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Abstract

Register automata (RA) are a computational model that can handle data
values by adding registers to finite automata. Recently, weighted register
automata (WRA) were proposed by extending RA so that weights can be
specified for transitions. In this paper, we first investigate decidability and
complexity of decision problems on the weights of runs in WRA. We then
propose an algorithm for the optimal run problem related to the above de-
cision problems. For this purpose, we use a register type as an abstraction
of the contents of registers, which is determined by binary relations (such as
=, <, etc.) handled by WRA. Also, we introduce a subclass where both the
applicability of transition rules and the weights of transitions are determined
only by a register type. We present a method of transforming a given WRA
satisfying the assumption to a weighted directed graph such that the opti-
mal run of WRA and the minimum weight path of the graph correspond to
each other. Lastly, we discuss the optimal run problem for weighted timed
automata as an example.

Keywords: Weighted register automaton, Optimal run, Register type,
Complexity

1. Introduction

There have been many extensions of finite automata that can manipulate
data values. Among them, register automata (abbreviated as RA) introduced
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in [16] have the advantages that important decision problems including mem-
bership and emptiness are decidable and the class of languages accepted by
RA is closed under standard language operations except complementation.
In a k-RA, k registers are associated with each state. An input is a finite
sequence of pairs of a symbol from a finite alphabet and a data value from
an infinite set. Each transition can compare the contents of the registers and
the current input data value and if this test succeeds, the input data value is
loaded to the registers specified by the transition and the state is changed.
The complexity of decision problems for RA has been analyzed [21, 13]. Also,
[17] points out that RA is a good formal model for querying structured data
such as XML documents. Recently, weighted RA was proposed in [5] by
incorporating weights into RA so that various quantities such as time, in-
formation flow and costs needed for transitions and/or data manipulations
can be formally represented as weights. A k-WRA is a k-RA equipped with
weight functions for transitions and data manipulations. The weight function
for data manipulations can represent weights depending on data values such
as the cost depending on the elapsed time in timed automata. A semiring is
assumed to represent weights and to assign a weight to a switch (one step
move), a run (accepting sequence of switches), and a data word (accepted
sequence of pairs of a symbol and a data value) in a systematic way. Closure
properties of the data series, which is a mapping from data words to weights,
defined by WRA are discussed and an MSO logical counterpart of WRA is
proposed and studied in depth in [5]. However, decidability and complexity
of basic problems for WRA were not discussed. Timed automata (abbrevi-
ated as TA) are well-known extensions of finite automata that can deal with
time by clock variables [3]. TA was extended to weighted TA (WTA) and the
optimal-reachability problems have been investigated [4, 19]. In [5], TA and
WTA are shown to be regarded as subclasses of RA and WRA, respectively.

In this paper, we discuss optimal run problems and related decision prob-
lems for WRA, motivated by [3]. First, we clarify the decidability and com-
plexity of the decision problems on weight computation and weight realizabil-
ity. More concretely, we show that the problem to decide whether there is a
run of a given data word whose weight takes a given value in a given WRA is
NP-complete, and the problem to compute the weight of a given data word,
which is the sum of all runs of the data word, in a given WRA is in PSPACE
and #P-hard. We also show that the following two weight realizability prob-
lems are both undecidable: the problem to decide whether there is a run in
a given WRA whose weight takes a given value and the problem to decide
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whether there is a data word whose weight in a given WRA equals to a given
value. Note that the former two problems and the latter two problems can be
regarded as extensions of the membership and emptiness problems for RA,
which are known to be NP-complete and PSPACE-complete, respectively.

Next, we utilize register type, which was introduced in [24] as an abstract
representation of the contents of registers, by identifying the data values
indistinguishable by comparisons allowed in the guards of transitions. We
show an equivalence transformation from a given k-WRA to a k-WRA such
that the exact register type is annotated to each state by associating register
types with states before and after a transition. A WRA obtained by this
transition decomposition by register type is called a normal form WRA.

Then, we move to the main topic, the optimal run problem for WRA,
which is the problem to compute a run whose weight takes the infimum
among all the runs in a given WRA. The idea is simple and similar to
the one in [4]: A given WRA is translated into a directed graph where
a node stands for a configuration (a pair of a state and the contents of
registers) and an edge between two nodes stands for switches between them
where the weight of the edge is the infimum of the weights of those switches.
In order to determine the weight of each edge, the infimum of the weights
must be independent of the contents of registers. However, this does not
hold in general, unlike for WTA. To overcome this issue, we introduce two
reasonable assumptions: for each transition, the infimum of the weights of
switches realized by the transition is uniquely determined independent of
the contents of registers (weighted simulation); and the above infimum can
be computed when weighted simulation holds (weight computability). These
two assumptions are a weighted version of simulation and progress properties
proposed in [24]. For a given WRA satisfying the above two properties, we
can construct a directed graph as intended, and we can obtain an optimal
run by an existing graph algorithm that computes the minimum-weight path
in the constructed graph. We also show that if weighted simulation and
weight computability hold, the run weight bounding problem, which is a
decision-problem counterpart of the optimal run problem, becomes PSPACE-
complete.

After that, we introduce restricted WRA, abbreviated as RWRA, which
is a subclass of WRA such that the weight of every data manipulation is
determined only by (a transition and) the result of comparisons allowed in
the guards between the contents of registers and an input data value. When
we apply the transition decomposition by register type to a given RWRA,

3



the weight of switch is uniquely determined only by (a state and) the reg-
ister types. We introduce two necessary conditions of weighted simulation
property and weight computability, which are obtained by ignoring the re-
quirements for weights, respectively. These conditions are similar to simula-
tion and progress properties in [24]. We show that if the given normal form
RWRA satisfies these two necessary conditions, the RWRA can be regarded
as a WRA with weighted simulation and weight computability.

Finally, we discuss the optimal run problem for WTA as an example of
the application of the proposed method. We focus on the subclass of WRA
obtained from WTA by the translation of [5]. Intuitively, a register type
corresponds to a clock region of TA [3]. Moreover, [4] shows that there
always exists an optimal (minimum weight) path that visits only boundary
regions and limit regions because all clock constraints of TA are linear. If we
restrict the register types to those corresponding to boundary regions and
limit regions, a WTA is regarded as an RWRA having simulation and progress
properties. By the fact mentioned in the previous paragraph, the WTA is
regarded as a WRA having weighted simulation and weight computability
properties and the proposed method of solving the optimal run problem can
be applied to the WTA. In this case, the directed graph constructed by our
method corresponds to the subregion graph in [4].

This paper is an extended version of [22] by adding detailed proofs of some
complexity results and proposing a concrete subclass of WRA, called RWRA,
for which the optimal run problem can be solved under some reasonable
assumptions.

Related work Register automata (RA) were proposed by Kaminski and
Francez [16] as finite-memory automata where they show that the mem-
bership and emptiness problems are decidable, and the class of languages
recognized by RA are closed under union, concatenation and Kleene-star.
Later, the computational complexity of the above two problems are analyzed
in [21, 13]. In [12], register context-free grammars (RCFG) as well as push-
down automata over an infinite alphabet were introduced as extensions of
RA and the equivalence of the two models were shown. Properties of RCFG
such as closure and complexity of decision problems are investigated in depth
in [12, 23, 24].

As extensions of finite automata other than RA, data automata [10], peb-
ble automata (PA) [20] and nominal automata (NA) [9] are known. Libkin
and Vrgoč [18] argue that RA is the only model that has efficient data com-
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plexity for membership among the above mentioned formalisms. Neven, et
al. consider variations of RA and PA, which are either one way or two ways,
deterministic, nondeterministic or alternating. They show inclusion and sep-
aration relationships among these automata, FO(∼, <) and EMSO(∼, <),
and give the answer to some open problems including the undecidability of
the universality problem for RA [20].

Nominal automata (NA) are defined by a data set with symmetry and fi-
nite supports, and properties of NA are investigated including Myhill-Nerode
theorem, closure and determinization in [9]. (Usual) RA with equality and
RA with total order can be regarded as NA where the data sets have equal-
ity symmetry and total order symmetry, respectively. Linear temporal logic
with freeze quantifier [14, 13] and two variable logic with data equality
FO2(∼, <,+1) [8] are well-known logical counterparts of automata with data
values, whose expressive powers are incomparable.

Time-optimal reachability and the related and generalized problems for
weighed timed automata (WTA) have been investigated. The single-source
optimal reachability problem for WTA is solved by a branch-and-bound algo-
rithm in [7]. Alur, et al. [4] solved the optimal reachability problem for WTA,
which is more general than the single-source one, by introducing limited re-
gions and transforming a WTA to a weighted graph. The decision version of
the optimal reachability problem is shown to be PSPACE-complete in [19].

The existing study most related to this paper is Babari, et al.’s [5, 6],
where RA is extended to weighted RA (WRA), and properties including clo-
sure and MSO logical characterizations are studied in depth as mentioned in
the beginning of this section. Note that WRA is different from cost register
automata [2] where data values and weights are not separated and the basic
problems are undecidable even for very restricted subclasses such as copyless
cost register automata (CRA) [1]. This paper partially answers to open prob-
lems and conjectures raised in [5] about the decidability of the optimal run
problem for WRA under reasonable assumptions as well as the complexity of
decision problems for WRA which are counterparts of the membership and
emptiness problems for models without weights.

2. Definitions

Let B = {0, 1} be the set of truth values, N = {0, 1, . . .} be the set of
natural numbers and R≥0 be the set of nonnegative reals. For a natural
number k ∈ N, let [k] = {1, . . . , k}. By |β|, we mean the cardinality of β
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if β is a set and the length of β if β is a finite sequence. Let Σ be a finite
alphabet and D be an infinite set of data values. We call w ∈ (Σ × D)+ a
data word (over Σ and D). For a finite collection R of binary relations over
D, D = 〈D,R〉 is called a data structure.

