1 Maternal low birth weight and hypertensive disorders of pregnancy

2				
2			٦	
1	1		1	
		۰.	,	
_				

3	Takafumi Ushida ^{1,2} , Tomomi Kotani ^{1,2} , Fumie Kinoshita ³ , Kenji Imai ¹ , Tomoko Nakano-
4	Kobayashi ¹ , Noriyuki Nakamura ¹ , Yoshinori Moriyama ⁴ , Shigeru Yoshida ⁵ , Mamoru
5	Yamashita ⁵ , Hiroaki Kajiyama ¹ .
6	
7	¹ Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine,
8	Nagoya, Japan
9	² Division of Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital,
10	Nagoya, Japan
11	³ Data Science Division, Data Coordinating Center, Department of Advanced Medicine,
12	Nagoya University Hospital, Nagoya, Japan
13	⁴ Department of Obstetrics and Gynecology, Fujita Health University School of Medicine,
14	Toyoake, Japan
15	⁵ Kishokai Medical Corporation, Nagoya, Japan
16	
17	Corresponding author: Takafumi Ushida, M.D., Ph.D.
18	Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine,
19	65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan

20	Tel: +81-52-744-2261
21	Fax: +81-52-744-2268
22	E-mail: u-taka23@med.nagoya-u.ac.jp
23	
24	
25	Short running title
26	Maternal birth weight and HDP
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	

Abstract

40 **Objectives**

- 41 To investigate the association between maternal own low birth weight (<2,500 g) and
- 42 subsequent risks for hypertensive disorders of pregnancy (HDP) and preeclampsia.

43 Study design

- 44 A multicenter retrospective study was conducted using clinical data from 12 primary maternity
- 45 care units from 2012 to 2018. A total of 17,119 women with information about their own birth
- 46 weight, who delivered at term, were subdivided into four groups according to maternal birth

47 weights [(<2,500, 2,500–3,499, 3,500–3,999, and ≥4,000) g].

48 Main outcome measures

Multivariate regression analyses were conducted to evaluate the risks for HDP and preeclampsia among women born with low birth weight compared with women born with a birth weight of 2,500–3,499 g. We evaluated these risks, stratified by pre-pregnancy BMI or their infants' birth weight categories.

53 Results

54 Maternal low birth weight was an independent risk factor for HDP after adjustment for several 55 covariates, but not for preeclampsia. A 100-g increase in maternal birth weight was associated 56 with a 3% risk reduction for HDP. Additionally, women born with low birth weight had the 57 highest risk for HDP among those with a pre-pregnancy BMI of \geq 25 kg/m². Conversely,

58	women born with high birth weight (\geq 4,000 g) had the highest risk for preeclampsia if they
59	complicate with fetal growth restrictions.
60	Conclusion
61	Women born with low birth weight had an increased risk for HDP. Collection of information
62	on maternal birth weight may facilitate the prediction of HDP and patients' self-awareness of
63	such risk, allowing the modification of lifestyle factors associated with HDP.
64	
65	Keywords
66	Cardiovascular disease, Developmental Origins of Health and Disease, Hypertensive disorders
67	of pregnancy, Low birth weight, Preeclampsia
68	
69	Abbreviations
70	ART, assisted reproductive technology; BMI, body mass index; HDP, hypertensive disorders
71	of pregnancy; SGA, small for gestational age.
72	
73	
74	
75	
76	

Introduction

78	According to the annual report of the Ministry of Health, Labor and Welfare in Japan, the
79	prevalence of low birth weight (<2,500 g) has been on the rise in Japan (1). Approximately 1
80	in 10 infants were born with low birth weight in 2016, which is almost double that in 1975 (1).
81	This increase can be attributed to some factors, including inadequate pregnancy weight gain,
82	increased number of underweight women, and increased rate of preterm birth (2).
83	
84	Since David Barker's initial discovery in the late 80s (3), there has been growing
85	evidence of the association between women born with low birth weight and increased risks for
86	non-communicable diseases (e.g., cardiovascular disease and diabetes mellitus) later in life (4).
87	Although the underlying biological mechanisms for this association is yet to be elucidated,
88	epigenetic modifications attributed to various conditions (e.g., hypoxia, oxidative stress,
89	inflammatory cytokines, and hyperglycemia) during fetal and neonatal period negatively affect
90	their subsequent health (5, 6).
91	
92	Furthermore, several studies in the early 2000s demonstrated that women born with
93	low birth weight or born small for gestational age (SGA) had significantly increased risks for
94	hypertensive disorders of pregnancy (HDP) or preeclampsia (7-12). Pregnancy is known as a
95	stress marker that could unmask underlying susceptibility to non-communicable diseases, and

the development of HDP during pregnancy can act as a predictor of such diseases even as early
as 20–40 years of age (13-15).

