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Abstract 
 
The trans–gauche isomerization reaction of model 1,2-dichloroethane in water and 
ethylene glycol (EG) was studied by molecular dynamics (MD) simulation. With low 
barrier height, the reaction in EG was slower than that in water, and their difference 
decreased with increasing barrier height. Compared with the time-dependent diffusion 
model, in water, the effective diffusion coefficient was almost independent of time, 
whereas it decreased with time in EG. The trends were reproduced by Langevin dynamics 
simulation with a time-dependent friction coefficient from MD simulation. The effective 
diffusion coefficient in water agreed well with the prediction of the Grote–Hynes (GH) 
theory, whereas for EG, the GH theory overestimated the effective diffusion coefficient. 
It was suggested that the coupling with the slow structural relaxation of EG slows down 
the dynamics far from the transition state, which may slow down the overall reaction 
dynamics when the activation barrier is not high. 
 
Keywords: Dynamic solvent effect; Grote-Hynes theory; Isomerization; Structural 
relaxation; Viscosity 
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1. Introduction 
Chemical reactions in solutions proceed under both static and dynamic effects of solvents. 
The static effects refer to the modification of the free energy profile along the reaction 
coordinate through solvation. When the reaction involves modification of the molecular 
structure, the solvent exerts friction on the dynamics along the reaction coordinate, which 
is called the dynamic solvent effect (DSE). An example of such a reaction is the 
unimolecular isomerization reaction in solution, which has been targeted as a model 
system for DSE studies [1]. 

Because shear viscosity governs the friction on macroscopic objects immersed in a 
liquid, it has been used as a measure of microscopic friction on the reaction dynamics of 
a solute molecule. Typical experimental studies on DSE have thus included determination 
of the rate constant of a chosen reaction system at a given temperature in solvents with 
different viscosity values. The change in solvent viscosity was achieved by changing the 
solvent species, applying pressure, or adding cosolvents. The rate constant was then 
correlated with the viscosity, and the decrease in rate constant with viscosity was regarded 
as a manifestation of DSE. 

Early experimental studies on DSEs were performed from the point of view of basic 
physical chemistry, and simple small molecules were chosen as model reaction systems. 
Time-resolved spectroscopy using pulsed lasers was a popular experimental technique [1-
3], and other methods such as nuclear magnetic resonance spectroscopy [4] and ultrasonic 
spectroscopy [5] were also used. Typical experimental results were that, although the rate 
constant, k, decreases with increasing shear viscosity, η0, their correlation was weaker 
than the hydrodynamic prediction, 𝑘𝑘 ∝ 1 𝜂𝜂0⁄ . The empirical power relation 𝑘𝑘 ∝ 𝜂𝜂0−𝛼𝛼 
was then often used, where α is a positive number smaller than unity [1]. 

The folding dynamics of protein can be regarded as a unimolecular isomerization 
reaction in solution. Because of the growing interest in the physico-chemical properties 
of biological systems in recent decades, experimental data on folding dynamics in various 
conditions have been accumulated [6-8]. It was found that in solvents of low viscosity the 
variation in the folding rate is rather weak. The idea of “internal friction” was then 
proposed, in which the friction along the reaction coordinate is dominated by coupling 
with other intramolecular degrees of freedom, rather than by the dynamics of solvent 
molecules [7, 9, 10]. 

Unimolecular isomerization reaction in solution belongs to activation barrier crossing, 
for which the most basic theory is, of course, the transition state theory (TST). DSE is not 
included in TST, that is, the rate constant predicted by TST is independent of the shear 
viscosity of the solvent. 
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The Kramers theory is the first step for treating the DSE [11]. This theory regards the 
crossing of the activation barrier as a motion along the reaction coordinate under the 
influence of Markovian noise. The stochastic motion along the reaction coordinate 
becomes overdamped in dense liquids, and the probability distribution of the reactant 
obeys a simple diffusion equation under external potential. In the Kramers theory, the 
time development of the diffusion equation is scaled by the diffusion coefficient, and thus 
the reaction rate is proportional to the diffusion coefficient. Therefore, the Kramers theory 
predicts the 𝜂𝜂0−1 dependence of the rate constant if the diffusion coefficient along the 
reaction coordinate is inversely proportional to the shear viscosity of the neat solvent. 

The Grote–Hynes (GH) theory is an extension of the Kramers theory, which describes 
the rate constant in terms of the time correlation function of the reactive current [12]. In 
contrast to the Kramers theory, in the GH theory, the friction coefficient along the reaction 
coordinate depends on frequency. The final expression of the GH theory states that the 
frequency-independent friction coefficient in the Kramers theory is replaced with the 
frequency-dependent friction at the reactive frequency, which is related to the curvature 
of the potential at the transition state. The GH theory can thus be regarded as a non-
Markovian generalization of the Kramers theory. An extension of the GH theory to 
include the slowing down caused by energy diffusion, referred to as “PGH theory”, was 
later proposed by Pollak, Grabert, and Hänggi [13, 14]. 

The activated barrier crossing has also been a target of computer simulation studies 
[15]. Early studies were limited to reactions on model potentials under the influence of 
stochastic noise; however, nowadays, it is possible to perform molecular dynamics (MD) 
simulation of the unimolecular isomerization reaction in solution, including 
intramolecular modes other than the reaction coordinate and the microscopic description 
of solvent molecules [9, 16, 17]. Hridya and Mukherjee performed a computational study 
that suggested that the insensitiveness of the folding rate of proteins to the shear viscosity 
of the solvent is ascribed to the frequency-dependent friction coefficient in the GH theory 
[18]. 

In some recent computational studies, a popular method to vary the shear viscosity of 
a solvent, particularly water, is to scale the atomic masses of the solvent [9, 17, 19, 20]. 
This operation has two advantages; first, the scaling of the shear viscosity against the 
atomic mass is quite simple, and second, because the static properties of classical 
equilibrium systems do not depend on the atomic masses, their scaling does not affect the 
free-energy profile along the reaction coordinate, which is a crucial factor in determining 
the rate constant. However, we consider that an important point is missing in the atomic-
mass scaling method from the viewpoint of the frequency dependence of the friction 
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coefficient, because it does not reproduce typical changes in the viscoelastic spectra with 
changing solvent or applying pressure. 

Shear viscosity is a dynamic property of liquids, which is given by the time integral of 
the autocorrelation function of shear stress according to the Kubo–Green theory [21]. The 
autocorrelation function of the shear stress is usually bimodal in dense liquids. The fast 
component is assigned to collisional momentum transfer, and the slow component to 
collective structural relaxation. The shear viscosity exhibits significant variation, 
amounting to several orders of magnitude, among liquids of different chemical 
compositions or thermodynamic conditions. The large variation in shear viscosity is 
almost exclusively ascribed to that of the relaxation time of the slow component, whereas 
the amplitude of the slow component and the contribution of the fast component change 
only mildly. By contrast, the scaling of the atomic mass does not affect the relative 
contributions of the fast and slow components to the shear viscosity. 

The time-dependent friction coefficients on the translational diffusion and 
intramolecular reaction coordinates also consist of fast and slow components. Although 
there is still discussion on the relation between the macroscopic viscosity and microscopic 
friction on a solute molecule, it is natural to expect that the spectral shape of the 
microscopic friction follows that of the shear viscosity if the time-integrated friction 
coefficient is related to the zero-frequency shear viscosity. In particular, if the viscosity 
of the solvent is experimentally increased by applying pressure or dissolving cosolvents, 
the relaxation time of the slow component of the time-dependent friction along the 
reaction coordinate follows the increase in shear viscosity of the solvent, whereas the fast 
friction and the amplitude of the slow friction are expected to be almost constant [22, 23]. 

The predictions of the Kramers and GH theories differ considerably in the reaction rate 
response to the relaxation time of the slow friction mode [24]. In the Kramers theory, the 
retardation in relaxation time is reflected in the reaction rate through the time-integrated 
friction coefficient. The retardation of the slowest relaxation mode thus results in the 
significant decrease in the rate constant. By contrast, the rate constant predicted by the 
GH theory is almost independent of the relaxation time of the slowest mode, because the 
reactive frequency is much higher than the relaxation rate of the slowest mode. Therefore, 
we believe that computational work on the effect of solvent viscosity on the reaction rate 
of the unimolecular isomerization would be better performed on systems where an 
increase in the shear viscosity of the solvent is accomplished through an increase in the 
relaxation time of the slowest mode of structural relaxation. 

