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Quark-hadron crossover equations of state for neutron stars:
Constraining the chiral invariant mass in a parity doublet model
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We construct an equation of state (EOS) for neutron stars by interpolating hadronic EOS at low density and
quark EOS at high density. A hadronic model based on the parity doublet structure is used for hadronic matter
and a quark model of Nambu–Jona-Lasinio type is for quark matter. We assume crossover between hadronic
matter and quark matter in the color-flavor locked phase. The nucleon mass of the parity doublet model has a
mass associated with the chiral symmetry breaking, and a chiral invariant mass m0 which is insensitive to the
chiral condensate. The value of m0 affects the nuclear EOSs at low density, and has strong correlations with the
radii of neutron stars. Using the constraint to the radius obtained by LIGO-Virgo and NICER, we find that m0 is
restricted as 600 MeV � m0 � 900 MeV.
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I. INTRODUCTION

Chiral symmetry and its spontaneous breaking is one of the
most important properties in low-energy hadron physics. The
spontaneous breaking is triggered by the condensate of quarks
and antiquarks, which generates a part of hadron masses and
mass difference between chiral partners.

In the case of the nucleon, Ref. [1] introduced a notion
of the chiral invariant mass in addition to the mass from the
spontaneous chiral symmetry breaking using a model based
on the parity doublet structure. By regarding N∗(1535) as the
chiral partner to the ordinary nucleon and using the decay
width, the chiral invariant mass is shown to be smaller than
500 MeV [2]. On the other hand, analysis of nucleon mass
at high temperature by lattice simulation [3] suggests a large
value of the chiral invariant mass.

There are many works to construct nuclear matter and neu-
tron star (NS) equation of state (EOS) using hadronic models
based on the parity doublet structure (see, e.g., Refs. [4–29]).
Typical models are σ -ω type mean field models [30] in which
a nucleon acquires the mass from the σ condensate, while in
parity doublet models (PDMs) nucleons are less sensitive to
the details of σ due to the presence of the chiral invariant
mass.

There have been several refinements in the PDM to ac-
count for the nucleon as well as nuclear matter properties.
The authors in Refs. [23] and [31] revisited the estimate of
the decay width, and found that inclusion of the derivative
interactions, not included in Ref. [2], allows larger values
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of m0, and discussed that relatively large values, 500 MeV �
m0 � 900 MeV, are more reasonable to explain the saturation
properties in nuclear matter. In particular, Ref. [23] showed
that inclusion of a σ 6 term reproduces the incompressibil-
ity of the empirical value K ≈ 240 MeV, which was much
larger in previous analyses. In Ref. [24], the analyses were
further extended to NS matter, and the chiral invariant mass
is restricted to be m0 � 600 MeV by the tidal deformability
estimated from the NS merger GW170817 [32–34].

The previous study in Ref. [24] based on the PDM ex-
trapolates the hadronic equations state to the baryon density
nB ≈ 3n0 (n0 � 0.16 fm−3: nuclear saturation density). How-
ever, as emphasized in Refs. [35–38], the validity of pure
hadronic descriptions at nB � 2n0 are questionable as nuclear
many-body forces are very important, and this would imply
that we need quark descriptions even before the quark matter
formation. In this context it was proposed to construct EOS
by interpolating EOS for hadronic matter at nB � 2n0 and
the one for quark matter in the high-density region, nB �
5n0. For describing the quark matter, the authors adopted a
three flavor Nambu–Jona-Lasinio (NJL)-type model which
leads to the color-flavor locked (CFL) color-superconducting
matter, and examined effective interactions to satisfy the
two-solar-mass (2M�) constraint. The hadronic EOSs were
based on nonrelativistic nuclear many-body calculations. In
Refs. [20,21], they construct an effective model combining a
PDM and an NJL-type model with two flavors assuming no
color-superconductivity.

In the present analysis, we construct EOS for NSs by
interpolating the EOS constructed from the PDM proposed
in Ref. [23], and the one from the NJL-type model in
Refs. [37,38]. Through such a construction, we will examine
the properties of the PDM, especially the chiral invariant
mass. Although the nuclear and quark EOS cover different
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density domains, in fact they constrain each other as the
interpolation of these EOS must satisfy the thermodynamic
stability and causality constraints. Our unified EOSs are sub-
ject to the following NS constraints: the radius constraint
obtained from the NS merger GW170817 [32–34], the mil-
lisecond pulsar PSR J0030+0451 [39,40], and the maximum
mass constraint obtained from the millisecond pulsar PSR
J0740+6620 [41].

