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Abstract. In this study, losing the shock wave profiles under interactions with grid

turbulence was investigated experimentally and theoretically. We demonstrated that

the shock wave contrast on side-view schlieren images gradually decreased to an

undetectable level. This shock wave “vanishment” occurred at a low shock Mach

number with a high turbulent Mach number. With a relatively strong shock wave,

the contrast of the shock wave remained detectable although the shock wave profile

region was expanded. To understand the shock wave vanishment phenomenon during

interaction with turbulence, we established a shock wave vanishment model based

on the solution of a one-dimensional interaction between a shock wave and forward

induced flow. The criterion of the occurrence of local vanishment of the shock wave

was derived as Mt ≥ (M2
s − 1)/Ms, where Mt is the turbulent Mach number and Ms is

the shock Mach number. The proposed shock vanishment model involves the effect of

the interaction length and the shock wave recovery characteristics. The derived model

explains the disappearance of weak shock wave during turbulence with an interaction

length of 10 times the order of the integral scale of the turbulence, as observed in the

experiment.
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1. Introduction

The interaction of a shock wave with turbulence causes a drastic mutual modulation

of both characteristics (Andreopoulos et al 2000). Shock–turbulence interactions occur

in engineering applications such as supersonic and hypersonic propulsion systems and

inertial-confinement fusion. Supernova explosions and volcanic eruptions have deep

relationships with such interactions. Many investigations of the behavior of shock waves

and turbulence during interactions have been conducted via theoretical, numerical, and

experimental methods. The primary system studied is that of interaction between a

normal shock wave whose characteristics do not change during propagation and isotropic

turbulence. In this system, the modulations of a shock wave and turbulence have been

studied using numerical and experimental methods.

Direct numerical simulation (DNS) has been used to investigate the interaction

of a normal shock with isotropic turbulence (Lee et al 1993, Larsson and Lele 2009,

Larsson et al 2013, Ryu and Livescu 2014, Livescu and Ryu 2016, Tian et al 2017,

Tanaka et al 2018 and 2020, Chen and Donzis 2019). In some DNS simulations, a

turbulent upstream flow interacts with a spatially fixed shock wave in the shock wave

fixed-coordinate system. Donzis (2012) derived the criterion for the initial appearance

of a hole on the shock wave (broken shock regime) as Mt ≥ 0.6(M − 1), where Mt is the

turbulent Mach number, and M is the mean upstream flow Mach number. Thereafter,

Larsson et al (2013) and Chen and Donzis (2019) confirmed this theory’s consistency

with the DNS results. Furthermore, Chen and Donzis (2019) reported that a shock wave

widely loses its discontinuity in the case of strong turbulence, known as the “vanished”

regime of the interaction. However, Deviating from the real phenomena, in these DNSs,

the boundary condition proposed by Lele (1992) was applied to perform the simulation.

Such numerical simulations yielded results in a “steady” state determined by a “fixed”

shock wave strength and upstream flow condition. In real situations, a shock waves are

often generated by the dynamics of driving sources. The series of behaviors of a shock

wave entering and propagating through turbulence involves an “unsteady” modulation.

Some DNSs adopted such a system (Tanaka et al 2018 and 2020), but investigations of

unsteady shock wave behavior are insufficient.

Although experimental studies on shock–turbulence interactions have been con-

ducted in various systems (Lipkens and Blackstock 1998, Kim et al 2010, Sasoh et al

2014, Tamba et al 2016, Kitamura et al 2017, Inokuma et al 2017 and 2019), it has

been challenging to realize the interaction between a normal shock wave and isotropic

turbulence. Dosanjh (1956), Honkan and Andreopoulos (1992), Honkan et al (1994),

Xanthos et al (2002), and Agui et al (2005) used shock tubes to induce interactions

of normal shock wave reflected from the end walls with grid turbulence. However, in

a typical shock tube with a single driver and driven section, it is difficult to conduct

parametric surveys. Our research group previously developed a counter-driver shock

tube (CD-ST) with an additional driver section incorporated with a typical shock tube

to overcome these experimental difficulties (Tamba et al 2015). This experimental ap-
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paratus enables the independent establishment of specific shock and turbulent Mach

numbers and interaction lengths. In our previous works (Tamba et al 2019, Fukushima

et al 2021), we observed shock wave deformation with grid turbulence as the interaction

length increased. However, the “vanished” state, as demonstrated in DNS research,

has not been investigated experimentally. The objective of this study is to demonstrate

the shock wave vanishment and improve the physical understanding of this phenomenon.

