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Abstract

In some recent experiments on entangled polymers of stress growth in the startup of fast shear flows, an undershoot in the shear stress is
observed following the overshoot, i.e., before approaching the steady state. Whereas tumbling of the entangled chain was proposed to be at its
origin, here, we investigate another possible cause for the stress undershoot, i.e., slippage at the interface between the polymer and solid wall.
To this end, we extend the primitive chain network model to include slip at the interface between entangled polymeric liquids and solid
walls with grafted polymers. We determine the slip velocity at the wall, and the shear rate in the bulk, by imposing that the shear stress
in the bulk polymers is equal to that resulting from the polymers grafted at the wall. After confirming that the predicted results for the
steady state are reasonable, we examine the transient behavior. The simulations confirm that slippage weakens the magnitude of the
stress overshoot, as reported earlier. The undershoot is also weakened, or even disappears, because of a reduced coherence in molecular
tumbling. Disentanglement of grafted chains from bulk ones, taking place throughout the stress overshoot region, does not contribute to
the stress undershoot. © 2021 The Society of Rheology. https://doi.org/10.1122/8.0000194

I. INTRODUCTION

As it has been known for a long time, entangled polymers
exhibit shear thinning, i.e., at sufficiently large shear stresses,
the steady-state viscosity decreases with increasing shear rate
[1–3]. It is also well known that during the startup of fast
shear flows, the transient shear stress shows an overshoot
before reaching the steady state [4–6]. Birefringence mea-
surements [5] and molecular simulations [7–9] revealed that
the primary molecular mechanism of the overshoot is the
flow-induced orientation of entangled subchains between
consecutive entanglements [10]. Chain stretch further con-
tributes to the overshoot when the shear rate exceeds the
reciprocal Rouse time. Following such well-known over-
shoot, an undershoot has been observed in some cases
[11–14]. Because the undershoot only appears at high shear
rates, its origin might be found in either slip at the wall, or
edge fracture, or other instabilities, and not necessarily in
some molecular mechanisms. Possibly because of such
uncertainties, the undershoot has not been frequently dis-
cussed in the literature. Recently, however, rheometry devel-
opments allow for more reliable measurements at high shear
rates [11,12], and a focus on the undershoot now appears
appropriate.

Costanzo et al. [11] attributed the undershoot to the tum-
bling motion of the entangled polymer chains under shear,

such unexpected tumbling having been revealed by recent
molecular simulations of Khomami and co-workers [15–17].
The effect of the tumbling motion is mathematically
described by a damped sinusoidal function. Indeed, a fast
shear startup initially triggers a coherent tumbling of all mol-
ecules, but subsequently, such coherence decays exponen-
tially. The model reasonably reproduces the stress undershoot
for some polystyrene melts and solutions [11]. Masubuchi
et al. [18] run multichain sliplink simulations, confirming the
initial coherence of tumbling under the startup of fast shear.
Stephanou et al. [19] proposed a different molecular theory
(the so-called tumbling-snake model), in which the under-
shoot is also attributed to molecular tumbling.

On the other hand, the undershoot could be linked to
other phenomena, such as wall slip [20,21], or even periodic
slippage (stick-slip [22–25]), although in those investiga-
tions, there is no indication of the existence of a damped
periodic response. To examine the effect of transient slippage
on the stress growth under shear, Pearson and Petrie [26] pro-
posed a retarded slip boundary condition, in which they
introduced the slip relaxation time, reflecting the dependence
of slip on the stress history at the wall. Kazatchkov and
Hatzikiriakos [27] extended this idea to a multimode
memory function. Using a K-BKZ constitutive equation, they
reproduced the transient viscosity under slippage conditions
quantitatively and determined the relaxation times for the slip
dynamics of a commercial linear low-density polyethylene
melt from LAOS experiments. Ebrahimi et al. [28] used
another K-BKZ constitutive model to reproduce the data of a
high-density polyethylene melt. However, a single slippage
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relaxation time was used and chosen to be close to the
peak time of the overshoot. In parallel to the constitutive
modeling, a stochastic approach was also used by Hatzikiriakos
and Kalogerakis [29], who developed a network model to cal-
culate the configuration distribution function resulting from the
creation and destruction of transient bonds between the bulk
and the wall. They demonstrated that the slippage reduces the
magnitude of the stress overshoot, as well as that of the steady-
state viscosity.

