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ABSTRACT 

 

A Resonance calculation using energy Spectrum Expansion (RSE) method is newly 

proposed in this paper. In this method, ultra-fine group spectra appeared in a resonance 

calculation are expanded by orthogonal bases on energy, which are extracted from the 

ultra-fine group spectra obtained in homogeneous geometry with various background 

cross sections using singular value decomposition (SVD) and low-rank-approximation 

(LRA). Namely, this method is based on a concept of a reduced order model (ROM). 

Neutron transport equation for flux moments (expansion coefficients) similar to the 

conventional one is derived and is numerically solved. This method applied to two 

benchmark problems in which resonance interference effect and spatial self-shielding 

effect can appear. The results indicate that this method accurately predicts the reference 

effective cross sections and reaction rates obtained from direct ultra-fine group 

calculation in heterogeneous geometry. 

 

KEYWORDS: Resonance calculation, effective cross section, ultra-fine group 

spectrum, reduced order model, singular value decomposition 
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I. INTRODUCTION 

Resonance calculation is one of the most important and difficult parts in core 

analysis and can dominate prediction accuracy of core analysis. To treat steep and 

complicated variations of cross sections (resonances) accurately and efficiently, various 

approaches have been developed. The approaches are roughly classified into three 

categories: the equivalence theory [1], the ultra-fine group theory [2], and the subgroup 

theory [3]. Each of the approaches has advantages and disadvantages. The equivalence 

theory has been a historical approach and is still widely used in current core analyses 

owing to its efficiency. The equivalence theory adopts many assumptions and 

approximations thus its accuracy is inevitably limited [4]. For example, accurate 

consideration of resonance interference effect [5][6] among different nuclides or space-

dependent resonance shielding effect in a generalized geometry is difficult. The ultra-fine 

group theory utilizes “first-principles” to calculate detailed energetic and spatial 

dependence of neutron spectra. In principle, this approach is very accurate but requires 

large computational resources, especially for large geometry. This approach is commonly 

used for single pin-cell calculations but its application to larger geometries, e.g., single 

fuel assembly, is still prohibitive for production calculations. The last one, the subgroup 

theory, divides an energy group into subgroup considering magnitude of cross sections 

since shape of neutron spectrum is dominated by the magnitude of cross sections. The 

subgroup theory offers an efficient pathway to treat resonance effect in a generalized 

geometry thus is currently used in various up-to-date core analysis codes that explicitly 

handle heterogeneous core geometry. Potential drawback of the subgroup theory is a 

consideration of resonance interference effect among different nuclides and regions, 

including treatment of non-uniform temperature distribution [7]. Various improvements 

have been proposed to overcome these issues. 

This study considered an alternative approach to resonance treatment. In this 

approach, energy dependence of neutron spectrum (angular flux) in an energy range 

(within a multi-group) was expanded by orthogonal functions (orthogonal bases) on 

energy. Function expansion of angular or scalar flux was traditionally used, e.g., use of 

spherical harmonics functions for angular dependence, use of polynomials for spatial 

dependence in advanced nodal method. Previous works had studied the application of 

function expansion for energy dependence of neutron spectrum. Rahnema and Zhu et al. 

had applied Legendre polynomials to represent a fine structure of neutron flux in a multi-



4 
 

group [8][9]. Their objective is an improvement of the accuracy in conventional multi-

group calculations. Tellier, Yang, and Rooijen et al. had utilized Wavelet functions to 

describe energy dependence of neutron flux at resonance energy regions [10][11][12]. 

However, Rooijen reported that the number of expansion functions to describe 

complicated resonances becomes large thus the efficiency of this approach is limited [12]. 

This study adopted energy function expansion as well as the previous studies, but 

different expansion functions were used that are based on numerically calculated ultra-

fine group spectra. Fundamental insights behind the present study are described as 

follows. 

Shape of ultra-fine group neutron spectrum is energetically very complicated, it 

mainly depends on material composition, temperature, and spatial position in a resonance 

material. Equivalence theory shows that variation of an ultra-fine group spectrum can be 

approximately described by rational approximation and background cross section that 

represents self-shielding condition [13][14][15]. This means that, though the energy 

dependence of a neutron spectrum is very complicated in the resonance energy range, it 

can be represented by a relatively simple model, i.e., reduced order model (ROM) [16].  

In this study, energy expansion functions were numerically generated by ultra-

fine group calculations in a simple (homogeneous) geometry considering various 

background cross sections. Singular value decomposition (SVD) and low-rank-

approximation (LRA) [17][18] were used for ultra-fine group spectra to generate 

orthogonal bases for energy expansion. 

 Theoretical consideration of this method, Resonance calculation using energy 

Spectrum Expansion (RSE) method, is described in Sec. II. Numerical results and 

discussion are shown in Sec. III. Finally, concluding remarks are summarized in Sec. IV. 

 

II. THEORY 

II.A. Overview 

 In this subsection, the overview of the RSE method is described. In the present 

method, pointwise neutron spectra in an energy range are expanded by orthogonal bases 

on energy. Considering the expansion by the orthogonal basis, the transport equation for 

the flux moments (expansion coefficients) is derived. The transport equation for the flux 

moments is similar to the conventional one, thus it can be numerically solved. The RSE 

method can be applied to any type of transport calculation method. In the present study, 
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the method is implemented with the method of characteristics (MOC) since MOC is 

commonly used for lattice physics calculation. Derivation of the transport equation for 

flux moments is described in Sec. II.B.  

The orthogonal bases are generated by ultra-fine group spectra obtained in 

homogeneous geometry with various background cross sections. In this process, 

orthogonal bases are efficiently extracted using the SVD and the LRA. The choice of the 

orthogonal basis is crucial because the computational efficiency of the present method 

depends on how well an orthogonal basis captures the characteristics of various spectra 

in a calculation system. Note that ultra-fine group calculations are necessary in the RSE 

method, but their computational cost is trivial since they are calculated in homogeneous 

geometry. Detail descriptions of the generation method of orthogonal bases are provided 

in Sec. II.C. 

Treatment of scattering (slowing down) source is another key point of the present 

method. There are two choices for the treatment of scattering source. The first one is the 

utilization of scattering matrix for flux moments. The scattering matrix for flux moments 

tends to become large because transfer between different expansion modes should be 

considered in addition to the conventional group to group transfer. In order to address this 

issue, the second approach is adopted in the present study, i.e., the scattering source is 

directly calculated by solving the slowing down equation for a homogeneous medium. 

Calculation flow for flux moment including treatment of scattering source is described in 

Sec. II.D. 

In Sec. II.E, some implementation details of the RSE method with MOC are 

described. Finally, the calculation procedures of the present method are provided in Sec. 

II.F. 

 

II.B. Derivation of Transport Equation with Energy Expansion Bases 

In this subsection, a transport equation with energy expansion bases is derived 

from the conventional one. The transport equation for a fixed source problem is: 

𝛀𝛀 ∙ ∇𝛹𝛹(𝐫𝐫,𝛀𝛀,𝐸𝐸) + Σ𝑡𝑡(𝐫𝐫,𝐸𝐸)𝛹𝛹(𝐫𝐫,𝛀𝛀,𝐸𝐸) 

=
1

4𝜋𝜋
� 𝑑𝑑𝐸𝐸′
∞

0
� Σ𝑠𝑠(𝐫𝐫,𝐸𝐸′ → 𝐸𝐸,𝛀𝛀′ → 𝛀𝛀)𝛹𝛹(𝐫𝐫,𝛀𝛀′,𝐸𝐸′)𝑑𝑑𝛀𝛀′

4π
+ 𝑞𝑞(𝐫𝐫,𝛀𝛀,𝐸𝐸), 

(1) 

where 𝐫𝐫 : position vector, 𝛀𝛀 : direction vector, 𝐸𝐸 : energy, 𝛹𝛹(𝐫𝐫,𝛀𝛀,𝐸𝐸)  : angular flux, 

Σ𝑡𝑡(𝐫𝐫,𝐸𝐸): macroscopic total cross section, Σ𝑠𝑠(𝐫𝐫,𝐸𝐸′ → 𝐸𝐸,𝛀𝛀′ → 𝛀𝛀): macroscopic scattering 
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cross section, 𝑞𝑞(𝐫𝐫,𝛀𝛀,𝐸𝐸) : fixed source. Note that the eigenvalue calculation is not 

necessary and the fixed source treatment is sufficient in the resonance calculation. 

Isotropic scattering and isotropic neutron sources are assumed: 

𝛀𝛀 ∙ ∇𝛹𝛹(𝐫𝐫,𝛀𝛀,𝐸𝐸) + Σ𝑡𝑡(𝐫𝐫,𝐸𝐸)𝛹𝛹(𝐫𝐫,𝛀𝛀,𝐸𝐸)

=
1

4𝜋𝜋
� Σ𝑠𝑠(𝐫𝐫,𝐸𝐸′ → 𝐸𝐸)� 𝛹𝛹(𝐫𝐫,𝛀𝛀′,𝐸𝐸′)𝑑𝑑𝛀𝛀′

4π
𝑑𝑑𝐸𝐸′

∞

0

+
1

4𝜋𝜋
𝑄𝑄(𝐫𝐫,𝐸𝐸)

=
1

4𝜋𝜋
� Σ𝑠𝑠(𝐫𝐫,𝐸𝐸′ → 𝐸𝐸)𝜙𝜙(𝐫𝐫,𝐸𝐸′)𝑑𝑑𝐸𝐸′
∞

0
+

1
4𝜋𝜋

𝑄𝑄(𝐫𝐫,𝐸𝐸), 

(2) 

where 

𝜙𝜙(𝐫𝐫,𝐸𝐸′) = � 𝛹𝛹(𝐫𝐫,𝛀𝛀′,𝐸𝐸′)𝑑𝑑𝛀𝛀′

4π
, 

𝑄𝑄(𝐫𝐫,𝐸𝐸) = � 𝑞𝑞(𝐫𝐫,𝛀𝛀,𝐸𝐸)𝑑𝑑𝛀𝛀
4π

. 