Intuitively, an automaton is equipped with a certain number of registers
that can store a data value. Formally, an assignment of data values to k
registers (abbreviated as k-register assignment or just assignment if k is ir-
relevant) is a mapping θ : [k]→ D. The collection of k-register assignments
is denoted as Θk. For a k-register assignment θ, θ(i) (i ∈ [k]) is the data
value assigned to the i-th register by θ. Let Fk denote the set of guard for-
mulas (or simply, guards) defined by ϕ := tt | xRi | xR

−1

i | inR | ϕ ∧ ϕ | ¬ϕ
(i ∈ [k], R ∈ R). For an assignment θ, a data value d ∈ D and a guard ϕ,
the satisfaction relation (θ, d) |= ϕ is defined inductively on the structure of
ϕ as (θ, d) |= xRi iff (θ(i), d) ∈ R, (θ, d) |= xR

−1

i iff (d, θ(i)) ∈ R, (θ, d) |= inR

iff (d, d) ∈ R and the meaning of tt, ∧ and ¬ are defined in the usual way.
Define ff ≡ ¬tt and ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2).

Definition 1 ([16, 17]). A k-register automaton (k-RA) over a finite alphabet
Σ and a data structure D is a tuple A = (Q,Q0, T,Qf ) where

• Q is a finite set of states,

• Q0, Qf ⊆ Q are sets of initial and final states, respectively,

• T ⊆ Q× Σ× Fk × 2[k] ×Q is a set of state transitions.

Let A = (Q,Q0, T,Qf ) be a k-RA over Σ and 〈D,R〉. A state transition
(or transition) t = (q, a, ϕ,Λ, q′) ∈ T where q, q′ ∈ Q, a ∈ Σ, ϕ ∈ Fk,Λ ∈ 2[k]

is written as q →a
ϕ,Λ q′ and we denote by label(t) the second component

a of t. The description length of a k-RA A = (Q,Q0, T,Qf ) is defined as
‖A‖ = |Q| + |T |max{‖t‖ | t ∈ T}, where ‖t‖ = log |Q| + k + ‖ϕ‖ for
t = q →a

ϕ,Λ q
′ ∈ T and ‖ϕ‖ is the description length of ϕ, defined in a usual

way. In this definition, we assume that we need O(|Q|) bits to specify Q0

and Qf and O(log |Q|+ k+ ‖ϕ‖) bits to specify a single transition q →a
ϕ,Λ q

′

(i.e. O(log |Q|) bits for q and q′, and k bits for Λ and ‖ϕ‖ bits for ϕ). We
consider |Σ| is constant and do not take into account the description length
of a ∈ Σ.

For an assignment θ ∈ Θk, Λ ∈ 2[k] and a data value d ∈ D, the updated
assignment θ[Λ← d] ∈ Θk is θ[Λ← d](i) = d if i ∈ Λ and θ[Λ← d](i) = θ(i)
otherwise. For a state q ∈ Q and an assignment θ ∈ Θk, (q, θ) is called an
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instantaneous description (ID). For two IDs c = (q, θ) and c′ = (q′, θ′), if
there are d ∈ D, t = q →a

ϕ,Λ q
′ ∈ T such that (θ, d) |= ϕ and θ′ = θ[Λ ← d],

then c `t,d c′ is called a switch from c to c′ by t and d in A. The initial value of
any register is ⊥ (⊥ ∈ D). An initial ID and an accepting ID are c0 ∈ Q0×⊥k
and cf ∈ Qf × Θk, respectively. A run in A is a finite sequence of switches
from an initial ID to an accepting ID ρ = c0 `t1,d1 c1 `t2,d2 c2 · · · `tn,dn cn.
The label of a run ρ is label(ρ) = (label(t1), d1) . . . (label(tn), dn) and ρ is
called a run of label(ρ) in A. For w ∈ (Σ × D)+, RunA(w) is the set of all
runs of w in A.

We define L(A) = {w | RunA(w) 6= ∅}, called the data language recog-
nized by A. A data language L ⊆ (Σ×D)+ is recognizable if there is an RA
A such that L = L(A).

Example 1. Let Σ = {a}, R = {<,=, >}. An example of 2-RA A1 is
shown in Fig 1. For an input data word w, A1 loads any data value, say
di, in w to the first register nondeterministically by t2. After that, every
time a data value not equal to di comes, A1 stays at q1 by t3 or t4 until
the same value di comes, at which A1 moves to q2 by t5. In this way, A1

nondeterministically chooses two positions having an identical data value di
from the input data word, and the data values between them are not equal
to di. We have L(A1) = {(a, d1) . . . (a, dn) ∈ (D × Σ)+ | ∃i, j ∈ [n], i < j,
di = dj}.

Figure 1: RA A1

We will use notations Σ, D = 〈D,R〉 and S = (S,+, ·, 0, 1) to implicitly
denote a finite alphabet, a data structure and a semiring, respectively.

Definition 2 ([5]). A k-register weighted automaton (k-WRA) over Σ,D,S
is a tuple A = (Q,Q0, T,Qf ,wt) where
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• (Q,Q0, T,Qf ) is a k-RA over Σ,D, called the base RA of A,

• wt = (wtt,wtd) where wtt : T → S and wtd : (T × [k])→ ((D×D)→
S).

Let A = (Q,Q0, T,Qf ,wt) be a k-WRA as above. wtt(t) represents the
weight of a transition t ∈ T . wtd(t, j) is the weight of the j-th register at
a transition t ∈ T . More precisely, wtd(t, j)(θ(j), d) represents the weight
needed for manipulating the j-th register for a switch (q, θ) `t,d c′. The
weight of a switch c `t,d c′ is defined as

wt((q, θ) `t,d c′) =
k∏
j=1

wtd(t, j)(θ(j), d) · wtt(t).

A run in A is just a run in the base RA of A. The weight of a run ρ =
c0 `t1,d1 c1 `t2,d2 c2 · · · `tn,dn cn in A is defined as

wt(ρ) =
n∏
i=1

wt(ci−1 `ti,di ci).

As shown in the above definitions, the function wtd depends on the contents
of registers and data values in a given data word. This is the main reason why
some problems for WRA are difficult to solve and motivates us to introduce
register type, weighted simulation property, weight computability and the
subclass RWRA to make the setting more amenable without losing too much
generality.

We assume that there are polynomials p1(n), p2(n) such that for any t ∈
T , wtt(t) can be computed in p1(‖t‖) time and for t ∈ T, j ∈ [k], d1, d2 ∈ D,
wtd(t, j)(d1, d2) can be computed in p2(‖t‖ + ‖d1‖ + ‖d2‖) time where ‖d‖
is the description length of d ∈ D. We define the description length of a
k-WRA A as ‖A‖ = ‖Ab‖ where Ab is the base RA of A.

A data series over Σ, D and S is a mapping U : (Σ×D)+ → S. The data
series recognized by a WRA A is the data series [[A]] defined as [[A]](w) =∑

ρ∈RunA(w) wt(ρ) for each w ∈ (Σ ×D)+. A data series U : (Σ ×D)+ → S
is recognizable if there is a WRA that recognizes U .

Example 2. Let Σ = {a}, D = 〈N, {<,=, >}〉, and the semiring Strpc =
(R≥0 ∪ {∞},min,+,∞, 0), known as a tropical semiring, where min acts as
the addition and + acts as the multiplication of the semiring. Let A2 be
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2-WRA that has A1 of Example 1 as its base RA. The weight functions
wt = (wtt,wtd) are defined as: wtt(t3) = 1 and wtt(t) = 0 for every tran-
sition t other than t3, and wtd(t, j)(d, d′) = 0 for every argument. A2 non-
deterministically chooses two positions having an identical data value di and
counts the data values greater than di between them by t3. The data series
recognized by A2 is such that for w ∈ (Σ×D)+, [[A2]](w) = min{the number
of d in di+1, . . . , dj−1 such that d > di | w = (a, d1) . . . (a, dn), i, j ∈ [n],
i < j, di = dj and for k = i+ 1, . . . , j − 1, di 6= dk}.

3. Decision Problems

In this section, we analyze the computational complexity of the following
problems for WRA. The results are summarized in Table 1.

Definition 3 (The weight computation problems).
Input: a k-WRA A over Σ, D, S and a data word w ∈ (Σ × D)+. For the
run weight computation problem, a weight s ∈ S is also given.
(The run weight computation problem) ∃ρ ∈ RunA(w).wt(ρ) = s?
(The data word weight computation problem) Compute [[A]](w).
The input size of both problems is ‖A‖ + ‖w‖ where ‖w‖ = n +

∑
i∈[n] ‖di‖

for w = (a1, d1) · · · (an, dn).

Table 1: Complexity results

problem complexity
run weight computation NP-complete
data word weight computation PSPACE-solvable, #P-hard (#P-complete

when a weight is a natural number,
a transition weight function is bounded
and every register manipulation weight is 1)

run weight realizability Undecidable
data word weight realizability Undecidable

Definition 4 (The weight realizability problems).
Input: a k-WRA A over Σ, D, S and a weight s ∈ S
(The run weight realizability problem) ∃w.∃ρ ∈ RunA(w).wt(ρ) = s?
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(The data word weight realizability problem) ∃w. [[A]](w) = s?
The input size of both problems is ‖A‖.

Theorem 1. The run weight computation problem is NP-complete.

