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Abstract

A novel time integration method of the drift kinetic equation is proposed, where

low order fluid moment equations including the lowest order terms for the dis-

persive Alfvén wave propagation are extracted from the electron drift kinetic

equations. The moment extract method enables ones to implement an implicit

solver for wave propagation by means of the operator splitting, while the ki-

netic part is solved explicitly. Numerical tests of the new scheme have verified

stable and accurate time-integration of the drift kinetic equation and enables

to take a large time step size when the electron beta value is smaller than the

electron-to-ion mass ratio.
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1. Introduction

Comprehension of turbulent transport mechanism in high temperature plas-

mas is one of the crucial issues in magnetic fusion research. The anomalous

plasma transport is driven by drift wave turbulence of which time scales are

longer than that of gyromotion of particles while the wavelengths are of the

order of the ion Larmor radius. Therefore, numerical simulations based on the

gyrokinetic theory [1, 2, 3], where the gyrophase dependent fluctuations are

averaged out, are widely employed for the turbulent transport analysis [4].
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The ion temperature gradient (ITG) mode turbulence has widely been in-

vestigated as a main cause for the ion heat transport in high temperature mag-

netized plasma. Conventional analyses of the ITG turbulence often assume the

adiabatic electron response because of fast motions of electrons with smaller

mass. This simplification demands less computational costs than that for the

gyrokinetic or drift kinetic description of electrons. However, it is found that the

ITG simulations with kinetic electrons result in a higher heat transport level

than that with adiabatic electrons [5, 6, 7] because response to the potential

fluctuation is reduced in case with trapped electrons. Therefore, for quanti-

tative analyses of turbulent transport, kinetic response of electrons should be

taken into account even in simulations of turbulence in the ion gyroradius scale.

In gyrokinetic Vlasov simulation codes with kinetic electrons, the local flux

tube model [8] is often employed such as GKV [9], GENE [10], GKW [11], and

GS2 [12], where the simulation domain is given by a long thin magnetic flux

tube, and turbulent fluctuations with strong anisotropy can be handled with less

computational costs. Several types of time integration schemes are employed in

the flux tube codes. The fourth-order explicit Runge-Kutta (RK) schemes are

used in GKV, GENE, and GKW codes, where the time step size ∆t is restricted

by the Courant-Friedrichs-Lewy (CFL) condition. The CFL limitation to ∆t

becomes severer in non-axisymmetric systems, because magnetic ripples along a

field line in a helical geometry demand shorter grid spacing, leading to smaller

time step size. Furthermore, if kinetic electrons are included, ∆t may also be

limited not only by the parallel advection term, but also by the propagation of

dispersive Alfvén waves (DAW). In the low β and long wave length limit, the

latter condition determines the upper limit of ∆t for the numerical stability.

On the other hand, GS2 code applies an implicit method to linear terms with

the second order accuracy for space and time. While the implicit scheme is free

from the CFL condition, generally speaking, a lot of computational costs are

necessary for implicitly solving the kinetic equations in multi-dimensional phase

space.

To relax the numerical difficulty in solving the gyrokinetic equation with
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kinetic electrons, we propose a new time-integration scheme named the moment

extract (ME) method, where the kinetic equation is divided into three equations,

that is, the zeroth and the first order moment equations, and the remnant kinetic

equation responsible for the second or higher order moments of the distribution

function. This technique allows us to decouple the main terms for the wave

propagation from the kinetic equation, and to apply an implicit solver only to

the wave propagation terms in the fluid equations for relaxation of the CFL

condition. It leads to reduction of the matrix size inverted for time-integration

in comparison to that required for the full implicit kinetic simulation, and works

efficiently when the electron beta value is smaller than the electron-to-ion mass

ratio (βe < me/mi).

Separation of fluid moment equations from the kinetic one has been pur-

sued in drift kinetic or gyrokinetic simulations One also finds similar ideas in a

broader context of multi-scale phenomena. Some recent examples are a moment

guided Monte Carlo method [16], a conservation-moment-based implicit lattice

Boltzmann method [17], a unified gas-kinetic scheme for unsteady flow [18], and

a fully implicit moment particle-in-cell method for Vlasov-Ampére system [19].

More generally, it would be regarded as one of high-order/low-order algorithms

[20]. In this paper, we discuss the ME method applied to a Vlasov-type solver

for the drift kinetic equations and demonstrate the numerical stability for ∆t

beyond the CFL condition for the dispersive Alfvén wave.

