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MANIPULABILITY ANALYSIS OF A SNAKE ROBOT WITHOUT A

LATERAL CONSTRAINT FOR HEAD POSITION CONTROL

R. Ariizumi and M. Tanaka

ABSTRACT

Two dynamic manipulability criteria of a snake robot with sideways
slipping are proposed with the application to head trajectory tracking control
in mind. The singular posture, which is crucial in head tracking control, is
characterized by the manipulability and examined for families of typical robot
shapes. Differences in the singular postures from those of the robot with lateral
constraints, which have not been clear in previous studies, are clarified in the
analysis. In addition to the examination of local properties using the concept of
manipulability, we discuss the effect of isotropic friction as a global property.
It is well known that, at least empirically, a snake robot needs anisotropy in
friction to move by serpentine locomotion if there are no objects for it to push
around. From the point of view of integrability, we show one of the necessary
conditions for uncontrollability is satisfied if the friction is isotropic.

Key Words: Controllability, Dynamical model, Head trajectory tracking,
Hyper redundant manipulator, Manipulability, Snake robot

I. Introduction

Since the pioneering work of Hirose [1],
researchers have been interested in snake robots
not only because they have many potential
applications [2, 3, 4] but also because they pose
great theoretical challenges. From the perspective of
control, it is challenging to establish controllability
and observability properties because the system
is highly nonlinear. Early studies often assumed a
lateral constraint; i.e., a constraint that any link,
typically equipped with passive wheels, does not slip
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sideways [5, 6]. Under such a velocity constraint, the
movement of the robot can be determined by a set of
linear equations on velocities. This greatly simplifies
the analysis of the robot and has resulted in major
findings.

Matsuno and his team [7, 8] closely investigated
the conditions required to track the head trajectory.
They proved that the simultaneous control of the
head velocity and angular velocity of the first link
requires the first link not to be subject to the lateral
constraint. Links that are not subject to the lateral
constraint are associated with joints whose angles
are not to be determined directly by commands,
which they named shape-controllable points. Using the
kinematic redundancy of the shape-controllable points,
they proposed a controller based on kinematics and
dynamics. Tanaka and Tanaka [9] analyzed singular
postures in the case that there are links without lateral
constraint. They derived the necessary and sufficient
conditions for a wider class of serial-link wheeled
manipulators including snake robots. Date et al. [10]
extended the concept of dynamic manipulability for
manipulators to snake robots with a lateral constraint.
They analyzed the head trajectory tracking motion
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in terms of manipulability. Studies that assume the
lateral constraint are still conducted for more complex
tasks [11, 12], to propose novel modeling [13], and
to develop a deeper mathematical understanding of a
robot [14].

In the case of real snake robots, however, sideways
slipping is rather common and many researchers have
proposed the modeling, analysis, and control of snake
robots with sideways slipping. Most researchers use
the serpenoid curve that Hirose [1] proposed as the
mathematical model of the shape of snakes. Saito
et al. [15] employed viscous and Coulomb friction
models and analyzed locomotion using a serpenoid
curve from the standpoint of power efficiency. They
also proposed a speed control that uses an extension of
the serpenoid curve. Ariizumi and Matsuno [16] used
a viscous friction model and serpenoid curve to assess
the performance of three popular gaits from the point
of view of Pareto optimization. Additionally, a viscous
friction model has been used to consider the straight
path tracking control of the center of mass (CM) of a
snake robot [17, 18]. Hicks and Ito [19] proposed an
algorithm that generates an optimal gait for a point-
to-point control task and showed that their algorithm
provides a shape similar to the serpenoid curve.

However, analysis of the controllability of snake
robots with sideways slipping is still to be discussed.
Because of the nonlinearity of the system, any
necessary and sufficient conditions for controllability
would be out of reach. Moreover, as is well known, only
local properties can be discussed in general. Lilijebäck
et al. [20] studied the controllability properties of
snake robots, using a dynamic model assuming viscous
friction. From the direct observation of the equation
of motion, they proved that anisotropy in viscous
friction is necessary for the CM of a snake robot to be
controllable. They then checked one of the sufficient
conditions for accessibility, which is a part of the Lie
bracket rank condition. Their analysis revealed that the
shape of an arc, in which all joints share the same angle,
does not satisfy the necessary condition. As it is well
known that arc shapes are singular postures for snake
robots with lateral constraints [7, 9, 21, 22], this seems
consistent with a limiting case of an infinite coefficient
of friction in the lateral direction. However, it is not
obvious that these shapes are also singular postures for
snake robots with sideways slipping.

In this paper, we propose dynamic manipulability
criteria for snake robots with the aim of constructing a
head trajectory control. Unlike the control of the CM,
the serpenoid curve is not applicable directly to the
shape of the robot for head control and it is therefore

crucial to understand the singular postures. The formal
definition of a singular posture is given in Section III,
but here we loosely define it to be the posture from
which we cannot accelerate the control point in an
arbitrary direction. In terms of understanding the
singular posture in snake robots with sideways slipping,
the accessibility rank condition used in [20] is too
complex and only a sufficient condition for accessibility
can be discussed. Therefore, manipulability, which
can be calculated easily, is used for this purpose.
Although the dynamic manipulability of a snake robot
has been proposed in the case that a lateral constraint
is imposed [10], the same criterion cannot be applied
directly because velocity constraints were used to
define the dynamic manipulability. The manipulability
is defined by the so-called manipulability ellipsoid that
expresses the region of acceleration of the head that is
achievable with torque inputs whose norms are less than
or equal to unity. However, as we are mainly interested
in singular postures, some simplification is possible.
As the manipulability expresses only a local structure
that is determined only by inertial properties, it is not
possible to discuss the effect of friction. The robot
cannot be controlled even though the manipulability is
not zero if the friction is isotropic, which we clarify by
discussing integrability. Although we can only prove
the necessary condition for uncontrollability, this will
support our intuition based on our observation of
snakes. Moreover, we are interested in constructing a
head trajectory tracking control that is robust against
actuator failure (e.g., when an actuator is unable to
provide a torque) in future work. As the first step to this
end, we also consider the case of a free joint.

In summary, the contributions of the present study
are that we (i) define two dynamic manipulability
criteria for the snake robot without a lateral constraint
for head trajectory control, (ii) analyze singular
postures using the manipulability, and (iii) explain the
impossibility of the head trajectory tracking control in
the case of isotropic friction. The first two points are
also discussed for the case that a joint is free, which
is assumed to be a typical case of a malfunctioning
actuator.

In what follows, the model of the robot is
explained in Section II. Section III defines the dynamic
manipulability criteria and Section IV analyzes the
criteria. Section V shows that with isotropic friction,
the system satisfies a necessary condition to be
uncontrollable. In Section VI, a simple simulation is
performed to show the usefulness of the manipulability
in assessing the singularity and to verify the discussion
in Section V. Section VII concludes the paper.
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II. Model of a Planar Snake Robot

The equation of motion of a planar snake robot is
derived using the Euler–Lagrange method. Details of
the partial derivative calculations are available in the
literature [16].

