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ABSTRACT
The theory of solvation structure in an electronically polarizable solvent recently proposed by us, referred to as the “solvent-polarizable
three-dimensional reference interaction-site model theory,” is extended to dynamics in this study through the combination with time-
dependent density functional theory. Test calculations are performed on model charge-transfer systems in water, and the effects of electronic
polarizability on solvation dynamics are examined. The electronic polarizability slightly retards the solvation dynamics. This is ascribed to
the decrease in the curvature of the nonequilibrium free energy profile along the solvation coordinate. The solvent relaxation is bimodal,
and the faster and the slower modes are assigned to the reorientational and the translational modes, respectively, as was already reported
by the surrogate theory combined with the site–site Smoluchowski–Vlasov equation. The relaxation path along the solvation coordi-
nate is a little higher than the minimum free energy path because the translational mode is fixed in the time scale of the reorientational
relaxation.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0036289., s

I. INTRODUCTION

Chemical processes in solution proceed under both static
and dynamic effects of solvents. Static solvent effects refer to
the thermodynamic stabilization of the solute in solution through
the solute–solvent interaction, and the dynamic solvent effects
are related to the time profile of the solute–solvent inter-
action. An understanding of the latter is particularly impor-
tant in diffusion, charge-transfer reactions, and isomerization
reactions.

The dynamics of the solute–solvent interaction can be accessed
experimentally through the measurement of solvation dynamics.1–6

In solvation dynamics, the solute possesses two states: the ground
and the excited states. The solute–solvent interactions in the two
states differ from each other, and the transition energy between
these two states depends on the instantaneous configuration of
solvent molecules around the solute. The equilibrium solvation
structures of the two states also differ. After a sudden change in
the state of the solute, therefore, the solvation structure relaxes
to the equilibrium solvation of the final state, and the transition
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energy between these two states also relaxes. Even in equilibrium,
the transition energy fluctuates around its average value due to
the thermal motion of the surrounding solvent molecules. The
response of the transition energy to the change in the solute state
is related to the thermal fluctuation of the transition energy as per
the linear response theory, and both are referred to as “solvation
dynamics.”

When the ground and the excited states correspond to the
product and the reactant states of the charge-transfer reaction, the
solvation dynamics is regarded as the dynamics of the solvation
coordinate, which plays a crucial role in determining the reaction
rate. The charge-transfer reaction in polar solvents is strongly cou-
pled to the thermal fluctuation of the solvent, and the rate at which
the solvation structure changes to the configuration favorable to
the charge transfer is one of the important factors in determining
the overall rate constant. In polar solvation dynamics, where the
dipole moment of the solute changes upon transition between the
two states, the solvation dynamics is also related to the dielectric
friction on the translational diffusion of ions.6

Due to the importance of solvation dynamics, as described
above, numerous experimental studies on solvation dynamics in
solution have been carried out. Most include the use of pulsed lasers,
and a variety of experimental studies have been applied, includ-
ing fluorescence dynamic Stokes shift,4,5,7 transient hole-burning
spectroscopy,8 and photon echo,9 among others.

The solvation dynamics has also been targeted by various lev-
els of computational modeling.3 The simplest one is the dielectric
continuum model in which the response of the surrounding solvent
molecules is approximated as that of the dielectric material whose
frequency-dependent dielectric permittivity is characterized by that
of the bulk solvent.4,5 At the other extreme, fully atomistic molec-
ular dynamics (MD) simulation has also been applied to solvation
dynamics.10,11

Distribution function theories are important theories in that
they can provide a microscopic picture of solvation, handling only
the limited number of degrees of freedom of solvent molecules. The
distribution function theories were originally developed for equilib-
rium properties, where the equilibrium solvation structure and the
thermodynamic properties are calculated from the molecular struc-
ture and the intermolecular interaction by solving a set of integral
equations.12 One of the representative distribution function theo-
ries is the three-dimensional reference interaction-site model (3D-
RISM) theory, which has been applied to various systems, ranging
from small molecules to proteins in water.13 The extension of the
distribution function theory to solvation dynamics has been roughly
classified in two different ways. The first one is the surrogate the-
ory, which approximates the dynamics of solvent molecules around
the solute in terms of the intermediate scattering functions of the
bulk solvent by introducing the surrogate Hamiltonian that linearly
interpolates the initial and the final states.14–16 The second one is
the time-dependent density functional theory (TDDFT) in which
the dynamics of the solvation structure is related to the functional
derivative of the free energy with respect to the density field of the
solvent.17–19 An advantage of the latter is that it can include some
kinds of nonlinearity, whereas the former is an essentially linearized
theory.

In a series of our studies, we have developed the solvent-
polarizable 3D-RISM (sp-3D-RISM) theory, which extends the

conventional 3D-RISM theory to include the electronic polarizabil-
ity of solvent molecules.20,21 Our intention in developing this novel
theory is to treat the charge-transfer reaction in solvents, where elec-
trostatic interaction between the charge distribution of the solute
and the dipole moments (including both permanent and induced
ones) of the solvent is essential. In Paper I, we formulated a novel
integral equation theory to calculate the three-dimensional (3D) site
densities and the polarization charge densities of the solvent around
a solute.20 In Paper II, a nonequilibrium free energy profile of the
charge-transfer reaction was calculated using the sp-3D-RISM the-
ory.21 In this paper, we extend our sp-3D-RISM theory to dynam-
ics, which plays an important role in understanding charge-transfer
reactions.

As is the case for the conventional RISM theory,22 our sp-3D-
RISM theory can be formulated based on the density functional the-
ory.20 The free energy functional of the 3D-RISM theory, which is
a functional of the site density field, is extended to the functional of
both the site density and the site polarization charge in the sp-3D-
RISM theory. Both the site density and the site polarization charge
are then determined simultaneously to minimize the free energy
functional.

TDDFT describes the current of the site density in terms of the
functional derivative of the free energy functional. Therefore, given
the free energy functional of the equilibrium system, the extension
to dynamics can be performed in a relatively easy way through the
formulation of TDDFT. An important point to be noted is the differ-
ence in the time scales of the site density and the polarization charge.
The site density of the solvent relaxes slowly upon a change in the
external potential, whereas the response of the electronic polariza-
tion is instantaneous. In our present theory, therefore, the polariza-
tion charge is determined at each time to minimize the free energy
functional associated with a given transient site density, whereas the
current of the site density is related to the functional derivative of
the free energy functional, as performed in ordinary TDDFT.

Besides addressing the electronic polarization, this study
describes—to the best of our knowledge—the first numerical calcu-
lation of TDDFT for molecular liquids based on the interaction-site
model proposed by Yoshimori.19 Although Kasahara and Sato per-
formed numerical calculations of the 3D diffusive dynamics of a
lithium ion around a solute,23 their work was limited to the dynamics
of a monoatomic molecule in the limit of infinite dilution. They also
described the diffusive dynamics of diatomic molecular liquids from
the viewpoint of diffusion-controlled reactions, which was, however,
limited to the linearized dynamics.24

This paper consists of five sections. Section II describes the
combination of TDDFT with sp-3D-RISM theory. Computational
methods and the systems under consideration are presented in
Sec. III. The numerical results for solvation dynamics of charge-
transfer reaction systems are presented and the results are briefly
discussed in Sec. IV. Finally, we present our concluding remarks in
Sec. V.

