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Abstract 

In this study, we investigate the bifurcation and deformation during the evolution of 

periodic patterns on a gel film bonded to a soft substrate. 3D finite element analysis is 

performed using an inhomogeneous field theory for polymeric gels. Step-by-step 

eigenvalue buckling analysis is conducted to explore not only the first bifurcation, but 

also sequential bifurcations on bifurcated paths. When the hexagonal dimple mode 

occurs as the first bifurcation, the second bifurcation consists of rectangular 

checkerboard modes in three symmetric directions. The resulting deformation patterns 

are in good agreement with experiments and, surprisingly, are analogous to the in-plane 

buckling behavior of hexagonal honeycombs. Uniaxial, biaxial, and equibiaxial 

(flower-like) patterns are produced by the periodic arrangements of distorted dimples. 

The third and fourth bifurcations cause the coalescence of the selected dimples. This 

reveals the occurrence of the rectangular checkerboard modes at the second bifurcation 

to be the missing link in the pattern evolution from hexagonal dimples to herringbone 

and labyrinth patterns. 
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1. Introduction 

Highly ordered patterns with distinctive features emerge on the surface of stiff films 

bonded on soft substrates when buckling is caused by compressive stress in the film 

(Bowden et al., 1998; Huck et al., 2000; Yoo et al., 2002). Although classical buckling 

theory predicts simple wavelike patterns, such as stripe, checkerboard, and hexagonal 

patterns, associated with a critical stress (Allen, 1969), those observed are more 

complex such as herringbone, lamellar, and labyrinth patterns (Chen and Hutchinson, 

2004; Audoly and Boudaund, 2008a). In experiments using gel films (Breid and Crosby, 

2009,2011; Guvendiren et al., 2009,2010a,2010b), the emerging patterns were observed 

to evolve gradually as the compressive stress increased beyond the critical stress (i.e., as 

the overstress increased), because the stress was remotely controlled by the degree of 

swelling in the gel film. Specifically, hexagonal dimple patterns were observed to 

appear at small states of the overstress, whereas herringbone, lamellar, and labyrinth 

patterns appeared at large states of the overstress. Further, distinctive patterns, such as 

cage-, brick-, and peanut-like patterns, also appeared at intermediate states. According 

to Breid and Crosby (2009), the cage-like pattern consists of six coalesced pairs of 

dimples in a hexagon surrounding a single dimple. It is no doubtful that the mechanisms 

and hierarchical structures of the pattern evolutions should be investigated and 

understood by analytical and numerical approaches.  

 

To understand the occurrence and evolution of the herringbone pattern, comparative 

analyses were performed by investigating the changes of the elastic energy and the 

buckling amplitude of the competing patterns, including herringbone, checkerboard, and 

hexagonal patterns, as a function of the overstress (Chen and Hutchinson, 2004; Cai et 

al., 2011). Chen and Hutchinson (2004) conducted postbuckling finite element analysis 

using a small initial imperfection prescribed by the surface deflection of each pattern, 

demonstrating that the herringbone pattern is dominant at high overstress. Cai et al., 

(2011) drew the same conclusion using an analytical upper-bound method. Further, they 

showed that at low overstress, the checkerboard pattern is dominant, whereas the 

hexagonal dimple pattern becomes dominant if the existence of an initial curvature of 

the film is assumed. This explains why the hexagonal dimple pattern is much more 

likely to be observed in experiments (Breid and Crosby, 2009,2011; Guvendiren et al., 
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2009,2010a,2010b). These approaches are simple because they do not require the 

analysis of bifurcation points and modes. However, as mentioned by Chen and 

Hutchinson (2004), they do not elucidate how the herringbone pattern emerges at high 

overstress as the minimum energy pattern. The interactions of bifurcation modes caused 

by sequential bifurcations on bifurcated paths should be considered to elucidate the 

deformation process leading to the herringbone pattern.  

 

Audoly and Boudaoud (2008a,2008b,2008c) carried out linear stability analysis of 

the straight-stripe buckling mode and pointed out that second bifurcations lead to the 

occurrence of undulating-stripe, varicose, checkerboard, and hexagonal buckling modes. 

They first showed that, although the straight-stripe mode is dominant at the first 

bifurcation under biaxial compressive stress in the film, the checkerboard mode 

becomes dominant under equibiaxial compression. This is because equibiaxial 

compression is in-plane and isotropic, and the checkerboard mode occurs through the 

superposition of two perpendicular sets of straight stripes (cf. hexagonal patterns, which 

are obtained by the superposition of three sets of straight stripes). By contrast, under 

biaxial but not equibaxial compression, the second bifurcation occurs with the 

undulating-stripe mode as the dominant buckling mode. Because the equibiaxial 

compressive stress of the film may not be perfectly isotropic owing to the presence of 

imperfections, the undulating-stripe mode can occur at the second bifurcation. Thus, the 

occurrence of the undulating-stripe mode is connected with the evolution of a 

herringbone pattern on the bifurcated path because the former mode can be regarded as 

a smooth and essential buckling mode leading to the evolution of the latter. These 

studies highlight the great importance of exploring not only the first bifurcation, but 

also sequential bifurcations occurring on bifurcated paths.  

 

The detection of bifurcation points on a bifurcated path is still a challenge in 3D 

nonlinear finite element analysis because the bifurcation points are strongly affected by 

geometric and material nonlinearities, which are enhanced by pattern evolution (Xu et 

al., 2014,2015). In addition, pattern evolution is achieved by losing symmetry owing to 

multiple bifurcations. Thus, it is essential to analyze the multiplicity of bifurcations 

(Ohno et al., 2002; Okumura et al., 2004). To avoid bifurcation analysis, Chen and 
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Hutchinson (2004) and Cai et al., (2011) performed postbuckling analysis using the 

small initial imperfection prescribed by the predetermined pattern; in other studies, 

small random perturbations have been used as the small initial imperfection (Tallinen 

and Biggins, 2015; Budday et al., 2015, Zhao et al., 2019). By contrast, Xu et al., 

(2014,2015) analyzed sequential bifurcations on the bifurcated path of a film/substrate 

system using an approach based on the asymptotic numerical method (Damil and 

Potier-Ferry, 1990). Their approach introduces a fictitious perturbation force applied to 

a deformed state given as the base state to detect bifurcation points and modes on 

bifurcated paths. Okumura and Kasugai (2016) also proposed a similar but simpler 

approach using the finite element software Abaqus, which was referred to as 

step-by-step eigenvalue buckling analysis (Okumura et al., 2018). Introducing a dummy 

loading parameter into eigenvalue buckling analysis (using the BUCKLE option in 

Abaqus) enabled the analysis of bifurcation not only on bifurcated paths but also using 

the inhomogeneous field theory for polymeric gels, which is implemented into the 

user-defined subroutine UHYPER in Abaqus (Hong et al., 2009). Thus, the step-by-step 

eigenvalue buckling analysis using the inhomogeneous field theory for polymeric gels 

must elucidate the complex pattern evolutions observed in experiments (Breid and 

Crosby, 2009,2011; Guvendiren et al., 2009,2010a,2010b).  

 

In this study, we investigate the bifurcation and deformation during the evolution of 

periodic patterns on a gel film bonded to a soft substrate. Section 2 briefly describes the 

inhomogeneous field theory for polymeric gels (Hong et al., 2009), which reproduces 

the swelling process of the gel film in 3D finite element analysis. In Section 3, we detail 

the procedures of eigenvalue buckling and postbuckling analyses (i.e., step-by-step 

eigenvalue buckling analysis; Okumura et al., (2016,2018)). Section 4 is devoted to 

numerical modeling. We focus on the hexagonal dimple mode at the first bifurcation 

because this pattern was observed in experiments (Breid and Crosby, 2009,2011; 

Guvendiren et al., 2009,2010a,2010b). This restriction prescribes the ratio of the 

in-plane lengths of periodic units. We consider the dominant wavelength (Allen, 1969; 

Chen and Hutchinson, 2004) by preparing a variety of periodic units with different 

lengths. Section 5 presents the results of the analysis obtained at the second bifurcation 

point and on the bifurcated paths. We find that the second bifurcation consists of 
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rectangular checkerboard modes in three symmetric directions, leading to a good 

understanding of the evolution of cage- and brick-like patterns (Breid and Crosby, 

2009,2011). The resulting deformation patterns on the bifurcated paths are surprisingly 

analogous to the in-plane buckling behavior of hexagonal honeycombs (Gibson and 

Ashyby, 1997; Pakpa and Kyriakides, 1999; Ohno et al., 2002; Combescure et al., 

2016,2020); that is, uniaxial, biaxial, and equibiaxial (flower-like) patterns are 

reproduced by the periodic arrangements of distorted dimples. Section 6 shows the 

results after the second bifurcation. The third and fourth bifurcations induce coalescence 

of the selected dimples. This reveals that the occurrence of the rectangular checkerboard 

modes at the second bifurcation is the missing link in the evolution from the hexagonal 

dimple pattern to the herringbone and labyrinth patterns. Finally, conclusions are 

presented in Section 7.  

 

 

2. Inhomogeneous field theory 

This section briefly describes the inhomogeneous field theory of polymeric gels in 

equilibrium (Hong et al., 2009). This theory considers that a polymer network is in 

contact with a solvent and subjected to mechanical loads and geometric constraints. 

When the stress-free, dry network is taken as a reference state, the deformation gradient 

of the network, F, is defined as Fij=dxi(X)/dXj, where Xj and xi(X) are the network 

coordinates of a gel system in reference and deformed states, and C(X) is defined as the 

concentration of solvent molecules at a point in the gel system. Because the two fields 

xi(X) and C(X) characterize an equilibrium state, the free-energy density of the gel, W, 

is assumed to be a function of F and C, (i.e., W(F, C)).  

 

According to the Frenkel–Flory–Rehner hypothesis (Frenkel, 1940; Flory and 

Rehner, 1943), W(F, C) is assumed to consist of the sum of two terms associated with 

polymer stretching (i.e., the elastic strain energy, We(F)) and the mixing of polymer and 

solvent molecules (i.e., the mixing energy, Wm(C)). When the elastic and mixing 

contributions are physically derived from the Gaussian network theory (i.e., a 

Neo-Hookean solid model) and the Flory–Huggins solution theory, respectively (Flory 

and Rehner, 1943), the free energy function is written as  
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e m
1( 3 2log ) log 1

2 1
NkT kTW W W I J C

C C
χυ

υ υ υ
  = + = − − − + +  +  

,  (1) 

where I =FijFij and J =det F are invariants of the deformation gradient, N is the number 

of polymeric chains per reference volume, kT is the absolute temperature in the unit of 

energy, υ is the volume per solvent molecule, and χ is the Flory–Huggins interaction 

parameter that characterizes the enthalpy of mixing. Eq. (1) shows the explicit form of 

W as a function of F and C.  