2.1. Notation

In this research, we consider an n-link planar snake
robot. The schematics of the snake robot are shown
in Fig. 1. It is assumed that links are identical; i.e.,
they have the same mass and length. The CM of a link
is assumed to coincide with the geometrical center of
the link. Some notations used in the present paper are
defined as follows.

l : Half the length of each link
θi : Orientation of link i
φi : Yaw angle of joint i. φi = θi+1 − θi

(xh, yh) : Position of the head
w : w = [xh yh θ1]

T

xi : Position vector of the center of link i,
expressed as xi = [xi yi]

T

x, y : x = [x1 · · · xn]
T , y = [y1 · · · yn]T

θ,φ : θ = [θ1 · · · θn]
T , φ = [φ1 · · · φn−1]

T

q̄ : General coordinate, q̄ = [xh yh θT ]T

The local coordinates of link i, Oi − xiyi, are fixed
on the CM of link i with inclination of θi from the global
frame.

Some abuse of the notation of trigonometric
functions with vector-valued inputs is defined as

cosθ =
[
cos θ1 cos θ2 · · · cos θn

]T
,

sinθ =
[
sin θ1 sin θ2 · · · sin θn

]T
.

(1)

Diagonal matrices with trigonometric functions in
diagonal entries are often used in what follows:

Cθ = diag(cos θ1, cos θ2, · · · , cos θn),

Sθ = diag(sin θ1, sin θ2, · · · , sin θn).
(2)

2.2. Dynamic Model of a Planar Snake Robot [16]

The positions of CMs of links in the global frame
are calculated as{

x = 1xh +K cosθ

y = 1yh +K sinθ
, (3)

Fig. 1. Schematic of a snake robot with n links and n− 1 joints

where K and the vector 1 are defined as

K = l

⎡
⎢⎢⎢⎣
1 0 · · · 0
2 1 · · · 0
...

...
. . .

...
2 2 · · · 2 1

⎤
⎥⎥⎥⎦ ∈ R

n×n, (4)

1 = [1 1 · · · 1]T ∈ R
n. (5)

Because K is a constant matrix, we have

ẋ = Jq̄x ˙̄q, ẏ = Jq̄y ˙̄q, θ̇ =
[
On×2 In

]
˙̄q, (6)

where Ik is a k × k identity matrix and

Jq̄x =
[
1 0 −KSθ

]
, Jq̄y =

[
0 1 KCθ

]
. (7)

The Lagrangian of a planar snake robot is equivalent to
the robot’s kinetic energy T , which is calculated as

T =
1

2
(mẋT ẋ+mẏT ẏ + J θ̇T θ̇) =

1

2
˙̄qT H̄ ˙̄q, (8)

where J is the moment of inertia of a link. Inertia matrix
H̄ is defined as

H̄ := mJT
q̄xJq̄x +mJT

q̄yJq̄y + J̄ , (9)

J̄ = diag(0, 0, J, ..., J) ∈ R
(n+2)×(n+2).

To take the viscous friction into account, a
Rayleigh dissipation function is used. Let the coeffi-
cients of viscosity between the environment and link i
be cx in the xi direction, cy in the yi direction, and cθ in
the rotational direction, which are equal for each link.
The point of action of the viscous friction is assumed to
be the CM of each link. Letting the rotation matrix that
relates the local frame of link i and the global frame be
GRi, the dissipation function for link i is then

Ri =
1

2
ẋT
i

GRi

[
cx 0
0 cy

]
(GRi)

T ẋi +
1

2
cθθ̇

2
i . (10)

By summing for all links, the dissipation function for
the entire robot can be derived as

R =
1

2
˙̄qT (Ctr + Crot) ˙̄q =

1

2
˙̄qT C̄ ˙̄q, (11)

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls



4 Asian Journal of Control, Vol. 00, No. 0, pp. 1–17, Month 2008

where

Ctr = JT
q̄xy

[
cxC

2
θ + cyS

2
θ (cx − cy)SθCθ

(cx − cy)SθCθ cxS
2
θ + cyC

2
θ

]
Jq̄xy,

(12)

Crot = diag(0, 0, cθ, · · · , cθ), (13)

Jq̄xy =
[
JT
q̄x JT

q̄y

]T
. (14)

Lagrange’s equations of motion are then written as

d

dt

(
∂T

∂ ˙̄q

)T

−
(
∂T

∂q̄

)T

+

(
∂R
∂ ˙̄q

)T

= Ēτ , (15)

where Ē ∈ R
n×(n−1) is a coefficient matrix and τ ∈

R
n−1 is the torque applied to the joints. After some

tedious calculations, whose details are given in the
literature [16], we get

H̄ ¨̄q + W̄diag( ˙̄q) ˙̄q + C̄ ˙̄q = Ēτ , (16)

W̄ = JT
q̄xMJx + JT

q̄yMJy,

Jx =
[
On×2 −KCθ

]
,

Jy =
[
On×2 −KSθ

]
,

where W̄diag( ˙̄q) ˙̄q is the term for Coriolis and
centrifugal forces.

For the purpose of controller design, it is more
convenient to express the system in terms of joint angles
instead of link orientations. Let q be defined as q =
[xh yh θ1 φT ]T . The generalized coordinates q̄ and
q are related by the equation

˙̄q = Jqq̄q̇,

Jqq̄ = block diag(I2, L),

L =

⎡
⎢⎢⎢⎣
1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

⎤
⎥⎥⎥⎦ ∈ R

n×n.

(17)

Substituting (17) into (16) and multiplying JT
qq̄ to both

sides of (16) from the left, we get

H q̈ +Wdiag(Jqq̄q̇)Jqq̄ q̇ + Cq̇ = Eτ , (18)

where

H = JT
qq̄H̄Jqq̄

= JT
qq̄

⎡
⎣ mn 0 −m1TKSθ

0 mn m1TKCθ

−mSθK
T1 mCθK

T1 H̄22

⎤
⎦Jqq̄

=

⎡
⎣ mn 0 −m1TKSθL

0 mn m1TKCθL
−mLTSθK

T1 mLTCθK
T1 LT H̄22L

⎤
⎦ ,

(19)

H̄22 = m(SθK
TKSθ + CθK

TKCθ) + JIn,

W = JT
qq̄W̄ , C = JT

qq̄C̄Jqq̄ , and E = JT
qq̄Ē =

[OT
(n−1)×3 In−1]

T . Note that the multiplication of
JT
qq̄ from the left is required to make the inertia matrix

H symmetric.
For the work presented in later sections, it is

convenient to combine the nonlinear term and viscous
friction term:

H(q)q̈ + h(q, q̇) = Eτ , (20)

where h = Wdiag(Jqq̄ q̇)Jqq̄q̇ + Cq̇.

