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Abstract

This study presents a variationally consistent formulation of the thermo-mechanically

coupled problem with non-associative viscoplasticity for glassy amorphous polymers.

First, the decomposition of the equivalent plastic strain is carried out to derive the

variational consistent evolution law of the shear yield strength with reference to the

analogous approach taken for formulating the Armstrong-Frederick model. Second, an

alternative form of the dual viscoplastic dissipation potential is proposed to recast the

principle of maximum plastic dissipation for viscoplasticity to be of the same form of

rate-independent plasticity with the introduction of the extended yield function. Third,

we address the optimization problem relevant to the thermo-mechanically coupled be-

havior of glassy amorphous polymers within the incremental variational framework

with the help of the parameterization of flow rules. Thanks to the achieved variational

consistency, the mathematical model derived by the proposed formulation can enjoy

several benefits for ensuring the stability of the strongly coupled discretized equations

in the monolithic method under the condition that the material behavior is stable. In

addition, since the present formulation does not require the time derivative of the shear

yield strength, the resulting evolution equation accommodates the time variations of

temperature in terms of its material properties, implying that it is amenable to various
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thermal processes other than isothermal ones. Numerical examples are presented to

demonstrate the capability of the proposed formulation in simulating actual compres-

sion tests conducted on a PMMA specimen that exhibits complex thermo-mechanically

coupled phenomena.

Keywords: Thermo-mechanics, Incremental variational formulation, Non-associative

viscoplasticity, Glassy amorphous polymers

1. Introduction

Inspired by Haward and Thackray[1], a great deal of phenomenological constitu-

tive models for glassy amorphous polymers have been proposed for about five decades.

The fundamental feature on their compositions is that the physical bases are classified

into intermolecular and entropic resistances. The former is commonly represented by5

evolution laws of the viscoplastic strain and the shear yield strength, and the latter has

an affinity for hyperelasticity or kinematic hardening. For modeling the intermolecular

resistance, two major approaches have been taken[2]. One takes the line of classical

crystal plasticity, and the constitutive models proposed by Argon[3], Boyce et al.[4]

and Anand and Gurtin[5] are of this type. The other is based on the Eyring equa-10

tion, which describes a thermally activated rate process of polymers; see, for example,

Fotheringham and Cherry[6] and Richeton et al.[7, 8, 9] for relevant models. On the

other hand, the entropic resistance is often represented by the so-called non-Gaussian

network models with an eye on the analogy to rubber elasticity[10].

Most of the more recently proposed constitutive models have been developed with15

a view to an application to thermo-mechanically coupled analysis; see, e.g., Arruda

et al.[11], Anand and Ames et al.[12, 13], Srivastava et al.[14], Bouvard et al.[15].

Quite naturally, the 2nd law of thermodynamics is satisfied by way of the standard

thermodynamics-based formulation[16, 17]. However, most of them are irrelevant

to the theory associated with the potential structure in inelasticity such as the prin-20

ciple of maximum plastic dissipation and as a result “variationally inconsistent” in the

formulation of thermo-mechanically coupled problems. Such an inconsistency con-

duces asymmetry of the consistent tangent modulus and makes the controversy about

2



the existence of optimized solutions wracked. For this reason, no studies have ever

tried to conduct a strongly coupled thermo-mechanical analysis with the fully coupled25

thermo-mechanical material model for glassy amorphous polymers by using a mono-

lithic scheme without any simplification. In addition, to our best knowledge, little at-

tention has been given to how the entropy influences the thermo-mechanically coupled

behavior.

To conduct variationally consistent formulation for the constitutive model of glassy30

amorphous polymers, we take notice of the incremental variational framework; see, for

example, [18, 19, 20, 21] for early developments. In this framework, instantaneous lo-

cal equilibrium states in the vicinity of a material point in an inelastic continuum body

are given as solutions of the optimization problem of the local energy rate with respect

to the internal state variables. The framework has already been extended to viscoelastic35

problem[22, 23], multiscale problems[24, 25], a novel numerical algorithm with hy-

per dual numbers[26], and thermo-mechanically coupled problems[27, 28]. Notably,

Mosler and Bruhns[29] made a correlation between the flow vectors and yield function

to establish the variationally consistent rate-independent plasticity model by parame-

terizing the direction of plastic flow with the introduction of ‘pseudo’ stress. Thanks40

to this “parameterization” strategy for flow rules, non-associative rate-independent

plasticity models can also be made variationally consistent; see, for example, Mosler

and Bruhns[30] for the Drucker-Prager model, Mosler[31] for the nonlinear kinematic

hardening model and Canadija and Mosler[32, 33] for the thermo-mechanically cou-

pled problems.45

However, the variationally consistent formulation for glassy amorphous polymers

requires some creative thinking. The major issue is that the derivation of the evolution

law of the shear yield strength has hitherto been ignored within thermodynamics frame-

work since it was originally proposed by Boyce et al.[4]. It is, nevertheless, realized

that it can be derived with reference to the mathematical structure of the Armstrong-50

Frederick model[34, 35, 36]. In this context, its formulation is roughly classified into

Chaboche’s type[37, 38] and Lion’s type[39], which employs the plastic potential and

the decomposition of plastic deformation, respectively; see Dettmer and Reese[40]

for a comparative study. But, for either of these types, another issue arises in deriv-
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ing the variational consistent evolution law. That is, the resulting plasticity models55

are, unfortunately, “non-associative” and thus not aligned with the principle of maxi-

mum plastic dissipation. Hence, unless the incremental variational formulation for the

non-associative viscoplasticity is developed, the analogous format to the Armstrong-

Frederick model cannot be utilized to establish the variationally consistent formulation

for glassy amorphous polymers.60

With the aforementioned issues in mind, this study presents a variationally consis-

tent formulation of the thermo-mechanically coupled problem with non-associative vis-

coplasticity for glassy amorphous polymers within the incremental variational frame-

work. The main contribution of this study is not to pursue sophisticated material mod-

els for glassy amorphous polymers but to develop the new variationally consistent for-65

mulation for the thermo-mechanical coupled problem accommodating an arbitrary non-

associative viscoplastic model based on the Perzyna type viscoplastic theory. To derive

the variationally consistent evolution law of the shear yield strength, we begin with de-

composing the equivalent plastic strain after the fashion of Lion[39]. We also propose

an alternative form of the dual dissipation potential to recast the principle of maxi-70

mum plastic dissipation for viscoplasticity, by which the variational consistency for

non-associative viscoplasticity can be achieved with the help of the parameterization

of the flow rule. Then, we establish the optimization problem relevant to the thermo-

mechanically coupled behavior of glassy amorphous polymers within the incremental

variational framework. Thanks to having the variational structure, the mathematical75

model derived by the proposed formulation can enjoy benefits for ensuring the stabil-

ity of the strongly coupled discretized equations in the monolithic method under the

condition that the material behavior is stable. Also, the present formulation does not

require the time derivative of the shear yield strength, so that the target material be-

havior is not limited to isothermal cases; that is, applicable to the temperature change80

in time. A numerical simulation of the compression tests for Polymethyl-methacrylate

(PMMA) reported in Arruda et al.[11] is carried out to demonstrate the capability of

the proposed formulation in simulating its complex thermo-mechanical behavior in an

efficient way.

The outline of this paper is as follows. In Section 2, after defining the thermo-85
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dynamical strain-like variables, we make a thermodynamically consistent formulation

in relation to the energy storage parts of the present constitutive model. In Section

3, to recast the principle of maximum plastic dissipation in the form of Legendre-

Fenchel transformation, we propose an alternative form of dual viscoplastic dissipa-

tion potential with a view to application of the parameterization of flow rule. It is then90

revealed that the present formulation reproduces the evolution law of the shear yield

strength proposed by Boyce et al.[4] when limited to the isothermal process. In Sec-

tion 4, after outlining the general format of the incremental variational principle for

thermo-mechanically coupled problems, we incorporate the present constitutive equa-

tions along with the parameterized flow rules into the established optimization problem.95

Finally, in Section 5, a numerical example is presented to simulate the characteristic

thermo-mechanical behavior of a PMMA specimen subjected to compressive loading.

2. Constitutive modeling for energy storage components

2.1. Fundamentals

2.1.1. Internal state variables100

Let B0 ⊂ R
3 be the reference configuration of a continuum body with smooth

boundary ∂B0 and X ∈ B0 be the material point at time t0 ≥ 0. Also, let Bt ⊂ R
3

be the current configuration at time t ≥ t0, which is identified by the smooth motion

x = ϕ (X, t) : B0 × [t0, t]→ Bt. Then, the deformation gradient is defined as

F = ∇Xϕ (X, t) , (1)

along with non-singular condition: J = det (F) > 0. In addition, its isochoric compo-

nent F̄ is given by the Flory decomposition[41] as follows:

F̄ = J−
1
3 F. (2)

To define internal state variables, we introduce the Kröner-Lee decomposition[42,

43] as

F = FeFvp, (3)
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where Fe and Fvp are the elastic and viscoplastic components of F, respectively. On

the assumption of viscoplastic incompressibility, det (Fvp) = 1, the determinant of

Fe is identical to J. Here, we define the intermediate configuration Bvp ⊂ R3 as a

mathematical vicinity measured by dXvp = FvpdX.

