of any element in a priority tree
can be implemented by the following algorithms. The insertion of an arbitrary element
in a priority tree can be implemented by the algorithm Priority tree insert presented
in Figure 3.24. An example is provided in Figure 3.25.

2A more general notion of priority queue with a partially ordered set is possible, but the corre-
sponding operations are not well defined, or not really natural.

26 CHAPTER 3. TREES

Input: a priority tree T and a new entry .

Output: tree 1" with x inserted so that 7' is still a priority tree.
Append entry x to the first vacant spot v in the left-complete tree 7'
While v # root(1') AND priority(v) > priority(parent(v))

Swap v with parent(v).

Fig. 3.24. Priority tree insert, from algorithm 3.6.1 of [GYA]

25

21 21
8 —_— 13
14 18 13 14 18 8
5 5
2 7 16 11 1 3 2 7 16 11 1 3

Fig. 3.25. The insertion of 13 in the priority tree, see Figure 3.6.3 of [GYA]

The removal of an arbitrary element of a priority tree (as for example the root)
can be implemented by the algorithm Priority tree delete presented in Figure 3.26. An
example is provided in Figure 3.27.

3.5 Counting binary trees

Let us conclude this chapter with a question related to combinatoric: how many binary
trees of n vertices can one construct ? For this question one has to remember that
binary trees are ordered 2-ary trees (which implies that they are rooted). Clearly, if
n = 1, there is only one such tree. If n = 2, two solutions exist: a root with a left child,
or a root with a right child. The solutions for n = 3 are presented in Figure 3.28, but
what about bigger n ?

One approach is by recursion. Let C, [
denote the number of such binary trees A / / \ \
of n vertices. As shown above, ¢} = 1, ¢ /0 0\ a\

Cy = 2 and C3 = 5. Now, given the root

of a tree containing n vertices, this root ® ¢

Fig. 3.28. Rooted ordered trees with 3 ver-
tices

3.5. COUNTING BINARY TREES o7

Input: a priority tree T and an entry x in 7.
Output: tree T" with x deleted so that it remains a priority tree.
Replace = by the entry y that occupies the rightmost spot at the bottom
level of 7.
While y is not a leaf AND [priority(y) < priority (leftchild (y)).
OR priority (y) < priority (rightchild(y))]
If priority leftchild (y) > priority (rightchild (y))
Swap y with leftchild (y).
Else swap y with rightchild(y)

Fig. 3.26. Priority tree delete, from algonthm 3.6.2 of [GYA]

25

21
—_—
14 18 8

2 7 16 11 1

25 25
18 18
13 13
e
14 3 8 5 14 16 8 5
2 7 16 11 1 2 7 3 11 1

Fig. 3.27. The insertion of 21 in the priority tree, see Figure 3.6.4 of [GYA]

has a left subtree and a right subtree. If the left subtree contains j vertices (with
0 < j <n—1) then the right subtree contains n — 7 — 1 vertices. In such a case, there
exists C; possible binary subtrees for the left subtree, and C,,_;_; subtrees for the right
subtree, making a total of C;C,_;_; possible and different trees. Note that this formula
holds if we fix by convention that Cy = 1. Since j can vary between 0 and n — 1 and
since the solutions obtained for different j are all different, one obtains the recurrence
relation

C,, = CoCroq + C1Ch—a + CoCh 3+ ... Cp2Cy + C 1 .

This relation can also be written more concisely:

—_

n—

Co=Y C;Cojs

<
Il
o

and is called the Catalan recursion. Then numbers C,, are known as the Catalan num-
bers, and appear in various counting problems, see [9]. A closed formula exists for the

o8 CHAPTER 3. TREES

computation of these numbers, In fact one has
n+1\n

2 . . . : .
where (:) denote a binomial coefficient. Several proofs of this result are presented in

[9].

Another formula which will appear later on is the so-called Cayley’s formula. This
formula counts the number of non-isomorphic trees with n labeled vertices. These labels
can be identified with a different weight assigned to each vertex, see Section 1.4 for
the definition of weighted graphs. For weighted graphs, any isomorphism has to respect
the weights, which means that the functions (fy, fg), from the weighted graph G =
(V, E,w) to the weighted graph G’ = (V’, F’,w'), introduced in Definition 2.8 have to
satisfy for any z € V and e € F

W (fr(@) =wle) and o (fale)) = w(e).

Obviously, if only the vertices (or the edges) are endowed with weights, only one of
these conditions has to be satisfied.

Fig. 3.29. Trees with 2, 3 and 4 labeled vertices, see [10]

In Figure 3.29 labels on vertices are indicated by colors, and only trees are con-
sidered. All non isomorphic trees of 2,3 and 4 labeled vertices are presented. Calyley’s
formula states that for n labeled vertices, the number of non-isomorphic trees is n" 2.
Several proofs are indicated on [10], and one is fully presented in [GYA, Sec. 3.7].

3.6. APPENDIX 59
3.6 Appendix

3.6.1 Operations on binary search trees

The material of this section has been studied and written by Quang Nhat Le. It presents
the most common operation performed on a binary search tree, namely the searching
algorithms, the insert algorithm and the delete algorithm.

We shall first present the search operation and show that this operation can be
supported in time O(h) on a binary search tree of height h. Then we will discuss how
the operations of insertion and deletion cause the dynamic set of a binary search tree
change but still remain its properties. As we shall see, modifying the tree to insert a new
element is relatively straightforward, but handling deletion is somewhat more intricate.

The searching algorithm: Given a pointer to the root of the tree and a key k, search-
ing algorithm will return a pointer to a node with key k if one exists, otherwise it
returns nothing (or NULL). The procedure begins its search at the root and traces a
path downward in the tree, as shown in Figure 3.30.

<20

»5

<15

<7

Fig. 3.30. Searching in BST

For example in Figure 3.30 one has to search for key 7. We start at the root node
as current node. Since the search key’s value (7) is smaller than current node’s key(20)
and the current node has a left child, we will search for the value in the left subtree
left. Next, we search to the right since the search key’s value (7) is greater than current
node’ key(5). This procedure will continue recursively in the subtree until the search
key’s value matches the current node’s key.

60 CHAPTER 3. TREES

In general, for each node z it encounters, it compares the key k with key(x). If
the two keys are equal, the search terminates. If k is smaller than key(zx), the search
continues in the left subtree of x, since the binary-search-tree property implies that &
could not be stored in the right subtree. Symmetrically, if & is larger than key(x), the
search continues in the right subtree. The nodes encountered during the recursion form
a path downward from the root of the tree, and thus the running time of this search
operation is O(h), where h is the height of the tree.

The insert algorithm: We can’t insert any new node anywhere in a binary search
tree because the tree after the insertion of the new node must follow the binary search
tree property. Therefore, to insert an element, we first search for that element and if
the element is not found, then we insert it.

Let us take an example similar to the previous search operation, but instead of
finding the key 7 we will insert it into the tree in Figure 3.31. We will use a temporary
pointer and go to the place where the node is going to be inserted. Here, we are starting
from the root of the tree and then moving to the left subtree if the data of the node
to be inserted is less than the current node. Otherwise, we are moving right.

n

n,parent = y
To be Inserted here

Fig. 3.31. Inserting in BST

Hence the general way to explain the insert algorithm is:
1. Always insert new node as leaf node
2. Start at root node as current node
3. If new node’s key < current’s key

e [f current node has a left child, search left

e Else add new node as current’s left child
4. If new node’s key > current’s key

e If current node has a right child, search right

3.6. APPENDIX 61
e Else add new node as current’s rtght child
5. This process continues, until the new node is compared with a leaf node

Remark 3.25. There are other ways of inserting nodes into a binary tree, but this is
the only way of inserting nodes at the leaves and at the same time preserving the BST
structure.

The delete algorithm: The last operation we need to do on a binary search tree to
make it a full-fledged working data structure is to delete a node.

We can proceed in a similar manner to delete any node that has one child (or no
child), but what can we do to delete a node that has two children? We are left with
two links, but have a place in the parent node for only one of them. An answer to this
dilemma, first proposed by 7. Hibbard in 1962, is to delete a node = by replacing it
with its successor.

baskgeha

Fig. 3.32. Deleting a node with 2 children in BST

There are 3 possible cases:

1. Deleting a node with no children: simply remove the node from the tree.
2. Deleting a node with one child: remove the node and replace it with its child

3. Deleting a node with two children: call the node to be deleted D. Do not delete
D. Instead, choose either its in-order predecessor node or its in-order successor
node as replacement node E as Figure 3.32 . Copy the user values of E to D.If
E does not have a child simply remove E from its previous parent G. If F has a
child, say F', it is a right child. Replace E with F' at E’s parent.

Remark 3.26. In all cases, when D happens to be the root, make the replacement node
root again.

Here is another example to better understanding 3 cases, see Figure 3.33:

62 CHAPTER 3. TREES

Fig. 3.33. Deleting a node z from a binary search tree

In case (a) we can see that if z has no children, we just remove it. For case (b) since
z has only one child, we splice out z. And in (¢) z has two children, we splice out its
successor , which has at most one child, and then replace the contents of z with the
contents of the successor.

While this method does the job, it has a flaw that might cause performance problems
in some practical situations. The problem is that the choice of using the successor is
arbitrary and not symmetric.

This section is based on the following references:

1) https://www.codesdope.com/course/data-structures-binary-search-trees/

)
2) http://staff.ustc.edu.cn/ csli/graduate/algorithms/book6/chap13.htm
3) https://en.wikipedia.org/wiki/Binary search_tree

)

4) https://opendsa-server.cs.vt.edu/ODSA /Books/CS3/html/BST.html

3.6.2 An Improved Inserting Algorithm to Binary Search Trees
This section has been created by Liyang Zhang and Arata Suzuki.

Introduction

In Subsection 3.6.1 Quang Nhat Le has described several algorithms on binary search
trees. However, the inserting algorithm has a drawback. If we insert a lot of new nodes

3.6. APPENDIX 63

into a binary search tree, for example, to insert 41, 42, 43, ..., 100 into Figure 3.31, then
the height of the tree will grow much faster than the logarithm of number of nodes,
leading to long time for subsequenting searching, inserting or deleting operations.

Therefore, it seems good to put some reasonable restriction on the height h of the
tree resulted by the inserting operation, for example,

h <logyn+ 2 (3.1)

with n denoting the order of the graph after the inserting operation. This kind of
restriction makes sure that the resulting binary search tree has a relatively low height,
and that the searching, inserting and deleting operations are relatively fast.

We have created an improved inserting algorithm, based on the original one, to
meet a given restriction on the height of the resulting binary search tree. The time
complexity of this algorithm is still O(h), as is the original one. However, we meet a
difficulty in a situation shown in Figure 3.36. In this case we have either to ignore the
restriction on height, keeping the time complexity O(h); or to reorder contents of O(2")
nodes, with a time complexity O(n) = O(2"), since there is only one element that is
out of order. The improvement part is 100% original.

General Idea

The general idea of this algorithm is below.

e Try to insert the new node as a leaf, in the same way as the algorithm introduced
by Quang Le.

e [f the height of the resulting graph is less than or equal to the restriction, return
the new graph.

e If the height of the resulting graph exceeds the restriction, do not insert the new
node here. Instead, move up along the tree and search for a node with only one
child, and insert the new node as the other child, or to say, at the "empty site”.

e Then, rearrange the tree by comparing repeatively the parent and two children,
and correcting their order. Return it after the order is corrected completely.

Figure 3.34 and Figure 3.35 are used as examples to help explaining the algorithm.

Notations

N := current node.

*N := the content of current node.

h(v) := height of node v. The height of the root node is 0.

hmax := the restriction on the height of the resulting tree.

In the algorithm below, ROMAN letters are the main texts or the algorithm, and
ITALIAN letters are comments.

64 CHAPTER 3. TREES

N
A
Bg "%E)Q
5
— AN M . q
P ‘;%\ P
D) E) & B *M >N
(b)
N N
o Py
15) o) 1 g \\T}J
— L A30) —— A)\ o
B e P=ET jo g 59 o' p=t
A . M L . L \
’J‘/ B b 59 M<TN & » %

o @

Fig. 3.34. the first case of inserting.

Algorithm

Input: binary search tree 7 on a totally ordered set (S, <); element x € S to be added
into T; restriction on the height h.x(n) dependent on the order n of the tree.
Output: binary search tree 7; resulted from the insertion.

1. Calculate hpax := hmax(order(T) + 1).

2. If order(T) > 2Mmaxtl — 1 the graph is full and any insertion is impossible under
this restriction.

3. Set N = root node.
4. While h(N) < hmax
o I[fxr=="N

o return 7.

e Else if v <* NV
o If N has a left child L(N), set N'= L(N) and continue the loop.
o Else, put z into a new node as the left child of A/, and return 7.

e Flse

o If N has a right child R(N), set N'=R(N) and continue the loop.
o Else, put = into a new node as the right child of A/, and return 7. (x)

Above is the algorithm introduced by Quang Le. Below is original.

5. When the loop above finishes before returning, we must have now h(N) == hpax.

3.6. APPENDIX

65
-
B0 ¢
. ‘&_,,
- ,,,’f;(/ B
jrg Ra
. g ™~ \k
1\& l)\ 02
@ *;} 3
(b)
% B y
e 8
TN M N
ag ~n B}
.\\L / \\T?;‘) —_— Y sty
(d)
o
P
A lf 9
T - \ﬁ\ 7
o N
f’?(B) G @
\\'\Ai\‘ "P = ,{

Fig. 3.35. the second case of inserting.

o If x ==* N, return 7.

e Else, we cannot add a node as N'’s child anymore, since we have reached

hmae already.

Therefore, we add it at the closest empty space, and adjust the neiboring

nodes later.

Now we go back to the first node we encounter with only 1 child.

6. Firstly, set N' = P(N) with P(N) denoting the parent of N.

7. While A(N) > 0

e If A/ has 2 children, set N' = P(N).
e Else if N has only 1 left child L(N)

o Create a right child of A called R(N), and set *R(N) = .

o In the downward loop before, the left child must have been chosen here,
since otherwise that downward loop would have terminated and algorithm

finished in (x).

Thus, we have either *L(N) <* R(N) <* N or *R(N) <* LIN) <* N.

66

CHAPTER 3. TREES

o If *L(N) <* R(N) <* N (See Figure 3.3/ as an example.)

(a)
(b)

(c)

(d)

(e)

Exchange *N with *R(N).
By this construction, R(N') is a leaf, but LIN) must have chil-
dren. Since L(N') is unchanged, its left subtree contain only ele-
ments smaller than *L(N'), and its right subtree contain only ele-
ments greater than *L(N'). But its right subtree may contain ele-
ments greater than *N', which leads to a problem.
Now we search for all such nodes and move them to be the children
of R(IN). Since *N becomes *R(N), elements of the right subtree of
L(N) always lie between LIN) and R(N).
Create a new pointer M, and initialize it to be R(L(N)).
M s the node to be examined whether to move.
N s fized, and is the root of the problematic subtree.
Create 2 new pointers Q and Q', and initialize both to be R(N).
Q is the node which M is going to be moved to be the child of. Q'
serves as a temporary variable.
Create a flag p € {l,r}, and initialize it to be .
p =1 iff M is in the left subtree of N'; p = r iff M is in the right
subtree of N.
While M # NULL and h(M) < hpax
x If p=1and *M <* N,
M and its left subtree should not be moved, and we examine its
right subtree.
o Set M =R(M).
* Else if p =1 and *M >* N,
M should be at the proper place in right subtree of N, and we
examine the left subtree of M.
Set @' = P(M).
o Move the node M to be the left child of Q.
o Set p=r.
o Set M =L(M) and Q= Q.
x Else if p=r and *M <* N,
M should be at the proper place in left subtree of N, and we
examine the right subtree of M.
Set @ = P(M).
Move the node M to be the right child of Q.
o Set p=1L.
Set M =R(M) and Q = Q.
x Else if p=r and *M >* N/,
M and its right subtree should not be moved, and we examine its
left subtree.

@)

O

@)

o

3.6. APPENDIX

(2)

67

o Set M = L(M).
x These are the only / cases.

After this loop, everything should have been sorted out. Return 7.

o Else if *R(N) <* LIN) <* N (See Figure 3.35 as an example.)

(a)
(b)

(e)
(f)
(2)

(h)

Keep the nodes, and reorder their contents such that *£(N) <*
N <* R(N).
By this construction, R(N') is a leaf, but LIN') must have children.
Since *L(N) becomes *N', every element in the right subtree of LIN)
is now greater than *N'. And since *N becomes *R(N), every el-
ement in the right subtree of LIN) is now smaller than *R(N).
Therefore, we should move the whole right subtree of L(N') to be the
left subtree of *R(N).
Move the node R(L(N)) to be the left child of R(N).
Since *L(N) becomes *N, every element in the left subtree of LIN)
is now smaller than *N'. But since the newly added *R(N') becomes
*L(N), the left subtree of LIN') may now contain elements greater
than *L(N). Therefore, we search for all such nodes and move them
into the right subtree of L(N).
Create a new pointer M, and initialize it to be L(L(N)).
M is the node to be examined whether to move.
Set N' = L(N).
N is fized, and is the root of the problematic subtree.
Create 2 new pointers Q and Q’, and initialize both to be N
Q is the node which M is going to be moved to be the child of. Q'
serves as a temporary variable.
Create a flag p € {l,r}, and initialize it to be .
p =1 iff M is in the left subtree of N'; p = r iff M is in the right
subtree of N.
While M # NULL and h(M) < hpax
x If p=1and *M <* N,
M and its left subtree should not be moved, and we eramine its
right subtree.
o Set M =R(M).
x Else if p =1 and *M >* N,
M should be at the proper place in right subtree of N, and we
examine the left subtree of M.
o Set Q' =P(M).
o If @ == N, move the node M to be the right child of N.
o Else, move the node M to be the left child of Q.

o Set p=r.

68

CHAPTER 3. TREES

o Set M =L(M) and Q = Q'.

x Else if p=r and *M <* N,
M should be at the proper place in left subtree of N, and we
examine the right subtree of M.

Set Q' = P(M).
o If @ == N, move the node M to be the left child of N.
o Else, move the node M to be the right child of Q.
o Set p=1.
o Set M =R(M) and Q= Q.
x Else if p=r and *M >* N/,
M and its right subtree should not be moved, and we examine its
left subtree.

o Set M = L(M).

x These are the only 4 cases.

(@)

(j) After this loop, everything should have been sorted out. Return 7.

e Else, N has only 1 right child R(N'). Do the same as the case of only 1 left
child, while replacing every word ”left” with "right”, and vice versa. Then
return 7.

8. If the algorithm does not return before this loop finish, it means that this algo-
rithm has not encountered any node with only 1 child, including the root node.
(See Figure 3.36 as an example.) We have not yet found a way to solve this
problem within the time complexity of O(h). Our choices are either to ignore the
restriction, set Ayax = 00, and carry out the algorithm (now same as the algo-
rithm introduced by Quang Le) again; or to insert the new node at an empty
place, and reorder all contents of the nodes. The time complexity of the latter
choice is unfortunately O(n) = O(2"), since there is only one element that is out
of order.

ES)
1®)

6 9

Fig. 3.36. an example with algorithm still not found within O(h).

Chapter 4

Spanning trees

In this chapter we study spanning trees and their construction. These trees have many
applications, and nice mathematical properties ©.

4.1 Spanning trees and their growth

Before stating the main definition of this section, let us recall that an arborescence is
a directed rooted tree with all edges pointing away from the root. As a consequence,
there exists a unique (oriented) path from the root to any vertex of the arborescence.

Definition 4.1 (Spanning tree). Let G be a connected graph. A spanning tree T of G
is a subgraph of G which is either an unoriented tree or an arborescence which includes
every vertex of G.

A spanning tree T is a subgraph which induces or spans G, as introduced in Def-
inition 1.6. For undirected graphs, a spanning tree can also be defined as a maximal
set of edges of G that contains no cycle, or as a minimal set of edges that connect all
vertices. Note that usually one fixes a root for the tree, but it is not strictly necessary.
It is rather clear that for undirected connected graphs, a spanning tree always exists
(and often it is non unique). On the other hand, for directed graphs, the requirement
that the spanning tree is also an arborescence makes its existence less likely, but it is
only with this additional property that spanning trees are useful for directed graphs,
see Figure 4.1.

Our next aim is to construct such spanning trees. There exists several algorithms,
but they all rely on a few definitions which are introduced now.

Definition 4.2 (Tree edge, vertex edge, frontier edge). Let G be a connected graph,
and T be a subgraph of G which is a tree.

(i) A tree edge or a tree vertex is an edge or a vertex of G which belongs to T'. A
non-tree edge or a non-tree vertex is an edge or a vertex of G which does not
belong to T

69

70 CHAPTER 4. SPANNING TREES

(a) An unoriented tree (b) An arborescence

Fig. 4.1. Two spanning trees with root r

(i1) A frontier edge is an non-tree edge with one endpoint in T (called tree endpoint)
and the other not in T' (called non-tree endpoint). If G is directed, the non-tree

endpoint has to correspond the target. The set of all frontier edges if denoted by
Front(G,T)).

The frontier edges Front(G,T') of an undirected graph is represented in Figure 4.2.
For directed graph, a frontier edge is also called a frontier arc and the requirement
is that the edge points outside of the tree. The general role of frontier edges is to be
added to the existing tree (or arborescence in case of directed graphs) and to make
these structures grow, as easily shown with the following lemma.

Fig. 4.2. A graph, a tree, and the frontier edges as dashed lines

Lemma 4.3. Let G be a connected graph, and T be a subgraph of G which is an
unoriented tree or an arborescence. The addition of a frontier edge to T generates a
new subgraph of G which is an unoriented tree or an arborescence.

Given an oriented tree or an arborescence in G, one natural question is about
the choice of a frontier edge. Indeed, there often exist several edges which are frontier

4.1. SPANNING TREES AND THEIR GROWTH 71

edges, how can one choose a particular one and based on which criteria 7 Each criterion
(selection rule) corresponds in fact to a different algorithm. Note that choosing one
element inside the set of all frontier edges can be either a deterministic operation or
a random operation. Note also that once a frontier edge has been chosen, this set has
to be updated. Indeed, at least this frontier edge has to be removed from the list, but
possibly other frontier edges have to be removed, and new frontier edges might become
available. Thus, growing an unoriented tree or an arborescence inside a connected graph
G always consists in a series of several operations:

Algorithm 4.4 (Grow a tree).

(1) Fiz an initial vertex xo of G, set Ty := {0} and firi:=0,

(ii) Choose one element ;11 of Front(G,T;), set Ty = T;U{e;11}, and set i :=i+1,
(111) Repeat (ii) until Front(G,T;) = 0.

Let us make a few observations about this algorithm.
The trivial initial tree in indeed just defined by a vertex, /_}__,\
while at each subsequent step only the additional edge is —
mentioned. These information uniquely determine the tree.
As mentioned before the choice of e;1; € Front(G, T;) will
be determined by a prescribed procedure, and we shall see
several subsequently. For an undirected finite graph, the b ;
algorithm will stop once a spanning tree has been obtained. O
For an arbitrary directed graph, this is much less clear,
and the process might stop much before a spanning tree
is obtained. The success of obtaining a spanning tree in ®a
this case will highly depend on the choice of the initial
vertex (the root) and of the structure of the directed graph
G. For example, in Figure 4.3 it is possible to create an
arborescence starting from the vertex a but not from the vertex . On the other hand,
if a graph (directed or undirected) contains an infinite number of vertices, the algorithm
might never end. Note finally that even if Front(G,T;44) is different from Front(G,T;),
it might not be necessary to compute this set from scratch but some information can
be inferred from Front(G,T;).

Fig. 4.3. A digraph

Remark 4.5 (Discovery number). In the point (ii) of the above algorithm, we have
written “Choose one element e;,1 of Front(G,T;), set T;11 = T; U {e;11}” and not
simply “Choose one element e of Front(G,T;), set T;11 = T; U {e}” which would have
been sufficient. The interest in the first notation is that it keeps an ordering in the growth
of the tree. In fact, this ordering is called the discovery number and can be associated
uniquely to each edge or to each vertex of the tree. For the edge, the discovery number
of e; 1s simply i, while for the vertices, we set x; for the non-tree endpoint of the edge e;
(before this endpoint becomes also part of the tree). The function associating its discovery

72 CHAPTER 4. SPANNING TREES

number to any vertex of the tree is often called the dfnumber-function. The discovery
number also endows the tree with the structure of an ordered tree, see Figures 4.4a and
4.4b. With this notation, one can write precisely T; = (V;, E;) with V; = {xo, x1,...,2;}
and E; = {ey,eq,...,¢;}.

€s
X,
cs / 3
o
x5 *¢
(a) A graph with a spanning tree (b) The corresponding ordered tree

Fig. 4.4. A graph, a spanning tree, and the resulting ordered tree

Let us now suppose that the process of growing a tree has ended up in a spanning
tree. Except if the graph G itself was a tree, otherwise some edges of G do not belong
to the tree, they are non-tree edges. These edges can be divided into two sets: the skip-
edges and the cross-edges. Skip-edges link two vertices which are in the same “family”,
one being an ancestor of the other one, while cross-edges link two vertices which are not
in the same “family”, none being an ancestor of the other one. Note that for skip-edges
in directed graphs, one speaks about back-edge or back-arc if the target of the edge is the
ancestor while it is a forward-edge or forward-arc if the tail of the edge is the ancestor.
Cross-edges of directed graphs can also be separated into two subclasses, those linking
a vertex with a discovery number to a vertex with a larger one, and those linking a
vertex with a discovery number to a vertex with a smaller one. Note that loops have
not been considered in this classification and should be considered as a family in itself.

As final note, let us observe that only connected graphs have been considered in
this section. Clearly, the process of growing a free will not be able to visit more than
one component of a graphs made of several components. However, it is not difficult to
extend the construction and develop the growth of a forest. The missing necessary step
is to allow the start of a new tree in a component different from the initial one. By
iterating this procedure, one ends up with a forest and can define a spanning forest.

4.2 Depth-first and breadth-first search

We present here two classical solutions for choosing the element of Front(G,T;) in the
part (ii) of Algorithm 4.4.

4.2. DEPTH-FIRST AND BREADTH-FIRST SEARCH 73

The main idea of Depth-first search (DFS) is to start at the root node and explores
as far as possible along each branch before backtracking. For that purpose, the frontier
edge e;y1 € Front(G,T;) is chosen with a tree endpoint at z; with the largest number
j (starting from 4 and then backward). Whenever more than one edge satisfy this
condition (one speaks about ties) a priority rule has to be imposed. This priority can
be either random, or based on some a priori information. For example, if indices had
been attributed to edges or to vertices, they can be used to implementing an additional
selection rule. Such a rule is called a default priority.

One tree constructed with the depth-first search will naturally be called a depth-first
search tree. Usually, such a tree is not unique, and it is surely not unique if two edges
in Front(G, T;) had their tree endpoint at x;. However, one easy property of depth-first
search trees is provided in the next statement. Its proof can either be found in [GYA,
Prop. 4.2.1] or by a minute of thought.

Lemma 4.6. For an undirected graph, any depth-first search tree has no cross-edges.

Let us add two remarks which link the e
depth-first search to two already intro- x X3 -
duced concepts. Firstly, by using a slightly A

extended version of the pre-order traver- -
sal as introduced in Definition 3.14 on a W = i éq
depth-first search tree one reproduces the x, x ¢
discovery order of the edges in the original 2,
graph, see Figure 4.5. Note that the men-
tioned extension corresponds to an exten-
sion of the pre-order traversal to general
ordered trees, and not only to binary trees. Secondly, when the growth of a tree is im-
plemented, the natural way to store the frontier edges is to to use a priority queue, see
Definition 3.22. However, for depth-first search tree the structure of a stack is sufficient.
Indeed, the newest frontier edges are given the highest priority by being pushed onto the
stack (in increasing default priority order, if there is more than one new frontier edge).
The recursive aspect of depth-first search also suggests the feasibility of implementation
as a stack, see Figure 3.20b and Figure 4.6.

,]

N, /A,
|
I
|

Fig. 4.5. A DFS tree

/
/
/

!
!
) 1
A 1
'd ® - seap Y
A\l
i \
[Ay
1 \
\
"
L]

Fig. 4.6. A growing DFS tree with Front(G, T;) in dashed lines

\ 4

Let us now move to Breadth-first search (BFS). This time, the main idea is to start
at the tree root and explores all of the neighbour nodes at the present depth prior to

74 CHAPTER 4. SPANNING TREES

moving on to the nodes at the next depth level. For that purpose, the frontier edge
e;+1 € Front(G,T;) is chosen with a tree endpoint at z; with the minimal number j
(starting from 7 = 0 and then upward). Again, whenever more than one edge satisfy
this condition a default priority is used.

One tree constructed with the breadth-
first search will naturally be called a =
breadth-first search tree. Usually, such a /
tree is not unique, and it is surely not L : ‘ \ . ﬂ\
unique if two edges in Front(G, T;) shared) - éox/r° xg
the same tree endpoint. This time, by us- e S
ing a slightly extended version of the level- Fig. 4.7. A BSF tree
order traversal as introduced in Definition
3.14 on a breadth-first search tree one reproduces the discovery order of the edges in
the original graph, see Figure 4.7. Note that the mentioned extension corresponds to
an extension of the level-order traversal to general ordered trees, and not only to bi-
nary trees. Additional properties of breadth-first search trees are provided in the next
statement. The proof can either be found in [GYA, Sec. 4.2] or by a minute of thought.
We recall that the level of a vertex in a tree has been introduced in Definition 3.7 and
that the dfnumber-function has been introduced in Remark 4.5.

x3

X o
—_———
/\' :(/\
Y x
<,
© X3
iS

Lemma 4.7.

(1) Let x,y be two vertices in a breadth-first search tree, then the property level(y) >
level(z) implies dfnumber(y) > dfnumber(x),

(11) Any breadth-first search tree provides the shortest path tree of an unoriented graph
with a given root, see also Definition 3.6.

The appropriate data structure to store the frontier edges in a breadth-first search
is a queue, since the frontier edges that are oldest have the highest priority, see Figure

4.8.
,,,\ : :
' \ | \ \
/ I \
I % v
I \ &
»E
A
) i BN
I \ B3N
boge s
| I \ \
d .
°

Fig. 4.8. A growing BFS tree with Front(G,T;) in dashed lines

A comparison between a DFS tree and a BF'S tree is provided in Figure 4.9. Starting
from the vertex v, it represents the trees obtained after eleven iterations of the Algorithm
4.4.

4.3. APPLICATIONS OF DFS 75

Fig. 4.9. A DFS tree and a BFS tree after 11 iterations, see also Figure 4.2.2 of [GYA]

4.3 Applications of DFS

In this section we present some applications of depth-first search to connected and finite
graphs. Extensions to non-connected ones can be done by considering the components
separately.

Let us recall that in Algorithm 4.4 the central idea of depth-first search is to look
for an edge e;11 € Front(G,T;) with a tree endpoint at z; with the largest number j
(at most 7). The following definition is related to this quest.

Definition 4.8 (Finished vertex). In a depth-first search, a discovered vertex is finished
when all its neighbours have been discovered and those with higher discovery number are

all finished.

An example of a depth-first search is provided in Figure 4.10. Since the graph is
simple, the name of each edge is indicated by the name of its two endpoints (zy means
the edge between the vertices z and y). The column “nextEdge” corresponds of the
edge which has been chosen among the frontier edges.

As mentioned in the previous section, a natural generalization of the pre-order
traversal applied to a DFS tree provides the discovery order of the edges inside the
original graph. Similarly, a slightly extended version of the post-order traversal, also
introduced in Definition 3.14, applied to a DFS tree provide the list of the finished
vertices, in the order they appear during the search. This property can be illustrated
for example with Figure 4.5.

Usually, a depth-first search generates a walk since one has to backtrack several
times in the construction of a spanning tree. In that respect, the following definition is
natural.

Definition 4.9 (dfs-path). A dfs-path is a path produced by executing a depth-first
search and by stopping the iteration right before one backtracks for the first time.

76 CHAPTER 4. SPANNING TREES

v z
nextBEdge | vertex(discovery #) | frontier-edge set | vertex(finish #)
Initialization: x(0) {2y, 2xw}
Iteration 1: T w(1) {ry, wv,wz}
Iteration 2: wo v(2) {zy, wz} v(1)
[teration 3: w2 %(3) {zy} 2(2),w(3)
Tteration 4: Ty y(4)) y(4), x(5)

Fig. 4.10. 4 iterations of a depth-first search, see also Example 4.4.1 of [GYA]

Let us consider G undirected, and let x denote the endpoint of a dfs-path. Clearly,
this path is also a tree, and the vertex x is finished. One easily observes that all neigh-
bours of z belong to the path, since otherwise the path could be extended. The following
statement can then be easily deduced from this simple observation.

Lemma 4.10. Let G be an undirected graph, and let x denote the endpoint of a dfs-path.
Then either deg(z) = 1, or x and all its neighbours belong to a cycle of G.

