1	Platelet counts during normal pregnancies and pregnancies complicated with hypertensive
2	disorders
3	
4	Takafumi Ushida ^{1,2} , Tomomi Kotani ^{1,2} , Yoshinori Moriyama ³ , Kenji Imai ¹ , Tomoko Nakano-
5	Kobayashi ¹ , Fumie Kinoshita ⁴ , Noriyuki Nakamura ¹ , Yukako Iitani ¹ , Shigeru Yoshida ⁵ ,
6	Mamoru Yamashita ⁵ , Hiroaki Kajiyama ¹
7	
8	¹ Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine,
9	Nagoya, Japan
10	² Division of Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital,
11	Nagoya, Japan
12	³ Department of Obstetrics and Gynecology, Fujita Health University School of Medicine,
13	Toyoake, Japan
14	⁴ Data Science Division, Data Coordinating Center, Department of Advanced Medicine,
15	Nagoya University Hospital, Nagoya, Japan
16	⁵ Kishokai Medical Corporation, Nagoya, Japan
17	
18	Corresponding author: Takafumi Ushida, M.D., Ph.D.
19	Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine,

20	65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
21	Tel: +81-52-744-2261
22	Fax: +81-52-744-2268
23	E-mail: u-taka23@med.nagoya-u.ac.jp
24	
25	Running title
26	Platelet counts during pregnancy
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	

Abstract

40 **Objectives**

41 To determine the trajectories of platelet counts and the prevalence of gestational 42 thrombocytopenia ($<150 \times 10^{9}/L$) during normal pregnancies and pregnancies with 43 complications, such as hypertensive disorders of pregnancy (HDP), preeclampsia, and fetal 44 growth restriction (FGR).

45 Study design

A multicenter retrospective study was conducted using laboratory data on women who delivered term singletons in 11 primary maternity care units between 2011 and 2018 (n = 35,045), and non-pregnant women who underwent a medical check-up between 2016 and 2019 (n = 61,189). After 1:1 matching, 28,073 pregnant women and 28,073 non-pregnant women were selected for analysis.

51 Main outcomes measures

52 The trajectories of platelet counts and prevalence of gestational thrombocytopenia were 53 evaluated in normal pregnant women, pregnant women with complications, and non-pregnant 54 women.

55 **Results**

56 The platelet counts declined throughout pregnancy state, with the nadir occurring on 57 postpartum day 1. The platelet counts recovered to the level of the non-pregnant state at 2–7

58	days postpartum. The mean platelet counts at postpartum day 1 decreased by an estimated
59	19.8% and 9.7% compared to those in the non-pregnant state and first trimester, respectively.
60	The prevalence of gestational thrombocytopenia in normal pregnant women at 37-41
61	gestational weeks and in pregnant women with complications of HDP, preeclampsia, and FGR
62	were 6.1%, 7.3%, 17.5%, and 7.7%, respectively.
63	Conclusion
64	Platelet counts declined throughout pregnancy and recovered to the level of the non-pregnant
65	state in the early postpartum period. Gestational thrombocytopenia is common during normal
66	pregnancy, and its prevalence is significantly higher in women with preeclampsia.
67	
68	Keywords: fetal growth restriction, gestational thrombocytopenia, hypertensive disorders of
69	pregnancy, platelet count, preeclampsia
70	
71	Abbreviations
72	FGR, fetal growth restrictions; HDP, hypertensive disorders of pregnancy; ITP, idiopathic
73	thrombocytopenia purpura; PP, postpartum; SGA, small for gestational age; TTP, thrombotic
74	thrombocytopenia purpura.
75	
76	

Introduction

78	Several reports have suggested that platelet counts during pregnancy are lower than those in
79	non-pregnant women, and that approximately 6%-11% of normal pregnant women experience
80	a platelet count of less than 150×10^9 /L during pregnancy (1, 2). This is described as gestational
81	thrombocytopenia if no alternative cause (e.g., preeclampsia, HELLP syndrome, idiopathic
82	thrombocytopenic purpura [ITP], thrombotic thrombocytopenic purpura [TTP], and systemic
83	lupus erythematosus) is identified (3, 4). This slight decrease in platelet counts may be
84	associated with various physiological changes related to pregnancy, such as hemodilution,
85	increased consumption due to the increased size of the spleen, and increased circulation of
86	platelets in the placenta (3, 5, 6).
86 87	platelets in the placenta (3, 5, 6).
86 87 88	platelets in the placenta (3, 5, 6). However, a previous systematic review, published in 2017, demonstrated an apparent
86 87 88 89	platelets in the placenta (3, 5, 6). However, a previous systematic review, published in 2017, demonstrated an apparent inconsistency regarding the platelet count trajectory during pregnancy, depending on the study
86 87 88 89 90	platelets in the placenta (3, 5, 6). However, a previous systematic review, published in 2017, demonstrated an apparent inconsistency regarding the platelet count trajectory during pregnancy, depending on the study design (longitudinal or cross-sectional), population (race and study sample size), and stage of
 86 87 88 89 90 91 	platelets in the placenta (3, 5, 6). However, a previous systematic review, published in 2017, demonstrated an apparent inconsistency regarding the platelet count trajectory during pregnancy, depending on the study design (longitudinal or cross-sectional), population (race and study sample size), and stage of pregnancy (5). In addition, they could not conclude that the platelet counts during pregnancy
 86 87 88 89 90 91 92 	platelets in the placenta (3, 5, 6). However, a previous systematic review, published in 2017, demonstrated an apparent inconsistency regarding the platelet count trajectory during pregnancy, depending on the study design (longitudinal or cross-sectional), population (race and study sample size), and stage of pregnancy (5). In addition, they could not conclude that the platelet counts during pregnancy were lower than those observed in non-pregnant women.