98

However, many researchers demonstrated that the prevalence of HDP and 99preeclampsia differs according to race, ethnicity, and country (16, 17). Moreover, the 100definitions of HDP and preeclampsia have changed since 20 years. In addition, although the 101 two major causes of low birth weight are preterm birth and fetal growth restrictions, the 102etiology of these two are considerably different (2). The ratio of preterm birth to fetal growth 103 restrictions among women born with low birth weight has changed since two decades by the 104 advancement in perinatal care management, patient awareness, and lifestyle changes including 105106diet and physical activity (18). Few studies have evaluated and verified the association between 107maternal low birth weight and subsequent risk for HDP using recent clinical data. Thus, further research is required to revalidate this association reported mainly 20 years ago. 108 109

Here, in this retrospective study, we sought to investigate the association between maternal low birth weight and subsequent risks for HDP and preeclampsia using recent Japanese clinical data derived from 12 primary maternal care units.

113

114

Methods

115	A multicenter retrospective study was conducted using clinical data from 12 primary maternity
116	care units located in Aichi and Gifu prefectures in Japan. These maternity care units basically
117	care for low- to moderate-risk pregnancies through the initial management of maternal, fetal,
118	and neonatal problems. Women who delivered at term (37 $^{0/7}$ to 41 $^{6/7}$ weeks) at these units
119	from January 2012 to December 2018 were included in this study (Figure 1). Exclusion criteria
120	were women who had preterm birth, post-term birth, stillbirth, multiple birth, major congenital
121	and chromosomal abnormalities, and incomplete medical records on their own birth weight and
122	HDP.
123	
124	Information on maternal and neonatal demographic characteristics and pregnancy
125	complications were collected from the electronic medical records system at each unit. The
126	clinical data of this study were extracted by system engineers, who were blinded to the research
127	purpose, at the Kishokai Medical Corporation. Identifying information (e.g., name, patient
128	number, and address) was anonymized before analysis. The maternal and neonatal information
129	included maternal own birth weight, maternal age at delivery, gestational age at delivery, mode
130	of delivery, parity, pre-pregnancy body mass index (BMI), pregnancy weight gain, assisted
131	reproductive technology (ART), smoking during pregnancy, alcohol consumption during
132	pregnancy, duration of education, HDP, preeclampsia, infant sex, and infant birth weight and
133	height. Information on maternal own birth weight was based on self-reports obtained through

a self-administered questionnaire, not on birth registry in public institutions. Women who could
not recall their own birth weight were therefore excluded from this study. Data on parity, prepregnancy BMI, ART, smoking during pregnancy, alcohol consumption during pregnancy, and
duration of education were also based on self-reports.

138

HDP was defined as hypertension (systolic blood pressure \geq 140 mmHg and/or diastolic blood pressure \geq 90 mmHg) during pregnancy (19). Preeclampsia was defined as hypertension and either proteinuria (\geq 0.3 g/day, or \geq 1+ on a urine dipstick) or end-organ dysfunction or uteroplacental dysfunction (19). Light-for-dates, appropriate-for-dates, and heavy-for-dates were defined as birth weight below the 10th percentile, within the 10–90th percentile, and over the 90th percentile for gestational age, respectively, according to a sexspecific Japanese neonatal anthropometric chart in 2000 (20).

146

To determine whether maternal birth weight affects the development of subsequent HDP and preeclampsia, univariate and multivariate logistic regression analyses were performed. All eligible women were subdivided into four groups according to maternal birth weight (<2,500 g, 2,500–3,499 g, 3,500–3,999 g, and \geq 4,000 g). In this study, low and high birth weights were defined as <2,500 g and \geq 4,000 g, respectively. The prevalence of HDP and preeclampsia was determined in each group. Crude odds ratios (ORs) and 95% confidence

153	intervals (CIs) were evaluated by univariate logistic regression models. Women with a birth
154	weight of 2,500–3,499 g were selected as the reference group. We then evaluated the adjusted
155	ORs after adjusting for covariates including seven factors (maternal age, parity, pre-pregnancy
156	BMI, pregnancy weight gain, ART, smoking during pregnancy, and duration of education),
157	which were previously reported to be associated with HDP (21). In addition, we evaluated the
158	adjusted ORs for the 100-g increase in maternal birth weight.
159	
160	Next, we performed additional analyses to identify women at a high risk for
161	subsequent HDP and preeclampsia, comparing these risks, stratified by maternal pre-pregnancy
162	BMI category (<18.5 kg/m ² , 18.5–25 kg/m ² , and \geq 25 kg/m ²) or their infants' birth weight
163	category (light-for-dates, appropriate-for-dates, and heavy-for-dates).
164	
165	Maternal and neonatal characteristics were compared using Chi-square test or Fisher's
166	exact test for the categorical variables and one-way ANOVA or Kruskal-Wallis test for the
167	continuous variables according to normal or non-normal distributions. Statistical significance
168	was defined as a p -value <0.05. All statistical analyses were performed with SAS version 9.4

169 (SAS Institute Inc., Cary, NC, USA) and SPSS 26 (SPSS Inc., Chicago, IL, USA).