 

If dxi and dC are considered to be arbitrary variations of xi and C from an 

equilibrium state, the virtual work principle gives the following equilibrium equation in 

which the change of the free energy of the gel equals the sum of the work done by the 

external mechanical force and external solvent:  

i i i iV A V V
WdV t x dA q x dV CdVd d d µ d= + +∫ ∫ ∫ ∫ ,  (2) 

where V is the reference volume and A is the reference surface. The first and second 

terms on the right-hand side are the mechanical work done by surface traction ti and 

body forces qi, respectively, and the third term represents the work done by the external 

solvent. Here, µ is the chemical potential of the external solvent, and is equivalent to 

that in the gel; that is,  

W
C

µ ∂
=

∂
.  (3) 

 

A Legendre transformation allows W(F, C) to be transformed into another form 

Ŵ W Cµ= − ,  (4) 

which is defined as a function of F and µ (i.e., W(F, µ)). The combination of Eqs. (2) 

and (4) leads to (Hong et al., 2009) 

ˆ
i i i iV A V

WdV t x dA q x dVd d d= +∫ ∫ ∫ .  (5) 
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When the gel is in an equilibrium state, the chemical potential of the solvent molecules 

in the gel is homogeneous and equals the chemical potential of the external solvent, µ. 

Consequently, µ is regarded as a state variable, and the equilibrium condition in Eq. (5) 

takes the same form as that for a hyperelastic solid. 

 

Assuming the incompressibility of a network of a polymer and liquid solvent, the 

volume of the gel is expressed as the sum of the volume of the dry network and that of 

the solvent (Treloar, 1975; Hong et al., 2009). The volume swelling ratio of the gel is 

equal to J and is expressed as  

1J Cυ= + .  (6) 

Using Eqs. (1), (4) and (6), the free energy function can be rewritten as  

ˆ ( 3 2log ) ( 1) log ( 1)
2 1

NkT kT JW I J J J
J J

χ µ
υ υ

 = − − − − + − − − 
,  (7) 

which takes an explicit form as a function of F and µ, and acts as a free-energy function 

for a compressible hyperelastic material because of the volumetric change induced by 

solvent absorption.  

 

The swelling process is reproduced by increasing the value of µ, because when J =1, 

µ =−∞, and equilibrium swelling (J >1) is approximately expressed as µ =0 (Hong, 

2009; Kang and Huang, 2010a,2010b; Okumura et al., 2015). To avoid the singularity of 

µ =−∞ (Hong et al., 2009, Kang and Huang, 2010a), the free swelling state 

characterized by the homogeneous volume swelling ratio J0 (>1) is used as a reference 

state (Hong et al., 2009). The homogenous deformation gradient is expressed as  

0 1/3
0ij ijF J d= ,  (8) 

where dij is the Krӧnecker delta. In addition, the stress of the reference state is assumed 

to be homogeneously zero. Using Eqs. (1), (3), (6), and (8), a finite value of the 

chemical potential of the reference state, µ0, is obtained from 
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0 0
1/3 2
0 0 0 0 0

11 1 1log JN
kT J J J J J
µ χυ

  −
= − + + + 

 
. (9) 

 

Eq. (8) allows the total deformation gradient to be expressible as 0
ij ik kjF F F′= , 

leading to 2/3
0I J I ′=  and 0J J J ′= . Using the free swelling state with J0 as the 

reference state, the free energy density of Eq. (7) is modified as 0
ˆ ˆ /W W J′ = ; that is:  

2/3 1 10
0 0 0 02

0 0 0

ˆ ( 3 2log( )) ( ) log ( )
2 1

J JNkT kTW J I J J J J J J
J J J J J

χ µ
υ υ

− − ′
′ ′ ′ ′ ′= − − − − + − − ′ ′− 

, 

 (10) 

Thus, the swelling process is reproduced by increasing the value of µ from µ0 to 0. 

Because we employ the finite element package Abaqus, Eq. (10) is implemented into 

the user-defined subroutine UHYPER and the value of µ is passed as an additional state 

variable. Although the two fields of the stress and volume swelling ratio are 

homogenous at the reference state (cf. Kang and Huang, 2010a), the two fields can 

become inhomogeneous via Abaqus analysis (Hong et al., 2009). It is noted that Eq. (1) 

is not always convex, especially depending on χ. However, the incremental analysis in 

Abaqus using Eq. (4) (i.e., Eq. (10)) searches and finds the solution around the current 

configuration using relatively small increments so that the occurrence of unexpected 

solutions is excluded in Abaqus analysis. 

 
 

3. Procedures of eigenvalue buckling and postbuckling analyses 

This section describes the procedures of eigenvalue buckling and postbuckling 

analyses. Step-by-step eigenvalue buckling analysis is used to detect bifurcation points 

on bifurcated paths (Okumura et al., 2016,2018). As explained below, this analysis is 

conducted by introducing a dummy loading parameter into the eigenvalue buckling 

analysis (i.e., using the BUCKLE option in Abaqus, Appendix A). This introduction 

allows bifurcation analysis not only on bifurcated paths but also using the 

inhomogeneous field theory of polymeric gels (Section 2). Although this is conceptually 
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similar to the work of Xu et al., (2014, 2015), the procedure of Okumura et al., 

(2016,2018) can be implemented more simply.  
 

First, we consider the eigenvalue buckling problem solved by the following finite 

element equations,  

0{ ( ) ( , )}i iλ ∆+ =K P K P Q 0φ ,   (11) 

which is available using the BUCKLE option in Abaqus (Appendix A). In Eq. (11), 

K0(P) is the stiffness matrix at the base state, where P is the vector of nodal forces 

caused by preloads acting in the base state. By contract, K∆(P,Q) is the differential 

stiffness matrix resulting from the incremental loading pattern Q, which is the vector of 

nodal forces caused by incremental loads added at the base state (Appendix A). Thus, 

K0(P) includes the effects of the geometric and material nonlinearities caused by the 

preloads, whereas K∆(P,Q) is obtained by linear perturbation analysis when the 

incremental loads (i.e., Q) are considered at the base state. Here, λi and φi are the 

eigenvalues (i.e., the multipliers of Q) and the corresponding eigenvectors (i.e., the 

corresponding buckling modes), where i indicates the i-th buckling mode and φi are 

normalized such that the maximum displacement component is 1. 

 

When the same loads are considered to the preloads and the incremental loads, Eq. 

(11) shows that the critical buckling loads are approximately estimated by extrapolation 

using Q from the base state described by P. When 0det{ ( ) ( , )} 0iλ ∆+ =K P K P Q  is 

checked by changing the value of λi, the critical buckling loads are predicted as P+λiQ. 

If strong geometric and material nonlinearities appear during λiQ, the predictions 

become less accurate as the value of λi increases from 0 to a large value. By contrast, if 

the adjusted magnitude of P allows the resulting base state to be at a buckling point, the 

critical buckling load is just expressed by P, removing the need of extrapolation of Q. In 

this case, the effects of the geometric and material nonlinearities are included in the 

base state. Thus, accurate predictions are expected, although the magnitude of P must be 

adjusted by repeating step-by-step analysis. At least the minimum eigenvalue, λ1, should 

be zero in Eq. (11). If multiple bifurcations are assumed as λi =0 (i=1,2,3,…,k), Eq. (11) 

is simply reduced to  



11 
 

0 ( ) i =K P 0φ  when λi =0   (i=1,2,3,…,k).  (12) 

Here, k is the multiplicity of bifurcations. Eq. (12) results in det K0(P) =0, which is the 

typical equation used to find the bifurcation points (Hill, 1958; Ohno et al., 2002; 

Okumura et al., 2004).  

 

The inhomogeneous field theory for polymeric gels provides the chemical potential, 

µ, as the loading parameter that reproduces the swelling process (Section 2); that is, the 

increase of µ is expected to be available to generate P and Q. However, it is not 

available as Q because K∆(P,Q) is obtained by linear perturbation analysis and the 

increase of µ is reflected only via the UHYPER (Appendix A; Abaqus 6.14; Okumura 

and Kasugai, 2016). For this reason, the variable of µ is only used to generate P as a 

function of µb (i.e., P(µb)), where µb is the value of µ at a base state. By contrast, an 

alternative variable (i.e., a dummy loading parameter) is needed to generate Q to mimic 

the volumetric increase caused by the increase of µ.  

 

To introduce a dummy loading parameter, we use the isotropic thermal expansion 

caused by the increase of temperature. The thermal expansion is modeled as α∆T, where 

α is the thermal expansion coefficient and ∆T is the increase of temperature. The 

thermal expansion is considered to generate Q in the eigenvalue buckling analysis in 

Abaqus. When the value of α is used as the incremental load, Q is a function of µb and 

α (i.e., Q(µb,α)) because Q is solved by considering the incremental load α at the base 

state prescribed by µb in linear perturbation analysis. The eigenvalues, λi, are directly 

associated with the increase of temperature, ∆Ti, which is used as the dummy loading 

parameter. Thus, the critical buckling loads are expressed as P(µb)+∆Ti Q(µb,α). In this 

case, Eqs. (11) and (12) are rewritten as  

0 b b{ ( ) ( , )}i iTµ µ α∆+ ∆ =K K 0φ ,  (13) 

0 b( ) iµ =K 0φ  when ∆Τi =0   (i=1,2,3,…,k).  (14) 
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Although the thermal expansion is similar to the expansion due to swelling, the 

former is homogeneous as a function of temperature, whereas the latter can become 

inhomogeneous as a function of the chemical potential (Hong et al., 2009). To detect 

accurate bifurcation points, the value of µb must be increased to decrease the lowest 

eigenvalue, ∆T1, to 0. Thus, eigenvalue buckling analysis (Eq. (13)) is performed using 

individual base states by the step-by-step increases of µ. The base state with ∆Τ1=0 (in 

reality, it approximates zero) is regarded as the buckling point described by Eq. (14). We 

take the value of µ at this base state as the critical value of µ. The deviations from the 

dummy loading parameter of ∆Ti as well as from extrapolation by Q(µb,α) from the 

base state are canceled by searching for the critical point expressed by Eq. (14). The 

multiplicity of bifurcations, k, is estimated by comparing ∆Τi (i=2,3,4,…) with ∆Τ1 at 

the critical base state. The multiple bifurcations may cause a loss of symmetry of the 

base state, such that the value of k can also be determined by checking the buckling 

modes, φi (i=1,2,3,…,k).  

 

To perform postbuckling analysis on the evolution of the deformation pattern, the 

dominant buckling modes are introduced as a geometric imperfection (the 

IMPERFECTION option in Abaqus). When multiple bifurcations are considered (Eq. 