Though there are no theories and/or simulations linking
the undershoot to stick-slip or complete slippage, one might
envisage that a transient stick-slip induces a stress undershoot
during the stress decrease from the overshoot, i.e., during the
approach to the steady state. Indeed, for the case of entangled
polybutadiene melts (which are known to be prone to slip
because of the large plateau modulus), Dao and Archer [23]
observed that at the highest shear rates used the transient
shear stress during the startup first increases, then it steeply
drops, indicating sudden slip. Following this first drop, the
stress increases again toward the steady state (which is actu-
ally not reached after 35 strain units), with its signal being
characterized by persistent oscillations with progressively
decreasing amplitude. It should be emphasized that this type
of oscillatory stress undershoot reported by Dao and Archer
is very different from the gradual and smooth undershoot and
eventual unambiguous steady state reported by Costanzo
et al. [11] for polystyrene. Nevertheless, the clear example
reported by Dao and Archer suggests that stick-slip could be
the cause of (qualitatively different) undershoots.

In this work, we systematically investigate the possible
role of slip at the wall in inducing a stress undershoot in tran-
sient shear by running multichain sliplink simulations that
include slip at the wall. Indeed, simulations allow for more
detailed observables than experiments do. To that purpose,
we modified the well-established primitive chain network
(PCN) simulation code by introducing parallel solid plates
confining a slab of bulk polymers and by grafting other poly-
mers at the wall. In the simulation, one of the plates starts
moving with a constant velocity, thus generating a shear
flow. The plate motion propagates to the bulk liquid, but a
slip velocity is also introduced. The latter is determined by
imposing that the shear stress is the same at the wall and in
the bulk. Similar to the earlier studies [26–29] mentioned
above, for the effect of slippage on the viscosity, here we
examine the stress response during the entire transient shear-
ing from the start of the flow up to the steady state.
Simulations are run for different values of shear rate, bulk
chain molar mass, and grafted-chain density and molar mass.
Effects of the simulation box thickness are also examined.

II. MODEL AND SIMULATIONS

The simulation code used here is the same as that employed
in earlier studies of shear flows [7,18,30–34], augmented for
the presence of parallel walls, at which slip can take place. In
the simulation, the bulk entangled polymeric system is replaced
by a network consisting of strands, nodes, and dangling ends.
Each polymer chain corresponds to a path connecting dangling
ends through strands and nodes. At each node, two polymer

chains are connected by a sliplink through which the two
chains are allowed to slide along their backbone, with the sli-
plink somehow restricting the lateral motion. Sliplinks are
removed when a chain end goes through them by either repta-
tion or fluctuation. Conversely, a new sliplink is created on the
dangling end (by “hooking” a surrounding chain) when the
dangling end itself is long enough. The state variables are the
sliplink position {R}, the number {n} of Kuhn segments in
each strand and in the dangling ends, and the number {Z} of
strands (including dangling ends) in each chain. The sliplink
positions {R} obey a Langevin-type equation of motion, i.e., a
force balance involving the drag force, the strand tensions, an
osmotic force, and a random one. As is usual in Brownian sim-
ulations, no other interchain forces are included. A force
balance also controls the rate of change of {n}, describing
chain sliding through sliplinks. Units of length, energy, and
time are the average strand length a at equilibrium, the thermal
energy kT, and the diffusion time of the node τ ¼ ζa2/6kT ,
with ζ being the friction coefficient of the node (resulting from
the four half-strands emanating from it). We also normalize
{n} by taking the ratio to its average equilibrium value n0.

In nondimensional units, the equation of change of the sli-
plink position {R} is written as

_R�k � R ¼ 1
2

X4
i¼1

ri
ni
� 1
3
∇μþ F: (1)

Here, k is the velocity gradient tensor, ri is the ith strand
vector emanating from the sliplink, and hence, the sum is the
result of the four elastic Gaussian forces acting on the sli-
plink. The chemical potential μ, introduced to control density
fluctuations, is derived from the following free energy
expression:

J ¼ ε
f(R)
hfi � 1

� �2

forf(R) . hfi,
0 forf(R) � hfi:

8<
: (2)

Here, f(R) is the local strand density, hfi is its average
value in the simulation box, and ε (fixed at 0.5) is the com-
pressibility. In Eq. (1), F is the Gaussian random force
obeying hFi ¼ 0 and hF(t)F(t0)i ¼ 2δ(t � t0)I.