170

171

The use of data in this study was authorized by Kishokai Medical Corporation

172	Executive Committee (approval number 2016–009), and this study protocol was approved by
173	the Institutional Ethics Board of Nagoya University (approval number 2015–0415). The need
174	for signed informed consent was waived because all data were anonymized and retrospectively
175	collected from the existing medical records.
176	
177	Results
178	A total of 43,883 women delivered at term at the 12 primary maternity care units from 2012 to
179	2018 (Figure 1). After excluding 26,764 women, the remaining 17,119 were eligible for this
180	study. The women were divided into 4 groups according to their birth weight category (<2,500
181	g [n = 1,084, 6.3%], 2,500–3,499 g [n = 12,893, 75.3%], 3,500–3,999 g [n = 2,688, 15.7%],
182	and \geq 4,000 g [n = 454, 2.7%]). Supplementary Table 1 shows the baseline characteristics of
183	women with complete data (n = 17,119) and without complete data (n = $26,534$).
184	
185	Table 1 shows the maternal and neonatal characteristics, stratified by maternal birth
186	weight category. There was a negative trend in the prevalence of HDP and light-for-dates
187	infants with increasing birth weight category. There was no significant correlation between the
188	prevalence of preeclampsia and maternal birth weight category.
189	
190	Table 2 shows the crude and adjusted odds ratios for HDP, stratified by maternal birth

191	weight category. Univariate and multivariate analyses were performed to determine whether
192	low and high birth weights are independent risk factors for HDP. The adjusted odds ratios for
193	birth weights of <2,500 g and \geq 4,000 g were 1.42 (1.00–2.01) and 0.59 (0.29–1.22),
194	respectively, compared with birth weight of 2,500-3,499 g for the reference group. A 100-g
195	increase in maternal birth weight was associated with a 3% reduction in the risk for HDP
196	(adjusted OR, 0.97; 95% CI, 0.95–0.99).

Table 3 shows the crude and adjusted odds ratios for preeclampsia, stratified by 198maternal birth weight category. Univariate and multivariate analyses were performed to 199determine whether low and high birth weights are independent risk factors for preeclampsia. 200The adjusted odds ratios for birth weights of <2,500 g and $\geq4,000$ g were 1.69 (0.93–3.05) and 2012020.52 (0.13–2.16), respectively, compared with birth weight of 2,500–3,499 g for the reference group. A 100-g increase in maternal birth weight was associated with a 2% reduction in the 203risk for preeclampsia (adjusted OR, 0.98; 95% CI, 0.94–1.02), but this was not statistically 204significant. 205

206

An additional analysis was performed to identify women at a high risk for HDP and preeclampsia, comparing these risks according to pre-pregnancy BMI category (<18.5 kg/m², $18.5-25 \text{ kg/m}^2$, and $\ge 25 \text{ kg/m}^2$) and maternal birth weight category (<2,500 g, 2,500–3,499 g,

210	3,500–3,999 g, and \geq 4,000 g) (Figure 2). The women with pre-pregnancy BMI of \geq 25 kg/m ²
211	had higher risks for HDP and preeclampsia. Among these women, those born with low birth
212	weight experienced the highest risk for HDP (17.6%). Regarding preeclampsia, we could not
213	find any significant relationships between pre-pregnancy BMI category and maternal birth
214	weight.
215	
216	An additional analysis was performed to identify high risk women for HDP and
217	preeclampsia, comparing these risks according to their infants' birth weight category (light-for-
218	dates, appropriate-for-dates, and heavy-for-dates) and maternal birth weight category (<2,500
219	g, 2,500–3,499 g, 3,500–3,999 g, and ≥4,000 g) (Figure 3). The women whose infants were
220	categorized as light-for-dates had a higher risk for HDP and preeclampsia along with the
221	increase of maternal birth weight. Interestingly, women born at \geq 4,000 g had the highest risk
222	for preeclampsia among women whose infants were categorized as light-for-dates.

224

Discussion

In this multicenter retrospective study, we sought to investigate the association between maternal low birth weight and subsequent risks for HDP and preeclampsia using Japanese clinical data. The main findings of this study showed that maternal low birth weight (<2,500 g) was an independent risk factor for HDP after adjustment of several covariates, but not for

229	preeclampsia. In addition, women born with low birth weight had the highest risk for HDP
230	among those with a pre-pregnancy BMI of $\geq 25 \text{ kg/m}^2$. Conversely, women born with high birth
231	weight (≥4,000 g) had the highest risk for preeclampsia among women who delivered light-
232	for-dates infants. These findings indicate that collecting information on maternal own birth
233	weight may facilitate prediction of HDP and patients' self-awareness of such risk, allowing
234	them to reduce or modify the lifestyle factors associated with HDP.
235	
236	Our findings are consistent with previous studies, demonstrating that women born
237	with low birth weight or SGA had 1.5–2.0 fold increased risks for HDP and preeclampsia (7-
238	12, 22, 23). We also found a negative trend in the risk of HDP with increasing maternal birth
239	weight, and a 100-g increase in maternal birth weight was significantly associated with a 3%
9.40	
240	reduction in the risk of HDP.