In the present analyses, the most notable correlations are
found between the chiral invariant mass and the radius con-
straints. In the PDM, for a given m0 we arranged the rest
of parameters to fit the nuclear saturation properties, but the
density dependence of different sets of parameters can be very
different. In particular the choice of m0 affects the balance
between the attractive σ and repulsive ω interactions with
nucleons; with smaller m0, we need a larger scalar coupling
to account for the nucleon mass, while it in turn demands a
larger ω coupling for the saturation properties. As the density
increases with the chiral restoration, the ω contributions be-
come dominant, and EOSs for n0 � nB � 3n0 become stiffer.
Too stiff low density EOSs lead to too large NS radii that
would contradict with the currently available upper bound.
Based on this observation we will find the lower bound for
m0. Meanwhile too large m0 is not allowed by the nucleon
mass, the lower bound of NS radii, and the 2M� constraint.

This paper is organized as follows. In Sec. II, we explain
the formulation of the present analysis. Main results of the
analysis are shown in Sec. III. In Sec. IV, we show a summary
and discussions.

II. FORMULATION

In this section, we explain our model to determine the EOS
for NSs. In the low-density region, we use the parity doublet
model to describe the hadronic matter. We use the hidden local
symmetry (HLS) [42,43] to introduce massive vector mesons
with chiral symmetry. There are some equivalent method to
the HLS [43].

In the high-density region, on the other hand, we follow
Refs. [37,38] and an NJL-type model with additional vector
and diquark pairing interactions. We interpolate the resultant
hadronic and quark matter EOS assuming a smooth transition
between them.

A. Parity doublet model

Here, we briefly review an effective hadronic model based
on the parity doublet structure for nucleons [1,2,23].

In our model the excited nucleon N∗(1535) is regarded as a
chiral partner to the ordinary nucleon N (939). For expressing
these nucleons, we introduce two baryon fields ψ1 and ψ2

which transform under the chiral symmetry as

ψL
1 → gL ψL

1 , ψR
1 → gR ψR

1 ,

ψL
2 → gR ψL

2 , ψR
2 → gL ψR

2 , (1)

where gL and gR are the elements of SU(2)L and SU(2)R

groups, respectively. Two baryon fields ψL,R
i (i = 1, 2) are

defined as

ψL
i = 1

2 (1 − γ5)ψi, ψR
i = 1

2 (1 + γ5)ψi. (2)

We assign positive parity for ψ1 and negative parity for ψ2:

ψ1 →
P

γ0ψ1, ψ2 →
P

−γ0ψ2. (3)

The isosinglet scalar meson σ and the isotriplet pions are
introduced through a 2 × 2 matrix field M which transforms
as

M → gL M g†
R. (4)

In the present analysis, following Ref. [23], we include vector
mesons based on the framework of the HLS, by decomposing
the M field as

M = ξ
†
L σ ξR, (5)

where σ is the isosinglet scalar meson field (not a matrix), ξL,R

are matrix fields including pions. The ξL,R transform under the
chiral symmetry and the HLS as

ξL → h ξL g†
L, ξR → h ξR g†

R, (6)

where h is an element of the U(2) group for the HLS. In the
unitary gauge of the HLS, the ξL,R are parametrized as

ξL = e−iπ/ fπ , ξR = eiπ/ fπ , (7)

where π is a 2 × 2 matrix field for pions expressed as π =∑
a=1,2,3 πaTa with Ta = τa/2 being the SU(2) generators and

τa being the Pauli matrices. For constructing the Lagrangian,
it is convenient to introduce the one-forms as

α̂‖
μ = 1

2i
[(DμξR)ξ †

R + (DμξL )ξ †
L ]

α̂⊥
μ = 1

2i
[(DμξR)ξ †

R − (DμξL )ξ †
L ]. (8)