Meanwhile, to formulate the Armstrong-Frederick type evolution law for the back

stress, Lion[39] introduces the decomposition of the plastic deformation gradient into

energy storage and dissipative components, by which the frame-indifference is auto-

matically satisfied. In analogy with this, the equivalent plastic strain ε̄vp is decomposed

to formulate the evolution law of the isotropic hardening, Specifically, we postulate the

following additive decomposition:

ε̄vp = ε̄
vp
e + ε̄

vp
p , (4)

where ε̄vp is the internal state variable analogous to an accumulated plastic stain cal-

culated from the plastic rate of deformation tensor as usual. Also, ε̄vp
e and ε̄vp

p are the

storage and dissipative parts of ε̄vp, respectively. Thus, the set of internal state variables

Z is defined as

Z =
{
Fvp, ε̄vp, ε̄

vp
p

}
. (5)

Here, Fvp represents the viscoplastic deformation of glassy amorphous polymers and105

has the same definition as in the standard finite plasticity theory. Also, ε̄vp
e = ε̄vp − ε̄

vp
p

contributes to the increase of intermolecular resistance, whereas ε̄vp
p suppresses the

intermolecular resistance and induces the saturation of the shear yield strength.

Remark 1. The multiplicative decomposition of Fvp leads to the Armstrong-Frederick

type evolution law to represent the kinematic hardening, while our approach is solely110

for deriving the flow stress in isotropic hardening, which is equivalent to that of the

shear yield strength of glassy amorphous polymers presented in the literature; see, e.g.,

Boyce et al.[4], Anand and Gurtin[5], Bouvard et al.[15]. As will be demonstrated

below, the decomposition of the equivalent plastic strain is a key to realize the varia-

tionally consistent formulation.115
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2.1.2. Thermodynamics

With the above setting, we define the total free energy density:

ψ (F, Z,T ) = inf
η
{e (F, Z, η) − Tη} = ψe (

Fe,T
)

+ ψvp
(
Fvp, ε̄

vp
e ,T

)
+ ψh (T ) , (6)

where e, η and T ∈ R+ ≡ {ξ|∀X ∈ B0,∀t → ξ (X, t) > 0, ξ ∈ R} are the internal energy

density, the entropy density and the absolute temperature, respectively. Also, ψe, ψvp

and ψh are the elastic, viscoplastic and pure thermal components of the free energy

density, respectively. Here, ψvp is the viscoplastic stored energy that generates the120

thermodynamic stresses associated with the viscoplastic hardening.

According to the conventional procedure[16, 17], the total energy dissipation in B0

is given as

D = P : Ḟ − ρ0

(
ψ̇ + Ṫη

)
+ G · Q, (7)

where ρ0, P, G ≡ − (∇XT ) /T and Q are the initial mass density, 1st Piola-Kirchhoff

stress, normalized temperature gradient and the heat flux, respectively. In consideration

of the hyperelastic constitutive law P = ∂F (ρ0ψ) and the equation for entropy density

η = −∂Tψ, the substitution of the material time derivative of (6) into (7) yields

D = Meff : lvp + qvp ˙̄εvp + qvp
p ˙̄εvp

p︸                             ︷︷                             ︸
=Dvp

+ G · Q︸︷︷︸
=Dh

, (8)

where we have established the following definitions of the thermodynamic stresses

energetically conjugate to Z:

Meff ≡
(
Fe)T ∂Fe

(
ρ0ψ

e) − ∂Fvp
(
ρ0ψ

vp) (Fvp)T
= M − Mback, (9)

qvp ≡ −∂ε̄vp
(
ρ0ψ

vp) , (10)

qvp
p ≡ −∂ε̄vp

p

(
ρ0ψ

vp) . (11)

Here, lvp = Ḟvp (Fvp)−1, M ≡ (Fe)T ∂Fe (ρ0ψ
e) and Mback ≡ ∂Fvp (ρ0ψ

vp) (Fvp)T are the

viscoplastic velocity gradient, Mandel stress and back stress, respectively.
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2.2. Specification of free energies

2.2.1. Elastic contribution125

Assuming elastic isotropy, we decompose the elastic part of free energy as

ψe (
Fe,T

)
= ψe

vol (lnJ,T ) + ψe
dev

(
ε̄e

H,T
)
, (12)

where ψe
vol and ψe

dev are the volumetric and deviatoric components, respectively. Here,

the isochoric part of elastic right Hencky strain defined as ε̄e
H = 1

2 ln
(
C̄e

)
is used as an

argument of ψe
dev instead of the corresponding right Cauchy Green deformation tensor

C̄e =
(
F̄e

)T
F̄e; see [44] for reference. Then, the hyperelastic constitutive equation is

re-written as

P = ∂F
(
ρ0ψ

e
vol

)
+ ∂F

(
ρ0ψ

e
dev

)
= τvolF−T +

(
Fe)−T Mdev (

Fvp)−T , (13)

with τvol = ∂lnJ

(
ρ0ψ

e
vol

)
being the volumetric Kirchhoff stress. Also, since ∂C̄e

(
ρ0ψ

e
dev

)
is co-axial to C̄e, M can be transformed as

M =
(
Fe)T ∂Fe

(
ρ0ψ

e
dev

)
= Mdev = Idev : C̄e

{
2∂C̄e

(
ρ0ψ

e
dev

)}
= Idev : ∂ε̄e

H

(
ρ0ψ

e
dev

)
,

(14)

where Idev ≡ I− 1
3 1⊗ 1 and I are the fourth order deviator and identity tensors, respec-

tively.

To further formulate the constitutive model for glassy amorphous polymers, we

explicitly define the above-introduced elastic components of free energy as

ρ0ψ
e
vol (lnJ,T ) =

1
2

K (T ) (lnJ)2 − 3K (T )αth (T ) lnJ,

ρ0ψ
e
dev

(
ε̄e

H,T
)

= G (T ) ε̄e
H : ε̄e

H, (15)

where K (T ) and G (T ) are the bulk and shear elastic moduli, respectively. Also, αth (T )

is the coefficient of thermal expansion to characterize the thermal strain steming from

the increase in free volume. Thus, substituting Eqn. (15) into τvol = ∂lnJ

(
ρ0ψ

e
vol

)
and

Eqn.(14), we obtain the specific forms of the volumetric Kirchhoff stress and deviatoric

part of Mandel stress as follows, respectively:

τvol = K (T ) (lnJ − 3αth (T )) and Mdev = 2G (T ) ε̄e
H, (16)

the latter of which is symmetric thanks to the isotropy in elasticity.
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2.2.2. Viscoplasticity

The viscoplastic parts of free energy density can also be decomposed as

ψvp
(
Fvp, ε̄

vp
e ,T

)
= ψ

vp
iso

(
ε̄

vp
e ,T

)
+ ψ

vp
kin

(
Fvp,T

)
, (17)

where ψvp
iso and ψvp

kin are the isotropic and kinematic hardening components of viscoplas-

tic free energy density, respectively. In order to formulate the evolution law of the flow

stress for isotropic hardening, which is equivalent to shear yield strength proposed by

Boyce et al.[4] as mentioned in Remark 1, we define the following function form of

the viscoplastic free energy:

ρ0ψ
vp
iso

(
ε̄

vp
e ,T

)
=

h (T )
2

(
ε̄

vp
e

)2
+ s0

Y (T ) ε̄vp
e , (18)

where h (T ) and s0
Y (T ) are the hardening modulus and initial yield strength, respec-

tively. Then, we substitute Eqn.(18) into Eqns. (10) and (11) to have the following

specific forms of scalar-valued thermodynamic stresses:

qvp = −h (T ) ε̄vp
e − s0

Y (T ) and qvp
p = h (T ) ε̄vp

e + s0
Y (T ) , (19)

from which we come to see that qvp = −qvp
p .130

On the contrary, to define the orientation hardening rule, we employ the following

free energy function proposed by Gent[45]:

ρ0ψ
vp
kin

(
Fvp,T

)
= −

µ (T )
2

Jm (T ) ln
1 − Īvp

1 − 3
Jm (T )


with Īvp

1 = tr
(
b̄vp

)
, bvp = Fvp (

Fvp)T , (20)

because it can generally be interpreted as the non-Gaussian type entropic elasticity in

terms of the viscoplastic deformation[4]. Such a modeling approach to the orientation

hardening is common for the constitutive modelling of glassy amorphous polymers

and indeed accepted in the literature[4, 5]. Here, µ (T ) and Jm (T ) > 3.0 are the stiff-

ness representing entropic resistance and the material parameter associated with the

so-callled limiting chain extensibility, respectively. It should be noted that, in order to

ensure Mback (Fvp,T )
∣∣∣
Fvp=1 = 0, we have adopted the isochoric part of the viscoplastic

left Cauchy-Green deformation tensor, b̄vp, as an independent variable of ψvp
kin, even

9



though det (Fvp) = 1 is assumed. Then, the back stress Mback is given as follows:

Mback = ∂Fvp
(
ρ0ψ

vp) (Fvp)T
= 2∂bvp

(
ρ0ψ

vp
kin

)
bvp = µ (T )

1 − Īvp
1 − 3
Jm (T )

−1

Idev : bvp.