This paper is organized as follows. In Section 2, equations used in the ME

method are described. Numerical methods used in the present study are given

in Sections 3 and 4. The detailed analyses of numerical errors and stability are

shown in Section 5. Concluding remarks are summarized in the last section.

2. Moment extract method

In this paper, we focus on electron motions given by the drift kinetic equa-

tions in the limit of small electron Larmor radius compared to the perpendicular

wavelength characterized by the ion Larmor radius. If the Fourier transforma-
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tion is applied to the perpendicular coordinates in the linear regime, the phase

space dimension is reduced to two, that is the field aligned coordinate z and the

parallel velocity coordinate v∥. The key issue that the DAW propagation re-

stricts the time step size is still retained even in the reduced model. In the limit

of uniform and constant external magnetic field and the background plasma

density, the linearized drift kinetic equation (DKE) for the perturbed electron

gyrocenter distribution function δfe
(
z, v∥, t

)
from the Maxwellian, the quasi-

neutrality condition and the Ampere’s law are given by

∂δfe
∂t

+ v∥
∂δfe
∂z

= − qe
Te0

v∥FeM

(
∂ϕ

∂z
+

∂A∥

∂t

)
, (1)

qi
2ni0

Ti0
k2⊥ρ

2
iϕ = qene (2)

and

k2⊥A∥ = µ0qene0Ue∥ . (3)

Here, qa, na0, Ta0, and ρa are charge, equilibrium density, equilibrium tem-

perature and Larmor radius of particle species a with the thermal speed vta,

respectively. Subscripts a = e and a = i mean electrons and ions. Here, the

charge neutrality qene0 + qini0 = 0 is assumed. The perturbed electrostatic

potential and parallel component of vector potential are denoted by ϕ and A∥,

respectively. Also, ne and Ue∥ represents fluctuations of the electron density

and parallel electron flow velocity. The above set of equations are the same as

those discussed in Ref. [21]. The equilibrium distribution function is given by

the Maxwellian distribution function

FeM =
ne0√
2πvte

exp

(
−

v2∥

2vte2

)
, (4)

where vte =
√
Te0/me. The above equations describe the parallel electron

motion and the DAW propagation. Effect of the ion polarization is taken into

account through the term on the left hand side of Eq.(2). If we assume a

sinusoidal perturbation in proportion to exp[i(k∥z−ωt)] , the dispersion relation

is written as

k2⊥ρ
2
s = [1 + ζZ(ζ)]

(
2vte

2

vA2
ζ2 − 1

)
, (5)
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where Z(ζ) is the plasma dispersion function [22] and ζ = ω/
√
2k∥vte. The

electron beta value and the Larmor radius for the ion accoustic speed cs =√
Te0/mi are denoted by βe = µ0ne0Te0/B

2 and ρs = mics/qiB, respectively.

The Alfvén velocity is defined as vA ≡ cs/
√
βe. In the limit of k∥vte ≫ ω, Eq.(5)

reduces to

ω = k∥vA

√
1 + k2⊥ρ

2
s = k∥cs

√
(1 + k2⊥ρ

2
s) /βe . (6)

Equation (6) indicates that the DAW frequency becomes lower with increase of

βe while fixing cs and ρs. It is noteworthy that cs and ρs represent characteristic

speed and length of the ITG mode. Thus, in the time integration of Eq.(1) by

an explicit scheme, the time step size ∆t is restricted by the parallel electron

motion such that Cv = v∥max∆t/∆z < 1 when vA < vte and k⊥ρs ≪ 1, where

v∥max means the maximum value of the parallel velocity. On the other hand, in

the cold electron limit k∥vte ≪ ω and βe → 0, Eq.(5) reduces to

ω ≡ ωH =
k∥vte

k⊥ρs
. (7)

In the small perpendicular wavenumber k⊥ and the zero βe limits, the time step

size ∆t is restricted by the DAW propagation so that Cw = ωH∆t/k∥∆z < 1.

The sever limitation degrades efficiency of the gyrokinetic simulation of drift

waves with kinetic electrons.

