PHYSICAL REVIEW E 103, 022125 (2021)

Effective Langevin equations leading to large deviation function of time-averaged velocity
for a nonequilibrium Rayleigh piston
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We study fluctuating dynamics of a freely movable piston that separates an infinite cylinder into two regions
filled with ideal gas particles at the same pressure but different temperatures. To investigate statistical properties
of the time-averaged velocity of the piston in the long-time limit, we perturbatively calculate the large deviation
function of the time-averaged velocity. Then, we derive an infinite number of effective Langevin equations
yielding the same large deviation function as in the original model. Finally, we provide two possibilities for

uniquely determining the form of the effective model.
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I. INTRODUCTION

Large deviation functions have played a prominent role
in statistical physics. In equilibrium systems, large deviation
functions of thermodynamic variables are given by the cor-
responding thermodynamic functions in the thermodynamic
limit, which fully characterize thermodynamic properties of
the equilibrium systems [1-4]. For example, the large devi-
ation function of the energy density for an isolated system
is equivalent to the thermodynamic entropy density, which
is known as Einstein’s fluctuation theory. To investigate and
characterize nonequilibrium systems, large deviation func-
tions of time-averaged currents have been studied [4—7]. One
of the notable results of the past two decades is that a symme-
try property of the large deviation function of time-averaged
entropy production rate, generally valid far from equilibrium,
was derived as a result of the time-reversal symmetry of mi-
croscopic mechanics, which is called the fluctuation theorem
[8-17]. This symmetry property enables us to easily derive
the Green-Kubo relations, the McLennan ensembles, and the
Kawasaki nonlinear response relation [14,18]. The symmetry
property is also useful for estimating forces acting on motor
proteins [19,20].

From a theoretical viewpoint, the large deviation func-
tions of time-averaged quantities cannot be easily calculated
in microscopic many-body systems. Here, there have been
cases that an effective stochastic description at some coarse-
grained level precisely provides the large deviation function
[21]. One may analyze such stochastic models to argue some
properties of the large deviation functions without considering
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the connection to the microscopic description. This approach
is useful, in particular, when seeking universal properties
independent of microscopic details. However, when we are in-
terested in microscopic mechanisms for properties described
by the large deviation functions, the connection to the mi-
croscopic description also should be understood. The main
purpose of this paper is to clarify the relationship among the
microscopic description, the effective mesoscopic description,
and the large deviation function for the simplest example, a
nonequilibrium version of the Rayleigh piston model [22-25].
This model is mainly used to investigate the adiabatic piston
problem [26—42].

It has been known that effective stochastic models are
formally derived by using the projection operator method
[43—45] and the nonequilibrium statistical operator method
[46] from the microscopic description. It is not obvious to
check the assumption made in the derivation. For example,
although the noise properties in the obtained equations basi-
cally depend on the choice of slow variables and the projection
method, they were often physically assumed without studying
the nature of slow variables. Still, for equilibrium systems,
following the Onsager theory [47,48], we can restrict the
form of the effective model by considering the regression
hypothesis and the detailed balance condition. However, this
cannot be used for nonequilibrium systems due to the break-
down of the detailed balance condition. Even for the simplest
example studied in this paper, we do not find a consistent
derivation method of the effective model from the microscopic
description.

Now, putting aside the derivation of the effective stochastic
model from a microscopic model, we study conditions for the
effective model. As a necessary condition, it should precisely
reproduce the large deviation function of a time-averaged ve-
locity of a piston for the microscopic model. Such an effective
model was discovered numerically in Ref. [49]. Fortunately,
the microscopic model is so simple that we can calculate the

©2021 American Physical Society
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large deviation function in a perturbative expansion in powers
of a small parameter €, where € is the square root of the mass
ratio of a light gas particle to a heavy piston. We can also
calculate the large deviation functions for effective models
whose forms are assumed with undetermined parameters. By
comparing these two results, we find that an infinite number
of effective models yield the same large deviation function as
in the microscopic model to first order in €. We then consider
two possibilities for determining the effective model uniquely.