A recent retrospective study, published in 2018, demonstrated that platelet counts
during pregnancy were lower than those in non-pregnant populations using race -, ethnic -, and

96	age-matched non-pregnant women and that platelet counts decreased throughout pregnancy,
97	beginning in the first trimester (7). However, among the 4,568 normal pregnant women, only
98	336 women had consecutive data on platelet counts at each trimester and at the time of delivery.
99	Although the prevalence of gestational thrombocytopenia was higher in women with pregnancy
100	complications than in those without complications (11.9% vs. 9.9%, $p=0.01$), little evidence
101	was available regarding the trajectories of platelet counts in each pregnancy complication, such
102	as hypertensive disorders of pregnancy (HDP), preeclampsia, and fetal growth restriction
103	(FGR).
104	
105	Understanding the reference range and trajectory of platelet counts throughout
106	pregnancy, as well as during the postpartum period enables clinicians to differentiate between
107	normal physiological changes during pregnancy and pathological changes (e.g., ITP, TTP,
108	preeclampsia, and HELLP syndrome). In addition, regarding platelet counts in the diagnostic
109	criteria of preeclampsia, the definition of low platelet counts varies according to different
109 110	criteria of preeclampsia, the definition of low platelet counts varies according to different guidelines or by country because of the lack of sufficient data on platelet counts during normal
109 110 111	criteria of preeclampsia, the definition of low platelet counts varies according to different guidelines or by country because of the lack of sufficient data on platelet counts during normal pregnancies (8-12).

113 Thus, the aim of this retrospective study was to determine the trajectory of platelet 114 counts and prevalence of gestational thrombocytopenia during normal pregnancies using

115	clinical data from 11 maternity care units in Japan. We then compared these results with those
116	of matched non-pregnant women. In addition, we sought to compare the trajectories of platelet
117	counts and the prevalence of gestational thrombocytopenia between pregnancies without
118	complications and those with placenta-associated complications, such as HDP, preeclampsia,
119	and FGR.
120	
121	Materials and Methods
122	We conducted a multicenter retrospective study analyzing clinical data on platelet counts in
123	women who delivered at 37 ^{0/7} to 41 ^{6/7} gestational weeks at 11 primary maternity care units
124	from January 2011 to December 2018. All units were located in the Aichi and Gifu Prefectures

in Japan; they cared for women with low- to moderate-risk pregnancies, with each unitconducting 300–1000 deliveries annually.

127

This study included women who delivered term singletons at these units. To evaluate the trajectory of platelet counts during normal pregnancy, we excluded the following: preterm delivery (<37 weeks of gestation); post-term delivery (≥42 weeks of gestation); multiple pregnancy; stillbirth; presence of major congenital and chromosomal abnormalities, preexisting disorders (hematologic disease, liver disease, renal failure, autoimmune disease, collagen disease, or cancer), and pregnancy complications (gestational diabetes mellitus, HDP, HELLP syndrome, placental abruption, placenta previa, low-lying placenta, or FGR); and
incomplete data on medical records (age, height, and weight). To compare the trajectories of
platelet counts between pregnancies without any complications and those with HDP and FGR
among women who delivered term singletons at these units, clinical data of women with HDP
and FGR were extracted for analysis.

139

HDP was defined as systolic blood pressure ≥140 mmHg or diastolic blood pressure 140 ≥90 mmHg during pregnancy (10). Preeclampsia was defined as hypertension with any one of 141 the following: proteinuria (≥ 0.3 g/day, or $\geq 1+$ on a urine dipstick), end-organ dysfunction (e.g., 142liver involvement [aspartate aminotransferase >40 IU or alanine aminotransferase >40 IU], low 143144platelet count [$<150 \times 10^{9}/L$], Cr >1.0 mg/dL, and eclampsia), or uteroplacental dysfunction (i.e., FGR) after 20 weeks of gestation. In this study, FGR was defined as infants born small 145for gestational age (SGA); SGA was defined as birth weight and height below the 10th 146percentile for gestational age according to a sex-specific Japanese neonatal anthropometric 147chart in 2000 (13). 148

149

Platelet counts were measured in EDTA-anticoagulated blood using standard
automatic blood cell counters (Celltac α MEK-6500, NIHON KOHDEN Corporation, Japan).
Mean platelet counts were evaluated at seven different time points: first trimester (6–12 weeks

153of gestation), second trimester (13-27 weeks of gestation), first half of the third trimester (28-36 weeks of gestation), second half of the third trimester (37–41 weeks of gestation), 1 day 154postpartum, 2–7 days postpartum, and 3–7 weeks postpartum. The platelet counts of most 155women who delivered vaginally were measured at four time points (first, second, and second 156half of the third trimester, and 1 day postpartum). The platelet counts of women who delivered 157158by cesarean section were measured at six time points (first, second, first and second half of the third trimester, 1 day and 2-7 days postpartum). Additional measurements were performed 159160based on clinical needs. If multiple measurements of platelet counts were conducted during the same period, we used the first measurement for analysis. In this study, a total of 17,121 women 161 (61.0% of final study population) had data on platelet count data at each trimester and during 162163the postpartum period. Plausible ranges were defined as platelet counts $<1,000 \times 10^{9}$ /L, and 164outliers were excluded from further analyses. Here, we evaluated the trajectory of mean platelet counts during pregnancy and in the postpartum period in uncomplicated and complicated (HDP, 165preeclampsia, and FGR) pregnancies. 166

167

168 The clinical information extracted from each unit was anonymized and incorporated 169 into the study for further analysis. The collected maternal information included maternal age, 170 parity, gestational age, mode of delivery, pre-pregnancy body weight, height, and pregnancy 171 complications (gestational diabetes mellitus, HDP, HELLP syndrome, placental abruption, placenta previa, low-lying placenta, and FGR); neonatal information included sex, birth weight,
height, and SGA.

