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Abstract 
 
 The Ludwig–Soret effect is a phenomenon wherein thermal diffusion is induced by a 
temperature gradient.  The governing differential equation to explain this phenomenon has 
been derived phenomenologically based on the Onsager theorem in non-equilibrium 
thermodynamics. In this study, we applied the grain-boundary-phase (GBP) model to the 
Ludwig–Soret effect.  This model has been originally proposed for calculating the amount 
of grain boundary segregation in alloys. The flux equation for the thermal diffusion of  
vacancies was reasonably derived through parallel-tangent construction of the Gibbs 
energy curves utilized in the GBP model. Moreover, the thermal vacancy diffusion in a 
pure metal was simulated. The results i l lustrated that the excess vacancies in the pure 
metal preferentially moved to the high-temperature region. The direct application of the 
thermodynamic Gibbs energy parameters in the CALPHAD method is essential to analyze 
the thermal diffusion phenomenon. Furthermore, the oxygen vacancy diffusion in 
Zr(O,Va)2  under a considerably large temperature gradient was calculated,  and a similar 
result  was obtained, wherein the excess oxygen vacancies moved to the high-temperature 
region. This finding may explain the rapid atom diffusion observed during the flash 
sintering process.  
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1. Introduction 
  The Ludwig–Soret effect [1,2] is a phenomenon in materials wherein thermal diffusion 
is induced by a temperature gradient. The governing differential equation [1,2] to explain 
the Ludwig–Soret effect has been derived phenomenologically based on the Onsager 
theorem in non-equilibrium thermodynamics.  This equation is shown as Eq. (1): 
 

  c T 0 0(1 )J D c D c c T= − ∇ − − ∇ ,                                         (1) 

 

where 0c  is the average solute composition,  and c(r ,t)  is  the local solute composition,  

which is a function of local position r  (r  = x ,  y ,  z) and time t.  cD   and TD   are the 

diffusion coefficients for the solute diffusion induced by a composition gradient and a 
temperature gradient, respectively.  As summarized in recent reviews on the Ludwig–Soret 
effect [3-5],  Eq. (1) can be modified; however, the basic concept for deriving Eq. (1) from 
the Onsager theorem remains the same.  
 In this study, we applied the grain-boundary-phase (GBP) model [6-8] in deriving the 
equation for the thermal diffusion of vacancies. The thermal diffusion of vacancies in 
metals has been discussed by Shewmon [9,10] in terms of the Ludwig–Soret effect based 
on Eq. (1). Original GBP model has been proposed by Hillert [6,7] to calculate the amount 
of grain boundary segregation in alloys.  In the GBP model, the parallel-tangent 
construction [6-8] to the Gibbs energy curves is a key technique for estimating the amount 
of grain boundary segregation. As explained in this article, the governing equation for the 
Ludwig–Soret effect,  Eq. (1), was also derived based on the same technique of parallel-
tangent construction to the Gibbs energy curves. Henceforth, the parallel-tangent 
construction to the Gibbs energy curves is referred simply as the "parallel-tangent 
method." This approach has several merits.  The thermodynamic data of Gibbs energy are 
accumulated through the CALPHAD (Calculation of phase diagrams) method [11,12], and 
these thermodynamic data can be directly applied to analyze the dynamics of the Ludwig–
Soret effect through the parallel-tangent method. We can use the quantitative data in the 
CALPHAD method; hence, the extreme phenomenon under a large temperature gradient 
will  be satisfactorily clarified. This suggests that the thermodynamic data in the 
CALPHAD method open a new way to analyze the thermal diffusion phenomenon, that is, 
we can simultaneously calculate the atom diffusion induced by not only a composition 
field but also a temperature field.  
  In this paper, we first  demonstrate the equivalency between the parallel-tangent method 
and the Ludwig–Soret effect theory. We then apply this approach to undertand the thermal 
diffusion behavior of vacancies in a pure metal and the thermal diffusion of oxygen 
vacancies in Zr(O,Va)2.  Furthermore, the mechanism of rapid atom diffusion, which was 
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recently observed experimentally during a flash sintering process [13-17], is discussed on 
the basis of the calculation results.  
 