(14)), the imperfection, ∆φ, introduced as initial geometrical imperfections, is expressed 

as  

1

k

i i
i

dh r
=

∆ = ∑φ φ ,  (15) 

where h is the height of the initial gel film, d is a small scaling factor, and ri are the 

coefficients that control the contributions of φi (i=1,2,3,…,k). Further, because the 

present study focuses on the n-th bifurcation on the (n−1)-th bifurcated path, Eq. (15) is 

extended as  

( )

( ) ( ) ( )

1 1

jn k
n j j

i i
j i

dh r
= =

∆ = ∑∑φ φ ,  (16) 

which we use as the initial geometric imperfections needed to trace the n-th bifurcated 

path. Here, ( )j
iφ  are the critical buckling modes at the j-th bifurcation point on the 
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(j−1)-th bifurcated path (i.e., the 0-th bifurcated path is the primary path), where k(j) is 

the number of multiple bifurcations at the j–th bifurcation point, and ( )j
ir  are the 

coefficients that control the contributions of ( )j
iφ  (i=1,2,3,…,k(j)). Our approach in this 

study enables the evolution of the deformation pattern to be investigated by repeating 

the eigenvalue buckling and postbuckling analyses on the bifurcated paths (Fig. 1). We 

note that ( )j
iφ  are the dominant buckling modes on the (j−1)-th bifurcated path and are 

not the higher-order buckling modes on the primary path.  

 

  
Fig. 1.  Schematic illustration of the evolution of deformation patterns caused by multiple and 
sequential bifurcations. The dominant buckling modes are expressed as ( )j

iφ  (i=1,2,3,…,k(j)), 
which occur at the j-th bifurcation point on the (j−1)-th bifurcated path. The multiplicity of 
bifurcations is expressed by k(j) such that there are many potential bifurcated paths, determined 
by the combination of ( )j

iφ  (i=1,2,3,…,k(j)). The contributions are controlled by determining 
the coefficients, ( )j

ir  (i=1,2,3,…,k(j)). As described in this section, the bifurcation points on the 
primary and bifurcated paths are detected by step-by-step eigenvalue buckling analysis, and 
pattern evolution is traced using the perturbation described by Eq. (16).  
 

We use d= 0.005 or 0.01, which are smaller than the value of 0.02 used by Chen and 

Hutchinson (2004). To obtain a unique set of ( )j
ir , the ratios of ( )j

ir  (i=1,2,3,…,k(j)) are 

first determined to generate a characteristic buckling mode, ( )
X

jφ , that consists of 
( )

( ) ( )

1

jk
j j

i i
i

r
=
∑ φ  (i=1,2,3,…,k(j)), which is normalized such that the maximum displacement 

component of ( )
X

jφ  is 1.  
 

Additionally, according to Healey (1989), the imperfection methods including the 

present approach (Eq. (16)) can fail to trace the bifurcated path related to the 

corresponding buckling mode. To avoid the possibility of accidental path switching, the 

pattern evolution in postbuckling should be compared with the imperfection generate by 

Eq. (16) (Sections 5 and 6).  
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4. Numerical modeling 

4.1. Material properties 

To reproduce a gel film bonded on a soft substrate, the gel film is modeled using the 

inhomogeneous field theory for polymeric gels (Section 2), while the soft substrate is 

modeled using the incompressible Neo-Hookean solid model. The inhomogeneous field 

theory requires three material parameters, N, υ and χ. The Young’s modulus of the gel 

film, Ef, is related to N as Ef =3NkT, where kT =4×10−21 J. We use a value of N=0.125

×1027 m−3 because Ef =1.5 MPa is regarded as a standard Young’s modulus of PDMS 

materials (Okumura et al., 2015). The use of toluene as a specific organic solvent gives 

υ =1.76×10−28 m3, leading to a normalized Young’s modulus of Ef υ /(3kT) =0.022 

(Okumura et al., 2015). In the present study, we focus on the pattern evolution caused 

by multiple and sequential bifurcations. Hence, we use a small value of χ =0.1 to allow 

a large increase of the volume swelling ratio, J, when the swelling process is reproduced 

by increasing µ from µ0 to 0 (Section 2). Here, J0=1.003 is used as an initial free 

swelling state such that Eq. (9) provides the initial value of µ as µ0=−4.715kT. For the 

soft substrate, the Young’s modulus is assumed as Es=0.23 MPa such that the ratio of the 

Young’s moduli is Ef/Es =6.5. Although our aim is not to undertake a qualitative 

discussion and comparison with experiments, a ratio of Ef/Es =6.5 can be regarded as 

representative of films on soft substrates (Buddy et al., 2015).  
 

4.2. Boundary and loading conditions 

Fig. 2 shows the periodic cells, used in 3D finite element analysis, which are 

rectangular parallelepiped and are defined by the individual lengths, L1, L2, h, and H. 

These lengths are normalized using h (i.e., L1/h, L2/h and H/h) (see Section 4.3). The gel 

film is perfectly bonded on the soft substrate (x3=H). The bottom face of the soft 

substrate (x3=0) has zero displacement, while the top face of the gel film (x3=h+H) is 

stress free. Periodic boundary conditions are imposed on the side faces (the combination 

of x1=(0 or L1) or x2=(0 or L2)), and are expressed as  

2 3 1 2 3

1 3 1 2 3

(0, , ) ( , , ) 0
( ,0, ) ( , , ) 0

i i

i i

u x x u L x x
u x x u x L x

 − =


− =
,  (17) 
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where 1 2 3( , , )iu x x x  is the displacement at a point iX , defined as i i iu x X= − . From 

the repulsive forces acting on the side faces, the in-plane components of the 

macroscopic nominal stress, 0
11S  and 0

22S , are calculated and used to estimate the 

critical value when bifurcation occurs (Section 4.3 and Appendix C).  

 

 
Fig. 2.  Initial dimensions of the gel film bonded on the soft substrate. The individual lengths 
are normalized with respect to h (i.e., L1/h, L2/h, and H/h). The value of H/h is selected to be 
sufficiently large to avoid having to consider the effects of the constraint at the bottom face 
(Huang et al., 2005).  

 

When the swelling process is simulated by incrementally increasing µ from µ0 to 0, 

the increase of µ causes an increase of the compressive stresses, 0
11S  and 0

22S ; that is, 

buckling is caused by the in-plane compressive stresses produced in the gel film. The 

value of µ and change of 0 0
11 22S S+  are used to estimate the bifurcation points and 

bifurcated paths. Automatic time incrementation is used in the Abaqus analysis. The 

value of µ is passed to UHYPER as an additional state variable. By contrast, 

step-by-step eigenvalue buckling analysis requires the temperature to increase to 

consider the isotropic thermal expansion as the dummy loading parameter (Section 3). 

The eigenvalues, ∆Τ i, are directly related to the increases of temperature, which are 

needed to generate the additional compressive stresses in the gel film and to extrapolate 

the bifurcation points. Because there is no reason to consider a specific value of the 

thermal expansion coefficient, α, we arbitrarily set α =0.01.  
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When postbuckling analysis is performed in Abaqus, the Riks method (i.e., the 

arc-length method) is usually used to have the ability to trace the bifurcated path with a 

discontinuous jump (i.e., with the decrease of the loading parameter). However, the 

chemical potential, µ, is not a standard variable in Abaqus so that the present study 

cannot employ the Riks approach (Hong et al., 2009). Although the present study did 

not encounter this difficulty, if necessary, artificial damping can be used to solve this 

problem (Okumura et al., 2015). 
 

4.3. Dimensions of unit and periodic cells 

As mentioned in Section 1, we consider in the present study the occurrence of a 

hexagonal dimple mode at the first bifurcation point on the primary path (Breid and 

Crosby, 2009,2011; Guvendiren et al., 2009,2010a,2010b; Cai et al., 2011). Although 

the first bifurcation is known to consist of superposing sinusoidal wrinkle modes (i.e., 

straight stripe modes; Audoly and Boudaund, (2008a)) in all directions in the plane, the 

restriction of the hexagonal dimple mode allows the ratio of L2 /L1 to be fixed as L2/ L1 =
3  (Appendix B). The use of this ratio ensures that the hexagonal dimple mode 

consists of the superposition of individual sinusoidal wrinkle modes in the three 

symmetric directions. The wavelength, λ, is determined by the value of L2 (i.e., λ 

=0.5L2) (Appendix B). According to Chen and Hutchinson (2004), the sinusoidal 

wrinkle modes have a dominant wavelength and the corresponding critical stress that 

can be analyzed by classical buckling analysis. When the thickness of the substrate is 

assumed to be infinite (i.e., H/h→∞), the dominant wavelength, λth, and the critical 

stress, σth, can be predicted as λth/h=2π (Ef/3Es)1/3 and σth/Ef =(1/3)(3Es/Ef)2/3, 

respectively. Here, the Poisson’s ratios for the film and substrate are assumed to be 0.5.  

 

Although the value of Ef/Es =6.5 used in the present study gives λth/h =8.1, the 

numerical predictions can deviate from this theoretical value because of the effects of 

the volumetric change due to swelling as well as the material nonlinearities of the film 

and substrate. To this end, Fig. 3a shows the unit cell and finite element meshes used to 

investigate the dominant wavelength of the hexagonal dimple mode. 3D finite element 

analysis is performed using the 8-node linear brick element with the element type 

C3D8RH. The numbers of nodes and elements are 31,226 and 28,800, respectively. The 
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same meshes are used for L2/h=14,16,18,20,22, and 24. The value of H/h=15 is selected 

to be sufficiently large to avoid having to consider the effects of the constraint at the 

bottom face (Huang et al., 2005). The mesh resolution and the value of H/h=15 were 

determined by trial-and-error analysis to avoid high computational costs.  

 

 
Fig. 3.  Finite element meshes of the unit and periodic cells with L2/L1= 3  and H/h=15. (a) 
Unit cells with L2/h=14,16,18,20,22, and 24. (b) Periodic cell consisting of 4×4 unit cells. 
Individual unit cells are analyzed to detect the dominant wavelength. The unit cell with L2/h=20 
produces the hexagonal dimple mode with a dominant wavelength of λcr/h=0.5 L2/h =10, which 
compares reasonably well the theoretical value (Appendix C). The length of the periodic cell is 
L2/h=20×4=80. 

 

As shown in Appendix C, the bifurcation points and modes at the first bifurcation on 

the primary path were analyzed by step-by-step eigenvalue buckling analysis. We found 

that the unit cell with L2/h=20 produced the hexagonal dimple mode (Fig. C.3) with a 

dominant wavelength of λcr/h=0.5L2/h =10 (Fig. C.2). Bifurcation occurred at 

µcr/kT=µb/kT=−0.54 with 0 0
11 22 cr

/S S kTυ+ =0.0355, and Jcr=1.34 (Fig. C.1). The 

thickness of the gel film at the bifurcation point, h*, was estimated as h*=1.34h; the 

increase in thickness is attributed to swelling. When h* is introduced as 

λth/h*=2π (Ef/3Es)1/3, the reduced nominal value (DuPont et al., 2010) yields λth/h=1.34

×8.1=10.8. Because the material nonlinearities of the gel film and soft substrate are 

also expected to affect this bifurcation, we consider λcr/h=10 to be a reasonable value. 

Moreover, when σth/Ef =(1/3)(3Es/Ef)2/3 is regarded as the value at the first bifurcation, 

the reduced nominal value is rewritten as σth =1.34×(1/3) Ef (3Es/Ef)2/3 =0.401 MPa. 