The time evolution of {n} is similarly written as

_n

w
¼ ri

ni
� ri�1

ni�1

� �
� 1
3
∇μþ f : (3)

Here, _n is the rate of change of n in the ith strand due to
monomer sliding from/to the (i� 1)th strand and w is the
average local linear monomer density defined as

w ¼ 1
2

ni
ri
þ ni�1

ri�1

� �
, (4)

with r being the strand length. The 1D random force f obeys
hf i ¼ 0 and hf (t)f (t0)i ¼ (2/3)δ(t � t0). Equations similar to
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Eqs. (3) and (4) are used for the transfer of monomers from/
to the (iþ 1)th strand.

Creation and destruction of entanglements at the chain
ends are triggered by the value of n in the dangling strands.
If n , 0:5, the sliplink next to the dangling strand is
removed. Vice versa, if n . 1:5, a new sliplink is created by
randomly hooking another neighboring strand.

The bulk stress tensor is calculated from the tension in all
strands of the simulation box as

σ ¼ 3
V

X
i

riri
ni

, (5)

where V is the box volume. In previous studies for bulk poly-
mers, periodic boundary conditions were used, and the flow
was applied through a small affine deformation at each inte-
gration timestep. Simulations with this model reproduced
linear and nonlinear rheology of entangled polymers semi-
quantitatively [31–37].

In this study, we introduce wall boundary conditions to
the cubic simulation box, as schematically represented in
Fig. 1. To mimic confinement between parallel solid walls,
we set reflective boundary conditions in the shear-gradient
direction, while periodic boundary conditions are maintained
in the shear and vorticity directions. Following earlier studies
[38–41], we placed tethered polymers at the wall (i.e., with
one grafted-chain end) with a grafting number density ρg
(number of anchored chains per unit area of the wall). Note
that we did not include adhesion interactions between the
solid wall and the polymers, just as we did not include intra-
chain interactions other than entanglements. Possible dewet-
ting phenomena are, therefore, not considered.

To simulate a shear flow, we adopted the procedure
detailed below. We move the “upper” wall with a constant
velocity vw. Hence, the nominal shear rate _γn is defined as
vw/d, where d is the distance between the walls. In a real
experiment, the motion propagates to the bulk via momentum
transfer. However, in Brownian dynamics simulations of
bulk polymers, momentum transfer in the shear-gradient
direction is achieved by introducing (as mentioned above) a
small affine shear deformation at each integration timestep,
i.e., according to the magnitude of tensor k in Eq. (1).
Because of slip, however, the magnitude of k (i.e., the bulk
shear rate _γb) is not a priori known, except for the obvious
inequality _γb � _γn. Here, we maintain the assumption that
the shear rate _γb is uniform throughout the bulk, i.e., that
there is no banding.

Hence, by assuming that a same slip velocity vs is present
at the upper and lower walls, the velocity field in the present
simulation is given by (see Fig. 1)

vx(y) ¼ vs þ _γby, (6)

where the subscript x stands for the shear direction, y is the
distance from the “lower” wall, and both the slip velocity vs
and the bulk shear rate _γb are a priori unknown. Because of
the assumed symmetry, and since vx(d) ¼ vs þ _γbd ¼ vw,
the two unknowns vs and _γb are linked by the obvious
relationship,

vs ¼ (vw � _γbd)/2: (7)

A second link between the two unknowns is provided by the
condition that the shear stress at the wall σw (generated by
the tethered strands under the slip velocity vs and the bulk

FIG. 1. Schematic representation of the simulation box with bulk chains shown by thin lines (in blue) and grafted ones by bold lines (in yellow). For better
clarity, one of the bulk chains is highlighted, together with its entangled partner strands (in green). Dots (in red) on the walls indicate grafted-chain ends. For
given values of all parameters, the bulk shear rate _γb and the slip velocity vs are determined as detailed in the text. In this figure, the molecular weights of the
bulk and grafted chains are Zb ¼ 40 and Zg ¼ 5, respectively, the grafting density is ρg ¼ 1, and the box dimension is d ¼ 20.
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shear rate _γb) and that in the bulk σb (generated by the bulk
shear rate _γb) must be equal to one another,

σw ¼ σb: (8)

Here, σb is calculated from Eq. (5), whereas σw is given by

σw ¼ 3
2A

X
i

rix
ni

, (9)

where A ¼ d2 is the interfacial area (the factor of 2 account-
ing for the fact that the sum is extended to the chains grafted
to both the upper and lower plate) and rix is the shear direc-
tion component of the strand vector.