175	We compared laboratory data on platelet counts in non-pregnant women ($n = 61,189$)
176	who underwent a routine medical check-up from 2016 to 2019 in a medical clinic group in
177	Aichi Prefecture, Japan with those obtained from pregnant women. The medical clinic group
178	conducted comprehensive medical examinations for approximately 30,000 patients per year.
179	Platelet counts were measured using an automatic clinical biochemistry analyzer (XE-2100 and
180	XN-2000, Sysmex Corporation, Kobe, Japan; and ADVIA2120i, Siemens Healthcare, Tokyo,
181	Japan). We excluded women with the following $(n = 5,837)$: (1) hematologic disease, (2)
182	anemia, (3) gastrointestinal disease, (4) hepatobiliary and pancreatic diseases, (5) renal failure,
183	(6) cancer, (7) diabetes mellitus or hyperlipidemia, (8) thyroid disease, (9) hypertension or
184	ischemic heart disease, (10) rheumatoid arthritis, and (11) incomplete data (age, body weight,
185	and height). Pregnant and non-pregnant women were randomly selected at a ratio of 1:1 from
186	30,394 pregnant and 55,352 non-pregnant women after stratification by three factors (age, body
187	weight, and height). The 1:1 matching was based on the categories of age (≤ 24 , 25–29, 30–34,
188	35–39, and ≥40 years), body weight (<45 kg, 45–50 kg, 50–55 kg, 55–60 kg, and ≥60 kg), and
189	height (<155 cm, 155–160 cm, 160–165 cm, and ≥165 cm).

191	This study was approved by the institutional ethics board of Nagoya University
192	(approval number 2015-0415), Kishokai Medical Corporation, and Central Clinic Group.
193	Informed consent was waived because the analysis used anonymous clinical data collected
194	retrospectively.
195	
196	Statistical analyses were performed using SPSS 27 software (SPSS Inc., Chicago, IL,
197	USA). Categorical variables were compared using chi-squared tests, and continuous variables
198	were compared using the Student's t test or Mann-Whitney U-test. Statistical significance was
199	set at <i>p</i> <0.05.
200	
200 201	Results
200 201 202	Results Among 35,045 women with laboratory data on platelet counts who delivered between 37 $^{0/7}$ to
200 201 202 203	Results Among 35,045 women with laboratory data on platelet counts who delivered between 37 $^{0/7}$ to 41 $^{6/7}$ weeks of gestation at these units during the study period, a total of 30,394 women were
200 201 202 203 204	Results Among 35,045 women with laboratory data on platelet counts who delivered between 37 ^{0/7} to 41 ^{6/7} weeks of gestation at these units during the study period, a total of 30,394 women were eligible for matching, and 4,651 women were excluded (Figure 1). Among 61,189 non-
200 201 202 203 204 205	Results Among 35,045 women with laboratory data on platelet counts who delivered between 37 ^{0/7} to 41 ^{6/7} weeks of gestation at these units during the study period, a total of 30,394 women were eligible for matching, and 4,651 women were excluded (Figure 1). Among 61,189 non- pregnant women younger than 45 years of age who underwent laboratory testing between 2016
200 201 202 203 204 205 206	Results Among 35,045 women with laboratory data on platelet counts who delivered between 37 ⁰⁷ to 41 ⁶⁷ weeks of gestation at these units during the study period, a total of 30,394 women were eligible for matching, and 4,651 women were excluded (Figure 1). Among 61,189 non- pregnant women younger than 45 years of age who underwent laboratory testing between 2016 and 2019, 55,352 women were eligible for matching, and 5,837 women were excluded. After
200 201 202 203 204 205 206 207	Results Among 35,045 women with laboratory data on platelet counts who delivered between 37 ⁰⁷ to 41 ⁶⁷ weeks of gestation at these units during the study period, a total of 30,394 women were eligible for matching, and 4,651 women were excluded (Figure 1). Among 61,189 non- pregnant women younger than 45 years of age who underwent laboratory testing between 2016 and 2019, 55,352 women were eligible for matching, and 5,837 women were excluded. After 1:1 matching based on three factors (age, weight, and height), 28,073 pregnant women and

