
DERIVED GLUING CONSTRUCTION OF CHIRAL ALGEBRAS

SHINTAROU YANAGIDA

Abstract. We discuss the gluing construction of class S chiral algebras in derived setting. The gluing
construction in non-derived setting was introduced by Arakawa to construct a family of vertex algebras
of which the associated varieties give genus zero Moore-Tachikawa symplectic varieties. Motivated by the

higher genus case, we introduce a dg vertex algebra version MTch of the category of Moore-Tachikawa

symplectic varieties, where a morphism is given by a dg vertex algebra equipped with action of the universal
affine vertex algebra, and composition of morphisms is given by the BRST reduction. We also show that

the procedure taking the associated scheme of gives a functor from MTch to the category MT of derived
Moore-Tachikawa varieties, which would imply compatibility of gluing constructions in both categories.
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0. Introduction

0.1. Backgrounds. Let G be a simply connected semisimple linear algebraic group over the complex field
C. In [A], Arakawa introduced a family of vertex algebras

VS
G,b (b ∈ Z≥1) (0.1)

called the genus zero chiral algebras of class S. They are designed as “chiral quantization” of genus zero
Moore-Tachikawa symplectic varieties, the family of which enjoys the associativity property. The associativity
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for the family {VS
G,b}b≥1 is encoded by BRST reduction of vertex algebras, and this article concerns a

technical issue on the reduction when one wants to study higher genus cases.

0.1.1. Moore-Tachikawa symplectic varieties. In order to explain the detail, let us give a short recollection
on Moore-Tachikawa symplectic varieties. See also [A, §1] for a brief explanation.

In [MT12], concerning expected properties of Higgs branches of Sicilian theories, Moore and Tachikawa
proposed a two-dimensional topological field theory whose targets are holomorphic symplectic varieties.
Mathematically speaking, they conjectured for each semisimple algebraic group G over C the existence of a
symmetric monoidal functor

ηG : Bo2 −→ HS

from the category Bo2 of 2-bordisms to the category HS of holomorphic symplectic varieties which satisfies
some axioms.

The source category Bo2 is a familiar one in the context of topological field theory. Let us recall the
definition of Bo2:

• An object is a closed oriented one-dimensional manifold, or a disjoint union of S1’s.
• A morphism from B1 to B2 is the diffeomorphism class of an oriented two-dimensional manifold Σ
with boundary (−B1) t B2. We denote by Σg,b the class of an oriented surface of genus g with b
boundary components. In particular, the tube Σ0,2 represents the identity morphism idS1 .

• Composition of morphisms is given by gluing. In particular, we have

Σ0,b′ ◦ Σ0,b = Σ0,b+b′−2. (0.2)

Disjoint union t gives Bo2 a symmetric monoidal structure.
The target category HS is described as follows.

• An object is a semisimple algebraic group over C.
• A morphism from G1 to G2 is a possibly singular symplectic variety X over C with a C×-action
scaling the symplectic form by weight 2 together with Hamiltonian action of G1×G2 satisfying some
regularity condition. The identity idG ∈ HomHS(G,G) is the cotangent bundle T ∗G with the left
and right multiplication of G.

• Composition of X ∈ HomHS(G1, G2) and X
′ ∈ HomHS(G2, G3) is given by the Hamiltonian reduction

of the product with respect to the diagonal G2-action:

X ′ ◦X := (Xop ×X ′)//∆(G2) = µ−1(0)/∆(G2).

HereXop denotes the symplectic variety X with the opposite symplectic structure, and the morphism
µ : Xop × X ′ → g∗2 is the momentum map µ(x, y) := −µX(x) + µX′(y) with µX and µX′ the g∗2-
component of the momentum map X → g∗1 × g∗2 and X ′ → g∗2 × g∗3 respectively. The reduction
doesn’t touch the G1- and G3-actions, so that we have X ′ ◦X ∈ HomHS(G1, G3).

The cartesian product of groups and varieties gives HS a symmetric monoidal structure.
Let us denote

W b
G := ηG(Σ0,b),

where Σ0,b is an oriented surface of genus 0 with b boundary components. It encodes the genus zero part of
the functor ηG. The functor ηG should satisfy ηG(S

1) = G and W 2
G = T ∗G. We refer [MT12, §3] for the full

axiom of ηG.
In [BFN], concerning mathematical construction of the Coulomb branches of three-dimensional super-

symmetric gauge theory via perverse sheaves on affine Grassmannians, Braverman, Finkelberg and Naka-
jima constructed the functor ηG. In particular, they described the genus zero Moore-Tachikawa varieties
W b
G = ηG(Σ0,b) explicitly as

W 1
G ' G× S, W 2

G ' T ∗G, W b′

G ◦W b
G 'W b+b′−2

G , (0.3)

where S ⊂ g∗ denotes the Slodowy slice. The third isomorphism reflects the gluing (0.2) in Bo2, and we call
it the gluing condition.

0.1.2. The 4d/2d duality and chiral algebras of class S. Next we explain the 4d/2d duality. In [BLL+],
Beem, Lemos, Liendo, Peelaers, Rastelli and van Rees proposed a “functorial” construction

T 7−→ VT (0.4)

of conformal vertex algebras VT from a four-dimensional N = 2 superconformal field theory (4d SCFT for
short) T . Among such four-dimensional theories, we have the theory T S

G,Σ of class S attached to a complex
semisimple algebraic group G and a punctured Riemann surface Σ. We will not go into the detail and refer
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the exposition [Ta18] for mathematicians. The vertex algebra obtained from T S
G,Σ by the above “functor” is

called the chiral algebras of class S. We denote it by V S
G,Σ.

A clue to identify the vertex algebra V S
G,Σ is to consider an “invariant” of the physical theory T S

G,Σ. The
attachment T 7→ VT is one of such invariants. Another interesting invariant is the hyperkähler manifold
MHiggs(T ) called the Higgs branch of T . See [Ta18] for more information. In [BR18], Beem and Rastelli
conjectured that for any 4d SCFT T there is an isomorphism

MHiggs(T )
?' Specm(RVT ) (0.5)

of holomorphic symplectic varieties, where the right hand side denotes the associated variety of the vertex
algebra VT . See §0.1.3 for more information, and Definition 4.4.5 for the precise definition of RVT .

Now we can explain the result in [A]. Arakawa considered the following “chiral quantization” ηVAG of
the Moore-Tachikawa functor ηG. Let us denote by Vk(g) the universal affine vertex algebra at level k for
g = Lie(G), and by h∨ the dual Coxeter number of g (see §4.1.4 for the detail). He considered a symmetric
monoidal functor

ηVAG : Bo2 −→ VA,

where the category VA is roughly explained as follows. See §6.2 for the detail.
• An object is a semisimple algebraic group.
• Amorphism fromG1 toG2 is a vertex algebra V equipped with a vertex algebra morphism V−h∨

1
(g1)⊗

V−h∨
2
(g2) → V and satisfying some conditions.

• Composition of V ∈ HomVA(G1, G2) and V
′ ∈ HomVA(G2, G3) is given by the relative BRST reduc-

tion:

V ′ ◦ V := H
∞
2 +0(ĝ−2h∨

2
, g2, V

op ⊗ V ′). (0.6)

The condition on ηVAG is that the vertex algebra ηVAG (Σ) should coincide with V S
Σ , the chiral algebra of class

S, for any surface Σ ∈ Mor(Bo2).
Arakawa constructed in [A] the genus zero part of the functor ηVAG . In other words, he constructed the

image

VS
G,b := ηVAG (Σ0,b)

of the genus 0 surface Σ0,b with b boundaries, and checked a “chiral quantization” of (0.3):

VS
G,1 ' H0

DS(Dch
G ), VS

G,2 ' Dch
G , VS

G,b′ ◦VS
G,b ' VS

G,b+b′−2, (0.7)

Here Dch
G denotes the algebra of chiral differential operators on G at the critical level, and H0

DS denotes the
quantum Drinfeld-Sokolov reduction. The third relation is called the associativity in [A]. Moreover Arakawa
showed

RVS
G,b

= C[W b
G], (0.8)

where the right hand side denotes the coordinate ring. Thus he solved the conjecture (0.5) for the genus
zero class S theories T = T S

Σ0,b
.

0.1.3. Chiral quantization. So far we have used the word “chiral quantization” several times. Let us clarify
what it means. Since it is also a good place to recall the associated schemes of vertex algebras, let us begin
with the explanation on chiralization of a Poisson structure.

(1) We start with a Poisson algebra R, i.e., a commutative algebra with a Poisson bracket. It corresponds
to an affine Poisson scheme Spec(R).

(2) Recall the arc space, or the ∞-jet space, J∞(Y ) of a scheme Y . It is a scheme having the universal
property

HomSch(Spec(A), J∞(Y )) = HomSch(Spec(A[[t]]), Y )

for any commutative algebra A, where Sch denotes the category of schemes. See §3.1 for the precise
statement.

(3) By [A15, §2.3], the coordinate ring J∞(R) of the arc space J∞(Spec(R)) has a structure of vertex
Poisson algebra induced naturally from the original Poisson algebra structure on R. See §4.3 for the
detail.

(4) By [Li05], for a vertex algebra V , the associated graded space grF V with respect to the Li filtration
F •V has a structure of vertex Poisson algebra. The component

RV := F 0V/F 1V
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is a Poisson algebra, which is called Zhu’s C2-algebra [Z96]. The corresponding affine Poisson scheme
XV := Spec(RV ) is called the associated scheme of V . We have a natural surjective morphism
J∞(RV ) ↠ grV of vertex Poisson algebras. See §4.4.1 for the detail.

Now we cite from [A, Definition 2.1] the terminology: Let V be a vertex algebra. If Zhu’s C2-algebra RV
is isomorphic to a Poisson algebra R, then we call V a chiral quantization of the affine Poisson scheme X =
Spec(R). If moreover V is separated (Definition 4.4.8), RV is reduced and the surjection J∞(RV ) ↠ grF V
is an isomorphism, then V is called a strict chiral quantization of X.

Using the terminology above, we can restate the relation (0.8) as: The genus zero chiral algebra VS
G,b

of class S is a strict chiral quantization of the genus zero Moore-Tachikawa varieties W b
G. We also have a

commutative diagram

VS
G,b′ ◦VS

G,b

R(−)

��

∼
(0.7)

// VS
G,b+b′−2

R(−)

��
W b′

G ◦W b
G

∼
(0.3)

// W b+b′−2
G

and in this sense we can say that the relations (0.7) are chiral quantization of (0.3). We call this commuta-
tivity the compatibility of gluing constructions.

It is then natural to expect that the procedure R(−) taking Zhu’s C2-algebra makes the following diagram
commutative:

Bo2
ηVAG // VA

R(−)

��
Bo2 ηG

// HS

(0.9)

We can say that [A] established this commutativity restricting to the genus zero part of Bo2. His work can
be regarded as a part of the mathematical formulation of the 4d/2d duality “functor” (0.4).

0.2. Derived gluing of vertex algebras — Organization of the text. The proof in [A] of the com-
patibility of gluing constructions for genus zero chiral algebras of class S is based on cohomology vanishing
in the BRST reduction (0.6). As mentioned in the footnote in [A, p.3], there is a subtlety on this point
in higher genus case. The issue is that the momentum map associated to the Hamiltonian action can be
non-flat in higher genus case, for which we don’t have a clean cohomology vanishing. As a result, we don’t
know explicit description of the chiral algebra VS

Σ of class S for a higher genus surface Σ at this moment.
It was lucky for the author to take a lecture series by Arakawa on the article [A] in the end of November,

2019. In the lecture Arakawa suggested to use derived symplectic geometry to overcome this difficulty. The
aim of this article is to give a first step to fulfill his suggestion.

The main materials in this text are as follows:
• We introduce a differential graded vertex algebra analogue

MTch

of the category MT of derived Moore-Tachikawa varieties. A morphism in MTch is a differential
graded vertex algebra V , and we denote by V ′ ◦̃ V a composition of morphisms.

• The compatibility of derived gluing constructions

R(V ′◦̃V ) ' RV ′ ◦̃RV

for differential graded vertex algebras V and V ′ of certain type. Here RV denotes Zhu’s C2-algebra
of V as for the ordinary vertex algebra, and the symbol ' denotes quasi-isomorphism as homotopy
Poisson algebras. Equivalently, the functor R(−) induces

R(−) : MTch −→ MT.

Below we give an overview of this text along the line of the arguments in §0.1.3. Let us start with the
derived version of Poisson algebras. Hereafter we use the word “dg” to mean “differential graded”.
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0.2.1. Derived symplectic and Poisson geometry. The idea of using derived symplectic geometry to realize
Moore-Tachikawa varieties is, as far as the author understands, originally due to Calaque [C15, Concluding
remarks], [C14, Example 3.5]. He introduced a derived version of the category MT where composition of
morphisms is given by the derived intersection of Lagrangian structures. This approach enables us to consider
Hamiltonian reduction for non-flat momentum maps. See §2.3 for more information.

In this text we use affine derived Poisson geometry instead of derived symplectic geometry. Derived
Poisson geometry was introduced in [CPT+] as a natural Poisson analogue of derived symplectic geometry
[PTVV]. As in the ordinary Poisson and symplectic structures, we have an equivalence of non-degenerate
Poisson and symplectic structures. See [C15, C14] for more information on derived symplectic geometry in
the present context, and [S2] for a review of derived Poisson geometry. The reason to use derived Poisson
geometry is that Poisson structures appear naturally if we regard vertex algebras as chiral quantization, as
we saw in §0.1.3.

The aim of the beginning §1 is to give a recollection on shifted Poisson structures. Since what we need in
this text is an affine version, we mainly treat those structures on commutative dg algebras. The main object
is Pn-algebra (Definition 1.3.1). The case n = 1 corresponds to dg (non-shifted) Poisson algebra. Essentially
we only need this n = 1 case, but in order to introduce coisotropic structures to define derived Hamiltonian
reduction later, we treat general shifted Poisson structures.

In the course of preparations in §§1.1–1.2, we explain notations on dg objects and algebraic structures on
them. In particular, we denote by

CE(l,M)

the Chevalley-Eilenberg complex for a dg Lie algebra l and a dg l-module M . See §1.2.4, Definition 1.2.13
for the detail. Recall also that the correspondence CE(l,−) is functorial, which will be used repeatedly in
the following explanation.

We will also use the Kirillov-Kostant Poisson algebra : For a dg Lie algebra l, the symmetric algebra Sym(l)
has a structure of dg Poisson algebra whose Poisson bracket is uniquely determined by the Lie bracket of l
and the Leibniz rule. See §1.3.3 for the detail.

0.2.2. Derived Hamiltonian reduction of shifted Poisson algebra. We next consider a derived analogue of
Hamiltonian reduction of shifted Poisson algebras. For the reduction of ordinary Poisson algebras, we refer
[LPV, Chapter 5].

As mentioned in the previous §0.2.1, Calaque [C14] formulated the gluing of Moore-Tachikawa varieties
via derived intersection of Lagrangians in derived symplectic schemes with Hamiltonian group action. The
corresponding procedure in the shifted Poisson structure is given by derived intersection of coisotropic struc-
tures introduced in [CPT+]. In this text we use an equivalent but alternative approach of Safronov [S17],
which will be reviewed in §2. This approach has an advantage in the point that the connection to the classical
BRST complex is clear.

Coisotropic structures and Hamiltonian reduction are explained in §2.1. Let l be a dg Lie algebra and R
a dg Poisson algebra. Noticing that R can be regarded as a dg Lie algebra, we call a morphism µ : R → l
of dg Lie algebras a momentum map (see Definition 1.3.11 and Remark 1.3.12). For such µ, the morphism
CE(l, µ) is coisotropic in the sense of Definition 2.1.3. Using coisotropic morphisms, we define

R//Lµ Sym(l) := CE(l, k)
⊗L

CE(l,Sym l) CE(l, R), (0.10)

and call it the derived Hamiltonian reduction of R with respect to the momentum map µ. It has a structure

of P̂1-algebra, which can be restated as homotopy Poisson algebra (Definition 2.1.5).
The classical BRST complex, originally defined in non-dg setting by Kostant and Sternberg [KS87], will

be introduced in §2.2. For the triple (l, R, µ) as above, we define the classical BRST complex BRSTcl(l, R, µ)
by

BRSTcl(l, R, µ) := (CE(l,Kos(l, R, µ)), dcl),

where Kos(l, R, µ) denotes the Koszul complex of µ−1(0), and the differential dBRST is given by the BRST
charge. See Definition 2.2.3 for the detail.

A connection between the derived Hamiltonian reduction is explained in Proposition 2.2.8: For a finite-
dimensional Lie algebra g, we have an quasi-isomorphism

R//Lµ Sym(g) '
qis

BRSTcl(g, R, µ) (0.11)

of homotopy Poisson algebras.
In §2.3, we introduce the category MT of derived Moore-Tachikawa varieties, which is essentially the same

as the category introduced by Calaque [C14] mentioned before. An object is a semisimple algebraic group
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G, which is identified with its Lie algebra g := Lie(G). A morphism from G1 to G2 is a non-degenerate

P̂1-algebra R with a momentum map µR = µ1
R + µ2

R : g1 ⊕ g2 → R. Composition of R ∈ HomMT(G1, G2)
and R′ ∈ HomMT(G2, G3) is given by

R′ ◦̃R := BRSTcl

(
g2, R

op ⊗R′, µ
)
'

(
Rop ⊗R′)//Lµ Sym(g2) (0.12)

with µ := −µ2
R + µ1

R′ . This is the derived gluing of Moore-Tachikawa varieties. See Definition 2.3.1 and
Remark 2.3.2 for the detail.

0.2.3. Jet and arc spaces for derived schemes, and dg vertex Poisson algebras. As explained in §0.1.3, in
order to go into the vertex world, we consider arc space of Poisson schemes. Thus, for the purpose of this
text, we need a derived analogue of the theory of jet and arc spaces, which is a kind of exercise of derived
algebraic geometry. Since there seems to be no explicit literature, we will give an explicit account it in §3.

For the explanation below, let us fix some notations. Let R be a commutative dg algebra. Then there
is a commutative dg algebra J∞(R) such that Hom(R,A[[t]]) ' Hom(J∞(R), A) for any commutative dg
algebra A (see Lemma 3.2.4 for the precise statement). We call it the arc space of R (precisely speaking, we
should call it the derived coordinate ring of the arc space). We have a natural embedding R ↪→ J∞(R).

In the context of derived gluing, we should consider a dg Poisson algebra R and its arc space J∞(R). The
arc space inherits the Poisson structure of R, which should be of infinite-dimensional nature. As explained
in §0.1.3, for a non-dg Poisson algebra R, J∞(R) has a structure of vertex Poisson algebra by the work of
Arakawa [A12, §2.3]. Thus we should study a dg version of vertex Poisson algebra. Such a notion is in fact
included in the theory of coisson algebra introduced by Beilinson and Drinfeld [BD, 2.6]. In this text we
explain a special case of their theory in §4.

We will explain standard notions on vertex algebras, vertex Poisson algebras and Li’s canonical filtration
in §4. Along the way, we also introduce dg versions of these “vertex” notions. Since these dg versions may
not be standard, we list up the references of definitions:

• Dg vertex algebras : Definition 4.1.20.
• Dg modules over a dg vertex algebra : Definition 4.1.21.
• Dg vertex Poisson algebras : Definition 4.3.2.
• Li filtration of a dg vertex algebra : Definition 4.4.1.

In this introduction, the following statement is sufficient: For a dg Poisson algebra R, the arc space J∞(R)
has a unique structure of dg vertex Poisson algebra such that a(n)b = δn,0{a, b}R for a, b ∈ R ⊂ J∞(R). In
particular, for a dg Lie algebra l, the arc space J∞(Sym(l)) of the Kirillov-Kostant Poisson algebra (see the
end of §0.2.1) is a dg vertex Poisson algebra.

0.2.4. Derived gluing of vertex Poisson algebras. In §5, we introduce a vertex Poisson analogue of the derived
gluing (0.12) and define the category MTco of “coisson Moore-Tachikawa varieties”.

Let l be a dg Lie algebra. In the vertex Poisson world, the corresponding notion of momentum map is
given by a morphism µco : J∞(Sym(l)) → P of dg vertex Poisson algebras, called a coisson momentum map.
The coisson BRST complex is defined to be

BRSTco(J∞(l), P, µco) := (P ⊗ Clco(l), dco),

where Clco(l) denotes the Clifford vertex Poisson algebra (Definition 4.3.11). See Definition 5.1.2 for the
detail of th coisson BRST complex.

A vertex Poisson analogue of the gluing (0.12) is defined in the following way: Let g1, g2 and g3 be the Lie
algebras of semisimple Lie groups G1, G2 and G3. also let µP : J∞(Sym(g1 ⊕ g2)) → P , µP ′ : J∞(Sym(g2 ⊕
g3)) → P ′ be morphisms of dg vertex Poisson algebras. Then we define the coisson gluing to be

P ′ ◦̃ P := BRSTco(J∞(g2), P
op ⊗ P ′, µ)

Here P op denotes the opposite dg vertex Poisson algebra of P . See Definition 5.2.3 for the detail.
Using this operation, we introduce the category MTco (Definition 5.2.4). An object is the same as that of

the category MT, and a morphisms from g1 to g2 is a dg vertex Poisson algebra P equipped with a morphism
J∞(Sym(g1 ⊕ g2)) → P and satisfying some finiteness condition. Composition of morphism is given by the
coisson gluing.

For a dg vertex Poisson algebra P , we have a dg Poisson algebra Rco
P := P/ Im(T ), where T denotes the

translation of P . See Definition 4.3.3 for the detail. The main statement in §5 is that this construction
induces a functor

Rco
(−) : MTco −→ MT.

See Proposition 5.2.5 and Theorem 5.2.6 for the detail.
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0.2.5. Derived gluing of dg vertex algebras. In the final §6 we study the gluing for dg vertex algebras.
We denote by Vk(g) the universal affine vertex algebra at level k for a finite dimensional semisimple Lie

algebra g as in §0.1.2. In the vertex world, the corresponding notion of momentum map is a morphism
µV : Vk(g) → V of dg vertex algebras, called a chiral momentum map. See Remark 6.1.4 for the difference
of the terminology of [A] and ours. Such a datum (V, µV ) will be called a dg vertex algebra object in
Vk(g)-dgVMod.

For a dg vertex algebra object (V, µV ) in Vk(g)-dgVMod, we have the BRST complex

BRST(ĝk, V, µ) := (V ⊗
∧∞

2 (g), dcl),

where
∧∞

2 (g) denotes the free fermionic vertex algebra. See Definition 6.1.5 for the detail.
For another dg vertex algebra object (V ′, µV ′) in Vl(g)-dgVMod, we define the chiral gluing V ′ ◦̃ V ∈

Vk+l(g)-dgVMod to be

V op ◦̃ V ′ := BRST(ĝk+l, V ⊗ V ′, µ)

with µ : V op ⊗ V ′ defined by µ(a, b) := −µV (a) + µV ′(b).
Using the chiral gluing, we introduce the category MTch which is a vertex algebra analogue of the category

MT. An object is the same as that of MT, and a morphisms from g1 to g2 is a dg vertex algebra V equipped
with a chiral momentum map Vk(g1) ⊗ Vl(g2) → V and satisfying some finiteness condition. Composition
of morphism is given by the chiral gluing. See Definition 6.3.2 for the precise description.

We then have a functor R(−) : MTch → MT induced by the procedure V 7→ RV taking Zhu’s C2-algebra.

We also have a functor grF : MTch → MTco induced by the procedure V 7→ grF V taking the associated
graded space of the Li filtration. They sit in a commutative diagram

MTch
grF //

R

��

MTco

Rco

��
MT MT

It would imply compatibility of gluing constructions in (0.9) (replacing VA by MTch and HS by MT). See
Theorem 6.3.3 for the detail.

0.3. Global notation. Here is a list of global notations.
(1) δm,n denotes the Kronecker delta.
(2) The symbol N denotes the set of non-negative integers.
(3) The words ring and algebra mean associative ones unless otherwise stated.
(4) The word dg means differential graded.
(5) On ∞-categories.

(i) We follow [Lu1] for the terminology on ∞-categories. In particular, an ∞-category is a simplicial
set satisfying the weak Kan condition [Lu1, Definition 1.1.2.4].

(ii) For an ∞-category C, we write x ∈ C to mean that x is an object of C, i.e., a vertex of the
simplicial set C.

(iii) The homotopy category [Lu1, §1.1.4] of an ∞-category C is denoted by hC.
(iv) The ∞-category S of spaces [Lu1, Definition 1.2.16.1] is defined to be the simplicial nerve of

the simplicial category of Kan complexes. Its object will be called a space.
(v) We denote H := hS. We have the notion of homotopy group πnX for X ∈ H.
(vi) For objects x, y of an ∞-category C, we denote by MapC(x, y) ∈ H the mapping space from

x to y [Lu1, Definition 1.2.2.1]. It is the homotopy type of the space representing the maps
x → y in the homotopy category of the simplicial category attached to C. We also denote
HomC(x, y) := π0 MapC(x, y).

(vii) For an ∞-category C and x, y, z ∈ C, we denote the pullback by x×y z if they exist [Lu1, §4.4.2].
(viii) For an ∞-category C, its opposite ∞-category [Lu1, §1.2.1] is denoted by Cop.
(ix) An ordinary category is identified with its nerve and regarded as an ∞-category. We use sans-

serif font to denote ordinary categories such as the category dgVec of complexes.
(x) A dg category is identified with its differential graded nerve [Lu2, §1.3.1] and regarded as an

∞-category. We use bold letters to denote dg categories such as the dg category dgVec of
complexes.



8 SHINTAROU YANAGIDA

Acknowledgements. The author thanks Tomoyuki Arakawa for the detailed explanation on [A] in the
intensive course at Nagoya University in November, 2019, and for comments on this text. The author also
thanks Hiraku Nakajima for comments on higher genus consideration in [BFN].

1. Poisson algebras in dg setting

We work over a fixed field k of characteristic 0.

1.1. Dg convention. For the definiteness, let us start with our dg convention.

1.1.1. Graded and dg linear spaces. Let Vec be the category of linear spaces and linear maps over k. We
denote by Homk(−,−) = HomVec(−,−) the linear space of linear maps, by V ∗ := Homk(V, k) the linear dual
of V ∈ Vec, and by ⊗k the tensor product of linear spaces. The braiding (or the commutativity) isomorphism

on the tensor product is an isomorphism V ⊗W
∼−→W ⊗ V in Vec given by v ⊗w 7→ w⊗ v. These give Vec

a structure of k-linear unital symmetric monoidal category with the unit k.

Definition 1.1.1. (1) A graded linear space is a linear space equipped with an extra Z-grading. We
express the Z-grading by superscript as V • =

⊕
n∈Z V

n. An element v ∈ V n for some n ∈ Z will be
called homogeneous, and for such an element we denote |v| := n.

(2) A morphism of graded linear spaces is a homogeneous linear map of degree 0. For such a morphism
f : V → W , we denote fn := f |V n : V n → Wn. We denote by gVec the category of graded linear
space and their morphisms.

(3) For a graded linear space V , we denote V [1] the graded linear space with V [1]n := V n+1 for each
n ∈ Z.

Definition 1.1.2. (1) A dg linear space or a complex is a pair (V, d) consisting of a graded vector space
V and a morphism d : V → V [1] of graded vector spaces satisfying d2 = 0. The morphism d is called
the differential, and the Z-grading on V is called the degree or the cohomological degree.

(2) A morphism of complexes is a morphism of graded linear spaces which respects the differentials.
In particular, a morphism f : V → W of complexes preserves the Z-grading: f(V n) ⊂ Wn for any
n ∈ Z.

(3) We denote by dgVec the category of complexes and their morphisms.

