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ABSTRACT
We estimated the residual entropy of Ice Ih by the recently developed simulation protocol, namely, the combination of the replica-exchange
Wang–Landau algorithm and multicanonical replica-exchange method. We employed a model with the nearest neighbor interactions on the
three-dimensional hexagonal lattice, which satisfied the ice rules in the ground state. The results showed that our estimate of the residual
entropy is in accordance with various previous results. In this article, we not only give our latest estimate of the residual entropy of Ice Ih but
also discuss the importance of the uniformity of a random number generator in Monte Carlo simulations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0038157., s

I. INTRODUCTION
After the experimental discovery that the Ice Ih has non-zero

residual entropy near zero temperature,1 the theoretical explanation
about the origin was proposed by the ice rules,2,3 which considered
the hydrogen bonds between water molecules in ice. The residual
entropy per water molecule S0 is proportional to the logarithm of
the number of degrees of freedom of the orientations of one water
molecule W0,

S0 = kB lnW0. (1)

Here, kB is the Boltzmann constant. The estimate by Pauling was
WPauling

0 = 1.5 and SPauling
0 = R lnWPauling

0 ≃ 0.806 [cal/(mol K)].3

Here, we have used R = 8.314 462 618. . . [J/(mol K)] for the gas
constant on the NIST website4 and the relation 1[cal] = 4.184[J]
(R = 1.9872[cal/(mol K)]). It was in accordance with the experi-
mental value SExperiment

0 = 0.82(5) [cal/(mol K)].1 Error bars in this
article are given with respect to the last digits in parentheses. How-
ever, it was shown that Pauling’s estimate was a lower bound by
Onsager and Dupuis5 and the advanced theoretical approximation
was obtained by Nagle.6

As for computational simulations, two simulation models (two-
state model and the six-state model), which satisfied the ice rules
in the ground state, were proposed and the value was estimated7–10

by the Multicanonical (MUCA) Monte Carlo (MC) method11,12 (for
reviews, see Refs. 13 and 14). After these simulation models were
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suggested, many research groups estimated the residual entropy
by various computational approaches for the last decade (see
Refs. 15–19). The estimates by computer simulations seem to be
equal to or more accurate than the theoretical estimate by Nagle.
Although the residual entropy of ice is becoming one of the good
examples to test the accuracy of simulation algorithms, there seem
to be small disagreements among the estimates. The exact residual
entropy of Ice Ih has yet to be obtained.

In this article, we present our latest estimate of the residual
entropy by the recently proposed MC simulation with the combina-
tion of the Replica-Exchange Wang–Landau (REWL) algorithm20,21

and Multicanonical Replica-Exchange Method (MUCAREM),22–24

which we refer to as REWL-MUCAREM.25 REWL-MUCAREM can
give us highly precise estimates of the density of states (DOS) and the
entropy under appropriate computational conditions. We employed
the two-state model.7 Our latest result is in good agreement with
the estimates by several research groups that used other simula-
tion methods. In addition, we also report that the uniformity of the
random numbers is important for MC simulations.

This article is organized as follows: In Sec. II, we summarize the
results of previous research studies briefly, and we explain the ice
model that we employed and the REWL-MUCAREM protocol. In
Sec. III, the simulation details are given. In Sec. IV, our results are
presented and the importance of random numbers is discussed, and
Sec. V is devoted to conclusions.

II. METHODS
A. Residual entropy

Figure 1 shows the hexagonal crystal structure of Ice Ih in two-
dimensional projections. Figures 1(a) and 1(b) correspond to the
projection to the xy-plane and the yz-plane, respectively. We assume
that the water molecules exist as H2O molecules in ice and hydrogen
atoms can occupy one of the two places on each bond according to
the ice rules in Refs. 2 and 3: (1) there is one hydrogen atom on
each bond and (2) there are two hydrogen atoms near each oxygen
atom.

Suppose that there are N water molecules. The number of
hydrogen atoms is 2N. The theoretical residual entropy S0 per water
molecule is defined by

S0 =
kB lnW

N
= kB lnW0, (2)

where

W = (W0)
N . (3)

Here, W is the total number of configurations of water molecules
that satisfies the two ice rules. By defining W0 as the number
of orientations per water molecule, Pauling estimated the value
to be3

WPauling
0 = 1.5. (4)

FIG. 1. Two-dimensional projection of Ice Ih. (a) Projection to the xy-plane and
(b) projection to the yz-plane. The scale is different from the actual Ice Ih struc-
ture for simplicity. nx , ny , and nz are the numbers of sites along the x, y,
and z axes, respectively. The total number of water molecules N is given by
nx × ny × nz . The red triangles imply that the lattice points exist above the xy-
plane, and the blue triangles imply that the lattice points exist below the xy-plane in
(a). Oxygen atoms are located on lattice points. The triangles in (b) also represent
the oxygen atoms. The dotted lines represent the hydrogen bonds pair of oxygen
atoms. The filled green circles are hydrogen atoms on chemical bonds. Hydro-
gen atoms can occupy one of the two places on each bond according to the ice
rules.