In this work, we performed MD simulations on the trans–gauche isomerization reaction 
of 1,2-dichloroethane (DCE) in water and ethylene glycol (EG). The conformational 
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equilibrium of 1,2-dihaloethane was regarded as a model system for the study of solvent 
effects on chemical equilibrium [25], and the kinetics of the isomerization was also 
investigated experimentally [5]. EG is the simplest diol molecule, with a shear viscosity 
of 17 mPa s at ambient condition [26]. EG has been used as a typical viscous liquid 
experimentally, and its high viscosity is ascribed to the slow structural relaxation, as will 
be shown in this work. For comparison, water was chosen as a non-viscous solvent 
without slow structural relaxation, in the sense that its viscoelastic relaxation completes 
almost within 2 ps, as will be shown in Fig. 1. The transition matrix was calculated as a 
function of time, and the time-dependent effective diffusion coefficient was deduced from 
comparison with the time-dependent diffusion model, which will be introduced in Sec. 
2.3. The effective diffusion coefficients are also compared with the prediction of the GH 
theory. 
 
2. Theory 
2.1. Rate equation and transition matrix 
Suppose that the solute of interest takes two different conformations, trans (t) and gauche 
(g). The chemical rate equation for the time dependence of the concentrations of these 
isomers is given as 

𝑑𝑑
𝑑𝑑𝑑𝑑

[t]𝑡𝑡 = −𝑘𝑘gt[t]𝑡𝑡 + 𝑘𝑘tg[g]𝑡𝑡, (1) 

𝑑𝑑
𝑑𝑑𝑑𝑑

[g]𝑡𝑡 = −𝑘𝑘tg[g]𝑡𝑡 + 𝑘𝑘gt[t]𝑡𝑡, (2) 

where the rate constants from t to g and from g to t are denoted as kgt and ktg, respectively. 
The subscript t means that the concentration is the value at time t. The equilibrium 
constant of the isomerization is related to the rate constants as 

𝐾𝐾 ≡
[g]𝑒𝑒𝑒𝑒
[t]𝑒𝑒𝑒𝑒

=
𝑘𝑘gt
𝑘𝑘tg

, (3) 

where the subscript eq indicates the equilibrium value. 
Here we define the transition matrix, 𝑇𝑇𝛼𝛼𝛼𝛼(𝑑𝑑), where {𝛼𝛼, 𝛾𝛾} = {t, g}. 𝑇𝑇𝛼𝛼𝛼𝛼(𝑑𝑑) denotes 

the probability that the solute molecule in state γ at time zero is found to be in the state α 
at time t. When the rate equations, eqs (1) and (2), hold, the relaxation of the transition 
matrix is given by 

1 − 𝑇𝑇tg(𝑑𝑑) − 𝑇𝑇gt(𝑑𝑑) = exp[−𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑] , (4) 
where 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡 ≡ 𝑘𝑘tg + 𝑘𝑘gt means the overall rate constant that governs the relaxation to the 
equilibrium. 
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2.2. Dynamics along the reaction coordinate 
A unimolecular isomerization reaction is often treated as one-dimensional dynamics 
along a chosen coordinate x, called the “reaction coordinate”. The free-energy profile 
along the coordinate is denoted as U(x). The coordinates perpendicular to x, including 
both intramolecular vibrational modes and solvent degrees of freedom, are projected out. 
The free-energy profile U(x) possesses two minima separated by an activation barrier. 
Each minimum corresponds to each isomeric state, and the peak of the activation barrier 
is called the “transition state”. 

The dynamics along the reaction coordinate is described by the generalized Langevin 
equation as 

𝑚𝑚�̈�𝑥(𝑑𝑑) + � 𝑑𝑑𝑑𝑑 𝛾𝛾(𝑑𝑑 − 𝑑𝑑)�̇�𝑥(𝑑𝑑)
𝑡𝑡

0
+
𝜕𝜕𝜕𝜕(𝑥𝑥(𝑑𝑑))

𝜕𝜕𝑥𝑥
− 𝑅𝑅(𝑑𝑑) = 0, (5) 

where m stands for the effective mass along the reaction coordinate. The time-dependent 
friction coefficient, 𝛾𝛾(𝑑𝑑), is called the “memory function”. Both 𝛾𝛾(𝑑𝑑) and the random 
force, 𝑅𝑅(𝑑𝑑), describe the effect of the degrees of freedom perpendicular to the reaction 
coordinate on the dynamics of 𝑥𝑥(𝑑𝑑), and they are related to each other through the 
fluctuation–dissipation theorem as 

𝛾𝛾(𝑑𝑑) =
1
𝑘𝑘𝐵𝐵𝑇𝑇

< 𝑅𝑅(0)𝑅𝑅(𝑑𝑑) >, (6) 

where kB and T denote the Boltzmann constant and the absolute temperature, respectively. 
The generalized Langevin equation without the potential term is given by 

𝑚𝑚�̈�𝑥(𝑑𝑑) + � 𝑑𝑑𝑑𝑑 𝛾𝛾(𝑑𝑑 − 𝑑𝑑)�̇�𝑥(𝑑𝑑)
𝑡𝑡

0
− 𝑅𝑅(𝑑𝑑) = 0, (7) 

from which the diffusion coefficient along the reaction coordinate, 𝐷𝐷0,𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒, is obtained 
as 

𝐷𝐷0,𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒 = � 𝑑𝑑𝑑𝑑 𝑍𝑍𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑑𝑑)
∞

0
=

1
2

lim
t→∞

𝑑𝑑
𝑑𝑑𝑑𝑑

< |𝛿𝛿𝑥𝑥(𝑑𝑑)|2 >𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒 . (8) 

The subscript free means motion without the potential term. The velocity autocorrelation 
function, 𝑍𝑍𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑑𝑑), is defined as 

𝑍𝑍𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑑𝑑) ≡< �̇�𝑥(0)�̇�𝑥(𝑑𝑑) >𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒, (9) 
and the definition of the displacement, 𝛿𝛿𝑥𝑥(𝑑𝑑), is given by 

𝛿𝛿𝑥𝑥(𝑑𝑑) ≡ 𝑥𝑥(𝑑𝑑) − 𝑥𝑥(0). (10) 
The diffusion coefficient defined by eq. (8) can be extended to the time-dependent and 

the frequency-dependent coefficients. The former is defined as 

𝐷𝐷𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑑𝑑) ≡ � 𝑑𝑑𝑑𝑑 𝑍𝑍𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑑𝑑)
𝑡𝑡

0
=

1
2
𝑑𝑑
𝑑𝑑𝑑𝑑

< |𝛿𝛿𝑥𝑥(𝑑𝑑)|2 >𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒 , (11) 
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and the latter as 

𝐷𝐷�𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑧𝑧) ≡ � 𝑑𝑑𝑑𝑑 𝑒𝑒−𝑧𝑧𝑧𝑧𝑍𝑍𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑑𝑑)
∞

0
. (12) 

According to eq. (7), 𝐷𝐷�𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑧𝑧) is related to the memory function as 

𝐷𝐷�𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑧𝑧) =
𝑘𝑘𝐵𝐵𝑇𝑇

𝑚𝑚𝑧𝑧 + 𝛾𝛾�(𝑧𝑧) , (13) 

where the frequency-dependent friction is defined by 

𝛾𝛾�(𝑧𝑧) ≡ � 𝑑𝑑𝑑𝑑 𝑒𝑒−𝑧𝑧𝑡𝑡𝛾𝛾(𝑑𝑑).
∞

0
(14) 

In the frequency regime, where the effect of inertia is negligible (𝑚𝑚𝑧𝑧 ≪ γ�(𝑧𝑧)) and z is far 
smaller than the rate of the slowest relaxation of 𝛾𝛾(𝑑𝑑), the diffusion coefficient becomes 
frequency-independent, and its value is equal to the low-frequency limiting one as 

𝐷𝐷�𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑧𝑧 = 0) ≡ 𝐷𝐷0,𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒 =
𝑘𝑘𝐵𝐵𝑇𝑇
𝛾𝛾�(0) . (15) 

The time dependence of 𝐷𝐷𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑑𝑑) corresponds to the frequency dependence of 𝐷𝐷�𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑧𝑧), 
that is, the diffusion coefficient is time-dependent if the relaxation of the time-dependent 
friction coefficient is incomplete. 

Under the assumption that the memory function is not affected by the presence of the 
potential term, we can obtain the time- and the frequency-dependent diffusion coefficients 
from the MD simulation with a biased potential to cancel U(x). The validity of the 
assumption will be discussed based on the results of our MD simulation. 
 