Remark. (1) We denote a complex simply by V = (V, d) if no confusion may occur. We also denote
(V •, dV ) to emphasize the Z-grading and that the differential is attached to V .

(2) As for the differential d of a complex V , we have dn : V n → V n+1 and dn+1dn = 0 using the notation
in Definition 1.1.1 (2).

(3) Hereafter we regard a graded linear space as a complex with trivial differential. Thus we regard
gVec ⊂ dgVec as a full subcategory.

A category enriched over dgVec will be called a dg category. The complexes of morphisms in a dg category
are called the hom complexes. A typical example of a dg category is the dg category of complexes. Let us
recall the precise definition.

Definition 1.1.3. (1) For V,W ∈ dgVec, we define Hom(V,W ) to be the complex of which
• the underlying graded linear space is given by

Hom(V,W ) =
⊕
n∈Z

Hom(V,W )n, Hom(V,W )n :=
∏
i∈Z

Homk(V
i,W i+n),

• and the differential is given by df := dW ◦ f − (−1)nf ◦ dV for f ∈ Hom(V,W )n.
We call Hom(V,W ) the internal hom in dgVec. An element of Hom(V,W )n will be called a homo-
geneous linear map of cohomological degree n.

(2) We denote by dgVec the dg category of which the objects are complexes and the hom complexes
are given by Hom(−,−).

Let us recall the standard symmetric monoidal structure on dgVec.

Definition 1.1.4. Let V,W ∈ dgVec.
(1) The tensor product V ⊗W in dgVec is a complex of which

• the underlying linear space is V ⊗k W ,
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• the Z-grading is given by

(V ⊗W )n :=
⊕

r+s=n V
r ⊗k W

s,

• and the differential is given by

dV⊗W (v ⊗ w) := dV v ⊗ w + (−1)|v|v ⊗ dWw

for any homogeneous v ∈ V and any w ∈W .
(2) For homogeneous linear maps f : V → V ′ and g : W → W ′ of complexes, we define the linear map

f ⊗ g : V ⊗W → V ′ ⊗W ′ by

(f ⊗ g)(v ⊗ w) := (−1)|g||v|f(v)⊗ g(w)

for homogeneous v ∈ V and w ∈ W . This rule will be called the Koszul sign rule. In particular, we
have a tensor product for a morphism of complexes.

(3) and the braiding isomorphism in dgVec is defined to be

V ⊗W
∼−→W ⊗ V, v ⊗ w 7−→ (−1)|v||w|w ⊗ v

for homogeneous v ∈ V and w ∈W .

These give the category dgVec a structure of unital symmetric monoidal category with the unit k, which
is denoted by dgVec⊗. We also have the notion of a monoidal dg category, and the dg category dgVec of
complexes has a structure of unital symmetric monoidal dg category, which is denoted by dgVec⊗.

Let us recall the shift functor on dgVec:

Definition. (1) We denote by k[1] the complex whose underlying graded linear space is (k[1])n = δn,0k
and whose differential is 0.

(2) The shift functor [1] on dgVec is given by V 7→ V [1] := k[1]⊗V . In particular, we have dnV [1] = −dn+1
V

for any n ∈ Z. The inverse is denoted by [−1], and for m ∈ Z the m-th repetition is denoted by [m].

Here are some basic constructions of complexes.

Example 1.1.5. Let V be a complex.
(1) We define the complex T (V ) by

T (V ) :=
⊕

p∈N V
⊗p

and call it the tensor space of V . In particular, the Z-grading of v1 ⊗ · · · ⊗ vp ∈ V ⊗p is given by
|v1 ⊗ · · · ⊗ vp| :=

∑p
i=1 |vi|. We call the N-grading given by the tensor power p the weight.

(2) We define the symmetric tensor space Sym(V ) of V to be the complex

Sym(V ) :=
⊕

p∈N V
⊗p/Sp.

where the p-th symmetric group Sp acts on V ⊗p by permutation. Similarly as in (1), we call the
N-grading given by the tensor power p the weight.

For later reference, we give:

Example 1.1.6. (1) Let k[1] be the shifted one-dimensional linear space regarded as a complex with
trivial differential. Consider the shifted symmetric tensor space Sym(k[1]). Its weight n component
is (k[1])⊗n/Sn, where the n-th symmetric group Sn acts by permutation. Using the braiding
isomorphism in dgVec (Definition 1.1.4 (3)), we can identify

(k[1])⊗n ' the signature representation

as Sn-representations. Thus Sym(k[1]) can be regarded as a sequence of signature representations
of symmetric groups.

(2) Let V be a complex and consider the shifted symmetric tensor space Sym(V [1]). By the consideration
in (1), we can identify

(V [1])⊗p '
∧p

(V )

as linear spaces, where the right hand side denotes the exterior product space. Abusing terminology,
we call the complex Sym(V [1]) the exterior product space of V .

We close this part by recalling the cohomology and the cone.

Definition 1.1.7. (1) The cohomology H(V, d) of a complex (V, d) is defined to be the graded linear
space given by Hn(V, d) := Ker(d : V n → V n+1)/ Im(d : V n−1 → V n). We denote H•(V, d) to
emphasize the Z-grading. If confusion will not occur, we simply denote H(V ) := H(V, d).
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(2) A complex V is called acyclic if H(V ) = 0.
(3) For a morphism f : V →W in dgVec, the induced morphism H(V ) → H(W ) in gVec is denoted by

H(f). Thus, we have a functor H : dgVec → gVec.
(4) A morphism f : V →W is called a quasi-isomorphism if the morphism H(f) : H(V ) → H(W ) is an

isomorphism in gVec.

Definition 1.1.8. For a morphism f : V → W of complexes, we define the mapping cone of f to be the
complex

Cone(f) := V [1]⊕W, dCone(f) :=

[
dV [1] 0
f [1] dW

]
.

Let us also recall the following standard fact:

Fact 1.1.9. Let f : V → W be a morphism in dgVec. Then f is a quasi-isomorphism if and only if the
mapping cone Cone(f) is acyclic.

In particular, for a complex V , the mapping cone Cone(idV ) of the identity idV : V → V is acyclic.

1.2. Algebraic structures in dg setting. We collect here the terminology of algebraic structures in the
dg setting. The most appropriate language here is the theory of operad, but we avoid to use it since we
don’t need such a full generality. We continue to work over a field k of characteristic 0.

Recall the symmetric monoidal structures ⊗ on dgVec (Definition 1.1.4).

1.2.1. Dg algebras. We start with ring objects in dgVec.

Definition 1.2.1. (1) A dg algebra (dga for short) is a unital associative ring object in the monoidal
category dgVec. In other words, it is a triple (A, ·, u) consisting of

• a complex A = (A, dA),
• a morphism · : A⊗A→ A in dgVec called the multiplication, and
• a morphism u : k → A in dgVec called the unit (morphism)

satisfying the standard axioms of associativity and unitality. We often omit the symbol · of the
multiplication and denote ab := a · b for a, b ∈ A. We also denote the image of the unit 1k of the
field k under the unit morphism by 1A := u(1k) ∈ A and call it the unit (element) of A.

(2) A morphism of dgas is a morphism in dgVec which respects the ring structures. We denote by dguAlg
the category of dgas and their morphisms (the letter u indicates that we consider unital objects).

(3) The commutator on a dga A is denoted by [−,−]. It is defined by

[a, b] := ab− (−1)|a||b|ba

for homogeneous elements a, b ∈ A and is extended by linearity.

Remark. (1) We include unital condition in the definition.
(2) Let us recall a more down-to-earth definition of a dga. Let A be a dga in the above sense. Since

the multiplication · : A ⊗ A → A is a morphism in dgVec, it commutes with the differentials dA⊗A
and dA. Recalling the differential of the tensor product of complexes (Definition 1.1.4), we have
dA⊗A(ab) = (dAa)⊗b+(−1)|a|a⊗dAb for a, b ∈ A. Then the commutativity of · and the differentials
can be expressed as

dA(ab) = (dAa)b+ (−1)|a|a(dAb). (1.1)

This is nothing but the Leibniz rule, and the differential dA is a derivation with respect to the
multiplication (see Definition 1.2.10 below).

Thus, we can restate the definition as: A dga is a triple (A, ·, 1A) consisting of
• a complex A = (A, dA),
• an associative multiplication · : A × A → A which preserves the Z-grading and satisfies the
Leibniz rule (1.1), and

• a unit element 1A ∈ A0 with respect to the multiplication ·.

Example 1.2.2. Let V be a complex.
(1) The tensor algebra T (V ) is a typical example of a dga. The underlying complex is the tensor space

(Example 1.1.5), and the multiplication is given by the concatenation of the tensor: (v1 ⊗ · · · ⊗ vp) ·
(w1 ⊗ · · · ⊗ wq) := v1 ⊗ · · · ⊗ vp ⊗ w1 ⊗ · · · ⊗ wq.
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(2) The endomorphism algebra End(V ) is another typical example. The underlying graded linear space
is

⊕
n∈Z Endk(V )n =

⊕
n∈Z Homk(V, V )n, the differential is dEnd(V )f = dV ◦ f − (−1)|f |f ◦ dV (see

Definition 1.1.3 (1)), and the multiplication is given by the composition. In particular, we have the
commutator [−,−] on End(V ).

Let us also recall the monoidal structure on dguAlg.

Definition 1.2.3. The tensor product A ⊗ B of dgas A and B is defined to be the graded algebra whose
underlying graded linear space is A⊗B ∈ dgVec and whose multiplication is given by

(a1 ⊗ b1) · (a2 ⊗ b2) := (−1)|a2||b1|a1a2 ⊗ b1b2

for homogeneous elements. The tensor product of morphisms of dgas are defined by the same formula.
This tensor product gives dguAlg a structure of a monoidal category.

We also have the notion of modules over a dga:

Definition. Let A be a dga.
(1) A left dg A-module M is a complex equipped with a morphism . : A⊗M → M in dgVec called the

(left) action satisfying the standard axioms of associativity and unitality.
(2) A morphism f : M → N of left dg A-modules M and N is a morphism in dgVec which respects the

A-module structures.
(3) We denote the category of left dg A-modules by A-dgMod.

Explicitly, a left dg A-module M is a complex equipped with a homogeneous bilinear map . : A×M →M
of cohomological degree 0 satisfying the Leibniz rule

dM (a.m) = dA(a).m+ (−1)|a|a.dM (m)

for a ∈ A and homogeneous m ∈M .
For left dg A-modules M and N , we define the complex HomA(M,N) by

HomA(M,N) :=
⊕

n∈Z HomA(M,N [n]),

HomA(M,N [n]) := {f ∈ Hom(M,N [n]) | f respects dg A-module structures of M and N [n]}.
Thus HomA(M,N) is a subcomplex of Hom(M,N) =

⊕
n∈Z Hom(M,N [n]). Here we used the fact that the

shiftM [n] is naturally a left dg A-module. The complex HomA(M,N) is naturally a left dg A-module. Thus
we have the following definition:

Definition 1.2.4. Let A be a dga.
(1) For left dg A-modules M,N , we call HomA(M,N) the dg A-module of morphisms of A-modules.
(2) We denote by A-dgMod the resulting dg category of left dg A-modules.

We also have the notions of right dg A-modules, dg A-bimodules and left/right/both-side dg ideals. The
details are omitted.

1.2.2. Commutative dg algebras. Next we introduce commutative algebra objects in dgVec.

Definition. (1) A commutative dga (cdga for short) is a dga whose commutator always vanishes.
(2) We denote by dguCom the subcategory of dguAlg spanned by cdgas (the letter u indicates that we

consider unital objects).

Example 1.2.5. Let V be a complex.
(1) Recall the symmetric tensor space Sym(V ) (Example 1.1.5). It is a cdga with the multiplication

induced by that on the tensor algebra T (V ) (Example 1.2.2 (1)). We denote the resulting cdga by
the same symbol Sym(V ) and call it the symmetric tensor algebra of V .

(2) The exterior product space Sym(V [1]) (Example 1.1.6) is also a cdga with the multiplication induced
by that on the tensor algebra T (V ). We denote the resulting cdga by the same symbol Sym(V [1])
and call it the exterior algebra of V .

The category dguCom inherits the monoidal structure of dguAlg (Definition 1.2.3), and the braiding
isomorphisms on dgVec (Definition 1.1.4) makes dguCom a symmetric monoidal category.

We also have the notion of modules over cdgas.

Definition. Let A be a cdga.
(1) A dg A-module M is a left dg A-module where A is regarded as a dga. We denote the category of

dg A-modules by A-dgMod.
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(2) The category A-dgMod has a structure of a symmetric monoidal category. We denote the tensor
product by ⊗A.

We also have the dg category of dg A-modules, whose hom complex from M to N is defined to be the
subcomplex HomA(M,N) ⊂ Hom(M,N) of morphisms respecting the dg A-module structures.

Notation 1.2.6. For a cdga A, we denote by A-dgMod the dg category of dg A-modules, and denote by
HomA(−,−) the hom complex in A-dgMod.

Let us introduce some dg modules over cdgas which will appear repeatedly in the following subsections.

Example 1.2.7. Let A be a cdga and M be a dg A-module.
(1) We denote the iterated tensor products of M as M⊗A2 :=M ⊗AM , M⊗A3 :=M ⊗AM ⊗AM and

so on. We define the dg A-module TA(M) by

TA(M) :=
⊕

p∈NM
⊗Ap

and call it the tensor algebra of M over A.
(2) We define the dg A-module SymA(M) by

SymA(M) :=
⊕

p∈NM
⊗Ap/Sn,

where the p-th symmetric group Sp acts on M⊗Ap by permutation. We call it the symmetric tensor
algebra of M over A.

These dg A-modules have the extra N-grading given by the tensor power p. We call this extra grading the
weight grading, following the terminology in Example 1.1.5.

1.2.3. Dg Lie algebras. We finally introduce Lie algebra objects.

Definition 1.2.8. (1) A graded Lie algebra is a Lie algebra object in the symmetric monoidal category
gVec. In other words, it is a graded linear space l together with a bilinear map [−.−] : l× l → l called
the Lie bracket satisfying
(i) [x, y] = (−1)1+|x||y|[y, x] for homogeneous x, y ∈ l, and
(ii) (−1)|z||x|[x, [y, z]] + (−1)|x||y|[y, [z, x]] + (−1)|y||z|[z, [x, y]] = 0 for homogeneous a, b, c ∈ l.

(2) A dg Lie algebra is a Lie algebra object in the symmetric monoidal category dgVec. In other words,
it is a triple (l, d, [−,−]) consisting of a graded linear space l, a morphism d ∈ HomgVec(l, l[1]), and
a bilinear map [−.−] : l× l → l such that
(i) (l, d) is a complex,
(ii) (l, [−,−]) is a graded Lie algebra, and
(iii) d[x, y] = [dx, y] + (−1)|x|[x, dy] for homogeneous x, y ∈ l.
We have a natural notion of morphisms of dg Lie algebras, and denote by dgLie the category of dg
Lie algebras and their morphisms.

Let us give an example of a dg Lie algebra arising from a dga. Recall that we impose

Example 1.2.9. Let A = (A•, dA, ·) be a dga, and [−,−] be the commutator in A (Definition 1.2.1). Then
the triple AL := (A•, dA, [−,−]) is a dg Lie algebra. The correspondence A 7→ AL gives rise to a functor

(−)L : dguAlg −→ dgLie.

In particular, the endomorphism algebra End(V ) of a complex V (Example 1.2.2 (2)) has a structure of dg
Lie algebra.

Let us now recall the notion of modules over a dg Lie algebra.

Definition. Let l be a dg Lie algebra.
(1) A dg l-module is a complex M equipped with a morphism ρ : l → End(M) of dg Lie algebras, where

End(M) is regarded as a dg Lie algebra by Example 1.2.9.
(2) A morphism of dg l-modules is a morphism of complexes which respects the dg l-module structures.
(3) The category of dg l-modules is denoted by l-dgMod. It is naturally a symmetric monoidal category.

The tensor product is denoted by ⊗l.

For a dg l-module M , the action of x ∈ l on m ∈M is denoted by x.m := ρ(x)(m).
For the explanation of another example of a dga, we introduce:

Definition 1.2.10. Let A be a dga and M be a left A-module.
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(1) Let n ∈ Z. A derivation of degree n from A to M , or an n-derivation from A to M , is a morphism
θ ∈ HomdgVec(A,M [n]) such that for any homogeneous a, b ∈ A we have

θ(ab) = (−1)(|a|+n)|b|b.θ(a) + (−1)n|a|a.θ(b).

(2) For n ∈ Z, we denote by Der(A,M)n the set of n-derivations from A to M , which is naturally a
linear space. We define the subcomplex Der(A,M) ⊂ Hom(A,M) to be

Der(A,M) :=
⊕

n∈Z Der(A,M)n.

The differential is given by dDer(A,M)θ = dHom(A,M)θ = dMθ − (−1)|θ|θdA. Then Der(A,M) is
naturally a left dg A-module, and we call it the left dg A-module of derivations.

(3) For M = A, we denote Der(A)n := Der(A,A)n and Der(A) := Der(A,A). An element of Der(A)n is
called an n-derivation on A.

Remark. (1) In the item (2) we can check dHom(A,M)θ ∈ Der(A,M) by

(dHom(A,M)θ)(ab) = dMθ(ab)− (−1)nθ(dA(ab))

= dM
(
(−1)(|a|+n)|b|b.θ(a) + (−1)n|a|a.θb

)
− (−1)nθ

(
(dAa)b+ (−1)|a|a(dAb)

)
= (−1)(|a|+n)|b|

(
(dAb).θ(a) + (−1)|b|b.dMθ(a)

)
+ (−1)n|a|

(
(dAa).θ(b) + (−1)|a|a.dMθ(b)

)
− (−1)n

(
(−1)(|a|+n+1)|b|b.θ(dAa) + (−1)n(|a|+1)(dAa).θ(b)

)
− (−1)|a|+n

(
(−1)(|a|+n)(|b|+1)(dAb).θ(a) + (−1)n|a|a.(θdAb)

)
= (−1)(|a|+n+1)|b|b.

(
dMθ(a)− (−1)nθ(dAa)

)
+ (−1)(n+1)|a|a.

(
dMθ(b)− (−1)nθ(dAb)

)
= (−1)(|a|+n+1)|b|b.(dHom(A,M)θ)(a) + (−1)(n+1)|a|a.(dHom(A,M)θ)(b)

for θ ∈ Der(A,M)n and homogeneous a, b ∈ A.
(2) For a cdga A, we can rephrase the definition in (3) as follows. An n-derivation θ on A is a homo-

geneous linear endomorphism on A of degree n such that [θ, a] = θ(a) in the endomorphism algebra
End(A) (Example 1.2.2 (2)). Here in the left hand side we regard a ∈ A ⊂ End(A) as a multiplication
operator from left.

Now we can explain another example of a dg Lie algebra.

Example 1.2.11. For a cdga A, consider the dg A-module Der(A) of derivations on A (Definition 1.2.10
(3)). Also recall the dg Lie algebra End(A), where we regard A as a complex (Example 1.2.9). Since we
have Der(A) ⊂ End(A) as complexes, we can consider the commutator [θ, ϕ] for θ, ϕ ∈ Der(A). Then we can
check that [θ, ϕ] ∈ Der(A), so that the triple (Der(A), dDer(A), [−,−]) is a dg Lie algebra. For later citation,
we denote

TA := (Der(A), dDer(A), [−,−])

and call TA the dg Lie algebra of derivations on A.

1.2.4. Chevalley-Eilenberg complex. In this subsection we recall the Chevalley-Eilenberg complex associated
to a dg Lie algebra and its dg module. The material is more or less standard. We borrow some notations
from [BD, 1.4.5]. Let us fix a dg Lie algebra l = (l, dl, [−,−]l) in this part.

Recall the mapping cone of a morphism of complexes (Definition 1.1.7). We denote by l† the mapping
cone of the identify idl : l → l. Thus, it is a complex given by

l† := Cone(idl) = l[1]⊕ l, d =

[
dl[1] 0
idl[1] dl

]
.

It is acyclic by Fact 1.1.9.
We denote an element of ln† = ln+1 ⊕ ln as (x, y) with x ∈ ln+1 and y ∈ ln. Then we have

dn(x, y) = (−dn+1
l x, x+ dnl y) ∈ ln+2 ⊕ ln+1 = ln+1

† .

Using the same notation, we can endow l† with a dg Lie algebra structure by

[(x, y), (x′, y′)] := ([x, y′]l + [y, x′]l, [y, y
′]l).

We have an injective morphism of dg Lie algebras

l ↪−→ l†, y 7−→ (0, y).

By this injection, the mapping cone l† is also a dg l-module.
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Next recall the enveloping algebra U(l). It is the quotient dga T (l)/I of the tensor algebra T (l) (Example
1.2.2 (1)) by the both-side dg ideal I generated by terms of the form x⊗ y − (−1)|x||y| − [x, y] with x, y ∈ l.
The correspondence l 7→ U(l) gives a functor

U : dgLie −→ dguAlg,

which is left adjoint to the functor (−)L : dguAlg → dgLie in Example 1.2.9. Thus we have an adjunction
U : dgLie ⇄ dguAlg : (−)L of functors of categories. Let us also recall that there is a functorial equivalence

l-dgMod
∼−→ U(l)-dgMod

between the category of dg l-modules and that of dg U(l)-modules. Hereafter we identify these categories.
In particular, the universal enveloping algebra U(l†) of the dg Lie algebra l† is a dga, and it is also a dg

U(l)-module since l† is a dg l-module. Then we can obtain the following statements by direct calculations.

Lemma 1.2.12. Let l be a dg Lie algebra.
(1) As a graded linear space, we have U(l†) ' Sym(l[1])⊗ U(l).
(2) Under the isomorphism Sym(l[1]) ' Λ(l), the differential dU(l†) is given by

dU(l†)(x1 ∧ · · · ∧ xp ⊗ u) =
∑p
i=1(−1)

∑i−1
a=1(|xp|+1)x1 ∧ · · · ∧ dlxi ∧ · · · ∧ xn ⊗ u

+
∑

1≤i<j≤p(−1)(|xi|+1)
∑j−1

a=i+1(|xa|+1)x1 ∧ · · · x̂i · · · ∧ [xi, xj ] ∧ · · · ∧ xn ⊗ u

+
∑p
i=1(−1)(|xi|+1)

∑p
a=i+1(|xa|+1)x1 ∧ · · · x̂i · · · ∧ xn ⊗ xiu

+ (−1)
∑p

a=1(|xa|+1)x1 ∧ · · · ∧ xn ⊗ dU(l)u.

for xi ∈ l and u ∈ U(l).

Finally, let us recall the dg A-module HomA(−,−) of morphisms for a dga A (Definition 1.2.4).

Definition 1.2.13. Let l be a dg Lie algebra.
(1) For a dg l-module M , we define the Chevalley-Eilenberg (cochain) complex CE(l,M) to be the dg

l-module

CE(l,M) := HomU(l)(U(l†),M).

The differential is denoted by dCE.
(2) We denote the functor M 7→ CE(l,M) by

CE(l,−) : l-dgMod −→ l-dgMod.

Remark 1.2.14. Some remarks on the Chevalley-Eilenberg complex are in order.
(1) By Lemma 1.2.12 (1), we have

CE(l,M) ' Hom(Sym(l[1]),M)

as a graded linear space. Thus, we have CE(l,M) ' Hom(
∧

l,M) as a linear space, which is the
standard definition in the literature.

(2) By definition, the differential dCE is given by

dCEf = dMf − (−1)|f |fdU(l†)

for a homogeneous element f ∈ Hom(
∧

l,M) of cohomological degree |f |. Denoting the weight de-
composition by f =

∑
n∈N fp, fp ∈ Hom(

∧p
l,M) and using the description CE(l,M) ' Hom(

∧
l,M)

in (1), we can write down dCEf =
∑
p∈N(dCEf)p as:

(dCEf)p(x1 ∧ · · · ∧ xp) =dMfp(x1 ∧ · · · ∧ xp)

+
∑p
i=1(−1)|f |+

∑i−1
a=1(|xa|+1)fp(x1 ∧ · · · ∧ (dlxi) ∧ · · · ∧ xp)

+
∑

1≤i<j≤p(−1)|f |+(|xi|+|xj |)
∑i−1

a=1(|xa|+1)+(|xj |+1)
∑j−1

a=i+1(|xa|+1)

fp−1([xi, xj ] ∧ x1 ∧ · · · x̂i · · · x̂j · · · ∧ xp)

+
∑p
i=1(−1)(|xi|+1)

(
|f |+

∑i−1
a=1(|xa|+1)

)
xi.fp−1(x1 ∧ · · · x̂i · · · ∧ xp).

In the non-dg case |f | = |xi| = 0 and dl = dM = 0, we recover the original Chevalley-Eilenberg
differential.
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(3) If l is of finite dimension, then we have an isomorphism

CE(l,M) ' Sym(l∗[−1])⊗M

as a graded linear space. Let us rewrite the differential dCE under this isomorphism. Note that the
graded Lie algebra l† (forget the differential) acts on Sym(l∗[−1]) in the way that l ⊂ l† acts by the
coadjoint action and l[1] ⊂ l† acts by −{·, ·}, where {·, ·} : l∗ ⊗ l → k denotes the canonical pairing.
Then there exists a unique differential δCE on Sym(l∗[−1]) such that the l†-action is compatible.

Explicitly, δCE|l∗[−1] is equal to the composition l∗[−2]
ν−→ l∗[−1]⊗ l∗[−1]

− 1
2 ·−−→ Sym2(l∗[−1]), where

ν denotes the dual of the Lie bracket [·, ·]l. Finally, dCE is equivalent to δCE⊗ id+f +id⊗dM , where
f : M → l∗ ⊗M denotes the dual of the l-action.

The Chevalley-Eilenberg complex has an extra structure. For the explanation, we need:

Definition 1.2.15. Let p, q ∈ N and consider the symmetric group Sp+q. We denote by Sp,q ⊂ Sp+q the
subset of (p, q)-shuffles, i.e., permutations σ such that σ(1) < · · · < σ(p) and σ(p+ 1) < · · · < σ(p+ q).

Definition 1.2.16. Let l be a dg Lie algebra.
(1) For dg l-modules M,N , we define the morphism ∪ : CE(l,M) ⊗ CE(l, N) → CE(l,M ⊗ N) of dg

l-modules by

(f ∪ g)(x1 ∧ · · · ∧ xp+q) :=
∑

σ∈Sp,q

sgn(σ)(−1)ε+ε1f(xσ(1) ∧ · · · ∧ xσ(p))⊗ g(xσ(p+1) ∧ · · · ∧ xσ(p+q)),

for f ∈ CE(l,M)(m) and g ∈ CE(l, N)(n). Here ε denotes the sign of the braiding isomorphisms for
the permutation σ of xi’s, and ε1 := p |g| +

∑p
i=1

∣∣xσ(i)∣∣ (q + |g|). We call the operation ∪ the cup
product.

(2) Let A be a commutative ring object in l-dgMod, i.e., a cdga which is also a dg l-module and the
multiplication is a morphism in l-dgMod. Consider the composition

CE(l, A)⊗ CE(l, A)
∪−→ CE(l, A⊗A)

CE(l,·)−−−−−→ CE(l, A),

where the first ∪ denotes the cup product and the second CE(l, ·) is the image of the multiplication
of A under the functor CE(l,−) (Definition 1.2.13). We denote this composition by the same symbol
as

∪ : CE(l, A)⊗ CE(l, A) −→ CE(l, A).

Now we can check the following classical result.

Lemma 1.2.17. Let A be a commutative ring object in l-dgMod. Then the Chevalley-Eilenberg complex
CE(l, A) with the cup product ∪ : CE(l, A)⊗CE(l, A) → CE(l, A) is a cdga. We call it the Chevalley-Eilenberg
cdga.