(3) 

The assumption of isotropic source is justified in resonance calculation since anisotropic 

scattering has a small impact on resonance treatment [19]. By considering an energy range 

(energy range  for multi-group  𝑔𝑔 or  𝑔𝑔′, 1 ≤ 𝑔𝑔 ≤ 𝐺𝐺, 1 ≤ 𝑔𝑔′ ≤ 𝐺𝐺), Eq.(2) can be written 

as: 

𝛀𝛀 ∙ ∇𝛹𝛹�𝐫𝐫,𝛀𝛀,𝐸𝐸𝑔𝑔� + Σ𝑡𝑡�𝐫𝐫,𝐸𝐸𝑔𝑔�𝛹𝛹�𝐫𝐫,𝛀𝛀,𝐸𝐸𝑔𝑔�

= �
1

4𝜋𝜋
� Σ𝑠𝑠�𝐫𝐫,𝐸𝐸𝑔𝑔′ → 𝐸𝐸𝑔𝑔�𝜙𝜙�𝐫𝐫,𝐸𝐸𝑔𝑔′�𝑑𝑑𝐸𝐸𝑔𝑔′
Δ𝐸𝐸𝑔𝑔′

𝐺𝐺

𝑔𝑔′=1

+
1

4𝜋𝜋
𝑄𝑄�𝐫𝐫,𝐸𝐸𝑔𝑔�. 

(4) 

where 𝐸𝐸𝑔𝑔 is the energy range for 𝑔𝑔-th energy group.  

Angular flux, scalar flux, and external source are expanded by the orthogonal 

bases on energy: 

𝛹𝛹�𝐫𝐫,𝛀𝛀,𝐸𝐸𝑔𝑔� = �𝑓𝑓𝑖𝑖,𝑔𝑔�𝐸𝐸𝑔𝑔�𝛹𝛹𝑖𝑖,𝑔𝑔(𝐫𝐫,𝛀𝛀)
𝑁𝑁

𝑖𝑖=1

, (5) 

𝜙𝜙�𝐫𝐫,𝐸𝐸𝑔𝑔� = � 𝛹𝛹�𝐫𝐫,𝛀𝛀,𝐸𝐸𝑔𝑔�𝑑𝑑𝛀𝛀
4π

= � �𝑓𝑓𝑖𝑖,𝑔𝑔�𝐸𝐸𝑔𝑔�𝛹𝛹𝑖𝑖,𝑔𝑔(𝐫𝐫,𝛀𝛀)
𝑁𝑁

𝑖𝑖=1

𝑑𝑑𝛀𝛀
4π

= �𝑓𝑓𝑖𝑖,𝑔𝑔�𝐸𝐸𝑔𝑔�𝜙𝜙𝑖𝑖,𝑔𝑔(𝐫𝐫)
𝑁𝑁

𝑖𝑖=1

, 

(6) 
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𝑄𝑄�𝐫𝐫,𝐸𝐸𝑔𝑔� = �𝑓𝑓𝑖𝑖,𝑔𝑔�𝐸𝐸𝑔𝑔�𝑄𝑄𝑖𝑖,𝑔𝑔(𝐫𝐫)
𝑁𝑁

𝑖𝑖=1

, (7) 

where 𝑖𝑖: order of expansion, 𝑁𝑁: maximum order of expansion, 𝑓𝑓𝑖𝑖,𝑔𝑔�𝐸𝐸𝑔𝑔�: orthogonal basis, 

𝛹𝛹𝑖𝑖,𝑔𝑔(𝐫𝐫,𝛀𝛀): expansion coefficient for angular flux, 𝑄𝑄𝑖𝑖,𝑔𝑔(𝐫𝐫): expansion coefficient for 

neutron source, and 𝜙𝜙𝑖𝑖,𝑔𝑔(𝐫𝐫): expansion coefficient for scalar flux defined by Eq. (8), 

𝜙𝜙𝑖𝑖,𝑔𝑔(𝐫𝐫) = � 𝛹𝛹𝑖𝑖,𝑔𝑔(𝐫𝐫,𝛀𝛀)𝑑𝑑𝛀𝛀
4π

. (8) 

The orthogonal property of the bases is: 

� 𝑓𝑓𝑖𝑖,𝑔𝑔�𝐸𝐸𝑔𝑔�𝑓𝑓𝑗𝑗,𝑔𝑔�𝐸𝐸𝑔𝑔�𝑑𝑑𝐸𝐸𝑔𝑔
Δ𝐸𝐸𝑔𝑔

= δ𝑖𝑖𝑖𝑖, (9) 

where δ𝑖𝑖𝑖𝑖 is the Kronecker delta. Thus, the coefficients are obtained by Eq. (10). 

𝛹𝛹𝑖𝑖,𝑔𝑔(𝐫𝐫,𝛀𝛀) = � 𝑓𝑓𝑖𝑖,𝑔𝑔�𝐸𝐸𝑔𝑔�𝛹𝛹�𝐫𝐫,𝛀𝛀,𝐸𝐸𝑔𝑔�𝑑𝑑𝐸𝐸𝑔𝑔
Δ𝐸𝐸𝑔𝑔

, 

𝜙𝜙𝑖𝑖,𝑔𝑔(𝐫𝐫) = � 𝑓𝑓𝑖𝑖,𝑔𝑔�𝐸𝐸𝑔𝑔�𝜙𝜙�𝐫𝐫,𝐸𝐸𝑔𝑔�𝑑𝑑𝐸𝐸𝑔𝑔
Δ𝐸𝐸𝑔𝑔

, 

𝑄𝑄𝑖𝑖,𝑔𝑔(𝐫𝐫) = � 𝑓𝑓𝑖𝑖,𝑔𝑔�𝐸𝐸𝑔𝑔�𝑄𝑄�𝐫𝐫,𝐸𝐸𝑔𝑔�𝑑𝑑𝐸𝐸𝑔𝑔
Δ𝐸𝐸𝑔𝑔

, 

(10) 

Equation (11) is obtained by substituting Eqs. (5), (6), and (7) into Eq. (4). 

𝛀𝛀 ∙ ∇�𝑓𝑓𝑖𝑖,𝑔𝑔�𝐸𝐸𝑔𝑔�𝛹𝛹𝑖𝑖,𝑔𝑔(𝐫𝐫,𝛀𝛀)
𝑁𝑁

𝑖𝑖=1

+ Σ𝑡𝑡�𝐫𝐫,𝐸𝐸𝑔𝑔��𝑓𝑓𝑖𝑖,𝑔𝑔�𝐸𝐸𝑔𝑔�𝛹𝛹𝑖𝑖,𝑔𝑔(𝐫𝐫,𝛀𝛀)
𝑁𝑁

𝑖𝑖=1

= �
1

4𝜋𝜋
� Σ𝑠𝑠�𝐫𝐫,𝐸𝐸𝑔𝑔′ → 𝐸𝐸𝑔𝑔��𝑓𝑓𝑗𝑗,𝑔𝑔′�𝐸𝐸𝑔𝑔′�𝜙𝜙𝑗𝑗,𝑔𝑔′(𝐫𝐫)

𝑁𝑁

𝑗𝑗=1

𝑑𝑑𝐸𝐸𝑔𝑔′
𝛥𝛥𝐸𝐸𝑔𝑔′

𝐺𝐺

𝑔𝑔′=1

+
1

4𝜋𝜋
�𝑓𝑓𝑖𝑖,𝑔𝑔�𝐸𝐸𝑔𝑔�𝑄𝑄𝑖𝑖,𝑔𝑔(𝐫𝐫)
𝑁𝑁

𝑖𝑖=1

. 

(11) 

Equation (12) is obtained by multiplying 𝑓𝑓𝑛𝑛,𝑔𝑔�𝐸𝐸𝑔𝑔�  to the both sides of Eq.(11), 

performing energy integration for Δ𝐸𝐸𝑔𝑔, and applying the orthogonal property of Eq. (9): 

𝛀𝛀 ∙ ∇𝛹𝛹𝑛𝑛,𝑔𝑔(𝐫𝐫,𝛀𝛀) + �Σ𝑡𝑡,𝑔𝑔,𝑛𝑛,𝑖𝑖(𝐫𝐫)𝛹𝛹𝑖𝑖,𝑔𝑔(𝐫𝐫,𝛀𝛀)
𝑁𝑁

𝑖𝑖=1

=
1

4𝜋𝜋
� �Σ𝑠𝑠,𝑗𝑗𝑗𝑗′→𝑛𝑛𝑛𝑛(𝐫𝐫)𝜙𝜙𝑗𝑗,𝑔𝑔′(𝐫𝐫)

𝑁𝑁

𝑗𝑗=1

𝐺𝐺

𝑔𝑔′=1

+
1

4𝜋𝜋
𝑄𝑄𝑛𝑛,𝑔𝑔(𝐫𝐫), 

(12) 

where 
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Σ𝑡𝑡,𝑔𝑔,𝑛𝑛,𝑖𝑖(𝐫𝐫) = � 𝑓𝑓𝑛𝑛,𝑔𝑔�𝐸𝐸𝑔𝑔�Σ𝑡𝑡�𝐫𝐫,𝐸𝐸𝑔𝑔�𝑓𝑓𝑖𝑖,𝑔𝑔�𝐸𝐸𝑔𝑔�𝑑𝑑𝐸𝐸𝑔𝑔
Δ𝐸𝐸𝑔𝑔

, 

Σ𝑠𝑠,𝑗𝑗𝑔𝑔′→𝑛𝑛𝑛𝑛(𝐫𝐫) = � � 𝑓𝑓𝑛𝑛,𝑔𝑔�𝐸𝐸𝑔𝑔�Σ𝑠𝑠�𝐫𝐫,𝐸𝐸𝑔𝑔′ → 𝐸𝐸𝑔𝑔�𝑓𝑓𝑗𝑗,𝑔𝑔′�𝐸𝐸𝑔𝑔′�𝑑𝑑𝐸𝐸𝑔𝑔′
𝛥𝛥𝐸𝐸𝑔𝑔′

𝑑𝑑𝐸𝐸𝑔𝑔
𝛥𝛥𝐸𝐸𝑔𝑔

. 