210	Table 1 shows the baseline characteristics of pregnant and non-pregnant women in this
211	study. Categories of age, body weight, and height between pregnant and non-pregnant women
212	were equally divided.
213	
214	Supplementary Figure 1 shows the distribution of platelet counts for the non-pregnant
215	state, first (6-12 gestational weeks) and third (28-36 gestational weeks) trimesters, and
216	postpartum day 1. The distribution of platelet counts gradually shifted to the left from the non-
217	pregnant state to postpartum period.
218	
219	Figure 2 shows the trajectory of mean platelet counts with 95% confidence interval
220	(CI) in the non-pregnant and pregnant states as well as during the postpartum state. The platelet
221	count in the first trimester was significantly lower than that in the non-pregnant state. The
222	platelet counts declined throughout pregnancy, with the nadir occurring on postpartum day 1.
223	The platelet counts recovered to the level seen in the non-pregnant state between days 2 and 7
224	postpartum. The mean platelet counts at postpartum day 1 decreased by an estimated 19.8%
225	and 9.7% compared to those in the non-pregnant state and first trimester, respectively.
226	
227	Table 2 shows the mean and 2.5th, 50th, and 97.5th percentiles for platelet counts as
228	well as the prevalence of gestational thrombocytopenia ($<150 \times 10^9/L$ and $<100 \times 10^9/L$) in the

229 non-pregnant state, during pregnancy, and in the postpartum period among the 28,073 normal 230 pregnant women and 28,073 non-pregnant women. The prevalence of gestational 231 thrombocytopenia ($<150 \times 10^{9}/L$) was 6.1% and 8.3% in the second half of the third trimester 232 and on postpartum day 1, respectively. The prevalence of platelet count $<100 \times 10^{9}/L$ was 233 considerably rare throughout pregnancy and during the postpartum period. The lower limit 234 (2.5th percentile) of platelet counts during normal pregnancy was $129 \times 10^{9}/L$ in the second 235 half of the third trimester.

236

Next, we evaluated the trajectories of mean platelet counts in women with pregnancy 237complications, such as HDP (n = 1,814) and FGR (n = 624). The specific types of HDP were 238239gestational hypertension (n = 1,015), preeclampsia (n = 527), chronic hypertension (n = 238), 240and superimposed preeclampsia (n = 33). Figure 3 shows the trajectories of mean platelet counts with 95% CI in uncomplicated pregnancies (n = 28,073) and pregnancies complicated 241by HDP and preeclampsia. We found that the platelet counts in pregnant women with HDP 242were higher during pregnancy than those in women without any pregnancy complications; 243however, the platelet counts near delivery were comparable. The platelet counts in women with 244preeclampsia were similar to those in women with HDP during the period from the first 245trimester to the first half of the third trimester; however, the platelet counts in the second half 246of the third trimester were significantly lower. Among the 527 women with preeclampsia, 45 247

248women (8.5%) presented with gestational thrombocytopenia (platelet count $<150 \times 10^{9}/L$) in the third trimester. Of these 45 women, 24 did not show proteinuria and were diagnosed with 249250non-proteinuric preeclampsia. In total, 79 women (15.0%) in this study were diagnosed with non-proteinuric preeclampsia (low platelet count [n=24], liver involvement [n=11], renal 251dysfunction [n=6], FGR [n=41], and eclampsia [n=3]; items are not mutually exclusive) among 252527 women with preeclampsia. The prevalence of non-proteinuric preeclampsia diagnosed 253with hematological adverse conditions (gestational thrombocytopenia) was 4.6% among 254women with preeclampsia (n = 527) and 30.4% among women with non-proteinuric 255preeclampsia (n = 79). Supplementary Table 1 shows the mean, the 2.5th, 50th, and 97.5th 256percentiles for platelet counts, and the prevalence of gestational thrombocytopenia in pregnant 257women with complications of HDP. Supplementary Table 2 shows the platelet counts and 258prevalence of gestational thrombocytopenia in each type of HDP. 259260Figure 4 shows the trajectories of platelet counts in uncomplicated pregnancies (n =26128,073) and in women with pregnancies complicated with FGR (n = 624). The platelet counts 262during pregnancy and the postpartum period were comparable between the two groups. 263

Supplementary Table 3 shows the mean, the 2.5th, 50th, and 97.5th percentiles for platelet

265 counts, and the prevalence of gestational thrombocytopenia in pregnant women with FGR.

267	The prevalence of gestational thrombocytopenia was significantly higher in women
268	with preeclampsia (17.5%, $p < 0.01$) than in those with normal pregnancies (6.1%) at 37–41
269	weeks, while it was not significantly increased in women with HDP (7.3%, $p=0.25$) or FGR
270	(7.7%, $p=0.38$). In contrast, the prevalence of gestational thrombocytopenia on postpartum day
271	1 was significantly higher in women with HDP (10.0%, $p=0.01$) and preeclampsia (14.5%,
272	p < 0.01) than in those with normal pregnancies (8.3%), but it was not significantly increased in
273	women with FGR (10.0%, $p=0.14$) (Supplementary Table 1–3).
274	
275	Discussion
276	In this multicenter retrospective study, we demonstrated the trajectories of platelet counts and
277	the reference range during pregnancy and the postpartum period. Our main findings of this
278	study were that platelet counts declined throughout pregnancy, with the nadir occurring at
279	postpartum day 1, and that the platelet counts returned to the level of the non-pregnant state
280	between days 2 and 7 postpartum. The prevalence of gestational thrombocytopenia (platelet
281	count $<150 \times 10^{9}/L$) in normal pregnancy was 6%–8% at term and postpartum period, while it
282	increased to 7%–17% in pregnant women with complications of HDP, preeclampsia, and FGR.
283	In addition, we found that the prevalence of non-proteinuric preeclampsia diagnosed with
284	gestational thrombocytopenia was 4.6% among women with preeclampsia.

