1	QTL analysis for early growth in an intercross between native Japanese Nagoya and
2	White Plymouth Rock chicken breeds using RAD sequencing-based SNP markers
3	Bothaina H. Essa ^{1,3} , Sae Suzuki ¹ , Atsushi J. Nagano ² , Sherif Z. Elkholya ³ , Akira Ishikawa ¹
4	
5 6	¹ Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
7	² Faculty of Agriculture, Ryukoku University, Otsu, Shiga 520-2194, Japan
8 9	³ Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
10	
11	Running title: Chicken early growth QTL
12	
13 14	Correspondence: Akira Ishikawa, Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
15	Tel/Fax: +81-52-789-4101, E-mail: ishikawa@agr.nagoya-u.ac.jp
16	
17	ORCID: Atsushi J Nagano, 0000-0001-7891-5049
18	Akira Ishikawa, 0000-0002-8275-4230

1 Summary

2 An F₂ population of 239 chickens was obtained by an intercross between Nagoya (NAG), a native Japanese breed with low growth, and White Plymouth Rock (WPR), a Western breed 3 4 with high growth. Using SNP markers obtained by restriction site-associated DNA sequencing, genome-wide QTL analysis was performed and it revealed three QTL for early 5 6 postnatal growth in the F₂ population at genome-wide 5% significance levels. The most 7 highly significant QTL affecting body weights at 2-4 weeks of age and weight gains at 2-3 8 and 0-4 weeks was located on GGA4 between 34.0 and 65.6 Mb with LOD scores of 3.9-5.9 9 and it explained 4.9-9.9% of the total variance of the traits. The analysis provided evidence 10 for significant QTL on GGA2 between 105.6 and 125.2 Mb (LOD = 4.6) and on GGA1 11 between 51.1 and 61.6 Mb (LOD = 4.0) which had effects on body weight at 3 weeks and 12 body weight gain at 0-1 week, respectively. These two genomic regions explained 6.6% and 13 6.9% of the phenotypic F₂ variance of the corresponding traits, respectively. The allele 14 derived from WPR at all QTL increased the corresponding traits. Neither sex-specific nor 15 epistatic QTL was detected. The results showed that the GGA4 QTL affecting multiple traits 16 is a key locus responsible for early growth in our chicken cross, suggesting that this QTL 17 may make a great contribution to genetic improvement of growth performance of the NAG 18 breed with a low growth rate. 19 Key words: Body weight, Growth, Nagoya, QTL, RAD-seq, White Plymouth Rock.

1 In Japan, approximately 50 native Japanese breeds have been developed for enjoyment of 2 ornamental appearance, crowing and behavioral traits (Tsudzuki 2003). However, little 3 attention has been paid to the use of the Japanese breeds as food resources. In the present 4 study, we used Nagoya (NAG) and White Plymouth Rock (WPR) breeds. NAG is one of the 5 most famous native breeds in Japan; it is commonly known as the Nagoya Cochin and yields 6 high-quality meat and eggs; and it has more red meat than commercial broiler meat and has a 7 good and chewy texture (Tsudzuki 2003). WPR is a Western breed with a high growth rate 8 and a high level of abdominal fat deposition (Tatsuda & Fujinaka 2001) and it has been used 9 as a parental breed of commercial broilers worldwide. Suzuki et al. (2019) reported marked 10 differences in body weight, growth rate, organ weight, fat weight, breast muscle weight and 11 feed intake between NAG and WPR breeds at 7 weeks after hatching, and they characterized 12 NAG as a low growth breed. Ishikawa et al. (2019) confirmed approximately 1.5- or more 13 fold differences in those traits between the two breeds at 4 weeks of age. NAG and WPR are 14 reported to have distinct breed origins and genetic relationships (Osman et al. 2006), which 15 makes the two breeds suitable for crossbreeding experiments to map QTL and identify genes 16 responsible for the trait differences observed.

In this study, we performed QTL analysis for early growth traits until 4 weeks of age
in an F₂ intercross population between NAG and WPR breeds of meat-type chickens, in order
to obtain QTL information that is beneficial for genetic improvement of early growth in the
NAG chickens characterized by a low growth rate. To the best of our knowledge, no QTL
study on growth has been performed using the NAG breed.

An F₂ population of 119 males and 120 females was previously obtained by an initial cross between three NAG males and four WPR females. All trait data for NAG, WPR, F₁ and F₂ chickens were shown in Ishikawa *et al.* (2019). Body weight of the F₂ chickens was measured at hatching (BW0) and at 1 week (BW1), 2 weeks (BW2), 3 weeks (BW3) and 4

weeks (BW4) of age. Body weight gains from 0 to 1 week (Gain0-1), 1 to 2 weeks (Gain1-2),
 2 to 3 weeks (Gain2-3), 3 to 4 weeks (Gain3-4) and 0 to 4 weeks (Gain0-4) were calculated.
 Feed intake (FI) was measured from 3 to 4 weeks of age (FI3-4). A feed conversion ratio
 (FCR) for 3-4 weeks (FCR3-4) was obtained by dividing FI3-4 by Gain3-4. Details of
 chicken rearing and handling were described in Suzuki *et al.* (2019).