The remainder of this paper is organized as follows. In
Sec. II, we introduce our setup and derive the dimensionless
form of the equation we study. In Sec. III, we review basic
properties of the model, which are already known from the
previous works. Next, we calculate the large deviation func-
tion of the time-averaged velocity in Sec. IV. In Sec. V, we
identify effective Langevin equations that reproduce the same
large deviation function as in the microscopic model, and
propose the conditions that uniquely determine the form of
the Langevin equation. The final section is devoted to a brief
summary and some concluding remarks.

II. MODEL

We study the dynamics of a rigid piston of mass M that
separates an infinite cylinder into two regions filled with ideal
gas particles of mass m. The piston is freely movable in one
direction inside the cylinder of cross-sectional area S. Let V
denote the velocity of the piston. The gases in the left and right
regions are initially prepared at equal pressure p but different
temperatures Ty, and TR, respectively. Suppose, without loss
of generality, that 71, < Tr. The particles collide elastically
and instantaneously with the piston only once, and then the
particles are in equilibrium before colliding with the piston.
We model the collisions between the piston and particles by
random events at a collision rate

pS L
A, V) = Tl (v —=V)0(v—V)feq(v)
pS R
+ kT (V' =0)0(V —v)feq(v) (D

with the Maxwell distribution

2
L/R _ / m —mv 5
feq (U) 27TkBTL/R exp <2kBTL/R>7 ( )

where v is the velocity of a colliding particle, kg is the Boltz-
mann constant, and 6(-) is the Heaviside step function. Note
that from the ideal gas law, p/(kgTi/r) equals the number
density of the gas in the left/right region. Using the laws
of the conservation of energy and momentum, the transition
probability density per unit time from V to V' is given by

W) = A, V)L 3)
= 'U, —_—
dVv’
with
M+m_, M-—m
b= V- V. @)
2m 2m

Then, the time evolution of the probability density of V at time
t, P(V,t), is governed by the following master-Boltzmann

equation:

aP(aYJ) = / av' [W(VIVOP(V'.1) = W(V'V)P(V. 1)),

(&)

This equation has been used to investigate the adiabatic piston
problem [29-31,33,36,39,40]. Using formally the Kramers-
Moyal expansion [50,51], we have

IP(V, 1) _i (=" 3"
o = nl avn

[an(V)P(V, 1)] (6)

with

ay(V) = /dV/ V' —VYWV'|V)

— [T oy 7
- [T e o

Let us introduce a dimensionless small parameter

—\/W 1 8
€ = M<<, ()

which implies that the relaxation time of V is much larger
than the average time between collisions. For later use, we
introduce a dimensionless parameter defined by

¢ = (;—i)w =1 )

Let T denote the geometric-mean temperature explicitly writ-
ten as

T = A/ TLTR. (10)

It will be shown later that T is the kinetic temperature of the
piston to lowest order in €.

We now introduce the rescaled dimensionless variables
used in [49]

opS@re DV (11
T /mMkgT/8  JksT /M’

The probability density of V at 7 is given by
v
PV, t)=PV, t)—. 12
V., t)=PV,1) v 12)
Using these variables, we rewrite (6) with (7) as

PV, 1) = (=1 3"
T_; - a—w[a,,(V)P(V,r)] (13)

with
_ 262 " (l) — V)n
w=(z) [# Grem
x [¢°(v—=V)o(v — V)e €92
F o3V 0V — e (14)

Performing a perturbation expansion in powers of € for «,())
with

00 n—1 —n—1
/dvv"efz¢2“2/2=f2 ! F<n+l)’ (15)
0
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where I is the gamma function, we obtain

a1(V) = =V + enV? + 0(e?), (17)
ar(V) =2+ 0(e?), (18)
a3(V) = —12en + O(e?), (19)
a;(V) = 0(e?), fori >4, (20)

where 7 is a dimensionless parameter specifying the degree of
nonequilibrium defined as

N e N Z\/T_R—\/T_L
77=\/;(¢ ¢ )_\/;—\/T .

