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A recently introduced framework incorporating the Projector Augmented Wave method and Gauss-
type function (GTF-PAW) [J. Chem. Theory Comput. 2017, 13, 3236–3249] opens alternative
possibilities to perform low-cost molecular computational chemistry calculations. In this work, we
present our first attempt to expand the applicability of this method by developing a family of compact
general contracted polarization consistent basis sets (PAW-Ln) as optimized GTF basis in combination
with PAW. The results show that PAW-Ln, despite having small numbers of primitives, can provide
not only better performance than effective core potential (ECP) but also good accuracy and desirable
systematic convergence compared to larger all-electron basis sets. This demonstrates that GTF-PAW
using the PAW-Ln basis sets could be a better alternative to both conventional all-electron- and ECP-
based approaches for routine DFT calculations.

1 Introduction
Kohn-Sham density functional theory (KS-DFT) is undoubtedly
the most popular theoretical method to study a wide range of
molecular systems1,2. Over the years, it is not only employed
by computational chemists/physicists but also routinely used in
many experimental groups as a supplemental tool to give insights
into the understanding of their experimental results. Nowadays,
KS-DFT calculations of systems containing hundreds of atoms
can be done with reasonable computational resources (computer
time, memory, and human time). Large-scale DFT simulations are
achievable with linear-scaling technique on supercomputer3,4.

The enormous popularity of KS-DFT is perhaps attributable to
its low cost, augmented with reduced scaling methods5–16 and
the Resolution of the Identity (RI) approximation for the elec-
tron integrals17–24, as well as the development of various ac-
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curate density functional approximations (DFAs)2. Obviously, a
straightforward way to achieve lower computational cost is to de-
crease the number of Kohn-Sham orbitals or the basis set size,
preferably without loss in accuracy. The pseudopotential based
method25–43 makes use of this idea by replacing core electrons of
an atom and its nucleus with an effective potential. Thus, only
valence electrons are explicitly described and a large set of basis
functions required to characterize the core electrons is eliminated.
The elimination can be further promoted by the combination
of the pseudopotential with augmented basis (or plane-wave)
method44,45. Among different pseudopotential and augmented-
basis schemes, Projector Augmented Wave (PAW), introduced
by Blöchl 46 , is considered one of the best methods in terms of
accuracy and computational efficiency. Furthermore, the PAW
method allows the all-electron wavefunctions to be reconstructed
from the pseudo-wavefunctions, thus properties depending on
the core wavefunction, for example NMR chemical shift47, can
be calculated. PAW has attracted much interest within the solid-
state community and has been implemented in many solid-state
physics software employing plane-wave basis sets, e.g. VASP48,
ABINIT49, CASTEP50, Quantum ESPRESSO51, and using other
type basis, such as tabulated numerical basis in GPAW52, wavelets
in BIGDFT53, Lagrange-sinc basis in ACE54, etc.

Unfortunately, within the quantum chemistry community the
PAW method seems to be overlooked. One reason for this
is that the effective core potential (ECP) method has been
well-established long before and widely-recognized as a highly-
successful pseudopotential (PP) method that can give satisfac-
tory accuracy55. The ECP has been implemented in most quan-
tum chemistry (QC) packages and mainly serves as a relativistic
method to treat heavy elements. A central difference in formal-
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ism between ECP and PAW methods is that ECP is classified to
the norm-conserving type56–60, whereas PAW is of the ultrasoft
type46,61. In ECP, the PP associated with the frozen atomic core
states is written as V̂PP(r) = UL(r) + ∑

L−1
l=0 ∑

l
m=−l |Ylm〉Ul(r)〈Ylm|,

given that we here neglect the spin-orbit effect for simplicity. The
indices L (as well as l) and m are angular and magnetic quantum
numbers, respectively, |Ylm〉 are the spherical harmonics as pro-
jectors, and Ul(r) are potential functions. In the QC implementa-
tions, a linear combination of Gaussians multiplied by powers of
the electron-core distance is used for the representation of Ul(r)
for ease of integration. The potential function V̂PP(r) is kept fixed
at the predetermined atomic form in molecular calculations. The
resultant valence orbitals ψv(r) have nodeless shape in the inner-
core region, but usually agree well with all-electron orbitals in
the valence region. The density is defined using the normalized
ψv (〈ψv|ψv〉= 1) as the method is typed as norm-conserved.

A distinct difference of PAW from ECP arises from the start-
ing formalism that is to introduce the exact transformation of
the atomic state |ψa

v 〉 = |ψ̃a
v 〉+(|ψa

v 〉− |ψ̃a
v 〉) = T̂ |ψ̃a

v 〉, where |ψa
v 〉

and |ψ̃a
v 〉 are true (or all-electron) and pseudo orbitals, respec-

tively, and the superscript a indicates the atomic state. The ul-
trasoft formalism built into PAW means that |ψ̃a

v 〉 can be numeri-
cally insignificant and indeed its norm is usually much less than
1, whereas in the ECP method, orbital states are normalized to
a norm of 1, as mentioned above. The transformation operator
T̂ is written as T̂ = 1+∑v′(|ψa

v′〉− |ψ̃
a
v′〉)〈p

a
v′ | using PAW’s projec-

tors |pa
v〉, which satisfy the biorthogonality 〈pa

v |ψa
v′〉 = δvv′ . The

reconstruction of the all-electron shape from the pseudo orbitals
via the predetermined T̂ is at the heart of the augmented wave
scheme of PAW and unavailable in ECP. This scheme is exploited
as a key to derive the pseudized one-electron Schrödinger equa-
tion in a rigorous manner as T̂ †F̂T̂ |ψ̃a

v 〉 = εvT̂ †T̂ |ψ̃a
v 〉 where F̂ is

the all-electron Fock operator and εv is the orbital energy. The
pseudized Fock operator is written as T̂ †F̂T̂ = − 1

2 ∇2 +Ua
loc(r)+

∑vv′ |pa
v〉Ua

vv′〈p
a
v′ |, in which the potential term at first glance takes

a form similar to the ECP but critically differs from it in the
sense that PAW’s potential is adaptively modulated in response
to the all-electron molecular F̂ in a self-consistent manner. The
coefficients of the nonlocal term Ua

vv′ are computed using all-
electron atomic orbital information from a unique mapping of all-
electron F̂ to the pseudization representation, rigorously derived
as Ua

vv′ = 〈ψ
a
v |F̂ |ψa

v′〉− 〈ψ̃
a
v |F̂ |ψ̃a

v′〉 for atomic state. This mapping,
built upon accurate projection, can totally avoid artificial fitting
parameterization with few exceptions. In this sense, PAW is not
simply a PP method but thus characterized as a generalization of
the PP and augmented-wave methods, as emphasized in the origi-
nal work of Blöchl 46 . In contrast, there is no posterior adjustment
taking place in the given PPs in the ECP calculations. In addition,
the construction of ECP’s PP entails a certain arbitrariness in its
fitting method, which is based on either atomic shapes or ener-
gies55. It should also be noted that Ul(r) of ECP’s PP represented
with the Gaussians is uniformly sphere or isotropic, whereas the
PAW formally retains anisotropic structures of the local and non-
local potentials. We can construct the PAW pseudization without
the frozen core (FC) approximation unlike ECP, although the FC
approximation is employed in most cases.