III. Dynamic Manipulability and Singular
Posture of a Snake Robot

In this section, we define the concept of the
dynamic manipulability of a snake robot that obeys
equations of motion (20). The purpose of defining
the manipulability in the present study is to define
the singular posture for snake robots without a lateral
constraint. From this point of view, some simplification
is adopted for the manipulability in an ordinary sense.
Moreover, as we are also interested in the case that
there is a free joint, the extension to such a case is also
discussed.

3.1. Case of No Free Joint

We first note that H is symmetric and positive
definite. Symmetry and positive semi-definiteness are
obvious from the definition. The positive definiteness
of H is therefore equivalent to full rankness, which
is also easily observed. In fact, H drops rank if and
only if H̄ drops rank because Jqq̄ is of column full
rank. If H̄ drops rank, there must be a vector v
that satisfies vT H̄v = 0. However, because all three
matrices involved in the definition of H , namely
JT
q̄xJq̄x, JT

q̄yJq̄y, and J̄ , are positive semi-definite, such
v must satisfy vT J̄v = 0, which only holds when v is
of the form v = [a b 0 · · · 0]T , and for such v, we
have

vT H̄v = mvT JT
q̄xJq̄xv +mvTJT

q̄yJq̄yv

= (a2 + b2)mn > 0, (21)

which shows that H̄ is of full rank and therefore positive
definite.

The following proposition is useful for the
following manipulations.
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Proposition 1. Considering the division of a positive
definite matrix H ,

H =

[
H11 H12

H21 H22

]
, (22)

H11 ∈ R
3×3, H12 ∈ R

3×(n−1),

H21 = HT
12, H22 ∈ R

(n−1)×(n−1),

it follows that H11, H22, H11 −H12H
−1
22 H21, and

H22 −H21H
−1
11 H12 are symmetric and positive defi-

nite.

Proof. Let the principal minor of order k of H be
Δk. Because H is positive definite, Δk > 0 for k =
1, 2, ..., n+ 2 is concluded from Sylvester’s criterion.
The positive definiteness of H11 follows from Δ1 >
0, Δ2 > 0, Δ3 > 0. As this implies that H11 is non-
singular, the following transformation holds:

T

[
H11 H12

H21 H22

]
T T =

[
H11 O3×(n−1)

O(n−1)×3 H22 −H21H
−1
11 H12

]
,

(23)

T =

[
I3 O3×(n−1)

−H21H
−1
11 In−1

]
.

Because T is of full rank, the positive definiteness of
THT T is equivalent to that of H on the one hand.
On the other hand, because THT T is a block diagonal
matrix, its positive definiteness is equivalent to the
positive definiteness of the two diagonal block matrices.
Therefore, H22 −H21H

−1
11 H12 is positive definite.

For the positive definiteness of H22, we consider
the matrix [

H22 H21

H12 H11

]
.

This is the inertia matrix for other general coordinates,

z =

[
O(n−2)×3 In−2

I3 O3×(n−2)

]
q,

and because this is a mere exchange of coordinates, it
is obvious that this transformation from q to z does not
change the positive definiteness of the inertia matrix.
Therefore, according to arguments similar to those
made for H11 and H22 −H21H

−1
11 H12, the positive

definiteness of H22 and H11 −H12H
−1
22 H21 is proven.

Using division (22), the equation of motion (20)
can be written as

H11ẅ +H12φ̈+ h1 = 03, (24)

H12ẅ +H22φ̈+ h2 = τ , (25)

where h1 and h2 are the first three rows and next n− 1
rows of h respectively. Because H22 is invertible, the
second equation (25) can be solved for φ̈ as

φ̈ = −H−1
22 (H21ẅ + h2) +H−1

22 τ . (26)

By substituting this into (24), we have

(H11 −H12H
−1
22 H21)ẅ −H12H

−1
22 (h2 − τ ) + h1 = 03.

(27)
Therefore, by setting τ as

τ = h2 − τ̄ −H22H
†
12h1, (28)

where H†
12 is the pseudo-inverse of H12, we have

(H11 −H12H
−1
22 H21)ẅ = H12H

−1
22 τ̄ , (29)

if H12 is of full rank. We admit (29) for the time being.
From this equation, it is concluded that if the norm of
τ̄ is restricted to ‖τ̄‖ ≤ 1, ẅ is in an ellipsoid, which is
called the manipulability ellipsoid, in three-dimensional
space. Using the manipulability ellipsoid, we define the
singular posture of a snake robot as follows.

Definition 1. A singular posture of a snake robot
is a posture for which the manipulability ellipsoid is
embedded in a two-dimensional subspace of three-
dimensional space of possible ẅ.

Note that if n ≤ 3, the ellipsoid is contained
on a plane or a line and its volume becomes zero,
which means that a certain direction of ẅ is not
achievable regardless of the robot shape. We therefore
only consider the case of n ≥ 4 in what follows.

The manipulability ellipsoid illustrates the avail-
able head acceleration ẅ using the joint torques that
satisfy ‖τ‖ = 1. If (and only if) it is not possible
to produce the head acceleration in some direction,
then the ellipsoid does not have any ‘thickness’ in
that direction. In such cases, the ellipsoid is a two-
dimensional ellipse or a one-dimensional line segment,
if there is one more such infeasible direction. Therefore,
if the robot is in a singular posture, it means that there
is at least one direction in which we cannot accelerate
the head.

The singular values of (H11 −
H12H

−1
22 H21)

−1H12H
−1
22 characterize the ellipsoid and

a larger singular value implies better manipulability.
Let the singular values of the matrix be σ1, σ2, σ3. The
manipulability criterion D is defined as

D = min{σ1, σ2, σ3}. (30)

In the present work, however, we are especially
interested in the singular posture of a snake robot,
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which means the minimum of the singular value
is zero. This is equivalent to the case that (H11 −
H12H

−1
22 H21)

−1H12H
−1
22 drops rank. Because H22

and the Schur complement H11 −H12H
−1
22 H21 are

non-singular from Proposition 1, singularity implies
that H12 drops rank. For this reason, we consider
the singular values of H12 instead of those of
(H11 −H12H

−1
22 H21)

−1H12H
−1
22 as the manipulability

criterion. Let the singular values of H12 be λ1, λ2, λ3.
The manipulability criterion R is defined as

R = min{λ1, λ2, λ3}. (31)

It is obvious that the following theorem holds.

Theorem 1. If n ≥ 4, the singular posture of a snake
robot is the posture with D = R = 0.

This can also be considered as another definition
of the singular posture.