2. Experimental setup and condition

The experiment was conducted using a CD-ST. The CD-ST is a diaphragm-type shock

tube with two driver sections at both ends of the driven sections. Its total length is

approximately 14 m; it has a square cross-section measuring 120 mm × 120 mm. The

operation timings of the two drivers are actively controlled under a set driver. Since

the pressures of the driver sections are controlled independently, we can independently

control the Mach numbers of the shock waves generated in the driven section. Figure

1 shows an example of an x (space)–t (time) diagram of the CD-ST operation. Each

driver generated left- and right-incident shock waves (represented as L-iSW and R-iSW,

respectively). Under some conditions, as described later, we weakened the L-iSW using

punched stainless steel sheets installed at x = 1.0 m. R-iSW passed through a square

grid and became a grid-past shock wave (i.e., R-gSW). The square grid containing 5 mm

× 5 mm square pillars with a mesh size of 25 mm was installed at x = 5.0 m, as shown in

Figure 1. A uniform flow behind R-iSW was transmitted to the grid turbulence beyond

the square grid. After the collision of L-iSW and R-gSW, the transmitted shock waves,

L-tSW, and R-tSW propagated in the directions shown. At a certain point, L-tSW

entered and interacted with the grid turbulence. We defined the interaction length, Li,

as the distance from the shock waves to the head of the grid turbulence. The value of

Li was controlled by the time difference τ of the operation of each driver. We visualized

the shock wave propagating through the grid turbulence by a schlieren method. The

visualization system consisted of a high-speed camera (Phantom v1211, Vision Research

Inc.; 256 × 256 pixels, 100 kfps) and synchronized pulse diode laser (CAVILUX Smart,

Cavitar Ltd.; wavelength 640 nm, pulse duration 10 ns). This system visualized the

shock wave at a pair of BK7 windows (effective diameter of 110mm) installed on the

sidewall at 450 mm downstream of the square grid. The optical path from the test

section to the high-speed camera was approximately 20 m to facilitate the capture of

weak density changes with high sensitivity. Additional details on the facility principle

and instrumentation can be found in our previous papers (Tamba et al 2015 and 2019,

Fukushima et al 2021).

The main role of the right driver was the generation of the grid turbulence behind

R-gSW. In this experiment, we used a single condition of the grid turbulence. Thus, the

right-driver and the driven sections’ initial pressure conditions were kept equal to those

under the CD-ST operation. The initially filled gas in the right driver was a mixture of



4

He and atmospheric air supplied from a compressor through a dryer. The fill pressure

ratio was He:air = 9:1. Air was used as the driven gas. The initial pressure condition of

the right driver and that in the driven section were p4R = 128.3 kPa and p1 = 12.3 kPa,

respectively. The shock wave velocity was measured by the time-of-flight principle. By

dividing the shock wave velocity by the speed of sound in the gas in the driven section,

the shock Mach numbers of R-iSW and R-gSW were calculated as Ms,R-iSW = 1.82 and

Ms,R-gSW = 1.76, respectively. Here, we assumed that the gas in the driven section was

calorically perfect such that the specific heat capacity is a constant value (γ = 1.4).

The velocity of the grid turbulence’s mainstream flow was approximately 340 m/s, as

calculated by the Rankine–Hugoniot relations. The left driver conditions primarily

determined the shock Mach number of the interacting shock wave, i.e., Ms,L-tSW. In this

research, we set the left driver pressure either to p4L = 18.3 or 20.3 kPa depending on

the condition. Moreover, two types of punched stainless steel sheets were used to change

the shock Mach number. Type A comprised 16 punched stainless steel sheets of 0.8-mm

thickness, 1-mm hole diameter, and a blocking ratio of 82.5%. Type B comprised three

punched stainless steel sheets of 1-mm thickness, 2-mm hole diameter, and a blocking

ratio of 64%. When p4L was 18.3 kPa, we obtained Ms,L−tSW = 1.006, 1.034, and 1.046

using types A and B punched stainless steel sheets and without sheets, respectively.