Compared with previous reports, the odds ratio for HDP among women born with low birth weight in this study was lower, and there was no statistically significant association between maternal low birth weight and preeclampsia (p=0.09). Although this is also in line with a previous study (12), possible explanations for the lack of association between maternal low birth weight and preeclampsia were: (1) the pathophysiological difference between HDP and preeclampsia; (2) differences in race and country, and (3) the potential risk for developing preeclampsia may be different between women born at preterm without growth restrictions and
women born at term with growth restrictions, despite comparable birth weights.

250

Firstly, HDP not only refers to preeclampsia, but also to gestational hypertension, 251superimposed preeclampsia, and chronic hypertension, indicating a heterogeneous 252253pathophysiology (24). It has been suggested that maternal constitutional factors (e.g., obesity, diabetes mellitus, and diet) strongly affect the development of clinical symptoms of HDP, 254especially superimposed preeclampsia and chronic hypertension, while immunogenic 255maladaptation (attributed to defective remodeling of the uterine spiral arteries) is the main 256cause of preeclampsia (24, 25). Based on Baker's hypothesis, women born with low birth 257weight may have a predisposition to metabolic syndrome and tend to be affected by maternal 258constitutional factors (23, 26). These women may resultantly show an increased risk for HDP, 259but not for preeclampsia. Secondly, a previous study demonstrated that the association between 260maternal birth weight and subsequent risk for preeclampsia significantly differed according to 261race, country, or study population (7). Finally, the two major causes of low birth weight are 262263preterm birth and fetal growth restrictions (2). In recent Japan, approximately one-third of the causes are due to preterm birth, and two-thirds are due to fetal growth restrictions (18, 27). A 264well-designed observational study demonstrated that women born with SGA had a significantly 265increased risk for HDP (OR 1.8; 95% CI, 1.1–2.8); however, women born at preterm did not 266

267	have a significantly increased risk (OR 1.5, 95% CI, 0.96-2.5) after adjusting for several
268	covariates (8). Therefore, the differential effect between preterm birth and fetal growth
269	restrictions during pregnancy on subsequent risks for HDP or preeclampsia may affect our
270	results. Unfortunately, we could not collect data on gestational age at maternal birth; thus, we
271	could not distinguish women born preterm from women born with growth restrictions in this
272	study population.

In general, the etiology of HDP and fetal growth restrictions overlaps, and these two 274disorders are closely connected with each other (28, 29). Thus, it is expected that women who 275delivered light-for-dates infants show a higher rate of HDP. However, interestingly, women 276277born with a weight of <2,500 g did not have higher risks for HDP and preeclampsia among 278those who delivered light-for-dates infants; instead, women born with a birth weight of \geq 4,000 g had higher risks for these disorders. Although the underlying mechanism remains unclear, a 279possible explanation for this may be associated with the degree of placental dysfunction which 280induces fetal growth restrictions or HDP. From the viewpoint of fetal programming, women 281born with low birth weight are more likely to deliver light-for-dates infants because of their 282genetic or shared environmental factors in the etiology of light-for-dates infants, but this 283situation is less likely to be attributed to placental dysfunction (30). In contrast, delivery of 284light-for-dates infants among women born with a birth weight of \geq 4,000 g may be largely 285

attributed to placental dysfunction, indicating increased risks for HDP and preeclampsia (31).

287

288	The strength of this study is that it was carried out using recent Japanese clinical data
289	based on self-reports, with a large sample size. The prevalence of HDP and preeclampsia differs
290	according to race, ethnicity, and guidelines (17); hence, this study made it possible to revalidate
291	the consistency of the association among the Japanese population. Second, most previous
292	reports demonstrated an association between women born with SGA and HDP or preeclampsia;
293	however, little evidence exists regarding the association between maternal low birth weight
294	(<2,500 g) and such diseases. The prevalence of low birth weight in Japanese males and
295	females was 10.6% and 8.3%, respectively, in 2016, which is approximately double of that
296	reported in 1975 (5.5% and 4.7%, respectively) (1). Our study may facilitate awareness of the
297	recent trend of growing numbers of low birth weight infants not only in developing countries
298	but also in some developed countries such as Japan, Spain, and Korea (32). Furthermore, the
299	pathophysiology of HDP and cardiovascular disease share many features; therefore, lifestyle-
300	modifying interventions during pregnancy may improve their long-term cardiovascular health
301	(33, 34).

