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The knowledge of the universe future is of fundamental importance for any advanced civilization.
We study the future of the singular dark universe where thermal effects due to the Hawking radiation
on the apparent horizon of the FRW universe are taken in the consideration. It is shown that the
dark universe which ends up as finite-time Type I and Type III singularity or the infinite-time
Little Rip singularity transits to the finite-time Type II singularity thanks to account of the thermal
effects. However, Type II and IV singular universe does not change the qualitative behavior. The
combined account of the quantum and thermal effects shows that depending on the specific features
of the universe only one of the effects is dominant. When (conformal matter) quantum effects are
dominant, the future singularity is usually removed while for dominant thermal effects the universe
final state is Type II singularity.

PACS numbers:

I. INTRODUCTION

Theoretical discovery of accelerating dark energy universe significally changed our knowledge about the universe
future. It is rather well-known that the dark energy epoch may be qualitatively understood as universe filled by the
exotic effective fluid with negative pressure. Depending on its structure and in correspondence with observable bounds,
current dark universe may show phantom (weff < −1), de Sitter (weff = −1) or quintessential (−1 < weff < −1/3)
behaviour where weff is the effective universe EoS parameter. So far the precise understanding in which dark era we
live is still lacking. However, for big sub-class of phantom or quintessential universes it turns out that the universe
ends up in some sort of future singularity. It is fundamentally important for any advanced civilization to know what
happens with the universe in the future even this event is rather distant (few dozen billion years).

The most known type of finite-time future singularity is related with phantom evolution and is called Big Rip
singularity. In this case the universe ends up very rapid expansion and any extended object will be destroyed by the
tidal force some million years before reaching the Rip time [1]. Apart from this most strong singularity there are few
soft singularities which are classified as Type II, III, and IV singularities. For the Big Rip singularity, the Hubble
rate H diverges in a finite time and the time tRip that the divergence occurs is called the Big Rip time. Note that
this is the classical consideration. However, taking into account different related effects (like quantum effects, strong
electromagnetic fields, condensation, etc.) may qualitatively change the classical consideration and give the realistic
picture of the future universe. First of all, let us remind that the large Hubble rate H means the large temperature
of the universe. The Hawking radiation effectively should be generated at the apparent horizon of the FRW universe
[2, 3]. Eventually, it should give the important contribution to the energy-density of late-time universe, especially
right before the Rip time. In other words, at large temperature which may even diverge at the Rip time, there should
appear thermal radiation. Recently in Ref. [4], it was argued that the kind of cyclic cosmology might be realized
instead of the Big Rip singularity due to effect of thermal radiation. The purpose of this paper is to study what
could really happen with the future singular dark universe when the effect of thermal radiation is included. In the
next section we consider the dark universe with Type I, II, III, and IV finite-time future singularities as well as the
infinite-time Little Rip singularity in the presence of thermal effects due to the Hawking radiation. We demonstrate
that for Type II and IV singular universe there is no qualitative effect to its final state due to the thermal radiation.
Type I and III singular universes as well as the Little Rip universe ends up as Type II singularity due to thermal
effects. The third section is devoted to the account of both, quantum and thermal effects to future singularities. We
show that quantum effects as a rule remove future singularity creating the non-singular universe. When quantum and
thermal effects are taken into consideration, depending on the specific features of the theory (particles content, fluids,
temperature, etc.) only one of the effects becomes dominant. For instance, when the thermal effects are dominant,
the universe ends up at Type II singularity in the same way as without quantum effects. Finally, the summary and
some outlook are given in the last section.
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II. FINITE-TIME FUTURE SINGULARITIES IN THE DARK UNIVERSE: THE ACCOUNT OF
THERMAL EFFECTS

We start from a spatially-flat FRW universe,

ds2 = −dt2 + a(t)2
∑

i=1,2,3

(
dxi
)2

. (1)

Here a(t) is a scale factor. We consider dark energy epoch when the effective equation of state (EoS) of the universe
is around −1. In this case, the accelerating universe may evolve in one of the following ways: phantom evolution,
quintessential evolution, and de Sitter expansion (weff = −1). What happens with such universe in the future? In
principle, depending on specific aspects of time-dependent effective EoS of the universe any future is possible including
deccelerating or ever-expanding universe. Let us consider here the sub-class of dark energy universes which lead to
finite-time future singularities.