In the above expression, the covariant derivatives are defined
as

DμξL,R = (
∂μ − igωωμT0 − igρρ

a
μTa

)
ξL,R − iξL,RṼμ, (9)

where T0 = 1/2 and Ta = τa/2 are the U(2) generators, ωμ

and ρa
μ are the gauge fields for U(1) and SU(2) HLS, gω

and gρ their gauge coupling constants. As usual, external
gauge fields for the chiral symmetry, Ṽμ, is introduced to keep
track the correspondence between the generating functional
of QCD and its effective Lagrangian of hadronic fields. After
using the correspondence to constrain the form of the effective
Lagrangian, we set the values of the external fields as

Ṽμ = 1

2

(
μQ 0
0 −μQ

)
δ0
μ. (10)

Our effective Lagrangian for hadrons consists of a nucleon
part and a meson part,

LPDM = LN + LM . (11)

The nucleon part is given by

LN =
∑
i=1,2

ψ̄iiγ
μDμψi

− g1
(
ψ̄L

1 MψR
1 + ψ̄R

1 M†ψL
1

)
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− g2
(
ψ̄L

2 M†ψR
2 + ψ̄R

2 MψL
2

)
− m0

(
ψ̄L

1 ψR
2 − ψ̄R

1 ψL
2 − ψ̄L

2 ψR
1 + ψ̄R

2 ψL
1

)
+ aV NN

[
ψ̄L

1 ξ
†
Lγ μα̂‖

μξLψL
1 + ψ̄R

1 ξ
†
Rγ μα̂‖

μξRψR
1

]
+ aV NN

[
ψ̄L

2 ξ
†
Rγ μα̂‖

μξRψL
2 + ψ̄R

2 ξ
†
Lγ μα̂‖

μξLψR
2

]
+ a0NN

∑
i=1,2

[
ψ̄L

i γ μtr(α̂‖
μ)ψL

i + ψ̄R
i γ μtr(α̂‖

μ)ψR
i

]
,

(12)

where the covariant derivatives on the nucleon fields are de-
fined as

DμψL,R
1,2 = (∂μ − iVμ)ψL,R

1,2 (13)

with

Vμ =
(

μB + μQ 0
0 μB

)
δ0
μ. (14)

The meson part is given by

LM = Lkin
M − VM − VSB + Lvector

M , (15)

where Lkin
M , VM , and VSB, are the kinetic term, the chiral sym-

metric potential, and the potential including the explicit chiral
symmetry breaking for the scalar and pseudoscalar mesons,
respectively, and Lvector

M includes the kinetic and mass terms
for vector mesons. The kinetic and potential terms for the
scalar and pseudoscalar mesons are expressed as [23]

Lkin
M = 1

4 tr[DμMDμM†] = 1
2∂μσ∂μσ + σ 2tr[α̂⊥

μ α̂
μ

⊥],(16)

VM = − 1
4 μ̄2tr[MM†] + 1

16λ4(tr[MM†])2

−λ6
1
48 (tr[MM†])3, (17)

VSB = − 1
4 m2

π fπ tr[M + M†]. (18)

The vector mesons part Lvector
M is given by

Lvector
M = −1

4
ωμνω

μν + m2
ω

2g2
ω

tr[α̂‖
μ]tr[α̂μ

‖ ]

− 1

2
tr[ρμνρ

μν]

+ m2
ρ

g2
ρ

(
tr[α̂‖

μα̂
μ

‖ ] − 1

2
tr[α̂‖

μ]tr[α̂μ

‖ ]

)
, (19)

where mω and mρ are the masses of ω and ρ mesons, and ωμν

and ρμν are the field strengths of ωμ and ρμ, respectively. The
second and fourth terms include the mass terms for ωμ and ρμ

as

tr[α̂‖
μ]tr[α̂μ

‖ ] = g2
ωωμωμ,

tr[α̂‖
μα̂

μ

‖ ] − 1
2 tr[α̂‖

μ]tr[α̂μ

‖ ] = 1
2 g2

ρρ
a
μρμ

a + · · · , (20)

where “· · · ” stands for interaction terms.
In the present analysis, we calculate the thermodynamic

potential in the mean field approximation as

〈σ 〉 = σ, 〈ωμ〉 = ωδ
μ
0 , 〈ρμ〉 =

(
ρ − μQ

gρ

)
T3δ

μ
0 . (21)