We mentioned that (29) holds if H12 is of full rank
and (29) does not hold in general if H12 drops rank.
This is because H12H

†
12 = I does not hold in this case

and τ defined in (28) does not necessarily cancel the
effect of h1. We therefore think of the singular posture
as the posture that makes (29) invalid for some h1.

In contrast to the definition given by Date et
al. [10], which explicitly considers the lateral constraint
force and tries to give a larger value when the lateral
constraint force is weaker, our definition does not
consider the lateral constraint in any way. This is better
suited to real robots with an inevitable side slip, giving
a larger manipulability value to the shape that can
produce a stronger propulsion force. Additionally, the
settings of Date et al. [10] do not consider motion in
the θh direction. This is because, in the settings of
Date et al., θh cannot be controlled arbitrarily. Using
our criteria, we can explicitly take motion in the θh
direction into consideration. Note that it is also easy not
to consider this motion. Changing how the matrix H
is divided into block matrices, to H11 ∈ R

2×2, H12 ∈
R

2×n, and H22 ∈ R
n×n, suffices to achieve this.

Note also that our manipulability criteria do not
depend on the model of the friction force. Although
the property of the friction affects the locomotion
performance of snake robots, it does not change the
direction in which the robot can accelerate its head.

3.2. Case of a Free Joint

As can be expected from the previous discussion,
only a few modifications and cautions are required to

consider the case that a joint is free. Letting the joint k
be free, the equation of motion becomes

H(q)q̈ + h(q, q̇) = Ẽ′τ̃ , (32)

where we delete the kth element of τ and kth column
of E to make τ̄ and Ẽ′, respectively.

The division of the equations of motion (24) and
(25) is motivated by the fact that there is no external
force for the first three elements, but not for other
elements. In this case, however, the k + 3th element
also does not have any external force term. It is therefore
necessary to gather those elements without external
forces into the first four elements. Let the selection
matrix S be defined as

S =

[
I3 O3×(n−1)

O(n−1)×3 Ssub

]
,

Ssub =
[
ek e1 e2 · · · ek−1 ek+1 · · · en−1

]
,

(33)

where ei is an n− 1 dimensional unit vector whose ith
element is 1. It is easily seen that S is orthogonal; i.e.,
ST = S−1. A new general coordinate q̃ is defined as

q̃ = Sq. (34)

By this transformation of coordinates, the equation of
motion becomes

H̃ ¨̃q + h̃ = Ẽτ̃ , (35)

where

H̃ = SHST , h̃ = Sh, Ẽ = SĒ. (36)

Note that H̄ is also symmetric and positive definite. The
transformed equation of motion can then be divided as

H̃11
¨̃w + H̃12

¨̃
φ+ h̃1 = 04, (37)

H̃12
¨̃w + H̃22

¨̃
φ+ h̃2 = τ̃ , (38)

where

w̃ =
[
xh yh θh φk

]T
, (39)

φ̃ =
[
φ1 · · · φk−1 φk+1 · · · φn−1

]T
. (40)

The sub-block matrices of H̃ are defined as

H̃ =

[
H̃11 H̃12

H̃21 H̃22

]
, (41)

H̃11 ∈ R
4×4, H̃12 ∈ R

4×(n−2),

H̃21 = H̃T
12, H̃22 ∈ R

(n−2)×(n−2),
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and h̃1 and h̃2 are the first four elements and remaining
n− 2 elements of h̃, respectively.

The key to the definition of the manipulability
criterion R in the previous subsection is Proposition 1.
In the case that a joint is free, it is obvious from the
definition of H̃ (36) and the proof of Proposition 1 that
the following is true.

Proposition 2. Consider the division of H̃ in (41).
Then H̃11, H̃22, H̃11 − H̃12H̃

−1
22 H̃21, and H̃22 −

H̃21H̃
−1
11 H̃12 are symmetric and positive definite.

Because of this proposition, the same discussion
can be had and we define the manipulability criteria D̃
and R̃ as

D̃ = min{σ̃1, σ̃2, σ̃3, σ̃4}, R̃ = min{λ̃1, λ̃2, λ̃3, λ̃4},
(42)

where σ̃i, (i = 1, 2, 3, 4) are four singular values
of (H̃11 − H̃12H̃

−1
22 H̃21)

−1H̃12H̃
−1
22 and λ̃i, (i =

1, 2, 3, 4) are those of H̃12. Note that we only consider
the case of n ≥ 5. If n ≤ 4, the manipulability ellipsoid
is embedded in a three-dimensional hyperplane of the
four-dimensional space of possible ¨̃w. Therefore, n ≥ 5
is required for ¨̃w to be assigned freely. In the case that
n ≥ 5, the singular posture is defined as follows.

Definition 2. A singular posture of a snake robot with a
free joint is the posture with D̃ = R̃ = 0, if the number
of links n satisfies n ≥ 5.

IV. Manipulability Analysis

In this section, we analyze the manipulability of a
snake robot for special cases. Intuitively, manipulability
defines some kind of ‘controllability’ of the robot,
though it is not the same as the concept of actual
controllability.

In the following analysis, we assume that θ1 = 0
rad without loss of generality.

4.1. Case that All Joint Angles are Zero

If all joint angles are zero, the shape of the snake
robot is a straight line. It is obvious that H12 drops rank
in this case. To see this, we recall the detail of H in (19).
Because θ = 0n, it holds that Sθ = On×n and therefore
−m1TKSθL = 0T

n , which implies that the first row of
H12 is 0T

n−1.
The same is true in the case that joint k is free

because the first row of H̃12 is generated by eliminating
the kth element of the first row of H12.

Table 1. Parameters of the robot

m 0.182 kg 2l 0.12 m
J 0.22 kgm2 n 10
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Fig. 2. Manipulability criteria D and R.

4.2. Case that All Joint Angles are the Same

In more general cases, it is difficult to handle the
general form of H12. In this subsection, we examine the
manipulability for numerical examples. The settings of
the robot are given in Table 1.

Joint angles are set to share the same angle φo. The
two manipulability criteria D and R are plotted in Fig. 2
against φo ∈ [−π/5, π/5]. Note that if |φo| = π/5 rad,
then the robot forms a closed loop, which is a regular
decagon.

The figure shows that although the manipulability
criteria D and R take small values if all joints share the
same angle, they are zero only at φo = 0 rad. However,
we note that this does not contradict the previous result
in [20], that the shape of an arc does not satisfy a
sufficient condition for accessibility. We first note the
difference in control points. In the present paper, we
consider the control of the head and the orientation of
the first link, instead of the CM and mean orientation.
It is possible that the head is controllable and at the
same time the CM is not. Moreover, the result in [20]
only states a sufficient condition and not any necessary
condition, while our result can be recognized as a
necessary condition.