6 Genomic DNA was extracted from blood using a DNeasy blood & Tissue kit (Qiagen, 7 Tokyo) and DNA concentration was measured with a Qubit fluorometer (Thermo Fisher 8 Scientific, Tokyo). Restriction site-associated DNA sequencing (RAD-seq) analysis was 9 performed as described by Sakaguchi et al. (2015). All read data sequenced by Illumina 10 HiSeq2500 were deposited in the DDBJ Sequence Read Archine (accession no. 11 DRA007023). The reads were aligned to the chicken reference genome, assembly GRCg5, 12 and SNPs were called with Stacks software (Catchen et al. 2013). As SNP markers, we 13 selected the rad-tags that had completely different alleles between NAG and WPR breeds and 14 were genotyped in more than 75% of 239 F₂ birds. A linkage map of the SNP markers that statistically met the segregation ratio of 1:2:1 expected in the F₂ population at the nominal 15 16 5% level (chi-squared test) was constructed with Map Manager QTX software with linkage 17 criterion of P=0.001 (Manly et al. 2001) (Tables S1 and S2).

18 The effects of five environmental factors (seven dams, two sexes, two rearing 19 persons, two dissection persons and 48 hatching dates) on phenotypic traits were tested using 20 a linear model of the JMP software version 13.2.0 (SAS Institute Japan Ltd., Tokyo). After 21 removal of the environmental effects that were significant at nominal 5% levels from the raw trait data, the residuals were used for QTL analysis using the Haley-Knott regression method 22 23 of the R/qtl package version 3.5.1 (Broman & Sen 2009). To find QTL with main effects on 24 traits, a single-QTL genome scan with a single QTL model was performed using sex-25 combined data. A two-dimensional genome scan with a two-QTL model was performed to

1 find QTL with epistatic interaction effects on the traits. Logarithms of the odds (LOD) scores 2 were calculated at a 2-cM interval across the linkage map constructed. Genome-wide 3 significance thresholds at 5% (significant) and 10% (suggestive) levels were calculated by 4 10,000 permutations for main effect QTL and 500 permutations for epistatic QTL. The 1.8-5 LOD drop (comparable to 95%) confidence interval (CI), percentage of phenotypic variance 6 explained, and additive and dominant effects of the QTL detected were computed by R/qtl. In 7 addition, to detect QTL with sex-specific effects on traits, a single-QTL genome scan was 8 performed using a single QTL model with or without sex as an interactive covariate in the 9 model and permutation tests were performed according to the methods of Broman & Sen (2009).10

11 As shown in Table 1 and Figs. S1 to S4, genome-wide QTL analysis revealed three 12 OTL for several BW and Gain traits at different ages on GGA1b, 2, and 4b, either at genome-13 wide 5% or 10% levels. The most significant QTL in a confidence interval of 34.0-65.6 Mb 14 on GGA4 affected BW2, BW3 and BW4 with LOD scores of 4.8, 5.3 and 5.9, respectively, 15 and it explained 7.2, 7.8 and 9.9% of body weight variances, respectively. This QTL also 16 affected Gain2-3 and Gain0-4 with LOD scores of 3.9-5.7, and it explained 4.9-9.6% of 17 weight gain variances. The QTL in an interval of 37.4-143.8 Mb on GGA2 affected BW2, 18 BW3 and Gain2-3 with LOD scores of 3.5, 4.6 and 3.5, and it explained 3.9, 6.6% and 4.9% 19 of variances in body weight and weight gain, respectively. The QTL in an interval of 51.1-20 61.9 Mb on GGA1b affected BW1 and Gain0-1 with LOD scores of 3.6 and 4.0 and 21 explained 6.1% and 6.9% of the trait variations, respectively. The allele derived from WPR at 22 all QTL detected increased body weights and weight gains (Fig. 1 and Table 1). No main-23 effect QTL for the remaining traits was revealed at genome-wide 10% or less levels (Fig. S5). 24 In addition, neither sex-specific nor epistatic QTL were identified for any traits at genomewide 10% or less levels. 25

1 Our results suggested that a single QTL with a pleiotropic effect on body weight and 2 weight gain may be located on each of the three chromosomal regions. However, we cannot 3 rule out the possibility that multiple loci for those traits are closely linked on the small 4 chromosomal region because Mollah & Ishikawa (2011) revealed two very closely linked 5 QTL with opposite effects on body weight by fine mapping using subcongenic strains of 6 mice.

7 Many QTL for body weight and growth at various ages have been reported on GGA1, 8 2 and 4 (chickenQTLdb; Hu et al. 2019), supporting the presence of our QTL on those 9 chromosomes. However, most of the QTL previously reported have broad confidence 10 intervals due to the QTL mapping method using linkage analysis in crossbred populations. 11 Furthermore, the map positions of those QTL are not well defined physically. It is hence 12 difficult to precisely determine whether our OTL coincide with the previous OTL. We 13 however compared our QTL to the previous QTL with known physical map positions. QTL 14 for body weight at 46 days of age found in a broiler population (Mebratie et al. 2019) was 15 located at the distal end of our GGA1 QTL interval between 51.1 and 61.6 Mb. That interval 16 contains the insulin-like growth factor-I (IGF-I) gene. IGF-I is a strong functional candidate 17 gene for our QTL because Abdalhag et al. (2016) reported an association between a SNP in 18 IGF-I and body weight at 8-16 weeks of age in Jinghai yellow chickens. Our GGA2 QTL 19 interval between 105.6 and 125.2 Mb overlapped with that of growth QTL found in an 20 advanced intercross line (AIL) established from an F₂ population between two Virginia lines 21 divergently selected for juvenile body weight (Brandt et al. 2017). In an AIL between New 22 Hampshire and White Leghorn lines, Lyu et al. (2017) fine-mapped GGA4 QTL for body 23 weight at 4-20 weeks of age to a region of 74.5-78.0 Mb (based on GRCg5 assembly 24 obtained from chickenQTLdb). Around that region, several other loci for body weight and 25 carcass weight have been reported in different chicken populations (Sasaki et al. 2004; Gu et