When p4L was 20.3 kPa, we obtained Ms,L-tSW = 1.013 using type A punched stainless

steel sheets. Here, the shock Mach number of the left-transmitted shock wave, Ms,L-tSW,

was calculated with the solution from the head-on collision of L-iSW and R-gSW.

3. Experimental results

Under the conditions applied in this study, measurement of the grid turbulence

characteristics could not be performed because the hot-wire probe was broken by finely

ruptured cellophane debris. Therefore, the turbulent Mach number was estimated

through a linear extrapolation using the obtained relation between the mean flow

velocity and the turbulent Mach number reported in the previous study by Fukushima

et al (2021). The near-linear relationship between the mainstream-flow Mach number

of the grid turbulence and the turbulent Mach number can be seen in the measurement

of grid turbulence generated in a shock tube in the range from 0.3 to 0.7 for a constant

mesh size (Briassulius et al 1998). We apply this linear relationship to our facility. With

a mean grid turbulence velocity of 340 m/s and a flow Mach number of 0.72 (calculated

by the Rankine-Hugoniot equations in a perfect gas), the representative value of the

turbulent Mach number was M̃t = 0.025 (the tilde represents the value at the center of

the visualizing window located at 450 mm downstream of the grid). Because the data

used to estimate M̃t involved a standard deviation of approximately 10%, the estimated

M̃t could contain the same extent of error. As the generated grid turbulence was not

supersonic flow, strong disturbances such as shocklets could not be confirmed in the

schlieren images. Pressure oscillation in the grid turbulence, which was induced mainly

in the initial diaphragm rupture processes, was 1.7% of the absolute pressure in the
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Figure 1: Example of an x–t diagram of the CD-ST operation: p4L = 20.8 kPa, p1 = 12.8

kPa, and p4R = 128.3 kPa; SW, shock wave; EF, expansion fan; CS, contact

surface.

grid turbulence based on pressure measurement by a flush-mounted pressure sensor on

the inner wall of the shock tube. This pressure oscillation caused a 1.3% change in the

speed of sound.

The schlieren visualization results of a shock wave moving from left to right against

the grid turbulence blowing from right to left are shown in Figure 2. To enhance

the signal-to-noise ratios in the images, all images shown in this paper are differential

images formed by subtracting the quiescent-state image before shock tube operation

from the rough image (Kim er al 2010). In Figure 2, the shock tube center measuring

approximately 86 mm range is extracted. The positive and negative values of Li

correspond to the interaction lengths during and before the interaction, respectively.

The image sequences presented in each row were extracted from the same CD-ST

operations. The image sequence in the lower row corresponds to the trial in the

long-interaction-length case. In the interaction of the weakest-shock wave case of

Ms,L-tSW = 1.006 (Figure 2 (a)), the shock wave was perfectly planar before interacting

with the grid turbulence (Li < 0). After the interaction, the shock wave contrast on

the visualized image gradually diminished with increases in the interaction length. At

Li = 200 mm, the shock wave profile could not be detected on the schlieren images.

Eventually, the contrast level of the shock wave became equivalent to the density changes

caused by the grid turbulence. In the case of Ms,L-tSW = 1.013, a similar result was
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Figure 2 (a) and (b)

observed. When Li exceeded 300 mm, we could not observe the shock wave profile.

Because the schlieren visualization integrates information from a spanwise direction, a

sharp line is obviously apparent if the shock wave remains locally. Therefore, the shock

wave lost its discontinuous profile because of interactions with the grid turbulence.

Regarding this shock wave behavior, Chen and Donzis (2019) recently reported the

“vanished” regime of the interaction, where the upstream and downstream cannot

be identified unambiguously from DNS results. A similar result was observed in our

experiment. However, we found novel insight from the experiment of moving the shock

wave: the gradually vanished with the increase in interaction length. In contrast to the

case of the weak shock wave, the relatively strong shock waves with Ms,L-tSW = 1.034 and

1.046 were largely deformed and with expansions in the side projected areas with the

grid turbulence, but the shock wave profiles remained even under the long-interaction-

length cases, i.e., Li = 200 mm. Schlieren-visualized movies of these experiments are
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Figure 2: Schlieren images of the shock wave propagating through the grid turbulence.