Proof. Assume we are given a k-WRA A = (Q,Q0, T,Qf ,wt) over Σ, 〈D,R〉,
S = (S,+, ·, 0, 1), a data word w ∈ (Σ×D)+ and s ∈ S.
(NP solvability) Let w = (a1, d1) · · · (an, dn) and m = max{‖di‖ | i ∈ [n]}.
By the assumption on complexity of computing weights of WRA, wt(c `t,d c′)
can be computed in O(p1(‖t‖) + p2(‖t‖+m)k) time. Thus, for any run ρ ∈
RunA(w), the weight wt(ρ) can be computed inO((p1(‖t‖)+p2(‖t‖+m)k)|w|)
time. Hence, we can nondeterministically choose a run of w and test whether
wt(ρ) = s in polynomial time.
(NP-hardness) We restrict the problem as:

For every transition t ∈ T , j ∈ [k] and d1, d2 ∈ D, wtt(t) =
wtd(t, j)(d1, d2) = 1. Also s = 1.

Then, for any switch c `t,d c′, we have wt(c `t,d c′) = 1. This implies
that for every run ρ ∈ RunA(w), we have wt(ρ) = 1 = s. Therefore, the
problem restricted in this way asks for an input k-WRA A and a data word
w, whether ∃ρ ∈ RunA(w). The k-WRA in this setting can be regarded as a
RA (standard register automata without weight) and the above problem is
equivalent to the membership problem that asks whether a given data word
w is accepted by A regarded as a RA. Hence the run weight computation
problem is NP-hard because the membership problem for RA is NP-complete
[17].

To discuss the complexity of the data word computation problem, we
use the complexity class #P, the class of function problems that can be
solved by counting the number of accepting runs of a polynomial-time non-
deterministic Turing machine. An example of #P-complete problem is #2SAT[15]:
How many different variable assignments will satisfy a given 2-CNF formula?

Let N = (N,+, ·, 0, 1) be the semiring of natural numbers.

Lemma 1. The data word weight computation problem of k-WRA A =
(Q,Q0, T,Qf , (wtt,wtd)) over Σ, 〈D,R〉 and N is #P-hard even if wtt(t) =
wtd(t, j)(d, d′) = 1 for every t ∈ T, j ∈ [k], d, d′ ∈ D.
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Proof. We reduce #2SAT problem, which is known to be #P-complete, to
the data word weight computation problem. Let φ = c1 ∧ c2 ∧ · · · ∧ cm be
a given 2-CNF, where each ci (i ∈ [m]) is a clause consisting of two literals
and z1, . . . , zn are Boolean variables appearing in φ. We construct n-WRA
Aφ = (Q,Q0, T,Qf , (wtt,wtd)) over Σ, 〈D,R〉,N and input data word w
from φ as follows. Let Σ = {a}, D be an infinite set containing > and ⊥, and
let R = {=, 6=} where = and 6= are (an extension of) the equality on Boolean
values (logical equivalence) and its negation, respectively. Note that ⊥ is the
initial value. The values of all weight functions wtt and wtd are defined as 1 ∈
N. Let Q = {qi | i ∈ [n]} ∪ {qk,l | k ∈ [m], l ∈ [2]} ∪ {q′k | k ∈ [m]} ∪ {qr, qf},
Q0 = {q1} and Qf = {qf}. The input word is w = (a,>) · · · (a,>) of length
|w| = n + 2m. We construct the following transitions and add them to T :
The first group of transitions nondeterministically simulates an assignment
of a Boolean value to each zi (i ∈ [n]). If xi is updated to be >, it means zi
is assigned tt, and otherwise, it means zi is assigned ff .

q1 →a
tt,{1} q2, q1 →a

tt,∅ q2, . . . , qn →a
tt,{n} q1,1, qn →a

tt,∅ q1,1.

The second group of transitions deterministically evaluates the truth value
of each clause ck = yk,1 ∨ yk,2 (k ∈ [m]).

qk,1 →a
x=i ,∅

q′k, qk,1 →a

x 6=i ,∅
qk,2 if yk,1 = zi,

qk,1 →a

x 6=i ,∅
q′k, qk,1 →a

x=i ,∅
qk,2, if yk,1 = zi,

qk,2 →a
x=i ,∅

qk+1,1, qk,2 →a

x 6=i ,∅
qr, if yk,2 = zi,

qk,2 →a

x 6=i ,∅
qk+1,1, qk,2 →a

x=i ,∅
qr, if yk,2 = zi,

q′k →a
tt,∅ qk+1,1

where qm+1,1 is the final state qf . The state qr is a dead state with no outgoing
transition. The states q′k are used to skip the evaluation of literals when a
preceding literal evaluates to > in the clause.

For a truth-value assignment α : {z1, . . . , zn} → {tt,ff }, let θα ∈ Θn

be θα(xi) = > if α(zi) = tt and θα(xi) = ⊥ otherwise. Assume Aφ is fed
with the input data word w = (a,>) . . . (a,>) of length n + 2m. After
conducting the first group of transitions, the assignment of Aφ becomes θα
for some truth-value assignment α. Because the second group of transitions
deterministically verifies whether φ evaluates to tt without register update,
that part of the run is uniquely determined. In other words, there is a one-
to-one correspondence between the set of maximal sequences of switches of w
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in Aφ and the set of assignments. Therefore, a maximal sequence of switches
of w in Aφ is a run ρ of w if and only if φ is satisfied by the truth-value
assignment α corresponding to the assignment θα obtained by ρ.

Consequently, the number of the truth-value assignments satisfying φ and
the number of the runs of w in Aφ, namely, the summation of the weights
of the all runs of w are equal. Aφ can be constructed in polynomial time of
the size of φ. Thus, the polynomial time reduction from #2SAT to the data
word weight computation problem is completed.

Lemma 2. The data word weight computation problem for k-WRA is PSPACE-
solvable. When the semiring is N , and wtt is bounded and wtd(t, j)(d1, d2) =
1 for every t ∈ T and j ∈ [k] and d1, d2 ∈ D for a given k-WRA A =
(Q,Q0, T,Qf , (wtt,wtd)), the problem becomes #P-solvable.

Proof. PSPACE-solvability is easy to show. The weight of a run of an input
data word can be calculated in polynomial time by the proof of Theorem 1,
and we need additional polynomial space to store the sum of the weights of
all runs of the input data word.

Next, we discuss #P-solvability. Assume a k-WRA A = (Q,Q0, T,Qf ,
(wtt,wtd)) over Σ, 〈D,R〉, N where wtt is bounded and wtd(t, j)(d1, d2) = 1
for every t ∈ T and j ∈ [k] and d1, d2 ∈ D. If wtt(t) = 1 for every t ∈ T in
addition, then wt(ρ) = 1 for every run ρ in A. From such A, we can construct
a polynomial-time nondeterministic Turing machine MA that simulates A
so that the number of accepting runs of an input w in MA equals [[A]](w).
In the general case where wtt(t) 6= 1 for some t ∈ T , from a given k-WRA
A = (Q,Q0, T,Qf , (wtt,wtd)), we construct k-WRA A′ = (Q′, Q′0, T

′, Q′f ,
(wtt′,wtd′)) such that [[A′]] = [[A]] and wtd′ = wtd and wtt′(t′) = 1 for every
t′ ∈ T ′, as follows. For M = max{wtt(t) | t ∈ T}, let Q′ = Q × [M ] and
T ′ = {(q, i)→a

ϕ,Λ (q′, j) | t = q →a
ϕ,Λ q

′ ∈ T , i ∈ [M ], 1 ≤ j ≤ wtt(t)}. Note
that M is a constant by the assumption. Also let Q′0 = {(q0, 1) | q0 ∈ Q0}
and Q′f = {(qf , i) | qf ∈ Qf , i ∈ [M ]}. A′ satisfies [[A′]] = [[A]] because for
each run q0 `t1,d1 q1 `t2,d2 q2 · · · `tn,dn qn in A, there are exactly

∏n
j=1 wtt(tj)

runs (q0, 1) `t′1,d1 (q1, i1) `t′2,d2 (q2, i2) · · · `t′n,dn (qn, in) in A′ where t′j is
the transition obtained from tj and 1 ≤ ij ≤ wtt(tj) for j ∈ [n]. This
construction of A′ can be done in polynomial time. Therefore, the data word
weight computation problem is in #P under the given condition.

Theorem 2. Let A = (Q,Q0, T,Qf , (wtt,wtd)) be a k-WRA over Σ, 〈D,R〉,
N . If max{wtt(t) | t ∈ T} is uniformly bounded and wtd(t, j)(d1, d2) = 1 for
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every t ∈ T , j ∈ [k] and d1, d2 ∈ D, then the data word weight computation
problem is #P-complete.

Proof. By Lemmas 1 and 2.

Theorem 3. The run weight realizability problem for k-WRA is undecidable
even if k = 1, all the values of weight functions are one and every relation
of the data structure is decidable.

Proof. We prove the theorem by a reduction from the Post correspondence
problem (PCP). Let I = 〈(u1, . . . , um), (v1, . . . , vm)〉 be a given instance of
PCP over Σ where ui, vi ∈ Σ∗ for i ∈ [m]. From I, we construct a 1-
WRA AI = ({q0, q, qf}, {q0}, T, {qf},wt) over {a}, 〈D,R〉,N where the data
structure 〈D,R〉, the set T of transitions and the weight functions wt =
(wtt,wtd) are defined as follows.