Each mean field is assumed to be independent of the spatial
coordinates. Mean field ρ is defined in such a way that LM

does not explicitly include μQ.
It is convenient to introduce the effective chemical poten-

tials of protons and neutrons as

μ∗
p = μQ + μB − gωNN ω − 1

2 gρNN ρ,

μ∗
n = μB − gωNN ω + 1

2 gρNN ρ, (22)

where

gωNN = (aV NN + a0NN )gω,

gρNN = aV NN gρ. (23)

The thermodynamic potential in the hadronic matter is
calculated as [23]

�PDM = V (σ ) − V ( fπ ) − 1

2
m2

ωω2 − 1

2
m2

ρρ
2

− 2
∑
i=1,2

∑
α=p,n

∫ kF d[3]p
(2π )3

(
μ∗

α − Ei
p

)
, (24)

where i = 1 labels the ordinary nucleon N (939) and i = 2

the excited nucleon N∗(1535), Ei
p =

√
p2 + m2

i is the energy
of relevant particle with mass mi and momentum p. In the
integration above, the integral region is restricted as |p| < kF ,

where kF =
√

(μ∗
α )2 − m2

i is the fermi momentum for the
relevant particle. We notice that we use the so-called no sea
approximation, assuming that the structure of the Dirac sea
remains the same for the vacuum and medium. V (σ ) is the
potential of σ mean field,

V (σ ) = − 1
2 μ̄2σ 2 + 1

4λ4σ
4 − 1

6λ6σ
6 − m2

π fπσ. (25)

In Eq. (24) we subtracted the potential in vacuum V ( fπ ), with
which the total potential in vacuum is zero.

The total thermodynamic potential of the hadronic matter
in NSs is obtained by including the effects of leptons as

�H = �PDM +
∑

l=e,μ

�l , (26)

where �l (l = e, μ) are the thermodynamic potentials for
leptons given by

�l = −2
∫ kF d3p

(2π )3

(
μl − El

p

)
. (27)

Here, the mean fields are determined by the following station-
ary conditions:

0 = ∂�H

∂σ
, 0 = ∂�H

∂ω
, 0 = ∂�H

∂ρ
. (28)

In NSs, we impose the β equilibrium and the charge neutrality
condition represented as

μe = μμ = −μQ, (29)

∂�H

∂μQ
= np − nl = 0. (30)
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TABLE I. Physical inputs in vacuum in unit of MeV.

mπ fπ mω mρ m+ m−

140 92.4 783 776 939 1535

Finally, we obtain the pressure in the hadronic matter as

PH = −�H. (31)

In the present analysis, following Ref. [23], we determine
the model parameters from the following physical inputs for
fixed values of the chiral invariant mass m0: five masses of the
relevant hadrons and the pion decay constant in vacuum as
listed in Table I; saturation properties of nuclear matter at the
saturation density as in Table II. We show the values of model
parameters for several typical choices of m0 in Table III.

As is seen from Table III, the slope parameter in this model
is larger for a smaller chiral invariant mass. Although the
higher order contributions in the expansion with respect to
x = (nB − n0)/3n0 and δ = 2nI/nB become important in the
high density region nB � 2n0, the EOS from the present model
is stiffer for smaller m0 as we will show in the next section.
This can be understood as follows: The Yukawa coupling of
σ to nucleon is larger for smaller chiral invariant mass, which
leads to stronger attractive force mediated by σ contribution.
The ω contribution causing the repulsive force is also larger
to satisfy the saturation properties at saturation density. This
ω contribution becomes larger in the high density region,
while the σ contribution becomes smaller. The resulting large
repulsive force makes the EOS stiff.

B. Color superconductivity

Following Ref. [38], we use an NJL-type effective model
of quarks including the four-Fermi interactions which cause
the spontaneous chiral symmetry breaking and the color-
superconductivity. The Lagrangian is given by

LCSC = L0 + Lσ + Ld + LKMT + Lvec, (32)

where

L0 = q̄(iγ μ∂μ − m̂q + γμÂμ)q, (33)

Lσ = G
8∑

A=0

[(q̄τAq)2 + (q̄iγ5τAq)2], (34)

Ld = H
∑

A,B=2,5,7

[(q̄τAλBCq̄t )(qtCτAλBq)

+ (q̄iγ5τAλBCq̄t )(qtCiγ5τAλBq)], (35)