2. Parallel-tangent method and Ludwig–Soret effect 
  In this section, we explain the original GBP model and the relationship between the 
parallel-tangent method and the Ludwig–Soret effect.  
2.1 GBP model 
  The GBP model was proposed by Hillert as a method for estimating the extent of grain 
boundary segregation [6-8],  wherein the grain boundary region is regarded as a thin film 
of an amorphous phase. This amorphous phase is often denoted as a GBP; hence, this 
method is described in the GBP model. Grain boundary segregation is estimated by 
calculating the equilibrium composition in the GBP. When we consider an A–B binary 
alloy system, where the α matrix phase is a solid solution phase and the β phase denotes 
the GBP, the equilibrium solute composition in the β phase is the segregation composition 

that we want to determine. However,  the volume fraction of the β phase ( βf ) must be 

constant because we disregard the polycrystalline microstructur change of the α matrix 

phase. Hence, the solute composition in the β phase( βc  ) is not a composition on the 

equilibrium phase diagram, but a restricted composition under the condition of a fixed 

volume fraction βf .  The value of βc  is calculated by the Lagrange multiplier method, 

and the Gibbs energy of the (α+β) two-phase mixture cG  is given by  

 

 
α β

c c α α c β β 0 α α β β( , ) ( , ) ( )G G c T f G c T f c c f c fλ= + + − − ,  

 

where λ is a Lagrange multiplier [18]; αc  and βc  are the compositions of the α and β 

phases,  respectively; and 0c  is the average composition. 𝑓𝑓𝛼𝛼  (𝑓𝑓𝛼𝛼 = 1 − 𝑓𝑓𝛽𝛽) is the volume 
fraction of the α phase. α

c α( , )G c T  and β
c β( , )G c T  are the Gibbs energies of the α and β phases, 

respectively.  These Gibbs energies are functions of composition and temperature T .  The 
minimum condition of cG  is calculated as follows: 

 

 

α β
c c c c c

α β 0 α α β β
α α β β

0, 0, ( ) 0.G G G G Gf f c c f c f
c c c c

λ λ
λ

  ∂ ∂ ∂ ∂ ∂
= − = = − = = − + =    ∂ ∂ ∂ ∂ ∂   

 

 
Subsequently, we obtained the parallel-tangent method, that is, parallel-tangent 
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construction to the Gibbs energy curves: 
 

α β
c c

α α β β 0
α β

,G G c f c f c
c c

∂ ∂
= + =

∂ ∂ .  

 

Phase compositions αc  and βc ,  which satisfy 

the above equations,  are the equilibrium 
compositions under the constraint of fixed βf .  

Figure 1 shows the comparison between the 
conventional common-tangent construction of 
the Gibbs energy curves and the parallel-
tangent method. The conventional common-
tangent construction [19] of the Gibbs energy 
curves is explained by the same formulation in 
Appendix A for reference. 
2.2 Application of the GBP model in an inhomogeneous temperature field 
 Here, we consider that a single α phase and two regions with different temperatures 1T  
and 2T  are in equilibrium, as shown in Fig.  2. The volume fractions of the regions denoted 
by 1T  and 2T  are 1f  and 2f ,  respectively.  These regions are in contact with each other.  

The Gibbs energy of the system can be expressed as  
 

  
α α

c c 1 1 1 c 2 2 2 T 0 1 1 2 2( , ) ( , ) ( )G G c T f G c T f c c f c fλ= + + − − ,  

 
where λT is the Lagrange multiplier.  By calculating in the same way explained in the 
previous section,  we obtain similar relations: 
 
 

α α
c 1 1 c 2 2

1 1 2 2 0
1 2

( , ) ( , ) , .G c T G c T c f c f c
c c

∂ ∂
= + =

∂ ∂  

 

Compositions 1c   and 2c  ,  which satisfy 

the above equations,  are the equilibrium 
compositions under the constraint of a fixed 
temperature field. Interestingly,  this 
formulation is the same as the case of the 

 
Fig. 1 Comparison between the 
conventional common-tangent 
construction of Gibbs energy curves 
and the parallel-tangent method.  

