
n-EXANGULATED CATEGORIES (I):

DEFINITIONS AND FUNDAMENTAL PROPERTIES
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Abstract. For each positive integer n we introduce the notion of n-exangulated

categories as higher dimensional analogues of extriangulated categories defined
by Nakaoka–Palu. We characterize which n-exangulated categories are n-exact

in the sense of Jasso and which are (n + 2)-angulated in the sense of Geiss–

Keller–Oppermann.
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1. Introduction

A fundamental idea in Iyama’s higher dimensional Auslander–Reiten theory [I1]
is to replace short exact sequences as the basic building blocks for homological
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algebra, by longer exact sequences. A typical setting is to consider an n-cluster
tilting subcategory C of an abelian category A . For instance one may take A to
be the category modA of finitely generated modules over an n-representation finite
algebra A in the sense of [IO] (see [HI1], [HI2] for further examples). Then modA
has a unique n-cluster tilting subcategory C . In this case there is also an n-cluster
tilting subcategory of the bounded derived category Db(modA), obtained by closing
C under shifts by ±n and direct sums. To generalize, one may take A to be an
n-complete algebra in the sense of [I2] (see [P1] for further examples). Then modA
has a distinguished exact subcategory that admits an n-cluster tilting subcategory.

To summarize n-cluster tilting subcategories of abelian, exact and triangulated
categories play a crucial role in higher dimensional Auslander–Reiten theory and
what is sometimes called higher homological algebra. These three settings have
all been axiomatized leading to the notions of n-abelian and n-exact categories
introduced in [J] as well as the notion of (n + 2)-angulated categories introduced
in [GKO] (see also [BT] for more discussion of the axioms and [BJT] for a more
recent class of examples). Setting n = 1 recovers the notions of abelian, exact and
triangulated categories. Any n-cluster tilting subcategory C of an abelian or exact
category is n-abelian respectively n-exact (see [J, Theorem 3.16] and [J, Theorem
4.14]). Similarly [GKO, Theorem 1] show that if C is an n-cluster tilting subcate-
gory of a triangulated category closed under shift by n, then it is (n+2)-angulated.
The condition that C is closed under shift by n is crucial and no reasonable axiom-
atization of arbitrary n-cluster tilting subcategories of triangulated categories has
to our knowledge been proposed.

The notion of extriangulated categories was recently introduced in [NP] as a
common generalization of exact and triangulated categories. The data of such a
category is a triplet (C ,E, s), where C is an additive category, E : C op×C → Ab is
a biadditive functor (modelled after Ext1) and s assigns to each δ ∈ E(C,A) a class
of 3-term sequences with end terms A and C such that certain axioms hold. The
aim of this paper is to introduce an n-analogue of this notion called n-exangulated
categories. Such a category is a similar triplet (C ,E, s), with the main distinction
being that the 3-term sequences mentioned above are replaced by (n+ 2)-term se-
quences. The precise definition is given in Definition 2.32 (see also Definition 2.22).
It is a true analogue in the sense that 1-exangulated categories are the same as
extriangulated categories (see Proposition 4.3). As typical examples we have that
n-exact and (n + 2)-angulated categories are n-exangulated (see Proposition 4.34
and Proposition 4.5).

One of the purposes of introducing n-exangulated categories is to provide a
common ground for studying the different settings of higher homological algebra.
Compared to the classical case (n = 1) many important questions regarding the
interplay of n-abelian, n-exact and (n + 2)-angulated categories remain open. For
instance, from any abelian category we obtain a triangulated category by taking
its derived category. As far as we know, no satisfactory higher analogue of this
procedure has been proposed and in view of [JK] it seems that finding such is non-
trivial. It is our hope that by providing the common framework of n-exangulated
categories we might contribute to answering some of these questions.

The paper is organized as follows. In Section 2 we introduce n-exangulated cate-
gories and related notions. In Section 3 we present basic properties of n-exangulated
categories. In Section 4, we show that 1-exangulated categories are the same as
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extriangulated categories. We also characterize (n + 2)-angulated categories as n-
exangulated categories (C ,E, s) for which E = C (−,Σ−) for some automorphism
Σ of C . Similarly we characterize n-exact categories (defined in a slightly modified
way) as n-exangulated categories for which inflations are monomorphisms and de-
flations are epimorphisms. In Section 5, we introduce a family of examples which
are neither n-exact nor (n+ 2)-angulated.

It is natural to ask if there is a reasonable notion of n-cluster tilting subcategories
of extriangulated categories and when they are n-exangulated. This question will
be addressed in the next article n-Exangulated Categories (II).

2. n-exangulated categories

2.1. E-extensions. Throughout this paper, let C be an additive category.

Definition 2.1. Suppose C is equipped with a biadditive functor E : C op×C → Ab.
For any pair of objects A,C ∈ C , an element δ ∈ E(C,A) is called an E-extension
or simply an extension. We also write such δ as AδC when we indicate A and C.

Remark 2.2. Let AδC be any extension. Since E is a bifunctor, for any a ∈ C (A,A′)
and c ∈ C (C ′, C), we have extensions

E(C, a)(δ) ∈ E(C,A′) and E(c, A)(δ) ∈ E(C ′, A).

We abbreviately denote them by a∗δ and c∗δ. In this terminology, we have

E(c, a)(δ) = c∗a∗δ = a∗c
∗δ

in E(C ′, A′).

Definition 2.3. Let AδC ,BρD be any pair of E-extensions. A morphism (a, c) : δ →
ρ of extensions is a pair of morphisms a ∈ C (A,B) and c ∈ C (C,D) in C , satisfying
the equality

a∗δ = c∗ρ.

Remark 2.4. Let AδC be any extension. We have the following.

(1) Any morphism a ∈ C (A,B) gives rise to a morphism of E-extensions

(a, 1C) : δ → a∗δ.

(2) Any morphism c ∈ C (D,C) gives rise to a morphism of E-extensions

(1A, c) : c∗δ → δ.

Definition 2.5. For any A,C ∈ C , the zero element A0C = 0 ∈ E(C,A) is called
the split E-extension.

Definition 2.6. Let AδC ,BρD be any pair of E-extensions. Let

C
ιC−→ C ⊕D ιD←− D

and

A
pA←− A⊕B pB−→ B

be coproduct and product in C , respectively. Remark that, by the biadditivity of
E, we have a natural isomorphism

E(C ⊕D,A⊕B) ∼= E(C,A)⊕ E(C,B)⊕ E(D,A)⊕ E(D,B).
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Let δ⊕ ρ ∈ E(C ⊕D,A⊕B) be the element corresponding to (δ, 0, 0, ρ) through
this isomorphism. This is the unique element which satisfies

E(ιC , pA)(δ ⊕ ρ) = δ , E(ιC , pB)(δ ⊕ ρ) = 0,

E(ιD, pA)(δ ⊕ ρ) = 0 , E(ιD, pB)(δ ⊕ ρ) = ρ.

If A = B and C = D, then the above isomorphism relates the sum δ+ρ ∈ E(C,A)
of δ, ρ ∈ E(C,A) coming from the abelian group structure on E(C,A), to the ‘Baer
sum’, i.e.,

δ + ρ = E(∆C ,∇A)(δ ⊕ ρ),

where ∆C =

[
1
1

]
: C → C ⊕ C, ∇A = [1 1] : A⊕A→ A.

2.2. n-exangles. Let C be an additive category as before, and let n be any fixed
positive integer.

Definition 2.7. Let CC be the category of complexes in C . As its full subcategory,
define Cn+2

C to be the category of complexes in C whose components are zero in

the degrees outside of {0, 1, . . . , n + 1}. Namely, an object in Cn+2
C is a complex

X· = {Xi, diX} of the form

X0 d0X−→ X1 d1X−→ · · ·
dn−1
X−→ Xn dnX−→ Xn+1.

We write a morphism f · : X· → Y · simply f · = (f0, f1, . . . , fn+1), only indicating
the terms of degrees 0, . . . , n+ 1.

We define the homotopy relation on the morphism sets in the usual way. Thus
morphisms f ·, g· ∈ Cn+2

C (X·, Y ·) are homotopic if there is a homotopy, i.e., a
sequence of morphisms ϕ· = (ϕ1, . . . , ϕn+1) of ϕi ∈ C (Xi, Y i−1) satisfying

g0 − f0 = ϕ1 ◦ d0
X ,

gi − f i = di−1
Y ◦ ϕi + ϕi+1 ◦ diX (1 ≤ i ≤ n),

gn+1 − fn+1 = dnY ◦ ϕn+1.

In this case we write as f · ∼ g·, or f · ∼
ϕ·
g·. We denote the homotopy category by

Kn+2
C , which is the quotient of Cn+2

C by the ideal of null-homotopic morphisms. If

f · ∈ Cn+2
C (X·, Y ·) gives an isomorphism in Kn+2

C , we call it a homotopy equiva-

lence, as usual. Similarly a homotopy inverse of f · is a morphism g· ∈ Cn+2
C (Y ·, X·)

which gives the inverse of f · in Kn+2
C .

Claim 2.8. Assume that f · ∈ Cn+2
C (X·, Y ·) is a homotopy equivalence in Cn+2

C .
For a homotopy inverse g· of f ·, we have the following.

(1) If X0 = Y 0 = A and f0 = 1A, then g· can be chosen to satisfy g0 = 1A.
(2) Dually, if Xn+1 = Y n+1 = C and fn+1 = 1C , then g· can be chosen to

satisfy gn+1 = 1C .
(3) If f0 = 1A and fn+1 = 1C , then g· can be chosen to satisfy both g0 = 1A

and gn+1 = 1C .

Proof. Let h· be any homotopy inverse of f ·, and let f · ◦ h· ∼
ϕ·

1Y · , h
· ◦ f · ∼

ψ·
1X·

be homotopies.
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(1) Modifying h· by a homotopy (ϕ1, 0, . . . , 0), we obtain a morphism g· : Y · →
X· of the form (1A, h

1+d0
X◦ϕ1, h2, . . . , hn+1). Since h· ∼ g·, this is also a homotopy

inverse of f ·.
(2) Dually to (1), g· = (h0, . . . , hn−1, hn + ψn+1 ◦ dnY , 1C) gives a homotopy

inverse of f · with the desired property.
(3) g· = (1A, h

1 + d0
X ◦ϕ1, h2, . . . , hn−1, hn +ψn+1 ◦ dnY , 1C) satisfies the desired

properties. (If n = 1, we put g· = (1A, h
1 + d0

X ◦ ϕ1 + ψ2 ◦ d1
Y , 1C).) �

Definition 2.9. Let C ,E, n be as before. Define the category Æ = Æn+2
(C ,E) as

follows.

(1) An object in Æn+2
(C ,E) is a pair 〈X·, δ〉 of X· ∈ Cn+2

C and δ ∈ E(Xn+1, X0)

satisfying

(d0
X)∗δ = 0 and (dnX)∗δ = 0.

We call such a pair an E-attached complex of length n+ 2. We also denote
it by

X0 d0X−→ X1 d1X−→ · · · d
n
X−→ Xn+1 δ

99K .

When we emphasize the end-terms X0 = A and Xn+1 = C, we denote
the pair by A〈X·, δ〉C or just by A〈X·, δ〉 or 〈X·, δ〉C , depending on our
purpose.

(2) For such pairs 〈X·, δ〉 and 〈Y ·, ρ〉, a morphism f · : 〈X·, δ〉 → 〈Y ·, ρ〉 is
defined to be a morphism f · ∈ Cn+2

C (X·, Y ·) satisfying

(f0)∗δ = (fn+1)∗ρ.

We use the same composition and the identities as in Cn+2
C .

Proposition 2.10. Let f · : 〈X·, δ〉 → 〈Y ·, ρ〉 be any morphism in Æ.

(1) If a morphism f ′· ∈ Cn+2
C (X·, Y ·) satisfies f · ∼ f ′· in Cn+2

C , then f ′· also
belongs to Æ(〈X·, δ〉, 〈Y ·, ρ〉). Thus we may consider the same homotopy
relation ∼ in Æ.

(2) If f · has a homotopy inverse g· : Y · → X· in Cn+2
C , then g· belongs to

Æ(〈Y ·, ρ〉, 〈X·, δ〉).

Proof. (1) Suppose that we have f · ∼
ϕ·
f ′· as in Definition 2.7. Then we have

(f ′0)∗δ = (f0 + ϕ1 ◦ d0
X)∗δ = (f0)∗δ + (ϕ1)∗(d

0
X)∗δ = (f0)∗δ,

(f ′n+1)∗ρ = (fn+1 + dnY ◦ ϕn+1)∗ρ = (fn+1)∗ρ+ (ϕn+1)∗(dnY )∗ρ = (fn+1)∗ρ

since δ and ρ satisfy (d0
X)∗δ = 0 and (dnY )∗ρ = 0. As f · satisfies (f0)∗δ = (fn+1)∗ρ

by the assumption, so does f ′·.
(2) By assumption, there are homotopies g· ◦ f · ∼ 1X· and f · ◦ g· ∼ 1Y · . As in

the proof of (1), this implies

(g0 ◦ f0)∗δ = δ and (fn+1 ◦ gn+1)∗ρ = ρ.

Since (f0)∗δ = (fn+1)∗ρ by the assumption, it follows that

(gn+1)∗δ = (gn+1)∗(g0 ◦ f0)∗δ = (gn+1)∗(g0)∗(f
0)∗δ

= (gn+1)∗(g0)∗(f
n+1)∗ρ = (g0)∗(f

n+1 ◦ gn+1)∗ρ = (g0)∗ρ,

which means g· ∈ Æ(〈Y ·, ρ〉, 〈X·, δ〉) by definition. �
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Definition 2.11. By Yoneda lemma, any extension δ ∈ E(C,A) induces natural
transformations

δ] : C (−, C)⇒ E(−, A) and δ] : C (A,−)⇒ E(C,−).

For any X ∈ C , these (δ])X and δ]X are given as follows.

(1) (δ])X : C (X,C)→ E(X,A) ; f 7→ f∗δ.

(2) δ]X : C (A,X)→ E(C,X) ; g 7→ g∗δ.

We abbreviately denote (δ])X(f) and δ]X(g) by δ](f) and δ](g).

Proposition 2.12. Let Q ∈ C be any object. Then the Hom functor

C (Q,−) : C → Ab

induces the following functor YQ : Æ → Cn+3
Ab . Here Ab denotes the category of

abelian groups.

(i) An object 〈X·, δ〉 ∈ Æ is sent to the complex YQ(〈X·, δ〉) defined as

(2.1) C (Q,X0)
C (Q,d0X)−→ · · · C (Q,dnX)−→ C (Q,Xn+1)

δ]−→ E(Q,X0).

(ii) A morphism f · ∈ Æ(〈X·, δ〉, 〈Y ·, ρ〉) is sent to the morphism of complexes

YQ(f ·) =
(
C (Q, f0), . . . ,C (Q, fn+1),E(Q, f0)

)
.

Similarly, C (−, Q) : C op → Ab induces a functor Æop → Cn+3
Ab which sends 〈X·, δ〉

to the complex

(2.2) C (Xn+1, Q)
C (dnX ,Q)−→ · · · C (d0X ,Q)−→ C (X0, Q)

δ]−→ E(Xn+1, Q).

Proof. This is straightforward. We remark that for any pair of X· ∈ Cn+2
C and

δ ∈ E(Xn+1, X0), the sequences (2.1), (2.2) are complexes for all Q ∈ C if and only
if 〈X·, δ〉 belongs to Æ. �

Definition 2.13. An n-exangle is a pair 〈X·, δ〉 ofX· ∈ Cn+2
C and δ ∈ E(Xn+1, X0)

which satisfies the following conditions.

(1) The following sequence of functors C op → Ab is exact.

(2.3) C (−, X0)
C (−,d0X)

=⇒ · · · C (−,dnX)
=⇒ C (−, Xn+1)

δ]
=⇒ E(−, X0)

(2) The following sequence of functors C → Ab is exact.

(2.4) C (Xn+1,−)
C (dnX ,−)

=⇒ · · · C (d0X ,−)
=⇒ C (X0,−)

δ]
=⇒ E(Xn+1,−)

In particular any n-exangle is an object in Æ. A morphism of n-exangles simply
means a morphism in Æ. Thus n-exangles form a full subcategory of Æ.

Remark 2.14. In Æ, a coproduct of objects 〈X·, δ〉, 〈Y ·, ρ〉 is given by 〈X·⊕Y ·, δ⊕
ρ〉, where X· ⊕ Y · is the direct sum in Cn+2

C and δ⊕ ρ is the one in Definition 2.6.
Remark that 〈X·⊕Y ·, δ⊕ ρ〉 is an n-exangle if and only if both 〈X·, δ〉, 〈Y ·, ρ〉 are
n-exangles.

Claim 2.15. For any n-exangle A〈X·, δ〉C , the following are equivalent.