Let us remind that the FRW equations for general relativity (GR) coupled with general perfect fluid with the
pressure p and the energy-density ρ are given by

ρ =
3

κ2
H2 , p = − 1

κ2

(
3H2 + 2Ḣ

)
. (2)

Here H ≡ ȧ/a.
For the dark energy universes ending at finite-time singularity it has been developed the classification of such

singularities in Ref. [5] (see also [6]):

• Type I (“Big Rip”) Ref. [1]: This is a characteristic crushing type singularity, for which as t → ts, the scale
factor a(t), the total effective pressure peff and the total effective energy density ρeff diverge strongly, that is,
a → ∞, ρeff → ∞, and |peff | → ∞. For works on this type of singularity, see Refs. [7–20].

• Type II (“sudden”): This type of singularity is milder than the Big Rip scenario, and it is also known as a
pressure singularity, firstly studied in Refs. [21, 22], and later developed in [23–32], see also [33, 34]. Here, only
the total effective pressure diverges as t → ts, and the total effective energy density and the scale factor remain
finite, that is, a → as, ρeff → ρs and |peff | → ∞.

• Type III : In this type of singularity, both the total effective pressure and the total effective energy density
diverge as t → ts, but the scale factor remains finite, that is, a → as, ρeff → ∞ and |peff | → ∞. Then Type III
singularity is milder than Type I (Big Rip) but stronger than Type II (sudden).

• Type IV : This type of singularity is the mildest from a phenomenological point of view. It was discovered
in Ref. [35] and further investigated in [5, 36–42]. In this case, all the aforementioned physical quantities
remain finite as t → ts, that is, a → as, ρeff → 0, |peff | → 0, but higher derivatives of the Hubble rate, H(n)

(n ≥ 2) diverge. This singularity may be related with the inflationary era, since the Universe may smoothly
pass through this singularity without any catastrophic implications on the physical quantities. As was shown
in [43], the graceful exit from the inflationary era may be triggered by this type of soft singularity.

Here, ρeff and peff are defined by

ρeff ≡ 3

κ2
H2 , peff ≡ − 1

κ2

(
2Ḣ + 3H2

)
. (3)

Note that ρeff and peff are different from ρ and p in (2). For example, ρeff and peff may include the contribution
from the modified gravity. Then Eq. (3) shows that for Type I and III singularities, H diverges but for Type II and

IV, H is finite. However, in Type II singularity Ḣ diverges. We will be interesting in the account of thermal effects
especially for Type I and III singularities.

There is also a scenario called the Little Rip cosmology [44–46] where the universe enters to singular state at infinite
future. In this scenario, the Hubble rate is finite in the finite time but it becomes infinite in the infinite future. We
show that thermal radiation will become important in the far future for the Little Rip evolution much before the
arrival to the infinite Rip time.
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A. Big Rip with thermal effects: transition to Type II singularity

The Big Rip singularity of the universe can be generated by the cosmic fluid, which is often called “phantom”, with
the equation of state (EoS) parameter w, which is defined by

w =
p

ρ
, (4)

for the pressure p and the energy density ρ for general cosmic fluid, it is less than −1, w < −1. By assuming the
conservation law,

0 = ρ̇+ 3H (ρ+ p) , (5)

we find

ρ = ρ0a
−3(1+w) , (6)

with a positive constant ρ0. Then in case of the phantom, because −3 (1 + w) > 0, the energy density dominates at
late time where a becomes large. Then by using the FRW equations (2), we find H behaves as