Arrows indicate the trajectory of the shock wave propagating at a constant

velocity: (a) Ms,L-tSW = 1.006, (b) Ms,L-tSW = 1.013, (c) Ms,L-tSW = 1.034, and

(d) Ms,L-tSW = 1.046.

presented in the supplementary data.

4. Modeling of shock wave vanishment by a one-dimensional unsteady

compression theory and discussion

To physically interpret the shock wave profile vanishment during turbulence interaction,

we consider the shock wave modulation based on a one-dimensional (1D) unsteady

compression problem called the Riemann problem (Shapiro 1953, Liepmann and Roshko

1957, Glass and Sislian 1994, Sasoh 2020). As shown in Figure 3, the most fundamental

subsequent situation is considered, i.e., a shock wave propagating in the quiescent state
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Figure 3: Schematics of a 1D shock wave−forward-induced-flow interaction: (a) before

interaction, (b) after interaction.

with the shock Mach number of Ms interacts with a forward induced flow. The states

0, L, and R correspond to the quiescent state, the area behind the incident shock wave,

and the forward induced flow, respectively. Here, the states 0 and R are assumed to

have the same pressure. In addition, we assume that the proprieties of the states 0

and R discontinuously change. The gas of all states is calorically perfect: the specific

heat ratio is constant (γ = 1.4). When the induced shock wave enters state R, new

right- and left-running waves are generated. The states after passing the left- and right-

running waves are L* and R*, respectively. The contact surface separates states L* and

R*. A schematic of the u (velocity)–p (pressure) diagram of the interaction is shown

in Figure 4. When the induced velocity direction has the same direction as the shock

wave propagation, the increase in pressure by the right-running wave (curve R → R*)

becomes smaller than that by the incident (curve 0 → L). In this case, left-running

expansion waves are generated.

Here, we derive the condition where the pressure increase induced by a right-running

wave is equal to zero. In this case, the incident shock wave transits to a sound wave

through an interaction with the forward induced flow. When quantity changes do not

occur with the right-running wave, the following equations are obtained:

pR∗ = pR,

uR∗ = uR.
(1)

Because the left-running wave is composed of expansion waves, as shown in Figure 4,

the following isentropic equation between states L and L* is obtained:

uL∗ − uL
aL

=
2

γ − 1

1−
(
pL∗
pL

) γ−1
2γ

. (2)

Pressure and velocity are equal across the contact surface between states L* and R*.
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Figure 5: Schematic of the x-element in a shock wave–turbulence interaction

Accordingly, we obtain:

pL∗ = pR∗,

uL∗ = uR∗.
(3)

By deleting the variables of states L* and R* using (1)–(3) and expressing the variable

state L by the incident shock Mach number Ms, we obtain the ratio of the velocity of

the forward induced flow uR to the velocity behind the incident shock wave uL as a

function of Ms, as follow:

uR
uL

= 1+
(2γM2

s − γ + 1)
1
2 [(γ − 1)M2

s + 2]
1
2

(γ − 1) (M2
s − 1)

1−
(

2γM2
s − γ + 1

γ + 1

)− γ−1
2γ

 .(4)

The right side of (4) becomes 2 at the limit of the weak shock wave of Ms → 1, and the

relationship |uR/uL − 2| < 0.005 holds for values of Ms from 1 to 2. Therefore, we can

regard uR/uL = 2 for the weak shock wave. The values of uR and uL can be expressed
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as dimensionless Mach numbers as follows:
uR
a0

= MR,

uL
a0

=
2

γ + 1

(
Ms

2 − 1

Ms

)
.

(5)

where MR is the Mach number of forward induced flow. Using (5), we can express

the relationship uR/uL = 2 with dimensionless Mach numbers. The following inequality

gives the relationship of the shock wave transition to a sound wave or expansion wave

when the shock wave interacts with the forward induced flow in a 1D system.

MR ≥
4

γ + 1

Ms
2 − 1

Ms

. (6)

Next, the shock wave state interacting with the turbulence is considered using a

similar analysis proposed by Donzis (2012). In his analysis, the possibility of having a

local Mach number less than unity in some locations showed good agreement with that

of the appearance of holes in the shock wave, as confirmed by DNS results (Larsson et

al 2013, Chen and Donzis 2019). In this research, the interaction between moving shock

waves with planar distributed velocity fluctuations is considered, as shown in Figure 5.