1.3. Shifted Poisson algebras. In this subsection we recollect basics on shifted Poisson structures following
[CPT+, M16, S17]. We continue to work over a field k of characteristic 0.

1.3.1. Definition.

Definition 1.3.1. Let n ∈ Z. A Pn-algebra in dgVec is a data (R, ·, {−,−}) consisting of
• a cdga (R, ·) and
• a morphism {−,−} : R⊗R −→ R[1− n] in dgVec, called the n-Poisson bracket of R

which satisfies the following conditions.
(i) {−,−} gives a structure of dg Lie algebra on R[n− 1] (Definition 1.2.8).
(ii) The Leibniz rule

{f, g · h} = {f, g} · h+ (−1)|g||h|{f, h} · g
holds for homogeneous f, g, h ∈ R.

We often omit to mention the category dgVec and just call it a Pn-algebra. We also call it a dg n-Poisson
algebra. In the case n = 1, we just call it a dg Poisson algebra.

Remark 1.3.2. (1) If we replace dgVec by Vec, then a P1-algebra in Vec is nothing but a (commutative)
Poisson algebra in the ordinary sense.

(2) A P2-algebra (in gVec) is nothing but a Gerstenhaber algebra. See [LV, 13.3.10–13.3.15] for the
detail.
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(3) The symbol Pn indicates that we can give a definition by a dg operad on the symmetric monoidal
dg category dgVec of complexes. We refer [M16] for the detail.

Hereafter we often omit the symbol · and denote rs := r · s, and also denote just by R the Poisson algebra
(R, ·, {−,−}).

Let us also introduce the category of Pn-algebras.
Definition. (1) A morphism of Pn-algebras is defined to be a morphism in dguCom which respects the

Poisson brackets.
(2) We define the tensor product of Pn-algebras (R, {−,−}R) and (S, {−,−}S) to be the one where

• the underlying cdga is the tensor product R⊗ S in dguCom, and
• the Poison bracket {−,−} is given by

{r ⊗ s, r′ ⊗ s′} := {r, r′}R ⊗ (ss′) + (−1)|r
′||s|(rr′)⊗ {s, s′}S

for homogeneous r, r′ ∈ R and s, s′ ∈ S.
(3) We denote by Pn-dgVec the category of Pn-algebras and their morphisms. It is a symmetric monoidal

category with respect to the tensor product. In the case n = 1, we also denote dgPA := P1-dgVec.

Next we introduce notations for Poisson modules over Pn-algebras.
Definition 1.3.3. (1) Let R be a Pn-algebra. A dg Poisson R-module M is a complex M equipped

with two morphisms

. : R⊗M −→M, {−,−} : R⊗M −→M

in dgVec such that
(i) the morphism . is a dg R-module structure where we regard R ∈ dguCom,
(ii) {−,−} is an R[n− 1]-module structure where we regard R[n− 1] ∈ dgLie, and
(iii) the Leibniz rule

{r, s.m} = {r, s}.m+ (−1)|r||s|s.{r,m}, {r · s,m} = r.{s,m}+ (−1)|r||s|s.{r,m}
hold for any homogeneous r, s ∈ R and m ∈M .

We denote by R-dgPMod the category of dg Poisson R-modules.
(2) For a P1-Poisson algebra R in Vec, i.e., a Poisson algebra in the ordinary sense, we define a Poisson

R-module to be a linear space M equipped with . and {−,−} with the same conditions as in (1).
We denote by R-PMod the category of Poisson R-modules.

1.3.2. Shifted polyvectors. Let us explain the space of shifted polyvectors with the Schouten bracket, which
is a standard example of a shifted Poisson algebra. See [LPV, 3.3.2] for the non-dg case. We need some
preliminaries.

Let A be a cdga. For a dg A-module M , we have the dg A-module Der(A,M) of derivations (Definition
1.2.10 (2)). The functor

Der(A,−) : A-dgMod −→ A-dgMod, M 7−→ Der(A,M)

commutes with limits so that it is corepresentable by a dg A-module.

Notation 1.3.4. Let A be a cdga. We denote the dg A-module corepresenting the functor Der(A,−) by
Ω1
A, and call it the module of Kähler differentials over A.

We have an explicit description of Ω1
A. It is a dg A-module

• generated over A by the symbols da for each a ∈ A with cohomological degree |da| := |a|, and
• the defining relation is

d(ab) = (−1)|a||b|b.(da) + (−1)|a|a.(db).

Let us give a simple example for later citation.

Example 1.3.5. Let V be a complex, and Sym(V ) be the symmetric tensor algebra (Example 1.2.5 (1)).
Then the module Ω1

Sym(V ) of Kähler differentials is a free dg Sym(V )-module generated by V .

The universality of corepresenting object says that for a dg A-moduleM we have a functorial isomorphism

HomA(Ω
1
A,M)

∼−→ Der(A,M).

In particular, there is a morphism d : A → Ω1
A in A-dgMod, and the above functorial isomorphism is given

by α 7→ α ◦ d. The morphism d : A→ Ω1
A is nothing but the correspondence a 7→ da.

We need one more terminology.
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Definition 1.3.6. A graded dg linear space, or a graded complex M is a complex with an extra Z-grading.
We call the extra Z-grading the weight of M and denote by M =

⊕
p∈ZM(p). We denote the cohomological

grading by M(p) =
⊕

n∈ZM(p)n. Thus we have

M =
⊕

p∈ZM(p) =
⊕

p∈Z
⊕

n∈ZM(p)n.

Example. We have already introduced complexes with extra N-gradings.
(1) Let V be a complex. Then the tensor space (algebra) T (V ) and the symmetric tensor space (algebra)

Sym(V ) in Example 1.1.5 are graded complexes. Explicitly, we have

T (V )(p) = V ⊗p, Sym(V )(p) = V ⊗p/Sp (p ∈ N).
(2) Let A be a cdga and M be a dg A-module. Then the tensor algebra TA(M) and the symmetric

tensor algebra SymA(M) in Example 1.2.7 are graded complexes. Explicitly, we have

TA(M)(p) =M⊗Ap, SymA(M)(p) =M⊗Ap/Sp (p ∈ N).

Now we can introduce shifted polyvector fields over a cdga. Recall the hom complex HomA(M,N) ∈
A-dgMod for dg A-modules M and N (Notation 1.2.6).

Definition. Let n ∈ Z and A be a cdga. We define the graded complex Pol(A,n) of n-shifted polyvector
fields by

Pol(A,n) := HomA(SymA(Ω
1
A[n+ 1]), A)

with the weight grading Pol(A,n)(p) := HomA(SymA(Ω
1
A[n + 1])(p), A). An element of Pol(A,n) will be

called a polyvector.

Let us explain the Poisson algebra structure on Pol(A,n). For that, we use the following notation in [S17]:

Notation 1.3.7. Let n and A be as above. We use the formal symbol ddR sitting in the cohomological
degree −(n+ 1) in Ω1

A[n+ 1] and denote

ddRa ∈ (Ω1
A[n+ 1])m−n−1 = (Ω1

A)
m

for a ∈ Am. We also denote by ⌟ : Pol(A,n) ⊗ SymA(Ω
1[n + 1]) → A the natural pairing. Then, for

v ∈ Pol(A,n)(p) and ai ∈ A (i = 1, . . . , p), we set

v(a1, . . . , ap) := v ⌟ (ddR ⊗ · · · ⊗ ddR)(a1 ⊗ · · · ⊗ ap). (1.2)

Here the term (ddR ⊗ · · · ⊗ ddR)(a1 ⊗ · · · ⊗ ap) is regarded as a monomial in the cdga Symp
A(Ω

1
A[n+ 1]).

In (1.2), the sign rule for multiplication is given by Definition 1.2.3, and that for commutation relation is
given by Definition 1.1.4. For example, using n2 ≡ n (mod 2), we have

v(a1, a2, a3, . . . , ap) = (−1)|a1||a2|+n+1v(a2, a1, a3, . . . , ap).

Fact 1.3.8 ([S17, §§1.1–1.2]). Let n ∈ Z and A be a cdga.
(1) For v ∈ Pol(A,n)(p) and w ∈ Pol(A,n)(q), the following formula defines v · w ∈ Pol(A,n)(p+ q).

(v · w)(a1, . . . , ap+q) :=
∑
σ∈Sp,q

sgn(σ)n(−1)ε+εv(aσ(1), . . . , aσ(p))w(aσ(p+1), . . . , aσ(p+q)).

HereSp,q ⊂ Sp+q denotes the (p, q)-shuffles (Definition 1.2.15), and ε denotes the sign of the braiding
isomorphisms for the permutation σ of ai’s. The sign ε is given by

ε := |w| (n+ 1)p+

k∑
i=1

∣∣aσ(i)∣∣ ((n+ 1)q + |w|).

(2) For v ∈ Pol(A,n)(p) and w ∈ Pol(A,n)(q), the following formula gives [v, w]S ∈ Pol(A,n)(p+ q−1).

[v, w]S(a1, . . . , ap+q−1) :=
∑

σ∈Sq,p−1

sgn(σ)n+1(−1)ε+ε1v(w(aσ(1), . . . , aσ(q)), aσ(q+1), . . . , aσ(p+q−1))

−
∑

σ∈Sp,q−1

sgn(σ)n+1(−1)ε+ε2w(v(aσ(1), . . . , aσ(p)), aσ(p+1), . . . , aσ(p+q−1)).

Here Sp,q and (−1)ε are the same as (1), and the sign εi are given by

ε1 := (n+ 1)(|w|+ q)(p+ 1) + (n+ 1) |v| ,
ε2 := (|v| − (n+ 1)p)(|w| − (n+ 1)q) + (n+ 1)(p+ 1)(|w|+ 1) + (n+ 1) |v| .

We call the operation [−,−]S the Schouten bracket. It is of cohomological degree −n− 1.
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(3) The multiplication and the Schouten bracket define a dg (n + 2)-Poisson algebra structure on
Pol(A,n).

Here is a dg version of the classical fact [LPV, Proposition 3.5] on the Poisson structure and the Schouten
bracket. We omit the proof since it is essentially the same with the classical case.

Lemma 1.3.9. Let n ∈ Z, A be a cdga, and π ∈ Pol(A,n− 1)(2)n+1 be a polyvector field of weight 2 (i.e.,
a bivector field) whose cohomological degree is n+ 1. We define the bilinear map

{−,−}π : A⊗A −→ A[1− n], {a, b}A := π(a, b),

where we used Notation 1.3.7. Then {−,−}π defines a Pn-algebra structure on A if and only if [π, π]S = 0.

1.3.3. Kirillov-Kostant Poisson structure. In this part we recall the Kirillov-Kostant Poisson structure on a
Lie algebra, which gives an example of a Poisson algebra arising from Lie theory.

Let l be a dg Lie algebra over a field k of characteristic 0. We denote the Lie bracket by [−,−]l. Then the
symmetric algebra Sym(l) = Symk(l) of the underlying complex of l has a structure of dg Poisson algebra
with the Poisson bracket {−,−}l determined by

{x, y}l := [x, y]l for x, y ∈ l ⊂ Sym(l)

and by the Leibniz rule.

Notation 1.3.10. For a dg Lie algebra l, the Poisson bracket {−,−}l is called the Kirillov-Kostant Poisson
bracket, and the resulting dg Poisson algebra (Sym(l), {−,−}l) is called the Lie-Poisson algebra of l.

Recall that for a cdga R, we denote by TR = Der(R) the dg Lie algebra of derivations on R (Example
1.2.11). If moreover R is a dg Poisson algebra with the Poisson bracket {−,−}R, then we have a linear map

D : R −→ Der(R), D(r) := {r,−}R.

Definition 1.3.11. Let R be a dg Poisson algebra. A Hamiltonian l-action on R is a morphism a : l →
Der(R) of dg Lie algebras equipped with a dg Lie algebra morphism µ : l → R such that D ◦ µ = a. In this
case, the morphism µ is called the momentum map.

Remark 1.3.12. Some comments on moment maps are in order.
(1) More explicitly, the condition is

{µ(x), r}R = a(x)(r) (1.3)

for any x ∈ l and r ∈ R. We call it the momentum map equation.
(2) An example is R = k with the trivial Poisson bracket. The morphism a and the momentum map µ

are both trivial.
(3) We can replace the momentum map µ : l → R by the induced map Sym l → R of dg Poisson algebras.

We denote it by the same symbol µ and also call it the momentum map.

1.4. Shifted Poisson structures for derived stacks. In this subsection we give a brief recollection on
the theory of shifted Poisson structures on derived stacks [CPT+].

1.4.1. Affine derived Poisson schemes. Let us restate the notions on shifted Poisson algebras in terms of the
language of affine derived schemes in the sense of [TVe, T14]. The language of derived algebraic geometry
will be introduced in the later §1.4.2, and the present part is a preparation for it.

Hereafter we use the language of∞-categories. See §0.3 for our terminology on∞-categories. In particular,
we will identify a category with its nerve and a dg category with its dg nerve, so that we regard them as
∞-categories.

Notation 1.4.1. Here is a brief list of the notations on affine derived schemes.
(1) In this part we assume that k contains Q. Although we can remove this assumption, we put it to

make the text simple and compatible with the literatures of derived algebraic geometry.
(2) We denote by dguCom the dg category of unital cdgas over k, and denote by dguCom≤0 ⊂

dguCom the full sub-dg-category spanned by objects concentrated in non-positive degrees. As in
§0.3 (5) (x), we regard these dg categories as ∞-categories.

(3) The ∞-categories dguCom and dguCom≤0 are symmetric monoidal in the sense of [Lu2] with
the derived tensor product ⊗L. We also have a relative version: Given two morphisms B → A and
C → A of cdgas, we have the derived tensor product B ⊗L

A C. It is realized by the two-sided bar
complex. See Definition 2.1.9 for the detail.
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(4) The ∞-category dAff of affine derived schemes over k is defined to be the opposite ∞-category of

dguCom≤0. For R ∈ dguCom≤0, we denote the corresponding affine derived scheme by Spec(R).
Conversely, for an affine derived scheme X = Spec(R), we call R the coordinate (derived) ring of X.

(5) The derived tensor product B ⊗L
A C in (3) is transfered to the derived fiber product or derived

intersection Spec(B)×L
Spec(A) Spec(C) in the ∞-category dAff of affine derived schemes.

(6) For an affine derived scheme X = Spec(R), we denote the structure sheaf by OX . It is a sheaf of
unital cdgas on the étale ∞-topos on X. See [TVe, Chap. 2.2] for the detail.

(7) For an affine derived scheme X = Spec(R), we denote by LQCoh(X) the ∞-category of quasi-coherent
sheaves of OX -modules over X.

The equivalence of the (ordinary) category of quasi-coherent sheaves over an affine scheme and the category
of modules over the corresponding commutative ring is enhanced to

Fact 1.4.2. For an affine derived scheme X = Spec(R), the ∞-category LQCoh(X) is equivalent to the
∞-category R-dgMod associated to the dg category of dg R-modules.

Moreover, LQCoh(X) is a stable ∞-category in the sense of [Lu2, Chap. 1]. If X is an affine (non-derived)
scheme, then the homotopy category of LQCoh(X) is equivalent to the derived category DQCoh(X) of quasi-
coherent étale sheaves of OX -modules on X.

Now the following definition should be a natural one.

Definition 1.4.3. (1) The ∞-category of affine derived n-Poisson schemes is defined to be the opposite

of the ∞-category Pn-dguCom≤0 associated to the dg category of Pn-algebras concentrated in non-
positive cohomological degrees.

(2) An object of the above ∞-category is called an affine derived n-Poisson scheme. Following the
notation of affine derived schemes, we denote by X = Spec(R) the object associated to R ∈
Pn-dguCom≤0.

(3) In the case n = 1 of (2), the object is called an affine derived Poisson scheme.

Example. Recall the Kirillov-Kostant Poisson structure on a dg Lie algebra l (Notation 1.3.10). If l is
concentrated in non-positive cohomological degrees, then we may regard Sym(l) as the coordinate ring of
the affine derived scheme l∗. Thus we have the affine derived 1-Poisson scheme l∗.

Let X = Spec(R) be an affine derived n-Poisson scheme. Then the structure sheaf OX is an étale sheaf
both of cdgas and of n-shifted dg Lie algebras whose local sections satisfy the Leibniz rule.

We denote by LPoisQCoh(X) the ∞-category of étale sheaves on X which are both quasi-coherent sheaves
of dg OX -modules and sheaves of n-shifted dg Lie superalgebra OX -modules whose local sections satisfy the
relation Definition 1.3.3 (iii). Then Fact 1.4.2 naturally yields

Lemma. Let X = Spec(R) be an affine derived n-Poisson scheme. Then there is an equivalence of ∞-
categories

LPoisQCoh(X) ' R-dgPMod.

1.4.2. Shifted Poisson structures and shifted symplectic structures. At this stage we recall the shifted Poisson
structure for derived stacks introduced in [CPT+, 3.1]. We use the language of derived stacks developed in
[TVe] and its ∞-categorical presentation in [T14]. See Notation 1.4.1 for our notation on the affine derived
schemes, and also §0.3 for our terminology on ∞-categories.

Notation 1.4.4. (1) We work over a field k which contains Q.
(2) A geometric derived stack means an n-geometric derived D−-stack over k with some n ∈ Z≥−1 in

the sense of [TVe, §1.3.3, §2.2.3]. In particular, the affine derived schemes (Notation 1.4.1 (4)) are
(−1)-geometric derived stack.

(3) Algebraic stacks, algebraic spaces and schemes over k are regarded as geometric derived stacks as in
the way of [TVe, §2.1.2, §2.2.4].

(4) For a geometric derived stack X, we denote by LQCoh(X) the derived ∞-category of quasi-coherent
sheaves over X. For an affine derived scheme X = Spec(R), it coincides with the one in Notation
1.4.1 (7).

(5) For a geometric derived stack X, the cotangent complex [TVe, Chap. 1.4] is denoted by LX ∈
LQCoh(X). If X is locally of finite presentation [TVe, 1.3.6], then LX is dualizable [TVe, §1.4.1], and
we denote its dual by TX := L∨

X ∈ LQCoh(X).
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Let X be a geometric derived stack locally of finite presentation. By [CPT+, 3.1], we have a graded
Pn+1-algebra

Pol(X,n) = RΓ(X, SymOX
(TX [−n− 1]))

whose element is called a n-shifted polyvector of X. For an affine derived scheme X = Spec(R), the cdga
Pol(X,n) is quasi-isomorphic to SymR(TR[−n − 1]), where TR is the dg Lie algebra of derivations on the
cdga R (Example 1.2.11).

Definition 1.4.5 ([CPT+, Definition 3.1.1]). The space of n-shifted Poisson structures on X is the object
Pois(X,n) ∈ S given by

Pois(X,n) := Map
dgLiegr(k(2)[−1],Pol(X,n)[n+ 1]).

Here k(2) indicates the shift of the weight grading (Definition 1.3.6), and dgLiegr denotes (the ∞-category
associated to) the dg category of dg Lie algebras with extra weight gradings.

Finally we recall the relation between shifted symplectic and Poisson structures.

Definition. Let X be a geometric derived stack locally of finite presentation. An n-shifted Poisson structure
π on X is non-degenerate if the morphism π♯ : LX → TX [−n] induced by the underlying bivector field is an
equivalence.

By [CPT+, Theorem 3.2.4], there is an equivalence between the ∞-category of non-degenerate n-shifted
Poisson structures and that of shifted symplectic structures in the sense of [PTVV] on a geometric derived
stack locally of finite presentation. We will not give the detail and refer [CPT+].

In this text we only need affine versions of these notions. which will be explained in Definition 2.1.7 after

the introduction of P̂n-algebras.

2. Derived Hamiltonian reduction and classical BRST complex

In this section we review the work of Safronov [S17] on the reduction of shifted Poisson algebras and its
relation to the classical BRST complex. We work over a field k of characteristic 0.

2.1. Derived Hamiltonian reduction. In this subsection we cite from [S17, §1] the reduction of shifted
Poisson structure in terms of derived coisotropic intersection.

2.1.1. Coisotropic structure. In this part we explain the coisotropic structure for shifted Poisson algebras.
It is an enhancement of the notion of coisotropic subschemes of affine Poisson schemes. and also gives the
notion of modules over shifted Poisson algebras. In the next §2.1.2, we explain the construction of homotopy
shifted Poisson algebras via coisotropic structures.

Let R be a Pn-algebra. Then by Lemma 1.3.9, we have a bivector field πR ∈ Pol(R,n − 1)(2) with the
Schouten bracket [πR, πR]S = 0 which corresponds to the Poisson bracket of R. On the other hand, we have
the dg R-module Ω1

R of Kähler differentials (Notation 1.3.4). We denote its differential by dΩ1
R
.

Definition 2.1.1. For a Pn-algebra R, its Poisson center is the Pn+1-algebra

Z(R) = (P̂ol(R,n− 1), dZ(R), {·, ·}Z(R))

in dgVec where
• the underlying linear space is defined to be the completion

P̂ol(R,n− 1) := HomR

(
ŜymR(Ω

1
R[n]), R

)
of Pol(R,n− 1) = HomR(SymR(Ω

1
R[n]), R) with respect to the weight grading, and

• the dg (n+ 1)-Poisson structure is induced by that on Pol(R,n− 1) (Fact 1.3.8). In particular, the
Lie bracket is the Schouten bracket.

We also denote by
pR : Z(R) −→ R

the morphism in dguCom given by the projection to the weight 0 part of polyvector fields.

We give an example of Poisson center which can be described explicitly. Let l be a dg Lie algebra. Recall
the Kirillov-Kostant Poisson structure on Sym(l) (Definition 1.3.10), which makes Sym(l) a dg Poisson
algebra. Thus we can consider its Poisson center.

Lemma 2.1.2 ([S17, §2.1]). The Poisson center Z(R) of the Lie-Poisson algebra R := Sym(l) is the dg
2-Poisson algebra of which
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• the underlying cdga is the completion ĈE(l, R) of the Chevalley-Eilenberg cdga CE(l, R) (Lemma
1.2.17) with respect to the weight grading, and

• the 2-Poisson bracket is given by the Schouten bracket (Fact 1.3.8).

Proof. The module Ω1
R of Kähler differentials is a free dg R-module generated by l (Example 1.3.5). Thus

we have an isomorphism

Z(R) = P̂ol(R, 0) =
∏
p∈N HomR(SymR(l[1])(p), R) '

∏
p∈N Hom(Sym(l[1])(p), R) ' ĈE(l, R)

of graded linear spaces. The compatibility of the dg 2-Poisson structure can be checked by comparing that
on CE(l, R) (Remark 1.2.14, Definition 1.2.16) and that on Z(R) (Fact 1.3.8). □

Now we given the definition of coisotropic structure.

Definition 2.1.3. Let R be a Pn+1-algebra and M be a Pn-algebra. A coisotropic morphism is a morphism

f : R → M in dguCom equipped with a morphism f̃ : R → Z(M) of Pn+1-algebras such that f = pM ◦ f̃
holds in dguCom.

R

f ""E
EE

EE
EE

EE
f̃ // Z(M)

pM
����
M

Remark 2.1.4. Some comments on coisotropic morphisms are in order.
(1) We can rewrite the definition of a coisotropic morphism as a family{

fp : A −→ HomM

(
Sym(Ω1

M [n])(p),M
)
| p ∈ N

}
with f0 = f : A→M which satisfies some compatibility conditions. See [S17, §1.3] for the detail.

(2) Let us explain the origin of the name “coisotropic morphism”. The compatibility conditions imply
that the kernel of f0 is closed under the Poisson bracket. Thus, if A andM are (non-dg) commutative
algebras, then Spec(M) → Spec(A) is a coisotropic subscheme in the ordinary sense. See [S17,
Remark 1.9] for the detail.

2.1.2. Coisotropic intersection. We turn to construction of homotopy shifted Poisson algebras by the “de-
rived” intersection of coisotropic structures. It will be used for the Poisson reduction in the next §2.1.3.

We start with the definition of homotopy shifted Poisson algebra. Abstractly, we replace the Lie algebra
structure by homotopy Lie algebra structure, i.e., L∞-algebra structure. Explicitly, we have:

Definition 2.1.5 ([S17, §1.2]). A P̂n-algebra in dgVec, or a homotopy n-Poisson algebra is a cdga A =
(A, dA, ·) equipped with a family {

lp : A
⊗p → A[(p− 1)n− 1] | p ∈ N

}
of morphisms in dguCom satisfying the following relations.

(i) l1 = dA,
(ii) lp(a1, . . . , ap) = (−1)|ai||ai+1|+nlp(a1, . . . , ai+1, ai, . . . , ap).

(iii) lp(a1, . . . , ap · ap+1) = lp(a1, . . . , ap) · ap+1 + (−1)|ap||ap+1|lp(a1, . . . , ap−1, ap+1) · ap.
(iv)

∑p
q=1(−1)nq(p−q)

∑
σ∈Sq,p−q

sgn(σ)n(−1)εlp−q+1(lq(aσ(1), . . . , aσ(q)), aσ(q+1), . . . , aσ(p)) = 0,

where Sq,p−q and ε are the same as Definition 1.2.16.

For a P̂n-algebra A, we define the opposite algebra Aop to be the P̂n-algebra with the same underlying
cdga and lopp := (−1)p+1lp.

Remark 2.1.6. Let us comment on the relation between Pn- and P̂n-algebras.
(1) A Pn-algebra is nothing but a P̂n-algebra with lp = 0 for p ≥ 3 and l2 = {−,−}.
(2) For a P̂n-algebra A, the underlying cohomology H(A, dA) carries a natural Pn-algebra structure.
(3) As mentioned in Remark 1.3.2, there is a dg operad Pn such that a dg n-Poisson algebra is an algebra

over Pn in dgVec. Similarly, we can construct an operad P̂n such that a homotopy n-Poisson algebra

is nothing but an algebra over P̂n.

As announced at the end of §1.4.2, the notion of shifted symplectic structure in affine context can be
introduced as non-degenerate shifted Poisson structure. Here is the precise definition:

Definition 2.1.7. Let R be a cdga.
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(1) A Pn-algebra structure on R is non-degenerate if the morphism π♯ : LR → TR[−n] induced by the
underlying bivector field is a quasi-isomorphism of cdgas.

(2) A P̂n-algebra structure on R is non-degenerate if the induced Pn-algebra structure on the cohomology
H(R) (Remark 2.1.6 (2)) is non-degenerate in the sense of (1).

(3) An (n − 1)-shifted symplectic structure on R is defined to be a non-degenerate n-shifted Poisson
structure on R.

Now we can explain the notion of “derived” intersection of coisotropic structures. We begin with:

Fact 2.1.8 ([S17, Theorem 1.18]). Let R be a Pn+1-algebra, M and N be Pn-algebras, and f : R→M and
g : R→ N be coisotropic morphisms. Then the two sided bar complex

M
⊗L

f,R,g N =M
⊗L

RN

has a structure of a P̂n-algebra such that the projection Mop ⊗N →M ⊗L
RN is a morphism of P̂n-algebras.

Let us explain the detail. Recall first the two-sided bar complex:

Definition 2.1.9. Let A be a dg algebra, L be a left dg A-module, and M be a right dg A-module M . We
consider the double complex

B−p,q :=
⊕

i+j+k=q L
i ⊗ (A[1]⊗p)j ⊗Mk (p ∈ N, q ∈ Z)

with the differentials

d−p,qv : B−p,q −→ B−p,q+1, d−p,qh : B−p,q −→ B−p+1,q.

The vertical differential dv is the one on the tensor product B⊗T (A[1])⊗C of complexes (Definition 1.1.4).
The horizontal differential dh is given by

d−p,qh [l|a1| · · · |ap|m] = [l.a1| · · · |ap|m] +
∑p−1
i=1 (−1)i[l| · · · |aiai+1| · · · |m] + (−1)p[l| · · · |ap.m].