H ∝ 1

tRip − t
, (7)

and H diverges at t = tRip, which is the Big Rip singularity.
Near the Big Rip singularity, the temperature of the universe becomes large and we may expect the generation of

the thermal radiation as in the case of the Hawking radiation. The Hawking temperature T is proportional to the
inverse of the radius rH of the apparent horizon and the radius rH is proportional to the inverse of the Hubble rate
H. Therefore the temperature T is proportional to the Hubble rate H. As well-known in the statistical physics, the
energy-density ρt rad of the thermal radiation is proportional to the fourth power of the temperature. Then when H
is large enough, we may assume that the energy-density of the thermal radiation is given by

ρt rad = αH4 , (8)

with a positive constant α. At the late time, the FRW equation (2) should be modified by the account of thermal
radiation,

3

κ2
H2 = ρ0a

−3(1+w) + αH4 . (9)

Here we assume w < −1. At the late time but much before the Big Rip time, the first term in the equation (9)
dominates and therefore the universe expands to the Big Rip singularity, where the Hubble rate H behaves as in (7).
Then near the Big Rip time tRip, the second term in (9) should dominate and we obtain

3

κ2
H2 ∼ αH4 , (10)

whose non-trivial solution is given by

H2 = H2
crit ≡

3

κ2α
. (11)

As H goes to a constant, we might expect that the space-time goes to the asymptotically de Sitter space-time but it is
not true. Even in the de Sitter space-time, the scale factor a becomes larger and larger as an exponential function of
t, then the first term in the equation (9) should dominate finally. The Hubble rate H is, however, already larger than
Hcrit, there is no solution of (9). Then the universe should end up at finite time with some kind of the singularity.

For more quantitative analysis, we solve (9), with respect to H2 as follows,

H2 =

3
κ2 ±

√
9
κ4 − 4αρ0a−3(1+w)

2α
. (12)

Because H2 is a real number, we find that there is a maximum for the scale factor a,

a ≤ amax ≡
(

9

4κ4αρ0

)− 1
3(1+w)

. (13)
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Then we consider the behavior of a or H around the maximal a = amax by writing the scale factor a as

a = amaxe
N . (14)

Here N corresponds to the e-folding number but N should be negative because a < amax. Furthermore because we
are interested in the region a ∼ amax, we assume |N | ≪ 1. Then by using H = dN

dt , Eq. (12) can be rewritten as(
1∓ 1

2

√
3 (1 + w)N

)
dN ∼ dt

√
3

2ακ2
, (15)

which can be integrated as

N ∓ 1

3
(−N)

3
2

√
−3 (1 + w) ∼ − (tmax − t)

√
3

2ακ2
. (16)

Here a = amax when t = tmax. Because we are assuming |N | ≪ 1, Eq. (16) can be rewritten as

N ∼ − (tmax − t)

√
3

2ακ2
∓
√
−3 (1 + w)

3

(
(tmax − t)

√
3

2ακ2

) 3
2

. (17)

Because H = dN
dt , we find

H ∼
√

3

2ακ2
∓
√
−3 (1 + w)

2

(√
3

2ακ2

) 3
2

(tmax − t)
1
2 ,

Ḣ ∼∓
√
−3 (1 + w)

4

(√
3

2ακ2

) 3
2

(tmax − t)
− 1

2 . (18)

Then in the limit t → tmax, although H is finite but Ḣ diverges. Therefore the universe ends up with Type II
singularity at t = tmax and the cyclic cosmology does not occur. Thus, we demonstrated that the account of thermal
effects near the Big Rip singularity changes the universe evolution to the finite-time Type II singularity.