II. THEORY
A. System under consideration

The system that we consider is a solution of infinite dilution,
composed of polyatomic molecules. The solute is spatially fixed. It
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is regarded as an external potential on solvent molecules. The sol-
vent molecules are assumed to be rigid. The intermolecular inter-
actions, both solute–solvent and solvent–solvent ones, are described
as the sum of the site–site interaction potentials. The solute–solvent
and solvent–solvent site–site potentials are isotropic and pairwise
additive. In particular, the potential of the solute on a solvent site
v is composed of short-range Lennard-Jones (LJ) and electrostatic
interactions as

uv(r) = uLJ
v (r) + QvVsolu(r), (1)

where Qv and Vsolu(r) stand for the partial charge on the solvent site
and the electrostatic potential due to the charge distribution of the
solute, respectively.

In the sp-3D-RISM theory, the electronic polarization of
the solvent is described by means of the charge-response kernel
(CRK).25,26 In the CRK model, Qv responds linearly to the electro-
static potentials on sites within the same molecule, Vv′ , as

Qv = Qvac
v +∑

v′
Kvv′Vv′ , (2)

where the matrix Kvv′ is referred to as CRK and Qvac
v stands for the

partial charge of the isolated molecule.
The average partial charge in the bulk solvent, Q0

v , devi-
ates from Qvac

v due to solvent–solvent electrostatic interactions. In
addition, the average partial charge around the solute is position
dependent, denoted as Qv(r), and its deviation from Q0

v defines
δΔQv(r) as

Qv(r) ≡ Q0
v + δΔQv(r). (3)

The sp-3D-RISM theory describes the equilibrium solvation struc-
ture of the solute in terms of δΔQv(r) and the distribution function
of the solvent site gv(r).

The problem we consider is the response of the solvent to the
instantaneous electronic excitation of the solute from the ground (g)
to the excited (e) states. The intramolecular geometry of the solute
is assumed to be independent of the electronic state, and uLJ

v (r)
does not change upon the electronic transition of the solute. On the
other hand, Vsolu(r) of the ground and the excited states, denoted
as Vg

solu(r) and Ve
solu(r), respectively, differ. In the dynamic fluores-

cence Stokes shift measurement, which is a representative experi-
ment of solvation dynamics, the time development of the transition
energy from the excited state to the ground state after the excitation
at time t = 0 is examined.

The transient distribution function of the solvent site, denoted
as gv(r, t), is equal to the equilibrium distribution in the ground
state, gg,eq

v (r), just after the electronic excitation, and it relaxes to
the equilibrium distribution in the excited state, ge,eq

v (r). The tran-
sient polarization charge on the excited state, denoted as δΔQe

v(r, t),
also changes with time, reflecting the relaxation of the solvation
structure.

Since the electronic polarization of the solvent responds instan-
taneously to the change in the electrostatic potential, the initial value
of δΔQe

v(r, t) is different from the equilibrium polarization charge
in the ground state, δΔQg,eq

v (r).

The transient transition energy from the excited state to
the ground state is the difference between the total energies of
the system before and after the virtual electronic transition to
the ground state. Since the electronic polarization of solvent fol-
lows the virtual electronic transition immediately, the polarization
charge after the transition, δΔQg

v(r, t), is different from δΔQe
v(r, t).

Therefore, the change in the total energy includes that of the
intramolecular electronic energy of the solvent and the solvent–
solvent electrostatic interaction, in addition to the intramolecular
electronic energy of the solute and the solute–solvent interaction
energy. Considering that the electronic polarization of the solvent
is linear to the electrostatic potential and that the solvent–solvent
electrostatic interaction is, at most, quadratic to the polarization
charge density, the transient transition energy, ΔE(t), is given as
follows:21

ΔE(t) = ΔEvac + ∫ dr[Vg
solu(r) − V

e
solu(r)][Q

0
v + δΔQe

v(r)]g
e
v(r)

+
1
2∫

dr[Vg
solu(r)−V

e
solu(r)][δΔQ

g
v(r)−δΔQ

e
v(r)]g

e
v(r).

(4)

Here, the first term stands for the electronic transition energy
in a vacuum, the second term means the change in the solute–
solvent electrostatic interaction energy if the polarization charge
density is fixed on the virtual transition, and the last term is
the energy associated with the relaxation of the polarization
charge.

B. Free energy functional of sp-3D-RISM theory
The free energy of the system is given as a functional of gv(r)

and δΔQv(r) as follows:20

F[{gv(r), δΔQv(r)}] = Ω0[{gv(r)}] + Ωpol[{gv(r), δΔQv(r)}]

+∑
v

ρv∫ drgv(r)uLJ
v (r) +∑

v

ρv∫ drgv(r)

× [Q0
v + δΔQv(r)]Vsolu(r), (5)

where ρv denotes the number density of the site v. The first term
of the right-hand side of Eq. (5) is the conventional free energy
functional of the 3D-RISM theory, which depends on the choice of
closure. The functional for the hypernetted-chain (HNC) closure is
given by

Ω0[{gv(r)}] = kBT∑
v

ρv ∫ dr[gv(r) ln gv(r) −
1
2
{hv(r)}2

− hv(r) +
1
2
hv(r)cv(r)], (6)

where kB and T denote the Boltzmann constant and the abso-
lute temperature, respectively. The definitions of the total correla-
tion function, hv(r), and the direct correlation function, cv(r), fol-
low those of the ordinary 3D-RISM theory. The functional for the
Kovalenko–Hirata (KH) closure is given by

Ω0[{gv(r)}] = kBT∑
v

ρv ∫ dr[Θ(−hv(r)){gv(r) ln gv(r)

−
1
2
{hv(r)}2

−hv(r)} +
1
2
hv(r)cv(r)], (7)
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where Θ(x) is the Heaviside step function, which is unity at x > 0
and zero at x < 0.

The second term of Eq. (5) is given by

Ωpol[{gv(r), δΔQv(r)}]

=∑

vv′
∬ ρvhv(r)Q0

vW(r, r′)ρv′gv′(r′)δΔQv′(r′)drdr′

+
1
2 ∑vv′
∬ ρvgv(r)δΔQv(r)W(r, r′)ρv′gv′(r′)δΔQv′(r′)drdr′

−
1
2 ∑vv′

∬ ρvgv(r)δΔQv(r)M−1
vv′(r, r′)

× ρv′gv′(r′)δΔQv′(r′)drdr’, (8)

where

W(r, r′) =
erf(α∣r − r′∣)
∣r − r′∣

, (9)

Mvv′(r, r′) = Kvv′⟨ρv(r)ρv′(r′)⟩s. (10)

The first term of the right-hand side of Eq. (8) stands for the elec-
trostatic interaction between the average and polarization charges
of the solvent molecules, and the second term does likewise
between polarization charges. The last term corresponds to the
intramolecular electronic energy of the solvent associated with the
distortion of the electronic distribution. The screening factor in
Eq. (9), erf(α|r − r′|), is introduced to exclude the self-interaction.
The subscript “s” of the angular bracket in Eq. (10) means
that only the correlation within the same molecule is taken into
account.

The third and the fourth terms of the right-hand side of Eq. (5)
correspond to the LJ and the electrostatic interactions between the
solute and the solvent, respectively.

C. TDDFT coupled with sp-3D-RISM theory
The TDDFT for molecular liquids based on the interaction-site

model was first formulated by Yoshimori for a nonpolarizable sol-
vent.19 In his theory, the time development of the site density follows
the conservation law as

ρv
∂gv(r, t)

∂t
= −∇ ⋅ jv(r, t), (11)

and the current density of the site v, denoted as jv(r, t), is related to
the functional derivative of the free energy functional as

jv(r, t) = −∑
v′
∫ dr′

Dvv′(r, r′)
ρv′kBT

⋅∇
′ δF[{gv(r, t)}]

δgv′(r′)
. (12)

The kernel function, Dvv′(r, r′), is a tensor that is given by
the time integral of the time correlation function of random
site currents. Hereafter, we refer to Dvv′(r, r′) as the “diffusion
kernel.”