• D = Σ∗ × Σ∗ with ⊥ = (ε, ε) ∈ D as the initial value and R = {Ri |
i ∈ [m]} ∪ {EQ} where for x, y, x′, y′ ∈ Σ∗, (x, y)Ri(x

′, y′) ⇔ (x′ =
xui and y′ = yvi) for i ∈ [m] and (x, y)EQ(x′, y′)⇔ (x = y).

• T = {q0 →a

x
Ri
1 ,{1}

q, q →a

x
Ri
1 ,{1}

q | i ∈ [m]} ∪ {q →a
xEQ
1 ,∅

qf}.

• wtt(t) = wtd(t, 1)(d1, d2) = 1 for every t ∈ T , d1, d2 ∈ D.

It is easy to see that I has a solution of PCP if and only if there is a run ρ
of some w ∈ ({a} ×D)+ in AI such that wt(ρ) = 1.

Corollary 1. The data word weight realizability problem of k-WRA is un-
decidable even if k = 1, all the values of weight functions are one and every
relation of the data structure is decidable.

The above results imply that the realizability problems are already un-
decidable for ordinary RA (w/o weights). This motivates us to introduce a
subclass of WRA for which the realizability problems and related optimiza-
tion problems are solvable while the weights make sense, which are given in
section 5.2.

4. Transition decomposition by register type

In this section, we will define a normal form WRA. First, we introduce
a register type as a finite abstraction of assignments with respect to the
relations in R of a given data structure 〈D,R〉.

13



Definition 5 ([24]). A register type (of k registers) for a data structure
〈D,R〉 is an arbitrary function γ : ([k]× [k])→ (R → B). Let Γk denote the
collection of all register types of k registers. For an assignment θ ∈ Θk and a
register type γ ∈ Γk, if ∀i, j ∈ [k]∀R ∈ R.(γ(i, j)(R) = 1⇔ (θ(i), θ(j)) ∈ R)
holds, we write θ : γ and we say that the type of θ is γ.

Let A = (Q,Q0, T,Qf ,wt) be an arbitrary k-WRA. From A, we define
k-WRA A′ = (Q′, Q′0, T

′, Q′f ,wt′) as follows: Q′ = Q× Γk. Q
′
0 = Q0 × {γ0}

where γ0 is defined as ∀R ∈ R
[
(∀i, j ∈ [k].γ0(i, j)(R) = 1)⇔ ((⊥,⊥) ∈ R)

]
.

Q′f = Qf × Γk. T
′ is the smallest set of transitions t′ = (p, γ) →a

ϕ′,Λ (q, γ′)
satisfying the following condition:

t = p→a
ϕ,Λ q ∈ T , γ, γ′ ∈ Γk, ϕ

′ = ϕ∧
∏

R∈R(
∏k

i=1 α
R
i ∧ βRi )∧ δR

where αRi ∈ {xRi ,¬xRi }, βRi ∈ {xR
−1

i ,¬xR−1

i }, δR ∈ {inR,¬inR},
and γ′(i, j)(R) = 1 if and only if i /∈ Λ, j /∈ Λ and γ(i, j)(R) = 1, or

i /∈ Λ, j ∈ Λ and αRi = xRi , or

i ∈ Λ, j /∈ Λ and βRj = xR
−1

j , or

i ∈ Λ, j ∈ Λ and δR = inR.

In the above definition, ϕ′ is the conjunction of ϕ and

• αRi , which determines whether the contents of the i-th register and an
input data value d satisfy R,

• βRi , which determines whether an input data value d and the contents
of the i-th register satisfy R,

• δR, which determines whether d is reflexive on R.

This implies that when t′ is applied and d is loaded to the registers specified
by Λ, the register type γ′ of the resultant assignment θ[Λ → d] is deter-
mined by the register type γ of θ and Λ and ϕ′ and does not depend on d.
Therefore, if t ∈ T , γ ∈ Γk and ϕ′ are given, the transition belonging to T ′

is uniquely determined. We write that transition as st,γ,ϕ′ . Finally, define
wt′ = (wtt′,wtd′) where for each t′ = st,γ,ϕ′ ∈ T ′, wtt′(t′) = wtt(t) and for
j ∈ [k], wtd′(t′, j) = wtd(t, j). This completes the definition of k-WRA A′.

Example 3. Let k = 2, R = {R} and consider transition t = p →a
xR1 ,{2}

q

and register type γ such that γ(i, j)(R) = 1 for (i, j) ∈ {(1, 1), (1, 2), (2, 2)}
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and γ(2, 1)(R) = 0. For example, we let αR1 = xR1 , βR1 = xR
−1

1 , αR2 = xR2 ,
βR2 = xR

−1

2 , δR = inR, and let

ϕ′ = xR1 ∧ xR
−1

1 ∧ xR2 ∧ xR
−1

2 ∧ inR.

Also assume θ : γ, (θ, d) |= ϕ′ and θ′ = θ[{2} ← d]. These three assumptions
mean

(θ(1), θ(1)), (θ(1), θ(2)), (θ(2), θ(2)) ∈ R,
(θ(2), θ(1)) /∈ R,

(θ(1), d), (d, θ(1)), (θ(2), d), (d, θ(2)), (d, d) ∈ R, and

θ′(1) = θ(1) and θ′(2) = d,

respectively. Therefore, we have that

(θ′(1), θ′(1)), (θ′(1), θ′(2)), (θ′(2), θ′(1)), (θ′(2), θ′(2)) ∈ R.

Hence, we construct the rule:

(p, γ)→a

xR1 ∧xR
−1

1 ∧xR2 ∧xR
−1

2 ∧inR,{2} (q, γ(1))

where γ(1)(i, j)(R) = 1 for i, j ∈ [2]. Since an input data value is loaded to
the second register by t, the register type after a switch by t does not depend
on θ(2) (the content of the second register before the switch). Therefore, we
can merge constructed transitions with the same guard on x1 and an input
data value by omitting the guard condition on x2 as follows:

(p, γ)→a

xR1 ∧xR
−1

1 ∧inR,{2} (q, γ(1)), (p, γ)→a

xR1 ∧xR
−1

1 ∧¬inR,{2} (q, γ(2)),

(p, γ)→a

xR1 ∧¬xR
−1

1 ∧inR,{2} (q, γ(3)), (p, γ)→a

xR1 ∧¬xR
−1

1 ∧¬inR,{2} (q, γ(4))

where

γ(i)(1, 2)(R) = 1, γ(i)(2, 1)(R) = 1 (i ∈ {1, 2}),
γ(i)(1, 2)(R) = 1, γ(i)(2, 1)(R) = 0 (i ∈ {3, 4}),
γ(i)(2, 2)(R) = 0 (i ∈ {2, 4}), γ(i)(j, j)(R) = 1 (otherwise).

Lemma 3. Let A = (Q,Q0, T,Qf ,wt) be an arbitrary k-WRA and A′ =
(Q′, Q′0, T

′, Q′f ,wt′) be the k-WRA obtained from A by the transition decom-
position by register type. Also let w = (a1, d1) · · · (an, dn) ∈ (Σ ×D)+ be an
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arbitrary data word. For a run ρ = c0 `t1,d1 c1 `t2,d2 · · · `tn,dn cn ∈ RunA(w),
there exists a run ρ′ = c′0 `st1,γ0,ϕ′1 ,d1 c′1 `st2,γ1,ϕ′2 ,d2 · · · `stn,γn−1,ϕ

′
n
,dn c′n ∈

RunA′(w) such that wt(ρ′) = wt(ρ). Conversely, for a run ρ′ ∈ RunA′(w),
there exists a run ρ ∈ RunA(w) such that wt(ρ) = wt(ρ′).

Proof. Consider a data word w and a run ρ stated in the lemma and assume
ci = (qi, θi), θi : γi for i ∈ {0} ∪ [n]. By the construction of T ′, there exists
a unique transition sti,γi−1,ϕ′i

= (qi−1, γi−1) →ai
ϕ′i,Λ

(qi, γi) ∈ T ′ such that

((qi−1, γi−1), θi−1) `sti,γi−1,ϕ
′
i
,di ((qi, γi), θi) in A′ where ϕ′i is determined by

whether (θi−1, di) |= xRj , (θi−1, di) |= xR
−1

j and (θi−1, di) |= inR hold or not
for j ∈ [k] and R ∈ R. If we concatenate the above switches, we obtain a
run ρ′ of w in A′ and wt(ρ′) = wt(ρ).

Conversely, for i ∈ [n], let c′i−1 `sti,γi−1,ϕ
′
i
,di c

′
i be a switch in A′ where

sti,γi−1,ϕ′i
= (qi−1, γi−1)→ai

ϕ′i,Λ
(qi, γi) ∈ T ′. The transition of A corresponding

to sti,γi−1,ϕ′i
∈ T ′ is exactly ti ∈ T . By the construction of T ′, (θi−1, di) |= ϕ′i

implies (θi−1, di) |= ϕi. Therefore, ci−1 `ti,di ci is a switch in A. The rest of
the proof is similar to the former case; we lift the obtained switches to the
run.

A WRA obtained by the above transformation is called a normal form
WRA.

Corollary 2. Let A = (Q,Q0, T,Qf ,wt) be an arbitrary k-WRA and A′ =
(Q′, Q′0, T

′, Q′f ,wt′) be the normal form k-WRA obtained from A. Then,
[[A′]] = [[A]] holds.

Proof. By Lemma 3 and the definition of the weight function wt′ of A′.

5. The Optimal Run Problem

5.1. Definition of the problem

We introduce the problem of computing the optimal (infimum) weight of
the runs from an initial ID to an accepting ID of a given WRA. We assume
the tropical semiring Strpc (see Example 2) because by Strpc we can represent
the minimum weight by the addition of the semiring. Of course, we could
use the max-tropical semiring (R ∪ {−∞},max,+,−∞, 0) instead.