His strategy is as follows: ignoring the second ice rule (two hydrogen
atoms exist near each oxygen atom), 22N configurations can be con-
sidered because each hydrogen atom is given the choice of two posi-
tions on each bond. There are 16 arrangements of the four hydrogen
atoms around one oxygen atom, and only six arrangements can sat-
isfy the second ice rule. Thus, the total number of configurations W
that satisfies the ice rule (1) and ice rule (2) simultaneously is
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W = (WPauling
0 )

N
= 22N

× (
6

16
)
N
= (

3
2
)
N

. (5)

Equation (5) can be converted to the residual entropy as

SPauling
0 = kB ln(WPauling

0 )

= 0.805 74⋯[cal/(mol K)]. (6)

Onsager and Dupuis showed that WPauling
0 = 1.5 is in fact a

lower bound because Pauling’s arguments omitted the effects of
closed loops.5 Nagle used a series expansion method in order to
refine the theoretical estimate.6 The contribution coming from short
closed loops was taken into account counting the graphs of the loops
directly, and the effects of long loops were estimated by extrapo-
lation based on the results of short loops. The approximate value
was

WNagle
0 = 1.506 85(15), (7)

and

SNagle
0 = 0.814 80(20)⋯[cal/(mol K)]. (8)

Here, the error bar is not statistical but reflects higher-order cor-
rections of the expansion, which are not entirely under control.
In terms of theoretical approximation, another series expansion
method, which used numerical linked cluster (NLC) expansion, was
proposed.26

With the development of computer science, many research
groups have tried to estimate the residual entropy by various com-
putational approaches [for example, the thermodynamic integra-
tion method, Wang–Landau algorithm, and projected entangled-
pair states (PEPS) algorithm].15–19 However, there remain small
differences between these results. Here, we give our latest estimate
by the REWL-MUCAREM protocol in this article.

B. Models
We used the two-state model.7 In this model, we do not con-

sider distinct orientations of the water molecules [the ice rule (2) is
ignored] but allow two positions for each hydrogen nucleus between
two oxygen atoms [the ice rule (1) is always satisfied]. The total
potential energy E of this system is given by

E = −∑
i
f (i, b1

i , b2
i , b3

i , b4
i ), (9)

where i stands for the site number of oxygen atoms. The sum is over
all sites (oxygen atoms) of the lattice. The function f is defined by

f (i, b1
i , b2

i , b3
i , b4

i )

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2 for two hydrogen nuclei close to i
1 for one or three hydrogen nuclei close to i
0 for zero or four hydrogen nuclei close to i.

(10)

The ground state of this model fulfills the two ice rules completely.
The energy at the ground state Eground is − 2N. Because the normal-
ization [the total number of configurations ∑E n(E) is 22N , where
n(E) is the number of states at energy E] is known, MUCA sim-
ulations allow us to estimate the number of the configurations at
the ground state accurately by calculating the ratio of ñ(Eground) to
∑E ñ(E),

27 namely, we have

W = (W0)
N
= n(Eground)

= 22N
×
ñ(Eground)

∑
E
ñ(E)

. (11)

Here, ñ(E) is the unnormalized number of states obtained from
MUCA simulations.

C. Computational methods
We used an advanced generalized-ensemble MC algorithm that

we recently developed, REWL-MUCAREM.25 In this protocol, the
DOS (i.e., the inverse of the multicanonical weight factor) is first
determined roughly by a REWL simulation and then the DOS is
refined by repeating MUCAREM simulations.