In the solvent-polarizable case, the solvation structure around
the solute is characterized by the sets of the site distribution func-
tions, {gv(r)}, and the site polarization charges, {δΔQv(r)}. There-
fore, the extension of Yoshimori’s theory should provide the time
development of both functions.

Since the response of the electronic polarization of the solvent
is much faster than the nuclear motion of the solvent, it is consid-
ered to always keep its stable state for a given nuclear configuration
of the solvent. Therefore, we require that {δΔQv(r, t)} minimizes
F[{gv(r, t), δΔQv(r, t)}] at any time for {gv(r, t)}, given as

δF[{gv(r, t), δΔQv(r, t)}]
δδΔQv(r, t)

∣

gv(r,t)
= 0, (13)

which is equivalent to the equation that determines {δΔQv(r)} in the
sp-3D-RISM theory.

The conservation law, Eq. (11), must hold irrespective of
the electronic polarizability of the solvent. Equation (12) is also
employed in the solvent-polarizable case as

jv(r, t) = −∑
v′
∫ dr′

Dvv′(r, r′)
ρv′kBT

∇
′ δF[{gv(r, t), δΔQv(r, t)}]

δgv′(r′, t)
.

(14)

In the calculation of the functional derivative in Eq. (14), although
{δΔQv(r)} changes with {gv(r, t)}, in principle, {δΔQv(r)} can be
kept constant as long as Eq. (13) holds.

The substitution of Eq. (5) gives the functional derivative in
Eq. (14) as

δF[{gv(r, t), δΔQv(r, t)}]
ρvδgv(r, t)

∣

δΔQv(r,t)
= uCRK

v (r, t)+
δΩ0[{gv(r, t)}]
ρvδgv(r, t)

,

(15)

where uCRK
v (r, t) corresponds to the renormalized potential in the

sp-3D-RISM theory, defined as

uCRK
v (r, t) = uLJ

v (r) + Q0
vVsolu(r)

+
δΩpol[{gv(r, t), δΔQv(r, t)}]

ρvδgv(r, t)
∣

δΔQv(r,t)
. (16)

Furthermore, substitution of Eq. (6) into Eq. (15) yields

δF[{gv(r, t), δΔQv(r, t)}]
ρvδgv(r, t)

∣

δΔQv(r,t)
= ueff

v (r, t) + kBT ln gv(r, t),

(17)

where the effective potential for the HNC case is given by

ueff,HNC
v (r, t) = uCRK

v (r, t) + kBT[cv(r, t) − hv(r, t)]. (18)
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The effective potential for the KH case can also be derived in a
similar way as

ueff,KH
v (r, t) =

⎧
⎪⎪
⎨
⎪⎪
⎩

uCRK
v (r, t) + kBT[cv(r, t) − hv(r, t)], hv < 0

uCRK
v (r, t) + kBT[cv(r, t) − ln gv(r, t)], hv ≥ 0.

(19)

It should be stressed here that although the expressions of the
effective potential are given only for the HNC and the KH closures,
the theoretical formulation of our TDDFT is not limited to these
two closures. Given a closed analytical expression of the free energy
functional, we can derive the expression of the effective potential for
the corresponding closure in a similar way through the functional
derivative.

D. Local and diagonal approximation
of diffusion kernel

The diffusion kernel in Eqs. (12) and (14), Dvv′(r, r′), is non-
local, in principle, that is, the driving force at position r′ induces
diffusive current at a different position r. In addition, the diffusion
kernel can possess a nonzero off-diagonal component, which means
that the driving force on a site v′ results in the current of a dif-
ferent site v and that the driving force in one direction exerts the
site current in another direction. The derivation of such a diffu-
sion kernel is quite difficult, and its numerical treatment is almost
impossible. Therefore, some kind of approximation for the diffu-
sion kernel must be introduced to make our TDDFT numerically
tractable.

In this work, we employ a simple approximation as

Dvv′(r, r′; t) = ρvDT,vgv(r, t)δvv′δ(r − r′)1, (20)

where 1 stands for the unit tensor and DT,v denotes the transla-
tional diffusion coefficient of a molecule to which the site v belongs.
Equation (20) is equivalent to the approximation introduced by
Kasahara and Sato for the Smoluchowski equation for a diatomic
molecular liquid.24 This approximation becomes exact when
applied to the diffusive motion of monoatomic solutes of infinite
dilution.

The substitution of Eqs. (17) and (20) into Eq. (14) gives

jv(r, t) = −ρvDT,v[∇gv(r, t) +
gv(r, t)
kBT

∇ueff
v (r, t)]. (21)

Equation (21) coupled with Eq. (11) reduces to a simple diffusion
equation under the time-dependent effective potential, ueff

v (r, t). In
addition, Eqs. (11) and (21) reduce to the site–site Smoluchowski–
Vlasov (SSSV) equation27 when they are applied to the linear fluc-
tuation of the nonpolarizable solvent in the absence of an exter-
nal potential, although, for brevity, the proof is not included
here.

Considering that all the dynamics of one-component liquid is
scaled by a single parameter, DT, in this approximation, one may
consider that this approximation can only describe the translational
dynamics of the solvent, and the information on the rotational
motion is lost. As was discussed in detail on the dynamics of bulk

water,28 however, the reorientation of a molecule is described in
the interaction-site model as the correlated translational diffusion
of intramolecular sites, and our TDDFT with the local and diag-
onal approximation of the diffusion kernel can also capture the
reorientation of solvent in the same way. On the other hand, the
Markovian approximation in the time domain neglects the slow
friction on both translational and reorientational modes, which is
questionable for the reorientation of liquid water.29 The inclusion of
the slow memory is one of our future plans as will be discussed in
Sec. IV F.

III. COMPUTATIONAL DETAILS
The theory formulated in this study is applied to two model

systems. Both systems are aqueous solutions of infinite dilution
under ambient conditions, and the electronic polarizability of sol-
vent water is described by the CRK model. The CRK of water is
an input parameter in our sp-3D-RISM theory, which was taken
from the literature.26 The temperature and the number density
of the solvent water are 298.0 K and 0.033 34 Å−3, respectively,
and the self-diffusion coefficient of water, 2.3 × 10−9 m2/s, is
taken from an experiment under ambient conditions.30 The solute
of the first model system is a sodium (Na) atom, whose charge
changes from 0 to +e upon the instantaneous transition from the
ground to the excited states. The second solute is p-nitroaniline
(pNA), which experiences intramolecular charge transfer upon the
electronic transition. pNA is a push–pull type of aromatic dye
and has been used as a solvatochromic probe. It has also been
employed as a probe molecule of intramolecular charge-transfer
reactions and solvation dynamics.31–33 Using sp-3D-RISM theory,
the nonequilibrium free energy profiles of these systems were inves-
tigated in our previous study and detailed parameters are summa-
rized there.21 In both systems, the energy difference between the
two states in a vacuum, denoted as ΔEvac, is set to be zero, for
simplicity.