At each simulation timestep, the two unknowns vs and _γb
are determined through the solution (by a numerical feed-
back) of Eqs. (7) and (8). Note, however, that such a solution
does not always exist. Indeed, for sufficiently large values of
either the grafted-chain density ρg or of the grafted-chain
length Zg, the wall shear stress σw is found to be larger than
that σb in the bulk, even if vs is set to zero. In the real world,
under those conditions, slip at the wall is replaced by shear
banding, with a layer of low shear rate close to the wall, and
one of high shear rate in the bulk. Dealing with simulations
accounting for shear banding is beyond the scope of this
work. Work on shear banding is in progress by one of the
authors of the present paper by using the dissipative particle
dynamics (DPD) technique [42,43].

We performed simulations for several densities ρg and
molecular weights Zg of the grafted chains. Unless stated dif-
ferently, the molecular weight Zb of the bulk polymers was
fixed at 40, and the simulation box size d at 20. Note that
molecular masses are indicated in terms of the number of
entangled strands at equilibrium, and the radius of gyration

of the bulk chain at equilibrium is ca. 2.6, sufficiently
smaller than the box size. Even under fast flows, when
the bulk chain largest dimension grows up to 3.9, the latter
remains sufficiently smaller than the box size d. For sim-
plicity, both grafted and bulk chains are taken to be mono-
disperse. The viscoelastic longest relaxation time and
the Rouse time for the bulk chains are obtained from the
“classical” simulations (without walls), and they come
out as τd ¼ 5:5� 103 and τR ¼ 81, respectively. For each
parameter choice, eight independent simulations were run,
starting from different initial configurations. After a suffi-
ciently long equilibration, the motion of the upper wall was
started. The nominal shear rate _γn was varied from 0.001 to
0.3. This range corresponds to 5:5 � Wi � 1:6� 103, and
8:1� 10�2 � WiR � 24, which is very similar to the experi-
mental range of Weissenberg numbers in the earlier study
[11]. Flow-induced friction reduction [32,44] was ignored
in this work.

III. RESULTS AND DISCUSSION

Before showing steady shear results in the nonlinear
range, it is convenient to report equilibrium results on grafted
chains. Figure 2 shows the longest relaxation time τg of the
grafted chains (entangled with the bulk chains having
Zb ¼ 40) for several values of the grafted-chain density ρg
and molar mass Zg. Such relaxation time was determined
from the grafted-chain stress autocorrelation function. In
Fig. 2(a), τg is shown to increase with increasing Zg, as
expected from the arm-retraction relaxation mechanism. In
Fig. 2(b), τg is shown to decrease with increasing ρg, seem-
ingly because short-lived entanglements between grafted
chains increase, and correspondingly, the long-lived ones
between bulk and grafted chains decrease (results not
shown).

FIG. 2. Relaxation time τg of the grafted chains for the case Zb ¼ 40, as a function of Zg (a) and ρg (b). Density ρg is 0.5 in the left panel (a), and grafted-
chain length Zg is 5 in the right one (b).
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We now move on to show in Fig. 3 the steady-state shear
stress σ ¼ σw ¼ σb plotted against the nominal shear rate _γn,
for several values of the grafted-chain molar mass Zg (left)
and density ρg (right), all for a bulk chain molar mass
Zb ¼ 40. For comparison, the flow curve obtained from the
bulk simulations without walls is also shown (black filled
circles).

The arrows in Fig. 3(a) indicate the values of 1/τg taken
from panel (a) of Fig. 2. Hence, Fig. 3(a) shows that, at the
fixed value ρg ¼ 0:5, and for nominal shear rates _γn larger
than 1/τg, the shear stress (for all reported Zg values) essen-
tially coincides with that of the simulations without walls.
Conversely, when _γn , 1/τg, the stress runs significantly
below, revealing strong wall slip effects. In this
low-shear-rate range, grafted chains have all the time to dis-
entangle from the bulk ones, hence making bulk molecules
free to slip away from the wall. We can call such behavior
thermally induced slip. Actually, this low-shear-rate slip is an
artifact because the model is forced to ignore the usual adhe-
sion forces between the solid wall and bulk polymers.
Inclusion of the adhesion forces would suppress the ther-
mally induced slip.

The just described situation only applies at large enough
grafted-chain densities. Indeed, Fig. 3(b) shows that, at the
fixed value Zg ¼ 5, a large slip occurs also for _γn . 1/τg
(the horizontal arrow showing the 1/τg range 0:01–0:02),
provided the density ρg is sufficiently small. For _γn . 1/τg,
slip is no longer thermally induced, but rather it is due to
convection (flow-induced slip). Such flow-induced slip is
clearly visible in Fig. 3(b) at low grafted-chain densities.