1 al., 2011; Liu et al., 2013). Interestingly, Rikimaru et al. (2013) reported associations of body 2 weight and growth with a SNP on the cholecystokinin type A receptor (CCKAR) gene at 73.7 3 Mb in Hinai-dori chickens. Guo et al. (2020) reported associations of length and weight of 4 tibia with two SNPs in the ligand dependent nuclear receptor corepressor like (LCORL) gene 5 at 76.3 Mb and the non-SMC condensin I complex subunit G (NCAPG) gene at 76.4 Mb. 6 However, the regions of the above previous QTL/SNPs did not overlap with a confidence 7 interval (34.0-65.6 Mb) of our GGA4 QTL. In an AIL between broiler and Fayoumi 8 chickens, van Goor et al. (2015) reported body weight QTL at 35.8-36.8 Mb, which is the proximal end of our QTL interval but is distant far from the peak QTL position at 9 10 approximately 66 Mb.

11 Taken together, at least, our GGA4 QTL, a key locus responsible for multiple early 12 growth traits, may be a new locus, though we cannot rule out the possibility that previous 13 QTL with physically undefined map positions are coincident with our locus. Since hundreds 14 of genes can still be involved in the confidence intervals of our three QTL, it is premature to 15 search for positional candidate gens with known or unknown functions for our QTL, except 16 for *IGF-I* described above, without further fine mapping of the QTL. Furthermore, as the 17 native Japanese NAG breed with a genetically distinct breed origin (Osman et al. 2006) was 18 used for the first time in the present QTL study, the NAG alleles at our three QTL may have 19 novel genetic variants. The findings provide information that is beneficial for genetic 20 improvement in early growth of NAG chickens with a lower growth rate than that of WPR. 21 In conclusion, this study revealed that the GGA4 QTL makes an important

contribution to early growth performance in the intercross between NAG and WPR breeds,
suggesting that this QTL may be effective in genetic improvement of NAG with a low
growth. In addition, the study was the initial step for identification of causal quantitative trait
genes and causal variants for differences in early growth between NAG and WPR chickens.

1	The identification of a causal gene and variant(s) for the QTL will provide deep insights into
2	the genetic basis of chicken growth.
3	
4	Acknowledgements BHE was supported by the scholarship of the Joint Supervision
5	Program of the Mission Sector, Ministry of Higher Education of Egypt. This work was in part
6	supported by Kieikai Research Foundation (No. 2016C010) to AI.
7	
8	Data availability
9	All read data for the RAD-seq analysis were deposited in the DDBJ Sequence Read Archine
10	(accession no. DRA007023). All QTL results generated during the current study were shown
11	in supporting information. The other datasets analyzed during the current study are available
12	from the corresponding author on reasonable request.
13	
14	Conflict of interest
15	The authors declare that they have no conflict of interest.

1 References

2	Abdalhag M.A., Li T., Duan L., Zhang T., Zhang G., Wang J. & Wang Y. (2016) Association
3	analysis of IGF-I gene expression with growth and reproductive traits in Jinghai
4	yellow chickens. Genetics and Molecular Research 15, gmr15049205.
5	Brandt M., Ahsan M., Honaker C.F., Siegel P.B. & Carlborg Ö. (2017) Imputation-based
6	fine-mapping suggests that most QTL in an outbred chicken advanced intercross
7	body weight line are due to multiple, linked loci. G3 7, 119-128.
8	Broman K.W. & Sen S. (2009) A guide to QTL mapping with R/qtl. Springer, Newyork.
9	Catchen J., Hohenlohe P.A., Bassham S., Amores A. & Cresko W.A. (2013) Stacks: an
10	analysis tool set for population genomics. Molecular Ecology 122, 3124-3140.
11	Gu X., Feng C., Ma L., Song C., Wang Y., Da Y., Li H., Chen K., Ye S., Ge C., Hu X. & Li
12	N. (2011) Genome-wide association study of body weight in chicken F2 resource
13	population. PLoS ONE 6, e21872.
14	Guo, J., Qu, L., Dou, T.C., Shen, M.M., Hu, Y.P., Ma, M. & Wang KH. (2020). Genome-
15	wide association study provides insights into the genetic architecture of bone size
16	and mass in chickens. Genome 63, 133-143.
17	Hu Z.L., Park C.A. & Reecy J.M. (2019) Building a livestock genetic and genomic
18	information knowledgebase through integrative developments of Animal QTLdb
19	and CorrDB. Nucleic Acids Research 47, D701–D710.
20	Ishikawa A., El-Edel M.A. & Essa B.H. (2019) Differences in growth and fat deposition
21	between White Plymouth Rock and Nagoya breeds as a tool for QTL analysis.
22	Damanhur Journal of Veterinary Science 1, 21-26.
23	Liu R., Sun Y., Zhao G., Wang F., Wu D., Zheng M., Chen J., Zhang L., Hu Y. & Wen J.
24	(2013) Genome-wide association study identifies loci and candidate genes for body
25	composition and meat quality traits in Beijing-You chickens. PLoS ONE 8, e61172.