The initial solvation structure, that is, the equilibrium solvation
structure in the ground state, was calculated using sp-3D-RISM
theory.20 The final state, the equilibrium solvation structure in
the excited state, was also calculated in the same way for com-
parison with TDDFT calculation. In the sp-3D-RISM theory, the
partial structure factors of the neat solvent, together with the aver-
age partial charge of the bulk solvent, Q0

v , have to be determined
prior to the calculation on solute–solvent systems. The calculation
on neat solvent water was performed using the solvent-polarizable
reference interaction-site model (sp-RISM) theory proposed by
Naka and co-workers.34 The dielectrically consistent RISM (DRISM)
correction was introduced there to adjust the static dielectric con-
stant to be 78.5.35,36 In the calculation of the neat solvent, the
radial coordinate was discretized with a grid size of 0.01 Å and
a grid number of 16 384. The calculations on the equilibrium sol-
vation structures of solute–solvent systems were performed on
3D cubic grids. The number of grids is 1283 for both systems,
and the grid sizes are 0.5 Å for Na and 0.25 Å for pNA. The
value of α in Eq. (9) was set to be 0.5 Å−1, as in our previous
studies.20,21

The TDDFT calculation was performed on the same spatial grid
as the sp-3D-RISM calculation, with a time grid of Δt = 1 fs. The
boundary condition at the surfaces of the cell is given by
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∀v, t, gv(r, t) ≡ 1, (22)

allowing the site current into/out of the cell. The time propaga-
tion was performed using a partially implicit algorithm in which
gv(r, t) and ueff

v (r, t) on the right-hand side of Eq. (21) were eval-
uated at time t + Δt and t, respectively, for the time propagation
from t to t + Δt. The 3D diffusion was replaced with the alterna-
tion of 1D diffusions by means of the alternating direction implicit
(ADI) algorithm.23 The details of the time-propagation algorithm
are summarized in the supplementary material.

All calculations were conducted using the RISM integrated
calculator (RISMiCal) program package developed by us.37

IV. RESULTS AND DISCUSSION
A. Time-dependent response of transition energy

Figure 1 shows the time dependence of the transition energy
from the excited state to the ground state after the excitation at
t = 0, which corresponds to the dynamic Stokes shift in the tran-
sient fluorescence spectroscopy. The results of the Na atom and
pNA in water are plotted in Figs. 1(a) and 1(b), respectively. The

FIG. 1. Time dependence of the transition energy, ΔE(t) (red, right axis), and the
free energy, F(t) (black, left axis), of the (a) Na atom and (b) pNA in water after
excitation from the ground state to the excited state at t = 0. The horizontal dashed
lines indicate the corresponding equilibrium values at t = ∞ of ΔE(t) (red) and
F(t) (black).

transition energy increases with increasing time, reflecting the ener-
getic stabilization in the excited state. The equilibrium solvation
structure in the excited state was calculated separately using sp-
3D-RISM theory. The equilibrium value of the transition energy is
also shown in Fig. 1 (dashed lines), for comparison. The transition
energy almost converges to the equilibrium value within 2 ps in both
systems.

The relaxation of the transition energy is bimodal in both
systems. The faster relaxation occurs in the time scale of sev-
eral tens of femtoseconds, whereas the time scale of the slower
mode is several hundreds of femtoseconds. The bimodal relax-
ation is often observed experimentally in solvation dynamics in
solution.1,7 The theoretical calculation carried out by Nishiyama
and co-workers, using the surrogate and the SSSV theories, also
reported the bimodal relaxation.38 Comparing the solvation dynam-
ics of the two systems, the relative amplitude of the slower mode
of pNA is larger than that of the Na atom. Nishiyama and co-
workers reported that the relative amplitude of the slower mode
increases with increasing multipolar character of the electronic tran-
sition of the solute. Our present result is consistent with their
result.

Since our theory obtains the transient site distribution func-
tions, gv(r, t), and the transient site polarization charges, δΔQv(r, t),
at each time, we can calculate the transient free energy at the time
F(t) by substituting gv(r, t) and δΔQv(r, t) into the free energy
functional, Eq. (5). The calculation of the transient free energy dur-
ing solvation dynamics is almost impossible by MD simulation, and
the calculation of F(t) is one of the advantages of the TDDFT-based
theories over MD simulation.

The transient free energies of both systems are also plotted in
Fig. 1. The free energy decreases with time, as expected, and the val-
ues of F(t) at the longest time of our calculation (2 ps) are close to
those calculated by the equilibrium sp-3D-RISM theory. The trend
of the relaxation of F(t) follows that of ΔE(t). The relaxation is
bimodal, consisting of relaxation modes of several tens of femtosec-
onds and several hundreds of femtoseconds, and the relative ampli-
tude of the slower mode of pNA is larger than that of the Na atom.
The relationship between the relaxation dynamics of F(t) and ΔE(t)
will be discussed in Sec. IV E.

B. Dynamics of solvation structure and polarization
charge density

The time developments of gv(r, t) and δΔQv(r, t) of both sys-
tems are reported in this subsection. First, we examine the results of
the simpler system, the Na atom in water.

Figure 2 shows the time development of the site distribution
functions around the Na atom. The distribution functions just before
the excitation, t = −0 fs, and the final equilibrium state, t = ∞,
were calculated using the equilibrium sp-3D-RISM. Since the
nuclear motion of the solvent cannot follow the electronic transi-
tion of the solute immediately, the distribution functions just after
the excitation, t = +0 fs, are equal to those at t = −0 fs. Before
the transition, the solvation structure is not strong, and the orien-
tation of the solvent around the solute is almost random because
there is no electrostatic interaction between the solute and the sol-
vent. In the equilibrium state of the excited state, the first peak of
gO(r, t) is strengthened and shifted to shorter distance, reflecting
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FIG. 2. Transient site distribution functions of (a) O-atom and (b) H-atom of water
around the model Na atom. The functions at t =−0 fs and t =∞ were calculated by
equilibrium sp-3D-RISM theory, and those at t = 100 fs and 1000 fs were obtained
from the dynamics calculation. The values of t are indicated within the panels, and
the functions other than those at t = −0 fs are vertically shifted.

the strong attractive interaction between Na+ and the negatively
charged O-atom of water. The first peak of gH(r, t = ∞) lies at
longer distance than that of gO(r, t = ∞), which describes that
the H-atom of water in the first solvation shell orients to an outer
direction.

The relaxation of the solvation structure proceeds from the
equilibrium solvation of the neutral ground state to that of the
charged excited state. The transient solvation structures at t = 100
fs and 1000 fs are shown in Fig. 2. At t = 100 fs, the positions of
the first peak are close to the final state, whereas the second peaks at
the initial state remain at almost the same positions. Therefore, the
dynamics up to 100 fs corresponds to the reorganization of the first
solvation shell. At t = 1000 fs, the solvation structure at longer dis-
tance is also relaxed, and the qualitative features of gv(r, t) resemble
those of the final equilibrium state.

The site polarization charge densities around the Na atom at
various times, δΔQv(r, t)gv(r, t), are shown in Fig. 3. The electronic
polarization around the neutral Na atom, t = −0 fs, is marginal,
whereas the solvent experiences strong electronic polarization in the
equilibrium solvation state, t =∞, as expected. Since the electronic
polarization of the solvent can respond to the electronic transition
of the solute immediately, strong polarization is observed in the
first solvation shell just after the electronic transition of the solute,
t = +0 fs.