Proof. The case deg(z) = 1 is clear. Suppose now that deg(xz) > 2, and let y be a
neighbour of x with the smallest value dfnumber among all neighbours of . By the
previous observation all neighbours of x are contained on the path between y and =x.
Since y is also a neighbour of x it means that there is a non-tree edge, see Definition
4.2, which links x to y. Thus, all neighbours of x are on a cycle, as claimed. O]

Quite pleasantly, this result directly provides a proof to the statement (i) of Theorem
1.26. Namely, if G is a simple and undirected finite graph with minimum degree §(G) >
2, it contains a cycle of length at least equal to §(G) + 1. Clearly, if §(G) < 1, then
the statement is not true but nevertheless the graph contains a path of length §(G), as
claimed in the statement of the theorem.

Let us now use the depth-first search for finding cut-edge (bridge) as introduced
in Definition 2.20. Observe firstly that in an undirected and connected graph, an edge
is a bridge if and only if it does not belong to any cycle in a graph, see also [GYA,
Corol. 2.4.2]. Whenever a graph has some bridge(s), the following definition is natural.

Definition 4.11 (Bridge component). Let G be a connected graph, and let B be the set
of all its bridges. A bridge component of G is a component of the graph G — B.

4.3. APPLICATIONS OF DFS 7

It clearly follows from this definition and from the previous observation that the
edges and the vertices of any cycle in a connected graph belong to the same bridge
component. Let us go one step further in the construction.

Definition 4.12 (Contraction). Let H = (Vy, Eg) be a subgraph of a graph G = (V, E).
The contraction of H to a vertex is the replacement of Vg by a single vertex k. Any
edge between a vertexr of Vi and a vertex of V' \ Vi is replaced by an edge between k
and the same element of V' \ Vi, while all edges between vertices of Vi do not appear
in the contraction.

Figure 4.11 provides an illustration of a contraction of three vertices.

@ . d . d
\Eéjéo - & -
b /<M 5/ h \/ﬁ

Fig. 4.11. Contraction of Vi = {a, b, ¢} into the vertex k

As a result of these definitions and observations, one easily deduces the following
important result:

Proposition 4.13. Let G be a connected and undirected graph. The graph that results
from contracting each bridge component of G to a vertex is a tree.

Figure 4.12 corresponds to the content of this proposition.

(e \ :
\,/’ i %

.4
|
g

Fig. 4.12. Before and after contracting each bridge component of G

Before stating the algorithm which allows us to identify the bridges of a graph, let
us still observe that if x is a vertex of a connected graph G with deg(z) = 1, then the
bridge components of G is made of the component consisting on x only, and on the
bridge components of G — {z}. The algorithm for determining cut-edges is presented

78 CHAPTER 4. SPANNING TREES

Input: a connected graph G.
Output: the cut-edges of G.
Initialize graph H as graph G.
While |Vg| > 1
Grow a dfs-path to the first vertex ¢ that becomes finished.

If deg(t) =1
Mark the edge incident on f as a bridge.
H:=H —1.

Else /* vertex t and all its neighbors lie on a cycle C* /
Let I be the result of contracting cycle C' to a vertex.
Return the edges of [1

Fig. 4.13. How to find bridges, from algorithm 4.4.1 of [GYA]

below. Note that it has been developed for undirected graphs, and this assumption
should be added at the beginning of the statement.

Let us emphasize that the bridges are important because they correspond to the
“weaknesses” of a graph. By removing them, a connected graph becomes disconnected.
Note that a similar procedure exists for cut-vertices, as introduced in Definition 2.19.
The construction is of the same type and can be studied independently. We refer to
[GYA, p. 196-200] for more information.

4.4 Minimum spanning trees and shortest paths

In this section we refine the algorithm presented in Section 4.1 when a weighted con-
nected graph is considered, see Definition 1.27. Note that weights will be attached
only to edges and not to vertices, which means that we consider only edge-weights and
accordingly edges-weighted graphs. Our aim is to construct a spanning tree with the
minimum total edge-weight, the so-called minimum spanning tree problem. Since for a
graph with n vertices, there could exist up to n"~? trees, see Section 3.5, one is forced
to look for an efficient algorithm.

The main idea for growing a tree with minimum to- A o
tal edge-weight is to use Algorithm 4.4 and to choose at g — /‘\\2:
each step (ii) the edge e;+1 € Front(G, T;) with the smallest * \

edge-weight. If there is more than one edge in Front(G,T;) Y
with the smallest edge-weight, then the default priority

. . 8
can choose one of them. Note that this procedure is re- I
ferred to as Prim’s algorithm, since it has been proposed '\’::'_'—
by R.C. Prim in 1957. ;‘\\ 9
“e

Fig. 4.14. A minimum
spanning tree

4.4. MINIMUM SPANNING TREES AND SHORTEST PATHS 79

It remains then to show that this procedure leads for undirected graphs to a span-
ning tree with minimum total edge-weight. This can be done by an inductive proof as
presented for example in [GYA, Prop. 4.3.1]. Figure 4.14 provides the example of an
edges-weighted graph with a minimum spanning tree.

Let us mention that a generalization of the this problem consists in prescribing only
a subset of vertices. More precisely, let G = (V, F,w) be a connected edge-weighted
graph, and let U C V. The Steiner-tree problem consists in finding a minimum total
weight tree in GG containing all vertices of U. Clearly, the special case U = V' corresponds
to the minimum spanning tree problem. The Steiner-tree problem has been extensively
studied, see [11]. A special instance of this problem consists in considering only two
prescribed vertices in the graph (the set U contains only two elements). We now develop
this situation.

For solving this problem, recall that the weighted length of a walk has been intro-
duced in Definition 1.28. It corresponds to the sum of the weight on the corresponding
edges, and if W denotes a walk in the graph, we write w(W) for its weighted length.
Accordingly, if x,y are vertices of a weighted graph, it would be natural to define

dy,(z,y) = min {w(W) | W is a walk from z to y}.

However, this notion suffers from two weaknesses. The first one has already been ob-
served: there might be no walk between x and y, in which case we set d,,(x,y) = co. The
second problem is more serious: if the graph contains cycles with negative length, then
most of the distances would be equal to —oo. © In order to avoid this situation, the
minimal requirement is to impose that the graph has no such cycle of negative length.
One stronger requirement is to impose that all weights belong to [0, 00). Note that if
we further impose w(e) > 0 for any edge e and if the graph is undirected, then the
distance d,, defined above endows the weighted graph G = (V, F,w) with a metric’. If
the graph is directed and/or if the weight is not strictly positive, d,, does not correspond
to a metric in general. Note finally that in the general setting, this “distance” might
represent various quantities.

From now on, let us assume for simplicity that w(e) > 0, but mention that an
extension with the only requirement of the absence of cycles of negative length exists
(Floyd—Warshall algorithm), see Section 4.5.4. As an easy consequence, one always has
dw(z,) = 0 for any = € G. In the sequel we construct more than just the weighted path
from a prescribed xg to a prescribed y with the minimum weight, we construct such a
path from x4 to any vertex y in the graph. In fact, we construct a tree with root zy, and
the minimum weighted path from x(to any y is then uniquely defined by the tree. This
tree is called a Dikstra tree, since it has been proposed by E. Dijkstra in 1959. The
construction is again based on Algorithm 4.4 with a clever choice of e;,; € Front(G, T;).
However, since an additional information has to be kept during the process, we provide
below the updated version of the algorithm.

'Recall that a metric is a map d : V x V — [0, 00) satisfying the three conditions: 1. d(z,y) = 0 <
x =y, 2. d(z,y) = d(y,z), and 3. d(z,y) < d(z,z) + d(z,y) for any z,y,z € V.

80 CHAPTER 4. SPANNING TREES

Before this, let us adapt an already old concept. Since the edges in Front(G, T;)
have a tree endpoint and a non-tree endpoint, it is rather natural to use the origin map
o: F — V and the target map t : £ — V already introduced in Section 1.1. With
this notation o(e) will denote the tree endpoint, while t(e) corresponds to the non-tree
endpoint. Note that in the present framework this notation is natural both for oriented
and non-oriented edges.

Algorithm 4.14 (Dijkstra’s tree algorithm).
(1) Fiz an initial vertex xo of G, set Ty := {xo} and fix i := 0,

(i) Choose the element e; 1 € Front(G,T;) which satisfies

dy, (2o, t(€;41)) :== min (dw (z0,0(€)) +w(e)>. (4.1)

ec€Front(G,T;)
Set Tiyy =Ty U{ei1}, and set i =1+ 1,
(iii) Repeat (ii) until Front(G,T;) = 0.

Note that if more than one edge satisfies condition (4.1), then the default prior-
ity is applied. Note also that this algorithm is well defined, since d,, (xo, o(e)) always
corresponds to d,(xg, x;) for some j € {0,1,...,7}. This comes from the fact that for
any e € Front(G,T;) one has o(e) = x; for some j € {0,1,...,i}. It is clear that the
implementation of this algorithm requires that the value d,(zo, x;+1) has to be kept in
memory each time the new edge e; 1 is chosen. There exists several practical imple-
mentations of this algorithm, but we do not develop this any further. The correctedness
of this algorithm can be proved by induction over the trees. One version is provided
in [GYA, Thm. 4.3.3]. Another version with several examples is provided on the very
well documented website [12], see also [13]. Note finally that Dijkstra’s algorithm has
been developed in several directions. For example, one could compute simultaneously
the minimum weighted paths from any x to any y, and not only from a fixed x to any
Y.

An example of the Dijkstra’s algorithm is presented in Figure 4.15. The edge-weights
are indicated above the edges, while the yellow disks contain an information about
the distance from the root (upper-left vertex) to the corresponding vertex: Once the
vertex is visited, it corresponds to d(x¢,z;) and before it is visited it corresponds to
a preliminary result when a comparison of the type (4.1) is computed (preliminary
distance). This preliminary distance can only decrease, or stay constant if no path
with a smaller weighted length is discovered inside the graph. For that reason, these
preliminary distances are often set to oo before the start of the algorithm. At each step
in the algorithm, one updates some of these values only if a smaller weighted length is
found.

4.5. APPENDIX 81

Fig. 4.15. Application of Dijkstra’s algorithm, from [14]

4.5 Appendix

4.5.1 A few problems on spanning trees

The material of this section has been provided by Duc Truyen Dam and by Atsuya
Watanabe.

Exercise 4.15. Prove that a simple graph G is connected if and only if G has a spanning
tree.

Proof. If G has a subgraph G; which is a spanning tree, then all vertices in G are
connected by a path in the spanning tree GG;. Hence, GG is connected.

If G is connected, let’s consider a subgraph G that is connected and contains all
the vertices and has the least number of edges. If G; has a cycle, then there exist 2
vertices a and b that are connected by an edge and another path. Deleting that edge, all
vertices are still connected since a and b are still connected. However, by deleting this
edge connecting a and b, we obtain a new subgraph which is connected and contains all
the vertices with one less edge than G; and therefore our initial G; is not a connected

82 CHAPTER 4. SPANNING TREES

subgraph containing all the vertices with the least number of edges. By contradiction,
(G7 does not have any cycle. Thus, (G; is a spanning tree. O]

Exercise 4.16. Prove that if a connected graph G is not a tree, then G has at least
three spanning trees.

Proof. Since G is a connected graph but not a tree, then G has a cycle. From problem
1, G has one spanning tree T;. Let C' denote the cycle in G. Since the tree does not
have any cycle, there exists an edge e of C' that does not belong to 77. The endpoints
of e are denoted by x and y. The spanning tree includes x and y. Thus, there exists a
path D in T connecting x and y in the spanning tree which does not include the edge
e.

Now let T5 be constructed from 77 by deleting an edge d; on the path D and
connecting and y by e. Let T3 be constructed from 7} by deleting an edge dy on the
path D and connecting = and y by e. We can choose d; and d, different from each other
since the path connecting x and y in 77 has a length of at least 2. If not, the graph T}
would have multiple edges, and would not be a tree.

Therefore, by this construction, the connected graph G has at least 3 spanning
trees. [

The following Problem is related to Lemma 4.7 about the construction of a shortest
path tree once a root has been fixed.

Exercise 4.17. Let v be a vertex in a connected simple and finite graph G. Prove that
there exists a spanning tree T in the graph G such that distances to every vertex from
v are the same in G and in T.

Proof. Let G = (V, E) be a graph.

1. We construct the graph G containing the path from v to all vertices with the
following constraints:
- First, we construct the shortest path of length 1 from v to all vertices in its neighbor-
hood. Since we are considering simple graph, each path is unique.
- We construct the shortest path between v and x; whose length is greater than or equal
to 2 with the following constraints: If this shortest path between v and z; includes the
edge x;x; connecting x; to x;, then this shortest path is constructed by the shortest
path from v to x; and the edge x;x; (we do this in order to make sure there is no cycle
that is constructed by two shortest path of the same shortest length from v to ;).

We now prove that the path between v to z; is unique by induction: We have x;
that are neighborhood of v, then the paths are unique and of length 1 due to the first
point above. Assume that the shortes path from v to z; is constructed to be unique.
Then for any vertex z; such that the shortest path between v and z; contains x;, the
shortest path from v to x; is unique since the path between v and x; is unique, and the
edge between z; and z; is also unique. By induction, the shortest path between v and
any vertex z; of graph G is unique. By construction, G; includes all the shortest path
from v to other vertices, therefore G contains all the vertex in V. Let G; = (V, Ey)

4.5. APPENDIX 83

where FE is the set of the edges in all of these shortest paths we constructed. By this

construction, the distance between v and each other vertex is the same in G; and in G.
2. Let us prove that (G; is a spanning tree:

- (&1 is connected since for vertices x and y different from v, x is connected to v and y

is connected to v, thus x and y are connected.

- G1 contains all the vertices in the graph.

- Suppose there is a cycle C' in (G;. Consider a vertex z; in the cycle C, then there are

2 different path from v to x;. This is a contradiction to our construction and uniquness

of the shortest path from v to each vertex. Therefore, by contradiction, Gy is acyclic.

-Therefore, (G is a spanning tree of G that satisfies the distance between v and any

vertex is the same in GG and in G;. O

4.5.2 Greedy algorithm

This section has been studied and written by Dam Truyen Duc and by Atsuya Watan-
abe.

To make Greedy Algorithm, firstly, we propose an algorithm that gives a spanning
tree. For a simple connected graph G = G(V, E):

Let E =eq,e9,€3,...,€m.

begin
T:=10
fori=1,2,3,...,m do

begin

if T'+ e; does not contain a cycle
then T' < T + ¢;

end

output T’

end

Let’s prove that this algorithm gives a spanning tree of connected graph G(V, E).

Proof. By construction, If adding an edge ey creates a circle in T', then we do not add
it. Therefore, T has no cycles.

If T does not contain all vertices, since G is connected, then there exists a vertex
x; in G and not in 7" with at least one edge e with one end point is z; and another
endpoint is a vertex in 7', and e does not belong to T' (otherwise, all the vertices that
is not connected to T by any edges would construct a component in G that disjoint
from T). T'+ e contains z;, which is a leaf, and 7" does not have any cycle. Thus 7'+ e
does not have any cycle and e should have been added to T'. This is a contradiction.
Therefore, T' contains all vertices.

84 CHAPTER 4. SPANNING TREES

Assume that T is not connected, then T" will consists of componets Cy, Cy, ..., C} in
which each component is connected. Consider D = union of Cy, (s, ...C. C} contains
V1 set of vertices and D contains V5 set of vertices. As T contains all vertices, the
disjoint union of V; and V5 is V. D is not connected with C4, which means T does
not have any edge joining a vertex of C; with a vertex of D. If G has an edge e; that
joininting C and D, then e; would be a bridge from C} and D. As bridge is not in any
cycle of GG, e; would have been added to T". This is not valid since the spanning tree T’
is assumed to be completely obtained after the algorithm. Therefore, G does not have
an edge joininting C'; and D, which is again a contradiction since G is connected. Thus,
T is connected.

By those properties proved above, T' is a connected acyclic graph that includes all of
the vertices. Therefore, the proposed algorithm provides 1" as a spanning tree of G. [

Let’s consider the maximum weight tree problem.

-~ Maximum weight tree ~
Let G = (V, E) is a connected graph.

w: E — R w(e) is the weight of the edge e.

For spanning tree T, w(T") =) ., w(e). The problem is:

ecT

Find a spanning tree of maximum weight.

- J
To solve this problem, let’s consider the Greedy Algorithm.

Greedy Algorithm

Label the edges of the simple connected graph G(V,E) so that E = ey, e9,€3,..., €
where
w(er) > wl(ey) > > wlem).

begin T = ()
fori=1,2,...,m do
begin

if T'+ e; does not contain a cycle
then T <+ T + ¢;

Output T

end

By observation, Greedy Algorithm always adds the maximum weight edge in the
edges left which does not make a cycle with previously chosen edges. To prove that
Greedy Algorithm gives the maximum weight tree, I will prove the proposition below.

4.5. APPENDIX 85

Proposition 4.18. A simple acyclic graph of n vertices and k edges (k < n) has exactly
n — k components.

Proof. We will prove by induction: The number of vertices n is fixed. For k = 1, The
graph contains n — 2 vertices which have no edges, and 2 vertices connected each other
by one edge. Thus, it has n — 2 + 1 = n — 1 components. Therefore, our statement is
true for k = 1.

Assume that the statement is true for k edges. Consider a simply acyclic graph
G(k + 1) with n vertices and k + 1 edges (k + 1 < n). Then, this graph G(k + 1) is
equivalent to graph G(k) of n and k edges plus an edge e connecting 2 vertices of graph
G (k). If e connects 2 vertices of the same component of G(k), then that component plus
e will make a cycle. which is a contradiction as there is no cycle in graph G(k +1). On
the other hand, if e connects 2 vertices of different components of G(k), then those 2
components join into 1 component. Thus, the total number of components of G(k+1) is
1 component less than the total number of components of G(k), (n—k)—1=n—(k+1)
components.

Thus, if the proposition is correct for k£ edges and n vertices, it is also correct with
k + 1 edges and n vertices. By induction, this proposition is proved. O

Proposition 4.19. Let G be a simple connected weighted graph. Then the spanning
tree T given by the Greedy algorithm is a mazximum weighted spanning tree.

Proof. A tree of n vertices has n — 1 edges. Let the edges of the greedy tree be

e}, €5, ...,€,_1, in order of choice. Note that w(e]) > w(e},,) since neither makes a
cycle with ej,e3,...,e;_; and our algorithm consider the edges with the decreasing

order of weight.
Let f1, fa,..., fn_1 be the edges of any other tree where

wfy) 2 w(fa) 2 - = w(fn)-

We want to show that
we)>w(fi), 1<i<n-—1. (4.2)

Let’s prove by contradiction. Suppose (1) is false, namely, there exist k& > 0 such
that
w(el) >w(fi), 1 <i<kandw(er) < w(fi)

Then, we have the inequality w(e}) > w(f;) > w(fr) > w(e;). Thus, in the set(eq, e, . . . €)
we ordered before constructing the graph, if fj is the edge e;, and e}, is the edge e, , then
J1 < j2. Thus, fi should be considered before e is considered in our algorithm of build-
ing the greedy tree. Because of that, each f;,1 < ¢ < k is either one of e}, e3, ..., e;_;
or makes cycle with ef, e}, ..., e;_;. Otherwise one of the f; (which is considered before
ey in our algorithm) would have been chosen in preference to ej.

Let the components of forest (V,{ej,es,...,ef 1}) be C1,Co, ..., Cph_gi1. Since
e}, es, ..., e;_; does not make any cycle, we use the proposition proved above, and
this forest of n vertices and £ — 1 edges has n — k + 1 components. Each f;,1 < <k

86 CHAPTER 4. SPANNING TREES

has both of its endpoints in the same component, since f; either makes a cycle is one
of the e}, e5,...e;_,. If f; is one of those edges, then it obviously belongs to one of the
component. If f; makes a cycle with those edges, then it connects 2 vertices that are
already connected by a path built with e, e3, ..., e; ;. Thus, f; connects 2 vertices of
one component. This confirms that each f;;1 < < k has both of its endpoints in the
same component.

Let p; be the number of f; which have both endpoints in C; and let v; be the number
of vertices of C;. Then, taking all components into account, we obtain that:

p A+ plo o gy = k (4.3)
nM+ive+ .. Vy g1 =N, (4.4

Suppose that u; < v, foralltin 1 <t <n—k+1, then y; < vy, — 1 since there are
natural numbers. Then,

n—k+1 n—k+1
S SR s
=1 =1
n—k+1
< vi—(n—k+1)
=1
< k-1

which is a contradiction. Thus, it follows from (4.3) and (4.4) that there exists ¢ such
that
ot Z V. (45)

Relation (4.5) indicates that there exists compoment C; such that the number of edges
fj in Cy is larger than or equal to the number of vertices in C;. Therefore, these edges
f; in Cy must contain a cycle, which is a contradiction since the set f; we are considerd
is a set of edges belong to a spannning tree, which is acyclic.

Therefore, by this contradiction, (4.2) is true, which means we have our constructed
graph as the maximum weight graph. From the above, we get the conclusion that Greedy
Algorithm gives maximum weight tree. [l

4.5.3 Application of graph theory in route search algorithm
for route guidance system in automobiles

This section has been studied and written by Bui Tu Ha.

Route Guidance System

Route Guidance System is one of the major elements of travel and transportation man-
agement, which contributes to Intelligent Transportation System (ITS). Using maps,

4.5. APPENDIX 87

arrows, and/or a voice interface, Route Guidance System provide users with turn-by-
turn guidance to a destination. Typical applications of Route Guidance Systems are
car navigation system, delivery truck route planning system, fright route finder,...

Route Guidance Systems process route search based on Route Search Algorithm.
After origin point, destination point and departure time are set, routes are searched in
a road map (road network) according to predefined criteria (e.g. shortest travel time,
shortest distance, minimal C'Oy emission, ...). The most common criterion is often the
shortest travel time.

Route search problem is treated using the knowledge of Graph Theory. Road net-
work is considered as plane graphs. It is expressed by nodes (vertices) and links (edges
/ arcs). Nodes indicate road intersections while links indicate road segment between
two adjacent intersections. Another element is weight of link. It can also be regarded
as impedance or cost of link, for example, travel time or travel distance. Weight of
link is determined according to observation by road side infrastructure (e.g. loop-coil
/ ultrasonic vehicle detector, radio wave beacon), observation by probe vehicle system
(e.g. taxi fleets), estimation based on traffic volume, as well as some other information.
In addition, if links in road network have no restriction for moving direction, we use
undirected graph. Then in many cases, weight on a link is the same in both direction.
By contrast, if links have restriction for moving direction (e.g. vehicles must keep left),
a directed graph is used. In this case, it is possible that weight becomes different when
we move in opposite direction between two adjacent nodes.

Route Search Algorithm

Route Search Algorithm plays a key role in the ap- o
plication of Route Guidance System. Why is it nec- ® HD—’?—'(P—’C
essary? When the size of road network increases,

. . "o link
the number of routes also increases. More specif- yine

ically, in case of a grid network having z links / O
along horizontal side and y links along vertical
sides (z and y are positive integer) , the number x links

of paths between the origin and the destination as
shown in the Figure 1 becomes n = (z + y)!/(x!y!).
This number can be large, for instance, n = 70 if
(x,y) = (4,4); n = 126 if (z,y) = (4,5). Thus, an efficient Route Search Algorithm is
necessary.

Route Search Algorithm is often used to solve shortest path problem, i.e. to find a
route (path) between to locations with minimized total weight. There are three main
types of shortest path problem:

Fig. 4.16. A grid network

e Single-Source Shortest Path problem: to find the shortest routes from a source
node to all other nodes in the network (typical algorithm: Dijkstra algorithm,
Bellman-Ford algorithm)

88 CHAPTER 4. SPANNING TREES

e Single-Pair Shortest Path problem: to find the shortest route between two pre-
determined locations (typical algorithm: A* algorithm). Every known algorithm
takes just as long as solving Single-Source.

e All-Pairs Shortest Path problem: to find the shortest routes between every pair
of nodes in the network (typical algorithm: Warshall-Floyd algorithm).

The use of Warshall-Floyd algorithm involves matrix calculation and it is difficult
to apply this to a large road network. Thus, we do not usually consider this algorithm.
In the next part, we shall recall the Dijkstra algorithm (see Section 4.4), then discuss
about A* algorithm, which is a revised method of Dijkstra’s algorithm. After that,
Heap Data Structure will be introduced as a method to mitigate a weakness of Dijkstra
algorithm and A* algorithm. In the end, we will study Bellman-Ford Algorithm and
compare it with Dijkstra algorithm.

Dijkstra’s Algorithm Dijkstra’s algorithm can be perceived as the most popular
and frequently used route search algorithm for Route Guidance System. To implement
this algorithm, we need to assume non-negative edge weight. We recall in Figure 4.17
the Algorithm 4.14 of Section 4.4:

Algorithm 4.14 (Dijkstra’s tree algorithm).
(i) Fix an initial vertez xg of G, set Ty := {xo} and fix i := 0,
(i) Choose the element ;1 € Front(G, T;) which satisfies

(1,-_,,-{.1'(].12((:‘54.1}:] = min ((L.(;rg.{}[;:‘]) —a,u[.r:",'l).

e€Front(G.T;)
Set Ty =T; U ey}, and set i : =i+ 1,
(iii) Repeat (ii} until Front(G,T;) = 0.
Fig. 4.17. Algorithm 4.14

With this expression, for each discovery number i (i > 0), we need to update the
set of frontier edges, Front(G,T;). From the viewpoint of programming, we shall use
an one dimensional array to store the set of non-tree endpoints of the frontier edges.
Choosing an element in this node set can be an alternative of “Choose the element
e;i+1 € Front(G,T;)” in Algorithm 4.14.

Overall, for shortest path problem using Dijkstra algorithm, it is more convenient
to classify nodes into three node sets: V(Visited), T' (Tentative) and U (Unvisited).

Nodes in set V' are the nodes that have been visited with fixed distance and route
from origin. The set T is comprised of nodes that have been visited but distance and

4.5. APPENDIX 89

route from origin have not been fixed. Accordingly, this set provides the information
about frontier edges. The last node set is the set U, which contains nodes that have not
been visited and distance and route from origin are unknown.

* Remark: The term “distance” mentioned above implies the value of function d,,
in Algorithm 4.14. In other cases, d,, can be regarded as a function that indicates travel
time or travel cost from origin.

Based on the definition of set V', T" and U, we can express the Dijkstra’s algorithm
in another way which have underlying meaning similar to the Algorithm 4.14.

Step 0:

e Assign a beginning value of distance (infinity) to all nodes

e All nodes are in set U
Step 1:

e Set the distance of the origin node to zero
e Origin node is moved from set U to set V'

e Set the origin node as “base node”

Step 2:

e For the based node, consider all of its unvisited or tentative neighbors and calcu-
late their tentative distance via the current base node.

e For each of these neighbors, compare the tentative distance newly calculated to
the tentative distance calculated before.

e If the newly calculated distance is smaller, the tentative distance is updated and
the upstream node is changed to the current base node.

e Newly calculated neighbors are moved from set U to set T
Step 3:

e From set 7', the node with the smallest tentative distance is extracted and set as
new base node.

e This new base node is moved from set T to set V.
Step 4:

e [f the base node is the destination node, then stop. The algorithm has finished.
e Otherwise, go to step 2.

Next, let’s practice with an example of finding shortest path using Dijkstra’s algo-
rithm.

Exercise 4.20. Search the shortest path from the origin to the destination using Dijk-
stra’s algorithm in Figure 4.18.

The step-by-step solution is provided in Figures 4.19 and 4.20.

90 CHAPTER 4. SPANNING TREES

Origin 3 /j—’K 4

5) JGI;—JﬂJ—ug.

) 11-

d
(13) »(14) 14 —u Destination

Fig. 4.18. Map for Exercise 4.20

vy
—

(o)
—/
e

(]

A* Algorithm A* algorithm is proposed in 1968 as an improved algorithm of Dijkstra
algorithm. 2 It is an improved method based on Dijkstra algorithm, with modification
only in the step 2 of Dijkstra algorithm.

Let n be a node in set T, or equivalently, the non-tree endpoint of a frontier edge:
For Dijkstra’s algorithm:

Tentative distance D(n) = Tentative distance from origin node
For A* algorithm:
Tentative distance D’(n) = D(n) + Heuristic h(n)

where h(n) is the estimation of the minimum distance from node n to destination node.
It must be positive and smaller than the true minimum distance to the destination
node. Practically, h(n) is the length of the straight line from node n to destination node
using X-Y coordinate.

Heap Data Structure

In the practical case of large road network, the number of nodes in set T' can reach several
thousands or more. However, in Dijkstra algorithm and A* algorithm, we only need to
find one node with the smallest tentative distance (step 3) and the process to search
this node consumes the most amount of processing time. To tackle this weakness of
Dijkstra algorithm and A* algorithm, we shall use an implementation of priority queue
- Heap Data Structure (Binary Heap). In fact, Heap Data Structure can be perceived as
a priority tree (see Definition 3.24) of total ordered set with priorities (elements which
label vertices) that are numeric values . Heap Data Structure efficiently searches the
node with the minimal tentative distance. Based on the tentative distance values, nodes
in set T" are ordered in a specific way.

In computer science, a heap is a specialized tree-based data structure which is
essentially an almost complete binary tree that satisfies the heap property:

2Hart P.E., Nilson N.J. and Raphael B. (July 1968), “A Formal Basis for the Heuristic Determi-
nation of Minimal Cost Paths”. IEEE Transaction on Systems Science and Cybernetics 4 (2): 100-107

4.5. APPENDIX 91

----- ® - ®
Notation %0 ©

L
B: o
(] e
Node in setV
------ ©
A n
T

—
‘\H> Nodein setT

I I
> Tentative route to node in set T ! 1 6.

5 8
— Shortest route to node in set V

X
O Distance
- (distance from origin)
Yoo 3.
>
t O 0 3 7
Updated
S e ©
5 6
fffff ®
i
'
H
o
4. 7
0 3 7
------ ®

Fig. 4.19. First part of the solution to Exercise 4.20

e In a max heap, for any given node C (child node), if P is a parent node of C, then
the key (the value) of P is greater than or equal to the key of C.

e In a min heap, the key of P is less than or equal to the key of C. The node at the
“top” of the heap (with no parents) is the root node.

For Dijkstra’s algorithm and A* algorithm, we shall use the property of min heap
as heap condition.

Heap condition: Tentative distance of parent node is less than or equal to tentative
distance of each child node.

When a node is added to set T' (and distance of some tentative nodes is updated),
heap is updated as follows:
(1) Insertion of a new node

e (1)-1: Add the new node to the last position of the bottom level

92 CHAPTER 4. SPANNING TREES

7 11
4]
3 4
[
10 13
2]
13 ‘15
:
' i
v 18 i 15) 16 16
@ @
10. 0 3 7
1 2 3
[
5 6 \10
W [
12 13
----- 0

ngs 5 GSS

Fig. 4.20. Second part of the solution to Exercise 4.20

e (1)-2: Compare the added element with its parent. If they are in the correct order
(according the heap condition), then stop. If not, swap the node with its parent.
(Note that the number of swap is at most the height of the tree (log, |V]) and
this takes O(log(|V'])) time.

Step (1)-2 is repeated until the structure satisfies the heap condition.

(2) Deletion of root node, which is the node with the smallest tentative distance. In
addition, the removed node will be the next base node.

(3) Bubble-down operation is performed to restore the structure
e (3)-1: Move that last node on the bottom level to the root of the heap

e (3)-2: Compare the new root with its children. If they are in the correct order,
stop. If not, swap it with its smaller child. Note that the number of swap is at
most the height of the tree (log, |V|) and this takes O(log(|V])) time.

4.5. APPENDIX 93

Step 1 Dijkstra algorithm Heap Data Structure
0 3 0
----- 0 0

w
(e
N

Fig. 4.21. Step 1

Step (3)-2 is repeated until the structure satisfies the heap condition.

These operations are represented respecively in Figures 4.21, 4.22, and 4.23.

* Remark: How to find the target node for comparison (i.e to find the parent node
or a child node) ?

Binary heap can be memorized by using a single dimensional array. The tree nodes
have a natural ordering: row by row (starting from the root node) and moving left
to right within each row. If there are n nodes, this ordering specifies their positions
1,2,...,n in the array. Moving up an down the tree is easily simulated on the array,
using that node number j has parent |j/2], and children 2j and 25 + 1.

Bellman-Ford Algorithm

Beside Dijkstra’s algorithm, Bellman-Ford (BF) algorithm is another Single-Source
Shortest Path (SSSP) algorithm. However, BF algorithm is not ideal for most SSSP
problems because of its high time complexity, which is O(|V] - |E|) . Meanwhile, Di-
jkstra’s algorithm using binary heap is much faster with time complexity O((|V] +
|E])log |V).

Nonetheless, Dijkstra’s algorithm has one dis-
advantage: it can fail when negative link weights
exist, see Figure 4.24. This problem can be miti- origin
gated by the use of BF algorithm, which can treat
negative value of link weight. However, we still
have to assume no cycle of negative length for BF
algorithm. After understanding how BF algorithm Fig. 4.24. One negative weight
works, see Figure 4.25, you may find out that it is because a cycle of negative length
possibly leads to infinite reduction of distance (to —oo) and consequently, some vertices

94 CHAPTER 4. SPANNING TREES

Step 2 Dijkstra algorithm Heap Data Structure

“““ oSG
o

o]

o

5

@
G
G

o1

5

® ©

Fig. 4.22. Step 2

can not be visited.