As an example with a free joint, the fifth joint is set
to be free. The manipulability criteria become as shown
in Fig. 3. Note the difference in the exponent of the
labels of the vertical axes between Figs. 2 and 3. As can
be expected, with a free joint, manipulability becomes
much lower because there are fewer inputs. However,
the criteria share the same qualitative features; i.e. they
are zero only if φo = 0 rad.
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Fig. 3. Manipulability criteria D and R in the case that joint 5 is free.

4.3. Serpenoid Curves

The serpenoid curve, which was proposed by
Hirose [1], is the de facto standard for the shape
of a snake robot. Serpenoid curves are curves whose
curvature is determined by the sine function. This
family of curves is expected to be useful in avoiding
singular postures. To approximate the serpenoid curve
for a snake robot, joint angles are determined using the
three parameters α, v, and Ts:

φi =
2πTs

n
α sin

(
vt− 2πTs

n
i

)
, i = 1, · · · , n− 1.

(43)
Among the parameters, v is the time frequency. The
spatial frequency 2πTs/n is defined for a snake robot
to form exactly Ts periods of the curve. The maximum
angle between the curve and the direction of movement
will be α, which we call the winding angle.

In Fig. 8, the manipulability criteria with Ts = 1.5

are shown for various α while in Fig. 9 those with α =

π/4 are shown for various Ts. The shape of the snake
is shown for Ts = 1.5 and α = π/16, π/8, π/4, π/2

in Fig. 6, and for α = π/4 and Ts = 0.5, 1.0, 1.5, 2.0

in Fig. 7. It is confirmed that by employing serpenoid
curves, we can prevent the robot from having a singular
shape, except in the trivial cases of α = 0 and Ts = 0.
Note that because H does not depend on any velocity
components, the manipulability criteria do not depend
on v.

Figures 8 and 9 show the results for the case that
the fifth joint is free. As in Section 4.2, the overall
values are much smaller than those in the case without
a free joint because of the loss of input. However, they
become zero only at α = 0 or Ts = 0.
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Fig. 4. Manipulability criteria D and R. The snake robot’s shape is a
serpenoid curve with Ts = 1.5.
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Fig. 5. Manipulability criteria D and R. The snake robot’s shape is a
serpenoid curve with α = π/4.
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(d) α = π/2 � 1.57 rad

Fig. 6. Snake robot with a serpenoid shape for Ts = 1.5.
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Fig. 7. Snake robot with a serpenoid shape for α = π/4.
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R

Fig. 8. Manipulability criteria D and R. The snake robot’s shape is a
serpenoid curve with Ts = 1.5. The fifth joint is free.
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Fig. 9. Manipulability criteria D and R. The snake robot’s shape is a
serpenoid curve with α = π/4. The fifth joint is free.

V. Uncontrollability with Isotropic Friction:
Integrability Point of View

It is well known that a snake needs anisotropy
in friction to move without any objects to push
around [23]. This was also theoretically shown [20] in
that with isotropic friction, the CM of the snake robot
is uncontrollable. However, because of the difference in
control points, it is not clear whether the same holds
true in our case. In fact, the dynamic manipulability is
not zero unless all joint angles are zero, regardless of
the friction, as shown in the previous section. Note that
the dynamic manipulability is based on a local property
of the head acceleration that is defined by the inertial
properties and cannot consider friction.

Before going into detail, we recall that the first
three rows of the equation of motion (24) have no
external forces. It can therefore be thought that there
is a set of acceleration level constraints (i.e., second-
order constraints). These constraints are referred
to as non-holonomic if they cannot be completely
integrated, and the constraints being non-holonomic is
a necessary condition for the system to be controllable.
If the constraints are holonomic (i.e., if they can be
integrated), there are conservation laws, which make it
impossible to have the states be arbitrary.

In this section, we give the condition for these
constraints to be integrable and show that two of these
second-order constraints can be integrated once to gain
first-order constraints. The property of the second-order
constraint that it can be integrated once is called partial
integrability [24]. Partial integrability does not formally
prove that the robot cannot move to a desired point and,
for this proof, it is required to show that the first-order
constraints are also holonomic. However, the existence
of the integral for the second-order constraints shows
that at least it satisfies a necessary condition for the
robot to be uncontrollable.

The following discussion can also be applied
to the case that one of the joints is free, with the
same modifications made in Section 3.2. Because the
introduction of a free joint only makes the calculation a
little more tedious and does not change the conclusion,
we omit the discussion.

5.1. Partial Integrability Condition
Let the general coordinate be divided as q =

[qT
1 qT

2 ]
T , where q1 ∈ R

k and q2 ∈ R
n+2−k, k ∈

{1, 2, 3}. If k = 3, then q1 = w and q2 = φ. For this
division, the equation of motion can be restated as

H1q +W1 + C1q̇ = 0k, (44)
H2q +W2 + C2q̇ = E2τ , (45)
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where H1 and H2 are the matrices of the first k and
remaining n+ 2− k rows of H , respectively. C1, C2,
W1, W2, and E2 are defined in the same way from
C, W = Wdiag(Jqq̄ q̇)Jqq̄ q̇, and E. Note that the first
k rows of E are a zero matrix. From the derivation of
Lagrange’s equation of motion, it holds that

W1 = Ḣ1q̇ − 1

2

{
∂

∂q1
(q̇TH q̇)

}T

. (46)

Being free from external forces, (44) represents
the second-order constraints. For the integrability of the
constraints, the following theorem holds.

Theorem 2. The necessary and sufficient conditions for
(44) to be partially integrable without any integrating
factor are as follows.

1. ∂
∂q1

(q̇TH q̇) = 0; i.e., elements of q1 are cyclic.
2. There exists a function g2(q) that satisfies

C1(q) =
∂g2

∂q .

Proof. We first show the necessity. If (44) is integrable,
there exists a function g : R

n+2 ×R
n+2 ×R → R

k

such that

ġ(q, q̇, t) =
∂g

∂q
q̇ +

∂g

∂q̇
q̈ +

∂g

∂t
= (l.h.s. of (44)).

(47)
From (44), it is clear that ġ does not contain t explicitly.
It should therefore hold that ∂g/∂t = const.; i.e., it
holds that

g(q, q̇, t) = g1(q, q̇) + k1t, (48)

where k1 is a k-dimensional constant vector.
We consider the case that q̇ = 0n. In this case,

because W (q, q̇) + C(q)q̇ = 0n, we have

H1q̈ = 0k, (49)

on the one hand, and on the other hand,

ġ(q,0n, t) =
∂g1
∂q̇

q̈ + k1. (50)

By comparison, it is deduced that

k1 = 0k,
∂g1
∂q̇

= H1. (51)

We therefore have

g(q, q̇, t) = g2(q) +H1q̇. (52)

By taking the time derivative, we get

ġ(q, q̇, t) = H1q̈ + Ḣ1q̇ +
∂g2
∂q

q̇. (53)

From (46) to (44), we have

H1q̈ + Ḣ1q̇ − 1

2

{
∂

∂q1
(q̇TH q̇)

}T

+ C1q̇ = 0k.