The nuclear distribution of the solvent at t = +0 fs is fixed to
that at t = −0 fs. The orientation of water in the first solvation shell is

FIG. 3. Transient site polarization charge densities, δΔQv (r , t)gv (r , t), of the (a)
O-atom and (b) H-atom of water around the model Na atom. The values of t are
indicated within the panels. The functions at t = −0 fs, +0 fs, and t = ∞ were
found using equilibrium sp-3D-RISM calculation, and those at t = 100 fs and 1000
fs were obtained from the dynamics calculation. The functions other than those at
t = −0 fs are vertically shifted.

relatively random, and some water molecules orient their H-atoms
toward the solute. When the solute Na atom is suddenly charged to
+e, with keeping the orientation of the solvating water, the H-atom
in contact with the Na atom experiences strong negative polariza-
tion, which explains the strong negative peak of δΔQH(r, t)gH(r, t)
at t = +0 fs and r = 2.2 Å, as shown in Fig. 3(b). After the reori-
entational relaxation of water in the first solvation shell, t = 100 fs,
the negative polarization on the H-atom is reduced, whereas the
negative polarization on the O-atom is strengthened, as shown in
Fig. 3(a). The positions of the peaks of the polarization charge den-
sity also shift following the peak shift of the site distribution func-
tion, gv(r, t), as shown in Fig. 2. The changes in the polarization
charge densities after 100 fs appear small in Fig. 3. This is because
the electronic polarization is limited to almost within the first solva-
tion shell. Although the reorganization of the long-range structure
occurs after 100 fs (as shown in Fig. 2), it is hardly reflected in
the polarization charge density because little electronic polarization
exists there.

The relaxation of the site distribution around the pNA solute
is shown in Fig. 4. Only the in-plane contour plots are shown there,
for simplicity. The difference in the equilibrium solvation structures
of the ground and the excited states, t = −0 fs and∞, respectively, is
relatively small because the change in the partial charges of the solute
is not large. A remarkable difference is found in gH(r, t) around
the nitro group. Weak distribution of the H-atom around the nitro
oxygen is found at t = −0 fs [Fig. 4(e)], whereas it disappears at
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FIG. 4. In-plane contour plot of the site distribution function around pNA, gv (r , t).
Distributions of the O-atom are shown in panels (a)–(d) and those of the H-atom
are shown in panels (e)–(h). The values of t are +0 fs [(a) and (e)], 100 fs [(b) and
(f)], 1000 fs [(c) and (g)], and∞ [(d) and (h)].

t = ∞ [Fig. 4(h)]. The distribution of the H-atom is interpreted as
the hydrogen bond between the H-atom of the solvent water and the
nitro oxygen of the solute pNA, and the change in the strength of
the hydrogen bond is ascribed to the decrease in the negative partial
charge on the nitro oxygen.

The distribution of the H-atom around the nitro oxygen
decreases with time, as seen in Figs. 4(f) and 4(g). Upon comparing
gH(r, t) at 1000 fs with that at t =∞, it is evident that the distribution
associated with the hydrogen bond is stronger in the former, which
may be related to the slower component of the solvation dynamics
[see Fig. 1(b)]. Although the corresponding relaxation dynamics of

the O-atom is present, it is difficult to recognize in Figs. 4(a)–4(d)
because the magnitude of the change is weak. The detailed struc-
tural relaxation around pNA will be discussed in Sec. IV D in terms
of gv(r, t) − gv(r, t =∞).

The site polarization charge densities around pNA at vari-
ous times are plotted in Fig. 5. The in-plane contour plots are
exhibited there, as is the case of the site distribution functions in
Fig. 4. The strong negative polarization of the O-atom is found
around the amino group in Figs. 5(a)–5(d), whereas the polariza-
tion charge density of the H-atom is positive around the nitro group
in Figs. 5(e)–5(h). Both polarizations are ascribed to the solute–
solvent direct hydrogen bond. The amplitudes of these polarization

FIG. 5. In-plane contour plot of the site polarization charge density around pNA,
δΔQv (r , t)gv (r , t). Polarization charges on the O-atom are shown in panels (a)–
(d) and those on the H-atom are shown in panels (e)–(h). The values of t are +0 fs
[(a) and (e)], 100 fs [(b) and (f)], 1000 fs [(c) and (g)], and∞ [(d) and (h)].
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charge densities vary with time, reflecting the time development of
the site distribution functions shown in Fig. 4. This demonstrates
that our present theory can provide detailed dynamics of the 3D
solvation structure, including the electronic polarization of solvent
molecules.

C. Comparison with solvation dynamics without
electronic polarization of solvent

We now examine how the electronic polarization of the sol-
vent affects the solvation dynamics. The transient transition energy,
ΔE(t), is separated into three terms in Eq. (4). The first term is
the transition energy in a vacuum, which is invariant during the
solvation dynamics, and assumed to be zero in this study. The sec-
ond term is the change in the solute–solvent electrostatic inter-
action under the condition that the polarization charge density
does not respond to hypothetical electronic transition at each time,
and the third term is ascribed to the relaxation of the electronic
polarization of the solvent. In Fig. 6, the contributions of the sec-
ond and the third terms are plotted separately for the Na atom in
water.

Figure 6 demonstrates that the contribution of the second term
is dominant. The relaxation of the polarization charge density makes
a negative contribution because it stabilizes the state after the virtual
transition, and its contribution is hardly dependent on time. These
tendencies are also observed for pNA in water, although the results
are not shown (for brevity).

We calculated the nonequilibrium free energy profiles of the
same systems in our previous study.21 The division of the free
energy profile into the fixed polarization and the polarization relax-
ation terms was also performed there. The contribution of the lat-
ter was small, and almost constant, along the solvation coordinate.
Therefore, the constant contribution of the third term is consis-
tent with the nonequilibrium free energy profile in our previous
study if we regard the solvation dynamics as the relaxation along the
nonequilibrium free energy profile. The validity of this picture will
be examined in Sec. IV E.

FIG. 6. Transient transition energy of the Na atom in water (CRK), separated
into the contributions of the second (CRKnorelax) and the third [ΔΔE(t)] terms
of Eq. (4).

The numerical calculations of the solvation dynamics of both
systems were also performed without including the electronic polar-
ization of the solvent in the calculation of solute–solvent sys-
tems in order to examine the effects of the electronic polariza-
tion on the solvent dynamics. In these calculations, the partial
charges on the solvent sites are determined using sp-RISM the-
ory for the neat solvent, taking the electronic polarization into
account.

In both systems, the electronic polarization of the solvent
slightly retards the solvation dynamics, as demonstrated in Fig. 7.
The retardation effects on ΔE(t) and F(t) are similar, and the degree
of the retardation is about 10%–20%. The weak retardation of the
solvation dynamics by the electronic polarization of the solvent can
be explained qualitatively in two different ways. The first is based
on the continuum dielectric model.1,39 In the monopole case as
the Na atom in water, dielectric continuum theory predicts that
the solvation time is equal to the longitudinal dielectric relaxation
time, τL, which is related to the dielectric relaxation time, τD, as
follows:5

τL =
ϵ∞
ϵ0

τD. (23)

FIG. 7. Transient transition energy, ΔE(t), and free energy, F(t), of the (a) Na
atom and (b) pNA in water. The dynamics with (black, CRK) and without (red,
noCRK) the electronic polarization for the solute–solvent systems are compared.
The relaxation functions are normalized to their respective absolute values of the
difference between t = +0 and∞.
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The dielectric constants in the high-frequency (optical) and the zero-
frequency limits are denoted here as ϵ∞ and ϵ0, respectively. Assum-
ing that the dielectric relaxation time, τD, is not affected by the elec-
tronic polarization, τL is increased in an electronically polarizable
solvent by ϵ∞ because ϵ∞ = 1 in an electronically nonpolarizable
system. The value of ϵ∞, derived in our previous study, is 1.25,20

which suggests that the electronic polarization retards the solvation
dynamics by about 25%.