Firstly, distance from s to each vertex u is set to infinity. When the total number of
vertices in G is |V, we do (at most ?) |V| — 1 iterations and each iteration will update
along all edges. An example of Bellman-Ford algorithm is shown in Figure 4.26.

This section is based on the following references:

1. Tomio Miwa (2020), Route Search Method, Intelligent Transportation System Lec-
ture, Nagoya University.

2. T. Cormen, Introduction to algorithms, United States of America: The MIT Press
Cambridge, Massachusetts London, England. pp. 151-152. 2009.

3. P. Black, Entry for heap in Dictionary of Algorithms and Data Structures. Online
version. U.S. National Institute of Standards and Technology, 14 December 2004.
Retrieved on 2017-10-08 from https://xlinux.nist.gov/dads/HTML/heap.html

4. D. Walden (January 2008), The Bellman-Ford algorithm and “distributed Bellman-
Ford”, https://www.researchgate.net/publication/250014977_THE_BELLMAN -
FORD_ALGORITHM_AND_DISTRIBUTED BELLMAN-FORD

5. https://code.google.com/archive/p/eclipselu/downloads

3We sometimes make the algorithm stop earlier if nothing improves with more iterations.

4.5. APPENDIX 95

(a) () (b) (2)
(10 (=) (10) (=)
W ® e ©® @ @ ©
OIO® olololo
© © @ ©
(10 (=) Q) (=)

)
)
@
@
)
)
O
@

@O Ololol®
() O 0 (2
(1) () () ()
DR ONONNO W e O
@ ® W 1) @
@ ® () ()
O, \ (@) /
W W ©) W@ O
(1) @ @) (19) @ ()

Fig. 4.23. (a) A binary heap with 10 elements. Only the key values are shown. (b)-(d)
The intermediate “bubble-up” steps in inserting an element with key 7. (e)-(g) The
“sift-down” steps in a delete-min operation !

4.5.4 Floyd—Warshall algorithm

This section has been studied and written by Liyang Zhang.

Introduction

Here I introduce an algorithm to find the path with the smallest edge between every
pair of vertices at once in an oriented edge-weighted finite graph with negative weight
edges permitted, but without any negative weight circle.

Dijkstra algorithm cannot deal with graphs with negative weighted edges, since it
relies on a fact that if all weights are non-negative, adding an edge can never make a
path shorter!!). It fails to find the cheaper path when a largely negative edge is hidden

96 CHAPTER 4. SPANNING TREES

procedure shortest-paths(G,l,s)

Input: Directed graph G = (V,E);
edge lengths {l.:e€ E} with no negative cycles;
vertex sV

Output: For all vertices u reachable from s, dist(u) is set
to the distance from s to u.

for all ueV:
dist(u) =00
prev(u) =nil

dist(s) =0
repeat |V|—1 times:
for all ec E:
update(e)

procedure update((u,v) € E)
dist(v) = min{dist(v),dist(u) + I(u,v)}

Fig. 4.25. The Bellman-Ford Algorithm for Single-Source Shortest Path !

Iteration
Node [O |12 [|3]4]|5]|6][7
S ojlololJoJoloflo]o
A ~|lwlw|s|sl5]|5]|5
B x|l 65|55
C o |oo ool |1l | T 616
D o |loo |||l |14]10]9
E o loo 1218771717
F x| |oc|lO]O] 9O I
G o | 8| 8|8 8]8]|8]S8

Fig. 4.26. The Bellman-Ford Algorithm illustrated on a sample graph !

after a largely positive edge !, for example the path from point 2 to 3 in Figure 4.27
(a).

Now let me introduce Floyd—Warshall Algorithm, which is applicable in oriented
edge-weighted finite graphs with negative weight edges permitted, but without any
negative weight circle, with the graph of Figure 4.27 (a) as example.

My main references are [2], [3], and [4].

Algorithm

e Input: an oriented edge-weighted finite graph G, vertices labelled by consecutive
integers from 1 to n = order(G).

e Output: a matrix M € R™" with M;; showing the least weight among paths from
vertex ¢ to vertex j,
and a set of shortest routes from each vertex to each vertex.

4.5. APPENDIX 97

0 oo —2 o™
4 0 3 o
oo oo 0 2
oo —1 oo 0

Fig. 4.27. (a) an oriented graph with negative edges; (b) the matrix MY listing the
weight of its all edges.

0 o0 —2 o© 0 oo —2 o©
4 0 2 o0 4 0 2 o0
oo oo 0 2 oo oo 0 2
o —1 oo 0 3 =1 1 0
k=1 k=2
0 oo =2 0 0 -1 =2 0
4 0 2 4 4 0 2 4
oo oo 0 2 5 1 0 2
3 -1 1 0 3 -1 1 0
k=3 k=4

Fig. 4.28. Floyd—Warshall Algorithm on the graph of Figure 4.27 (a).
After examining all points, at &k = 4, we have the final result.

OMORORO
OROLOLO

Fig. 4.29. the temporary cheapest paths between each pair of vertices after each step!?.
The final cheapest paths are in the last step k& = 4.

98 CHAPTER 4. SPANNING TREES

1. e Write down a matrix M € R™*" with 0 on the diagonal,
and the weight of edge from the i vertex to the j™ one on M;;,
and oo on M;; if there is no edge from the i*" vertex to the 5 one. [Ezample
in Figure 4.27 (b)]

e Save down each edge as a route. [Example in Figure /.29 (k =0)]

2. e For each vertex k from 1 to n,
For each ordered pair of vertices (i, j) with ¢ and j from 1 to n different from
k

If Mij > M, + Mkj7
o Then let M;; = My, + My;, [Example in Figure 4.28|
e Delete the old route from i to j,

e And save down the new route as the route from i to k that we already have

connected to the route from k£ to j that we already have. [Example in Figure
4.29 (k=1,2,3,4)
Notice that in the case of our example, as shown in Figure 4.29, at k =1, we
have replaced the route 2 — 3 by2 — 1 — 3, and 2 — 1 — 3 is now the route
from 2 to 3 that we already have; then, at k = 2, we find that it is shorter to
go from 4 to 3 via 2. Here, we need to add the route 4 — 2 — 1 — 3 instead
of 4 — 2 — 3, as stated in the algorithm. Indeed, 4 — 2 — 1 — 3 is shorter
than 4 — 2 — 3, and the algorithm gives the correct thing.

3. e If for any ¢ from 1 to n, M;; = 0, then return M;

e Else if M;; < 0, then the input graph has at least one negative circle starting
and ending at the vertex .
Since the diagonal elements are initially O and only decreases in the following
steps, My > 0 is impossible.

Justification

The second step means that if the cheapest path from i to j not passing k, k+1,....n

is more expensive than the cheapest one passing k£ but not passing k + 1, ..., n, then we

replace it. After the loop from 1 to n, all possible midway points are examined once. In

a figure without negative loop, paths passing a point more than once cannot be cheaper

than its concatenated one, so it is enough to examine all points once and only once.
References:

[1] www.quora.com/Why-doesnt-Dijkstra-work-with-negative-weight-graphs
[2] en.wikipedia.org/wiki/Floyd-Warshall_algorithm

[3] ithelp.ithome.com.tw/articles/10209186 (in Chinese)

[4] youtube.com/watch?v=40QeCuLYj-4 (video of 4.5 minutes)

Chapter 5

Connectivity

Connectivity is an important concept in graph theory. Graphs with a dense connectivity
or with a very weak connectivity do not present the same vulnerability towards the
removal of some vertices or edges. Beside the notions of vertex-cut or edge-cut, and
cut-vertex (=cutpoint) or cut-edge (=bridge) provided in Definitions 2.19 and 2.20,
more refined concepts have to be introduced. Also, since loops do not play any role for
the connectivity of a graph, the graphs considered in this chapter will be loopless.

5.1 Vertex and edge connectivity

Let us start by providing a concept measuring the density of connectivity in a graph. For
clarity, recall that an operation disconnects a connected graph if after this operation the
graph is no more connected. Let us however acknowledge that the notion of connectivity
does not fit well with the notion of orientation. In fact, for digraphs more refined
concepts are necessary, and will be introduced in subsequent chapters. As a consequence,
the main statement of this section, namely Theorem 5.4, is applicable to unoriented
graphs only. Its statement would be wrong for oriented graphs.

Definition 5.1 (vertex or edge connectivity). Let G be a connected graph.

(i) The vertex connectivity kv (G) of G is the minimum number of vertices whose
removal can either disconnect G or reduce it to a 1-vertex graph.

(i) The edge connectivity kg(G) of G is the minimum number of edges whose removal
can disconnect G.

Note that the minimum degree 6(G) already introduced in Section 1.1 must satisfy
ke(G) < 0(G) (otherwise, one easily gets a contradiction). In fact, the two connectivities
are not independent, one has

kv (G) < kp(G) < 8(Q). (5.1)

The precise proof is provided in Section 5.4.1. Now, in relation with these definitions
one also sets:

99

100 CHAPTER 5. CONNECTIVITY

Definition 5.2 (k-connectedness). Let G be a connected graph, and let k € N.
(i) The graph G is k-vertex connected (or simply k-connected) if Ky (G) > k,
(ii) The graph G is k-edge connected if kp(G) > k,

These notions are useful for discussing any net-
work survivability, which is the capacity of a net-

S)
work to stay connected after some edges or vertices l o«
are removed. For example, if the vertices of the — . / \
graph are divided into two subsets V; and V3, then \ .\ /
the number of edges between V; and V5 is always e
greater or equal to kg(G). An example of vertex ’ __

connectivity and edge connectivity is provided in
Figure 5.1.

Recall that internal vertices of a tree have been Fig. 5.1. sy (G) = 2 and kg(G) = 3
introduced in Definition 3.7. For a path which is
not a cycle, the internal vertices correspond to all vertices of the path except its two
endpoints. In order to discuss the vulnerability of a network, the following definition is
useful:

Definition 5.3 (Internally disjoint paths). Let z,y be distinct vertices in a graph G. A
family of paths from x to y is said to be internally disjoint if no two paths in the family
have an internal vertex in common.

A representation of two such path is provided

f— 0T
in Figure 5.2. Already in 1932, H. Whitney pro- \ //7 \\\
vided a characterization of 2-connected graphs in S/ ‘}
terms of internally disjoint paths, namely: Any / \'/ x
connected and unoriented graph with at least 3 ae -f/7 e /
vertices is 2-connected if and only if each pair of ~~ o

vertices in G admit two internally disjoint paths
between them. There are several proofs of this
Whitney’s 2-connected characterization available
on Internet. In fact, a more general characterization of 2-connected graphs can ob-
tained, see also Figure 5.3. Its proof can be done as an exercise.

Fig. 5.2. 2 internally disjoint paths

Theorem 5.4. Let G be a connected, unoriented and finite graph with at least 3 vertices.
The following statements are equivalent:

(1) G is 2-connected,
(i1) For any two vertices, there exists a cycle containing both,
(i1i) For any vertex and any edge, there is a cycle containing both,

(iv) For any two edges, there is a cycle containing both,

5.2. MENGER’S THEOREM 101
(v) For any two vertices and one edge, there is a path from one vertex to the other
one that contains the edge,

(vi) For any three distinct vertices, there is a path from the first to the third and
containing the second,

(vii) For any three distinct vertices, there is a path containing any two of them and not
the third one.

Fig. 5.3. A 2-connected graph on which the above statement can be observed

Let us emphasize that 2-connected unoriented graphs can be seen as stable struc-
tures with respect to the deletion of an arbitrary vertex. Indeed, by the above state-
ment (vii) it means that 2 vertices can always be joined by a path, even if another
arbitrary vertex of the graph as been removed. Let us add that a similar description

of 3-connected, unoriented and finite graphs also exists and is provided for example in
[Die, Sec. 3.2].

5.2 Menger’s theorem

The aim of this section is to present Menger’s theorem, one important result in graph
theory. In order to state a rather general version of this theorem, we first extend some
of the definitions already introduced. Note that in the following definitions, the sets A
or B can not be the empty set.

Definition 5.5 (A-B-path). Let G = (V, E) be a graph, and let A CV and B C V.
An A-B path is a path in G with its starting vertex in A, its end vertex in B, and no
internal vertices in A or in B.

102 CHAPTER 5. CONNECTIVITY

Examples of A-B paths are presented in Figure 5.4a. With this first notion at hand,
we naturally extend Definition 5.3.

Definition 5.6 (Internally disjoint A-B paths). Let G = (V, E) be a graph, and let
ACV and B C V. A family of A-B paths is said to be internally disjoint if no two
paths in the family have an internal vertex in common.

B)
/.—-—_". H
e -
°
(]
(a) A-B paths (b) Internally disjoint A-B paths

Fig. 5.4. Subsets of vertices, and paths between them

Internally disjoint A-B paths are presented in Figure 5.4b. Clearly, if A = {z} and
B = {y} for two vertices x,y of G, one comes back to Definition 5.3. Note that the
interest of this definition is that the endpoints of the different paths can be different
elements of A and B.

For the next definition, recall that whenever G = (V,) is a graph and S C V, the
graph G — S corresponds to the induced graph G[V \ S] as defined in Definition 1.6.

Definition 5.7 (A-B separator). Let G = (V, E) be a connected graph, and let A C 'V
and B C V. A set S C V is an A-B separator if G — S contains no A-B path'. We
also say that S separates the set A and B in G.

An A-B separator is presented in Figure 5.5.
Observe that this definition is related to Defini-
tion 2.19 about vertex-cut, but is more flexible,
since it does not imply that G — S is disconnected.
Indeed, looking carefully at this definition, the no-
tion of orientation is taken into account. More pre-
cisely, the definition of A-B path holds for directed
graphs, and Definition 5.7 also takes care of orien-
tation. An illustration of this concept is provided
in Figure 5.6.

Now, given a graph G = (V, E) and for two sets A, B C V, two related problems
can easily be formulated:

Minimization problem: Determine the minimum number x(A, B) of vertices contained
in any A-B separator.

Fig. 5.5. A-B separator (in green)

!'Note in particular that this definition implies that SN A =0 = SN B.

5.2. MENGER’S THEOREM 103

Fig. 5.6. A-B paths with orientation (in red)

Maximization problem: Determine the maximum number (A, B) of internally disjoint
A-B paths.

A rather general version of Menger’s theorem can now be stated. Note that quite
often it is stated for A = {z} and B = {y}, and only for unoriented graph. On the
other hand, it is quite clear that only simple graphs can be considered: loops do not
play any role, but multiple edges would clearly lead to wrong statements (one could add
edges and paths without changing the number of vertices). In the next statement, we
assume that (A, B) > 1, which impose that any A-B path is not reduced to a single
edge (with no internal vertex). Without this assumption, the statement is simply not
correct.

Theorem 5.8 (Menger’s theorem). Let G be a connected, simple and finite graph, and
let ACV and B C V. If (A, B) > 1, then the equality k(A, B) = ((A, B) holds, or in
other terms the minimum number vertices contained in any A-B separator is equal to
the maximum number of internally disjoint A-B paths.

Note that one inequality is easy to prove, namely ¢(A, B) < k(A, B). Indeed, let S
denote an A-B separator set containing x(A, B) elements. Since S is A-B separating,
each A-B path must contain at least one vertex of S. If we impose that the paths are
internally disjoint, it implies that there exists at most x(A, B) such paths. This directly
leads to the stated inequality. Unfortunately the equality is more difficult to prove, but
several proofs exist. In [Die, Sec. 3.3] three proofs are provided for undirected graphs;
in [GYA, Sec. 5.3 & 10.3] one version for undirected and one version for directed graphs
are provided, but only in the case A = {z} and B = {y}. In [15] two versions of the
proof are also provided. Note finally that an extension for infinite graphs also exists,
but one has to be more cautious about equalities of the form oo = oo.

Let us present two consequences of the previous result. Since it is related to the
notion of connectivity, it will hold for undirected graphs only. Indeed, for such graphs
A-B paths are equal to B-A paths, which is not true in general for directed graphs.

Proposition 5.9. Let G be a connected, simple, unoriented and finite graph containing
at least one pair of non-adjacent vertices. Then the vertex connectivity ky(G) satisfies

kv (G) = min {x({z},{y}) | z,y non-adjacent vertices of G}.

104 CHAPTER 5. CONNECTIVITY

The proof of this statement is provided in [GYA, Lem. 5.3.5], while the proof of the
following theorem is available in [GYA, Thm. 5.3.6]. Note that the following statement
is a generalization of the characterization of 2-connected graphs in terms of internally
disjoint paths provided in Theorem 5.4.(ii).

Theorem 5.10 (Whitney’s k-connected characterization). Let G be a connected, sim-
ple, unoriented and finite graph, and let k € N. Then G is k-connected if and only if
for any pair x,y of vertices of G there exist at least k internally disjoint path between
x and y.

Let us still mention in this section that there exist analogues of Menger’s theorem
and its consequences in terms of edges instead of vertices. More precisely, the notion
of edges disjoint paths can be introduced, and separator can be expressed in terms of
edges instead of vertices. Then, an edge form of Menger’s theorem can be formulated,
and a statement about edge connectivity holds as well.

5.3 Blocks and block-cutpoint graphs

The decomposition of a graph into blocks reveals its coarse structure, its skeleton. After
this decomposition, a bipartite tree can then be constructed, which encodes the main
structure of the graph. Note that this decompositions holds for undirected graphs. We
also recall that all graphs in this chapter are considered as loopless.

Recall that the notion of cut-vertex has been introduced in Definition 2.19.

Definition 5.11. A block of an undirected graph G is a maximal connected subgraph
which does not contain any cut-vertex (any cut-vertex of the subgraph, but it can contain
a cut-vertex of the graph G).

Recall that the notion of mazimal means that
there is not a larger structure with the same prop-
erties. As a consequence of this definition, a block is
either a maximal 2-connected subgraph containing at
least three vertices, or a dipole, or an isolated vertex.
A dipole consists in two vertices connected by one
or several edges. Note that for simple graphs, these
dipoles are often called bridges with their endpoints
in the literature. Some properties of blocks can be
easily deduced, and we refer to [Die, Sec. 3.2] or to

[GYA, Sec. 5.4] for the proofs. Fig. 5.7. 1 graph, 5 blocks

Lemma 5.12. Let G be a undirected and loopless
graph.

(1) Two blocks of G can overlap in at most one vertex, which is then a cut-vertex of
G,

5.3. BLOCKS AND BLOCK-CUTPOINT GRAPHS 105

(i1) Every edge of G lies in a unique block,

(i1i) Cycles of G are confined in blocks.

Based on the above property, a bipartite tree can be constructed. It reflects the
structure of the initial graph. The construction is called the block-cutpoint graph BC(G)
of G and goes as follows: Let G = (V, E) be the initial graph, and let BC(G) = (W, F')
be the block-cutpoint graph. The bipartition Wy, W5 of W is defined by: each vertex
of Wi corresponds to a block of GG, each vertex of W5 corresponds to a cut-vertex of
G. An element of W, is connected to an element of W if the corresponding cut-vertex
belongs to the corresponding block. It is then easy to check that the resulting bipartite
graph is also a tree, see Figure 5.8.

Fig. 5.8. A connected graph and its block-cutpoint graph

106 CHAPTER 5. CONNECTIVITY

5.4 Appendix

5.4.1 Some inequalities

The material of this section has been studied and written by Quang Nhat Nguyen
and Arata Suzuki. Its aim is to prove the two inequalities contained in (5.1).

Lemma 5.13. For any undirected and loopless graph G = (V, E) one has:

)
Proof. (i) Let us assume that the minimum number of edges whose removal can dis-
connect G(V, E) is:
kp(G) =k > 0(G). (5.2)

Consider a vertex x; € V satisfying: deg(z;) = §(G). If one removes all the edges
e € E satisfying: e = (x;,2;),z; € V, the vertex x; will then have degree 0 and thus is
disconnected from G. The number of such edges e mentioned above is: k' = deg(z;) =
0(G). This number is smaller than the number of k& which was assumed to be the
minimum and thus contradicts our initial assumption. Therefore: kg(G) < §(G).

(ii) Denote E* C E a set of edges that correspond to the edge connectivity rg(G).
This means that if one denotes #(E*) as the number of elements in E* then: #(FE*) =
ke(G). Denote V* C V as the set of endpoints of all of edges in £*, and let G* be a
subgraph of G and defined by the sets V* and E*.

If we consider the case that between any two vertices in V* there can be a maxmi-
mum of one edge in E*, then all possible values for the number of elements in V*,
denoted as #(V*), have to be within the range:

rp(G) < #(V7) < 26p(G) (5.3)

For any graph G* in this case, there is always a choice of kg (G) vertices such that they
are the endpoints of all edges in E*. If one removes these vertices from G*, all of the
edges in K* will be removed as well. If this happens, the graph G will then become
disconnected because the edges in E* correspond to the edge connectivity kg(G). It
follows that kv (G) is smaller than kg(G).

In the case one allows more than one edge between two vertices, the minimum
possible value of #(V*) may become smaller than kg (G). If it is, the number of vertices
that are needed to be remove to make G disconnected will be equal to this minimum
possible value, which is even smaller than xkg(G).

The above fact has proved that there is a choice of kg(G) (or less) vertices whose
removal can either disconnect G or reduce it to a 1-vertex graph. Therefore: ky (G) <

Chapter 6

Optimal traversals

In Definition 3.13 a graph traversal was introduced as the process of visiting systemat-
ically each vertex in a graph. This definition can naturally be extended to the process
of visiting systematically all edges of a graph. In this chapter, we discuss some prob-
lems which often reduce to finding an optimal traversal, under some constraints. Having
more tools available, we also revisit or extend some results mentioned earlier.

6.1 Eulerian trails

Eulerian trails have been introduced in Definition 1.24 and correspond to a trail con-
taining all edges of a graph, but once and only once. On the other hand, vertices can
be visited more than once. If the trail is closed one speaks about an Eulerian tour.

Eulerian tours are intimately linked to the Seven Bridges of Konigsberg’s problem,
see [16]. The negative resolution of this problem by Leonhard Euler in 1736 laid the
foundations of graph theory. With the notation introduced so far, the problem consists
in establishing if the graph on the right of Figure 6.1 is an Eulerian graph (a graph
with an Eulerian tour).

Fig. 6.1. A map of Konigsberg and the corresponding graph, see [16]

As already mentioned, the answer is negative, since a characterization of Eulerian
graphs require that all its edges have an even degree, see Theorem 1.25. On the other
hand, for an unoriented finite graph whose vertices all have an even number of edges, a
rather simple algorithm exists for finding one Eulerian tour. This algorithm is provided

107

108 CHAPTER 6. OPTIMAL TRAVERSALS

in Figure 6.2. By one minute of thought, one easily concludes that this algorithm is
correct if and only if every vertex has a even degree.

Input: a connected graph G whose vertices all have even degree.
Qutput: an Eulerian tour 1.
Start at any vertex v, and construct a closed trail T in G.
While there are edges of G not already in trail T'
Choose any vertex w in 1" that is incident with an unused edge.
Starting at vertex w, construct a closed trail D of unused edges.
Enlarge trail 1" by splicing trail D into 1" at vertex w.
Return 1.

Fig. 6.2. Eulerian tour algorithm, from Algorithm 6.1.1 of [GYA]

Let us still mention a few extensions of the above result. First of all, Eulerian trails
which are not closed can also be useful. Indeed, such trails would correspond to trail
visiting all edges of the graph, but with an initial point and a final point which could
be different. With this weaker requirement the following result can rather easily be
obtained, see also [GYA, Thm. 6.1.1].

Theorem 6.1. A connected, undirected and finite graph admits an open Eulerian trail
if and only if it has exactly two vertices of odd degree. Furthermore, the initial and the
final vertices of any FEulerian trail must be the two vertices of odd degree.

Two additional results exist explicitly for directed graphs. For completeness, we
state them, and leave the proofs as an exercise. Recall that the notions of indegree and
outdegree of a vertex in a directed graph have been introduced in (2.1) and (2.2).

Theorem 6.2. (i) A connected, directed and finite graph G = (V, E) is Eulerian if
and only if deg; (x) = deg () for any x € V.

(i) A connected, directed and finite graph G = (V, E) admits an open Eulerian trail
if and only if there exist x,y € G with deg,,(z) + 1 = deg,,(z), deg,(y) =
deg,.+(y) + 1, and otherwise deg;,(z) = deg,(z) for all z € V \ {x,y}.

Note finally that extensions of these results to infinite graphs are not so trivial.
Indeed there exist infinite graphs with vertices of even degree everywhere but which do
not admit the natural extension of an Eulerian tour. Additional information and some
references on this infinite problem can be found on [16].

6.2 Postman tour

In the previous section, it was possible to visit all edges of a connected, undirected and
finite graph once and only once if and only if all vertices had an even degree. What

6.2. POSTMAN TOUR 109

about a graph with vertices having arbitrary degrees 7 It might not be possible to visit
all edges without visiting some twice, or more, but it is certainly possible to visit all of
them at least once. In that respect the following definition is natural.

Definition 6.3 (Postman tour). A postman tour' on a connected and finite graph is
a closed walk that uses each edge of the graph at least once. If the graph is endowed
with edges weight, an optimal postman tour is a postman tour with the minimum total
edge-weight.

Note that if the graph is not endowed with specific weight, one can always consider
that a weight 1 is associated with each edge, and in this case the optimal postman
tour corresponds to a shortest postman tour. Two examples of optimal postman tour
are presented in Figure 6.3. Let us also remind that a somewhat related question has
already been investigated in Section 4.4, when the minimum spanning tree problem was
considered. However, the aim is different since the postman has to visit all edges. On
the other hand, if the graph is an Eulerian graph, one easily observes that the solution
of the optimal postman tour is simply given by the sum of the weights on the edges.
Indeed, any Eulerian tour would visit all edges once, each of them giving its contribution
to the total weight.

1 3
i
2 = 4
(a) Unweighted graph (b) Weighted graph

Fig. 6.3. Two optimal postman tours, from [17]

There exists an algorithm for solving the optimal postman problem, which is pre-
sented in Algorithm 6.5 for undirected graph. The directed version is slightly more
complicated. The idea behind the algorithm is to artificially add some weighted edges
between vertices with odd degrees, and choose the edges such that these additional
weights are kept to a minimum value. At the end of the construction, any Euler tour
can be chosen and it has the minimum weight. In order to understand the construction
a few more definitions are necessary.

Definition 6.4 (Matching, perfect matching). A matching in a graph G = (V, E) is a
set I C E such that no two edges in F' have a common endpoint. A perfect matching

LAlso called Chinese postman tour, in honor of the Chinese mathematician Mei-ko Kwan (also
translated Meigu Guan) who introduced the problem in 1962.

110 CHAPTER 6. OPTIMAL TRAVERSALS

in a graph G is a matching F' in which every vertex of G is one endpoint of an element

of F.

A matching and a perfect matching are represented in Fig-
ure 6.4. In the construction below, the notion of perfect match- \ »
ing will appear in a complete graph. More precisely, a complete
graph is an undirected graph in which every pair of distinct ver- -]
tices is connected by a unique edge. The complete graph with
n vertices is often denoted by K, and possess n(n —1)/2 edges.
For such a graph, perfect matching are easily represented, see

Figure 6.5 for K. The number of different perfect matching for X v

——o

K,, can be computed and corresponds to (n—1)!!. Here, the no-
tation n!! denotes the double factorial or semifactorial function.
The expression of this function is slightly different for n odd or

Fig. 6.4. A matching,
n even, namely for n even one has

a perfect matching

-

= 112k)=nn—-2)(n—4)---4-2

k=1

while for n odd one has
n4l

nll=JJ@k—1) =nn—-2)(n-4)---3- 1.

k=1

N || X
///\\\\\/X/\/
& @ @ & ©

Fig. 6.5. Perfect matching for Kg, from [18]

e
o

Note that in the following algorithm, we assume that the graph is not Eulerian,
since otherwise any Eulerian tour is an optimal postman tour, and there is no need for
any algorithm.

Algorithm 6.5 (Optimal postman tour). Let G' be a connected, finite, undirected and
non Eulerian graph.

6.3. HAMILTONIAN PATHS AND CYCLES 111

(i) Determine the set S = {1, x9,...,x,} of all vertices with odd degree (n is always
even),

(i1) Construct the complete graph K, on the vertices S, which means the graph with
all edges ej, with i(e;) = (x;, xx) for xj,xp € S and x; # xy,

(iii) For xj,xy € S, find in G the path Py, between x; and xj, with a minimal weight
wjk, and assign this weight wji, to the edge ejp,

(iv) Determine a perfect matching Fpereet n K, (containing n/2 edges) with the re-
quirement that the total edge-weight of Fperfeet 1S @ minimum among all perfect
matching,

(v) On the graph G add all weighted paths Pj; corresponding to edges eji in Fperfect.-
This augmented graph, denoted by G*, is an Eulerian graph,

(vi) Choose any Eulerian tour in G*; it is an optimal postman tour.

Note that in the above algorithm, the method for choosing the perfect matching
has not been discussed yet. We also mention that there exist several extensions of this
problem. For example, different weights can be considered on an edge whenever this
edge is visited several times. The directed version of the postman tour exists, and also
the windy version. We refer to [GYA, Sec. 6.2] for other extensions, and to internet for
numerous related problems.

6.3 Hamiltonian paths and cycles

Recall that Hamiltonian cycles and Hamiltonian graphs have already been introduced
in Definition 1.23. More generally, one sets:

Definition 6.6 (Hamiltonian path). A Hamiltonian path is a path in a graph that
contains all vertices of the graph. If the path is closed, one speaks about a Hamiltonian
cycle, and whenever a graph admits a Hamiltonian cycle, one calls it o Hamiltonian
graph.

Note that for a cycle, all vertices can be visited
only once, except the initial endpoint and the final
endpoint which have to coincide. Let us also men-
tion an easy observation: loops or undirected mul-
tiple edges do not change the property of a graph
of being a Hamiltonian graph or not. For directed
graph, adding multiple edges can change the sit-
uation if one adds edges with the reserved orien-
tation. Quite surprisingly, looking for Hamiltonian

cycles turns out to be much more complicated than i) ,
Fig. 6.6. A Hamiltonian graph

112 CHAPTER 6. OPTIMAL TRAVERSALS

looking for Eulerian tours. There is no simple characterization of Hamiltonian graphs
and there is no fast algorithm for determining Hamiltonian paths. However, there exit
sufficient conditions for a graph to be Hamiltonian that apply to a large class of graphs.
There also exist conditions which show that a graph can not be a Hamiltonian graph.

Let us start by mentioning some easy rules which can be used for showing that a
graph is not Hamiltonian. It is based on the observation that only two edges adjacent
to a vertex can be used in a Hamiltonian cycle. These rules are:

(i) If a vertex x has degree 2, both incident edges must be used in any Hamiltonian
cycle,

(ii) During the construction of a Hamiltonian cycle, no cycle can be formed until all
vertices are visited,

(iii) If two edges of a given vertex have to be used for a Hamiltonian cycles, then all
the other adjacent edges can be disregarded.

The justification of the rules (i) and (iii) are quite clear. For (ii), it is enough to
observe that whenever a cycle is created, its initial point and its final point have to be the
same, which means that this vertex is visited twice. If this cycle is not the Hamiltonian
cycle, then visiting twice a vertex is not allowed. This prevents the existence of any
cycle before the final Hamiltonian cycle. Based on these rules, the following exercise
can be done.

Exercise 6.7. Show that the following two graphs are not Hamiltonian graphs.

Fig. 6.7. Two non-Hamiltonian graphs, from [GYA, Sec. 6.3]

Another interesting exercise shows that Hamiltonian cycles and Hamiltonian paths
are indeed different.

Exercise 6.8. Prove that the Petersen graph presented in Figure 2.12 admits a Hamil-
tonian path but no Hamiltonian cycle. Some information for this proof can be obtained

from[19].

As mentioned above, there also exist some sufficient conditions for a graph to be
a Hamiltonian graph. We provide such a result both for undirected and for directed
graphs. Note however that these results are not really efficient for graphs with a large
number of vertices: they also require a large number of edges.

6.4. THE TRAVELING SALESMAN PROBLEM 113

Theorem 6.9 (Ore, 1960). Let G be a simple undirected graph with n vertices and
n > 3. If deg(x) + deg(y) > n for each pair of non-adjacent vertices x and y, then G is
a Hamiltonian graph. In particular, if deg(x) > § for any x, then G is a Hamiltonian
graph.

The proof of the above theorem can be found in [GYA, Thm. 6.3.1]. It is not a
completely trivial proof, and it is based on a contradiction argument. Let us emphasize
an easy and useful consequence of this result: For n > 3 any complete undirected graph
K, is a Hamiltonian graph. In fact, the number of different Hamiltonian cycles in K,
is (n — 1)!/2. For this computation, cycles that are the same apart from their starting
point are not counted separately.