Note that we do not assume 1 < 1. We expand (13) in powers
of € as

1)

PV, T) D ) PPV, 1)
o = gl VeV PV Ol
PPV, 1) >
t2en—rs— T 0, (22)

which contains only € and 7 as the dimensionless parameters
at least to first order in €. The first term on the right-hand
side of this equation indicates that the relaxation time of V
to lowest order in € is set to unity by the rescaling (11). The
escape rate for (13) is given by

_n

0(€Y).
2€+ (€

1
V)= (23)
This implies that the average time between collisions is of
order €2 and much shorter than the relaxation time of V. Thus,
for € « 1, we would naively expect that random collisions
with the ideal gas particles are well approximated by a Gaus-
sian white noise in a mesoscopic description due to the central

limit theorem. Hereafter, we ignore the O(e?) terms in (22).

III. PRELIMINARIES: THE STEADY-STATE
DISTRIBUTION AND THE MOMENTS

Here, we review basic properties of Eq. (22). Let Py (V)
denote the steady-state distribution of (22). From (22), we
have

PsV) |, *PuV)

0= —enV)Ps(V) + —— +2en———,

V= enVPa(V) + — 5 + 2en—

where the left-hand side of this equation is zero because the
probability current is zero at infinity. Substituting

(24)

1 2
PSSV:_7V/21+6 v 25
W) me [ FI (25)
into (24) and ignoring O(e?) terms, we get
af (V)
fd—v =2n — V2. (26)

From the above equation with f dVP(V) = 1, we obtain
1 >
Ps(V) = ——e VY /2(1 +2enV — 27

enVS)
V2 3 )

Let (- )¢ denote the expectations with respect to Pgs(V). The
moment- and cumulant-generating functions of Pg()) are

given by
enh’
, 28
3 ) (28)

M) = (") = ehz/z(l +enh—

h? n?
K =) =enh+5 - 2= (29)

to first order in €, respectively. From (28), we get
WVis=en, W)s=1, (30)

which implies that T is the kinetic temperature of the piston.
These results are consistent with the previous study [29].
In (27), Ps(V) is negative for very large V when € < 1.
We, however, claim that such velocity will not be practi-
cally observed for € <« 1 as the statistical expectations (30)
hold. To first order in e(<& 1), (28) and (29) are not af-
fected because the negative probability of P (V) is less than
O(exp[—(3/€n)*3/2]). In Appendix A, we provide another
derivation of (30) using relations between the moments of
Pss(V).

IV. LARGE DEVIATION FUNCTION
OF TIME-AVERAGED VELOCITY

In this section, we analytically investigate statistical prop-
erties of the long-time averaged velocity

_ 1 r7T
V:7—_fo dt V(7), 31

where V(7) is the velocity of the piston at time 7. Let Pr(V)
denote the probability density of ). The statistical properties
of V in the long-time limit are characterized by the large
deviation function defined as

— 1 —

IZW)=— lim —InPr(V). 32

W) Aim o= TV) (32)
The statistical properties are also characterized by the scaled
cumulant-generating function defined as

1 _ - —
G(h) = Tli_r)noo,]—_ln / ay "MVpr), (33)

which satisfies

Z(V) = max[hV — G(h)]. (34)
heR

That is, Z(V) is the Legendre transform of G(h), which is
known as the Girtner-Ellis theorem in probability theory
[4,52]. Because G (k) equals the dominant eigenvalue of some
linear operator [53-55], G(h) is easier to calculate than Z ).

We next identify the linear operator whose dominant eigen-
value is equal to G(h). Let X'(7) and P(X, V, t) denote the
displacement of the piston over a time interval [0, ] and
the joint probability density of X'(t) and V(7). Note that
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X(T)=TV and
/ 4V TVPL (V) = / dx [ dy P, v, T). (35)

Using d; X' () = V(7) and (22), we have

oPX,V,7)

ad
97 —8—X[VP(X,V,‘E)]

0 2
+ w[(v —enVIH)PX,V, 1)]

P*PX,V, PP, VY,
n P( VT)+267’] P( Vr).