Another qualitative explanation is the decrease in the curva-
ture of the nonequilibrium free energy profile. We have evaluated
the nonequilibrium free energy profiles of the present systems in
our previous study as a function of z, the parameter that character-
izes hypothetical states between the ground and the excited states.21

We found that introduction of the electronic polarization of the
solvent decreases the curvature of the free energy profile by about
10%–20%. Since the curvature of the free energy profile describes the
thermodynamic effective force to restore the solvation structure, the
decrease in the curvature is expected to increase the solvation time
through the decrease in the restoring force. The two explanations
above would have the same physical origin because the curvature of
the nonequilibrium free energy profile is related to ϵ∞ in a dielectric
continuum model.

The experimental value of ϵ∞ of water under ambient con-
ditions is 1.78, and the CRK model and the sp-3D-RISM theory
underestimate ϵ∞ for several reasons.20 Therefore, based on the idea
above that the retardation of the solvation dynamics by the elec-
tronic polarization is related to the longitudinal dielectric relaxation
time and the curvature of the nonequilibrium free energy profile, the
retardation in real systems is expected to be larger than that in the
present calculation.

D. Assignments of bimodal relaxation
The assignments of the fast and the slow modes of the solvation

dynamics, as shown in Fig. 1, are now discussed. The origin of the
larger relative amplitude of the slower mode of pNA compared with
that of the Na atom is also analyzed.

The transient site distribution functions around the Na atom
are subtracted by the corresponding functions at t = ∞ and plot-
ted in Fig. 8. The oscillations of the functions of the O- and H-
atoms at t = 0 are antiphase to each other, particularly within the
first solvation shell, indicating that the orientational mode within
the first solvation shell is strongly coupled to the electronic transi-
tion of the solute.27,28,40 After 100 fs, the strong oscillation within
the first solvation shell is diminished, whereas the relaxation of the
distributions at large distances is not so remarkable. Therefore, the
relaxation from t = 0 fs to 100 fs is mainly assigned to the reori-
entation of water within the first solvation shell. At t = 1000 fs, on
the other hand, oscillations of the remaining distributions of the
O-atom and the H-atom are in-phase with each other, and the con-
tribution of the longer distance is strong. The slower mode of the
solvation dynamics is thus assigned to the long-range translational
diffusion.

Nishiyama and co-workers analyzed the solvation dynamics of
multipolar solutes in a polar solvent using surrogate theory cou-
pled with the SSSV theory.38 Based on the division of the collective
intermediate scattering function into the translational and the reori-
entational modes, they assigned the faster and the slower relaxation

FIG. 8. Difference in the transient site distribution functions around the Na atom
from the equilibrium distribution in the excited state, gv (r , t) − gv (r , t =∞). The
distributions of the O- and H-atoms are plotted with red and blue curves, respec-
tively. The functions at different times are shifted vertically, and the values of t are
indicated in the figure. The distribution functions at t = 1000 fs have been magnified
by multiplying by 10 (top curves).

modes to the reorientation and the translation of the polar sol-
vent, respectively. Our present assignment is thus consistent with
that of Nishiyama and co-workers, which is to be expected, con-
sidering that the local and diagonal approximation for the diffu-
sion kernel leads to the SSSV theory for the intermediate scattering
function.

The difference in the transient site distribution function from
the equilibrium one is shown for pNA in Fig. 9. The in-plane
distributions of the O- and H-atoms are shown separately as
contour plots. The large reorganization of the distribution of the
H-atom is observed around the nitro group (as demonstrated ear-
lier, see Fig. 4). It is assigned to the decrease in the strength of
the hydrogen bond between the H-atom of water and the nitro
oxygen of pNA. An interesting point is that the excess distribu-
tion of the O-atom around the nitro group is also positive at
t = +0 fs, which means that the reorganization of the solvation struc-
ture around the nitro group possesses a translational nature. The
strong contact distribution of the H-atom around the nitro group
decreases from t = +0 fs to 100 fs, whereas the diffuse distribu-
tion of the O-atom slightly increases. This may be ascribed to the
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FIG. 9. Difference in the transient site distribution functions around pNA from the
equilibrium distribution in the excited state, gv (r , t) − gv (r , t =∞). The in-plane
distributions of the O- and H-atoms are plotted in panels (a)–(c) and (d)–(f), respec-
tively. The values of time are +0 fs [(a) and (d)], 100 fs [(b) and (e)], and 1000 fs
[(c) and (f)].

reorientation of water in contact with the nitro group. The remain-
ing positive distributions of both atoms relax through the slow mode
after 100 fs. The fast and the slow modes of the solvation dynam-
ics of pNA are also assigned to the reorientation and the transla-
tion of water, as in the case of the Na atom. The reason for the
larger relative amplitude of the slower mode compared with that
of the Na atom is that the reorganization of the solvation struc-
ture of pNA possesses larger translational character, as shown in
Fig. 9.

E. Relaxation path along the nonequilibrium free
energy profile

A charge-transfer reaction in solution occurs under the
dynamic fluctuation of the solvent, which is described as the motion
along the solvation coordinate. The solvation coordinate is a collec-
tive dynamic mode of the solvent. The transition energy between
the reactant and the product states is often employed as the solva-
tion coordinate. In our previous study, we calculated the nonequi-
librium free energy profile along the solvation coordinate.21 In

the present study, the time profiles of the transition energy and
the transient free energy are evaluated. Since solvation dynamics
is regarded as the collective dynamics along the solvation coor-
dinate, the relationship between ΔE(t) and F(t) is expected to
follow the nonequilibrium free energy profile if the relaxation of
the solvation structure proceeds along the minimum free energy
path.

The relaxation paths obtained by our present TDDFT calcu-
lation are compared with the nonequilibrium free energy profiles
in Fig. 10. In both systems, the transient free energy is slightly
higher than that of the nonequilibrium free energy profile. The
relaxation paths comprise two parabolas, which are assigned to
the faster and the slower modes, respectively. The second parabola
is small in the Na atom case, whereas it is approximately as
large as the first parabola in the pNA case, which corresponds
to the larger relative amplitude of the slower mode of pNA, as
shown in Fig. 1. These characteristics are qualitatively the same
for systems without inclusion of the electronic polarization of the
solvent.

FIG. 10. Relationships between ΔE(t) and F(t) of the (a) Na atom and (b) pNA
in water. The results of TDDFT calculation in this study are plotted with the red
curves, while the nonequilibrium free energy profiles are shown with the blue
curves. The left and the right ends of the curves represent the initial and the final
equilibrium states, respectively, and the relaxation proceeds from the left to the
right.
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The deviation of the relaxation path from the nonequilib-
rium free energy profile can be explained in the following way.
The fast and the slow relaxation modes of the solvation dynam-
ics are assigned to the reorientation within the first solvation shell
and the long-range translational diffusion. The nonequilibrium free
energy profile is the relaxation path on which both the reorienta-
tional and the translational modes relax simultaneously. In the sol-
vation dynamics, on the other hand, the translational mode is almost
frozen during the fast reorientational relaxation. Therefore, the
relaxation must take a path whose free energy is higher than the min-
imum free energy path. On completion of the reorientational relax-
ation, the translational mode decays toward the stable equilibrium
state.

F. Future perspective
Based on the combination of the sp-3D-RISM theory with

TDDFT, we proposed an analytical theory to calculate the
time-dependent 3D distribution of the polarization charge den-
sity of an electronically polarizable molecular solvent around
a solute. The theory was then applied to two model sys-
tems. The numerical results that were obtained were physically
reasonable.