(1) δ = 0.
(2) There is r ∈ C (X1, A) satisfying r ◦ d0

X = 1A.
(3) There is s ∈ C (C,Xn) satisfying dnX ◦ s = 1C .



n-EXANGULATED CATEGORIES (I) 7

Proof. The equivalence (1)⇔ (2) follows immediately from the exactness of

C (X1, A)
−◦d0X−→ C (A,A)

δ]−→ E(C,A).

Similarly for (1)⇔ (3). �

Proposition 2.16. Let 〈X·, δ〉, 〈Y ·, ρ〉 be any pair of objects in Æ. Suppose that
f · ∈ Æ(〈X·, δ〉, 〈Y ·, ρ〉) is a homotopy equivalence. Then 〈X·, δ〉 is an n-exangle if
and only if 〈Y ·, ρ〉 is.

Proof. Let g· be a homotopy inverse of f ·, and let g· ◦ f · ∼
ϕ·

1X· , f
· ◦ g· ∼

ψ·
1Y · be

homotopies. Let Q ∈ C be any object.
By Proposition 2.12, we obtain complexes X· = YQ(〈X·, δ〉), Y· = YQ(〈Y ·, ρ〉)

and morphisms

F · = YQ(f ·) : X· → Y·, G· = YQ(g·) : Y· → X·

in Cn+3
Ab . For the composition G· ◦ F ·

C (Q,X0) C (Q,X1) · · · C (Q,Xn+1) E(Q,X0)

C (Q,X0) C (Q,X1) · · · C (Q,Xn+1) E(Q,X0)

C (Q,d0X)// C (Q,d1X) // C (Q,dnX)// δ] //

C (Q,d0X)

//
C (Q,d1X)

//
C (Q,dnX)

//
δ]

//

G0◦F 0

��
G1◦F 1

��
Gn+1◦Fn+1

��
Gn+2◦Fn+2

��
� � �

the sequence of morphisms in Ab

Φ1 = C (Q,ϕ1), . . . ,Φn+1 = C (Q,ϕn+1)

satisfies

1−Gi ◦ F i = C (Q, di−1
X ) ◦ Φi + Φi+1 ◦ C (Q, diX) (1 ≤ i ≤ n)

and

1−Gn+1 ◦ Fn+1 = C (Q, dnX) ◦ Φn+1.

This shows that G· ◦ F · induces Hi(G· ◦ F ·) = 1 on cohomologies for any 1 ≤ i ≤
n+1. In the same way, by using ψ·, we can show Hi(F · ◦G·) = 1 for 1 ≤ i ≤ n+1.
Thus

Hi(F ·) : Hi(X·)
∼=−→ Hi(Y·) (1 ≤ i ≤ n+ 1)

are isomorphisms. In particular X· is exact if and only if Y· is. Similarly for the
exactness of (2.4). �

2.3. The categories Cn+2
(A,C) and Kn+2

(A,C). We consider the complexes of length

n+ 2 with fixed end-terms, as follows.

Definition 2.17. For any pair of objectsA,C ∈ C , define the subcategory Cn+2
(C ;A,C)

of Cn+2
C as follows. We abbreviately denote Cn+2

(C ;A,C) by Cn+2
(A,C), when C is clear

from the context.

(1) An object X· ∈ Cn+2
C belongs to Cn+2

(A,C) if it satisfies X0 = A and Xn+1 =

C. We also write it as AX
·
C when we emphasize A and C.

(2) For any X·, Y · ∈ Cn+2
(A,C), the morphism set is defined by

Cn+2
(A,C)(X

·, Y ·) = {f · ∈ Cn+2
C (X·, Y ·) | f0 = 1A, f

n+1 = 1C}.
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This category Cn+2
(A,C) is no longer (pre-)additive. However we can take the

quotient Cn+2
(A,C) by the same homotopy relation ∼ as in Cn+2

C . Namely, morphisms

f ·, g· ∈ Cn+2
C (X·, Y ·) are homotopic if there is a sequence of morphisms ϕ· =

(ϕ1, . . . , ϕn+1) satisfying

0 = ϕ1 ◦ d0
X ,(2.5)

gi − f i = di−1
Y ◦ ϕi + ϕi+1 ◦ diX (1 ≤ i ≤ n),

0 = dnY ◦ ϕn+1.(2.6)

We use the same notation f · ∼ g· and f · ∼
ϕ·
g· as before. We denote the resulting

category by Kn+2
(A,C), which is a subcategory of Kn+2

C .

For any morphism f · in Cn+2
(A,C), its image in Kn+2

(A,C) will be denoted by f ·.
As the usual terminology, a morphism f · ∈ Cn+2

(A,C)(X
·, Y ·) is called a homotopy

equivalence if it induces an isomorphism f · in Kn+2
(A,C). Two objects X·, Y · ∈ Cn+2

(A,C)

are said to be homotopically equivalent if there is some homotopy equivalence X· →
Y ·. We denote the homotopy equivalence class of AX

·
C by [AX

·
C ] or simply by [X·].

Remark 2.18. Let X·, Y · ∈ Cn+2
(A,C) be any pair of objects. By Claim 2.8 (3), if a

morphism f · ∈ Cn+2
(A,C)(X

·, Y ·) gives a homotopy equivalence in Cn+2
C , then it is

also a homotopy equivalence in Cn+2
(A,C).

However in general, a homotopy equivalence g· ∈ Cn+2
C (X·, Y ·) does not nec-

essarily give rise to a homotopy equivalence in Cn+2
(A,C), and thus there can be a

difference between homotopy equivalences taken in Cn+2
(A,C) and in Cn+2

C . To distin-

guish, we use the notation [X·] exclusively for the homotopy equivalence class in
Cn+2

(A,C).

Claim 2.19. Let f · ∼
ϕ·
g· : X· → Y · be homotopic morphisms in Cn+2

C .

(1) If f0 = g0 and if C (X2, Y 0)
−◦d1X−→ C (X1, Y 0)

−◦d0X−→ C (X0, Y 0) is exact,
then ϕ· can be modified to satisfy ϕ1 = 0.

(2) Dually, if fn+1 = gn+1 and if C (Xn+1, Y n−1)
dn−1
Y ◦−
−→ C (Xn+1, Y n)

dnY ◦−−→
C (Xn+1, Y n+1) is exact, then ϕ· can be modified to satisfy ϕn+1 = 0.

(3) If both assumptions of (1),(2) are satisfied and if n ≥ 2, then ϕ· can be
modified to satisfy ϕ1 = 0 and ϕn+1 = 0.

Proof. We only show (1). By ϕ1 ◦ d0
X = g0 − f0 = 0 and the exactness of

C (X2, Y 0)
−◦d1X−→ C (X1, Y 0)

−◦d0X−→ C (X0, Y 0),

there is h ∈ C (X2, Y 0) which gives h◦d1
X = ϕ1. Then (0, ϕ2 +d0

Y ◦h, ϕ3, . . . , ϕn+1)
gives the desired homotopy. �

Morphisms in Cn+2
(A,C) behave nicely with n-exangles. The following is obvious

from the definition.

Remark 2.20. Let AδC be any extension, and let 〈X·, δ〉, 〈Y ·, δ〉 be objects in Æ.
Then any morphism f · ∈ Cn+2

(A,C)(X
·, Y ·) gives a morphism f · : 〈X·, δ〉 → 〈Y ·, δ〉

in Æ.
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Proposition 2.21. Let AδC be any extension, let 〈X·, δ〉, 〈Y ·, δ〉 be n-exangles,
and let f · ∈ Cn+2

(A,C)(X
·, Y ·) be any morphism. If Cn+2

(A,C)(Y
·, X·) 6= ∅, then f · is a

homotopy equivalence in Cn+2
(A,C).

Proof. By the exactness of C (Y n, Xn)
−◦dnX−→ C (Y n, C)

δ]−→ E(Y n, A) and (dnY )∗δ =
0, there is h ∈ C (Y n, Xn) which gives dnX ◦ h = dnY . By assumption, there is some

y· ∈ Cn+2
(A,C)(Y

·, X·).
Put ϕ1 = 0 ∈ C (X1, X0). By the exactness of

C (C,−)
−◦dnX=⇒ C (Xn,−)

−◦dn−1
X=⇒ · · · −◦d

0
X=⇒ C (A,−)

δ]
=⇒ E(C,−),

we obtain ϕi ∈ C (Xi, Xi−1) for 2 ≤ i ≤ n+ 1 satisfying

ϕi+1 ◦ diX + di−1
X ◦ ϕi = 1− yi ◦ f i (1 ≤ i ≤ n).

Then, since

dnX ◦ ϕn+1 ◦ dnY = dnX ◦ ϕn+1 ◦ dnX ◦ h
= dnX ◦ (1− yn ◦ fn − dn−1

X ◦ ϕn) ◦ h
= (dnX − dnX ◦ yn ◦ fn) ◦ h = 0,

the sequence

g· = (y0, y1, . . . , yn−1, yn + ϕn+1 ◦ dnY , 1C)

gives a morphism g· ∈ Cn+2
(A,C)(Y

·, X·). We can easily check that g· satisfies g·◦f · ∼
1 for the homotopy (ϕ1, . . . , ϕn, 0). Thus f · has a left homotopy inverse g·.

Applying the argument so far to g· instead of f ·, we see that g· also has a
left homotopy inverse f ′·, which necessarily satisfies f ′· = f ·. This shows g· =

(f ·)−1. �

2.4. Realization of extensions.

Definition 2.22. Let s be an association which assigns a homotopy equivalence
class s(δ) = [AX

·
C ] to each extension δ = AδC . Such s is called a realization of E if

it satisfies the following condition for any s(δ) = [X·] and any s(ρ) = [Y ·].
(R0) For any morphism of extensions (a, c) : δ → ρ, there exists a morphism

f · ∈ Cn+2
C (X·, Y ·) of the form f · = (a, f1, . . . , fn, c). Such f · is called a

lift of (a, c).

In such a case, we abbreviately say that “X· realizes δ” whenever they satisfy
s(δ) = [X·].

Moreover, a realization s of E is said to be exact if it satisfies the following
conditions.

(R1) For any s(δ) = [X·], the pair 〈X·, δ〉 is an n-exangle.
(R2) For any A ∈ C , the zero element A00 = 0 ∈ E(0, A) satisfies

s(A00) = [A
1A−→ A→ 0→ · · · → 0→ 0].

Dually, s(00A) = [0→ 0→ · · · → 0→ A
1A−→ A] holds for any A ∈ C .

By Proposition 2.16 (and Remark 2.20), the above condition (R1) does not depend
on representatives of the class [X·].

Definition 2.23. Let s be an exact realization of E.
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(1) An n-exangle 〈X·, δ〉 is called an s-distinguished n-exangle if it satisfies
s(δ) = [X·]. We often simply say distinguished n-exangle when s is clear
from the context.

(2) An object X· ∈ Cn+2
C is called an s-conflation or simply a conflation if it

realizes some extension δ ∈ E(Xn+1, X0).
(3) A morphism f in C is called an s-inflation or simply an inflation if it admits

some conflation X· ∈ Cn+2
C satisfying d0

X = f .
(4) A morphism g in C is called an s-deflation or simply a deflation if it admits

some conflation X· ∈ Cn+2
C satisfying dnX = g.

Lemma 2.24. Let AδC be any extension, and let 〈X·, δ〉, 〈Y ·, δ〉 be n-exangles. If
a morphism f · ∈ Æ(〈X·, δ〉, 〈Y ·, δ〉) satisfies fn+1 = 1C , then there is a morphism
f ′· which is homotopic to f · and belongs to Cn+2

(A,C).

Proof. Since f · satisfies (f0)∗δ = (fn+1)∗δ = δ, there exists h ∈ C (X1, A) satisfy-
ing h ◦ d0

X = 1− f0 by the exactness of

C (X1, A)
−◦d0X−→ C (A,A)

δ]−→ E(C,A).

If we modify f · by a homotopy ϕ· = (h, 0, . . . , 0), then the resulting morphism f ′·
satisfies the desired properties. �

Proposition 2.25. Let s be an exact realization of E. Suppose that a morphism
f · ∈ Æ(A〈X·, δ〉C ,B〈Y ·, ρ〉C) satisfies fn+1 = 1C and gives a homotopy equivalence
in Cn+2

C . Then 〈X·, δ〉 is a distinguished n-exangle if and only if 〈Y ·, ρ〉 is.

Proof. By Claim 2.8, there is a homotopy inverse g· ∈ Cn+2
C (Y ·, X·) of f · satisfying

gn+1 = 1C , which gives a morphism g· : 〈Y ·, ρ〉 → 〈X·, δ〉 by Proposition 2.10 (2).
Thus it suffices to show the ‘if’ part, since the statement is symmetric in 〈X·, δ〉
and 〈Y ·, ρ〉.

Assume that 〈Y ·, ρ〉 is a distinguished n-exangle, and put f0 = a, g0 = b
for simplicity. By Proposition 2.16, the pair 〈X·, δ〉 is also an n-exangle. Take
s(δ) = [Z·], to obtain a distinguished n-exangle A〈Z·, δ〉C . Since 〈Y ·, ρ〉 is also a
distinguished n-exangle, morphisms (a, 1C) : δ → ρ and (b, 1C) : ρ → δ have lifts
h· : 〈Z·, δ〉 → 〈Y ·, ρ〉 and `· : 〈Y ·, ρ〉 → 〈Z·, δ〉. Composing with g· and f ·, we ob-
tain g·◦h· ∈ Æ(〈Z·, δ〉, 〈X·, δ〉) and `·◦f · ∈ Æ(〈X·, δ〉, 〈Z·, δ〉). Since gn+1◦hn+1 =
1C , it is homotopic to a morphism k· ∈ Cn+2

(A,C)(Z
·, X·) by Lemma 2.24. Similarly

for `· ◦ f ·. Then by Proposition 2.21, we have [X·] = [Z·] = s(δ), which means
that 〈X·, δ〉 is distinguished. �

Corollary 2.26. Let s be an exact realization of E. For any distinguished n-exangle

A〈X·, δ〉C , i.e.

A
d0X−→ X1 d1X−→ · · ·

dn−1
X−→ Xn dnX−→ C

δ
99K,

the following holds.

(1) For any isomorphisms a ∈ C (A,A′) and c ∈ C (C ′, C),

A′
d0X◦a

−1

−→ X1 d1X−→ · · ·
dn−1
X−→ Xn c−1◦dnX−→ C ′

a∗c
∗δ
99K

is again a distinguished n-exangle.
(2) If an object 〈Y ·, ρ〉 ∈ Æ is isomorphic in Æ to 〈X·, δ〉, then 〈Y ·, ρ〉 is also

a distinguished n-exangle.
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Proof. (1) We have the following sequence of isomorphisms 〈X·, δ〉 f·−→ 〈X ′·, c∗δ〉 g·−→
〈X ′′·, a∗c∗δ〉 in Æ.

A X1 X2 · · · Xn C

A X1 X2 · · · Xn C ′

A′ X1 X2 · · · Xn C ′

d0X // d1X // d2X // dn−1
X // dnX // δ //

c−1

��

d0X

//
d1X

//
d2X

//
dn−1
X

//
c−1◦dnX

//
c∗δ
//

a

��

d0X◦a
−1

//
d1X

//
d2X

//
dn−1
X

//
c−1◦dnX

//
a∗c
∗δ
//

� � � �

� � � �

Since f0 = 1A, the middle row becomes a distinguished n-exangle by Proposi-
tion 2.25. Then, since gn+1 = 1C′ , the bottom row becomes a distinguished n-
exangle by the dual of the same proposition.

(2) Let h· = (h0, h1, . . . , hn) : A〈X·, δ〉C → B〈Y ·, ρ〉D be an isomorphism. By
(1), the isomorphism h0 ∈ C (A,B) induces the following distinguished n-exangle.

(2.7) B
d0X◦(h

0)−1

−→ X1 d1X−→ · · · → Xn dnX−→ C
(h0)∗δ
99K

Since (1B , h
1, h2, . . . , hn) gives an isomorphism from (2.7) to 〈Y ·, ρ〉 in Æ, the dual

of Proposition 2.25 shows that 〈Y ·, ρ〉 becomes distinguished. �

2.5. Definition of n-exangulated categories.

Definition 2.27. For a morphism f · ∈ Cn+2
C (X·, Y ·) satisfying f0 = 1A for some

A = X0 = Y 0, its mapping cone M ·
f ∈ Cn+2

C is defined to be the complex

X1
d0Mf−→ X2 ⊕ Y 1

d1Mf−→ X3 ⊕ Y 2
d2Mf−→ · · ·

dn−1
Mf−→ Xn+1 ⊕ Y n

dnMf−→ Y n+1

where

d0
Mf

=

[
−d1

X

f1

]
,

diMf
=

[
−di+1

X 0
f i+1 diY

]
(1 ≤ i ≤ n− 1),

dnMf
=

[
fn+1 dnY

]
.

The mapping cocone is defined dually, for morphisms h· in Cn+2
C satisfying

hn+1 = 1.