 
Fig. 2 Calculation conditions . 
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GBP model. In particular, the temperature 
field is unimportant in this case; however, 
this field plays a role in defining both the 
volume fractions of the two temperature 
regions and the two Gibbs energy curves 
( α 1 1( , )G c T   and α 2 2( , )G c T  )  at different 

temperatures.  
 Furthermore, if we consider a continuous 
temperature gradient, i t can be 
approximated by many adjacent regions 
with different temperatures (Fig. 3), where 
N  is the number of divisions.  If N is large,  the temperature of each divided region is 
assumed to be constant.  The temperatures, volume fractions, and compositions in the 
divided individual regions are denoted by ,( 1,2, , )iT i N=   ,  ,( 1,2, , )if i N=   ,  and 

,( 1,2, , )ic i N=  ,  respectively.  The Gibbs energy of the system can be expressed as  

 

 c α T 0
1 1

( , ) ,
N N

i i i i i
i i

G f G c T c c fλ
= =

 
= + − 

 
∑ ∑  

 
such that the minimizing Gibbs energy cG  provides 

 

 
c α c

T 0
1T

( , ) 0, 0.
N

i i
i i i i

ii i

G G c T Gf f c c f
c c

λ
λ =

∂ ∂ ∂
= − = = − =

∂ ∂ ∂ ∑  

 
Subsequently, the generalized parallel-tangent method is obtained. 
 

 

αα

0
1

( , )( , ) , ( , 1,2, , ),

.

j ji i

i j

N

i i
i

G c TG c T i j N
c c

c f c
=

∂∂
= =

∂ ∂

=∑



                             (2) 

 
Using these equations,  we can calculate the equilibrium solute composition profile under 
a fixed continuous temperature gradient in this case.  From the above discussion,  the 
thermal diffusion flux of solute element J  is expressed phenomenologically as follows: 
 

 
Fig. 3 Continuous temperature field .  
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     α
0 (1 ) dGJ M c c

dc
= − − ∇                                           (3) 

 

where c  is the local solute composition,  and 0M  is the mobility of atom diffusion. If 

we perform the diffusion simulation using Eq. (3) under a fixed temperature field, we can 
determine the steady-state solute composition profile that satisfies Eq. (2).  
 
3. Governing equation of the Ludwig–Soret effect 
 The governing equation of the Ludwig–Soret effect is derived from the GBP model. Here,  
we focused on vacancy diffusion in a pure metal under a temperature gradient for simplicity. 
The Gibbs energy is given by [19] 
 

  { }F F( ) (1 ) ln(1 ) ln ,G H TS c RT c c c c= − + − − +                           (4) 

 

where c  is the mole fraction of the vacancy, and R  is  the gas constant. FH  and FS  are 

the formation enthalpy and formation entropy of a vacancy, respectively.  The equation for 
diffusion flux J of vacancies is obtained as follows:  
 

 

{ }

{ }

{ }

{ }

0 0 F F

F F
0

F F
0

0 0 F

F
0 0

(1 ) (1 ) ln ln(1 )

ln ln(1 )
(1 )

ln ln(1 )
(1 )

(1 ) (1 ) ln ln(1 )
(1 )

/

dGJ M c c M c c H TS RT c c
dc
H TS RT c c

M c c c
c

H TS RT c c
M c c T

T
RTM c c c M c c S R c c T

c c
H dG dcM RT c M c

T

= − − ∇ = − − ∇ − + − −  

∂ − + − −  = − − ∇
∂

∂ − + − −  − − ∇
∂

= − − ∇ − − − + − − ∇  −
−

= − ∇ +

c T

(1 )

(1 ) ,

c T

D c D c c T

− ∇

= − ∇ + − ∇

     (5) 

 

where we defined T 0 F( / ) /D M H dG dc T≡ −  ,  and c 0D M RT≡   is the Einstein equation 