However, our approximation for the diffusion kernel, the local
and the diagonal one, is quite primitive, and some important physics
of solvation dynamics might have been lost. First, the inertial
nature of the initial dynamics is not captured by the present the-
ory because of the diffusive approximation.41 Second, the momen-
tum density does not behave as a conserved quantity, which then
affects the long-range and long-time dynamics of the translational
mode.42 Third, memory effects on the collective dynamics of the
solvent, especially on the reorientational mode of water, are not
included.29

These weak points are common to the surrogate theory coupled
with the SSSV theory because our present theory reduces to SSSV
theory when it is applied to the linear fluctuation of the bulk sol-
vent. In the case of the intermediate scattering function of the bulk
solvent, the replacement of the SSSV theory by the mode-coupling
theory (MCT) can overcome these problems.43,44 In MCT, the iner-
tial dynamics is captured by treating the momentum density as an
explicit variable. The memory kernel on the translational momen-
tum density is proportional to the square of the wavevector in the
low-wavevector limit. The slow memory is described as the bilin-
ear form of the intermediate scattering functions. The combina-
tion of the surrogate theory with MCT has already been proposed
by Nishiyama and co-workers; they obtained improved numerical
results of solvation dynamics in molecular solvents.45 Therefore,
the combination with MCT would be a possible route to improve
the description of the collective dynamics of the solvent in our
theory.

Another possible improvement is the inclusion of the elec-
tronic polarizability of the solute. The electronic polarization of
the solute, in addition to that of the solvent, is known to affect
the nonequilibrium free energy profile of a charge-transfer reac-
tion.46,47 The conventional 3D-RISM theory has been employed
as a tool to treat the solvent effects in quantum chemical
calculations—then referred to as the “3D-RISM-SCF theory.”13,48–50

The combination of our sp-3D-RISM theory with quantum chemical

calculations is now in progress, within our group, to include the sol-
vation through the electronic polarization of the solvent into the 3D-
RISM-SCF theory. The electronic polarization of the solute induced
by the reaction field from the solvent is automatically included in
the 3D-RISM-SCF theory. The calculation of the electronic struc-
ture of the solute at each time step of the dynamics calculation will
make it possible to describe the relaxation of the electronic polariza-
tion of the solute. The calculation of the transient electronic struc-
ture has already been performed by Ishida and co-workers using a
combination of RISM-SCF, surrogate, and SSSV theories,51 and the
use of TDDFT instead of the surrogate and the SSSV theories will
improve the description of the solvation structure because it can
prevent the penetration of the solvent distribution into the repul-
sive core of the solute during the time development of the solvation
structure.52

V. CONCLUDING REMARKS
The sp-3D-RISM theory of the solvation structure in elec-

tronically polarizable molecular solvents was extended to dynam-
ics through the combination with TDDFT for molecular liquids
proposed by Yoshimori.18 With the simplest approximation for
the diffusion kernel, we performed some numerical calculations
on the solvation dynamics of representative solutes in water.
We obtained detailed information on the transient 3D distri-
butions of the site density and the polarization charge den-
sity around the solute during the time course of the solvation
dynamics.

The obtained numerical results were considered to be phys-
ically reasonable. The relaxation of the transition energy was
bimodal; the faster and the slower modes were assigned to the reori-
entation within the first solvation shell and the long-range transla-
tional diffusion, respectively. These assignments are consistent with
those proposed by Nishiyama and co-workers based on the surrogate
theory coupled with the SSSV theory.38 The relative amplitude of the
slower mode of pNA was larger than that of the Na atom. This was
ascribed to the larger coupling of the former with the translational
mode.

Upon comparing the solvation dynamics with and without the
electronic polarization of the solvent, we found that the relaxation
dynamics in the electronically polarizable solvent was slower than
that in the nonpolarizable solvent (10%–20% slower). The retar-
dation was then addressed in terms of the longitudinal dielectric
relaxation time and the curvature of the nonequilibrium free energy
profile along the solvation coordinate.

The relaxation paths in the ΔE(t)–F(t) plane were calculated
for both Na and pNA systems, which is an advantage of our TDDFT-
based theory over MD simulation. Although the relaxation path was
close to the nonequilibrium free energy profile, a small deviation
was found in both model systems. The deviation was then explained
in terms of the bimodal character of the relaxation. Since the slow
translational mode is frozen during the fast reorientational relax-
ation, the fast mode must proceed along the path whose free energy
is higher than the free energy profile on which both modes are fully
relaxed for intermediate states.

Although our present study was limited to numerical calcula-
tions on simple model systems, for demonstration, we are planning
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to apply the theory to more complicated systems of chemical or bio-
physical importance.53,54 In addition, improvement of the theory as
discussed in Sec. IV F is also in our future plans.

SUPPLEMENTARY MATERIAL

The numerical algorithm to solve the time development of
the site distribution functions is described in the supplementary
material.

ACKNOWLEDGMENTS
We acknowledge financial support from the JSPS KAKENHI

(Grant Nos. 19H02677 and 19K03768). Numerical calculations were
conducted, in part, at the Research Center for Computational Sci-
ence, Institute for Molecular Science, National Institutes of Natural
Sciences. Molecular graphics were depicted with UCSF Chimera,
developed by the Resource for Biocomputing, Visualization, and
Informatics at the University of California, San Francisco.55

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1B. Bagchi and R. Biswas, Adv. Chem. Phys. 109, 207–433 (1999).
2M. Maroncelli, J. Macinnis, and G. R. Fleming, Science 243(4899), 1674–1681
(1989).
3B. Bagchi, Annu. Rev. Phys. Chem. 40(1), 115–141 (1989).
4B. Bagchi, D. W. Oxtoby, and G. R. Fleming, Chem. Phys. 86(3), 257–267
(1984).
5M. Maroncelli, J. Mol. Liq. 57, 1–37 (1993).
6G. Van der Zwan and J. T. Hynes, J. Phys. Chem. 89(20), 4181–4188 (1985).
7S. J. Rosenthal, X. Xie, M. Du, and G. R. Fleming, J. Chem. Phys. 95(6),
4715–4718 (1991).
8K. Nishiyama and T. Okada, J. Phys. Chem. A 102(48), 9729–9733 (1998).
9M. Cho, J.-Y. Yu, T. Joo, Y. Nagasawa, S. A. Passino, and G. R. Fleming, J. Phys.
Chem. 100(29), 11944–11953 (1996).
10M. Maroncelli, J. Chem. Phys. 94(3), 2084–2103 (1991).
11T. Yamaguchi, N. Yoshida, and K. Nishiyama, J. Phys. Chem. B 123(32),
7036–7042 (2019).
12J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic
Press, London, 1986).
13F. Hirata, Molecular Theory of Solvation (Kluwer, Dordrecht, 2003).
14F. O. Raineri, H. Resat, B. C. Perng, F. Hirata, and H. L. Friedman, J. Chem.
Phys. 100(2), 1477–1491 (1994).
15F. Hirata, T. Munakata, F. Raineri, and H. L. Friedman, J. Mol. Liq. 65-66, 15–22
(1995).