In order to relax the CFL condition in the low βe regime, we have developed

the ME method. The basic idea is summarized below. Taking the zeroth and

the first order moments of Eq.(1), the fluid moment equations of electrons are

given by
∂ne

∂t
= −ne0

∂Ue∥

∂z
(8)

ne0me

∂Ue∥

∂t
= −qene0

(
∂ϕ

∂z
+

∂A∥

∂t

)
− ∂

∂z

(
neTe0 + ne0Te∥

)
, (9)

where perturbations of the density ne, the parallel flow Ue∥, and the parallel

temperature Te∥ are represented in terms of the zeroth, the first, and the second

order moments of δfe, that is,

ne =

∫
δfedv∥ (10)
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ne0Ue∥ =

∫
v∥δfedv∥ (11)

and

ne0Te∥ + neTe0 = me

∫
v∥

2δfedv∥ , (12)

respectively. Here, we also divide the perturbed distribution function δfe into

three components

δfe ≡
ne

ne0
FeM +

me

Te0
v∥Ue∥FeM + he . (13)

It is found that coefficients of the first and the second terms of Eq.(13) are

given by the zeroth and the first order moments of δfe, respectively. Thus, for

consistency, the zeroth and the first order moments of he should vanish. Namely,

Eq.(13) corresponds to the Hermite polynomial expansion of δfe up to the first

order. From Eqs. (12) and (13), one finds that the parallel temperature Te∥ can

be represented as

ne0Te∥ = me

∫
v∥

2hedv∥ . (14)

Substituting Eqs. (8), (9), and (13) into Eq.(1), the drift kinetic equation is

rewritten in terms of the remnant distribution function he,

∂he

∂t
+ v∥

∂he

∂z
=

(
1−

mev∥
2

Te0

)
FeM

∂Ue∥

∂z
+

v∥

Te0
FeM

∂Te∥

∂z
. (15)

It is noteworthy that the dispersive Alfvén wave propagation in the limit of

βe → 0 is described by the low-order moment fluid equations and the quasi-

neutrality. The above set of equations are similar to those by Zocco et al.

[15], where the low order moment equations are separated from the drift kinetic

equation by means of the Hermite polynomial expansion.

If we naively apply the explicit time integration to Eqs.(8), (9) and (15),

the time step size ∆t is still restricted by the wave propagation in the low-

βe regime. The time step restriction due to the DAW propagation can be

relaxed partly by the fluid-kinetic hybrid electron model which is also useful

to avoid the “cancellation” problem in solving the parallel electric field [13, 14]

(while the “cancellation” is not a serious issue in the present study as well as
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in flux tube gyrokinetic Vlasov codes, such as GKV). In the present method,

we employ a kind of implicit-explicit (IMEX) scheme (see, for example, Ref.

[23]), where only the terms responsible for the wave propagation are implicitly

time-integrated while others are explicitly computed. This approach enables

an efficient time integration with a larger ∆t than the CFL limit in the low βe

regime of βe < me/mi.

Physical meaning and related numerical requirements contained in Eqs. (2),

(3), (8), and (9) become clearer by means of the Elsässer variables. When qi = e

and qe = −e, we can rewrite Eqs.(8)-(9) by using Eqs.(2) and (3) as

∂R

∂t
= −vp

∂R

∂z
− ne0

M

∂Te∥

∂z
(16)

∂L

∂t
= vp

∂L

∂z
− ne0

M

∂Te∥

∂z
. (17)

In Eqs.(16) and (17), the Elsässer variables R and L, the advection velocity of

the DAW vp, and an effective mass M are, respectively, defined by

R = ne0Ue∥ + vpne, (18)

L = ne0Ue∥ − vpne, (19)

and

vp =

√
Te0

M

1 + k2⊥ρ
2
s

k2⊥ρ
2
s

= cs

√
1 + k2⊥ρ

2
s

me

mi
k2⊥ρ

2
s + βe

= vA

√
1 + k2⊥ρ

2
s

1 + k2⊥δ
2
e

, (20)

where

M = me +mi
βe

k2⊥ρ
2
s

, (21)

and δe = c/ωp means the electron skin depth. Here, R and L represent the

DAW propagating in the positive and negative z-directions, respectively, with

modification by the parallel temperature gradient. Also, one should note that

vp = vte for βe = me/mi. Since Eqs. (16) and (17) are one-dimensional advec-

tion equations for R and L, application of an IMEX scheme is straightforward

and efficient. Restriction of the time step size due to the dispersive Alfvén wave
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propagation is now rewritten as vp∆t/∆z < 1. In the limit of βe → 0 and low

k⊥ρs, it reduces to ωH∆t < k∥∆z (or equivalently, vte∆t/k⊥ρs < ∆z), which

corresponds to the CFL condition of Cw < 1. Therefore, when ωH > k∥v∥max,

the DAW propagation limits the time step size of an explicit scheme. In the

following, we focus on the moment equations with the Elsässer variables, Eqs.