From 0 0
11 22 cr

/S S kTυ+ =0.0355, σcr=0.403 MPa is derived using 0 0
cr 11 22S Sσ = =  at the 

first bifurcation, which is in good agreement with σth =0.401 MPa.  
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To investigate the evolution of the periodic pattern from the hexagonal dimple mode, 

we analyze a large periodic cell consisting of 4×4 unit cells (Fig. 3b). Each unit cell 

has L2/h =20 with identical finite element meshes (i.e., Fig. 3a) such that the dimensions 

of the periodic cell are L2/h =80, L2/ L1 = 3 , and H/h =15. Because the unit cell is 

discretized using 31,226 nodes and 28,800 elements, the periodic cell, including 4×4 

unit cells, is discretized using 484,250 nodes and 460,800 elements. In Sections 5 and 6, 

we refer to this periodic cell as a 4×4 unit cell to distinguish it from the 1×1 unit cell. 

 
 

5. Results from the analysis of the second bifurcation 

5.1. Second bifurcation on the first bifurcated path 

Fig. 4 shows the hexagonal dimple mode obtained from the 4×4 unit cell (L2/h=80). 

The 4×4 unit cell shows the same bifurcation behavior as the 1×1 unit cell (L2/h=20) 

(Appendix C). Regardless of the periodic arrangement of 4×4 unit cells, the dominant 

bifurcation mode is the hexagonal dimple mode expressed as (1) (1) (1) (1)
hex 0 60 60*= + +φ φ φ φ . The 

first bifurcation for the 1×1 unit cell is understood as the superposition of the modes 

categorized by (m, n)=(0, 2) and (m, n)=(1, 1) with λ/L2=0.5 and M=6 (Appendix B). 

Similarly, the bifurcation for the 4×4 unit cell is understood as the superposition of (m, 

n)=(0, 8) and (m, n)=(4, 4) with λ/L2=0.125 and M=6. In both cases, the wavelength and 

the three wave directions are λ/h=10 and ψ =0°, ± 60°, respectively. Here, M is the 

multiplicity of bifurcations. This result shows that the sinusoidal wrinkle modes with 

λ/h=10 appear preferentially at the first bifurcation point (Chen and Hutchinson, 2004). 

In addition, eigenvalue analysis predicts that the first bifurcation point has a sextuple 

bifurcation as k(1)=6, which is consistent with M=6. The unique hexagonal dimple mode 

(Fig. 4) is obtained by controlling the individual phase shifts to assign the dimple at the 

center of each unit cell included in the 4×4 unit cell (Appendix C).  
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Fig. 4.  Hexagonal dimple mode, (1)

hexφ , analyzed for the first bifurcation at µb/kT=−0.54 on the 
primary path. The 4×4 unit cell with L2/h=80 results in λ/L2=0.125 (M=6). The dominant 
wavelength is λ/h=10(=0.125×80) because this mode is identical to that obtained by λ/L2=0.5 
(M=6) with L2/h=20. The hexagonal dimple mode consists of a superposition of sinusoidal 
wrinkle modes in three symmetric directions, 0° and ± 60° (i.e., (1) (1) (1) (1)

hex 0 60 60*= + +φ φ φ φ ) 
(Appendices B and C). 
 

 
Fig. 5.  Evolution of the deformation pattern on the first bifurcated path. (a) µ/kT=−0.54, (b) 
µ/kT=−0.39 (the second bifurcation point), and (c) µ/kT=−0.29. Postbuckling analysis is 
performed using the hexagonal dimple mode, (1)

hexφ , as the initial imperfections. The second 
bifurcation is detected using step-by-step eigenvalue buckling analysis. The base state of 
µ/kT=−0.39 is the second bifurcation point on the first bifurcated path.  

 

Fig. 5 shows the evolution of the deformation pattern from the primary path to the 

first bifurcated path. The second bifurcation point is successfully detected at this base 

state (Fig. 5b). Fig. 6 shows the bifurcation modes obtained at the second bifurcation 
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point. Because this bifurcation point is estimated to be a triple bifurcation (i.e., k(2)=3), 

Fig. 6a–c shows three independent modes, (2)
cb0φ , (2)

cb60φ , and (2)
cb60*φ , respectively. The 

individual modes are found to have the same checkerboard mode oriented in specific 

directions. The arrows in Fig. 6a–c depict the representative direction of each 

checkerboard mode. The characteristic directions of (2)
cb0φ , (2)

cb60φ , and (2)
cb60*φ  have angles 

of 0° and ± 60°, respectively. We attribute this to the deformation pattern caused by the 

hexagonal dimple mode maintaining hexagonal symmetry (Ohno et al., 2002; Okumura 

et al., 2002).  

 

 
Fig. 6.  Three rectangular checkerboard modes analyzed for the second bifurcation at 
µb/kT=−0.39 on the first bifurcated path. (a) (2)

cb0φ , (b) (2)
cb60φ , and (c) (2)

cb60*φ . The arrows 
oriented with the angles of 0°,  ± 60° depict the respective directions of the individual modes. 
The second bifurcation point is estimated as k(2)=3 (i.e., a triplet bifurcation), and is interpreted 
as the selected combination of the modes categorized by (m, n)=(2, 10), (m, n)=(4, 8), and (m, 
n)=(6, 2) (M=4+4+4=12) with L2/h=80 (Appendix D). The individual wrinkle modes have the 
same wavelength as λ/h=7.6 (cf. λ/h=10 for the hexagonal dimple mode). M=12 is reduced to 
k(2)=3 because of the presence of the hexagonal dimples. Three rectangular checkerboard modes, 

(2)
cb0φ , (2)

cb60φ , and (2)
cb60*φ , are allowed to occur selectively. 

 

When the resulting checkerboard modes (Fig. 6) are compared with the sinusoidal 

wrinkle modes categorized by m and n (Appendix B), the second bifurcation point is 

found to be interpreted as the selected combination of the modes categorized by (m, 

n)=(2, 10), (m, n)=(4, 8), and (m, n)=(6, 2) (Appendix D) (i.e., M=4+4+4=12). The 

individual wrinkle modes have the same wavelength (i.e., λ/h=7.6). The wave directions 
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for (m, n)=(2, 10), (4, 8) and (6, 2) are prescribed by the angles ± 19°, ± 41°, and ±
79°(=  101°), respectively. As described in Appendix D, (2)

cb0φ  consists of the two 

wrinkle modes prescribed by ± 41°, whereas (2)
cb60φ  and (2)

cb60*φ  consist of those 

prescribed by 19° and −79°(=101°), and −19° and 79°(=−101°), respectively. Because 

the two wave directions are not orthogonal, (2)
cb0φ , (2)

cb60φ , and (2)
cb60*φ  produce a 

rectangular checkerboard mode. The representative directions of (2)
cb0φ , (2)

cb60φ , and (2)
cb60*φ  

(Fig. 6a–c) are confirmed as 0°=(41°−41°)/2 and ± 60°= ± (19°+101°)/2, respectively. 

At the second bifurcation point, the same rectangular checkerboard mode occurs in the 

three symmetric directions, resulting in either the retention or loss of hexagonal 

symmetry.  

 

 
Fig. 7.  Modes II and III obtained by superposing the rectangular checkerboard modes, (2)

cb0φ , 
(2)
cb60φ  and (2)

cb60*φ . (a) Mode II ( (2) (2) (2)
II cb60 cb60*= − +φ φ φ ) and (b) Mode III ( (2) (2) (2) (2)

III cb0 cb60 cb60*= + +φ φ φ φ ). 
Mode I is expressed as (2) (2)

I cb0=φ φ  (Fig. 6a). Modes II and III become complex and yield 
beautiful patterns. It is extremely unlikely that pattern evolution is caused by the occurrence of 

(2)
Iφ , (2)

IIφ  and (2)
IIIφ  at the second bifurcation subsequent to the occurrence of the hexagonal 

dimple mode, (1)
hexφ , at the first bifurcation. Postbuckling analysis is performed using the initial 

imperfections prescribed by (2)
Iφ , (2)

IIφ , and (2)
IIIφ , as well as (1)

hexφ .  

 

5.2. Pattern evolution on the second bifurcated paths (Modes I, II, and III) 

At the second bifurcation point, the bifurcation modes are arbitrarily generated by 

the superposition of the three rectangular checkerboard modes, (2)
cb0φ , (2)

cb60φ , and (2)
cb60*φ . 

We focus on typical cases, referred to as Modes I, II, and III, which are expressed as 
(2) (2)
I cb0=φ φ , (2) (2) (2)

II cb60 cb60*= − +φ φ φ  (this is periodically the same as (2) (2)
cb60 cb60*+φ φ ), and 
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(2) (2) (2) (2)
III cb0 cb60 cb60*= + +φ φ φ φ  (Fig. 6a and Fig. 7). The resulting modes become complex and 

yield beautiful patterns. It is highly unlikely that pattern evolution is caused by the 

occurrence of (2)
Iφ , (2)

IIφ  and (2)
IIIφ  at the second bifurcation subsequent to the 

occurrence of the hexagonal dimple mode, (1)
hexφ , at the first bifurcation. Thus, we 

perform postbuckling analysis using the initial imperfections prescribed by (2)
Iφ , (2)

IIφ , 

and (2)
IIIφ , as well as (1)

hexφ . 

 

 
Fig. 8.  Imperfections introduced to perform postbuckling analysis of Modes I, II, and III. (a) 

(1) (2)
hex I+φ φ , (b) (1) (2)

hex II+φ φ , and (c) (1) (2)
hex III+φ φ . Although (1)

hexφ  only expresses the periodic 
arrangement of the circular dimples, the combination of (1) (2)

hex I+φ φ , (1) (2)
hex II+φ φ , and (1) (2)

hex III+φ φ  
distorts the circular dimples in specific directions. Surprisingly, these imperfections are similar 
to the buckling modes that occur in hexagonal honeycombs subjected to in-plane compression 
(Gibson ant Asyby, 1997; Papka and Kyriakides, 1999; Ohno et al., 2002; Okumrua et al., 2002; 
Combescure et al., 2016,2020). We refer to (1) (2)

hex III+φ φ  as the flower-like mode, whereby the 
center dimple is surrounded by six distorted dimples, giving the appearance of a flower.  
 

Fig. 8 shows the initial imperfections introduced to perform the postbuckling 

analysis of Modes I, II, and III (i.e., (1) (2)
hex I+φ φ , (1) (2)

hex II+φ φ , and (1) (2)
hex III+φ φ , respectively). 