Thus, we calculate the probability of having a local flow Mach number satisfying (6) in

some location as the probability of the local vanishment of the shock wave. Here, it is

assumed that only the velocity is disturbed. In addition, only the elements facing the

shock wave (x-direction) are considered. The turbulence velocity fluctuation is assumed

to obey a Gaussian distribution, which is considered a good approximation (Monin and

Yaglom 1975). In the location where the Mach number of the “local” turbulence velocity

fluctuation mx exceeds the flow Mach number MR, thus satisfying (6), the incident shock

wave locally vanishes. The probability of the existence of a local flow satisfying (6) in the

turbulence is defined as P (mx > MR), where P () is a function of probability of satisfying

inequality in (). Under the assumption of a Gaussian-distribution velocity fluctuation,

the value of P (mx > MR) can be statistically expressed as a simple form using the error

function erf() as P (mx > MR) = 1− 1/2
{

1 + erf
[
MR/

(√
2/3Mt

)]}
. Here, regarding

the turbulent Mach number, Mt =
√

3u′x/at is applied because the turbulence is assumed

to be isotropic, where u′x is the x component of the velocity fluctuation, and at is the

speed of sound of the turbulence. Here, we define the probability of local shock wave

vanishment for one interaction of the shock wave with a fluctuating-velocity plane as

P1. By substituting (6), we can write P1 as a function of the shock Mach number Ms

and the turbulent Mach number Mt:

P1 = P (mx > MR) = 1− 1

2

1 + erf

 M2
s −1
Ms√

2
3
γ+1
4
Mt

 . (7)

Figure 6 shows a plot of Eq(7) as a function of MsMt/
(
Ms

2 − 1
)
. The four plotted

points correspond to the experimental conditions considered in this study. The value

of P (mx > MR) is almost 0 in MsMt/
(
Ms

2 − 1
)
< 1. At MsMt/

(
Ms

2 − 1
)

= 1,
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Figure 6: Shock vanishment probability after one interaction P (mx > MR) as a func-

tion of MsMt/
(
Ms

2 − 1
)
. Plots correspond to Ms,L-tSW = 1.006 (circle),

Ms,L-tSW = 1.013 (triangle), Ms,L-tSW = 1.034 (square), and Ms,L-tSW = 1.046 (di-

amond), respectively. M̃t = 0.025 under all conditions.

the value of P (mx > MR) is 0.002, and P (mx > MR) starts to increase with

MsMt/
(
Ms

2 − 1
)

= 1 as the threshold value. Therefore, we obtain the following

inequality as a condition for the appearance of shock wave local vanishment with one

interaction in the fluctuating-velocity plane:

Mt ≥
Ms

2 − 1

Ms

. (8)

Equation (8) gives the probability of local shock wave vanishment for one interaction

of the shock wave with a fluctuating-velocity plane. However, such a case is rare in

real situations, in which the shock waves repetitively interact with velocity fluctuations

during propagation through turbulent regions of certain volumes. Thus, hereafter, we

consider the repetitive interaction effect on the vanishment of weak shock wave. In a

repetitive interaction with velocity fluctuations, the shock wave constantly experiences

modulation during propagation. Because quantity change caused by weak shock waves

can be regarded as isentropic (Shapiro 1953, Liepmann and Roshko 1957, Glass and

Sislian 1994, Sasoh 2020), the flow Mach number that causes the vanishment of the shock

wave is determined only by the shock Mach number of the incident shock wave: the

shock wave vanishment condition of (6) does not change in the interaction. Therefore,

we can consider that the shock wave locally vanishes when it meets the flow satisfying

(6) during propagation in turbulence.

In addition, we must consider the shock wave behavior after vanishment. We

discuss this behavior in this paragraph. After the shock wave is locally vanished,

compression waves are formed by multidimensional effects surrounding the vanished
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area. Therefore, the recovery state of the shock wave from the compression waves is

important in modeling the behavior of the shock wave propagating through turbulence.