B. Type III singularity with account of thermal effects: transition to Type II singularity

The scale factor which generates Type III singularity can be expressed as

a(t) = ase
−β(ts−t)γ , (19)

with positive constants as, ts, β, and γ. In order to generate Type III singularity we restrict the value of γ as

0 < γ < 1 . (20)

Then the Hubble rate H is given by

H = βγ (ts − t)
γ−1

. (21)

Hence, in the limit t → ts, H diverges but the scale factor a is finite. From Eq. (3) it follows

ρeff =
3

κ2
β2γ2 (ts − t)

2(γ−1)
, peff = − 1

κ2

(
−2βγ (γ − 1) (ts − t)

γ−2
+ 3β2γ2 (ts − t)

2(γ−1)
)
. (22)

By deleting (ts − t), we find the following equation of state,

peff = −ρeff +
2βγ (γ − 1)

κ2

(
κ2ρeff
3β2γ2

) γ−2
2(γ−1)

. (23)

Using the conservation law (5) or directly using (19) and (22), one gets

ρeff =
3

κ2
β2γ2

(
1

β
ln

(
as
a(t)

)) 2(γ−1)
γ

=
3γ2β

2
γ

κ2

(
ln

(
as
a(t)

)) 2(γ−1)
γ

. (24)
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With the account of the thermal radiation, instead of (9), we have

3

κ2
H2 = A

(
ln

(
as
a(t)

))−B

+ αH4 , A ≡ 3γ2β
2
γ

κ2
, B ≡ −2 (γ − 1)

γ
> 0 . (25)

Then instead of (12), we obtain

H2 =

3
κ2 ±

√
9
κ4 − 4αA

(
ln
(

as

a(t)

))−B

2α
. (26)

Then in order that H2 to be real, we find that there is a maximum amax for a(t),

a(t) ≤ amax ≡ ase
−( 9

4Aακ2 )
− 1

B
< as . (27)

Because amax is smaller than as, we find that dark universe with the future Type III singularity is transited to the
one with Type II singularity due to the account of thermal effects.

C. Thermal radiation for Type II and Type IV singularities

In case of Type II and Type IV singular universes, the Hubble rate H behaves as

H ∼ H0 + h0 (ts − t)
−β

. (28)

When 0 > β > −1 the behavior of H corresponds to Type II and when β < −1 but β is not an integer, to Type IV.
When one considers general matter, the first FRW equation where usual matter and the thermal radiation as in

(9) are included, is given by

3

κ2
H2 = ρ+ αH4 . (29)

Here ρ is matter energy-density. In case of Type II or Type IV singularity, if H0 ̸= 0, near the singularity, the l.h.s.
goes to a finite value 3

κ2H
2 → 3

κ2H
2
0 and the contribution from the thermal radiation in the r.h.s. also becomes finite,

αH4 → αH4
0 . Therefore the thermal radiation does not change the structure of the singularity. If H0 = 0, the r.h.s.

behaves as (ts − t)
−4β

and the contribution from the thermal radiation behaves as (ts − t)
−2β

. Because β < 0, the
contribution from the thermal radiation is less dominant and therefore the thermal radiation does not change the
structure of the singularity.

D. Little Rip universe with the account of thermal effects

In the qualitatively-different from the above ones, the Little Rip scenario [44–46], the Hubble rate H becomes
infinite at the infinite future. A simple example is given by

H = H0t , (30)

with positive H0. Then

ρeff =
3

κ2
H2

0 t
2 , peff = − 1

κ2

(
2H0 + 3H2

0 t
2
)
. (31)

The equation of state is given by

peff = −ρeff − 2H0

κ2
, . (32)

Eq. (30) also shows that the scale factor a(t) is given by

a(t) = a0e
1
2H0t

2

, (33)
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with a constant a0. Then Eq. (31) shows

ρeff =
6H0

κ2
ln

(
a(t)

a0

)
. (34)

When we include the contribution from the thermal radiation, the equation corresponding to (9) or (25) has the
following form,

3

κ2
H2 =

6H0

κ2
ln

(
a(t)

a0

)
+ αH4 , (35)

and the equation corresponding to (12) or (26) has the following form,

H2 =
3

2ακ2

(
1±

√
1− 2αH0κ2

3
ln

(
a(t)

a0

))
. (36)

Again, from Eq. (36) it follows that there is a maximum of the scale factor a,

a(t) ≤ amax ≡ a0e
3

2ακ2 , (37)

and therefore the space-time corresponds to Type II singularity. Thus we again see that due to the account of thermal
effects, the dark energy which should bring the universe to the Little Rip at the infinite future changes its evolution
to Type II singularity. The corresponding transition occurs!