286Our study results were consistent with those of previous studies demonstrating that platelet counts during pregnancy were lower than those in the non-pregnant state and that they 287288decreased throughout pregnancy (7, 14). We found that the average decline in the mean platelet count during normal pregnancy was approximately 20% from the non-pregnant state to 289postpartum day 1, which was similar to values obtained in previous studies (20.5% and 21.7%, 290291respectively) (7, 14). In addition, approximately half of the total decline had already occurred during the first trimester. However, whether the underlying mechanism of rapid decline during 292the first trimester is due to either physiological changes associated with pregnancy or the study 293design issue remains uncertain. There is a possibility that this could be explained by the fact 294that we could not compare platelet counts between the pregnant and non-pregnant states in the 295296same individual; however, we selected the matched non-pregnant women by using three factors 297to reduce selection bias risk. Further research is required to elucidate the mechanisms underlying the rapid decline in platelet counts. 298

299

300 Understanding the laboratory changes accompanying the different trimesters during 301 normal pregnancy is important for clinicians to facilitate early recognition and timely diagnosis, 302 manage gestational thrombocytopenia, and differentiate between normal physiological changes 303 related to pregnancy and pathological changes. In addition, the reference range of platelet 304 counts in normal pregnancy may be of value for the establishment of diagnostic criteria for

305	preeclampsia because the definition of low platelet counts in the diagnosis of preeclampsia
306	differs based on the guidelines used and the country. Several guidelines, including those of the
307	International Society for the Study of Hypertension in Pregnancy, the Japan Society of
308	Obstetrics and Gynecology, and the Royal College of Obstetricians and Gynaecologists, define
309	a low platelet count as $<150 \times 10^9/L$ in the diagnosis of preeclampsia, while the guidelines of
310	the American College of Obstetricians and Gynecologists define $<100 \times 10^9/L$ as the cutoff;
311	the guidelines of the Society of Obstetricians and Gynaecologists of Canada define $<50 \times 10^9$ /L
312	as the threshold (9-12). According to our study, the lower limit of the normal range (2.5th
313	percentile) was 152 \times 10 ⁹ /L, 140 \times 10 ⁹ /L, and 129 \times 10 ⁹ /L at 13–27, 28–36, and 37–41
314	gestational weeks, respectively. Thus, there were possibly more normal women who were
315	diagnosed with non-proteinuric preeclampsia due to lower platelet counts during the third
316	trimester compared with those in the second trimester. Considering the change in the lower
317	limit of platelet counts according to the trimester, we could understand the difference in the
318	pathological implication even if the platelet counts were the same in different trimesters (e.g.,
319	140×10^{9} /L at 10 gestational weeks vs. 140×10^{9} /L at 40 gestational weeks).

In this study, the platelet counts in women with HDP were significantly higher before the onset of HDP, especially during the first and second trimesters, than those in women without any pregnancy complications. This is consistent with a previous study (15); however,

324	consensus has yet to be reached. Although the underlying mechanisms of increased platelet
325	counts in women with HDP remain unclear, possible explanations are as follows: [1] women
326	who will develop HDP may have a potential risk for systemic chronic inflammation (16, 17),
327	which contributes to the activation and increase of platelets (18, 19); and [2] platelet counts are
328	known to be positively associated with BMI and body weight (20, 21). Thus, the difference in
329	baseline characteristics regarding physique between normal pregnancies and HDP may affect
330	platelet counts. In fact, we found that the pre-pregnancy body weight and BMI in normal
331	pregnancies and HDP in this study were 51.9 \pm 7.9 kg and 56.7 \pm 11.3 kg (p <0.001), and 20.8
332	kg/m ² and 22.7 kg/m ² ($p < 0.001$), respectively. To reduce these differences, we randomly
333	selected women without any complications and with HDP at a ratio of 2:1 after stratification
334	by three factors: maternal age, height, and pre-pregnancy body weight. The platelet counts in
335	the normal pregnant women and women with HDP at 6–12 weeks and 13–27 weeks were 243
336	$\pm 48 \times 10^{9}$ /L and 249 $\pm 49 \times 10^{9}$ /L, and 236 $\pm 48 \times 10^{9}$ /L and 242 $\pm 49 \times 10^{9}$ /L, respectively.
337	The difference in platelet counts between the two groups was significantly decreased by
338	stratification matching; however, there was still a significant difference (approximately 6 \times
339	$10^{9}/L$), indicating that the underlying mechanisms of increased platelet counts in women with
340	HDP may have been mainly associated with systemic chronic inflammation. However, further
341	studies are needed to elucidate the underlying mechanism.

343	The strengths of this study were that the sample size was much larger than that of prior
344	studies (7, 14), and a total of 17,121 women (61.0%) had consecutive data on platelet counts
345	at each trimester and postpartum period. In addition, we evaluated platelet counts at seven time
346	periods and compared them between women with uncomplicated pregnancies and pregnant
347	women with different complications. Finally, with the larger population size and more centers
348	where the clinical data were obtained, the generalizability of this study was increased compared
349	to that of previous studies. Furthermore, we compared platelet counts between pregnant and
350	non-pregnant women after adjusting for age, weight, and height.
351	
352	Several limitations of this study should be acknowledged. First, we excluded women
353	who did not deliver at the 11 specified maternity care units; thus, we could not deny the
354	possibility that women with severe thrombocytopenia may have been referred to higher-level
355	facilities before delivery because these 11 maternity care units cared only for low-risk
356	pregnancies and did not have a blood bank on site. As previously described, we could not
357	compare platelet counts between non-pregnant and pregnant states in the same individual.
358	
359	In conclusion, platelet counts declined throughout pregnancy and recovered to the
360	level observed in the non-pregnant state in the early postpartum period. Gestational
361	thrombocytopenia was common during normal pregnancy and the postpartum period, while its