(54)
A comparison of the above two equations gives

∂g2
∂q

q̇ = C1q̇ − 1

2

{
∂

∂q1
(q̇TH q̇)

}T

⇔ 1

2

{
∂

∂q1
(q̇TH q̇)

}T

+

{
∂g2
∂q

− C1

}
q̇ = 0k.

(55)

Noting that the first term on the left-hand side is the
second-order term of q̇ and that the second term is the
first-order term, it holds that

∂

∂q1
(q̇TH q̇) = 0k,

∂g2
∂q

= C1(q). (56)

This completes the proof of necessity.
The proof of sufficiency is almost trivial because if

the conditions are satisfied, (44) becomes

H1q̈ + Ḣ1q̇ +
∂g2
∂q

q̇ = 0k (57)

d

dt
{H1q̇ + g2} = 0k. (58)

The partial integral of (44) is g = H1q̇ + g2.

Note that similar results for a manipulator with
passive joints have been reported [24] but they were
obtained without considering the friction between the
robot and environment. With the friction, the condition
to be partially integrable becomes more complicated as
seen in Theorem 2.

5.2. Complete Integrability Condition

If the second-order constraint is partially inte-
grable, it holds that

H1(q)q̇ + g2(q) + k = 0, (59)

for some constant vector k, which is determined from
the initial conditions. If this first-order differential
equation is also integrable, we say that the constraint
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is completely integrable [24]. The integrability of this
equation is equivalent to the integrability of

H1(q)q̇ + g2(q) = 0 ⇔ H1(q)dq + g2(q)dt = 0,
(60)

where dq = [dq1, ..., dqn+2]
T . The necessary and

sufficient condition of this differential equation to be
integrable is given by the Frobenius theorem [25] as
follows.

Theorem 3. Let Δ be the distribution that
spans the kernel space of

[
H1 g

]
; i.e.,

Δ(q) = ker
[
H1(q) g(q)

]
for any q. The necessary

and sufficient condition for (60) to be integrable is that
the distribution Δ is involutive.

5.3. Integrability Test for Second-order Constraints

From (19), it is clear that q1 = [xh yh]
T satisfies

the first condition of Theorem 2 because H does not
depend on xh or yh.

For further investigation, we need to write down
the elements of C1. Although the whole C is too
complex to write down, the first two rows (i.e., C1) are
a little less complex and can be expressed as

C1 =

[
c11 c12 cT13
c21 c22 cT23

]
, (61)

c11 = cx‖ cosθ‖2 + cy‖ sinθ‖2,
c12 = c21 = (cx − cy) sinθ

T cosθ,

c23 = cx‖ sinθ‖2 + cy‖ cosθ‖2,
cT13 = {−cx cosθ

TCθKSθ − cy sinθ
TSθKSθ,

+ (cx − cy) sinθ
TCθKCθ}L,

cT23 = {−(cx − cy) cosθ
TSθKSθ,

+ cy sinθ
TSθKCθ + cy cosθ

TCθKCθ}L.

It is still difficult to check the second condition of
Theorem 2 in general, but some simplification can be
made if cx = cy.

In the case of cx = cy = c, we have

c11 = nc, c12 = c21 = 0, c22 = nc, (62)

cT13 = −c1TKSθL, (63)

cT23 = c1TKCθL. (64)

The ith elements of c13 and c23 are calculated as

(c13)i = −cl

n∑
j=i

(2n− 2j + 1) sin θj

= −cl

n∑
j=i

(2n− 2j + 1) sin

(
θ1 +

j−1∑
q=1

φq

)
,

(65)

(c23)i = cl

n∑
j=i

(2n− 2j + 1) cos θj

= cl

n∑
j=i

(2n− 2j + 1) cos

(
θ1 +

j−1∑
q=1

φq

)
.

(66)

These results show that a function g2 that is defined by

g2 =

[
g21
g22

]
,

g21 = ncxh + cl

n∑
j=1

(2n− 2j + 1) cos

(
θ1 +

j−1∑
q=1

φq

)
,

g22 = ncyh + cl

n∑
j=i

(2n− 2j + 1) sin

(
θ1 +

j−1∑
q=1

φq

)

(67)

satisfies the second condition of Theorem 2.
It is concluded that, in the case of cx = cy,

because the first two rows of the equation of motion
(44) with k = 2 are partially integrable, there exists
a conservation law g(q) = H1q̇ + g2 = const. This
suggests that the robot is uncontrollable under isotropic
friction also in the case that the control point is the
head, instead of at the CM. The formal proof of
the uncontrollability requires examination of whether
the first-order constraints g(q) = const. satisfy the
condition of Theorem 3. However, because of the
complexity of the system, the examination is difficult
even for some special cases with small n.

VI. Simulation Study

6.1. Comparison between Two Criteria

A simulation is performed

1. to show that of the two proposed manipulability
criteria, R is better for determining whether the
posture is close to singular,

2. to show that the postures with all joints having the
same angle are not generally singular postures,
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3. and to check the conservation of g that was shown
in the previous section for the case of isotropic
friction.

We use the controller based on partial feedback
linearization designed for tracking the head trajectory.
Note that, in the present paper, we only consider the
case without any free joint. Also note that because we
use the isotropic friction setting in this simulation, it is
expected that the control will fail at some point.

6.1.1. Partial Feedback Linearization

Let H be the Schur complement of the block H22

in (22):
H = H11 −H12H

−1
22 H21. (68)

Because H is invertible from Proposition 1, (27) can be
solved for ẅ as

ẅ = −H−1h1 +H−1H12H
−1
22 h2 −H−1H12H

−1
22 τ .

(69)
From (69), if we define τ as

τ = H22H
†
12H{ẅr +Kv(ẇ

r − ẇ) +Kp(w
r −w)}

−H22H
†
12(h1 −H12H

−1
22 h2)

+H22(I −H†
12H12)κ,

(70)

where Kv and Kp are 3× 3 positive-definite matrices
and κ is an arbitrary n− 1-dimensional vector, we have

ẅ = ẅr +Kv(ẇ
r − ẇ) +Kp(w

r −w), (71)

or in other words

(ẅr − ẅ) +Kv(ẇ
r − ẇ) +Kp(w

r −w) = 0, (72)

whenever H12 is of row full rank. This equation implies
the asymptotic convergence of wr −w to 0. Note that,
although the snake robot is an underactuated system,
there is some redundancy in controlling w, which might
be modulated through the vector κ.