In a recent work of Xiong and Yanai 62 , a framework to incorpo-
rate the PAW method into the Gauss-type function- (GTF) based
molecular DFT code, referred to as GTF-PAW, was introduced.
The generality of the PAW method allows the GTF-PAW method
to be implemented in the existing quantum chemistry program
in a rather straightforward manner. Our prototype implementa-
tion has been achieved by linking our in-house Gaussian basis
code with a portable PAW library LIBPAW, developed by Rangel
et al. 53 for the plane-wave code ABINIT49,63,64. Most of PAW
procedures can be performed with the existing subroutines of-
fered by LIBPAW. In the previous study, the complementary PAW
treatments to handle GTF basis was newly and sub-optimally im-
plemented62. Using the atomic code ATOMPAW, developed by
Holzwarth et al.65,66, the PAW atomic data required by the LIB-
PAW library can be easily generated in a nearly blackbox manner.

In the GTF-PAW method, we fully utilize all features of the
PAW method and employ Gaussian basis functions for basis to
represent PAW’s pseudo waves, as was reported in our previous
paper62. In this paper, we do not repeat the detailed explana-
tion of the original PAW method including basis transformation,
pseudization, frozen core treatment, and various technical as-
pects, for which the readers should consult the original paper46

or other well-written literatures28,52,65.
Similar to ECP, high-exponent primitive GTFs are no longer

required in GTF-PAW. Moreover, it is possible to reproduce the
conventional all-electron total energies (to within 1 mEh) with
GTF-PAW, providing that adequate frozen core treatments and a
near-complete basis (e.g. uncontracted cc-pVQZ) were employed.
The work of Xiong and Yanai 62 demonstrated that GTF-PAW is a
reduced-cost promising alternative to ECP and even conventional
all-electron methods. The work serves as a starting point for our
future research on efficient and user-friendly PAW-based methods
(both DFT and ab initio). In our very recent work67, the level of
the functional treatment in GTF-PAW code was raised to the gen-
eralized gradient approximation (GGA). In addition, the uniform
mesh grid for the DFT quadrature was introduced in the Gaussian
code as a feasible alternative to the traditional Becke multicenter
fuzzy cell grid68.

In this work, we tackle one of the important issues that were
raised in the previous work62, that is the need of atomic basis
sets well-prepared for GTF-PAW. Two strategies may be employed
to overcome this issue. The first one is to simply use existing un-
contracted all-electron basis sets and truncate them, i.e. remove
all inappropriate tight basis functions62. However, for practical
applications that can best exploit the efficiency of GTF-PAW, some
questions remain unanswered: Which uncontracted all-electron
basis set should be used? Which tight basis functions should be
eliminated? What is the accuracy of such truncated basis set?
Nevertheless, this kind of truncated basis set is potentially either
unbalanced or inefficient, hence diminishing the appeal of the
GTF-PAW method. Obviously, a superior strategy is to design new
basis sets for GTF-PAW, explicitly optimize their compositions and
exponents, and benchmark their performance against all-electron
calculations. In this work, we pursue this strategy and propose
a sequence of polarization consistent basis sets as atomic GTF
basis for routine molecular calculations with GTF-PAW, hereafter
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referred to as PAW-Ln. The index n denotes the level of polariza-
tion compared to the isolated atom, e.g. for carbon, PAW-L0 has
sp, PAW-L1 has spd, PAW-L2 has spd f basis functions, etc. These
basis sets were built in a manner similar to the all-electron po-
larization consistent basis sets (pc-n) introduced in the works of
Jensen et al.69–73 The most important characteristic of this fam-
ily is that functions contributing similar amounts of energy are
included at the same stage. It was shown that using this hier-
archy of polarization consistent basis sets, total energies, atom-
ization energies, equilibrium distances, and dipole moments con-
verge monotonically towards the complete basis set (CBS) limit.
The major disadvantage of this family is that the pc-3 and pc-
4 basis sets are quite large. For instance carbon pc-4 has 131
primitives (18s11p6d3 f 2g1h) contracted to 109 basis functions
[8s7p6d3 f 2g1h]. It is much larger than the largest Karlsruhe ba-
sis set def2-QZVPPD (16s8p4d2 f 1g)−→[8s4p4d2 f 1g] or the cc-
pV5Z (108 primitives, 91 contracted basis functions). Such large
basis sets are apparently applicable for small molecules and may
be redundant for standard DFT applications. It should also be
noted that due to the (typically large) intrinsic error of DFAs, re-
sults calculated with sizeable basis sets are not necessarily better
than those with smaller basis sets. Considering this fact, we will
only focus on developing small- to medium-sized basis sets explic-
itly used for GTF-PAW. The PAW-Ln series is limited to n = 1 and
2. Nevertheless, due to the PAW frozen core treatment, we expect
that this series is able to yield comparable results to those ob-
tained from more expensive all-electron calculations. The incor-
poration of the relativistic effect into the PAW for the plane-wave
code was investigated by earlier studies; however, originally, the
PAW was not introduced as a relativistic method but developed as
a general numerical framework, which was formulated based on
the non-relativistic Kohn-Sham equation46. In a similar manner,
this study attempts to show the development of basis sets with
GTF-PAW in the non-relativistic regime. This naturally serves as
an essential proof-of-concept to verify the validity and usability
of our direct adaptation of PAW to quantum chemical methods,
which usually handle chemical systems mostly consisting of light
elements. As a preliminary study, we will thus work with the first-
, second-, and third-period elements, except noble-gas elements.

2 Generation of PAW Atomic Dataset
The PAW formalism requires the so-called “PAW atomic data” file
for each element. Over the years, many PAW atomic datasets have
been constructed28,52,66,74,75, unfortunately, they are primarily
designed for solid-state simulations. Thus, we decided to gen-
erate a new PAW atomic dataset for our molecular calculations.
The dataset was produced following the recipe described in the
work of Jollet et al. 66 . The calculations were done with the orz
program package76. The SVWN (or LDA) exchange-correlation
functional77–79 and uncontracted pc-4 basis set were used (see
Tables 1 and 2). For light elements, the contribution of relativis-
tic effects is minimal, therefore, we employed the non-relativistic
wave equation. In the partial-waves basis generation part, we
chose the Vanderbilt polynomial pseudization scheme27 for the
wavefunctions and Troullier–Martins pseudization scheme for the
local potential29. The values of the most critical parameter deter-

mining the accuracy of the PAW atomic data, the radial cutoffs
rpaw, are listed in Table S1. To describe molecular systems with
short bond lengths, we used smaller rpaw values than those in
the existing PAW datasets28,52,66,74,75. rpaw for each element was
chosen to be smaller than half the bond length of its diatomic
molecule. Also the rpaw values were selected so that molecules
with very short bond distances (according to the Computational
Chemistry Comparison and Benchmark Database80) can be cal-
culated. We note that one can eventually further reduce rpaw,
thus improving the accuracy of the dataset. However, such too
“hard” dataset will require large atomic basis sets, consequently,
deteriorate the efficiency of the GTF-PAW method. For alkali and
alkaline-earth elements (Li, Be, Na, and Mg), the “semi-core” s
and p electrons were treated as valence. Hence, we avoid the
so-called “ghost states”81 and can properly describe ionic bonds
with high electronegative elements (e.g. fluorine).