16H. L. Friedman, F. O. Raineri, F. Hirata, and B.-C. Perng, J. Stat. Phys. 78(1-2),
239–266 (1995).
17A. Chandra and B. Bagchi, J. Chem. Phys. 91(3), 1829–1842 (1989).
18A. Yoshimori, J. Chem. Phys. 105(14), 5971–5978 (1996).
19A. Yoshimori, J. Phys. Soc. Jpn. 80(3), 034801 (2011).
20N. Yoshida and T. Yamaguchi, J. Chem. Phys. 152(11), 114108 (2020).
21T. Yamaguchi and N. Yoshida, J. Chem. Phys. 153(3), 034502 (2020).
22S. J. Singer and D. Chandler, Mol. Phys. 55(3), 621–625 (1985).
23K. Kasahara and H. Sato, J. Comput. Chem. 39(20), 1491–1497 (2018).
24K. Kasahara and H. Sato, J. Chem. Phys. 145(19), 194502 (2016).
25A. Morita and S. Kato, J. Am. Chem. Soc. 119(17), 4021–4032 (1997).
26A. Morita and S. Kato, J. Chem. Phys. 108(16), 6809–6818 (1998).
27F. Hirata, J. Chem. Phys. 96(6), 4619–4624 (1992).
28S.-H. Chong and F. Hirata, J. Chem. Phys. 111(7), 3083–3094 (1999).
29T. Yamaguchi and F. Hirata, J. Chem. Phys. 117(5), 2216–2224 (2002).
30K. R. Harris and L. A. Woolf, J. Chem. Soc., Faraday Trans. 1 76, 377–385 (1980).
31Y. Kimura, S. Ibaraki, R. Hirano, Y. Sugita, Y. Yasaka, and M. Ueno, Phys.
Chem. Chem. Phys. 19(33), 22161–22168 (2017).
32S. A. Kovalenko, R. Schanz, V. M. Farztdinov, H. Hennig, and N. P. Ernsting,
Chem. Phys. Lett. 323(3-4), 312–322 (2000).
33P. K. Ghorai and D. V. Matyushov, J. Phys. Chem. B 110(4), 1866–1871 (2006).
34K. Naka, A. Morita, and S. Kato, J. Chem. Phys. 111(2), 481–491 (1999).
35J. S. Perkyns and B. M. Pettitt, Chem. Phys. Lett. 190(6), 626–630 (1992).
36J. Perkyns and B. M. Pettitt, J. Chem. Phys. 97(10), 7656–7666 (1992).
37N. Yoshida, IOP Conf. Ser.: Mater. Sci. Eng. 773, 012062 (2020).
38K. Nishiyama, F. Hirata, and T. Okada, J. Chem. Phys. 118(5), 2279–2285
(2003).
39S. Roy and B. Bagchi, J. Chem. Phys. 99(12), 9938–9943 (1993).
40K. Kasahara and H. Sato, Phys. Chem. Chem. Phys. 19(41), 27917–27929 (2017).
41R. Rey and J. T. Hynes, J. Phys. Chem. B 124(35), 7668–7681 (2020).
42T. Yamaguchi, Y. Kimura, and N. Hirota, J. Chem. Phys. 111(9), 4169–4185
(1999).
43S.-H. Chong and F. Hirata, Phys. Rev. E 58(5), 6188–6198 (1998).
44S. H. Chong and W. Gotze, Phys. Rev. E 65(4), 041503 (2002).
45K. Nishiyama, T. Yamaguchi, and F. Hirata, J. Phys. Chem. B 113(9), 2800–2804
(2009).
46S. Gupta and D. V. Matyushov, J. Phys. Chem. A 108(11), 2087–2096 (2004).
47D. W. Small, D. V. Matyushov, and G. A. Voth, J. Am. Chem. Soc. 125(24),
7470–7478 (2003).
48H. Sato, A. Kovalenko, and F. Hirata, J. Chem. Phys. 112(21), 9463–9468 (2000).
49A. Kovalenko and F. Hirata, J. Chem. Phys. 110(20), 10095–10112 (1999).
50S. Ten-No, F. Hirata, and S. Kato, J. Chem. Phys. 100(10), 7443–7453 (1994).
51T. Ishida, F. Hirata, and S. Kato, J. Chem. Phys. 110(23), 11423–11432 (1999).
52T. Ishida, J. Phys. Chem. B 113(27), 9255–9264 (2009).
53S. Mukherjee, S. Mondal, S. Acharya, and B. Bagchi, J. Phys. Chem. B 122(49),
11743–11761 (2018).
54J. Ma, A. Kumar, Y. Muroya, S. Yamashita, T. Sakurai, S. A. Denisov, M. D.
Sevilla, A. Adhikary, S. Seki, and M. Mostafavi, Nat. Commun. 10(1), 102
(2019).
55E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Green-
blatt, E. C. Meng, and T. E. Ferrin, J. Comput. Chem. 25(13), 1605–1612
(2004).

J. Chem. Phys. 154, 044504 (2021); doi: 10.1063/5.0036289 154, 044504-13

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0036289
https://www.scitation.org/doi/suppl/10.1063/5.0036289
https://doi.org/10.1002/9780470141687.ch4
https://doi.org/10.1126/science.243.4899.1674
https://doi.org/10.1146/annurev.pc.40.100189.000555
https://doi.org/10.1016/0301-0104(84)80014-2
https://doi.org/10.1016/0167-7322(93)80045-w
https://doi.org/10.1021/j100266a008
https://doi.org/10.1063/1.461742
https://doi.org/10.1021/jp983025h
https://doi.org/10.1021/jp9601983
https://doi.org/10.1021/jp9601983
https://doi.org/10.1063/1.459932
https://doi.org/10.1021/acs.jpcb.9b04711
https://doi.org/10.1063/1.466627
https://doi.org/10.1063/1.466627
https://doi.org/10.1016/0167-7322(95)00840-3
https://doi.org/10.1007/bf02183347
https://doi.org/10.1063/1.457088
https://doi.org/10.1063/1.472454
https://doi.org/10.1143/jpsj.80.034801
https://doi.org/10.1063/5.0004173
https://doi.org/10.1063/5.0013083
https://doi.org/10.1080/00268978500101591
https://doi.org/10.1002/jcc.25219
https://doi.org/10.1063/1.4967400
https://doi.org/10.1021/ja9635342
https://doi.org/10.1063/1.476096
https://doi.org/10.1063/1.462797
https://doi.org/10.1063/1.479589
https://doi.org/10.1063/1.1488586
https://doi.org/10.1039/f19807600377
https://doi.org/10.1039/c7cp03610h
https://doi.org/10.1039/c7cp03610h
https://doi.org/10.1016/s0009-2614(00)00432-2
https://doi.org/10.1021/jp055235h
https://doi.org/10.1063/1.479329
https://doi.org/10.1016/0009-2614(92)85201-k
https://doi.org/10.1063/1.463485
https://doi.org/10.1088/1757-899x/773/1/012062
https://doi.org/10.1063/1.1532345
https://doi.org/10.1063/1.465392
https://doi.org/10.1039/c7cp05423h
https://doi.org/10.1021/acs.jpcb.0c05706
https://doi.org/10.1063/1.479715
https://doi.org/10.1103/physreve.58.6188
https://doi.org/10.1103/physreve.65.041503
https://doi.org/10.1021/jp809926g
https://doi.org/10.1021/jp036388c
https://doi.org/10.1021/ja029595j
https://doi.org/10.1063/1.481564
https://doi.org/10.1063/1.478883
https://doi.org/10.1063/1.466888
https://doi.org/10.1063/1.479083
https://doi.org/10.1021/jp901964n
https://doi.org/10.1021/acs.jpcb.8b08140
https://doi.org/10.1038/s41467-018-08005-z
https://doi.org/10.1002/jcc.20084