We conclude the discussion of Fig. 3 by noting that, if
larger values of Zg are considered (like Zg ¼ 20, or even
Zg ¼ 40), the thermally induced slippage is suppressed in a
sensible range of shear rates because τg becomes too large
(results not shown). At the same time, however, also the
flow-induced slippage is suppressed because the condition
σw ¼ σb cannot be fulfilled, as mentioned in Sec. II.

For such case, shear banding (instead of slip at the wall)
prevails.

Figure 4 shows the slip velocity vs plotted against the
nominal shear rate _γn. The straight line in both panels repre-
sents the maximum value of vs, which is reached when
_γb ¼ 0, and it is given by vs,max ¼ 1

2 vw ¼ 1
2 _γnd ¼ 10 _γn [see

Eq. (7)]. Before discussing Fig. 4, it is appropriate to recall
the earlier experimental study of Durliat et al. [45] showing a
slip transition at a critical shear rate, at which the value of vs
abruptly increased by more than one decade. Both before and
after such transition, the slip velocity grows linearly with the
shear rate [45]. In our simulations, for sufficiently high
values of ρg and Zg, the slip velocity vs steeply increases at
values of _γn somewhat smaller than 0.1 (see green circles in
the left panel, and filled and unfilled triangles in the right
one). Although the observed transition is not as sharp as
experimentally reported, probably due to a size effect (our
simulation “sample” is very thin), our results appear consis-
tent with the experiments of Durliat et al. [45]. Moreover,
after the transition, i.e., to the right of _γn � 0:1, our simula-
tion results appear to approach a unit slope in Fig. 4, i.e., a
linear dependence, consistently with Durliat et al. [45].

When the thermally induced slip dominates, i.e., at
_γn , 1/τg, the slip velocity vs runs very close to its
maximum value, vs,max. This is apparent in the leftmost
results in both panels of Fig. 4. Conversely, for _γn . 1/τg,
we observe the transition to flow-induced slip, where the
slip velocity vs is significantly lower than vs,max. Such tran-
sition is particularly evident for Zg = 3 and 5 in Fig. 4,
whereas it falls too low to be observed for large values of
either ρg or Zg. No transition at all is observed for low
values of ρg where, in spite of switching from the thermally
induced to the flow-induced slippage, the slip velocity
remains essentially coincident with vs,max (see red squares in
panel b). Indeed, at low densities, the grafted-chain stress is
obviously very small, and hence, the equal value of stress in
the bulk polymer implies a very small value of the bulk

FIG. 3. Shear stress vs nominal shear rate for Zb ¼ 40. The left panel (a) is for ρg ¼ 0:5 and various Zg, while the right panel (b) is for Zg ¼ 5 and various ρg.
Results for the no-slip case are also shown as black circles. Arrows indicate the relaxation rate 1/τg of the grafted chains.
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shear rate _γb. For _γb � 0, from Eq. (3), we then get
vs � 1

2 vw ¼ vs,max.
Figure 5 shows the slip velocity vs as a function of the

shear stress σ for several Zg (left panel) and ρg (middle
panel) values. Panel (a) shows that, for any value of σ, the
slip velocity increases with decreasing length Zg of the
grafted chains (for a fixed value of the grafting density). This
is because shorter grafted chains develop the same value of
stress only if the shear rate is increased. An increasing shear
rate then implies a higher value of the slip velocity (see

Fig. 4). A similar argument can be used for panel (b), where
it is apparent that, for a given σ, the slip velocity increases
with decreasing grafting density (for a fixed grafted-chain
length). In both panels, the slip velocity significantly
increases with increasing the shear stress, beyond a critical
value σC, which depends on Zg and ρg. As noted by
Hatzikiriakos [46], the vs vs σ curves superpose on each
other if vs is plotted against σ/σC. In order to check the con-
sistency of our results with the data of Hatzikiriakos, we
determined σC from the behavior at high σ values (i.e., by

FIG. 4. Slip velocity vs against nominal shear rate for Zb ¼ 40. The left panel (a) is for ρg ¼ 0:5, and several lengths Zg of the grafted chains, while the right one
(b) is for Zg ¼ 5 and several ρg values. The straight lines give the maximum possible value of vs. Arrows indicate the relaxation rate 1/τg of the grafted chains.