3 Uncontracted Basis Sets
With the generated PAW dataset, we first construct the uncon-
tracted PAW-L1 and PAW-L2 basis sets by determining their op-
timal compositions and optimizing their exponents with respect
to GTF-PAW total energies. All GTF-PAW calculations were per-
formed using the SVWN (or LDA) exchange-correlation func-
tional, D2h symmetry, tight grid equivalent to Grid7 implemented
in the ORCA program package82 (770-point Lebedev angular grid
and radial grid with IntAcc = 5.67). Open-shell species were
calculated with the unrestricted formalism (UKS). No symmetry
equivalencing was applied in the calculations. One might argue
that LDA usually gives poor results and the generated basis sets
would be of low quality. However, as has been shown in the work
of Jensen 70 , we expect that the composition of the basis sets,
i.e. the number of s, p, and d functions, will remain the same.
Furthermore, later Jensen 83 showed that the difference between
using different XC functionals (including LDA) for basis set op-
timization is small and well below the basis error as compared
to CBS. We thus expect that optimizing the basis sets at a higher
level of theory such as B3LYP, although might improve the accu-
racy, should not significantly change the quality of our basis sets
optimized with LDA. Because it is difficult to simultaneously op-
timize all exponents α, we instead generated them using the so-
called even-tempered series84: αi,l = αlβ

i−1
l , αl ,βl > 0, i = 1–Nl ,

where l is the angular momentum quantum number, αl and βl are
parameters optimized with respect to the total (atomic or molec-
ular) energies. The advantages of this approach are its simplicity
(the dimension of the search space is drastically reduced), stabil-
ity (variational collapse, i.e. two exponents collapse to the same
value, is prevented), and extensibility (diffuse functions can be
naturally included by extending the series). The optimization of
the atomic or molecular energy E with respect to αl and βl was
done with the BFGS algorithm. Energy gradients with respect to
αl and βl were calculated by central finite differences. During the
optimization procedure, multiple minima in the even-tempered
parameter space could be located. These minima can have very
similar energies with quite different αl and βl values. In this case,
we selected the minimum with the lowest total energy. We finally
note that whereas our optimization approach offers some advan-
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tages, the optimized exponents are still far from optimal.
In Figure 1, we summarize the procedure to develop the PAW-

Ln basis sets. This procedure resembles the one employed in the
work of Jensen 69 . Here, we describe in detail the procedure ap-
plied for hydrogen. First, we determined the compositions of the
basis sets by calculating the contribution of each basis function to
the total energy of the hydrogen atom (step 1). The results for
the s functions are shown in Figure 2 (full blue line). Undoubt-
edly, the atomic DFT energy is independent of polarization (p and
d) functions. Therefore, the impacts of these polarization func-
tions could be only evaluated from molecular calculations (steps
2 and 3), in this case, the calculations of H2 at d(H–H) = 0.76 Å.
One can argue that this choice of bond distance is arbitrary, fur-
thermore, the optimized exponents are better at describing the
targeted molecule (H2) instead of general molecules. Neverthe-
less, Jensen 85 demonstrated that basis sets obtained with this
approach are capable of providing highly accurate results over
a wide range of molecular systems. In both steps 2 and 3, we
restricted the perturbation of the s functions by using up to 11s
functions and fixing the exponents at their atomic values. The re-
sults are presented in Figure 2 (dotted red line and dashed green
line). It can be seen that the convergence of the total energy
with respect to the number of functions is roughly exponential as
expected.

The composition of primitive GTFs (4s1p) is commonly em-
ployed in the pc-1, def2-SVP, cc-pVDZ, and 6-31G(d,p) basis sets
and was shown above to provide an energy prediction accurate
to 10−3 Eh with the GTF-PAW scheme. In case of hydrogen, we
did not employ the frozen core approximation; however, PAW’s
pseudization can render the 1s valence wavefunction drastically
smooth, so that the conventional size of the s primitives, i.e., (4s),
is a bit conservative. To accommodate the the double-ζ level qual-
ity at a minimal cost, we decided to use (3s) for PAW-L1, anticipat-
ing that the quality of (3s1p) should be similar to (4s1p) in terms
of the DZP-accuracy basis. Figure S1 shows the comparison of the
σ molecular orbital (MO) of H2 determined at 4s1p and 3s1p,
illustrating that the errors of these two basis representations ap-
pear to be rather small. In GTF-PAW, the smooth pseudo wave
function represented with a small number of GTF functions is
corrected by the PAW transformation, resulting in high-accuracy
all-electron wave function. Figure 3(a) displays the all-electron
wave function resulting from the pseudo wave function based
on PAW-L1 (3s1p), which shows an even better description than
those obtained using the all-electron (4s1p) basis from the con-
ventional GTF implementation. PAW-L2 can be either (6s3p1d) or
(5s2p1d). We chose the latter option, taking into consideration
that PAW-L2 should not be larger than pc-2 and cc-pVTZ, which
are (6s2p1d) and (5s2p1d), respectively. Figure 3(b) shows all-
electron form of σ MO obtained with PAW-L2, which again pro-
duced a higher-accuracy description including nuclear cusp struc-
tures than that calculated using the conventional approach with
the cc-pVTZ basis.

In Figures 4 and 5, we show similar plots for Be, Mg, N, and
P. For Be, the compositions of PAW-L1 and PAW-L2 should be
(4s2p) and (6s3p1d), respectively. These basis sets contain signif-
icantly smaller numbers of s functions than the all-electron basis

sets, although the frozen core approximation was not employed.
The reason for this reduction is that the 2s wavefunction (with
one node) is transformed into a nodeless 2s smoothed pseudo-
wavefuntion, therefore, tight s basis functions are no more re-
quired. As compared to Be, Mg requires more attention as we
found that basis sets produced with the standard procedure give
inferior performance. The reason is that the atomic p basis func-
tions, optimized for the atomic energy, are too tight. This problem
could be resolved by augmenting these tight atomic p basis func-
tions with p polarization functions, denoted as ppol. We found
that one extra ppol function is sufficient to improve the accuracy
of the Mg basis sets. The compositions of PAW-L1 and PAW-L2 for
Mg are therefore (5s3p1ppol) and (6s4p1ppol1d), respectively.

For nitrogen and phosphorus, [core] ns2 np3, the radial pseudo-
wavefunction ns and np are quite similar, thus we expect that s
and p basis functions give comparable contributions to the atomic
total energy. Indeed, one can observe the similar behavior of the
s and p lines depicted in Figure 5. As compared to the results of
Jensen69, the lines are not very smooth, e.g. there are several
prominent kinks in phosphorus. The reasons might be related
to the fact that the total energy function E(αl ,βl) has multiple
minima and the BFGS algorithm is prone to converge to local
minima. Nevertheless, we propose that for both N and P, PAW-L1
is (3s3p1d) and PAW-L2 is (4s4p2d1 f ).