(13) 

Equation (12) is similar to the conventional multi-group transport equation but the 

collision term (the second term of the left-hand side) is replaced by the summation on N 

terms. It means that Eq. (12) is the first order simultaneous differential equations in which 

N equations are coupled for a group  𝑔𝑔. It should be noted that scattering matrix becomes 

more complicated than that of the conventional one since the transfer from mode 𝑗𝑗 to 𝑛𝑛 

is included in addition to energy transfer from 𝑔𝑔′ to 𝑔𝑔. 

 

II.C. Generation of Orthogonal Bases 

The choice of the orthogonal bases is a key point of the present method. In 

principle, an ultra-fine group calculation is carried out for an entire calculation geometry, 

e.g., a fuel assembly or a reactor core, then the orthogonal bases are generated using the 

results. Since all ultra-fine group spectra appeared in the calculation are contained in such 

calculation result, ideal orthogonal bases can be constructed. On the other hand, the 

essential issue of this approach is practicality. An ultra-fine group calculation for a reactor 

core (even for a fuel assembly) takes prohibitive computation time. Furthermore, if the 

ultra-fine group results exist, one can use them to generate accurate effective cross 

sections. 

To generate appropriate orthogonal bases within the practical computation time, 

the following approach can be considered: 

(a) Perform ultra-fine group calculations in a single pin-cell (or 3×3 pin-cells) for typical 

state points, fuel compositions, and temperatures. 

(b) Perform ultra-fine group calculations in a homogeneous geometry for typical fuel 

compositions, temperatures, and background cross sections. 

(c) Perform ultra-fine group calculations in a homogeneous geometry for typical 

resonance nuclides, temperatures, and background cross sections. 

The approach (a) incorporates the current practice that the ultra-fine group calculation is 

carried out in a small geometry, typically in a pin-cell. On the other hand, the approach 

(b) or (c) implicitly utilizes the equivalence theory that the ultra-fine group spectrum can 

be approximately reproduced with appropriate background cross sections. The approach 
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(c) is the current practice to generate multi-group microscopic cross section library for a 

lattice physics code. The advantage of the approach (c) is simplicity but the resonance 

interference effect among different nuclides cannot be taken into account. On the contrary, 

the approach (b) can explicitly consider the resonance interference effect while 

suppressing computation time. In the present study, the approach (b) is used. 

Once various ultra-fine group spectra are obtained, orthogonal bases to 

approximately reproduce the ultra-fine group spectra are extracted as follows. As shown 

in Eq. (5), the orthogonal bases are multi-group dependent, i.e., different bases are used 

for different multi-group. In a multi-group, the identical orthogonal basis should be used 

for whole calculation geometry. Namely, in Eq. (10), the same 𝑓𝑓𝑖𝑖,𝑔𝑔�𝐸𝐸𝑔𝑔� used for different 

regions in a calculation geometry. Therefore, the ultra-fine group spectra generated by 

the method (a), (b) and/or (c) should cover the variation that appeared throughout a 

calculation geometry. 

The orthogonal bases should reproduce the ultra-fine group spectra as accurately 

as possible. To achieve this goal, the SVD and the LRA are used [17][18]. This approach 

is one of the concepts of ROM [16]. The SVD decomposes a matrix to a diagonal matrix 

and orthogonal matrixes [20]. Let us consider that 𝑚𝑚 ultra-fine group spectra and each 

spectrum consists of 𝑡𝑡 ultra-fine energy groups in a specific energy range (within a multi-

group). These ultra-fine group spectra can be arranged as a matrix 𝐀𝐀, whose size is 𝑚𝑚 × 𝑡𝑡: 

𝐀𝐀 = �
𝜙𝜙1(𝐸𝐸1) ⋯ 𝜙𝜙1(𝐸𝐸𝑡𝑡)

⋮ ⋱ ⋮
𝜙𝜙𝑚𝑚(𝐸𝐸1) ⋯ 𝜙𝜙𝑚𝑚(𝐸𝐸𝑡𝑡)

� . (14) 

Using 𝐔𝐔 = (𝑢𝑢�⃗ 1,𝑢𝑢�⃗ 2, … ,𝑢𝑢�⃗ 𝑚𝑚) and 𝐕𝐕 = (𝑣⃗𝑣1, 𝑣⃗𝑣2, … , 𝑣⃗𝑣𝑡𝑡), the matrix 𝐀𝐀 is transformed into a 

𝑚𝑚 × 𝑡𝑡 diagonal matrix 𝚺𝚺: 

𝐔𝐔𝐓𝐓 𝐀𝐀𝐀𝐀 = 𝚺𝚺, (15) 

where 

𝚺𝚺 = �

𝜎𝜎1 0 ⋯ ⋯ ⋯ 0
0 𝜎𝜎2 0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0 ⋱ ⋮
0 ⋯ 0 𝜎𝜎𝑚𝑚 ⋯ 0

� . (16) 

The diagonal components are the singular values having the following property; 𝜎𝜎1 >

𝜎𝜎2 > ⋯ > 𝜎𝜎𝑖𝑖 ≥ 0 (1 ≤ 𝑖𝑖 ≤ 𝑚𝑚). The number of 𝑚𝑚 corresponds to the rank of matrix 𝐀𝐀. 

Since the 𝐔𝐔 and 𝐕𝐕 are unitary matrixes, Eq. (15) can be transformed as: 
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𝐔𝐔 𝐔𝐔𝐓𝐓 𝐀𝐀𝐀𝐀 𝐕𝐕𝐓𝐓 = 𝐔𝐔𝐔𝐔 𝐕𝐕𝐓𝐓 , 

𝐔𝐔𝐔𝐔−𝟏𝟏𝐀𝐀𝐀𝐀𝐕𝐕−𝟏𝟏 = 𝐔𝐔𝐔𝐔 𝐕𝐕𝐓𝐓 , 

𝐀𝐀 = 𝐔𝐔𝐔𝐔 𝐕𝐕𝐓𝐓 , 

(17) 

where 𝐔𝐔 is the left singular vectors, 𝚺𝚺 is the singular values, and 𝐕𝐕 is the right singular 

vectors. The cumulative contribution ratio of the singular vectors is calculated by: 

(The cumulative contribution ratio of the 1st – 𝑘𝑘th vectors) =
∑ 𝜎𝜎𝑖𝑖2𝑘𝑘
𝑖𝑖=1

∑ 𝜎𝜎𝑖𝑖2𝑚𝑚
𝑖𝑖=1

. (18) 

For example, if the cumulative contribution ratio up to the 𝑘𝑘-th vector is 0.99, the 1st – 

𝑘𝑘th vectors can represent 99% of the variation of elements (in precise, the variance of 

elements) in matrix A, which means these vectors almost captures the behavior of the 

matrix A. This is a basic concept of LRA, i.e., even if the small singular values are 

truncated, the matrix A can be accurately reconstructed by the rest of singular vectors and 

singular values. 

The matrix A, whose rank is 𝑚𝑚 (𝑚𝑚 < 𝑡𝑡), is written as:  

𝐀𝐀 = (𝑢𝑢�⃗ 1,𝑢𝑢�⃗ 2, … ,𝑢𝑢�⃗ 𝑚𝑚)�

𝜎𝜎1 0 ⋯ ⋯ ⋯ 0
0 𝜎𝜎2 0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0 ⋱ ⋮
0 ⋯ 0 𝜎𝜎𝑚𝑚 ⋯ 0

� (𝑣⃗𝑣1, 𝑣⃗𝑣2, … , 𝑣⃗𝑣𝑡𝑡)T . (19) 

Let us assume that the major behavior of matrix A can be reproduced by the first 𝑘𝑘 

singular values (𝑘𝑘 ≤ 𝑚𝑚). Then the matrix A can be approximated as Eq. (20). The singular 

value is represented by a square matrix of 𝑘𝑘 × 𝑘𝑘. 

𝐀𝐀 ≈ 𝐀𝐀′ = (𝑢𝑢�⃗ 1,𝑢𝑢�⃗ 2, … ,𝑢𝑢�⃗ 𝑘𝑘)�

𝜎𝜎1 0 ⋯ 0
0 𝜎𝜎2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝜎𝜎𝑘𝑘

� (𝑣⃗𝑣1, 𝑣⃗𝑣2, … , 𝑣⃗𝑣𝑘𝑘).T  (20) 

The approximated matrix 𝐀𝐀′  can be reconstructed by the truncated orthogonal bases 

(𝑣⃗𝑣1, 𝑣⃗𝑣2, … , 𝑣⃗𝑣𝑘𝑘)T  and expansion coefficients (𝑢𝑢�⃗ 1,𝑢𝑢�⃗ 2, … ,𝑢𝑢�⃗ 𝑘𝑘)�

𝜎𝜎1 0 ⋯ 0
0 𝜎𝜎2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝜎𝜎𝑘𝑘

� . 

Therefore, part of the matrix 𝐕𝐕 obtained by the SVD can be used for the orthogonal basis 

for the ultra-fine group spectra. 