FIG. 5. Slip velocity vs against shear stress σ for several Zg (left, a) and ρg (middle, b) values. The right panel (c) shows vs plotted against the normalized
shear stress σ/σC .
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ignoring the data in the region of the artificial thermally
induced slippage). Specifically, we estimated σC in such a
way that the normalized data superimpose for _γn larger than
1/τg. For instance, for the case Zg ¼ 3 [blue circles in
Fig. 5(a)], we determined σC by ignoring results for σ , 3,
where the slope is clearly different from that in the high σ
region insofar as results are still sensitive to thermally
induced slippage. The overlap of our results for σ . σC in
Fig. 5(c) is consistent with the data of Hatzikiriakos [46].

The steady-state results we have shown so far
(Figs. 3–5) indicate consistency of our simulations with the
experimental data available in the literature for flow-
induced slippage. We, therefore, proceed to examine the
transient behavior in order to explore the possible role of
slippage in creating the observed stress undershoot at high
shear rates.

Figure 6 reports the viscosity growth curves for several ρg
and Zg values. Here, the “apparent” viscosity was calculated
as ηa ¼ σ/ _γn. For comparison, the results from the no-slip
simulations are also shown in Fig. 6 as broken curves. As
previously shown in Fig. 2, Fig. 6 confirms that at low _γn the
stress (hence ηa) is lower than that in the no-slip case, due to
the thermally induced slippage. At higher _γn, larger than the
disengagement rate of the grafted chains shown in Fig. 3, the
simulation results with and without slippage are close to one
another (provided ρg is large enough), as shown by way of
example in Fig. 6(c). In these high- _γn flows, the viscosity
growth curve depends on ρg and Zg.

Panels from (a) to (c) in Fig. 6 show results at the fixed
Zg ¼ 5 value, for three different values of ρg. As previously
mentioned, the steady-state viscosity increases with increas-
ing ρg due to suppression of slippage. Concerning the

FIG. 6. Viscosity growth curves for several ρg and Zg values. Nominal shear rates from top to bottom are 0.001 (blue),0.01 (orange), and 0.1 (green). Broken
curves indicate results from the no-slip simulations.
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transient behavior, the viscosity overshoot is reduced at low
ρg values. In fact, for ρg ¼ 0:1 (panel a), there is no over-
shoot at all, except perhaps at the highest shear rate. For
ρg ¼ 0:5 (panel b), an overshoot is observed for _γn � 0:03,
but the peak value is reduced, and its position is retarded,
compared to the no-slip case. For ρg ¼ 2, and at high rates,
there is no difference between slip and no-slip simulations.

The effect of Zg can be seen in panels (b), (d), and (e) of
Fig. 6, where ρg is fixed at 0.5, while Zg takes the values 5, 3,
and 10, respectively. These plots reveal that the slippage in
slow flows is suppressed for large Zg because grafted chains
remain entangled. Indeed, for _γn , 0:01, the steady-state vis-
cosity decreases with decreasing Zg, as already seen in Fig. 2.
Conversely, in flows faster than the disengagement rate of
grafted chains, the steady-state viscosity is almost independent
of Zg, and close to the no-slip value, because slippage does
not occur. On the other hand, the transient behavior is some-
what sensitive to Zg. By way of example, let us compare with
one another the orange curves ( _γn ¼ 0:01) in panels (b), (d),
and (e), where the overshoot appears very different. Namely,
for Zg ¼ 10 (panel e), the overshoot is clearly visible, though
the peak value is reduced, and the peak position is retarded,
with respect to the no-slip case; for Zg ¼ 5 (panel b), the
overshoot is sort of truncated; finally, for Zg ¼ 3 (panel d),
the overshoot has completely disappeared.

Figure 7 shows further details of the transient behavior for
_γn ¼ 0:03 and ρg ¼ 0:5, and for several Zg values. As men-
tioned above, the stress overshoot is reduced for short grafted
chains [see Fig. 7(a)]. Transient values of the slip velocity vs
are shown in Fig. 7(b). Here, vs first grows with time, and
then, after a peak, it decreases toward the steady value. The
time evolution of vs is similar to that of σ, as predicted by
the stochastic model of Hatzikiriakos and Kalogerakis [29].
The decreasing branch of the vs and σ curves moves to
longer times as Zg decreases. This trend might seem counter-
intuitive in view of the fact that the relaxation time of the
grafted chains decreases with decreasing Zg. However, the
delayed evolution of the stress with decreasing Zg is in fact
due to the correspondingly smaller shear rate in the bulk, _γb.
It is well known that in the shear startup of entangled poly-
mers the orientation-induced stress peak is located at a shear
deformation of ca. 2.3 [10], and at higher deformation values
when also chain stretch comes into play (WiR . 1). The cor-
responding peak times are then obtained from the ratio of the
peak shear deformation to the shear rate. The above is true,
however, only when slip is absent. Conversely, when slip is
present, the time at which such an effective deformation is
reached, i.e., the peak time, becomes longer the smaller is _γb.