Commonly, basis sets of elements within the same block and
period have an identical composition (see also Tables 1 and 2).
We also applied this principle in designing the PAW-Ln basis sets,
i.e. for Li–Be, PAW-L1 = (4s2p) and PAW-L2 = (6s3p1d); for
Na–Mg, PAW-L1 = (5s3p1ppol) and PAW-L2 = (6s4p1ppol1d); for
B–F and Al–Cl, PAW-L1 = (3s3p1d) and PAW-L2 = (4s4p2d1 f ).
The basis set compositions are also summarized in Tables 1 and
2. As noted above, the optimized exponents of the polarization
functions were obtained in calculations of symmetric homonu-
clear molecules X2, d(X–X) = 2.70, 1.60, 1.26, 1.21, 1.42, 2.98,
2.45, 2.28, 1.90, and 2.00 Å, with X = Li, B, C, O, F, Na, Al, Si, S,
and Cl, respectively.

After defining the basis set compositions for all elements, we
then reoptimized the exponents of the polarization functions us-
ing the reduced s or sp basis to achieve maximum accuracy. The
procedure is illustrated in Figure 1. For example for the PAW-L2
basis set of N (4s4p2d1 f ), we fixed the exponents of the 4s and
4p basis functions at their atomic values, while simultaneously
optimizing the 2d and 1 f exponents.

4 Contracted Basis Sets
Even though the PAW-Ln basis sets are relatively small compared
to uncontracted all-electron basis sets (see Tables 1 and 2), it
is still beneficial in terms of computational efficiency to contract
them. Similar to the work of Jensen 69 , we employed the gen-
eral contraction scheme introduced by Raffenetti 86 , using orbital
coefficients obtained from atomic DFT calculations as contraction
coefficients. Here, for open-shell atoms, we used restricted open-
shell DFT in combination with D2h symmetry and averaged coeffi-
cients of p-type orbitals. As compared to the segmented contrac-
tion scheme, it is simpler, furthermore, atomic SCF energies are
preserved upon contraction.
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Fig. 1 Procedure to construct the PAW-Ln basis sets in this work. (i) Determine the composition of the basis sets by calculating the energy contribution
of each basis function in atom X and diatomic molecule X2, X = H, Be, N, P, and Mg. (ii) Optimize the exponents of the PAW-L1 basis set: H
(3s1p); Li–Be (4s2p); Na–Mg (5s4p); B–F and Al–Cl (3s3p1d). (iii) Optimize the exponents of the PAW-L2 basis set: H (5s2p1d); Li–Be (6s3p1d);
Na–Mg (6s5p1d); B–F and Al–Cl (4s4p2d1 f ). Polarization basis functions were optimized in diatomic calculations, whereas other basis functions were
obtained from atomic calculations.
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Fig. 2 Energy contribution (per atom, in Eh) of s, p, and d functions in
H. The latter two were calculated in H2 with d(H–H) = 0.76 Å, fixing
the exponents of 11s functions at their atomic values. The calculations
were done with the SVWN functional.

We selected the PAW-Ln contracted basis sets based on two
criteria, they should be (i) smaller than (or equal to) and (ii)
as accurate as the corresponding pc-n basis sets. For all ele-
ments, we were able to find contractions satisfying these two
criteria. In Tables 1 and 2, we summarize the compositions of
the contracted and uncontracted PAW-Ln basis sets, in compari-
son with other commonly used all-electron basis set families, i.e.
polarization-consistent pc-n69–73, Karlsruhe def2-87, correlation-
consistent cc-88–90, and Pople basis sets91–97. pc-n and cc- are
general contracted whereas the other two are segmented con-
tracted. We note that corresponding segmented versions of pc-
n having slightly fewer contracted functions and giving similar
accuracy are available (pcseg-n)98. All basis sets, except for 6-
311G(2df,2pd) of the third-period elements, were taken from the
Basis Set Exchange (BSE) library99. The 6-311G(2df,2pd) basis
set of the third-period elements was collected from the Gaussian
16 software package100–102. We also note that we constructed
a “minimal” basis set (PAW-L0.5) which will be discussed in Sec-
tion 7.

5 Performance of PAW-Ln as Compared to All-
Electron Basis Sets

To assess the performance of the PAW-Ln basis sets, we performed
a benchmark study on three properties: atomization energy, ver-
tical ionization energy, and noncovalent binding energy. The sys-
tems used in the test set are listed in Table S2. This test set
comprises two datasets: (i) the G2-97 dataset103,104 augmented
with additional molecules containing second- and third-period el-
ements (255 molecules in total, referred to as G2-97′); (ii) S22
dataset consisting of small to medium-sized complexes (up to 30
atoms) of common molecules containing C, N, O, and H105. The
results calculated with PAW-Ln (n = 1 and 2) were compared with
those obtained from all-electron basis sets (shown in Tables 1 and
2). The results with the largest basis set (pc-4) were used as ref-
erences. All all-electron calculations were performed with the
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Fig. 4 Left plot: Energy contribution (per atom, in Eh) of s, p, and d functions in Be. The latter two were calculated in Be2 with d(Be–Be) = 2.40
Å. Right plot: Energy contribution (per atom, in Eh) of s, p, p-pol, and d functions in Mg. The latter two were calculated in Mg2 with d(Mg–Mg) =
3.38 Å. The calculations were done with the SVWN functional.
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Fig. 5 Left plot: Energy contribution (per atom, in Eh) of s, p, d, and f functions in N. The latter two were calculated in N2 with d(N–N) = 1.10 Å,
Right plot: Energy contribution (per atom, in Eh) of s, p, d, and f functions in P. The latter two were calculated in P2 with d(P–P) = 1.90 Å. The
calculations were done with the SVWN functional.

Table 2 Compositions of third-period elements basis sets used in this work

Na–Mg Al–Cl

PAW-L0.5 (4s2p) (2s2p1d)
PAW-L1 (5s4p) [4s2p] (3s3p1d) [2s2p1d]
PAW-L2 (6s5p1d) [5s3p1d] (4s4p2d1 f ) [3s3p2d1 f ]

pc-1 (11s7p) [4s2p] (11s8p1d) [4s3p1d]
pc-2 (13s9p1d) [5s3p1d] (13s10p2d1 f ) [5s4p2d1 f ]
pc-3 (17s12p2d1 f ) [6s4p2d1 f ] (17s13p4d2 f 1g) [6s5p4d2 f 1g]
pc-4 (21s15p3d2 f 1g) [7s5p3d2 f 1g] (21s16p6d3 f 2g1h) [7s6p6d3 f 2g1h]

def2-SVP (10s6p1d)a [4s2p1d]a (10s7p1d) [4s3p1d]
def2-TZVP (14s8p3d) [5s4p3d] (14s9p3d1 f ) [5s5p2d1 f ]
def2-QZVP (20s12p3d1 f )b [9s5p3d1 f ]b (20s14p4d2 f 1g) [9s6p4d2 f 1g]

cc-pVDZ (12s8p1d) [4s3p1d] (12s8p1d) [4s3p1d]
cc-pVTZ (15s10p2d1 f )c [5s4p2d1 f ]c (15s9p2d1 f ) [5s4p2d1 f ]
cc-pVQZ (16s12p3d2 f 1g)d [6s5p3d2 f 1g]d (16s11p3d2 f 1g) [6s5p3d2 f 1g]