A brief explanation of MUCA11–14 is now given here. The mul-
ticanonical probability distribution of potential energy PMUCA(E) is
defined by

PMUCA(E) ∝ g(E)WMUCA(E) ≡ const, (12)

where WMUCA(E) is the multicanonical weight factor, the function
g(E) is the DOS, and E is the total potential energy. By omitting a
constant normalization factor, we have

WMUCA(E) =
1

g(E)
. (13)

In MUCA MC simulations, the trial moves are accepted with the
following Metropolis transition probability w(E → E′):

w(E → E′) = min[1,
WMUCA(E′)
WMUCA(E)

]

= min[1,
g(E)
g(E′)

]. (14)

Here, E is the potential energy of the original configuration and E′ is
that of a proposed one. After a long production run, the best estimate
of the DOS can be obtained by the single-histogram reweighting
techniques,28

g(E) =
H(E)

WMUCA(E)
, (15)

whereH(E) is the histogram of sampled potential energy. Practically,
the WMUCA(E) is set to exp[−βE] at first and modified by repeat-
ing sampling and reweighting. Here, β is the inverse of temperature
T (β = 1/kBT).
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The Wang–Landau (WL) algorithm29,30 also uses 1/g(E) as the
weight factor, and the Metropolis criterion is the same as in Eq. (14).
However, g(E) is updated dynamically as g(E) → f × g(E) during
the simulation when the simulation visits a certain energy value E,
where f is a modification factor. We continue the updating until the
histogram H(E) becomes flat. If H(E) is flat enough, a next simu-
lation begins after resetting the histogram to zero and reducing the
modification factor (usually, f →

√
f ). The flatness evaluation can

be done in various ways. This process is terminated when the mod-
ification factor attains a predetermined value f final, and exp(10−8)
≃ 1.000 000 01 is often used as f final. Hence, the estimated g(E) tends
to converge to the true DOS of the system within this much accuracy
set by f final.

MUCA can be combined with the Replica-Exchange Method
(REM)31–33 for more efficient sampling (REM is also referred to as
parallel tempering.34). The method is referred to as MUCAREM.22–24

In MUCAREM, the entire energy range of interest [Emin,Emax] is
divided into M sub-regions, E{m}min ≤ E ≤ E{m}max (m = 1, 2, . . . ,M),
where E{1}

min = Emin and E{M}max = Emax. There should be some over-
laps between the adjacent regions. MUCAREM uses M replicas of
the original system. The weight factor for sub-region m is defined
by22–24

W{m}
MUCA(E) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

e−β
{m}
L E for E < E{m}min
1

gm(E)
for E{m}min ≤ E ≤ E

{m}
max

e−β
{m}
H E for E > E{m}max ,

(16)

where gm(E) is the DOS for E{m}min ≤ E ≤ E{m}max in sub-region
m, β{m}L = d ln[gm(E)]/dE (E = E{m}min ), and β{m}H = d ln[gm(E)]/dE
(E = E{m}max ). The MUCAREM weight factor WMUCAREM(E) for the
entire energy range is expressed by the following formula:

WMUCAREM(E) =
M

∏
m=1

W{m}
MUCA(E). (17)

After a certain number of independent MC steps, replica exchange is
proposed between two replicas, i and j, in neighboring sub-regions,
m and m + 1, respectively. The transition probability, wMUCAREM, of
this replica exchange is given by

wMUCAREM = min
⎡
⎢
⎢
⎢
⎢
⎣

1,
W{m}

MUCA(Ej)W
{m+1}
MUCA(Ei)

W{m}
MUCA(Ei)W

{m+1}
MUCA(Ej)

⎤
⎥
⎥
⎥
⎥
⎦

, (18)

where Ei and Ej are the energies of replica i and replica j before
the replica exchange, respectively. If replica exchange is accepted,
the two replicas exchange their weight factors W{m}

MUCA(E) and
W{m+1}

MUCA(E) and energy histograms Hm(E) and Hm+1(E). The final
estimate of the DOS can be obtained from Hm(E) after a long
production simulation by the multiple-histogram reweighting tech-
niques35,36 or weighted histogram analysis method (WHAM).36

Let nm be the total number of samples for the mth energy sub-
region. The final estimate of the DOS, g(E), is obtained by solving
the following WHAM equations self-consistently by iteration:22–24

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(E) =

M

∑
m=1

Hm(E)

M

∑
m=1

nm exp(fm)W{m}
MUCA(E)

,

exp(−fm) = ∑
E
g(E)W{m}

MUCA(E).

(19)

Repeating these MUCAREM sampling and WHAM reweighting
processes, we can obtain a more accurate DOS. Although the ordi-
nary REM is often used to obtain the first estimate of the DOS in
the MUCAREM iterations, we used the results of the REWL simula-
tion20,21 instead of the first REM run because REWL is stable and it
can give a more accurate DOS.