Through the SVD, we can choose the dominant expansion bases to reproduce the 

ultra-fine group spectra. The efficiency of the present orthogonal bases depends on the 

behavior of singular values. If the singular values decay rapidly as the order increases, 

the small number of orthogonal bases efficiently reproduces the ultra-fine group spectra. 
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II.D. Treatment of Scattering Source 

 As shown in Eq. (13), the moments of scattering cross sections (Σ𝑠𝑠,𝑗𝑗𝑔𝑔′→𝑛𝑛𝑛𝑛(𝐫𝐫)) are 

necessary to solve the transport equation Eq. (12). However, they can become large 

because the “mode-to-mode” transfer is necessary in addition to the conventional energy 

“group-to-group” transfer. For example, let us consider self-scattering (in-group 

scattering) in an energy group in a region. In the conventional transport equation, a scalar 

value of the self-scattering cross section is sufficient. However, in Eq. (13), the moments 

of scattering cross section from mode 𝑖𝑖 to 𝑗𝑗 is necessary for self-scattering. In the present 

study, the right term of Eq. (12) is solved using the slowing down equation [4] to reduce 

the size of the moments of scattering cross sections. Note that the slowing down 

calculation is carried out in each region. 

 Equation (12) is re-written as follows: 

𝛀𝛀 ∙ ∇𝛹𝛹𝑛𝑛,𝑔𝑔(𝐫𝐫,𝛀𝛀) + �Σ𝑡𝑡,𝑔𝑔,𝑛𝑛,𝑖𝑖(𝐫𝐫)𝛹𝛹𝑖𝑖,𝑔𝑔(𝐫𝐫,𝛀𝛀)
𝑁𝑁

𝑖𝑖=1

= 𝑄𝑄𝑛𝑛,𝑔𝑔(𝐫𝐫), (21) 

where 

𝑄𝑄𝑛𝑛,𝑔𝑔(𝐫𝐫) = � 𝑓𝑓𝑛𝑛,𝑔𝑔�𝐸𝐸𝑔𝑔�𝑄𝑄�𝐫𝐫,𝐸𝐸𝑔𝑔�𝑑𝑑𝐸𝐸𝑔𝑔
Δ𝐸𝐸𝑔𝑔

, 

𝑄𝑄�𝐫𝐫,𝐸𝐸𝑔𝑔� = 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠�𝐫𝐫,𝐸𝐸𝑔𝑔� + 𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝐫𝐫,𝐸𝐸𝑔𝑔�, 

(22) 

where 𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝐫𝐫,𝐸𝐸𝑔𝑔�: fixed source, 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠�𝐫𝐫,𝐸𝐸𝑔𝑔�: slowing down source. The fixed source 

is typically given by the fission source in a fuel region. Since the spatial distribution of 

the fixed source does not significantly impact on the resonance treatment, spatially flat 

fission source can be used. Slowing down source is calculated by the slowing down 

equation Eq. (23) by applying the isotropic and elastic scattering in the center-of-mass 

system for scattering: 

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠�𝐫𝐫,𝐸𝐸𝑔𝑔� = ��
𝑁𝑁𝑘𝑘𝜎𝜎𝑠𝑠,𝑘𝑘(𝐫𝐫,𝐸𝐸)𝜙𝜙(𝐫𝐫,𝐸𝐸)

(1 − 𝛼𝛼𝑘𝑘)𝐸𝐸

𝐸𝐸𝑔𝑔 𝛼𝛼𝑘𝑘⁄

𝐸𝐸𝑔𝑔𝑘𝑘

𝑑𝑑𝑑𝑑, (23) 

where 𝜎𝜎𝑠𝑠,𝑘𝑘(𝐫𝐫,𝐸𝐸) : microscopic elastic scattering cross section for nuclide  𝑘𝑘 , 𝛼𝛼𝑘𝑘 =

�𝐴𝐴𝑘𝑘−1
𝐴𝐴𝑘𝑘+1

�
2
: maximum energy loss ratio for nuclide 𝑘𝑘, 𝐴𝐴𝑘𝑘: relative atomic weight of nuclide 

𝑘𝑘 to the neutron. Note that the angle of the scattering is defined in the center-of-mass 

system but neutron energy is described in the laboratory system. Equation (23) should be 

solved in all regions. The scalar flux: 𝜙𝜙(𝐫𝐫,𝐸𝐸)  and thus the slowing down source: 

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠�𝐫𝐫,𝐸𝐸𝑔𝑔� are obtained iteratively as described in Sec. II.F. It should be noted that the 
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numerical solution of Eq. (23) is established since it has been widely used for ultra-fine 

spectrum calculations and it can be carried out with small computation time when the 

recurrence relation among ultra-fine group energy is used [4]. 

 

II.E. Implementation with MOC 

 In the present study, the RSE method is implemented with MOC (in two-

dimensional geometry) which is a popular transport method in lattice physics calculations. 

By applying the flat flux and constant macroscopic approximations in a region, and by 

discretizing the neutron flight direction, Eq. (21) can be written as: 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝛹𝛹𝑛𝑛,𝑔𝑔,𝑟𝑟,𝑚𝑚(𝑠𝑠) + �Σ𝑡𝑡,𝑔𝑔,𝑛𝑛,𝑖𝑖,𝑟𝑟𝛹𝛹𝑖𝑖,𝑔𝑔,𝑟𝑟,𝑚𝑚(𝑠𝑠)

𝑁𝑁

𝑖𝑖=1

= 𝑄𝑄𝑛𝑛,𝑔𝑔,𝑟𝑟, (24) 

where 𝑠𝑠 is the coordinate along neutron flight direction, 𝛹𝛹𝑛𝑛,𝑔𝑔,𝑟𝑟,𝑚𝑚 and 𝑄𝑄𝑛𝑛,𝑔𝑔,𝑟𝑟 are angular 

flux and neutron source of 𝑛𝑛 -th moment, energy group 𝑔𝑔 , region 𝑟𝑟 , neutron flight 

direction 𝑚𝑚, respectively, Σ𝑡𝑡,𝑔𝑔,𝑛𝑛,𝑖𝑖,𝑟𝑟 is average total cross section moment in region 𝑟𝑟. They 

are defined by: 

𝛹𝛹𝑛𝑛,𝑔𝑔,𝑟𝑟,𝑚𝑚(𝑠𝑠) = 𝛹𝛹𝑛𝑛,𝑔𝑔(𝐫𝐫,𝛀𝛀𝑚𝑚), 

𝑄𝑄𝑛𝑛,𝑔𝑔,𝑟𝑟 =
1

4𝜋𝜋
∫ 𝑄𝑄𝑛𝑛,𝑔𝑔(𝐫𝐫)𝑑𝑑𝐫𝐫𝐫𝐫∈𝑟𝑟

∫ 𝑑𝑑𝐫𝐫𝐫𝐫∈𝑟𝑟

, 

Σ𝑡𝑡,𝑔𝑔,𝑛𝑛,𝑖𝑖,𝑟𝑟 =
∫ Σ𝑡𝑡,𝑔𝑔,𝑛𝑛,𝑖𝑖(𝐫𝐫)𝑑𝑑𝐫𝐫𝐫𝐫∈𝑟𝑟

∫ 𝑑𝑑𝐫𝐫𝐫𝐫∈𝑟𝑟

. 

(25) 

 Equation (24) is similar to the conventional MOC transport equation, but the 

collision term contains contributions from multiple angular flux moments. Equation (24) 

is the simultaneous differential equation thus can be solved by several numerical methods. 

One of the simplest approaches is the utilization of the Jacobi or the Gauss-Seidel iteration 

in which Eq. (24) is treated by: 
𝑑𝑑
𝑑𝑑𝑑𝑑
𝛹𝛹𝑛𝑛,𝑔𝑔,𝑟𝑟,𝑚𝑚(𝑠𝑠) + Σ𝑡𝑡,𝑔𝑔,𝑛𝑛,𝑛𝑛,𝑟𝑟𝛹𝛹𝑛𝑛,𝑔𝑔,𝑟𝑟,𝑚𝑚(𝑠𝑠) = 𝑄𝑄𝑛𝑛,𝑔𝑔,𝑟𝑟 −�Σ𝑡𝑡,𝑔𝑔,𝑛𝑛,𝑖𝑖,𝑟𝑟𝛹𝛹𝑖𝑖,𝑔𝑔,𝑟𝑟,𝑚𝑚(𝑠𝑠)

𝑖𝑖≠𝑛𝑛

. (26) 

Equation (26) has an identical form with the conventional MOC transport equation except 

for the additional terms in the right hand side thus can be easily solved by existing MOC 

codes. Note that the flat angular flux assumption can be used for 𝛹𝛹𝑖𝑖,𝑔𝑔,𝑟𝑟,𝑚𝑚(𝑠𝑠) in the right 

hand side of Eq. (26). However, unfortunately, our preliminary study reveals that the total 

cross section moments may not be diagonal dominant (i.e., Σ𝑡𝑡,𝑔𝑔,𝑛𝑛,𝑖𝑖,𝑟𝑟 > Σ𝑡𝑡,𝑔𝑔,𝑛𝑛,𝑛𝑛,𝑟𝑟, 𝑖𝑖 ≠ 𝑛𝑛) 
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thus an iterative solution using the Jacobi or the Gauss-Seidel method could not be used. 