(21)

Obviously, Mback exhibits symmetry and therefore the viscoplastic flow stress Meff is

also symmetric by reference to Eqn. (9).

2.2.3. Thermal effects

We define the function form of the thermal component of free energy as

ρ0ψ
h (T ) = ρ0c

{
T − T0 − T ln

(
T
T0

)}
, (22)

where c and T0 are the specific heat and ambient temperature, respectively. In view of

Eqn. (6), the entropy ρ0η can be expressed in the form of an additive decomposition as

ρ0η = ρ0η
e + ρ0η

vp + ρ0η
h. (23)

Here, ρ0η
e, ρ0η

vp and ρ0η
h are the entropies associated with elasticty, viscoplasticity

and heat conduction, respectively, and obtained by using Eqns. (12), (15), (17), (18),

(20) and (22) as

ρ0η
e = −∂T K (T )

(
1
2

lnJ − 3αth (T )
)

lnJ + 3K (T ) ∂Tαth (T ) lnJ − ∂T G (T ) ε̄e
H : ε̄e

H,

(24)

ρ0η
vp = −

∂T h (T )
2

(
ε̄

vp
e

)2
− ∂T s0

Y (T ) ε̄vp
e

+
1
2

(∂Tµ (T ) Jm (T ) + µ (T ) ∂T Jm (T )) ln
1 − Īvp

1 − 3
Jm (T )

 (25)

+
µ (T ) ∂T Jm (T )

2Jm (T )

(
Īvp
1 − 3

) 1 − Īvp
1 − 3
Jm (T )

−1

,

ρ0η
h = ρ0cln

(
T
T0

)
. (26)

Remark 2. If the non-Gaussian network models such as the Arruda-Boyce model[46,135

10] is adopted instead of Eqn. (20), unanticipated heat conduction occurs even under
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isothermal and no-load conditions. This is because, under these conditions, the corre-

sponding entropy, ηNG (F,T )|F=1,T=const. has a non-zero value; i.e., the self-generated

heat arises without any thermo-mechanical excitations. For this reason, we have em-

ployed the Gent model to represent the orientation hardening.140

3. Variationally consistent flow rules for non-associative viscoplasticity

In this section, a dual dissipation potential for non-associative viscoplasticity is

orignally formulated for glassy amorphous polymers by the introduction of the ex-

tended loading-unloading condition. By defining the plastic potential, we derive a spe-

cific function form of the dual dissipation potential and specifically define the flow rules145

for themodynamic strains associated with non-associative viscoplasticity in a variation-

ally consistent manner. It is then demonstrated that the present flow rules naturally

reproduce the evolution law of the shear yield strength that is proposed by Boyce et

al.[4] when limited to the isothermal process.

3.1. Dual dissipation potential for non-associative viscoplasticity150

Within the framework of the rate-independent plasticity theory for standard dissi-

pative solids in the sense of Halphen and Nguyen[47], the plastic dissipation potential

ϕ̂p can be identified with the following indicator function with respect to the set of

driving forces Y, which is energetically conjugate to the set of extensive variables Z in

plasticity:

ϕ̂p (Y) =

 0 if Y ∈ Ξσ

+∞ otherwise
. (27)

Here, the admissible set of thermodynamic stresses Ξσ = {Y | f (Y) ≤ 0} defines the

level set of the yield function f , which is supposed to be convex. Then, the Legendre-

Fenchel transformation provides the corresponding support function ϕp as

ϕp
(
Ż
)

= sup
∀Y

[
Y ∗ Ż − ϕ̂p (Y)

]
, (28)

which corresponds to the principle of maximum plastic dissipation, but is not subjected

to the stress constraint thanks to the introduction of the indicator function[48]. In the
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light of the mathematical properties between the indicator and support functions, the

plastic multiplier γ̇p is not related to the dissipation potential, but determined by the

necessary condition for optimality such that γ̇p ≥ 0, f (Y) ≤ 0 and γ̇p f (Y) = 0, which155

is commonly referred to as the loading-unloading condition. In this case, the stationary

condition, Ż = γ̇p∂Y f (Y), which is another necessary condition for optimality, is called

“associative” flow rule.

On the other hand, in the associative rate-dependent or viscoplasticity theory, vis-

coplastic multiplier γ̇vp explicitly provided, because the viscoplastic dissipation po-

tential ϕ̂vp is defined as a penalization function with the penalty parameter ηvp in the

sense of Perzyna-type viscoplastic regularization; see, e.g., Simo and Hughes[48]. As

a result, f (Y) > 0 is acceptable, and γ̇vp is identified with

γ̇vp = ∂ f (Y)ϕ̂
vp ≥ 0, (29)

which is derived as a stationary condition of Eqn. (28), but is not accompanied by the

aforementioned necessary condition postulating loading-unloading states. The specific160

expressions can be similar to those of the standard creep models; e.g., Norton’s creep

law.

Moreover, Eqn. (29) can be rewritten as an extension of yield criteria of the follow-

ing form:

Π
(
f (Y) ,Λ

(
γ̇vp)) ≡ f (Y) − Λ

(
γ̇vp) = 0, (30)

where Λ (γ̇vp) is often called the over stress. Then, it follows that

If f (Y) ≤ 0, then γ̇vp = 0 and Λ
(
γ̇vp) = 0; ⇒ Π

(
f (Y) ,Λ

(
γ̇vp)) ≤ 0 (31)

If f (Y) ≥ 0, then γ̇vp ≥ 0 and Λ
(
γ̇vp) ≥ 0; ⇒ Eqn.(30) (32)

and therefore the following condition holds:

γ̇vp ≥ 0, Π
(
f (Y) ,Λ

(
γ̇vp)) ≤ 0 and γ̇vpΠ

(
f (Y) ,Λ

(
γ̇vp)) = 0. (33)

which bears a close resemblance to the loading-unloading condition. In response to

this fact, we define the ‘pseudo’ dual viscoplastic dissipation potential as

ϕ̃vp
(
Ż, γ̇vp

)
= sup

Y

[
Y ∗ Ż − ˆ̃ϕvp (

Y, γ̇vp)] (34)

12



in which the following ‘pseudo’ viscoplastic dissipation potential has been introduced:

ˆ̃ϕvp (
Y, γ̇vp) =

 0 if Y ∈ Ξ̃σ

+∞ otherwise
, (35)

Here, the admissible set of thermodynamic stresses, Ξ̃σ = {Y | Π ( f (Y) ,Λ (γ̇vp)) ≤ 0},

defines the level set of convex functions Π. Thus, the principle of maximum dissipation

for viscoplasticity has been expressed in accordance with the rate-independent plastic-

ity theory. Also, the relevant stationary and loading-unloading conditions are given as,

respectively,

Ż = λ̇vp∂YΠ
(
f (Y) ,Λ

(
γ̇vp)) = λ̇vp∂Y f (Y) , (36)

λ̇vp ≥ 0, Π
(
f (Y) ,Λ

(
γ̇vp)) ≤ 0 and λ̇vpΠ

(
f (Y) ,Λ

(
γ̇vp)) = 0, (37)

where λ̇vp is an another viscoplastic multiplier. It follows that if the identify λ̇vp = γ̇vp

is imposed, the necessary conditions for optimality in the viscoplasticity theory are

exactly reproduced. These redefinitions of the viscoplastic dissipation potentials make

the viscoplastic multiplier γ̇vp irrelevant to the dissipation potential. In other words,

γ̇vp is determined from Eqn. (30) with Eqn. (33) in place of Eqn. (29). Hence, the

‘pseudo’ dual viscoplastic dissipation potential is expressed as

ϕ̃vp
(
Ż, γ̇vp

)
= Y ∗ Ż (38)

regardless of ϕ̂vp.