Theorem 6.10 (Woodall 1972). Let G be a simple directed graph with n vertices. If for
any vertices x and y with no edge from x to y one has deg, . (x) + deg;,(y) > n, then
G is a Hamiltonian graph. In particular, if deg,,(z) > 5 and deg;,(z) > § for any =,
then G is a Hamiltonian graph.

6.4 The traveling salesman problem

Hamiltonian cycles are related to the famous travelling salesman problem (TSP) which
has already been introduced in Section 1.5.2. Recall that this problem consists in deter-
mining the shortest Hamiltonian cycle in a given weighted graph. Note that we assume
in this section that all weights are non-negative. If the graph is undirected one speaks
about the symmetric TSP (sTSP) while if the graph is directed, one speaks about the
asymmetric TSP (aTSP). Also, let me remind that shortest Hamiltonian cycle means
a Hamiltonian cycle with the minimum total weight (it might not be unique). Such a
problem appears when a salesman wants to visit n cities once before returning home.
The weight on the edges can represent the distance between the cities, or the cost of
the transportation. Note that loops do not play any role for this problem, and multiple
edges going in the same direction can be avoided by considering always the one with the
minimum weight. On the other hand, in directed graphs, two edges going in opposite
directions can not be simplified.

As we have seen in the previous section, not all graphs admit a Hamiltonian cycle.
There are several ways for avoiding this situations. For example, one can allow some
back-and-forths which are not too costly, or complete the graph with artificial edges of
arbitrarily large weights. Once a complete graph is obtained, it is sure that Hamiltonian
cycles exist.

A solution to the aT'SP has been provided in Section 1.5.2. However, as mentioned
in Proposition 1.31, if n denotes the number of vertices of the graph, the complexity of
the algorithm provided there is of order O(n? x 2"). For large n, using this approach
would require too much time, and therefore this algorithm can not be applied. In such
a situation, one should not look for the shortest solution, but to a solution close to the
best one. This approach is often based on the following concept:

114 CHAPTER 6. OPTIMAL TRAVERSALS

Definition 6.11 (Heuristic). A heuristic or heuristic function is a guideline that helps
in choosing from several possible alternatives for a decision step. A heuristic algorithm
s an algorithm whose steps are quided by heuristics. This is usually achieved by trading
optimality, completeness, accuracy, or precision for speed.

According to [20] the trade-off criteria for deciding whether to use a heuristic for
solving a given problem include the following:

1. Optimality: When several solutions exist for a given problem, does the heuristic
guarantee that the best solution will be found ? Is it actually necessary to find
the best solution ?

2. Completeness: When several solutions exist for a given problem, can the heuristic
find them all 7 Do we actually need all solutions ? Many heuristics are only meant
to find one solution.

3. Accuracy or precision: Can the heuristic provide a confidence interval for the
purported solution ? Is the error bar on the solution unreasonably large ?

4. Fxecution time: Is this the best known heuristic for solving this type of problem 7
Some heuristics converge faster than others. Some heuristics are only marginally
quicker than classic methods.

The simplest sTSP heuristic is based on the nearest neigh-
bour, as shown in Figure 6.9. The leading idea of this algorithm g, o 1000000

is to always choose the cheapest way to go somewhere. The

framework is a complete graph, which can always be realized,

as mentioned above. The implementation of this algorithm is 1 1
very easy, but its performance can be pretty bad, as illustrated A
in the example of Figure 6.8. Indeed, by applying this algorithm

on this graph, one gets a Hamiltonian cycle of total weight of
1,000, 003, While. a clever choice would 'lead to a Hami'ltonia'n Fig. 6.8. A weighted
cycle of total weight 6. The weakest point of this algorithm is
that it does not look for a global minimum weight, but looks
for the minimum weight only at every step.

Another heuristic algorithm for sTSP is based on the minimum spanning tree in-
troduced in Section 4.4. The framework is again a complete graph. It also uses the
characterization of Eulerian graphs, namely that any graph with an even degree at ev-
ery vertex admits an Eulerian tour. The main idea is to follow paths in the minimum
spanning tree, as long as possible, and jump to another part of the spanning tree once
an already visited vertex is reached. The precise form of this algorithm is provided
in Figure 6.10. If we summarize it very briefly, it consists in three steps: 1) Find the
minimum spanning tree 7% of the initial weighted graph, 2) Duplicate every edge of
T*, 3) Return a Hamiltonian cycle obtained by taking some shortcuts on the duplicate
tree. An illustration of this procedure is provided in Figure 6.11.

1

graph

6.4. THE TRAVELING SALESMAN PROBLEM 115

Input: a weighted complete graph.
Qutput: a sequence of labeled vertices that forms a Hamiltonian cycle.
Start at any vertex v.
Initialize [(v) = 0.
Initialize 7 = 0.
While there are unlabeled vertices

=141

Traverse the cheapest edge that joins v to an unlabeled vertex, say w.
Set [(w) = 1.

vi=w

Fig. 6.9. Nearest neighbour algorithm, from Algorithm 6.4.1 of [GYA]

Input: a weighted complete graph G.
Qutput: a sequence of vertices and edges that forms a Hamiltonian cycle.
Find a minimum spanning tree 1™ of G.
Create an Eulerian graph H by using two copies of each edge of T™.
Construct an Eulerian tour W of H.
Construct a Hamiltonian cycle in G from W as follows:
Follow the sequence of edges and vertices of W until the next edge in the
sequence is joined to an already visited vertex. At that point, skip to the next
unvisited vertex by taking a shortcut. using an edge that is not part of W.
Resume the traversal of W, taking shortcuts whenever necessary, until all
the vertices have been visited. Complete the cycle by returning to the starting
vertex via the edge joining it to the last vertex.

Fig. 6.10. Double tree algorithm, from Algorithm 6.4.2 of [GYA]

So far, we have not discussed the performance of these algorithms. Indeed, as men-
tioned above, there is always a trade-off between rapidity but also accuracy. In order to
discuss the accuracy, more assumptions on the edge-weights have to be imposed. The
following assumption is rather natural.

Definition 6.12. Let G = (V, E,w) be a weighted graph, and let e,y €,, and e, be any
elements of E satisfying i(esy) = (x,y), i(es.) = (x,2) and i(e,y) = (2,y) for some
vertices x,y,z € V. Then G is said to satisfy the triangle inequality if the following
inequality holds:

w(eay) < w(eas) +wlezy).

Note that this condition is so natural that it is implicitly assumed in most works
about TSP. If the edge-weights represent a distance or the cost of a transportation, this
condition is satisfied. Now, if we assume that the weighted graph we consider satisfies
the triangle inequality, then a comparison between the solution provided by the double
tree algorithm and the optimal solution can be inferred.

116 CHAPTER 6. OPTIMAL TRAVERSALS

/ N
- // \\ -
// Q\\ f
/ N
// \\\
\.
@ 6 ©
@ Q A,B.DH,D,|DB,EBFEBACG,CA ABDH,BIBBEEBFRXCGEA

Fig. 6.11. The three main steps of the double tree algorithm

Lemma 6.13. Let G be a undirected weighted and complete graph satisfying the triangle
inequality. Then the solution for the sTSP produced by the double tree algorithm provided
in Figure 6.11 is never worst than twice the optimal value.

Proof. Let C* be an optimal solution for the sTSP, and let 7™ be a minimum spanning
tree constructed on G. Let W be the Eulerian tour constructed on the two copies of T™,
as indicated in the double tree algorithm, and let C' be the Hamiltonian cycle obtained
by the double tree algorithm. If w(X) denotes the total edge-weight of the graph X
then one has clearly

w(T*) <w(C*) and w(W) =2w(T").

In addition, since any shortcut corresponds to an edge in the initial graph, one infers
from the triangle inequality that w(C) < w(W). By putting these inequality together
one gets:
w(C) <w(W) =2w(T*) < 2w(C™)

which is the desired inequality. O]

We shall now improve the double tree algorithm. Indeed, part of the construction
in the algorithm is not optimized: the shortcuts have been chosen rather randomly. But
a clever solution has already been introduced in Algorithm 6.5, and it was based on
the choice of an optimal perfect matching. Thus, the main steps in the new algorithm
will be: 1) Find the minimum spanning tree T* of the initial weighted graph, 3) Find

a minimum perfect matching M* between the vertices of odd degree of 7%, 3) Return
T* + M* and take some shortcuts. Let also provide the details:

Algorithm 6.14 (Christofides’s algorithm). Let G be an undirected weighted and com-
plete graph satisfying the triangle inequality.

(1) Create a minimum spanning tree T* of G,
(i1) Let O be the subgraph of G induced by the vertices with odd degree in T,

(111) Find a minimum perfect matching M* in the subgraph O,

6.4. THE TRAVELING SALESMAN PROBLEM 117

(iv) Combine the edges of M* and of T* in an Eulerian graph H,
(v) Construct an Eulerian tour W of H,

(vi) Construct a Hamiltonian cycle in G from W, as in the double tree algorithm,
namely: follow the sequence of edges and vertices of W until the next edge in
the sequence is joined to an already visited vertex. At that point, skip to the next
unvisited vertex by taking a shortcut, using an edge that is not part of W. Resume
the traversal of W, taking shortcuts whenever necessary, until all the vertices have
been wisited. Complete the cycle by returning to the starting vertex via the edge
joining it to the last vertex.

An illustration of this construction is provided in Figure 6.12.

o n
™\ o ,f‘ |
a o m o ,/,..'_'.___.
| /
/o T* /’
" -‘ - -ﬁ ‘ T*+M*
3
o A
A\ 4
2__.- 7 /6
__q'\' 7, #==-=n o -—
1 /18 A 5 /
- Euler Tour *—= * Shortcut

Fig. 6.12. The four main steps of Christofides’s algorithm, see [21]

The interest of this improved algorithm can be seen in the following statement:

Lemma 6.15. Let G be a undirected weighted and complete graph satisfying the triangle
inequality. Then the solution for the sTSP produced by Christofides’s algorithm provided
in Algorithm 6.1/ is never worst than % times the optimal value.

Proof. Let C* be an optimal solution for the sTSP, and let 7" be a minimum spanning
tree constructed on G. One always has w(7™) < w(C*). Consider O and M* as described
in Algorithm 6.14, and let us show that w(M*) < sw(C*).

For that purpose, let us enumerate the vertices of O in cyclic order around C* and
call them {z1,z,,...,2;} with j an even number. Consider then a split of C* into two
sets of paths: the ones starting at x, with k even, and the ones starting at z, with &
odd. Each of these two sets of paths define a perfect matching of O that matches the
two endpoints of each path. The weight of these perfect matching is at most equal to
the weight of the corresponding paths, by the triangle inequality. Since these two sets

118 CHAPTER 6. OPTIMAL TRAVERSALS

of paths partition the edges of C*, one of the two sets has at most half of the weight of
C*. Thus, the corresponding perfect matching has a weight that is also at most half the
weight of C*. As a consequence, the minimum perfect matching can not have a larger
weight, which means that w(M*) < 1w(C*), as stated.

Finally, adding the weights of 7" and M* gives the weight of the Euler tour W,
which is thus at most 3w(C*). Thanks to the triangle inequality, shortcuts do not
increase the weight, so the weight of the output is also at most %w(C’*). [

Let us mention that Christofides’s algorithm has been the best heuristic algorithm
for more than 30 years for the aTSP. It is only since 2010 that some improvements have
been proposed. Apparently, the best current algorithm provides a result which is never
worst than 1.4 times the optimal value, see A. Seb6 and J. Vygen, Combinatorica 34
(2014), 597-629. Let us however note that the setting is slightly different: all weight are
1 and the graph G is not complete. In this framework one looks for a minimum length
closed walk in GG that visits every vertex at least once. Equivalently, one looks for the
shortest Hamiltonian cycle in the metric closure of GG. Here, the metric closure of a
connected, undirected graph G consists in the complete weighted graph G = (V, E, @)
where V = V, E contains all possible edges between the elements of V', and w(e) = 1
if e € F, while for e € E'\ E the weight w(e) is given by the shortest distance in G
between the two endpoints of e.

For digraphs, the TSP is much harder, and significants results have only been ob-
tained during the last couple of years. For the aTSP, the framework is a strongly con-
nected digraph with non-negative weights, see Definition 1.18 for the notion of strongly
connected. It is also assumed that the graph is Eulerian, which corresponds to the equal-
ity of the indegree and the outdegree at every vertex, as mentioned in Theorem 6.2. For
such graphs, the best result so far is provided in the next statement (explanations are
provided after the statement).

Theorem 6.16 (Theorem 1.1 of [22]). There is a polynomial-time algorithm for a TSP
that returns a tour of value at most 506 times the Held-Karp lower bound.

As mentioned in Section 1.5.2; the Bellman-Held-Karp Algorithm would require
too much time for a large graph, and therefore can not be implemented. However,
there exists a lower bound for the minimum weight for a TSP (oriented or not), the so-
called Held-Karp lower bound (HK). There exist estimates about the difference between
the Held-Karp lower bound, and the minimum value of the aTSP, and the current
estimate seems to be w(aTSP) < 2 HK. The main difference between the content of
Theorem 6.16 and this estimate is that the theorem provides a constructive solution
for the Hamiltonian cycle, while the lower estimate does not. As already mentioned,
investigations on the aTSP are currently taking place, and lots of information (rather
advanced) are available on internet.

Chapter 7

Graph colorings

In this chapter we discuss the colorings of graphs obtained by putting colors on the
vertices. Such colorings have several practical applications. All graphs in this chapter
are undirected, since orientation does not play any role in this context.

7.1 Vertex-colorings

In this section, colors are applied to vertices. In fact these colors can be identified with
weights assigned to vertices, and this is how they are often represented: a number as-
signed to a vertex corresponds to a color put on this vertex. In other context, one speaks
about labeled vertices. For internal coherence we shall continue using the notation in-
troduced in Section 1.4 on weighted graphs. In the following definition, C' represents a
finite set whose elements are called colors. Usually, one sets C' = {1,2,3,...k}, but a
set of colors or a set of letters can also be used. For several applications, it is useful to
have a total order on C'. For numbers or letters, this is clear, for colors one can just set
a bijection between a set of numbers and the set of colors.

Definition 7.1 (Vertex-coloring). Let G = (V, E) be a loopless graph and let C be
a set containing k elements. A vertex k-coloring or simply k-coloring of G is a map
w:V — C such that w(x) # w(y) whenever x and y are the two endpoints of an edge
in B

Note that some authors would speak about a proper k-coloring for this definition,
and about a k-coloring if the last condition of the definition is not imposed. However,
since this condition is always the key condition, it seems natural to include it in the
main definition. Note also that the graph is loopless, because any loop would directly
invalidate this definition.

Definition 7.2 (Color class). For a k-coloring of G, the set of all vertices sharing the
same color is called a color class.

In mathematical terms, it would be natural to define a color class by w™1(j) for any
j € (. Indeed, this notation corresponds to the set of all elements x of V such that

119

120 CHAPTER 7. GRAPH COLORINGS

w(z) = j. Since w(x) is well defined for any = € V, each vertex belong to one and only
one color class. For that reason, the set of color classes defines a partition of V. Namely,
if we denote by Vi, Vs, ...,V the color classes, then U;V; =V and V; NV, = () for any
J # L. Let us also emphasize that any e € I has its endpoints in two different sets V.

It is clear that a finite graph always admits a k-coloring for k£ large enough. On the
other hand, for small k it is not clear that a given graph admits a k-coloring since the
condition about the endpoint of any edge could be impossible to satisfy. In this context,
the following definition is quite natural.

Definition 7.3 (k-colorable and chromatic number). A loopless graph G is k-colorable
if it admits a k-coloring. The vertex chromatic number, or simply chromatic number of
G denotes the minimum number k required for a k-coloring of G. This number is denoted
by x(@), and if x(G) = k, the graph G is said to be k-chromatic. A x(G)-coloring is
called ¢ minimum coloring.

Clearly, a k-chromatic graph is k-colorable, but it is not (k — 1)-colorable. A few
examples of chromatic numbers can be easily computed. Note that C,, denotes the cycle
graph consisting of a cycle with n vertices.

Graph G
no edge
bipartite graph
non trivial tree
cycle graph C), with n even
cycle graph C), with n odd
complete graph K,

=<
wawum—n@

Table 7.1: Chromatic numbers

Finding the chromatic number of a given graph is usually not an easy task. In fact
finding an upper bound is quite simple, but showing that there does not exist any k-
coloring for some small k£ is a hard problem. Nevertheless some results can be easily
obtained. Before presenting them, we introduce the simplest algorithm in this context:

Algorithm 7.4 (Sequential vertex-coloring). Let G' be a loopless finite graph with ver-
tices {x1,xa,...,xn}, and let C = {1,2,...}.

(i) Fizi:=1,

(it) Define w(z;) as the smallest element of C' not used by any vertex x; adjacent to
x; with j < i, and set 1 =1+ 1,

(i1i) Repeat (ii) until i = N + 1.

This algorithm always return a coloring of G but it is rarely a minimum coloring.
The example of an application of this algorithm is provided in Figure 7.1: the first figure

7.1. VERTEX-COLORINGS 121

indicates the initial ordering of the vertices, the second figure presents the result of the
sequential vertex-coloring, while the last figure corresponds to a minimum coloring of
the graph. However, note that there was some arbitrariness in indexing the vertices
in a certain order w1, xs,.... By choosing a different initial ordering another coloring
(probably with a different number of colors) would have been obtained. An interesting
observation is that there always exists an initial ordering of the vertices which would
lead with this algorithm to a minimum coloring. However, finding this very good initial
ordering is not simpler than looking directly for a minimum coloring.

V4 3_““4»\: Vo

J 5 Vi S

Fig. 7.1. Initial ordering, sequential vertex-coloring, minimum coloring, from [GYA,
Sec. 8.1]

Let us now state and prove some easy results. Recall that the maximal degree
A(G) of a graph has been introduced in Section 1.1, the clique number w(G) has been
introduced in Definition 2.16, and the independence number «(G) has been introduced
in Definition 2.17.

Lemma 7.5. For any loopless finite graph G, one has x(G) < A(G) + 1.

Proof. By using the sequential vertex-coloring algorithm, no more than A(G)+ 1 colors
will ever be used, no matter what is the initial ordering of the vertices. O]

Lemma 7.6. For any loopless finite graph, one has x(G) > w(G).

Proof. Since the elements of a clique are all mutually connected, it is necessary to use
k colors for a clique containing k elements. The statement follows directly from this
observation. O]

For the next lemma, we introduce the ceiling function: For any s € R we write [s]
for the least integer greater than or equal to s. This function is clearly related to the
floor function: For any s € R we write |s| for the greatest integer less than or equal
to s The graphs of these two functions are represented in Figure 7.2, and additional
properties can be found in [23].

o

Lemma 7.7. For any finite graph G = (V, E) one has x(G) > PLGI)W’ where |V|
denotes the cardinality of V', namely the order of G.

122 CHAPTER 7. GRAPH COLORINGS

3 L] 3 P

2 L L]

1 L] 1 L]

0 B 0 .

1 L -1 [

2 L] L

3 L 3 L
s 2 a4 o0 1 2 3 3 2 a4 0 1 2 3
(a) The ceiling function (b) The floor function

Fig. 7.2. Two integer valued functions, from [23]

Proof. Since each color class contains at most «(G) vertices, the number of different
color classes must be at least equal to [%-‘ O

Let us add one more easy observation: For any finite graph G' and any subgraph H
of G one has x(G) > x(H). This is quite clear since any minimum coloring of G is also
a minimum coloring of H. Note however that in general a minimum coloring of H can
not be used as a starting point for a coloring of GG. This observation can be used for
guessing some lower bound for x(G). Indeed, if one subgraph H of G is not k-colorable
for some k, then the graph G itself won’t be k-colorable. In such a case, we say that
the subgraph H is a k-obstruction.

Let us provide now a result which sharpen the easy Lemma 7.5. The statement has

been proved by Brooks in 1941, and several proofs are available over the internet, see
also [GYA, Thm. 8.1.21].

Theorem 7.8 (Brooks’ theorem). For any connected, undirected, loopless and finite
graph G, one has x(G) < A(G), unless G is a complete graph K,, or a cycle graph C,,
with n odd, in which case x(G) = A(G) + 1.

Remark 7.9. For some applications, it might be useful to look for a k-coloring of a
graph even if k is smaller than the chromatic number of the graph ! In such a case,
one consider k-colorings by disregarding some edges for which the condition of not
having the same color at their endpoint does not hold. Then, one look for the k-coloring
which minimizes the number of edges which have to be excluded. Alternatively, one can
consider edge weights and try to minimize the total weight of the edges which have to be
disregarded. If the weight corresponds to the importance of an edge, it means that some
edges of lower importance can be disregarded.

We end this section with a heuristic algorithm. Based on our intuition, when coloring
a graph a vertex with a large degree should be considered before a vertex with a small

7.1. VERTEX-COLORINGS 123

degree. In addition, for two vertices with the same degree, the one having a denser
subgraph generated by its neighbours should be treated first, see Definition 1.4 for the
notion of neighbours. We shall say that a vertex z is uncolored if no value to w(x)
has been attributed so far. We also call the colored degree of a vertex x the number of
different colors that have been assigned to vertices adjacent to z.

Algorithm 7.10 (Largest-degree-first algorithm). Let G be a loopless and finite graph,
and let C' ={1,2,...}.

(i) Seti=A(G),

(11) Among all uncolored vertices of degree i, choose a vertex x with a mazimum colored
degree, and set w(x) = k with k the smallest possible color,

(111) Repeat (ii) as long as there exists some uncolored vertices of degree 1,
(iv) Seti:=1i—1 aslong asi > 1, and go back to (ii).

An application of this algorithm is provided in Figure 7.3. In this case, this algorithm
has a better outcome than the sequential vertex-coloring algorithm. However, this is
not always the case, it all depends on the initial ordering for the sequential vertex-
coloring algorithm. On the other hand, observe that no initial ordering is necessary for
the largest-degree-first algorithm.

Fig. 7.3. An application of the largest-degree-first algorithm, see Figure 8.1.4 of [GYA]

Remark 7.11. There exists also a notion of edge-coloring and the theory can be de-
veloped as above. For certain applications, this approach is even more natural, but these
two theories are very close to each other of some dualities between graphs, see Definition
7.23 and its generalization. Some information about edge-coloring can be found in [Die,
Sec. 5.3], in [CH, Sec. 6.5], or in [GYA, Sec. 8.3].

124 CHAPTER 7. GRAPH COLORINGS

7.2 Plane graphs

In the previous section, representations of a graph did not play any role. For other
applications, the representation is as important as the graph itself, and the ambient
space for the representation is also important. In this section we shall stick to the
ambient space R? (the usual plane). Note however that representations on other surfaces
(like on a sphere or on a 2-torus) are also important.

Definition 7.12 (Plane graph). A plane graph is a finite graph G = (V, E) with the set
of vertices V' given by {1, Ts,...,xn} C R?, with the set of edges E given by a finite
family of simple arcs (bijective and bicontinuous images of [0,1]) having endpoints in
V', and such that the interior of any arc contains no vertex and no point of any other
edge.

In simpler terms, a plane graph is sometimes defined by a planar drawing of a finite
graph with no edge-crossing, but the above definition is certainly more precise. Note
that this definition allows loops and multiple edges, which is sometimes not accepted
in the definition of a plane graph (it depends on the authors). In this setting, we call
faces of the plane graph G the open subsets defined by R? \ G. For any plane graph G,
there is always one face which is unbounded (called the outer face) and a finite number
of bounded faces (called the inner faces). The set of faces of G is denoted by F(G), see
Figure 7.4 which contains 4 faces. For two distinct faces, we say that they are adjacent
if they are separated by one (or more) edge. Equivalently, they are adjacent if their
closure in R? contain at least one common edge.

For plane graphs, there exists a quite famous formula linking the number of vertices,
the number of edges, and the number of faces (including the unbounded one).

Theorem 7.13 (Euler’s theorem). Let G = (V, E) be a connected plane graph, then
the following equality holds:

VI = IEl+|F(G)] = 2, (7.1)
where |F(G)| denotes the number of faces of G.

There exist many proofs of this result, which can be stated in a more general
framework. For simple plane graph we refer for example to [Die, Thm 4.2.9], or to [24]
for twenty different proofs of this result. We shall now derive additional relations on
plane graphs. We first give a definition related to the boundary of a face.

Definition 7.14 (Size of a face). Let G be a plane graph, and let f € F(G) be one of
its faces. The size of f is the number of edges of G on a boundary walk around f. We
set size(f) for the size of the face f.

7.2. PLANE GRAPHS 125

If the plane graph is simple, the size of a face is g ’_/__,.-——---““_T/._\:

rather easy to compute, and this number is always big- TN [\
. f1) ‘ f>

ger than or equal to 3. For plane graphs with loops J . ||

or multiple edge, one has to be more careful, and this S~ fa \ /)

number can be 1 or 2. For example, in Figure 7.4, the __"""‘———\./

face f is of size 1, the face f5 is of size 2, the face f3 is
3, and the face fy is of size 6. Based on this definition, Fig. 7.4. Plane graph with 4
a simple relation based on faces can be obtained: faces

Lemma 7.15 (Face-size relation). Let G = (V| E) be a connected plane graph, and let
F(G) denote the set of its faces. Then the following relation holds

2E|=) size(f). (7.2)

JEF(G)

Proof. Each edge either occurs once in each of two different face boundary walks or
occurs twice in the same boundary walk. Thus, by definition of face-size, each edge
contributes two sides to the sum. [

Recall now that the girth of a graph has been introduced in Definition 1.20. It
corresponds to the length of the shortest cycle in a graph, as long as the graph is not
a tree. Then, by a minute of thought, or by looking at [GYA, Prop. 7.5.5] one easily
observes that for a plane graph which is not a tree the relation

irth(G) < min si 7.3
girth(G) < fén;(rg;)sme(f) (7.3)

always holds. Based on this observation and on the previous lemma, one infers:

Lemma 7.16 (Face-edge relation). Let G = (V, E) be a connected plane graph, and let
F(G) denote the set of its faces. Then the following relation holds:

2\E| > girth(G)|F(G)]. (7.4)

Proof. The inequality is a direct consequence of the equality (7.2) together with the
inequality (7.3). O

These various easy results lead to a rather important property of simple plane
graphs. Recall that if G is simple, it has no loop and no multiple edge, and as a
consequence its girth is always bigger than or equal to 3.

Theorem 7.17. Let G = (V, E) be a connected simple plane graph with |V| > 3. Then
the following inequality holds
|E| < 3|V]—6. (7.5)

Proof. From (7.4) with girth(G) > 3 one infers that 2|E| > 3|F(G)|, or equivalently
2|E| > |F(G)|. By inserting this inequality in (7.1) one infers that |V|—|E|+2|E| > 2,
which is equivalent to [V| — §|E| > 2. The statement follows easily from this inequality.

[l

126 CHAPTER 7. GRAPH COLORINGS

Let us briefly mention some direct consequence of this result, proofs can be done
as an exercise. For example, it follows from the previous theorem that the complete
graph K5 can not be represented as a plane graph. Also, any simple graph G = (V, E)
with |V| =8 and |E| > 19 can not be represented as a plane graph. More generally we
say that a graph which can not be represented as a plane graph that it is not a planar
graph. In the next statement, we strengthen the previous result in the special case of a
bipartite graph.

Theorem 7.18. Let G = (V, E) be a connected, simple, and bipartite plane graph with
|V| > 3. Then the following inequality holds

|E| <2|V| —4.

Proof. The proof is quite similar to the previous one, but this time the girth of a
simple bipartite graph is at least 4 (it can not be 3 by the bipartiteness property). Thus
one gets from (7.4) that 2|E| > 4|F(G)|, or equivalently $|E| > |F(G)|. By inserting
this inequality in (7.1) one infers that [V| — |E| + 3|E| > 2, which is equivalent to
|V| — 3|E| > 2. The statement follows easily from this inequality. O

As for K5 before, the previous result has an impor-
tant consequence on the so-called graph K33, see Fig-
ure 7.5. This graph is connected, simple and bipartite,
with 6 vertices and 9 edges. As a consequence of the
previous Theorem, this graph can not be represented
as a plane graph, and therefore is not a planar graph.
The two graphs K5 and K33 are sometimes referred to
as the Kuratowski graphs. This name comes from the
important result presented below. Before it, one needs
to introduce two more concepts:

Fig. 7.5. The K33 graph

Definition 7.19 (Subdivision). A subdivision of a graph G is a new graph obtained
by subdividing some of the edges of G by adding new wvertices on these edges. Any
subdivision of G is denoted by TG.

A graph and one of its subdivision are presented in Figure 7.6a.

Definition 7.20 (Topological minor). A graph H is a topological minor of a graph G
if G contains T H as a subgraph.

In Figure 7.6b the previous figure appears as a topological minor of the graph. We
can now state a characterization of planar graphs. More precisely, the following theorem
provides necessary and sufficient conditions for a graph to have a planar representation.

Theorem 7.21 (Kuratowski’s theorem). A graph G admits a plane graph representa-
tion (i.e. is a planar graph) if and only if G does not contain the graphs K5 or Ks3 as
a topological minor.

7.3. MAP-COLORINGS 127

(b) A graph with H as a topo-
(a) A graph H and one subdivision logical minor

Fig. 7.6. A subdivision and a topological minor, from Sec. 1.7 of [Die]

Note that necessity of the absence of these two graphs is quite simple, but the
difficult part of the proof is the sufficiency. We refer to [Die, Sec. 4.4] for a proof in
the case of simple graphs, or to [GYA, Sec. 7.4] for a proof without the assumption of
simplicity. Note however that multiple edges or loops do not play a role here.

Having now a criterion for the planarity of graphs, we can state one of the best
known results for plane graphs. As shown in the following section, this results implies
that any map can be coloured with four colors.

Theorem 7.22 (Four colors theorem). Every loopless plane graph is 4-colorable.

This theorem is one milestone in graph theory, and a lot of information on it are
available, as for example in [25] or in every book on graph theory. Note that its proof
has been one of the most challenging problem in computer’s assisted mathematics.
However, there exists a weaker statement which is perfectly accessible: Every loopless
plane graph is 5-colorable. Its proof is provided in Section 7.4.1.

7.3 Map-colorings

Let us start by introducing the notion of plane duality. The idea is the following:
Starting from a plane graph G = (V| E), we construct a new plane graph G* by first
placing a new vertex in each face of GG. This defines a set V*. Edges are then added
with the following rule: for any e € E we link the two vertices of V* separated by e
by an edge e* crossing e; if e is incident with only one face, we attach a loop e* to the
vertex corresponding to that face, again crossing the edge e. The set of such e* defines
E*, and the dual graph is G* = (V*, E*). Before stating a more precise definition, two
examples are provided in Figures 7.7.

Definition 7.23 (Dual graph). Let G = (V. E) and G* = (V*, E*) be two connected
and plane graphs, with corresponding set of faces F' and F*. The graph G* is dual of G
if there exist bijections

F>fe=a'(f)eVr E>ew— e € B, Vozrm f(x) e F*

satisfying the following conditions

128 CHAPTER 7. GRAPH COLORINGS

ey S
(a) A simple graph (b) A graph with mutiple edge and loop

Fig. 7.7. Dual graphs, in red

(1) a*(f) € [for any f € F,

(i1) e intersects G* only on one point, e* intersects G only on one point, and these in-
tersections correspond to an intersection between the interior of e and the interior

of e*,
(iii) x € f*(x) for any x € V.

It is rather clear from this definition that any connected and plane graph admits a
dual, and in fact the initial graph is the dual of its dual graph. In other words, the map
G — G* is an involution. Note also that this notion of a dual graph can be abstracted
to more general graph (they don’t have to be plane graphs anymore). In this extended
framework, a graph is a planar graph if and only if its dual is a planar graph. We
shall not develop this theory here, but refer to [Die, Sec. 4.6] for more information. We
also mention one additional property which can be proved as an exercise. In fact, [CH,
Sec. 5.6] contains several nice properties of the dual graph which can be obtained rather
easily.

Exercise 7.24. An edge of G is a loop if and only if the associated edge e* is a bridge
in G*.

Let us now define a special instance of a connected plane graph. The name is
surprisingly natural, as we can easily observe.

Definition 7.25 (Map). A map is a connected plane graph with no bridge.

As a consequence of Exercise 7.24, the dual graph of a map is a plane graph with no
loop. In fact, the absence of loop in the dual graph is one of the interest of the definition
of a map. The following definition is a reminiscence of the a vertex k-coloring.

Definition 7.26 (Map-coloring). Let G be a plane graph without bridge (i.e. a map),
and let C be a set containing k elements. A map k-coloring of G is a function F(G) — C
with the requirement that any two adjacent faces are colored differently.

7.4. APPENDIX 129

Let us observe that the absence of bridge is a necessary requirement for the existence
of a map k-coloring. Indeed, the graphs presented in Figure 7.8 contain bridges and do
not accept any map-coloring.

e o0

Fig. 7.8. Graphs with a bridge

We can finally make the link between the notion of map-coloring and the four colors
theorem stated in Theorem 7.22. Indeed, since any map G has a dual graph which is
loopless, the four colors theorem applies to its dual graph Gx. Then, since any vertex
x* of G* belong to a unique face of G, one can color this face with the color of z*. The
condition that any edge in G* has two endpoints of two different colors implies that two
adjacent faces in GG have also two different colors. By calling a region what has been
named a face, one has thus proved:

Theorem 7.27. No more than four colors are required to color the regions of any map
so that no two adjacent regions have the same color.