Instead, in the present study, Eq. (24) is written as the vector-matrix form as: 
𝑑𝑑
𝑑𝑑𝑑𝑑
𝛹𝛹��⃗𝑔𝑔,𝑟𝑟,𝑚𝑚(𝑠𝑠) + 𝚺𝚺𝑡𝑡,𝑔𝑔,𝑟𝑟𝛹𝛹��⃗𝑔𝑔,𝑟𝑟,𝑚𝑚(𝑠𝑠) = 𝑄𝑄�⃗ 𝑔𝑔,𝑟𝑟, 

𝛹𝛹��⃗𝑔𝑔,𝑟𝑟,𝑚𝑚(𝑠𝑠) = (𝛹𝛹1,𝑔𝑔,𝑟𝑟,𝑚𝑚(𝑠𝑠) 𝛹𝛹2,𝑔𝑔,𝑟𝑟,𝑚𝑚(𝑠𝑠) … 𝛹𝛹𝑁𝑁,𝑔𝑔,𝑟𝑟,𝑚𝑚(𝑠𝑠))T , 

𝚺𝚺𝑡𝑡,𝑔𝑔,𝑟𝑟 =

⎝

⎛

Σ𝑡𝑡,𝑔𝑔,1,1,𝑟𝑟 Σ𝑡𝑡,𝑔𝑔,1,2,𝑟𝑟 … Σ𝑡𝑡,𝑔𝑔,1,𝑁𝑁,𝑟𝑟
Σ𝑡𝑡,𝑔𝑔,2,1,𝑟𝑟 Σ𝑡𝑡,𝑔𝑔,2,2,𝑟𝑟 ⋱ ⋮

⋮ ⋱ ⋱ ⋮
Σ𝑡𝑡,𝑔𝑔,𝑁𝑁,1,𝑟𝑟 … … Σ𝑡𝑡,𝑔𝑔,𝑁𝑁,𝑁𝑁,𝑟𝑟⎠

⎞ , 

𝑄𝑄�⃗ 𝑔𝑔,𝑟𝑟 = (𝑄𝑄1,𝑔𝑔,𝑟𝑟 𝑄𝑄2,𝑔𝑔,𝑟𝑟 … 𝑄𝑄𝑁𝑁,𝑔𝑔,𝑟𝑟)T . 

(27) 

The solution of Eq. (27) is given by: 

𝛹𝛹��⃗𝑔𝑔,𝑟𝑟,𝑚𝑚(𝑠𝑠) = 𝑒𝑒−𝚺𝚺𝑡𝑡,𝑔𝑔,𝑟𝑟𝑠𝑠𝛹𝛹��⃗𝑔𝑔,𝑟𝑟,𝑚𝑚(0) + �𝐈𝐈 − 𝑒𝑒−𝚺𝚺𝑡𝑡,𝑔𝑔,𝑟𝑟𝑠𝑠�𝚺𝚺𝑡𝑡,𝑔𝑔,𝑟𝑟
−1 𝑄𝑄�⃗ 𝑔𝑔,𝑟𝑟, (28) 

where 𝑒𝑒−𝚺𝚺𝑡𝑡,𝑔𝑔,𝑟𝑟𝑠𝑠 and 𝐈𝐈 are the matrix exponential and the identity matrix, respectively. The 

average angular flux moments of 𝑔𝑔-th group, 𝑚𝑚-th direction, in 𝑟𝑟-th region 𝛹𝛹��⃗𝑔𝑔,𝑟𝑟,𝑚𝑚  is 

given by: 

𝛹𝛹��⃗𝑔𝑔,𝑟𝑟,𝑚𝑚 = �𝚺𝚺𝑡𝑡,𝑔𝑔,𝑟𝑟𝑆𝑆�
−1
�𝛹𝛹��⃗𝑔𝑔,𝑟𝑟,𝑚𝑚(0) −𝛹𝛹��⃗𝑔𝑔,𝑟𝑟,𝑚𝑚(𝑆𝑆) + 𝑄𝑄�⃗ 𝑔𝑔,𝑟𝑟𝑆𝑆�, (29) 

where 𝑆𝑆 is the segment length of a region considering polar direction. In the present study, 

Eqs. (28) and (29) are numerically solved by Eigen [20]. 

 Once the average angular flux moment in region 𝑟𝑟 (𝛹𝛹��⃗𝑔𝑔,𝑟𝑟,𝑚𝑚) is obtained, the scalar 

flux moment in region 𝑟𝑟 is obtained by: 

𝜙𝜙�⃗ 𝑔𝑔,𝑟𝑟 = �𝜔𝜔𝑚𝑚𝛹𝛹��⃗𝑔𝑔,𝑟𝑟,𝑚𝑚
𝑚𝑚

, 

𝜙𝜙�⃗ 𝑔𝑔,𝑟𝑟 = (𝜙𝜙1,𝑔𝑔,𝑟𝑟 𝜙𝜙2,𝑔𝑔,𝑟𝑟 … 𝜙𝜙𝑁𝑁,𝑔𝑔,𝑟𝑟)T , 

(30) 

where 𝜙𝜙�⃗ 𝑔𝑔,𝑟𝑟  is the scalar flux moment in region 𝑟𝑟 , 𝜔𝜔𝑚𝑚  is the weight for solid angle 

integration satisfying ∑ 𝜔𝜔𝑚𝑚𝑚𝑚 = 4𝜋𝜋. Using the scalar flux moment in region 𝑟𝑟, ultra-fine 

group scalar flux in region 𝑟𝑟 is obtained by Eq. (6). 

 

II.F. Calculation Procedure of the RSE method 

 Calculation procedures of the RSE method are described based on the theory 

described in the previous subsections. The calculation flow to obtain effective cross 

sections is shown in Fig. 1. 

Calculation procedures are as follows: 
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(1) Generate ultra-fine group spectra using ultra-fine group slowing down calculations in 

homogeneous geometry for typical fuel compositions, temperatures, and background 

cross sections. 

(2) Generate the orthogonal bases 𝑓𝑓𝑛𝑛,𝑔𝑔�𝐸𝐸𝑔𝑔�  using SVD for ultra-fine group spectra 

obtained from step (1).  

(3) Prepare total cross section moment Σ𝑡𝑡,𝑔𝑔,𝑛𝑛,𝑖𝑖,𝑟𝑟 using Eq. (13). Note that constant cross 

section approximation is used. 

(4) Generate ray trace information for MOC. 

(5) Initialize 𝑖𝑖-th scalar flux moments 𝜙𝜙𝑖𝑖,𝑔𝑔,𝑟𝑟 in group 𝑔𝑔, region 𝑟𝑟. In the present study, 

spatially and energetically constant scalar flux distribution within a multi-group is 

assumed as the initial guess and it is expanded by the orthogonal basis to obtain initial 

scalar flux moments. 

(6) Initialize angular flux moments at boundaries assuming isotropic angular flux 

distribution, i.e., 𝛹𝛹�𝐫𝐫,𝛀𝛀𝑚𝑚,𝐸𝐸𝑔𝑔� = 𝜙𝜙�𝐫𝐫,𝐸𝐸𝑔𝑔� 4𝜋𝜋⁄ . Note that energetically constant 

angular flux distribution within a multi-group is assumed at the boundary and is 

expanded by the orthogonal basis. 

(7) Initialize source 𝑄𝑄𝑟𝑟�𝐸𝐸𝑔𝑔� for group 𝑔𝑔, region 𝑟𝑟. The initial value of the slowing down 

source is set to be zero. 

(8) Calculate moments of source 𝑄𝑄𝑛𝑛,𝑔𝑔,𝑟𝑟 by Eq. (22). 

(9) Perform transport sweep using Eq. (21) and estimate scalar flux moments 𝜙𝜙𝑛𝑛,𝑔𝑔,𝑟𝑟 in 

each region by solid angle integration of angular flux moment 𝛹𝛹𝑛𝑛,𝑔𝑔,𝑟𝑟,𝑚𝑚 . This 

procedure is similar to that in the conventional MOC, i.e., estimate scalar flux by solid 

angle integration of angular flux. 

(10) Reconstruct ultra-fine group spectra 𝜙𝜙𝑟𝑟�𝐸𝐸𝑔𝑔� by Eqs. (3) and (5). 

(11) Calculate slowing down source 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠,𝑟𝑟�𝐸𝐸𝑔𝑔� in each region by Eq. (23). 

(12) Check the convergence of flux moments by Eq. (31): 

𝜀𝜀𝑗𝑗 = ����𝜙𝜙𝑛𝑛,𝑔𝑔,𝑟𝑟
𝑛𝑛

�
(𝑗𝑗−1)

− ��𝜙𝜙𝑛𝑛,𝑔𝑔,𝑟𝑟
𝑛𝑛

�
(𝑗𝑗)

� ��𝜙𝜙𝑛𝑛,𝑔𝑔,𝑟𝑟
𝑛𝑛

�
(𝑗𝑗)

� � , (31) 

where 𝜀𝜀𝑗𝑗 is the relative residual of scalar flux moment at 𝑗𝑗-th iteration. It should 

be noted that the summation of scalar flux moments is used to check convergence 

in the present study since each flux moment can take a very small value and 

convergence check for small values is inefficient. 
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(13) Update slowing down source if flux moments by Eq. (23) are not converged. 

(14) Repeat steps from (7) to (13) and calculate flux moments for all energy group. 

(15) Reconstruct ultra-fine group spectra 𝜙𝜙𝑟𝑟�𝐸𝐸𝑔𝑔�  and calculate the effective cross 

section and the reaction rate by Eqs. (32) and (33), respectively. 

𝜎𝜎𝑥𝑥,𝑔𝑔,𝑟𝑟,𝑒𝑒𝑒𝑒𝑒𝑒
𝑘𝑘 =

∫ 𝜎𝜎𝑥𝑥,𝑟𝑟
𝑘𝑘 (𝐸𝐸)𝜙𝜙𝑟𝑟(𝐸𝐸)𝑑𝑑𝑑𝑑Δ𝐸𝐸𝑔𝑔

∫ 𝜙𝜙𝑟𝑟(𝐸𝐸)𝑑𝑑𝑑𝑑Δ𝐸𝐸𝑔𝑔

, (32) 

where 𝜎𝜎𝑥𝑥,𝑔𝑔,𝑟𝑟,𝑒𝑒𝑒𝑒𝑒𝑒
𝑘𝑘  is the effective microscopic cross section of type 𝑥𝑥, energy group 

𝑔𝑔, nuclide 𝑘𝑘, and region 𝑟𝑟, and 𝜎𝜎𝑥𝑥,𝑟𝑟
𝑘𝑘 (𝐸𝐸) is the microscopic cross section of type 𝑥𝑥, 

nuclide 𝑘𝑘, and region 𝑟𝑟. 