Proposition 2.28. Suppose that a diagram in Cn+2
C

X· Y ·

W · Z·

∼
ϕ·

f· //

x·
��

y·
��

g·
//

satisfies the following conditions.

(i) x· ∈ Cn+2
(A,C)(X

·,W ·), with X0 = W 0 = A and Xn+1 = Wn+1 = C,

(ii) y· ∈ Cn+2
(A,D)(Y

·, Z·), with Y 0 = Z0 = A and Y n+1 = Zn+1 = D,

(iii) f0 = g0 = 1A,
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(iv) g· ◦ x· ∼
ϕ·
y· ◦ f · is a homotopy satisfying ϕ1 = 0.

Then the following holds for the mapping cones M ·
f and M ·

g.

(1) We have a morphism F · ∈ Cn+2
C (M ·

f ,M
·
g) given by

F · =
(
x1,

[
x2 0
ϕ2 y1

]
, . . . ,

[
xn+1 0
ϕn+1 yn

]
, 1D

)
.

(2) Assume that X·, Y ·, Z·,W · satisfy the assumption of the exactness in Claim 2.19
(1). If x· and y· are homotopy equivalences in Cn+2

(A,C) and Cn+2
(A,D) respec-

tively, then the above F · is a homotopy equivalence in Cn+2
C .

Proof. (1) This is straightforward.
(2) Let w· ∈ Cn+2

(A,C)(W
·, X·) and z· ∈ Cn+2

(A,D)(Z
·, Y ·) be homotopy inverses of

x· and y·, with homotopies

x· ◦ w· ∼
ω·

1W · , w· ◦ x· ∼
ξ·

1X· ,

y· ◦ z· ∼
ζ·

1Z· , z· ◦ y· ∼
η·

1Y · .

As in Claim 2.19, we may assume ω1 = 0, ξ1 = 0, η1 = 0, ζ1 = 0. Then

ψi = zi−1 ◦ gi−1 ◦ ωi − zi−1 ◦ ϕi ◦ wi − ηi ◦ f i ◦ wi (1 ≤ i ≤ n+ 1)

gives a homotopy f · ◦ w· ∼
ψ·
z· ◦ g· satisfying ψ1 = 0. Thus (1) applied to

W · Z·

X· Y ·

∼
ψ·

g· //

w·
��

z·
��

f·
//

gives a morphism G· ∈ Cn+2
C (M ·

g ,M
·
f ) defined in the same way as F ·. We can

show that

Φ· =
( [
−ξ2 0

]
,

[
−ξ3 0

0 η2

]
, . . . ,

[
−ξn+1 0

0 ηn

]
,

[
0

ηn+1

])
give a homotopy G· ◦ F · ∼

Φ·
I· where I· ∈ Cn+2

(X1,D)(M
·
f ,M

·
f ) is a morphism of the

form

I· =
(

1,

[
1 0
a2 1

]
, . . . ,

[
1 0

an+1 1

]
, 1
)

for some ai ∈ C (Xi, Y i−1). Since I· is an isomorphism, this shows that F · has a
left homotopy inverse.

Similarly, ψ· induces a homotopy F · ◦ G· ∼ J · to an isomorphism J ·, and F ·
also has a right homotopy inverse. Thus F · is a homotopy equivalence. �

Proposition 2.29. Let f · : A〈X·, δ〉C → A〈Y ·, ρ〉D be a morphism in Æ, satisfying
f0 = 1A. Then 〈M ·

f , (d
0
X)∗ρ〉 also belongs to Æ.

Proof. By the definition of d0
Mf

and dn+1
Mf

, this follows from

(d1
X)∗(d

0
X)∗ρ = 0, (f1)∗(d

0
X)∗ρ = (d0

Y )∗ρ = 0



n-EXANGULATED CATEGORIES (I) 13

and

(fn+1)∗(d0
X)∗ρ = (d0

X)∗δ = 0, (dnY )∗(d0
X)∗ρ = (d0

X)∗(d
n
Y )∗ρ = 0.

�

Corollary 2.30. Let f ·, g· : A〈X·, δ〉C → A〈Y ·, ρ〉D be any pair of morphisms of
n-exangles, satisfying f0 = g0 = 1A. If g· ∼

ϕ·
f · in Cn+2

C , then M ·
f
∼= M ·

g holds in

Cn+2
(X1,D). In particular we have [M ·

f ] = [M ·
g ].

Proof. By Claim 2.19 (1), we may modify ϕ· to satisfy ϕ1 = 0. Applying Proposi-
tion 2.28 to

X· Y ·

X· Y ·

∼
ϕ·

f· //

g·
//

,

we obtain a homotopy equivalence

F · =
(

1X1 ,

[
1 0
ϕ2 1

]
, . . . ,

[
1 0

ϕn+1 1

]
, 1D

)
: M ·

f →M ·
g

in Cn+2
C , which is indeed an isomorphism. �

Corollary 2.31. Let f · : A〈X·, δ〉C → A〈Y ·, ρ〉D be a morphism of n-exangles,
satisfying f0 = 1A. If w· ∈ Cn+2

(A,C)(W
·, X·) and y· ∈ Cn+2

(A,D)(Y
·, Z·) are homotopy

equivalences in Cn+2
(A,C) and Cn+2

(A,D) respectively, then the following holds for g· =

y· ◦ f · ◦ w·.
(1) If 〈M ·

f , (d
0
X)∗ρ〉 is an n-exangle, then so is 〈M ·

g , (d
0
W )∗ρ〉.

(2) Moreover, if 〈M ·
f , (d

0
X)∗ρ〉 is distinguished, so is 〈M ·

g , (d
0
W )∗ρ〉.

Proof. By Proposition 2.16 (and Remark 2.20), the pairs 〈W ·, δ〉 and 〈Z·, ρ〉 are
n-exangles. Let x· ∈ Cn+2

(A,C)(X
·,W ·) be a homotopy inverse of w·, and take a

homotopy w· ◦ x· ∼
ξ·

1X· . If we define ϕ· by

ϕi = yi−1 ◦ f i−1 ◦ ξi (1 ≤ i ≤ n+ 1),

this gives a homotopy g·◦x· ∼
ϕ·
y·◦f ·. Since 〈X·, δ〉 is an n-exangle, we may assume

ϕ1 = 0 by Claim 2.19. Then by Proposition 2.28, we obtain a homotopy equivalence
F · ∈ Cn+2

C (M ·
f ,M

·
g) satisfying F 0 = x1 and Fn+1 = 1D. By (x1)∗(d

0
X)∗ρ =

(d0
W )∗ρ, this gives a morphism F · ∈ Æ(〈M ·

f , (d
0
X)∗ρ〉, 〈M ·

g , (d
0
W )∗ρ〉). Thus (1)

follows from Proposition 2.16, and (2) follows from Proposition 2.25. �

Definition 2.32. An n-exangulated category is a triplet (C ,E, s) of additive cate-
gory C , biadditive functor E : C op×C → Ab, and its exact realization s, satisfying
the following conditions.

(EA1) Let A
f−→ B

g−→ C be any sequence of morphisms in C . If both f and g
are inflations, then so is g ◦ f . Dually, if f and g are deflations then so is
g ◦ f .
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(EA2) For ρ ∈ E(D,A) and c ∈ C (C,D), let A〈X·, c∗ρ〉C and A〈Y ·, ρ〉D be dis-
tinguished n-exangles. Then (1A, c) has a good lift f ·, in the sense that its
mapping cone gives a distinguished n-exangle 〈M ·

f , (d
0
X)∗ρ〉.

(EA2op) Dual of (EA2).

Remark 2.33. Concerning (EA2), the following holds. Similarly for (EA2op).

(1) By Corollary 2.30, if g· ∼ f · : A〈X·, δ〉C → A〈Y ·, ρ〉D are lifts of (1A, c),
then f · is a good lift if and only if g· is.

(2) By Corollary 2.31, condition (EA2) is independent from representatives of
the classes [X·] and [Y ·].

3. Fundamental properties

3.1. Fundamental properties of n-exangulated categories. We summarize
here some properties of n-exangulated categories, which will be used in the proceed-
ing sections. Let (C ,E, s) be an n-exangulated category, throughout this section.

Proposition 3.1. Let AδC be an extension. Suppose that for any Q ∈ C ,

δ] : C (Q,C)→ E(Q,A) and δ] : C (A,Q)→ E(C,Q)

are monomorphic. Then, the following holds for any n-exangle 〈X·, δ〉.
(1) d0

X = 0 and dnX = 0.

(2) X· is homotopically equivalent in Cn+2
(A,C) to the object

(3.1) A
0−→ 0

0−→ · · · 0−→ 0
0−→ C,

which will be denoted by Ø· = AØ·
C in the rest.

In particular, such δ should satisfy s(δ) = [Ø·].

Proof. (1) This immediately follows from δ](d0
X) = 0 and δ](d

n
X) = 0.

(2) Remark that the assumption of the monomorphicity of δ] and δ] is equivalent
to that 〈Ø·, δ〉 is an n-exangle. Since there are morphisms

f · = (1A, 0, . . . , 0, 1C) : X· → Ø·,
g· = (1A, 0, . . . , 0, 1C) : Ø· → X·

in Cn+2
(A,C) by (1), these are homotopy equivalences by Proposition 2.21. �

Remark 3.2. Let us explain the motivation behind Proposition 3.1 using the case of
(n+2)-angulated categories. As we will see in Subsection 4.2, any (n+2)-angulated
category (C ,Σ,D) (triangulated category if n = 1) can be regarded as a particular
case of an n-exangulated category. In this case, an n-exangle A〈X·, δ〉C corresponds
to an (n+ 2)-angle

A
d0X−→ X1 d1X−→ · · ·

dn−1
X−→ Xn dnX−→ C

δ−→ ΣA,

from which we can obtain its right rotation

(3.2) Σ−1C
(−1)nΣ−1δ−→ A

d0X−→ X1 d1X−→ · · ·
dn−1
X−→ Xn dnX−→ C.

Then the conditions d0
X = 0 and dnX = 0 correspond to that Σ−1δ is an isomorphism,

and that (3.2) becomes weakly isomorphic to

Σ−1C
(−1)nΣ−1δ−→ A→ 0→ · · · → 0→ C,
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whose left rotation gives (3.1).

Proposition 3.3. Let A〈X·, δ〉C ,B〈Y ·, ρ〉D be any pair of objects in Æ. Then the
following are equivalent.

(1) 〈X· ⊕ Y ·, δ ⊕ ρ〉 is a distinguished n-exangle.
(2) Both 〈X·, δ〉 and 〈Y ·, ρ〉 are distinguished n-exangles.

Proof. As in Remark 2.14, 〈X· ⊕ Y ·, δ ⊕ ρ〉 is an n-exangle if and only if 〈X·, δ〉
and 〈Y ·, ρ〉 are n-exangles.

(1) ⇒ (2). Put s(δ) = [Z·], and let us show that [X·] = [Z·] holds in Cn+2
(A,C).

For simplicity, for any pair of objects I, J ∈ C , denote the inclusion and projection
to the 1st component by

jI =

[
1
0

]
: I → I ⊕ J and pI = [1 0] : I ⊕ J → I,

respectively. Since (jA, jC) : δ → δ ⊕ ρ and (pA, pC) : δ ⊕ ρ → δ are morphisms of
extensions, they have lifts f · ∈ Cn+2

C (Z·, X·⊕Y ·) and g· ∈ Cn+2
C (X·⊕Y ·, Z·). If

we compose them with

p· = (pA, pX1 , . . . , pC) ∈ Cn+2
C (X· ⊕ Y ·, X·)

and

j· = (jA, jX1 , . . . , jC) ∈ Cn+2
C (X·, X· ⊕ Y ·)

respectively, we obtain p· ◦f · ∈ Cn+2
(A,C)(Z

·, X·) and g· ◦ j· ∈ Cn+2
(A,C)(X

·, Z·). Thus

Proposition 2.21 shows [X·] = [Z·]. Similarly for s(ρ) = [Y ·].
(2) ⇒ (1). Put s(δ ⊕ ρ) = [W ·], and let us show [X· ⊕ Y ·] = [W ·]. Let

x· ∈ Cn+2
C (X·,W ·) and u· ∈ Cn+2

C (W ·, X·) be lifts of (jA, jC) and (pA, pC),

respectively. Similarly, let y· ∈ Cn+2
C (Y ·,W ·) and v· ∈ Cn+2

C (W ·, Y ·) be lifts of([
0

1

]
,
[

0

1

])
and ([0 1], [0 1]). Then

(1, [x1 y1], . . . , [xn yn], 1) : X· ⊕ Y · →W ·,(
1,

[
u1

v1

]
, . . . ,

[
un

vn

]
, 1
)

: W · → X· ⊕ Y ·

are morphisms in Cn+2
(A⊕B,C⊕D). Proposition 2.21 shows [X· ⊕ Y ·] = [W ·]. �

The following is an analog of [Hu, Lemma 5].

Corollary 3.4. Suppose that

(3.3) X0 ⊕A d−→ X1 ⊕A [d1X w]−→ X2 d2X−→ · · · d
n
X−→ Xn+1 θ

99K

is a distinguished n-exangle, where d is as follows.

d =

[
x u
v 1

]
∈ C (X0 ⊕A,X1 ⊕A)

Then for d0
X = x− u ◦ v and p = [1 0] : X0 ⊕A→ X0,

(3.4) X0 d0X−→ X1 d1X−→ X2 d2X−→ · · · d
n
X−→ Xn+1 p∗θ

99K

becomes a distinguished n-exangle.
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Proof. For p and q = [0 1] : X0 ⊕ A → A, put δ = p∗θ and ρ = q∗θ. Then θ

corresponds to

[
δ
ρ

]
through the natural isomorphism

(3.5) E(Xn+1, X0 ⊕A) ∼= E(Xn+1, X0)⊕ E(Xn+1, A),

and the equality d∗θ = 0 implies v∗δ + ρ = 0. Thus(
a =

[
1 0
v 1

]
, b =

[
1 −u
0 1

]
, 1, 1, . . . , 1

)
gives an isomorphism in Æ from (3.3) to

(3.6) X0 ⊕A d0X⊕1A−→ X1 ⊕A [d1X 0]−→ X2 d2X−→ · · · d
n
X−→ Xn+1 a∗θ

99K,

with a∗θ corresponding to

[
δ
0

]
through (3.5). Since (3.6) is isomorphic to a coprod-

uct of (3.4) and

A
1A−→ A→ 0→ · · · → 0

0
99K

in Æ, Corollary 2.26 and Proposition 3.3 shows that (3.4) is also a distinguished
n-exangle. �

The following lemma is an analog to parts of the classical [ML, Theorems III.3.2
and III.3.4]. Especially, the treatment of sums of extensions in the proof is quite
parallel to that in [ML, Theorem 2.1]. One can also compare with [NP, Proposition
3.3].

Lemma 3.5. For any distinguished n-exangle A〈X·, δ〉C , the following holds.

(1) C (−, C)
δ]

=⇒ E(−, A)
(d0X)∗
=⇒ E(−, X1) is exact.

(2) C (A,−)
δ]

=⇒ E(C,−)
(dnX)∗

=⇒ E(Xn,−) is exact.

Proof. We only show (1), since (2) can be shown dually. Let us show the exactness
of

(3.7) C (D,C)
δ]−→ E(D,A)

(d0X)∗−→ E(D,X1)

for any D ∈ C . Suppose that θ ∈ E(D,A) satisfies (d0
X)∗θ = 0. Put s(θ) =

[Y ·], to obtain a distinguished n-exangle A〈Y ·, θ〉D. By Proposition 3.3, coproduct

A⊕A〈X· ⊕ Y ·, δ ⊕ θ〉C⊕D is also a distinguished n-exangle.
Let ∇A = [1 1] : A ⊕ A → A be the folding morphism. Put µ = (∇A)∗(δ ⊕ θ)

and s(µ) = [Z·], to obtain a distinguished n-exangle A〈Z·, µ〉C⊕D. If we write

dnZ =

[
k
`

]
: Zn → C ⊕D, then (dnZ)∗µ = 0 means

(3.8) k∗δ + `∗θ = 0.

Since

[
1
0

]
: C → C⊕D satisfies

[
1
0

]∗
µ = (∇A)∗

[
1
0

]∗
(δ⊕θ) = δ, we have a morphism

of extensions
(
1A,

[
1
0

] )
: δ → µ. By (EA2), it has a good lift f · : 〈X·, δ〉 → 〈Z·, µ〉,
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which gives a distinguished n-exangle 〈M ·
f , (d

0
X)∗µ〉. By definition, the last two

terms Mn
f

dnMf−→Mn+1
f of M ·

f is

C ⊕ Zn

 1 k
0 `


−→ C ⊕D.

Remark that the assumption (d0
X)∗θ = 0 shows

(d0
X)∗µ = (d0

X)∗(∇A)∗(δ ⊕ θ) = [d0
X d0

X ]∗(δ ⊕ θ) = 0.