(16) and (17), since it is simpler and more efficient than those with ne and Ue∥,

that is, Eqs. (8) and (9). Indeed, a structure of the electron fluid equations be-

comes clearer in Eqs. (16) and (17). Also, decoupling the two equations of fluid

moments reduces the matrix dimension for the implicit solver by half. However,

the Elsässer variables are useful only in cases where one can analytically derive

the advection speed, vp. In addition, the use of R and L is not mandatory in

the ME method, while separation of ne, Ue∥, and he is essential. Actually, we

can construct the ME scheme for Eqs. (8) and (9), while we need to handle

the implicit matrix equation of 2N × 2N instead of N ×N where N means the

number of grid points in the z direction.

In the following, we employ the gyrokinetic (or gyrofluid) units with the equi-

librium (parallel) scale length L, the ion acoustic gyroradius ρs, the equilibrium

electron density ne0 and temperature Te0, and the electron thermal velocity vte.

For example, the perturbed electron density is normalized as ne = neL/ne0ρs.

Thus, a set of the normalized equations for the ME method is summarized as

∂he

∂t
= −v∥

∂

∂z

(
he − F eMT e∥

)
+
(
1− v2∥

)
F eM

∂Ue∥

∂z
(22)

∂R

∂t
= −vp

∂R

∂z
− 1

M

∂T e∥

∂z
(23)

∂L

∂t
= vp

∂L

∂z
− 1

M

∂T e∥

∂z
(24)

R = Ue∥ + vp ne (25)

L = Ue∥ − vp ne (26)
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T e∥ =

∫
v∥

2hedv∥ (27)

vp =

√√√√ 1

M

1 + k
2

⊥

k
2

⊥

(28)

and

M =

(
1 +mi

βe

k
2

⊥

)
. (29)

where mi = mi/me. Hereafter, we drop the overbar from the normalized quan-

tities for simplicity.

3. Time integration scheme

In the above, we have seen how to separate the terms responsible for the

DAW propagation from the drift kinetic equation. In order to reduce the com-

putational costs in the low βe regime (βe < me/mi), we employ an IMEX time

integration scheme, where the wave propagation (stiff) terms are time-integrated

implicitly and the other terms are solved explicitly. Equations (22)-(24) can be

expressed by

∂

∂t

 R

L

 = Sadv

 −R

L

+NT (he), (30)

∂he

∂t
= Nadv(he) +Ndiv (R+ L) (31)

where operators Nadv, Ndiv, Sadv, and NT are defined by

Sadv = vp
∂

∂z
, (32)

NT = − 1

M

∂

∂z

∫
dv∥v∥

2, (33)

Nadv = v∥

(
− ∂

∂z
+ FeM

∂

∂z

∫
dv∥v∥

2

)
, (34)
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Ndiv =
1

2

(
1− v∥

2
)
FeM

∂

∂z
, (35)

respectively. Sadv is an operator for the stiff terms which describe the wave

propagation, and the others are supposed to be non-stiff. The formal solution

of Eqs. (30) and (31) is given by the product of matrices and vectors such that
R (t+∆t)

L (t+∆t)

he (t+∆t)

 = exp {∆t (S +N )}


R (t)

L (t)

he (t)

 , (36)

where S and N consist of the matrix elements, and denote the operators for stiff

and non-stiff terms, respectively. According to the Strang’s symmetric product

for operators [24], the operator in Eq.(36) can be expanded as

exp {∆t (S +N )} = exp

(
∆t

2
S
)
exp (∆tN ) exp

(
∆t

2
S
)
+O

(
∆t2

)
, (37)

where

exp

(
∆t

2
S
)

=


−∆t

2 Sadv 0 0

0 ∆t
2 Sadv 0

0 0 1

 , (38)

and

exp (∆tN ) =


0 0 ∆tNT

0 0 ∆tNT

∆tNdiv ∆tNdiv Nadv∆t

 . (39)

Thus, the time integration is carried out in three steps. The first and the last

steps with S are solved implicitly, while the middle step with N is solved explic-

itly. Although calculation costs per a time step may increase, the total cost is

expected to decrease by taking a large ∆t. Here, we apply the second order mid-

point implicit rule to S, and the fourth order Runge-Kutta-Gill (RKG) scheme

is used for N . A higher order scheme is preferable for time-integration of the

non-stiff terms as it is inserted in the innermost step of the 2nd order splitting

scheme with the time-reversal symmetry so that the symmetry of the midpoint

implicit rule is approximately preserved. The fourth order RK method is cho-

sen, since it is used in several flux tube gyrokinetic codes. For the z derivative in
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these operators, the fourth order central finite difference is employed. In total,

the time integration scheme has the second-order temporal and the fourth order

spatial accuracy.