An illustration of this result is presented in Figure 7.9.

7.4 Appendix

7.4.1 The five color theorem

The material of this section has been studied and provided by Tomoya Tatsuno. It is
based on references [Die, Sec. 5.1] and [27].

There is a very famous theorem in graph theory called the four color theorem, which
states that every loopless plane graph is 4-colorable. As a consequence of this theorem,
every map can be colored with at most four colors so that no two adjacent regions have
the same color. Although the four color theorem is known to be very difficult to prove,
there is a weaker version of this theorem that can be proven much more easily:

Theorem 7.28 (Five Color Theorem). FEvery loopless plane graph is 5-colorable.

We shall first state an important lemma that we use in the proof of the five color
theorem, which has already been proven in the lecture. First of all, the meaning of every
terminology and notation used in this article is the same as in the lecture. However, let
us just recall the definition of plane graphs for clarity.

130 CHAPTER 7. GRAPH COLORINGS

Fig. 7.9. Illustration of the four colors theorem, from [26]

Definition 7.29. A plane graph is a finite graph G = (V, E) with the set of vertices
V' given by {x1,29,..., x5} € R%, with the set of edges E given by a finite family of
simple arcs (bijective and bicontinuous images of [0, 1]) having endpoints in V', and such
that the interior of any arc contains no vertex and no point of any other edge.

Note that this definition does not assume that plane graphs are simple. As written
in the lecture notes, it depends on each author if plane graphs are assumed to be simple
or not. However, it should be noted that when we discuss the coloring of loopless plane
graphs, multiple edges do not play a role at all, and next lemma for a connected simple
graph plays an important role in the proof of Theorem 7.28:

7.4. APPENDIX 131

Lemma 7.30. Let G = (V, E) be a connected simple plane graph with |V| > 3. Then
the following inequality holds:
|E| <3|V|—6 (7.6)

Observe that the assumption that G is simple cannot be eliminated. Indeed, if G is
allowed not to be simple, then the inequality does not hold because we can choose two
vertices and increase the number of edges between them arbitrarily without changing
the number of vertices.

Let us now prove the main result of this section.

Proof of Theorem 7.28. Let G = (V, E) be any loopless plane graph. First, we may
assume that G is simple since multiple edges do not play a role at all in coloring. Since
G is simple, we can use the notation (z,y) € V x V for an edge e such that i(e) = (z,y).
Also, since G is a union of its connected components, it suffices to show that G is 5-
colorable when G is connected. Hence we may assume that GG is connected and simple.
We give a proof by induction on |V|. If |[V| < 5, then by assigning different colors to
each vertex, G is 5-colorable. Suppose that the statement holds for |V| = n for some
integer n > 5. Let us show that the statement holds for |V| =n+ 1. Let |V]| =n+ 1.
Claim 1 There exists v € V' such that deg(v) < 5.

Proof for Claim 1

Suppose for any v € V, deg(v) > 6. Since each vertex has at least 6 edges starting from
it and one edge is shared by exactly two vertices, one has

6|V| < 2|E| (7.7)

On the other hand, since G is a connected simple plane graph with |V| > 3, it follows
from Lemma 7.30 that
|E| <3|V|—6 (7.8)

Combining the equations (7.7) and (7.8), one has

which is a contradiction. This proves Claim 1.

Then let v be a vertex of degree 5 or less, and let H = G — {v}. By the induction
hypothesis, H is 5-colorable. Hence there exists a vertex 5-coloring w : V \ {v} —
{1,...,5}. If w uses at most 4 colors for the neighbors of v, then we can color v by the
color that is not used. Thus we let deg(v) = 5 and assume that the neighbors of v have
distinct colors for the rest of the proof.

Let D be an open small disk such that it meets only five edges starting from v and
does not contain any other edges or vertices other than v. Let us label the intersection
of those five edges with D according to their cyclic position in D as si,...,ss5, and
let (v,v;) be the edge containing s;. Without loss of generality, we may assume that
w(v;) =1 for each i. The purpose of taking D is to examine the behavior of our graph
near v, see Figure 7.10.

132 CHAPTER 7. GRAPH COLORINGS

Fig. 7.10. The vertex with degree 5

Let P be any {v1} — {vs} path in H — {vq,v4}. We define H — P as follows: if Vp
denote the set of all vertices contained in P, then H — P := H — Vp.
Claim 2 If there exists a {v;} — {vs} path P in H — {vy, v4}, then there does not exist
a {ve} — {v4} path in H — P.
Proof for Claim 2
Let C' be the cycle vv; Pvsv. Note that since G is simple, the cycle C is uniquely
determined. It suffices to show that there does not exist a {vo} — {v4} path in G — C.
The notation G — C' is defined to be G — Vi, where V- is the set of all vertices contained
in C. Indeed, if there exists a {va} — {v4} path @ in H — P, then @ is a {va} — {v4}
path in G — C. By taking a contraposition, if there does not exist a {ve} — {v4} path
in G — C, then there does not exist a {vy} — {v4} path in H — P. Let 25 € s5 and
x4 € s4. Since C'is a cycle, which implies in particular that C' has no self-intersection as
a closed path in R? by the property of plane graphs, R?\ C has exactly two components:
a bounded open set A and an unbounded open set B. Note that strictly speaking, we
are using Jordan curve theorem here. One has x5 € A and x4 € B. Suppose there exists
a {va} — {v4} path in G — C. By the property of plane graphs and {vy,v,} C R*\ C,
(v,v9) and (v, vy) contribute paths (in the topological sense) in R? \ C' between x5 and
vo and between 4 and vy, respectively. Thus there exists a path in R? \ C' between
and x4. It contradicts z9 € A and x4 € B. This proves Claim 2.

Giveni,j € {1,...,5}, let H;; be the subgraph of H induced by the vertices colored
1 or j.
Claim 3 We may assume that H; 3 contains a {v1} — {vs} path P in H — {vy, v4}.
Proof for Claim 3
Observe first that H; 3 might consist in several components, and we call C; the compo-
nent of H; 3 containing v;. If the component C also contains vs, then Claim 3 holds.
Suppose that the component C; of H; 3 containing v; does not contain vz. If we inter-
change the colors 1 and 3 at all the vertices of C'1, we obtain another 5-coloring of H.

7.4. APPENDIX 133

Then v; and v3 are both colored 3 in this new coloring, and we may assign color 1 to
v. Thus it suffices to deal with the case where the component C; of H; 3 containing v;
also contains vs. This proves Claim 3.

Then the component Cy of Hy4 containing v, does not contain vy. Indeed, if Cy
contains vy, then Cy is a {va} — {v4} path in H — P since P is contained in Hj 3.
This contradicts Claim 2. It means vy and v, lie in different components of Hs 4. If
we interchange the colors 2 and 4 in (5, we obtain a new 5-coloring of H. Since vy is
not contained in Cs, vy and vy are colored 4 in this new coloring. Now v no longer has
a neighbor colored 2. Thus we can assign color 2 to v. This completes the proof for
Theorem 7.28. []

Note that Claim 1, proven by Lemma 7.30, was one of the most crucial steps. By
Claim 1, one can find a vertex v that has a degree of 5 and one may assume neighbors
of v have distinct colors since one has 5 colors. If we could show that for any loopless
plane graph there exists a vertex v that has a degree of 4 or less, then by applying the
proof for Theorem 7.28, the four color theorem could be proven. However, it is known
that there exists a loopless plane graph such that every vertex has a degree of 5 or
more, called an icosahedral graph. Thus the proof for Theorem 7.28 cannot be used to
prove the four color theorem.

7.4.2 Some problems related to plane graphs

The content of this section has been studied and written by Eda Ruyshin, Kondo Ayaka
and Bui Tu Ha.

Exercise 7.31. Let G = (V, E) be a connected simple plane graph with |V'| < 12. Prove
that G has a vertex of degree at most 4.

Proof. 1f |[V| <5 then the maximal degree A(G) is at most 4. Thus, every vertex in G
has degree at most 4. In the case 5 < |V| < 12, since each edge adds two degree to the
total degree of vertices and also based on Theorem 7.17, one has:

> deg(x) =2|E| < 23|V|—6) < 6]V| - |V|=5|V]. (7.9)

zeV

If every vertex has degree more than 4 (or equivalently, at least 5), then > deg(x) >
zeV
5|V (G)|, which contradicts (7.9). Hence, the graph G has a vertex of degree at most

4. [l

Definition 7.32 (Complete bipartite graphs). The graph G = (V, E) is a complete
bipartite graph if it is a simple bipartite graph such that every vertex in one of the bi-
partition subsets is connected to every vertex in the other bipartition subset. If one subset
of the bipartition contains r vertices, and the other subset s vertices, the corresponding
graph is denoted by K, ;.

134 CHAPTER 7. GRAPH COLORINGS

Let us now introduce some examples of complete bipartite graphs.

(1) Star graphs: For any positive integer s, the graph K , is called a star graph. All
complete bipartite graphs which are trees are stars, see Figure 7.11. In addition, the
graph K 3 is also called a claw.

Fig. 7.11. The star graphs K 3,/ 4 and K 5

(2) K, graphs when n is a positive integer: The graph K33 is also called utility
graph. As mentioned already, any plane graph cannot contain K33 as a subgraph. Some
examples are presented in Figure 7.12.

K;s

Ka,4 Ks5

XDy 5
XA AR

/\ YUY

Fig. 7.12. The complete bipartite graphs K33, K44 and Kj 5

In Theorem 7.21 it is stated that K33 can be used as a test for planarity. The next
exercise uses this idea for an upper bound on the sum of the degrees of three vertices.

Exercise 7.33. Prove that for any three vertices x,y,z of a simple plane graph G =
(V, E)) with number of vertices at least 3, the sum of the degrees deg(x)+deg(y)+deg(z)
is at most 2|V| + 2.

Proof. The sum deg(x)+deg(y)+deg(z) comprises in the connection among the vertices
x,1, z themselves, and the connection between z, vy, z and other vertices in G. If x,y, 2
are pairwise connected, the three pairwise edges among them make the sum deg(x) +
deg(y) + deg(z) increase by 6. Since G cannot have K33 as a subgraph, at most two
vertices in V' \ {x,y, 2} can be connected to all the three vertices x,y,z. With the
exception of possibly two vertices, all remaining |V'| — 5 vertices are adjacent to at most
2 vertices among x,y, z. Then, one infers

deg(x) + deg(y) + deg(z) <6 +3 x2+2(|V|—5)=2|V|+2.

7.4. APPENDIX 135

Among all K, s graphs, it is natural to wonder which ones are planar ?

Exercise 7.34. The only K, s graphs which are planar are for (r,s) = (1,s) with s € Z
and for (r,s) = (2,s) with s € Z..

Proof. If r > 3 and s > 3 then K, contains K33 as its subgraph and thus it is not
a planar graph. Meanwhile, K, ; and K54 can be plane graphs for any positive integer
s. The graphs K, (also known as star graphs) can be drawn with one vertex in the
center, surrounded by s vertices; the graphs K, can be drawn with s vertices on a
line in the plane and the other two vertices, one on each side of this line, see Figure

7.13. =
°
° o
.
® °
[
Kig Ky

Fig. 7.13. An example of K ; and K5, with s =6

136 CHAPTER 7. GRAPH COLORINGS

Chapter 8

Directed graphs

In the previous chapters, we tried to present the theory simultaneously for directed
graphs and for undirected graphs. However, some notions have been more naturally
developed for undirected graphs, like the notion of connectivity or the chapter on graph
colorings. In this chapter, we focus on directed graphs, study a few applications and
develop some tools specifically for them.

8.1 Strongly connected components

Let us start by recalling that the notion of a connected graph was introduced in Def-
inition 1.17, and that this notion does not see the orientation on edges of a directed
graph. For such graphs, the notion of connectivity is sometimes called a weak connec-
tivity, in contrast to the strong connectivity introduced in Definition 1.18. Recall that
an oriented graph is strongly connected if there exists a path from x to y, for arbitrary
vertices x and y. With our convention, it goes without saying that all paths on an
oriented graph are oriented paths. However, the strong connectivity of the entire graph
is often a requirement which is too strong. In that context, the following definition is
useful.

Definition 8.1 (Strongly connected component). A strongly connected component of
an oriented graph G is a mazimal strongly connected subgraph of G. The vertices of a
strong component are said to be mutually reachable.

In other terms, for any vertices z and y in a strong component of a graph G, there
exist a least one path from x to y and one path from y to x. On the other hand, for
any z in a strong component and any y not in this strong component, either there does
not exist a path from z to y, or there does not exist a path from y to z, or both do not
exist. A graph with its strongly connected components is provided in Figure 8.1. As
emphasized in this figure, the set of strongly connected components realizes a partition
of the vertices of G. On the other hand, some edges do not belong to any strongly
connected components. Based on these observations, one reduction of the initial graph
is quite natural and useful.

137

138 CHAPTER 8. DIRECTED GRAPHS

/
I
M6
A /
o
\. b -~
~
e N
N
8 L
~
~
! ~
| N
! ~
I ~
L 10 .
/ 11 ~
- =) »
| = ;
\ / ’
] / p
19 ’
1 s
\ 7
\ | /
\ / /
\ s
N 4 //
~ 12 D P
N p— -

Fig. 8.1. A directed graph and its strongly connected components

Definition 8.2 (Condensation). Let G be a finite directed graph, and let S := {s1, S2,...,Sn}
be an enumeration of its strongly connected components. The condensation of G con-
sists in the simple graph with vertices S and with edges defined by the following rule:
for j # k there exists an edge from s; to sy if one vertex of the strongly connected
component s; in G is linked to one vertex of the strongly connected component si, in G.

The condensation of the graph of Figure 8.1 is provided in Fig- O—m Q) —i
ure 8.2. Note that a condensation is always an acyclic directed
graph. Indeed, any cycle in a condensation would mean that some

strongly connected components in G would not be maximal. A di- O
rected acyclic graph is often called a dag, see also Figure 3.1.

Let us now look at an algorithm for identifying the strongly —Fig- 8.2. A dag
connected components of a large graph. Note that there exist several algorithms for
this task, as explained in [28]. Our approach will be based on the depth-first search
(DFS) introduced in Section 4.2. The construction of a tree was provided in Algorithm
4.4, and it is the specific choice of a vertex in Front(G, T;) which characterizes the type

of algorithm (dfs, bfs, or others).

8.1. STRONGLY CONNECTED COMPONENTS 139

We start recalling a few concepts for the
growth of a tree. The discovery number function
has been introduced in Remark 4.5. This function
provides an index to the vertices according to their
discovery during the algorithm. We also recall that
the notions of skip-edges or cross-edges have been
introduced at the end of Section 4.1. Figure 8.3
illustrates these concepts: the edges 1 and 3 are
skip-edges, the former one being a back-edge while
the latter one is a forward-edge. The edge 2 is a
cross-edge since it links two vertices which belong
to the tree but none is an ancestor of the other
one. If the tree is constructed with Algorithm 4.4
following the dfs rule, then the following result can Fig. 8.3. A directed tree
easily be obtained.

Lemma 8.3. Let e be a cross-edge of a depth-first search tree performed on a directed
graph. If the origin of e is x and the terminal vertex of e is y, with x and y belonging
to the tree, then one has dfnumber(z) > dfnumber(y).

The following proof has been studied and written by Bui Tu Ha, Zhang Liyang,
Arata Suzuki, Tomoya Tatsuno, and Eda Ruyshin.

Proof. We are going to prove by contradiction. Assume that there exists a cross-edge
e = (z,y) such that dfnumber(z) < dfnumber(y). After conducting DFS, we obtained
the dfs-tree, denoted by T'. The cross-edge e = (x,y) implies that 2 and y are not in the
same “family”, in other words, neither of them is the ancestor of the other one. This
means that there exists a subtree T, of T" which contains x but not y and a subtree
T, of T" which contains y but not = , together with a vertex a in 7" being the root of
the minimal subtree of T' containing both 7, and T, see Figure 8.4. Among all the
roots corresponding to subtrees of 7" that contains both T, and T, the vertex a has the
largest depth.

Based on the rules of DFS, since dfnumber(z) < dfnumber(y), one has to finish
discovering all vertices in T}, then backtrack to a, before proceeding to T,. However,
the existence of the edge e, which points from x to y, means that x is not finished yet,
which contradicts to the operation of DFS. Hence, the assumption is not correct and

thus dfnumber(z) > dfnumber(y). O

We shall now present an algorithm for identifying the strongly conected components
of a graph, following the approach of [GYA, Sec. 9.5]. A more complete (but longer)
presentation is also available in [BG, Sec. 7.5]. For the subsequent algorithm, additional
functions have to be introduced. The setting is the construction of a dfs-tree for a
digraph G = (V, E).

140 CHAPTER 8. DIRECTED GRAPHS

Tx

Ty

Fig. 8.4. Subtree of T" with its root a and both T, and T},

(i) For any = € V, the value low(x) corresponds to the smallest discovery number
of all vertices which are known to be in the same strongly connected component
as z,

(ii) For any = € V, the binary function placed(z) takes the value TRUE if the vertex

x has been placed in a strongly connected component, while it takes the value
FALSE otherwise,

(iii) If 2 belongs to a tree (and is not the root), parent(x) refers to the parent of x in
the tree,

(iv) For any e € E, the binary function examined(e) takes the value TRUE if the edge
e has already been examined (treated), while it takes the value FALSE otherwise,

(v) For any e € E, the value head(e) denotes the target of e, which had been denoted
by t(e) in Section 1.1.

Let us also recall that the structure of a stack has been introduced in Section 3.4.4
and illustrated in Figure 3.20b. In the following algorithm, we denote by holdstack a
stack which keeps the vertices that have been processed but which are not placed yet in
any strong component. Another stack will be denoted by vertezxstack and will take care
of vertices. Before running the algorithm, the initialization of its values is necessary.
This process is described in Figure 8.5. Note that the strongly connected components
are simply called strong components, that vertices are denoted by v, w, and that edges
are also called arcs. For coherence, we shall follow these conventions in the rest of this
section.

Before providing the algorithm, let us still describe how the function low is going
to be computed. For that purpose, we shall say that a vertex v is completely processed
if all arcs connected to v have been examined. On the other hand, we shall say that v is

8.1. STRONGLY CONNECTED COMPONENTS 141

For each vertex w e V

dfnumber(w) = —1

low(w) == —1

placed(w) := FALSE
For each arc e € K

examined(e) := FALSE
Initialize vertexstack to contain vertex v
Initialize tree T as vertex v.
dfnumber(v) = 0
Initialize dfnumber counter dfnum =1
Initialize strong component counter k := 0
Initialize holdstack as empty.

Fig. 8.5. Initialization of the algorithm, from Algorithm 9.5.2 of [GYA]

active if an arc having v as its origin is currently examined. The values of the function
low will be updated as the algorithm proceeds. Once a vertex is completely processed,
one has low(v) = dfnumber(v) if and only if the vertex v is at the root of a subtree
whose vertices form a strongly connected component. During the process, the value of
low(v) will be updated according to the following rule:

1) If v has been completely processed and if low(v) < dfnumber(v), then one sets

low (parent(v)) := min {low (parent(v)),low(v)}.

2) If v is active and if the arc being examined is a back-arc from v to an ancestor w
of v, then one sets

low(v) := min {low(v), dfnumber(w) }.

3) If v is active and if the arc being examined is a cross-arc from v to w, then one
sets
low(v) := min {low(v), dfnumber(w) }

if and only if w has not already been assigned to a strongly connected component,
namely if and only if placed(w) = FALSE.

An algorithm for exhibiting the strongly connected components of a directed graph
is provided in Figure 8.6. Observe that this algorithm does not always produce a tree
containing all vertices of the initial graph. This was already observed when the algorithm
about the growth of a tree was proposed, without looking at the strongly connected
components. However, once the above algorithm has stopped, one can initiate it again
on G — Vp, with Vr the set of vertices of the tree. By performing again this algorithm,
new strongly connected components of the remaining part of G can be found.

142 CHAPTER 8. DIRECTED GRAPHS

Input: a digraph D) and a starting vertex v,
Qutput: a dis-tree T with root v;
vertex-sets Sy, 5s.....5; of the strong components of tree T
Initialize variables as prescribed above.
[Begin processing]
While vertexstack is not empty
Let vertex ¢ be top(vertexstack).
While there are unexamined arcs incident from vertex {
Let € be an unexamined arc incident from vertex .
examined(e) = TRUE
Let vertex w be head(e).
If dfnumber(w) = —1 [vertex w is not yet in tree T
dfnumber(w) = dfnum
dfnum == dfnum + 1
low(w) = dfnumber(w)
Push vertex w onto verterstack.
ti=1w
Else If placed(w) = FALSE
[vertex w has not yet been placed in a strong component]
low(t) := min{low(t), dfnumber(w)}
processing of vertex ¢t has been completed]
If low(t) = dfnumber{t)
[vertex ¢ is the root of a subtree of T' whose vertices form a
strong component|
k=k+1
placed(t) = TRUE
Initialize set Sj = {t}. [place vertex t in strong component Sj|
While holdstack # O AND low(top(holdstack)) = dfnumber(t)
2 == top(holdstack)
placed(z) := TRUE [z and t are mutually reachable]
Sp =85, U {Z }
Pop holdstack.
Pop vertex t from vertexstack.
Else
Push vertex t onto holdstack
Pop vertexstack.
If parent(t) exists (i.e., t is not the root of T')
low(parent(t)) = min{low(parent(t)), low(t)}
/depth-first search backs up to parent(t)]
Return tree T vertex-sets Sy, Sa...., Sk.

Fig. 8.6. Strongly connected component’s algorithm, from Algorithm 9.5.2 of [GYA]

8.2. TOURNAMENTS 143

8.2 Tournaments

In this section and in the following one, we discuss some applications of directed graphs,
and introduce a few more concepts related to them. Recall that a round-robin tourna-
ment or all-play-all tournament is a competition in which each contestant meets all
other contestants in turn. The mathematical counterpart is provided by the following
definition.

Definition 8.4. A tournament is a simple directed graph whose underlying graph is
complete.

One can immediately observe that any tournament is obtained by adding an orien-
tation on all edges of a complete graph K, with n vertices. In applications, whenever
there is an edge from x to y one says that x dominates (or beats) y. It is easy to re-
member this since x — y can also be seen as © > y. According to this convention,
the outdegree of a vertex x corresponds to the score of the vertex x. Note that since
the complete graph K, has n(n — 1)/2 edges and if we attribute 1 point for each con-
test between two vertices, then there exists a total number of n(n — 1)/2 points to be
distributed inside the graph.

A special example of a tournament corresponds to a transitive tournament. Before
considering them, we introduce the notion of transitivity for arbitrary directed graphs.

Definition 8.5 (Transitive digraph). A directed graph is transitive if whenever there
exists an edge from x to y and an edge from y to z, then there exists an edge from x

to z.

For tournament, transitivity can be expressed by several equivalent properties. We
list some of them in the following statement.

Lemma 8.6. Consider a tournament with n vertices. Then the following statements
are equivalent:

(1) G is transitive,

(i) G is acyclic,
(i1i) G has ezxactly one Hamiltonian path,

(iv) G admits a strict total ordering,

(v) The sequence of scores attributed to the vertices is (0,1,2,...,n —1),

(vi) G does not contain a cycle of length 3.

144 CHAPTER 8. DIRECTED GRAPHS

Transitive tournaments are convenient because they natu-
rally offer a unique ranking. What about tournaments which
are not transitive 7 How can one choose a Hamiltonian path
which would correspond to a ranking ? The next result shows
that there always exists a least one Hamiltonian path in any
tournament. The proof (by contradiction) is left as an exercise. @

—

Lemma 8.7 (Rédei, 1934). Any tournament contains at least N
one Hamiltonian path.
Fig. 8.7. A transitive

If more than one Hamiltonian path exists, additional work .o o4

is necessary in order to provide a ranking of the vertices. One

easy solution is to provide a ranking by considering the strongly

connected components of the graph. Recall that the condensation of a directed graph
has been introduced in Definition 8.2. Then one has:

Lemma 8.8. The condensation of any tournament is a transitive tournament.

As a consequence, even for tournaments that are not transitive, the strongly con-
nected components of the tournament are totally ordered. The theory of ranking in
tournaments is very well developed and not trivial. A nice account for this theory is
provided in [Mo]. We mention below just a few results, starting with the definition of a
king !

Definition 8.9 (A king). In a tournament, a king is a vertex which can reach any
other vertex with a path of length at most 2.

In the next statement, we observe that kings always exist.
Proposition 8.10. Any tournament possesses at least one king.

Proof. The proof is by induction. Clearly, the statement holds if the tournament consists
only in two vertices. So, let us assume that the statement is true for any tournament
of n vertices, and let us consider a tournament G = (V, E) of n + 1 vertices. Let y
be any vertex in this tournament, and consider the n vertices tournament obtained by
G — {y}. By assumption, this tournament has a king, which we denote by z. Let D be
the set of vertices of G — {y} containing = and all the vertices dominated by x. Clearly,
x reaches all elements of D by a path of length at most 1 and all the element of V'\ D
by a path of length 2 (passing through an element of D). If there exists in D one vertex
which dominates y, then z is a king for G. Otherwise, y dominates all elements of D,
and therefore can reach all elements of G — {y} by a path of length at most 2. In this
case, y is a king. O

Several results of this type can be found is the seminal paper [Ma] with beautiful
illustrations as represented in Figure 8.8. For example, it is shown that a king is unique
if and only if it is an emperor (it dominates all other vertices). Also it is shown that
two kings can not coexist, but more than two can coexist.

8.2. TOURNAMENTS 145

Fig. 8.8. About the King chicken theorems, picture from [Ma]

Another application of tournaments leads to a rather famous paradox in social
choice theory. Very briefly, this so-called Condorcet paradox occurs because a collective
preference can be cyclic, even if the preferences of individual voters are not cyclic. Let’s
be more explicit. A tournament with n vertices can be used to indicate the preferences
between n candidates. This is often realized when candidates are evaluated by pair,
with all possible pairs represented in a tournament. If the tournament is transitive, it
means that the candidates are strictly ordered, but more complicated patterns can also
appear. In this framework, each tournament represents the voting preferences provided
by one person. What about the voting preferences of a group of persons ?

Definition 8.11 (Majority digraph). Let {G;}X, be a family of tournaments of n
vertices. The majority digraph based on this family is a tournament in which an edge
1s oriented from x to y if x dominates y in a majority of graphs G;.

Note that for simplicity we have assumed that a majority always exist. This will
always be the case if the family {G;}Y consists in a odd number of tournaments,
namely if N is odd. The majority digraph represents the preferences obtained over the
N individual preferences. If the majority digraph is transitive, then the outcome of
such a selection procedure is rather clear. However, more surprising situation can take
place. For example, assume that N = 3 and that each individual voting preferences are
organized as a transitive tournament. In this case, one can simply represent the graph
by an ordered set, with the emperor on the top. When the majority digraph is drawn,
the complexity of the tournament can be much higher. An example of this situation is
represented in Figure 8.9. In this situation, one speaks about the Condorcet paradox
because of the appearance of cycles in the majority graph.

The paradox can be explained by looking at the cycle generated by the three vertices
A, B and C on Figure 8.9. Indeed, a majority of voters prefer A to B, a majority prefer
B to C, and a majority prefer C to A. Thus, if candidate A wins, then a majority of
the voters would have been happier if C had won, if candidate C wins, then a majority
of the voters would have been happier if B had won, and if candidate B wins, then a
majority of the voters would have been happier if A had won.

We refer to [29] for other references about social choice theory and for various
additional links to applications of graph theory in social sciences.

146 CHAPTER 8. DIRECTED GRAPHS

A@® B @ De A

e ce ce A
EEN:

A® A®

E® Pe B@®

Fig. 8.9. 3 individual preferences, and the majority digraph, see Figure 9.3.3 of [GYA]

8.3 Project scheduling

In this section, digraphs are used for scheduling several activities which are interre-
lated: some activities have to be finished before others can start, while other activities
are completely independent. Establishing such a graph helps for a better planing, for
minimizing the necessary time for the completion of the project, and for identifying the
key activities which can delay the entire project.

One way to represent such complex activities is to use an activity-on-arc network, or
in short AOA network. In this representation, each directed edge of the graph represents
one activity, with the head of the arrow indicating the direction of progress of the
project. A weight on the edge represents the duration of the activity corresponding to
this edge. Each vertex in the AOA network represents an event that coincides with
the completion of one or more activities and with the beginning of new activities.
Equivalently, the final vertex of an edge represents the completion of the activity, while
the origin of an edge corresponds to the start of the activity. If the end vertex of an edge
A coincides with the origin of an edge B, we say that the activity A is a predecessor
of the activity B. In particular, it means that B can not start before A is completed.
In Figure 8.10 different activities are organized. In (a) the completion of A is necessary
before the start of B; in (b) A and B have to be completed before C can start, but
A and B are independent; in (¢) A has to be completed before the two independent
activities B and C can start.

C B
OG——@—0 B 9
(a) (b) (c)

Fig. 8.10. Three AOA-networks

Let us now fix some rules when establishing an AOA network. Clearly, the graph
corresponding to the network should be acyclic, otherwise none of the activities will

8.3. PROJECT SCHEDULING 147

ever start. In addition, we shall require that there is a unique start (with indegree 0)
and a unique end (with outdegree 0). Additional requirements are:

i) Vertex 1 C()I‘I‘GSp()ll(lS to the start of the pI‘()'QCt, while vertex N C()I‘I‘QSp()ll(]S to
J
its en(l,

(ii) Each activity with no predecessor is represented by an edge starting at the ver-
tex 1,

(iii) Vertices are labeled with elements of N chosen such that for each edge, the initial
vertex has a label which is smaller than the label of its end vertex,

(iv) Each activity is represented only by one edge in the network,
(v) The graph is simple and finite.

Note that in order to satisfy the rules imposed above, c
it is sometimes necessary to add a dummy activity which 1 A .@ -

does not take any time. For example, if A and B can be
performed simultaneously, with the same initial vertex and B /
the same final vertex, then it is necessary to introduce an
activity with a zero weight, as shown in Figure 8.11. Also,
since the graph is simple, edges can be indexed without
ambiguity by the labels of their endpoints. Thus, any edge
will be denoted by (i,7) with ¢ € N corresponding to the
label of the vertex at the origin of the edge, and j € N corresponding to the label of
the vertex at the end of the edge. By the convention imposed in the above rules, one
has 7 < j.

Let us now set a few notations: the indices i, j € N correspond to labels on vertices.

Fig. 8.11. Dummy activity

(i) w(i,) denotes the weight on the edge (7,) (the duration of the corresponding
activity),

(ii) ET(7) denotes the earliest time at which the event corresponding to vertex i can
occur,

(iii) LT(z) denotes the latest time at which the event corresponding to vertex i can
occur without delaying the completion of the project,

(iv) pred(j) denotes the vertices preceding j, which means the set of vertices i for which
there exists an edge (i, j). These vertices are called the immediate predecessors of
the vertex 7,

(v) succ(i) denotes the vertices following i, which means the set of vertices j for which
there exists an edge (7,). These vertices are called the immediate successors of
the vertex i.

148 CHAPTER 8. DIRECTED GRAPHS

By convention, one sets ET(1) = 0. In addition, the following recursive formula
always holds:
ET(j) :== max {ET(i) +w(i,)} (8.1)
i€pred(j)
which means simply that the activities starting at j can take place only when all
preceding activities are finished. Clearly, the following result holds:

Lemma 8.12. In an AOA network, the earliest time ET(7) is given by the length of
the longest path from vertex 1 to vertex i.

In the rest of this section we provide some simple algorithms for computing quan-
tities in an AOA network. The setting will always be the same: an AOA network with
N vertices. Note that these algorithms use implicitly the fact that any acyclic and fi-
nite directed graph possesses a least one vertex with indegree 0 and one vertex with
outdegree 0. The first algorithm provides the earliest time for every vertex, with the
convention that ET(1) = 0.

Algorithm 8.13 (Earliest event time). Let G = (V, E) be an AOA network.
(i) Set ET(j) =0 for any j € {1,...,N}.
(i1) For i € G with deg;, (i) = 0, and for each j € G with (i,j) € E, set
BT(j) = max{ET(j), ET() + w(i,)}
Set G := G — {i}.
(iii) Repeat (ii) until G = ().
(iv) Return ET(1),ET(2),...,ET(N).

The next algorithm provides the latest event time. Its com-
putation is rather similar to the computation of the earliest
time, but it goes backward. The necessary convention is that
LT(N) = ET(N). In order to understand the algorithm, con-
sider a vertex j which is a immediate successor of a vertex i, see
Figure 8.12. If the event corresponding to vertex ¢ occurs after
LT(j) —w(i,j), then event j will occur after LT(5), thereby de-
laying the completion of the project. Since this is true for any Fig. 8.12. Immediate
immediate successor of i, LT(7) is the minimum of these differ- successor
ences taken over all immediate successors of i. This leads to a
relation similar to (8.1) and which reads

LT(:) = min {LT(j) - w(i,j)}. (8.2)

jé€succ(z)

Based on this relation, one infers the following algorithm:

8.3. PROJECT SCHEDULING 149

Algorithm 8.14 (Latest event time). Let G = (V, E) be an AOA network, and let T
be the earliest completion time.