6.1.2. Use of Redundancy

Although (71) implies asymptotic convergence
of w to wr, the internal stability of the system is
questionable. For single-input-single-output systems,
zero dynamics will play an important role in the
analysis of stability, but for multiple-input-multiple-
output systems with redundancy, the theory of zero
dynamics is under development [26], and it seems that

we currently lack important tools with which to ensure
our system’s stability.

Nonetheless, one important insight is given by
Theorem 3 of [20]: the controller must be time variant
for our system to be stable. The following lemma holds
as a direct consequence.

Lemma 1. The vector κ in (70) must be time variant to
render the system stable.

Although there seems only a small theoretical
guidepost for the design of κ, it is natural to use
periodical functions because we usually need a ‘gait’
that continues ad infinitum. Following common practice
in the field of snake robots, we use the serpenoid curve
in the determination of κ. As shown in Section 4.3,
with the serpenoid curve, it is expected to be possible
to avoid the singularity.

By substituting (70) and (71) into (25), we can
eliminate ẅ and τ . Multiplication by H−1

22 from the left
leads to

φ̈+H†
12h1 + (I −H†

12H12)(H
−1
22 h2 − κ)

+ P{ẅr +Kv(ẇ
r − ẇ) +Kp(w

r −w)} = 0,
(73)

where P = (H−1
22 H12 −H†

12H). Let us assume that the
convergence of w to wr is already achieved; i.e., ẇr −
ẇ = 0 and wr −w = 0. The system then becomes

φ̈+H†
12h1 + (I −H†

12H12)(H
−1
22 h2 − κ) = 0. (74)

Let κ be defined as

κ = H−1
22 h2 − u, (75)

where u is an arbitrary vector. We then have

φ̈+H†
12h1 + (I −H†

12H12)u = 0. (76)

By multiplying by (I −H†
12H12) from the left and

noting that (I −H†
12H12) is idempotent (i.e., (I −

H†
12H12)

2 = (I −H†
12H12)) and (I −H†

12H12)H
†
12 =

O from the definition of the pseudo-inverse, we have

(I −H†
12H12)(φ̈+ u) = 0. (77)

Note that the (n− 1)-by-(n− 1) matrix (I −H†
12H12)

can never be of full rank. In fact, because H†
12H12 is

idempotent, its eigenvalues are restricted to values of
1 (multiplicity rankH12) and 0 (multiplicity n− 1−
rankH12). Furthermore, because H†

12H12 is symmetric,
it can be diagonalized by a unitary transformation and
the same transformation does not alter the identity
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matrix. As a consequence, it is confirmed that the
eigenvalues of (I −H†

12H12) are 1 (multiplicity n−
1− rankH12) and 0 (multiplicity rankH12). Because
rankH12 ≤ 3, we have rank(I −H†

12H12) ≤ n− 4.
Therefore, (77) does not ensure that φ̈+ u = 0.
However, it is expected that the input (75) tries to
achieve φ̈+ u = 0 as closely as possible, using the
redundancy that remains after achieving trajectory
tracking.

As a consequence, we set κ as

κ = H−1
22 h2 − u

u = −φ̈r −Rv(φ̇
r − φ̇)−Rp(φ

r − φ),
(78)

where Rv and Rp are (n− 1)× (n− 1) positive-
semidefinite matrices. The reference for the joint angles
φr is determined according to (43).

6.1.3. Result of Control Based on Partial Feedback
Linearization

The simulation uses the same parameters used in
Section IV and listed in Table 1; i.e., the number of
links is n = 10, the length of each link is 2l = 0.12 m,
and the mass of each link is m = 0.182 kg. The friction
coefficients are set to cx = cy = 0.5 Ns/m and cθ =
7.2× 10−5 Nms. The matrices used in the controller
(70) and (78) are defined as

Kv = 6.0I3, Kp = 6.2I3,

Rv = 0.041In−1, Rp = 0.079In−1.
(79)

The reference wr is

wr =
[
0.1t 0 0

]T
. (80)

The parameters for the serpenoid curve are

α =
π

3
, Ts = 1, v = 0.18. (81)

Tuning these parameters requires much care. First,
because w should converge to wr quickly, Kv and
Kp should be relatively large; i.e., larger than Rv

and Rp. However, if they are too large, the state
will diverge within several computational steps. The
serpenoid parameters are chosen such that the speed
of the CM is close to the reference speed of the head.
These settings are empirically the best for our robot and
the reference trajectory.

The initial state η0 is set as

η0 =

⎡
⎣ w0

φ0

0n+2

⎤
⎦ , w0 =

⎡
⎣00
0

⎤
⎦ , φ0 =

π

6
1n−1. (82)
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Fig. 10. Manipulability criteria and norm of the torque input.

Note that, according to previous wisdom based on the
study of snake robots with lateral constraints, the snake
robot is uncontrollable in the initial state.

The two manipulability criteria D and R are shown
in Fig. 10(a). The norm of the torque input ‖τ‖ is shown
in Fig. 10(b) along with the manipulability criterion R.
It is seen that although D takes a very small value at
first, ‖τ‖ and R do not. However, before ‖τ‖ becomes
very large, only R has a small value at around t = 3.44

s. The postures of the robot at t = 0.0 s and t = 3.44 s
are shown in Fig. 11. Although it is not clear from the
visual appearance that the robot is close to adopting a
singular posture, the conclusion that the robot is close
to having a singular posture is consistent with the fact
that ‖τ‖ becomes large after t = 3.44 s.

Figure 12 presents the value of each element of
g = H1q̇ + g2 along with the manipulability criterion
R. According to the discussion in Section 5.3, g must
be conserved during the simulation. It is obvious that
both elements of g are conserved in the first couple of
seconds.

However, both elements of g decrease sharply after
t = 3.44 s, at which time R reaches its lowest value.
This implies that R correctly characterizes the singular
posture and if R is too small it becomes difficult to
simulate the robot’s motion accurately. These results
also support our conclusion that R is better suited as
a metric indicating how close the snake robot is to its
singular posture.

Figure 11 also shows that within 3.44 seconds
of movement, the snake head follows the indicated
reference trajectory. It is therefore concluded that the
posture for which all joints share the same joint angle
is not generally a singular posture and is controllable at
least locally.
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Fig. 11. Robot postures at t = 0 s and t = 3.44 s.
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Fig. 12. Two conservatives defined in Section 5.3 for the case of
isotropic friction.

6.2. Manipulability Analysis of Head Trajectory
Tracking Control

In this subsection, the state-of-the-art head trajec-
tory tracking controller proposed by the authors [27] is
tested using our proposed manipulability criteria. The
control method is based on a Lyapunov-like function:

V (w, ẇ, φ̇) = ‖(ẇr − ẇ)+Kw1(w
r −w)‖2Kw2

+ ‖φ̇r − φ̇‖2Kφ
,

(83)

where ‖x‖K = xTKx for any vector x and a positive-
definite matrix K . The control input τ is defined to
reduce the value of V . Although we use the serpenoid
curve for φr, the produced body shape can be far from
it. This is especially true if the singular values of Kφ

are set to be smaller than those of Kw1 and Kw2, which
is often the case because achieving w → wr is the first
priority.