Thus by Claim 2.15, morphism dnMf
has a section s =

[
p q
r t

]
: C⊕D → C⊕Zn,

and the equality dnMf
◦ s = 1 implies in particular q+k ◦ t = 0 and `◦ t = 1D. Then

q ∈ C (D,C) satisfies

δ](q) = q∗δ = −(k ◦ t)∗δ = t∗(−k∗δ) = t∗`∗θ = θ

by (3.8). This shows the exactness of (3.7). �

The following is a consequence of (R0) and (EA2).

Proposition 3.6. Let A〈X·, δ〉C and B〈Y ·, ρ〉D be distinguished n-exangles. Sup-
pose that we are given a commutative square

X0 X1

Y 0 Y 1

d0X //

a
��

b
��

d0Y

//

�

in C . Then the following holds.

(1) There is a morphism f · : 〈X·, δ〉 → 〈Y ·, ρ〉 which satisfies f0 = a and
f1 = b.

(2) If X0 = Y 0 = A and a = 1A for some A ∈ C , then the above f · can be
taken to give a distinguished n-exangle 〈M ·

f , (d
0
X)∗ρ〉.

Proof. By Lemma 3.5, C (C,D)
ρ]−→ E(C,B)

(d0Y )∗−→ E(C, Y 1) is exact. Thus by
(d0
Y )∗(a∗δ) = b∗(d

0
X)∗δ = 0, there is c ∈ C (C,D) satisfying ρ](c) = a∗δ. This gives

a morphism of extensions (a, c) : δ → ρ.
By (R0), it has a lift g· : 〈X·, δ〉 → 〈Y ·, ρ〉. Then by the exactness of

(3.9) C (X2, Y 1)
−◦d1X−→ C (X1, Y 1)

−◦d0X−→ C (X0, Y 1)

and (b− g1) ◦ d0
X = 0, there is m ∈ C (X2, Y 1) which gives m ◦ d1

X = b− g1.
Modifying g· by the homotopy ϕ· = (0,m, 0, . . . , 0), we obtain a morphism

f · = (a, b, g2 + d2
Y ◦m, g3, . . . , gn, gn+1), which satisfies the desired condition.

(2) The same construction as (1) works, except for that we take a good lift in
the second step. Indeed as above, there is c ∈ C (C,D) which gives a morphism
(1A, c) : δ → ρ. By (EA2), it has a good lift g· : 〈X·, δ〉 → 〈Y ·, ρ〉, which makes
〈M ·

g , (d
0
X)∗ρ〉 a distinguished n-exangle. Then the exactness of (3.9) gives a ho-

motopy ϕ· = (0,m, 0, . . . , 0) from g· to a morphism f · satisfying f0 = 1A and
f1 = b. By Corollary 2.30, it follows that 〈M ·

g , (d
0
X)∗ρ〉 is also a distinguished

n-exangle. �
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3.2. Relative theory. In this subsection, we study relative theory for n-exangulated
categories and show that n-exangulated structures can be inherited in any relative
theory. This is just an n-exangulated analog of the argument for exact categories
in [DRSSK, Sections 1.2 and 1.3]. We also remark that subfunctors F ⊆ E for
extriangulated categories, namely, in the case where n = 1 (see Proposition 4.3),
are investigated in [ZH].

Definition 3.7. Let C be a category, and let E : C op × C → Ab be a biadditive
functor.

(1) A functor F : C op × C → Set is called a subfunctor of E if it satisfies the
following conditions.
• F(C,A) is a subset of E(C,A), for any A,C ∈ C .
• F(c, a) = E(c, a)|F(C,A) holds, for any a ∈ C (A,A′) and c ∈ C (C ′, C).

In this case, we write as F ⊆ E.
(2) A subfunctor F ⊆ E is said to be an additive subfunctor if F(C,A) ⊆ E(C,A)

is an abelian subgroup for any A,C ∈ C . In this case, F : C op × C → Ab
itself becomes a biadditive functor.

Definition 3.8. Let F ⊆ E be an additive subfunctor. For a realization s of E,
define s|F to be the restriction of s onto F. Namely, it is defined by s|F(δ) = s(δ)
for any F-extension δ.

Claim 3.9. Let (C ,E, s) be an n-exangulated category, and let F ⊆ E be an
additive subfunctor. Then s|F is an exact realization of F. Moreover, the triplet
(C ,F, s|F) satisfies conditions (EA2) and (EA2op).

Proof. This immediately follows from the definitions of these conditions. �

Thus we may speak of s|F-conflations (resp. s|F-inflations, s|F-deflations) and s|F-
distinguished n-exangles as in Definition 2.23. The following condition on F ⊆ E
gives a necessary and sufficient condition for (C ,F, s|F) to be an n-exangulated
category, as will be shown in Proposition 3.16.

Definition 3.10. (cf.[DRSSK]) Let F ⊆ E be a additive subfunctor.

(1) F ⊆ E is closed on the right if

F(−, X0)
(d0X)∗
=⇒ F(−, X1)

(d1X)∗
=⇒ F(−, X2)

is exact for any s|F-conflation X·.
(2) F ⊆ E is closed on the left if

F(Xn+1,−)
(dnX)∗

=⇒ F(Xn,−)
(dn−1

X )∗

=⇒ F(Xn−1,−)

is exact for any s|F-conflation X·.

Proposition 3.11. Let (C ,E, s) be any n-exangulated category. If s|F-inflations
are closed by composition, then F ⊆ E is closed on the right. Dually, if s|F-deflations
are closed by composition, then F ⊆ E is closed on the left.

Proof. We only show the first statement. Suppose that s|F-inflations are closed by
composition. Let A〈X·, δ〉C be any s|F-distinguished n-exangle, and let us show the
exactness of

F(F,X0)
(d0X)∗−→ F(F,X1)

(d1X)∗−→ F(F,X2)
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for any F ∈ C . Since (d1
X)∗ ◦ (d0

X)∗ = 0 follows from d1
X ◦ d0

X = 0, it is enough to
show Ker(d1

X)∗ ⊆ Im(d0
X)∗.

Let θ ∈ Ker(d1
X)∗ be any element, and let B〈Y ·, θ〉F be an s|F-distinguished

n-exangle realizing it as follows, where we put X1 = B.

B
d0Y−→ Y 1 d1Y−→ Y 2 → · · · → Y n

dnY−→ F
θ
99K .

Since d0
X and d0

Y are s|F-inflations, their composition d0
Y ◦ d0

X becomes an s|F-
inflation by assumption. Thus there is some s|F-distinguished n-exangle A〈Z·, τ〉D
which satisfies Z1 = Y 1 and d0

Z = d0
Y ◦ d0

X as follows.

A
d0Y ◦d

0
X−→ Y 1 d1Z−→ Z2 d2Z−→ · · · → Zn

dnZ−→ D
τ
99K .

By Proposition 3.6 applied to the following commutative diagram,

A X1

A Y 1

d0X //

d0Y
��

d0Z

//

�

we find a morphism of n-exangles f · : 〈X·, δ〉 → 〈Z·, τ〉 which satisfies

f0 = 1A, f1 = d0
Y

and makes B〈M ·
f , (d

0
X)∗τ〉D an s-distinguished n-exangle. Since (d0

X)∗τ ∈ F(D,B),

this is an s|F-distinguished n-exangle. Then by Proposition 3.6 applied to the
diagram

B X2 ⊕ Y 1

B Y 1

d //

[0 1]
��

d0Y

//

�

where we put d =

[
−d1

X

d0
Y

]
: B → X2 ⊕ Y 1, we find a morphism of n-exangles

g· : 〈M ·
f , (d

0
X)∗τ〉 → 〈Y ·, θ〉 which satisfies

g0 = 1B , g1 = [0 1]

and makes 〈M ·
g , d∗θ〉 an s|F-distinguished n-exangle. In particular it satisfies

(3.10) (gn+1)∗θ = (d0
X)∗τ.

By definition, this n-exangle 〈M ·
g , d∗θ〉 is of the following form.

X2 ⊕ Y 1 → X3 ⊕ Z2 ⊕ Y 1 → X4 ⊕ Z3 ⊕ Y 2 → · · · → D ⊕ Y n [gn+1 dnY ]−→ F
d∗θ
99K

Then d∗θ = 0 follows from (d1
X)∗θ = 0 and (d0

Y )∗θ = 0, which means that [gn+1 dnY ]

has a section

[
s1

s2

]
: F → D⊕ Y n. If we put β = s∗1τ ∈ F(F,A), then the equalities

gn+1 ◦ s1 + dnY ◦ s2 = 1F and (3.10) show

θ = s∗1(gn+1)∗θ + s∗2(dnY )∗θ = s∗1(d0
X)∗τ = (d0

X)∗β,

and thus θ ∈ Im
(
F(F,X0)

(d0X)∗−→ F(F,X1)
)

holds. �
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Corollary 3.12. For any n-exangulated category (C ,E, s), the sequences

E(−, X0)
(d0X)∗
=⇒ E(−, X1)

(d1X)∗
=⇒ E(−, X2)

and

E(Xn+1,−)
(dnX)∗

=⇒ E(Xn,−)
(dn−1

X )∗

=⇒ E(Xn−1,−)

are exact for any s-conflation X·.

Proof. This immediately follows from Proposition 3.11 applied to F = E, as (C ,E, s)
satisfies condition (EA1). �

In view of the classical case one might expect that the the exact sequences in
Lemma 3.5 and Corollary 3.12 are part of longer exact sequences involving E(−, Xi)
for i > 2, respectively E(Xi,−) for i < n−1. The following example shows that this
is not the case in general and so in this sense Lemma 3.5 together with Corollary 3.12
is optimal for n-exangulated categories.

Example 3.13. Let k be field, Q the quiver

1

a
(( 2

a∗

hh
b

(( 3

b∗

hh

and A = kQ/(aa∗, a∗a− bb∗, b∗b), i.e., the preprojective algebra of Dynkin type A3.
The Auslander–Reiten quiver of A is

1
2
3

  

3
2
1

1
2

""

3

$$

2
1

  

>>

2

>>

  

1 3
2

$$

::

// 2
1 3

2
// 2

1 3

""

<<

2

3
2

<<

1

::

2
3

  

>>

3
2
1

>>
1
2
3

where each indecomposable is labelled by its Loewy structure and the dotted lines
should be identified.

The subcategory C = add(A⊕ 1
2 ⊕ 2 ⊕ 2

1 ) is a 2-cluster tilting subcategory
of modA, and according to [J], it is a 2-abelian category. Hence C has the structure
of a 2-exangulated category, where E is just Ext2

A (see Subsection 4.2 for details).
Notice that there is an exact sequence

0→ 2 → 1
2 → 2

1 → 2 → 0,

which is a 2-exact sequence in C . However, the following complex

Ext2
A( 2

1 , 2 )→ Ext2
A( 2

1 ,
1
2 )→ Ext2

A( 2
1 ,

2
1 )→ Ext2

A( 2
1 , 2 )

is not exact at Ext2
A( 2

1 ,
2
1 ). Indeed, it is isomorphic to 0→ 0→ k → 0.

Lemma 3.14. Assume that an additive subfunctor F ⊆ E is closed on the right.
Let θ ∈ E(C,A) be any E-extension. If it satisfies x∗θ ∈ F(C,B) for some s|F-
inflation x ∈ C (A,B), then θ ∈ F(C,A) follows.
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Proof. Take an s|F-distinguished n-exangle A〈X·, δ〉 satisfying d0
X = x. We have

the following commutative diagram, whose bottom row is exact by Lemma 3.5 and
Corollary 3.12.

F(C,A) F(C,B) F(C,X2)

C (C,Xn+1) E(C,A) E(C,B) E(C,X2)

δ]
88

x∗ // (d1X)∗//
� _

��

� _

��

� _

��

δ]

//
x∗
//

(d1X)∗

//

�
� �

By assumption, the upper row is exact at F(C,B). Thus there exists some ν ∈
F(C,A) satisfying x∗ν = x∗θ. Then by x∗(θ− ν) = 0, there exists f ∈ C (C,Xn+1)
which gives θ − ν = δ](f). Thus it follows θ = ν + δ]f ∈ F(C,A). �

Lemma 3.15. For any additive subfunctor F ⊆ E, the following are equivalent.

(1) F is closed on the right.
(2) F is closed on the left.

Thus in the following, we simply say F ⊆ E is closed, if either of the conditions are
satisfied.

Proof. We only show (1) ⇒ (2). Let 〈X·, δ〉C be any s|F-distinguished n-exangle,

and let us show the exactness of F(C,A)
(dnX)∗

=⇒ F(Xn, A)
(dn−1

X )∗

=⇒ F(Xn−1, A) for any
A ∈ C .

Take any element θ ∈ F(Xn, A) satisfying (dn−1
X )∗θ = 0. By the exactness of

E(C,A)
(dnX)∗

=⇒ E(Xn, A)
(dn−1

X )∗

=⇒ E(Xn−1, A),

there exists ν ∈ E(C,A) satisfying (dnX)∗ν = θ. It suffices to show ν ∈ F(C,A). Re-
alize θ by an s|F-distinguished n-exangle A〈Y ·, θ〉Xn , and ν by an s-distinguished n-
exangle A〈Z·, ν〉C . Take a good lift f · of (1A, d

n
X) : θ → ν, to obtain s-distinguished

n-exangle 〈M ·
f , (d

0
Y )∗ν〉 as follows.

Y 1 → Y 2 ⊕ Z1 → · · · → Y n ⊕ Zn−1 → Xn ⊕ Zn [dnX dnZ ]−→ C
(d0Y )∗ν
99K

By the dual of Proposition 3.6 applied to the following diagram,

Xn C

Xn ⊕ Zn C

dnX //

[ 1
0 ]
��

[dnX dnZ ]
//

�

we obtain a morphism of n-exangles g· : 〈X·, δ〉C → 〈M ·
f , (d

0
Y )∗ν〉 satisfying gn+1 =

1C . In particular we have (d0
Y )∗ν = (g0)∗δ ∈ F(Y 1, C). Since d0

Y is an s|F-inflation,
Lemma 3.14 shows ν ∈ F(C,A). �

Proposition 3.16. For any additive subfunctor F ⊆ E, the following are equivalent.

(1) (C ,F, s|F) is n-exangulated.
(2) s|F-inflations are closed under composition.
(3) s|F-deflations are closed under composition.
(4) F ⊆ E is closed.
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Proof. (1) holds if and only if both (2) and (3) hold, by Claim 3.9. Proposition 3.11
means that (2) or (3) implies (4). Since (4) is self-dual by Lemma 3.15, it remains
to show (4)⇒ (2).

Let A〈X·, δ〉C ,B〈Y ·, ρ〉F be any pair of s|F-distinguished n-exanlges with X1 =
B. Under the assumption of (4), let us show that d0

Y ◦ d0
X becomes an s|F-inflation.

Since d0
Y ◦ d0

X is an s-inflation, there is an s-distinguished n-exangle A〈Z·, τ〉D
satisfying d0

Z = d0
Y ◦ d0

X . Similarly as in the proof of Proposition 3.11, we obtain
by Proposition 3.6 a morphism of n-exangles f · : 〈X·, δ〉 → 〈Z·, τ〉 which satisfies
f0 = 1A, f

1 = d0
Y and makes 〈M ·

f , (d
0
X)∗τ〉 an s-distinguished n-exangle as follows.

B

[
−d1X
d0Y

]
−→ X2 ⊕ Y 1 → · · · → C ⊕ Zn → D

(d0X)∗τ
99K .

Applying Proposition 3.6 to the following diagram,

B X2 ⊕ Y 1

B Y 1

[
−d1X
d0Y

]
//

[0 1]
��

d0Y

//

�

we obtain a morphism of n-exangles g· : 〈M ·
f , (d

0
X)∗τ〉 → 〈Y ·, ρ〉 satisfying g0 = 1B

and g1 = [0 1]. In particular we have (d0
X)∗τ = (gn+1)∗ρ ∈ F(D,B). Since d0

X is
an s|F-inflation, Lemma 3.14 shows τ ∈ F(D,A). �

Corollary 3.17. Let {Fλ}λ∈Λ be a family of additive subfunctors of E. If each
Fλ ⊆ E is closed, then so is their intersection

⋂
λ∈Λ

Fλ ⊆ E.

Proof. It can be easily confirmed that the intersection satisfies condition (2) in
Proposition 3.16. �

Definition 3.18. Let I ⊆ C be a full subcategory. Define subfunctors EI and EI
of E by

EI(C,A) = {δ ∈ E(C,A) | (δ])I = 0 for any I ∈ I},
EI(C,A) = {δ ∈ E(C,A) | δ]I = 0 for any I ∈ I}.

Proposition 3.19. For any full subcategory I ⊆ C , these EI and EI are closed
subfunctors of E.