2.3. The Kramers theory and the time-dependent diffusion model 
The dynamics along the reaction coordinate can be regarded as the time development of 
the probability distribution of the reaction coordinate and its conjugate momentum. The 
derivation of the equation for the probability distribution is difficult for the general case 
with a time-dependent friction coefficient and the effects of inertia. When the friction is 
Markovian, that is, 𝛾𝛾(𝑑𝑑) = 2𝛾𝛾0𝛿𝛿(𝑑𝑑) , and the effects of inertia are negligible, the 
probability distribution follows the simple Smoluchowski equation as 

𝜕𝜕
𝜕𝜕𝑑𝑑
𝑃𝑃(𝑥𝑥, 𝑑𝑑) = 𝐷𝐷0

𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑃𝑃(𝑥𝑥, 𝑑𝑑)
𝜕𝜕𝑥𝑥

+
𝑃𝑃(𝑥𝑥, 𝑑𝑑)
𝑘𝑘𝐵𝐵𝑇𝑇

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝑥𝑥

� , (16) 

where 𝑃𝑃(𝑥𝑥, 𝑑𝑑) denotes the probability density to find the system at the position x at time 
t, and 𝐷𝐷0 ≡ 𝑘𝑘𝐵𝐵𝑇𝑇 𝛾𝛾0⁄  is the diffusion coefficient. Kramers derived the expression of the 
rate constant, kKr, from eq. (16) as [11] 
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𝑘𝑘𝐾𝐾𝑓𝑓 ∝
𝐷𝐷0

∫ 𝑑𝑑𝑥𝑥 exp �𝜕𝜕(𝑥𝑥)
𝑘𝑘𝐵𝐵𝑇𝑇

�
. (17) 

The integral in the denominator runs from the reactant to the product, but the contribution 
around the transition state is dominant due to the large value of 𝜕𝜕(𝑥𝑥). An important point 
in eq. (17) is that the reaction rate constant is proportional to 𝐷𝐷0. Therefore, if we assume 
that the microscopic friction 𝛾𝛾0 is proportional to the shear viscosity of the solvent, 𝜂𝜂0, 
the reciprocal relation between the shear viscosity and the rate constant is expected. 

An extension of the Smoluchowski equation, eq. (16), to include the time dependence 
of the diffusion coefficient is the time-dependent diffusion model as 

𝜕𝜕
𝜕𝜕𝑑𝑑
𝑃𝑃(𝑥𝑥, 𝑑𝑑) = 𝐷𝐷(𝑑𝑑)

𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑃𝑃(𝑥𝑥, 𝑑𝑑)
𝜕𝜕𝑥𝑥

+
𝑃𝑃(𝑥𝑥, 𝑑𝑑)
𝑘𝑘𝐵𝐵𝑇𝑇

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝑥𝑥

� . (18) 

The time-dependent diffusion model has actually been used to analyse chemical reactions 
of systems with slow memory [27-30]. An advantage of the time-dependent diffusion 
model is its relatively easy numerical treatment. By changing the time variable t into the 
effective time s, defined as 

𝑠𝑠 ≡ � 𝐷𝐷(𝑑𝑑)𝑑𝑑𝑑𝑑,
𝑡𝑡

0
(19) 

eq. (18) reduces to the Smoluchowski equation with 𝐷𝐷0 = 1 as 
𝜕𝜕
𝜕𝜕𝑠𝑠
𝑃𝑃(𝑥𝑥, 𝑠𝑠) =

𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑃𝑃(𝑥𝑥, 𝑠𝑠)
𝜕𝜕𝑥𝑥

+
𝑃𝑃(𝑥𝑥, 𝑠𝑠)
𝑘𝑘𝐵𝐵𝑇𝑇

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝑥𝑥

� . (20) 

 
2.4. The GH theory 
The GH theory deals with a chemical reaction in which the reaction rate is given by the 
time correlation function of the reactive flux at the transition state [12]. Applying the 
theory to the activation barrier crossing in solution, Grote and Hynes derived an extension 
of the Kramers theory to include the frequency dependence of the memory function. The 
rate constant predicted by the GH theory is given by 

𝑘𝑘𝐺𝐺𝐺𝐺 =
𝜆𝜆𝑓𝑓
𝜔𝜔𝑏𝑏

𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 , (21) 

where 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 denotes the reaction rate constant of TST, and 𝜔𝜔𝑏𝑏 stands for the barrier 
frequency determined by the curvature at the transition state. The reactive frequency, 𝜆𝜆𝑓𝑓, 
is related to the barrier frequency as follows: 

𝜆𝜆𝑓𝑓 =
𝑚𝑚𝜔𝜔𝑏𝑏

2

𝑚𝑚𝜆𝜆𝑓𝑓 + 𝛾𝛾�(𝜆𝜆𝑓𝑓) . (22) 

From eqs (13), (21), and (22), 𝑘𝑘𝐺𝐺𝐺𝐺 is described in terms of the frequency-dependent 
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diffusion coefficient as 
𝑘𝑘𝐺𝐺𝐺𝐺
𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇

=
𝑚𝑚𝜔𝜔𝑏𝑏

𝑘𝑘𝐵𝐵𝑇𝑇
𝐷𝐷�𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝜆𝜆𝑓𝑓). (23) 

By contrast, the rate constant of the Kramers theory is given in the limit of large friction 
by [11] 

𝑘𝑘𝐾𝐾𝑓𝑓
𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇

=
𝑚𝑚𝜔𝜔𝑏𝑏

𝑘𝑘𝐵𝐵𝑇𝑇
𝐷𝐷0,𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒, (24) 

where 𝐷𝐷0,𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒 is the diffusion coefficient in the low-frequency limit given by eq. (15). 
Therefore, the difference between the Kramers and GH theories is that the dynamics of 
the barrier crossing is described by the zero-frequency diffusion coefficient in the former, 
whereas the dynamics is governed by the diffusion coefficient at the reactive frequency 
in the latter. 
 
3. Computational method 
Equilibrium MD simulation runs were performed on systems in which a DCE molecule 
was dissolved in solvent EG or water. MD simulation runs of neat solvents were also 
performed to calculate the shear viscosity. All the MD simulation runs were performed 
using the GROMACS 2019.1 package [31], except for that of neat water, for which 
GROMACS 5.1.2 was used. The optimized potential for liquid simulation–all atom 
(OPLS-AA) model was used for DCE [32], the parameters for which were taken from 
the .itp files within the GROMACS package. A water molecule was described by the 
extended simple point charge (SPC/E) model [33]. The force field proposed by Szefczyk 
and Cordeiro was used for EG [34], the parameters of which were taken from the 
Supporting Information of their paper. The geometric combination rule of the OPLS-AA 
model was used for the Lennard-Jones (LJ) parameters between different kinds of atoms. 
The intramolecular geometry of water was fixed by the SETTLE algorithm [35]. The 
bond lengths involving H atoms, excluding the O–H bond of water, were fixed by the 
LINCS algorithm [36]. Other bond angles and dihedral angles were treated as flexible. 

The solution of DCE in EG consisted of one DCE and 944 EG molecules. The aqueous 
solution of DCE was composed of one DCE and 2718 water molecules. The neat solvent 
systems, EG and water, were made of 1000 EG and 2744 water molecules, respectively. 
In all systems, all the molecules were contained in a cubic cell with periodic boundary 
condition. The temperature and pressure of the systems were 298 K and 1 bar, which were 
controlled with a Nosé–Hoover thermostat and a Parrinello–Rahman barostat, 
respectively [37]. The equation of motion was integrated by the leap-frog algorithm with 
the time step of 1 fs [37]. The long-range part of the Coulombic interaction was evaluated 
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using the particle mesh Ewald method with a Fourier spacing of 0.12 nm [38]. The short-
range part of the Coulombic interaction and the LJ potential were cut off at 1.2 nm. 

The topic of interest in this study was the trans–gauche isomerization reaction of DCE, 
and the reaction coordinate of the isomerization was chosen simply to be the Cl–C–C–Cl 
dihedral angle of DCE, denoted as 𝜑𝜑. MD simulation runs were also performed with an 
additional potential on 𝜑𝜑 in both water and EG to examine the effect of the activation 
barrier between the trans and gauche states. The functional form of the additional 
potential is given by 

𝜕𝜕𝑒𝑒𝑒𝑒(𝜑𝜑)
𝑘𝑘𝐵𝐵𝑇𝑇

=
Δ𝑒𝑒𝑒𝑒

2
[1 − cos 3𝜑𝜑]. (25) 

The values of the excess barrier height, Δ𝑒𝑒𝑒𝑒, were 0 (no excess barrier), 1, and 3. 
For all six solution systems, three values of Δ𝑒𝑒𝑒𝑒 and two solvents, a 20 ns equilibration 

run was performed first. Next, a 100 ns production run was performed, in which the 
nuclear coordinates were written at 100 fs intervals. Then, a 1 µs production run was 
performed with an output interval of 1 ps. The MD simulation run of neat EG was of 1 
µs duration, and was preceded by a 100 ns equilibration run. The shear stress was 
calculated every 10 fs, and saved at 1 ps intervals. The production run of neat water was 
of 100 ns duration, following a 10 ns equilibration run. The shear stress was calculated 
every 10 fs, at an output interval of 100 fs. 