6-31G(d,p) (16s10p1d) [4s3p1d] (16s10p1d) [4s3p1d]
6-311G(2df,2pd) (13s9p2d1 f ) [6s5p2d1 f ] (13s9p2d1 f )e [6s5p2d1 f ]e

STRLC (4s4p) [2s2p] (4s4p) f [2s2p] f

SBK (4s5p4d) [2s3p2d] (4s5p4d) [2s3p2d]
a(10s7p1d)−→[4s3p1d] for Mg. b(20s12p4d1 f )−→[9s5p4d1 f ] for Mg. c(16s10p2d1 f )−→[5s4p2d1 f ] for Na.
d(19s12p3d2 f 1g)−→[6s5p3d2 f 1g] for Na. e(13s10p2d1 f )−→[6s5p2d1 f ] for Cl. f (4s5p)−→[2s3p] for S and Cl.
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SVWN functional and quadrature grids of size 7, implemented in
the Turbomole v.7.4 program package106.

We note that for the G2-97′ dataset containing small molecules
(up to 14 atoms), we were able to perform geometry optimiza-
tion calculations. This allows us to assess the performance of the
basis sets in describing equilibrium structures. Because PAW-LDA
energy gradients with respect to nuclear coordinates are not (yet)
implemented, we optimized the structures using numerical gradi-
ents in combination with the Berny python package107. For the
S22 dataset containing larger molecules (up to 30 atoms), we
only performed single-point calculations.

Before discussing in detail the results, two important questions
should be addressed: Which statistical metrics should be used
to assess the performance of the basis sets? and more impor-
tantly, how to interpret these metrics? We can either use mean
errors (MEs) and their standard deviation σ , as employed by
Weigend and Ahlrichs 87 when designing the def2- basis set fam-
ily; or mean absolute errors (MAEs) and maximum absolute er-
rors (MaxAEs), used by Jensen 70 when benchmarking the pc-n
basis sets. In both works, the “errors” were estimated using ref-
erences calculated with either a large basis set87 or the basis set
limit70. Both approaches should lead to similar conclusions, even
though the latter appears to give more penalty to basis sets with
outliers, i.e. large MaxAEs. In this work, we employed the lat-
ter approach, additionally, we used error ranges, defined as the
differences between the largest positive and negative error mag-
nitudes. We seek for the best basis set with the smallest MAE,
MaxAE, and error range values. Unfortunately, this is not a triv-
ial task since often a basis set can have small MAE but very large
MaxAE and error range and vice versa. In such cases, we pre-
fer basis sets giving more consistent results (modest MAE, small
MaxAE and error range) over those with slightly smaller MAE but
large MaxAE and error range values. The reason for this favor is
that, due to typically large intrinsic errors caused by DFAs, an “ac-
curate” basis set close to the CBS limit does not necessarily give
good results compared to experimental data.

5.1 Atomization Energies

In Figure 6, we plot the MAEs, MaxAEs, and error ranges of the at-
omization energies per atom calculated with different (contracted
and uncontracted) basis sets. The atomization energies obtained
with pc-4, which were shown to be close to the CBS limits (to
within 0.02 kJ/mol)70, are used as references. The results are
also summarized in Table S3.

Since the atomic energies are independent of the polarization
functions, the atomization energies (AE) are “unbalanced”, i.e.
the results are usually underestimated. Thus, it has been sug-
gested that the “atomization energies”, denoted as AE2, should be
calculated relative to diatomic systems instead70. We found that
AE2 errors are indeed smaller than the corresponding AE values.
More importantly, both AE and AE2 results behave similarly (see
Figure 6 and S2) and support our conclusion (vide infra). The
AE2 results can be found in Table S3.

We first discuss the performance of the uncontracted double-
ζ type basis sets (PAW-L1, pc-1, def2-SVP, cc-pVDZ, and 6-

31G(d,p)). Overall, we found all basis sets provide practically
similar performance. def2-SVP and 6-31G(d) give the small-
est MAEs (∼1.2 kcal/mol) and moderate MaxAEs (11.1 and
9.7 kcal/mol, respectively). PAW-L1, pc-1, and cc-pVDZ pro-
duce larger MAE values, 1.6, 1.9, and 1.7 kcal/mol, respectively.
Among all the basis sets, PAW-L1 has the smallest MaxAE (8.4
kcal/mol) and error range (8.5 kcal/mol). The fact that the
MaxAE and error range of PAW-L1 almost coincide is expected,
as can also be seen with the pc-1 basis set. The reason is that
the protocol of Jensen69 tends to describe atomic energies bet-
ter than molecular energies. Consequently, PAW-L1 and pc-1 sys-
tematically underestimate the atomization energies (244/255 and
255/255 molecules, respectively). The systematic behaviors of
PAW-L1 and pc-1 are certainly beneficial, as the results will be
always improved with larger basis sets (PAW-L2 and pc-2, vide in-
fra). PAW-L1 should be favored over pc-1 because it has a smaller
number of primitives and potentially higher computational effi-
ciency.

Going from the uncontracted to contracted basis sets, the re-
sults are expected to deteriorate to some extent (Figure 6). The
deterioration is characterized by contraction error, defined as the
difference between the MAE values of the contracted and uncon-
tracted basis sets. We found that in all molecules, contracted PAW-
L1 and pc-1 further underestimate the atomization energies com-
pared to the corresponding uncontracted basis sets. This is easy
to clarify as the general contraction scheme of Raffenetti 86 only
deteriorates molecular energies, whereas atomic energies are ba-
sically unchanged. The contraction errors of PAW-L1 and pc-1 are
0.74 and 0.39 kcal/mol, respectively. In contrast to PAW-L1 and
pc-1, we observed that in many molecules, contracted def2-SVP,
cc-pVDZ, and 6-31G(d,p) perform better than the corresponding
uncontracted. Nevertheless, they still have positive contraction
errors, 0.11, 0.46, and 0.20 kcal/mol, respectively.