Within the framework of rate-independent plasticity with non-linear kinematic hard-

ening laws, a plastic potential Ω (Y) ≥ 0 is introduced separately from the yield func-165

tion and is used to define the evolution equation of Z such that Ż = γ̇p∂YΩ (Y); see,

e.g., Chaboche[37, 38], Dettmer and Reese[40], Vladimirov et al.[34, 36] and many

others. As it is generally known, such a theory is called “non-associative” plasticity.

On the other hand, for non-associative viscoplasticity, the stationary condition (Eqn.

(36)) in the redefined optimization problem is replaced with Ż = λ̇vp∂YΩ (Y), because170

viscoplastic dissipation potential ϕ̂vp, which defines the loading-unloading condition

(Eqn. (37)), can not properly be defined. However, since the non-associative models do

not satisfy the principle of maximum plastic dissipation, the ‘pseudo’ dual viscoplas-

tic dissipation potential ϕ̃vp cannot be defined. In this regard, Mosler and Bruhns[30]
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and Mosler[31] demonstrated that the optimization problem for non-associative models175

could be formulated by use of the plastic energy dissipation as the dual plastic dissi-

pation potential if the homogeneous yield function is adopted for the rate-independent

plasticity model. Based on this argument, the function form of ϕ̃vp will be specified

through the use of Eqn. (38) in what follows.

We begin with differentiating both sides of Eqn. (38) with respect to γ̇vp to obtain

∂γ̇vp ϕ̃vp = Y ∗ ∂γ̇vp Ż
(
γ̇vp) . (39)

Then, assuming that f (Y) is one-order homogeneous function with respect to Y that

satisfies

f (Y) = Ȳ (Y) − σ0
Y with Ȳ (Y) = Y ∗ ∂Y f , (40)

we substitute Eqn. (36) along with constraint λ̇vp = γ̇vp into Eqn. (39) to obtain

∂γ̇vp ϕ̃vp = f (Y) + σ0
Y + Y ∗ ∂YΩ∗ (Y) with Ω∗ (Y) = Ω (Y) − f (Y) . (41)

Here, σ0
Y is the initial yield stress. Replacing f (Y) by Λ (γ̇vp) with reference to Eqn.

(30) and integrating this expression with respect to γ̇vp, the following ‘pseudo’ dual

viscoplastic dissipation potential is provided:

ϕ̃vp (
γ̇vp; Y

)
= σ0

Yγ̇
vp + Y ∗ ∂YΩ∗ (Y) γ̇vp +

∫ γ̇vp

0
Λ

(
ˆ̇γvp

)
d ˆ̇γvp. (42)

It will be demonstrated in the next section that the optimization problem for the con-180

tinuum body is established by the application of the derived ϕ̃vp to the incremental

variational framework for non-associative plasticity[30, 31].

3.2. Specification of viscoplastic flow evolutions

We specifically define the plastic potential as

Ω
(
Meff, qvp, qvp

p ,T
)

= Σ
eq
dev

(
Meff

)
+ qvp +

(
qvp

p

)2

2sss (T )

with Σ
eq
dev

(
Meff

)
=

√
1
2

Meff : Meff, (43)
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where sss (T ) ≤ s0
Y (T ) is the peak yield strength at a zero pressure level[4]. Here,

recalling Eqn. (8), the relevant flow rules are defined as lvp = γ̇vp∂MeffΩ, ˙̄εvp =

γ̇vp∂qvpΩ and ˙̄εvp
p = γ̇vp∂qvp

p
Ω, which, in view of Eqn. (43), are specifically expressed

as, respectively,

lvp = γ̇vp∂MeffΣ
eq
dev,

˙̄εvp = γ̇vp and ˙̄εvp
p = γ̇vp qvp

p

sss (T )
. (44)

We also define the yield function as

f
(
τvol, Meff, qvp,T

)
= α (T ) τvol + Σ

eq
dev

(
Meff

)
+ qvp, (45)

where α (T ) is the pressure coefficient[4]. Then, by substituting Eqns. (44) and (45)

into Eqn. (8) and by considering Σ
eq
dev = Meff : ∂MeffΣ

eq
dev and Π ( f (Y) ,Λ (γ̇vp)) = 0, we

obtain the specific form of energy dissipation as

Deff = γ̇vp

−α (T ) τvol + Λ
(
γ̇vp) +

(
qvp

p

)2

sss (T )

 + G · Q. (46)

Here, if Dh = G · Q ≥ 0 and s0
Y (T ) ≥ α (T ) τvol are assumed to hold, the second

law of thermodynamics is satisfied. Also, under the isothermal condition, the material

time derivative of Eqns. (19)2 with Eqns. (4) and (44)2 yields the following evolution

equation of the shear yield strength:

q̇vp
p = h (T )

(
˙̄εvp − ˙̄εvp

p

)︸                      ︷︷                      ︸
Material time derivative of Eqn.(19)2

= h (T )
γ̇vp − γ̇vp qvp

p

sss (T )

︸                        ︷︷                        ︸
Substitution of Eqn.(44)

= h (T )
1 − qvp

p

sss (T )

 γ̇vp,

and qvp
p

∣∣∣
pre-yield = s0

Y (T ) from Eqn.(19). (47)

which is identical to that of Boyce et al.[4]. This format itself can be implemented

into fully coupled thermo-mechanical analyses. Nevertheless, our framework does185

not necessitate the material time derivative of qvp
p and hence not restricted to isother-

mal case; that is, the time variation of temperature in terms of material properties

h (T ) , s0
Y (T ) , sss (T ) can be taken into account.

On the other hand, introducing the evolution equation of the viscoplastic multiplier

proposed by Richeton et al.[7], we define the over stress as

Λ
(
γ̇vp,T

)
= σ̄D (T ) sinh−1


ηvp (T )

 γ̇vp

γ̇
vp
0


1
m
 , (48)
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where γ̇vp
0 and m are the initial viscoplastic multiplier and real-valued material parame-

ter, respectively. Also, σ̄D and ηvp (T ) are the drag stress and penalty parameter defined

as, respectively,

σ̄D (T ) =
kT
A

and ηvp (T ) = exp
(
∆H
RT

)
, (49)

where ∆H, A, R and k are the activation energy, activation volume, gas constant and

Boltzmann constant, respectively. Finally, from Eqn. (42), the dual viscoplastic dissi-

pation potential ϕ̃vp
(
γ̇vp,T ; F, qvp

p

)
is derived as

ϕ̃vp
(
γ̇vp,T ; F, qvp

p

)
=

−α (T ) τvol +

(
qvp

p

)2

sss (T )

 γ̇vp +

∫ γ̇vp

0
Λ

(
ˆ̇γvp,T

)
d ˆ̇γvp. (50)

Remark 3. To realize the variational constitutive update, Farias et al.[49] defined the190

function form of the shear yield strength with reference to the solution of Eqn. (47).

However, the approach is not versatile, since the material parameters in the evolution

equation depend on the time-varying temperature.

4. Incremental variational framework

This section is devoted to formulating the thermo-mechanically coupled problem195

with non-associative viscoplasticity for glassy amorphous polymers within the incre-

mental variational framework.

4.1. Outline

We outline the variational formulation for thermo-mechanically coupled problems,

which is originally proposed by Yang et al.[27] and further elaborated by Canadija and200

Mosler[32].

The global energy rate φ is defined as

φ
(
ϕ̇,T, η̇, Ż

)
≡

∫
B0

Υ
(
Ḟ,T, η̇, Ż

)
dV −G (ϕ̇,T ) , (51)
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with the following Dirichlet conditions on ∂MDB0 and ∂HDB0, repsectively:

ϕ̇ = ϕ̇D on ∂MDB0 = ∂B0\∂MNB0,

T = TD on ∂HDB0 = ∂B0\ (∂HNB0 ∪ ∂HRB0) . (52)

Here, ∂MNB0 and ∂HNB0 are the Neumann boundaries for the velocity and temperature

fields, while the Robin condition is considered for heat transfer on boundary ∂HRB0.