The REWL method is essentially based on the same weight fac-
tors as in MUCAREM, while the WL simulations replace the MUCA
simulations for each replica. This simulation is terminated when the
modification factors on all sub-regions attain a certain minimum
value f final. After a REWL simulation, M pieces of DOS fragments
with overlapping energy intervals are obtained. The fragments need
to be connected in order to determine the final DOS in the entire
energy range [Emin,Emax]. The joining point for any two overlapping
DOS pieces is chosen where the inverse microcanonical tempera-
ture β(= ∂ ln[g(E)]/∂E) coincides best.20,21 This connecting pro-
cess can be omitted in REWL-MUCAREM because the estimated
DOS from WHAM is used directly as the multicanonical weight
factor in MUCAREM. After repeating MUCAREM several times,
the DOS with high accuracy is obtained. In this article, additional
long MUCA production simulations were performed to obtain the
final DOS with the highest accuracy and estimate the error. The
MUCA weight factor for these production runs is determined from
the obtained DOS after the REWL-MUCAREM simulations [see
Eq. (13)].

III. COMPUTATIONAL DETAILS
The total number of water molecules N is given by nx × ny

× nz , where nx, ny, and nz are the numbers of sites along the x, y,
and z axis, respectively (see Fig. 1). The total number of sites (i.e.,
the total number of oxygen atoms) is N, and the total number of
hydrogen atoms is 2N. The values of nx, ny, and nz are restricted to
nx = 1, 2, 3, . . ., ny = 4, 8, 12, . . ., and nz = 2, 4, 6, . . . because we used
periodic boundary conditions. The total number of molecules con-
sidered was N = 128, 288, 360, 576, 896, 1600, 2880, and 4704. The
positions of hydrogen atoms were updated during MC simulations.
Energy values were collected after each MC step. One MC sweep is
defined as an evaluation of the Metropolis criterion 2N times.

The REWL-MUCAREM protocol was used in order to obtain
the DOS. It corresponds to the number of configurations n(E) at
E. In MUCA and WL simulations, it is necessary to determine
the entire energy range [Emin, Emax] before starting simulations.
We selected the values as follows: [Emin, Emax] = [−2N, −5N/4].
Here, Emin corresponds to the ground state and Emax corresponds
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to the energy value around which the entropy takes the maximum
value (see Fig. 2). Figure 2 shows the typical dimensionless entropy
[ln n(E)] per water molecule in Ice Ih, which was obtained by our
additional MUCA simulations for the system with N = 2880 under
the condition [Emin, Emax] = [−2N, 0]. The dimensionless entropy
takes the maximum value at E/N = −5/4. Thus, the inverse temper-
ature β takes the value 0 at Emax. Under the condition [Emin, Emax]
= [−2N, −5N/4], a flat MUCA probability distribution is realized in
−2N ≤ E ≤ −5N/4 and a canonical probability distribution at β = 0
is obtained for E > −5N/4. The n(E) was summed up to the maxi-
mum energy that was obtained during the simulations in order to
estimate the total number of configurations. Although it is desir-
able to take Emax = 0 in order to estimate W0 with high accuracy
according to our normalization, it is sufficient that Emax is −5N/4
because most of the configurations are distributed around E =−5N/4
and the number of configurations that takes much higher poten-
tial energy than E = −5N/4 can be neglected (see Fig. 3). Figure 3
shows the summation of n(E) that was normalized at Emin per water
molecule for the system with N = 128. It was summed up from Emin
to E (E is a certain energy value). The summation is saturated at
a little larger energy than E/N = −5/4. The difference between the
asymptotic value and the value 16/6, which is the inverse value of
Pauling’s estimate 6/16 [compare Eqs. (5) and (11)], represents the
effects of closed loops in Ref. 5. The inset in Fig. 3 shows the n(E)
directly. Most of the total number of configurations is distributed
around the peak. These results imply that the sum of the number
of states that takes much higher energy than E/N = −5/4 is suffi-
ciently small not to have an effect on our estimates of the residual
entropy. In fact, although we compared the estimate of W0 under
the condition [−2N, −5N/4] with the estimate under the condition
[−2N, 0] up to the N = 2880 system, the difference was small enough
within errors. As a result for [Emin, Emax] = [−2N, −5N/4], we could
obtain more samples at the ground state energy, which was most
important for the estimation of the residual entropy during MUCA
simulations.

FIG. 2. Typical dimensionless entropy ln n(E/N) per water molecule of Ice Ih as a
function of potential energy per site (E/N). The values were obtained by an addi-
tional REWL-MUCAREM simulation for the N = 2880 system. ln n(0) is set to ln(2)
because the possible configures at E = 0 are two. The entropy takes the maximum
value at the energy E/N = −5/4.