302

303 Several limitations of this study should be acknowledged. First, we could not collect 304 information on gestational age at maternal birth. As a result, we could not assess whether the 305infants were SGA or not and whether low birth weight was due to preterm birth or SGA. Even though the birth weight is the same, the pathophysiologic mechanisms of preterm birth 306 307 (inflammation, uterine distension, and activation of the fetal hypothalamus-pituitary-adrenal axis) and that of term SGA (placental dysfunction, undernutrition, oxidative stress, anti-308 angiogenic imbalance, and hypoxia) were considerably different. Thus, these two disorders 309310 may have differential effects on the fetal environment (e.g., metabolism and postnatal growth) (35). According to a recent report, approximately two-thirds of cases were due to term SGA, 311and one-third were due to preterm birth, which is considerably different from a previous study 312thirty years ago, which demonstrated that preterm birth accounts for up to 85% of low birth 313weight (18). Second, the information on birth weight was based on self-declaration, not on birth 314315registry in public institutions. Thus, our results need to be considered with caution due to recall 316bias and the possibility of inaccuracy of their birth weights. In addition, we obtained information on their birth weights from approximately 40% of women who delivered at these 317 units. Therefore, we cannot exclude the possibility of a selection bias. To solve the statistical 318 problem of missing data on self-reported maternal birth weight, we estimated adjusted odds 319320 ratios by multivariate logistic analysis after missing data were replaced with substituted values using multiple imputation. The adjusted odds ratios for HDP and preeclampsia for birth weights 321of <2,500 g were 1.45 (1.10–1.92) and 1.27 (0.75–2.16), respectively, compared with birth 322weight of 2,500–3,499 g for the reference group. This result was consistent with previous 323

324	results without multiple imputation. Finally, we could not collect maternal information on the
325	history of HDP or preeclampsia; therefore, this factor could not be incorporated into covariates
326	of the multivariate regression analyses.
327	
328	In conclusion, we demonstrated that maternal low birth weight is associated with the
329	development of HDP, but not preeclampsia. Collecting information on maternal birth weight
330	may play an important role in better perinatal management, including patients' self-awareness
331	of such risk, allowing the improvement of their long-term cardiovascular health.
332	
333	Acknowledgements
334	We would like to thank Editage for the English language editing.
335	
336	Funding
337	This study was supported by a grant from the Japan Society for the Promotion of Science (JSPS
338	KAKENHI 19K18637) awarded to TU.
339	
340	Disclosures
341	The authors have no potential conflicts of interest to disclose.
342	

343 Data availability

344	The data	that support the findings of this study are available from the corresponding author,		
345	(TU), up	on reasonable request, and with the permission of Kishokai Medical Corporation.		
346				
347		References		
348	1.	Japanese Ministry of Health, Labour and Welfare. Vital statistics of Japan. 2018.		
349	2.	Valero De Bernabé J, Soriano T, Albaladejo R, Juarranz M, Calle ME, Martínez D, et al.		
350	Risk fact	cors for low birth weight: a review. European journal of obstetrics, gynecology, and		
351	reproduct	tive biology. 2004;116(1):3-15.		
352	3.	Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease		
353	in Englar	nd and Wales. Lancet (London, England). 1986;1(8489):1077-81.		
354	4.	Barker DJ. The origins of the developmental origins theory. J Intern Med.		
355	2007;261	(5):412-7.		
356	5.	Heindel JJ, Vandenberg LN. Developmental origins of health and disease: a paradigm for		
357	understanding disease cause and prevention. Current opinion in pediatrics. 2015;27(2):248-53.			
358	6.	Saffery R, Novakovic B. Epigenetics as the mediator of fetal programming of adult onset		
359	disease: v	what is the evidence? Acta Obstet Gynecol Scand. 2014;93(11):1090-8.		
360	7.	Innes KE, Byers TE, Marshall JA, Barón A, Orleans M, Hamman RF. Association of a		
361	woman's	own birth weight with her subsequent risk for pregnancy-induced hypertension.		
362	Americar	n journal of epidemiology. 2003;158(9):861-70.		
363	8.	Klebanoff MA, Secher NJ, Mednick BR, Schulsinger C. Maternal size at birth and the		
364	development of hypertension during pregnancy: a test of the Barker hypothesis. Archives of			
365	internal 1	medicine. 1999;159(14):1607-12.		
366	9.	Zetterström K, Lindeberg S, Haglund B, Magnuson A, Hanson U. Being born small for		
367	gestation	al age increases the risk of severe pre-eclampsia. Bjog. 2007;114(3):319-24.		
368	10.	Rasmussen S, Irgens LM. Pregnancy-induced hypertension in women who were born		
369	small. Hy	vpertension. 2007;49(4):806-12.		
370	11.	Innes KE, Marshall JA, Byers TE, Calonge N. A woman's own birth weight and		
371	gestation	al age predict her later risk of developing preeclampsia, a precursor of chronic disease.		
372	Epidemic	ology. 1999;10(2):153-60.		
373	12.	Dempsey JC, Williams MA, Luthy DA, Emanuel I, Shy K. Weight at birth and subsequent		
374	risk of pr	eeclampsia as an adult. Am J Obstet Gynecol. 2003;189(2):494-500.		
375	13.	Paauw ND, van Rijn BB, Lely AT, Joles JA. Pregnancy as a critical window for blood		