(i) Set LT(j) =T for any j € {1,...,N}.
(i1) For j € G with deg,(7) =0, and for each i € G with (i,j) € E, set
LT(i) = min{LT(3), LT(j) — (i,)}
Set G =G —{j}.
(iii) Repeat (ii) until G = 0.
(iv) Return LT(1),LT(2),...,LT(N).

By using the previous two concepts, namely the earliest time ET and the latest
time LT, one can introduce more more useful concept: the total float. For the activity
on the edge (i,7), the total float TF(i,j) corresponds to the amount by which this
activity can be increased without delaying the full project. Equivalently, it corresponds
to the amount of time the start of the activity (i,j) can be delayed without having
an effect on the project. Knowing this information is an important issue since it might
allow to start this activity at an optimal time during a certain interval of time. Once
the previous two algorithms have been performed, one can directly compute the total
float. The proof of the following statement is easy, see also [GYA, Prop. 9.4.3].

Lemma 8.15. The total float for the activity (i,7) is given by
TF(i,j) = LT(j) — ET(2) — w(i, j).

Let us conclude this section with one more remark. Clearly, a critical activity is one
activity for which the total float is 0. Accordingly, any path in the graph from the vertex
1 to the vertex N made of critical activities is called a critical path. Such paths are the
longest ones in the graph, and dictate the duration of the entire project. Usually, such
paths are not unique.

150 CHAPTER 8. DIRECTED GRAPHS

Chapter 9

Flows

In this chapter we continue the investigations on directed graphs.

9.1 Capacity, flows and cuts

For shortness, a finite directed and loopless graph G = (V, E) will simply be called a
network. We start by introducing a few definitions related to arbitrary networks. First
of all and in relation with the indegree and the outdegree functions, let us define two
natural notions.

Definition 9.1 (In and out sets). For any vertez x of a network G = (V, E) we set
in(z) :={e € E|t(e) =z} and out(x) = {e € E | o(e) = x}.

In other terms, in(z) corresponds to the set of edges targeting z, while out(x)
corresponds to the set of edges leaving x. Clearly, the cardinality of the first set is
deg;, (z) while the cardinality of the second set is deg, ().

Let us also introduce a rather convenient notation which is somehow related to the
A-B-path introduced in Definition 5.5. Let G = (V, E) be a network and let A, B be
two subsets of V. For any e € E we set

e€ (A B) <= o(e) € Aand t(e) € B. (9.1)

In other words, e € (A, B) means that the edge e starts in A and ends in B. Observe
that for this definition, it is not necessary that A and B are disjoint, of even different.
In the sequel, special pairs of subsets of V' will play an important role. For that reason,
for any U C V' we write U° for V' \ U. Clearly, U and U® define a partition of V. In this
case relation (9.1) reads

e€ (UU) < o(e) € U and t(e) ¢ U.

151

CHAPTER 9. FLOWS

From now on we shall consider networks with two
distinguished vertices s and ¢ satisfying deg,.(s) # 0
and deg,, () # 0 (and impose that s # t). Such net-
works are called st-networks!. Note that the AOA net-
works introduced in Section 8.3 are special instances
of st-network. The two distinguished vertices are usu-
Fig. 9.1. st-network with cut ally called the source and the sink (or target). If G is

a st-network, any pair (U,U°) with s € U and t € U*
is called a cut of G. Special examples of cuts are ({s},{s}?) = ({s},V \ {s}) and
({0, 43) = (V\ {1, {1))-

From now on, we shall endow the
edges of the network with weights. In the
present context, an edge weight w : £ —
[0,00) is called capacity function, or sim-
ply a capacity, and is denoted by the let- =
ter c. We also introduce a second type of
functions on edges. Note that these func-
tions have some relations with the capac-
ity function.

Fig. 9.2. st-network with capacity

Definition 9.2 (Flow). Let G = (V, E) be a st-network endowed with a capacity c. A
flow on G is a function f: E — R, satisfying the following conditions:

(i) fle) < cle) forany e € E,

(i1) For any x € V with x & {s,t} one has the conservation constraint

Yo fle= > fle) (9.2)

e€in(x) ecout(x)

The equality (9.2) is also called the conservation of flow. It is a requirement which
naturally appears in several applications. It prevents the accumulation of the quantity
represented by f at any vertex.

Let us now come back to two subsets A, B of V. For any capacity or any flow on G
we set

c¢(A,B) = Z c(e) and f(A,B) = Z f(e).

ec(A,B) e€(A,B)

In particular, it follows from the conservation constraint that for any x € V with

Tt is sometimes required that deg;, (s) = 0 and that deg,,(t) = 0, but this is not strictly necessary.
However, by adding new vertices, one can always come back to this situation. Also, networks with
multiple sources and multiple sinks can easily be transformed into a network with a single source and
a single sink.

9.1. CAPACITY, FLOWS AND CUTS 153

x ¢ {s,t} one has

FHahda)) = F({ah V) = 3 fl@ = 3 fle) = F(V{a}) = F({x} fa)).
ecout(x) e€in(x)
(9.3)
In the special case of a cut (U, U¢), the quantity ¢(U,U¢) is also called the capacity of
the cut (U,U°).
So far, the source s and the sink ¢ of the st-network have not played a special role.
The next definition is related to them:

Definition 9.3 (Value of a flow). Let G = (V, E) be a st-network endowed with a
capacity ¢, and let f be a flow on G. We define the value val(f) of the flow f, also

denoted by |f|, by
val(f) = > fle)= DY fle

ecout(s) e€in(s)

Clearly, this definition put more emphasize on the source s than on the sink ¢. We
shall see later on that this asymmetry is not a real one. The next statement is of central
importance in our framework.

Proposition 9.4. Let G = (V, E) be a st-network endowed with a capacity c, let f be
a flow on G, and let (U,U¢) be any cut of G. Then, one has

val(f) = f(U,U°) — f(U,U) < c(U,U°). (9.4)

Before the proof, observe that (9.4) contains two pieces of information. The first
one is about the invariance of the expression f(U,U¢) — f(U¢, U) for any cut (U, U°).
The second one is that val(f) is dominated by the capacity of any cut (U, U°).

Proof. From (9.3) one infers that for any z € U\{s} one has f({z},V)—f(V,{z}) = 0.

Thus,
val(f)= > fle)— D fle

ecout(s) e€in(s)

= f({s} V) = F(Vi{s})
=3 {r(=hv) - f(v=)}

zelU
= (U V)= f(V,U)
:f(U,U)—I—f(U,UC)—f(U,U)—f(UC,U)
= f(U> UC) - f(UC,U)

which provides the equality in the statement. For the inequality, observe that
f(U7 Uc) - f(Uca U) < C<U7 Uc) - f(UCJ U) < C(U7 UC) (95)

since f(U° U) > 0. This inequality corresponds to the one of the statement. O

154 CHAPTER 9. FLOWS

By choosing U = {t}¢, one directly gets

val(f) = F({t}e, {t}) — F({t}, {t}°)
= F(V A - FUELV) = D fle) Z f(e)

e€in(t) ecout(t
Thus, the following statement corrects the apparent asymmetry of Definition 9.3 :
Corollary 9.5. In the previous setting, one has val(f) =3 cinm f(€) = Xccouq F(€)-

There is an other important consequence of Proposition 9.4 which has to be em-
phasized. The value val(f) is always smaller than or equal to the capacity of the any
cut (U, U°). In particular, it means that

val(f) < min {c(U,U°) |U C V with s € U and t € U°}.

For that reason, it is natural to call a subset U C V realizing this inequality a minimum
cut of the network. Such a cut will be denoted by (U*, (U*)°).

In the sequel we shall look for a maximal flow f*, which means a flow on G which
satisfies val(f) < val(f*) for any flow f on G. It follows from the previous observations
that the inequality

val(f*) < c(U*, (U*)°)
always holds. In addition, if for some flow f and some cut (U, U¢) one has val(f) =
c(U,U°), then it turns out that f is a maximal flow, and that (U, U¢) is a minimal cut.
Observe finally that (9.5) provides a condition for a flow to be maximal. Indeed, suppose
that there exist a flow and a cut (U, U¢) satistying f(e) = c(e) for any e € (U,U¢) and
f(e) = 0 for any e € (U U), then the inequalities in (9.5) are saturated, and one
deduces that f is a maximal flow and that (U, U¢) is a minimum cut.

9.2 Maximum flow problem

In this section, we look for the maximal flow on a given st-network endowed with a
capacity c. The simplest solution for increasing a flow f is through a single st-path in
the network. Indeed, suppose that there exists a path from s to ¢ satisfying the condition
¢ := min{c(e) — f(e)} > 0, where the minimum is taken over all edges of the path. Then
the flow f. defined by f.(e) = f(e) + € if e belongs to the st-path, and f.(e) = f(e)
otherwise, is a new flow on . Indeed, it is easy to check that the conservation constraint
is still satisfied for the new flow. A representation of this situation is provided in Figure
9.3. In the first picture, the values of the flow and of the capacity are represented with
the notation flow/capacity®. In the second picture, a st-path with € = 1 is presented.
Note however that this simplest solution is rarely the best one. Its weakness is that a
single path is considered, while a network usually admits several st-paths.

2Note that different authors use different notations for representing the flow and the capacity. One
easily finds out who is who since the inequality f(e) < ¢(e) always holds.

9.2. MAXIMUM FLOW PROBLEM 155

(a) (b)
Fig. 9.3. Flow increasing through one path, from [30]

Before developing some tools for the search of a maximal flow, it is natural to
wonder if such a flow exists ? The answer is yes as long as the capacity takes integer
values. More precisely, the following statement holds:

Theorem 9.6 (Max-flow Min-cut theorem). In every st-network with integer-valued
capacity function there exists a maximal flow which is also integer-valued.

This theorem is due to Ford and Fulkerson and a proof can be found in [Die,
Thm. 6.2.2]. An extension to capacities with values in the set of rational numbers
is easy (just multiply by a sufficiently large integer to be back to the integer-valued
setting). On the other hand, for irrational capacities, the convergence of the algorithm
to a maximal flow might fail.

In order to extend the construction mentioned above with one st-path, let us intro-
duce a generalization of a path.

Definition 9.7 (st-quasi path). In a st-network a st-quasi path or st-semi path is a
path on the underlying undirected graph which starts at s and ends at t.

When considering such a quasi path, the edges can be divided into two families:
the ones going in the direction of the path, and the ones going backward. Accordingly,
they are called forward edges or forward arcs, and backward edges or backward arcs.

se— >0 @ ro<l o rot

Fig. 9.4. 3 forward edges, 2 backward edges

Consider now a flow on a st-network endowed with a capacity. We shall say that a
st-quasi path is f-augmenting if f(e) < c(e) for any forward edge e on the path, and
f(e) > 0 on any backward edge e on the path. In particular, if one sets

A — cle) — f(e) if eis a forward edge
) fle) if e is a backward edge

156 CHAPTER 9. FLOWS

then A, > 0 for any f-augmenting st-quasi path. The quantity A, is called the slack on
edge e. So far, this quantity has been computed on each edge individually. However, for
the conservation of the flow, one can not change the flow on edges independently, and
one has to consider a path as a whole. For that reason, for any f-augmenting st-quasi
path P let us set

Ap :=min{A, | e € P}.

Note that this notion corresponds to the value € introduced at the beginning of this
section for an oriented st-path, and corresponds to the value 1 on the blue path in
Figure 9.3. By two minutes of thought one easily infers the following result:

Lemma 9.8. Let G = (V, E) be a st-network endowed with a capacity c, let f be a flow
on G, and let P be a f-augmenting st-quasi path. Let us set

fle)+Ap ife is a forward edge of P
fr(e) =1 fle) — Ap if e is a backward edge of P .
f(e) otherwise

Then fp is a new flow on G, and val(fp) = val(f) + Ap.

In addition to the previous result, one can also infer that a flow is maximal if and
only if there does not exist any f-augmenting st-quasi path. A proof of this statement
is presented in [GYA, Thm. 10.2.3]. Putting the information obtained so far, one has
essentially proved Theorem 9.6. However, the missing information so far is how do we
find f-augmenting st-quasi path ? Indeed, once such a quasi path has been identified,
Lemma 9.8 provides us with an increased flow.

There exist several algorithms for identifying f-augmenting st-quasi paths, which
are more or less complicated, but also less or more time consuming. We provide only the
one of Edmond and Karp, based on the early solution provided by Ford and Fulkerson.
The main idea for is to construct a tree starting at s. Once the sink ¢ is reached, one
uses the path between s and t as a st-quasi path.

Recall firstly that the algorithm for constructing a tree has been provided in Algo-
rithm 4.4. When growing the tree, the elements of Front(G, T;) play a crucial role. For
unoriented graphs, Front(G, T;) consists of edges with one endpoint in 7; and one end-
point outside of T;. In the current application, we shall consider Front(G, T;) consisting
of two types of edges e:

(i) o(e) € T3, t(e) € T;, and c(e) — f(e) > 0,
(ii) o(e) € T;, t(e) € T;, and f(e) > 0.

Such edges are usually called usable. They are clearly related to the forward and
backward edges in the final st-quasi path. The choice of an edge inside Front(G,T;)
will then be performed following the breadth-first search, namely the frontier edge
ei41 € Front(G,T;) is chosen with a tree endpoint at x; with the minimal number j
(starting from j = 0 and then upward).

9.3. APPLICATIONS 157

The following algorithm puts these ideas together. Note that a function backpoint :
V' — V is used during the implementation.

Algorithm 9.9 (Finding a f-augmenting st-quasi path).
(1) Set Ty :={s} and fixi:=0,

(ii) In Front(G,T;), choose the edge e;+1 with tree endpoint x; with the minimal num-
ber j, set x;y1 as the non-tree endpoint of e;11, define backpoint(z;y1) := x;, set
Tiv1 =T, U{eir1}, and set i := i+ 1,

(iii) Repeat (ii) until t € T; or until Front(G,T;) = 0,

(iv) Ift € T;, reconstruct the f-augmenting st-quasi path starting from t and using the
information contained in backpoint, while if Front(G,T;) = 0, then (T;,TF) is a
minimum cut.

Note that one has to be slightly careful in the above algorithm since it provides
a st-quasi path, and not a st-path. This implies that x;;; corresponds sometimes to
o(e;11) and sometimes to t(e;;1). This depends on the type of usable edge e;,1. Also,
if the tree does not reach t, it means that the flow f is already a maximal flow, and
therefore the algorithm can be used for exhibiting a minimal cut.

As a final remark, by combining Lemma 9.8 and the previous algorithm one easily
gets a maximal flow on any st-network endowed with an integer-valued capacity. It
is enough to start with a flow f identically equal to 0, find a f-augmenting st-quasi
path with the algorithm, update the flow, and iterate the process again. We illustrate
the construction in Figure 9.5. In these figure, A is the source, G is the sink, and the
notation flow/capacity is used. The final value val(f*) of the maximal flow is 5. Note
that the increase of the length of the paths is due to the choice of the bfs algorithm. At
every step one looks for the shortest possible path.

9.3 Applications

In this section we briefly sketch a few applications of the results obtained in the previous
section.

9.3.1 Flow and Menger’s theorem

The first application of the Max-flow Min-cut theorem provided in Theorem 9.6 is
usually dedicated to the proof of Menger’s theorem, both for oriented and unoriented
graphs, see Section 5.2. We shall not present the construction here, but refer for [GYA,
Sec. 10.3]. We only provide two statements which can be easily proved and which might
be useful later on. Recall that the notion of internally disjoint paths has been introduced
in Definition 5.3 and was related to the absence of common vertices in different paths.
Similarly, edge-disjoint paths correspond to paths which do not share any common edge.

158 CHAPTER 9. FLOWS

1/3 0/6
A L » D L A : > D A
0/3 0/2 0/9 0/3 1/2 0/9
B

o/ E on @ B) on AT @

(a) Initial network (b) Path with Ap =1

A

3/3 2/6 3/3 3/6
A d »(D A A 2 » D A
0/3 1/2 2/9 1/2 3/9
0/4
B)¢

0/1 ST @ £ i @

(c) Path with Ap =2 (d) Path with Ap =1

o1 * n @

e) Quasi path with Ap =1

3/3 4/6
A / »(b
2/3 02 4/
2/4 12
B)e
(

Fig. 9.5. Construction of a maximal flow, figures from [31]

Lemma 9.10. Let G = (V, E) be a st-network satisfying the three conditions:
degout(s) - degin(s) =m= degin(t) - degout (t)

for some m € N*, and deg;, (v) = deg,(x) for all x € V' \ {s,t}. Then there exist m
edge-disjoint st-paths in G.

Proposition 9.11. Let G = (V, E) be a st-network endowed with a constant capacity
¢ = 1. Then val(f*) for a mazimal flow in G is equal to the number of edge-disjoint
st-paths in G

9.3.2 Matching

Recall that the notion of a matching has been introduced in Definition 6.4 and corre-
sponds to a set of edges having no common endpoints. If e belongs to a matching M

9.3. APPLICATIONS 159

and has endpoints z and y, we also say that x is matched with y by M. For a given
graph, we speaks about a maximum matching if the matching contains the greatest
possible number of edges. A problem which appears quite frequently is to look for a
maximum matching in a bipartite graph, see Figure 9.6. How many edges are contained
a maximum matching ?

Fig. 9.6. Looking for a maximum matching in a bipartite graph

Let us transform this problem into a maximal flow problem, as solved in the previous
section. Let G = (V, E') be the initial bipartite graph with bipartition subsets V, and
Vi, and let us construct a st-network G’ = (V’, E’) based on G as follows:

(i) V':==V uds,t},
(ii) The set E’ consists of three types of oriented edges: one oriented edge from s to

each vertex of Vj, one oriented edge from V; to V; for each edge of E, one oriented
edge from each vertex of V; to ¢,

In addition, we consider G’ endowed with the constant capacity ¢ = 1. A representation
of this construction is provided in Figure 9.7.

Fig. 9.7. The construction of a st-network

Once this st-network with capacity ¢ = 1 is available, tools from the previous section
can be used. The relation between the maximal flow problem, and the current maximum
matching is established in the following statement, see [GYA, Prop. 10.4.1] for a proof.

Proposition 9.12. Let G be a finite bipartite graph, and let G' be the st-network con-
structed from G as mentioned above. Then there is a bijective relation between integer-
valued flows on G' and matching in G. In particular, f* is a mazximal flow if and only
if val(f*) corresponds to the number of elements of a maximum matching.

160 CHAPTER 9. FLOWS

With this result at hand, one can now apply the Algorithm 9.9 for constructing a
maximal flow f*. Once done, the edges in a maximum matching if obtained by keeping
all e € E C E' with f*(e) = 1.

9.3.3 Transversals

Another application of the maximal flow problem is related to the transversal problem.

Definition 9.13 (Transversal). Let A be a finite set, and let F = {S1,...,5,} with
S; C A be a finite family of subsets of A. A transversal for F is a sequence T =
(ay,...,a,) with a; € S; and a; # ay, for any j, k € {1,...,r} and j # k.

In other terms, a transversal consists in choosing one element in each subset S;
such that the r chosen elements are different. Fortunately, the problem of finding a
transversal can be reformulated in terms of a bipartite graph and a matching problem.
Indeed, let us define the bipartite graph G = (V, E) with bipartition subsets Vr and
Vy defined by Vr = {S1,...,5,} and V4 = A. Note that in this definition, S; is just
considered as a vertex, it is not considered as a set containing other elements. We also
define e € E with endpoints S; € Vr and a € V4 whenever a € S;. Then, finding
a transversal corresponds to finding a matching in this bipartite graph. Figure 9.8
corresponds to the transposition of the initial problem (5 persons interested in 6 gifts,
but with some preferences) into a bipartite graph. Obviously, one is interested in the
situation when all elements of Vz are enpoints of the edges in the matching. For that
purpose, the next definition is natural:

- - - - - - - - - - -
—-— = —-— = —-— = = —-— = —-— =

1 5

A, (B, (C (D (E

Fig. 9.8. Looking desperately for a transversal, from [32]

Definition 9.14. Let G be a bipartite graph with bipartition subsets Vi and V. A
matching M in G is Vi-saturated if each vertex of Vi are endpoints of the edges in M.

It follows clearly from this definition that if the matching M is Vj-saturated, then
the cardinality of M and of V; should be equal. An example of a Vz-saturated matching
is provided in Figure 9.9.

9.4. APPENDIX 161

81 ={a,b} a
82 ={b,c.d} b
83 ={c,d,e} C
84 ={d.e} d
S; ={e.ab} e

Fig. 9.9. A VF saturated bipartite graph

Once the initial problem has been recast in the framework of a bipartite graph,
the tools developed before can once again be used. However, there is one important
issue: when is it possible to find a Vz-saturated matching. Or equivalently, when is it
possible to find a transversal ? The following theorem provides a necessary and sufficient
condition. It is stated in the framework of bipartite graph, but its transposition to
the initial problem is straightforward. For its statement, recall that the set N(x) of
neighbours of the vertex x has been introduced in Definition 1.4 and corresponds to the
set of all vertices connected to x. For a subset U C V of vertices, we set N(U) for the
set of all vertices which are connected to at least one element of U.

Theorem 9.15 (Hall’s theorem for bipartite graphs). Let G be a finite bipartite graph
with bipartition subsets Vi and Vy. Then G has a Vi-saturated matching if and only if for
any subset U of Vi one has |U| < |N(U)|, where |U| and |N(U)| denote the cardinality
of these sets.

A proof of this theorem is provided in Section 9.4.1. It uses the theory of maximal
flow developed in the previous section. For our initial transversal problem, it means
that a transversal exists if the union of any k different subsets S; contains at least &k
distinct elements of A.

9.4 Appendix

9.4.1 Hall’s marriage theorem

This section has been studied and written by Dam Truyen Duc and Atsuya Watanabe.

The marriage theorem, proved in 1935 by Philip Hall, answers the following ques-
tion, known as the marriage problem: if there is a finite set of girls, each of whom knows
several boys. Under what conditions can all the girls marry the boys in such a way that
each girl marries a boy she knows? For example, if there are four girls {g1, g2, g3, 94} and
five boys {b1, ba, b3, by, b5}, and the friendship are shown below, then a possible solution
is for ¢g; to marry by, go to marry by, g3 to marry bz, and g4 to marry bs.

162 CHAPTER 9. FLOWS

Theorem: A necessary and sufficient condition for a solution of the marrige problem
is that each set of k girls collectively knows at least k boys, for 1 < k < m.

Proof. The necessity is clear, so we can concentrate on the sufficiency.

Let the girls be g1, 92,93,...,9,, and the boys be by, b, bs, ..., b,, with m > n.
The relation between a girl and a boy and whether they know each other constructs a
bipartite graph V' = V; U V5 where V] is the set of vertices g1, ga, ..., gn, Vo is the set
of vertices by, ba, ..., by, and there exists an edge of G between g; and b; if the girl g;
knows the boy b;. In this way, we construct a simple bipartite graph.

Let A is a subset of V;. Denote P(A) for the subset of V5 that all the edges from A
to V3 have an endpoint in P(A), and each vertex in P(A) has an edge connected to a
vertex in A . Let |A| represent the number of elements contained in the subset A. Then,
proving the necessity is to proving that if any A subset of V; satisfies |A| < |P(A4)],
then there is a complete matching from V; to V5, namely any g; is connected with a
different b;. Thus, assume that

Al < [P(A)]

for any subset A of V;.

Let us add to G a vertex of v adjacent to (and only to) every vertex in V; and
a vertex w adjacent to (and only to) every vertex in V;. Menger’s theorem says that
if S is a vw-separating set, then |S| > # internalydisjoint path form v to w. (here, #
means “the number of”). Clearly, |V;| > #internally disjoint path from v to w because
V) is a vw-separating set.

Let S = AU B be a v-w separator in which A is a subset of V; and B is a subset
of V5. Then |S| > #internally disjoint path from v to w by Menger’s theorem. Clearly,
(Vi — A) and (V5 — B) are not connected with each other by any edge since if they are
connected by some edges to each other, then A U B = S would not be a separator of
v-w. Thus, P(V; — A) is a subset of B since V; — A is connected with vertices in V5 but
not in V5 — B as we argued above.

With our assumption, we obtain that

i = A[<[P(Vi = A)| < |B]

9.4. APPENDIX 163

As |S| = |A] + |B| (A subset of V; and B subset of V5 are disjoint),
S| > [A] + [Vi — Al = [V,

From the above relations, we have

V1| > #internally disjoint path from v to w
|S| > #internaly disjoint path from v to w by Menger’s theorem.
S| > Vi

Thus, we get the total relation:
|S| > |Vi| > #internally disjoint path from v to w.

But Menger’s theorem says that [S|,;, = max(#internally disjoint path from v
to w). Thus, [S|min = |V1| = max(# internally disjoint path from v to w). Therefore,
|V1| = max(#internally disjoint path from v to w. This means there exists a set of |V}|
internally disjoint paths from v to w in which each path includes a different vertex in
V) and a different vertex in V5 from any other path in order to satisfy the internally
disjoint condition. Thus, we have the perfect matching from this set of internally disjoint
paths. O]

164 CHAPTER 9. FLOWS

Chapter 10

Random graphs: the G(n,p) model

In this chapter we touch the surface of random graphs, much more could and should
be said. We also do it without requiring any real prerequisite in probability theory, and
for that reason several arguments will only be sketched.

Let us start by recalling some notations. For any p € N we set

pl=p-(p—1)-(p—2)...2-1

for the factorial of p. Also, for any two positive integers p and ¢ with p > ¢ we set
(h) = #iq!) for the binomial coefficients. This number represents the number of ways
to choose an (unordered) subset of ¢ elements from a fixed set of p elements. This

number can also be written

(p) _pp=1)-(p-2)...(p—q+1)
q q-(¢g—1)-(¢g—2)...2-1

In particular, the number (%) will often appear, and is equal to %p(p —1). One can also
observe that it corresponds to the number of elements in the upper (of lower) half of a
square p X p matrix once the diagonal has been eliminated.

10.1 Basic results

The Gilbert-Erdds-Rényi model for random graphs is certainly the simplest, most nat-
ural and most studied model. It is often simply called random graphs, but also Poisson
random graphs or Bernoulli random graphs®. Since other models of random graphs
exist, we shall use the name Gilbert-Erdos-Rényi model in honor of the authors who
introduced and popularized the model in late 1950s and early 1960s. Note that for this
section we shall mainly follow the approach proposed in Chapter 11 of [Ne], and borrow
several pictures from this reference.

!The name Bernoulli comes from the fact that the existence of an edge follows a Bernoulli distri-
bution. The reason for Poisson will appear later on.

165

166 CHAPTER 10. RANDOM GRAPHS: THE G(N, P) MODEL

The Gilbert-Erdés-Rényi model is often denoted by G(n, p)?. The idea behind this
notation is the following: for any n € N we consider n fixed vertices. Then, the number
p € [0,1] represents the probability that an edge between two vertices exists. It is
assumed that the graphs are simple (no loop, no multiple edge) and unoriented, and
that the existence of any edge is independent of the existence (or non-existence) of any
other edge. Thus, given two distinct vertices x; and xy, the probability that there exists
an edge between them is p, no matter if other edges have z; or x; as endpoints (but not
both) and no matter if other edges exist between the other vertices, see Figure 10.1.
For the time being, we shall consider a fixed p, but this parameter could also depend
on other quantities, and could depend for example on n, see Remark 10.1.

A ?\, SN =

\

@
~

Fig. 10.1. Three elements of g(lO, %)

Observe firstly that there exists (%) distinct pairs of vertices between n vertices,
when (z;, zy) and (zy, z;) with j # k are identified, and when (x;, z;) are disregarded.
It thus follows that in G(n,p), any graph G with m edges has a probability to appear
given by

B(G) = p"(1-p)), (10.1)

Indeed, it is necessary that m edges are present and (5) — m edges are absent. Note
that many of these graphs could be isomorphic, as introduced in Definition 2.8. On the
other hand, if vertices are considered with labels, or equivalently endowed with different
weights, then none of these graphs are isomorphic as labeled or weighted graphs.

One information which can be directly deduced from (10.1) is the distribution of
graphs having m edges, namely:

) = (2) - B (102)

m

For information, this function m — P(m) corresponds to the binomial distribution
B((%),p). A representation of B(n,p) is provided in Figure 10.2.

2There exists a variant of this model, denoted by G(n,m) where the number m of edges is fixed.
We shall not consider it here, see [33].

10.1. BASIC RESULTS 167

1
8 4
< * p=0.5 and n=20

p=0.7 and n=20
= 4 ® p=0.5 and n=40
[=]
]
=

L
L] .
2 . .
=]
. L]
[Ts] . L]
84
= . L]
. L]
= L] L]
S sssndoscsisee” MR *sesssssnnnns
= T
0 10 20 30 40

Fig. 10.2. The Binomial distributions B(n, p)

Let us now compute some quantities related to the family of graphs G(n, p). In that
respect, we should not think anymore about the realization of a single graph, but about
generic properties of all graphs in G(n,p), which means all graphs of n vertices, with
an arbitrary number m of edges. The only condition for each edge is its probability
p of existence. As an example of such quantity, what is the average number of edges
among all these graphs ? This average will be denoted E(m) and can be easily computed.
Indeed, for a single pair of vertices, this average is p, which implies that it is (%) p for any
graph (recall that each graph contains (%5) distinct pair of vertices). As a consequence,

1
E(m) = (Z) p=gzn(n—1p. (10.3)
From this number, one can directly deduce the average degree (or mean degree) for
each vertex. Indeed, this mean degree is given by 2E(m)/n, the factor 2 coming from
the fact that each edge has two endpoints. In summary, for any vertex x of the graph,

¢ :=E(deg(z)) = 2%n(n —1)p/n=(n—1)p. (10.4)

Note that we shall simply denote this quantity by ¢, and that it will play an important
role in the sequel.

Remark 10.1. By looking carefully at (10.4) one observes that a fixed p can not always
be a good idea. Indeed, if p is fixed and if we consider a sequence of graph in G(n, p) with
n growing, then the average number of vertices at each vertex will grow with n. This is
not a really natural situation, and a constant ¢ is much more preferable. For a constant
average degree c it is thus necessary that p = —<, or roughly p = =. Note however that
one could be more general by considering p (or c¢) having a more complicated dependence
on n, and one is naturally led to the notion of sparse or dense graphs.

The above information is an average over all individual degrees. It is also interesting
to know the distribution of these degrees, namely the ratio of the number of vertices

168 CHAPTER 10. RANDOM GRAPHS: THE G(N, P) MODEL

having a degree k among all possible degrees. For any vertex x, the probability that
this vertex is connected to k other vertices and not to the other n — £ — 1 remaining
ones is given by p*(1 — p)" P~ In addition, since there are (";') ways to choose these

k vertices, one obtains the probability that deg(x) = k:

P(dega) =) = (") - (10,5

Observe that deg(z) follows also a binomial distribution, see Figure 10.2.
It is natural to wonder if a simpler expression for }P’(deg(a:) = k) can be obtained
in the limit n — oo. This is indeed possible if the average degree ¢ defined in (10.4)

remains constant, see Remark 10.1. Indeed, if we set p = (nil)7 it then turns out that
Nn—00 o
P(deg(z) =k) = e_cﬁ. (10.6)

We shall not prove it but the main idea is the following. By setting p = (n—il) on the
r.h.s. of (10.5) and by considering some approximations for n large, then ne infers the
above expression as n — o0o. It should be mentioned that this expression corresponds
to a Poisson distribution, and this is why this model is also called the Poisson random

graphs: it refers to the Poisson distribution taken by the degree function, see also Figure
10.3.

0.40 T 1 T T T
0.35}°¢ °© c=1 |
030l | ® c=4 |
0 25| \. o c=10 |
'\
0.20F .ee 1
] \
0.15} ‘] |
[\ \ O.OOO
0.10f /| .‘xo/ \ -
o b %%
0.05t / % * \ |
o ' .‘ OO
000bs—n Tana e
0 5 10 15 20
k

Fig. 10.3. The Poisson distribution, for different value of c.

Let us provide two additional results which can be proved with similar arguments.
Proofs are given in [Die, Sec. 11.1]. For the first one we recall that the notion of in-
dependent vertices has been introduced in Definition 2.17 and corresponds to vertices
which are not related by any edge. In particular, The independence number a(G) of a
graph G corresponds to the number of vertices of a largest independent set in G.