FIG. 3. The summation of n(E/N) from Emin to E for system N = 128. The value
is normalized at Emin per water molecule. The horizontal green line shows the
inverse of Pauling’s estimate (6/16). The summation is saturated around a little
larger potential energy than E/N = −5/4. The inset shows the n(E/N) we obtained.
Here, n(0) is set to 2. The horizontal orange line shows the total number of config-
urations (∑E n(E/N) = 22N). n(E/N) takes the maximum value at E/N = −5/4, and
most of the total number of conformations is distributed around the peak.

In the REWL and MUCAREM simulations, 4–32 replicas were
used depending on the number of water molecules. Each replica
performed a WL simulation in REWL and a MUCA simulation in
MUCAREM within their energy sub-regions, which had an over-
lap of about 80% between neighboring sub-regions. The replica
exchange criterion and WL flatness criterion were tested during the
simulations. The intervals for replica exchange and flatness tests
depend on the lattice sizes (see Table I). In the WL flatness crite-
rion of each replica, a flatness of Hmin/Hmax > 0.5 was considered
sufficient for stopping the recursion and restarting a next WL iter-
ation after resetting the recursion factor by f →

√
f . Here, Hmin

is the smallest value and Hmax is the largest value of the histogram
H(E). We iterated the f reducing process 20 times, and we set ffinal
≃ 1.907 35 × 10−6. Once a rough estimate of the DOS was obtained
by REWL, MUCAREM samplings and WHAM reweighting pro-
cesses were then iterated five times in order to get a more precise
DOS. The total number of MC sweeps for each MUCAREM was
2.0 × 107 sweeps.

After we obtained a DOS by REWL-MUCAREM, MUCA pro-
duction runs with the MUCA weight factor determined by the
obtained DOS were performed M = 32 times independently for eval-
uating the residual entropy and errors. Average values and errors
were obtained by the following standard formulas:

n(Emin) =

M

∑
i=1

n(Emin)
{i}

M
,

εn =

¿
Á
Á
Á
Á
ÁÀ

M

∑
i=1
(n(Emin)

{i}
− n(Emin))

2

M(M − 1)
.

(20)
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TABLE I. Initial conditions in REWL-MUCAREM simulations.

No. Replica Total MC sweeps Total MC sweeps
N nx ny nz of replicas exchangea WL criteriab for REWLc for MUCAREMd

128 4 8 4 4 250 500 8.150 × 104 2.0 × 107
× 5

288 4 12 6 8 250 500 2.795 × 105 2.0 × 107
× 5

360 5 12 6 8 250 500 2.850 × 105 2.0 × 107
× 5

576 6 12 8 16 500 1 000 4.410 × 105 2.0 × 107
× 5

896 7 16 8 16 500 1 000 1.334 × 106 2.0 × 107
× 5

1600 8 20 10 32 2500 5 000 2.530 × 106 2.0 × 107
× 5

2880 10 24 12 32 2500 5 000 5.110 × 106 2.0 × 107
× 5

4704 12 28 14 32 5000 10 000 1.637 × 107 2.0 × 107
× 5

aThe interval of replica exchange trial (MC sweeps) in REWL and MUCAREM.
bThe interval of WL criteria check (MC sweeps) in REWL.
cTotal MC sweeps per replica that are required for all WL weight factors f to converge to f final in REWL.
dTotal MC sweeps per each replica in MUCAREM. MUCAREM simulations were iterated 5 times.

Here, n(Emin)
{i} is a measured value from the ith MUCA produc-

tion simulation (i = 1, 2, . . ., M). The total number of MC sweeps
for measurement was 6.4 × 108 sweeps for each MUCA produc-
tion run. The single-histogram reweighting techniques in Eq. (15)
were employed in order to obtain the final estimates for W0 by
Eq. (11).