In both solutions, the equilibrium MD simulation runs were performed with a biased 
potential that cancels the potential of mean force to obtain the time-dependent diffusion 
coefficient along the reaction coordinate. In these runs, the probability distribution of the 
dihedral angle, 𝑃𝑃(𝜑𝜑), was first evaluated from the second production run of Δ𝑒𝑒𝑒𝑒= 0. The 
potential of mean force was then fitted into the fifth-order polynomial of cos𝜑𝜑 as 

−𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃(𝜑𝜑) ≃ �𝐶𝐶𝑛𝑛 cos𝑛𝑛 𝜑𝜑
5

𝑛𝑛=0

. (26) 

Then, a 10 ns equilibrium run was performed with the approximated biased potential and 
the distribution obtained was used to adjust the biased potential. Next, a 100 ns run was 
performed to adjust the biased potential further. Finally, a 100 ns production run was 
performed with the adjusted biased potential. The distribution run of the final production 
run cannot be uniform, because the fifth-order polynomial cannot exactly reproduce the 
potential of mean force. However, the relative mean-square deviations from the uniform 
distribution were small, only about 1.5% and 3% for the solutions of water and EG, 
respectively. 

Langevin dynamics (LD) simulations were also performed on both solutions with the 
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three values of ∆ex based on the generalized Langevin equation, eq. (7). The potentials of 
mean force were taken from the final production MD runs with the biased potential. The 
memory function was approximated as a multiexponential one, 

𝛾𝛾(𝑑𝑑) = 2𝛾𝛾�0𝛿𝛿(𝑑𝑑) + �
𝛾𝛾�𝑛𝑛
𝑑𝑑𝑛𝑛

exp �−
𝑑𝑑
𝑑𝑑𝑛𝑛
� ,

𝑛𝑛=1

(27) 

where the parameters 𝛾𝛾�𝑛𝑛 and 𝑑𝑑𝑛𝑛 were determined to reproduce 𝐷𝐷𝜑𝜑,𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑑𝑑) of the final 
production MD runs. The numbers of the exponential modes were 1 for water and 2 for 
EG. The exponential memory function was obtained as a coupling with overdamped 
harmonic oscillators, as proposed by Kappler and co-workers [39, 40]. The integration of 
the generalized Langevin equation, eq. (7), was performed by using the fourth-order 
Runge–Kutta method with a time step of 1 fs. The LD simulation run was performed for 
110 µs for each system. The initial 10 µs was treated as the equilibration span, and the 
remaining 100 µs run was used for analysis. 

 
4. Results and discussion 
4.1. Translational dynamics 
According to the Kubo–Green theory, the shear viscosity of a liquid is related to the time 
correlation function of the off-diagonal part of the stress tensor, 𝑃𝑃𝑒𝑒𝑥𝑥(𝑑𝑑), as [21] 

𝜂𝜂0 =
𝑉𝑉
𝑘𝑘𝐵𝐵𝑇𝑇

� < 𝑃𝑃𝑒𝑒𝑥𝑥(0)𝑃𝑃𝑒𝑒𝑥𝑥(𝑑𝑑) > 𝑑𝑑𝑑𝑑,
∞

0
(28) 

where V stands for the volume of the system. From the analogy of the time-dependent 
diffusion coefficient, eq. (11), the time-dependent shear viscosity, 𝜂𝜂(𝑑𝑑), is defined as 

𝜂𝜂(𝑑𝑑) ≡
𝑉𝑉
𝑘𝑘𝐵𝐵𝑇𝑇

� < 𝑃𝑃𝑒𝑒𝑥𝑥(0)𝑃𝑃𝑒𝑒𝑥𝑥(𝑑𝑑) > 𝑑𝑑𝑑𝑑.
𝑡𝑡

0
(29) 

 

 
Fig. 1. The time-dependent shear viscosity defined by eq. (29) (solid, left axis) and the running integral of 

the translational memory function defined by eq. (31) (dotted, right axis). The red and blue curves are the 
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functions of water and EG, respectively. 

 
The time-dependent shear viscosities of both liquids, determined by the MD runs of 

neat liquids, are plotted with solid curves in Fig. 1. The long-time limiting values, 
corresponding to η0, are 0.70 mPa s for water and 9.2 for EG. These values are in 
reasonable agreement with previous works using the same potential models [34, 41]. 
Comparing the time profiles of η(𝑑𝑑) of both liquids, the difference is slight in the sub-
picosecond regime, and the larger-than-water viscosity of EG is ascribed to the slower 
relaxation time. Wald and Kaatze reported the ultrasonic relaxation time of EG at 298 K 
as 53 ps [42]. If we regard the relaxation time as that of the shear stress, the shear 
relaxation of our MD simulation (Fig. 1) is slightly faster than the experimental value, 
which can explain the fact that the value of η0 was smaller than the experimental value. 
 

 
Fig. 2. The time-dependent translational diffusion coefficients of DCE in water (blue) and EG (red). Filled 

circles show results of MD simulation runs, and the dotted curves are fits obtained using the 

multiexponential memory functions, eq. (27). 

 
The translational dynamics of DCE in both solvents was analysed by calculating the 

time-dependent translational diffusion coefficient, 𝐷𝐷T(𝑑𝑑), which is defined in analogy 
with eq. (11) as 

𝐷𝐷𝑇𝑇(𝑑𝑑) ≡
1
6
𝑑𝑑
𝑑𝑑𝑑𝑑
〈|𝛿𝛿𝒓𝒓𝐶𝐶𝐶𝐶(𝑑𝑑)|2〉 , (30) 

where 𝛿𝛿𝒓𝒓𝐶𝐶𝐶𝐶(𝑑𝑑) ≡ 𝒓𝒓CM(𝑑𝑑) − 𝒓𝒓𝐶𝐶𝐶𝐶(0) stands for the displacement of the centre-of-mass 
position. The calculation of 𝐷𝐷T(𝑑𝑑) was performed using the first production runs. The 
results of the MD simulation are plotted in Fig. 2 with filled circles. Because the results 
are barely dependent on the values of ∆ex, only the results of ∆ex = 0 were plotted and 
analysed. 
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𝐷𝐷T(𝑑𝑑) initially increases proportionally with t, showing a peak around 300 fs; it then 
decays and finally reaches a constant value corresponding to the translational diffusion 
coefficient (Fig. 2). The initial rise describes the inertial motion, and the decay is caused 
by the coupling with the friction of finite relaxation time. The convergence in water is 
almost completed within 2 ps, whereas the decrease in 𝐷𝐷T(𝑑𝑑) lasts up to several tens of 
ps in EG. The slow convergence of 𝐷𝐷T(𝑑𝑑) in EG appears to correspond to that of η(𝑑𝑑) 
in Fig. 1. The diffusion coefficients in the long-time limit are 1.41 × 10–9 m2/s in water 
and 1.89 × 10–10 in EG. Their ratio, 7.5, is smaller than that of η0, 13, but the increase in 
shear viscosity from water to EG is reflected in the decrease in the translational diffusion 
coefficient of DCE. 

The generalized Langevin equation without an external potential, eq. (7), was applied 
to the centre-of-mass motion, 𝒓𝒓CM(𝑑𝑑), to extract the coupling of the translational motion 
of the solute with the slow structural relaxation of the solvent. The memory function, 
𝛾𝛾T(𝑑𝑑), was approximated as the multiexponential function, eq. (27), and the parameters 
were optimized to reproduce 𝐷𝐷T(𝑑𝑑).  

The results of the fitting are shown with dotted curves in Fig. 2. The numbers of the 
exponential functions are 1 for water and 2 for EG, as described in the previous section. 
The use of additional exponential functions hardly improved the fitting. The agreement 
between the simulation and the fitting is good after several hundred fs. A discrepancy was 
observed around the peak at 300 fs, which was probably due to the approximation in eq. 
(27) that the fastest collisional friction is described as a delta function. The time constant 
for water was τ1 = 1.4 ps, and for EG the two constants were τ1 = 2.3 and τ2 = 16.8 ps. 

The running integrals of 𝛾𝛾T(𝑑𝑑), defined as 

𝛤𝛤𝑇𝑇 (𝑑𝑑) ≡ � 𝑑𝑑𝑑𝑑𝛾𝛾𝑇𝑇(𝑑𝑑)
𝑡𝑡

0
, (31) 

are plotted in Fig. 1 for comparison with 𝜂𝜂(𝑑𝑑). The variation in 𝛤𝛤𝑇𝑇 (𝑑𝑑) between the two 
solvents follows that of 𝜂𝜂(𝑑𝑑) in that the larger friction in EG originates from the slow 
relaxation time. In particular, the slowest relaxation of 𝛤𝛤𝑇𝑇 (𝑑𝑑) occurs in the same time 
scale as 𝜂𝜂(𝑑𝑑), suggesting that the slow structural relaxation that gives a large shear 
viscosity of EG is coupled to the translational dynamics of DCE. 
 