TABLE II. Saturation properties used to determine the model
parameters: the saturation density n0, the binding energy B0, the
incompressibility K0, and the symmetry energy S0.

n0 [fm−3] B0 [MeV] K0 [MeV] S0 [MeV]

0.16 16 240 31

TABLE III. Values of model parameters determined for several
choices of m0. The values of the slope parameter is also shown as
output.

m0 [MeV] 500 600 700 800 900

g1 9.02 8.48 7.81 6.99 5.96
g2 15.5 14.9 14.3 13.4 12.4
μ̄2/ f 2

π 22.7 22.4 19.3 11.9 1.50
λ4 41.9 40.4 35.5 23.1 4.43
λ6 f 2

π 16.9 15.8 13.9 8.89 0.636
gωNN 11.3 9.13 7.30 5.66 3.52
gρNN 7.31 7.86 8.13 8.30 8.43

L0 [MeV] 93.76 86.24 83.04 81.33 80.08

LKMT = −K[det
f

q̄(1 − γ5)q + det
f

q̄(1 + γ5)q], (36)

Lvec = −gV (q̄γ μq)(q̄γμq), (37)

and Âμ is the external field. The chemical potentials are intro-
duced in the same way as the hadronic case by

Âμ = (μq + μ3λ3 + μ8λ8 + μQQ)δμ
0 , (38)

where λa are Gell-Mann matrices in color space and Q =
diag(2/3,−1/3,−1/3) is a charge matrix in flavor space. For
coupling constants G and K , we chose the values of Hatsuda-
Kunihiro parameters which successfully reproduce the hadron
phenomenology at low energy [37,44]: G�2 = 1.835 and
K�5 = 9.29 with � = 631.4 MeV. We introduce the mean
fields as

σ f = 〈q̄ f q f 〉, ( f = u, d, s), (39)

d j = 〈qtCγ5Rjq〉, ( j = 1, 2, 3), (40)

nq =
∑

f =u,d,s

〈q†
f q f 〉, (41)

where (R1, R2, R3) = (τ7λ7, τ5λ5, τ2λ2). Then, the thermody-
namic potential is calculated as

�CSC =�s − �s
[
σ f = σ 0

f , d j = 0, μq = 0
]

+ �c − �c
[
σ f = σ 0

f , d j = 0
]
, (42)

where

�s = −2
18∑

i=1

∫ � d3p
(2π )3

εi

2
, (43)

�c =
∑

i

(
2Gσ 2

i + Hd2
i

) − 4Kσuσdσs − gV n2
q. (44)

In Eq. (43), εi are energy eigenvalues obtained from the fol-
lowing inverse propagator in Nambu-Gorkov basis

S−1(k) =
(

γμkμ − M̂ + γ 0μ̂ γ5
∑

i �iRi

−γ5
∑

i �
∗
i Ri γμkμ − M̂ − γ 0μ̂

)
, (45)

where

Mi = mi − 4Gσi + K|εi jk|σ jσk, (46)

�i = −2Hdi, (47)

μ̂ = μq − 2gV nq + μ3λ3 + μ8λ8 + μQQ. (48)
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S−1(k) in Eq. (45) is 72 × 72 matrix in terms of the color,
flavor, spin, and Nambu-Gorkov basis, which has 72 eigenval-
ues. Mu,d,s are the constituent masses of the u, d, s quarks and
�1,2,3 are the gap energies. In the present parameter choice,
at nB � 5n0 they vary in the range of Mu,d ≈ 50–100 MeV,
Ms ≈ 250–300 MeV, and �1,2,3 ≈ 200–250 MeV [37]. Note
that the matrix does not depend on the spin, and that the charge
conjugation invariance relates two eigenvalues. Then, there
are 18 independent eigenvalues at most.