1	Lyu S., Arends D., Nassar M.K. & Brockmann G.A. (2017) Fine mapping of a distal
2	chromosome 4 QTL affecting growth and muscle mass in a chicken advanced
3	intercross line. Animal Genetics 48, 295-302.
4	Manly K.F., Cudmore R.H. & Meer J.M. (2001) Map Manager QTX cross-platform software
5	or genetic mapping. Mammalian Genome 12, 930-932.
6	Mebratie W., Reyer H., Wimmers K., Bovenhuis H. & Jensen J. 2019 Genome wide
7	association study of body weight and feed efficiency traits in a commercial broiler
8	chicken population, a re-visitation. Scientific Reports 9, 922.
9	Mollah M.B.R. & Ishikawa A. (2011) Intersubspecific subcongenic mouse strain analysis
10	reveals closely linked QTLs with opposite effects on body weight. Mammalian
11	<i>Genome</i> 22 , 282-289.
12	Osman S.A.M., Sekino M., Nishihata A., Kobayashi Y., Takenaka W., Kinoshita K.,
13	Kuwayama T., Nishibori M., Yamamoto Y. & Tsudzuki M. (2006) The genetic
14	variability and relationships of Japanese and foreign chickens assessed by
15	microsatellite DNA profiling. Asian-Australasian Journal of Animal Sciences 19,
16	1369–1378.
17	Rikimaru K., Takeda H., Uemoto Y., Komatsu M., Takahashi D., Suzuki K. & Takahashi H.
18	(2013) Effect of a single nucleotide polymorphism in the <i>cholecystokinin type A</i>
19	receptor gene on growth traits in the Hinai-dori breed. The Journal of Poultry
20	<i>Science</i> 50 , 206-211.
21	Sakaguchi S., Sugino T., Tsumura Y., Ito M., Crisp M.D., Bowman D.M.J.S., Nagano A.J.,
22	Honjo M.N., Yasugi M., Kudoh H., Matsuki Y., Suyama Y., Isagi Y. (2015) High-
23	throughput linkage mapping of Australian white cypress pine (Callitris
24	glaucophylla) and map transferability to related species. Tree Genetics and Genomes
25	11,121.

1	Sasaki O., Odawara S., Takahashi H., Nirasawa K., Oyamada Y., Yamamoto R. K. Ishii., Y.
2	Nagamine., H. Takeda., E. Kobayashi. & Furukawa T. (2004) Genetic mapping of
3	quantitative trait loci affecting body weight., egg character and egg production in F_2
4	intercross chickens. Animal Genetics 35,188-194.
5	Suzuki S., Kobayashi M., Murai A., Tsudzuki M. & Ishikawa A. (2019) Characterization of
6	growth, fat deposition and lipid metabolism-related gene expression in lean and obese
7	meat-type chickens. The Journal of Poultry Science 56,101-111.
8	Tatsuda K. & Fujinaka K. (2001) Genetic mapping of the QTL affecting body weight in
9	chickens using a F ₂ family. <i>Poultry Science</i> 42 , 333-337.
10	Tsudzuki M. (2003) Japanese native chickens. In: The relationships between indigenous
11	animals and humans in the APEC Region (ed. by Chang H.L. & Huang Y.C.) pp.
12	91-116. The Chinese Society of Animal Science, Chinese Taipei.
13	van Goor A., Bolek K.J., Ashwell C.M., Persia M.E., Rothschild M.F., Schmidt C.J. &
14	Lamont S.J. (2015) Identification of quantitative trait loci for body temperature,
15	body weight, breast yield, and digestibility in an advanced intercross line of
16	chickens under heat stress. Genetics Selection Evolution 47, 96.

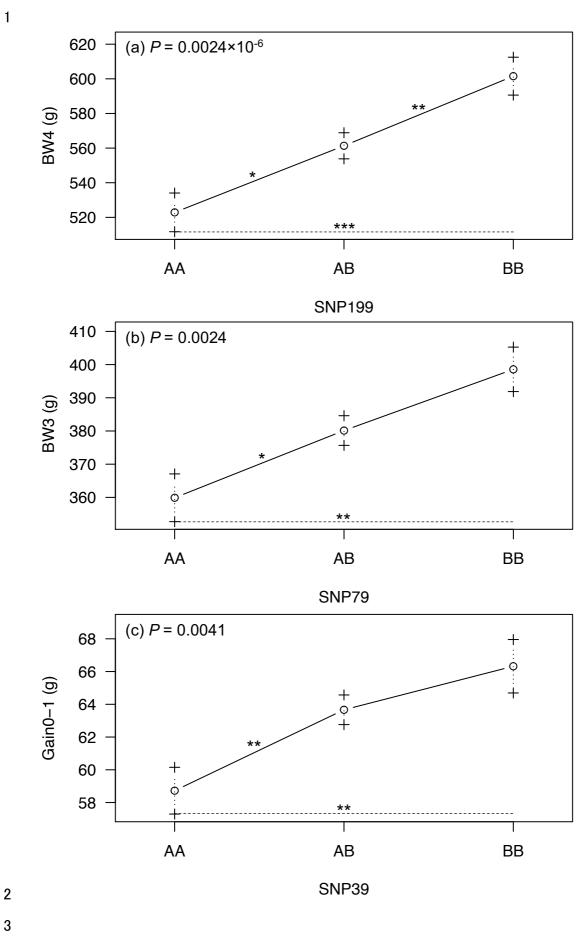
1 Figure legend

- 2 Figure 1 Genotype effect plots of the SNP markers nearest to the peaks of three QTL on
- **3** GGA4b, 2 and 1b affecting (a) body weight at 4 weeks of age (BW4), (b) body weight at 3
- 4 weeks of age (BW3) and (c) body weight gain at 0-1 weeks of age (Gain0-1), respectively.
- 5 Each dot with vertical bars shows mean \pm SE. *P* values were obtained from one-way
- 6 ANOVA. *P < 0.05, **P < 0.01, ***P < 0.001 refer to statistical differences between two
- 7 genotypes (Tukey's honestly significant difference test). A: NAG allele, B: WPR allele.