4. Correction to the equilibrium distribution

According to Eq.(13), the zeroth and first order moments of he should vanish.

The conservation holds if the even- (zeroth and second) and odd- (first) order

moments of the Maxwellian FM are equal to 1 and 0, respectively. However,

discretization in the finite velocity space causes numerical errors in computa-

tion of the zeroth and second order moments of FM . Even if the numerical

errors of low order moments of FM are around of 10−7 ∼ 10−5, accumulation

of the secular error during the time integration may influence the simulation

result. In order to minimize the error, we introduce a correction to the equi-

librium distribution function FMc = FM + F̃ , to satisfy
∫
FMcdv∥ = 1 and∫

v∥
2FMcdv∥ = 1 within the round-off error level. A similar requirement also

motivates to find discretization scheme that preserves the analytical equilibrium

for a Rosenbluth-Fokker-Planck collision operator [25].

To find F̃ , let us define the even order moments of the discretized Maxwellian

[FM ]j by means of the trapezoidal rule,

E0 =
∑
j

[FM ]j ∆v (40)

E1 =
∑
j

[
v∥

2FM

]
j
∆v (41)

and

E2 =
∑
j

[
v∥

4FM

]
j
∆v , (42)

where [f ]j ≡ f(v∥ = v∥j = j∆v) for an integer j. Here, we consider that F̃ is

given by a solution of a variational problem in a similar manner that one finds

in derivation of the Maxwellian distribution with the maximum entropy under

constraint of particle and energy conservation. A variational approach has also
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been pursued for implementation of the Landau collision operator for kinetic

plasma [26].

The target functional for the variational formulation is given by a discretized

version of the quadratic integral of the correction F̃ ,

E =

∫
dv

F̃ 2

2FM
. (43)

For a small perturbation from the Maxwellian, |F̃ | ≪ FM , it is straightfor-

ward to find that E corresponds to the second order deviation of the entropy∫
dv(−FMc lnFMc) from the equilibrium state,

−
∫

dvFMc lnFMc ≈ −
∫

dvFM lnFM −
∫

dv(1+lnFM )F̃ −
∫

dv
F̃ 2

2FM
. (44)

The first order deviation from
∫
dv(−FM lnFM ), that is, the second term on

the right hand side of Eq. (44), plays no role in the following variational formu-

lation as it can be absorbed into the Lagrangian multipliers as found below. A

discretized form of E is written as

E =
∑
j

[
F̃
]2
j

2 [FM ]j
∆v (45)

which is minimized under constraints of

E0 +
∑
j

[
F̃
]
j
∆v = 1 (46)

and

E1 +
∑
j

v2∥j

[
F̃
]
j
∆v = 1. (47)

By means of the Lagrange multipliers λ1 and λ2, we consider to minimize S,

S

([
F̃
]
j

)
=
∑
j

[
F̃
]2
j

2 [FM ]j
∆v − λ1

∑
j

[
F̃
]
j
∆v − (1− E0)


− λ2

∑
j

v2∥j

[
F̃
]
j
∆v − (1− E1)

 .

(48)
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The variational of S for
[
F̃
]
j
are represented by

δS =
∑
j


[
F̃
]
j

[FM ]j
− λ1 − v∥j

2λ2

∆v
[
δF̃
]
j

(49)

where
[
δF̃
]
j
means an arbitrary perturbation of

[
F̃
]
j
for each j. Requiring

δS = 0, a group of terms inside of the round brackets for each j in Eq.(49)

should cancel as
[
δF̃
]
j
is arbitrary. Thus,

[
F̃
]
j
can be obtained as[

F̃
]
j
=
(
λ1 + v∥j

2λ2

)
[FM ]j (50)

for each j. Substituting Eq. (50) into (46) and (47), one obtains expressions for

the Lagrange multipliers, λ1 and λ2. Then,[
F̃
]
j
=

(
(E2 − E1) + v∥j

2 (E0 − E1)

E2E0 − E1
2 − 1

)
[FM ]j . (51)

Thus, the numerical (or corrected) Maxwellian is obtained as

[FMc]j =
(E2 − E1) + v∥j

2 (E0 − E1)

E2E0 − E1
2 [FM ]j . (52)