- pressure regulation in mother and child: programming and reprogramming. Acta physiologica
 (Oxford, England). 2017;219(1):241-59.
- 378 14. Rich-Edwards JW, McElrath TF, Karumanchi SA, Seely EW. Breathing life into the
 379 lifecourse approach: pregnancy history and cardiovascular disease in women. Hypertension.
 380 2010;56(3):331-4.
- 381 15. Sattar N, Greer IA. Pregnancy complications and maternal cardiovascular risk:
 382 opportunities for intervention and screening? BMJ (Clinical research ed). 2002;325(7356):157-60.
- Bernard Marken 16. Poon LC, Kametas NA, Chelemen T, Leal A, Nicolaides KH. Maternal risk factors for
 hypertensive disorders in pregnancy: a multivariate approach. J Hum Hypertens. 2010;24(2):10410.
- 386 17. Umesawa M, Kobashi G. Epidemiology of hypertensive disorders in pregnancy:
 387 prevalence, risk factors, predictors and prognosis. Hypertens Res. 2017;40(3):213-20.
- Takemoto Y, Ota E, Yoneoka D, Mori R, Takeda S. Japanese secular trends in birthweight
 and the prevalence of low birthweight infants during the last three decades: A population-based
 study. Scientific reports. 2016;6:31396-.
- 391 19. Makino S, Takeda J, Takeda S, Watanabe K, Matsubara K, Nakamoto O, et al. New
 392 definition and classification of "Hypertensive Disorders of Pregnancy (HDP). Hypertension
 393 Research in Pregnancy. 2019;7(1):1-5.
- 394 20. Itabashi K, Miura F, Uehara R, Nakamura Y. New Japanese neonatal anthropometric
 395 charts for gestational age at birth. Pediatrics international : official journal of the Japan Pediatric
 396 Society. 2014;56(5):702-8.
- 397 21. Mol BWJ, Roberts CT, Thangaratinam S, Magee LA, de Groot CJM, Hofmeyr GJ. Pre398 eclampsia. Lancet (London, England). 2016;387(10022):999-1011.
- Andraweera PH, Dekker G, Leemaqz S, McCowan L, Myers J, Kenny L, et al. Effect of
 Birth Weight and Early Pregnancy BMI on Risk for Pregnancy Complications. Obesity (Silver
 Spring). 2019;27(2):237-44.
- 402 23. Su R, Zhu W, Wei Y, Wang C, Feng H, Lin L, et al. Relationship of maternal birth weight
 403 on maternal and neonatal outcomes: a multicenter study in Beijing. J Perinatol. 2016;36(12):1061404 6.
- 405 24. Burton GJ, Redman CW, Roberts JM, Moffett A. Pre-eclampsia: pathophysiology and
 406 clinical implications. BMJ (Clinical research ed). 2019;366:12381.
- 407 25. Roberts JM, Gammill HS. Preeclampsia: recent insights. Hypertension. 2005;46(6):1243408 9.
- Pettitt DJ, Jovanovic L. Low birth weight as a risk factor for gestational diabetes, diabetes,
 and impaired glucose tolerance during pregnancy. Diabetes Care. 2007;30 Suppl 2:S147-9.
- 411 27. Yorifuji T, Naruse H, Kashima S, Murakoshi T, Kato T, Inoue S, et al. Trends of preterm
 412 birth and low birth weight in Japan: a one hospital-based study. BMC Pregnancy Childbirth.
 413 2012;12:162.

414 28. Grisaru-Granovsky S, Halevy T, Eidelman A, Elstein D, Samueloff A. Hypertensive
415 disorders of pregnancy and the small for gestational age neonate: not a simple relationship. Am J
416 Obstet Gynecol. 2007;196(4):335.e1-5.

Villar J, Carroli G, Wojdyla D, Abalos E, Giordano D, Ba'aqeel H, et al. Preeclampsia,
gestational hypertension and intrauterine growth restriction, related or independent conditions?
Am J Obstet Gynecol. 2006;194(4):921-31.

30. Finken MJJ, van der Steen M, Smeets CCJ, Walenkamp MJE, de Bruin C, HokkenKoelega ACS, et al. Children Born Small for Gestational Age: Differential Diagnosis, Molecular
Genetic Evaluation, and Implications. Endocrine reviews. 2018;39(6):851-94.

423 31. Henriksen T. The macrosomic fetus: a challenge in current obstetrics. Acta Obstet
424 Gynecol Scand. 2008;87(2):134-45.

32. Blencowe H, Krasevec J, de Onis M, Black RE, An X, Stevens GA, et al. National, regional,
and worldwide estimates of low birthweight in 2015, with trends from 2000: a systematic analysis.
The Lancet Global health. 2019;7(7):e849-e60.

428 33. Haug EB, Horn J, Markovitz AR, Fraser A, Klykken B, Dalen H, et al. Association of
429 Conventional Cardiovascular Risk Factors With Cardiovascular Disease After Hypertensive
430 Disorders of Pregnancy: Analysis of the Nord-Trøndelag Health Study. JAMA cardiology.
431 2019;4(7):628-35.