Trait ¹	GGA	Position ²	LOD	Nearest	CI ³	Additive	Dominant	% Var ⁵
ITall	UUA	rosition	LOD	marker	CI	effect ⁴	effect ⁴	70 v al
BW1	1b	26 (59.7)	3.6	SNP59	8-57 (52.0-61.9)	2.9±1.1	1.8±1.7	6.1
BW2	2	86 (117.3)	3.5	SNP79	68-287 (37.4-120.9)	6.0±2.1	-0.3±3.2	3.9
	4b	118 (65.1)	4.8*	SNP189	103-137 (55.8-64.9)	8.3 ±2.1	4.2±2.8	7.2
BW3	2	86 (117.3)	4.6*	SNP79	48-105 (105.6-125.2)	16.8±4.2	-1.9±7.0	6.6
BW3	4b	132 (66.3)	5.3*	SNP192	109-137 (57.4-64.9)	18.2±4.0	-0.6±6.4	7.8
BW4	4b	130 (65.7)	5.9*	SNP199	111-131 (59.0-65.6)	37.8±7.8	0.9±11.2	9.9
Gain0-1	1b	28 (59.5)	4.0*	SNP39	9-59 (51.1-61.6)	3.5±0.9	1.9±1.4	6.9
Gain2-3	2	84 (117.9)	3.5	SNP79	16-107 (104.9-143.8)	0.3±0.09	-0.1±0.1	4.9
	4b	130 (65.7)	3.9*	SNP199	7-137 (34.0-65.2)	0.3±0.09	-0.1±0.1	4.9
Gain0-4	4b	130 (65.73)	5.7*	SNP199	111-137 (57.2-58.4)	36.2±7.2	-1.6±12.1	9.6

Table 1 QTL mapped for early growth traits in the F₂ cross between NAG and WPR breeds

¹For an explanation of the trait abbreviations, see Materials and methods.

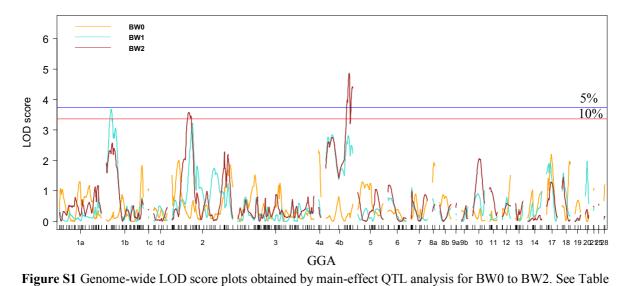

²Position in cM is based on our linkage map position (see Tables S1 and S2); Physical position in Mb (GRCg5 assembly) is given in parenthesis.
³Confidence interval in cM, which is a 1.8-LOD drop of the peak LOD score; The physical interval in Mb is given in parenthesis.
⁴The additive and dominant effects with positive signs indicate that the WPR-derived allele increased the trait value.

⁵Percentage of the trait variance explained by the QTL.

* Significant at genome-wide 5% levels; no star, suggestive at genome-wide 10% levels (see Table S3).

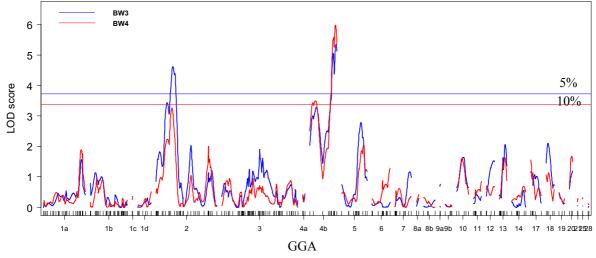
1 Legends for Supporting information

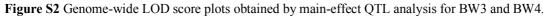
- 2 Fig. S1 Genome-wide LOD score plots obtained by main-effect QTL analysis for BW0 to
- **3** BW2. See Table S3 for details of the 5% and 10% threshold levels.
- 4 Fig. S2 Genome-wide LOD score plots obtained by main-effect QTL analysis for BW3 and
- 5 BW4.
- 6 Fig. S3 Genome-wide LOD score plots obtained by main-effect QTL analysis for Gain0-1 to
- 7 Gain2-3.
- 8 Fig. S4 Genome-wide LOD score plots obtained by main-effect QTL analysis for Gain3-4
- 9 and Gain0-4.
- 10 Fig. S5 Genome-wide LOD score plots obtained by main-effect QTL analysis for FI3-4 and
- 11 feed FCR3-4.
- 12 **Table S1** SNP markers developed by RAD-seq analysis.
- 13 **Table S2** The genetic linkage map for RAD-seq based SNP markers.
- 14 Table S3 Genome-wide significance threshold levels used for main-effect QTL analyses.