Also, G (ϕ̇,T ) is the external power defined as

G (ϕ̇,T ) =

∫
B0

ρ0b · ϕ̇dV +

∫
∂MNB0

TN · ϕ̇dA

+

∫
∂HNB0

QN ln
(

T
T0

)
dA +

∫
∂HRB0

β

[
T − T0 ln

(
T
T0

)]
dA −

∫
B0

ρ0h ln
(

T
T0

)
dV,

(53)

with the body force b, the traction force TN, the boundary heat flux QN, the coefficient

of heat transfer β and the external heat supply h. In addition, Υ is the local energy rate

defined as

Υ
(
Ḟ,T, η̇, Ż

)
≡ ρ0ė

(
Ḟ, η̇, Ż

)
− ρ0T η̇ + ϕ

(
F (T, θ) Ż, θ

)
− χ (G) , (54)

where ė is the time rate of change of the internal energy and χ (G) is the Fourier poten-

tial given as

χ (G) =
κ

2
G · G ≥ 0, (55)

with the material property for heat conduction κ. Here, F (T, θ) is the integration factor

defined as[27, 28, 32]

F (T, θ) =
T
θ
, (56)

by which the variational structure of the thermo-mechanically coupled problem is en-

sured. Here, the “equilibrium” temperature θ ∈ R+ is uniquely defined as θ = ∂η (ρ0e),

while the absolute temperature T , can be renamed to the “external” temperature, is an

unknown variable. Then, the set of state variables
(
ϕ̇opt,T opt, η̇opt, Żopt

)
determining

the instantaneous thermo-mechanically coupled stationary state is the solution of the

following optimization problem for φ:(
ϕ̇opt,T opt, η̇opt, Żopt

)
= arg

[
inf
ϕ̇, η̇, Ż

sup
T
φ

]
= arg

[
inf
ϕ̇

sup
T
φ

(
inf
η̇, Ż

Υ

)]
, (57)
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in which the infimum problem has been decomposed into the local and global ones,

because η̇ and Ż are confined to a material point.

Even though the framework just described above seems to be sufficient, the flow

rule has not been considered yet. In this regard, in line with Mosler and Bruhns[29],

we parameterize the flow rule as

Ż
(
γ̇vp, Ỹ

)
= γ̇vpN

(
Ỹ
)
, (58)

where Ỹ is called the ‘pseudo’ stress. It should be noted that the optimal Ỹopt de-

termines the flow direction such that N
(
Ỹ
)

= N (Y). This parameterization enables

us to accomplish the variationally consistent formulation involving constraints on Ż,

which are associated with not only the yield function, but also plastic potential. Thus,

the present framework accommodates even non-associative flow rules; see References

[30, 31] for the discussions in the same light. Accordingly, the global and local energy

rates are rewritten as, respectively,

φ
(
ϕ̇,T, η̇, γ̇vp, Ỹ

)
=

∫
B0

Υ
(
Ḟ,T, η̇, γ̇vp, Ỹ

)
dV −G (ϕ̇,T ) (59)

with Υ
(
Ḟ,T, η̇, γ̇vp, Ỹ

)
= ρ0ė

(
Ḟ, η̇, γ̇vp, Ỹ

)
− ρ0T η̇ + ϕ

(T
θ
γ̇vp, Ỹ, θ

)
− χ (G) , (60)

and the corresponding optimal state variables are given as

(
ϕ̇opt,T opt, η̇opt, γ̇vp,opt, Ỹopt

)
= arg

[
inf

ϕ̇,η̇,γ̇vp,Ỹ
sup

T
φ

]
= arg

[
inf
ϕ̇

sup
T
φ

(
inf

η̇,γ̇vp,Ỹ
Υ

)]
. (61)

4.2. Stationary conditions

Now, we incorporate our constitutive model into the variational problem formulated205

above and establish that its stationary conditions reproduce the governing equations for

the thermo-mechanically coupled problem; i.e., the variational consistency is guaran-

teed.

According to Eqn. (44), the parameterized flow rules are expressed as

lvp = γ̇vp∂M̃effΣ
eq
dev,

˙̄εvp = γ̇vp and ˙̄εvp
p = γ̇vp qvp

p

sss (θ)
, (62)
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in which M̃eff is only the pseudo stress. It should be noted that the constraint λ̇vp = γ̇vp

has already been reflected in Eqn. (62). Then, the substitution of Eqn. (50) into Eqn.

(60) yields

Υ
(
Ḟ,T, η̇, γ̇vp, M̃eff

)
= ρ0ė

(
Ḟ, η̇, γ̇vp, M̃eff

)
− ρ0T η̇ +

(T
θ

) −α (θ) τvol +

(
qvp

p

)2

sss (θ)

 γ̇vp

+

(T
θ

) ∫ γ̇vp

0
Λ

(T
θ

ˆ̇γvp; θ
)

d ˆ̇γvp − χ (G) . (63)

Thus, the corresponding optimal state variables are solutions of the following optimiza-

tion problem:

(
ϕ̇opt,T opt, η̇opt, γ̇vp,opt, M̃eff,opt

)
= arg

[
inf
ϕ̇

sup
T
φ

(
inf

η̇,γ̇vp,M̃eff
Υ

)]
. (64)

First, the stationary conditions of Υ with respect to the local variations
(
δη̇, δγ̇vp, δM̃eff

)
are given as, respectively,

DΥ
[
δη̇

]
= ρ0 (θ − T ) δη̇ = 0, (65)

DΥ
[
δγ̇vp] = −

[(T
θ

)
α (θ) τvol + Meff : ∂M̃effΣ

eq
dev + qvp

−

(T
θ

)
Λ

(T
θ
γ̇vp; θ

)
+

(
1 −

T
θ

) (
qvp

p

)2

sss (θ)

 δγ̇vp = 0, (66)

DΥ
[
δM̃eff

]
= γ̇vp Meff : ∂2

M̃eff M̃effΣ
eq
dev : δM̃eff = 0. (67)

Here, Eqn. (65) implies the thermodynamical equilibrium state such that θ = T , while

Eqn. (67) reproduces the homogeneity of Σ
eq
dev. With θ substituting for T and the yield

function in Eqn. (45) being considered, Eqn. (66) is rewritten as

DΥ
[
δγ̇vp] = −

{
f
(
Meff, qvp, θ

)
− Λ

(
γ̇vp; θ

)}
δγ̇vp = 0. (68)

Thus, the stationary condition of Υ with respect to γ̇vp is identical to the extended yield

criterion Π ( f (Y, θ) ,Λ (γ̇vp, θ)) = 0 provided in Eqn. (30).210

Next, the Gateaux derivatives of the locally optimized energy rate Υopt = inf
η̇,γ̇vp,M̃eff

Υ
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with respect to the global variations (δϕ̇, δT ) are given as, respectively,

DΥopt [δϕ̇] = P : ∇Xδϕ̇, (69)

DΥopt [δT ] = −ρ0η̇δT +

(
δT
θ

) −α (θ) τvol +

(
qvp

p

)2

sss (θ)

 γ̇vp

+ ∂T

{
T
θ

∫ γ̇vp

0
Λ

(T
θ

ˆ̇γvp; θ
)

d ˆ̇γvp
}
δT + Q · ∇X

(
δT
T

)
, (70)

where the third term in the right-hand side of Eqn. (70) is expressed as

∂T

{
T
θ

∫ γ̇vp

0
Λ

(T
θ

ˆ̇γvp; θ
)

d ˆ̇γvp
}

=
1
θ

∫ γ̇vp

0
Λ

(T
θ

ˆ̇γvp; θ
)

d ˆ̇γvp +
T
θ

∫ γ̇vp

0
∂T Λ

(T
θ

ˆ̇γvp; θ
)

d ˆ̇γvp

(71)

Therefore, the stationary conditions of φ with respect to the global variations (δϕ̇, δT )

are given as, respectively,

Dφ
[
δϕ̇

]
=

∫
B0

P : ∇Xδϕ̇dV −
∫

B0

ρ0b · δϕ̇dV −
∫
∂MNB0

TN · δϕ̇dA = 0 (72)

Dφ [δT ] = −

∫
B0

ρ0η̇δTdV +

∫
B0

γ̇vp

−α (θ) τvol +

(
qvp

p

)2

sss (θ)


(
δT
θ

)
dV

+

∫
B0

∂T

{
T
θ

∫ γ̇vp

0
Λ

(T
θ

ˆ̇γvp; θ
)

d ˆ̇γvp
}
δTdV +

∫
B0

Q · ∇X

(
δT
T

)
dV

−

∫
∂HNB0

QN
δT
T

dA −
∫
∂HRB0

β
[
1 −

T0

T

]
δTdA +

∫
B0

ρ0h
δT
T

dV = 0. (73)

It is obvious that these are identified as the equations of virtual work rate in terms of

the mechanical equilibrium and unsteady heat conduction, respectively.