Proof. We only show for the statement for EI . To show that EI is a subfunctor of
E, it suffices to show

a∗c
∗(EI(C,A)) ⊆ EI(C ′, A′)

for any a ∈ C (A,A′) and c ∈ C (C ′, C). Let δ ∈ EI(C,A) be any element. Then
a∗c
∗δ ∈ E(C ′, A′) satisfies

(a∗c
∗δ)](f

′) = f ′∗a∗c
∗δ = a∗(δ](c ◦ f ′)) = 0

for any I ∈ I and any f ′ ∈ C (I, C ′). Thus ((a∗c
∗δ)])I = 0 holds for any I ∈ I,

which means a∗c
∗δ ∈ EI(C ′, A′). Thus EI ⊆ E is a subfunctor. Moreover, since

0] = 0 and (δ − δ′)] = δ] − δ′]
holds for 0 ∈ E(C,A) and any δ, δ′ ∈ E(C,A), we see that EI ⊆ E is additive.
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For any s|EI -distinguished n-exangle 〈X·, δ〉, let us show the exactness of

EI(−, X0)
(d0X)∗
=⇒ EI(−, X1)

(d1X)∗
=⇒ EI(−, X2).

Remark that E(−, X0)
(d0X)∗
=⇒ E(−, X1)

(d1X)∗
=⇒ E(−, X2) is exact. Thus for any C ∈ C ,

if θ ∈ EI(C,X1) satisfies (d1
X)∗θ = 0, then there is ν ∈ E(C,X0) which gives

(d0
X)∗ν = θ. It is enough to show ν](f) = 0 for any I ∈ I and any f ∈ C (I, C).

Since 0→ E(I,X0)
(d0X)∗−→ E(I,X1) is exact, this follows from the equation

(d0
X)∗(ν](f)) = (d0

X)∗f
∗ν = f∗θ = θ](f) = 0.

�

4. Typical cases

4.1. Extriangulated categories. In this subsection, we consider the case n = 1.
Let C be an additive category, and let E : C op × C → Ab be a biadditive functor.

Lemma 4.1. For any A,C ∈ C , let X·, Y · ∈ C3
(A,C) be any pair of objects.

Assume that

C (C,−)
C (d1X ,−)

=⇒ C (X1,−)
C (d0X ,−)

=⇒ E(A,−),(4.1)

C (−, A)
C (−,d0X)

=⇒ C (−, X1)
C (−,d1X)

=⇒ E(−, C),(4.2)

are exact, and similarly for Y ·. Then for any morphism f · = (1A, f
1, 1C) ∈

C3
(A,C)(X

·, Y ·), the following are equivalent.

(1) f · is a homotopy equivalence in C3
(A,C).

(2) f · is an isomorphism in C3
(A,C).

(3) f1 is an isomorphism in C .

ThusX·, Y · are homotopically equivalent in C3
(A,C) if and only if they are equivalent

in the sense of [NP, Definition 2.7].

Proof. (2)⇔ (3) is obvious. (2)⇒ (1) is also trivial. Let us show that (1) implies
(3). Suppose that f · has a homotopy inverse g· ∈ C3

(A,C)(Y
·, X·).

Let g· ◦ f · ∼
ϕ·

1X· be a homotopy. By Claim 2.19, we may assume that ϕ· is of

the form ϕ· = (0, ϕ2). Then we have ϕ2 ◦ d1
X = 1− g1 ◦ f1. Thus x = g1 + ϕ2 ◦ d1

Y

satisfies
x ◦ f1 = g1 ◦ f1 + ϕ2 ◦ d1

X = 1,

and gives a left inverse of f1 in C . Similarly we can show that f1 has a right
inverse, which means it is an isomorphism. �

Lemma 4.2. Assume that (C ,E, s) is a 1-exangulated category, and suppose we

are given distinguished 1-exangles A
f−→ B

f ′−→ D
δ
99K and B

g−→ C
g′−→ F

δ′

99K.
Remark that h = g ◦ f is an s-inflation by (EA1), and thus there is also some

distinguished 1-exangle A
h−→ C

h′−→ E
δ′′

99K.
Then, there exist d ∈ C (D,E) and e ∈ C (E,F ) which satisfy the following

conditions.

(i) D
d−→ E

e−→ F
f ′∗δ
′

99K is a distinguished 1-exangle.
(ii) d∗δ′′ = δ.
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(iii) f∗δ
′′ = e∗δ′.

Proof. This is an analog of [Hu, 3.5]. By Proposition 3.6 (2), there is d ∈ C (D,E)
which satisfies d ◦ f ′ = h′ ◦ g, d∗δ′′ = δ and makes

B
u−→ D ⊕ C [d h′]−→ E

f∗δ
′′

99K

a distinguished 1-exangle for u =

[
−f ′
g

]
. Again by the same proposition applied to

the following,

B D ⊕ C E

B C F

u // [d h′]// f∗δ
′′
//

[0 1]

��
g
//

g′
//

δ′
//

�

we obtain e ∈ C (E,F ) which satisfies e ◦ [d h′] = g′ ◦ [0 1], e∗δ′ = f∗δ
′′ and makes

(4.3) D ⊕ C v−→ E ⊕ C [e g′]−→ F
u∗δ
′

99K

a distinguished 1-exangle for v =

[
−d −h′
0 1

]
. Thus Corollary 3.4 shows that

D
−d−→ E

e−→ F
−f ′∗δ

′

99K

is a distinguished 1-exangle. This is isomorphic to D
d−→ E

e−→ F
f ′∗δ
′

99K, and thus
Corollary 2.26 can be applied. �

Proposition 4.3. Let C and E be as before. Then, a triplet (C ,E, s) is a 1-
exangulated category if and only if it is an extriangulated category.

Proof. First, suppose (C ,E, s) is a 1-exangulated category, and show it is an extrian-
gulated category. By duality, let us just confirm conditions (ET1),(ET2),(ET3),(ET4)
in [NP, Definition 2.12].

(ET1) is already assumed. By Lemma 4.1, the homotopy equivalence class s(δ) =
[X·] is equal to the equivalence class of X· in the sense of [NP, Definition 2.7] for
any extension δ. Thus (ET2) follows from (R0),(R2) and Proposition 3.3. (ET3)
is shown in Proposition 3.6. Lemma 4.2 shows (ET4).

Conversely, suppose (C ,E, s) is an extriangulated category. By [NP, Proposition
3.3], sequences (4.1) and (4.2) are exact for any X· realizing an extension δ. Thus
the equivalence class of X· in the sense of [NP] is equal to the homotopy equivalence
class of X· in C3

(A,C), by Lemma 4.2. Similarly as above, let us just confirm

conditions (R0),(R1),(R2) and (EA1),(EA2).
(R0),(R2) follow from (ET2). (R1) is shown in [NP, Proposition 3.3]. (EA1)

follows from (ET4), as stated in [NP, Remark 2.16]. (EA2) follows from the dual
of [LN, Proposition 1.20]. �

4.2. (n+2)-angulated categories. In this subsection, we consider the case where

the additive category C is equipped with an automorphism Σ: C
∼=−→ C . Then Σ

gives a biadditive functor EΣ = C (−,Σ−) : C op×C → Ab, defined by the following.

(i) For any A,C ∈ C , EΣ(C,A) = C (C,ΣA).
(ii) For any a ∈ C (A,A′) and c ∈ C (C ′, C), the map EΣ(c, a) : C (C,ΣA) →

C (C ′,ΣA′) sends δ ∈ C (C,ΣA) to c∗a∗δ = (Σa) ◦ δ ◦ c.
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The aim of this subsection is to show the equivalence of the following (I) and (II).

(I) To give a class of (n+ 2)-Σ-sequences D which makes (C ,Σ,D) an (n+ 2)-
angulated category in the sense of [GKO].

(II) To give an exact realization s of EΣ which makes (C ,EΣ, s) an n-exangulated
category.

First let us show that (I) implies (II). Let (C ,Σ,D) be an (n + 2)-angulated
category as in [GKO]. We assume that Σ is an automorphism as above. For each
δ ∈ EΣ(C,A), complete it into an (n+ 2)-angle

A
d0X−→ X1 d1X−→ X2 d2X−→ · · ·

dn−1
X−→ Xn dnX−→ C

δ−→ ΣA

by (F1) (c) and (F2) in [GKO]. Then define sD(δ) = [X·] by using X· ∈ Cn+2
(A,C)

given by

X0 d0X−→ X1 d1X−→ X2 d2X−→ · · ·
dn−1
X−→ Xn dnX−→ Xn+1 (X0 = A, Xn+1 = C).

Lemma 4.4. For each AδC , the above sD(δ) = [X·] is well-defined.

Proof. Let A
d0Y−→ Y 1 d1Y−→ Y 2 d2Y−→ · · ·

dn−1
Y−→ Y n

dnY−→ C
δ−→ ΣA be another choice of

(n+ 2)-angle, and let Y · be the corresponding object in Cn+2
(A,C) given by

Y 0 d0Y−→ Y 1 d1Y−→ Y 2 d2Y−→ · · ·
dn−1
Y−→ Y n

dnY−→ Y n+1 (Y 0 = A, Y n+1 = C).

Let us show [X·] = [Y ·]. By (F2),(F3) in [GKO], there is a morphism f · ∈
Cn+2

(A,C)(X
·, Y ·) as follows.

A X1 X2 · · · Xn C

A Y 1 Y 2 · · · Y n C

d0X // d1X // d2X // dn−1
X // dnX //

d0Y

//
d1Y

//
d2Y

//
dn−1
Y

//
dnY

//

f1

��
f2

��
fn

��
� � � �

Similarly, there is g· ∈ Cn+2
(A,C)(Y

·, X·). Remark that by [GKO, Proposition 2.5] and

its dual, sequences (2.3) and (2.4) are exact for X· and Y ·, which means 〈X·, δ〉 and
〈Y ·, δ〉 are n-exangles. Thus f · is an homotopy equivalence by Proposition 2.21. �

Proposition 4.5. With the above definition, (C ,EΣ, sD) becomes an n-exangulated
category.

Proof. Let us confirm the conditions. (R0) follows from (F2) and (F3). (R1)
follows from [GKO, Proposition 2.5] and its dual. (R2) follows from (F1)(b) and
(F2). (EA1) becomes trivial, since any morphism is both inflation and deflation by
(F2).

Let us show (EA2). The following argument has been given in (the dual of) [BT,
Lemma 4.1]. Let c ∈ C (C,D) be a morphism, and let A〈X·, δ = c∗ρ〉C ,A〈Y ·, ρ〉D
be n-exangles. By the definition of sD and Remark 2.33 (2), we may assume that
they correspond to (n+ 2)-angles

A
d0X−→ X1 d1X−→ · · ·

dn−1
X−→ Xn dnX−→ C

δ−→ ΣA,

A
d0Y−→ Y 1 d1Y−→ · · ·

dn−1
Y−→ Y n

dnY−→ D
ρ−→ ΣA.
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By (F2), we can ‘rotate’ them to obtain (n+ 2)-angles

Σ−1C
(−1)nΣ−1δ−→ A

d0X−→ X1 d1X−→ · · ·
dn−1
X−→ Xn dnX−→ C,

Σ−1D
(−1)nΣ−1ρ−→ A

d0Y−→ Y 1 d1Y−→ · · ·
dn−1
Y−→ Y n

dnY−→ D.

By (F4), we obtain a morphism of (n+ 2)-Σ-sequences

Σ−1C A X1 · · · Xn C

Σ−1D A Y 1 · · · Y n D

(−1)nΣ−1δ// d0X // d1X // dn−1
X // dnX //

(−1)nΣ−1ρ

//
d0Y

//
d1Y

//
dn−1
Y

//
dnY

//

Σ−1c
��

f1

��
fn

��
c

��
� � � �

which gives an (n+ 2)-angle
(4.4)

A⊕Σ−1D
d0−→ X1⊕A d1−→ X2⊕Y 1 d2−→ · · · d

n−1

−→ Xn⊕Y n−1 dn−→ C⊕Y n dn+1

−→ ΣA⊕D
where

d0 =

[
−d0

X 0
1 (−1)nΣ−1ρ

]
, di =

[
−diX 0

f i di−1
Y

]
(1 ≤ i ≤ n),

dn+1 =

[
(−1)n+1δ 0

c dnY

]
.

Then the sequence of isomorphisms in C([ 1 (−1)nΣ−1ρ
0 1

]
,

[
0 1
1 d0

X

]
, 1, 1, . . . , 1,

[
1 (−1)nρ
0 1

])
gives an isomorphism of (n+ 2)-sequences from (4.4) to
(4.5)

A⊕Σ−1D
e0−→ A⊕X1 e1−→ X2⊕Y 1 d2−→ · · · d

n−1

−→ Xn⊕Y n−1 dn−→ C⊕Y n en+1

−→ ΣA⊕D,
with

e0 =

[
1 0
0 (−1)nd0

X ◦ Σ−1ρ

]
, e1 =

[
0 −d1

X

0 f1

]
, en+1 =

[
0 0
c dnY

]
and the same d2, . . . , dn. Thus (4.5) belongs to D. Since this is equal to the direct
sum of

A
1A−→ A→ 0→ · · · → 0→ ΣA and

Σ−1D
q0−→ X1 q1−→ X2 ⊕ Y 1 d2−→ · · · d

n−1

−→ Xn ⊕ Y n−1 dn−→ C ⊕ Y n qn+1

−→ D(4.6)

with

q0 = (−1)nd0
X ◦ Σ−1ρ, q1 =

[
−d1

X

f1

]
, qn+1 = [c dnY ],

we see that (4.6) also belongs to D by (F1)(a). Rotating it by (F2), we obtain an
(n+ 2)-angle

X1 q1−→ X2 ⊕ Y 1 d2−→ · · · d
n−1

−→ Xn ⊕ Y n−1 dn−→ C ⊕ Y n qn+1

−→ D
(Σd0X)◦ρ−→ ΣX1.

By the definition of sD, this shows that f · = (1A, f
1, . . . , fn, c) : 〈X·, δ〉 → 〈Y ·, ρ〉

gives a distinguished n-exangle

X1 q1−→ X2 ⊕ Y 1 d2−→ · · · d
n−1

−→ Xn ⊕ Y n−1 dn−→ C ⊕ Y n qn+1

−→ D
(d0X)∗ρ
99K ,
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that is what we wanted to show. �

Conversely, let us show that (II) implies (I). Suppose we are given an exact
realization of EΣ which makes (C ,EΣ, s) an n-exangulated category. Remark that
any object in Æ

X0 d0X−→ X1 d1X−→ · · · d
n
X−→ Xn+1 δ

99K

can be naturally regarded as an (n+ 2)-Σ-sequence

(4.7) X0 d0X−→ X1 d1X−→ · · · d
n
X−→ Xn+1 δ−→ ΣX0

in the sense of [GKO, Definition 2.1].

Remark 4.6. The above correspondence gives a fully faithful functor from Æ to
the category of (n + 2)-Σ-sequences. In this way, we may identify Æ with the full
subcategory of the category of (n + 2)-Σ-sequences, consisting of (4.7) satisfying
di+1
X ◦ diX = 0 (0 ≤ i ≤ n− 1), δ ◦ dnX = 0 and (Σd0

X) ◦ δ = 0. This subcategory is
closed by isomorphisms, and by taking finite direct sums and summands.

Lemma 4.7. For any A ∈ C , let us denote 1ΣA ∈ C (ΣA,ΣA) by ι = AιΣA ∈
EΣ(ΣA,A) when we regard it as an extension. For this extension, we have s(ι) =
[Ø·]. Namely,

A
0−→ 0

0−→ · · · 0−→ 0
0−→ ΣA

ι
99K

is a distinguished n-exangle.

Proof. This immediately follows from Proposition 3.1 applied to δ = ι. �

Proposition 4.8. Define Ds to be the class of (n + 2)-Σ-sequences obtained as
(4.7) from distinguished n-exangles. Then (C ,EΣ,Ds) becomes an (n+2)-angulated
category.

Proof. By Corollary 2.26 and Remark 4.6, the class Ds is closed by isomorphisms
of (n+ 2)-Σ-sequences. Thus we do not have to take any isomorphism closure. Let
us confirm conditions (F1),. . . ,(F4) in [GKO]. (F1)(a) follows from Proposition 3.3
and Remark 4.6. (F1)(b) follows from (R2).

(F2) Let A〈X·, δ〉C be any distinguished n-exangle. It suffices to show that we
can rotate 〈X·, δ〉 in both directions to obtain distinguished n-exangles. As in
Lemma 4.7, the pair A〈Ø·, ι〉ΣA is also a distinguished n-exangle. By (EA2), the
morphism (1A, δ) : δ → ι has a good lift f · : 〈X·, δ〉 → 〈Ø·, ι〉, which should be as
follows without any other possibility.

A X1 X2 · · · Xn C

A 0 0 · · · 0 ΣA

d0X // d1X // d2X // dn−1
X // dnX // δ //

0
��

0
��

0
��

δ
��

0
//

0
//

0
//

0
//

0
//

ι
//

� � � �

Its mapping cone induces a distinguished n-exangle

(4.8) X1 −d
1
X−→ X2 −d

2
X−→ · · · → Xn−1 −d

n−1
X−→ Xn −d

n
X−→ C

δ−→ ΣA
(d0X)∗ι
99K .