Definition 6 (The optimal run problem).
Input: a k-WRA A over Σ, 〈D,R〉,Strpc

Output: The infimum of {wt(ρ) | ∃w ∈ (Σ×D)+. ρ ∈ RunA(w)}
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By Lemma 3 and the definition of the problem, the following property
holds.

Corollary 3. Let A = (Q,Q0, T,Qf ,wt) be an arbitrary k-WRA and A′ =
(Q′, Q′0, T

′, Q′f ,wt′) be the normal form k-WRA obtained from A. The solu-
tions to the optimal run problem for A and A′ are the same.

Let A and A′ be as assumed in the above corollary. We will transform A′
to an edge-weighted directed graph G = 〈V,E〉 such that the solution of the
optimal run problem is equal to the weight of the minimum-weight path of
G. The difficulty lies in the requirement that we must construct G without
knowing an input data word w to A′ or assignments appearing in a run of
w in A′. To overcome this problem, we introduce two properties in the next
subsection.

5.2. Weighted simulation and weight computability

Let A = (Q,Q0, T,Qf ,wt) be an arbitrary k-WRA and A′ = (Q′, Q′0, T
′,

Q′f ,wt′) be the normal form k-WRA obtained from A. We say that k-
WRA A′ has weighted simulation property if every t′ = (p, γ)→a

ϕ′,Λ (q, γ′) ∈
T ′ satisfies the following condition: for every θ1, θ2 ∈ Θk such that θ1 : γ
and θ2 : γ, wtt′(θ1) = wtt′(θ2) holds where wtt′(θ) = inf{wt(((p, γ), θ) `t′,d
((q, γ′), θ[Λ ← d])) | d ∈ D}. Also, we say that k-WRA A′ has weight
computability if the above infimum, denoted as wt(t′), can be computed in
polynomial time of ‖A‖.

Assume a data structure D = 〈R, {R}〉 where (d, d′) ∈ R iff d′ − d ≥ 1
and consider a 1-WRA A over Σ = {a}, D and Strpc. Since no d satisfies
d − d ≥ 1, every θ ∈ Θ1 has type γ where γ(1, 1)(R) = 0 (meaning that
θ(1) − θ(1) < 1). Let t = p →a

tt,∅ p be a transition of A and consider the

transition t′ = (p, γ)→a
ϕ′,∅ (p, γ) where ϕ′ = xR1 ∧ ¬xR

−1

1 ∧ ¬inR constructed
from t as a transition of the normal form 1-WRA and assume wtt(t′) = 0.
Note that (θ, d) |= ϕ′ iff d − θ(1) ≥ 1 for every θ ∈ Θ1 and d ∈ R. If
wtd(t′, 1)(d, d′) = |d′ − d|, then for every θ ∈ Θ1 such that θ : γ, wtt′(θ) =
inf{d− θ(1) | d− θ(1) ≥ 1} = 1 and so t′ satisfies the condition required by
weighted simulation property. On the other hand, if wtd(t′, 1)(d, d′) = |d|,
then wtt′(θ) = inf{|θ(1)| | ∃d ∈ R. d− θ(1) ≥ 1} = |θ(1)|, and in this case t′

does not satisfy the condition required by weighted simulation property.
Weighted simulation is a natural extension of the property of TA and

WTA that the infinite set of IDs can be divided into finite sets called clock
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regions such that any IDs belonging to a same clock region are indistinguish-
able. The above two properties are undecidable in general even if a binary
relation appearing in the guard of a transition is decidable.

For example, we can show that weighted simulation property is unde-
cidable by reducing the Post correspondence problem (PCP) over a finite
alphabet Σ that asks for a given instance I = (u1, . . . , un; v1, . . . , vn) where
ui, vi ∈ Σ∗ for 1 ≤ i ≤ n, whether there exist i1, . . . , im ∈ [n] (m ≥ 1) such
that ui1 · · ·uim = vi1 · · · vim . Assume that we are given an instance I of PCP.
Let DI = 〈[n]∗, {RI}〉 be the data structure such that for d, d′ ∈ [n]∗,

(d, d′) ∈ RI iff d = ε and d′ is a solution of I.

From I, we construct 1-WRA A = (Q,Q0, T,Qf , (wtt,wtd)) over Σ = {a},
DI , Strpc where Q = {q0, q1, q2}, Q0 = {q0}, Qf = {q2}, T = {t1 = q0 →a

tt,{1}
q1, t2 = q1 →a

xRI1 ,∅ q2} and wtt(tm) = 0, wtd(tm, 1)(d, d′) = 0 for m ∈ [2],

d, d′ ∈ [n]∗. Let A′ = (Q′, Q′0, T
′, Q′f ,wt′) be the normal form WRA obtained

from A. Let γ0 ∈ Γ1 be the register type such that γ0(1, 1)(RI) = 0; i.e.,
θ : γ0 iff (θ(1), θ(1)) /∈ RI . Note that every θ ∈ Θ1 satisfies θ : γ0 because
RI is irreflexive. Consider the transition t′2 = (q1, γ0) →a

xRI1 ∧¬xR
−1
I1 ∧¬inRI ,∅

(q2, γ0) ∈ T ′. Then, for θ ∈ Θ1, we obtain

wtt′2(θ) =

{
0 if (θ(1), d) ∈ RI for some d ∈ [n]∗,
∞ otherwise.

(Note that (θ, d) |= xRI1 implies (θ, d) |= ¬xR−1
I

1 ∧ ¬inRI for any d ∈ [n]∗

because (θ(1), d) ∈ RI implies d 6= ε.) By the definition of RI , (θ(1), d) ∈ RI

if and only if θ(1) = ε and d is a solution of I. Hence, if I has a solution d,
then wtt′2(θ0) = 0 for θ0 ∈ Θ1 such that θ0(1) = ε since (θ0(1), d) ∈ RI , and
wtt′2(θ) = ∞ for every θ ∈ Θ1 other than θ0. If I does not have a solution,
then t′1 = (q0, γ0) →a

¬xRI1 ∧¬xR
−1
I1 ∧¬inRI ,{1} (q1, γ0) ∈ T ′ satisfies wtt′1(θ) = 0 for

every θ ∈ Θ1, and for every t′′ ∈ T ′ other than t′1, wtt′′(θ) = ∞ for every
θ ∈ Θ1. Therefore, A′ does not have weighted simulation property if and
only if I have a solution, and hence the reduction completes.

Weighted simulation says that if two assignments θ1, θ2 have a same reg-
ister type γ, the infimum of the weights of switches from (p, θ1) to (q, θ′1) by
t′ is the same as that from (p, θ2) to (q, θ′2) by t′. This property, together
with weight computability, enables us to compute the infimum of the weights
from (p, γ) to (q, γ′) without knowing an assignment or an input data value.
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5.3. Transformation to a directed graph

We will present a transformation from a given k-WRA to an edge-weighted
directed graph when weighted simulation and weight computability hold. Let
A be a k-WRA over Σ, 〈D,R〉 and Strpc that satisfies weighted simulation
and weight computability and A′ = (Q′, Q′0, T

′, Q′f ,wt′) be the normal form
k-WRA obtained from A.

Construct the edge-weighted directed graph G = 〈V,E〉 where V and
E are the sets of nodes and edges respectively, where V = Q′ and E ⊆
V ×V ×T ′×R≥0 is defined as follows: For each transition st,γ,ϕ′ = (p, γ)→a

ϕ′,Λ

(q, γ′) ∈ T ′ of A′, compute wt(st,γ,ϕ′), which is possible by weighted simula-
tion and weight computability. If wt(st,γ,ϕ′) < ∞, add ((p, γ), (q, γ′), st,γ,ϕ′ ,
wt(st,γ,ϕ′)) to E. Let e(st,γ,ϕ′) denote the edge created from st,γ,ϕ′ . Also let
e(ρ) denote the sequence e(s1)e(s2) . . . e(sn) for a run ρ = ((q0, γ0),⊥k) `s1,d1
((q1, γ1), θ1) `s2,d2 ((q2, γ2), θ2) · · · `sn,dn ((qn, γn), θn) of A′.

For a path π in an edge-weighted directed graph, the weight of π is the
sum of the weights of the edges in π, denoted by wt(π).

Lemma 4. Let A and A′ be the WRA above, and A′ have weighted simulation
property and weight computability. Let G = 〈V,E〉 be the directed graph
obtained from A′ by the above construction. Then there is a path π in G
starting with an initial state and ending with a final state of A′ if and only
if there is a run ρ in A′ such that π = e(ρ). Moreover, for such a path π in
G, wt(π) = inf{wt(ρ) | ρ is a run in A′ such that π = e(ρ)}.

Proof. Let π = e1e2 . . . en be a path in G starting with an initial state and
ending with a final state of A′ where ei ∈ E (i ∈ [n]). Let si ∈ T ′ be the third
component of ei for i ∈ [n]; i.e., π = e(s1)e(s2) . . . e(sn). By the definition of
weighted simulation property, for every transition s = (p, γ) →a

ϕ′,Λ (q, γ′) ∈
T ′, wt(s) <∞ iff for every θ ∈ Θk of type γ, there is a switch ((p, γ), θ) `s,d
((q, γ′), θ[Λ ← d]) for some d ∈ D. This implies that there is a run ρ in
A′ that is a sequence of switches by s1, s2, . . . , sn, and thus π = e(ρ). The
converse direction can be proved by retracing the above discussion in reverse
order.