4.2. Transition matrix and effective diffusion coefficients 
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Fig. 3. Probability distribution functions of the dihedral angle of Cl–C–C–Cl of DCE in (a) EG and (b) 

water. The values of ∆ex are 0 (red), 1 (blue), and 3 (green). 

 
The probability distribution functions determined from the second 1 µs production runs 

are shown in Fig. 3. The distribution is symmetric about ϕ = 180°, and only the 
distributions at 0° < ϕ < 180° are shown. The distribution functions for the two solvents 
are close to each other, which means that the static solvent effect on the potential of mean 
force is small. The distribution shows two peaks at 60° and 180°, which correspond to the 
gauche and trans states, respectively. The valleys are observed at 0° and 120°, indicating 
the activation barriers of the isomerization reaction. The former valley is deeper than the 
latter, because the activation barrier between the two gauche states is higher than that 
between the gauche and trans states due to the steric hindrance between two Cl atoms. 
The peak becomes higher and the valley becomes deeper with increasing ∆ex, as expected. 
We confirmed numerically that the change in the potential of mean force is equal to that 
in the additional potential, eq. (25) (results not shown for brevity). We class 120° < ϕ < 
240° to belong to the trans state, and the other values are regarded as the gauche state. 
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Fig. 4. (a) The transition matrix 1 – Ttg(t) – Tgt(t) in EG (red) and water (blue). The values of ∆ex are 0 

(solid), 1 (dotted), and 3 (dashed). (b) The reciprocal reaction time, 1/t1/10, as the function of ∆ex. 

 
The transition matrices were calculated from the second production runs for all six 

systems, ∆ex = 0, 1, and 3 in EG and water; 1 – Ttg(t) – Tgt(t) are plotted as a function of 
time in Fig. 4a. According to eq. (4), this function decays exponentially when the rate 
equation holds, and the decay rate is equal to the overall rate constant, ktot. In both solvents, 
the relaxation of the transition matrix becomes slower with increasing additional barrier 
height, ∆ex, as expected. 

The transition matrix decays about twice as slowly in EG as in water at ∆ex = 0. The 
modification of the potential of mean force by solvent is small (Fig. 3), and thus it is 
natural to interpret that the retardation of the decay in EG is related to its higher viscosity. 
The retardation in relaxation for EG becomes smaller with increasing ∆ex, and the reaction 
proceeds at almost the same rate when ∆ex = 3. Looking closely at the time profiles, the 
decay of 1 – Ttg(t) – Tgt(t) is almost exponential at ∆ex = 3, as is expected from the rate 
equation in Sec. 2.1, whereas the slope in Fig. 4a is a slightly decreasing function of time 
at ∆ex = 0 and 1. The deviation from the exponential function is larger in EG than in water. 
Comparing in detail the time profiles in EG and water at the same value of ∆ex, their initial 
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slopes are close to each other, and the slower relaxation in EG is realized by the larger 
deviation from the exponential function at a longer time. The effective reaction times of 
the six systems, t1/10, were determined as the time of 1 – Ttg(t) – Tgt(t) = 0.1, and plotted 
as the function of ∆ex in Fig. 4b. The increase in t1/10 with ∆ex is slower in EG than in 
water, and the values of t1/10 are almost the same in the two solvent at ∆ex = 3. 

Based on the time-dependent diffusion model, eq. (18), the transition matrix in Fig. 4a 
is converted into the time-dependent effective diffusion coefficient, 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑), in the 
following manner. First, the potential of mean force, 𝜕𝜕(φ) , is calculated from the 
probability distribution function. Because the distribution function around the activation 
barrier is noisy due to the small population in the cases of ∆ex = 1 and 3, the 𝜕𝜕(φ) of 
these systems is evaluated from the 𝜕𝜕(φ) of ∆ex = 0 by adding the additional potential, 
eq. (25). Then, eq. (20) is solved numerically under 𝜕𝜕(φ) to determine the transition 
matrix 𝑇𝑇αγ𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠) as a function of s. The correspondence between s and t is then given to 
satisfy 

1 − 𝑇𝑇tg𝑇𝑇𝑇𝑇𝑇𝑇�𝑠𝑠(𝑑𝑑)� − 𝑇𝑇gt𝑇𝑇𝑇𝑇𝑇𝑇�𝑠𝑠(𝑑𝑑)� = 1 − 𝑇𝑇tg𝐶𝐶𝑇𝑇(𝑑𝑑) − 𝑇𝑇tg𝐶𝐶𝑇𝑇(𝑑𝑑), (32) 
where 𝑇𝑇αγ𝐶𝐶𝑇𝑇(𝑑𝑑)  stands for the transition matrix from the MD simulation. Finally, 
𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) is determined according to eq. (19) as 

𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) =
𝑑𝑑𝑠𝑠(𝑑𝑑)
𝑑𝑑𝑑𝑑

. (33) 

 

 
Fig. 5. Time-dependent effective diffusion coefficients in EG (red) and water (blue) determined from MD 

simulation. The values of ∆ex are 0 (solid), 1 (dotted), and 3 (dashed). 

 
The time-dependent effective diffusion coefficients determined in this way are shown 

in Fig. 5. The error in 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) becomes large at long t, where 1 − 𝑇𝑇tg𝐶𝐶𝑇𝑇(𝑑𝑑) − 𝑇𝑇tg𝐶𝐶𝑇𝑇(𝑑𝑑) 
is small, and therefore the plot was truncated at the time t of 1 − 𝑇𝑇tg𝐶𝐶𝑇𝑇(𝑑𝑑) − 𝑇𝑇tg𝐶𝐶𝑇𝑇(𝑑𝑑) =
0.02. 
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In water, 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) is nearly independent of time, as expected. Although the variation 
is not large, 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) appears to decrease with increasing barrier height. By contrast, 
𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) is a decreasing function in EG, and the degree of the decrease becomes smaller 
with increasing barrier height. The constant 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑)  in Fig. 5 corresponds to the 
exponential decay of 1 − 𝑇𝑇tg𝐶𝐶𝑇𝑇(𝑑𝑑) − 𝑇𝑇tg𝐶𝐶𝑇𝑇(𝑑𝑑) in Fig. 4a, and the decrease in 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) 
with time results from the deviation from the exponential function. 

The time-dependent diffusion model is a theory for treating the diffusion-limited 
reactions in systems of non-Markovian diffusion. This model assumes that the diffusive 
dynamics under potential can be described just by introducing the time-dependent 
diffusion coefficient determined from the mean-square displacement without external 
potential. However, the results in Fig. 5 suggest that D(t) of the time-dependent diffusion 
model should also depend on the potential. 

 
4.3. Free diffusion of the dihedral angle 
We performed equilibrium MD simulation runs with biased potentials to cancel the 
potential of mean force to extract the diffusion coefficient for the dihedral angle in the 
absence of the potential term. Because the potential of mean force removed in the MD 
simulation with biased potential includes the potential of mean force from solvent 
molecules, the static solvent effects are eliminated there. By contrast, the DSEs remain, 
because they are related to the dynamic fluctuation around the average. Before analysing 
the diffusion coefficient of the biased systems, however, we have to examine the effective 
mass for the dihedral angle, which appears in the first term of the generalized Langevin 
equation, eq. (5). Although the mass m is treated as a constant in eq. (5), the effective 
mass for the dihedral angle depends on the intramolecular coordinates including the 
dihedral angle itself. 

In this work, the dihedral angle-dependent effective mass, 𝜇𝜇(𝜑𝜑), is estimated under 
the approximation that DCE is a molecule composed of four atoms, Cl–C–C–Cl. The 
mass of the H atoms is small compared with those of C and Cl, and its contribution to 
𝜇𝜇(𝜑𝜑) is considered to be small. For convenience, we number the terminal Cl atoms as 1 
and 4, and the central C atoms as 2 and 3, where the C 2 is bonded with Cl 1. The Cl–C–
C–Cl molecule has 12 degrees of freedom. Three of them belong to the centre-of-mass 
motion, three to the rotation of the whole molecule, three to the bond lengths, two to the 
C–C–Cl bond angles, and the remaining one to the dihedral angle, ϕ. Our strategy was to 
find, for a given intramolecular conformation, the set of the velocities of atoms, {𝒗𝒗𝑛𝑛}, for 
which the total momentum and the total angular momentum are zero, the time derivatives 
of the bond lengths and the bond angles are zero, and �̇�𝜑 = 1. Then, calculate the kinetic 
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energy as 

𝐾𝐾 =
1
2
�𝑚𝑚𝑛𝑛𝑣𝑣𝑛𝑛2
4

𝑛𝑛=1

, (34) 

where mn stands for the mass of atom n, and evaluate the mass, µ, for the given 
conformation, as 

𝐾𝐾 =
1
2
𝜇𝜇�̇�𝜑2 =

1
2
𝜇𝜇. (35) 

It is relatively easy to find the set of velocities, {𝒗𝒗𝑛𝑛}, that satisfy the above conditions. 
First, set the velocities as 

𝒗𝒗1 = 𝒗𝒗2 = 𝒗𝒗3 = 0, 𝒗𝒗4 = 𝒓𝒓34 ×
𝒓𝒓23

|𝒓𝒓23| , (36) 

where 𝒓𝒓𝑛𝑛𝑛𝑛′ stands for the position vector from atom n′ to n. With this set of velocities, 
the time derivatives of the bond lengths and the bond angles are zero, but the centre-of-
mass momentum and the total angular momentum remain. Then, add the translational and 
rotational motions to cancel the overall translational and rotational motions. 
 