The number of entanglements formed at the interface
between bulk and grafted chains, called Zint, is shown in
Fig. 7(c). Zint decreases with time from the equilibrium value
due to the flow-induced disentanglement between bulk and
grafted chains. At long times, the rates of creation and
destruction of entanglements at the interface balance one
another, and Zint reaches a steady value. Before reaching
such a steady state, however, Zint shows a clear undershoot
(see panel c). As expected, the position of the undershoot
(i.e., the maximum disentanglement at the interface) coin-
cides with that of the overshoot of vs and σ.

In panels (d)–(f ) of Fig. 7, the shear component σ of the
stress tensor of Eq. (5) is decomposed according to the
decoupling approximation [5,7,18,32–34],

σ ¼ 3
V

X
i

rixriy
ni

¼ 3υhrxry
n
i ¼ 3υhr

2uxuy
n

i

� 3υhr
2

n
ihuxuyi ¼ 3h Z

Z0
iλ2 S: (10)

Here, υ ¼ hZ/Z0i is the normalized strand density,
S ¼ huxuyi is the strand orientation, and λ2 ¼ hr2/ni is the
square stretch ratio of the strand. Both with and without slip-
page, the stress overshoot is essentially determined by the
strand orientation S (panel d), whereas the strand stretch λ2

comes into play after the overshoot (panel e), provided the
Rouse-time-based Weissenberg number, WiR, is larger than
unity. This is the case for the shear rate of 0.03 shown in
Fig. 7 where WiR ¼ 2:4. Flow-induced reduction of the

FIG. 7. Shear startup behavior at _γn ¼ 0:03 (Wi ¼ 1:6� 102 and
WiR ¼ 2:4) and ρg ¼ 0:5 for Zg ¼ 3, 5, 10 (blue dashed, red solid, green
dotted, respectively). (a) Shear stress, (b) slip velocity, (c) interfacial entan-
glement density, (d) strand orientation, (e) strand stretch, (f ) bulk entangle-
ment density, and (g) tilt angle. Dashed curves are from simulations without
slip. Insets in panels (a) and (g) are magnified plots in the range 102 , t ,
104 to show undershoots in the no-slip case (thick black dashed curves).
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entanglement density Z is also observed in panel f. For all
quantities in Fig. 7, the curves are shifted to longer times
with decreasing Zg due to the reduced shear rate in the bulk.
Changes in the steady values are also consistent with change
in the bulk shear rate.

Finally, panel (g) of Fig. 7 shows the effect of molecular
tumbling through the average of cos2 θ, where θ is the tilt
angle of the end-to-end vector of bulk chains to the shear
direction. As reported previously [18], in the no-slip case
cos2 θ decreases over time and exhibits an undershoot before
reaching the steady state. This undershoot reflects a coherent
molecular tumbling at the startup of the shear flow, and it
probably causes an undershoot of σ (as assumed by
Costanzo et al. [11] and confirmed by Nafar Sefiddashti
et al. [17]), though very weak in panel (a) of Fig. 7. The
undershoot of cos2 θ is suppressed by the slippage due to the
reduction of the bulk shear rate _γb. It so appears that slip mit-
igates molecular tumbling, presumably by inducing a stron-
ger loss of coherence. Note also that in the present
simulations with confining walls, the value of cos2 θ at short
times is smaller than that in simulations without walls
because of the oriented chains near the surface.

Figure 8 shows a comparison among different bulk molec-
ular weights Zb at a fixed shear rate of _γn ¼ 0:03, and for
ρg ¼ 0:5 and Zg ¼ 5. At this rate, panel (a) shows that the
steady state shear stress is insensitive to Zb, as is typical of
polymers in fast shear flows [47]. Also, the slip velocity vs
(panel b) and the interfacial entanglement density Zint (panel
c) do not vary much at the steady state. Conversely, as it is
also typical [18], the transient responses are significantly
affected by Zb, with a significant increase of the overshoot
with increasing molar mass. Here, however, in the presence
of slip, we note that such an increase is more modest. Indeed,
while the maximum value of the slip velocity vs increases

significantly with increasing Zb, the corresponding growth of
the stress overshoot is minor. Hence, slippage reduces the
magnitude of the overshoot with respect to the no-slippage
case. Panel (c) also shows that the magnitude of the under-
shoot in the interfacial entanglement density Zint increases
with increasing Zb, and the recovering of Zint is retarded at
large Zb. This behavior of vs and Zint implies that the flow-
induced slippage is enhanced for longer bulk chains. Notice,
however, that no undershoot is observed in the σ curves.