[9]. Eq. (1), which is the governing equation of the Ludwig–Soret effect, is directly derived 
from the Gibbs energy function and the parallel-tangent method. 
  Recently, it has been discussed that how to treat the vacancy component in the compound 
energy formalism [20-23], and more accurate formula of the Gibbs energy function than 
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eq. (4) has been proposed. To evaluate the thermal vacancy composition quantitatively,  it  
is necessary to use thermodynamic parameters and Gibbs energy functions optimized for 
vacancies as discussed in the papers [20-23]. Since the main objective of this study is to 
clarify the relationship between the thermal diffusion behavior and the Hillert 's grain-
boundary-phase model,  we dared to use the Gibbs energy function of eq. (4) for the 
convenience to compare the previous studies by Shewmon [9,10].  
 
4. Computer simulation on the thermal diffusion of vacancies 
  The steady-state vacancy composition 
profile in a pure metal under a temperature 
gradient was calculated. Figure 4 shows the 
condition of the temperature field used in the 
simulation. For simplicity, the temperature 
profile was assumed to be linear, and the 
profile shape was unchanged during the 
simulation of vacancy diffusion.  
4.1 Local equilibrium composition of vacancies 
 The thermal equilibrium composition of vacancies at temperature T  is given by Eq. (6):  
 

  F F( ) exp expS Hc T
R RT

   = −   
   

                                          (6) 

 
Figure 5 shows the composition profile of vacancies calculated according to the local 

temperature using Eq. (6), where we assumed F 1.6 (eV)H =  and FS R= .  The vacancy 

composition increased with increasing temperature. Furthermore,  the average composition 

 
Fig. 4 Simulation condition with 
respect to the temperature field .  

 
Fig. 5 Thermal equilibrium composition profile of vacancies determined from 
the local temperature.  
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of vacancies in the entire region in Fig. 4 was calculated as 5
0 4.6 10c −= × .  

 
4.2 Calculation of vacancy composition profile using the thermal diffusion equation 
  According to Eq. (3),  the equation for the thermal diffusion of vacancies is derived as 
follows: 
 

  

{ }

2
0 0 0 0

F F

(1 ) (1 ) ,

ln ln(1 )

dc dG dGM c c M c c
dt dc dc
dG H TS RT c c
dc

 = ∇ ⋅ − ∇ ≅ − ∇ 
 

= − + − −

                           (7) 

 
Here, we focused on the steady-state vacancy composition profile, which is determined by 

a long-term simulation.  Hence, we assumed that 0 0 0 0(1 ) (1 )M c c M c c− = −  and 0 1M = .   

The numerical simulation method to calculate the steady-state vacancy composition profile 
is a conventional finite difference method [24],  where the one-dimensional space of Fig.  
4 was divided into 100. The temporal change of the composition profile was simulated by 
the Euler method, and the calculation was finished when the composition profile was no 
longer changed. The detail  of the simulation method is available in ref [24].  

 

 
Fig. 6 shows the steady-state composition profile of vacancies calculated using Eq. (7). In 

this profile, the average composition 0c  of the vacancies was set to 4.6×10–5, which is 

the same as that from Fig. 5. The calculated steady-state composition profile (red curve in 

 
Fig. 6 Thermal equilibrium composition profile of vacancies calculated from 
the thermal diffusion equation.  
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Fig. 6) coincided completely with that shown in Fig. 5 (blue curve in Fig. 6).  This result  
is because the parallel-tangent construction in Eq. (2) calculates the local equilibrium state, 
where the slope of the parallel-tangent line is zero.  

  In contrast,  if we assumed an excess vacancy composition,  where 5
0 7.0 10c −= × ,  the 

calculated steady-state composition profile of vacancies was illustrated as the red curve 
in Fig. 7.  The blue curve is the same as that shown in Fig. 6.  Interestingly, the vacancy 
composition preferentially increased in the high-temperature region. The purpose of this 
calculation is to understand which direction the vacancies will move according to the 
thermal diffusion if there are excess vacancies.  Therefore, the excess vacancies were 
introduced and the vacancy composition was assumed to be a conserved quantity to confirm 
the flow of vacancies.  