362	prevalence before delivery was significantly higher in pregnant women with preeclampsia.
363	Understanding the trajectory of platelet counts may facilitate the differentiation between
364	normal physiological changes related to pregnancy and pathological changes.
365	
366	Acknowledgement
367	We would like to thank Ms. Yasuyo Shirata for acquisition of laboratory data for the non-
368	pregnant cases in this study. We would like to thank Editage for English language editing.
369	
370	Funding
371	This study was supported by a grant from the Japan Society for the Promotion of Science (JSPS
372	KAKENHI 19K18637) awarded to TU.
373	
374	References
375	1. Boehlen F, Hohlfeld P, Extermann P, Perneger TV, de Moerloose P. Platelet count at term
376	pregnancy: a reappraisal of the threshold. Obstetrics and gynecology. 2000;95(1):29-33.
377	2. Burrows RF, Kelton JG. Fetal thrombocytopenia and its relation to maternal
378	thrombocytopenia. The New England journal of medicine. 1993;329(20):1463-6.
379	3. ACOG Practice Bulletin No. 207: Thrombocytopenia in Pregnancy. Obstetrics and
380	gynecology. 2019;133(3):e181-e93.
381	4. Myers B. Diagnosis and management of maternal thrombocytopenia in pregnancy. British
382	journal of haematology. 2012;158(1):3-15.
383	5. Reese JA, Peck JD, McIntosh JJ, Vesely SK, George JN. Platelet counts in women with
384	normal pregnancies: A systematic review. American journal of hematology. 2017;92(11):1224-32.
385	6. Ciobanu AM, Colibaba S, Cimpoca B, Peltecu G, Panaitescu AM. Thrombocytopenia in
386	Pregnancy. Maedica. 2016;11(1):55-60.

- Reese JA, Peck JD, Deschamps DR, McIntosh JJ, Knudtson EJ, Terrell DR, et al. Platelet
 Counts during Pregnancy. The New England journal of medicine. 2018;379(1):32-43.
- 389 8. ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstetrics
 390 and gynecology. 2019;133(1):e1-e25.
- 391 9. Webster K, Fishburn S, Maresh M, Findlay SC, Chappell LC. Diagnosis and management
 392 of hypertension in pregnancy: summary of updated NICE guidance. BMJ (Clinical research ed).
 393 2019;366:15119.
- Makino S, Takeda J, Takeda S, Watanabe K, Matsubara K, Nakamoto O, et al. New
 definition and classification of "Hypertensive Disorders of Pregnancy (HDP). Hypertension
 Research in Pregnancy. 2019;7(1):1-5.
- Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al.
 Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management
 Recommendations for International Practice. Hypertension. 2018;72(1):24-43.
- Magee LA, Pels A, Helewa M, Rey E, von Dadelszen P. Diagnosis, evaluation, and
 management of the hypertensive disorders of pregnancy: executive summary. Journal of obstetrics
 and gynaecology Canada : JOGC = Journal d'obstetrique et gynecologie du Canada : JOGC.
 2014;36(7):575-6.
- Itabashi K, Miura F, Uehara R, Nakamura Y. New Japanese neonatal anthropometric
 charts for gestational age at birth. Pediatrics international : official journal of the Japan Pediatric
 Society. 2014;56(5):702-8.
- 407 14. Li-Xia Z, Ning D, Rui-Xia Y, Ang L, Xuan-Mei L, Nan Y, et al. Platelet counts during
 408 pregnancy in Chinese women. Journal of Laboratory Medicine. 2020(0):20190142.
- 409 15. Örgül G, Aydın Haklı D, Özten G, Fadiloğlu E, Tanacan A, Beksaç MS. First trimester
 410 complete blood cell indices in early and late onset preeclampsia. Turkish journal of obstetrics and
 411 gynecology. 2019;16(2):112-7.
- 412 16. Borzychowski AM, Sargent IL, Redman CW. Inflammation and pre-eclampsia. Semin
 413 Fetal Neonatal Med. 2006;11(5):309-16.
- 414 17. Redman CW, Sargent IL. Preeclampsia and the systemic inflammatory response. Semin
 415 Nephrol. 2004;24(6):565-70.
- 416 18. Stokes KY, Granger DN. Platelets: a critical link between inflammation and
 417 microvascular dysfunction. J Physiol. 2012;590(5):1023-34.
- 418 19. Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating Platelets as Mediators
 419 of Immunity, Inflammation, and Thrombosis. Circ Res. 2018;122(2):337-51.
- 420 20. Samocha-Bonet D, Justo D, Rogowski O, Saar N, Abu-Abeid S, Shenkerman G, et al.
 421 Platelet counts and platelet activation markers in obese subjects. Mediators Inflamm.
 422 2008;2008;834153.
- 21. Coban E, Ozdogan M, Yazicioglu G, Akcit F. The mean platelet volume in patients with
 obesity. International Journal of Clinical Practice. 2005;59(8):981-2.