Based on the MAE values, one can see that def2-SVP and 6-
31G(d,p) perform the best with the smallest MAEs of 1.26 and
1.44 kcal/mol, respectively. They also give the smallest MaxAE
value of 9.7 kcal/mol. The good performance of 6-31G(d,p) was
also observed in ref. 70. The other three basis sets (PAW-L1,
pc-1, and cc-pVDZ) perform slightly worse than def2-SVP and 6-
31G(d,p). There is a small difference in performance between
these three basis sets, with MAE values of 2.1–2.4 kcal/mol and
MaxAE values of 10.8–12.6 kcal/mol. PAW-L1 appears to be a
bit better than cc-pVDZ and pc-1, as it has smaller MaxAE (10.8
kcal/mol). Again, we found that PAW-L1 has the smallest er-
ror range of 10.8 kcal/mol (12.5 kcal/mol for pc-1 up to 14.4
kcal/mol for cc-pVDZ). Taking into consideration not only the re-
sults shown in Figure 6 but also the number of basis functions
(see Tables 1 and 2), we argue that PAW-L1 should provide better
performance in terms of accuracy and computational cost. It per-
forms as well as the other basis sets but has a significantly smaller
number of primitives, e.g. in carbon, the number of primitives is
reduced by 30–40%, whereas in silicon the reduction is up to 50–
70%.

In Figure 6, we also present the results calculated with the
triple-ζ type basis sets (PAW-L2, pc-2, def2-TZVP, cc-pVTZ, and
6-311G(2df,2pd)). Here we only focus on the performance of the
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Fig. 6 Mean absolute errors (blue bars), maximum absolute errors (vertical blue lines), and error ranges (red circles) of the atomization energies per
atom calculated with the PAW-Ln and different all-electron basis sets and the SVWN functional. The atomization energies calculated with pc-4 are
used as references. Energies are in kcal/mol.

contracted basis sets. Based on the MAE values, we can conclude
that all basis sets perform equally well, MAE is 0.39 kcal/mol
(PAW-L2) up to 0.53 kcal/mol (cc-pVTZ). Based on the MaxAE
and error range values, all basis sets, except for cc-pVTZ, give re-
sembling performance. Among all five basis sets, PAW-L2 is appar-
ently more attractive in terms of the accuracy–computational cost
ratio. First, it inherits the appeal of PAW-L1, i.e. it always under-
estimates the atomization energies. Furthermore, it has smaller
numbers of primitive and contracted basis functions. Using PAW-
L2 instead of the equivalent triple-ζ basis sets can lead to 50%
reduction in the number of primitives and 15% reduction in the
number of contracted basis functions.

Finally, to examine whether PAW-L2 can be as accurate as larger
basis sets containing higher angular momentum functions (up to
g), we also performed calculations with pc-3, def2-QZVP, and cc-
pVQZ (see Figure 6). The MAE values are small, ∼0.24 kcal/mol
with cc-pVQZ and only 0.03 kcal/mol with pc-3. This shows
that even though PAW-L2 provides distinct advantages over other
equivalent all-electron basis sets, it cannot surpass the perfor-
mance of basis sets containing higher polarization functions.

5.2 Vertical Ionization Energies

In Figure 7, we present the MAEs, MaxAEs, and error ranges of
the vertical ionization energies calculated with the contracted
PAW-Ln and all-electron basis sets. As compared to the all-
electron double-ζ basis sets, PAW-L1 performs quite well. It has

the smallest MAE value of 1.9 kcal/mol, a MaxAE value of only
8.6 kcal/mol, and a modest error range of 17 kcal/mol. The 6-
31G(d,p) basis set, despite showing good performance in the at-
omization energies, performs the poorest in this case. It has the
largest MAE value of 4.3 kcal/mol, a large MaxAE value of 15.2
kcal/mol, and an error range of up to 20 kcal/mol.

Among the triple-ζ basis sets, we found that the pc-2, def2-
TZVP, cc-pVTZ, and PAW-L2 basis sets give comparable perfor-
mance. The latter slightly outperforms the others, with the small-
est MAE, MaxAE, and error range values of 0.4, 2.7, and 4.2
kcal/mol, respectively. To our surprise, the performance of PAW-
L2 is even on a par with that of the cc-pVQZ basis set (MAE = 0.35
kcal/mol, MaxAE = 2.0 kcal/mol), however, still not as good as
def2-QZVP (MAE = 0.19 kcal/mol) and especially pc-3 (MAE =
0.08 kcal/mol). Nonetheless, the results clearly demonstrate the
appeal of the PAW-Ln basis sets, at least in the case of vertical ion-
ization energies: (i) PAW-Ln, despite having smaller numbers of
primitive and contracted basis functions, are as good as the other
equivalent all-electron basis sets and (iii) PAW-L2 in some cases
can be comparable to all-electron basis sets containing higher po-
larization functions.

5.3 Noncovalent Binding Energies

Finally, we assess the performance of PAW-Ln in the calculations
of the S22 dataset noncovalent binding energies. This dataset
comprises 22 complexes with different sizes and types of bonds

10 | 1–17Journal Name, [year], [vol.],



P
A

W
-L

1

p
c-

1

d
e
f2

-S
V

P

cc
-p

V
D

Z

6
-3

1
G

(d
,p

)

P
A

W
-L

2

p
c-

2

d
e
f2

-T
V

Z
P

cc
-p

V
T
Z

6
-3

1
1

G
(2

d
f,

2
p
d
)

p
c-

3

d
e
f2

-Q
V

Z
P

cc
-p

V
Q

Z

0.0

5.0

10.0

15.0

20.0

E
rr

o
r 

[k
ca

l/
m

o
l]

MAE
Error range

Fig. 7 Mean absolute errors (blue bars), maximum absolute errors (vertical blue lines), and error ranges (red circles) of the vertical ionization energies
calculated with the contracted PAW-Ln and different all-electron basis sets and the SVWN functional. The ionization energies calculated with pc-4
are used as references. Energies are in kcal/mol. Results of boric acid, isobutane, trifluoroacetonitrile, and methylmagnesium chloride calculated with
the PAW-Ln basis sets were not included because the calculations did not converge due to electronic degeneracy.

Journal Name, [year], [vol.], 1–17 | 11



Table 3 MAEs, MaxAEs, and error ranges (in kcal/mol) of the binding
energies of S22 complexes calculated with different contracted basis sets
and SVWN functional. The binding energies calculated with pc-4 are
used as references.

Basis set MAE MaxAE Error range

PAW-L1 1.47 3.49 3.36
pc-1 2.00 4.34 4.30
def2-SVP 2.34 6.07 6.05
cc-pVDZ 2.03 5.82 5.79
6-31G(d,p) 1.97 4.89 4.80

aug-pc-1 1.81 4.61 4.35
def2-SVPD 1.86 4.69 4.36
aug-cc-pVDZ 0.74 1.87 1.71
6-31++G(d,p) 0.81 1.95 2.01

PAW-L2 0.17 0.44 0.48
pc-2 0.34 0.95 0.97
def2-TZVP 0.46 1.06 1.05
cc-pVTZ 0.77 1.60 1.59
6-311G(2df,2pd) 1.63 3.24 3.18

aug-pc-2 0.27 0.74 0.72
def2-TZVPD 0.23 0.73 0.91
aug-cc-pVTZ 0.17 0.44 0.43
6-311++G(2df,2pd) 0.50 1.46 1.46

pc-3 0.02 0.05 0.05
def2-QZVP 0.12 0.33 0.33
cc-pVQZ 0.36 0.78 0.78

aug-pc-3 0.02 0.05 0.06
def2-QZVPD 0.04 0.13 0.14
aug-cc-pVQZ 0.09 0.31 0.30

aug-pc-4a 0.00 0.01 0.01
aOnly 18/22 complexes were calculated due to SCF convergence

problem related to basis set linear dependencies.