Equation (52) confirms that the constraints of
∑

j [FMc]j ∆v = 1 and
∑

j v
2
∥j [FMc]j ∆v =

1 are satisfied within the round-off error level. According to the definitions

of E0, E1 and E2, the numerical values are estimated as E0 = 1 + O(ε),

E1 = 1 + O(ε), and E2 = 3 + O(ε), where ε denotes magnitudes of numer-

ical errors in computation of the integrals E0, E1, and E2. [It is known, or

is easily confirmed that the integral errors of the trapezoidal rule applied to

the Maxwellian distribution or its low order moments, such as E0, E1, and E2,

are quite small, that is, ε ≲ 10−3, if one employs moderate numbers of veloc-

ity grid points (for example, only 9 grids for 0 ≤ v ≤ 5vte)]. Thus, one finds

E2 − E1 ≈ 2 + O(ε), E2E0 − E1 ≈ 2 + O(ε), and E0 − E1 ≈ O(ε). From

(51), thus,
[
F̃
]
j
≈
[
O(ε)(1/2)(v∥j

2 − 1) +O(ε2)
]
[FM ]j . Indeed, the maximum

amplitude of F̃ for the present parameters is found to be negligible, that is,

F̃ = −2.5× 10−6 at v∥ = 0 for v∥max = 5vte and ∆v = (5/128)vte.

Table 1 shows errors in computation of the zeroth and the second order

moments of FM and FMc, where v∥max = 5vte, ∆v = (5/128)vte, and the
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FM FMc

1 - ( 0th order moment ) 5.2× 10−7 2.0× 10−16

1 - ( 2nd order moment ) 1.4× 10−5 < 1.0× 10−16

Table 1: Errors in computation of the zeroth and the second order moments of original (FM )

and corrected Maxwellian (FMc).

numerical integration is carried out by means of the trapezoidal rule. The

numerical accuracy is largely improved by means of the equilibrium distribution

FMc of which errors in moment calculations are in the round-off error level of

10−16. Numerical results applied to the ME method will be discussed in the next

section in terms of the conservation of the zeroth and the first order moments

of he.

5. Numerical results

Before testing the ME method, we survey the advection speed of the DAW,

vp, in Eq.(20) for mi = 1836.15 me on the βe - k⊥ρs space. Figure 1 shows

contours of log10(vp/vte). The parameter range where the vp exceeds v∥max

is found in the low-βe (electrostatic) regime of βe < 10−5 for v∥max = 5vte.

Especially, for βe < 10−7 and k⊥ρs < 10−2, vp becomes more than about 20

times of v∥max. Therefore, it is expected that the ME method with the IMEX

time integration scheme can largely reduce the computational costs in case with

long wave length modes of k⊥ρs < 10−2 in the low-βe electrostatic limit.

In the following, we evaluate numerical properties of the ME method applied

to propagation of DAWs. We calculate the time development of R, L and he

for a given initial condition, δfe(z, v∥, t = 0) = 0.01FMc cos z. Thus, ne(z, t =

0) = 0.01 cos z and Ue∥(z, t = 0) = he(z, v∥, t = 0) = 0. Figure 2 shows

snapshots of the real part of he in the z − v∥ space at t = 0, 0.001, 0.015, and

0.198 L/cs with k⊥ρs = 0.01 and ∆t = 5.0 × 10−6 L/cs, where −π ≤ z < π,

and −v∥max ≤ v∥ ≤ v∥max. Throughout the paper, we set v∥max = 5vte.

Grid spacing in the z and v∥ directions are ∆z = π/Nz and ∆v = 5v∥max/Nv,
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Figure 1: Contour plot of the phase velocity vp/vte in k⊥ρs - βe space, where the contour

levels are taken logarithmically, that is, log10(vp/vte).

respectively, with Nz = 32, and Nv = 128. Starting from the initial condition,

he develops through Eq. (22). It is found in Figs. 2 (b), (c) and (d) that the

distribution function is elongated due to the parallel motion with different v∥,

and then, an oscillation arises in the velocity space with a time-dependent scale

length in the v∥ space characterized by the ballistic motion of electrons.

Let us check conservation of the zeroth and the first order moments of he

normalized by the averaged values of ne and Ue∥,

hem0 =

√√√√∑i

∑
j |he i,j |2∆v∑
i |ne i|2

(53)

and

hem1 =

√√√√∑i

∑
j

∣∣v∥jhe i,j

∣∣2∆v∑
i

∣∣Ue∥ i

∣∣2 (54)

where subscripts i and j represent grid points in the spatial and velocity co-

ordinates, respectively. The long-time evolutions of the zeroth and first order

moments of he are also compared with those of the uncorrected Maxwellian case.