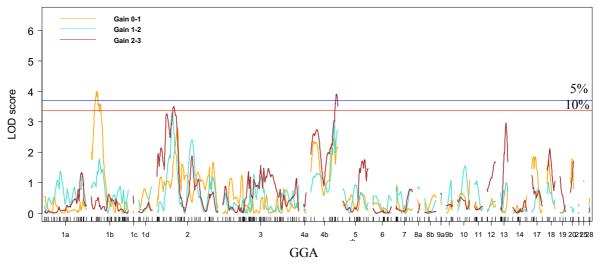


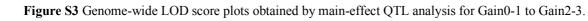
Supporting information

- 2 Title: QTL analysis for early growth in an intercross between native Japanese Nagoya and White Plymouth
- 3 Rock chicken breeds using RAD sequencing-based SNP markers
- 4 Journal name: Animal Genetics
- 5 Author names: B. H. Essa*, S. Suzuki*, A. J. Nagano[‡], S. Z. Elkholya[§], A. Ishikawa*
- 6 ^{*} Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
- 7 [‡] Faculty of Agriculture, Ryukoku University, Otsu, Shiga 520-2194, Japan
- 8 [§] Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine,
- 9 Damanhour University, Damanhour 22511, Egypt


10


S3 for details of the 5% and 10% threshold levels. See Table S3 for details of the 5% and 10% threshold levels.


11 12 13 14



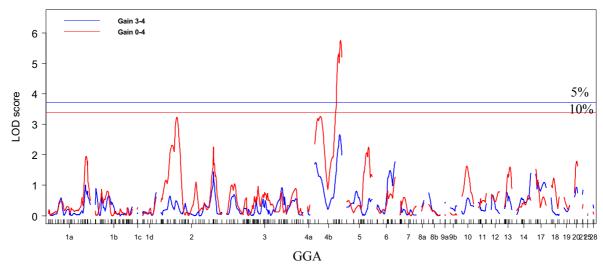
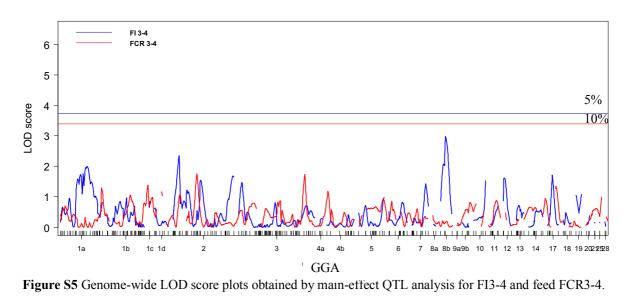



Figure S4 Genome-wide LOD score plots obtained by main-effect QTL analysis for Gain3-4 and Gain0-4.

SNP		Map posi	tion ¹
marker	GGA	cM	bp
SNP24	1a	0	188529007
SNP50	1a	4	188217366
SNP26	1a	11.6	184822994
SNP66	1a	20.3	184047694
SNP31	1a	21.9	182401284
SNP4	1a	43.2	180623288
SNP27	1a	53.7	177537693
SNP29	1a	58.1	176358715
SNP51	1a	72.5	174644104
SNP19	1a	84.7	172187165
SNP40	1a	89.1	170395012
SNP30	1a	90.4	170233092
SNP67	1a	108	166612632
SNP21	1a	118.8	160002151
SNP1	1a	125.1	154698065
SNP62	1a	130.5	150333378
SNP74	1a	133.9	145701371
SNP55	1a	147.7	142911362
SNP6	1a	172	141849171
SNP69	1a	186.6	141412938
SNP15	1a	194.3	138247899
SNP75	1a	201.9	137421398
SNP36	1a	209.2	134051928
SNP71	1a	216.6	132587138
SNP48	1a	219.1	132379492
SNP18	1a	228.9	128107746
SNP43	1a	229.8	126742928
SNP22	1a	230.7	126699171
SNP65	1a	231.3	126667668
SNP17	1a	233.3	126633885
SNP10	1a	235.7	125220291
SNP33	1a	248.2	125107921
SNP11	1b	0	64926066
SNP56	1b	4.5	62635352
SNP59	1b	25.5	59752251
SNP39	1b	33.5	59156584
SNP60	1b	35.5	58547607
SNP2	1b	40.5	57179637
SNP34	1b	48.4	54514843
SNP5	1b	57.5	51944967
SNP63	1b	73.1	48146326

1 Table S1 SNP markers developed by RAD-seq analysis.

SNP70	1b	87.1	40577508
SNP61	1b	88	40277266
SNP42	1b	89.3	39516492
SNP77	1b	90.9	38744188
SNP28	1b	99	35672939
SNP9	1b	107.6	33563594
SNP8	1b	109.2	33387711
SNP53	1b	111.1	32398147
SNP38	1b	112.6	31240649
SNP68	1b	130.4	24346857
SNP57	1b	136.3	24022782
SNP23	1b	139.1	23105198
SNP16	1b	151	15767568
SNP7	1b	152.4	15627141
SNP49	1b	159.8	15396650
SNP73	1b	162.6	14650697
SNP14	1b	171.5	12576498
SNP46	1b	174.4	12533265
SNP76	1b	175.1	11467670
SNP45	1b	179.7	7251124
SNP12	1b	184.3	7183185
SNP32	1b	192.5	7137113
SNP37	1b	195.4	4728608
SNP58	1b	201.7	3652955
SNP13	1b	209.5	2781210
SNP52	1b	209.8	2599796
SNP25	1b	216.3	1881844
SNP47	1c	0	191978687
SNP72	1c	3.3	189144934
SNP3	1d	0	85162684
SNP44	1d	5.2	86152831
SNP54	1d	9	89911362
SNP20	1d	29.5	100180504
SNP64	1d	42.4	105447559
SNP41	1d	53.5	109858283
SNP35	1d	73.1	126890319
SNP84	2	0	147691949
SNP93	2	5.9	147151247
SNP105	2	8.8	147104297
SNP117	2	10.4	146506923
SNP114	2	12.2	145434985
SNP82	2	16.3	139176582
SNP99	2	16.3	139167127
SNP92	2	37	128153753