 
Fig. 6. Reciprocal effective mass for the dihedral angle of DCE in water. 

 
The effective mass for the dihedral angle, 𝜇𝜇(𝜑𝜑), was calculated for each conformation 

of DCE during the simulation run, and the average of its inverse was calculated as a 
function of ϕ. The average was performed on the reciprocal mass, because it is related to 
the initial value of the velocity autocorrelation function of the dihedral angle as 〈�̇�𝜑2〉 =
𝑘𝑘𝐵𝐵𝑇𝑇〈1/𝜇𝜇(𝜑𝜑)〉. The result in water is shown in Fig. 6; the result in EG was almost the 
same and is omitted here. In Fig. 6, 𝜇𝜇(𝜑𝜑) is small around ϕ = 0°, because of the increase 
in the Cl–C–C angles caused by the steric hindrance between two Cl atoms. 
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Fig. 7. Time-dependent diffusion coefficients of the dihedral angle without the potential term. The results 

in EG and water are plotted in red and blue, respectively. Solid circles show the results of the MD simulation, 

and the dotted lines indicate the fittings using the generalized Langevin equation. 

 
The time-dependent diffusion coefficient of the dihedral angle without the potential 

term, 𝐷𝐷𝜑𝜑,𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑑𝑑), was calculated from the mean-square displacement of the dihedral 
angle in the MD simulation runs with the biased potential as 

𝐷𝐷𝜑𝜑,𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑑𝑑) ≡
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑
〈|𝜑𝜑(𝑑𝑑) − 𝜑𝜑(0)|2〉. (37) 

The results in both solvents are shown in Fig. 7. The diffusivity of the dihedral angle 
is higher in water than in EG, indicating that the larger friction is exerted on the motion 
of the dihedral angle of DCE in the solvent of higher viscosity, EG. In particular, the 
results in Fig. 7 contradict the idea of internal friction, i.e., that the friction on the dihedral 
angle is dominated by the coupling with other intramolecular degrees of freedom rather 
than the solvent motions. The dominance of the solvent-induced friction over the internal 
friction appears natural considering the small number of intramolecular degrees of 
freedom in DCE. The long-time limiting value of 𝐷𝐷𝜑𝜑,𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑑𝑑) in water is about three 
times larger than that in EG. The ratio of the diffusion coefficients in the two solvents, 3, 
is smaller than the corresponding value for the translational diffusion, 7.5. Therefore, the 
coupling of the motion of the dihedral angle with solvent appears smaller than that of the 
centre-of-mass motion. 

In Fig. 7, 𝐷𝐷𝜑𝜑,𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑑𝑑) converges to a constant value within 2 ps in water, but a slow 
decrease with time continues up to 10 ps in EG. This is a similar trend to 𝐷𝐷𝑇𝑇(𝑑𝑑) (Fig. 2), 
and suggests the presence of the slow relaxation in the time-dependent friction coefficient 
in EG. To obtain the time-dependent friction on the dihedral angle in both solvents 
approximately, we applied the generalized Langevin equation to 𝐷𝐷𝜑𝜑,𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑑𝑑),  as was 
performed on 𝐷𝐷𝑇𝑇(𝑑𝑑). The multiexponential form of the time-dependent friction, eq. (27), 
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was used, where the numbers of the exponential modes are 1 and 2 for water and EG, 
respectively. The mass in the generalized Langevin equation was approximated to be a 
constant, the value of which is equated with the inverse of the average of 〈1 𝜇𝜇(𝜑𝜑)⁄ 〉 over 
0° < ϕ < 180°. 

The fittings with the multiexponential friction are displayed in Fig. 7 as dotted curves, 
which reproduce the results of the MD simulation well. The time constant τ1 is 480 fs in 
water, whereas τ1 = 480 fs and τ2 = 3.0 ps in EG. These values are several times smaller 
than the corresponding values for the translational diffusion. We consider that this is 
partly because the memory associated with the slow structural relaxation of the solvent is 
lost through the motion of the dihedral angle itself. In the case of EG, for example, the 
dihedral angle can diffuse about 120° within 10 ps according to the long-time limiting 
value of 𝐷𝐷𝜑𝜑,𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑑𝑑). The value of 120° amounts to the distance between the trans and 
gauche states. Therefore, the dihedral angle of the solute can escape from the potential 
trap produced by the solvation through the diffusive motion of the dihedral angle. A recent 
MD study on the translational diffusion of a solute demonstrated that the diffusion 
coefficient decreases with increasing mass of the solute, which suggests that the memory 
is partly lost through the motion of the solute [43]. In any case, the motion of the dihedral 
angle of DCE in EG is coupled to the slow dynamic mode of τ2 = 3.0 ps, and is considered 
to be related to the structural relaxation of EG. 

 
4.4. LD simulation and comparison with the GH theory 
LD simulations were performed on the six systems of the MD simulation to reduce the 
complex solute–solvent systems with large numbers of degrees of freedom to simpler 
ones. The potential of mean force determined by the MD simulation with the biased 
potential was used as the potential term, and the memory function was taken from that 
determined from 𝐷𝐷𝜑𝜑,𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝑑𝑑). The results in water were simpler due to the absence of the 
slow memory, and we discuss the aqueous systems first, followed by the solutions of EG. 
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Fig. 8. (a) Transition matrix and (b) time-dependent effective diffusion coefficients for the isomerization 

reaction of DCE in water calculated by LD simulation. The values of ∆ex are 0 (red), 1 (blue) and 3 (green). 

The dotted lines show the results using the effective mass averaged over the whole dihedral angle, and the 

solid lines are obtained with the effective mass at the transition state. The horizontal dash-dotted lines in 

(b) indicate the prediction of the GH theory. 

 
The results of the LD simulation in water using the reciprocal effective mass averaged 

over the whole ϕ region are shown as the dotted curves in Fig. 8. The transition matrices 
1 − 𝑇𝑇tg(𝑑𝑑) − 𝑇𝑇gt(𝑑𝑑) are plotted in Fig. 8a, and the time-dependent effective diffusion 
coefficients determined by comparison with the time-dependent diffusion model are 
given in Fig. 8b. The reaction becomes slower with increasing barrier height, as expected; 
the effective diffusion coefficient 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) is almost time-independent, and 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) 
decreases slightly with increasing barrier height. These tendencies are in good agreement 
with those of the MD simulation (Figs 4 and 5). However, when comparing the absolute 
values of 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) by the MD simulation (Fig. 5) and the LD simulation (Fig. 8b), we 
see that the former is smaller than the latter. 

The dynamics around the transition state plays a crucial role in activated barrier 
crossing. The parameters in the generalized Langevin equation should thus be determined 
to reproduce the dynamics around the transition state. Instead of using the reciprocal 
effective mass integrated over the whole ϕ region, therefore, we performed the LD 
simulation with the effective mass at the transition state, ϕ = 120°. In these LD 
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simulations, the parameters for the effective friction, 𝛾𝛾�𝑛𝑛  and τn, determined in the 
previous subsection were used without modification (Fig. 8, solid curves). The reaction 
becomes a little slower by varying the value of the effective mass. In particular, the 
absolute values of 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) now approach those of the MD simulation (Fig. 5). The 
decrease in reaction rate with increasing effective mass means that the barrier-crossing 
dynamics cannot be regarded as diffusive. The results of the LD simulation remain 
slightly larger than those of the MD simulation, which might be because the friction 
coefficient is dependent on the dihedral angle. 

Comparing eqs (23) and (24), the diffusion coefficient at the reactive frequency, 
𝐷𝐷�𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝜆𝜆𝑓𝑓), can be regarded as the effective diffusion coefficient predicted by the GH 
theory. In Fig. 8b, 𝐷𝐷�𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒(𝜆𝜆𝑓𝑓)  from the GH theory is calculated and compared with 
𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) from the LD simulation. The effective mass at the transition state is used as 
the mass in eq. (22), and the multiexponential approximation from the MD simulation 
with the biased potential is used as the frequency-dependent friction, 𝛾𝛾�(𝑧𝑧). The values of 
the barrier frequency, ωb, are 16.4, 18.4, and 21.9 ps–1 for ∆ex = 0, 1, and 3, respectively, 
which are determined from the potential of mean force from the biased MD simulation. 
The results of the LD simulation are reproduced well by the GH theory in Fig. 8b. In 
particular, the weak decrease in the effective diffusion coefficient with increasing barrier 
height is described by the GH theory. 
 