 
  When excess vacancies were introduced, the vacancies moved to the high-temperature 
region. This behavior is theoretically explained as follows:  

  At different temperatures 1T   and 2T  ,  the Gibbs energy curves are approximated as 

follows: 
 

 

2
1 1 1 01

2
2 2 2 02

1( ) ( ) ( )( ) ,
2
1( ) ( ) ( )( ) .
2

G T A T B T c c

G T A T B T c c

= + −

= + −
                                   (8) 

 

 
Fig. 7 Thermal equilibrium composition profile of vacancies calculated from the 
thermal diffusion equation with excess vacancy concentration.  
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This approximation was performed around 0ic  

(i= 1,  2),  which are the equilibrium vacancy 

compositions at temperature iT  .  ( )iA T   and 

( )iB T   are functions of iT  .  Fig. 8 shows a 

schematic of the Gibbs energy curves according 

to Eq. (8).  We assumed 1 2T T<  ; hence, the 

relationships 1 2( ) ( )A T A T>   and 1 2( ) ( )B T B T>  

should be satisfied because of the entropy 
effect in the Gibbs energy. The red lines in Fig.  
8 are an example of the parallel-tangent 

method; 1c   and 2c   are the vacancy 

compositions at tangent points. Substituting 
Eq. (8) in Eq. (2), we obtain the following 
relation:  
 

 2 021
1 1 01 2 2 02

2 1 01

( )( )( ) ( )( ), ,
( )

c cB TB T c c B T c c
B T c c

−
− = − ∴ =

−
 

 

where compositions 1c  and 2c  are determined from the above equation.  Also, 𝐵𝐵(𝑇𝑇1) > 

𝐵𝐵(𝑇𝑇2).  Hence, the logic below can be easily understood.  
 

 2 021
2 02 1 01

2 1 01

( ) 1,
( )

c cB T c c c c
B T c c

−
= > ∴ − > −

−
 

 

Therefore,  the composition deviation ( 0i ic c− ) from the thermal equilibrium composition 

increases with increasing temperature.  This result  corresponds to the simulation result  in 
Fig. 7.  In contrast,  Shewmon insisted on the opposite conclusion that the vacancies move 
from the high-temperature to low-temperature region. This discrepancy is discussed in 
Appendix B.  
 
5. Application to flash sintering 
  In this section, we discuss the rapid atom diffusion observed during a flash sintering 

 
Fig. 8 Calculation condition . 
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process on the basis of the steady-state composition profile of oxygen ion vacancies under 
a constant temperature gradient in ZrO2.  The Gibbs energy of cubic Zr(O,Va)2 [25] is given 
by Eq. (9): 
 

  

( )
( )

2 2 2 2
2- 2- 2-

2- 2- 2-

γZrO γZrO γZrO γZrO 0 0 0 1
Zr:O Va Zr:Va Va Zr:O,Va Zr:O,Va VaO O O

 
O Va VaO O

( )1
1 2 4 ln ln

y G y G y y L L y y
G

y RT y y y y

 + + −
 =

+  + + 

Ⅱ Ⅱ Ⅱ Ⅱ Ⅱ Ⅱ

Ⅱ Ⅱ Ⅱ Ⅱ Ⅱ

+

　
,    (9) 

 

where 2-
 

O
yⅡ   and VayⅡ   are the sub-lattice compositions of oxygen atoms and oxygen 

vacancies in an anion lattice site (denoted as a sub-lattice II)  in Zr(O,Va)2,  respectively.  