426	Figure legends
427	Figure 1. Flow diagram of the study population. Laboratory data on platelet counts were
428	collected for 35,045 pregnant women and 61,189 non-pregnant women. After 1:1 matching to
429	adjust for three factors (age, weight, and height), a total of 28,073 pregnant women and 28,073
430	non-pregnant women were selected for analysis. * indicates items not mutually exclusive.
431	
432	Figure 2. Trajectory of mean platelet counts when non-pregnant, during pregnancy, and at the
433	postpartum periods. Mean platelet counts with 95% confidence interval at non-pregnant state
434	and four prenatal (6-12 weeks, 13-27 weeks, 28-36 weeks, and 37-41 weeks) and three
435	postpartum (postpartum day 1, days 2–7, and weeks 3–7) periods are shown. PP, postpartum.
436	
437	Figure 3. Trajectories of mean platelet counts in normal pregnant women and women with
438	pregnancy complicated by HDP and preeclampsia. Mean platelet counts with 95% confidence
439	interval at four prenatal and three postpartum periods are shown. HDP, hypertensive disorders
440	of pregnancy; PP, postpartum.
441	
442	Figure 4. Trajectories of platelet counts in normal pregnant women and women with

pregnancies complicated with FGR. Mean platelet counts with 95% confidence interval at four
prenatal and three postpartum periods are shown. FGR, fetal growth restrictions; PP,

445	postpartum.
-----	-------------

447	Supplementary Figu	re 1. The	distributions of	platelet counts of	during the non-	pregnant state,	first
	11 2 0			1	0		

- 448 and third trimesters, and the postpartum period.

- $\begin{array}{c} 472\\ 473 \end{array}$

	Pregnant women	Non-pregnant womer
Characteristics	n = 28,073	n = 28,073
Maternal characteristics		
Maternal age (years)	30.8 ± 4.9	30.8 ± 5.2
Category of maternal age		
<25 years	2,698	2,698
25–29 years	9,068	9,068
30–34 years	9,484	9,484
35–39 years	5,879	5,879
≥ 40 years	944	944
Gestational age at delivery (weeks)	39.6 ± 1.2	
Cesarean section (%)	4,057/27,525 (14.7)	
Primipara (%)	13,968/28,073 (49.8)	
Pre-pregnancy body weight (kg)	51.9 ± 7.9	52.5 ± 8.6
Category of body weight		
<45 kg	4,144	4,144
45–50 kg	7,844	7,844
50–55 kg	7,700	7,700
55–60 kg	4,370	4,370
≥60 kg	4,015	4,015
Height (cm)	158 ± 5.4	159 ± 5.4
Category of height		
<155 cm	7,082	7,082
155–160 cm	9,695	9,695
160–165 cm	7,985	7,985
≥165 cm	3,311	3,311
Neonatal characteristics		
Male (%)	14,139/27,635 (51.2)	
Birth weight (g)	$3,100 \pm 354$	
Height (cm)	49.8 ± 1.6	

480 Table 1. Baseline characteristics of pregnant and non-pregnant women

	non-pregnant	6–12 wk	13–27 wk	28–36 wk	37–41 wk	PP 1 day	PP 2–7 day	PP 3–7 wk
	n = 28,073	n = 18,534	n = 21,546	n = 26,825	n = 5,091	n = 26,931	n = 4,809	n = 626
Average time point		GA 10.9 wk	GA 23.8 wk	GA 31.5 wk	GA 37.7 wk	PP 1 day	PP 4.5 day	PP 4.8 wk
Platelet counts								
Mean \pm SD (×10 ⁹ /L)	268 ± 58	238 ± 48	231 ± 47	225 ± 49	221 ± 53	215 ± 52	261 ± 65	244 ± 61
2.5^{th} percentile (×10 ⁹ /L)	170	155	152	140	129	127	149	148
50^{th} percentile (×10 ⁹ /L)	260	234	227	221	218	210	257	233
97.5 th percentile ($\times 10^9/L$)	400	341	335	335	337	328	403	386
<150 (×10 ⁹ /L)	196 (0.7)	343 (1.9)	474 (2.2)	1,172 (4.4)	309 (6.1)	2,224 (8.3)	127 (2.6)	19 (3.0)
<100 (×10 ⁹ /L)	22 (0.1)	13 (0.7)	8 (0.0)	22 (0.1)	16 (0.3)	81 (0.3)	12 (0.2)	0 (0)

Table 2. The mean and 2.5th, 50th, and 97.5th percentiles for platelet counts and the prevalence of gestational thrombocytopenia at non-pregnant state, during pregnancy, and postpartum period.

	1	21		10			
	6–12 wk	13–27 wk	28–36 wk	37–41 wk	PP 1 day	PP 2–7 day	PP 3–7 wk
	n = 1,229	n = 1,449	n = 1,700	n = 532	n = 1,700	n = 537	n = 55
Average time point	GA 10.8 wk	GA 23.7 wk	GA 31.3 wk	GA 38.1 wk	PP 1 day	PP 4.5 day	PP 4.7 wk
Platelet counts							
Mean \pm SD (×10 ⁹ /L)	250 ± 50	243 ± 49	237 ± 51	226 ± 57	216 ± 56	270 ± 70	271 ± 84
2.5^{th} percentile (×10 ⁹ /L)	170	161	153	121	119	146	171
50^{th} percentile (×10 ⁹ /L)	246	240	232	222	211	268	267
97.5 th percentile ($\times 10^{9}/L$)	358	344	353	348	338	414	496
<150 (×10 ⁹ /L)	6 (0.5)	19 (1.3)	31 (1.8)	39 (7.3)	170 (10.0)	18 (3.4)	0 (0)
<100 (×10 ⁹ /L)	1 (0.1)	1 (0.1)	1 (0.1)	2 (0.4)	14 (0.8)	4 (0.7)	0 (0)

Supplementary Table 1. The mean and 2.5th, 50th, and 97.5th percentiles for platelet counts and the prevalence of gestational thrombocytopenia during pregnancy and postpartum period in women with hypertensive disorders of pregnancy.