Random number generators have a large effect on the MC
method. In this article, the Mersenne Twister random number gen-
erator was employed.37 We used the program code on an open
source.38

IV. RESULTS AND DISCUSSION
A. Calculations of residual entropy

Figure 4 shows the time series of the energy-range index of
one of the replicas (replica 1) during the final MUCAREM simu-
lation for the N = 4704 system. Here, we used 32 replicas. The total

FIG. 4. History of the energy-range index (energy label) of one of the replicas
(replica 1) during the final MUCAREM simulation for N = 4704.

energy range [Emin, Emax] was divided into 32 sub-regions. Emin was
−9408 and Emax was −5880. The minimum energy label was 1, and
the maximum energy label was 32. It can be seen that replica 1 went
from label 1 to label 32 and came back many times. This means that
replica exchange worked properly. Figure 5 shows the time series of
the potential energy of one of the replicas (replica 1) for the same
simulation as in Fig. 4. The replica made a random walk in energy
space. There is a strong correlation between the energy-range index
in Fig. 4 and the potential energy in Fig. 5, as expected. The four
figures in Fig. 6 show the histograms of potential energy that were
obtained by the final MUCAREM simulation for the N = 4704 sys-
tem. Each energy label corresponds to the sub-region m (m = 1, 2,
3, 4). Although we used 32 sub-regions, the results for only the first
four sub-regions are shown in Fig. 6. Each histogram shows a flat
distribution.

Figure 7 shows the logarithm of our final DOS by the REWL-
MUCAREM protocol for N = 4704, and Fig. 8 shows the energy
histogram obtained after the MUCA production runs that used the

FIG. 5. History of the potential energy of one of the replicas (replica 1) during the
final MUCAREM simulation for N = 4704.
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FIG. 6. Histograms of potential energy obtained by the final MUCAREM simulation
of the water molecules N = 4704. Each energy label corresponds to the sub-region
m = 1, 2, 3, 4. Sub-regions have an overlap of about 80% between neighboring
sub-regions. Each histogram shows a flat distribution.

final DOS obtained from the final REWL-MUCAREM simulation
as the weight factor [see Eq. (13)]. The ideal MUCA weight factor
makes a completely flat histogram. The flatness values (Hmin/Hmax)
after MUCA production runs are listed in Table II, and the values are
larger than 0.8 in all systems. We remark that the flatness criterion
for our WL simulations was 0.5. It means that our estimate of the
DOS by the REWL-MUCAREM protocol is very accurate indeed.
Similar results were obtained in all system sizes.

The tunneling events during the MUCA production runs were
also counted. Here, a tunneling event is defined by a trajectory that

FIG. 7. The entropy as a function of energy E estimated by the REWL-MUCAREM
simulation for N = 4704. Here, the value of ln n(E) at E = −9408 is set equal to 0.

goes from Emin to Emax and back (or that goes from Emax to Emin
and back). Table II lists the total number of tunneling events of 32
independent MUCA production runs. A lot of tunneling events were
indeed observed in all system sizes. It implies that the observed con-
figurations changed dramatically during the simulation many times.
We conclude that our REWL-MUCAREM protocol and MUCA
production run worked properly from these results.

Our estimates of W0 are also listed in Table II. The values
obtained from Eq. (20) and the extrapolation are shown in Fig. 9.
We used the following form as an extrapolation formula:

W0(
1
N
) =W0(0) + a(

1
N
)
θ
. (21)

Here, θ ≠ 1 reflects bond correlations in the ground state.7 The final
estimate of WThis Work

0 [which is equal to W0(0) in Fig. 9] is given in
the second-to-last column in Table II. Although the data point for
the smallest lattice size (N = 128) was included in the fitting in our
previous works,7,10 this data point was not included in the fitting in

FIG. 8. Total histogram of potential energy obtained by the MUCA production
simulation for N = 4704. The entropy in Fig. 7 was used as the MUCA weight
factor.
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TABLE II. Estimated residual entropy of Ice Ih.

N nx ny nz Tunnelinga Flatnessb W0
c S0

c

128 4 8 4 7 637 621 0.990 68 1.528 623 7(338) 0.843 303 7(404)
288 4 12 6 1 603 919 0.972 33 1.517 599 2(309) 0.828 920 0(405)
360 5 12 6 1 019 315 0.947 45 1.515 599 5(314) 0.826 299 8(412)
576 6 12 8 412 944 0.954 16 1.512 784 5(264) 0.822 605 4(347)
896 7 16 8 180 083 0.944 47 1.510 963 7(237) 0.820 212 1(312)
1600 8 20 10 57 543 0.938 00 1.509 517 6(236) 0.818 309 3(311)
2880 10 24 12 18 577 0.913 32 1.508 649 1(313) 0.817 165 7(413)
4704 12 28 14 6 591 0.830 09 1.508 202 9(360) 0.816 577 9(475)
∞ Fitting 1.507 472 3(474)d 0.815 615 0(625)d

aThe total counts of observed tunneling events during 32 MUCA production runs.
bThe value of flatness (Hmax/Hmin) calculated by accumulating the histograms after 32 MUCA production runs.
cThe values in parentheses represent the errors obtained by 32 MUCA production runs and fitting using Eq. (20). The error bars for S0 and ΔS0 were calculated by ΔS0 = kBΔW0/W0 .
dThe data point for the smallest lattice size (N = 128) was not included in the fitting in Eq. (21). The errors of each estimate of W0 were considered in the fitting.

this article and in Fig. 9 because N = 128 is less than half of N = 288
and the results will be subject to large finite-size errors. In addition,
we used the errors of W0(1/N) as weights for fitting.