91?2 013
(36)
Introducing a quantity
o, = [dx P v 6D
and using (36), we get
09,V 1
BT~ Lo, o) (38)
with the operator
t d 20, ’
L, =W+ —V—enV — 4+ 2en—=. 39
=MV Gy VeVt gy ey G9)

Let uy and @,(V) denote the dominant eigenvalue and cor-
responding right eigenfunction of EZ. Because Q;(V, 1) > 0
for any t from (37), we expect that u, is real and ®,(V) >
0. We perturbatively check these conditions later. Then,
Q;,(V, T) is dominated by the term associated with the largest
eigenvalue for sufficiently large 7. Thus, from (38), Q,(V, T)
is asymptotically given by

OV, T) == co®@(V)e T, (40)

where the constant ¢( is determined by the initial condition
9,(V, 0). Using the above equation, we get

T—o0

1
lim ?ln/dV V., T) = . (41)
From this equation and Egs. (33), (35), and (37), we obtain

G(h) = (42)

which shows that the scaled cumulant-generating function,
G(h), is given by the largest eigenvalue of E:l.

For later convenience, for any smooth functions ) and Z,
we define an inner product by

YV, 2)= /dV YWV)Z(V). (43)
Then, the adjoint operator of EZ denoted by L}, is given by
V. LI2) = (L), 2). (44)
The adjoint operator £y, is explicitly written as
0 d° 33
Ly=hY—OV—enV)—+— —2en—. (45
h (V —en )av+av2 N353 (45)

Because puy, is real, the largest eigenvalue of £, equals w;. Let
W, (V) denote the largest right eigenfunction of L.

We now expand Ly, uj,, ¥, and @, in powers of e:

Ly=LY +eLll, (46)
wn =)+ epp). (47)
Wy, =W 4 ewV, (48)
@), =0 eV, (49)

and perturbatively calculate w;. Note that E;lo) and ,C,(Il) are
explicitly given by

d 32

LY =Y —V— + —, 50
W=y -V (50)
a 33
LY =g — —2n—. 51
A A FIVE G1)
The eigenvalue equation to zeroth order in € is given by
LOVO = Oy, (52)

Using symmetrization, the largest eigenvalue of 410) is ob-
tained by calculating ground-state energy of some quantum
system [55,56]. Substituting

2
PO = oy O (53)

into (52), we get

82 Y V 2 0 0 1 0
- +<——h> w,§>=<h2—u;>+5)w,§>, (54)

91? 2

which is equivalent to the one-dimensional Schrodinger equa-
tion for the harmonic oscillator. Thus, we obtain

2
,U«g)) =2, I/,;lo) _ e—VT+hV7 %(lo) — . (55)
Similarly, we can also calculate CD;LO) as
2
OV = TV, (56)

and confirm that /LZO) is real and @;10) > 0.
The eigenvalue equation to first order in € is given by

0) g (D) 1)\ ) 1)\ ) )y
LW, + LW =y, W+ (7)
The solvability condition for (57) leads to
0) (0),,(1 0 1),9,(0
(@0 L%+ (000 £

= PO ) ol ) )
Using
©) pO) g\ _ ,,0)/5(0) (1)
(cbh Ly, >—“h ((Dh Y, )7 (59
we have

o, £y )
(1) ( h > ~h h 3
(@) %)

and confirm that ,u}ll) is real. Substituting (55) and (60) into
(57) and considering the condition (CDZO) , \If,(l 1)) < 00, we have

hV?
v = r,(2h2V + c)e’“’, (61)
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where ¢ is an arbitrary constant. Repeating this procedure,
we may obtain higher order terms in €. See Appendix B for
second-order calculations.