𝑅𝑅𝑥𝑥,𝑔𝑔,𝑟𝑟
𝑘𝑘 = � 𝑁𝑁𝑟𝑟𝑘𝑘𝜎𝜎𝑥𝑥,𝑟𝑟

𝑘𝑘 (𝐸𝐸)𝜙𝜙𝑟𝑟(𝐸𝐸)𝑑𝑑𝑑𝑑
Δ𝐸𝐸𝑔𝑔

, (33) 

where 𝑅𝑅𝑥𝑥,𝑔𝑔,𝑟𝑟
𝑘𝑘 is the reaction rate and 𝑁𝑁𝑟𝑟𝑘𝑘 is the number density. 

 

III. CALCULATIONS 

 In section III, accuracy of RSE method was shown through analyses of benchmark 

problems. Three typical situations were considered that are important for resonance 

treatment. The first one was multi-cell geometry consist of UO2 and MOX fuels in a 

typical light water reactor. The second one was a pin-cell geometry in which fuel pellet 

is annularly subdivided and temperature distribution inside a fuel pellet is considered. 

The last one was a unit assembly geometry. Accurate resonance treatment of these 

problems was difficult with conventional equivalent and sub-group methods due to 

resonance interference effect among regions. For reference calculation, direct ultra-fine 

group (UFG) calculation in the heterogeneous geometry using MOC was used. 

 

III.A. Multi-cell Geometry 

III.A.1. Calculation Conditions 

 Specifications of multi-cell geometries and unit pin-cell geometry used in the 

present study were shown in Fig. 2 and Table I, respectively. No gap between pellet and 

cladding was considered for simplicity. The numbers in Fig. 2-(a) were the identification 

to distinguish the same type of fuel. Since UO2 and MOX fuel cells were adjacent in Fig. 

2-(b), resonance interference effect between two fuel cells was observed. In order to 

confirm resonance interference effect in Fig. 2-(b), geometry of Fig. 2-(c) was also 
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considered. Composition of each material was shown in Table II. Temperature of all 

material was 600 K. Reflective boundary condition was assumed for all cases. 

For pointwise cross sections used in the present method, ACE formatted cross 

sections, which were generated by FRENDY code [21] using JENDL-4.0 [22], were used. 

The generated ACE cross sections were also used for ultra-fine group (UFG) reference 

calculations by MOC. GENESIS code [23] was used as MOC transport solver for ultra-

fine group calculation in a two-dimensional geometry. Calculation condition for the 

GENESIS code was shown in Table III. For convergence criterion of flux, scalar flux was 

used for reference UFG calculation and moment of scalar flux (Eq. (31)) was used for 

RSE calculation. Energy group structure for ultra-fine group calculation was shown in 

Table IV [25]. For multi-group structure, XMAS 172 group structure was adopted [4]. 

Orthogonal basis was independently generated in each of the 172 groups. It should be 

noted that though the resolved resonance usually appeared at intermediate energy range, 

RSE method was applied to all energy groups from fast to thermal energy range. For 

slowing down calculation, the only contribution from elastic scattering assuming 

isotropic scattering in the center-of-mass system was considered throughout the present 

study. Namely, only elastic scattering was considered in ultra-fine group spectrum 

calculations for construction of orthogonal basis, RSE calculation, and reference UFG 

calculation by MOC. 

The number of ultra-fine group spectra used in Step (1)–(2) of calculation flow in 

Sec. II.F was 32, which came from the numbers of background cross sections for UO2 

and MOX (11 points for each material, totally 22 points), cladding (9 points) and H2O (1 

point) as shown in Table V. A maximum number of the orthogonal bases was given by 

the size of matrix 𝐀𝐀 shown in Eq. (14), i.e., smaller size of rows or columns. Therefore, 

the maximum number of orthogonal bases was given by the smaller number of ultra-fine 

groups within a multi-group (columns of the matrix 𝐀𝐀) or background cross sections 

(rows of the matrix 𝐀𝐀, 32). Since the minimum number of ultra-fine energy group within 

a multi group was 17 in the present calculation condition, 16 (minimum number − 1) was 

used as the maximum number of orthogonal bases in the present study. The results 

showed that this number was enough to calculate effective cross sections and reaction 

rates. 
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III.A.2. Numerical Results and Discussions 

At first, behavior of singular values and orthogonal bases was discussed in order 

to grasp an actual image of these quantities. In the following description, group 88 (6.16 

eV – 7.52 eV) in the XMAS 172 energy structure was considered since a large resonance 

of U-238 exists in this group. Typical spectra obtained by ultra-fine group slowing-down 

calculation in homogeneous UO2 geometry with various background cross sections were 

shown in Fig. 3. Singular values obtained by SVD of ultra-fine group spectra were plotted 

in Fig. 4. Note that singular values were normalized so that the largest singular value was 

1.0. Figure 4 indicated that singular values are rapidly decreasing as the order increases. 

As described in Sec. II.C., singular values represent the contribution of corresponding 

expansion basis. Therefore, we can expect that the ultra-fine group spectra can be 

expressed by the small number of orthogonal basis. Next, typical orthogonal bases 

obtained by SVD were shown in Fig. 5. Orthogonal basis of the lower-order represented 

general trend of ultra-fine group spectra in Fig. 3 while that of the higher-order captured 

the more detailed structure of ultra-fine group spectra. Figure 6 showed ultra-fine group 

spectra of group 88 in UO2 pellet (Fig. 2-(a), No.2). As the order of expansion in the RSE 

method increased, the present calculation result was rapidly approaching the reference, 

showing good convergence as expected. 

Now let us move to the comparison of effective microscopic cross sections and 

reaction rates. Firstly, the relative differences of the effective microscopic total cross 

sections and microscopic total reaction rates in XMAS 172 energy group were calculated 

by (RSE – UFG)/UFG. Tables VI and VII showed the maximum absolute relative 

differences of effective microscopic total cross sections and total reaction rates for 

resonance nuclides in Fig. 2-(a) or (b) at the entire energy range (10−5eV – 20 MeV). 

The number of bases was fixed to 16. As shown in Tables VI and VII, the differences 

were less than two percent for major resonance nuclides. Therefore, the RSE method 

accurately reproduced the reference reaction rates of resonance nuclides. This result also 

indicated that the orthogonal bases obtained by spectra in homogeneous geometries can 

well represent spectra in heterogeneous geometry. 

Secondly, the impact of the number of bases used in the RSE method was 

discussed. Group 88 (6.16 eV – 7.52 eV) in the XMAS 172 group structure was also 

considered. In Figs. 7 and 8, the differences of the microscopic effective total cross 

sections were rapidly decreased as the expansion order increases and almost converged 
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by four orthogonal bases for Fig. 2-(a) and eight bases for Fig. 2-(b), respectively. This 

result indicated that the complicated ultra-fine group spectra in resonance energy range 

can be accurately represented by the limited number of orthogonal basis based on ROM, 

which is described in Sec. II.C. The similar trend (rapid reduction of error) was also 

observed in other energy groups. Though the number of bases was fixed for all groups in 

the present study, these can be independently set at each group. The adaptive choice of 

the number of bases will increase the calculation efficiency of the RSE method. 

Finally, the capability to treat the resonance interference effect was discussed. The 

differences of the reference effective total cross sections for U-235, U-238, Pu-239, and 

Pu-240 in MOX fuel at Fig. 2-(b) and -(c) were shown in Fig. 9. The reference effective 

total cross section was obtained by UFG calculations using MOC. The difference was 

defined by ((c) – (b)) / (b). The energy range of Fig. 9 included major resolved resonance 

of U-235 and U-238 (1 eV – 105  eV). Figure 9 showed that the effective total cross 

sections of MOX fuel in (b) and (c) are different due to different material arrangement 

and the resonance interference effect. The differences of effective total cross sections and 

total reaction rates, which were obtained by the RSE method for Fig. 2-(b) and -(c), were 

shown in Figs. 10 and 11. The difference was also calculated by (RSE – UFG)/UFG. The 

difference was very small, and these results indicated that the RSE method can accurately 

treat the resonance interference effect. Namely, the neutron spectra in the heterogeneous 

geometry, in which the resonance interference effects appeared, were accurately 

expressed by the linear combination of orthogonal basis obtained in the homogeneous 

geometry in the present study. 

Before moving to the next benchmark problem, the convergence property of 

numerical calculation was described. As shown in Fig. 1, two parameters should be 

converged in the RSE method, i.e., the flux moments (expansion coefficients) and the 

slowing down source. The numbers of inner iterations of a MOC calculation for Fig. 2-

(a), -(b), or -(c) were approximately 30 and 10 for the fast and the thermal energy groups, 

respectively. On the other hand, the convergence of slowing down source within a multi-

group was rather fast thus the convergence of flux moments in MOC dominated the total 

convergence of the RSE method.  
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III.B. Pin-cell Geometry with Annularly Subdivided Pellet 

III.B.1. Calculation Conditions 

 A MOX pin-cell with annularly subdivided pellet was used to confirm the 

applicability of the RSE method for the spatial self-shielding effect with temperature 

distribution. Specification of pin-cell geometry was provided in Table I and the fuel pellet 

was annularly divided into ten equal volume regions. The composition of each material 

was shown in Table II. The two temperature distributions were considered: the radial and 

the flat distributions as shown in Table VIII [7]. 

The number of ultra-fine group spectra to generate the orthogonal bases (Step (1)-

(2) in Sec. II.F.) was defined by the numbers of background cross sections for each 

material described in Sec. III.A.1. The background cross sections in Table V were used 

for each material and temperature, which means that 120 points in radial temperature 

distribution cases (11 points × 10 temperature for fuel, 9 points × 1 temperature for 

cladding, and 1 point for moderator) and 21 points in flat temperature distribution cases 

(11 points × 1 temperature for fuel, 9 points × 1 temperature for cladding, and 1 point for 

moderator). The number of the orthogonal bases used in the RSE method was fixed 16 as 

discussed in Sec. III.A. 