Here we denoted by

[l|a1| · · · |ap|m] ∈ L⊗A⊗p ⊗M

with l ∈ L, ai ∈ A and m ∈M . Note that we have (A[1])⊗p = A⊗p[p]. Now the complex L⊗L
AM is defined

to be the total complex

L⊗L
AM := (Tot(B•,•), (−1)pd−p,qv + d−p,qh )

Next we cite some constructions from [S17]. The fist one is:

Fact 2.1.10 ([S17, Proposition 1.14]). Let A be a Pn+1-algebra. Then the graded linear space

T (A[1]) =
⊕

p∈NA
⊗p[p]

has a Pn-bialgebra structure (dbar, ·,∆dec, {−,−}).

In other words,
(
T (A[1]), dbar, ·, {−,−}

)
is a Pn-algebra and

∆dec : T (A[1])⊗ T (A[1]) −→ T (A[1])

is a coassociative comultiplication which is a morphism of Pn-algebras.
In order to write down the Pn-bialgebra structure, let us denote an element of A⊗p by [a1| · · · |ap] with

ai ∈ A, following the notation in [S17]. Then the structure is given by
• The differential dbar is the bar differential:

dbar[a1| · · · |ap] =
∑p
i=1(−1)

∑i−1
j=1|aj |+i−1[a1| · · · |dAai| · · · |ap]

+
∑p−1
i=1 (−1)

∑i
j=1|aj |+i[a1| · · · |aiai+1| · · · |ap].

Note that as a map on T (A[1]) it is indeed of cohomological degree 1.
• The multiplication · is the shuffle product:

[a1| · · · |ap] · [ap+1| · · · |ap+q] =
∑
σ∈Sp,q

(−1)ε[aσ(1)| · · · |aσ(p+q)], (2.1)

where Sp,q is the set of shuffles and ε is the same braiding sign as in Definition 1.2.16.
• The comultiplication ∆dec is the deconcatenation coproduct:

∆dec[a1| · · · |ap] =
∑p
i=0[a1| · · · |ai]⊗ [ai+1| · · · |ap].
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• The Lie bracket is

{[a1| · · · |ap], [b1| · · · |bq]} =
∑p
i=1

∑q
j=1(−1)ε1+|ai|+n+1([a1| · · · |ai−1] · [b1| · · · |bj−1]) ∧ [{ai, bj}]

∧ ([ai+1| · · · |ap] · [bj+1| · · · |bq]),

where ∧ denotes the concatenation: [a1| · · · |ai] ∧ [ai+1| · · · |ap] = [a1| · · · |ap].

Remark. The bialgebra structure coincides with the one (T (V ), µ′,∆) in [LV, §1.3.2], which is one of the
two standard bialgebra structures on the tensor space T (V ).

The second construction is:

Fact 2.1.11 ([S17, Proposition 1.17]). Let A be a Pn+1-algebra, M be a Pn-algebra and f : A → M be a

coisotropic morphism. Then the tensor product T (A[1])⊗M of graded linear spaces has a left P̂n-comodule
structure (dbar, ·, {lk | k ∈ N}, c) over the Pn-bialgebra T (A[1]) in Fact 2.1.10.

In other words,
(
T (A[1])⊗M,dbar, ·, {lk | k ∈ N}

)
is a P̂n-bialgebra and

c : T (A[1])⊗M −→ T (A[1])⊗ (T (A[1])⊗M)

is a coassociative left coaction map which is also a morphism of P̂n-algebras.
As in the explanation of the Pn-bialgebra T (A[1]), we denote by [a1| · · · |ap|m] an element of A⊗p ⊗M .

Then the left P̂n-comodule structure is given as follows.
• The differential dbar is the bar differential:

dbar[a1| · · · |ap|m] =
∑p
i=1(−1)

∑i−1
j=1|aj |+i−1[a1| · · · |dAai| · · · |ap|m] + (−1)

∑p
j=1|aj |+p[a1| · · · |ap|dMm]

+
∑p−1
i=1 (−1)

∑i
j=1|aj |+i[a1| · · · |aiai+1| · · · |ap] + (−1)

∑p
j=1|aj |+p[a1| · · · |f(ap)m].

• The multiplication on the component T (A[1]) is the shuffle product (2.1), and the one on the com-
ponent M is that of the given cdga structure of M .

• As for the L∞-operations lp’s, it is enough to give them for the arguments in T (A[1]) or in M since
we have [a1| · · · |ap|m] = [a1| · · · |ap|1M ] · [m], They are given by

lp+1([a1| · · · |aq|1M ], [m1], · · · , [mp]) = (−1)(
∑q

i=1|ai|+q)(1−np)[a1| · · · |aq−1|fp(aq)(m1, . . . ,mp)],

l2([m1], [m2]) = [{m1,m2}M ],
(2.2)

and all the other operations are defined to be zero. Here fp : A → HomM (Sym(Ω1
M [n])(p),M) is

the map associated to the coisotropic morphism explained in Remark 2.1.4, and we use the notation
(1.2) to get fp(aq)(m1, . . . ,mp) ∈M .

• The coaction map c is the one induced by the multiplication on T (A[1]).
Finally we can explain the outline of the proof of Fact 2.1.8. Let A be a Pn+1-algebra, L,M be a Pn-

algebra, and A→ L, A→ N be coisotropic morphisms. We denote by Ã := T (A[1]) the Pn-bialgebra (Fact

2.1.10), and by Ñ := Ã⊗N the left P̂n-comodule over Ã (Fact 2.1.11). In an opposite way, we can construct

a right P̂n-comodule structure over Ã on M̃ :=M ⊗ Ã.

The tensor product M̃ ⊗ Ñ has a P̂n-structure induced by those on M̃ and Ñ . Now consider the cotensor
product

M̃ ⊗Ã Ñ := Eq(M̃ ⊗ Ñ
cM⊗id

⇒
id⊗cN

M̃ ⊗ Ã⊗ Ñ),

where cM and cN denote coactions on M̃ and Ñ respectively, and the equalizer means the strict equalizer

in the category dgVec. Then we can check that the cotensor product is a P̂n-subalgebra of M̃ ⊗ Ñ .

It is now enough to construct an isomorphism M̃ ⊗Ã Ñ 'M ⊗L
AN of cdgas. Note that the coassociativity

of the comultiplication ∆: Ã→ Ã⊗ Ã yields an isomorphism

∆̃: Ã
∼−→ Eq(Ã⊗ Ã

∆⊗id
⇒

id⊗∆
Ã⊗ Ã⊗ Ã)

of cdgas. Thus we have the desired isomorphism of cdgas:

M ⊗L
A N =M ⊗ Ã⊗N

∼−−−−−−→
id⊗∆̃⊗id

Eq(M ⊗ Ã⊗2 ⊗N ⇒M ⊗ Ã⊗3 ⊗N) = M̃ ⊗Ã Ñ .
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2.1.3. Poisson reduction with respect to momentum maps. In this part we explain the work of Safronov on
the reduction of Poisson algebras following [S17, §2].

Let R be a dg Poisson algebra with a Hamiltonian l-action (Definition 1.3.11), and denote by µ : l → R
the associated momentum map. Then R can be regarded as a dg l-module, and the momentum map gives a
morphism µ : Sym(l) → R of dg Poisson algebras (see Remark 1.3.12 (3)). Thus the functor CE(l,−) yields
a morphism

CE(l, µ) : CE(l, Sym(l)) → CE(l, R)

in l-dgMod. Since Sym(l) and R are commutative ring objects in l-dgMod, CE(l,−) yields the Chevalley-
Eilenberg cdgas (Lemma 1.2.17), and the map CE(l, µ) is also a morphism in dguCom.

If moreover l is of finite dimension and concentrated in non-positive cohomological degrees, then by
Remark 1.2.14 (3) we have

CE(l, R) ' Sym(l∗[−1])⊗R

as cdgas. Thus, the 1-Poisson structure on R induces a 1-Poisson structure on CE(l, R). On the other hand,
as for the Poisson center Z(Sym(l)) of the dg Poisson algebra Sym(l), we have

Z(Sym(l)) ' ĈE(l, Sym(l)) = Hom(Ŝym(l[1]), Sym(l)) = Hom(Sym(l[1]), Sym(l)) = CE(l, Sym(l)).

Here the first isomorphism is the one in Lemma 2.1.2, and the second equality comes from Ŝym(l[1]) =∧̂
(l) =

∧
(l) = Sym(l[1]), where we used the assumption on l.

The present situation is summarized as the following diagram in dguCom:

Z(Sym(l)) CE(l, Sym(l))

CE(l,µ) ''NN
NNN

NNN
NNN

Z(CE(l, R))

����
CE(l, R) Sym(l∗[−1])⊗R

We now cite a key fact from [S17]. Note that the cdga CE(l, Sym(l)) is generated by CE(l, k) and l.

Fact 2.1.12 ([S17, Proposition 2.5]). Let l be a dg Lie algebra which is of finite dimension and concentrated
in non-positive cohomological degrees. Also let R be a dg Poisson algebra with a Hamiltonian l-action, and
denote by µ : Sym(l) → R the associated momentum map (of dg Poisson algebras). Then the morphism

CE(l, µ) : CE(l, Sym(l)) −→ CE(l, R)

of cdgas is a coisotropic morphism (Definition 2.1.3) with the lifting

CE(l, Sym(l)) −→ Z(CE(l, R)) ' CE(l, Ŝym(TM [−1])⊗ Ŝym(l))

given by the natural embedding CE(l, k) ↪→ CE(l, Ŝym(TM [−1])⊗ Ŝym(l)) and x 7→ µ(x)− x for x ∈ l.

In particular, we can apply this claim to the trivial l-module R = k by Remark 1.3.12 (2), and find that
the morphism

CE(l, 0) : CE(l, Sym(l)) → CE(l, k)
is coisotropic. Given another dg Poisson algebra R with momentum map µ, we can then apply Fact 2.1.8 to

the coisotropic morphisms CE(l, µ) and CE(l, 0) to obtain a P̂1-algebra structure on the complex

CE(l, k)
⊗L

CE(l,0),CE(l,Sym(l)),CE(l,µ) CE(l, R).

Definition 2.1.13. Let l, R and µ be as in Fact 2.1.12. The P̂1-algebra obtained above is denoted by

R//Lµ Sym(l) := CE(l, k)⊗L
CE(l,Sym(l)) CE(l, R),

and is called the derived Hamiltonian reduction of R with respect to the momentum map µ.

Recall now the non-degeneracy of shifted Poisson structure (Definition 2.1.7 (1)). We have a relative
analogue: A coisotropic morphism f : A → M from a Pn+1-algebra A to a Pn-algebra M is called non-
degenerate if the Poisson structure on A is non-degenerate and the induced morphism LM/A → TA[−n] is
an equivalence, where LM/A is the relative cotangent complex.

In the first version of this note, we gave The following statement as Lemma 2.1.14. As an anonymous
referee indicated, there was a gap in the proof, and we leave it as:

Conjecture 2.1.14. Let l, R and µ : Sym(l) → R be as in Fact 2.1.12, and assume that the coisotropic
morphism CE(l, µ) : CE(l, Sym(l)) → CE(l, R) is non-degenerate. Then the Poisson structure on the derived
Hamiltonian reduction R//Lµ Sym(l) would be non-degenerate.
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Note that, by [MS18, Theorem 4.23], a coisotropic structure is equivalent to a Lagrangian structure
between shifted symplectic structures. The derived intersection of Lagrangians is also a Lagrangian by
[C14, Theorem 3.1]. However, it is not clear that intersections of non-degenerate coisotropic structures are
compatible with Lagrangian intersections, as asserted in [S2, Conjecture 4.5].

2.2. Classical BRST complex. In this subsection we introduce the classical BRST complex for a dg
Poisson algebra, and explain the relation to the Poisson reduction revealed by Safronov [S17, §2.3]. We
continue to work over a field k of characteristic 0.

We begin with the recollection on the classical Clifford algebra. First we give an implicit definition
following [BD, 1.4.18, Examples (iii)].

(1) Let l be a dg Lie algebra, and l♭ = l⊕k be a one-dimensional central extension. We define the twisted

symmetric algebra Sym♭(l) to be the quotient of the symmetric algebra Sym(l♭) by the ideal generated
by the difference of embeddings k = Sym(l♭)0 ↪→ Sym(l♭) and k ↪→ l♭ = Sym(l♭)1 ↪→ Sym(l♭). This
quotient inherits the Poisson bracket from the Kirillov-Kostant bracket on Sym(l♭) (§1.3.3). Thus

we obtain a dg Poisson algebra Sym♭(l).
(2) Let U be a complex. We denote by U∗ = Hom(U, k) the dual complex, and by 〈·, ·〉 : U∗⊗U → k the

natural pairing. Regard U [1]⊕U∗[−1] as a commutative dg Lie algebra, and let (U [1]⊕U∗[−1])♭ be
the one-dimensional central extension determined by the pairing 〈·, ·〉. Now we apply the construction

(1) to (U [1]⊕ U∗[−1])♭, and obtain a dg Poisson algebra Sym♭(U [1]⊕ U∗[−1]).

Definition 2.2.1. For a complex U , we denote the above dg Poisson algebra by

Cl(U) := Sym♭(U [1]⊕ U∗[−1])

and call it the classical Clifford algebra.

On the naming we refer Remark 4.3.13.
The classical Clifford algebra Cl(U) is explicitly described as follows.

• As a commutative dg algebra, we have Cl(U) = Sym(U [1]⊕ U∗[−1]).
• Taking a linear basis {ui | i ∈ I} of U and its dual basis of U∗, we denote the corresponding algebra
generators by

ψi ∈ U [1], ψ
∗
i ∈ U∗[−1] (i ∈ I).

The Poisson bracket is determined by the Leibniz rule and

{ψi, ψj} = 0 = {ψ∗
i , ψ

∗
j}, {ψi, ψ

∗
j} = δi,j (i, j ∈ I).

• Cl(U) has an extra Z-grading, called the charge grading, given by

charge(ψi) = −1, charge(ψ
∗
i ) = 1.

If U is concentrated in cohomological degree 0, then we recover the standard definition

Cl(U) '
∧
(U)⊗

∧
(U∗)

as the tensor product of the exterior algebras. The charge grading is given by

Cl
n
(U) =

⊕
p,q∈N

−p+q=n

∧p
(U)⊗

∧q
(U∗).

Next we introduce the classical BRST complex. Following [BD, 1.4.23–1.4.25], we give a construction in
the next lemma. We can check the statements by direct computation, and omit the proofs.

Lemma 2.2.2. Let l be a dg Lie algebra, and R be a dg Poisson algebra equipped with a Hamiltonian
l-action (Definition 1.3.11). The momentum map is denoted by µ : l → R.

(1) The adjoint action of l on itself yields a morphism of dg Lie algebras

β : l −→ l⊗ l∗
∼−→ l[1]⊗ l∗[−1] ↪−→ Cl(l)0.

(2) Recall the contractible dg Lie algebra l† (§1.2.4). Let

` : l† −→ Cl(l)⊗R

be the morphism of graded linear spaces given by

`0 := 1⊗ µ+ β ⊗ 1: l −→ Cl(l)0 ⊗R, `−1 : l[1] ↪−→ Cl(l)−1 −→ Cl(l)⊗R.

Then ` is a morphism of graded Lie algebras.
(3) We define the following elements.
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• µ̃ ∈ l∗ ⊗R ⊂ (Cl(l)⊗R)1 is the element corresponding to µ.
• β′ ∈ l∗ ⊗ Cl(l)0 is the element corresponding to β.
• β′′ ∈ Cl(l)1 is the image of β′ by the product map l∗[−1]⊗ Cl(l) → Cl(l).

• β̃ ∈ (Cl(l)⊗R)1 is the image of β′′ by Cl(l) → Cl(l)⊗R.
Then the classical BRST charge

Q := µ̃+ 1
2 β̃ ∈ (Cl(l)⊗R)1

satisfies {Q,Q} = 0, where {−,−} denotes the Poisson bracket of the tensor product Cl(l) ⊗ R of
graded Poisson algebras.

Now we can introduce:

Definition 2.2.3. The classical BRST complex BRSTcl(l, R, µ) is the dg Poisson algebra which is the tensor
product

BRSTcl(l, R, µ) := Cl(l)⊗R

as a graded Poisson algebra and the differential is given by dcl := dCl(l)⊗R + {Q,−}, where the first term is

the differential of the tensor product of complexes. The cohomology is denoted by

H
∞
2 +•

cl (l, R, µ) := H• BRSTcl(l, R, µ),

which is a graded Poisson algebra.

Let us recall some properties of the classical BRST complex following [BD, 1.4.26]. We omit the proofs.

Lemma 2.2.4. Let (l, R, µ) be the same as in Lemma 2.2.2. We also use the symbol ` there.
(1) ` : l† → Cl(l)⊗R is a morphism of dg Lie algebras.

(2) We have [Q, `−1] = `0.

(3) Let J be the dg ideal of BRSTcl(l, R, µ) generated by ψ
∗
i ’s. Then the morphism Sym(l∗[−1])⊗R→

Cl(l)⊗R/J of graded algebras is surjective, and the kernel is the ideal generated by µ(l).
(4) Denoting R := R/µ(l)R, we have BRSTcl(l, R, µ)/J ' R⊗ Sym(l∗[−1]) as cdgas.
(5) The differential on BRSTcl(l, R, µ)/J induced by dcl coincides with the Chevalley-Eilenberg differen-

tial on R⊗Sym(l∗[−1]) ' CE(l, R), where we regard R as a l-module in terms of the action induced
by µ and the Poisson bracket. Thus we have a surjection of cdgas

BRSTcl(l, R, µ) −↠ CE(l, R).

(6) On the zero-th cohomology we have a morphism H
∞
2 +0

cl (l, R, µ) → R
l
of commutative algebras,

where R
l
denotes the l-invariant part of R. Moreover, it is a morphism of Poisson algebras, where

R
l
is regarded as a Poisson algebra with the induced Poisson structure from R.

The following lemma can be checked by direct computation. It recovers the original definition by Kostant
and Sternberg [KS87] in the finite-dimensional case.

Lemma 2.2.5. Assume that the dg Lie algebra l is of finite dimension. Choose a linear basis {xi | i ∈ I}
of l, and let ψi ∈ l[1] ⊂ Cl(l), ψ

∗
i ∈ l∗[−1] ⊂ Cl(l) be as before.

(1) The classical BRST charge is expressed as

Q =
∑
i∈I

µ(xi)⊗ ψ
∗
i −

1

2

∑
i,j,k∈I

ckij ⊗ ψ
∗
iψ

∗
jψk.

Here ckij denotes the structure constant of l: [xi, xj ] =
∑
i,j,k∈I c

k
ijxk.

(2) For r ∈ R we have {Q, r ⊗ 1} =
∑
i{µ(xi), r}R ⊗ ψ

∗
i .

(3) For η =
∑
k ηkψ

∗
k ∈

∧1
(l∗) we have {Q, 1⊗ η} = − 1

2

∑
i,j,k ηkc

k
ijψ

∗
iψ

∗
j ,

(4) For y =
∑
i yiψi ∈

∧1
(l) we have {Q, 1⊗ y} =

∑
i yiµ(xi) +

∑
i,j,k c

k
ijyjψ

∗
iψk,

Let us also recall the relation between the classical BRST complex and the Koszul complex.

Definition 2.2.6. Let l, R, µ be as in Definition 2.2.2.
(1) The Koszul cdga is the cdga

Kos(l, R, µ) := (Sym(l[1])⊗R, d, ·)
of which
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• the commutative graded algebra structure (Sym(l[1]) ⊗ R, ·) is given by the tensor product of
the graded algebras Sym(l[1]) and R (Definition 1.2.3 with forgetting the differentials), and

• the differential is d = dSym(l)⊗R + dKos, where dSym(l)⊗R is the tensor product differential
(Definition 1.1.4), and dKos is the Koszul differential given by

dKos(x1 ∧ · · · ∧ xp ⊗ r) =
∑p
i=1(−1)

∑i−1
a=1(|xa|+1)+|xi|+|xi|

∑p
a=i+1(|xa|+1)x1 ∧ · · · x̂i · · · ∧ xp ⊗ µ(xi)r.

It is a commutative ring object in l-dgMod.
(2) Assume that l is finite dimensional. We define the dg Poisson algebra

BRST′
cl(l, R, µ)

as follows.
• The underlying cdga is the Chevalley-Eilenberg cdga

CE(l,Kos(l, R, µ)) = Hom(Sym(l[1]), Sym(l[1])⊗R),

which is isomorphic to
Sym(l∗[−1]⊕ l[1])⊗R

under the assumption on l.
• The underlying graded Lie algebra is the tensor product Sym(l∗[−1]⊕l[1])⊗R whose Lie bracket
{−,−} is given by the Leibniz rule and

{x, y} = {f, g} = 0, {f, x} = f(x) (x, y ∈ l, f, g ∈ l∗).

Remark. In (2) the differential of the Chevalley-Eilenberg dga is indeed a derivation with respect to the
Lie bracket due to the momentum map equation (1.3).

Using the explicit form of the classical BRST charge (Lemma 2.2.5), we can check:

Lemma. Let l, R, µ be as in Definition 2.2.6 (2). Then we have an isomorphism of dg Poisson algebras

BRST′
cl(l, R, µ) ' BRSTcl(l, R, µ).

Now we explain the work of Safronov [S17, §2.3]. Let (l, R, µ) be as above. Then we have the Poisson
reduction CE(l, k)⊗L

CE(l,Sym l) CE(l, R). (Definition 2.1.13).

Fact 2.2.7 ([S17, Corollary 2.7]). The derived Hamiltonian reduction R//Lµ Sym(l) = CE(l, k) ⊗L
CE(l,Sym l)

CE(l, R) (Definition 2.1.13) is quasi-isomorphic to the classical BRST complex as cdgas:

R//Lµ Sym(l) '
qis

BRSTcl(l, R, µ)

For later use, we copy the proof in loc. cit.

Proof. We will construct the following quasi-isomorphisms of cdgas:

BRSTcl(l, R, µ)
∼−−−→
qis

CE(l, k⊗L
Sym(l) R)

∼−−−→
qis

R//Lµ Sym(l). (2.3)

Let us build the first quasi-isomorphism. We have the following quasi-isomorphism of l-modules:

Sym(l[1])⊗R
∼−→
qis

k⊗L
Sym l R, x1 ∧ · · · ∧ xp ⊗ r 7−→

∑
σ∈Σp

(−1)ε[xσ(1)| · · · |xσ(p)|r].

Here we used the notation for the two-sided bar complex in Definition 2.1.9, and the signature ε comes
from the braiding isomorphisms for the permutation σ of xi’s. By the functoriality of CE(l,−), we have the
desired quasi-isomorphism of cdgas:

BRSTcl(l, R, µ)
∼−−−→
qis

CE(l, k⊗L
Sym(l) R).

Next we consider the second quasi-isomorphism. As we argued in Definition 2.2.6 (2), for a l-module M
we have an isomorphism

CE(l,M) = Hom(Sym(l[1]),M) ' Sym(l∗[−1])⊗M

of cdgas since l is finite dimensional. Then we have

R//Lµ Sym(l) = CE(l, k)⊗L
CE(l,Sym(l)) CE(l, R) ' V ⊗W

as cdgas, where we set

V := k⊗L
Sym(l) R, W := Sym(l∗[−1])⊗L

Sym(l∗[−1]) Sym(l∗[−1]).
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Recall that the derived tensor product is presented by the two-sided bar complex (Definition 2.1.9): A⊗L
BC =

A ⊗ T (B) ⊗ C, where T (−) denotes the tensor algebra of a dg algebra (Example 1.2.2 (1)). Let us denote
W ′ := Sym(l∗[−1]). Then the multiplication map gives W ' W ′ ⊗ T (W ′) ⊗W ′ → W ′. It has a splitting

W ′ → W ′ ⊗ T (W ′)⊗W ′, x 7→ x⊗ 1⊗ 1. Thus we have a quasi-isomorphism V ⊗W ′ ∼−−→
qis

V ⊗W of cdgas,

which yields the desired quasi-isomorphism of cdgas:

R//Lµ Sym(l)
∼−−−→
qis

V ⊗W ′ ' CE(l, k⊗L
Sym(l) R).

□

Recall that R//Lµ Sym(l) is a homotopy Poisson algebra, and BRSTcl(l, R, µ) is a dg Poisson algebra. The
following statement is a slight generalization of [S17, Remark 2.8]:

Proposition 2.2.8. Let l be a finite-dimensional Lie algebra, and R be a dg Poisson algebra with Hamilton-
ian g-action. Then the quasi-isomorphism R//Lµ Sym(g) '

qis
BRSTcl(g, R, µ) in Fact 2.2.7 gives an equivalence

as homotopy Poisson algebras.

Proof. It is enough to check that the composition (2.3) respects the Poisson bracket {·, ·}BRST on the classical
BRST complex BRSTcl(g, R, µ) and the map l2 of the L∞-structure on the derived Hamiltonian reduction
R//Lµ Sym(g).

Recall that we have

BRSTcl(g, R, µ) = Cl(g)⊗R

as graded Poisson algebras, where Cl(g) denotes the classical Clifford algebra, and the Poisson bracket can
be written as {·, ·}BRST = {·, ·}Cl ·M + ·Cl {·, ·}BRST.

On the L∞-structure of R//Lµ Sym(g), let us unwind the proof of Fact 2.1.8 explained in §2.1.2. Denoting

A := CE(g, Sym(g)), Ã := T (A[1]), L := CE(g, k), L̃ := L⊗ Ã, M := CE(g, R), M̃ := Ã⊗M,

we have

R//Lµ Sym(g) ' Eq(L̃⊗ M̃ ⇒ L̃⊗ Ã⊗ M̃),

and the L∞-structure comes from that on L̃⊗ M̃ . It is enough to compute l2 on L̃ and M̃ . We only argue

that on M̃ = Ã⊗M , which is given by (2.2).
The operation coming from M is {·, ·}M , which is obviously compatible with the part of {·, ·}BRST.

Unwinding the definitions, the operation coming from Ã is given by the first line of (2.2) with p = 1,
f1 : A → g∗[−1] ⊕ TR[−1] ⊕ g, which is the first component of the lifting A → Z(M) of the coisotropic
morphism CE(g, µ) : A → M . Under the identification A = CE(g, Sym(g)) ' S∗ ⊗ Sym(g) with S∗ :=
Sym(g∗[−1]), the map f1 is determined by the image of S∗ and g. Recall the description of f1 from Fact
2.1.12, we have f1(a⊗1) = pr1(a) for a ∈ S∗, pr1 : S

∗ ↠ g∗[−1], and f1(1⊗x) = µ(x)−x for x ∈ g. Using this
description, we can check that under the composition (2.3) the two Poisson structures are compatible. □

For later use, we also give a infinite-dimensional modification of Proposition 2.2.8.

Definition 2.2.9. Let V be a linear space equipped with a decomposition V =
⊕

γ∈Γ Vγ by an abelian
group Γ such that each component Vγ is finite-dimensional.

(1) We call such a decomposition a finite-dimensional Γ-decomposition.
(2) We set V ∨ :=

⊕
γ∈Γ V

∗
γ and call it the restricted dual of V .

(3) For another linear space W , we denote Homrst(V,W ) :=
⊕

γ∈Γ Hom(Vγ ,W ) ' V ∨ ⊗W .

Proposition 2.2.10. Let g be a Lie algebra, and R be a Poisson algebra with a Hamiltonian g-action.
Assume that g has a finite-dimensional Γ-decomposition g =

⊕
γ∈Γ gγ and the g-action on M is locally

finite. Then replacing Hom by Hom rst in the definition of the Chevalley-Eilenberg complexes, we have an
quasi-isomorphism

R//Lµ Sym(g) '
qis

BRSTcl(g, R, µ)

of homotopy Poisson algebras.