III. FUTURE SINGULARITIES WITH ACCOUNT OF QUANTUM AND THERMAL EFFECTS

In the previous sections, we have shown that any scenario, where the Hubble rate becomes infinite in the finite
or infinite future as for Type I (Big Rip) and Type III singularities and in the Little Rip universe scenario, will
not be realized if we include the effect from the thermal radiation. The universe will change its evolution to Type II
singularity. From other side when the universe approaches to the future singularity, its curvature and other geometrical
invariants grow up. As a result, the quantum effects may change the behavior of the future space-time singularity.
For example, one can show that quantum effects may change the structure of future singularity, see [22, 35] (see also
[47–51]). In this section, we use simple qualitative arguments of Ref. [52] to show the role of quantum effects in
conformally-invariant theories to future singularity and compare it with the effect due to thermal radiation.

As is well-known, the conformal anomaly TA has the following form:

TA = b

(
F +

2

3
□R

)
+ b′G + b′′□R . (38)

Here F is the square of the 4D Weyl tensor, and G is the Gauss-Bonnet invariant, which are given by

F =
1

3
R2 − 2RµνR

µν +RµνρσR
µνρσ , G = R2 − 4RµνR

µν +RµνρσR
µνρσ . (39)

In case that matter is conformally-invariant and there appear N scalars, N1/2 spinors, N1 vector fields, N2 (= 0 or
1) gravitons, and NHD higher-derivative conformal scalars, b and b′ have the following forms,

b =
N + 6N1/2 + 12N1 + 611N2 − 8NHD

120(4π)2
, b′ = −

N + 11N1/2 + 62N1 + 1411N2 − 28NHD

360(4π)2
. (40)

As is shown in (40), b is positive and b′ is negative for the usual matter. An exception is the higher-derivative
conformal scalar. The value of b′′ can be always shifted by adding R2 to the classical action.

If we write the energy density ρA and pressure pA corresponding to the trace anomaly TA, we find TA = −ρA+3pA.
Then by using the energy conservation law in the FRW universe

0 =
dρA
dt

+ 3H (ρA + pA) , (41)

we can delete pA as

TA = −4ρA − 1

H

dρA
dt

, (42)
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which can be integrated and we find the following expression for ρA [5]:

ρA = − 1

a4

∫
dta4HTA . (43)

By using the above expression and identifying ρeff = ρA, one may consider the FRW equation (3).
However, as in [52], for simplicity, we consider the trace of the Einstein equation including the trace anomaly, as

follows,

R = −κ2

2
(Tmatter + TA) . (44)

Here Tmatter is the trace of the matter energy-momentum tensor. For the FRW universe (1), F and G are given by

F = 0 , G = 24
(
ḢH2 +H4

)
. (45)

What we like to show is that if there is a singularity, the trace equation (45) cannot be consistent. Especailly we show
that the contribution from the conformal anomaly in the r.h.s. of Eq. (44) is more singular than the scalar curvature
in the l.h.s. If the contribution from the matter although the conformal anomaly may give some corrections. Note
that rigorous study of the account of quantum effects may be done following Ref. [51] but it requests numerical study
depending of particles content of the universe as well as effective dark fluid.
We now assume that H behaves as

H ∼ H0 + h0 (ts − t)
−β

. (46)

When β ≥ 1, the behavior of H corresponds to Type I (Big Rip) singularity, and when 1 ≥ β > 0, to Type III, when
0 > β > −1 to Type II, when β < −1 but β is not an integer, to Type IV singularity. One may also neglect the
contribution from matter and put Tmatter = 0.