Let π = e1e2 . . . en be the above-mentioned path in G, and let si =
(qi−1, γi−1) →ai

ϕ′i,Λi
(qi, γi) ∈ T ′ be the third component of ei for i ∈ [n]. By

the construction of G, wt(ei) = inf{wt(((qi−1, γi−1), θ) `si,d ((qi, γi), θ[Λi ←
d])) | d ∈ D} for any θ ∈ Θk such that θ : γi−1. Therefore wt(π) = wt(e1) +
· · ·+ wt(en) = inf{wt(ρ) | ρ is a run in A′ such that π = e(ρ)}.
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By Lemmas 3 and 4, the optimal run problem for a given k-WRA A
can be solved by solving the minimum weight path problem for the directed
graph G obtained from A via the normal form A′ if A′ satisfies weighted
simulation and weight computability. Furthermore, we can find the original
transition t ∈ T of A from a given transition st,γ,ϕ′ ∈ T ′ as described in the
proof of Lemma 3. In this way, we can easily reconstruct the run in A that
provides the infimum weight from a minimum path found in G.

The description length ‖A′‖ of k-WRA A′ = (Q′, Q′0, T
′, Q′f ,wt′) can be

represented by the following relationship between the sizes of the correspond-
ing components of A′ and A: |Γk| = 2k

2|R|, |Q′| = |Q| × |Γk|, |Q′0| = |Q0|,
|Q′f | = |Qf | × |Γk|, |T ′| = (|Q| × |Γk|)× |Σ| × 22k|R|+|R| × 2k × (|Q| × 1).

Theorem 4. When the normal form k-WRA A′ constructed from k-WRA
A = (Q,Q0, T,Qf ,wt) has weighted simulation property and weight com-
putability, the time complexity of the optimal run problem for k-WRA A is
O(2k

2|R||Q|(4k|R|2|R|+k|Σ||Q|+ k2|R|)).

Proof. The above complexity is derived from the time complexity O(|E| +
|V | log |V |) of Dijkstra algorithm by |V | = |Q′|, |E| = |T ′|.

Example 4. Consider the WRA A2 of Example 2 again. Let A′2 be the
normal form WRA obtained from A2. A′2 satisfies weighted simulation and
weight computability. We show the directed graph G1 for A′2. For a label
(t′, w) of an edge, t′ represents the applied transition and w represents the
infimum of the weights of switches corresponding to the edge. The register
types γ0, γ1, γ2 in the node labels are as follows where γ0 is the initial register
type:

γ0(1, 2)(<) = 0, γ0(2, 1)(<) = 0, γ0(1, 2)(=) = γ0(2, 1)(=) = 1,

γ1(1, 2)(<) = 0, γ1(2, 1)(<) = 1, γ1(1, 2)(=) = γ1(2, 1)(=) = 0,

γ2(1, 2)(<) = 1, γ2(2, 1)(<) = 0, γ2(1, 2)(=) = γ2(2, 1)(=) = 0,

γm(j, j)(<) = 0, γm(j, j)(=) = 1, for m ∈ {0} ∪ [2], j ∈ [2],

γm(i, j)(>) = γm(j, i)(<) for m ∈ {0} ∪ [2], i, j ∈ [2].

The edge with (st1,γ0,tt, 0) represents the three edges generated from t1 in A2.
The optimal paths of G1 are the simple paths from (q0, γ0) to (q2, γ0), and the
weight infimum is 0.

Now, consider the corresponding decision problem of the optimal run
problem shown below. We will show this problem is PSPACE-complete.
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Figure 2: the directed graph G1 for A2 of Example 2.

Definition 7 (The run weight bounding problem).
Input: a k-WRA A over Σ, 〈D,R〉, Strpc and a weight s ∈ R≥0

Output: ∃w.∃ρ ∈ RunA(w).wt(ρ) < s?
(In other words, inf{wt(ρ) | ∃w. ρ ∈ RunA(w)} < s?)

Theorem 5. The run weight bounding problem for k-WRA over Σ, 〈D,R〉,
Strpc is PSPACE-complete if weighted simulation and weight computability
hold.

Proof. (PSPACE-solvability) Let A be a given k-WRA and A′ be the normal
form k-WRA obtained from A. Construct the edge-weighted directed graph
G from A′ as mentioned above. By Lemmas 3 and 4, the run weight bound-
ing problem for A can be rephrased as “Is there a path π in G between an
initial and final states of A′ such that wt(π) < s?” Without loss of generality,
we can assume that π contains no loop and thus |π| ≤ |Q′|, since we assume
Strpc. Assume that computing wt(t′) for each t′ ∈ T ′ takes at most O(‖A‖c)
space where c is a constant. Since each state (p, γ) ∈ Q′ can be represented
in O(log |Q|+ k2|R|) bits, an O(log |Q|+ k2|R|+ ‖A‖c) space-bounded non-
deterministic Turing machine can examine every path in G between an initial
and final states of A′ whose length is at most |Q′|. Therefore this problem
can be solved in PSPACE.

(PSPACE-hardness) As in the proof of NP-hardness in Theorem 1, we
assume the value of every weight function is 0. Then, for every data word w
and every run ρ ∈ RunA(w), wt(ρ) = 0. When we choose any real number
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s > 0 for the input semiring value, the run weight bounding problem is
expressed as: for a given k-WRA A, ∃w.∃ρ ∈ RunA(w)?, which is equivalent
to the emptiness problem for k-RA. Because the emptiness problem for
RA is PSPACE-complete[17], the run weight bounding problem is PSPACE-
hard.

6. Restricted WRA

In the previous section, we discussed the optimal run problem for WRA
that have weighted simulation property and weight computability. We intro-
duced register type as an abstraction of register assignments, and we gave a
method of constructing an edge-weighted graph from a given WRA. Each
edge in the constructed graph is labeled with the infimum of the weights of
the corresponding switches. By weighted simulation property, the infimum
of the weights of the switches of WRA is determined by register type regard-
less of input data words. In this section, we will define a subclass of WRA
whose weight is a priori determined by the register type. The advantage of
this subclass over general WRA is that we can slightly relax weighted sim-
ulation property and weight computability since the weights are determined
by the register type, not depending on data values in an input word. (See
the discussion after the definition of k-WRA in Section 2.)

In this section, we assume that a collection of binary relations R is closed
under the inverse, namely, R−1 = {R−1 | R ∈ R} ⊆ R for simplicity. We fix
a data structure as D = 〈D,R〉.

Definition 8. A restricted k-register weighted automaton (k-RWRA) over
Σ,D,S is a tuple A = (Q,Q0, T,Qf ,wt) where

• (Q,Q0, T,Qf ) is a k-RA over Σ,D.

• wt = (wtt,wtd) where wtt : T → S and wtd : (T × [k])→ (B2|R| → S).

The definition of RWRA is the same as that of WRA except for the weight
function. In an RWRA, the weight function wtd is determined depending on
which transition and register are concerned and whether each binary relation
in R between the contents of the register and the input data value holds or
not.
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We introduce auxiliary functions to formally define the weight of the
switch of RWRA. The function φ : D ×D ×R → B is defined as

φ(d1, d2, R) =

{
1 if (d1, d2) ∈ R
0 otherwise

for d1, d2 ∈ D and R ∈ R. Note that d1 stands for the data value stored
in a register and d2 stands for an input data value. Using φ, the function
ΦR : D ×D → B2|R| is defined as

ΦR(d1, d2) = (φ(d1, d2, R1), ..., φ(d1, d2, R|R|), φ(d2, d2, R1), ..., φ(d2, d2, R|R|))

for d1, d2 ∈ D and {R1, ..., R|R|} = R.
By wtt(t), we denote the weight of a transition t ∈ T , and by wtd(t, j)

we denote the weight function of the j-th register for a transition t ∈ T as
in the case of WRA. The weight of a switch (q, θ) `t,d c′ is defined as

wt((q, θ) `t,d c′) =
k∏
j=1

wtd(t, j)(ΦR(θ(j), d)) · wtt(t).

We introduce two properties of a WRA called simulation property and progress
property, which are obtained from weighted simulation property and weight
computability, respectively, by ignoring the requirements for weights in the
following sense. While weighted simulation property requires that for t′ =
(p, γ)→a

ϕ′,Λ (q, γ′), θ1 : γ, θ2 : γ, wtt′(θ1) = wtt′(θ2), simulation property only
requires that if a switch by t′ exists from ((p, γ), θ1) for some d ∈ D, then a
switch by t′ also exists from ((p, γ), θ2) for some d′ ∈ D. While weight com-
putability requires that wt(t′) can be computed in polynomial time, progress
property requires that it is decidable in polynomial time whether there is at
least one switch by t′.

Let A = (Q,Q0, T,Qf ,wt) be an arbitrary k-WRA and A′ = (Q′, Q′0, T
′,

Q′f ,wt′) be the normal form k-WRA obtained from A. We say that A′
has simulation property if every t′ = (p, γ) →a

ϕ′,Λ (q, γ′) ∈ T ′ satisfies the
following condition: for every θ, θ′ ∈ Θk of type γ and d ∈ D such that
(θ, d) |= ϕ′, there exists a data value d′ ∈ D that satisfies (θ′, d′) |= ϕ′. We
say that A′ has progress property if for a given t′ = (p, γ) →a

ϕ′,Λ (q, γ′) it is
decidable in polynomial time of ‖A‖ whether there exist θ ∈ Θk and d ∈ D
such that θ : γ and (θ, d) |= ϕ′.
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Simulation property implies that if a transition t′ can be applied to an ID
((p, γ), θ) with a data value d, then for any other ID ((p, γ), θ′), there exists
a data value d′ such that t′ can be applied to ((p, γ), θ′) with d′.