SNP98	2	43.1	126890319
SNP116	2	53.9	126310459
SNP81	2	75.4	118199177
SNP78	2	77.5	118016447
SNP108	2	79.8	117917805
SNP101	2	87.6	115169393
SNP79	2	107	104974103
SNP104	2	119	98570448
SNP88	2	123	98166312
SNP111	2	131.9	91321288
SNP96	2	137.6	89566973
SNP112	2	139.1	89124513
SNP91	2	143.7	85975429
SNP107	2	153	77435448
SNP90	2	153.2	77152879
SNP118	2	155.4	75885815
SNP85	2	180	65602878
SNP102	2	196.4	62576523
SNP109	2	211.1	56553363
SNP106	2	212.6	54862890
SNP113	2	239.8	46791949
SNP100	2	251.5	45385043
SNP110	2	260.5	42579119
SNP94	2	283.3	36167156
SNP80	2	304.3	30415070
SNP97	2	307	26956392
SNP83	2	307	26846902
SNP115	2	307.3	26839062
SNP87	2	308.5	25032485
SNP95	2	319.4	23632314
SNP86	2	331	21490257
SNP119	2	331.4	21237010
SNP103	2	355.6	7457342
SNP153	3	0	6310854
SNP143	3	2.8	7250634
SNP134	3	12.5	9136024
SNP139	3	24.6	12392569
SNP164	3	26.2	12412446
SNP152	3	33.1	12592496
SNP131	3	49.9	17231980
SNP124	3	78.9	17356889
SNP170	3	83.9	17432803
SNP182	3	90.2	18166326
SNP140	3	97.4	19189813

SNP147	3	97.4	19259875
SNP158	3	98.6	20790598
SNP155	3	101.5	22951608
SNP129	3	101.5	22952143
SNP163	3	102.4	23091810
SNP166	3	103.3	23300980
SNP150	3	105.8	23736395
SNP156	3	108.2	24179162
SNP162	3	122.6	24520699
SNP126	3	146.3	25373630
SNP171	3	153.1	25469780
SNP128	3	154	25557452
SNP145	3	154.3	25756876
SNP172	3	158.4	27271535
SNP178	3	158.7	27378314
SNP136	3	160.3	27395405
SNP177	3	166.2	29139253
SNP141	3	172.5	31663229
SNP142	3	174.5	31843285
SNP138	3	181.4	34568798
SNP146	3	184.9	35133008
SNP122	3	187.3	36317764
SNP149	3	199.9	37608247
SNP176	3	222.4	38991459
SNP130	3	228.9	39400202
SNP174	3	234.3	40887363
SNP148	3	236.4	41275478
SNP169	3	236.4	41288048
SNP135	3	247.8	44229889
SNP161	3	257.6	44532769
SNP137	3	261.1	45660592
SNP175	3	266.3	46829204
SNP154	3	276.4	53760550
SNP133	3	288.5	60378396
SNP173	3	296.4	66338586
SNP183	3	317.5	71945934
SNP179	3	325.3	72858233
SNP167	3	336.8	74233093
SNP157	3	338.2	74988013
SNP160	3	350.6	77215270
SNP120	3	353.7	78557281
SNP132	3	354.1	78557288
SNP184	3	356.1	79053114
SNP121	3	364.6	82710869

SNP159	3	367.2	83984876
SNP123	3	376.5	84007977
SNP185	3	405.8	96323267
SNP144	3	421.2	97325055
SNP168	3	433.5	102548378
SNP180	3	435.8	103281659
SNP125	3	438	104264153
SNP181	3	448.7	105138379
SNP127	3	459.8	105598672
SNP165	3	473.5	107141932
SNP195	4a	0	15712900
SNP198	4a	2.5	25811709
SNP196	4a	6.7	28079214
SNP201	4a	15.2	29460902
SNP197	4b	0	32416143
SNP190	4b	19.5	48047145
SNP188	4b	68.1	52950094
SNP187	4b	96.1	53969904
SNP191	4b	104.6	56995168
SNP200	4b	111.7	58550718
SNP194	4b	114.9	65109360
SNP189	4b	126.1	65360693
SNP193	4b	131.6	65890271
SNP186	4b	132.8	67179811
SNP199	4b	133.7	67642813
SNP192	4b	148.3	67958652
SNP212	5	0	9024864
SNP209	5	34.2	17743789
SNP206	5	35.1	18079274
SNP210	5	60.7	28723038
SNP202	5	71.8	34150822
SNP207	5	76.4	35498039
SNP213	5	80.3	37542089
SNP205	5	83.6	38100452
SNP204	5	90.4	41988375
SNP208	5	91	42355761
SNP214	5	96.9	44620396
SNP203	5	112.5	51197747
SNP211	5	126.6	54260266
SNP215	5	136.6	55962744
SNP221	6	0	758313
SNP222	6	3.1	1191556
SNP216	6	31.8	4608358
SNP220	6	48.9	11101144