Comparison of Fig 8 with Fig. 4 reveals that (1)
hexφ  only expresses the hexagonal 

arrangement of the circular dimples, whereas (1) (2)
hex I+φ φ , (1) (2)

hex II+φ φ , and (1) (2)
hex III+φ φ  

distort the circular dimples in specific directions. Surprisingly, although the hexagonal 

dimples are not hexagonal honeycombs, the initial imperfections (Fig. 8) are highly 

similar to the buckling modes that occur in hexagonal honeycombs subjected to in-plane 

compression (Gibson ant Asyby, 1997; Papka and Kyriakides, 1999; Ohno et al., 2002; 
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Okumrua et al., 2002; Combescure et al., 2016,2020). In the case of honeycomb 

buckling, Modes I, II, and III are called uniaxial, biaxial and equibiaxial buckling 

modes. Mode III is also called the flower-like mode (Papka and Kyriakides, 1999), 

whereby the center cell or dimple, which is rarely distorted, is surrounded by six 

distorted cells or dimples, giving the appearance of a flower (Fig. 8c). In addition, the 

uniaxial mode allows the distorted dimples to be alternately oriented in the vertical 

direction (Fig. 8a). This means that although the hexagonal honeycombs have Modes I, 

II, and III as the dominant modes at the first bifurcation point, the flat gel film has 

Modes I, II, and III as the imperfections introduced from the combination of the 

dominant modes at the first and second bifurcation points. The hexagonal dimple mode, 
(1)
hexφ , is needed to form a hexagonal dimple structure on the flat gel film at the first 

bifurcation point, whereas the rectangular checkerboard modes, (2)
cb0φ , (2)

cb60φ , and (2)
cb60*φ , 

are needed to distort the circular dimples, which lead to the pattern evolution of the 

uniaxial, biaxial and equibiaxial (flower-like) modes on the second bifurcated path, as 

described below.  

 

Fig. 9 shows the pattern evolution on the second bifurcated paths analyzed for 

Modes I, II, and III. The uniaxial, biaxial and equibiaxial (flower-like) patterns observed 

for the hexagonal honeycombs appear on the surface of the gel film. These deformation 

patterns are generated by (1)
hexφ  as the first bifurcation and (2)

cb0φ , (2)
cb60φ , and (2)

cb60*φ  as the 

second bifurcation. Notably, (1)
hexφ  consists of the sinusoidal wrinkle modes in the three 

symmetric directions with λ/h=10 (Appendices B and C), and (2)
cb0φ , (2)

cb60φ , and (2)
cb60*φ  

consist of the rectangular checkerboard modes in the same three directions, which also 

consist of the superposition of the two sinusoidal wrinkle modes with λ/h=7.6 

(Appendix D). We emphasize that the deformation patterns (Fig. 9) are in very good 

agreement with experiments reported by Breid and Crosby (2009,2011). The observed 

cage- and brick-like patterns appear when the circular dimples are distorted by the 

occurrence of the second bifurcation. These patterns are similar to the flower-like 

pattern (Mode III) and the uniaxial and biaxial patterns (Modes I and II), respectively.  
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Fig. 9.  Pattern evolution on the second bifurcated paths for Mode I ((a) µ/kT=−0.54, (b) 
µ/kT=−0.37, and (c) µ/kT=−0.31); Mode II ((d) µ/kT=−0.54, (e) µ/kT=−0.38, and (f) 
µ/kT=−0.28); and Mode III ((g) µ/kT=−0.54, (h) µ/kT=−0.39, and (i) µ/kT=−0.28). Incredibly, 
the uniaxial, biaxial and equibiaxial (flower-like) patterns observed for the hexagonal 
honeycombs appear on the surface of the gel film. These deformation patterns are generated by 

(1)
hexφ  at the first bifurcation and (2)

cb0φ , (2)
cb60φ , and (2)

cb60*φ  at the second bifurcation. The 
deformation patterns are in very good agreement with experiments by Breid and Crosby 
(2009,2011). Cage- and brick-like patterns appear when the circular dimples are distorted by the 
occurrence of the second bifurcation. 

 

Fig. 10 shows the change of the in-plane compressive stress, 0 0
11 22 /S S kTυ+ , as a 

function of the chemical potential, µ/kT. The primary and first bifurcated paths are also 

depicted with the first and second bifurcation points. The deformation patterns on the 
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first and second bifurcated paths are also depicted in the figure. The differences between 

the second bifurcated paths for Modes I, II, and III are almost negligible. Thus, it does 

not make sense to discuss the dominant pattern among Modes I, II, and III. As 

mentioned above, a similar variety of deformation patterns, including cage- and 

brick-like patterns, has been observed in experiments (Breid and Crosby, 2009,2011). 

Thus, in the next section (Section 6), we analyze the pattern evolution caused by further 

bifurcations on the second bifurcated paths generated by Modes I, II, and III.  
 

 
Fig. 10.  Change of the in-plane compressive stress, 0 0

11 22 /S S kTυ+ , as a function of the 
chemical potential, µ/kT. The primary and first bifurcated paths are also depicted with the first 
and second bifurcation points. The second bifurcated paths for Modes I, II, and III are hardly 
distinguishable. A similar variety of deformation patterns, including cage- and brick-like 
patterns, has been observed in experiments (Breid and Crosby, 2009,2011). 
 
 

6. Pattern evolution caused by further bifurcations 

6.1. Pattern evolution from Mode I 

The third bifurcation point on the second bifurcated path generated by Mode I (Fig. 

9a–c) is obtained as (3)
Ik =1 (i.e., a single bifurcation). Fig. 11a shows the third 

bifurcation mode, (3)
Iφ , and Fig. 11b shows the imperfections prescribed by 

(1) (2) (3)
hex I I+ +φ φ φ , which are used to trace the third bifurcated path. The bifurcation mode 

can be viewed as a varicose stripe mode (Audoly and Boudaund, 2008a). Further, the 
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mode may be compared with the sinusoidal wrinkle modes categorized by m and n 

(Appendices B and D). However, because this mode occurs as a single bifurcation, Fig. 

11 simply shows that when (3)
Iφ  interacts with the deformation pattern for Mode I (Fig. 

9a–c) on the third bifurcated path, this varicose stripe mode enables the distorted 

dimples to coalesce along the vertical direction. The resulting zigzag grooves are 

periodically arranged in the horizontal direction. In other words, the occurrence of a 

herringbone pattern is expected on the third bifurcated path and is confirmed by 

postbuckling analysis.  

 

 
Fig. 11.  The bifurcation mode at the third bifurcation point analyzed from Mode I and the 
imperfections used to analyze the third bifurcated path. (a) (3)

Iφ  and (b) (1) (2) (3)
hex I I+ +φ φ φ . The 

varicose stripe mode enables the distorted dimples (Fig. 9a–c) to coalesce along the vertical 
direction. In other words, the occurrence of a herringbone pattern is expected to occur on the 
third bifurcated path and is confirmed by postbuckling analysis (Fig. 12). 

 

Fig. 12 shows the pattern evolution obtained by postbuckling analysis using the 

imperfections of (1) (2) (3)
hex I I+ +φ φ φ . Fig. 12 confirms that the distorted dimples coalesce 

along the vertical direction to generate a herringbone pattern. The mechanism by 

which the herringbone pattern formed is described as follows. First, the hexagonal 

dimple pattern appears at the first bifurcation point. Second, the individual circular 

dimples are distorted at the second bifurcation point. The resulting pattern is similar 

with the uniaxial buckling mode that occurs in hexagonal honeycombs (Gibson and 

Ashby, 1997). The distorted dimples then coalesce along the vertical direction on the 
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third bifurcated path. This coalescence yields periodically arranged zigzag grooves (i.e., 

the herringbone pattern).  

 

 
Fig. 12.  Pattern evolution on the third bifurcated path analyzed using the imperfections of 

(1) (2) (3)
hex I I+ +φ φ φ  (Mode I). (a) µ/kT=−0.54, (b) µ/kT=−0.40, (c) µ/kT=−0.36, (d) µ/kT=−0.35, (e) 

µ/kT=−0.30, and (f) µ/kT=−0.20. The distorted dimples coalesce along the vertical direction 
such that a herringbone pattern appears. First, the hexagonal dimple pattern appears at the first 
bifurcation point. Second, the individual circular dimples are distorted at the second bifurcation 
point. The resulting pattern is similar to the uniaxial buckling mode that occurs in hexagonal 
honeycombs (Gibson and Asyby, 1997). Finally, the distorted dimples coalesce along the 
vertical direction at the third bifurcation to yield periodically arranged zigzag grooves (i.e., the 
herringbone pattern).  

 

According to Chen and Hutchinson (2004), when the herringbone pattern is 

characterized by its width, a, breadth, L, and inclination angle, θ, a/h=10, L/h=7.6, and 

θ =49° are easily obtained from the features of the first and second bifurcations, 

because a/h=10 and L/h=7.6 are determined by the dominant wavelengths of the 

sinusoidal wrinkle modes that occur at the first and second bifurcation points (Section 

5), and θ =49°(=90°-41°) comes from the characteristic angle of the sinusoidal wrinkle 

mode at the second bifurcation (Appendices B and D). These values are considerably 
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consistent with the results obtained by Chen and Hutchinson (2004). Although Chen 

and Hutchinson (2004) considered the imperfections of the herringbone mode by 

parametrizing the values of θ, L and α, we elucidated the evolution of the herringbone 

pattern caused by the first, second, and third bifurcations; that is, we determined that 

the herringbone pattern is not a bifurcation mode but a deformation pattern caused by 

the three sequential bifurcations. This finding answers the open question about the 

nature of the herringbone pattern posed by Chen and Hutchinson (2004). Moreover, 

our work reveals that the occurrence of the rectangular checkerboard modes in the 

three symmetric directions at the second bifurcation (Fig. 6) is the missing link in the 

evolution from the hexagonal dimple pattern to the herringbone pattern. 

 

 
Fig. 13.  The bifurcation modes at the third and fourth bifurcation points analyzed from Mode 
II and the imperfections used to analyze the third and fourth bifurcated paths. (a) (3)

IIφ , (b) (4)
IIφ , 

(c) (1) (2) (3)
hex II II+ +φ φ φ , and (d) (1) (2) (3) (4)

hex II II II+ + +φ φ φ φ . The bifurcation points are (3)
IIk = (4)

IIk =1. 
Although the bifurcation modes cannot be used to predict the resulting deformation patterns, the 
imperfections imply the coalescence of the selected pairs of distorted dimples.  

 

6.2. Pattern evolution from Modes II and III 

By analyzing the bifurcation point on the second bifurcated path generated by Mode 

II (Fig. 9d–f), the third bifurcation point and mode are obtained as (3)
IIk =1 and (3)

IIφ  (i.e., 

a single bifurcation). Further, the fourth bifurcation point and mode on the third 

bifurcated path are obtained as (4)
IIk =1 and (4)

IIφ . Fig. 13 shows the bifurcation modes, 
(3)
IIφ  and (4)

IIφ , and the respective imperfections, (1) (2) (3)
hex II II+ +φ φ φ  and 

(1) (2) (3) (4)
hex II II II+ + +φ φ φ φ , which we use to trace the third and fourth bifurcated paths. 

Although the bifurcation modes (Fig. 13a,b) are complex and cannot be used to predict 

the resulting deformation patterns, the imperfections (Fig. 13c,d) can be used to predict 
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the coalescence of the selected pairs of the distorted dimples. This tendency of the 

bifurcations is confirmed by postbuckling analysis.  