Simulation property is a necessary but not sufficient condition of weighted
simulation property by the following reason. Assume that the infimum of the
weights of the switches from an ID c = ((p, γ), θ) is the same as the infimum
of those from another ID c′ = ((p, γ), θ′). If there is a switch from c, then
the infimum is not∞ and by weighted simulation property, there is a switch
from c′ also. Hence, simulation property holds. The inverse does not always
hold because simulation property does not require anything about weights.
Progress property is also a necessary but not sufficient condition of weight
computability. However, the inverse direction holds if A (and A′) is an
RWRA.

Lemma 5. Let A′ = (Q′, Q′0, T
′, Q′f , (wtt′,wtd′)) be the normal form k-

RWRA of a k-RWRA A = (Q,Q0, T,Qf , (wtt,wtd)) and assume that A′
has simulation property and progress property. Assume further that wtt and
wtd can be computed in polynomial time of the size of the arguments of these
functions. Then, A′ has weighted simulation property and weight computabil-
ity when regarded as a normal form WRA.

Proof. Simulation property guarantees that for a transition t′ ∈ T ′, assign-
ments θ, θ′ with same register type γ and a data value d, if there is a switch
((p, γ), θ) `t′,d c, then there is a switch ((p, γ), θ′) `t′,d′ c′ for some data value
d′. Since A′ is in normal form, ΦR(θ(j), d) = ΦR(θ′(j), d′) for every j ∈ [k]
by the guard of t′. Hence, wt(((p, γ), θ) `t′,d c) = wt(((p, γ), θ′) `t′,d′ c′)
by the definition of the weight of a switch of RWRA. Therefore, weighted
simulation holds.

From the above discussion, wt(t′) = wt(((p, γ), θ) `t′,d c) if there exist
some θ ∈ Θk of type γ and some d ∈ D such that a switch ((p, γ), θ) `t′,d c
exists; otherwise, wt(t′) = ∞. We can decide whether wt(t′) = ∞ or not in
polynomial time of ‖A‖ by progress property of A′.

When wt(t′) 6=∞, wt(t′) =
∏k

j=1 wtd′(t′, j)(ΦR(θ(j), d)) · wtt′(t′) for the
above-mentioned θ and d. Assume that t′ = st,γ,ϕ′ for some t ∈ T . From the
above discussion again, ΦR(θ(j), d) is determined by the guard expression
ϕ′ of t′ regardless of θ and d; more precisely, ΦR(θ(j), d) equals a tuple of
bits that represents the selection of αRj and δR in ϕ′ for each R ∈ R. This
tuple of bits can be extracted from ϕ′ in linear time of ‖ϕ′‖, which equals
‖ϕ‖+(2k+1)|R| for the guard expression ϕ of t. By the definition of normal
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form, wtt′(t′) = wtt(t) and wtd′(t′, j) = wtd(t, j), and thus we can calculate
wt(t′) in polynomial time of ‖A‖, i.e., weight computability holds.

By Lemma 5, our method of solving the optimal run problem for WRA
in the previous section can be applied to an RWRA with simulation and
progress properties.

Theorem 6. Assume that we are given a normal form k-RWRA Ar =
(Qr, Q0r, Tr, Qf r, (wttr,wtdr)) over Σ, D and Strpc that has simulation prop-
erty and progress property. From Ar, we can construct a normal form k-
WRA A = (Qr, Q0r, Tr, Qf r, (wtt,wtd)) over Σ, D and Strpc such that A
has weighted simulation property and weight computability, and the optimal
weights of Ar and A are the same.

Proof. We construct A as follows: The base RA of A is the same as that of
Ar. The weight function wtt of A is also the same as wttr of Ar. The weight
function wtd(tr, j) of A can be defined as follows. For a given tr ∈ Tr and
j ∈ [k],

wtd(tr, j)(θ(j), d) = wtdr(tr, j)(ΦR(θ(j), d))

for θ ∈ Θk and d ∈ D. A has weighted simulation property and weight
computability by Lemma 5. By the definition of A, the optimal weights of
Ar and A are the same.

Note that the inverse of Theorem 6 does not hold. Assume that A is a
normal form WRA that has weighted simulation property. For any transition
t = (p, γ) →a

ϕ′,Λ (q, γ′) in A and assignments θ, θ′ of type γ, the infimum of
the weights of switches from ((p, γ), θ) is the same as the infimum of those
from ((p, γ), θ′) by weighted simulation property. However, there may exist
switches ((p, γ), θ) `t,d c and ((p, γ), θ′) `t,d′ c′ such that at least one of them
does not contribute to the infimum and

wt(((p, γ), θ) `t,d c) 6= wt(((p, γ), θ′) `t,d′ c′).

In such a case, we cannot construct a normal form RWRA equivalent to A
because the weight function wtdr of a normal form RWRA must satisfy that
for any t, j ∈ [k],

wtdr(t, j)(ΦR(θ(j), d)) = wtdr(t, j)(ΦR(θ′(j), d′))

for the above mentioned θ, θ′, d, d′. Hence the above inequation never holds.

25



In the next section, we show the optimal run problem for weighted timed
automata (WTA) as an example of the application of our method. The
optimal run problem for WTA can be regarded as the optimal run problem
for RWRA because a clock region of WTA can be represented by a register
type and the weight of a transition is determined by the region when we
consider the optimal run.

7. Weighted timed automata

Weighted timed automata (WTA) are an extension of timed automata
(TA) by introducing the weight to TA. We first take a glance at the orig-
inal definition of weighted timed automaton of [4]. A k-clock weighted
timed automaton (abbreviated as k-WTA) over a finite alphabet Σ is T =
(Q,Q0, T,Qf , (wtt,wtd)) where

• Q is a finite set of states,

• Q0, Qf ⊆ Q are sets of initial and finial states, respectively,

• T is a finite set of state transitions of the form q →a
ϕ,Λ q

′ where q, q′ ∈ Q,
a ∈ Σ, Λ ⊆ [k] (called a clock reset) and ϕ is a clock constraint defined
by ϕ := tt | xi ./ c | ϕ ∧ ϕ | ¬ϕ (i ∈ [k], c ∈ N, ./ ∈ {<,=, >}),

• wtt : T → R≥0, wtd : Q → (R≥0 → R≥0) such that for each q ∈ Q
there is a constant wq ∈ N satisfying wtd(q)(d) = wq · d.

For θ ∈ Θk and d ∈ R≥0, we define the assignment (θ+d) ∈ Θk by (θ+d)(i) =
θ(i)+d for each i ∈ [k]. For a transition q →a

ϕ,Λ q
′ ∈ T , an assignment θ ∈ Θk,

a data value d ∈ R≥0, we call (q, θ) `t,d (q′, (θ + d)[Λ ← 0]) a switch (with
delay d) if θ + d |= ϕ. A run, the weights of a switch, a run and a word of
T , the language and the series recognized by T are defined in the same way
as those of WRA.

In this section, we redefine WTA as a subclass of WRA based on Lemma
5.1 of [5] that every k-WTA can be simulated by a (k+1)-WRA by using one
extra register to keep the current time instant (in particular, a clock reset can
be simulated by loading the current time to the corresponding register). An
input data word w = (a1, d1)(a2, d2) . . . (an, dn) to a WTA means ai occurs
at time instant di (i ∈ [n]). In every switch, an input data value is loaded
to the last register xk+1 so that xk+1 remembers when the latest symbol ai

26



occurred. The guard formula of every transition requires that an input data
value is always not less than xk+1 to guarantee that d1 ≤ d2 ≤ . . . ≤ dn.

For a binary relation ./ over R≥0 and c ∈ N, let ./ c be the binary
relation defined as ./ c = {(r, r′) | r, r′ ∈ R≥0, r

′ − r ./ c}. Note that
(θ, d) |= x./ci means d− θ(i) ./ c, not θ(i)− d ./ c. We let the data structure
Dtimed = 〈R≥0, {./ c | ./ ∈ {<,=, >}, c ∈ N}〉 with the initial value ⊥ = 0.

Definition 9 ([5]). A k-clock weighted timed automaton (abbreviated as k-
WTA) over Σ is a (k + 1)-WRA Atimed = (Q,Q0, T,Qf , (wtt,wtd)) over Σ,
Dtimed and Strpc where

• Atimed
b = (Q,Q0, T,Qf ) is a (k+1)-RA (called the base k-TA of Atimed)

such that for each transition q →a
ϕ,Λ q′ ∈ T , ϕ = ϕ′ ∧ x≥0

k+1 for some
ϕ′ ∈ Fk,

• wtt is a function from T to N, and

• for each q ∈ Q, a constant natural number wq ∈ N is specified and for
each transition t = q →a

ϕ,Λ q
′ ∈ T and d, d′ ∈ R≥0,

wtd(t, j)(d, d′) = 0 (j ∈ [k]),

wtd(t, k + 1)(d, d′) = wq · (d′ − d).

L(Atimed
b ) is the timed language recognized by Atimed

b and [[Atimed]] is the timed
series recognized by Atimed.

By the above definition, the weight of a switch (q, θ) `t,d (q′, θ′) is wtt(t)+
wtd(t, k+1)(θ(k+1), d) = wtt(t)+wq(d−θ(k+1)). Intuitively, wtt represents
the cost of executing t and wq(d− θ(k + 1)) is the cost of time consumption
at state q. (Remember that θ(k + 1) is the time at which the latest event
occurred.) As in the case of k-WRA, we define the optimal run problem for
k-WTA as follows.