 

III.B.2. Numerical Results and Discussions 

 The effective microscopic total cross sections and microscopic total reaction rates 

of U-238 and Pu-239 were compared since these nuclides were dominant resonance 

nuclides in the MOX pellet and the impact of these nuclides to neutronics characteristics 

was large. Relative differences of the effective microscopic total cross sections and total 

reaction rates between RSE and UFG were calculated. The differences in the radial and 

the flat temperature distributions were shown in Figs. 12 and 13, respectively. Figure 14 

showed the difference of the effective cross section and reaction rate between RSE and 

UFG in group 88 along with the pellet radial direction. These figures showed that the 

differences are small and the RSE method can accurately treat the spatial self-shielding 

effect regardless of the temperature distribution. 

 The difference of U-238 effective total cross section and total reaction rate for the 

radial temperature distribution case (Fig. 12) was smaller than that for the flat temperature 

distribution case (Fig. 13). These results seemed to be inconsistent since the radial 

temperature distribution case utilized a more complicated calculation condition. These 
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results can be explained by the characteristics of the RSE method. The spectra to generate 

the orthogonal bases in Fig. 12 was more diverse than those in Fig. 13, since various 

temperature condition was considered in Fig. 12. To confirm this estimation, the reaction 

rate of U-238 was calculated in the flat temperature distribution case with the orthogonal 

bases generated from both the flat and the radial temperature distribution cases in Table 

VIII. Relative differences in the reaction rates between RSE and UFG were shown in Fig. 

15. The differences of this case were smaller than those in the flat temperature distribution 

case with the orthogonal bases only from the flat temperature distribution in Table VIII 

(Fig. 13). The present results suggested the importance of the choice of input spectra used 

to construct an orthogonal basis. Namely, the utilization of various spectra was favorable 

from the calculation accuracy. Our supplemental sensitivity study on the choice of input 

ultra-fine group spectra indicated that consideration of three temperature points (highest, 

average, and lowest) was sufficient to generate an accurate orthogonal basis in the RSE 

method. This means that all temperatures that appeared in the calculation geometry are 

not necessary but the ultra-fine group spectra should span the variations in a calculation 

geometry. 

 

III.C. Unit Assembly Geometry 

III.C.1. Calculation Conditions 

 A 17 × 17 UO2 fuel assembly based on the VERA benchmark problem [26] was 

used to confirm the applicability of the RSE method for larger geometries. The quarter 

symmetry was considered as shown in Fig. 16. Two material regions A and B in Fig. 16 

were chosen to consider different self-shielding conditions. For simplicity, the following 

approximations were used: 1) 3.1 wt% UO2 was composed of U-235, U-238, and O-16, 

2) gap and cladding in a fuel rod were homogenized, 3) inter-assembly gap was not 

modeled, 4) boron was not included in the moderator. Specifications of the geometry and 

nuclide number densities are shown in Table IX and Table X, respectively. The 

temperature of all material was 600 K. the reflective boundary condition was assumed for 

all boundaries. 

As the multi-cell cases (Sec. III.A), the number of ultra-fine group spectra to 

generate the orthogonal bases (Step (1)-(2) in Sec. II.F.) was 21, which came from the 

numbers of background cross sections for UO2 (11 points), cladding (9 points) and H2O 
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(1 point) as shown in Table V. The number of the orthogonal bases used in the RSE 

method was fixed to 16 as discussed in the previous two verifications. 

Multi-group cross section of each material region for eigenvalue calculation was 

prepared using the effective cross sections obtained by RSE and UFG calculation in the 

assembly as follows: 1) the effective cross sections (capture, production, elastic scattering, 

and total) obtained by RSE or UFG were used in the major resonance energy range (from 

group 34 to group 124 in XMAS 172 group: ~1 eV - ~105eV) for UO2 and cladding, 2) 

infinite dilution cross section was used for moderator, and  fast (>105eV) or thermal 

(<1eV) energy range for cladding. It should be noted that other multi-group cross sections 

including fission spectrum are generated by FRENDY/MG [27]. The same multi-group 

cross sections are used throughout the eigenvalue calculations except for the effective 

cross section in the major resonance range in order to focus on the impact of resonance 

calculations on the results such as eigenvalue or pin-power. Multi-group eigenvalue 

calculation was performed using the MOC transport solver GENESIS [23]. The 

calculation condition of MOC for eigenvalue calculation was shown in Table XI. 

 

III.C.2. Numerical Results and Discussions 

 Relative differences in the effective total cross sections and total reaction rates 

between RSE and UFG were calculated. The results for U-235 and U-238 at regions A 

and B of Fig. 16 in the major resonance energy range were shown in Figs. 17 and 18, 

respectively. The differences were small in two regions. 

 Accuracy of flux and source are compared to consider the characteristics of the 

RSE method. Ultra-fine group spectra and sources in regions A and B of Fig. 16 in the 

major resonance energy range are shown in Figs. 19 and 20, respectively. They show 

reasonable agreement with the reference results. The ultra-fine group spectrum shows 

local deviation from the reference result since the difference is shown by the relative 

value and spectrum shows a very small value at some energy points. However, reaction 

rates or effective cross sections are obtained with sufficient accuracy by the RSE method 

since these parameters are integrated values. The difference of source was relatively small 

because the source in the RSE method was obtained by the slowing down equation in the 

present study as described in Sec. II.D. 

 The current computation time of the RSE method is approximately 140 minutes 

and that of the UFG calculation is approximately 370 minutes for a single assembly 
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calculation in the present study. However, it should be noted that the numerical 

algorithms of the RSE method were not yet optimized since the purpose of the present 

study was a demonstration of the principle of the present method. Calculation time can 

be further reduced by optimization of energy group structure, discretization parameters 

for MOC, and improvements of numerical algorithms. Our preliminary study so far 

suggests that computation time can be reduced by approximately factor 20 considering 

these improvements. The number of inner iterations of MOC was between 5 to 20 at each 

energy group in the RSE calculation for the assembly (Fig. 16). Since MOC calculation 

for flux moments in the RSE method is quite similar to the conventional one, the coarse 

mesh fine difference (CMFD) acceleration method [28] could be applied to the RSE 

method. This is also one of the future tasks to reduce computation time. 

  Eigenvalue and pin-power distribution were compared in Table XII. The 

difference was calculated by |(RSE − UFG)/UFG|. Table XII showed that discrepancies 

of these neutronics characteristics were small. This result suggests that the differences of 

the effective cross section, reaction rate, and flux shown in Fig. 17 to Fig. 20 have small 

impacts to eigenvalue and pin-power distribution. Note that since boron was not included 

in moderator for simplicity, eigenvalues in Table XII were estimated to be larger than the 

value described in the VERA benchmark problem (k-effective = 1.183360 ± 0.000024) 

[26]. 

 

IV. CONCLUSIONS 

 The Resonance calculation based on energy Spectrum Expansion (RSE) method 

is newly proposed in this paper. In the RSE method, ultra-fine group neutron spectra in 

heterogeneous geometry are expanded by an orthogonal basis on energy. The orthogonal 

basis is constructed with ultra-fine group neutron spectra obtained in homogeneous 

geometry through the singular value decomposition (SVD) and the low-rank-

approximation (LRA). The neutron transport equation for expansion coefficients of 

angular flux is derived and is numerically solved by MOC. 

This method applied to a 2 × 2 multi-cell geometries and a pin-cell with annularly 

subdivided fuel pellet with different fuel types, i.e., UO2 and MOX, to consider the 

resonance interference effect. In the pin-cell with subdivided pellet, the radial and the flat 

temperature distributions were used to consider the spatially dependent self-shielding 

effect with temperature distribution. The reaction rate or effective microscopic cross 
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section obtained by the RSE method were compared with the reference results by the 

ultra-fine group (UFG) heterogeneous calculation using MOC. These numerical results 

show the validity of this method which accurately reproduces the reference results 

obtained from the UFG calculation by MOC considering the resonance interference effect 

among different regions and the spatial self-shielding effect.  As a more complicated and 

practical problem, eigenvalue calculations in UO2 single fuel assembly have been carried 

out using the effective cross sections obtained by the UFG and RSE methods. Calculation 

results indicate that differences in eigenvalue and pin-power are sufficiently small. 

Therefore, UFG and RSE methods provide comparable results as a resonance calculation 

method in the present calculation conditions. 

This study shows the feasibility of the present method. For practical applications, 

however, there are several issues to be addressed, especially from the viewpoint of 

computational efficiency. An efficient generation method of an orthogonal basis is 

desirable since the number of orthogonal bases is directly proportional to the 

computational cost. The validity of orthogonal bases considering various material 

compositions, e.g. depleted fuels, should be also confirmed. In the results of Sec. III.A, 

the same orthogonal basis is used to UO2 and MOX fuels. Since the characteristics of 

MOX fuel is similar to that of depleted UO2 fuels, the present result is evidence to show 

the applicability of the RSE method to such conditions. However, more extensive 

verifications considering actual lattice physics calculation conditions are desirable. The 

optimal choice of energy group to generate effective cross sections would be another issue. 