 

 
Fig. 14.  Pattern evolution on the third bifurcated path analyzed using the imperfections of 

(1) (2) (3)
hex II II+ +φ φ φ  (Mode II). (a) µ/kT=−0.54, (b) µ/kT=−0.40, and (c) µ/kT=−0.27. The 

deformation pattern from Mode II is caused by the coalescence of the two selected dimples 
neighboring those elongated in the vertical and horizontal directions, leading to the occurrence 
of arch-like grooves.  

 

Fig. 14 shows the pattern evolution caused by (1) (2) (3)
hex II II+ +φ φ φ  on the third 

bifurcated path, and Fig. 15 shows the pattern evolution caused by 
(1) (2) (3) (4)
hex II II II+ + +φ φ φ φ  on the fourth bifurcated path. Figs. 14 and 15 demonstrate that the 

deformation patterns evolve with the coalescences of the dimples. Although the 

herringbone pattern from Mode I is caused by the coalescences of the all dimples 

aligned in the vertical direction, the deformation pattern from Mode II is caused by the 

coalescence of the two selected dimples on the third bifurcated path, leading to the 

occurrence of the arch-like grooves in Fig. 14. By contrast, on the fourth bifurcated path, 

the two dimples elongated in the vertical and horizontal directions and the one arch-like 

groove coalesce, leading to the formation of the periodic zigzag grooves in Fig. 15. This 

can be regarded as a periodical labyrinth pattern. Experimentally observed labyrinth 

patterns (Breid and Crosby, 2009,2011; Guvendiren et al., 2009,2010a,2010b) seem to 

form through the random arrangement of zigzag grooves.  
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Fig. 15.  Pattern evolution on the fourth bifurcated path analyzed using the imperfections of 

(1) (2) (3) (4)
hex II II II+ + +φ φ φ φ  (Mode II). (a) µ/kT=−0.54, (b) µ/kT=−0.44, (c) µ/kT=−0.41, (d) 

µ/kT=−0.40, (e) µ/kT=−0.32, and (f) µ/kT=−0.23. Arch-like grooves on the third bifurcated path 
coalesce with the two elongated dimples, leading to the formation of zigzag grooves. The 
deformation pattern is produced by the periodic arrangement of the zigzag grooves, which can 
be viewed as a periodical labyrinth pattern.  

 

It should be noted that the distinct contribution of the third bifurcation in Fig. 14 

becomes almost invisible after pattern evolution, as shown in Fig. 15. This is because 

the third and fourth bifurcations occur near each other, and in the postbuckling analysis, 

the bifurcation modes at the sequential bifurcation points are superposed and introduced 

as the initial imperfections (Section 3). Thus, the hierarchical structure of bifurcations 

may be invisible in the numerical analysis as well as in experiments. However, the post 

buckling analysis needs to detect the sequential bifurcation points and to obtain the 

individual bifurcation modes. The approach used in the present study (i.e., step-by-step 

eigenvalue buckling analysis; Section 3) is sufficiently powerful to be able to trace the 

evolutional process caused by sequential bifurcations.  
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Fig. 16.  The bifurcation mode at the third bifurcation point analyzed from Mode III and the 
imperfections used to analyze the third bifurcated path. (a) (3)

IIIφ  and (b) (1) (2) (3)
hex III III+ +φ φ φ . The 

bifurcation point is (3)
IIIk =1. This bifurcation mode causes the selective coalescence of the three 

distorted dimples with the dimple at the center of the flower (Fig. 9). 
 

 
Fig. 17.  The bifurcation modes at the fourth bifurcation point analyzed from Mode III and the 
imperfections used to analyze the fourth bifurcated path. (a) (4)

III0φ , (b) (4)
III60φ , (c) (4)

III60*φ , and (d) 
(1) (2) (3) (4)
hex III III III0+ + +φ φ φ φ . The bifurcation point is (4)

IIIk =3, which produces (4)
III0φ , (4)

III60φ  and (4)
III60*φ  

as identical modes in the three symmetric directions with angles of 0° and ± 60°. To avoid 
redundancy, we focus on the pathway generated using (1) (2) (3) (4)

hex III III III0+ + +φ φ φ φ .  

 

When we analyze the bifurcation point on the second bifurcated path generated by 

Mode III (Fig. 9g–i), the third bifurcation point is found to occur with (3)
IIIk =1. Fig. 16 

shows the bifurcation mode, (3)
IIIφ , and the imperfections, (1) (2) (3)

hex III III+ +φ φ φ . This 

bifurcation mode can be viewed as a triangle mode (Cai et al., 2011), although it is 

slightly distorted. The imperfections (Fig. 16b) seem to cause the selective coalescence 
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of the three distorted dimples with the dimple at the center of the flower (Fig. 9). The 

fourth bifurcation point has the bifurcation modes, (4)
III0φ , (4)

III60φ  and (4)
III60*φ  (i.e., (4)

IIIk
=3). Fig. 17a–c shows that the three modes are the same bifurcation mode oriented in 

the symmetric directions with the angles of 0° and ± 60°, respectively. The directions 

are depicted by the arrows in the figure.  
 

 
Fig. 18.  Pattern evolution on the fourth bifurcated path analyzed using the imperfections of 

(1) (2) (3) (4)
hex III III III0+ + +φ φ φ φ  (Mode III). (a) µ/kT=−0.54, (b) µ/kT=−0.40, (c) µ/kT=−0.39, (d) 

µ/kT=−0.38, (e) µ/kT=−0.33, and (f) µ/kT=−0.30. Although the coalescence process is different 
to that for Mode II (Fig. 15), the resulting deformation pattern is periodically identical to that 
obtained by (1) (2) (3) (4)

hex II II II+ + +φ φ φ φ  (Mode II). Because (4)
III0φ  is only introduced into the 

imperfections as the fourth bifurcation mode, the hexagonal symmetry is lost. Therefore, the 
pattern evolution from Modes II and III yields identical deformation patterns, which can be 
interpreted as the periodic arrangement of the zigzag grooves resulting from the coalescence of 
four dimples (i.e., a periodical labyrinth pattern). 

 

To avoid redundancy, we focus on the pathway generated using 
(1) (2) (3) (4)
hex III III III0+ + +φ φ φ φ  (Fig. 17d). Fig. 18 shows that, although the coalescence process 

is different to that for Mode II, the resulting deformation pattern is periodically 

equivalent to that generated by (1) (2) (3) (4)
hex II II II+ + +φ φ φ φ  from Mode II (Fig. 15). Because 
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(4)
III0φ  is introduced into the imperfections as the fourth bifurcation mode, the hexagonal 

symmetry is lost, such that the pattern evolution from Modes II and III yields the 

identical deformation patterns, consisting of the periodic arrangement of the zigzag 

grooves resulting from the coalescence of the four dimples (i.e., a periodical labyrinth 

pattern).  
 
 
7. Conclusions  

We investigated bifurcation and deformation during the evolution of periodic 
patterns on a gel film bonded to a soft substrate. The inhomogeneous field theory for 
polymeric gels was used in 3D finite element analysis (Section 2), while buckling and 
postbuckling analyses (Section 3) were performed during pattern evolution from the 
occurrence of the hexagonal dimple mode at the first bifurcation (Figs. 4 and 5). The 
new findings are described below.  
 

The second bifurcation consisted of the rectangular checkerboard modes in three 
symmetric directions (i.e., k(2)=3, a triple bifurcation) (Fig. 6). The rectangular 
checkerboard modes were explained well using the sinusoidal wrinkle modes 
categorized by m and n (i.e., M=12, a duodecuple bifurcation) (Figs. D.1 and D.2). The 
evolution of the hexagonal dimple pattern on the first bifurcated path allowed the three 
rectangular checkerboard modes to occur selectively (M=12 is reduced to k(2)=3). The 
resulting deformation patterns on the second bifurcated paths were in good agreement 
with experiments (Breid and Crosby, 2009,2011), which, surprisingly, revealed an 
analogy with the in-plane buckling behavior of hexagonal honeycombs. The first 
bifurcation yielded a hexagonal dimple structure, whereas the second bifurcation 
produced the uniaxial, biaxial and equibiaxial (flower-like) patterns (Gibson and Ashby, 
1997; Papka and Kyriakides, 1999; Ohno et al., 2002), which we referred to as Modes I, 
II, and III, and consisted of the periodic arrangement of distorted dimples (Fig. 9). 
Modes I, II, and III were produced by the combination of the three rectangular 
checkerboard modes (Figs. 7 and 8).  
 

The third bifurcation on the second bifurcated path from Mode I resulted in the 
occurrence and evolution of the herringbone pattern (Fig. 12). The third bifurcation 
generated a single bifurcation mode that triggered the coalescence of the distorted 
dimples that were alternately arranged in the vertical direction (Fig. 11). The 
characteristic dimensions of the herringbone pattern were uniquely estimated using the 
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sinusoidal wrinkle modes categorized by m and n; that is, the ratio of the width and 
breadth was the ratio of the dominant wavelengths (i.e., 10 and 7.6), for the first and 
second bifurcations. In addition, the inclination angle was 49° (=90°−41°); this is the 
characteristic angle between the two sinusoidal wrinkle modes needed to express the 
resulting rectangular checkerboard mode. These dimensional values were consistent 
with those obtained by Chen and Hutchinson (2004). We determined that the 
herringbone pattern is not a bifurcation mode but a deformation pattern caused by the 
three sequential bifurcations. This finding answered the open question about the nature 
of the herringbone pattern posed by Chen and Hutchinson (2004).  
 

The further bifurcations from Modes II and III led to the occurrence and evolution 
of a periodical labyrinth pattern (Figs. 15 and 18). The third and fourth bifurcations 
yielded zigzag grooves arising from the coalescence of four dimples. Modes II and III 
had different bifurcation modes (Figs. 13, 16 and 17), owing to the different coalescence 
processes, although the resulting deformation patterns were identical to the periodical 
labyrinth pattern formed by the periodic arrangement of zigzag grooves. We revealed 
that the occurrence of the rectangular checkerboard modes in the three symmetric 
directions at the second bifurcation (Fig. 6) is the missing link in the evolution from the 
hexagonal dimple pattern to the herringbone and labyrinth patterns. 
 

Finally, it is fruitful to consider the key factors that cause the occurrence of the 

rectangular checkerboard modes at the second bifurcation, because the occurrence may 

depend on inhomogeneous gel swelling (Section 2) and/or the successful detection of 

the second bifurcation may be critical in eigenvalue buckling analysis (Section 3). 