2γZrO0
Zr:XG  is  the Gibbs energy of ZrX2 (X= O or Va),  and 2γZrO

Zr:O,Va ( 0,1)iL i =  are the coefficients 

of the Redlich–Kister expansion [11,12]. These quantities were assessed by Liang et al.  
[25]  as functions of temperature in the CALPHAD approach. The assessment is as follows 
[25]: 
 

  

2

2

2

2 2

γZrO0 0 hcp 0 gas 2
Zr:O Zr O

γZrO0 0 hcp
Zr:Va Zr

γZrO γZrO0 1
Zr:O,Va Zr:O,Va

1014781.7 269.4 59.015088 ln 17.726352 ,

7600 0.9 ,

295349.19 97.99689 , 352804.04 117.88667 . (J/mol)

G G G T T T T

G G T

L T L T

− − = − − + −

− = −

= − = − +

 

 

2

0 gas
OG  and 0 hcp

ZrG  are the Gibbs energies of the oxygen molecule and pure Zr of hexagonal 

crystal structure, respectively.  The diffusion flux of oxygen vacancies is expressed as 
follows:   
 

  
0 Va Va

Va

(1 ) dGJ M y y
dy

= − − ∇Ⅱ Ⅱ

Ⅱ
.  

 
Hence, the diffusion equation with respect to the composition of oxygen vacancies is 
approximated as  

 

  

2Va
0 Va0 Va0

Va

(1 )d y dGM y y
dt dy

≅ − ∇
Ⅱ

Ⅱ Ⅱ

Ⅱ
.  

 

0M  is  the mobility of oxygen vacancy diffusion. In the calculation, we assumed 0 1M =  

because we focused on the steady-state oxygen vacancy composition profile,  which is 
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determined by long-term simulation.  The temperature field in Fig. 4 is employed as the 
boundary condition to calculate the steady-state composition profile of oxygen vacancies.   
  Figure 9 shows the calculation result, where the blue curve is the case of the average 

oxygen vacancy composition, in this case,  4
0 1.79 10y −= × .  This value was calculated from 

the local equilibrium composition of oxygen vacancies at the local temperature.  The red 
curve is the case where we considered excess oxygen vacancies. In this case, the average 

oxygen vacancy composition was assumed to be 3
0 1.0 10y −= × .  Similar to the case shown 

in Fig. 7, the oxygen vacancy composition increased with increasing temperature. In 
particular, the excess oxygen vacancies concentrated in the high-temperature region by 
thermal diffusion. It has been realized experimentally that the reduction reaction of oxygen 
atoms takes place by the local electric current or potential during the flush sintering, then 
additional excess oxygen vacancies are introduced and which promotes the kinetics of 
sintering [13,17].  In this study, as we want to understand which direction the vacancies 
will  move according to the thermal diffusion if there are excess oxygen vacancies, we 
introduced the excess vacancies,  and the vacancy composition was treated as a conserved 
quantity to confirm the flow of vacancies.  

  
 Fig.  10 shows the schematic of the temperature field of the ZrO2 particles during flash 
sintering [13,17].  The maximum temperature 2000 K in Fig.  10 was selected by considering 
the previous researches summarized in Ref. 13, and we assumed the furnace temperature, 
that is around 1000 K, as the minimum temperature in Fig. 10. Although the minimum 
temperature may be too low, we selected this temperature range for simplicity,  because the 
following result of our proposal is not influenced.  
 In the flash sintering experiment, YSZ (Y2O3-stabilized ZrO2) was often utilized [13-17], 

 
Fig. 9 Thermal equilibrium composition of oxygen vacancies calculated from the 
thermal diffusion equation. 
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and YSZ has many structural oxygen vacancies [26]. Flash sintering is one of the field-
assisted sintering methods, and the electric current induces a large Joule heat. This heat 
enabled us to establish rapid sintering at low temperatures [15]. However,  the mechanism 
of such rapid sintering at low temperatures is unclear because this phenomenon is 
insufficiently explained on the basis of Joule heat alone [16]. Furthermore,  defect 
formation by oxide reduction during flash sintering is discussed as a trigger for the rapid 
sintering behavior [17].   
  The following explanation is only a speculation.  However, we believe that the 
mechanism of flash sintering can be understood. The Joule heat at the surface region of 
the ZrO2 particle provides a large temperature gradient, and Y addition introduces many 
excess oxygen vacancies (structural vacancies). Under such circumstances,  the oxygen 
vacancy moves to the surface region from the inner side of the sintering particles according 
to the mechanism illustrated in Fig. 9.  The vacancies promote the expansion of the crystal 
lattice [27], resulting in lattice softening, and Dong et al.  has recently proposed that the 
introduction of oxygen ion vacancies would promote the diffusion of cations [28]. Hence,  
the cation atom diffusion at the surface region is extremely enhanced, and then the rapid 
diffusion of atoms is established in flash sintering.  