(hydrogen, dispersion, and mixed bonds). It is widely accepted
that diffuse functions play important roles in noncovalent inter-
actions. Thus, in addition to the results calculated with the con-
tracted basis sets listed in Tables 1 and 2, we also report the data
obtained with basis sets augmented with diffuse functions. The
results are shown in Table 3. For the aug-pc-4 basis set, only
18/22 complexes could be calculated as we encountered great
difficulties in converging the SCF wavefunction (because of basis
set linear dependencies). Thus, the values calculated with pc-
4 are used as references, although aug-pc-4 basically gives the
same results (to within 0.01 kcal/mol).

The results shown in Table 3 again highlight the good perfor-
mance of the PAW-Ln basis sets. PAW-L1 is better than all double-
ζ basis sets and even to some extent outperforms aug-pc-1 and
def2-SVPD. Similarly, PAW-L2 is better to the other triple-ζ type
basis sets. Interestingly, despite having a modest number of ba-
sis functions, PAW-L2 (MAE = 0.17 kcal/mol) can provide results
close to def2-QZVP (MAE = 0.12 kcal/mol) and even outperforms
cc-pVQZ (MAE = 0.36 kcal/mol).

6 Performance of PAW-Ln Compared to Effective
Core Potential (ECP) Basis Sets

In light of the good performance (both accuracy and computa-
tional efficiency) of GTF-PAW in combination with PAW-Ln, it
is also interesting to compare GTF-PAW to its alternative, the
effective core potential (ECP) approach, which were generally
constructed to reproduce as close as possible all-electron prop-
erties108–112. Unfortunately, ECP is traditionally employed for
molecules containing heavy elements, e.g. transition metals, thus,
there are few ECPs and Gaussian basis sets developed for light
atoms. Furthermore, it has been shown that the accuracy of some
popular ECPs can be disappointing, at least for geometries113 and
energetic properties114 of some transition-metal complexes. In
this part, we compare the performance of PAW-L1 with two pop-
ular ECP basis sets developed for light atoms: the Stuttgart rel-
ativistic large core ECP basis set, denoted as STRLC108–110; and
the Stevens–Basch–Krauss ECP basis set, denoted as SBK111,112.
The compositions of the ECP basis sets are shown in Tables 1 and
2. STRLC is smaller than PAW-L1, therefore, we did not expect
that it can provide results better than PAW-L1. On the other hand,
SBK has a significantly larger number of primitives than PAW-L1,
allowing us to highlight the attractiveness of GTF-PAW. Of course,
ECP results could be improved by using all-electron basis sets, e.g.
pc-1115,116 or employing new generations of ECP basis sets used
for correlated many-body methods38–43. Unfortunately, the basis
sets are still large, e.g. the double-ζ basis set of carbon in com-
bination with the correlation consistent ECP of Bennett et al. 40

is (10s10p1d)−→[2s2p1d], thus this defeats the purpose of reduc-
ing the computational cost. Since the ECPs were parameterized
to implicitly describe relativistic effects, a direct comparison be-
tween ECP and PAW-L1 results might be inappropriate. However,
we expect that in molecules containing light atoms the relativistic
effects impact is minimal. Indeed, test calculations using the X2C
scalar relativistic Hamiltonian117 and the uncontracted pc-1 ba-
sis set confirmed that the relativistic effects negligibly change the
atomization and ionization energies by ∼0.1 kcal/mol (see Table
S3). We finally emphasize that all ECP basis sets employed in this
work are “large-core”, thus, large errors are expected.

The results of the atomization energy per atom, vertical ion-
ization energy, and noncovalent binding energy, calculated with
PAW-L1 as well as different ECP basis sets are summarized in Ta-
ble 4. For comparison purposes, we also report the data calcu-
lated with 6-31G(d,p). The results calculated with the all-electron
pc-4 basis set are used as references. The results clearly indicate
that PAW-L1 is superior to the two ECP basis sets. For the at-
omization energies, all ECP calculations give very large MAE and
MaxAE values. Two sources are attributed to the poor accuracy
of these calculations: the intrinsic error of the ECPs and the er-
ror caused by limited valence basis sets. In the case of the SBK
basis set, the former is expected to be large for the second-period
elements whereas for the third-period elements, the latter is the
dominant source of error115. While ECPs give very poor results
for the atomization energies, they yield much better data for the
ionization energies. The results are comparable to 6-31G(d,p),
MAE = 5.7 kcal/mol. The numbers are still not as good as those
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calculated with PAW-L1. For the noncovalent binding energies,
the two ECP basis sets perform reasonably well (MAE = 2.18–
3.10 kcal/mol) compared to PAW-L1 (MAE = 1.47 kcal/mol).
This seems unexpected since these basis sets were not initially
designed to describe noncovalent interactions. The remarkable
performance of these basis sets is perhaps related to the fact that
they contain some diffuse functions with exponents as small as
0.01.

In practice, ECPs are usually employed to quickly obtain equi-
librium structures. Here, we evaluate the performance of PAW-L1
versus ECPs in describing not only equilibrium bond distances but
also equilibrium angles and dihedrals. This can be done by cal-
culating the root-mean-square deviation (RMSD) of the atomic
positions (using pc-4 optimized structures as references)118,119.
In Table 4 we report the mean and maximum of the RMSD val-
ues. PAW-L1 and 6-31G(d,p) give very similar structures, i.e. they
yield almost the same mean RMSD values, 0.019 and 0.015 Å,
respectively. ECPs perform slightly worse, nevertheless, the opti-
mized structures are still in reasonable agreement with both PAW-
L1 and 6-31G(d,p). The ECP results are in line with what were
found in ref. 116.

7 Pushing the Performance to the Limit: The “Min-
imal” Basis Set

Considering the good performance of PAW-L1 in describing ge-
ometric and energetic properties, we explore whether an even
smaller basis set can be constructed without drastically degrade
the performance. As PAW-L1 is a double-ζ basis with polariza-
tion functions, we can recontract it to either a minimal basis, or
a minimal basis with polarization functions, or a double-ζ ba-
sis. For instance with carbon, we can obtain (3s3p)−→[1s1p],
(3s3p1d)−→[1s1p1d], or (3s3p)−→[2s2p]. Unfortunately, prelim-
inary calculations for the atomization energy show that none of
the reduced basis sets are able to provide results of sufficient qual-
ity. It is clear that double-ζ and polarization functions are prereq-
uisites to accurately describe molecular bonding. Thus, a simple
strategy is to design a double-ζ polarization basis set composed of
only primitives: (2s1p) for H, (3s2p) for Li and Be, (2s2p1d) for
B–F and Al–Cl, (4s2p) for Na and Mg. This basis set, denoted as
PAW-L0.5, obviously has fewer primitives than PAW-L1, and drops
the polarization consistent character. The MAE and MaxAE values
of the atomization energies per atoms and ionization energies, as
well as the RMSD of atomic positions can also be found in Table
4. First and foremost, PAW-L0.5 gives significantly better atom-
ization energy results (MAE = 1.74 kcal/mol) than the ECP basis
sets (MAE = 6–9 kcal/mol), and surprisingly, than PAW-L1 (MAE
= 2.38 kcal/mol). This does not necessarily mean that PAW-L0.5
is more accurate than PAW-L1. In fact, because PAW-L0.5 dras-
tically overestimates atomic energies, its good results are likely
to be associated with error cancellations. For the ionization en-
ergies, the MAE values decrease in the order PAW-L1 > SBK >

PAW-L0.5 > STRLC. We stress that the better performance of SBK
compared to PAW-L0.5 is understandable given that SBK is 3–4
times larger than PAW-L0.5.