The total thermodynamical potential is

�Q = �CSC +
∑

l=e,μ

�l , (49)

where �l is the thermodynamic potential for leptons given in
Eq. (27). The chiral condensates σ j and the diquark conden-
sates di are determined from the gap equations,

0 = ∂�Q

∂σi
= ∂�Q

∂di
. (50)

To determine the relevant chemical potentials other than the
baryon number density, we use the β equilibrium condition
given in Eq. (29), and the conditions for electromagnetic
charge neutrality and color charge neutrality expressed as

n j = −∂�Q

∂μ j
= 0, (51)

where j = 3, 8, Q. The baryon number density nB is three
times of quark number density determined as

nq = −∂�Q

∂μq
, (52)

where μq is 1/3 of the baryon number chemical potential.
Substituting the above conditions, we obtain the pressure of
the system as

PQ = −�Q. (53)

C. Interpolation of EOS

Here, we consider interpolation of two EOSs for hadronic
matter and quark matter which are constructed in previous
subsections. Following Ref. [37], we assume that hadronic
matter is realized in the low density region nB < 2n0, and
use the pressure constructed in Eq. (31). In the high density
region nB > 5n0, on the other hand, the pressure given in
Eq. (53) of quark matter is used. In the intermediate region
2n0 < nB < 5n0, we assume that the pressure is expressed by
a fifth order polynomial of μB as

PI(μB) =
5∑

i=0

Ciμ
i
B, (54)

where Ci are six fee parameters to be determined from the
following boundary conditions,

dnPI

(dμB)n

∣∣∣∣
μBL

= dnPH

(dμB)n

∣∣∣∣
μBL

,

dnPI

(dμB)n

∣∣∣∣
μBU

= dnPQ

(dμB)n

∣∣∣∣
μBU

, (n = 0, 1, 2), (55)

where μBL is the chemical potential corresponding to nB =
2n0 and μBU to nB = 5n0.

We show typical examples of the connected pressure in
Fig. 1 and corresponding sound velocity calculated by

c2
s = dP

dε
= nB

μBχB
, (56)

where nB = dP
dμB

and χB = d2P
dμ2

B
in Fig. 2. We see that, although

both plots 1a and 1b in Fig. 1 are smooth, Fig. 2 shows
that the parameter set (b) violates causality. In this way, the
parameter choice (H/G, gV /G) = (1.45, 1.2) in quark matter
is excluded when m0 = 800 MeV in hadronic matter.

Figure 3 shows allowed combinations of (H, gV ) for sev-
eral choices of m0. In all cases, the allowed values of H and
gV have a positive correlation; for a larger gV we need to
increase the value of H [38]. The details of this positive cor-
relation depend on the low density constraint and the choice
of m0. As we can see from Table III, the low density EOS
softens for a large m0, and correspondingly smaller values
of gV are favored for causal interpolations. We note that the
range of (H, gV ) is larger than the previously used estimates,
(H/G, gV /G) = (0.5, 0.5), based on the Fierz transformation
(see, e.g., Ref. [45]). Such choices were used in the hybrid
hadron-quark matter EOS with first order phase transitions,
and tend to lead to the NS mass smaller than 2M�.

III. MASS-RADIUS RELATION

In this section, we calculate mass-radius relations of
NSs using the Tolman-Oppenheimer-Volkoff (TOV) equation
[46,47]. The TOV equation for hydrostatic equilibrium in
general relativity is given by

dP

dr
= −G

(ε + P)(m + 4πr3P)

r2 − 2Gmr
,

dm

dr
= 4πr2ε, (57)

where G is the Newton constant, r is the distance from the
center of an NS, P, m, and ε are the pressure, mass, and energy
density as functions of r:

P = P(r), m = m(r), ε = ε(r). (58)

To correctly estimate NS radii, we need to include the crust
equations. We use the BPS EOS [48] for the outer and inner
crust parts1 at nB � 0.1 fm−3, and at nB � 0.1 fm−3 we use
our unified EOS from nuclear liquid to quark matter.

Given the central density as an initial value, the corre-
sponding radius R and mass M of NS are obtained. The radius
is determined by the condition that the pressure vanishes:
P(R) = 0, and the mass is the value of m at the radius: M =
m(R).

1The BPS EOS is usually referred as EOS for the outer crust, but it
also contains the BPP EOS [48] for the inner crust.
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(a) (b)

FIG. 1. Pressure P(μB) of the PDM and the unified equations of state. For the PDM we chose m0 = 800 MeV, and for quark models we
used (H/G, gV /G) = (1.45, 1.0) and (1.45,1.2). The thick curves in the unified equations of state are used to mark the pure hadronic and quark
parts.

We show the resultant mass-radius relations in Fig. 4, and
relation between mass and central density in Fig. 5. Five
panels in Figs. 4 and 5 correspond to five typical choices of
m0.