 
Fig. 9. (a) Transition matrix and (b) time-dependent effective diffusion coefficients for the isomerization 
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reaction of DCE in EG calculated by LD simulation. The values of ∆ex are 0 (red), 1 (blue), and 3 (green). 

The results with the slowest relaxation time of the memory function, τ2 = 3.0, 6.1, and 15.2 ps, are shown 

with the solid, dotted, and dashed curves, respectively. The horizontal dash-dotted lines in (b) indicate the 

prediction of the GH theory for τ2 = 3.0 ps. 

 
The results of LD simulation for the EG solutions are shown in Fig. 9. In these 

simulation runs, the effective mass at the transition state was used. The transition matrix 
and the time-dependent effective diffusion coefficients are shown in Fig. 9a and b, 
respectively. Contrary to the corresponding functions in water, 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) is a decreasing 
function of time, as observed in the MD simulation (Fig. 5). The decrease of 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) 
in the LD simulation was smaller than that in the MD simulation. The amount of the 
decrease becomes smaller with increasing barrier height, as observed in the MD 
simulation. 

The predictions of the effective diffusion coefficient by the GH theory are also shown 
in Fig. 9b for comparison. 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) is close to the theoretical prediction at the initial 
time, and the downward deviation becomes larger with increasing time. Therefore, the 
GH theory overestimates the overall rate constant, because it cannot capture the decrease 
in the effective diffusion coefficient in the long-time regime. 

We performed LD simulations in which the time constant of the slowest relaxation, τ2, 
was artificially increased from 3.0 to 6.1 and 15.2 ps to examine the effects of the slow 
structural relaxation on activated barrier crossing in ideal systems. The latter two values 
were chosen by multiplying the original τ2 by the factors 2 and 5. The amplitude of the 
slowest mode in the time domain, 𝛾𝛾�2 𝑑𝑑2⁄ , was kept constant with increasing τ2. The other 
parameters associated with the faster modes, effective mass, and the potential of mean 
force were also unchanged. Because τ2 is already much slower than the reciprocal barrier 
frequency, that is, 𝜔𝜔𝑏𝑏𝑑𝑑2 ≫ 1, the prediction by the GH theory is almost independent of 
τ2. By contrast, the increase in 𝛾𝛾�2 , proportional to τ2, enhances the zero-frequency 
friction, 𝛾𝛾�(0), which leads to the retardation of the reaction in the Kramers theory. 

The results of LD simulation with changing τ2 are also shown in Fig. 9. The time-
dependent transition matrix demonstrates that the retardation of the reaction actually 
occurs with increasing τ2, in contrast to the prediction of the GH theory. The effect of τ2 
decreases with increasing barrier height. A close examination of the time profiles of ∆ex 
= 0 and 1 shows that the initial slopes are almost independent of τ2, and the deviation 
from the exponential function becomes larger at larger τ2. The change in 1 − 𝑇𝑇tg(𝑑𝑑) −
𝑇𝑇gt(𝑑𝑑) with increasing τ2 in Fig. 9a is similar to the difference in the MD simulations of 
the solutions of EG and water in Fig. 4a. It is thus suggested that the slow structural 
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relaxation of EG is actually coupled to the isomerization of DCE to retard the reaction 
dynamics. 

The time-dependent effective diffusion coefficients, 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑), also change with τ2 
(Fig. 9b). The initial values are almost independent of τ2, and they are close to the 
predictions of the GH theory. The decrease in time increases with increasing τ2 and 
decreases with ∆ex. 
 

 
Fig. 10. Time-dependent effective diffusion coefficients for ∆ex = 0 in EG. The result of MD simulation 

(red) is compared with those of LD simulation with τ2 = 3.0 ps (blue), 6.1 ps (green), and 15.2 ps (black). 

 
For EG, the results of LD simulation at ∆ex = 0 are compared with those of MD 

simulation in Fig. 10. 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) of the LD simulation of τ2 = 15.2 ps is closer to the MD 
simulation than that of τ2 = 3.0 ps. The time constant of the slowest friction mode on the 
translational diffusion is 16.8 ps as described in Sec. 4.1. Thus, it is plausible that the τ2 
of the friction on the dihedral angle is as slow as that on the centre-of-mass motion. As 
discussed in Sec. 4.3, τ2 of the friction on the dihedral angle might be made smaller in the 
MD simulation with the biased potential by the free diffusive motion of the dihedral angle 
itself. Recent MD simulation studies on the position-dependent diffusion coefficient 
demonstrated that the diffusion coefficient becomes smaller when the tagged molecule is 
trapped within a potential well [44]. The isomerization reaction of DCE in this work 
occurs in the presence of potential wells that trap the solute within either the trans or the 
gauche states. Therefore, the relaxation time of the friction may be larger and the diffusion 
coefficient may be smaller than the corresponding values of free diffusion of the dihedral 
angle realized by the MD simulation with the biased potential. 

 
4.5. Dynamics far from the transition state 
The remaining question in this work is to determine how the slow friction mode retards 
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the reaction dynamics of the activated barrier crossing, although the GH theory predicts 
that the reaction rate constant is insensitive to the time constant of the slow friction. We 
first examine the possibility that the retardation of the dynamics is caused by the slow 
energy diffusion.  

Straub and co-workers performed LD simulation of the activated barrier crossing with 
a single exponential memory function, and found that the reaction was retarded with 
increasing the relaxation time of the memory function [40]. Kappler and co-workers 
performed LD simulations of similar systems extensively, and demonstrated that the 
results can be reproduced by the PGH theory [45]. The analysis based on the PGH theory 
showed that the retardation of the barrier crossing with increasing the memory time is 
ascribed to the slow energy diffusion. Since the bath mode behave elastically when its 
relaxation time is long, it cannot provide sufficient dissipation for energy diffusion. One 
may consider that the retardation of the reaction with increasing τ2 in this work may also 
be explained by the slow energy diffusion. 

An important difference between the previous works above and our present LD 
simulation on DCE in EG is, however, that both fast and slow friction modes are present 
in the latter. The relaxation time of the slow mode is increased while the fast mode is kept 
constant. If the fast mode provides sufficient energy dissipation, the loss of the dissipation 
due to the elastic response of the slow mode cannot lead to the energy-diffusion limited 
regime. In Appendix, we estimated the energy dissipation due to the Markovian mode, 
𝛾𝛾�0, based on the PGH theory, and showed that the Markovian friction is sufficiently strong. 
Since the solute-solvent collisional interaction is always present in viscous solvents, our 
model with the fast friction mode is considered more realistic. 

We then would like to present the two-step models proposed by some researchers as a 
possible explanation for the retardation of the barrier crossing with increasing τ2 [46-48]. 
The overall rate constant of two-step models, k, is described as that of a series reaction as 

𝑘𝑘−1 = 𝑘𝑘𝑏𝑏𝑏𝑏−1 + 𝑘𝑘𝑓𝑓−1. (38) 
The rate constant in the first term, kbc, stands for the genuine rate constant of the barrier 
crossing. The second process, kf, is assigned to the fluctuation of the solvation structure 
in the model of Sumi [46], while it corresponds to the diffusion from/to the transition state 
in the model of Murarka and co-workers [48]. The former process, kbc, is considered to 
be the rate-determining step in TST, because the population at the transition state is very 
low. However, the situation may be different when the viscosity of the solvent becomes 
large. The barrier-crossing dynamics depends on the solvent viscosity only weakly 
according to the GH theory, because the barrier-crossing dynamics feels only the high-
frequency portion of the frequency-dependent friction. By contrast, the fluctuation of the 
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solvation structure is retarded in viscous solvents. The diffusion from/to the transition 
state feels the full friction at the zero frequency, which is also expected to follow the zero-
frequency shear viscosity of the solvent. Therefore, the latter reaction, kf, may also 
contribute to retard the overall reaction to reveal the viscosity dependence of the overall 
rate constant. 

The scenario explains the results of our MD and LD simulations that the retardation of 
the reaction by the slow friction decreases with increasing barrier height. Because the 
barrier-crossing reaction is sufficiently slow when the barrier is high, it remains the rate-
determining step even in solvents of high viscosity. 

The two-step model can explain the viscosity dependence of the rate constant of the 
internal friction model in a different way. The internal friction model describes the overall 
rate constant as [7, 9, 10] 

𝑘𝑘−1 ∝ 𝜎𝜎 + 𝜂𝜂0, (39) 
where the viscosity-independent constant, σ, is assigned to the internal friction. In the 
two-step model, the first term of eq. (38), 𝑘𝑘𝑏𝑏𝑏𝑏−1, hardly depends on viscosity because the 
slow friction mode is decoupled from the barrier crossing, and the second term, 𝑘𝑘𝑓𝑓−1, is 
expected to be proportional to η0 when the isomerizing group is much larger than the 
solvent size, as is the case of protein folding. Therefore, the viscosity dependence of the 
rate constant predicted by eq. (38) becomes equivalent to that of eq. (39), although their 
physical meanings are quite different. 