Although the main task of achieving w → wr

cannot be realized exactly, the advantage of this control
method is that it is robust against the existence of
a passive joint as shown in [27]. With only a little
modification, the method can be used for a snake robot
with a passive joint and the same level of tracking
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Fig. 13. Motion of the snake robot with head trajectory tracking
control [27]. The dashed line is the reference path of the head.
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Fig. 14. Manipulability criteria for straight trajectory tracking.

performance can be attained. In what follows, we
analyze the manipulability of the robot with and without
a passive joint.

The parameters of the snake robot were set to those
in the previous subsection 6.1.3. The reference wr is
also the same and the gain matrices are set as

Kw1 = diag(2, 2, 3), Kw2 = diag(400, 400, 45),

Kφ = diag(10, 20, ..., 20).
(84)

The (1, 1) element of Kφ was set to be smaller than the
others to facilitate using the first joint to adjust the head
angle. The serpenoid parameters for φr were α = π/6,
v = 2, and T = 1.5. The initial state was set to be the
same as in Section 6.1.3, i.e., the shape of the snake
robot was a circle at first.

6.2.1. Without Any Passive Joint

The motion of the robot without any passive joint
for the first 60 s is shown in Fig. 13. The dashed
line is the reference path and it can be seen that the
control law [27] succeeded in head tracking with small
error relative to the length of the snake robot, without
converging to a singular posture. The manipulability
criteria are shown in Fig. 14. This also confirms the
success of the avoidance of singular postures.
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Fig. 15. Comparison of the criterion proposed by Date et al. and
our criterion R, which has been shown to be better than the
manipulability criterion D in detecting a singularity. The dashed
line refers to the manipulability criterion of Date et al. while the
solid line refers to R.

6.2.2. Comparison with an Existing Criterion [10]

To clarify that our manipulability criterion R,
which was shown to be better for describing a
singularity, has properties different from those of the
criterion proposed by Date et al. [10], we make
a comparison using the data obtained in Section
6.2.1. Note that, although the manipulability criterion
proposed by Date et al. is used to evaluate properties
other than R, it can also be used to detect a singularity
of a snake robot with wheel constraints. The robot is
assessed to be in a singular posture if the manipulability
reaches zero.

In Fig. 15, the manipulability criterion proposed
by Date et al. [10] and R are plotted for the time
interval t ∈ [0, 10]. It is seen that at the initial posture,
R becomes positive but the manipulability criterion
of Date et al. reaches zero. Because the trajectory
tracking task was successfully performed with this
initial posture, it is clear that the manipulability
criterion of Date et al. is not appropriate to detect the
singularity for our settings.

6.2.3. With a Passive Joint

Let us assume that the fifth joint is passive. The
motion of the robot for the first 60 s is shown in Fig. 16.
The fifth joint is shown by a cross mark while the
dashed line is the reference path. Again, it is seen that
the control law [27] allows head tracking with small
error relative to the length of the snake robot, without
converging to a singular posture. The manipulability
criteria are shown in Fig. 17. The figure confirms the
avoidance of singular postures even if one of the joints
is passive.
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Fig. 16. Motion of a snake robot with head trajectory tracking
control [27]. The fifth joint, which is shown by a cross mark,
is set to be passive. The dashed line is the reference path of the
head.
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Fig. 17. Manipulability criteria for straight trajectory tracking in the
case that the fifth joint is passive.

6.3. Analysis of Head Trajectory Tracking on a
Physics Engine

To show the validity of our manipulability
definition in a more realistic environment, the motion
of a snake robot in a physics engine is analyzed. As the
environment, we used Vortex running on V-REP. The
robot model on V-REP is shown in Fig. 18.

The robot was composed of n = 8 links with
equal length of 2l = 0.176 m, equal mass of 0.417 kg,
and equal moment of inertia of 1.20× 10−3 kgm2.
The anisotropy in friction was achieved by placing a
pair of passive wheels on each link. The Coulomb
friction model was employed between the wheel and
the floor, instead of the viscous friction that is used in
the controller model. To estimate the general velocity
q̇, the pseudo-differential that is defined by the transfer
function 2πfcs/(2πfc s+ 1) was used. The cut-off
frequency fc was set to 10 Hz. All the parameters on the
controller, including the reference trajectory and initial
joint angles, are the same as those in Section 6.2.

Figure 19 shows the trajectory of the head. The
solid line is for xh and the dashed line is for yh.
The dotted lines show the references xr

h and yrh. The
manipulability criteria are shown in Fig. 20 and images
capturing the movement of the snake robot during the
first 60 s are shown in Fig. 21. It is seen that the robot
successfully avoids the singular posture. Our criteria
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Fig. 18. Model of the snake robot in V-REP.
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Fig. 19. Trajectory of the head position. The solid line and dashed
line show xh and yh, respectively. The dotted lines refer to the
references.
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Fig. 20. Manipulability criteria for the simulation using the physical
engine.

show this success clearly, despite the difference in the
model that it assumes, including the difference in the
friction model.

VII. Conclusion

We defined the dynamic manipulability of a snake
robot without a lateral constraint with the aim of
future application to tracking the head trajectory. The
singular posture of the snake robot was examined using
the dynamic manipulability. Of the two manipulability
criteria D and R, R was shown to be more suitable
for detecting a singularity, though both become zero if
and only if the robot is in a singular posture. Because
we are interested in constructing a head tracking

control strategy that can also be used in the case of a
malfunctioning joint, these criteria were also examined
in the case that one of the joints is free. The quantitative
properties of the manipulability criteria are different
if there is a free joint, as is expected because there
are fewer usable inputs. However, we observed the
same qualitative property as in the case without free
joints; i.e., the criteria are zero only if the robot has a
straight line shape among the shapes that we tested. The
manipulability criteria express only local properties that
are determined only by inertial properties. The criteria
therefore cannot be used to clarify the effect of friction;
however, they can be used regardless of the type of
friction. Furthermore, uncontrollability of the robot in
the case of isotropic friction is, though only partially,
explained from the point of view of integrability.

From the results of our simulation, we conjecture
that the partial feedback linearization technique is not
suitable for the head trajectory tracking control of
a snake robot without a lateral constraint because it
is too sensitive to parameter settings. We are now
working at designing a suitable control strategy for
the head trajectory tracking control of snake robots
without a lateral constraint. Moreover, we are interested
in making the control robust against joint failure and,
as a typical case, we will consider the case that a
joint becomes free owing to a problem in future work.
Furthermore, we are interested in completing our proof
on the uncontrollability of the head trajectory under
isotropic friction.
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