Finally, Fig. 9 shows the box-size effect, i.e., the effect of
changing the thickness d of the sheared layer on the same
quantities of Fig. 8. However, the slip velocity is plotted here
in the normalized form, i.e., as the sum of the upper and
lower slip velocities divided by the wall velocity. Such a
ratio, r ¼ 2vs/vw, is appropriate because, for an equal value
of _γn, changing d proportionally increases vw, and hence
(albeit not necessarily by the same proportion) also vs. It is
also worth noting that, in view of Eq. (3), the above velocity
ratio can also be written as r ¼ 1� _γb/ _γn. The normalized
slip velocity r varies in the range 0–1, the lower limit imply-
ing a zero slip velocity, while the upper one a zero bulk
shear rate (total slip).

Figure 9 shows that in the explored range, box-size effects
are minor but non-negligible. This is because the slip veloc-
ity (as opposed to the normalized one) also plays a signifi-
cant role. Indeed, by increasing the layer thickness d, the slip
velocity also increases, and hence, grafted chains are dragged
more effectively by the bulk flow; correspondingly, the shear
stress somewhat increases (the green curve runs slightly
higher in panel a). For the same reason, i.e., because of the
increased slip velocity, the flow-induced disentanglement of
the grafted chains from the bulk ones increases (the green
curve runs slightly lower in panel c). In approaching the

FIG. 9. Effect of changing the box size from d ¼ 15 (blue dashed), to 20
(red solid), and 25 (green dotted) on shear startup at the fixed nominal shear
rate _γn ¼ 0:03. The observed quantities are (a) shear stress, (b) normalized
slip velocity, and (c) interfacial entanglement density, all of them for
ρg ¼ 0:5, and Zg ¼ 5.

FIG. 8. Shear startup behavior of (a) shear stress, (b) slip velocity, and (c)
interfacial entanglement density, for Zb ¼ 20 (blue dashed), 40 (red solid)
and 60 (green dotted) with ρg ¼ 0:5, Zg ¼ 5, and _γn ¼ 0:03.
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steady state, the ratio vs/vw appears to decrease with increas-
ing the layer thickness. In the limit of very large d values
(not explored here), we envisage that _γb becomes very close
to _γn, while vs approaches a nonzero value such that σw

remains equal to σb, the latter essentially determined by _γn.
Finally, concerning the main purpose of this work, i.e.,

investigating the role of wall slip in generating a stress under-
shoot in the shear startup, we observe that in the σ plot of
Fig. 9, as well as in all σ plots of previous figures in the pres-
ence of slip, there is no sign of an undershoot.

IV. CONCLUDING REMARKS

In this study, we extended the PCN model to deal with
slippage between entangled polymeric liquids and solid walls
with grafted polymers. We determined the slip velocity and
the bulk shear rate by fulfilling the condition that the shear
stress developed in the bulk chains and that resulting from
the grafted chains must be equal to one another. By varying
the molecular weight and the density of the grafted chains,
we run several shear startup simulations. Results confirmed
that, indeed, slip takes place if the chains attached at the wall
are either short or sparsely grafted. For the transient startup
behavior, the stress overshoot was found to be weakened by
the slippage. During startup, the effect of slippage becomes
more retarded when the grafted chains are longer. These
results are consistent with earlier studies, and they essentially
validate the model.

On the other hand, the main objective of this study, con-
cerning the possible role of the wall slip in inducing a stress
undershoot, was fully reached in the sense that no sign of
undershoot was ever found in all simulations performed here.
Disentanglement between grafted and bulk chains was found
in our simulations in the stress overshoot region. However,
such disentanglement did not induce any undershoot. On the
contrary, it so appears that the slippage prevents the under-
shoot because it enhances the loss of coherence in the molec-
ular tumbling.

We conclude by mentioning that the Brownian dynamics
approach used here is not the only simulation technique able
to investigate slip. The work based on the DPD method men-
tioned earlier [42,43] is now in progress by one of the
authors.
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