Figure 3 demonstrates that, for the uncorrected Maxwellian case, the normal-
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Figure 2: Phase space structures of Re(he) at (a) t = 0(L/cs), (b) t = 0.001(L/cs), (c)

t = 0.015(L/cs), and (d) t = 0.198(L/cs).

ized zeroth order moment grows to the order of 10−2, causing a non-negligible

error in calculation of the density perturbation. On the other hand, using the

corrected equilibrium distribution, FMc, the error is reduced to ∼ 10−10 at

t = 10 (L/cs). Conservation of the first order moments are also improved by use

of FMc. The result confirms that separation of the zeroth and the first order

moments from he is well maintained through out the numerical time-integration.

The correction to the Maxwellian is, thus, essential to the ME method.

As discussed in section 3, accuracy of the present scheme is second order

in time, because of the second-order midpoint implicit rule and the operator

splitting. In order to confirm the orders of numerical accuracy in space and

time, we define a measure of numerical errors, LE

LE =

√√√√∑i

∑
j

∣∣fi,j − f ref
i,j

∣∣2∑
i

∑
j

∣∣f ref
i,j

∣∣2 , . (55)

where subscripts i and j represent grid points in the spatial and velocity co-

ordinates, respectively. Figures 4 (a) and (b) show LE at t = 0.1364 (2π/ω)

for βe = 0 and 0.01, respectively. In these runs, other parameters are set to

Nv = 128, and k⊥ρs = 0.01. The initial condition is the same as those used in
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Figure 3: Time evolutions of (a) the zeroth and (b) the first order moments of he. Result

with the corrected Maxwellian FMc is compared with that of the uncorrected Maxwellian FM

case.

the above. The reference value, f ref
i,j , is obtained from a higher resolution run

with Nz = 256 and ∆t = 1.0×10−8. As shown in Fig.1, the cases for βe = 0 and

0.01 correspond to the wave-propagation and the advection velocity dominant

cases, respectively. It is found that LE is in proportion to (∆t)
2
for large values

of ∆t. In other words, LE is governed by errors due to the second order time

integration scheme. In contrast, the norm of errors is independent of the time

step size ∆t for small values of ∆t, where LE is in proportion to (∆z)4. The

results shown in Figs. 4(a) and (b) confirm the expected spatial and temporal

accuracy of the scheme.

The dispersion relation of the DAWs obtained by simulations with the ME

17



Figure 4: A measure of the numerical error, LE , is plotted as a function of ∆t with t =

0.1364 (2π/ω) (L/cs), δfe = 0.01FMc cos z, Nv = 128, Nz = 32, 64, and 128 for (a) βe = 0

and (b) βe = 0.01.

method is given in Figs. 5(a) and (b) for βe = 0 and 0.01, respectively. Here,

we set Nz = 32, Nv = 128, and employ the same initial condition as mentioned

above. In the case with βe = 0, the time step size is set to ∆t = 4.0×10−5 L/cs,

where the Courant numbers for the advection (Cv) and for the DAW propagation

(Cw) are 0.087 and 0.0175/k⊥ρs, respectively. On the other hand, the simulation

for βe = 0.01 is carried out with ∆t = 1.0 × 10−4 L/cs, which corresponds to

Cv = 0.218 and Cw = 0.218
√
1− 17.3615/ (18.3615 + k2⊥ρ

2
s). For the both

cases, one finds that frequencies and growth rates numerically obtained agree

well with the analytical results shown by the solid curves. It confirms that

18



Figure 5: Dispersion relation of the dispersive Alfvén waves for (a) βe = 0 and βe = 0.01

obtained by the moment extract method. The real frequency ω and the damping rate γ are

compared with the analytical results shown by solid curves.

the linear propagation and the Landau damping of the DAW can be correctly

simulated by means of the ME method without unphysical growth nor decay

due to numerical instability.