In each panel of Figs. 4 and 5, different curves are drawn
for different combinations of (H, gV ) indicated by circles in
Fig. 3. Thick curves in the low-mass region in Figs. 4 and 5
indicate that central density of the NS is smaller than 2n0, and
that the NS is made only from hadronic matter. Thick curves
in high-mass region, on the other hand, imply that central
density is larger than 5n0, and that core of the NS includes
quark matter. Thin curves show that the core is in the crossover
domain.

For each combination of (H, gV ), the maximum mass of a
NS is determined, which are indicated by the color in Fig. 3.

This shows that a larger gV or a smaller H leads to a larger
maximum mass.

In this paper we use the mass of the millisecond pulsar PSR
J0740+6620 [41]

M lowest
TOV = 2.14+0.10

−0.09 M�, (59)

as the lowest maximum mass, which is shown by gray-
shaded area in Figs. 4 and 5. Each red solid curve in these
figures exhibits the mass-radius relation for which maxi-
mum mass is larger than the above lowest maximum mass,
while the maximum masses for mass-radius relations by blue
dashed curves do not exceed the lowest maximum mass.
We also show the constraint to the radius obtained from the
LIGO-Virgo [32–34] by green shaded areas on the middle

(a) (b)

FIG. 2. Squared speed of sound c2
s for (H/G, gV /G) = (1.45, 1.0) and (1.45,1.2). Curves are same as in Fig. 1.
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(a) (b)

(c) (d)

(e)

FIG. 3. Allowed combinations of (H, gV ) for (a) m0 = 500 MeV, (b) m0 = 600 MeV, (c) m0 = 700 MeV, (d) m0 = 800 MeV, and (e) m0 =
900 MeV. Cross mark indicates that the combination of (H, gV ) is excluded by the causality constraint. Circle indicates that the combination
is allowed. The color of the circle shows the maximum mass of NS obtained from the corresponding parameters, as indicated by a vertical bar
at the right side of each figure.
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(a) (b)

(c) (d)

(e)

FIG. 4. Mass-radius relations for (a) m0 = 500 MeV, (b) m0 = 600 MeV, (c) m0 = 700 MeV, (d) m0 = 800 MeV, and (e) m0 = 900 MeV.
(See main texts for detail.)
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(a) (b)

(c) (d)

(e)

FIG. 5. Relations between mass and central density for (a) m0 = 500 MeV, (b) m0 = 600 MeV, (c) m0 = 700 MeV, (d) m0 = 800 MeV,
and (e) m0 = 900 MeV. (See main texts for detail.)
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TABLE IV. The radius constraints.

radius [km] mass [M�]

GW170817 (primary) 10.8+2.0
−1.7 1.46+0.12

−0.10

GW170817 (secondary) 10.7+2.1
−1.5 1.27+0.09

−0.09

J0030+0451 (NICER [39]) 13.02+1.24
−1.06 1.44+0.15

−0.14

J0030+0451 (NICER [40]) 12.71+1.14
−1.19 1.34+0.15

−0.16

left2 and from the NICER (Miller et al. [39] by red shaded
areas on the middle right. The inner contour of each area
contains 68% of the posterior probability (1σ ), and the outer
one contains 95% (2σ ). These values (plus another NICER
result of Riley et al. [40]) are summarized in Table IV.

In the LIGO-Virgo results which are based only on model-
independent analyses, the radius of NS with � 1.4M� is in
the range of 9–13 km. If we require only our M-R curves to
be within the 2σ band, we get the constraint m0 � 600 MeV
irrespective to the quark EOS. If we further demand the M-R
curves to be within the 1σ band, we found that only few curves
with m0 � 700 MeV meet the requirement, but those curves
do not satisfy the 2M� constraints and must be rejected.
We note that another analyses by the LIGO-Virgo suggests
11.9 ± 1.4 km by utilizing particular parametrization of EOS
and imposing the 2M� constraint. Meanwhile it is easier to
reconcile our modeling with the NICER constraints which
suggest larger radii, and the range 500 � m0[MeV] � 900 are
within the 1σ band and hence do not impose further con-
straints in addition to the LIGO-Virgo’s. Taking into account
all these results, we decided to use the 2σ band of the LIGO-
Virgo results, which are compatible with available constraints,
and make conservative estimates on the chiral invariant mass
as

600 MeV � m0 � 900 MeV. (60)

We also note that the larger m0 leads to smaller slope param-
eter for the symmetry energy, 80.08 � L0 [MeV] � 86.24, as
one can read off from Table III.