Finally, as a future task, this method will be applied to more complicated 

conditions/larger geometry, e.g., multi-fuel assemblies, or full core geometry.  
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Table I 
Dimensions of pin-cell (unit: cm) 
 

Pellet radius 0.4095 
Cladding outer radius 0.4750 
Cell pitch 1.2600 

 
 
 

Table II 
Compositions of materials 
 

Material Nuclide 
Number 
density 

[1/barn/cm] 
Material Nuclide 

Number 
density 

[1/barn/cm] 

Fuel 
(UO2) 

16O 4.68618E-02 

Fuel 
(MOX) 

16O 4.59163E-02 
235U 1.13836E-03 235U 4.16028E-05 
238U 2.22834E-02 238U 2.04972E-02 

Moderator 
(H2O) 

1H 4.41629E-02 238Pu 4.87049E-05 
16O 2.20897E-02 239Pu 1.40652E-03 

Cladding 
(Zirconium) 

90Zr 1.96348E-02 240Pu 5.55429E-04 
91Zr 4.28188E-03 241Pu 2.40495E-04 
92Zr 6.54495E-03 242Pu 1.19746E-04 
94Zr 6.63272E-03 241Am 4.80973E-05 
96Zr 1.06856E-03   

 
 
 

Table III 
Calculation conditions for MOC 
 
Ray trace width 0.05 cm 
Number of azimuthal angles 32 for 2π 
Number of polar angles 6 for π (the TY quadrature set [24]) 

Energy group structure Multi group XMAS 172 [4] 
Ultra-fine group 120,000 (Table IV) 

Convergence criterion 
Scalar flux (for UFG) 10−5 
Moment of flux: 𝜀𝜀𝑗𝑗 (for 
RSE) 10−5 
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Table IV 
Energy group structure for ultra-fine group calculation 
 

Upper energy 
boundary [eV] 

Number of divisions 
(Equal division for lethargy) 

20,000,000 10,000 
52,475 56,000 
9118.8 12,000 
4307.4 12,000 
961.12 8,000 
130.07 12,000 

0.32242 10,000 
Lower energy boundary: 0.00001 eV 

 
 
 

Table V 
Background cross sections for ultra-fine group calculation in homogeneous geometry 
 
 Background cross section [barn] 
Fuel 
(UO2 and MOX) 

1.00e+10, 2.00e+04, 3.60e+03, 1.00e+03, 2.60e+02, 1.40e+02, 
6.40e+01, 5.20e+01, 2.80e+01, 1.00e+01, 1.00E-03 

Moderator 
(H2O) 

1.00e+10 

Cladding 
(Zirconium) 

5.00e+06, 5.00e+05, 1.00e+05, 5.00e+04, 1.00e+04, 5.00e+03, 
1.00e+03, 5.00e+02, 5.00e+01 
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Table VI 
The maximum relative differences of microscopic effective total cross sections and total 
reaction rates calculated by the RSE method in Fig. 2-(a) 
 
 
 

Material Nuclide 
Effective total cross section Total reaction rate 

Maximum error 
[%] 

Corresponding 
energy group 

Maximum error 
[%] 

Corresponding 
energy group 

UO2 
(in cell 1) 

235U 0.06  62 0.49  75 
238U 0.17  64 0.25  66 

UO2 
(in cell 2) 

235U 0.07  62 0.54  75 
238U 0.20  64 0.27  66 

Cladding 
(in cell 1) 

90Zr 0.69  49 0.68  49 
91Zr 1.21  49 1.19  49 
92Zr 0.71  51 0.63  51 
94Zr 0.06  43 0.39  47 
96Zr 2.85  63 2.74  63 

Cladding 
(in cell 2) 

90Zr 0.62  49 0.61  49 
91Zr 1.12  49 1.11  49 
92Zr 0.61  51 0.54  51 
94Zr 0.05  43 0.35  47 
96Zr 2.46  63 2.36  63 
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Table VII 
The maximum relative differences of microscopic effective total cross sections and total 
reaction rates calculated by the RSE method in Fig. 2-(b) 
 
 

Material Nuclide 
Effective total cross section Total reaction rate 

Maximum error 
[%] 

Corresponding 
energy group 

Maximum error 
[%] 

Corresponding 
energy group 

MOX 

235U 0.03  69 0.42  64 
238U 0.63  64 0.39  69 

238Pu 0.17  66 0.47  66 
239Pu 0.13  63 0.41  64 
240Pu 1.22  63 1.14  69 
241Pu 0.12  64 0.53  64 
242Pu 0.08  69 1.49  69 

241Am 0.62  69 0.52  69 

UO2 
235U 0.04  62 0.44  64 
238U 0.60  64 0.34  64 

Cladding 
(in MOX cell) 

90Zr 0.25  49 0.23  49 
91Zr 0.88  49 0.86  49 
92Zr 0.65  49 0.63  49 
94Zr 0.05  47 0.31  47 
96Zr 1.49  63 1.42  63 

Cladding 
(in UO2 cell) 

90Zr 0.29  49 0.26  49 
91Zr 0.92  49 0.89  49 
92Zr 0.67  49 0.65  49 
94Zr 0.05  47 0.32  47 
96Zr 1.65  63 1.57  63 

 
 
 
Table VIII 
Temperature distributions in the pin-cell geometries 
 
 

Region Temperature [K] 
Flat distribution Radial distribution 

Fuel 

01 (inner) 

997 
for each region 

1190 
02 1140 
03 1100 
04 1060 
05 1010 
06 970 
07 930 
08 890 
09 860 
10 (outer) 820 

Cladding 600 Moderator 
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Table IX 
Dimensions of the assembly (unit: cm) 
 
 
Pellet radius 0.4096 
Cladding outer radius 0.4750 
Cell pitch 1.2600 
Inner Guide Tube Radius 0.5610 
Outer Guide Tube Radius 0.6020 
Inner Instrument Tube Radius 0.5590 
Outer Instrument Tube Radius 0.6050 

 
 
 
 
Table X 
Compositions of material in the assembly 
 
 

Material Nuclide Number density 
[1/barn/cm] 

Fuel 
(UO2) 

16O 4.57640E-02 
235U 7.18132E-04 
238U 2.21639E-02 

Moderator 
(H2O) 

1H 4.42033E-02 
16O 2.21017E-02 

Cladding, 
instrument tube, 

or 
guide tube 

(Zirconium) 

90Zr 1.96035E-02 
91Zr 4.27506E-03 
92Zr 6.53451E-03 
94Zr 6.62215E-03 
96Zr 1.06686E-03 
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Table XI 
Calculation conditions of MOC calculation for assembly geometry 
 
Ray trace width 0.05 cm 
Number of azimuthal angles 32 for 2π 
Number of polar angles 4 for π (the Gauss-Legendre quadrature set) 
Energy group structure XMAS 172 [4] 

Convergence criterion 
Scalar flux 1 × 10−5 
k-effective 5 × 10−6 

Boundary condition Reflective 
 
 
 

Table XII 
Differences in eigenvalue and pin-power distribution of eigenvalue calculation for Fig. 
16 
 

k-effective Difference of k-effective [%] 
|(RSE− UFG)/UFG| 

Difference of pin-power [%] 
|(RSE − UFG)/UFG| 

RSE UFG MAX RMS 
1.33891 1.33932 3.1 × 10−2 1.6 × 10−3 7.2 × 10−4 
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Fig. 1. Flowchart of the RSE method. 
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Fig. 2. Multi-cell geometries. 
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Fig. 3. Spectra in homogeneous UO2 obtained by ultra-fine group slowing down 

calculation for various background cross sections in group 88 (6.16 eV - 7.52 eV). 
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Fig. 4. Singular values for ultra-fine group spectra for group 88. 
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Fig. 5. The orthogonal basis extracted from spectra in homogeneous geometries. 
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Fig. 6. Reference and reconstructed ultra-fine group spectra in UO2 (Fig. 2-(a), cell 

2) for group 88 (6.16 eV - 7.52 eV). The legend shows the order of expansion. 
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Fig. 7. Difference of effective total cross section in group 88 for various number of 

orthogonal bases in Fig. 2-(a). 
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Fig. 8. Difference of effective total cross section in group 88 for various number of 

orthogonal bases in Fig. 2-(b). 
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Fig. 9. Difference of effective total cross sections in MOX fuel between Fig. 2-(b) and 

Fig. 2-(c) obtained by UFG with MOC. 
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Fig. 10. Differences of effective total cross sections and total reaction rates obtained 

by the reference UFG and RSE (U-235, U-238, Pu-239, and Pu-240 in MOX fuel, Fig. 

2-(b)). 
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Fig. 11. Differences of effective total cross sections and total reaction rates obtained 

by the reference UFG and RSE (U-235, U-238, Pu-239, and Pu-240 in MOX fuel, Fig. 

2-(c)). 
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Fig. 12. Differences of effective total cross sections and total reaction rates obtained 

by the reference UFG and RSE (U-238, Pu-239, using radial temperature 

distribution). The legend shows the subdivided pellet region shown in Table VIII. 
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Fig. 13. Differences of effective total cross sections and total reaction rates obtained 

by the reference UFG and RSE (U-238, Pu-239, using flat temperature distribution). 

The legend shows the subdivided pellet region shown in Table VIII. 
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Fig. 14. Differences of effective total cross sections and total reaction rates in a pellet 

obtained by the reference UFG and RSE (U-238 and Pu-239, group 88: 6.16 eV - 

7.52 eV). 
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Fig. 15. Differences of effective total cross sections and total reaction rates of U-238 

obtained by the reference UFG and RSE in the flat temperature distribution case. 

The orthogonal bases are generated from both the flat and the radial temperature 

distribution in Table VIII. The legend shows the subdivided pellet region shown in 

Table VIII. 
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Fig. 16. A 17 × 17 fuel assembly based on VERA benchmark problems. 
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Fig. 17. Differences of effective total cross sections and total reaction rates obtained 

by the reference UFG and RSE at region A in Fig. 16. 
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Fig. 18. Differences of effective total cross sections and total reaction rates obtained 

by the reference UFG and RSE at region B in Fig. 16. 
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Fig. 19. Differences of ultra-fine group spectra and source obtained by the reference 

UFG and RSE at region A in Fig. 16. 
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Fig. 20. Differences of ultra-fine group spectra and source obtained by the reference 

UFG and RSE at region B in Fig. 16. 
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