432 34. Melchiorre K, Thilaganathan B, Giorgione V, Ridder A, Memmo A, Khalil A. Hypertensive
433 Disorders of Pregnancy and Future Cardiovascular Health. Frontiers in cardiovascular medicine.
434 2020;7:59-.

435 35. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm
436 birth. Lancet (London, England). 2008;371(9606):75-84.

- 442

- 452 Figure legends
- 453

Figure 1. Flow diagram of the study population. Data on 43,883 women who delivered at term were collected. A total of 17,119 women were eligible for this study after excluding 26,764 women, and they were divided into 4 groups according to their birth weight. HDP, hypertensive

- 457 disorders of pregnancy. * indicates items not mutually exclusive.
- 458

Figure 2. Rates of HDP (A) and preeclampsia (B) stratified by pre-pregnancy BMI category (<18.5 kg/m², 18.5–25 kg/m², and \geq 25 kg/m²) and maternal birth weight category (<2,500 g, 2,500–3,499 g, 3,500–3,999 g, and \geq 4,000 g). HDP, hypertensive disorders of pregnancy; BMI, body mass index.

463

- Figure 3. Rates of HDP (A) and preeclampsia (B) stratified by their infants' birth weight category (light-for-dates, appropriated-for-dates, and heavy-for-dates) and maternal birth weight category (<2,500 g, 2,500–3,499 g, 3,500–3,999 g, and \geq 4,000 g).
- 467 HDP, hypertensive disorders of pregnancy; LFD, light-for dates; AFD, appropriate-for-dates;468 and HFD, heavy-for-dates.
- 469
- 470
- 471
- 472
- 473
- 474
- 475

476

477

Maternal birth weight category	<2,500 g	2,500–3,499 g	3,500–3,999 g	≥4,000 g	
	n = 1,084	n = 12,893	n = 2,688	n = 454	<i>p</i> -value
Maternal characteristics					
Maternal own birth weight (g)	$2,\!181\pm317$	$3,005 \pm 248$	$3,660 \pm 136$	$4,\!138\pm187$	< 0.05
Maternal age (years)	30.2 ± 4.9	30.7 ± 4.7	31.4 ± 4.7	32.0 ± 4.7	< 0.05
Gestational age at delivery (weeks)	39.5 ± 1.1	39.6 ± 1.1	39.7 ± 1.1	39.7 ± 1.1	< 0.05
Cesarean section	203/1,084 (18.7)	2,004/12,888 (15.5)	459/2,686 (17.1)	87/454 (19.2)	< 0.05
Primipara	586/1,084 (54.1)	7,043/12,893 (54.6)	1,390/2,686 (51.7)	218/454 (48.0)	< 0.05
Pre-pregnancy BMI (kg/m ²)	20.7 ± 3.2	20.7 ± 2.9	21.3 ± 3.1	21.5 ± 3.3	< 0.05
Pregnancy weight gain (kg)	10.2 ± 3.7	10.4 ± 3.5	10.8 ± 3.7	11.3 ± 4.1	< 0.05
Assisted reproductive technology	57/983 (5.8)	706/11,701 (6.0)	179/2,448 (7.3)	30/402 (7.5)	0.07
Smoking during pregnancy	13/1,072 (1.2)	129/12,762 (1.0)	35/2,652 (1.3)	6/451 (1.3)	0.49
Alcohol consumption during pregnancy	1/1,066 (0.1)	42/12,728 (0.3)	6/2,650 (0.2)	4/443 (0.9)	0.06
Duration of education (years)					< 0.05
<9 years	23/776 (3.0)	162/9,066 (1.8)	49/1,921 (2.6)	1/316 (0.3)	
9–12 years	245/776 (31.6)	2,177/9,066 (24.0)	466/1,921 (24.3)	92/316 (29.1)	
13–15 years	240/776 (30.9)	2,969/9,066 (32.7)	620/1,921 (32.3)	105/316 (33.2)	
≥16 years	268/776 (34.5)	3,758/9,066 (41.5)	786/1,921 (40.9)	118/316 (37.3)	
Hypertensive disorders of pregnancy	62/1,084 (5.7)	514/12,893 (4.0)	107/2,688 (4.0)	15/454 (3.3)	< 0.05
Preeclampsia	16/1,084 (1.5)	150/12,893 (1.2)	37/2,688 (1.4)	4/454 (0.9)	0.59
Neonatal characteristics					
Male	538/1,084 (49.6)	6,591/12,891 (51.1)	1,393/2,686 (51.9)	241/454 (53.1)	0.53
Birth weight (g)	$2,956 \pm 353$	$3,\!059\pm352$	$3,226 \pm 364$	$3,333\pm388$	< 0.05

Table 1. Maternal and neonatal characteristics stratified by maternal birth weight.