Further, the ratio of the Young’s moduli of the film and soft substrate may also be 

important, and the response may depend on the selection of constitutive models. In 

addition, the effect of the initial curvature of the film should be also significant (Cai et 

al., 2011; Zhao et al., 2019). These factors are considered to affect transient states 

during the pattern evolutions because in experiments, the pattern evolution is terminated 

by the formation of the herringbone/labyrinth patterns at the final stage. These questions 

are still open and should be addressed because the present study was focused on 

analyzing a specific set of a gel film on a soft substrate without parametric studies.  
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An exciting and challenging future research direction would be to investigate the 

bifurcations and evolution of more realistic labyrinth patterns than the periodical 

labyrinth pattern. Another challenge would be to analyze the convoluted shape of the 

human cerebral cortex induced by growth (Tallinen et al., 2014,2016; Zhao et al., 2019), 

which is considered to have a hierarchical structure with the complex interactions of 

creases and holds (Diab et al., 2013). To reduce computational costs, more sophisticated 

finite element analysis is needed. This could be achieved by introducing shell elements 

instead of solid elements (Xu et al., 2014) and/or artificial damping to solve smoothly 

the unstable problem with self-contact of films (Cao and Hutchinson, 2012; Okumura et 

al., 2015). The group-theoretic methods could also play an important role in reducing 

the computational costs (Healey, 1988).  
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Appendix A. Eigenvalue buckling analysis in Abaqus 

This appendix is devoted to a brief explanation of the eigenvalue buckling analysis 

provided as the BUCKLE option in Abaqus (Abaqus 6.14; Bertoldi et al., 2008). First, 

we assume that an achieved base configuration is known by stresses b
ijσ  in equilibrium 

with surface traction b
it  and body forces b

iq . From this base state, we consider an 

elastic deformation with small displacement gradients under additional surface tractions 

it∆ , body forces iq∆ , and boundary displacements iu∆ . Such a deformation is a 

linear perturbation on the base state. Thus, if ijσ∆  is the stress response to the loads 

it∆ , iq∆ , and iu∆ , ijλ σ∆  is the stress response for loads itλ∆ , iqλ∆ , and iuλ∆ . 
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Individual distinct values of λ correspond to a linear perturbation of the base state. 

Among these perturbed states, we seek special values of λ that allow for the existence of 

nontrivial incremental displacement fields, which are referred to as buckling modes. In 

the eigenvalue buckling analysis in Abaqus, we do not distinguish between the 

geometry of the base state and the linearly perturbed configurations. This assumption 

allows us to seek the buckling modes as incremental displacements out of the base state 

geometry with stresses b
ij ijσ λ σ+ ∆ , applied tractions b

i it tλ+ ∆ , and applied body 

forces b
i iq qλ+ ∆ . 

 

To obtain Eq. (11) in Section 3, we consider the virtual work principle in terms of 

the nominal stress Pij in the base state. When ti is the nominal traction on the boundary 

in the base state and qi represents the body force per unit volume in the base state, the 

rate form of the virtual work principle is expressed as  

i
ij i i i iV A V

j

vP dV t v dA q v dV
X
d d d∂

= +
∂∫ ∫ ∫   ,  (A.1) 

where dvi is an arbitrary virtual velocity field.  

 

Since we have assumed that the base state and the current state (due to linearly 

perturbed configurations) are indistinguishable, the introduction of the Kirchhoff stress 

τij and the velocity gradient Lij transforms the left-hand side of Eq. (A.1) into  

{ }( 2 )i
ij ij ij ij ki kj ik kjV V

j

vP dV D L L D D dV
X
d τ d τ d d∂

= + −
∂∫ ∫  ,  (A.2) 

where ijτ  is the Jaumann rate of τij, Dij is the symmetric part of Lij, and dLij and dDij are 

the arbitrary variations of Lij and Dij, respectively. Eq, (A.2) is derived from the 

relations of 1
ij ik jkP Fτ −= , ij ik kjF L F= , and ij ij ik kj ik kjW Wτ τ ττ = − +  , where Fij is the 

deformation gradient, Lij =Dij =(Lij+Lji)/2, and Wij=(Lij−Lji)/2. In addition, we can 

replace the kirchhoff stress τij with the Cauchy stress σij since the base and current 

configurations are indistinguishable.  
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For the right-hand side of Eq. (A.1), it is assumed that the magnitude of the applied 

tractions and body forces is fixed and the change of their intensities arises due to the 

change in geometry. Thus, it  and iq  depend only on the deformation gradient, that is,  

i i
i jk jk

jk jk

i i
i jk jk

jk jk

t tt F L
F F
q qq F L
F F

∂ ∂ = = ∂ ∂
 ∂ ∂ = =
 ∂ ∂





.  (A.3) 

Assuming a hypoelastic constitutive law,  

( )ij ijkl klC Dτ = σ ,  (A.4) 

where ( )ijklC σ  can depend on the current stress.  

 

When Eqs. (A.2)–(A.4) are substituted into Eq. (A.1), the current state described as 
b
ij ijσ λ σ+ ∆ , b

i it tλ+ ∆ , and b
i iq qλ+ ∆  leads to  

b b

b b

( ) ( )( 2 )

( ) ( ) 0

ij ijkl kl ij ij ki kj ik kjV V

i i i i
i jk i jkA V

jk jk

D C D dV L L D D dV

t t q qv L dA v L dV
F F

d σ λ σ d d

λ λd d

+ + ∆ −

∂ + ∆ ∂ + ∆
− − =

∂ ∂

∫ ∫

∫ ∫

σ
.  (A.5) 

Using the standard finite element approach, the finite element discretization of Eq. (A.5) 

results in Eq. (11), i.e.,  

0{ ( ) ( , )}i iλ ∆+ =K P K P Q 0φ ,    

where the generalized nodal forces resulting from both b
it  and b

iq  as well as 

prescribed displacements b
iu  are denoted by P and those due to it∆ , iq∆ , and iu∆  

are denoted by Q. Thus, the base state stiffness K0(P) includes the effects of preloads 

acting in the base state. By contrast, the differential stiffness K∆(P,Q) is derived from a 

linear perturbation on the base state, so that it includes the effects of incremental loads 

added at the base state. The eigenvalues λi present the multipliers of the incremental 
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loads (i.e., Q) to predict the generalized critical buckling loads as P+λiQ, while the 

corresponding eigenvectors iφ  give the associated buckling modes.  
 

Appendix B. Sinusoidal wrinkle modes depending on L1 and L2 

Fig. B.1 shows that the wavelength, λ, and the wave direction, ξ, of sinusoidal 

wrinkle modes are restricted to the dimensions of L1 and L2 because of the assumption 

of the periodic arrangement of the unit cells. A combination of m and n is chosen for the 

wave numbers in the x1- and x2- directions, respectively. A potential wrinkle mode 

discretized by m and n has a wave direction identified by the angle, ψ, given by 

2

1

/tan
/

L n
L m

ψ = ,  (B.1) 

and a wavelength of  

1 2
2 2 2 2
1 2

L L
L n L m

λ =
+

.  (B.2) 

The sinusoidal wrinkle modes can simply be expressed as  

2 2sin cosξ ξ
πξ πξα β
λ λ

   +   
   

,   (B.3) 

where αξ and βξ are coefficients to allow an arbitrary phase shift. Thus, the 

corresponding mode identified by m and n appears as a double bifurcation (i.e., M=2) 

(Okumura et al., 2004), where M is defined as the multiplicity of bifurcations. In 

addition, the counterpart of Eq. (B.3) also appears in the opposite direction, ξ∗, because 

of symmetry (Fig. B.1), although the counterpart is absent in the cases of m=0 or n=0 

because ψ =0° or 90°. Thus, the set of the individual modes with m=0 or n=0 occurs as a 

double bifurcation (M=2), whereas the modes without m=0 and n=0 occur as a 

quadruple bifurcation (M=4).  
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Fig. B.1.  Sinusoidal wrinkle modes restricted to the dimensions of the unit cell. The 
wavelength, λ, and the direction, ξ, identified by the angle, ψ, depend on the ratio of L1 and L2. 
A combination of m and n is chosen from m=0,1,2,… and n=0,1,2,… although only the case of 
m=n=2 is depicted as an example. The potential modes discretized by m and n appear as a 
double bifurcation (M=2) because the phase is arbitrarily determined by the coefficients, αξ and 
βξ (Okumura et al., 2004). In addition, the counterpart mode also appears in the oppisite 
direction, ξ∗, because of symmetry. Thus, the modes without m=0 and n=0 occur as a quadruple 
bifurcation (M=4).  

 

To focus on the hexagonal dimple mode, we consider the case of L2/L1= 3 ; in this 

case, Eqs. (B.1) and (B.2) reduce to  

3tan m
n

ψ = ,  (B.4) 

2
2 23
L

n m
λ =

+
.  (B.5) 

Table B.1 shows the properties of the representative wrinkle modes obtained from the 

unit cell with L2/L1= 3 . Because the hexagonal dimple mode consists of the 

superposition of sinusoidal wrinkle modes in the three symmetric directions prescribed 

by the angles of 0° , +60°, and −60° (Audoly and Boudaund, 2008a; Cai et al., 2011), 

the combination of the modes discretized by (m, n)=(0, 2) and (m, n)=(1, 1) is found to 

produce the hexagonal dimple mode. In the present study, we recognize the hexagonal 

dimple mode as M=2+4=6 (i.e., a sextuple bifurcation) and λ/L2 =0.5. The sinusoidal 
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wrinkle mode with the dominant wavelength, λcr, occurs at the first bifurcation on the 

primary path (Chen and Hutchinson, 2004). To analyze the occurrence of the hexagonal 

dimple mode at the first bifurcation, the value of 0.5L2 must be adjusted to be λcr=0.5L2. 

Because the critical length of L2 with λcr=0.5L2 is unknown for gel films (cf. Chen and 

Hutchinson, 2004), step-by-step eigenvalue buckling analysis (Section 3) is performed 

by parametrizing the value of L2 (Appendix C). 
 
Table B.1. Sets of the angle, ψ, wavelength, λ, and multiplicity of bifurcations, M, obtained 
from the representative set of m and n with L2/L1= 3 . The hexagonal dimple mode consist of 
the combination of the modes categorized by (m, n)=(0, 2) and (m, n)=(1, 1). The angles 
between the individual directions are 60° and the wavelength is 0.5L2. The corresponding 
bifurcation point is recognized as M=2+4=6.  

m n ψ  λ/L2 M 

0 1 0° 1 2 

1 0 90° 0.58 2 

0 2 0° 0.5 2 

1 1 60° 0.5 4 

1 2 41° 0.38 4 

0 3 0° 0.33 2 
 

Appendix C. Dominant wavelength at the first bifurcation  

Fig. C.1 shows the first bifurcation points detected on the primary path, which 

depend on the value of L2/h=14,16,18,20,22, and 24 of the unit cell, because the critical 

wavelength is restricted to the combination of L2/h and the wave property discretized by 

m and n (Appendix B). We set ∆µ/kT=0.01 as the increments of µb/kT. When 

µb/kT=−0.53 is used for L2/h=16,18,20, and 22, the Abaqus analysis provides a message 

that the point is already beyond a bifurcation point. Thus, the critical value for the first 

bifurcation is taken as µcr/kT=µb/kT=−0.54. To produce the hexagonal dimple mode, the 

critical length of L2 with λcr=0.5L2 is needed, which can be found in the unit cells of 

L2/h=16,18,20, and 22.  
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Fig. C.1.  The first bifurcation points on the primary path for different values of 
L2/h=14,16,18,20,22, and 24. (a) In-plane compressive stress, 0 0

11 22 /S S kTυ+ , and (b) volume 
swelling ratio, J. The critical value for the first bifurcation is µcr/kT=µb/kT=−0.54. The critical 
length of L2 with λcr=0.5L2 can be found in the unit cells of L2/h=16,18,20, and 22. Here, 

0 0
11 22 cr

/S S kTυ+ =0.0355 and Jcr=1.34.  