10.2. COMPONENTS 169

Proposition 10.2. For any integersn > k > 2 and for any G € G(n, p), the probability
that a(G) > k is upper estimated by

The next result is about k-cycles, ¢
namely closed paths of length k. How
many of them can one expect in any
G € G(n,p) ? The next statement is about ?|
this expectation, or in other words about |
the average number of k-cycles in G. For !
the statement, we introduce the Pochham- | /
mer symbols or Pochhammer functions: -t /
for x € R and n € N one sets :

253 533 >
wowononon
BWN=O

(X)p=2(x—1)(x—=2)...(rt—n+1) 3} “c‘
(10.7) |

-4 -3 -2 -1 0 1 2 3 4

with the convention that (z)y = 1.
Fig. 10.4. Pochhammer’s functions (z),

Proposition 10.3. For any integers n >

k > 3 one has

E(k-cycles) = %pk.

10.2 Components

So far in these notes, most graphs were considered connected, and if not the analysis was
performed independently on each connected component. The notion of connectivity was
also discussed in Chapter 5. For random graphs the existence of one or more connected
components takes a different interest, and this is related to the average degree c. Two
extreme situations are presented in Figure 10.5 which consists in a totally disconnected
graph of 16 vertices, and the graph Kj4. The first one is obtained for p = 0 while the
second one is obtained for p = 1.

One central question is about the existence of a giant component. This notion is
not defined for a single graph but for a family of graphs whose number of vertices is
going to infinity. Recall from Definition 1.3 that the number of vertices of a graph G
corresponds to its order and is denoted by |G|. A working definition of such a giant
component is provided in:

Definition 10.4 (Giant component). A family of graphs {G,}nen, satisfying |G| —
00 as n — 00, possesses a giant component if there exist some connected subgraphs
A, C Gy, and € > 0 with |A,| > €|G,| for all n € N.

170 CHAPTER 10. RANDOM GRAPHS: THE G(N, P) MODEL

Fig. 10.5. One graph with 16 components, and K4

By looking at the two examples provided in Figure 10.5 one guesses that the exis-
tence of a giant component is linked to the parameter c. Indeed, in the special case ¢ = 0
(which corresponds to p = 0), no giant component exists, while in the case c =n — 1
(which corresponds to p = 1) it is clear that a giant component exists, since all graphs
K, are connected. What about ¢ € (0,n—1) ? Our next aim is to answer this question.

In the setting of the previous definition, and if one assumes that there exists a giant
component, let us set u for the probability that a vertex does not belong to the giant
component. For simplicity, we assume that this probability is independent of n, which
is correct if |A,,|/|Gy| is a constant independent of n. Consider now one vertex x of G,
which is not in the giant component, and let y be any other vertex of Gz,,. The relation
between x and y is either they are not connected (which takes place with probability
1 —p) or they are connected (with a probability p) but it is then necessary that y is not
in the giant component (with happens with the probability), since otherwise x would
also belong to it. Thus, the probability for z not to be in the giant component through
y is given by (1 — p) + pu?. Since y can be any of the n — 1 vertices of the graph, it
follows that the probability u of not being in the giant component satisfies the relation

n— c(l —u)\n-1
u=((1-p)+pu) t= <1 - u) : (10.8)
n—1
where the average degree ¢ defined in (10.4) has been introduced. By assuming c fixed,
as explained in Remark 10.1, and by considering the limit n — oo, one gets from (10.8)
that u = e=¢(=%)_ or alternatively if one sets S =1 —u

S=1—e" (10.9)

Equation (10.9) can not be solved explicitly, but its solutions can be easily visual-
ized, see Figure 10.6. Indeed, one can plot the function S + 1 — e~ for various values
of ¢, and also the function S — S. The intersections of these curves give the solutions

3We use here the fact that the probability of a union of two mutually exclusive events is given by
the sum of their probability.

10.2. COMPONENTS 171

0.8 - p _

0.6 % =

04 — // _
/
L 7 4
s
02 +— // ‘\(‘:05 _
- y
0 L | L | | |
0 0.2 0.4 0.6 0.8 1

Fig. 10.6. Function S+ 1 — e~

of (10.9), and the value S = 0 is always a solution. If ¢ = 1, the two curves are tangent
at S = 0, which implies that only one solution exists, and the same happens for ¢ < 1.
On the other hand, for if ¢ > 1 a second solution always exists, even if its explicit ex-
pression can not be obtained. Numerically, this second solution can easily be obtained,
as a function of ¢, and the graph of this second solution as a function of ¢ is reported
in Figure 10.7. Clearly, this second solution is monotically increasing from the value 0
to the value 1 as ¢ goes from 0 to co. Observe finally that since u was the probability
of not being in the giant component, the variable S corresponds to the probability of
being in the giant component. As visible in Figure 10.7, this probability is 0 as long as
c < 1 and then is strictly positive. Thus, a giant component can exist whenever ¢ > 1,
and in this case its relative size is given by the function ¢ — S. For this model, the
value ¢ = 1 corresponds to a phase transition, since a giant component does not exist
for ¢ < 1 while it exists for ¢ > 1.

By a separate argument, as presented in [Ne, Sec. 11.5.1] one can show that if a giant
component exists, then it is unique. In other words, it is not possible in this model that
two giant components coexist, although it is not prohibited by the definition of a giant
component. The argument goes roughly as follows: if they were two giant components,
the probability that they would not be connected can be computed and is exponentially
small. In the limit n — oo, this exponentially small term vanishes, and therefore the
probability that the two components are not connected is 0.

Now, what about the small components 7 Indeed, the giant component does not
cover the entire graph, as a consequence that S < 1. What can one say about the
remaining parts of the graph 7 Since the size of the small components grow with a
rate smaller then |G|, their number has to increase as n — oo. For this model, the
behavior of the small components is well understood and can be studied analytically.

172 CHAPTER 10. RANDOM GRAPHS: THE G(N, P) MODEL

1y
0 1 2 3

Fig. 10.7. The solutions of (10.9) as a function of ¢

We only summarize the outcomes, and refer to [Ne, Sec. 11.5] for more information and
additional references.

Let us consider a small component G, of fixed s € N vertices. The first observation
is that this component will be a tree with probability 1 as n — oo. The argument
is the following: first of all, observe that a tree contains s — 1 edges, which is the
minimal number of edges for any connected graph of s vertices. Then, there exists
(5) — (s —1) = 1(s — 1)(s — 2) possibilities for adding one edge in this graph, and the
probability of adding one edge is p = —<-. Thus, the average total number of additional

n—1"
edges to this component is
1 c c(s—1)(s—2)
—(s=1)(s—2 =
s~V =27 2(n — 1)

and this number goes to 0 as n — co. As a consequence, each small component is likely
to be a tree in the limit n — oo.
Let us now denote by 74 the probability that a randomly chosen vertex belongs to
a small component of size s. Clearly, > . ms = 1 — S, which is the probability of not
being in the giant component, if this one exists. It is possible but rather long to deduce
the explicit expression for mg, we only provide the final result in the limit n — oo,
namely
e_SC(SC)S_l
s!
It is also possible to get the average size of the small component to which a randomly
chosen vertex belongs. More precisely one has
E(s) = Y sene STs _ D sen ST _ 1 ’
Y sen+ Ts 1-S l—c+cS
where S is the value provided by Figure 10.7. A representation of E(s) as a function of
¢ is provided in Figure 10.8. There is clearly a singularity as ¢ = 1. In fact, when one

Tg =

(10.10)

10.3. CLUSTERING COEFFICIENT AND PATH LENGTHS 173

approaches ¢ = 1 either from the left or from the right, the small components tend to
become bigger and bigger. For understanding what happens precisely at ¢ = 1, further
refined analysis is needed.

8

G

0o i . . : 1 L s L L 1 2 " " L
0 1 2 A

Fig. 10.8. In black, the function ¢ — E(s) given in (10.10); in red, the function
¢ — E(|G;]) given in (10.11)

Let us finish this section with one tricky but interesting point. Does (10.10) give
us the mean size E(|G;|) of the small components ? The answer is no because the
computation is biased. Indeed, recall that 7, is the probability that a randomly selected
vertex is in a component of size s. It is therefore not the probability of existence of a
component of size s (which leads to the average size of the small components). Thus,
in order to correct the computation, let us observe that if ng, denotes the number of
components of size s, then the following equality holds:

SN

Ty = .
n

For the computation of the mean size E(|G;|) of the small components one has

ZSEN* ST _ n ZSEN* s _ 1-5 _ 2
ZseN* s n ZseN* o ZseN* S 2-cteS

It is interesting to see that this function does not possess a singularity at ¢ = 1, as
shown in Figure 10.8.

E(|G|) == (10.11)

10.3 Clustering coefficient and path lengths

Let us start by introducing the clustering coefficient which plays an important role in
the analysis of real graphs. This coefficient is a measure of the degree to which nodes
in a graph tend to cluster together. It is also related to the notion of transitivity which
has been introduced in Definition 8.5. More precisely, the clustering coefficient is going

174 CHAPTER 10. RANDOM GRAPHS: THE G(N, P) MODEL

to estimate the lack of transitivity of a graph. Two versions of this measure exist:
the global one and the local one. The global version was designed to give an overall
indication of the clustering in the network, whereas the local gives an indication of the
embeddedness of single nodes.

For the following definition, we call triplet three vertices which are connected either
by 2 edges (open triplet) or by 3 edges (closed triplet). Since the graphs considered
are simple, it means that open triplets consist in one vertex connected to two distinct
vertices, while closed triplets correspond to 3-cycles, also called triangles.

Definition 10.5 (Global clustering coefficient). For a finite simple graph, its global
clustering coefficient C' is defined by

i(closed triplets)

¢i= t(triplets)

(10.12)

For example, if a graph is transitive, then C' = 1. On the other hands, trees have a
global clustering coefficient equal to 0 since they do not possess a single closed triplet.
For the local clustering coefficient, recall from Definition 1.4 that the neighbours N(z)
of = consist in the vertices connected to x. Clearly, the cardinality of N(x) is equal to
the degree deg(zx) of .

Definition 10.6 (Local clustering coefficient). For a finite simple graph G = (V, E)
and for any x € V, the local clustering coefficient C,. is defined by

M, 2) e EYly,z e N(2)}|
Ca =2 deg(x)(deg(z) — 1) '

More explicitly, the numerator consists in the number of edges with both endpoints
in N(z) while 1deg(z)(deg(z) — 1) consists in the total number of possible edges with
two endpoints in N(z). This coefficient measures again the lack of transitivity around
x, since it considers if the two vertices y and z, which are connected to x, are also
connected to each others. Based on this local notion, it is also possible to compute its
average, namely

(10.13)

but in general this value is not equal to the global clustering coefficient.

What about these concepts applied to the random model G(n,p) ? Since in this
model the probability of any two vertices to be connected is always the same, namely
p= (n—il), and since this probability is independent of all the other existing or missing
edges one infers that

C C
E(Ox) =p=

E(C)=p=

=—, (10.14)
n —

n—1

“Note that on has to be consistent when computing these numbers: if the triplet (z,y, 2) is con-
sidered different from the triplet (y, z,), then this rule should be taken into account both for the
numerator and for the denominator. For that reason, slightly different formulations also appear in the
3t(triangles)

litterature: for example it is sometimes written C' = - =
t(triplets)

10.4. WEAKNESSES 175

which vanish in the limit n — oo. We shall see later on that this constant value of the
clustering coefficients is one of the factors which make random graphs quite different
from real-world graphs.

There is a second quantity which provides some important information about a
graph, namely the so-called length path. In fact, this name is slightly misleading since
the correct notion is the diameter introduced in Definition 1.15. More precisely, one
looks for the shortest path between two arbitrary vertices, and if one considers the
longest such path, it is precisely the diameter of the graph. Note that one could also
consider the mean of the distance between two arbitrary vertices.

The computation of the diameter of random graphs is heuristically very simple, but
precisely rather delicate, and there exist several research papers dealing only with this
question. Here, we shall consider only the heuristic argument, and refer [Ne, Sec. 11.7]
and references therein for more precise considerations. Note that a precise computation
has to take into account the precise dependence on n of the average degree c.

The heuristic argument goes as follows: starting from an arbitrary vertex x, ¢ ver-
tices are at a distance 1, ¢(c — 1) new vertices are at a distance 2, ¢(c — 1)® new vertices
are at a distance 3, and c(c — 1)’ "'new vertices are at a distance j. It means that at a
distance at most j one can reach

j—1
ct+cle—1)+c(c—1)+-+c(c—1) ch—l (c—1)Y —1=d
=0

new vertices, if we assume that c is large enough. Of course, this estimate is really a
rough estimate since for a fixed ¢ there may exist several paths of length ¢ between x
and a given y. This observation means that in the above summation, there are several
redundancies. We should clearly think about this estimate as a first order approxima-
tion. Thus, whenever ¢/ = n, with n the number of vertices of the graph, it means that
we have “roughly” been able to visit all vertices of the graph. Based on this equality,
one deduces an estimate on the diameter of the graph, namely

: 1
d=n<jln(c)=Inn) < j= 12((2))
In fact, a more precise approach leads to the estimate
1
E(diam(G)) = 4 + 1) (10.15)

In(c)

for some constant A which can be computed. As for the clustering coefficient, this result
will have to be compared with the diameter of real-world graphs.

10.4 Weaknesses

The random graph model G(n,p) has been one of the first ones introduced, and is
considered as a simple model. However, when compared to real networks or real-world

176 CHAPTER 10. RANDOM GRAPHS: THE G(N, P) MODEL

Network Type n m c S £ a C
Film actors Undirected 449913 25516482 113.43 0.980 3.48 23 020
Company directors Undirected 7673 55392 1444 0.876 4.60 - 059
Math coauthorship Undirected 253339 496 489 3.92 0.822 7.57 - 015
Physics coauthorship ~ Undirected 52909 245300 9.27 0.838 6.19 - 045
= Biology coauthorship ~ Undirected 1520251 11803064 1553 0.918 492 - 0.088
m%'j Telephone call graph Undirected 47 000000 80000000 3.16 2.1
Email messages Directed 59812 86300 1.44 0952 495 1.5/2.0
Email address books Directed 168681 57 029 3.38 0.590 5.22 - 017
Student dating Undirected 573 477 166 0503 16.01 - 0.005
Sexual contacts Undirected 2810 3.2
= WWWnd.edu Directed 269504 1497135 555 1.000 1127 21/24 0.11
'.E:: WWW AltaVista Directed 203549046 1466000000 720 0914 16.18 21/27
£ Citation network Directed 783339 6716198 8.57 3.0/-
LEE Roget’s Thesaurus Directed 1022 5103 499 0977 487 - 013
=~ Word co-occurrence Undirected 460902 16100 000 66.96 1.000 2.7
Internet Undirected 10697 31992 598 1.000 3.31 25 0.035
= Power grid Undirected 4941 6594 2,67 1.000 18.99 - 010
'5\3 Train routes Undirected 587 19603 66.79 1.000 2.16 -
< Software packages Directed 1439 1723 1.20 0.998 242 1.6/14 0.070
_::S Software classes Directed 1376 2213 1.61 1.000 5.40 - 0.033
¢ Electronic circuits Undirected 24097 53248 434 1000 11.05 3.0 0.010
Peer-to-peer network ~ Undirected 880 1296 147 0.805 4.28 21 0.012
Metabolic network Undirected 765 3686 9.64 0.996 2.56 2.2 0.09
E Protein interactions Undirected 2115 2240 212 0.689 6.80 24 0.072
ED Marine food web Directed 134 598 446 1.000 2.05 - 016
é Freshwater food web Directed 92 997 10.84 1.000 1.90 - 020
Neural network Directed 307 2359 7.68 0.967 3.97 - 0.18

Fig. 10.9. Basic properties of several networks, from Table 10.1 of [Ne]

graphs, some of its properties do not match with the observations. There exist numerous
analysis of real and social networks, and we shall not go in this direction. However, let
us just mention a few weaknesses of the Gilbert-Erdés-Rényi model, and refer to [Ne,
Chap. 10] for more information.

A table containing several example of networks and their basic properties is provided
in Figure 10.9. In this table, the following information are mentioned:

(i
(i

The type of the graph: directed or undirected,
The total number of vertices n,

(iii) The total number of edges m,
(v

(vi

)
)
)

(iv) The mean degree c,
) The probability S of being in the giant component,
) The mean distance ¢ between connected vertices,
)

The exponent a of the power law distribution of the degrees, if it follows a power
law as introduced in (10.16),

(vii

10.4. WEAKNESSES 177

(viii) The clustering coefficient, as defined in (10.12).

One important difference between the content of this table and the outcome of the
random model G(n, p) is the clustering coefficient. Indeed, all values for C'is this table
range between 0.005 and 0.2, with a majority close to 0.1. On the other hand, the result
obtained in (10.14) for G(n,p) reads C' = %5, which leads to values which are much
smaller than the ones measured.

Another striking difference is about the degree 4
distribution of vertices. It was shown in (10.6) that
the distribution of degrees in the G(n,p) model
follows a Poisson distribution, in the limit n — oo.
On the other hand, several real networks present a
power law distribution for deg(z). A typical power
law distribution over R, is shown in Figure 10.10,
and it corresponds to the graph of a function of
the form x — x~*. Note that some regularization Fig. 10.10. Power law distribution
near 0 should be considered, or one should only
consider x > i, > 0. The discrete version of a power law reads

>
»

N3 k— kR, (10.16)

The coefficient « provided in Figure 10.9 corresponds to the exponent of this function,
whenever the degrees follow such a lower law. The clear difference between the Poisson
distribution provided by the G(n,p) model, and the degree distribution of a network
like internet is presented in Figure 10.11, despite the fact that these two distributions
have the same average.

04

B Internet
[] Poisson distribution

0.3

0.1

Fraction of nodes with degree k

Degree k

Fig. 10.11. Comparison of two degree distributions, from Figure 11.8 of [Ne]

178 CHAPTER 10. RANDOM GRAPHS: THE G(N, P) MODEL

Chapter 11

The configuration model

In this chapter we introduce another model of random graphs which is one of the
most important theoretical models for the study of networks. It is often used as a first
model before turning to more specialized ones. Let us mention that we shall consider
only undirected graphs, but alternative solutions for directed graphs exist. One of the
important feature of the configuration model is that the degree distribution can be
easily tuned. The notion of modularity is also introduced in the last section of this
chapter.

11.1 Construction, and basic properties

In the configuration model, the degree of each vertex is pre-defined, which means that
any degree distribution can be implemented. In other words and as opposed to the
G(n, p) model, the degree distribution is not restricted to have a Poisson-distribution,
the model allows the user to give the network any desired degree distribution.

Let us start by dealing with a sequence of positive integers. For a fixed n € N,
consider a sequence {k;}?; with k; € N and with the property that Y | k; = 2m for
some m € N. In other words, the positive integers k; sum up to an even number. We call
such a sequence {k;}!, a nm-degree sequence. Note that the number n will correspond
to the number of vertices of the future graph, the number m will correspond to its
number of edges, while the numbers k; will correspond to the degree of the vertex z;.

For any nm-degree sequence, let us also define n; as the number of elements in the
sequence satisfying k; = k. In other words, ny is going to be the number of vertices with
degree k. Clearly, >, .\ = n. Let us set p; := 2. The distribution {py }ren is going to
provide the degree distribution of the future graph. Thus, by first choosing a distribution
{pr}, and then a suitable nm-degree sequence having this degree distribution, one can
construct graphs with any prescribed degree distribution.

Let us now concentrate on the construction of the graph, with the notation intro-
duced in the previous paragraphs. The graph is constructed for any given nm-degree
sequence:

179

180 CHAPTER 11. THE CONFIGURATION MODEL

(i) For any i € {1,...,n} endow x; with k; half edges, also called stubs, see Figure

11.1a,
(ii) Connect the half edges uniformly at random by creating proper edges, see Figure
11.1b.
e
Y A . .
(a) First step: half edges (b) Second step: uniform matching

Fig. 11.1. Construction of the configuration model

With this construction, it is clear that one ends up with a graph containing n
vertices and m edges. Note that multiple edges can appear, and loops as well. It is
also clear why the condition)" | k; is even is necessary: if not, one half edge would
not match with any other. The resulting graph has a prescribed degree distribution,
given by the distribution {py }xren introduced above. On the other hand, any half edge
is equally likely to be connected to any other half edge.

There are two standard choices for the distribution {py }ren: a power law distribution
or a Poisson distribution. In the latter case, observe that the resulting graph is very close
to a graph obtained by the G(n, p) model. However, graphs obtained by the configuration
model can have multiple edges and loops, while no such graphs exist in the G(n,p)
approach. On the other hand, since many real-world graphs are observed to have a power
law degree distribution, the configuration model with power law degree distribution
allows us to study them theoretically and to understand some of their properties.

Let us now study some simple properties of the configuration model. For the time
being we do not impose any condition on the nm-degree sequence {k;}"_;, or equiva-
lently on the distribution {pj}ren. Note that we shall always consider large n and m,
or even the limits n — oo and m — oo.

First of all, given two vertices z; and x;, what is the probability of having an edge
from z; to z; 7 One stub at x; can be connected to 2m — 1 other stubs, among them k;
belong to x;. Thus the probability of this stub to be connected to z; is % If x; has
k; stubs, then the probability that x; is connected to z; is Qiﬁbk_jl. For m large enough,
one usually sets: the probability p;; of having an edge between x; and z; is given by

_ kik;
o2m’

Dij (11.1)

11.1. CONSTRUCTION, AND BASIC PROPERTIES 181

Based on this expression, one can easily compute the probability of having at least
two edges between z; and x;, namely %(ki_lng_l) = kikj(kgri))gkj_l). Note that the
factors k; — 1 and k; — 1 are due to the fact that one stub at x; and one stub at x; are
already used by the first edge. What is now the expected number of multiple edges in
the graph 7 One has to sum over all indices ¢ and j, and divide by two in order to avoid
counting twice every pairs of vertices. Thus, by using the notations

one gets
2(2—;)2 ZJ ik (ki — 1) (k; — 1) = %%W(Z Jes(y — 1)) (; ke (k; — 1))

— % <—<k2><k_> <k>)2. (11.3)

Note that we have used the equality 2m = n(k) coming from the equality » . k; = 2m.
The expression (k) and (k?) are called the first and second moments of the degree
distribution!. Indeed the following equalities hold:

(k) :%Zki:%ank:Z%k:kak:E(k:)
7 k k k

and
1 1
S S — k2 = k2p. = E(k?).

Observe that (11.3) does not depend on n, which means that the expected number
of multiple edges remains constant as the graph grows (when n — o0). Accordingly,
the density of multiple edges by vertex goes like % which means that multiple edges are
rare in the configuration model, when n is large enough.

A similar derivation for loops holds: one easily find that the probability of a loop
at x; is given for m large enough by?

'If these quantities are computed with a power law distribution one should be a little bit more
careful. Indeed, as long as these quantities are computed for a finite degree sequence, all sums are finite,
but in the limit n — oo these sums might contain an infinite number of contributions, and accordingly
their convergence might not hold. In fact, one easily observes that if pp = k=% for all £k € N* then
only a finite number of moments exist, if any, and this number depends on a. As a rule, whenever we
write (k°) for some s > 0 we assume that this quantity exists and is not infinite.

2The factor 2 is due to the factor (’“2”) for the possible choices of the two stubs.

182 CHAPTER 11. THE CONFIGURATION MODEL

The expected number of loops in the graph is then given by

ki(ki —1) _ (k%) — (k)
ZP“ZZ 2(2m) 20k)

7

which means that the density of loops by vertex goes again hke . In the limit n — o0,
loops become very rare in the configuration model.

Let us end this section with one more information which can be computed similarly.
Given the edges z; and x; what it the expectation n;; of having a common neighbours
z; (which means that z; is connected to z; and to x;). By one minute of deep thought
one infers that

nij _ Z kzk?l k?j(k‘l - 1) . k‘,k] Z k’l(kil — 1) <l{?2> — <k‘> ‘

2m 2m 2m n{k) — P (k)

Thus, this expected value depends only on p;; and on some factors due only to the
degree distribution.

11.2 Additional properties

In this section we study a few additional properties of the configuration model, and one
of them turns out to be rather surprising. As mentioned in the previous section, the
model is either described by a nm-degree sequence, or by a degree distribution {py }ren-
We opt for the latter setting. In this context, p, is the probability that a vertex chosen
uniformly at random has a degree k.

Suppose firstly that we start at one vertex, and follow one of its edges. What is the
probability that the second endpoint of this edge has a degree k 7 The naive answer pj,
can not be correct, since for example one would never be able to reach a vertex with
degree 0, while such vertices exist with probability pg. Less naively, our current edge
can end at any of the 2m — 1 other stubs, among which knp; belong to vertices with
degree k. Thus, the probability of ending at a vertex of degree k for m large is given by

knpy, _ @
2m (k)

(11.4)

This result is in fact rather natural, since one has a bigger chance of reaching a vertex
with degree k than a vertex of degree 1 (assuming that k > 1) even if p; = p;.

Let us infer a rather surprising result from (11.4). By starting again at an arbitrary
vertex x, what is the average degree of its neighbours ? This quantity is obtained by
averaging k over the probability of having degree k given by (11.4), namely

E({deg(y) | y € N(a Zk’“pk - <7

11.2. ADDITIONAL PROPERTIES 183

Thus, the average degree of the neighbours of x is different from the average degree in
the graph, which is (k) = E(k) ! In addition, one observes that

£ —) = (0 - wy7) = &

where 07 = (k*) — (k)*> > 0 corresponds to the variance of the degree distribution.
In other words, the average degree of the neighbours of x is bigger than the average
degree of an arbitrary vertex in the graph. In terms of a grumpy person © : your friends
have more friends than you do. Let us emphasize that this phenomenon is not a special
feature of the configuration model, it can be measured on various networks, as shown
in Figure 11.2. Note also that this surprising property can be fully explained. In short,
any vertex with degree k will appear as neighbour of exactly k other vertices, and hence
will appear in k averages. At the same time, all vertices with 0 edge won’t play any role
in this computation (simply because they are never reached), while they are counted in
the computation of (k).

Average Average k)
Network " degree neighbor degree (k)
Biologists 1520252 155 8.4 130.2
Mathematicians 253339 39 9.5 13.2
Internet 22963 42 2243 261.5

Fig. 11.2. The degree of neighbours is always higher, from Sec. 12.2 of [Ne]

Still based on (11.4) let us introduce one more quantity, the excess degree of a
vertex. Again, starting at z and arriving at a neighbour y, its excess degree is simply
the number of its edges minus the one used for reaching it. Thus the probability that
the excess degree is k simply given by

(k + D)prra
g = EF Pt (11.5)
(k)
which is obtained by considering (11.4) for k + 1. The distribution defined by {q }ren
is called the excess degree distribution. Its average can be easily computed, namely

E(q) = Zk: kar = % Zk: k(k + 1)prir = % Zk: k(k—1)py = —<k2><k_> <k>

Let us now turn our attention to the clustering property of the configuration model,
as defined in Definition 10.5. Consider a vertex x with at least two edges, and let z;
and z; the two distinct vertices connected to x. Their remaining number of edges is
denoted by k; and k; respectively, and are distributed according to the excess degree
distribution g, and gx;. In addition, the probability that they share an edge is given

184 CHAPTER 11. THE CONFIGURATION MODEL

by (11.1), namely . The clustering coefficient is obtained by summing all these
contributions:

72' = %(qu’“)

o0

= 2m1k‘>2 (Z k(k + 1)pk+1> = (i k(k—1) pk>
. (<k2><k_>3<k>) : (116)

This result can be compared to the one obtained in (10.14) for the random model
G(n,p). Their similar feature is the decay in %, which does not really take place for real-
world graphs. However, the factor (k?) appearing in (11.6) can take very large values,
depending on the degree distribution considered, and therefore lead to a clustering
coefficient more in line with the observations.

What about a giant component and about the small components, as studied in
Section 10.2 for the random model G(n, p). It turns out that a similar analysis can be
performed for the configuration model, and that similar results hold. More precisely, it
can be shown that a giant component exists if the following condition is satisfied:

(k%) —2(k) > 0. (11.7)

This condition can be obtained from different approaches, and we refer to [Ne, Sec. 12.6]
for the details. Let us just mention that one approach is to set u for the probability
that a vertex does not belong to the giant component, and by a clever reasoning one
infers that u has to satisfy the equation

u = gi(u) (11.8)

with

=> g, (11.9)
k

In general (it depends on the initial degree distribution {py}) this equation can not be
solved explicitly, but some arguments leads to the condition (11.7).

If a giant component exists, then one can also look at the small components. As in
the previous model, these small components are trees, in the limit of an infinite graph.
As we already did in (10.10), let us provide the average size of the small component to
which a randomly chosen vertex belongs. If s denotes the size of a small component to
which a randomly chosen vertex belongs to, then for the configuration model one has

(i)

E(s) =

11.2. ADDITIONAL PROPERTIES 185

with go(u) = >, pruF. Clearly, this expression is complicated. However, if there is no
giant component, namely when v = 1, it can be simplified. In this situation one gets

(k)
E(s) =1+ 20 — (i)
Another quantity which has been mentioned for the G(n,p) model is the diameter
of a graph containing n vertices. We only provide the result, and refer to [Ne, Sec. 12.9]
for its precise computation. Note however that the approach is rather standard for any
type of graphs, and often lead to similar results. For the current model of graphs with
n vertices, it turns out that

In(n)

In (<k2<>k—><k>)

E(diam(G)) = A+ (11.10)

for some constant A which can be computed. Note that this result is quite similar to
the one already obtained in the previous model.

As already mentioned at the beginning of this chapter, one interest in the con-
figuration model is the ability of choosing the degree distribution. For example, it is
possible to implement that only a few p, are not 0, meaning that one vertex can only
have a prescribed number of edges attached to it. In such a case, the computations
are usually quite simple, as shown in an explicit example provided in [Ne, Sec. 16.1].
Another example is to consider exact power law provided for a > 0 by the formula

1 o k=0
PE=C) Ve itk>1

where ((a) = "2, k™ is the Riemann zeta function. In such a situation, some addi-
tional computations can be performed, as for example

_\ _ Ly e _Sla=1

(k) =D ke = 7oy 2k (@)

. 2\ - 2 _LOO cat2 Gla—2)
<k>_,;kp’“_§(a),;k T o)

With this explicit expression, condition (11.7) for the existence of a giant component
reads ((a —2) > 2¢(a — 1) which can be solved numerically: one gets this existence if
a < 3.4788....

As already mentioned in the footnote on page 181, the power law distribution
suffers from the non-existence of most of its moments. Indeed, it is easily seen that
Yoo ko = @ Y ope k57 exists if and only if s < o — 1. Thus, the expression (k) is
finite if @ > 2 and (k?) is finite if @ > 3. Nevertheless, it is sometimes possible to cut the
tail of this distribution (put py = 0 for k large enough) and get some meaningful result.

186 CHAPTER 11. THE CONFIGURATION MODEL

For example, one infers from this approach that (11.7) is always satisfied for a € (2, 3].
If o € (3,3.4788...) there is still a giant component, but not for larger . Note that for
a < 2, a giant component also exists, but other tools are necessary for proving it.

Let us end this section with one key word: generating functions. These functions
are very useful in probability and should have been introduced. Some results of this
section can be easily obtained with them. However, these functions have to be properly
introduced in a course on probability. Don’t miss to attend such a course, very powerful
techniques will then be available.

11.3 Community structure, or modularity

In this section, we introduce one more concept which is useful for arbitrary graphs. This
notion, called community structure or modularity, provides one measure of the structure
of a graph. It was designed to measure the strength of division of a network into mod-
ules (also called groups, clusters or communities). Networks with high modularity have
dense connections between the vertices within modules but sparse connections between
vertices in different modules. Modularity is often used in optimization methods for de-
tecting community structure in networks. However, it has been shown that modularity
suffers a resolution limit and, therefore, it is unable to detect small communities. A
graph with two clear communities is presented in Figure 11.3. Note that there is a third
community (grey dots) which is spread on the other two communities.

Fig. 11.3. A graph with 3 communities, from Sec. 7.7 of [Ne]

11.3. COMMUNITY STRUCTURE, OR MODULARITY 187

The relation between the search of community structure and the configuration
model is the following: the number of edges inside a suspected community will be
compared to the configuration model, in which edges are placed uniformly at random.
In other words, the configuration model is used as a test model. If there exist more
edges than the one provided by the configuration model, then the community really
exist. But note that it might not be the tighter community (or the one with the biggest
number of edges between its members). The computation is based on the adjacency
matrix Ag = {a;;} introduced in Definition 2.1, and will also use the probability p;; of
having an edge between z; and z; computed in (11.1) for the configuration model.

We consider a graph G = (V, E) with |V| = n and |E| = m, both numbers being
large but finite. Let U C V be a subset of vertices, and let us simply write ¢ for the vertex
x;. The number of edges between vertices in U is then given by %Zl jeu ij, where the
factor % compensates the fact that we count each edge twice. Note that even for loops,
it gives the right answer due to our convention in the definition of the adjacency matrix
for undirected graphs. On the other hand, for the configuration model the expected
number of edges between vertices in U is given by %ZZ iev %, as a consequence of
(11.1). Thus, the important quantity is the difference between the existing edges and

the expected ones, namely
1 kik;
2 Z (aij B 2m>'

i,j€U

So far, we have used only one set U C V' which could correspond to one community.
What about a situation where we would like to consider several communities ? For
that purpose, we can complicate a little bit the above expression. Assume that the
vertices are distributed within N communities, or equivalently that they are labeled
with N different labels (or weights). Without loss of generality we can consider the set
{1,2,..., N} as this set of labels, and write ¢; € {1,2,..., N} for the label of the vertex
z;. With the usual notation of the Kronecker delta function we shall write dg, = 1 if
b =1;, and by, = 0 if 4; # ;. Then one defines the modularity

1 ik
Q=3 Zj: (aij _ z—mf)émj. (11.11)

Note that the preliminary factor ﬁ provides a kind of normalisation: we do not count
edges anymore, but fraction of the total number of edges.