Proof. In the proof of Fact 2.2.7 (and that of Proposition 2.2.8), we used the finite-dimensional assumption
only at the isomorphism CE(g,−) = Hom(Sym(g[1]),−) ' Sym∗(g[−1]) ⊗ − for the Chevalley-Eilenberg
complex. Thus under the assumption and the replacement we can apply the same argument, and have the
consequence from Proposition 2.2.8. □
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Remark 2.2.11. Let us give a connection to the argument in [A, §3, p. 8]. For simplicity we set k := C.
We make the following assumptions:

(i) g is the Lie algebra of a linear algebraic group G.
(ii) R is a Poisson algebra equipped with Hamiltonian g-action. We denote X := Spec(R) and consider

it as an affine Poisson scheme with Hamiltonian G-action.
(iii) The momentum map µX : X → g∗ corresponding to µR is flat as a morphism of schemes.

Then we have the non-derived Hamiltonian reduction X//G, which is isomorphic to µ−1(0)/G as a scheme and
the coordinate ring is a Poisson algebra. On the other hand, from Proposition 2.2.8 we have an isomorphism

BRSTcl(g, R, µ) ' R//µ Sym(g)

of graded Poisson algebras. Here the symbol //µ in the middle is the non-derived Hamiltonian reduction of
Poisson algebra. Thus, taking cohomology, we have

H• BRSTcl(g, R, µ) ' H•(R//µ Sym(g)).

The latter space as a Poisson superalgebra is described in the computation of the classical BRST cohomology
of [Ku15].

2.3. Moore-Tachikawa varieties in derived setting. The main purpose of this subsection is to recall
the proposal of Calaque [C14] which gives a derived geometric approach to Moore-Tachikawa varieties. We
make a slight modification and treat affine derived schemes only.

We work over C in this subsection. As in the latter half of §1.3.3, we consider simply connected semisimple
algebraic groups over C. We identify such a group G and its Lie algebra g := Lie(G). Recall Definition

1.3.11 of Hamiltonian g-action and that we denote by Rop the opposite algebra of a P̂n-algebra R (Definition
2.1.5).

Definition 2.3.1 (c.f. [C14, Example 3.5]). We define the category MT of derived Moore-Tachikawa varieties
by the following description.

• An object is a simply connected semi-simple algebraic group G over C. We identify it with the
associated Lie algebra g.

• A morphisms from g1 to g2 is an equivalence classes of P̂1-algebras R in dgVec together with Hamil-
tonian (g1 ⊕ g2)-action. The momentum map is denoted by µR = µ1

R + µ2
R : g1 ⊕ g2 → R.

• The composition of R ∈ HomMT(g1, g2) and R
′ ∈ HomMT(g2, g3) is given by

R′ ◦̃R :=
(
Rop ⊗R′)//Lµ Sym(g2)

where the momentum map µ : g2 → Rop ⊗ R′ is given by µ := −µ2
R ⊗ 1 + 1 ⊗ µ1

R′ . We call R′ ◦̃ R
the (derived) gluing.

Remark 2.3.2. Some comments on the category MT are in order.
(1) The gluing R′ ◦̃R has a Hamiltonian (g1 ⊕ g3)-action with the momentum map −µ1

R ⊗ 1 + 1⊗ µ2
R′ .

Thus ◦̃ is well-defined. The associativity of composition holds since //Lµ is realized as a pushforward
in the ∞-category dguCom.

(2) As we recalled in §0.1.1, the original proposal of Moore and Tachikawa in [MT12] is given in terms
of (non-derived) holomorphic symplectic varieties with Hamiltonian actions and an additional C∗-
action.

(3) Recall Conjecture 2.1.14 on the derived Hamiltonian reduction of non-degenerate (Definition 2.1.7)
coisotropic morphism. Up to that conjecture, if R and R′ is non-degenerate, then R′ ◦̃R would also

be non-degenerate. Thus non-degenerate P̂1-algebras would span a full subcategory of MT, which
will be denoted by MTnd ⊂ MT.

(4) We explain the definition of the category by Calaque [C14, Example 3.5]. Objects are the same, and
a morphism from G1 to G2 is a derived 0-symplectic scheme (X,ωX) equipped with Hamiltonian
(G1 ×G2)-action. We denote by µX : X → g∗ the corresponding momentum map. The composition
of X ∈ Hom(G1, G2) and Y ∈ Hom(G2, G3) is given by

[
(
(Xop × Y )//L∆(G2)

)
/(G1 ×G3)] ' [Xop/(G1 ×G2)]×L

[g∗
2/G2]

[Y/(G2 ×G3)]

with the following notations:
• Xop denotes the derived scheme X with the opposite 0-symplectic structure −ωX .
• For a derived scheme Z with G-action, the symbol [Z/G] denotes the quotient derived stack.
• In the left hand side (Xop×Y )//L∆(G2) denotes the derived symplectic reduction [C14, Example
3.4] with respect to the diagonal G2-action and the momentum map −µX +µY : Xop×Y → g∗2.
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• The right hand side denotes the derived Lagrangian intersection [C14, Example 3.2].

We can partially recover Calaque’s definition from the would-be full subcategory MTnd ⊂ MT in
(3): By Definition 2.1.7 (3) of shifted symplectic structure, we can restate that a morphism in MT
is a cdga equipped with a 0-symplectic structure and a Hamiltonian action. Adding the condition
that all the cdgas are concentrated in non-positive cohomological degree, we recover the description
in (4) by translating the construction on cdgas to affine derived schemes.

2.4. The case of G-equivariant Poisson algebras. In this subsection we translate the arguments on
classical BRST reduction discussed in the beginning of [A, §3] into our language. We work over C here.

Let G be a simply connected semisimple algebraic group. We denote by g := Lie(G) the Lie algebra of
G. We regard the linear dual g∗ as an affine scheme with the coordinate ring C[g∗] = Sym(g), so that the
Lie-Poisson algebra structure makes g∗ an affine Poisson scheme.

For the Lie-Poisson algebra Sym(g), a Poisson Sym(g)-module M in Vec (Definition 1.3.3) is nothing
but a Sym(g)-module together with a morphism ad: g → End(M) of Lie algebras such that ad(x)(s.m) =
{x, s}.m + s. ad(x)(m) for any x ∈ g, s ∈ Sym(g) and m ∈ M . We can recast such a Poisson module in
terms of sheaves over the affine Poisson scheme g∗.

Notation 2.4.1. Let us consider a scheme X over C.
(1) If X is a G-scheme, then we denote by QCohG(X) the category of G-equivariant quasi-coherent

sheaves of OX -modules.
(2) If X is a Poisson scheme, then we denote by PoisQCoh(X) the category of sheaves on X which

are both quasi-coherent sheaves of OX -modules and sheaves of Lie algebra OX -modules whose local
sections satisfy the relation in Definition 1.3.3 (iii).

Regarding g∗ as a G-scheme by the coadjoint action, we find that an object of QCohG(g∗) has a structure
of a sheaf of Lie algebra Og∗ -modules induced by the coadjoint action of G. Thus we have an embedding

QCohG(g∗) ↪−→ PoisQCoh(g∗).

On the other hand, since g∗ = Spec(C[g∗]) = Spec(Sym(g)) is an affine Poisson scheme, we have an equiva-
lence of categories

PoisQCoh(g∗)
∼−→ Sym(g)-PMod.

For a given M ∈ QCohG(g∗), let us denote by M the corresponding Poisson Sym(g)-module under the

composition QCohG(g∗) ↪→ PoisQCoh(g∗) ' Sym(g)-PMod. Then we can see that the Lie algebra morphism
ad: g → End(M) corresponds to the Lie algebra action of Og∗ on M induced by the G-action. In total, we
have:

Lemma 2.4.2. We have an equivalence of categories

QCohG(g∗) ' Sym(g)-PModlf ,

where Sym(g)-PModlf denotes the full subcategory of Sym(g)-PMod spanned by those objects on which the
adjoint action of g is locally finite.

The category QCohG(g∗) is a symmetric monoidal category by the tensor product ⊗Og∗ , so that we have
the notion of Poisson algebra objects therein. Using the equivalence in Lemma 2.4.2 and unwinding the
definition, we recover the claim in [A, §3, p. 8]:

Lemma 2.4.3. A Poisson algebra object in the symmetric monoidal category QCohG(g∗) is a Poisson algebra
R equipped with a morphism µR : Sym(g) → R of Poisson algebras under which the adjoint action of g is
locally finite.

In particular, a Poisson algebra object R is equipped with Hamiltonian g-action, and the morphism µR is
the corresponding momentum map. Thus we can consider Hamiltonian reduction of Poisson algebra objects.

We have an obvious dg analogue of the above arguments. Recall Notation 1.4.1 (7): We denote by
LQCoh(g

∗) the ∞-category of quasi-coherent sheaves of Og∗ -modules, whose homotopy category is equiv-
alent to the derived category DQCoh(g

∗). It is a symmetric monoidal category under the derived tensor
product ⊗L

Og∗ . We also have the ∞-category LGQCoh(g
∗) of G-equivariant sheaves, which is also equivalent

to LQCoh([g
∗/G]) of sheaves over the quotient stack [g∗/G]. The ∞-category LGQCoh(g

∗) is also symmetric
monoidal, and we can consider Poisson algebra objects therein.

By a similarly argument in Lemma 2.4.3, we can prove the next statement.
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Lemma 2.4.4. A Poisson algebra object in LGQCoh(g
∗) is equivalent to a dg Poisson algebra R equipped with

a morphism µR : Sym(g) → R of dg Poisson algebras under which the adjoint action of g is locally finite.

Now let us consider Hamiltonian reduction of Poisson algebra objects. We are interested in the derived
gluing in the category MT, or the composition of morphisms therein (Definition 2.3.1). Thus, instead of
considering the reduction of an object R, let us consider the reduction of tensor product Rop ⊗ R′ where
Rop denotes the Poisson algebra (R,−{·, ·}R) equipped with the momentum map −µR. Then the derived
Hamiltonian reduction corresponding to the composition of morphisms is described in the following way.

Proposition 2.4.5. Let R and R′ be Poisson algebra objects in LGQCoh(g
∗). We denote by µR and µR′ the

corresponding momentum maps respectively, and define µ := −µR⊗1+1⊗µR′ : Sym(g) → Rop⊗R′. Then
we have an quasi-isomorphism of homotopy Poisson algebras

BRSTcl(g, R
op ⊗R′, µ) '

qis
R′ ◦̃R = (Rop ⊗R′)//Lµ Sym(g).

Proof. This is a direct consequence of Proposition 2.2.8. □

Remark 2.4.6. Let us continue Remark 2.2.11 and give a connection to the argument in [A, §3, pp. 8–9].
We make the following assumptions on R:

(i) R is a Poisson algebra object in QCohG(g∗). We denote X := Spec(R), and consider X as a affine
Poisson scheme with Hamiltonian G-action.

(ii) There is a closed subscheme S ⊂ X such that the action map gives an isomorphism G× S
∼−→ X.

(iii) The momentum map µX : X → g∗ corresponding to µR is flat as a morphism of schemes.

Let R′ be another Poisson object in QCohG(g∗). Denoting X ′ := Spec(R′) the corresponding affine Poisson
scheme with the momentum map µX′ : X ′ → g∗ and Xop := Spec(Rop), we have the affine Poisson scheme
Xop × X with the flat momentum map µ(x, x′) := −µX(x) + µX′(x′). Thus we have the non-derived
Hamiltonian reduction (Xop ×X ′)//∆(G). We also have

µ−1(0) ' X ×µX ,g∗,µX′ X
′ ' G× (S ×µS ,g∗,µX′ X

′),

where µS := µX |S : S → g∗ is the restriction. Thus we have

(Xop ×X ′)//∆(G) ' µ−1(0)/G ' S ×g∗ X ′

as schemes. On the other hand, from Proposition 2.4.5 we have an isomorphism

BRSTcl(g, R
op ⊗R′, µ) ' (Rop ⊗R′)//µ Sym(g) ' k[(Xop ×X ′)//∆(G)]

of graded Poisson algebras. Here the symbol //µ in the middle denotes the non-derived Hamiltonian reduction
of Poisson algebra. Combining these isomorphisms, we have

H• BRSTcl(g, R
op ⊗R′, µ) ' H•k[µ−1(0)/G] ' k[S ×g∗ X ′]⊗H•(G,C).

Thus we recover the formula [A, (13)].

3. Jet and arc spaces in derived setting

3.1. Jet and arc spaces for ordinary schemes. Let us recall the definition of jet spaces in the ordinary
setting. We refer [BLR, §7.6] and [EM09] for the detail.

Let k be a field, and Sch be the category of schemes over k.

Fact 3.1.1 ([BLR, §7.6, Theorem 4]). For n ∈ N, there exists a functor Jn : Sch → Sch such that such that
for any S ∈ Sch we have a functorial bijection

HomSch(S, Jn(X)) ' HomSch(S ×Spec(k) Spec(k[t]/(tn+1)), X).

We call Jn(X) the n-th jet space of X.

Corollary 3.1.2. By the defining condition as a functor of points, we have
(1) Jn(X) is unique up to a canonical isomorphism.
(2) J0(X) ' X.
(3) For m,n ∈ N with m ≥ n, there is a morphism πm,n : Jm → Jn of functors induced by the truncation

k[t]/(tm+1) ↠ k[t]/(tn+1). These morphisms satisfy πn,p ◦ πm,n = πm,p for m ≥ n ≥ p, so that we
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have an inverse system {πm,n | m,n ∈ N,m ≥ n} on the direct set {N,≤}. In particular, for n ∈ N,
we have the following commutative diagram in Sch.

Jn(X)
Jn(f) //

πX
n,0

��

Jn(Y )

πY
n,0

��
X

f
// Y

We denote by Schft the full subcategory of schemes of finite type over k. We then have

Fact 3.1.3. Let n ∈ N be arbitrary.
(1) If a morphism f in Sch is smooth, then so is Jn(f) [BLR, §7.6, Proposition 5].

(2) Jn gives a functor Jn : Sch
ft → Schft. In other words, for a scheme X of finite type over k, the n-th

jet space Jn(X) is also of finite type over k [BLR, §7.6, Proposition 5].

(3) For any X ∈ Schft, the morphism πn,0 : Jn(X) → Jn,0(X) = X is affine [EM09, §2].

By [EM09, Lemma 2.9], if f : X → Y is an étale morphism in Schft, then for every n ∈ N the commutative
diagram in Corollary 3.1.2 (3) is cartesian. Using this fact, we can prove

Fact ([EM09, Lemma 2.9, Remark 2.10]). Let f : X → Y be a morphism in Schft, and let n ∈ N be arbitrary.
If f is étale, then Jn(f) is also étale.

Remark 3.1.4. Following [EM09, §3] and [AM, §3], we give an explicit description of Jn(X) for an affine
X. We assume the characteristic of k is 0.

(1) First we assume X = AN = Spec(k[x1, . . . , xN ]). Then we have

Jn(AN ) = Spec(k[xi(−j−1) | i = 1, . . . , N, j = 0, . . . , n]).

Indeed, for an affine scheme S = Spec(A), a morphism a : Spec(A[t]/(tn+1)) → AN corresponds to a
morphism a∗ : k[xi] → A[t]/(tn+1). We set a∗(xi) =

∑n
j=0 a

i
(−j−1)t

j/j!. Then we have the morphism

α∗ : k[xi(−j−1)] → A, (xi(−j−1)) 7→ (ai(−j−1)) corresponding to an A-valued point α : Spec(A) →
JN (AN ). The correspondence a 7→ α gives the desired functorial bijection

HomSch(Spec(A)×Spec(k) Spec(k[t]/(tn+1)),AN ) ' HomSch(Spec(A), Jn(AN )).

(2) Next we consider the case X = Spec(R), R = k[x1, . . . , xN ]/I with I = (f1, . . . , fM ). Define a
0-derivation T on k[xi(−j−1)] (Definition 1.2.10 (3)) by Txi(−j) = jxi(−j−1) for j ∈ Z>0. Then we have

Jn(Spec(R)) = Spec(Jn(R)),

Jn(R) := k[xi(−j−1) | i = 1, . . . , N, j = 0, . . . , n]/(T kfl | k = 0, . . . , n, l = 1, . . . ,M).

Now we turn to the arc space. By Corollary 3.1.2 (3) and Fact 3.1.3, we have an inverse system

{πm,n : Jm(X) → Jn(X) | m,n ∈ N,m ≥ n} of affine morphisms in Schft. Thus the limit exists in Sch.
In the affine case X = Spec(R), the limit is also affine.

Definition 3.1.5. (1) Let X be a scheme over k. We denote the limit of {πm,n : Jm(X) → Jn(X)} in
Sch by J∞(X), and call it the arc space or the ∞-jet space of X. We also denote by ψn : J∞(X) →
Jn(X) the projection.

(2) For a commutative ring R, we denote by J∞(R) the commutative ring whose spectrum gives the arc
space: Spec(J∞(R)) = J∞(Spec(R)).

The properties of the n-jet space Jn(X) are inherited by J∞(X). For example, we have:

Lemma. (1) For X ∈ Schft and a commutative algebra A over k, there is a bijection

HomSch(Spec(A), J∞(X)) ' HomSch(Spec(A[[t]]), X).

(2) The correspondence X 7→ J∞(X) gives a functor Schft → Sch.
(3) If f : X → Y is an étale morphism, then there is a cartesian diagram

J∞(X)
J∞(f) //

ψX
0

��

J∞(Y )

ψY
0

��
X

f
// Y
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Let us consider the case when X is an affine scheme of finite type over k of characteristic 0. Expressing
X = Spec(R) with R = k[x1, . . . , xN ]/(f1, . . . , fM ), we have J∞(Spec(R)) = Spec(J∞(R)) with

J∞(R) := k[xi(−j−1) | i = 1, . . . , N, j ∈ N]/(T kfl | k ∈ N, l = 1, . . . ,M).

Note that the k-algebra J∞(R) inherits the 0-derivation T on Jn(k[x1, . . . , xN ]). We denote the induced
0-derivation on J∞(R) by the same symbol T . Then the description above yields:

Fact 3.1.6 ([EM09, Remark 3.1]). For a commutative algebra R of finite type, we have a morphism j : R→
J∞(R) of algebras such that given a commutative algebra R′ with a 0-derivation T ′ and a morphism j′ : R→
R′ of algebras, there is a unique morphism h : J∞(R) → R′ of algebras making the diagram

R
j //

j′ ��?
??

??
??

? J∞(R)

h{{
R′

commute and satisfying T ′h = hT , i.e., giving a morphism h : (J∞(R), T ) → (R′, T ′) of differential algebras.

Here we used:

Definition 3.1.7. A commutative algebra equipped with a 0-derivation (Definition 1.2.10 (3)) is called a
differential algebra.

Using this Fact, we can show:

Lemma 3.1.8. For a linear algebraic group G over k, the arc space is given by the proalgebraic group
J∞(G) = G[[t]].

3.2. Jet and arc spaces for derived schemes. Let us give a derived analogue of the previous §3.1. In
this subsection we work over a field k containing Q.

3.2.1. Recollection on derived algebraic geometry. In this part we recall the terminology on derived schemes.
We start with the terminology on affine derived schemes, some of which are already recalled in Notations

1.4.1 and 1.4.2.
(1) We denote by dAff the ∞-category of affine derived schemes over k. It is the opposite of the ∞-

category dguCom≤0 of cdgas over k concentrated in the non-positive cohomological degrees . For
a cdga R ∈ dguCom≤0, we denote by Spec(R) ∈ dAff the corresponding affine derived scheme.

(2) For R = (R, dR) ∈ dguCom≤0 and n ∈ N, we denote by

πn(R) := H−n(R, dR)

its (−n)-th cohomology (Definition 1.1.7). Actually it coincides with the n-th homotopy group of
the differential graded nerve of (R, dR). See [Lu2, §1.3.1] for the detail. In particular, we have the
functor

π0 : dguCom≤0 −→ Comu

of ∞-categories. where Comu denotes the (∞-)category of commutative k-algebras. Recall here that
a functor of ∞-category means a morphism of simplicial sets [Lu1, §1.2.7], The functor π0 is called
the truncation (functor).

(3) We also have the inclusion functor ι : Comu → dguCom≤0 whose definition is an obvious one. These
two functors form an adjunction

π0 : dguCom≤0 ⇄ Comu : ι

of functors of ∞-categories. See [Lu1, §5.2] for the detail of adjunctions of functors between ∞-

categories . In particular, for A ∈ dguCom≤0 and B ∈ Comu, we have an isomorphism

MapComu(π0(A), B)
∼−→ MapdguCom≤0(A, ι(B))

in the homotopy category H of spaces (§0.3). Taking π0 of the mapping spaces, we recover the

ordinary adjunction property HomComu(π0(A), B)
∼−→ HomdguCom≤0(A, ι(B)).

(4) We will use Zariski open immersions, étale, smooth, flat and locally finitely presented morphisms in

dguCom≤0 or dAff . See [TVe, §1.2.6] for the precise definitions.



34 SHINTAROU YANAGIDA

(5) We denote by dguCom≤0,fp ⊂ dguCom≤0 the sub-∞-category spanned by those objects of finite
presentation over k in the sense of [TVe, Definition 1.2.3.1]. As noted in [TVe, §2.2.1], the truncation
functor π0 gives

dguCom≤0,fp −→ Comuft,

where Comuft ⊂ Comu denotes the subcategory of finite type objects. We also denote by dAff fp :=
(dguCom≤0,fp)op and call its object an affine derived scheme of finite presentation over k.

(6) The fiber product in dAff is denoted by X ×L
Y Z. It corresponds to the derived tensor product

A⊗L
B C in dguCom≤0, and is represented by the two-sided bar complex (Definition 2.1.9).

Next we turn to the terminology on derived stacks and derived schemes. Recall that we denote by S the
∞-category of spaces (§0.3).

(6) A D−-stack over k in the sense of [TVe, Chap. 2.2] is called a derived stack. Thus, it is a functor

F : dAffop −→ S

of ∞-categories satisfying the sheaf condition for the étale ∞-topos ét on dAff . We can construct
an ∞-category of derived stacks by [TVe, §1.3.2], and we denote it by dSt.

(7) An affine derived scheme Spec(A) with A ∈ dAff defines a derived stack by the Yoneda embedding

Map
dAff

(−, Spec(A)) : dAffop −→ S.

Here, for an ∞-category C, we denoted by Map
C
(−,−) the Kan simplicial set such that its homotopy

type is MapC(−,−). The existence of such a simplicial set is shown in [Lu1, §1.2.2], where it is
called the space of right morphisms. A derived stack which is equivalent to the one of the form
Map

dAff
(−, Spec(A)) is called a representable derived stack [TVe, §1.3.2]. We identify an affine

derived scheme and a representable derived stack.
(8) A geometric D−-stack over k in the sense of [TVe, §2.2.3] will be called a geometric derived stack. For

m ∈ Z≥−1, one defines an n-geometric derived stack inductively on m. An (−1)-geometric derived
stack is defined to be a representable derived stack, and the inductive step defines an m-geometric
derived stack to be a derived stack having an atlas of (m− 1)-geometric derived stacks with respect
to the smooth morphism in dAff .

(9) For n ∈ N, a derived stack F is n-truncated if πi(F (T ), s) = 0 for any i ∈ Z>n, any T ∈ dAff and
any s ∈ π0(F (T )). A derived scheme (over k) is defined to be an n-truncated m-geometric derived
stack X with some m and n such that there is an n-atlas tiUi → X of affine derived schemes Ui’s
and each Ui → X is a monomorphism of stacks [TVe, Definition 2.1.1.4]. By [TVe, Remark 2.1.1.5
(1)], a derived scheme is automatically 1-geometric. Equivalently, a derived stack is a pair (X,OX)

of a topological space X and a sheaf OX valued in dguCom≤0 such that the truncation (X,π0(OX))
is an ordinary scheme and the sheaf πi(OX) is a quasi-coherent sheaf of π0(OX)-modules. We denote
by dSch ⊂ dSt the sub-∞-category spanned by derived schemes.

(10) We denote by dStfp ⊂ dSt and dSchfp ⊂ dSch the sub-∞-categories spanned by those objects of
categorically locally finite presentation over k in the sense of [TVe, Definition 1.3.6.4].

3.2.2. Jet and arc spaces for derived schemes. We continue to use the notations given in the lase §3.2.1. In
particular, we denote by dSch the ∞-category of derived schemes over k.

We have the following derived analogue of the functor Jn in Fact 3.1.1.

Proposition 3.2.1. For any n ∈ N, there is a functor Jn : dSch → dSch of ∞-categories such that we have
an functorial isomorphism

MapdSch(S, Jn(X)) ' MapdSch
(
S ×L

Spec(k) Spec(k[t]/(t
n+1)), X

)
in the homotopy category H of spaces. We call Jn(X) the n-th jet space of X.

Our proof basically follows the non-derived case of [BLR, §7.6, Theorem 4], but we add some modification
to work correctly in derived algebraic geometry.

For X ∈ dSch, we define a functor Jn(X) : dSchop → S of ∞-categories by

Jn(X)(S) := Map
dSch

(
S ×L

Spec(k) Spec(k[t]/(t
n+1)), X

)
.

We first show:

Lemma 3.2.2. The functor Jn(X) is a derived stack.
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Proof. For any derived stacks G,H ∈ dSt, we have the internal derived stack RétHomdSt(G,H) ∈ dSt
satisfying the adjunction isomorphisms MapdSt(F,RétHom(G,H)) ' MapdSt(F ×L

Spec(k) G,H) for any F ∈
dSt. See [TVe, §1.4.1] for the detail. Taking G := Spec(k[t]/(tn+1)) and H = X, we have the consequence.

□

Thus we want to show that this derived stack is (represented by) a derived scheme Jn(X). The case n = 0
is trivial: J0(X) = X.

Note that for a morphism u : X → Y in dSch, we have the induced morphism of functors:

Jn(u) : Jn(X) −→ Jn(Y ).

In particular, for m,n ∈ N with m ≥ n, the truncation morphism k[t]/(tm+1) ↠ k[t]/(tn+1) induces a
morphism πm,n : Jm(X) → Jn(X) of functors. Then we can check the following statement by a set-theoretic

argument (see [EM09, Lemma 2.3] for the detail).

Lemma 3.2.3. Let u : U ↪→ X be a monomorphism in dSch from an affine derived scheme U to a derived
scheme X. If a derived scheme Jn(X) representing the functor Jn(X) exists, then the representing derived

scheme Jn(U) exists and we have Jn(U) ' π−1
n,0(U), where πn,0 : Jn(X) → J0(X) = X is the induced

morphism from the truncation morphism k[t]/(tn+1) ↠ k.

Next we show the existence of the representing object in the affine case. Recall that we denote by dAff fp

the ∞-category of affine derived schemes of finite presentations over k (§3.2.1 (5)).

Lemma 3.2.4. Let n ∈ N. For any R ∈ dguCom≤0, the functor

Jn(R) : dguCom≤0 −→ S, Jn(R)(A) := Map
dguCom≤0

(
R,A⊗L

k k[t]/(tn+1)
)

of∞-categories is represented by Jn(R) ∈ dguCom≤0. Moreover the correspondence R 7→ Jn(R) determines

a functor Jn : dguCom≤0 → dguCom≤0 of ∞-categories.

Proof. We may replace an R ∈ dguCom≤0 by a free resolution, i.e., a cdga R̃ ∈ dguCom≤0 such that
• the underlying graded algebra is a free algebra over k, and
• it is a K-flat complex quasi-isomorphic to R.