	1				V 1		
	6–12 wk	13–27 wk	28–36 wk	37–41 wk	PP 1 day	PP 2–7 day	PP 3–7 wk
Gestational hypertension	n = 687	n= 816	n = 972	n = 270	n = 978	n = 275	n = 34
Mean \pm SD (×10 ⁹ /L)	248 ± 51	242 ± 48	236 ± 49	236 ± 52	218 ± 54	275 ± 68	272 ± 74
2.5^{th} percentile (×10 ⁹ /L)	169	162	155	154	129	150	170
50^{th} percentile (×10 ⁹ /L)	243	239	231	230	212	2672	271
97.5 th percentile (×10 ⁹ /L)	363	342	345	356	341	421	435
<150 (×10 ⁹ /L)	3 (0.4)	13 (1.6)	12 (1.2)	0 (0)	82 (8.4)	6 (2.2)	0 (0)
<100 (×10 ⁹ /L)	0 (0)	1 (0.1)	1 (0.1)	0 (0)	5 (0.5)	1 (0.4)	0 (0)
Preeclampsia	n = 348	n = 419	n = 503	n = 211	n = 501	n = 192	n = 18
Mean \pm SD (×10 ⁹ /L)	248 ± 47	242 ± 49	235 ± 55	207 ± 56	205 ± 57	258 ± 73	248 ± 52
2.5^{th} percentile (×10 ⁹ /L)	170	161	145	111	107	116	1786
50^{th} percentile (×10 ⁹ /L)	245	237	229	208	198	258	245
97.5 th percentile (×10 ⁹ /L)	351	346	358	317	328	386	340
<150 (×10 ⁹ /L)	3 (0.9)	5 (1.2)	17 (3.4)	37 (17.5)	73 (14.5)	11 (5.7)	0 (0)
<100 (×10 ⁹ /L)	1 (0.3)	0 (0)	0 (0)	2 (0.9)	9 (1.8)	3 (1.6)	0 (0)
Chronic hypertension	n = 167	n = 181	n = 192	n = 38	n = 193	n = 57	n = 2
Mean \pm SD (×10 ⁹ /L)	262 ± 51	249 ± 50	243 ± 52	245 ± 62	229 ± 55	279 ± 58	442 ± 30
2.5^{th} percentile (×10 ⁹ /L)	174	167	166	148	130	181	242
50^{th} percentile (×10 ⁹ /L)	256	251	238	235	226	270	442
97.5 th percentile (×10 ⁹ /L)	368	361	358	384	339	394	642
<150 (×10 ⁹ /L)	0 (0)	0 (0)	1 (0.5)	2 (5.3)	12 (6.2)	1 (1.8)	0 (0)
<100 (×10 ⁹ /L)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)

Supplementary Table 2. The mean and 2.5th, 50th, and 97.5th percentiles for platelet counts and the prevalence of gestational thrombocytopenia during pregnancy and postpartum period in women with HDP classified into four types.

Superimposed preeclampsia	n = 27	n = 33	n = 33	n = 13	n = 28	n = 13	n = 1
Mean \pm SD (×10 ⁹ /L)	250 ± 47	246 ± 46	243 ± 46	237 ± 49	232 ± 59	309 ± 78	291
2.5^{th} percentile (×10 ⁹ /L)	166	151	155	184	121	221	291
50^{th} percentile (×10 ⁹ /L)	247	243	246	212	239	287	291
97.5 th percentile ($\times 10^9/L$)	333	321	326	328	334	473	291
<150 (×10 ⁹ /L)	0 (0)	1 (3.0)	1 (3.0)	0 (0)	3 (10.7)	0 (0)	0 (0)
<100 (×10 ⁹ /L)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)

	1		0				
	6–12 wk	13–27 wk	28–36 wk	37–41 wk	PP 1 day	PP 2–7 day	PP 3–7 wk
	n = 418	n = 526	n = 1,052	n = 183	n = 613	n = 151	n = 13
Average time point	GA 10.9 wk	GA 23.9 wk	GA 33.3 wk	GA 37.8 wk	PP 1 day	PP 4.7 day	PP 5.0 wk
Platelet counts							
Mean \pm SD ($\times 10^{9}/L$)	236 ± 51	235 ± 49	229 ± 53	214 ± 51	214 ± 54	262 ± 69	231 ± 62
2.5 th percentile (×10 ⁹ /L)	152	152	142	105	125	156	134
50^{th} percentile (×10 ⁹ /L)	232	230	224	213	207	253	227
97.5 th percentile ($\times 10^9/L$)	345	336	340	314	334	416	344
<150 (×10 ⁹ /L)	10 (2.4)	9 (1.7)	44 (4.2)	14 (7.7)	61 (10.0)	3 (2.0)	1 (7.7)
<100 (×10 ⁹ /L)	1 (0.2)	3 (0.6)	6 (0.6)	5 (2.7)	3 (0.5)	1 (0.7)	0 (0)

Supplementary Table 3. The mean and 2.5th, 50th, and 97.5th percentiles for platelet counts and the prevalence of gestational thrombocytopenia during pregnancy and postpartum period in women with fetal growth restriction.