In the following, we examine the time-dependent probability distribution function of 
the dihedral angle taking the trans–gauche reaction as an example. The probability 
distribution function at time t under the condition that the solute is in the trans state at 
time t = 0 is defined as 

1
360

𝑃𝑃t(𝜑𝜑′; 𝑑𝑑)𝑑𝑑𝜑𝜑′ ≡ 〈𝛿𝛿(𝜑𝜑(𝑑𝑑) − 𝜑𝜑′)𝑓𝑓t�𝜑𝜑(0)�〉, (40) 

where the function 𝑓𝑓t(𝜑𝜑) is unity when 120° < ϕ < 240°, and zero otherwise. The 
distribution function above can be evaluated using equilibrium simulations. We have 
proposed a similar reweighting method to calculate the transient spectra from equilibrium 
MD simulations [49]. The distribution in the gauche region is examined after the 
normalization by 𝑇𝑇gt(𝑑𝑑). 
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Fig. 11. Conditional probability distribution functions in (a) water and (b) EG obtained by MD simulation. 

The values of times are 1 (red), 2 (blue), 5 (blue), and 10 ps (purple), respectively. The long-time limiting 

distributions are also drawn with the black curves. 

 

 
Fig. 12. Conditional probability distribution functions in (a) water and (b) EG obtained by LD simulation. 

The result of τ2 = 3.0 ps is shown in panel (b). The values of times are 1 (red), 2 (blue), 5 (blue), and 10 ps 
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(purple), respectively. The long-time limiting distributions are also drawn with the black curves. 

 
The conditional probability distribution functions from the MD and LD simulations are 

shown in Figs 11 and 12, respectively. The value of ∆ex is zero in all the results presented 
in these figures, and the result of EG solution with τ2 = 3.0 ps is plotted in Fig. 12b. The 
long-time limiting distributions are calculated from the equilibrium distribution functions. 
In both figures, the results in water and EG are plotted in panels (a) and (b), respectively, 
for comparison. The noise of the MD simulation is higher than that of the LD simulation 
because of the difference in the lengths of simulation runs. 

The marked difference between the results in water and EG is the time development of 
the peak position in both MD and LD simulations. The peak of the transient distribution 
remains at the peak of the equilibrium distribution in water. By contrast, the peak of the 
transient distribution in EG deviates from that of the equilibrium distribution to the 
direction of the transition state, and the peak relaxes slowly to the equilibrium position in 
the time scale of several picoseconds. The slow diffusion within the product state was 
also reported in the Stochastic simulation performed by Straub and co-workers when the 
relaxation of the memory function was slow [40]. 

The presence of the slow peak shift in EG corresponds to the situation considered by 
Murarka and co-workers [48]. The diffusion from the transition state to the product 
gauche state proceeds under the full friction with slow memory. After passing over the 
barrier, a backward force from the solvent acts on the solute because the solvation 
structure is optimized for the initial trans state, and the transient stable position of the 
dihedral angle approaches from the equilibrium gauche toward the initial trans state. In 
the case of water, because the relaxation of the solvation structure is fast, the diffusion 
after the barrier crossing is subject only to fast and weak friction, and the distribution 
within the product state relaxes rapidly to the equilibrium state. 

In the present model, the reaction from the trans to the gauche states begins from the 
equilibrium probability distribution of the reactant state with no population in the product 
state. Therefore, the barrier crossing governs the reaction initially, which explains that the 
values of 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) in both solvents are close to the prediction of the GH theory (Figs 
8b and 9b). In EG, the depletion and the excess population occur in the reactant and the 
product states, respectively, around the transition state due to the slow diffusion within 
both states, which reduces 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑) with increasing time (Fig. 9b). 

The variation in the rate-determining step with time in EG is reflected in the decrease 
in 𝐷𝐷𝜑𝜑,𝑒𝑒𝑓𝑓𝑓𝑓(𝑑𝑑)  with time, which is then related to the non-exponential decay of the 
transition matrix. The time profile of the transition matrix corresponds to the population 
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decay in time-resolved laser spectroscopy. Therefore, a detailed analysis of the 
experimental time profiles obtained by ultrafast spectroscopy should provide information 
on the reaction mechanisms in viscous solvents. Chemical reactions in viscous solvents, 
including room-temperature ionic liquids and concentrated organic electrolyte solutions, 
are now drawing the attention of many researchers, and we hope that the knowledge 
obtained in this work will help in the understanding of these chemical processes. 

 
5. Summary 
The trans–gauche isomerization reaction of DCE in water and EG was studied by MD 
and LD simulations. The reaction was slower in the more viscous solvent, EG, and the 
difference between the two solvents became smaller with increasing barrier height. The 
MD simulation with a biased potential demonstrated that the slow structural relaxation 
that gives higher viscosity of EG is also coupled to the intramolecular dynamics of the 
dihedral angle of DCE. According to the GH theory, the slow frictional mode is loosely 
coupled to the barrier crossing because the reactive frequency is much faster than the 
structural relaxation. By contrast, the diffusive motion within the reactant and the product 
states is coupled to the slow friction. Therefore, the role of the former as the rate-
determining step is not exclusive when the activation barrier is not very high and the 
contribution of the slow relaxation to the total friction is large. The effects of the 
population distribution within the reactant and the product states due to the slow friction 
occur in the long-time regime, which results in a non-exponential population decay and a 
decrease in the effective diffusion coefficient with time. 
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Appendix: Estimation of the energy dissipation by the Markovian friction 
The PGH theory provides the correction of the barrier crossing rate given by the GH 
theory, kGH, due to the slow energy diffusion as [13, 14] 

𝑘𝑘𝑃𝑃𝐺𝐺𝐺𝐺
𝑘𝑘𝐺𝐺𝐺𝐺

= 𝛤𝛤(𝛿𝛿), (A1) 
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where 𝛥𝛥𝛥𝛥 ≡ 𝑘𝑘𝐵𝐵𝑇𝑇𝛿𝛿 stands for the energy dissipation of the trajectory at the energy of the 
transition state. The function 𝛤𝛤(𝛿𝛿) is given by 

𝛤𝛤(𝛿𝛿) = exp �
1

2𝜋𝜋
� 𝑑𝑑𝑥𝑥

ln �1 − 𝑒𝑒−𝛿𝛿�𝑒𝑒
2+14��

𝑥𝑥2 + 1
4

∞

−∞
� . (A2) 

When the energy dissipation is sufficiently strong, 𝛿𝛿 ≫ 1, 𝛤𝛤(𝛿𝛿) rapidly approaches to 
unity as 

𝛤𝛤(𝛿𝛿) ≃ 1 −
2

√𝜋𝜋𝛿𝛿
𝑒𝑒−𝛿𝛿/4 , (A3) 

and 𝑘𝑘𝑃𝑃𝐺𝐺𝐺𝐺 approaches to 𝑘𝑘𝐺𝐺𝐺𝐺. 
The evaluation of the energy loss, 𝛥𝛥𝛥𝛥 , in the PGH theory is quite complicated in 

general, because one have to consider the trajectory along the normal coordinate including 
the slow bath modes. When the friction is Markovian, however, the trajectory to be 
considered becomes simply the uncoupled dynamics on the original potential. In our LD 
simulation on DCE in EG, we approximated the memory function as a sum of one 
Markovian mode and two exponential modes. In this Appendix, we estimate the energy 
dissipation due to the first Markovian mode, neglecting the two exponential modes. 

In the Markovian case, the energy loss in the PGH theory is described as [14] 

Δ𝛥𝛥 = � 𝑑𝑑𝑑𝑑 𝛾𝛾�0�̇�𝜃2(𝑑𝑑)
∞

−∞
 , (A4) 

where 𝜃𝜃(𝑑𝑑) is the friction-free trajectory that starts at the transition state at 𝑑𝑑 =  −∞ 
with zero velocity, passes through the well of the reactant state, and returns to the 
transition state at 𝑑𝑑 = ∞ . The calculation using eq. (A4) is relatively easy. The 
substitution of the parameters used for our LD simulation of DCE in EG with ∆ex = 0 
gives the value of δ ≅ 17 for the trans state, yielding 𝛤𝛤(𝛿𝛿) = 0.997 based on eq. (A3). 
Therefore, the energy dissipation due to the Markovian friction is sufficiently large in our 
LD simulation, and the slowing down of the barrier crossing due to the limitation of the 
energy diffusion is not considered to be plausible. 
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