We cite from [SP, 0BZ6, 0BZ67 Lemma] an explicit construction of such a resolution:
(i) Take a set of homogeneous elements rs ∈ Ker(dR : R → R) (s ∈ S0) such that the classes rs ∈

H(R, dR) generate the linear space H(R, dR). We define a cdga

R0 = k[x0,s | s ∈ S0]

to be the free polynomial graded algebra generated by the letters {x0,s | s ∈ S0} equipped with the
grading

∣∣x0,s∣∣ := |r0,s| and trivial differential. We have a morphism f0 : R0 → R of cdgas given by

x0,s 7→ r0,s. It is obvious that R0 is a free commutative algebra over k and a K-flat complex, and
that the induced morphism H(f0) : H(R0) → H(R) is a surjection.

(ii) Assume that we have constructed a sequence

R0 → R1 → · · · → Rm−1
im−1−−−→ Rm

fm−−→ R

of cdgas. Take a set of homogeneous elements rm,s ∈ Rm (s ∈ Sm) such that the classes rm,s ∈
H(Rm, dRm

) span the linear space Ker(H(fm) : H(Rm, dRm
) → H(R, dR)). We define a cdga

Rm+1 = Rm[xm,s | s ∈ Sm]

to be the free polynomial graded algebra generated by the letters {xm,s | s ∈ Sm} over Rm equipped
with the grading |xm,s| := |rm,s|−1 and the differential dRm+1

(xm,s) := rm,s and dRm+1

∣∣
Rm

:= dRm
.

We have a natural embedding im : Rm ↪→ Rm+1 of cdgas, and also have a morphism fm+1 : Rm+1 →
R of cdgas given by fm+1(x

m,s) := fm(rm,s) and fm+1|Rm
:= fm. By induction, we obviously have

that Rm+1 is a free commutative algebra over k and the induced morphism H(fm+1) : H(Rm+1) →
H(R) is a surjection. We can also check that Rm+1 is K-flat.

(iii) Finally we define

R̃ := colimmRm,

where the colimit is taken in the ∞-category dguCom≤0. We also have a morphism f : R̃ → R

of cdgas. We can check that R̃ is a free graded algebra over k and a K-flat complex, and that the
induced morphism H(f) is an isomorphism.
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Note that this construction respects quasi-isomorphisms: If we are given a quasi-isomorphism A → B of

cdgas, then the construction induces a quasi-isomorphism Ã→ B̃.
Now we will define Jn(R) by constructing Jn(Rm)’s inductively on m and setting

Jn(R) = Jn(R̃) := colimm Jn(Rm).

In the case m = 0, we have R0 = k[x0,s | s ∈ S0]. Then, similarly as in Remark 3.1.4 (1), the desired cdga
is given by the polynomial graded algebra

Jn(R0) = k[x0,s(−j−1) | s ∈ S0, j = 0, . . . , n]

with
∣∣x0,s(−j−1)

∣∣ :=
∣∣x0,s∣∣ and trivial differential. Recalling Fact 3.1.6, we equip with Jn(R0) with the 0-

derivation T0 given by T0(x
0,s
(−j)) = jx0,s(−j−1). The pair (Jn(R0), T0) represents the functor J0(R0).

Assume that we have constructed a pair (Jn(Rd), Td) representing the functor Jd(Rd) for d ≤ m. Note
that as a commutative graded algebra Rm+1 is isomorphic to Rm[xm,s, ym,s | s ∈ Sm]/(ym,s−rm,s | s ∈ Sm),
with the grading |ym,s| = |rm,s|. Then, similarly as in Remark 3.1.4 (2), we define the cdga Jn(Rm) by

Jn(Rm+1) := Jn(Rm)
[
xm,s(−j−1), y

m,s
(−j−1) | s ∈ Sm, j = 0, . . . , n

]
/(T km+1gm,s | k = 0, . . . , n, s ∈ Sm),

where gm,s := ym,s(−1)−rm,s(x
m,t
(−1)) ∈ Rm[xm,t(−1), y

m,s
(−1) | t ∈ S] with rm,s = rm,s(x

m,t) regarded as a polynomial

of xm,t’s, and Tm+1 is a 0-derivation defined by

Tm+1x
m,s
(−j) := jxm,s(−j−1), Tm+1y

m,s
(−j) := jym,s(−j−1), Tm+1|Jn(Rm) := Tm.

The cohomological grading is given by
∣∣xm,s(−j)

∣∣ := |xm,s| = |rm,s| − 1 and
∣∣ym,s(−j)

∣∣ := |ym,s| = |rm,s|, and the

differential dm+1 is given by dm+1Tm+1 = Tm+1dm+1, dm+1(x
m,s
(−1)) := ym,s(−1), dm+1(y

m,s
(−1)) := rm,s(x

m,t
(−1)) .

Then the pair (Jn(Rm+1), Tm+1) represents the functor Jn(Rm+1).

The injection im : Rm ↪→ Rm+1 induces a cofibration Jn(im) : Jn(Rm) → Jn(Rm+1) in dguCom≤0 which

(homotopically) commutes with the 0-derivations Tm and Tm+1, and we can take the colimit (Jn(R̃), T ) :=

colimm(Jn(Rm), Tm). The pair (Jn(R̃), T ) represents the functor Jn(R) by construction. □
By the construction, we immediately have

Corollary. In Lemma 3.2.4, if R ∈ dguCom≤0,fp, then we have Jn(R) ∈ dguCom≤0,fp. We also have a

functor Jn : dguCom≤0,fp → dguCom≤0,fp of ∞-categories.

Let us give the proof of Proposition 3.2.1.

Proof of Propoisition 3.2.1. By the definition of a derived scheme X (§3.2.1, (9)), we have an atlas tiUi → X
of X consisting of affine derived schemes Ui. By Lemma 3.2.4, we have the representing derived scheme
Jn(Ui). These satisfy the gluing condition by Lemma 3.2.3. Thus we have a derived stack representing the
functor Jn(X). the consequence. □
Remark. Let us comment a more natural point of view in the context of derived algebraic geometry. In
Lemma 3.2.2 we recalled the internal derived stack RétHomdSt(G,H) ∈ dSt for derived stacks G and H. If
G is a scheme and H is an m-geometric derived stack for some m ∈ Z≥−1, then it is denoted by Map(G,H)
and called the mapping derived stack. By [TVe, Theorem 2.2.6.11], the mapping derived stack Map(G,H)
is also m-geometric under some conditions, which can be checked for our case G = Dn := Spec(k[t]/(tn+1))
and H = X ∈ dSch with m = 1. Thus the n-th jet scheme is nothing but the mapping derived stack from
the n-fattened infinitesimal disk Dn:

Jn(X) ' Map(Dn, X).

By the construction, the n-th jet spaces of derived schemes enjoy similar properties as those of non-derived
schemes in Fact 3.1.3.

Lemma. Let X be a derived scheme over k and n ∈ N.
(1) We have J0(X) ' X.
(2) For m ∈ N with m ≥ n, the truncation morphism k[t]/(tm+1) ↠ k[t]/(tn+1) induces a morphism

πm,n : Jm(X) → Jn(X) in dSch. The morphisms {πm,n : Jm(X) → Jn(X) | m,n ∈ N,m ≥ n} form
an inverse system over the direct set (N,≥).

(3) For R ∈ dguCom≤0,fp, we have Jn(R) ∈ dguCom≤0,fp.
(4) The (homotopy) fiber of the morphism πn,0 : Jn(X) → J0(X) = X is equivalent to an affine derived

scheme.
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The last property guarantee the existence of the arc space of derived schemes.

Proposition. For X ∈ dSch, the limit of the inverse system {πm,n : Jm(X) → Jn(X) | m,n ∈ N,m ≥ n}
exists in dSch. We denote it by J∞(X), and call it the arc space or the ∞-jet space of X.

In the sections below, we only deal with cdgas R (but not necessarily concentrated in non-positive degrees).
For later reference, we set:

Definition 3.2.5. For a cdga R, we call the cdga J∞(R) with 0-derivation the arc space of R.

4. Li filtration and vertex Poisson algebras in derived setting

Recall that given an affine Poisson scheme, the coordinate ring of its jet scheme has a structure of vertex
Poisson algebra [A15]. In this section we give a dg analogue of this statement. We will work over a field k
of characteristic 0.

4.1. Dg vertex algebras. In this subsection we recall basics of vertex algebras and define dg vertex algebras.
In order to make the text consistent with the literature of vertex algebras, we begin with the preliminary on
super objects.

4.1.1. Super convention. In this part we collect the convention on super objects. We express Z/2Z = {0, 1}.

Definition 4.1.1. (1) A linear superspace is a Z/2Z-graded linear space.
(2) The Z/2Z-grading of a linear superspace V is called the parity, and the grade decomposition of V

is denoted by V = V0
⊕
V1. A homogeneous element v of V is also called an element of pure parity,

and we denote by p(v) its parity. An element of V0 is called even, and an element of V1 is called odd.
(3) Let V and W be linear superspaces. A linear map f : V → W is called even if f(Vi) ⊂ Wi for

i = 0, 1, and called odd if f(Vi) ⊂Wi+1 for i = 0, 1. We denote by

Homk(V,W ) = Homk(V,W )0 ⊕Homk(V,W )1

the corresponding linear superspace structure on Homk(V,W ).
(4) The category of linear superspaces and even linear maps will be denoted by sVec. Thus we have

HomsVec(V,W ) = Homk(V,W )0.

Definition 4.1.2. Let V and W be linear superspaces.
(1) The tensor product V ⊗W ∈ sVec of V andW is defined to be the linear superspace whose underlying

linear space is V ⊗k W ∈ Vec and the parity decomposition is given by

(V ⊗W )0 := V0 ⊗k W0 ⊕ V1 ⊗k W1, (V ⊗W )1 := V0 ⊗k W1 ⊕ V1 ⊗k W0.

(2) The braiding (or the commutativity) isomorphism on the tensor product V ⊗W is an isomorphism
in sVec given by

V ⊗W
∼−→W ⊗ V, v ⊗ w 7−→ (−1)p(v)p(w)w ⊗ v

for elements v ∈ V , w ∈W of pure parity.
These define a symmetric monoidal structure on sVec, which is denoted by sVec⊗.

The tensor product and the braiding isomorphism gives sVec a structure of symmetric monoidal category.
Thus we have notions of associative algebras, commutative algebras and Lie superalgebras. In particular, for
a linear superspace V = V0 ⊕ V1, we have the endomorphism superalgebra Endk(V ) and the commutator

[f, g] := fg − (−1)p(f)p(g)gf

for f, g ∈ Endk(V ) of pure parity p(f) and p(g) respectively. We will repeatedly use this commutator.
Recall the notion of a differential algebra (Definition 3.1.7). For later use, let us give a super analogue.

Definition 4.1.3. Let R be a superalgebra.
(1) For ε ∈ Z/2Z, a derivation d of parity ε on R is a linear endomorphism on R of parity ε such that

for any r ∈ R we have [d, r] = dr in the endomorphism superalgebra End(R), where in the left hand
side we regard r ∈ End(R) as a multiplication operator.

(2) We denote by Der(R)ε the linear space of derivations of parity ε on R.
(3) A superalgebra equipped with a derivation is called a differential superalgebra.

Finally we remark a construction of super objects from graded objects. See [BD, 1.1.16] for a more
systematic “dg super” conventions.
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Notation 4.1.4. (1) For a complex V = (V •, d), we have a linear superspace whose even part is
V even :=

⊕
n∈Z V

2n and whose odd part is V odd :=
⊕

n∈Z V
2n+1. We denote it by V even ⊕ V odd.

(2) The correspondence V 7→ V even ⊕ V odd defines a monoidal functor dgVec⊗ → sVec⊗, and it induces
similar functors for algebraic structures. We call those objects lying in the essential image the
associated super objects of given dg objects.

For example, for a graded Lie algebra L = L•, we have the associated Lie superalgebra Leven ⊕ Lodd.

4.1.2. Vertex superalgebras. For the definiteness, we begin with the recollection of vertex superalgebras. See
[Ka] and [FBZ] for the detail.

Notation. (1) We denote by k[[z]] the linear space of formal series, and by k((z)) the linear space of
formal Laurent series. Thus we have a decomposition k((z)) = k[[z]]⊕ z−1k[z−1].

(2) For a linear space V , we denote V [[z]] := V ⊗k k[[z]]. V ((z)) := V ⊗k k((z)), zV [z] := V ⊗k zk[z]
and so on.

Definition 4.1.5. A vertex superalgebra (vsa for short) is a data (V, |0〉 , T, Y ) consisting of
• a linear superspace V ,
• an even element |0〉 ∈ V0 called the vacuum,
• an even endomorphism T ∈ End(V )0 called the translation, and
• a linear map

V ⊗ V −→ V ((z)), a⊗ b 7−→ Y (a, z)b =
∑
n

(a(n)b)z
−n−1

such that we have a(n) ∈ End(V )ε for a ∈ Vε of pure parity and for any n ∈ Z. The operation Y is
called the state-field correspondence.

These should satisfy the following standard axioms.
(i) (Vacuum axiom) Y (|0〉 , z) = idV and Y (a, z) |0〉 ∈ a+ zV [[z]] for any a ∈ V .
(ii) (Translation axiom) T |0〉 = 0 and [T, Y (a, z)] = ∂zY (a, z) for any a ∈ V .
(iii) (Locality axiom) Y (a, z)’s are mutually local, i.e., for any homogeneous a, b ∈ V , there exists N ∈ N

such that the following equation holds in (End(V ))[[z±1, w±1]].

(z − w)NY (a, z)Y (b, w) = (−1)p(a)p(b)(z − w)NY (b, w)Y (a, z).

We often denote it simply by V .
An even vertex superalgebra, i.e., V = V0, is called a vertex algebra (va for short).

Several remarks are in order.

Remark 4.1.6. (1) The locality axiom implies the following relations.

[a(m), b(n)] =
∑
l∈N

(
m

l

)
(a(l)b)(m+n−l),

(a(m)b)(n)c =
∑
l∈N

(−1)l
(
m

l

)(
a(m−l)(b(n+l)c)− (−1)m+p(a)p(b)b(m+n−l)(a(l)c)

)
,

where a, b, c ∈ V and a, b are of pure parity. We also have the skew-symmetry

Y (a, z)b = (−1)p(a)p(b)ezTY (b,−z)a
for homogeneous a, b ∈ V . See [FBZ, Chap. 3] and [Ka, §§4.2, 4.6, 4.8] for the detail.

(2) The translation T is completely determined by the operation Y as Ta = a(−2) |0〉.
(3) The correspondence a 7→ a(−1) is injective [FBZ, 1.3.2, Remarks 4].

Let us also recall:

Definition. Let V and W be vertex superalgebras.
(1) A morphism V →W of vsas is an even linear map ϕ : V →W such that ϕ(a(n)b) = ϕ(a)(n)ϕ(b) for

any a, b ∈ V and n ∈ Z.
(2) The tensor product V ⊗W of vsas is given by (V ⊗W, |0〉V ⊗ |0〉W , TV ⊗ idW + idV ⊗TW , YV⊗W ),

where the first item denotes the tensor product as linear superspaces (Definition 4.1.2 (1)) and
YV⊗W (a⊗ b, z) := YV (a, z)⊗ YW (b, z). Thus we have (a⊗ b)(n) =

∑
m∈Z a(m) ⊗ b(n−m−1) using the

tensor product (f ⊗ g)(c⊗ d) = (−1)p(g)p(c)f(c)⊗ g(d) of linear operators f and g coming from the
braiding isomorphism (Definition 4.1.2 (2)).
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Note that the tensor product ⊗ gives a unital symmetric monoidal structure on the category of vsas,
where the unit is the trivial vertex algebra k.

We also have the standard notion of vertex super subalgebras and those of ideals and quotients of vsas.
See [Ka, §4.3] for the detail.

Finally we give some terminology for modules over vsas. There are several different definitions, and we
cite a version from [A12, §2.1].

Definition. Let V be a vertex superalgebra. A V -module is a linear superspace M equipped with a linear
map

V ⊗M −→M((z)), a⊗m 7−→ YM (a, z)m =
∑
k∈Z

aM(k)mz
−k−1

where for a ∈ Vε we have aM(k) ∈ End(M)ε, which should satisfy the following conditions.

(i) YM (|0〉 , z) = idM ,
(ii) For elements a, b ∈ V of pure parity and any j, k, l ∈ Z, we have∑

n∈N

(
k

n

)
(a(l+n)b)

M
k+j−n =

∑
n∈N

(−1)n
(
l

n

)(
aM(k+l−n)b

M
(j+n) − (−1)l+p(a)p(b)bM(l+j−n)a

M
(k+n)

)
.

A morphism of V -modules is naturally defined. We denote by V -VMod the category of V -modules.

Example 4.1.7. Let ϕ : V → W be a morphism of vsas. Then W is naturally a V -module. In fact,
denoting the state-field correspondence of W as a vsa by α ⊗ β 7→ YW (α, z)β, we have the V -module
structure V ⊗W →W ((z)), YW (a, z)β := YW (ϕ(a), z)β for a⊗ β ∈ V ⊗W .

Let us recall an equivalent description of modules over vertex superalgebras.:

Fact 4.1.8 ([FBZ, 5.1.6. Theorem]). Let Ũ(V ) be the associative algebra attached to a vertex algebra V
[FBZ, 4.3.1. Definition]. We have an equivalence of the category of V -modules and the category of smooth

modules over Ũ(V ).

See [FBZ, §§4.1–4.3, 5.1] for the detail. We will give a vertex Poisson analogue of this fact in §4.3.3.

4.1.3. Graded vertex superalgebras. Let us cite from [FBZ, 1.3.1] the notion of graded vertex superalgebras.

Definition 4.1.9. A vertex superalgebra V is graded if there is a decomposition V =
⊕

∆∈k V∆ as a linear
superspace such that the following conditions hold.

(i) |0〉 ∈ V0.
(ii) T (V∆) ⊂ V∆+1 for any ∆ ∈ k.
(iii) a(n)b ∈ V−(∆+∆′−n−1) holds for any a ∈ V−∆, b ∈ V−∆′ and n ∈ Z.

Setting I := {∆ ∈ k | V−∆ 6= 0}, we also call V an I-graded vertex superalgebra.

Remark 4.1.10. There is an equivalent notion of a vertex superalgebra V with Hamiltonian H [Ka, §4.9].
Such V is equipped with an even linear endomorphism H such that the following conditions hold.

(1) H acts semisimply on V .
(2) For any a, b ∈ V the equation [H,Y (a, z)]b =

(
Y (Ha, z) + z∂zY (a, z)

)
b in V ((z)) holds.

Given such (V,H), we have the H-eigen decomposition V =
⊕

∆∈k V∆, V∆ := {a ∈ V | Ha = −∆a}.
Setting I := {∆ ∈ k | V∆ 6= 0}, we recover Definition 4.1.9.

Conversely, given an I-graded vertex superalgebra V , defining Ha := ∆a for a ∈ V−∆ we have a Hamil-
tonian H on V .

We also have the notion of graded modules of graded vsas.

Definition 4.1.11. Let V be a graded vertex superalgebra. A V -module M is graded if there is a linear
decomposition M = ⊕∆∈kM∆ such that aM(n)b ∈M−(∆+∆′−n−1) holds for any a ∈ V−∆, b ∈ V−∆′ and n ∈ Z.

4.1.4. Universal affine vertex algebras. In this part we recall the universal affine vertex algebra. For sim-
plicity, we work over C. See [FBZ, §2.4] for the detail. We first fix the notation on Lie algebras.

Notation 4.1.12. (1) Let G be a simply connected semisimple algebraic group over C, and g := LieG
be its Lie algebra.

(2) We denote by κg the Killing form and by h∨ the dual Coxeter number of g.
(3) We denote by g((t)) := g⊗CC((t)) the tensor product with the linear space C((t)) of formal Laurent

series, and denote its element by xf := x ⊗ f ∈ g((t)) with x ∈ g and f = f(t) ∈ C((t)). Similarly
we will denote g[t] := g⊗C C[t], g[[t]] := g⊗C C[[t]] and so on.
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(4) We denote by g̃ the non-twisted affine Kac-Moody Lie algebra associated with g. It is a Lie algebra
of which

• the underlying linear space is g((t))⊕ CK ⊕ CD, and
• the commutation relations are

[xtm, ytn] = [x, y]tm+n +mδm+n,0
1

2h∨κg(x, y)K, [D,xtm] = mxtm, [K, ĝ] = 0

for x, y ∈ g.
(5) We denote by ĝ the derived algebra of g̃. Thus we have ĝ = g((t))⊕ CK as a linear space.

Here is the definition of the universal affine vertex algebra.

Definition 4.1.13. For k ∈ C, we define a g̃-module Vk(g) by

Vk(g) := U(g̃)⊗U(g[t]⊕CK⊕CD) Ck,
where Ck is the one-dimensional representation of the Lie subalgebra g[t]⊕CK⊕CD ⊂ g̃ on which g[t]⊕CD
acts trivially and K acts as multiplication by k, Then Vk(g) is a vertex algebra of which

• the vacuum vector is |0〉 = 1⊗ 1,
• the translation is T = −∂t, and
• Y (xt−1 |0〉 , z) = x(z) :=

∑
n∈Z(xt

n)z−n−1 for x ∈ g.
These conditions determines the vertex algebra structure uniquely. It is N-graded by the Hamiltonian −D
(Remark 4.1.10). We call the obtained vertex algebra Vk(g) the universal affine vertex algebra associated
with g at level k.

Remark. We used the normalization of invariant bilinear form of [FBZ]. Comparing it with the notation
V κ(g) in [A] where κ denotes a bilinear invariant form on g, we have V1(g) = V κg(g) and V−h∨(g) = V κc(g)
with κc := − 1

2κg. By the latter relation, κc is called the critical level in [A].

For later use, we recall:

Definition 4.1.14. Let R be a associative superalgebra. Let also a(z) =
∑
n∈Z anz

n and b(z) =
∑
n∈Z bnz

n

be formal power series with coefficients an and bn in R such that the parity of the coefficients are constant
for each series. We denote p(a) := p(an) and p(b) := p(bn). Then the normal ordering : a(z)b(z) : of a(z)
and b(z) is defined to be the formal power series

: a(z)b(z) : := a(z)+b(z) + (−1)p(a)p(b)b(z)a(z)−,

where we set a(z)+ :=
∑
n≥0 a(n)z

n and a(z)− :=
∑
n≤−1 a(n)z

n.

Fact 4.1.15 ([FBZ, §2.4]). Let {xi | i = 1, . . . , dim g} be a linear basis of g. Then
(1) Vk(g) has a linear basis of monomials of the form

v = (xi1t
n1) · · · (xiltnl) |0〉 ,

where ni ∈ Z, n1 ≤ · · · ≤ nl < 0 and if nj = nj+1 then ij ≤ ij+1.
(2) For the element v ∈ Vk(g) in the previous item, we have

Y (v, z) = 1
(−n1+1)! · · ·

1
(−nl+1)! : ∂

−n1+1
z xi1(z) · · · ∂−nl+1

z xil(z) : .

Next we consider the category Vk(g)-VMod of modules over the universal affine vertex algebra Vk(g). By

Fact 4.1.8, it is equivalent to the smooth modules over the associative algebra Ũ(Vk(g)) attached to Vk(g).

Denoting by Ũk(ĝ) the t-adic completion of Uk(ĝ) := U(ĝ)/(K − k), we have Ũ(Vk(g)) ' Ũk(ĝ) by [FBZ,

4.3.2. Lemma]. Then a smooth Ũ(Vk(g))-module is nothing but a smooth gk-module. In other words, we
have:

Fact 4.1.16 ([FBZ, 5.1.8]). A Vk(g)-module is equivalent to a smooth ĝ-module of level k, i.e., a represen-
tation M of the Lie algebra ĝ such that K acts by multiplication k and (xtn).m = 0 for any x ∈ g, m ∈ M
and n� 0.

Recall that there is a monoidal structure ⊗ on the category of representations of a Lie algebra L, which
is induced by the comultiplication ∆(x) = x ⊗ 1 + 1 ⊗ x for each element x ∈ L. We call this action on
the tensor the diagonal action of L. Together with Fact 4.1.16, we have the following tensor structure on
Vk(g)-modules with different k’s:

Lemma 4.1.17. Let k, k′ ∈ C, M ∈ Vk(g)-VMod and N ∈ Vk′(g)-VMod. Then the tensor product M ⊗N
in Vec is an object of Vk+k′(g)-VMod by the diagonal action of ĝ.
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4.1.5. Dg vertex algebras. Now we introduce a dg analogue of a vertex algebra. There are in fact several
choices of definition, and we give one suitable for our purpose. Let us first recall

Definition 4.1.18 ([Ka, §4.3]). Let V be a vertex superalgebra, and let ε ∈ Z/2Z. A derivation d of parity
ε on V is a linear endomorphism of parity ε, i.e., d ∈ Endk(V )ε, such that for any a ∈ V we have

[d, Y (a, z)] = Y (da, z).

Remark 4.1.19. Let d be a derivation of a vertex superalgebra (V, |0〉 , T, Y ).
(1) We have [d, T ] = 0 by Remark 4.1.6 (2).
(2) We have d |0〉 = 0 by Remark 4.1.6 (3).
(3) The condition on d and Y is equivalent to d(a(n)b) = (da)(n)b + (−1)p(a)εa(n)(db) for any a, b ∈ V

with a of pure parity.

Here is our definition of a dg vertex algebra:

Definition 4.1.20. (1) A dg vertex algebra (dgva for short) is a complex (V •, d) equipped with a vertex
superalgebra structure (|0〉 , T, Y ) on the associated linear superspace V even ⊕V odd (Notation 4.1.4)
such that the following conditions hold.
(i) |0〉 ∈ V 0 and T ∈ End(V )0 = HomdgVec(V, V ).
(ii) d is an odd derivation (Definition 4.1.18) of the vertex superalgebra (V even ⊕ V odd, |0〉 , T, Y ).
(iii) The state-field correspondence Y is homogeneous. In other words, we have a(n)V

j ⊂ V i+j for

any a ∈ V i and n ∈ Z.
We denote a dg vertex superalgebra as V = (V •, d, |0〉 , T, Y ).

(2) We also have the notions of morphisms and tensor products of dg vertex algebras. We denote by
dgVA the category of dg vertex algebras.

For the later use, let us also introduce the corresponding notion of dg modules.

Definition 4.1.21. Let V be a dg vertex algebra.
(1) A dg V -module M = (M•, dM , Y

M ) consists of
• a complex (M•, dM ) and
• a (V even ⊕ V odd)-module structure on M even ⊕Modd, YM (a, z)m =

∑
n∈Z a

M
(n)mz

−n−1, in the

sense of Definition 4.1.11, where V even ⊕ V odd is regarded as a vertex superalgebra,
such that

aM(n)M
j ⊂M |a|+j , dM (aM(n)m) = (dV a)

M
(n)m+ (−1)|a|aM(n)(dMm)

for any homogeneous a ∈ V , any m ∈M and any j, n ∈ Z.
(2) We denote by V -dgVMod the category of dg V -modules. For a dg V -module M , the Z-grading of

the underlying complex (M•, dM ) is called the cohomological degree.

As for the cohomology of a dg vertex algebra, we have:

Lemma 4.1.22. For a dg vertex algebra V = (V •, d, |0〉 , T, Y ), consider the cohomology H• = H(V •, d) of
the underlying complex (Definition 1.1.7). Then the associated linear superspace Heven ⊕ Hodd (Notation
4.1.4) has a structure of vertex superalgebra.