4.3. Time discretization of the specialized problem

The global energy increment is obtained by the time integration of Eqn. (51) over

the time interval [tn, tn+1] as

Ψn+1 = inf
path

∫ tn+1

tn
φ
(
ϕ̇,T, η̇, γ̇vp, M̃eff; θ

)
dt

= inf
path

∫ tn+1

tn

[∫
B0

Υ
(
Ḟ,T, η̇, γ̇vp, M̃eff; θ

)
dV −G (ϕ̇,T )

]
dt (74)

which indicates that φ is constantly minimized along the equilibrium path. Applying

the backward Euler approximation to all the time-varying variables in the integrand
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such that Ξ ≈ (Ξn+1 − Ξn) /∆t with ∆t being the time increment, we obtain the time-

discretized version of Eqn. (74) as

Ψn+1 =

∫
B0

Υn+1

(
Fn+1,Tn+1,∆γ

vp
n+1, M̃eff

n+1

)
dV −Gn+1 (ϕn+1,Tn+1) . (75)

For the sake of simplicity, the internal energy rate has been replaced by the free energy

rate, and thus the entropy is treated as an explicitly defined function depending on the

external temperature; see Eqns. (24), (25) and (26). Also, the parameterized flow rules

are discretized in time as

Fvp
n+1 = exp

(
∆γvp∂M̃eff

n+1
Σ

eq
dev,n+1

)
Fvp

n , (76)

ε̄
vp
n+1 = ε̄

vp
n + ∆γvp, (77)

ε̄
vp
p,n+1 =

(
1 + h (Tn)

∆γvp

sss (Tn)

)−1 {
ε̄

vp
p,n +

∆γvp

sss (Tn)

(
h (Tn) ε̄vp

n+1 + s0
Y (Tn)

)}
, (78)

∵ qvp
p,n+1 = h (Tn)

(
ε̄

vp
n+1 − ε̄

vp
p,n+1

)
+ s0

Y (Tn) , (79)

in which the equilibrium temperature has been approximated at Tn to avoid unnecessary

complexity. Then, the local energy rate and the external power are discretized as,

respectively,

Υn+1

(
Fn+1,Tn+1,∆γ

vp, M̃eff
n+1

)
= ρ0ψn+1

(
Fn+1,Tn+1,∆γ

vp, M̃eff
n+1

)
− ρ0ψn + ρ0 (Tn+1 − Tn) ηn

+

(
Tn+1

Tn

) −α (Tn) τvol
n+1 +

(
qvp

p,n+1

)2

sss (Tn)

 ∆γvp (80)

+

(
Tn+1

Tn

) ∫ ∆γvp

0
Λn+1

(
Tn+1

Tn∆t
∆γ̂vp,Tn

)
d∆γ̂vp − ∆tχn+1 (Gn+1) ,

Gn+1 (ϕn+1,Tn+1) =

∫
B0

ρ0b · (ϕn+1 − ϕn) dV +

∫
∂MNB0

TN · (ϕn+1 − ϕn) dA

−

∫
B0

∆tρ0h ln
(

Tn+1

T0

)
dV +

∫
∂HNB0

∆tQN ln
(

Tn+1

T0

)
dA (81)

+

∫
∂HRB0

∆tβ
[
Tn+1 − T0 ln

(
Tn+1

T0

)]
dA.

Thus, the set of optimized solutions is identified with(
ϕopt

n+1,T
opt
n+1,∆γ

vp,opt, M̃eff,opt
n+1

)
= arg

inf
ϕn+1

sup
Tn+1

Ψn+1

 inf
∆γvp,M̃eff

n+1

Υn+1

 . (82)
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Figure 1: Summary of proposed incremental variational formulation of thermo-mechanically coupled prob-

lems with time-discretized variational constitutive equations for glassy amorphous polymers.

This optimization problem can be solved with the standard Newton-Raphson method,

the details of which is found in Bleier and Mosler[50].215

Figure 1 summarizes the proposed incremental variational formulation of the thermo-

mechanically coupled problem with the time-discretized variational constitutive equa-

tions for glassy amorphous polymers.

Remark 4. When the time discretization is coarse, the stationary conditions of Eqn.

(80) with respect to ∆γvp and Fn+1 are not consistent with Eqn. (30) and the adopted220

hyperelastic constitutive equation, respectively; see [30, 31] in this regard. However,

22



if the time continuous case ∆t → 0 is considered, the variational consistency of the

present formulation is exactly reproduced. It is, therefore, pertinent to properly set the

time increment in actual computations.

5. Representative numerical example225

This section is devoted to verifying the appropriateness of the proposed formu-

lation. To this end, we adopted the set of compression tests for PMMA reported in

Arruda et al.[11] as a target problem.

5.1. Preparation

5.1.1. Material parameters230

In order to perform thermo-mechanically coupled analyses by the proposed model,

we need to determine the following material parameters in advance:

1. Elastic moduli and coefficient of thermal expansion: K (T ) , G (T ) , αth (T )

2. Hardening parameters: α (T ) , h (T ) , s0
Y (T ) , sss (T ) , µ (T ) , Jm (T )

3. Over stress parameters: A, ∆H, γ̇vp
0 , m235

4. Thermal properties: ρ, c, κ

Among these, the parameters available in the literature are the following:

1. Elastic moduli[11] and coefficient of thermal expansion[51]:

K (T ) =
2G (T ) (1 + ν)

3 (1 − 2ν)
[MPa], ln G (T ) = ln (1205) − 0.00118 (T − 298) [MPa],

ν = 0.33, αth (T ) = 2.6 × 10−4 (T − T0)

2. Hardening parameters[11]:

α (T ) = 0.0867, µ (T ) = kT
[
B − D exp

(
−Ea

RT

)]
[Pa]

B = 2.95 × 1027 [m−3], D = 1.28 × 1031 [m−3], Ea = 5.6 [kcal ·mol−1]

3. Activation energy[9]:

∆H = 90.0 [kJ ·mol−1]
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Figure 2: Fitted curves with identified parameters and predicted curves in the Arruda et al.[11] in comparison

with experiment data.

4. Thermal properties[11]:

ρ = 1200 [kg ·m−3], c = 1460 [J · kg−1 · K-1], κ = 57.216 [W ·m−1]

The remaining parameters, h (T ) , s0
Y (T ) , sss (T ) , Jm (T ) , A, γ̇vp

0 and m, are deter-

mined by curve fitting by reference to the relationships between true stresses and true

strains that were measured in the uniaxial compression tests under the isothermal con-240

dition; readers are referred to the corresponding curves in Reference[11]. Figure 2

compares the curve-fitting results with the predicted curves and the experimental data

in the previous research, and the identified material parameters are listed below.

1. Hardening parameters:

h (T ) = 62.0 [MPa], s0
Y (T ) = 172.856 − 0.458T [MPa] (Richeton et al.[9]) ,

sss (T ) = 0.55s0
Y (T ) [MPa], Jm (T ) = 4.8 + 0.095 (T − 298)

2. Overstress parameters:

A = 4.605 × 10−29[m3], γ̇
vp
0 = 5.6 × 1016[s−1], m = 5.95

As can be seen from this figure, the overall responses represented by the material

model employed in this study are in close agreement with those of the previous re-245

search. It seems, however, that the prediction accuracy of our curve fitting is slightly
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Figure 3: Constitutive responses under isothermal and adiabatic conditions with an initial temperature of

25.0 [deg]. [Left side]: Relationships between true compressive stresses and true compressive strains for

three levels of strain rates; dotted and solid lines correspond to isothermal and adiabatic cases, respectively.

[Right side]: Relationships between temperatures and true compressive strains for adiabatic state.

worse than that of the previous research especially within the range of true compressive

strain of 0.6 ∼ 1.2 in the case of 25.0 [deg]. This discrepancy is probably due to the

adopted kinematic hardening models to represent the entropic resistance of amorphous

polymers[52]. Indeed, Arruda-Boyce model[46, 10] seems to be more suitable for the250

material under consideration than Gent model[45] employed in this study. Neverthe-

less, as argued in Remark 2, Arruda-Boyce model, strictly speaking, is not applicable

to variationally consistent formulations for thermo-mechanically coupled problems,

because the entropy has a non-zero value under the isothermal and no-load conditions.

For this reason, the present model with the identified material parameters is acceptable255

to carry out the thermo-mechanically coupled analyses for the purpose of verification

of the proposed formulation.

Meanwhile, the rate-dependent responses of the material model are also confirmed

in the left side of Figure 3 that shows the relationships between true compressive

stresses and true compressive strains for three different levels of strain rate under the260

isothermal and adiabatic conditions with the initial temperature of 25.0 [deg]. Here, the

compression test under the adiabatic condition has been simulated through the fully

coupled thermo-mechanical analysis with one twenty-node hexahedral element, for
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Figure 4: Specimen attached to a steel-made testing machine and one-eighth FE model with selected nodes

and elements for tracing[11]

which all degrees of freedom (DOFs) associated with temperature are set to be free.

The right side of this figure shows the relationship between the temperature and true265

compressive strain in the adiabatic case. As can be seen from the former, each of the

true compressive stresses in the adiabatic case attains the local maximum in a relatively

small strain range and is slightly smaller than that of the isothermal case for every level

of strain rate. The reason is that the temperature elevation due to the elastic entropy

change makes the yield stress decrease. Also, the post-yield stresses are drastically270

decreased, even though the pre-yield stresses are close to those in the isothermal case.