Remark that we have (d0
X)∗ι = (Σd0

X) ◦ 1ΣA = Σd0
X by definition. Since(

(−1)n, (−1)n−1, . . . , 1,−1, 1C , 1ΣA

)
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gives an isomorphism from (4.8) to

(4.9) X1 d1X−→ X2 d2X−→ · · · → Xn−1 dn−1
X−→ Xn dnX−→ C

δ−→ ΣA
(−1)nΣd0X
99K ,

this (4.9) becomes a distinguished n-exangle by Corollary 2.26. Rotation to the
opposite direction can be performed in a dual manner.

(F1)(c) Any morphism f ∈ C (A,B) can be regarded as an extension f ∈
EΣ(A,Σ−1B), and then there exists some distinguished n-exangle

Σ−1B
d0X−→ X1 d1X−→ · · · → Xn dnX−→ A

f
99K .

Applying (F2) repeatedly, we obtain a distinguished n-exangle of the form

A
f−→ B → ΣX1 → · · · → ΣXn 99K .

(F3) This follows from (F2) and (R0), or from Proposition 3.6.
(F4) The same argument on the axioms of triangulated category [Hu] works.

Suppose that we are given distinguished n-exangles 〈X·, δ〉, 〈Y ·, ρ〉 and a commu-
tative square

(4.10)

X0 X1

Y 0 Y 1

d0X //

f0

��
f1

��

d0Y

//

�

in C . Let us construct a morphism f · = (f0, f1, f2, . . . , fn+1) : 〈X·, δ〉 → 〈Y ·, ρ〉
to fulfill the requirement of (F4). Remark that

Y 0 1Y 0−→ Y 0 → 0→ · · · → 0
0
99K,

X0 → 0→ · · · → 0→ ΣX0 ι
99K

are distinguished n-exangles by (R2) and Lemma 4.7. Taking coproducts with
〈X·, δ〉 and 〈Y ·, ρ〉, we obtain distinguished n-exangles

X0 ⊕ Y 0 d0X⊕1−→ X1 ⊕ Y 0 [d1X 0]−→ X2 d2X−→ · · ·
dn−1
X−→ Xn dnX−→ Xn+1 µ

99K,(4.11)

X0 ⊕ Y 0 [0 d0Y ]−→ Y 1 d1Y−→ Y 2 d2Y−→ · · ·
dn−1
Y−→ Y n

[
0

dnY

]
−→ ΣX0 ⊕ Y n+1 ν

99K(4.12)

by Proposition 3.3, where µ ∈ EΣ(Xn+1, X0⊕ Y 0) and ν ∈ EΣ(ΣX0⊕ Y n+1, X0⊕
Y 0) correspond to [

δ
0

]
∈ C (Xn+1,ΣX0 ⊕ ΣY 0),[

1ΣX0 0
0 ρ

]
∈ C (ΣX0 ⊕ Y n+1,ΣX0 ⊕ ΣY 0)

respectively, through the natural isomorphism

(4.13) Σ(X0 ⊕ Y 0) ∼= ΣX0 ⊕ ΣY 0.

Using the automorphism

a =

[
−1 0
f0 1

]
: X0 ⊕ Y 0 ∼=−→ X0 ⊕ Y 0,
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we can modify (4.12) to obtain a distinguished n-exangle

(4.14) X0 ⊕ Y 0 [d0Y ◦f
0 d0Y ]−→ Y 1 d1Y−→ Y 2 d2Y−→ · · ·

dn−1
Y−→ Y n

[
0

dnY

]
−→ ΣX0 ⊕ Y n+1 a∗ν

99K

by Corollary 2.26 (1), where a∗ν corresponds to[
−1 0
Σf0 ρ

]
∈ C (ΣX0 ⊕ Y n+1,ΣX0 ⊕ ΣY 0)

through (4.13). By Proposition 3.6 (2) applied to the following commutative square,

X0 ⊕ Y 0 X1 ⊕ Y 0

X0 ⊕ Y 0 Y 1

d0X⊕1 //

[f1 d0Y ]
��

[d0Y ◦f
0 d0Y ]

//

�

we obtain a morphism

g· =
(

1, [f1 d0
Y ], f2, . . . , fn,

[
x
y

])
from (4.11) to (4.14), which makes 〈M ·

g , (d
0
X ⊕ 1)∗a∗ν〉 a distinguished n-exangle.

If we put fn+1 = y, then the equalities[
x
y

]
◦ dnX =

[
0
dnY

]
◦ fn and

[
x
y

]∗
a∗ν = µ

imply x = −δ and fn+1 ◦ dnX = dnY ◦ fn, and

(Σf0) ◦ δ = ρ ◦ fn+1,

which means (f0)∗δ = (fn+1)∗ρ. Thus f · = (f0, f1, f2, . . . , fn+1) : 〈X·, δ〉 →
〈Y ·, ρ〉 is a morphism. Moreover, the obtained distinguished n-exangle 〈M ·

g , (d
0
X ⊕

1)∗a∗ν〉 is of the form

X1 ⊕ Y 0 X2 ⊕ Y 1 · · · Xn+1 ⊕ Y n ΣX0 ⊕ Y n+1
d0Mg //

d1Mg //
dn−1
Mg //

dnMg // τ //

where

diMg
=

[
−di+1

X 0
f i+1 diY

]
(0 ≤ i ≤ n− 1), dnMg

=

[
−δ 0
fn+1 dnY

]
,

and τ = (d0
X ⊕ 1)∗a∗ν corresponds to[

−Σd0
X 0

Σf0 ρ

]
∈ C (ΣX0 ⊕ Y n+1,ΣX1 ⊕ ΣY 0)

through the isomorphism Σ(X1 ⊕ Y 0) ∼= ΣX1 ⊕ ΣY 0. This yields the desired
(n+ 2)-angle. �
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4.3. n-exact categories. In this subsection, we will see the relation with the no-
tion of an n-exact category introduced in [J]. We briefly recall its definition and
related notions from [J].

Definition 4.9. (cf. [J, Definitions 2.2 and 2.4]) Let C be an additive category,
and let X· ∈ Cn+2

C be any object.

(1) X· is called an n-kernel sequence if the following sequence of functors C op →
Ab is exact.

0 ⇒ C (−, X0)
C (−,d0X)

=⇒ C (−, X1)
C (−,d1X)

=⇒ · · · C (−,dnX)
=⇒ C (−, Xn+1)

In particular d0
X is a monomorphism in C .

(2) X· is called an n-cokernel sequence if the following sequence of functors
C → Ab is exact.

0 ⇒ C (Xn+1,−)
C (dnX ,−)

=⇒ C (Xn,−)
C (dn−1

X ,−)
=⇒ · · · C (d0X ,−)

=⇒ C (X0,−)

In particular dnX is an epimorphism in C .
(3) X· is called an n-exact sequence if it is both n-kernel and n-cokernel se-

quence.

Remark that n-kernel (respectively, n-cokernel, or n-exact) sequences are closed by
homotopy equivalences in Cn+2

C .

The following can be shown easily.

Proposition 4.10. Let C be an additive category, and let X·, Y · ∈ Cn+2
C be any

pair of n-exact sequences.

(1) Let k ∈ {0, . . . , n} be any integer. For any commutative square

Xk Xk+1

Y k Y k+1

dkX //

a
��

b
��

dkY

//

�

in C , there exists f · ∈ Cn+2
C (X·, Y ·) satisfying fk = a and fk+1 = b.

Moreover, such f · is unique up to homotopy. Especially, if both a, b are
isomorphisms, then f · becomes a homotopy equivalence in Cn+2

C .
(2) Let a ∈ C (X0, Y 0), c ∈ C (Xn+1, Y n+1) be any pair of morphisms. If there

exists f · ∈ Cn+2
C (X·, Y ·) satisfying f0 = a and fn+1 = c, then such f · is

unique up to homotopy in Cn+2
C .

Proof. This is straightforward. (See [J, Proposition 2.7] for (1), and [J, Comparison
Lemma 2.1] for (2).) �

In particular, the following holds in Cn+2
(A,C).

Corollary 4.11. Let C be an additive category, let A,C ∈ C be any pair of objects.
For any pair of n-exact sequences X·, Y · ∈ Cn+2

(A,C), we have

|Kn+2
(A,C)(X

·, Y ·)| ≤ 1.

Thus if Cn+2
(A,C)(X

·, Y ·) 6= ∅ and Cn+2
(A,C)(Y

·, X·) 6= ∅, then X· and Y · are homo-

topically equivalent in Cn+2
(A,C).
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Proof. This is an immediate consequence of Proposition 4.10 (2). �

Definition 4.12. Let C be an additive category, and let A,C ∈ C be any pair of
objects. Denote the class of all homotopy equivalence classes of n-exact sequences
in Cn+2

(A,C) by Λn+2
(A,C). This is a subclass of Ob(Kn+2

(A,C))/
∼=.

For [X·], [Y ·] ∈ Λn+2
(A,C), we write [X·] ≤ [Y ·] if Cn+2

(A,C)(X
·, Y ·) 6= ∅. By Corollary

4.11, this relation makes Λn+2
(A,C) a poset (provided it forms a set).

Corollary 4.13. For any n-exact sequence X· ∈ Cn+2
(A,C), the following are equiva-

lent.

(1) [X·] is isolated, in the sense that

[X·] ≤ [X ′·] or [X ′·] ≤ [X·] ⇒ [X·] = [X ′·].

holds in Λn+2
(A,C).

(2) X· satisfies the following (I1) and (I2) for any n-exact sequence Y · ∈ Cn+2
C .

(I1) If there is f · ∈ Cn+2
C (X·, Y ·) in which f0 = a and fn+1 = c are

isomorphisms, then f · is a homotopy equivalence in Cn+2
C .

(I2) Dually, if there is g· ∈ Cn+2
C (Y ·, X·) in which g0 and gn+1 are iso-

morphisms, then g· is a homotopy equivalence in Cn+2
C .

Proof. Assume that [X·] is isolated in Λn+2
(A,C), and let us show (I1). Suppose that

Y · ∈ Cn+2
C (X·, Y ·) is an n-exact sequence, and let f · ∈ Cn+2

C (X·, Y ·) be a mor-
phism in which f0 = a, fn+1 = c are isomorphisms. Then

(4.15) A
d0Y ◦a−→ Y 1 d1Y−→ Y 2 → · · ·

dn−1
Y−→ Y n

c−1◦dnY−→ C

is an n-exact sequence in Cn+2
(A,C), with an isomorphism (a, 1, . . . , 1, c) to Y · in

Cn+2
C . Since (1, f1, . . . , fn, 1) gives a morphism from X· to (4.15) in Cn+2

(A,C), it

becomes a homotopy equivalence by (1). As their composition, f · gives a homotopy
equivalence in Cn+2

C . Similarly for (I2).
Conversely, assume that X· satisfies (I1), and suppose [X·] ≤ [X ′·] holds for

some n-exact sequenceX ′· ∈ Cn+2
(A,C). Then there is a morphism f · ∈ Cn+2

(A,C)(X
·, X ′·),

which becomes a homotopy equivalence in Cn+2
(A,C) by (I1) and Remark 2.18. This

means [X·] = [X ′·]. Similarly, (I2) shows [X ′·] ≤ [X·]⇒ [X·] = [X ′·]. �

Definition 4.14. ([J, (dual of) Definition 2.11]) Let Y · ∈ Cn+2
C be any object. A

commutative diagram in C

(4.16)

X1 X2 · · · Xn Xn+1

Y 1 Y 2 · · · Y n Y n+1

d1X // d2X // dn−1
X // dnX //

d1Y

//
d2Y

//
dn−1
Y

//
dnY

//

f1

��
f2

��
fn

��
fn+1

��
� � �

is called an n-pullback diagram if

(4.17) X1 d0−→ X2 ⊕ Y 1 d1−→ X3 ⊕ Y 2 d2−→ · · · d
n−1

−→ Xn+1 ⊕ Y n dn−→ Y n+1
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is an n-kernel sequence, where di are defined by

d0 =

[
−d1

X

f1

]
,

di =

[
−di+1

X 0
f i+1 diY

]
(1 ≤ i ≤ n− 1),

dn =
[
fn+1 dnY

]
.

An n-pushout diagram is defined dually.

Remark 4.15. Let (4.16) be an n-pullback diagram. If we put X0 = Y 0, then the
exactness of

0→ C (X0, X1)
C (X0,d0)−→ C (X0, X2 ⊕ Y 1)

C (X0,d1)−→ C (X0, X3 ⊕ Y 2)

gives a unique morphism d0
X ∈ C (X0, X1) satisfying f1◦d0

X = d0
Y and d1

X ◦d0
X = 0.

Then the sequence

X0 d0X−→ X1 d1X−→ · · · d
n
X−→ Xn+1

gives an object X· ∈ Cn+2
C , and f · = (1, f1, . . . , fn+1) ∈ Cn+2

C (X·, Y ·) becomes a
morphism. Sequence (4.17) is nothing but the mapping cone M ·

f (in Definition 2.27)

of this morphism f ·.

Definition 4.16. Let Y · ∈ Cn+2
(A,C) be any n-exact sequence, and denote its ho-

motopy equivalence class in Cn+2
(A,C) by [Y ·], as before. Let c ∈ C (C ′, C) be any

morphism.
If there exists an n-exact sequence X· ∈ Cn+2

(A,C′) equipped with a morphism

f · = (1A, f
1, . . . , fn, fn+1 = c) ∈ Cn+2

C (X·, Y ·)

which makes (4.16) an n-pullback diagram, then we define c∗[Y ·] to be

(4.18) c∗[Y ·] = [X·].

Dually, for a morphism a ∈ C (A,A′), the class a∗[Y
·] is defined by using an n-

pushout diagram when it exists. Well-definedness of this definition will be shown
in Proposition 4.18.

Lemma 4.17. Let f · = (1A, f
1, . . . , fn, fn+1 = c) ∈ Cn+2

C (AX
·
C′ ,AY

·
C) be any

morphism, which makes (4.16) an n-pullback diagram. Then for any morphism

g· = (a, g1, . . . , gn, c) ∈ Cn+2
C (A′Z

·
C′ ,AY

·
C),

there exists a morphism h· = (a, h1, . . . , hn, 1) ∈ Cn+2
C (Z·, X·) and a homotopy

ϕ· = (0, ϕ2, ϕ3, . . . , ϕn, 0) which gives g· ∼
ϕ·
f · ◦ h·. Moreover, such h· is unique up

to homotopy.

Proof. This is shown in a straightforward way, only using the fact that M ·
f is an

n-kernel sequence (cf. dual of [J, Proposition 2.13] and Remark 4.15). �

Proposition 4.18. For any n-exact sequence AY
·
C ∈ Cn+2

(A,C) and any c ∈ C (C ′, C),

the class c∗[Y ·] in (4.18) is unique if it exists, only depending on the homotopy
equivalence class [Y ·].
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Proof. Suppose that there are X· ∈ Cn+2
(A,C′) and f · ∈ Cn+2

C (X·, Y ·) with the

required properties in Definition 4.16 to give c∗[Y ·] = [X·]. Lemma 4.17 shows
that [X·] is unique for Y ·. Let us show that it only depends on the class [Y ·].
Assume that Y · and Y ′· are homotopically equivalent in Cn+2

(A,C). Then Y ′· is also

an n-exact sequence. Take a homotopy equivalence y· ∈ Cn+2
(A,C)(Y

·, Y ′·) in Cn+2
(A,C),

and put f ′· = y· ◦ f ·. Proposition 2.28 applied to

X· Y ·

X· Y ′·

f· //

y·
��

f ′·
//

�

gives a homotopy equivalence between M ·
f and M ·

f ′ . In particular M ·
f ′ also becomes

an n-kernel sequence. Thus X· ∈ Cn+2
(A,C′) and f ′· ∈ Cn+2

C (X·, Y ′·) satisfy the

required properties to give c∗[Y ′·] = [X·]. This shows c∗[Y ′·] = [X·] = c∗[Y ·]. �

The following is the definition of an n-exact category in [J]. Later we will rephrase
it in Definition 4.21 (see Proposition 4.23).

Definition 4.19. ([J, Definition 4.2]) Let C be an additive category, and let X be
a class of n-exact sequences in C . The pair (C ,X ) is called an n-exact category if
it satisfies the following closedness (EC) and conditions (E0),(E1),. . . ,(E2op).

In the following, a morphism a ∈ C (A,B) is called an X -admissible monomor-
phism (respectively, an X -admissible epimorphism) if there is some X· ∈ X of the

form A
a−→ B → X2 → · · · → Xn+1 (resp. X0 → · · · → Xn−1 → A

a−→ B).