 
6. Conclusions 
  In this study, the GBP model was applied to derive the flux equation of the Ludwig–
Soret effect, and the thermal diffusion of vacancies was simulated.  Furthermore, the 
proposed method was applied to explain the rapid atom diffusion observed during the flash 
sintering process.  The results obtained are as follows: 
 
(1) The flux equation of thermal diffusion by the Ludwig–Soret effect was reasonably 
derived through the parallel-tangent method utilized in the GBP model. Therefore,  the 
thermodynamic Gibbs energy parameters in the CALPHAD method can be directly applied 

 
Fig.10 The schematic of the temperature field of the ZrO2 particle during flush 
sintering.  
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to investigate the thermal diffusion phenomenon. 
 
(2) The numerical simulation of thermal diffusion demonstrated that the excess vacancies 
in a pure metal move to the high-temperature region.  
 
(3) Based on the proposed method, the oxygen vacancy diffusion in Zr(O,Va)2 under a 
temperature gradient was calculated.  The result obtained herein showed that the excess 
oxygen vacancies move to the high-temperature region. The localization of the oxygen 
vacancies in the high-temperature region may promote the rapid atom diffusion observed 
in YSZ during flash sintering in YSZ. 
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Appendix A 
 Compared with the parallel-tangent method discussed in this study, the common-tangent 
construction [6-8,19] of the Gibbs energy curves is derived for reference. In equilibrium 
phase diagrams, the volume fractions of the constituent phases are functions of phase 

compositions cα  and βc .  Gibbs energy with the Lagrange multiplier term is expressed 

as  
 

 c α α α α β β β β α β 0 α α α β β β α β( , ) ( , ) ( , ) ( , ) [ ( , ) ( , )]G G c T f c c G c T f c c c c f c c c f c cλ= + + − − .  

 
The minimization of Gibbs energy cG  is calculated by the following equations: 
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From these equations, we obtained  
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The above two equations are identical equations. Hence, the following relations with 
respect to the common-tangent construction of the Gibbs energy curves are obtained:  
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Appendix B 
 According to the analysis of the thermal diffusion of vacancies by Shewmon [9,10], the 
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equation of the one-dimensional (x-direction) vacancy flux is as follows: 
 

  
* *

1ln .v v v
v vv

v T

c dc Q Q TJ L RT
c d x T x

    ∂ − ∂
= − +    ∂ ∂    

 

 

*
vQ and *

1Q  are the heat of transport of the vacancies and atoms, respectively.  vc  and T  

are the local vacancy composition and local temperature,  respectively; these variables are 

functions of local position x  and time t.  vvL  is the mobility of vacancy diffusion,  and R  

is the gas constant.  * *
1{( ) / }( / )vQ Q T T x− ∂ ∂  can take both positive and negative values; 

and, ( ) ( )ln / /v v vT T
RT c c c x∂ ∂ ∂ ∂  mainly determines the direction of vacancy diffusion.  

As Shewmon assumed the thermal equilibrium composition of vacancies that is determined 
from the local temperature, it can be considered that the higher the temperature is, the 
higher the vacancy composition will be.  Thus, normal downhill  diffusion takes place 

according to ( ) ( )ln / /v v vT T
RT c c c x∂ ∂ ∂ ∂  ,  indicating that the vacancies move from the 

high-temperature to low-temperature region.  
  This argument is oversimplified because each point in the profile satisfies the thermal 
equilibrium composition, i.e. ,  the vacancy composition profile is in a steady state with 
minimum Gibbs energy, then, no vacancy diffusion occurs (see Fig. 6). Therefore, the 
excess vacancies must be required to discuss the thermal diffusion of vacancies, as 
explained in this study. 
 
 