 

 
Fig. C.2.  Relationships between ∆θ i, λ/L2 and L2/h. (a) Wavelengths categorized using λ/L2=1, 
0.58, 0.5 and 0.38 at µb/kT=−0.54 and (b) the change in eigenvalues for λ/L2=0.5 for different 
values of µb/kT. The minimum eigenvalue is approximately zero at µcr/kT =−0.54 in the two 
cases of L2/h=18 and 20. When L2/h=20 is selected, the hexagonal dimple mode appears with a 
critical wavelength of λcr/h=0.5×20=10. By contrast, when L2/h=18 is assumed, a stripe mode 
in the horizontal direction appears with a critical wavelength of λcr/h=0.58×18=10.4.  

 

Fig. C.2 shows the relationships between the eigenvalues, ∆θ i, and the values of 

λ/L2 as a function of L2/h. Fig. C.2a shows that the minimum eigenvalue is 

approximately zero at µcr/kT =−0.54 in the two cases of L2/h=18 and 20, which have the 

wavelengths of λ/L2=0.58 and 0.5, respectively. The other eigenvalues belong to λ/L2=1, 

0.58, 0.5, and 0.38. The individual wavelengths correspond to multiplicity of 

bifurcations of M=2, 2, 6, and 4, respectively (Table B.1). This categorization is verified 

by checking the individual buckling modes. Fig. C.2b shows the decrease of the 
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eigenvalues with λ/L2=0.5 as the value of µ/kT increases from −0.60 to −0.54. As 

discussed in Appendix B, the hexagonal dimple mode appears with λ/L2=0.5. When 

L2/h=20 is selected, the hexagonal dimple mode has a critical wavelength of λcr=0.5L2 

(i.e., λcr/h=0.5×20=10). By contrast, if L2/h=18 is assumed (Table B.1) the sinusoidal 

wrinkle mode has a critical wavelength of λcr/h=0.58×18=10.4, and the corresponding 

mode is the stripe mode in the horizontal direction because M=2 and ψ=90°.  

 

 
Fig. C.3.  Dominant bifurcation modes at the first bifurcation point on the primary path for 
λ/L2=0.5 (M=6) with L2/h=20. (a) (1)

0φ , (b) (1)
60φ , (c) (1)

60*φ , and (d) (1) (1) (1) (1)
hex 0 60 60*= + +φ φ φ φ . To 

obtain the unique hexagonal dimple mode as (1) (1) (1) (1)
hex 0 60 60*= + +φ φ φ φ , (1)

0φ , (1)
60φ , and (1)

60*φ  are 
obtained by controlling the individual phase shifts to assign one dimple at the center of the unit 
cell.  

 

The critical wavelengths are estimated to be in the range of λcr/h=10~10.4. In the 

present study, we focus on the occurrence of the hexagonal dimple mode (Fig. C.3). 

Thus, L2/h=20 is used to analyze pattern evolution from the hexagonal dimple mode 

with λcr/h=10 (Section 5). We note that this study did not focus on precisely determining 

the unique dominant wavelength. This is to avoid the high computational costs of 

performing analyses using small values of ∆µ/kT. Further, intermediate values between 

the values of L2/h are chosen as integer values. Although the theoretical value is 

λth/h=8.1 from λ th/h=2π (Ef/3Es)1/3 with Ef/Es =6.5 (Section 4), the obtained values of 

λcr/h=10~10.4 can be considered to be reasonable, as detailed below. At the critical 

point of µcr/kT =−0.54, the thickness of the film, h*, is increased because of swelling 

from the initial thickness, h. This change is estimated as h*=1.34h because Jcr=1.34 (Fig. 

C.1b). When h* is introduced as λth/h*=2π (Ef/3Es)1/3, the reduced nominal value 
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(DuPont et al., 2010) yields λth/h=1.34×8.1=10.8, which provides good agreement with 

λcr/h=10~10.4, despite ignoring the material nonlinearities of the film and substrate.  

 

Fig. C.3a–c shows the three bifurcation modes, (1)
0φ , (1)

60φ , and (1)
60*φ , analyzed for 

L2/h=20 at µcr/kT =−0.54. Because λ/L2=0.5 is accompanied by M=6=k(1), the sinusoidal 

wrinkle modes in the three symmetric directions has arbitrary phase shifts (Appendix B). 

To obtain the unique hexagonal dimple mode, (1)
hexφ  (Fig. C.3d), (1)

0φ , (1)
60φ , and (1)

60*φ  

are analyzed by controlling the individual phase shifts to assign one dimple at the center 

of the unit cell. Thus, (1)
hexφ  is obtained as (1) (1) (1) (1)

hex 0 60 60*= + +φ φ φ φ  

 

Appendix D. Interpretation of the second bifurcation modes 

To interpret the occurrence of rectangular checkerboard modes in the three 

symmetric directions at the second bifurcation point (Section 5), the sinusoidal wrinkle 

modes discretized by m and n are considered again (Appendix B). The case of L2/L1=
3  is fixed, which allows us to use Eqs. (B.4) and (B.5). When the values of m and n 

are parametrized to explore the wave properties, the combination of (m, n)=(2, 10), (m, 

n)=(4, 8) and (m, n)=(6, 2) gives a reasonable explanation of the occurrence of the 

rectangular checkerboard modes in the three symmetric directions (Table D.1). The 

reduced combination of (m, n)=(1, 5), (m, n)=(2, 4) and(m, n)=(3, 1) also gives the same 

explanation if L2/h=40 is considered instead of L2/h=80. This specific combination 

yields M=4+4+4=12 (i.e., a duodecuple bifurcation). For L2/h=80, we analyze the 

second bifurcation modes using the combination of (m, n)=(2, 10), (m, n)=(4, 8), and (m, 

n)=(6, 2).  

 

Table D.1 shows the wave properties described by the combination of (m, n)=(2, 10), 

(m, n)=(4, 8) and (m, n)=(6, 2) (i.e., λ/L2=0.095). The resulting sinusoidal wrinkle 

modes have individual directions characterized by ψ = ± 19°, ± 41° and ± 79°(=
101°), respectively (Fig. D.1). The wrinkle modes are not orthogonal to each other; thus, 

the superposition of the two selected wrinkle modes yields a rectangular checkerboard 

mode. Fig. D.2 shows the rectangular checkerboard modes obtained from superposing 

the two wrinkle modes prescribed by the set of ± 41°, 19° and −79°(=101°), and −19° 

and 79°(=−101°), respectively. Fig. D.2 demonstrates that they correspond to the 
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checkerboard modes, cb0φ , cb60φ , and cb60*φ , predicted by the eigenvalue buckling 

analysis (Fig. 6). These representative directions characterized by the angles of 0° and 
± 60°, are confirmed as 0°=(41°−41°)/2 and ± 60°= ± (19°+101°)/2, respectively (Fig. 

6a–c). Thus, the individual wavelengths are defined as λ/h=7.6 (=0.095×80). In 

addition, when L2/h=40 is considered, the same bifurcation behavior as for λ/h=7.6 

(=0.190×40) occurs for the combination of (m, n)=(1, 5), (m, n)=(2, 4) and(m, n)=(3, 1) 

(Table D.1).  

 
Table D.1. Sets of the angle, ψ , wavelength, λ, and multiplicity of bifurcations, M, obtained 
from the specific sets of m and n with L2/L1= 3 . The combination of (m, n)=(2, 10), (m, n)=(4, 
8) and (m, n)=(6, 2) yields M=4+4+4=12 with λ/L2=0.095, such that L2/h=80 gives λ/h=7.6. 
When L2/h=40 is considered, λ/L2=0.190 results in λ/h=7.6.  

m n ψ  λ/L2 M 

1 5 19° 0.190 4 

2 4 41° 0.190 4 

3 1 79°(=−101°) 0.190 4 

2 10 19° 0.095 4 

4 8 41° 0.095 4 

6 2 79°(=−101°) 0.095 4 

 

 
Fig. D.1.  Six sinusoidal wrinkle modes described by (m, n)=(2, 10), (m, n)=(4, 8), and (m, 
n)=(6, 2): (a) ψ=19°, (b) ψ=−19°, (c) ψ=41°, (d) ψ=−41°, (e) ψ=79°(=−101°), and (f) 
ψ=−79°(=101°). We do not focus on the phase shift of the individual modes (Eq. (B.3)) because 
the rectangular checkerboard modes consisting of two wrinkle modes is periodically equivalent 
and independent of the phase shift.  
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Fig. D.2.  Rectangular checkerboard modes corresponding to (2)

cb0φ , (2)
cb60φ , and (2)

cb60*φ , obtained 
by superposing the two wrinkles prescribed by the set of (a) ± 41°, (b) 19° and −79°(=101°), 
and (c) −19° and 79°(=−101°). These representative directions are characterized by the angles of 
0° and ± 60° as 0°=(41°−41°)/2 and ± 60°= ± (19°+101°)/2, respectively.  

 

We now address the question of why the three rectangular checkerboard modes, 

cb0φ , cb60φ , and cb60*φ (Fig. D.2), are selected at the second bifurcation from a lot of 

potential modes generated from the six wrinkle modes in the characteristic directions 

(Fig. D.1). Because M=12, the six wrinkle modes also have the arbitrary phase shift 

(Appendix B). If several checkerboard modes are further superposed, M=12 provides a 

huge number of the potential modes, while k(2)=3 at the second bifurcation provides 

only cb0φ , cb60φ  and cb60*φ . That is because at the second bifurcation point, the flat gel 

film on the primary path has already been deformed by the hexagonal dimple mode 

occurring at the first bifurcation point. Most of potential modes are not allowed to occur 

freely. We consider M=12 to be reduced to k(2)=3 to maintain the symmetry of the 

hexagonal dimple mode; that is, (2)
cb0φ , (2)

cb60φ , and (2)
cb60*φ  are allowed to occur selectively 

as the dominant modes at the second bifurcation point.  

 

It is finally noted that although Appendices B and D have been constructed based on 

intuition and experience, more sophisticated and systematic explanations may be 

derived from group-theoretic methods (Golbitsky et al., 1988; Ikeda and Murota, 2002). 

In addition, the present study showed that the film/substrate system is simple but its 

bifurcation behavior is incredibly rich and complicated. As described by Healey (1988), 
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the utilization of the group-theoretic approach to computational bifurcation analysis can 

lead to a dramatic reduction in numerical effort and enable the accurate computation of 

symmetry-breaking bifurcation points.  
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