In case that β > 0, which corresponds to Type I (Big Rip) and Type III singularity, the first constant term H0

in (46) seems to be less dominant and we may neglect this term. Then because the scalar curvature R is given by

R = 12H2 + 6Ḣ, when β ≥ 1 (Type I), we find that the scalar curvature R behaves as R ∼ (ts − t)
−2β

and when

0 < β < 1 (Type III), R behaves as R ∼ (ts − t)
−β−1

. On the other hand, when −1 < β < 0 (Type II), R behaves

as R ∼ (ts − t)
−β−1

. When β < −1, which corresponds to Type IV singularity if β is not an integer, if H0 ̸= 0, R

behaves as a constant but if H0 = 0, R ∼ (ts − t)
−β−1

.
We now assume the behavior of the Hubble rate as in (46). Then in case of Type I (Big Rip) case, where β ≥ 1, near

the Big Rip singularity, t ∼ ts, as seen from (45), the Gauss-Bonnet invariant G behaves as G ∼ 24H4 ∼ (ts − t)
−4β

and therefore G becomes very large and the contribution from the matter Tmatter in (44) can be neglected. On the

other hand, one finds □R ∼ (ts − t)
−2β−2

. Then because R ∼ (ts − t)
−2β

, TA becomes much larger than R and
therefore Eq. (44) cannot be satisfied. This shows that the quantum effects coming from the conformal anomaly also
remove Type I (Big Rip) singularity.

In case of Type II singularity, where −1 < β < 0, we find that G behaves as G ∼ 24ḢH2 ∼ (ts − t)
−3β−1

. Because

R ∼ (ts − t)
−β−1

, the Gauss-Bonnet term in TA is less singular and therefore negligible compared with R and the
contribution from the matter. Therefore, the Gauss-Bonnet term in TA does not help to prevent Type II singularity.

Note, however, □R behaves as □R ∼ (ts − t)
−β−3

, which is more singular than the scalar curavature. Then if
2b/3 + b′′ ̸= 0, the contribution from TA becomes mich larger than R near the singularity t ∼ ts and Eq. (44) cannot
be satisfied. Therefore if 2b/3+ b′′ ̸= 0, even Type II singularity can be also prevented when the quantum effects due
conformal anomaly are included.

In case of Type III singularity (0 < β < 1), the Gauss-Bonnet invariant behaves as G ∼ 24ḢH2 ∼ (ts − t)
−3β−1

and □R behaves as □R ∼ (ts − t)
−β−3

. Because the scalar curvature behaves as R ∼ (ts − t)
−β−1

, both of the
terms, □R and G, are more singular than the scalar curvature R and Type III singularity is also prevented. Thus,
we demonstrated that quantum effects may remove finite-time future singularities. Note that account of quantum
gravity effects in specific models also is known to remove the Big Rip singularity [9].
Let us include the thermal effects to above analysis. So far the trace part of the Einstein equation is used. As

the radiation is usually conformal, the trace part of the energy-momentum tensor of the radiation should vanish
and the thermal radiation does not contribute to the trace equation. We should be, however, more careful in the
present situation. The energy-density of the thermal radiation is only determined by the temperature. Therefore, the
universe expands and its volume with the thermal radiation increases, the total energy should also be increased if the
temperature is not changed or increases as in the case of Type I (Big Rip) or Type III singularity, or the Little Rip
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cosmology. In other words, say, in the phantom universe, there should exist effectively negative pressure. The energy
of the thermal radiation is not conserved because the expansion produces the new thermal radiation. We should note,
however, in order that the effective pressure, which includes the effect of the expansion, is consistent with the FRW
equations, the energy-density of the thermal radiation and the effective pressure must satisfy the conservation law

0 =
dρt rad

dt
+ 3H (ρt rad + pt rad) . (47)

To show the conservation law, we may start from the first FRW equation where usual matter and the thermal radiation
as in (9) are included,

3

κ2
H2 = ρ+ ρt rad , ρt rad = αH4 . (48)

Here ρ is matter energy-density. By considering the derivative of Eq. (48) with respect to time t, we obtain,

6

κ2
HḢ = ρ̇+ 4αH3Ḣ . (49)

Then by using the standard conservation law for matter,

0 = ρ̇+ 3H (ρ+ p) , (50)

with the matter pressure, and combining (48) and (49), we obtain

− 1

κ2

(
2Ḣ + 3H2

)
= p− α

(
H4 +

4

3
H2Ḣ

)
, (51)

which is nothing but the second FRW equation and we can identify the effective pressure of the thermal radiation as
follows,

pt rad = −α

(
H4 +

4

3
H2Ḣ

)
. (52)

Thus effectively, the energy-density and the effective pressure of the thermal radiation satisfy the conservation law
(47) or we can find the exact and unique form of the effective pressure in (52) directly by using the conservation law
(47) and assuming the form of the energy-density of the radiation in (8).