The results in Table 4 indicate that PAW-L0.5 is able to provide

accurate equilibrium structures. The mean RMSD value is only
0.021 Å, similar to PAW-L1 (0.019 Å), and much smaller than the
values calculated with ECPs (0.04–0.06 Å). This shows that PAW-
L0.5 is certainly attractive, as one can obtain good equilibrium
structures at a very cheap computational cost.

The compactness of PAW-L0.5 comes with some disadvantages.
As compared to PAW-L1, PAW-L0.5 does not contain functions
with a small exponent anymore, consequently, it is not able to
describe molecular systems dominated by weak interactions, e.g.
the S22 dataset. We found that for this dataset, PAW-L0.5 has a
high MAE value (6.9 kcal/mol), much larger than PAW-L1 (1.5
kcal/mol).

8 Transferability of the PAW-Ln Basis Sets: GGA
Results

As the PAW-Ln basis sets were optimized with the LDA functional,
one can argue that a benchmark study at the LDA level of theory is
biased towards these basis sets. In this section, we show that such
bias is minimal by performing the same benchmark calculations
but with the BLYP (GGA) functional77,78,120. The basis sets opti-
mized at LDA level were reused whereas the PAW dataset was re-
generated at the BLYP level. Our implementation of GTF-PAW has
been recently extended to allow it to use the GGA functional67.
The results are summarized in Figure 8 and Tables S4–S5.

We again observed the same trends found in the previous sec-
tions. PAW-Ln are as good as the other equivalent all-electron
basis sets in the descriptions of the atomization energy, ioniza-
tion energy, and equilibrium structure. On the other hand, for
noncovalent binding energies, PAW-Ln give slightly better results
than the other basis sets. PAW-L1 outperforms the ECP basis sets
in all properties. The “minimal” basis set PAW-L0.5 again gives a
small MAE value for the atomization energies (due to error can-
cellations) and is particularly suitable for the determination of
equilibrium structures.

9 Conclusions
In this preliminary work, we introduced a new family of polar-
ization consistent basis set (denoted as PAW-Ln, n = 1, 2) that
is specifically designed for GTF-PAW calculations. This family of
basis set is our first attempt to expand the applicability of the GTF-
PAW method. It resembles the one developed by Jensen 69 , but
provides some advantages such as a significantly smaller number
of primitives, loose contraction, and comparable accuracy. Based
on a benchmark study on the atomization energy, vertical ioniza-
tion energy, and noncovalent binding energy, we firmly believe
that qualitatively correct results are obtainable with the PAW-L1
basis set. The results are expected to be comparable to those cal-
culated with double-ζ all-electron basis sets and certainly much
better than ECP basis sets. For quantitative results that are not too
far from the DFT basis set limit, PAW-L2 should be a good candi-
date. We also proposed a “minimal” basis set derived from PAW-
L1, that can be useful to obtain equilibrium structures. Eventu-
ally, our results proved that GTF-PAW, in combination with small
Gaussian basis sets is a promising approach for routine DFT ap-
plications.
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Table 4 Mean and maximum absolute errors (in kcal/mol) of the atomization energies per atom, vertical ionization energies, and noncovalent binding
energies; mean and maximum root-mean-square deviation (RMSD) of atomic positions (in Å), calculated with PAW-L1, PAW-L0.5, 6-31G(d,p), and
different ECP basis sets and the SVWN functional. The values calculated with pc-4 are used as references.

Atomization Ionization Noncovalent RMSD
energies per atom energies binding energies

Basis set MAE MaxAE MAE MaxAE MAE MaxAE Mean Max

GTF-PAW
PAW-L0.5 1.74 15.22 5.13 34.58 6.87 14.08 0.021 0.276
PAW-L1 2.38 10.75 1.87 8.57 1.47 3.49 0.019 0.374

ECP
STRLC 9.37 50.97 7.02 34.50 2.18 6.29 0.064 0.485
SBK 6.19 35.78 4.03 17.19 3.10 7.08 0.041 0.484

All-electron
6-31G(d,p) 1.44 9.72 5.7 15.2 1.97 4.89 0.015 0.215

Fig. 8 Mean absolute errors (in kcal/mol) of the atomization energies per atom, vertical ionization energies, and noncovalent binding energies,
calculated with PAW-L0.5, contracted PAW-Ln, all-electron, and ECP basis sets and the BLYP functional. The vertical lines represent the MaxAE
values. The open circles represent the mean RMSD of the equilibrium structures. The values calculated with pc-4 are used as references. The
ionization energies of boric acid calculated with the PAW-Ln basis sets were not included because the calculations did not converge due to electronic
degeneracy. The potential energy curve of Mg2 is too shallow, hence, the RMSD values of Mg2 were not included.
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The results presented in this work do not imply that our PAW-
Ln basis sets are always able to provide better results compared
to other all-electron basis sets. Modifications of these all-electron
basis sets will certainly improve the results. For instance, the cc-
pVnZ basis sets can be augmented with additional tight d func-
tions (cc-pV(n+d)Z)121,122 that give better thermochemical prop-
erties of compounds containing third-period elements. These all-
electron basis sets can also be reoptimized and recontracted at a
better level of theory, e.g. BLYP and B3LYP for cc-pVnZ123,124.
We are also aware that our basis sets in the current state have
some limitations. Thus, this work can be continued in several di-
rections. First and foremost, we will extend the PAW-Ln basis sets
to other elements of periods 4 and 5. The gain of computational
efficiency should be more pronounced. The basis sets can be aug-
mented with diffuse functions to correctly describe weakly bound
electrons in anions and noncovalently bound systems. Also, we
can reoptimize the basis sets at different levels of theory, such as
HF or B3LYP. Such task is rather straightforward because the opti-
mal compositions of the basis sets have been already determined
and the optimization procedure is relatively fast and simple. The
so-called P-orthogonalization method98 can be employed in or-
der to convert the general contracted basis sets to segmented
contracted basis sets, which are expected to be more efficient.
Finally, the smoothness of the PAW-Ln basis with the GTF-PAW
method should play a beneficial role in downsizing the auxiliary
basis sets for the resolution of the identity (RI) approximation;
thus, the development of the RI basis optimized for our orbital
basis seems to be promising for accelerating the RI treatment.
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