Height (cm)	49.4 ± 1.7	49.7 ± 1.6	50.3 ± 1.6	50.4 ± 1.7	< 0.05
Light-for-dates infants	144/1,082 (13.3)	939/12,887 (7.3)	74/2,684 (2.8)	11/454 (2.4)	< 0.05
Appropriate-for-dates infants	880/1,082 (81.3)	10,761/12,887 (83.5)	2,059/2,684 (76.7)	305/454 (67.2)	< 0.05
Heavy-for-dates infants	58/1,082 (5.4)	1,187/12,887 (9.2)	551/2,684 (20.5)	138/454 (30.4)	< 0.05

BMI, body mass index. Data are presented as mean \pm standard deviation or n (%).

Maternal birth weight	Crude OR (95% CI)	Adjusted OR (95% CI)
<2,500 g	1.46 (1.11–1.92)	1.42 (1.00–2.01)
2,500–3,499 g	1.0 (reference)	1.0 (reference)
3,500–3,999 g	1.00 (0.81–1.23)	0.89 (0.68–1.16)
≥4,000 g	0.82 (0.49–1.39)	0.59 (0.29–1.22)
100-g increase	0.98 (0.97-1.00)	0.97 (0.95-0.99)

Table 2. Risk of HDP according to maternal birth weight category.

Multivariate analyses were performed after adjustment for each covariate including maternal age, parity, pre-pregnancy body mass index, pregnancy weight gain, assisted reproductive technology, smoking during pregnancy, and duration of education. Results were reported as odds ratios and 95% CI, with maternal birth weight of 2,500–3,499 g as the reference group. OR, odds ratio; CI, confidence interval.

Maternal birth weight	Crude OR (95% CI)	Adjusted OR (95% CI)
<2,500 g	1.27 (0.76–2.14)	1.69 (0.93–3.05)
2,500–3,499 g	1.0 (reference)	1.0 (reference)
3,500–3,999 g	1.19 (0.83–1.70)	1.17 (0.76–1.82)
≥4,000 g	0.76 (0.28–2.05)	0.52 (0.13–2.16)
100-g increase	0.99 (0.96–1.03)	0.98 (0.94–1.02)

Table 3. Risk of preeclampsia according to maternal birth weight category.

Multivariate analyses were performed after adjustment for each covariate including maternal age, parity, pre-pregnancy body mass index, pregnancy weight gain, assisted reproductive technology, smoking during pregnancy, and duration of education. Results were reported as odds ratios and 95% CI, with maternal birth weight of 2,500–3,499 g as the reference group. OR, odds ratio; CI, confidence interval.

	With complete data	Without complete data	
Variable	(n = 17,119)	(n = 26,534)	<i>p</i> -value
Maternal characteristics			
Maternal own birth weight (g)	$3,086 \pm 441$	$3,100 \pm 481$	0.71
Maternal age (years)	30.8 ± 4.7	30.9 ± 4.7	< 0.05
Gestational age at delivery (weeks)	39.6 ± 1.1	39.6 ± 1.1	< 0.05
Cesarean section	2,753/17,112 (16.1)	4,454/25,978 (17.1)	< 0.05
Primipara	9,237/17,119 (54.0)	13,244/26,534 (49.9)	< 0.05
Pre-pregnancy BMI (kg/m ²)	20.8 ± 3.0	20.9 ± 3.0	< 0.05
Pregnancy weight gain (kg)	10.5 ± 3.6	10.7 ± 3.7	< 0.05
Assisted reproductive technology	972/15,534 (6.3)	997/12,966 (7.7)	< 0.05
Smoking during pregnancy	183/16,937 (1.1)	372/14,862 (2.5)	< 0.05
Alcohol consumption during pregnancy	53/16,887 (0.3)	74/14,654 (0.5)	< 0.05
Duration of education (years)			< 0.05
<9 years	235/12,079 (1.9)	392/10,084 (3.9)	
9–12 years	2,980/12,079 (24.7)	3,122/10,084 (31.0)	
13–15 years	3,934/12,079 (32.6)	3,137/10,084 (31.1)	
≥ 16 years	4,930/12,079 (40.8)	3,433/10,084 (34.0)	
Hypertensive disorders of pregnancy	698/17,119 (4.1)	1,227/23,870 (5.1)	
Preeclampsia	207/16,628 (1.2)	416/23,839 (1.7)	
Neonatal characteristics			
Male	8,763/17,115 (51.2)	13,467/26,533 (50.8)	0.37
Birth weight (g)	$3,086 \pm 364$	$3,079 \pm 364$	0.05
Height (cm)	49.8 ± 1.7	49.7 ± 1.8	< 0.05
Light-for-dates infants	1,168/17,107 (6.8)	1,809/26,484 (6.8)	1.00
Appropriate-for-dates infants	14,005/17,107 (81.9)	21,755/26,484 (82.1)	0.46
Heavy-for-dates infants	1,934/17,107 (11.3)	2,920/26,484 (11.0)	0.37

Supplementary Table 1. Baseline characteristics of women with and without complete data.

BMI, body mass index. Data are presented as mean \pm standard deviation or n (%).