Then the trace part Tt rad = −ρt rad +3pt rad of the energy-momentum tensor for the radiation including the effect
of the expansion of the universe is given by

Tt rad = −4α
(
H4 +H2Ḣ

)
. (53)

Let us assume the behavior of the Hubble rate H as in (46). Then in case of Type I (Big Rip) case (β ≥ 1), near

the singularity, we find Tt rad ∼ (ts − t)
−4β

, whose behavior is not so changed from that of TA although we need to
compare b′ with α to see which term is dominant one.

In case of Type II singularity (−1 < β < 0), we find Tt rad ∼ (ts − t)
−3β−1

. As R ∼ (ts − t)
−β−1

, the contribution
from Tt rad is negligible. In case b′′ ̸= 0, which is arbitary and can be put to vanish if we dont add R2 term, the
contribution from □R in TA dominates and the Type II singularity does not occur.

In case of Type III singularity (0 < β < 1), we find Tt rad ∼ (ts − t)
−3β−1

, whose behavior is not changed from
that of the Gauss-Bonnet invariant G in TA but weaker than the behavior of □R. Then if b′′ ̸= 0, the contribution
from the thermal radiation is less dominant than that of the conformal anomaly TA. If b′′ = 0, the contribution
from Tt rad is not changed from that from TA and we need to compare b′ with α to see which could be dominant,
again. Thus, we demonstrated that when quantum effects dominate over thermal effects then future singularities
are removed. However, in some cases which depend on the specific features of the theory under consideration the
dominant contribution is due to thermal effects. In this case, the most possible universe future is Type II singularity.

IV. SUMMARY

In summary, we studied the singular dark universe future where singularity is caused by the corresponding dark
fluid while also thermal effects due to the Hawking radiation on apparent horizon of the FRW universe are included.
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It is shown that for dark universe with Type I, III singularities and for the Little Rip universe the transition to Type
II singularity at final state occurs. On the same time for Type II and IV singular universe one sees no qualitative
effect due to thermal radiation. When in addition to thermal radiation also quantum effects are taken into account the
situation is more complicated. Usually, matter quantum effects (at least, for conformally-invariant fields) remove the
finite-time future singularity. Together with thermal effects the universe future is defined by which of terms (thermal
or quantum) in the effective energy-density is dominant. This depends from the specific features of the universe under
consideration (fields content, fluids, coefficient of thermal energy-density, etc.). In particulary, when thermal effects
are dominant, then the future universe state is Type II singularity, again.

Some remark is in order. It is known that several million years before the Rip time, there appears some inertial
force which may unbound particles producing desintegration of all bound objects at the universe. Let us check the
effect of thermal radiation to this inertial force. A test mass m, which is separated from an observer by the distance
r, receives an inertial force of tidal force Fin when the observer observes the mass, as follows,

Fin = rm
ä

a
= rm

(
Ḣ +H2

)
. (54)

In case of Type I (Big Rip) or Type III singularity, because H and cotH become very large near the singulrity and
therefore any extended object will be ripped and destroyed. If we take into account the contribution from the thermal
radiation, the singularity will reduces to Type II singularity, where although H is finite or vanish, Ḣ and therefore
the inertial force becomes very large near the singularity. Hence, in this case the bound objects are desintegrated as
in the case without thermal effects. In case of Type IV singularity, both of H and H ′ are finite and therefore the
inertial force is also finite. Finally, it may be of interest to study the role of thermal radiation for future singularities
in modified gravity theories. This will be done elsewhere.
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