SNP223	6	50.9	12273931
SNP224	6	54.4	16744103
SNP218	6	57.5	17833005
SNP219	6	71.2	24350804
SNP226	6	73.1	25503926
SNP225	6	81.5	26057885
SNP217	6	101.6	27986171
SNP230	7	0	13186679
<i>SNP227</i>	7	2	14415673
SNP233	7	2.9	14861208
SNP235	7	4.1	15928304
SNP228	7	7.3	16732641
SNP240	7	10.2	18070929
SNP231	7	11.2	18091122
SNP238	7	13.8	20438423
SNP236	7	27.9	24753436
SNP241	7	50.7	30968142
SNP239	7	54.4	31505509
SNP234	7	61.7	32176504
SNP232	7	79.7	34360383
SNP229	7	95	36535345
SNP242	8a	0	23503923
SNP246	8a	0.7	23567289
SNP244	8a	12.6	24729017
SNP248	8b	0	9556381
SNP245	8b	22.2	6912802
SNP243	8b	27.5	6105295
SNP247	8b	61.4	3516252
SNP252	9a	0	23803751
SNP253	9a	4.3	21673903
SNP250	9b	0	13999328
SNP249	9b	25.1	12969358
SNP251	9b	27.5	12044546
SNP255	9b	31.3	9640230
SNP254	9b	38	9374051
SNP257	10	0	19769452
SNP260	10	12.2	16991424
SNP256	10	37.7	12804450
SNP259	10	47	10315551
SNP258	10	65.2	3463658
SNP265	11	0	12598781
SNP261	11	8.8	11999569
SNP262	11	11.5	10555547
SNP264	11	15.5	9929887

<i>SNP267</i>	11	19	9818042
SNP266	11	41.3	5084253
SNP263	11	47.7	1302548
SNP272	12	0	17906753
SNP268	12	3.2	17392924
SNP270	12	24.1	10866961
SNP269	12	42.3	7131468
SNP271	12	43	7037075
SNP279	13	0	6167860
SNP283	13	3.8	6216050
SNP274	13	5.7	6271305
SNP280	13	6.4	6515882
SNP273	13	7	6529782
SNP275	13	7.6	6685366
SNP284	13	8.2	6824887
SNP282	13	14.8	8672979
SNP278	13	26.3	10592711
SNP281	13	29.5	11230051
SNP277	13	40.5	11415848
SNP276	13	60.3	14198790
SNP287	14	0	13913008
SNP290	14	25.7	12093590
SNP285	14	30.5	9893128
SNP286	14	31.4	9631686
SNP289	14	34.5	9122075
SNP292	14	46.4	7991276
SNP288	14	70.7	2337145
SNP291	14	79.7	1042148
SNP298	17	0	6702510
SNP299	17	8.3	5172158
SNP294	17	12.7	4521421
SNP296	17	13	4520878
SNP300	17	13.7	4461256
SNP295	17	26.7	3145495
SNP297	17	58.8	2534867
SNP302	18	0	199806
SNP301	18	7.8	1833174
SNP303	18	15.5	2670691
SNP304	18	39.8	5561978
SNP305	18	47.2	7501508
SNP306	19	0	6349765
SNP307	19	16.7	4584070
SNP308	19	30.4	3796447
SNP310	20	0	10589473

SNP309	20	9.9	8667919	
SNP311	20	18.9	8611136	
SNP312	21	0	1166041	
SNP313	21	2.1	1373782	
SNP316	25	0	1107730	
SNP317	25	1.3	1973033	
SNP319	28	0	1791874	
SNP320	28	5.1	2293698	

¹ Map positions are based on the chicken RefSeq GRCg5.

1	
2	

Table S2 The genetic linkage map for RAD-seq based SNP markers
--

Chr No. of markers	No. of	Length (cM)	Marker spacing (cM) 4			
	markers	Length (CWI)	Average	Maximum	Minin	num 5
1a	32	212.8	6.9	20.7	0.2	6
1b	36	188.7	5.4	20.8	0.1	7
1 c	2	2.6	2.6			8 9
1d	7	68.5	11.4	19.2	1.6	10
2	41	309.6	7.7	24.1	0.1	11
3	65	387.5	6.1	27.0	0.1	12
4a	4	11.2	3.7	7.9	0.3	13 14
4b	12	137.2	12.5	47.1	1.3	15
5	14	129.2	9.9	34.9	0.2	16
6	11	92.7	9.3	28.6	0.9	17
7	14	83.2	6.4	20.5	0.3	
8a	3	12.0	6.0	11.8	0.7	
8b	4	57.1	19.0	32.7	2.7	
9a	5	31.7	7.9	23.2	1.2	
9b	2	3.6	3.6			
10	5	62.0	15.5	26.2	5.9	
11	7	39.4	6.6	21.3	1.4	
12	5	42.0	10.5	21.1	0.2	
13	12	37.8	3.4	10.8	0.2	
14	8	71.0	10.1	24.9	0.3	
17	7	53.8	9.0	29.6	0.1	
18	5	41.1	10.3	21.5	4.4	
19	3	27.8	13.9	14.9	9.4	
20	3	17.0	8.5	8.7	5.7	
21	2	1.4	1.4			
25	2	0.5	0.5			
28	2	4.4	4.4			
Overall	313	2125.8	7.4	47.1	0.1	

Trait	5%	10%	
BW0	3.7	3.4	
BW1	3.7	3.3	
BW2	3.7	3.3	
BW3	3.7	3.3	
BW4	3.7	3.3	
Gain0-1	3.7	3.3	
Gain1-2	3.7	3.4	
Gain2-3	3.7	3.3	
Gain3-4	3.7	3.2	
Gain0-4	3.7	3.3	
FI3-4	3.7	3.4	
FCR3-4	3.7	3.3	

1 Table S3 Genome-wide significance threshold levels used for main-effect QTL analyses.