The final estimate is

W0(0) = 1.507 472 ± 0.000 047. (22)

This estimate converts into

S0 = 0.815 615 ± 0.000 063 [cal/(mol K)]. (23)

FIG. 9. The number of orientations of one water molecule W 0(1/N) at the ground
state as a function of the inverse of N. Error bars are smaller than the symbols.

The values of fitting parameters obtained by the MATHEMATICA
were a = 1.992 074 ± 0.119 366 and θ = 0.933 296 ± 0.011 084.

Some remarks are in order. Naturally, the final estimates in
Eq. (22) will somewhat depend on the selection of data points that
are included in the fitting, resulting in systematic errors. Our results
were, for instance, W0(0) = 1.507 401 ± 0.000 031 with no points
omitted, 1.507 409 ± 0.000 057 with the data for N = 128 and 288
omitted, and 1.507 480 ± 0.000 078 with the data for N = 128, 288,
and 360 omitted. Note that in these three cases, the ranges of values
within error bars overlap with those of the values in Eq. (22).

We want to compare our latest estimate of W0 with the results
of other research groups. In Fig. 10, the estimation values of W0
with their error bars are plotted. Various calculation methods for
S0 and W0 and their calculated values are summarized in Table III.
The results of Berg,7 Kolafa,16 Ferreyra,18 Vanderstraeten,19 and the
present work are consistent with each other within error bars. In
particular, three different computational approaches (PEPS algo-
rithm,19 thermodynamic integration,16 and REWL-MUCAREM)
give almost the same estimates.

FIG. 10. Evaluates of W 0 by several research groups. The shaded area (light blue
region) corresponds to the range of our final estimate.
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TABLE III. Comparisons of the estimates by various methods.

Group Methods W0 ΔW0 S0
a ΔS0

a

Nagle6 Series expansion 1.506 85 0.000 15 0.814 796 0.000 198
Berg7 Multicanonical algorithm 1.507 38 0.000 16 0.815 50 0.000 21
Berg10 Multicanonical algorithm 1.507 117 0.000 035 0.815 149 0.000 046
Herrero15 Thermodynamic integration 1.507 86 0.000 12 0.816 13 0.000 16
Kolafa16 Thermodynamic integration 1.507 467 4 0.000 003 8 0.815 610 3 0.000 0051
Ferreyra18 Wang–Landau algorithm 1.507 0 0.000 9 0.814 78 0.000 12
Vanderstraeten19 PEPS algorithm 1.507 456 0.815 595 3

This work REWL-MUCAREM 1.507 472 0.000 047 0.815 615 0.000 063

aWe used the relation S0 = R lnW0 , where R = 1.9872 [cal/(mol K)].

We remark that our previous evaluation10 in 2012 by MUCA
gives a value outside the error bars. However, we considered that our
latest estimate is more reliable than that of the previous one because
of the accuracy of the random number generator. The Metropolis
criteria based on the MUCA weight factor in Eq. (14) might not
have worked properly in large systems (especially, the system for
N = 2880) in 2012.10 Thus, we want to consider the effects
of the accuracy of random numbers on MC simulations in
Subsection IV B.

B. Validity of random numbers
There is no doubt that the quality of pseudo-random number

generators strongly affects the results of Monte Carlo simulations.
Pseudo-random number generators have their own characteristics,
for example, periodicity of random numbers. Here, we want to dis-
cuss the minimum values that can be generated by random number
generators and the effects on the MUCA MC simulations.

We compared two well-known pseudo-random number gen-
erators, namely, the Marsaglia pseudo-random number generator39

and Mersenne Twister pseudo-random number generator.37 The
Marsaglia generator was employed in our previous studies.7,9,10 The
Mersenne Twister generator was used in this work. The source codes
are found in Refs. 14 and 38.