IV. SUMMARY AND DISCUSSIONS

We construct EOS for NS matter by interpolating the EOS
obtained in the PDM and the one in the NJL-type model. We
obtain constraints to the model parameters from thermody-
namic stability, causality, and the constraints on M-R curves.

Our primary purpose was to examine how neutron star ob-
servations constrain a hadronic EOS and the microphysics in
it. Our hadronic EOS are tuned to reproduce the physics at the
saturation density, but its extrapolation toward higher density

2More precisely, the LIGO-Virgo constrains the tidal deformability
�̃ which is the function of the tidal deformability of each NS (�1

and �2) and the mass ratio q = M2/M1. But for EOS which do not
lead to large variation of radii for M � 1M�, �̃ is insensitive to q. In
fact the NS radii and �̃ can be strongly correlated (for more details,
see Refs. [49,50]), and for our purposes it is sufficient to directly use
the estimates on the radii given in Ref. [34], rather than �̃.

FIG. 6. Several choices of mass-radius relations which satisfy
both the maximum mass and the radius constraints.

is sensitive to the chiral invariant mass m0. The radii of 1.4 M�
NS are known to have strong correlations with the stiffness of
low density EOS beyond the saturation density, nB = 1–2n0,
and indeed we have obtained the nontrivial constraint, 600 �
m0 [MeV] � 900. At low density, the density dependence of
the stiffness is sensitive to the balance between the σ and ω

exchanges, where the strength of the former strongly depends
on the fraction of the chiral variant component in the nucleon
mass.

Meanwhile, the maximum NS mass is known to have
strong correlations with high density EOS, and constrains
quark model parameters (H, gV ). But these parameters are
not independent of the hadronic sector, since the high and
low density EOS must have a causal and thermodynamically
stable connection. The allowed range of (H, gV ) is sensitive
to our choice of m0 or the stiffness of the hadronic EOS. Soft
hadronic EOS associated with large m0 have more tensions
with sufficiently stiff quark EOS, setting the upper bound
m0 � 900 MeV. This upper bound is close to the total nucleon
mass mN ≈ 939 MeV, and hence is not as remarkable as the
radius constraint.

We would like to note that, as one can see in Fig. 6, the
cores of heavy NSs with M ≈ 2M� includes quark matter as
shown by thick curves in the heavy-mass region. On the other
hand, the core of 1.4M� NS is in the crossover domain of
quark and hadronic matter. As a result, variations in the radii
of 1.4M� NS are rather small, �R � 0.5 km, in our crossover
construction of unified EOS.

In this analysis we assumed crossover between hadronic
matter and quark matter. As we see in Fig. 3, our result showed
that the coupling H needs to be sufficiently large to satisfy the
causality for smooth connection, as in Ref. [37]. Such large
H’s (�1.4G) is consistent with the N-� splitting [51], and
lead to the CFL phase for nB � 5n0.

We note that, the previous studies as in Ref. [37] primarily
referred to the constraint R � 13 km from GW170817, but
then new NICER results appear, favoring the radii ≈13 km.
We may relax the condition on low density EOS and allow
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stiffer EOS, which broadens the possibility of the first order
phase transitions. In this respect, it is interesting to explicitly
implement the first order transition in the interpolated domain,
as in Refs. [20,21], while taking quark and hadronic EOS as
boundary conditions.

The predicted values of the slope parameter L0 = 80–94
MeV (shown in Table III) are somewhat larger than typical
estimates L0 = 30–80 MeV, see, e.g., Refs. [52,53]. But there
are also estimates L0 = (109.56 ± 36.41) MeV based on re-
cent analyses of PREXII for the neutron skin thickness [54],
and we are not fully sure which estimates should be taken.
While in this study we focus on the variation of m0, the value

of L0 can be also adjusted by adding, e.g., a term proportional
to ω2ρ2 into the hadronic part. Such modification may slightly
decrease the lower bound and/or the upper bound of m0 in
Eq. (60). We leave such extensions of our PDM model for
future studies.
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