This must also be due to the strain softening and stiffness reduction caused by the

temperature elevation, the maximum of which reaches over 330 [K] as can be seen

from the right side of the figure. Further, the rate dependency of temperature elevation

is observed because the overstress inducing the self-generated heat increases with the275

increase of viscoplastic multiplier.

Once the true compressive strain exceeds about 0.8, the evolution of viscoplastic

deformation is suppressed by the back stress elevation associated with the entropic re-

sistance and, as a result, the self-generated heat becomes smaller. At the same time, the

corresponding entropy represented by Eqn. (25) drastically increases under the influ-280

ence of the limiting chain extensibility and causes local heat absorption. In fact, as can

be seen in Figure 4 depicted in Arruda et al.[11], the decrease in temperature can be ex-
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perimentally observed even for the almost adiabatic state. Thus, we are convinced that

the entropy resulting from orientation hardening makes the temperature in the speci-

men decrease. For this reason, the non-negligible temperature reduction occurs despite285

keeping the adiabatic state.

5.1.2. Finite element model and analysis condition

A cubic PMMA specimen attached to the testing machine is targeted and its schematic

view is shown in Figure 4(a). One-eighth of the entire structure is discretized with

twenty-node (2nd order) hexahedral elements as shown in Figure 4(b), whereas the ax-290

isymmetric model is adopted in Reference[11]. For both the thermal and mechanical

problems, the symmetry conditions is applied to –XY, –XZ and –YZ planes indicated

in the Figure 4(a). The same amount of enforced displacement is given at a constant

true strain rate to the Z-components of all the nodal displacement vectors of the FE

model of the steel attachment, while the other components are set to be free from con-295

straints. The total number of calculation steps is set to be 1,000. It has been confirmed

that when a much larger number of calculation steps is set, the solution showed little

change.

Although the testing machine is made of steel, only a negligibly small stiffness is

virtually assigned to the steel so that it can deform in the in-plane direction without any300

mechanical resistance. This setting is intended to realize a uniaxial compression state

of the specimen and uniform stress distribution without the consideration of contact

conditions and friction effects as much as possible. To see the rate-dependency of the

structural responses, three different true strain rates are considered; ε̇z
H = −0.001, −

0.01, − 0.1 [s−1].305

Meanwhile, the steel is given actual thermal properties so as to be an actual medium

only for the thermal problem. To this end, the thermal properties of the steel are set at

ρs = 7870 [kg ·m−3], cs = 442 [J · kg−1 · K-1], κs = 24090 [W ·m−1].

Also, the heat transfer condition is applied to the external surfaces of the model and the

heat transfer coefficient is set at β = 85.0[W·m−2·K−1] commonly for both the materials

for the sake of simplicity. The initial and ambient temperatures are set at 22.0 [deg] and

27



0 0.4 0.8
0

40

80

120

T
ru

e 
co

m
p

re
ss

iv
e 

st
re

ss
 [

M
P

a]

True compressive strain [–]

– 0.001 – 0.01 – 0.1Strain rate [/s]

Experiment

Analysis

0 0.4 0.8
0

40

80

120

0 0.4 0.8
0

40

80

120

0 0.4 0.8
0

40

80

120

T
ru

e 
co

m
p

re
ss

iv
e 

st
re

ss
 [

M
P

a]

True compressive strain [–]

(a) Strain rate = – 0.001 [/s]

T
ru

e 
co

m
p

re
ss

iv
e 

st
re

ss
 [

M
P

a]

True compressive strain [–]

(c) Strain rate = – 0.1 [/s]

True compressive strain [–]

(b) Strain rate = – 0.01 [/s]

T
ru

e 
co

m
p

re
ss

iv
e 

st
re

ss
 [

M
P

a]

Elem. I Elem. II Elem. III

Elem. IV Elem. V

Elem. I Elem. II Elem. III

Elem. IV Elem. V

Elem. I Elem. II Elem. III

Elem. IV Elem. V

(d) Numerical results vs Experimental data[11]

Figure 5: Relationships between true compressive stresses and true compressive strains in five selected

elements for three levels of true strain rates.

the latter is assumed to be unchanged throughout the numerical analysis.

5.2. Results and discussion310

To illustrate the predicted thermo-mechanical behavior, we have traced both the sets

of true compressive stresses and strains calculated in the five purple-colored elements

and the temperatures measured at the five nodes indicated by yellow markers indicated

in Figure 4(c). Figure 5 shows the relationship between the true compressive stress

and true compressive strain in response to each strain rate. Here, the true compressive315

stresses in Figure 5(d) are evaluated by dividing the reaction force by the current area on

the upper surface of the specimen, while the true compressive strains are the apparent

strains calculated by the height change of the specimen: ε̃z
H. Also, for the validation

purpose of the material model adopted into the proposed formulation, the experimental

results provided by Arruda et al.[11] is plotted in Figure 5(d). Meanwhile, Figure 6320
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Figure 6: Relationships between temperatures and true compressive strains at five selected nodes for three

levels of true strain rates.

shows the relationship between the temperature and true compressive strain computed

in response to each strain rate in conjunction with the experimental data provided by

Arruda et al.[11]. In addition , the responses of Node A are extracted and plotted in

the bottom right side of the figure (Figure 6(d)). As can be seen from the results of the

case with ε̇z
H = −0.001 [s−1] in Figure 5(a), all the stresses differ little from each other325

and exhibit almost the same as that of the case with 25.0 [deg] in Figure 2. This must

be due to the low deformation rate that causes little temperature increases as shown in

Figure 6(a). In fact, the maximum temperature elevation is about 3.0 [K], so that the

isothermal process is approximately realized over the whole specimen.

On the other hand, as can be seen from Figures 5(b) and (c), the results of the cases330

with higher compressive strain rates of ε̇z
H = −0.01 and −0.1 [s−1] indicate that each

of the stresses rapidly decreases after the local maximum point and the decrement is
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Figure 7: Deformed configurations with distributions of normal stress in Z-direction for three levels of true

strain rates.

much larger than those of the case with the lowest deformation rate shown in Figure

5(a). This is caused mainly by the stiffness reduction due to the elevated temperature

in addition to the strain softening associated with the intermolecular resistance as men-335

tioned in subsection 5.1.1. In fact, this kind of behavior has also been reported in the

literature[11], which states that the higher the compression rate, the larger the temper-

ature elevation. This statement can be confirmed from our calculation results as shown

in Figure6(d). At the same time, the orientation hardening responses also tend to be

suppressed or disappeared in the cases with higher strain rates. However, the stress340

responses of Element IV seem to be exceptional. Also, in response to this, the temper-

ature elevations of Node E adjacent to Element IV are smaller than those of the other
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Figure 8: Deformed configurations with distributions of normal stress in Y-direction for three levels of true

strain rates.

nodes. The reason is that the self-generated heat in this element quickly transfers to

the steel attachment because of the large heat conductivity of the steel. In other words,

Element IV is the farthest from an adiabatic state among the target elements.345

As can be seen from Figure5(d), the simulated mechanical responses are in some

agreement with experimental ones, even though they may not be satisfactory. In par-

ticular, it can be confirmed from the numerical results that the magnitude relationship

among the stresses with different compression speeds is reversed during the strain hard-

ening, which is the same tendency as the experimental one. However, the slope of the350

increase in simulated true stress during the strain softening is steeper than experimental

one. It is probably due to the fact that the simulated temperatures attain local maximum
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earlier than experimental results as shown in Figure6(a), (b) and (c). This tendency in-

deed reflects the discrepancy between temperature evolutions in the numerical analysis

and the experiment. A possible modification is to introduce a free volume change into355

the evolution law of the yield strength [5] or/and a more sophisticated overstress model,

but is left for future work.

Figures 7 and 8 show the deformed configurations with the contours of normal

stresses in the Z and Y directions, respectively, which are three snapshots at ε̃z
H =

−3.0, −30, −60 [%] during the compression process. Also, Figure 9 illustrates the cor-360

responding temperature distributions drawn in the deformed configurations. For each

level of deformation, we investigate the interaction between mechanical and thermal re-
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sponses below by making a detailed observation of the local stresses and temperatures

as well as the overall deformations.