We quantitatively analyze the shock wave reformation under experimental conditions

similar to those in a 1D analysis presented by Sasoh 2020. Here, we consider the bundle

of compression waves propagating from right to left in which initially (t = 0) its leading

head is located at x = xa and the tail is at x = xb; see Figure 7. We assume that the

pressure variation between xa and xb is continuous. The thickness of the bundle is

∆x = xa − xb. Because the local velocity of the characteristic increases with increases

in pressure, the tail compression wave gradually catches up with the head compression

wave at t = ts, thus forming a shock wave. We define the shock formation location as

x = xs, and the shock formation distance L is defined as L = xs − xa. The time of shock

formation ts is written using the velocities of characteristics c+, a and c+, b as follows:

ts =
L

c+, a
=
L+ ∆x

c+, b
. (9)

This equation can be rewritten as

L

∆x
=

c+, a
c+, b − c+, a

, (10)

where c+, a and c+, b are written using the flow velocity u and the speed of sound of the

flow a as

c+, a = ua + aa,

c+, b = ub + ab.
(11)

Using Eqs (9)–(11), we can estimate the shock reformation distance after the weak

shock wave becomes compression waves with the thickness of ∆x. With the determined

values of ua and aa, the values of ub and ab can be calculated using the isentropic

relationship for a given pressure jump. Because properties changed by weak shock wave

can be regarded as isentropic, the pressure jump across compression waves is regarded

the same as that across the weak shock wave. Thus, L/∆x can be calculated for a

given shock Mach number Ms, as shown in Figure 8. We use the value of ua = −340

m/s and aa = 478 m/s, which are the same conditions as those in the experiment. The

value of L/∆x decreases with increases in Ms. This is because c+, b becomes large

for a strong compression waves. This tendency indicates that the weak shock wave

requires a longer shock formation distance than the strong shock does. The value of

L/∆x is 23 for Ms,L-tSW = 1.006. This calculation indicates that if the shock wave of

Ms,L-tSW = 1.006 transforms into compression waves of thicknesses equivalent to the

integral scale of the turbulence, a propagation length of approximately ten times the

order of the integral scale is needed to recover the shock profile. On the contrary, the

shock waves of Ms,L-tSW = 1.034 and 1.046 require propagation distances of 4.3 and 3.2

times ∆x, respectively. In these relatively strong shock wave cases, it is possible that

the local compression waves soon reform as the shock wave. Therefore, the assumption

that the vanished parts of the shock wave are not recovered during the interaction is

appropriate for very weak shock waves, such as those satisfying L/∆x ≥ O(101). For
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Figure 8: Ratio of shock formation distance to thickness of compression wave L/∆x as a

function of Ms. Plots correspond to the shock Mach numbers examined in the

experiment.

simplicity, we assume that the shock waves of Ms,L-tSW = 1.006 and 1.013 do not recover

once they experience discontinuous profile loss.

Based on the above discussions, the vanishment of weak shock waves

Ms,L-tSW = 1.006 and 1.013 is modeled by considering the interaction length effect.

In a repetitive interaction with the velocity fluctuation, we define the probability of
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The interaction length for the integral scale of 10 mm is also shown in the

horizontal axis. M̃t = 0.025 under all conditions and Ms,L-tSW = 1.006 (circle),

Ms,L-tSW = 1.013 (triangle), Ms,L-tSW = 1.034 (square), and Ms,L-tSW = 1.046

(diamond). Regions indicated by a double arrow correspond to Li where in the

present experiment the shock wave front profile vanishes judged from the schlieren

images at Ms,L-tSW = 1.006 (solid line) and Ms,L-tSW = 1.013 (dashed line).

local shock wave vanishment over n interactions as Pn. In n + 1 interactions, Pn+1 is

expressed as the sum of the following independent cases: one is that the local shock

wave remains after n interactions and then vanishes after n + 1 interactions, and the

other is that the local shock wave has already vanished during interactions 1 to n.

The probability of the former is P (mx > MR)(1 − Pn) by considering the conditional

probability, and that of the latter is Pn. Therefore, we obtain Pn+1 in the recurrence

formula as Pn+1 = P (mx > MR)(1 − Pn) + Pn. Here, the first term of Pn satisfies the

relationship of P1 = P (mx > MR) as shown in Eq(7). The general term of Pn can be

derived in the form of a geometric progression as

Pn = 1− [1− P (mx > MR)]n . (12)

Meanwhile, for the relatively strong shock waves with Ms,L-tSW = 1.034 and 1.046, we

can regard Pn as approximately 0 because the shock wave vanishment criterion Eq(8) is

not satisfied, as seen in Figure 6, and the shock wave is soon reformed from the profile

of the compression waves, as seen in Figure 8.