(EC) The following holds for any morphism f · ∈ Cn+2
C (X·, Y ·) between n-exact

sequences X·, Y ·.
(i) If fk and fk+1 are isomorphisms for some k ∈ {0, . . . , n}, then X· ∈ X

holds if and only if Y · ∈ X .
(ii) If f0 and fn+1 are isomorphisms, then X· ∈ X holds if and only if

Y · ∈ X .
(E0) The sequence 0Ø·

0 ∈ Cn+2
C (see Proposition 3.1)

0→ 0→ · · · → 0

belongs to X .
(E1) X -admissible monomorphisms are closed by composition.

(E1op) Dually, X -admissible epimorphisms are closed by composition.
(E2) For any X· ∈ X , any Y 0 ∈ C and any f0 ∈ C (X0, Y 0), there is an n-

pushout diagram in C as follows, such that d0
Y is an X -admissible monomor-

phism.

X0 X1 X2 · · · Xn

Y 0 Y 1 Y 2 · · · Y n

d0X // d1X // d2X // dn−1
X //

d0Y

//
d1Y

//
d2Y

//
dn−1
Y

//

f0

��
f1

��
f2

��
fn

��
� � �
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(E2op) Dually, for any Y · ∈ X , any Xn+1 ∈ C and any fn+1 ∈ C (Xn+1, Y n+1),
there is an n-pullback diagram in C as in (4.16), such that dnX is an X -
admissible epimorphism.

The following is a consequence of being an n-exact category, shown in [J].

Fact 4.20. ([J, dual of Proposition 4.8 (iv) ⇒ (ii)].) Let (C ,X ) be an n-exact
category. For any AX

·,AY · ∈ X , if f · ∈ Cn+2
C (X·, Y ·) satisfies f0 = 1A, then

M ·
f ∈ X holds. Dually for f · satisfying fn+1 = 1.

In order to rephrase the definition of an n-exact category, let us consider the
following conditions.

Definition 4.21. Let C be an additive category, and let X be a class of n-exact
sequences in C . Define conditions (EC′),(E2′),(E2′op) and (EI) as follows.

(EC′) For any A,C ∈ C ,

{X ∈ X | X0 = A,Xn+1 = C} ⊆ Ob(Cn+2
(A,C))

is closed by homotopy equivalences in Cn+2
(A,C).

(E2′) The dual of the following (E2′op).
(E2′op) (i) For any c ∈ C (C ′, C) and any AY

·
C ∈ X , there exists AX

·
C′ ∈ X

equipped with a morphism f · ∈ Cn+2
C (X·, Y ·) satisfying f0 = 1A and

fn+1 = c.
(ii) For any AX

·
C′ ,AY

·
C ∈ X and any f · ∈ Cn+2

C (X·, Y ·) satisfying f0 =
1A, we have M ·

f ∈ X .

(EI) [X·] ∈ Λn+2
(A,C) is isolated, for any AX

·
C ∈ X .

In Proposition 4.23, we will see that conditions (EC),(E2),(E2op) in Defini-
tion 4.19 can be replaced by the above conditions. First let us show the following.

Lemma 4.22. Let C be an additive category, and let X be a class of n-exact
sequences in C . If (C ,X ) satisfies (EC′),(E2′),(E2′op), then the following holds.

(1) Let A,C ∈ C be any pair of objects. If AX
·
C ,AY

·
C ∈ X , then any f · ∈

Cn+2
(A,C)(X

·, Y ·) is a homotopy equivalence in Cn+2
(A,C).

(2) For any c ∈ C (C ′, C), the class X is closed by c∗. Namely, for any AY
·
C ∈ X ,

there exists AX
·
C′ ∈ X which gives c∗[Y ·] = [X·]. Dually, X is closed by

a∗ for any morphism a in C .
(3) For any AX

·
C ∈ X , any a ∈ C (A,A′) and c ∈ C (C ′, C), we have a∗(c

∗[X·]) =

c∗(a∗[X
·]) in Λn+2

(A′,C′).

(4) X is closed by homotopy equivalences in Cn+2
C .

Proof. (1) By (E2′op), we have M ·
f ∈ X . In particular M ·

f is n-exact. Since

dnMf
: C ⊕ Y n → C has a section

[
1
0

]
: C → C ⊕ Y n, we can construct a homotopy

0 ∼
ϕ·

1
M·

f
: M ·

f →M ·
f

satisfying ϕn+1 =

[
1
0

]
(cf. dual of [J, Proposition 2.6].) If we write ϕk as

ϕ1 = [p2 q1] : X2 ⊕ Y 1 → X1,
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ϕk =

[
pk+1 qk

rk+1 sk

]
: Xk+1 ⊕ Y k → Xk ⊕ Y k−1 (2 ≤ k ≤ n),

then by definition they satisfy

ϕ1 ◦ d0
Mf

= 1 and dk−1
Mf
◦ ϕk + ϕk+1 ◦ dkMf

= 1 (1 ≤ k ≤ n).

In particular we have

d0
Mf
◦ q1 +

[
q2

s2

]
◦ d1

Y =

[
0
1

]
,

qk+1 ◦ dkY = dkX ◦ qk (1 ≤ k ≤ n− 1),

dnY = dnX ◦ qn.
Then the monomorphicity of d0

Mf
and the equality

d0
Mf
◦ q1 ◦ d0

Y =

[
0
1

]
◦ d0

Y −
[
q2

s2

]
◦ d1

Y ◦ d0
Y = d0

Mf
◦ d0

X

shows q1◦d0
Y = d0

X . Thus q· = (1, q1, . . . , qn, 1) gives a morphism q· ∈ Cn+2
(A,C)(Y

·, X·).
Corollary 4.11 shows that f · is a homotopy equivalence in Cn+2

(A,C).

(2) This follows immediately from (E2′op) and the definition of c∗[Y ·]. Dually
for the closedness by a∗.

(3) By (2), there are A′Y
·
C′ ,A′Z

·
C′ ∈ X which give

a∗(c
∗[X·]) = [Y ·] and c∗(a∗[X

·]) = [Z·].
By Lemma 4.17 and its dual, we find a morphism f · ∈ Cn+2

(A′,C′)(Y
·, Z·). By (1)

this becomes a homotopy equivalence in Cn+2
(A′,C′), and thus [Y ·] = [Z·] holds.

(4) Let f · = (a, f1, . . . , fn, c) ∈ Cn+2
C (AX

·
C ,BY

·
D) be a homotopy equivalence

in Cn+2
C , with a homotopy inverse g· = (b, g1, . . . , gn, d). Assume X· ∈ X , and let

us show Y · ∈ X . Existence of a homotopy equivalence implies that Y · is also an
n-exact sequence. By (2), there are BU

·
C ,AV

·
D ∈ X which give

a∗[X
·] = [U ·] and d∗[X·] = [V ·].

By (2) and (3), there is BZ
·
D ∈ X which gives [Z·] = d∗[U ·] = a∗[V

·]. Remark

that there are morphisms u· ∈ Cn+2
C (X·, U ·) and v· ∈ Cn+2

C (V ·, X·) satisfying
u0 = a, un+1 = 1C and v0 = 1A, v

n+1 = d. Applying Lemma 4.17 to u· ◦ g· ∈
Cn+2

C (Y ·, U ·), we obtain some y· ∈ Cn+2
C (Y ·, Z·) satisfying y0 = a ◦ b and yn+1 =

1D. Since f · ◦ g· ∼ 1Y · by assumption, there is ϕ1 ∈ C (Y 1, B) which gives

ϕ1 ◦ d0
Y = 1B − a ◦ b. Modifying y·, we obtain a morphism

(1B , y
1 + d0

Z ◦ ϕ1, y2, . . . , yn, 1D) ∈ Cn+2
(B,D)(Y

·, Z·).

Similarly, the dual of Lemma 4.17 applied to f · ◦ v· gives z· ∈ Cn+2
C (Z·, Y ·)

satisfying z0 = 1B and zn+1 = c ◦ d, and thus we obtain

(1B , z
1, . . . , zn−1, zn + ϕn+1 ◦ dnZ , 1D) ∈ Cn+2

(B,D)(Z
·, Y ·).

By Corollary 4.11, it follows [Y ·] = [Z·]. Thus (EC′) shows Y · ∈ X . �

Proposition 4.23. Let C be an additive category, and let X be a class of n-exact
sequences in C . Assume that (C ,X ) satisfies (E0),(E1),(E1op). Then the following
are equivalent.

(1) (C ,X ) is an n-exact category.
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(2) (C ,X ) satisfies conditions (EC′),(E2′),(E2′op) and (EI) in Definition 4.21.

Proof. (1) ⇒ (2). (EC′) is a particular case of (EC)(ii). (E2′op)(i) follows from
(E2op) and Remark 4.15. (E2′op)(ii) is given in Fact 4.20. Dually for (E2′). Thus
we can apply Lemma 4.22 to (C ,X ). Then (EI) follows from (EC)(ii).

(2)⇒ (1). Let (C ,X ) be as in (2). Let us confirm conditions in Definition 4.19.
(EC)(i) follows from Proposition 4.10 (1) and Lemma 4.22 (4). To show (EC)(ii),
let f · ∈ Cn+2

C (X·, Y ·) be a morphism between n-exact sequences X·, Y · in which
f0 and fn+1 are isomorphisms. If one of X·, Y · belongs to X , then (EI) implies
that f · is a homotopy equivalence in Cn+2

C , by Corollary 4.13. Thus the other also
belongs to X by Lemma 4.22 (4). (E2op) follows from (E2′op). Dually for (E2). �

We proceed to show that each n-exact category is n-exangulated. By the equiv-
alence shown in Proposition 4.23, we may use conditions (EC′),(E2′),(E2′op) and
consequently Lemma 4.22. Indeed, we can avoid using (EI) (see Remark 4.35). We
begin by defining the bifunctor E similarly to the usual Yoneda extension functor.
The procedure follows very closely the classical case of exact categories (see e.g.
[FS]). This is also shown in [L, Section 5] in the case of n-abelian categories1.

Definition 4.24. Let (C ,X ) be an n-exact category. For A,C ∈ C , let E(C,A) be
the subclass of Λn+2

(A,C) consisting of all [X·] such that X· ∈ X . This is well-defined

by (EC′). From now on we assume that E(C,A) is a set for all A,C ∈ C . We
consider the assignment (C,A) 7→ E(C,A) as a functor

E : C op × C → Set

by defining E(c, a)[X·] = a∗(c
∗[X·]) for all (c, a) ∈ C (C ′, C)×C (A,A′) and AX

·
C ∈

X . That E is well-defined is shown in Lemma 4.26.

Remark 4.25. To compute the functor E, it is useful to note that

c∗[X·] = [Y ·]

holds for AX
·,AY · ∈ X if and only if there is f · ∈ Cn+2

C (Y ·, X·) such that f0 = 1A
and fn+1 = c. This follows from (E2′op) (or alternatively from [J, Proposition 4.8]).
Dually,

a∗[X
·] = [Y ·]

holds for X·
C , Y

·
C ∈ X if and only if there is f · ∈ Cn+2

C (X·, Y ·) such that f0 = a
and fn+1 = 1C .

Lemma 4.26. The functor

E : C op × C → Set

in Definition 4.24 is well-defined.

Proof. First note that E(c, a) : E(C,A)→ E(C ′, A′) is a well-defined map by Propo-
sition 4.18 and Lemma 4.22 (2).

Considering the identity morphism on AX
·
C ∈ X and Remark 4.25 we find

(1C)∗[X·] = [X·] and (1A)∗[X
·] = [X·] and so E(1C , 1A) = 1E(C,A).

Now let AX
·,AY ·,AZ· ∈ X and suppose that c∗[X·] = [Y ·] and d∗[Y ·] = [Z·].

By Remark 4.25 there are f · : Y · → X· and g· : Z· → Y ·, with f0 = 1A, fn+1 = c,

1The authors wishes to thank the referee for introducing them [L].
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g0 = 1A, gn+1 = d. By considering f · ◦ g· : Z· → X· we find that (cd)∗ = d∗c∗.
Similarly (ab)∗ = a∗b∗. By Lemma 4.22 (3) it follows that

E((d, b) ◦ (c, a)) = E(cd, ba) = (cd)∗(ba)∗ = d∗c∗b∗a∗ = d∗b∗c
∗a∗ = E(d, b) ◦ E(c, a).

�

Next we want to endow E(C,A) with the structure of an abelian group. As for
exact categories this is done using the Baer sum.

Remark 4.27. In an n-exact category (C ,X ),

X·, Y · ∈ X ⇒ X· ⊕ Y · ∈ X

holds. This has been shown in [J, Proposition 4.6]. We also remark that if (C ,X )
satisfies (EC′),(E0),(E1),(E1op),(E2′),(E2′op), then the same proof as in [J, Lemma
4.5, Proposition 4.6] works, because of Lemma 4.22.

Definition 4.28. Let AX
·
C ,AY

·
C ∈ X . As in Remark 4.27, the direct sum X·⊕Y · ∈

X . Moreover, [X· ⊕ Y ·] only depends on [X·] and [Y ·] so we may define

[X·]⊕ [Y ·] = [X· ⊕ Y ·].

Finally define the Baer sum of [X·] and [Y ·] to be

[X·] + [Y ·] = (∆C)∗(∇A)∗([X
·]⊕ [Y ·]) ∈ E(C,A).

Remark 4.29. By Lemma 4.22 (3), we also have

[X·] + [Y ·] = (∇A)∗(∆C)∗([X·]⊕ [Y ·]).

Using this together with X· ⊕ (Y · ⊕ Z·) = (X· ⊕ Y ·)⊕ Z· one easily checks that

([X·] + [Y ·]) + [Z·] = [X·] + ([Y ·] + [Z·]).

To show that E(C,A) with the Baer sum is an abelian group, we will use the
following result.

Lemma 4.30. Let AX
·
C ,A′Y

·
C′ ∈ X and f · : X· → Y · with f0 = a, fn+1 = c.

Then

a∗[X
·] = c∗[Y ·].

Proof. By Lemma 4.17 and Remark 4.25, there are A′Z
·
C ∈ X and morphisms

g· : X· → Z·, h· : Z· → Y · satisfying g0 = a, gn+1 = 1C , h0 = 1A′ and hn+1 = c
(see also [J, Proposition 4.9]). Hence a∗[X

·] = [Z·] = c∗[Y ·]. �

The following lemma is analogous to [FS, Proposition 6.10] and has a similar
proof, which we include for the sake of completeness.

Lemma 4.31. Let AX
·
C ,AY

·
C ∈ X and a, b ∈ C (A,A′). Then the following state-

ments hold.

(1)

[
a 0
0 b

]
∗

([X·]⊕ [Y ·]) = a∗[X
·]⊕ b∗[Y ·]

(2) (a+ b)∗[X
·] = a∗[X

·] + b∗[X
·]

(3) a∗([X
·] + [Y ·]) = a∗[X

·] + a∗[Y
·]
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Proof. (1) Write a∗[X
·] = [Z·] and b∗[Y

·] = [W ·]. Then there are f · ∈ Cn+2
C (X·, Z·)

and g· ∈ Cn+2
C (Y ·,W ·) such that f0 = a, fn+1 = 1C , g0 = b and gn+1 = 1C by

Remark 4.25. Considering h· ∈ Cn+2
C (X· ⊕ Y ·, Z· ⊕W ·) given by

hk =

[
fk 0
0 gk

]
we find that [

a 0
0 b

]
∗

([X·]⊕ [Y ·]) = [Z·]⊕ [W ·] = a∗[X
·]⊕ b∗[Y ·].

(2) Consider ∆· ∈ Cn+2
C (X·, X· ⊕X·) defined by ∆k = ∆Xk . By Lemma 4.30,

we get (∆A)∗[X
·] = (∆C)∗([X·]⊕ [X·]). Now by (1)

(a+ b)∗[X
·] =

(
∇A′

[
a 0
0 b

]
∆A

)
∗

[X·] = (∇A′)∗
[
a 0
0 b

]
∗

(∆A)∗[X
·]

= (∇A′)∗
[
a 0
0 b

]
∗

(∆C)∗([X·]⊕ [X·])

= (∇A′)∗(∆C)∗
[
a 0
0 b

]
∗

([X·]⊕ [X·])

= (∇A′)∗(∆C)∗(a∗[X
·]⊕ b∗[X·])

= a∗[X
·] + b∗[X

·].

(3) Using (1) we compute

a∗([X
·] + [Y ·]) = a∗(∇A)∗(∆C)∗([X·]⊕ [Y ·])

= (∇A′)∗
[
a 0
0 a

]
∗

(∆C)∗([X·]⊕ [Y ·])

= (∇A′)∗(∆C)∗
[
a 0
0 a

]
∗

([X·]⊕ [Y ·])

= (∇A′)∗(∆C)∗(a∗[X
·]⊕ a∗[Y ·])

= a∗[X
·] + a∗[Y

·].

�

Proposition 4.32. ([L, Section 5] for the n-abelian case.) For all C,A ∈ C the
Baer sum defines the structure of an abelian group on E(C,A). This enhances the
functor E in Definition 4.24 to a biadditive functor

E : C op × C → Ab.