First, we focus our attention to the state of ε̃z
H = −3.0 [%], in which all the elements365

have not attained the local maximum stress yet. In this low level of deformation, the

distributions of normal stress in the Z-direction are almost uniform in all the cases with

different strain rates. In fact, the largest difference in stress is about 2.7 [MPa] and

observable in Figure 7. In response to this, the self-generated heat occurs due to the

entropy change associated with thermal expansion and thermo-elasticity, although the370

temperature distributions are also almost uniform. Their slight non-uniformity arises

from both the non-uniformities of the corresponding stresses and the heat transfer on

the external boundaries and induces the onset of inhomogeneous thermal expansion in

the transverse direction. In fact, the latter effect seems to be more perceptible from the

upper row of Figure 9.375

Second, we direct our eyes on the stress distributions at the stage of 30 [%] com-

pression shown in the middle rows of Figures 7 and 8, which correspond to the states

in which the softening almost ceases. Once the strain softening occurs, the viscoplas-

tic flow suddenly dominates the deformation. As can be seen, the non-uniformity

becomes prominent. This can be explained by the corresponding temperature distri-380

butions, which are illustrated in the middle row of Figure 9. That is, the specimen

exhibits the temperature elevation up to over 25 [K] and the order of elevation rates

is in accord with that of applied strain rates. These elevations are mainly due to the

large inelastic deformations, although some effect of entropy change remains. At the

same time, the non-uniformity in temperature distribution is noticeable in each of the385

figures owing to the heat transfer on the external surfaces. In particular, in the case of

ε̇z
H = −0.01 [s−1], both the non-negligible heat transfer and relatively low conductivity

of PMMA enlarges the temperature difference between the central part and external

boundaries of the specimen. As a result, the temperature-dependent material properties

take different values despite the original homogeneity and then make the stress distri-390

bution non-uniform. On the other hand, the self-generated heat seems large enough in

the case of ε̇z
H = −0.1 [s−1], so that its heat release rate cannot be overtaken by the

speed of heat transfer. As a result, the non-uniformity in temperature distribution is not
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so prominent in comparison with that of the case of ε̇z
H = −0.01 [s−1].

The last investigation is conducted on the states of the specimen further compressed395

up to −60 [%] apparent strain, which are illustrated in the bottom row of Figures 7 and

8, As can be seen from these figures, the non-uniform stress distributions make the bar-

reled deformed shapes noticeable. This peculiar behavior reflects the highly-developed

non-uniformity of the temperature distributions, which are shown in the bottom row of

Figure 9. More specifically, the no-way-out heat in the heart of the specimen causes400

relatively high temperatures around the mid plane that corresponds to the symmetry

plane perpendicular to the Z-axis, whereas the temperature distributions around the top

surface are close to room temperature due to the high heat conductivity of the steel. It

should be noted here that the higher the temperature, the lower the stiffness, in general

and for this particular resin material. In response, relatively high stresses distribute405

around the region of low temperature and correspond to the responses of Element IV

in Figure 5. In particular, the difference between the maximum and minimum values

of the normal stress in the Z-direction attains about 70 [MPa]. On the contrary, in the

case of the smallest compression speed, almost uniform stress distributions remain un-

changed even in the 60[%] compression state, because sufficient time is given to the410

specimen to keep the uniform temperature distributions throughout the deformation

process.

In summary, the non-uniform stress distributions are triggered by the reductions

of stiffness and yield strength due to the non-uniform temperature distributions at the

early stage of deformation, which are mainly caused by the entropy change. At the415

intermediate range of deformation, the non-uniform stress distributions induced by the

non-uniformity in temperature become prominent especially in the case of intermediate

strain rate. Here, the main source of heat conduction is the self-generated heat due to

large inelastic deformations, and the non-uniform temperature distributions are caused

by the heat transfer on the external boundaries. These non-uniform stresses facilitate420

the barrel-shaped deformations of the specimen at the last stage of the simulation. The

bulge around the middle part of the specimen reflects the low stiffness that is caused

by the no-way-out heat near the interior mid plane. Nevertheless, the degrees of non-

uniformities in stress and temperature are determined by the balance between the rates
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of heat generation and dissipation to into the media outside the specimen, both of which425

obviously depend on the imposed deformation rates.

The fully coupled phenomena in the thermo-mechanical problem for glassy amor-

phous polymers have successfully been predicted by the standard FEM enhanced by

the novel formulation based on the incremental variational principle. The conventional

strong coupling schemes should also be capable of simulating such phenomena, but430

are generally time-consuming when a staggered algorithm is adopted, for example, and

require much more effort for implementation and computation than necessary. In con-

trast, the proposed formulation is easy to implement thanks to both the proposed incre-

mental variational formulation for non-associative viscoplasticity and the variationally

consistent constitutive equations for glassy amorphous polymers. It is worth mention-435

ing that this feature is particularly beneficial to other non-associative viscoplastic mod-

els. Also, the monolithic method realized for thermo-mechanically coupled analyses

in this study makes computations relatively stable in comparison with the conventional

approaches. It seems, therefore, reasonable to conclude that the achievements in this

study offer a superior scheme against the conventional ones.440

It should be noted, however, that the material instability associated with the strain

softening results from the adopted constitutive law and makes the convergence charac-

teristic poor in solving the global equilibrium equations. When the necking behavior of

a tensile specimen is simulated, such an instability commonly becomes prominent and

generates a harmful effect on the global convergence; see Appendix A for the demon-445

stration. Nevertheless, since any issue caused by the material instability is irrelevant to

the proposed formulation, we leave such a treatment for our future work at the moment.

6. Conclusion

This study present a variationally consistent formulation of the thermo-mechanically

coupled problems with non-associative viscoplasticity for glassy amorphous polymers.450

For that purpose, we have proposed an alternative form of the dual dissipation potential

to realize the variationally consistent constitutive model in non-associative viscoplas-

ticity. Specifically, the principle of maximum plastic dissipation for viscoplasticity is
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recasted into the same form of rate-independent plasticity by the introduction of the ex-

tended yield function and by the application of the parameterization of flow rules. Dur-455

ing the course of the formulation, the decomposition of the equivalent plastic strain is

a key to derive the variational consistent evolution law of the shear yield strength with

reference to the analogous approach taken for formulating the Armstrong-Frederick

model. As the result, the proposed formulation does not require the time derivative of

the shear yield strength to derive its evolution equation, while the time derivative is460

indispensable in the conventional ones. Owing to this characteristic feature, the result-

ing evolution equation accommodates the time variations of temperature in terms of

its material properties, implying that it is amenable to various thermal processes other

than isothermal ones.

The numerical example presented in this study is rather simple at first glance, but465

fairly complex in reality. Indeed, it is sufficiently demonstrative in simulating typi-

cal thermo-mechanically coupled phenomena of a largely deforming structure made

of a glassy amorphous polymer that is subjected to different deformation rates. Even

though no external heat is supplied, the heat is generated at each material point in the

target structure due to both the entropy change associated with thermal expansion as470

well as thermo-elasticity and large viscoplastic strains. However, because of the heat

conduction along with various boundary conditions, the evolution of temperature varies

considerably by location in the structure. As a result, the obtained temperature distri-

butions are non-uniform and vary with the imposed deformation rates. Each of these

non-uniformities causes different material responses by location and makes the overall475

deformation of the structure non-uniform despite the loading is originally intended to

realize the uniformity in deformation. It is worthwhile to note that the mathematical

model derived by the proposed formulation enables us to not only successfully char-

acterize the complex thermo-mechanical behavior, but also provides a strictly strong

coupling scheme to solve the thermo-mechanically coupled problem in an efficient480

way.
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Figure 11: Resultant reaction forces and temperatures versus enforced displacements

Appendix A: Tensile tests of R-20-type notched specimen

To further demonstrate the performance of the present model, FE-analyses for the

tensile tests of R-20-type notched specimen are conducted here by reference to [44].

Figure10(a) shows the R-20-type notched specimen subjected to tensile loading and485

Figure10(b) shows the prepared FE model of one-eighth of the specimen, on which the

symmetric condition is imposed. The specimen is elongated with an enforced displace-

ment of u0 = 1.5 [mm] with 3 different deformation rates.

Figure11 shows the resultant reaction forces and the temperatures at Node A de-

picted in Figure10 versus the enforced displacements. As can be seen from these fig-490

ures, all the resultant reaction forces drastically decrease within a range of u0 = 0.5 ∼
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Figure 12: Deformed configurations with stress and temperature distributions at the end of elongation

1.0 [mm] and the maximum temperature attains about 330 [K] in the case with the high-

est deformation rate. Also, Figure12 shows the deformed configurations with stress

and temperature distributions at the end of elongation. As can be seen from each of the

figures, once the strain concentrates near the center of the specimen, the deformation495

propagates toward the edge of specimen. Yet, the strain hardening develops, so that the

resultant reaction force becomes almost constant and at the same time the temperature

change shift to decrease. This series of responses typifies the material instability due

to the strain softening, which is caused by the adopted constitutive law. In this way, the

tensile behavior of the glassy amorphous polymer can also be successfully simulated500

with the solution method realized by the proposed formulation.
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