Figure 6 shows dependence of the real and imaginary parts of frequencies

on the Courant number for the DAW propagation Cw with k⊥ρs = 1.0× 10−2,

βe = 0 and Nz = 32. In this calculation, Cw = 1 corresponds to ∆t = 2.29 ×

10−5 L/cs. According to the definitions of Cv and Cw, we estimate Cv ∼

0.049Cw. It is noteworthy that the time-integration can be successfully carried

out even with much larger values of Cw than unity unless the parallel advection
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Figure 6: Observed wave frequency (ω) and damping rate (γ) for βe = 0 with k⊥ρs = 10−2

compared with the analytical estimate. Here, the vertical axis is scaled with factors of 10−3

and 103 for ω and γ, respectively.

term of electron motion limits the time step size. Figure 6 also shows that the

wave frequency is underestimated for the large values of Cw, while the time

integration is stably carried out. (Note that the damping rate γ of the DAW is

quite small in the present parameter regime of k⊥ρs = 1.0 × 10−2 and βe = 0,

and that the scale difference of 106 between ωr and γ is applied to the vertical

axis of Fig. 6.) The ME method with the IMEX integrator, thus, enables ones

to carry out time integration of the drift kinetic equation with much larger ∆t

than the CFL limit for the conventional explicit scheme in the low βe regime.

We have also compared computational time per a single time step between

the moment extract method with the IMEX integrator (combination of the

midpoint implicit rule and the fourth order RKG method) and the conventional

drift kinetic simulation solving Eqs. (1)-(3) by means of the RKG method.

The used grid numbers are (Nz, Nv) = (32, 128), respectively, and we run the

code 2, 000 steps with ∆t = 10−6 and βe = 0. The computational speeds are

nearly comparable (or the IMEX case was even slightly faster about 12 %). It

means that increase of the computational cost due to the implicit solver for the

fluid moment equations does not much influence the total performance, while

cost reduction in the moment calculation is an advantage. In the conventional
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approach, one must compute the charge and current density by means of the

velocity space integral of δfe while one needs only the temperature perturbation

computed from the second order moment of he. However, the computational

cost for the explicit scheme should be reduced if we employ a second order

explicit scheme. Nevertheless, the main advantage of the ME scheme is the

stability for a larger time step size than the CFL condition as shown in Fig. 6

in the case of βe < me/mi. In nonlinear drift wave turbulence simulations, the

most expensive computations (or internode communications as well) are devoted

to nonlinear terms (such as the E × B convection) with the spectral method.

Computational time used for the parallel advection is typically minor. Thus, if

we could take a larger time step size by means of the ME method, it should be

a figure of merit in reducing the total computational time, even with a slight

increase of computational costs per a single time step.

6. Concluding remarks

In this paper, we have discussed the moment extract (ME) method, where

the low order moment equations of electrons are separated from the drift ki-

netic equation (DKE) while the remnant part of the distribution function is

fully taken into account. The ME approach is analytically equivalent to the

original DKE, but has an advantage in the numerical time integration. As

the wave propagation is governed by the low order moment (fluid) equations,

the time integration can be efficiently carried out by decoupling the dispersive

Alfvén wave propagation and the thermal motion of electrons. Application of

the implicit solver to the low order moment equations realizes stable time inte-

gration of DKE with larger ∆t than that for the explicit scheme in the low-βe

regime of βe < me/mi. Also, the matrix size inverted for time-integration is

smaller than that of the full implicit scheme. It is expected that numerical

simulations of plasma instabilities such as the electrostatic ITG instability will

benefit from the present method because one does not need to take into account

of the limitation of ∆t due to the dispersive Alfvén wave propagation.
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For βe > me/mi, where the electron thermal velocity exceeds the DAW

advection speed, the CFL condition for the explicit time integration is given by

the parallel electron motion not by the DAWs propagation. In the case, we may

apply the semi-Lagrangian scheme (or the splitting scheme) [27, 28, 29] to Eq.

(15) with the ME approach, which should be useful to relax the limitation of

the time-step size due to the parallel electron motion.

For application of the present scheme to the drift wave instabilities and tur-

bulence , we need to extend the code so as to include effects of gyrokinetic ions,

the toroidal geometry, the finite collisionality, and the magnetic, diamagnetic

and E×B drifts. Time scales of drift waves with the perpendicular wavelengths

characterized by the ion acoustic or thermal gyroradius, such as the ITG modes,

are longer than that of the DAWs, when the ion acoustic or thermal speed is

slower than the Alfvén speed or the phase velocity of DAWs. As the time scales

of drift waves are given by the parallel and perpendicular motion of ion gy-

rocenters or the precession drift motion of electrons, stiffness of the governing

equations is brought by the parallel propagation of DAWs (or by the parallel

electron motion if βe > me/mi as discussed above). Thus, the perpendicular

drift terms, including the E × B nonlinear term, in the toroidal gyrokinetic

equation are regarded as non-stiff terms and may be handled by means of ex-

plicit integrators. Extensions to turbulence or toroidal systems remain for future

works.
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