From (34) and (42), we finally obtain to first order in €

G(h) = enh + h* + 2enh’, (62)
=2 = =3
_ vV y v
V) = - 67](5 + T)’ (63)

The result (62) is consistent with that obtained numeri-
cally in [49]. G(h) in (62) is not convex on the interval
[—o0, —1/(6€n)] because we have ignored the contribution
of O(€?) to derive (62).

V. EFFECTIVE LANGEVIN EQUATIONS

In this section, we investigate effective models for the
nonequilibrium Rayleigh piston. Putting aside the derivation
of the effective models from the microscopic description,
we first seek the models that reproduce the large deviation
function (63) as a necessary condition. We show that there
exists an infinite number of Langevin equations with the same
large deviation (63). Let us introduce the following Langevin
equation for the nondimensionalized velocity V()

P = Do) + o + AP0 + AP0

24 268y + BV - (o),

where Ay, Ay, Az, By, and B, are e-independent constants,
& is a zero-mean Gaussian white noise with unit variance
(E(r)&(t")) = 68(r — '), and the symbol - denotes the Itd
product. The hat symbol indicates quantities associated with
the Langevin equation (64). The noise intensity of (64) is ex-
pected to be positive for € < 1. Note that the relation between
the velocity of the piston at time 7 in the original model,
V(7), and V(1) is unclear although V(1) may be related to
an effective velocity obtained by coarse-graining V() due to
the central limit theorem. Let P(V, 7) denote the probability
density of V(t). The corresponding Fokker-Planck equation
is given by

PV _ 01 ey + AV + ADIPD, 1)
it v

2

V2
Following the same procedure as in Sec. IV, we calculate

the scaled cumulant-generating function, Q (h), of the time-
averaged velocity for (64). Using

(64)

+ (14 e(By + BWIPO, 7). (65)

A . 0 02
LY = (Ag+ AV + AV — + (Bo 4+ BiV)—, (66
w = (Ao 1 2)3]) (Bo I)BVZ()
instead of /3511), we get
0) A1)y, 0
(@,”. £;"w”) 2
) ©) - (AO + A2)h + (ZAI + Bo)h
(@), w,”)
+ (44 +2B)R’, (67)

which leads to

G(h) = e(Ayg + ADh + [1 + € A, + By)1h?

+e(dAy + 2B + 0(€?). (68)

From (62) and (68), we have G(h) = G(h) by setting
Ao =n— A,
By = —2A,, (69)
31 =n— 2A2.

Thus, the Langevin equation

dv . .
Z(;) =e(n—A) — (1 —eADV(r) + €AV (1)

+ 2~ dedy +2¢(n - 24)D(0) - £(1) (70)

gives the same large deviation function as in (63) for any A,
and A, to first order in €. The result (70) implies that the ef-
fective Langevin equation for (22) is not uniquely determined
by only the large deviation function of the time-averaged
velocity.

Next, we investigate what conditions can be used in ad-
dition to G(h) = G(h) to determine the form of the Langevin
equation (70). As one attempt to determine .A; and .A; in (70),
we derive the Langevin equation with the same cumulant-
generating function as in (29). Using the same method as in
Sec. 11, the steady-state distribution of (65) with (69) is given
by

PN 1 o A A
P(V) = \/T_ne*" /2[1 + 62—1 +eA)YV
_E.Alf)2 6(7] —A2)1>3

2 3

Note that there may be no steady-state distribution for (64)
with some specific parameters. We later check the existence
of the steady-state distribution. The moment- and cumulant-
generating functions of the distribution (71) are given by

] + 0(e). (71)

2 _ 3
M(h) = eh2/2[1 +enh — 6“421h <t 3A2)h } (72)
— 2 _ 3
R(h) = enh + a EZAI)h €l 3“42)h , (73)

where we hflVC ignored O(€?) terms. Comparing (29) and (73),
we obtain K (h) = K(h) by setting

A =0,
{nss, &
From (70) with (74), we obtain the Langevin equation
dv . .
©) )= D)+ 2020
dt
++/2[1 — 361719(1)] -E(T). (75)