Proof. The argument in [FBZ, §5.7.3] works. For the completeness, let us write down it. By Remark 4.1.19
(1), the translation T preserves Ker d and Im d. The derivation property [d, Y (a, z)] = Y (da, z) yields that
Ker d is a vertex sub-superalgebra and Im d is a vsa ideal of V . Thus we have a quotient vsa H(V •, d). □

The cohomology has a Z-grading H•(V •, d) induced by the cohomological degree V •. But it is not
necessarily a graded vertex superalgebra in the sense of Definition 4.1.9. In other words, the Z-grading may
not be given by the eigenvalue of any Hamiltonian. In order to avoid this conflict, we introduce

Definition 4.1.23. A graded dg vertex algebra is a dg vertex algebra V equipped with an additional linear
decomposition V = ⊕∆∈kV∆ such that the following conditions hold.

(i) The underlying vsa (V even ⊕ V odd, |0〉 , T, Y ) is graded in the sense of Definition 4.1.9.
(ii) d preserves the additional gradings.

A motivational example is weak BRST complex of vertex algebras in [A07, 3.15]. We will give explicit
examples in §4.1.6.

Similarly as Definition 4.1.11, we also have the notion of graded dg V -modules of a graded dg vertex
algebra V . We then have an obvious analogue of Example 4.1.7:
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Lemma 4.1.24. Let V and W be graded dg vertex algebras and ϕ : V → W be a morphism of dg vertex
algebras which preserves the additional gradings. Then W is naturally a graded dg V -module.

4.1.6. The free fermionic vertex algebra. Let us recall the dg vertex algebra of free fermions, a standard
example of dg vertex algebra. See [FBZ, 4.3.1] for more information. See also [BD, 3.8.6], where the
coordinate free version is introduced under the name chiral Clifford algebra.

Let U be a bounded complex, and U∗ := Hom(U, k) be its dual. We have the canonical pairing 〈·, ·〉 : U∗⊗
U → k. We denote by k((t))dt the linear space of one-forms on formal Laurent series. We have the residue
pairing (f(t), g(t)dt) 7→ Rest(f(t)g(t)dt) on k((t)) ⊗ k((t))dt. Thus, denoting U((t)) := U ⊗ k((t)) and
U∗((t))dt := U ⊗ k((t))dt, we have a skew-symmetric pairing (·, ·) on U((t))[1] ⊕ U∗((t))dt[−1] and itself
induced by 〈·, ·〉 and Rest.

For the pair U((t))[1]⊕ U∗((t))dt[−1] and (·, ·), we denote the associated Clifford algebra by

Cl = Cl
(
U((t))[1]⊕ U∗((t))[−1], (·, ·)

)
.

It is a complete topological unital dg algebra. Explicitly, taking a homogeneous linear basis {ui | i ∈ I} of
U and the dual basis {u∗i | i ∈ I} of U∗, we have that Cl is generated by

ψi,n := (ui ⊗ tn)[1] ∈ U((t))[1], ψ∗
i,n := (u∗i ⊗ tn−1dt)[−1] ∈ U∗((t))dt[−1] (i ∈ I, n ∈ Z)

and they satisfy

[ψi,m, ψjt
n] = [ψ∗

i t
m−1dt, ψ∗

j t
n−1dt] = 0, [ψit

m, ψ∗
j t
n−1dt] = δi,jδm,−n. (4.1)

Let us denote by
∧∞

2 (U) the fermionic Fock module of Cl. It is a left dg Cl-module generated by an
element |0〉 such that

ψit
m |0〉 = 0 (m ≥ 0), ψ∗

i t
n−1dt |0〉 = 0 (n ≥ 1).

It has a homogeneous basis consisting of the elements of the form

v = (ψi1t
m1) · · · (ψiktmk)(ψ∗

j1t
n1−1dt) · · · (ψ∗

jl
tnl−1dt) |0〉 (m1 < · · · < mk < 0, n1 < · · · < nl ≤ 0). (4.2)

We have an additional Z-grading to the dg structure, called the charge grading, under which the vector (4.2)

is attached with charge = −k + l. We denote
∧∞

2 +•
(U) to emphasize the charge grading.

If U is concentrated in degree 0, then the charge is equal to the minus of the cohomological degree, and

the parity is given by the charge modulo 2. In this case
∧∞

2 (U) is also called the space of semi-infinite
wedges.

We now recall:

Definition 4.1.25. The fermionic Fock module
∧∞

2 (U) has a structure of dg vertex algebra with Hamil-
tonian, where

• the vacuum is given by |0〉,
• the translation is given by T = −∂t, and
• the state-field correspondence is given by

Y (ψit
−1 |0〉 , z) = ψi(z) :=

∑
n∈Z(ψit

n)z−n−1,

Y (ψ∗
i t

−1dt |0〉 , z) = ψ∗
i (z) :=

∑
n∈Z(ψ

∗
i t
n−1dt)z−n,

and for the element v = (ψi1t
m1) · · · (ψiktmk)(ψ∗

j1
tn1−1dt) · · · (ψ∗

jl
tnl−1dt) |0〉 in (4.2), it is

Y (v, z) =
∏k
a=1

1
(−ma−1)!

∏l
b=1

1
(−nb−1)! : ∂

−m1−1
z ψi1(z) · · · ∂−mk−1

z ψik(z)∂
−n1
z ψ∗

j1
(z) · · · ∂−nl

z ψ∗
jl
(z) :,

where we used the normal ordering (Definition 4.1.14).
• The additional Z-grading is given by the charge grading.

We call it the free fermionic vertex algebra, or the chiral Clifford algebra and denote by∧∞
2 (U) = Clch

(
U((t)), U∗((t))dt, (·, ·)

)
.

For the second notation, see Remark 6.1.1

4.2. Dg vertex Li algebras. In this subsection we recall the notion vertex Lie algebras. It is designed to
encode the “polar part” of vertex algebra. We work over a field k of characteristic 0.
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4.2.1. Definition.

Definition 4.2.1. (1) A dg vertex Lie algebra is a data (L, d, T, Y−) consists of
• a complex (L, d),
• an endomorphism T ∈ End(L)0 = HomdgVec(L,L), and
• a morphism L⊗ L→ z−1L[z−1] of complexes, a⊗ b 7→ Y−(a, z)b =

∑
n∈N(a(n)b)z

−n−1

satisfying the following conditions.
(i) Y−(Ta, z) = ∂zY−(a, z).
(ii) For any homogeneous a, b ∈ L, we have

Y−(a, z)b =
(
(−1)|a||b|ezTY−(b,−z)a

)
−.

Here for a formal Laurent series f(z) =
∑
i fiz

i ∈ L((z)) we set f(z)− :=
∑
i<0 fiz

i ∈
z−1L[z−1].

(iii) For a, b ∈ L we have [a(m), b(n)] =
∑
i∈N

(
m
i

)
(a(i)b)(m+n−i) in End(L) = HomdgVec(L,L).

(iv) For any a, b ∈ L, we have [d, Y−(a, z)]b = Y−(da, z)b.
(2) We have obvious notions of morphism and tensor product of dg vertex Lie algebras. We denote by

dgVL the category of dg vertex Lie algebras.

Similarly we have the notions of vertex Lie superalgebra and vertex Lie algebra. We refer [FBZ, §16.1] for
the detail of the latter notion.

Remark 4.2.2. (1) The condition (ii) is equivalent to

a(n)b =
∑
i∈N(−1)|a||b|+n+i+1 1

i!T
i(b(n+i)a) (n ∈ N).

(2) We can check that the quotient space L/ Im(T ) is a dg Lie algebra with the Lie bracket

[a, b] := a(0)b

for a, b ∈ L. Indeed, by the condition (i) we have (Ta)(0)b = 0 so that the Lie bracket is well-defined,

by the condition (ii) and the previous item (1) we have a(0)b = −(−1)|a||b|b(0)a mod Im(T ) so that
the anti-commutativity holds, and by (iii) we have [a(0), b(0)] = (a(0)b)(0) and can check the Jacobi
relation by direct computation.

(3) By the theory of coisson algebras [BD, §2.6], a vertex Lie algebra satisfying some conditions can be
regarded as a Lie algebra object in a certain symmetric monoidal category. See Remark 5.1.1 for
more information.

By the definition we immediately have the following construction of vertex Lie algebras from vertex
algebras. See [FBZ, 16.1.2–3] for the detail.

Lemma 4.2.3. For a dg vertex algebra V = (V, d, |0〉 , T, Y ), we have a dg vertex Lie algebra

VLie := (V, d, T, Y−)

by setting Y−(a, z) := Y (a, z)=
∑
n∈N a(n)z

−n−1. This construction gives rise to a functor

dgVA −→ dgVL, V 7−→ VLie,

which we call the polar part construction.

See §4.2.2 for the adjoint of the polar part construction. For later citation, we give an example.

Example 4.2.4. We use the notations in §4.1.4 here. Consider the universal affine vertex algebra Vk(g)
over C. Following [FBZ, 16.1.5], we denote by

vk(g) ⊂ Vk(g)

the linear subspace spanned by the vacuum vector |0〉 and the vectors xtm |0〉 (x ∈ g, m ∈ Z<0). Thus
we have vk(g) ' g[t−1] ⊕ C as linear spaces. The subspace vk(g) is invariant under the action of x−(z) :=
Y (xt−1 |0〉 , z)− =

∑
n∈N(xt

n)z−n−1, and we can see that (vk(g), T, Y−) with Y−(xt
−1 |0〉 , z) := x−(z) is a

vertex Lie algebra.

Here is another construction of dg vertex Lie algebras:

Lemma 4.2.5. Let l be dg Lie algebra, and consider l[[t]] = l ⊗ k[[t]]. It is a dg Lie algebra with the Lie
bracket [x⊗ f, y ⊗ g] := [x, y]l ⊗ (fg) for x, y ∈ l and f, g ∈ k[[t]]. Then l[[t]] has the following dg vertex Lie
algebra structure:

• The translation T is given by the multiplication by t. Thus T (x⊗ ti) = x⊗ ti+1.



44 SHINTAROU YANAGIDA

• The operation Y− is determined by

Y−(x⊗ 1, z) = x−(z) :=
∑
n∈N z

−n−1∂nt ([x,−]),

Y−(x⊗ ti, z)(y ⊗ tj) :=
(
(−1)|x||y|ezt(−∂z)jy−(−z)(x⊗ ti)

)
−. (4.3)

Explicitly, we have

(x⊗ ti)(n)(y ⊗ tj) = (−1)i
n!

(n− i)!

j!

(j − n+ i)!
[x, y]l ⊗ ti+j−n (4.4)

for i ≤ n ≤ i+ j and 0 otherwise.
We denote the obtained dg vertex Lie algebra by

J∞(l) := (l[[t]], dl, T, Y−),

and call it the level 0 dg vertex Lie algebra.

Proof. It is enough to check the conditions (i)–(iv) in Definition 4.2.1. The condition (i) follows from (4.4).
The condition (ii) follows from the definition (4.3). The condition (iii) can be checked with the help of Jacobi
relation of l. The condition (iv) follows from (4.4) and the dg Lie algebra structure on l. □

For the naming “level 0”, see Example 4.3.10.

4.2.2. Enveloping vertex algebra. We explain the universal construction of dg vertex algebra from a dg vertex
Lie algebra, following the non-dg version in [FBZ, §16.1]. See also [BD, §3.7] for the chiral algebra version.

Let L = (L, d, T, Y−) be a dg vertex Lie algebra, and consider the operator ∂ := T ⊗ id+ id⊗∂t on
L((s)) = L⊗ k((s)). We define

Lie(L) := L((s))/ Im(∂),

which inherits the dg structure of L. We also denote x[n] := x⊗ sn ∈ Lie(L) for x ∈ L and n ∈ Z, and define

Lie(L)+ ⊂ Lie(L)

to be the subspace which is the completion of the linear span of x[n] with n ∈ N. It is in fact a subcomplex
of Lie(L).

Lemma ([FBZ, 16.1.7. Lemma]). (1) Lie(L) is a dg Lie algebra with the Lie bracket

[x[m], y[n]] :=
∑
l∈N

(
m

l

)
(x(l)y)[m+n−l],

where we denoted by Y−(x, z) =
∑
n∈N x(n)z

−n−1 the vertex Lie structure of L.
(2) Lie(L)+ is a dg Lie subalgebra of Lie(L).
(3) The correspondence Lie(L)+ → End(L), x[n] → x(n) gives a morphism of dg Lie algebras.

Consider the universal enveloping algebra U(Lie(L)) and U(Lie(L)+) of the dg Lie algebras in the above
lemma. We define a left dg U(Lie(L))-module

U(L) := U(Lie(L))⊗U(Lie(L)+) k,

where k denotes the trivial one-dimensional representation of U(Lie(L)+).

Proposition ([FBZ, 16.1.12. Propsition]). There is a unique dg vertex algebra structure on U(L) such that
• the vacuum is |0〉 := 1⊗ 1,
• the translation T is defined by T |0〉 = 0 and [T, x[n]] = −nx[n−1], and

• Y (x[−1] |0〉 , z) =
∑
n∈Z x[n]z

−n−1 for x ∈ L.
Moreover, the correspondence L 7→ U(L) gives a functor that is a left adjoint of the polar part construction
V 7→ VLie in Lemma 4.2.3:

(−)Lie : dgVA ⇄ dgVL : U(−).

We call U(L) the enveloping vertex algebra of L.

Finally let us explain a twisted version of U(L). See [BD, 3.7.20] for the original definition. We note that
the category dgVL of dg vertex algebras is an abelian category.

Definition 4.2.6. Let L be a dg vertex Lie algebra.
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(1) A one-dimensional central extension of L is a dg vertex Lie algebra L♭ which sits in an exact sequence

0 −→ kLie −→ L♭ −→ L −→ 0

in the abelian category dgVL. Here kLie denotes the one-dimensional linear space with trivial dg
vertex Lie algebra structure. We denote by 1♭ ∈ L♭ the image of 1k ∈ kLie.

(2) Assume that we are given a one-dimensional central extension L♭ of L. We define

U(L)♭ := U(L♭)/(1U(L) − 1♭),

where 1♭ denotes the image of 1♭ ∈ L♭ in the enveloping vertex algebra U(L♭). This quotient inherits
the dg vertex algebra structure of U(L♭). We call the resulting dg vertex algebra U(L♭) the twisted
enveloping vertex algebra of L.

(3) U(L) and U(L)♭ inherit the PBW filtration of U(Lie(L)) and U(Lie(L♭)) respectively. We call the
resulting filtration the PBW filtration of the (twisted) enveloping vertex algebra, and denote it by
U(L)•, U(L)♭•.

Example 4.2.7 ([FBZ, 16.1.9]). Consider the vertex Lie algebra vk(g) over C in Example 4.2.4. Recalling
that vk(g) = g[t−1] |0〉 ⊕ C |0〉 as linear spaces, we can check that Lie(vk(g)) is spanned by (xt−1 |0〉)[n]
(n ∈ Z) and |0〉[−1], and the commutation relation is [(xt−1 |0〉)[m], (yt

−1 |0〉)[n]] = ([x, y]gt
−1 |0〉)[m+n] +

k
2h∨mδm+n,0κg(x, y) |0〉[−1]. Thus we have

Lie(vk(g)) ' ĝk, Lie(vk(g))+ ' g[[t]],

where ĝk = g((t))⊕C1 denotes the affine Lie algebra obtained by replacing K in ĝ with k1. Thus U(vk(g)) '
U(ĝ)⊗U(g[[t]]) C.

The linear space L := g[t−1] has a structure of vertex Lie algebra induced by the Lie algebra g((t)).
Explicitly, L is regarded as a subspace of the g((t))-module U(g((t)))⊗U(g[[t]])C, and the vertex Lie structure

is given by T = −∂t and Y−(xt−1, z) =
∑
n∈N(xt

n)z−n−1. We have Lie(L) ' g((t)) and Lie(L)+ ' g[[t]].
Then vk(g) is a one-dimensional central extension of L:

0 −→ CLie −→ L♭ = vk(g) −→ L = g[t−1] −→ 0.

We can identify 1♭ = 1, so that we have U(L)♭ = U(vk(g))/(1− 1♭) ' Vk(ĝ).

4.3. Dg vertex Poisson algebras. Recall that a vertex Poisson algebra is an analogue of Poisson algebra
in the category of vertex algebras. As Poisson algebra is defined to be a combined structure commutative
algebra and Lie algebra, the definition of vertex Poisson algebra is a combination of commutative vertex
algebra and vertex Lie algebra. A vertex Poisson algebra is also regarded as a “classical limit” of a vertex
algebra, as from a Poisson algebra can be obtained from the PBW filtration of the universal enveloping
algebra of a Lie algebra. We refer [FBZ, Chap. 16] for the detail of vertex Poisson algebras.

In this subsection we introduce a dg analogue of vertex Poisson algebras. It is in fact a special case of
coisson algebras discussed in [BD, §2.6]. See also Remark 5.1.1 for more information on this point.

4.3.1. Commutative dg vertex algebras. First we introduce a dg version of commutative vertex algebras.

Definition. A dg vertex algebra V is commutative if the integer N in the locality axiom (Definition 4.1.5)
can be taken to be 0 for any homogeneous a, b ∈ V . In other words, we have [a(m), b(n)] = 0 for any m,n ∈ Z.

We can see that for a commutative dg vertex algebra V , the state-field correspondence satisfies a(n) = 0
for any n ∈ N and a ∈ V . Hereafter we denote a commutative dg vertex algebra by

(V, d, |0〉 , T, Y+) (4.5)

in order to emphasize Y+(a, z) =
∑
n∈Z<0

a(n)z
−n−1 ∈ End(V )[[z]].

Now recall the notion of derivations on a dg algebra (Definition 1.2.10). The non-dg version of the next
statement is due to Borcherds:

Lemma 4.3.1. A commutative dg vertex algebra (V, d, |0〉 , T, Y+) is equivalent to a unital commutative dg
algebra (V, d, ·, |0〉) equipped with an extra 0-derivation T commuting with the differential d.

Proof. As in the non-dg case (see [FBZ, §1.4]), we attach to a commutative vertex algebra structure Y+
the multiplication a · b := a(−1)b, and attach to the differential algebra structure (·, T ) the vertex algebra

structure Y+(a, z)b := (ezT a). □
By this lemma, we can denote the commutative dgva by (4.5) or by

(V, d, |0〉 , T, ·).
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4.3.2. Dg vertex Poisson algebras. We turn to the definition of a dg vertex Poisson algebra. Recall that we
denote by Der(R)n the linear space of n-derivations for a dg algebra R (Definition 1.2.10). For a commutative
dgva (P, d, |0〉 , T, ·), we denote by Der(P, ·)n the corresponding space for the cdga (P, ·). Using this notation,
we have:

Definition 4.3.2. (1) A dg vertex Poisson algebra (dg vpa for short) is a complex (P, d) equipped with
• a structure (P, d, |0〉 , T, Y+) of commutative dgva, or equivalently, a structure (P, d, |0〉 , T, ·) of
unital cdga, and

• a structure (P, d, T, Y−) of dg vertex Lie algebra
such that for any homogeneous a ∈ P we have

Y−(a, z) ∈ (Der(P, ·)|a|)[[z−1]]z−1. (4.6)

We denote it by (P, d, |0〉 , T, ·, Y−) or by (P, d, |0〉 , T, Y+, Y−), or just by P .
(2) Let V be a dg vpa and a ∈ V . We define a(n) for n ∈ Z in the following way.

• For n ≥ 0, we denote by Y−(a, z) =
∑
n≥0 a(n)z

−n−1 the vertex Lie algebra structure.

• For n < 0, we denote by Y+(a, z) =
∑
n<0 a(n)z

−n−1 the commutative vertex algebra structure.

Explicitly we have a(n) =
1

(−n−1)!T
−n−1a.

(3) We have an obvious notion of morphisms of dg vertex Poisson algebras. We denote by dgVP the
category of dg vertex Poisson algebras.

Similarly we have the notions of vertex Poisson superalgebra and vertex Poisson algebra (vpa for short).
Note that the translation T of the commutative vertex algebra structure and that of the vertex Lie algebra

structure are common.
We have notions of dg subalgebras, dg ideals, and tensor products of dg vpas. Details are omitted.
Since the structure maps Y and Y− of a dg vertex Poisson algebras are homogeneous with respect to the

cohomological grading and the differential d has the derivation property both for them, the proof of Lemma
4.1.22 works in the Poisson case, and we have:

Lemma. For a dg vpa V , the cohomology H(V •, d) of the underlying complex has a structure of dg vertex
Poisson algebra with trivial differential, called the cohomology vertex Poisson algebra.

We continue the observation in Remark 4.2.2 (2). For a dg vertex Poisson algebra P = (P, d, |0〉 , T, ·, Y−),
the quotient space P/ Im(T ) has a structure of dg Poisson algebra, of which the commutative multiplication
and the Poisson bracket are given by

a · b := a · b, {a, b} := a(0)b

for a, b ∈ P . The Leibniz rule follows from (4.6). Since we have [d, T ] = 0, the quotient P/ Im(T ) inherits
the dg structure (P, d).

Definition 4.3.3. (1) We call the obtained dg Poisson algebra P/ Im(T ) the associated dg Poisson
algebra of the dg vertex Poisson algebra P . We denote it by

Rco
P := P/ Im(T ).

(2) We denote the functor induced by the construction P 7→ Rco
P by

Rco
(−) : dgVP −→ dgPA,

where dgPA denotes the category of dg Poisson algebras.

We can immediately check that the functor Rco
(−) is a monoidal functor between the corresponding sym-

metric monoidal categories.

Remark. We refer Remark 4.4.6 (3) for the relation to Zhu’s C2-algebra RV of a vertex algebra V .

4.3.3. Vertex Poisson modules. We introduce the notion of modules over dg vertex Poisson algebras, following
the non-dg version given in [A12, §2.2] and [A15, §2.2].

Definition 4.3.4. Let P = (P, d, |0〉 , T, ·, Y−) be a dg vertex Poisson algebra.

(1) A dg vertex Poisson P -module is a complex M = (M•, dM ) equipped with
• a structure P ⊗M →M , a⊗m 7→ a.m of dg module over the cdga (P, ·, |0〉), and
• a morphism of complexes P ⊗M →M [z−1]z−1, a⊗m 7→ YM− (a, z)m =

∑
n∈N(a

M
(n)m)z−n−1

satisfying the following conditions for homogeneous a, b ∈ P , m ∈M and l, n ∈ N.
(i) YM− (|0〉 , z) = idM .
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(ii) (Ta)M(n) = −naM(n−1), where for n = 0 we read the right hand side as 0.

(iii) [aM(l), b
M
(n)] =

∑
i∈N

(
l
i

)
(a(i)b)

M
(l+n−i).

(iv) aM(n)(b.m) = (a(n)b).m+ (−1)|a||b|b.(aM(n)m).

(v) (a · b)M(n) =
∑
l∈N(a(−l−1)b

M
(n+l) + (−1)|a||b|b(−l−1)a

M
(n+l)).

(vi) [dM , Y
M
− (a, z)]m = YM− (da, z)m.

(2) A morphism of dg vertex Poisson P -modules is naturally defined. We denote by P -dgVPMod the
category of dg vertex Poisson P -modules, and by P -dgVPMod the corresponding ∞-category.

(3) A vertex Poisson P -module is a dg vertex Poisson P -module concentrating on the cohomological
degree 0. We denote by P -VPMod the category of vertex Poisson P -modules.

Now we give a vertex Poisson analogue of Fact 4.1.8 on the equivalence of module categories. Let P =
(P, d, |0〉 , T, ·, Y−) be a dg vertex Poisson algebra. Recall the notation a(n) for an element a ∈ P (Definition
4.3.2 (2)). We have the following line of constructions.

(1) We define the complex U ′(P ) to be the quotient of P [t±1] = P ⊗ k[t±1] by the relation (Ta)⊗ tn +
na⊗ tn = 0. We denote the image of a⊗ tn by a[n]. We have a[−n−1] =

1
n! (T

na)[−1] for n ∈ N.
(2) We can define the binary operation · : U ′(P )⊗2 → U ′(P ) by

a[−m−1] · b[−n−1] :=

{(
( 1
m!T

ma) · ( 1
n!T

nb)
)
[−1]

(m,n ∈ N),
0 (otherwise).

Then (U ′(P ), ·) is a cdga with unit |0〉[−1].

(3) We can define the binary operation {−,−} : U ′(P )⊗2 → U ′(P ) by

{a[m], b[n]} :=

{∑
i∈N

(
m
i

)
(a(i)b)[m+n−i] (m,n ∈ N),

0 (otherwise).

Then (U ′(P ), {−,−}) is a dg Lie algebra by the proof of [FBZ, 4.1.2. Theorem].
(4) We can check that (U ′(P ), ·, {−,−}) is a dg Poisson algebra with unit |0〉[−1].

(5) We define U ′′(P ) to be the completion of U ′(P ) with respect to the t-adic topology. Thus we can
regard it as a quotient of P ((t)) = P ⊗k((t)). The completion U ′′(P ) inherits the dg Poisson algebra
structure of U ′(P ). We further define U(P ) := limN U

′′(P )/IN , where IN denotes the left Poisson
ideal generated by a[n] (a ∈ P , n ∈ Z, n > N). It also inherits the dg Poisson algebra structure.

(6) For a ∈ P , we denote Y [a, z] :=
∑
n∈Z a[n]z

−n−1. We define Ũ(P ) to be the quotient of U(P ) with
respect to the relation Y [a(−1)b, z] =: Y [a, z]Y [b, z] :, where the left hand side denotes the normal
ordering (Definition 4.1.14).

(7) A dg Poisson Ũ(P )-module M is called smooth if for any m ∈M and a ∈ P we have a[n].m = 0 for
n� 0.

Now we can apply the same argument in the proof of [FBZ, 5.1.6. Theorem], and we have;

Proposition 4.3.5. For a dg vertex Poisson algebra P , there is an equivalence of the category P -dgPMod

of dg vertex Poisson P -modules and the category of smooth dg Poisson Ũ(P )-modules.

In the following, we will explain three constructions of dg vertex Poisson algebras.
(1) Symmetric algebra of a dg vertex Lie algebra (§4.3.4).
(2) Quasi-classical limit of a dg vertex algebra (§4.3.5).
(3) Level 0 vertex Poisson structure on the arc space of a dg Poisson algebra (§4.3.6).
(4) Associated graded space of Li filtration of a vertex algebra (§4.4).

4.3.4. Symmetric vertex Poisson algebra of vertex Li algebra. We first explain the symmetric algebra con-
struction. See also [FBZ, 16.2.2] and [BD, 1.4.18].

Let L = (L•, d, TL, Y
L
− ) be a dg vertex Lie algebra. Regarding L as a complex, we denote by

P := Sym(L)

the symmetric algebra, which is a commutative dg algebra. Then P has a structure (|0〉 , T, Y−) of dg vertex
Poisson algebra where

• the vacuum |0〉 is the unit element of P ,
• the translation T is the extension of TL to P by the Leibniz rule and the condition T |0〉 = 0. and
• the operation Y− is uniquely determined by the condition that the injection L ↪→ P is a morphism
of dg vertex Lie algebras and by the derivation condition.
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The following statement can be regarded as a vertex analogue of Remark 1.3.12 (3) on the momentum
map. We omit the proof.

Lemma. Let L be a dg vertex Lie algebra, P be a dg vertex Poisson algebra, and µ : L→ P be a morphism
of dg vertex Lie algebras. Then we have a unique morphism Sym(L) → P of dg vertex Poisson algebras such
that the restriction to L coincides with µ.

We have a twisted version which is similar as §2.2 (1). Let L be a dg vertex Lie algebra, and assume
that we are given a one-dimensional central extension L♭. In other words, we have a short exact sequence
0 → k → L♭ → L → 0 of dg vertex Lie algebras, where k is the one-dimensional trivial vertex Lie algebra.
Regarding L♭ as a complex, we define

Sym♭(L) := Sym(L♭)/I

to be the quotient of the symmetric algebra Sym(L♭) by the ideal I generated by the difference of embeddings
k = Sym(L♭)0 ↪→ Sym(L♭) and k ↪→ l♭ = Sym(L♭)1 ↪→ Sym(L♭). It inherits the dg vertex Poisson structure
from Sym(L♭).