Definition 10 (The optimal run problem). Input: k-WTA Atimed

Output: The infimum of {wt(ρ) | ∃w ∈ (Σ× R≥0)+. ρ ∈ RunAtimed(w)}

Example 5 ([4]). Let Atimed
1 be a 2-WTA shown in Figure 3 where wq0 = 3,

wq1 = 1, wq2 = 0, wtt(tj) = 1 (j ∈ [3]). Let Atimed
1,b be the base 2-TA of Atimed

1 .

Then, L(Atimed
1,b ) = {(a, 2)}∪{(a, d)(a, 2) | 0 ≤ d < 2}. ρ1 ∈ RunAtimed

1
((a, 2))

is unique and wt(ρ1) = wtd(t1, 3)(0, 2) + wtt(t1) = 3 · 2 + 1 = 7. For each

27



wd = (a, d)(a, 2) where 0 ≤ d < 2, ρd ∈ RunAtimed
1

(wd) is unique and wt(ρd) =
wtd(t2, 3)(0, d) + wtt(t2) + wtd(t3, 3)(d, 2) + wtt(t3) = 3d+ 1 + (2− d) + 1 =
4 + 2d. We have inf{wt(ρ) | ∃w ∈ (Σ× R≥0)+. ρ ∈ RunAtimed

1
(w)} = 4.

Example 6 ([4]). Let Atimed
2 be a 1-WTA shown in Figure 4 where wq0 = 1,

wq1 = 2, wq2 = 0, wtt(t1) = wtt(t2) = 1. Let Atimed
2,b be the base 1-TA

of Atimed
2 . Then, L(Atimed

2,b ) = {(a, 2 − ξ)(a, 2) | 0 < ξ ≤ 2}. For each
wξ = (a, 2− ξ)(a, 2) where 0 < ξ ≤ 2, ρξ ∈ RunAtimed

2
(wξ) is unique and

wt(ρξ) = wtd(t1, 2)(0, 2− ξ) + wtt(t1) + wtd(t2, 2)(2− ξ, 2) + wtt(t2)

= (1 · (2− ξ)) + 1 + (2 · ξ) + 1 = 4 + ξ.

Hence, inf{wt(ρ) | ∃w ∈ (Σ× R≥0)+. ρ ∈ RunAtimed
2

(w)} = 4.

Figure 3: WTA Atimed
1

Figure 4: WTA Atimed
2

In [4], an algorithm that solves the optimal run problem for WTA is
proposed by extending the region construction for TA. Region construction
is a well-known method to divide the infinite set of IDs of TA into a finite set
of regions where two IDs in a same region are indistinguishable (or bisimilar)
with respect to any transition and time progress. In [4], a sub-region is
defined as a refinement of a region by distinguishing x < y and x . y where
the distance of x and y is large in the former case while the distance is very
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(arbitrarily) small in the latter case. This distinction is needed because it
may happen that there is no ρmin ∈ RunA(w) such that wt(ρmin) ≤ wt(ρ) for
every ρ ∈ RunA(w), but the infimum of {wt(ρ) | ρ ∈ RunA(w)} exists.

An edge-weighted directed graph, called the sub-region graph G is con-
structed from a given WTA and a minimum weight path of G is computed by
any existing graph algorithm, which corresponds to a solution to the optimal
run problem for the WTA.

The method proposed in this paper can also compute an optimal run of
a WTA by distinguishing < and ., which was first proved in [4].

Proposition 1. [4] The optimal run problem for k-WTA Atimed = (Q,Q0, T,Qf ,
(wtt,wtd)) over Σ is solvable in time exponential in k, cmax and polynomial
in |Q|, |Σ| where cmax is the largest natural number appearing in the guard
formula of a transition in T .

Proof. Let RBL be the collection of relations {./ c | ./ ∈ {.,=,&}, c ∈
N, c ≤ cmax}\{. 0}. We redefine the data structure for WTA as Dtimed,BL =
〈R≥0,RBL〉. A boundary region is a region specified by at least one con-
straint using = and no constraints using . or &. A limit region is a region
specified by at least one constraint using . or &.1 Since the guard formula
of any transition of WTA is a linear constraint on the contents of regis-
ters, it suffices to consider only the boundary regions and limit regions to
compute the solution of the optimal run problem for WTA by the basic
property of linear programming. Though the detailed discussion on linear
programming is beyond the scope of this paper, we briefly explain the reason
why it is enough to consider only boundary and limit regions. (Please see
[4] for the details.) Let ti = qi−1 →ai

ϕi,Λi
qi be transitions for i ∈ [n] and

ρ = (q0, θ0) `t1,d1 · · · `tn,dn (qn, θn) be a run. We want to minimize the fol-
lowing object function among possible combinations of data values d1, . . . , dn
appearing in the above run ρ:

wt(ρ) =
n∑
i=1

(wtt(ti) +
k+1∑
j=1

wtd(ti, j)(θi−1(j), di))

=
n∑
i=1

(wtt(ti) + wqi−1
· (di − θi−1(k + 1)) (1)

1Boundary regions and limit regions are also known as corner-point regions in [11].
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The constraint of this optimization problem for a run ρ is the conjunction
of the guard formula ϕi of ti (i ∈ [n]), which is a Boolean combination of
atomic formulas of the form

di − θi−1(j) ./ cij (i ∈ [n], j ∈ [k], cij ∈ N). (2)

Note that θ0(j) = ⊥ and θi(j) is equal to either θi−1(j) or di. Therefore, both
of the object function (1) and the constraint (2) are linear combinations of
d1, . . . , dn and it suffices to consider the boundary and limit regions to obtain
the optimal value for given t1, . . . , tn.

This implies weighted simulation and weight computability if we replace
every < and > with . and &, respectively, and use Dtimed,BL instead of Dtimed.
Weight computability holds because (di−θi−1(k+1)) is a constant value for a
boundary region and is a value that is arbitrary close to a constant value for a
limit region where the constant can be directly obtained from the constraint
corresponding to these boundary or limit regions.

Example 7. Let us revisit Example 6. First, we replace every < and >
with . and &, respectively, and consider its normal form. Since cmax = 2,
RBL = {= 0,& 0,. 1,= 1,& 1,. 2,= 2,& 2}. After simplifications by using
properties of the total order on N, we have the following eight register types to
be considered in this example: γ1 : x2−x1 = 0, γ2 : x2−x1 & 0, γ3 : x2−x1 .
1, γ4 : x2 − x1 = 1, γ5 : x2 − x1 & 1, γ6 : x2 − x1 . 2, γ7 : x2 − x1 = 2, γ8 :
x2−x1 & 2. Note that by the above specification, γm(2, 1)(R) and γm(i, i)(R)
(m ∈ [8], i ∈ [2], R ∈ RBL) are uniquely determined and not described.
Atimed

2 is transformed to A′2 = ({(qi, γj) | i ∈ {0, 1, 2}, j ∈ [8]}, {(q0, γ1)},
T ′, {(q2, γ7)}, (wtt′,wtd′)) where T ′ consists of the following transitions:

(q0, γ1)→a
x=0
1 ,{2} (q1, γ1), (q0, γ1)→a

x
&0
1 ,{2}

(q1, γ2),

(q0, γ1)→a

x
.1
1 ,{2}

(q1, γ3), (q0, γ1)→a
x=1
1 ,{2} (q1, γ4),

(q0, γ1)→a

x
&1
1 ,{2}

(q1, γ5), (q0, γ1)→a

x
.2
1 ,{2}

(q1, γ6),

(q1, γj)→a
x=2
1 ,{2} (q2, γ7) (j ∈ [6])

and wtt′, wtd′ are defined accordingly. Note that (θ, d) |= in=0∧¬inR∧¬inR
−1

for R ∈ RBL\{= 0} and an input data value is always loaded to x2 (the
previous data in x2 is overwritten), and hence constraints on x2 and an input
data value are not needed in the guard formulas. We have the following six
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kinds of runs, each of which corresponds to one of the above six transitions
from (q0, γ) followed by the last transition, which have the following weights:

wt(ρ1) = 1 · 0 + 1 + 2 · 2 + 1 = 6,
wt(ρ2) = 1 · ξ + 1 + 2 · (2− ξ) + 1 = 6− ξ,
wt(ρ3) = 1 · (1− ξ) + 1 + 2 · (1 + ξ) + 1 = 5 + ξ,
wt(ρ4) = 1 · 1 + 1 + 2 · 1 + 1 = 5,
wt(ρ5) = 1 · (1 + ξ) + 1 + 2 · (1− ξ) + 1 = 5− ξ,
wt(ρ6) = 1 · (2− ξ) + 1 + 2 · ξ + 1 = 4 + ξ

for small ξ > 0. Hence, the solution of the optimal run problem for this
example is 4, which is realized by ρ6 by ξ → 0.

8. Conclusion

In this paper, we discussed the optimal run problem for weighted register
automata (WRA). We first introduced register type to WRA and provided
a transformation from a given WRA into a normal form such that the regis-
ter types before and after each transition are uniquely determined. Because
the decision problem related to the optimal run problem is undecidable, we
proposed a sufficient condition called weighted simulation and weight com-
putability for the problem to become decidable. Then, we introduced the
subclass of WRA, whose weight is determined only by whether the binary
relations between the content of the register and the input data value hold
or not. Lastly, we illustrated computing the optimal run of weighted timed
automata as an example. Investigating the problem for semirings other than
the tropical reals is an interesting future study.
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[17] Libkin, L., Tan, T., Vrgoč, D.: Regular expressions for
data words. J. Comput. Syst. Sci. 81(7), 1278–1297 (2015).
https://doi.org/10.1016/j.jcss.2015.03.005
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