We can derive the exact steady-state distribution for (75), and
the noise intensity of (75) is always positive even for € & 1.
See Appendix C for the details. Note that the existence of the
upper bound on V() is our computational artifact because the
original model has no bound for the velocity V(t). Because

022125-5



ITAMI, NAKAYAMA, NAKAGAWA, AND SASA

PHYSICAL REVIEW E 103, 022125 (2021)

the upper bound on V() is given by 1/(3¢n), we may ignore
the effects of the bound when € « 1. Here, we define the time
averaged velocity for (22) and (75) in the steady state by

o 1 +T ) ,
V(r) = ?/T dt' V(r"), (76)
— 1 +T BN
V(r) = 7—,/; dt" V(t'), (77)

respectively, for T > 1. Note that )_2(0) =V, where V is de-
fined in (31). The statistical property of V(r) is equal to that
of V(r) when T <« 1and 7 > 1.

As another attempt to determine .4; and A, in (70), we
assume that the drift coefficient of (22) equals that of (65)
with (69) instead of K (h) = K (h). This assumption leads to

A =0,
A2=77.

From (70) with (78), we obtain the Langevin equation

dy N N
d(:) = —[1 — enD(OID(2) + /201 — enD(D)] - (),

=en—[1— Enf/(r)]ﬁ(l’)

+1/2[1 —enV(1)] © &(2), (79)

where the symbol © denotes the anti-Itd product. This equa-
tion was numerically found in Ref. [49]. In this form, a
fluctuation-dissipation-like relation holds even out of equilib-
rium.

Note that when we use instead of (64)

dV(r)
dt =—Vm

(78)

+e(Ag+ Alv(f)-i- Azﬁz(l’)-‘r A3]>3(7.') +--)

+/2 4 26(Bo+ BV(0)+ BaV2(0)+ ) £(2),
(80)

we cannot uniquely determine all coefficients by using the
conditions discussed in this section. We do not yet know how
to determine all the coefficients.

VI. CONCLUDING REMARKS

We calculated the scaled cumulant-generating function
(62) and the large deviation function (63) of the time-averaged
velocity for the nonequilibrium Rayleigh piston beyond the
linear response regime. The key point of the calculation is
that the scaled cumulant generating function equals the largest
eigenvalue of £, and that the eigenvalue equation for £,
to zeroth order in € is converted to the one-dimensional
Schrodinger equation for the harmonic oscillator. We identify
effective Langevin equations (70) for the piston that reproduce
the same large deviation function (63). We provide two pos-
sibilities for uniquely determining the form of the effective
model (70). Before ending this paper, we will make some
remarks.

We can impose further constraints on the Langevin equa-
tion (70) by assuming that (70) satisfies the same symmetry

properties as (22) to first order in €. For example, the operator
that appeared in (22),

+ 9 , 32 3

Ly=—=V—enV)+ — +2en—,

0 =gy V T eV gy 2605

is invariant under the transformations (V,n) — (=V, —n)

and (€, n) — (g€, n/q), where g is a nonzero constant. Thus,

by imposing invariance on (64) under these two transforma-

tions, we expect that Ay, A, and B is linear in 5 and that
A1 = By = 0. Using these conditions with (70), we get

dv(t)
dt

(81)

=en(l — A) — V(r) + en AV (1)

+ \/2+2€77(1 —24,)V(1) - £(1), (82)

where A, is an n-independent constant. Considering the
restriction in terms of symmetry properties is useful for de-
termining the form of the possible Langevin equations. We
note that the Langevin equations (75) and (79) satisfy the sym-
metry properties because the conditions used in addition to
G(h) = G(h) to determine the form of the Langevin equation
(70) do not break the symmetry properties.

By recalling that the average time between collisions is
given by 4€? to the lowest order in €, the stochastic evolution
of the long-time-averaged velocity V(z) with 4e2 « T « 1
should be effectively described by some Langevin equation
due to the central limit theorem. However, it is not yet known
how to derive the Langevin equation for V(). There is a
possibility that the Langevin equation for V() is not given
by (70) with specific A; and A,. The substantive future study
will be to derive numerically or analytically the Langevin
equation from the microscopic description. We believe that
the analysis developed in this paper may be a first step toward
an understanding of the universal description of the stochastic
evolution of slow variables out of equilibrium.