In order to compare the accuracy of random numbers, pseudo-
random numbers were generated 1011 times by these generators. The
generated values less than 5.0 × 10−7 by the Marsaglia generator
(green dots) and Mersenne Twister generator (purple dots) are plot-
ted in Fig. 11. Although random numbers by the Mersenne Twister
generator seem to make a uniform distribution, we can see only a
discrete distribution by Marsaglia generators. The minimum ran-
dom number value by the Marsaglia generator was 0 and the next
minimum value was 5.9605 × 10−8. The random number seeds were
seed 1 = 11 and seed 2 = 20. It means that the Marsaglia generator
we employed cannot generate the values within (0, 5.9605 × 10−8) as
a random number. On the other hand, the minimum random num-
ber value by the Mersenne Twister generator (the random number
seed was 5489) was 4.9759 × 10−12 in our test, which is smaller than
the value 5.9605 × 10−8 by Marsaglia. We remark that the Mersenne
Twister generator we employed can generate 0, although we could

not observe 0 as the minimum random number value in this test
run.

In the two-state model, the transition probability w(X0 → X1)
= exp(−ΔS), where ΔS = ln n1 − ln n0, during MUCA simulations
from the ground state X0 to the first excited state X1 is shown in
Fig. 12. The inset in Fig. 12 shows the differences of the estimate of
entropy ΔS between the ground state (the value of entropy is ln n0)
and the first excited state (the value of entropy is ln n1). It is clear that
the difference becomes larger as the number of molecules increases.
Thus, the acceptance probability around the ground state becomes
small. The w(X0 → X1) is approximately e−16 (≃ 1.125 × 10−7) for
N = 4704. The Marsaglia generator will not work properly because
of the poor uniformity of random numbers. Hence, we may not have
obtained a proper estimate for N = 2880 in our previous work in Ref.

FIG. 11. Generated random numbers by the Marsaglia generator (green) and
Mersenne Twister generator (purple). Although the purple dots seem to be dis-
tributed uniformly, green dots only take nine discrete values [0, 0.596 05, 1.192 10,
1.788 15, 2.384 20, 2.980 25, 3.576 30, 4.172 35, and 4.768 40 (×10−7)].
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FIG. 12. Transition probability [ω(X0 → X1) = exp[−ΔS]] from the ground state
X0 (the estimated dimensionless entropy is ln n0) to the first excited states X1
(the estimated dimensionless entropy is ln n1) in the two-state model. Here, ΔS is
defined by ΔS = ln n1 − ln n0. The inset shows ΔS. The shaded area (light blue
region) corresponds to the range of the ordinate in Fig. 11.

10. This is the reason why our latest estimate of the residual entropy
{S0 = 0.815 615 ± 0.000 063 [cal/(mol K)]} in this article is different
from our previous result {S0 = 0.815 148 ± 0.000 047 [cal/(mol K)]}.
We remark that there is a sophisticated Marsaglia random num-
ber generator to alleviate the discrete problem by combining two
Marsaglia random numbers into one.14

V. CONCLUSIONS
Although the theoretical or experimental estimate is still diffi-

cult, the residual entropy of Ice Ih is becoming one of good models
for testing the accuracy of simulation algorithms because of the rapid
computational development in recent years. However, there seem to
be small disagreements among the results of these simulations. The
exact residual entropy of Ice Ih has yet to be obtained. In this article,
we estimated the residual entropy by the REWL-MUCAREM sim-
ulations. Our final estimate of the residual entropy S0 of Ice Ih is
S0 = 0.815 615 ± 0.000 063 [cal/(mol K)]. In order to estimate the
residual entropy with higher accuracy than our latest results, the cal-
culation of W0 on systems larger than N = 4704 will be necessary.
Although our final estimate is slightly different from that of the pre-
vious MUCA simulation in Ref. 10, it agreed well with the results of
several simulation groups, and three different computational groups
gave almost the same estimates. We also discussed the importance
of the uniformity of pseudo-random number generators.

The REWL-MUCAREM strategy can be useful to estimate the
DOS with high accuracy for the systems that have rough energy
landscapes, for example, spin-glass or protein systems. By combin-
ing with the reweighting techniques, detailed information about the
systems can be obtained. Moreover, the REWL-MUCAREM pro-
tocol can also be used in molecular dynamics (MD) simulations.

The problem of discrete random numbers in MC simulations can be
avoided by MD simulations. Perhaps, statistical temperature molecu-
lar dynamics (STMD) method40,41 or meta-dynamics algorithm,42–44

which has a close relationship to WL, will be useful together with
the REWL-MUCAREM. In this case, we can incorporate many
such techniques that improve the efficiency of sampling (see Ref.
45) into the REWL-MUCAREM MD. We hope that the REWL-
MUCAREM strategy will give us more reliable insights into complex
systems.
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