Proof. Since this is well-known for n = 1, we assume n ≥ 2. Let AX
·
C ,AY

·
C ∈ X

and consider the canonical isomorphism t : X· ⊕ Y · → Y · ⊕X·. By Lemma 4.30
we get

(t0)∗([X
·]⊕ [Y ·]) = (tn+1)∗([Y ·]⊕ [X·])
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Now

[X·] + [Y ·] = (∆C)∗(∇A)∗([X
·]⊕ [Y ·]) = (∆C)∗(∇At0)∗([X

·]⊕ [Y ·])
= (∆C)∗(∇A)∗(t

0)∗([X
·]⊕ [Y ·]) = (∆C)∗(∇A)∗(t

n+1)∗([Y ·]⊕ [X·])
= (∆C)∗(tn+1)∗(∇A)∗([Y

·]⊕ [X·])
= (tn+1∆C)∗(∇A)∗([Y

·]⊕ [X·])
= (∆C)∗(∇A)∗([Y

·]⊕ [X·]) = [Y ·] + [X·].

Together with Remark 4.29 this shows that E(C,A) is an abelian semigroup.
Let AX

·
C ∈ X and N · be the complex

(4.19) A
1A−→ A→ 0→ · · · → 0→ C

1C−→ C

It follows from (E0) and Lemma 4.22 (4) (or alternatively from [J, Remark 4.7])
that N · ∈ X . By considering f · ∈ Cn+2

C (X·, N ·) defined by fn+1 = 1C , fn = dnX
and fk = 0 for k < n, we find that 0∗[X

·] = [N ·]. By Lemma 4.31, we have
[N ·]+ [X·] = 0∗[X

·]+1∗[X
·] = [X·], and so [N ·] is the neutral element in E(C,A).

Similarly, (−1)∗[X
·] is the inverse of [X·]. Hence E(C,A) is an abelian group. From

Lemma 4.31 and its dual it follows that

E : C op × C → Ab

is well-defined and biadditive. �

Remark 4.33. As in the above proof, the element 0 ∈ E(C,A) is given by the

sequence (4.19) if n ≥ 2. If n = 1, it is given by A

[
1

0

]
−→ A⊕ C [0 1]−→ C.

Proposition 4.34. Let (C ,X ) be an n-exact category such that E(C,A) is a set
for all A,C ∈ C . For all δ ∈ E(C,A), set s(δ) = [X·], where δ = [X·]. Then
(C ,E, s) is n-exangulated.

Proof. Similarly as before, we only deal with the case n ≥ 2. As for the case n = 1,
a similar proof to the one below works, if we take Remark 4.33 into account. The
case n = 1 also follows from Proposition 4.3 and [NP, Example 2.13].

By Proposition 4.32 we know that E : C op ×C → Ab is a biadditive functor. So
it remains to check the conditions (R0),(R1),(R2) and also (EA1),(EA2),(EA2)op.

(R0) Let (a, c) : AδC → A′ρC′ be a morphism of extensions where δ = [X·]
and ρ = [Y ·]. Then a∗[X

·] = c∗[Y ·] = [Z·] for some A′Z
·
C ∈ X and so there are

morphisms f · : X· → Z·, g· : Z· → Y · satisfying f0 = a, fn+1 = 1C , g0 = 1A′ and
gn+1 = c. The composition g· ◦ f · : X· → Y · is a lift of (a, c).

(R1) Let X· ∈ X and δ = [X·]. We need to check that 〈X·, δ〉 is an n-exangle.
Since X· is n-exact it is enough to check that

C (Y,Xn)
C (Y,dnX)−→ C (Y,Xn+1)

δ]−→ E(Y,X0)

and

C (X1, Y )
C (d0X ,Y )−→ C (X0, Y )

δ]−→ E(Xn+1, Y )

are exact for all Y ∈ C . We only check the first case as the second is similar.
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Let f : Y → Xn+1. Then δ](f) = f∗[X·] is zero if and only if there is a commu-
tative diagram of the form

X0 X0 0 · · · 0 Y Y

X0 X1 X2 · · · Xn−1 Xn Xn+1

// // // //

�� �� �� ��
f
��

d0X

//
d1X

// // //
dn−1
X

//
dnX

//

� � � �

.

Evidently, this is equivalent to f = dnX ◦ g for some g : Y → Xn, i.e., f is in the
image of C (Y, dnX).

(R2) immediately follows from the description of 0 ∈ E(0, A) and 0 ∈ E(A, 0).
(EA1) follows from (E1) and (E1op).
(EA2) Let AY

·
C ∈ X and c ∈ C (C ′, C). Let AX

·
C′ ∈ X such that c∗[Y ·] = [X·].

Then there is f · ∈ Cn+2
C (X·, Y ·) such that by f0 = 1A, fn+1 = c. We claim that

this is a good lift of (1A, c). First of all M ·
f ∈ X by (E2′op). Next, existence of the

morphism g· ∈ Cn+2
C (Y ·,M ·

f ) given by g0 = d0
X , gn+1 = 1C and

gk =

[
0

1Y k

]
for all other k shows (d0

X)∗[Y
·] = [M ·

f ]. The dual case (EA2op) is similar. �

Remark 4.35. Every n-exangulated category (C ,E, s) coming from an n-exact cat-
egory (C ,X ) as in Proposition 4.34 satisfies the condition that all inflations are
monomorphisms and all deflations are epimorphisms. In fact, the arguments so far
show that if (C ,X ) satisfies conditions (EC′),(E0),(E1),(E1op),(E2′),(E2′op), then
it gives an n-exangulated category of this type. Next we will show the converse of
this (Proposition 4.37).

Lemma 4.36. Let (C ,E, s) be an n-exangulated category. Assume that any s-
inflation is monomorphic, and any s-deflation is epimorphic in C . Note that this is
equivalent to assuming that any s-conflation is n-exact. If we denote the class of
all s-conflations by X , then we have the following.

(1) For any n-exangle A〈Y ·, δ〉C and any c ∈ C (C ′, C), if we put s(c∗δ) = [X·],
then any lift f · ∈ Cn+2

C (X·, Y ·) of (1A, c) : δ → c∗δ satisfies M ·
f ∈ X . In

particular,

X1 X2 · · · Xn Xn+1

Y 1 Y 2 · · · Y n Y n+1

d1X // d2X // dn−1
X // dnX //

d1Y

//
d2Y

//
dn−1
Y

//
dnY

//

f1

��
f2

��
fn

��
fn+1

��
� � �

becomes an n-pullback diagram in C .
(2) For any pair of distinguished n-exangles A〈X·, δ〉C ,B〈Y ·, ρ〉D, we have

Cn+2
C (X·, Y ·) = Æ(〈X·, δ〉, 〈Y ·, ρ〉).

(3) If δ, δ′ ∈ E(C,A) satisfies s(δ) = s(δ′), then δ = δ′ holds. Thus for any
A,C ∈ C , the realization s gives the following bijective correspondence.

E(C,A)
bij.−→ {X· ∈ X | X0 = A,Xn+1 = C}

(homotopy equivalence in Cn+2
(A,C))

.
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Proof. (1) By (EA2), there is a good lift g· of (1A, c), which makes 〈M ·
g , (d

0
X)∗δ〉 a

distinguished n-exangle by definition. Since f · ∼ g· holds by Proposition 4.10 (2),
it follows that f · is also a good lift by Remark 2.33 (1), and thus M ·

f ∈ X .

(2) It suffices to show Cn+2
C (X·, Y ·) ⊆ Æ(〈X·, δ〉, 〈Y ·, ρ〉). Let f · ∈ Cn+2

C (X·, Y ·)
be any morphism. By Proposition 3.6, there is some g· ∈ Æ(〈X·, δ〉, 〈Y ·, ρ〉) satisfy-
ing g0 = f0 and g1 = f1. Since X· and Y · are n-exact sequences, Proposition 4.10
(1) shows f · ∼ g·. Thus Proposition 2.10 shows f · ∈ Æ(〈X·, δ〉, 〈Y ·, ρ〉).

(3) This immediately follows from (2). Indeed, 1X· ∈ Cn+2
C (X·, X·) should give

a morphism 1X· ∈ Æ(〈X·, δ〉, 〈X·, δ′〉), which in particular satisfies δ = δ′. �

Proposition 4.37. Let (C ,E, s) be an n-exangulated category, in which any s-
inflation is monomorphic and any s-deflation is epimorphic. Let X be the class of
all s-conflations, as in Lemma 4.36. Then, the following holds.

(1) The pair (C ,X ) satisfies conditions (EC′),(E0),(E1),(E1op),(E2′),(E2′op).
(2) Moreover, if (C ,E, s) satisfies the following conditions (a),(b) for any pair

of morphisms A
a−→ B

b−→ C in C , then (C ,X ) also satisfies (EI), and
thus becomes an n-exact category in the sense of [J] by Proposition 4.23.
(a) If b ◦ a is an s-inflation, then so is a.
(b) If b ◦ a is an s-deflation, then so is b.

Proof. (1) (EC′) is obvious from the definition of X . (E0) follows from (R2). (E1)
and (E1op) follow from (EA1). (E2′op)(i) follows from the functoriality of E and
(R0). (E2′op)(ii) follows from Lemma 4.36 (1),(2). Dually for (E2′).

(2) By Corollary 4.13, it suffices to show that any X· ∈ X satisfies (I1) and (I2)
in Corollary 4.13. Since (I2) is dual to (I1), we only show that (b) implies (I1).
For AX

·
C ∈ X , let f · ∈ Cn+2

C (X·, Y ·) be any morphism to an n-exact sequence Y ·,
in which f0 and fn+1 are isomorphisms in C . Modifying X· using isomorphisms
f0 and fn+1 by Corollary 2.26, we may assume f0 = 1A and fn+1 = 1C from the
beginning.

By the equality dnY ◦ fn = dnX , condition (b) implies that dnY is an s-deflation.
Thus there is Z· ∈ X of the form

Z0 d0Z−→ Z1 d1Z−→ · · ·
dn−2
Z−→ Zn−1 dn−1

Z−→ Y n
dnY−→ Y n+1.

Since both Y · and Z· are n-exact sequences, the commutative square in C

Z0 Z1 · · · Zn−1 Y n Y n+1

Y 0 Y 1 · · · Y n−1 Y n Y n+1

d0Z // d1Z // dn−2
Z // dn−1

Z // dnY //

d0Y

//
d1Y

//
dn−2
Y

//
dn−1
Y

//
dnY

//

�

can be completed into a homotopy equivalence Z· → Y · by Proposition 4.10 (1).
Thus Z· ∈ X implies Y · ∈ X by Lemma 4.22 (4). �

Remark 4.38. Let (C ,E, s) be an n-exangulated category, and let F ⊆ E be a
closed subfunctor. Trivially, if any s-inflation is monomorphic (respectively, if any
s-deflation is epimorphic), then so is any s|F-inflation (resp. s|F-deflation).

Let Xs and Xs|F be the classes of all s-conflations and s|F-conflations respec-
tively, as in Lemma 4.36. If (C ,Xs) moreover satisfies condition (EI), then so does
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(C ,Xs|F). By the arguments so far, this means that any relative theory for an
n-exact category induces an n-exact category.

Remark 4.39. Let (C ,Σ,D) be an (n+ 2)-angulated category, and regard it as an
n-exangulated category through Proposition 4.5. Then by Proposition 3.16, any
closed subfunctor F ⊆ EΣ gives an n-exangulated category (C ,F, sD|F), which is
not n-exact unless F = 0. Indeed, if d0

X is monomorphic in C for δ ∈ F(C,A) with
sD(δ) = [X·], then d0

X should be a split monomorphism, which implies δ = 0.
It is not (n+2)-angulated either, in general. Especially for the closed subfunctor

F = EIΣ associated with a full subcategory I ⊆ C as in Definition 3.18, the resulting
n-exangulated category is not (n+ 2)-angulated unless I = 0. In fact if I 6= 0, any
object 0 6= I ∈ I satisfies EIΣ(C, I) = 0 for any C ∈ C , which cannot happen in an
(n+ 2)-angulated category. Similarly for (EΣ)I .

5. Examples

In this section we construct a family of examples of n-exangulated categories
using relative theory as introduced in Subsection 3.2. Since we will start from
an (n + 2)-angulated category, the resulting relative versions will not be (n + 2)-
angulated nor n-exact by Remark 4.39.

We start by considering a finite dimensional algebra A over a field k given by a
quiver with relations (see [ASS] for details on such algebras). More precisely, let A
be the path algebra of the quiver

1 2 3 4 5
a // b // c // d // with relation abcd = 0.

Next we explain how to get a 4-angulated category C from A. In fact C will be
one instance of a family of (n + 2)-angulated categories that is discussed in detail
in [F, Section 7], where many of the facts used below can be found. In the interest
of brevity, we proceed without precise references to [F] for the most part.

The category modA of finitely generated right A-modules has a unique 2-cluster
tilting subcategory M consisting of all modules that can be written as a direct sum
of a projective and an injective module. There are 5 indecomposable projective
A-modules and 5 indecomposable injective A-modules. Among these there are 2
indecomposable A-modules that are both projective and injective. Hence M has 8
indecomposable objects. In fact, one may label these indecomposables as C1, C2,
C3, C4, C5, C6, C7 and C8 in a unique way such that

dimk HomA(Ci, Cj) =

{
1 if 0 ≤ j − i ≤ 3,

0 else.

Note that Ci is projective for 1 ≤ i ≤ 5 and injective for 4 ≤ i ≤ 8. Now consider
the bounded derived category Db(modA) and let Σ = [2] be the twofold suspension
of Db(modA). Since the global dimension of A is 2 it follows from [GKO] that

C := add{ΣmCi | 1 ≤ i ≤ 8, m ∈ Z}
is 4-angulated. By Proposition 4.8 we obtain a 2-exangulated category (C ,EΣ, sD).

We denote ΣmCi by C8m+i so that the indecomposables in C are precisely {Ci |
i ∈ Z} and satisfy

dimk C (Ci, Cj) =

{
1 if 0 ≤ j − i ≤ 3,

0 else,
and ΣCi = Ci+8.
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It is useful to note that, if i ≤ k ≤ j, then any morphism Ci → Cj factors through
Ck.

Since EΣ(Ci, Cj) = C (Ci,ΣCj) we get

dimk EΣ(Ci, Cj) =

{
1 if 5 ≤ i− j ≤ 8,

0 else.

Using [F, Remark 7.3] one can show that each non-zero δ ∈ EΣ(Ci, Cj) gives rise
to a 4-angle of the form

Cj−→Ci−4−→Cj+4−→Ci
δ−→ ΣCj .

Hence

sD(δ) = [Cj−→Ci−4−→Cj+4−→Ci].
Now let us consider a relative version of (C ,EΣ, sD). Fix t ∈ Z and set It = {Ct}.

Further set Et = EItΣ and st = (sD)|E. Then (C ,Et, st) is 2-exangulated.

To calculate Et(Ci, Cj) we need to consider δ]Ct
: C (Cj , Ct) → EΣ(Ci, Ct) for

δ ∈ EΣ(Ci, Cj). If δ = 0, then δ]Ct
= 0, so assume that δ 6= 0. Then we claim that

δ]Ct
= 0 if and only if C (Cj , Ct) = 0 or EΣ(Ci, Ct) = 0. Clearly, the ‘if’ part holds.

On the other, if C (Cj , Ct) 6= 0, then j ≤ t, and since δ 6= 0, we get i − j ≤ 8 so
that i ≤ j + 8 ≤ t+ 8. As noted above it follows that any morphism g : Ci → Ct+8

factors through Cj+8 and as dimk C (Ci, Cj + 8) = 1, we get that g even factors

through δ ∈ C (Ci, Cj + 8). Hence δ]Ct
is surjective and non-zero if EΣ(Ci, Ct) 6= 0.

To simplify our notation we let [a, b] = {x ∈ Z | a ≤ x ≤ b} so that C (Cj , Ct) = 0
if and only if j 6∈ [t− 3, t]. Similarly, EΣ(Ci, Ct) = 0 if and only if i 6∈ [5 + t, 8 + t].
Hence

dimk Et(Ci, Cj) =

{
1 if 5 ≤ i− j ≤ 8 and t 6∈ [j, i− 5]

0 else.

Since st is just induced from sD this gives a substantial control over the 2-exangulated
category (C ,Et, st).

To generalize we may choose any subset T ⊆ Z and obtain a 4-angulated category
(C ,ET , sT ), by setting IT = {Ct | t ∈ T}, ET = EITΣ and sT = (sD)|ET

. As above
we find that

dimk ET (Ci, Cj) =

{
1 if 5 ≤ i− j ≤ 8 and T ∩ [j, i− 5] = ∅
0 else.

We note that (C ,ET , sT ) is 4-angulated if and only if T = ∅ and that (C ,ET , sT )
is 2-exact if and only if ET = 0.

Many similar examples can be constructed. See for instance the next article
n-Exangulated Categories (II).
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