ACKNOWLEDGMENTS

The authors thank T. Nemoto and A. Seya for useful com-
ments. This work was supported by JSPS KAKENHI (Grants
No. JP17H01148, No. JP17K14355, No. JP19H01864, No.
JP19HO05795, No. JP19K03647, No. JP20J00003, and No.
JP20K20425).

APPENDIX A: RELATIONS BETWEEN THE MOMENTS
Multiplying (24) by V"~! and integrating with V, we have
forneZ*
(Ve = (n= DV ) +en(V)
—2(n — 1)(n = 2)en(V" 7). (A1)
Using (A1) with (V) = en(V?)g, we get (V1) = O(e).
Thus, we obtain
{(Vz")ss = (2n— D)V 2),

(Vszrl)ss — 2n<er171)SS _ (2n _ 1)€n<V2n>SS7 (Az)

where we have ignored O(e?) terms. From (A2) with n = 1,
we have (V?) = 1, which leads to (V)¢ = en. Repeatedly
using (A2), we can calculate the nth moment of Pg (V).
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APPENDIX B: SECOND-ORDER CALCULATIONS

Using the same method as in Sec. II, we further expand (13) in powers of € as

oPV, 1) 0 ) ) eX(8n? + )13 92 2 3e2)V?
—— ==V —enV — _ V, —1-2 ,
Py Y, (V €n €V+ P PV, 1)+ 2 €+ > PV, 1)
93 8e2V 428> + ) 3*P(V, 1)
— (2 Vv, ’ o(e). Bl
+ 3V3( en+ 3 )”P( )+ g P + 0(e”) (B1)
The steady-state distribution of this equation is given by
1 2 V3 54 —-237 16 — 8w 7—5m Vo
w(V) = —e V2|1 2V — — n? - V2 Y+ — |+ 0D, B2
Pss(V) me +en 3 +en - + i 1% +18 (€) (B2)

which is consistent with the result in Ref. [29]. The moment- and cumulant-generating functions of P ()) are calculated as

h3
M(h) = ehz/2|:l + 677<h - ?> +ezn2<

T —4

14-5 nb
Wt Tt + 1—8) + 0(63)}, (B3)

1 2e¥p? 2
Kh)y=enh+ | = — h
2 b4

enh’ n (14 — 3m)e*n’h*

+ 0(d). (B4)
o

Following the same procedure as in Sec. IV, we calculate G (k) to second order in €. Using

o (p_ GUAmVN S () 3V 8 8V & A@p ) 8 (B5)
" 61 v a2 3 913 3t 9V
the eigenvalue equation to second order in € is written as
LOWO L LDy 4 LOGE) _ g0 L g 0y (B6)
The solvability condition for (B6) leads to
) @)y © ) MM (OB A1¢Y]
2) _ <q>/’l 7‘Ch \Ijh ) <q>/’l "Ch \Ijh ) _ M(l)(q)h ’ \Ijh ) _ <l + 37{ _ 8772)]12 + <g + 87]2>h4 (B7)
ho ©0) gy 0) gy © h 0 O\ ’
(@, %) (@) (@, %) \2 7 3
Thus, we obtain
1 37 -8 2
G(h) = enh + [1 + €2<§ + ”Tnzﬂiﬁ + 2enh’ + 62<§ + 8n2)h4 + 0(e¥). (B8)
APPENDIX C: EXACT STEADY-STATE DISTRIBUTION FOR (75)
The exact steady-state distribution of the Fokker-Planck equation corresponding to (75) is given by
A A, A, 2 v
PED) = C(1 = 3eniyss (o5 —26n) =555 1)

where C is a normalization constant. Because C is finite and P

during the time evolution.

(1/(3en)) = 0, the noise intensity of (75) is always positive
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