The phenomenon of gradual shock wave vanishment with increasing interaction

length observed in the experiment is physically considered using the developed model.

We can assume that the integral length scale of turbulence represents the length of
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one velocity fluctuation, because the integral scale of turbulence physically corresponds

to the length of the dominant scale of eddies in turbulent flow. In the previous

measurement of grid turbulence in the CD-ST, the integral scale of grid turbulence

was approximately 10 mm for the turbulence mean flow of 50–160 m/s (Fukushima et

al 2021). In the present research, we adopted this value as the integral scale of grid

turbulence. Therefore, the interaction length consumed by one interaction with the

velocity fluctuation is 10 mm in this model. In the experiment results, because the

largest value of the interaction length was approximately 300 mm, we visualized an

interaction length of 30 times that of the shock wave with the velocity fluctuation in

this study. The value of Pn is plotted as a function of the number of interactions n in

Figure 9. The interaction length Li for the integral scale of 10 mm is also shown in the

horizontal axis. Four kinds of plots correspond to the experimental conditions. With

an increase in Li, Pn sharply increased in the case of the weakest shock Mach number

of Ms,L-tSW = 1.006. The vanishment probability exceeds 80% for Li = 200 mm. The

calculation from this model is consistent with the experimental results of decreasing the

side-view projected shock wave contrast with increasing interaction length. The model

shows good agreement with the experimental results of total shock wave vanishment

at approximately Li = 200 mm. Furthermore, in the cases of relatively strong shock

waves of Ms,L-tSW = 1.034 and 1.046, the shock wave vanishment probabilities remain

near zero. The proposed shock wave vanishment model is also consistent with the

experimental results of a totally continuous shock wave profile on the side-view image.

However, on the border condition Ms,L-tSW = 1.013, the model cannot quantitatively

describe the experimental results. The model shows 4% vanishment on a shock wave

profile at Li = 300 mm, while the experiment showed widely shock wave vanishment at

approximately Li = 300 mm.

According to the comparison of the experimental results, a precise agreement

is not achieved around the condition where the shock Mach number and the

turbulent Mach number begin to satisfy the shock wave vanishment criteria(
Ms,L-tSW = 1.013, M̃t = 0.025

)
. On the contrary, the proposed shock wave vanishment

model based on the solution of the 1D unsteady compression problem can explain the

weak shock wave vanishment in the interaction length range of 10 times the order of the

integral scale of grid turbulence.

5. Conclusion

In this study, the losing the shock wave front profile during interactions with turbulence

was investigated experimentally and theoretically. We experimentally demonstrated the

vanishment of a weak shock wave profile during interactions with grid turbulence using

the CD-ST. On the side projected schlieren images, the contrast of the weak shock wave

was gradually decreased with increases in the interaction length. This vanishment was

modeled based on a 1D unsteady interaction theory (the Riemann problem). In the 1D

interaction of the shock wave with a velocity fluctuation, the shock wave transforms to
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a sound wave and even to expansion waves. We expanded the theory to a shock wave

interaction with a planar distributed velocity fluctuation. The starting condition for

shock wave vanishment was statistically obtained as Mt ≥
(
Ms

2 − 1
)
/Ms where Ms is

the shock Mach number and Mt is the turbulent Mach number. The interaction length

effect in the experiment was considered in the proposed shock wave vanishment model

by considering a repetitive interaction with the velocity fluctuation. From a quantitative

analysis of the characteristic propagation, in the measured interaction range we found

that the weak shock wave does not recover once it experiences discontinuous profile loss.

Although a precise agreement was not confirmed for conditions where the shock Mach

number and the turbulent Mach number begin to satisfy the shock wave vanishment

criteria, we confirmed the validity of the proposed model for the vanishment of weak

shock waves at interaction lengths of 10 times the order of the integral scale of grid

turbulence. The results of this study are expected to help with further understanding

of the unsteady shock wave behavior in shock–turbulence interactions. In addition, we

believe the knowledge obtained in this study could be valuable for the validation of

numerical simulation data as well as for applications in aerospace engineering, such as

advancing the understanding of sonic boom modulation by atmospheric turbulence.
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