Note that so far, the modularity has been computed once the labels are given.
In that sense, it is possible to check if a partition into some communities is valuable
or not. However, the correct question is how to detect communities, and check that
they are real 7 Such investigations are often called community detecting or modularity
mazximization, and it is considered as a complicated problem. If falls into the general
framework of discrete optimization problems. Indeed, first of all the problem is not really
well posed, since the number and the size of the communities have not been specified.
In addition, what makes a good partition, and is it possible to find a better one 7 It

188 CHAPTER 11. THE CONFIGURATION MODEL

is certainly not possible to look for all possible partitions of the vertices in different
subsets and to compute () for all of them.

Let us just sketch a few ideas, and refer to the specialized literature for further
information. Note that we provide information only in the very special case of two
communities.

First of all, let us define
k’ik’j
2m
and observe that), B;; = k; — Qk—;n >iki = k; —k; = 0, and similarly >, B;; = 0.
Let us also use the labels {—1, 1} instead of {1,2}. With these labels, namely with
l; € {—1,1} one gets that 6, = Mj;rl. Thus, by rewriting (11.11) and by using the
special property mentioned above one infers that

Bij = CLZ']‘ —

1
ZBH 0l +1) ZBUKE ymeal 22 (11.12)

where we have used the notation B for the matrix {B;;} and ¢ for the vector with the
n components ¢; € {—1,1}. One has also used '/ for the transpose vector. Observe
that ||¢||* = n, where || - || denotes the Euclidean norm in R™. Once recast in this
framework, we are looking at a maximization problem: Find the extremum of (11.12)
under the constraint that [[¢|| = y/n. There is just one problem: the solution we are
looking for should take place in {—1,1}", but we shall reformulate the probem in R"
(which is necessary for using tools from calculus) and therefore obtain a solution in R”.
Nevertheless, it will be possible to look at the closest solution inside our framework,
and hope that the error by imposing ¢; € {—1,1} will not change the result drastically.
Let us mention that in such a problem, one rarely looks for the best solution, but for a
solution quite close to it.

Our new problem can now be solved with the technique of Lagrange multiplier.
Namely, one looks for a solution of the system of equations

% [ZBM&@ + A(n - Zz?)] =0 Y Byl = M.
i g i J

By writting this system with matrices, we look for a solution of
Bl = \.

which corresponds to an eigenvalue / eigenvector problem. But which eigenvalue 7 By
inserting this solution into (11.12) one infers that

Q= t€B€ = tf)\f SRS
4m
Since we want to maximize Q, the corresponding eigenvalue should be maximum, or
in other terms we look for the maximal eigenvalue of B, and for the corresponding
eigenvector /.

11.3. COMMUNITY STRUCTURE, OR MODULARITY 189

The solution of this problem will certainly not have its solution in {—1, 1}". How-
ever, if u € R™ denotes the eigenvector corresponding to the highest eigenvalue, then
we can always set £; = +1 if u; > 0 and ¢; = —1 if u; < 0. The corresponding vector ¢
is not an eigenvector of the matrix B, but it turns out that the partition of the graph
according to the label given by ¢ is often quite good. In fact, this method provides a
surprisingly good solution in many situations, and has the advantage of being easily
implementable. More sophisticated methods exist, but as a first and simple approach,
this spectral method works well.

190 CHAPTER 11. THE CONFIGURATION MODEL

Chapter 12
Epidemics on graphs

In this final chapter we look at applications of graphs for the modelization of epidemic
spread. It is certainly a hot topic, but clearly we can only touch its surface. Further
investigations are encouraged. Note that in the first section, no graph is involved.

12.1 Basic models

In this section we introduce the simplest models for the spread of infections. These
models always consist in a certain number of compartments which contain a population
in a homogeneous state. For example, the compartment S contains the population
susceptible of getting a disease, while the compartment I contains the population which
has been infected. Now, these populations can consist of individuals (which means that
the compartments contain an integer number of elements) or can consist in a percentage
of the total population. In the first picture, the sum of the different compartments
provide the total number of individuals in the population, while in the second picture
the number in each compartment sum up to 1. Note that for simplicity, we shall continue
speaking about individuals even in the second picture. In both pictures, the content of
each compartment is time dependent. The evolution of the system is usually given by
a system of differential equations relating the content of the different compartments.
The number of compartments and the relations between their content determine the
complexity of the model. Several parameters are often involved, and determining these
parameters is often part of the problem.

12.1.1 The SI-model

This model is the simplest one and consist only of two compartments: S and I, which
means that once an individual has been infected, it remains infected and can forever
infect susceptible individuals. Let us introduce two variables describing the content of
S and I, namely s and ¢ (pronounced iota). We shall assume that s + ¢ = 1, which
means that s = 1 — . In fact, we should write ¢(t) and s(t) = 1 — ¢(t) with the variable
t representing the time, but the notation ¢ and s is commonly admitted.

191

192 CHAPTER 12. EPIDEMICS ON GRAPHS

For this system, the flow between the two compartments corresponds to the individ-
uals which get infected. In other words, some elements of S with leave this compartment,
and join I. On the other hand, I will simply receive this flow of individuals from S, but
nothing will escape from this compartment. The corresponding system of equations is

ds

{f =Pt (12.1)
5 = Bst

where 5 > 0 corresponds to a transmission coefficient or contact average. More precisely,

B provides the contact rate with random other individuals per unit time. Observe that

in this model, it is considered that the probability of getting infected is propositional

to the number of infected persons and to the number of susceptible individuals. Note

that since s + ¢ =1 we don’t need both equations, and in addition the second one can
be rewritten as

d
d—; = Bu(1 —). (12.2)
The equation (12.2) appears at many places, and is called the logistic equation. Its

solution is also known, namely

= 1pe’t
!t) = 1 — 19 + tpeft’

where ¢y corresponds to the value of ¢ at t = 0. Note that an initial condition is always
necessary for such an equation, but the choice of ¢ = 0 for the initial condition is rather
arbitrary. A representation of the function ¢ — «(¢) for ¢ > 0 is provided in Figure
12.1. It is easy to observe that for this model lim;_, ¢(t) = 1, whenever ¢y > 0. As a
consequence, s(t) will converge to 0 while ¢(t) will converge to 1. In other terms, for this
model, whenever a tiny part of the population is infected, then the entire population
will become infected, even if it takes a long time. This model is useful for some diseases,
but its outcome is clearly not the only possible one.

12.1.2 The SIR-model

Another common model consists in three compartments, which are commonly called S,
I and R, where the new compartment corresponds to individuals who have recovered
from the infection. Typically, an infected individual stays a couple of time unit in the
compartment I before leaving for the compartment R. Note that there are different
ways to modelize the time spent in I before moving to R. Here we consider only the
simplest situation, see Remark 12.1. The variables for this system are s, ¢, and r, and
they satisfy s + ¢+ r = 1. The corresponding system of equation reads

% = —fst
&= Bst— (12.3)
=

where the additional parameter v > 0 is interprated as 1/(mean infectious time).

12.1. BASIC MODELS 193

Fraction infected

Time ¢

Fig. 12.1. The solution of the logistic equation, from Sec. 16.1 of [Ne]

Remark 12.1. With the value vy, one can calculate the probability that an individual
15 still infected after a time t. Since the probability of recovering in any time interval
At is equal to YAt, and the probability of not recovering is 1 — yvAt, one gets that the
probability of still being infected after a total time t is given by

Jim (1 YAL)AE = et (12.4)

As a consequence, the probability that an individual is still infected after a total time t
and recovers during the following interval At is given by ye "' At, which corresponds to
an exponential distribution. This behavior is certainly not very realistic, since usually
an indiwidual has a disease for about a fixred duration (1 week, 2 weeks, 1 month,...),
while with the current model the individual is most likely to recover immediately, but
might also keep the disease for an exponentially long time. Nevertheless, this model is
often kept for its simplicity.

As for the SI-model, an initial condition has to be given. Here the natural choice is
Lo > 0 and ro = 0, meaning that no individual has recovered at time ¢ = 0. Obviously,
other choices are possible. Then, by eliminating the variable ¢ between the first and the
third equation of (12.3) one obtains

lds gdr

sdt ~ydt
leading to the solution

g = Soefﬁr/v
with sp = 1 — . By inserting into the third equation of (12.3) the relation t = 1—s—r
and the previous result for s one then infers that

d
d_: = (1 =7 — spe /7). (12.5)

194 CHAPTER 12. EPIDEMICS ON GRAPHS

Unfortunately, an explicit solution of this equation can be not obtained, but numerical
evaluations are at hand. Typical outcomes for the system (12.3) are shown in Figure
12.2. In this picture, the value § = 1, v = 0.4, 1o = 0.01, sg = 0.99, and ry = 0 have
been chosen.

0.8

0.6 ™~ Recovered

0.4
Infected

Fraction of population

0.2

0 5 10 15 20 25 30
Time ¢

Fig. 12.2. The solution of the system (12.3), from Sec. 16.1 of [Ne]

Let us emphasize that the final outcome here is different from the one of the SI-
model. Indeed, s(t) does not converge to 0 as t — 0o, which means that part of the pop-
ulation will never be infected. More precisely, when t — oo, there is no more evolution,
and therefore f‘i—’t” = 0. Thus, by using (12.5), one infers that lim;_, (1 —r—see™?"/7) = 0.
In other words, it means that r(co) satisfies the equation

r(oco) =1-— soe_gr(‘x’).

Usually, the value sq is very close to 1, and therefore one looks for a solution of
r(oo) =1 — e 5", (12.6)

Quite surprisingly, this equation is similar to (10.9) which appears in relation with
the existence of the giant component for the G(n,p) model. This means that we can
borrow the results obtained in that context, namely: when % > 1 there exists a solution
r(oo) of (12.6) satisfying r(c0) < 1, and accordingly that s(oco) > 0. When g <1,
no epidemic is taking place. The initial infected population recovers faster than the
susceptible individuals become infected. The variable ¢(t) will simply decrease, and no
local maximum like in Figure 12.2 will take place. Note that some tools for visualizing
the behavior of the evolution as a function of 8 and ~ are easily available on internet,
see for example [34]. Note that the transition g = 1, which means § = ~ is called a

B8

epidemic threshold. Because of its importance, the ration 5

number and is often denoted by Rj.

is called basic reproduction

12.2. PERCOLATION 195

12.1.3 Other models

There exist plenty of models based on the same ideas but with more compartments and
a more complicated differential systems. Some key ideas are for example that

(i) Some individuals might come back from R to S if they have not got any immunity
during the infected period,

(ii) The total population is not constant, due to births, deaths, or other factors,

(iii) Several diseases could interact and either facilitate each others, or prevent each
others,

(iv) Some diseases need complex contagions, which means that the exposition to one
infected person is not sufficient, but additional contacts with other infected per-
sons are necessary.

This list could be continued endlessly, see [35] for further information. We shall not
complicate any further our models, but let us mention that current models used for the
Covid-19 can take up to 21 compartments into account, see Figure 12.3, and involve a
system of 21 related equations.

Susceptible
Exposed
Asymptomatic
Presymptomatic
Symptomatic (mild)
Symptomatic (severe)
Hospitalized

Critical

Dead
Recovered -@

det detected

Fig. 12.3. One model used for the modelization of Covid-19, from [36]

12.2 Percolation

In the previous section, it was considered that any individual could be in contact with
any other. In reality, individuals have often a set of acquaintances, and do not interact so

196 CHAPTER 12. EPIDEMICS ON GRAPHS

often with other individuals uniformly at random. In the sequel, the set of acquaintances
will be described by a graph, with individuals represented by vertices, and with edges
representing the relations between the individuals.

In this framework, a concept which is going to play an important role is the one
of percolation or more precisely of site percolation or bond percolation. The idea of site
percolation is the following: consider a connected undirected graph, and let us start
removing some vertices uniformly at random. What is the proportion of vertices which
have to be removed such that the graph becomes disconnected ? The central point in
percolation theory is the existence of a threshold value such that the properties of the
graphs below or above this value are very different. This threshold value is also called a
phase transition, and it appeared already in the setting of random graphs in Chapters
10 and 11.

There exist different strategies for removing vertices of a graph. For example, one
can remove some of them independently of their degree, or choose only the ones with the
minimum or with the maximum degree. Depending on the purpose, a particular strategy
can be more useful than others. Let us look at the situation in which the vertices are
removed independently of their degree, they are chosen uniformly at random. We shall
use the parameter ¢ for quantifying the removal process: ¢ is called the occupation
probability, and ¢ = 1 means that all vertices are present, and none has been removed.
On the other hand, ¢ = 0 means all vertices have been removed, there is no more any
graph.

Let us now consider again the configuration model with a degree distribution
{pr}ren, and set u for the average probability that a vertex is not connected to the
giant component via a particular neighbour. Suppose also that part of the vertices have
been removed uniformly at random, and that ¢ provides the fraction of the remaining
ones. Then, the relation that u has to satisfy is not more provided by (11.8) but has to
be adapted if ¢ # 1. There are two ways to not be connected to the giant component via
a neighbour: either this neighbour has been removed, which happens with a probability
1 — ¢, or the neighbour is present (with a probability ¢) but this one is not connected
to the giant component. As a consequence, the new relation that u has to satisfy is

u=1-=¢+dgi(u) (12.7)

with g, defined in (11.9), see [Ne, Sec. 15.2.1] for the details. There is no way to solve
(12.7), but a graphical approach is proposed in Figure 12.4.

From the graphical approach, it is quite clear that the threshold value for ¢ takes
place when the r.h.s. of (12.7) satisfies

d
@(1 — o+ ¢91(U))‘u:1 =1

which means that the two functions represented on Figure 12.4 are tangent at u = 1.

Thus, this threshold ¢, satisfies ¢. = Q,L(l), which can be computed explicitly. By using
1

(11.9) for the explicit expression for g; one finds

_ (k)
b = 03— R (12.8)

12.2. PERCOLATION 197

1
/’,
) ¢ > ¢ p
Il -
.
P
P

P J

7 S
=
0.5 = S -
-
-
L J
,
4
. 1
.
.
/’ & T
L 4 1-¢
/

ok 1 |

1] 0.5 1

(a)] © ¢=4¢ #

ayu)

i ¢
05 - 05 F // - l

ol v i T S T I T S
0 0.5 1 0 0.5 1

Graphical solution The d¢<9g 0] ‘
generating function g (1) for the excess degree dis- . S
tribution, shown in (a), is compressed by a fac- Vi 1 1
tor of ¢ and shifted upward to give the curve - |
y = 1—¢+dgq(u), shown for three different values o
of ¢y in (b), (c), and (d). In (b), ¢ is sufficiently large 05 7
that there is a non-trivial solution where the curve !
crosses the dotted line y = u. In (d), ¢ is smaller 1 1=
and there is only a trivial solution atu = 1. Finally, ’
(c) shows the borderline case where the curve is)
tangent to the dotted line at u = 1. 1

0 05 1

Fig. 12.4. A graphical resolution of (12.7), from Section 15.2.1 of [Ne]

Interestingly, if the degree distribution follows a Poisson distribution, as for the G(n, p)
model, then one gets ¢. = %, with ¢ = (k) the mean degree of the graph. If the degree
distribution follows a power law with a € (2,3), it has already been mentioned that
(k?*) = co. In such a situation, ¢. = 0 meaning that no matter how many vertices will
be removed from the graph, a giant component will persist ! This is the sign of the
strong robustness of graphs with a degree distribution provided by a power law.

The previous construction is based on a uniform removal of nodes, but as already
mentioned, other strategies might be useful. We refer to Section 15.3 of [Ne] for alter-
native constructions.

198 CHAPTER 12. EPIDEMICS ON GRAPHS

12.3 Epidemic on graphs and percolation

From now on, let us consider a fixed graph, with vertices representing individuals and
edges representing the relation between these individuals. Clearly, graphs are loopless
and unoriented, but an orientation could be added for some applications. Let us also
introduce a transmission rate or infection rate B which is the probability per unit time
that an infection will be transmitted between two individuals through an edge between
the corresponding two vertices. Let us emphasize that this coefficient is slightly different
form the one already introduced in (12.1) since in the present situation it corresponds
to the rate of contact with just one individual connected through one edge. Observe
that the transmission rate 8 depends on the disease itself, but also on the social and
behavioural parameters of the population.

A precise evolution equation for a disease on a graph will only be introduced in
the next section. We provide here only some heuristic considerations, together with
a trick. We start by emphasizing a major difference between the previous continuous
models, and any models on graphs. Indeed, if the transmission of a disease takes place
trough edges and if at the initial time there exists only one single infected individual,
then only the component of the corresponding vertex might expect an epidemic. The
other components will remain uninfected. As a consequence, if a graph contains a giant
component and several small components, with a fraction S of vertices in the giant
component, the maximum fraction of individuals that one single initial individual can
infect is precisely S, if this initial individual is in the giant component. If the corre-
sponding vertex is in a small component, only a very small number of individuals might
get the disease. In summary, the connected components play now a role which simply
do not exist in the continuous models.

In a graph’s version of the SI-model, one expects that the entire connected com-
ponents of the initial infected individual will become infected, as soon as § > 0. This
outcome is due to the fact that once infected, one individual will remain infected and
can infect others forever.

Let us now present an heuristic argument for an analog of the SIR-model on graphs.
Consider firstly one infected vertex which is connected to a susceptible vertex. By a
computation similar to the one performed in (12.4), one infers that the probability that
the disease is not transmitted during an interval of time 7 is given by e #7, where 3 is
the transmission rate. Thus, the probability that the disease is transmitted during this
interval is

p=1—e". (12.9)

If we now consider that the infected individual recovers precisely after a period of time
equal to 7, the probability that he would have infected any connected vertex before
recovering is precisely given by (12.9). We call this quantity the transmission probability.
Let us emphasize that in this argument, the paradigm used in Remark 12.1 is changed:
now the infected person is no more infectious after a time 7.

In this framework, the transmission probability is a constant over the graph, and
any susceptible individual has an equal probability ¢ of getting the disease through

12.4. TIME DEPENDENT EVOLUTION 199

an infected neighbour. A trick, already introduced decades ago, is to use some ideas
coming from the theory of percolation. Assume that an edge in the graph is present
with a probability ¢, and absent with a probability 1 — ¢. Equivalently, one can assume
that the fraction 1 — ¢ of the edges has been removed. As a consequence, the remaining
edges correspond to the ones along which the disease can propagate. However, if too
many edges has been removed, an initially connected part of the graph might now be no
more connected. The threshold and phase transition mentioned in the previous section
are now going to play a role. Note however that there is a small difference between the
current situation and the one of the previous section: here one should speak about bond
percolation or edge percolation while site percolation was discussed before. Fortunately,
this difference will not play any role for our purpose.

Let us again consider the configuration model, and let ¢ be the transmission prob-
ability given in (12.9). Even though the transmission probability is associated with
edges, if we set u for the average probability that a vertex is not connected to the giant
component via a particular neighbour, one gets again the self-consistent equation for u
obtained in (12.7), namely u = 1 — ¢ + ¢ g1 (u) with ¢g; defined in (11.9). It follows that
the result obtained in the previous section for site percolation can be used again, and
one infers a transition for ¢ given by (12.8). This result together with (12.9) leads to
the relation e

Br=-In(1-¢.) —ln(<k2>_2<k>). (12.10)
Let us recall that the denominator on the r.h.s. is positive precisely when a giant
component exists, see (11.7). Thus, if 57 is bigger that the value on the r.h.s. and if the
initial infected individual belongs to the giant component, an epidemic is expected. On
the other hand, if 57 is smaller than the r.h.s. then an epidemic will not take place, no
matter where the initial infected individual is located. In the former case, note however
that not all the individuals might get infected, only the one in the giant component,
which does not represent the entire population in general.

As a consequence of (12.10), a certain control on the propagation of the disease
is possible through S. This parameter is partially due to the inherent propagation
properties of the disease itself, but also to the behavior of the population (wear a
mask). The r.h.s. is a property of the social relations, it can also be adjusted (less
interactions between individuals) even if the effect is less clear through this formula.

12.4 Time dependent evolution

The link between epidemic on graphs and percolation can only lead to some asymptotic
results. For a more precise picture, an evolution equation is necessary, and has not been
introduced so far. We shall use the shorter notation introduced in Section 11.3, namely
a vertex is simply denoted by i. Then, we write s; = s;(¢) for the probability that the
vertex i is susceptible, (; = ¢;(t) for the probability that the vertex i is infected, and
r; = r;(t) for the probability that the vertex i has recovered. For the graph’s version of

200 CHAPTER 12. EPIDEMICS ON GRAPHS

the SI-model, the relation s; 4+ ¢; = 1 holds, while for the analog of the SIR-model the
condition is s; + ¢; +r; = 1 for any .

Let us recall that the adjacency matrix has been introduced in Definition 2.1. Here,
we shall simply denote it by A = {a;;}. We first consider the SI-system. In this case,
the natural analog of the differential system (12.1) takes the form

ds; __
E - _/851' Z] aijl/j — db - _ﬁslz al](S]) (1211)
T = Bsi) aijLy T =B =) X,

for any 7. Again, one of these equations is sufficient since s; + ¢; = 1. For SIR-system,
the natural analog of the differential system (12.3) takes the form

% = —fsi Zj Qijls

du _

G = Bsi D aijly — Y (12.12)
dri _

d_:; = Vi,

where v is the recovery rate, or more precisely the probability per unit time that an
infected individual will recover. Note that the content of the last equation is closer to
the approach taken in Section 12.1.2 than to the approach mentioned in Section 12.3.

An initial condition has to be associated to these systems. One possibility if to
consider ¢; = = for any ¢, where c is a small positive integer and n represent the number
of vertices of the graph or of the giant component. The idea is that ¢ vertices are initially
infected, and that the probability of being infected is distributed uniformly at random
over all vertices. Clearly, other choices are possible.

The systems of equations (12.11) and (12.12) are usually not solvable explicitly, and
several approaches have been developed. One can either look at numerical simulations,
or get some analytical results after imposing some simplifications to these systems. Let
us just mention a few key ideas. One approach is to consider the initial condition as
mentioned above, which makes all initial ¢; small, and then approximate the second
term in (12.11) as %4 =~ 3 > @ijtj- In other terms, it means ignoring the second order
terms. This can be done for a short time approximation of the evolution, but the result
is usually not so good. A better approach is called pair approximation and consider the
product s;¢; as a new variable. More precisely, one sets p;; for the probability that j is
infected given that 7 is not infected. Then, it is possible to rewrite a system of equation
for the variable p;; and solve it rather explicitly (once a suitable assumption is taken
on the relations between triplet of vertices). The outcome is usually much better than
in the first approach, but whenever the graph is highly transitive, the approximation
is no more suitable. Finally, a heuristic approach is to suppose that all vertices with
the same degree have the same probability of getting infected at any time. With this
assumption, one ends up with new variables which depend only on the degree k£ and
no more on any specific vertex . Surprisingly, this approach leads to rather accurate
prediction. We refer to Sections 16.5 and 16.6 of [Ne] for more information on these
approaches. For finite graphs of different types, simulations are quite enlightening and
can be easily performed on the website [37].

12.4. TIME DEPENDENT EVOLUTION 201

Let us end this section with the so-called mean field approach. The main idea of
mean field theory is the study the behavior of high-dimensional random models by
studying a simpler model that approximates the original by averaging over degrees of
freedom. Here, the simpler variables will the average number of vertices in a prescribed
state. For that purpose, let us first denote by X; = X;(¢) the function (random variable)
taking the three values S, I, or R depending if the vertex i is susceptible, infected or
has recovered at time ¢. We then define for A € {S, I, R} the expected value

A1) = Y P(X(1) = 4)

there P is the probability, and where we have assumed that the summation is taking
place on the vertices of a finite simple graph. Then, [S](t) represents the expected value
for the number of vertices which are susceptible, [I](t) the one for the number of infected
vertices, and [R](t) the one for the number of vertices which have recovered. Clearly,
for the SI-model one has [S](t) + [I](t) = n, if n denotes the number of vertices of the
graph, while for the SIR-model one has [S](t) + [I](t) + [R](t) = n

Let us now define for A, B,C € {S, I, R} the new quantity

[AB](t) := Z a;;P(Xi(t) = A, X;(t) = B)

and
[ABC(t) :=) a;a;P(Xi(t) = A, X;(t) = B, X;(t) = C),
irj,k

where {a;;} denote the adjacency matrix for the graph. These quantities correspond
to number of expected connected vertices which are in a prescribed states. Note that
the role of the adjacency matrix is precisely to keep track of the vertices which are
connected. Note also that [AB](t) = [BA](t), but that such relations with three sets do
not hold in general. Note also that for the SI-model, the relation

[SS](t) + [SI](t) + [1S](t) + [II](t) = nc = n(k)

where ¢ or (k) denote the mean degree or (average degree) in the graph. Clearly, a
similar relation holds for the STR-model as well.

With these notations, the individual dynamics introduced in (12.11) and (12.12)
can be transformed into collective dynamics, namely

{[S](t) = 43 = —pIsI)(1) (12.13)

and

t) —~]() (12.14)

202 CHAPTER 12. EPIDEMICS ON GRAPHS

Observe that the r.h.s. of (12.14) depends on the dynamics of [S7](¢). Thus, in order
to solve this system, we could look for an additional equation. In fact, all quantities
[AB](t) with A, B € {S,I, R} are related, as shown in Figure 12.5. Note that in this
figure, 7 should be replaced by . Thus, we can look for additional relation and find
that

d[5£) _ —[ST](t) + B([SSI(t) — [IST)(t) — [ST](1))
and
% — —2B[SSI](t).

Similar relation can also be found for [IT](t), [SR](t), [[R](t) and [RR](t). Clearly,
one could go one, and get an infinite set of differential equations. However, the trick
is do do some approximations for some products [A...Z](t). For example, a common
approximation takes the form

[AB](#) [BC](t)
[BI(#)

and such a formula will “close” the system of equations. Note that such approximations
can be justified according to the structure of the graphs, but they are always approx-
imations. Clearly, by keeping more terms, one gets a better approximation of the true
solution, but the price is an increase of complexity. Life is all about balance ©. For
further investigations about epidemics on networks, we refer to the monograph [KMS].

T|ST v I
B |

124

[ABC](t)

¥

NI
S ,
$ X
s Iy
™ %, 2
MEPNCG /SR,
N7
ISR] /\ [RS]
N 2
2//% \,/H ﬁj‘\./ Qf’\\
[IR] [R]
x N

Fig. 12.5. The first two flow diagrams for the SIR-model, from Fig. 4.3 of [KMS)]

Bibliography

[BG] S. Baase, A. van Gelder, Computer algorithms, Introduction to design and anal-
ysis, Addison-Wesley, 2000.

[CH] J. Clark, D.A. Holton, A first look at graph theory, Wold Scientific, 1991.
[Die] R. Diestel, Graph theory, Fifth edition, Springer, 2017.

[GYA] J.L. Gross, J. Yellen, M. Anderson, Graph theory and its applications, CRC
press, 2019.

[KMS] 1. Kiss, J. Miller, P. Simon, Mathematics of epidemics on networks, Springer,
2017.

[Ma] B. Maurer, The King Chicken Theorems, Mathematics Magazine Vol. 53, (1980),
pp. 67-80.

[Mo] J.W. Moon, Topics on tournaments, Holt, Rinehart and Winston, Inc., 1968.
[Ne] M. Newman, Networks, second edition, Oxford University Press, 2018.

[1] https://en.wikipedia.org/wiki/Permutation_group

2] https://proofwiki.org/wiki/Definition: Adjacency Matrix

[3] https://en.wikipedia.org/wiki/Directed_acyclic_graph

[4] https://thespectrumofriemannium.wordpress.com/tag/homeomorphically-
irreducible-tree/

[5] https://en.wikipedia.org/wiki/Decision_tree

[6] https://en.wikipedia.org/wiki/Tree_traversal

[7] https://en.wikipedia.org/wiki/Binary_expression_tree
[8] https://en.wikipedia.org/wiki/Binary_search_tree

9] https://en.wikipedia.org/wiki/Catalan_number

203

204 BIBLIOGRAPHY

[10] https://en.wikipedia.org/wiki/Cayley’s_formula

[11] https://en.wikipedia.org/wiki/Steiner_tree_problem

[12] https://www.cs.princeton.edu/~wayne/kleinberg-tardos/
[13] https://en.wikipedia.org/wiki/Dijkstra’s_algorithm

[14] https://steemit.com/popularscience/@krishtopa/dijkstra-s-algorithm-of-finding-
optimal-paths

[15] https://en.wikipedia.org/wiki/Menger’s_theorem
[16] https://en.wikipedia.org/wiki/Seven_Bridges_of_Konigsberg

[17] https://www.geeksforgeeks.org/chinese-postman-route-inspection-set-1-
introduction/

[18] https://en.wikipedia.org/wiki/Double_factorial

[19] https://en.wikipedia.org/wiki/Petersen_graph

[20] https://en.wikipedia.org/wiki/Heuristic_(computer_science)

[21] https://www.codingalpha.com/christofides-algorithm-c-program/

[22] O. Svensson, J. Tarnawski, L. Végh, A Constant-Factor Approzimation Algorithm
for the Asymmetric Traveling Salesman Problem, Preprint arXiv:1708.04215, 2017.

[23] https://en.wikipedia.org/wiki/Floor_and_ceiling_functions

[24] https://www.ics.uci.edu/~eppstein/junkyard /euler/

[25] https://en.wikipedia.org/wiki/Four_color_theorem

[26] https://n.freemap.jp/tw/20150403-23572634232

[27] https://en.wikipedia.org/wiki/Five_color_theorem

[28] https://en.wikipedia.org/wiki/Strongly_connected_component
[29] https://en.wikipedia.org/wiki/Social_choice_theory

[30] https://cp-algorithms.com/graph/edmonds_karp.html

[31] https://en.wikipedia.org/wiki/Edmonds-Karp_algorithm

[32] https://brilliant.org/wiki/hall-marriage-theorem/

[33] https://en.wikipedia.org/wiki/Erdés-Rény_model

BIBLIOGRAPHY 205

[34] http://math.colgate.edu/~wweckesser /solver/DiseaseSIR.shtml
[35] https://en.wikipedia.org/wiki/Compartmental models_in_epidemiology

, Amstrong, . Runge, J. Gerardin, entifying the measurements re-
36] E, Amst M. R J. Gerardin, Identifyi th t
quired to estimate rates of COVID-19 transmission, infection, and de-

tection, wusing wvariational data assimilation, medRxiv preprint doi:
https://doi.org/10.1101/2020.05.27.20112987

[37] http://systems-sciences.uni-graz.at/etextbook/networks/sirnetwork.html

	The basics
	Graphs
	Walks and paths
	Cycles
	Weighted graphs
	Appendix
	Strongly connected oriented graph and bipartiteness
	Travelling Salesman Problem
	(G), (G), rad(G), diam(G), girth(G), and all that

	Representations and structures
	Matrix representations
	Isomorphisms
	Automorphisms and symmetries
	Subgraphs

	Trees
	Trees and forests
	Rooted trees
	Traversals in binary trees
	Applications
	Arithmetic expression trees
	Binary search trees
	Huffman trees
	Priority trees

	Counting binary trees
	Appendix
	Operations on binary search trees
	An Improved Inserting Algorithm to Binary Search Trees

	Spanning trees
	Spanning trees and their growth
	Depth-first and breadth-first search
	Applications of DFS
	Minimum spanning trees and shortest paths
	Appendix
	A few problems on spanning trees
	Greedy algorithm
	Application of graph theory in route search algorithm for route guidance system in automobiles
	Floyd–-Warshall algorithm

	Connectivity
	Vertex and edge connectivity
	Menger's theorem
	Blocks and block-cutpoint graphs
	Appendix
	Some inequalities

	Optimal traversals
	Eulerian trails
	Postman tour
	Hamiltonian paths and cycles
	The traveling salesman problem

	Graph colorings
	Vertex-colorings
	Plane graphs
	Map-colorings
	Appendix
	The five color theorem
	Some problems related to plane graphs

	Directed graphs
	Strongly connected components
	Tournaments
	Project scheduling

	Flows
	Capacity, flows and cuts
	Maximum flow problem
	Applications
	Flow and Menger's theorem
	Matching
	Transversals

	Appendix
	Hall's marriage theorem

	Random graphs: the G(n,p) model
	Basic results
	Components
	Clustering coefficient and path lengths
	Weaknesses

	The configuration model
	Construction, and basic properties
	Additional properties
	Community structure, or modularity

	Epidemics on graphs
	Basic models
	The SI-model
	The SIR-model
	Other models

	Percolation
	Epidemic on graphs and percolation
	Time dependent evolution