For later reference, we name the obtained dg vertex Lie algebras as:

Definition 4.3.6. Let L be a dg vertex Lie algebra.
(1) W call the dg vertex Poisson algebra Sym(L) the symmetric dg vpa.
(2) Assume that we are given a one-dimensional central extension L♭ of L. We call the dg vertex Poisson

algebra Sym♭(L) the twisted symmetric dg vpa.

4.3.5. Quasi-classical limit construction. Next we turn to the second construction by a quasi-classical limit
of a vertex superalgebra. See [FBZ, 16.2.3–7] for the detail. Here we only explain a particular case.

Let U be a complex, and consider the free fermionic vertex algebra
∧∞

2 (U) in Definition 4.1.25. We use

the linear basis {ψi | i ∈ I} of U and the dual basis {ψ∗
j | j ∈ I} of U∗ therein. In particular,

∧∞
2 (U) has a

basis consisting of PBW monomials (4.2).
We define

∧
ℏ to be the k[ℏ−1]-lattice spanned by the rescaled monomials

ℏ−k(ψi1tm1) · · · (ψiktmk)(ψ∗
j1t

n1−1dt) · · · (ψ∗
jl
tnl−1dt) |0〉 (m1 < · · · < mk < 0, n1 < · · · < nl ≤ 0).

In other words, we shift ψi 7→ ℏ−1ψi and preserve ψ∗
j . Then we set∧∞

2 (U) :=
∧

ℏ /ℏ−1
∧

ℏ .

The image of the generators are denoted by ψit
m and ψ

∗
j t
n−1dt. It inherits the left dg Cl-module structure

of
∧∞

2 (U), and has an action of the dg subalgebra of Cl[ℏ−1] generated by

ψit
m := ℏψitm, ψ

∗
j t
n−1dt := ψ∗

j t
n−1dt.

The commutation relations of these generators are

[ψit
m, ψ

∗
j t
n−1dt] = δi,jδm+n,0, [ψit

m, ψjt
n] = 0 = [ψ

∗
i t
m−1dt, ψ

∗
j t
n−1dt].

Thus the complex
∧∞

2 (U) has a linear basis consisting of the elements of the form

(ψi1t
m1) · · · (ψikt

mk)(ψ
∗
j1t

n1−1dt) · · · (ψ∗
jl
tnl−1dt) |0〉 (m1 < · · · < mk < 0, n1 < · · · < nl ≤ 0).

The complex
∧∞

2 (U) has a structure of dg vertex Poisson algebra induced by the dg vertex algebra

structure on
∧∞

2 (U). As a commutative dg algebra, it is isomorphic to Sym
(
U((t))[1]⊕U∗((t))[−1]dt

)
, and

the differential is given by ∂t. The vertex Lie algebra structure Y− is determined by

Y−(ψit
−1 |0〉 , z) = ψi(z) :=

∑
l∈N

(ψit
l)z−l−1, Y−(ψ

∗
j t

−1dt |0〉 , z) = ψ
∗
j (z) :=

∑
l∈N

(ψ
∗
j t
l)z−l−1,

Y−(ψit
m |0〉 , z) = 1

(−m−1)!∂
−m−1
z ψi(z), Y−(ψ

∗
j t
n−1dt |0〉 , z) = 1

(−n)!∂
−n
z ψ

∗
i (z).

It also inherits the charge grading
∧∞

2 +•
(U) given by charge(ψit

m) = −1, charge(ψit
n−1dt) = 1. We denote∧∞

2 (U) to emphasize this charge grading.

Definition 4.3.7. We call the obtained dg vertex Poisson algebra
∧∞

2 (U) the free fermionic vertex Poisson
algebra.



DERIVED GLUING CONSTRUCTION OF CHIRAL ALGEBRAS 49

We can check that the associated dg Poisson algebra (Definition 4.3.3) is the classical Clifford algebra
Cl(U) (Definition 2.2.1).

4.3.6. Vertex Poisson structure of arc space. We cite from [A12, §2.3] the third construction of a dg vertex
Poisson algebra via the arc space of a dg Poisson algebra. Recall the arc space J∞(R) of a commutative dg
algebra R (Definition 3.2.5). We denote by T the 0-derivation on J∞(R).

Proposition 4.3.8. For a dg Poisson algebra R which is of finite type as a commutative algebra, there is
a unique dg vertex Poisson algebra structure on J∞(R) such that

u(n)(T
lv) =

{
l!

(l−n)!T
l−n{u, v}R (l ≥ n),

0 (l < n).
(4.7)

for u, v ∈ R ⊂ J∞(R) and l ∈ N. It is called the level 0 dg vertex Poisson algebra.

Proof. We follow the proof of the non-dg case given in [A12, Proposition 2.3.1]. By the formula (4.7), we
have a well-defined morphism of complexes

R −→ Der(J∞(R))[[z−1]]z−1, u 7−→ u−(z) :=
∑
n∈N u(n)z

−n−1.

We obviously have u−(z) ∈ Der(J∞(R))|u|[[z−1]]z−1 for homogeneous u ∈ R, and can check the conditions
(i)–(iv) in Definition 4.2.1 of dg vertex Lie algebra structure (see Proof of Lemma 4.2.5). This morphism is
extended to Y−(−, z) : J∞(R) → Der(J∞(R))[[z−1]]z−1 by

Y−(a, z)(T
lu) :=

(
ezT (−∂z)lu−(−z)a

)
−

for a ∈ J∞(R), u ∈ R and l ∈ N. By [A12, Proposition 2.3.1], we know that it defines a vertex Poisson
superalgebra structure on the associated commutative superalgebra J∞(R)even⊕J∞(R)odd. Thus it remains
to check the condition (iv) in Definition 4.2.1 and the condition Y−(a, z) ∈ Der(J∞(R))|a|[[z−1]]z−1 for
homogeneous a ∈ J∞(R), which are obvious. □

Hereafter we regard J∞(R) as the level 0 vertex Poisson algebra unless otherwise stated. Recall the
associated dg Poisson algebra Rco

P for a dg vertex Poisson algebra P (Definition 4.3.3). By the construction,
we have:

Lemma 4.3.9. For a commutative dg algebra R of finite type, we have

Rco
J∞(R) ' R.

Example 4.3.10. Let l be a dg Lie algebra and consider the Kostant-Kirillov dg Poisson algebra R = Sym(l)
(Notation 1.3.10). Then we have the level 0 vertex Poisson superalgebra J∞(Sym(l)).

By Remark 3.1.4 of the description of J∞(Sym(l)), we have

J∞(Sym(l)) ' Sym(l[[t]])

as commutative dg algebras, where l[[t]] = l⊗k[[t]] is the tensor product in dgVec. Let us denote an element
of l[[t]] by xf := x⊗ f with x ∈ l and f = f(t) ∈ k[[t]]. Then the level 0 dg vertex Poisson structure is given
by

(xf)(n)(yg) = δn,0[x, y]l ⊗ (fg).

This is nothing but the standard Lie algebra structure on l[[t]]. We can also check that the vertex Lie algebra
structure on the restriction l[[t]] = Sym(l[[t]])1 ↪→ J∞(Sym(l)) coincides with the level 0 vertex Lie algebra
J∞(l) in Lemma 4.2.5 (compare (4.4) and (4.7)). Thus we have an isomorphism of dg vertex Poisson algebras

J∞(Sym(l)) ' Sym(J∞(l)),

where the right hand side denotes the symmetric vertex Poisson algebra (Definition 4.3.6).

Recall the twisted symmetric vertex Poisson algebra Sym♭(L) for a dg vertex Poisson algebra (Definition

4.3.6). Using this construction, we can recover the free fermion vertex Poisson algebra
∧∞

2 (U) in Definition
4.3.7. The present construction is in fact a coordinate-dependent version of the Clifford coisson algebra in
[BD, 1.4.21].

Let U be a complex. We denote by U∗ = Hom(U, k) the dual complex, and by 〈·, ·〉 : U∗ ⊗ U → k
the natural pairing. We also denote J∞(U) := U [[t]] and consider it as a dg vertex Lie algebra attached
to the trivial dg Lie algebra U . (Lemma 4.2.5). Similarly we have a dg vertex Lie algebra J∞(U)∗ =
U∗[[t−1]], and the direct sum J∞(U)[1] ⊕ J∞(U)∗[−1]. By the pairing 〈·, ·〉, we have a one-dimensional
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central extension of the direct sum, and thus we have the twisted symmetric dg vertex Poisson algebra

Sym♭
(
J∞(U)[1]⊕ J∞(U)∗[−1]

)
.

Definition 4.3.11. For a complex U , we denote the above dg vertex Poisson algebra by

Clco(J∞(U)) := Sym♭
(
J∞(U)[1]⊕ J∞(U)∗[−1]

)
and call it the Clifford vertex Poisson algebra.

By comparing the description in §4.3.5, we have

Clco(J∞(U)) '
∧∞

2 (U)

as dg vertex Poisson algebras. In particular, we have:

Corollary 4.3.12. The associated dg Poisson algebra (Definition 4.3.3) of Clco(J∞(U)) coincides with the
classical Clifford algebra Cl(U):

Rco
Clco(J∞(U)) ' Cl(U)

Using Clco(J∞(U)) we will introduce coisson BRST reduction in the following §5.

Remark 4.3.13. In some literature such as [FBZ, §16.7], what we call coisson BRST reduction is called the
classical BRST reduction. In that terminology Clco(J∞(U)) should be called the classical Clifford algebra,
conflicting our terminology (Definition 2.2.1).

4.4. Li filtration. In this subsection we introduce the Li filtration for a dg vertex algebra. Main references
are [Li05] and [A15].

4.4.1. Definition. In the following we use:

Notation. For a linear space V and a subset S ⊂ V , we denoted by 〈S〉lin the linear subspace spanned by
the elements in S. In the case S = {si | i ∈ I}, we also denote it by 〈si | i ∈ I〉lin.

For a dg vertex algebra V , a ∈ V , and a dg V -module M , we denote YM (a, z) =
∑
n∈Z a

M
(n)z

−n−1 as

before. Then we define a linear subspace F pM ⊂M by

F pM :=
〈
(aM1 )(−n1−1) · · · (aMr )(−nr−1)m | m ∈M, r ∈ Z>0, ai ∈ V, ni ∈ N,

∑r
i=1 ni ≥ p

〉
lin
.

Then we have a decreasing filtration M = F 0M ⊃ F 1M ⊃ F 2M ⊃ · · · of linear spaces. By induction using
a(n)M

i ⊂ M i+j and dM (aM(n)m) = (dV a)(n)m + (−1)|a|a(n)(dMm) in Definition 4.1.21 of dg V -module, we

can check that the differential dM preserves the Li filtration: dM (F pM) ⊂ F pM for any p ∈ Z. Thus F •M
is in fact a filtration of complexes.

Definition 4.4.1 ([Li05, Definition 2.7, Lemma 2.8]). For a dg vertex algebra V and a dg V -module M , we
call the decreasing filtration of complexes

M = F 0M ⊃ F 1M ⊃ F 2M ⊃ · · ·
the Li filtration of M . In particular, we can take M := V and have the Li filtration of V :

V = F 0V ⊃ F 1V ⊃ F 2V ⊃ · · · .

Below we set F pM :=M for p ∈ Z<0.

Lemma 4.4.2 ([Li05, Lemma 2.9, Proposition 2.11]). Let V and M be as in Definition 4.4.1.
(1) For any p ∈ Z≥1, we have

F pM =
〈
a(−i−1)m | a ∈ V, i ∈ Z, 1 ≤ i ≤ p,m ∈ F p−iM

〉
lin
.

In particular, taking M := V , we have

F 1V = C2(V ) :=
〈
a(−2)b | a, b ∈ V

〉
lin
.

(2) a(n)F
qM ⊂ F p+q−n−1M for any p, q ∈ Z, a ∈ F pV and n ∈ Z.

(3) a(n)F
qM ⊂ F p+q−nM for any p, q ∈ Z, a ∈ F pV and n ∈ N.

(4) T (F pV ) ⊂ F p+1V for any p ∈ Z.

By these properties of the Li filtration, we have a canonical construction of vertex Poisson algebra from
any vertex algebra. We follow [A15] for the notation.

Fact 4.4.3 ([Li05, Theorem 2.12]). Let V = (V, d, |0〉 , T, Y ) be a dg vertex algebra.



DERIVED GLUING CONSTRUCTION OF CHIRAL ALGEBRAS 51

(1) The associated graded space

grF V :=
⊕

p∈N F
pV/F p+1V

is a commutative dg algebra equipped with an additional 0-derivation δ given by

σp(a) · σq(b) := σp+q(a(−1)b), δσp(a) := σp+1(a(−2) |0〉) = σp+1(T (a))

Here σp : F
pV ↠ F pV/F p+1V denotes the projection.

(2) grF V has a structure of dg vertex Poisson algebra whose commutative dg vertex algebra structure
is given by (1) and Lemma 4.3.1, and whose dg vertex Lie algebra structure is given by

σp(a)(n)σq(b) := σp+q−n(a(n)b) (n ∈ N).

Here we understand σr(a) = 0 for r < 0.

Precisely speaking, the statement in [Li05, Theorem 2.12] is for the non-dg case, but the same proof works
in the dg case.

For a morphism φ : V → W of dg vertex algebras, we have φ(F pV ) ⊂ F pW , which induces a morphism
grF V → grF W of dg vertex Poisson algebras. Thus we obtain:

Lemma 4.4.4. Taking the associated graded space of the Li filtration, we have a functor

grF : dgVA −→ dgVP.

It is a monoidal functor of the symmetric monoidal structures.

As a corollary of Fact 4.4.3, we have a dg Poisson algebra on the quotient F 0V/F 1V . Following the
terminology in [A12, A], we give:

Definition 4.4.5. Let V be a dg vertex algebra.
(1) The complex

RV := F 0V/F 1V = V/C2(V ) ⊂ grF V

has a structure of dg Poisson algebra whose multiplication · and Poisson bracket {−,−} are given
by

a · b := a(−1)b, {a, b} := a(0)b.

Here a := σ0(a) denotes the image of a ∈ V in RV . The resulting dg Poisson algebra RV is called
Zhu’s C2-algebra of V .

(2) We denote the functor induced by the construction V 7→ RV by

R(−) : dgVP −→ dgPA,

where dgPA denotes the category of dg Poisson algebras.
(3) If RV is concentrated in negative cohomological degrees, then we denote the corresponding affine

derived Poisson scheme by

XV := Spec(RV )

and call it the associated derived scheme of V .

If V is a plain vertex algebra, i.e., concentrated in cohomological degree 0, then RV is a Poisson alge-
bra, and we call the corresponding affine Poisson scheme XV the associated scheme, which recovers the
terminology in [A15, A].

Remark 4.4.6. (1) In the non-dg case, the Poisson algebra RV was introduced by Y. Zhu to give a
nice finiteness condition on vertex operator algebras [Z96, §4.4].

(2) We can confirm the Poisson structure directly by using Remark 4.1.6 (1).
(3) We can easily find that Zhu’s C2-algebra RV coincides with the associated dg Poisson algebra of

grF V (Definition 4.3.3):

RV ' Rco
grF V .

Example 4.4.7 ([A15, Lemma 4.5]). Let us consider the free fermionic vertex algebra
∧∞

2 (U) (Definition
4.1.25) for a complex U . Using the commutation relation (4.1) and the linear basis (4.2), we can check

grF
∧∞

2 (U) '
∧∞

2 (U)
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as dg vertex Poisson algebras, where the right hand side denotes the free fermionic vertex Poisson algebra
(Definition 4.3.7). In particular, on Zhu’s C2-algebras we have

R∧∞/2(U) ' Cl(U)

as dg Poisson algebras, where Cl(U) denotes the classical Clifford algebra (Definition 2.2.1).

For later use, let us recall:

Definition 4.4.8. A vsa V is separated if
⋂
n∈N F

nV = 0.

By [Li05, Proposition 3.9], if a vertex algebra V has a lower truncated Z-gradation (i.e., there is some
n ∈ Z such that V is Z≥n-graded), then it is separated.

4.4.2. The case of universal affine vertex algebra. Let us explain the notions introduced so far in the case of
the universal affine vertex algebra (§4.1.4).

Recall Notation 4.1.12 and Definition 4.1.13. In particular
• g is the Lie algebra of the semi-simple algebraic group over C, and
• ĝ = g((t))⊕ CK is the the derived algebra of the non-twisted affine Lie algebra associated to g.
• Vk(g) is the universal affine vertex algebra at level k ∈ C.

Let {xi | i = 1, . . . , dim g} be a linear basis of g. Then we have a PBW basis of Vk(g) (Fact 4.1.15): It
consists of monomials of the form (xi1t

n1) · · · (xiltnl) |0〉, where n1 ≤ · · · ≤ nl < 0 and if nj = nj+1 then
ij ≤ ij+1.

Recall Definition 4.4.1 of the Li filtration F •Vk(g). By the remark after Definition 4.4.8, we find that
F •Vk(g) is separated. Also recall Zhu’s C2-algebra RVk(g) := Vk(g)/F

1Vk(g) (Definition 4.4.5). By the PBW
basis above we find that the set {xitn | i = 1, . . . , dim g, n ∈ Z<0} generates RVk(g) as a commutative algebra,

and that we have F 1Vk(g) = g[t−1]t−2Vk(g). Then we further find that there is an isomorphism

Sym(g)
∼−→ RVk(g) = Vk(g)/F

1Vk(g), x 7−→ (xt−1) |0〉 (4.8)

of commutative algebras. By checking the Poisson brackets on both sides, we have (1) in the following fact.

Fact 4.4.9 ([A12, Proposition 2.7.1]). (1) The map (4.8) gives the following isomorphism of Poisson
algebras.

Sym(g)
∼−→ RVk(g).

(2) The same map induces an isomorphism

J∞(Sym(g))
∼−→ grF Vk(g)

of vertex Poisson algebras, where the left hand side denotes the level 0 vertex algebra (Fact 4.3.8)
associated to the Kirillov-Kostant Poisson algebra Sym(g).

In particular, both RVk(g) and grF Vk(g) are independent of the level k. See [A12, Proposition 2.7.1] for
a proof of this fact.

Finally we consider the module category of J∞(Sym(g)). By Proposition 4.3.5 a vertex Poisson module
is equivalent to a smooth Poisson module of the associated Poisson algebra. By the construction in §4.3.3,
we can check:

Lemma. As Poisson algebras we have Ũ(J∞(Sym(g))) ' Sym(g[[t]]), where the latter denotes the Kirillov-
Kostant Poisson algebra for the Lie algebra g[[t]].

Then by the definition of smooth Poisson modules (§4.3.3 (7)), we can restate Proposition 4.3.5 as:

Proposition 4.4.10. A vertex Poisson module over J∞(Sym(g)) is equivalent to a smooth representation
of the Lie algebra g[[t]], i.e., a representation M such that (xtn).m = 0 for any x ∈ g, m ∈M and n� 0.

5. Coisson BRST reduction and gluing procedure for arc spaces

In this section we introduce the BRST reduction for dg vertex Poisson algebras and a dg vertex Poisson
analogue of the category MT.
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5.1. Coisson BRST complex. In this subsection we introduce the BRST complex for dg vertex Poisson
algebras. The construction is a natural analogue of classical BRST complex in §2.2. We work over a field k
of characteristic 0 in this subsection.

Remark 5.1.1. Our argument is in fact a coordinate-dependent version of the arguments in [BD, 1.4.21–26],
where the BRST complex is introduced for coisson algebras. Let us give a brief comment on the theory of
coisson algebras. See [BD, 0.15, 2.6, 3.8.6] and [FG12] for the detail, and also [FBZ, Chap. 19] for a related
exposition.

Let X be a smooth algebraic curve. We denote by DMod(X) the derived (∞-)category of right D-modules
on X. A right D-module M on the Ran space Ran(X) of X is a family of right D-modules MXI over XI

for finite sets I satisfying a compatibility condition for every surjection I ↠ J . Theres is a notion of
the derived (∞-)category DMod(Ran(X)) over Ran(X), and we have a natural fully faithful embedding
ι : DMod(X) → DMod(Ran(X)). On the derived category DMod(Ran(X)), we can also construct two
structures of symmetric monoidal categories denoted by ⊗! and ⊗⋆. The monoidal structure ⊗! is equivalent
to the standard one on left D-modules on X, and the other structure ⊗⋆ is designed to reflect operator
product expansion nicely. A Lie algebra object in the monoidal category DMod(Ran(X))⊗

⋆

which lies in the
essential image of ι is called a ?-Lie algebra on X. Similarly, we have the notion of !-commutative algebra
on X. Then a coisson algebra over X is a “compound Poisson algebra object” in DMod(Ran(X)), i.e., a
combination of !-commutative ring structure and ?-Lie algebra structure.

A vertex Lie algebra is equivalent to a ?-Lie algebra on X = A1 which is equivariant under the action
of affine transformations of A1. Similarly, a vertex Poisson algebra is equivalent to an equivariant coisson
algebra on A1. Below we introduce the BRST complex for vertex Poisson algebras by replacing “Lie algebra”
in the argument on classical BRST complex with “?-Lie algebra”, or “vertex Lie algebra”.

Recall that for a dg Lie algebra l, we have a contractible dg Lie algebra l† (§1.2.4). By the same way,
for a dg vertex Lie algebra L, we have a dg vertex Lie algebra structure on the contractible complex
Cone(idL) = L⊕ L[1], which will be denoted by L†.

Let l be a dg Lie algebra, and L := J∞(l) be the level 0 vertex Lie algebra (Lemma 4.2.5). As a complex

we have L ' l[[t]]. Recall also the Clifford vertex Poisson algebra Clco(J∞(l)) = Sym♭
(
L[1] ⊕ L∗[−1]

)
in

Definition 4.3.11,
Using these notations, we have the following vertex Poisson analogue of Lemma 2.2.2. We omit the proof.

Lemma. Let l be a dg Lie algebra, L := J∞(l), P be a dg vertex Poisson algebra, and µco : L → P be a
morphism of dg vertex Lie algebras.

(1) The adjoint action of L := J∞(l) = l[[t]] on itself as a dg Lie algebra yields a morphism β : L →
Clco(L) of dg vertex Lie algebras as a composition

β : L −→ L⊗ L∗ ∼−→ L[1]⊗ L∗[−1] ↪−→ Clco(L)
0.

(2) Let

` : L† −→ Clco(L)⊗ P

be the morphism of complex given by

`0 := 1⊗ µco + β ⊗ 1: L −→ Clco(L)
0 ⊗ P, `−1 : L[1] ↪−→ Clco(L)

−1 −→ Clco(L)⊗ P.

Then ` is a morphism of dg vertex Lie algebras.
(3) We define the following elements.

• µ̃co ∈ L∗ ⊗ P ⊂ (Clco(L)⊗ P )1 is the element corresponding to µco.
• β′ ∈ L∗ ⊗ Clco(L)

0 is the element corresponding to β.
• β′′ ∈ Clco(L)

1 is the image of β′ by the product map L∗[−1]⊗ Clco(L) → Clco(L).

• β̃ ∈ (Clco(L)⊗ P )1 is the image of β′′ by Clco(L) → Clco(L)⊗ P .
Then the coisson BRST charge

Qco := µ̃co +
1
2 β̃ ∈ (Clco(L)⊗ P )1

satisfies (Qco)(0)
2
= 0, where Y−(Qco, z) =

∑
n∈N(Qco)(n)z

−n−1 denotes the vertex Lie algebra
structure of Clco(L)⊗ P .

Now we can introduce:

Definition 5.1.2. Let l be a dg Lie algebra, and P be a dg vertex Poisson algebra.
(1) We call a morphism µco : J∞(l) → P of dg vertex Lie algebras a coisson momentum map.
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(2) Given a coisson momentum map µco : J∞(l) → P , we define the coisson BRST complex to be the
dg vertex Poisson algebra

BRSTco(J∞(l), P, µco) := (Clco(J∞(l))⊗ P, dco),

consisting of the followings.
• Clco(J∞(l)) ⊗ P denotes the tensor product as graded vertex Poisson algebra (forgetting the

differential).
• The differential is given by dco := (Qco)(0) + dClco(J∞(l))⊗P , where the second term is the
differential of the tensor product as complex.

(3) Given a coisson momentum map µco : J∞(l) → P , the cohomology of the coisson BRST complex
BRSTco(J∞(l), P, µco) is denoted by

H
∞
2 +•

co (J∞(l), P, µco) := H• BRSTco(J∞(l), P, µco),

which is a graded Poisson algebra.

Remark 5.1.3. A coisson momentum map µco in our sense is called a chiral momentum map in [A].

The coisson BRST complex satisfies similar properties as in Lemma 2.2.4.
Let l be a dg Lie algebra, R be a dg Poisson algebra, and µ : l → R be a momentum map. Then we

have the symmetric vertex Poisson algebra J∞(Sym(l)) = Sym(J∞(l)) and the level 0 vertex Poisson algebra
J∞(R), and µ induces a coisson momentum map

J∞(µ) : J∞(Sym(l)) −→ J∞(R).

Then we have:

Lemma. For l, R, µ as above, the associated dg Poisson algebra (Definition 4.3.3) of the coisson BRST
complex BRSTco(l, J∞(R), J∞(µ)) is isomorphic to the classical BRST complex BRSTcl(l, R, µ).

5.2. Coisson gluing procedure. In this part we give an analogue of the discussion in §2.4 for arc spaces.
We basically follow the argument in [A, §3], but with a slight modification. We work over C here.

As in §2.4, let G be a simply connected semisimple algebraic group. We denote by g := Lie(G) the Lie
algebra of G. We have the affine Poisson scheme g∗ whose coordinate ring is Sym(g) with the Kirillov-Kostant
Poisson structure.

Let us consider the arc space
J∞(g∗) = Spec

(
J∞(Sym(g))

)
.

Recall that the arc space J∞(G) of G is isomorphic to the proalgebraic group G[[t]] (Lemma 3.1.8). We denote
its Lie algebra by J∞(g) := g[[t]]. The coadjoint action of G on g extends to an action of J∞(G) ' G[[t]] on

J∞(g∗). Thus, using Notation 2.4.1, we have the category QCohJ∞(G)(J∞(g∗)).
On the other hand, by Fact 4.3.8, we can regard J∞(Sym(g)) as a vertex Poisson algebra. Recall Propo-

sition 4.4.10: The category J∞(Sym(g))-VPMod of vertex Poisson modules is equivalent to the category of
smooth representations of the Lie algebra J∞(g) = g[[t]]. Then, by the same argument as in §2.4, we have
the equivalence of categories

QCohJ∞(G)(J∞(g∗)) ' J∞(Sym(g))-VPModlf ,

where P -VPModlf denotes the full subcategory of P -VPMod spanned by those objects on which the adjoint
action of J∞(g) is locally finite.

The next lemma is an arc space analogue of Lemma 2.4.3, which can be proved by a quite similar argument
and we omit the detail.

Lemma 5.2.1. Let G and g = Lie(G) be as above. A Poisson algebra object in the symmetric monoidal

category QCohJ∞(G)(J∞(g∗)) is equivalent to a vertex Poisson algebra P equipped with a vertex Poisson
algebra morphism µco : Sym(g) → P under which the adjoint action of J∞(g) = g[[t]] is locally finite.

In view of this lemma, we set:

Definition 5.2.2. A Poisson algebra object in L
J∞(G)
QCoh (J∞(g∗)) is a dg Poisson vertex algebra P equipped

with a coisson momentum map µP : J∞(Sym(g)) → P under which the adjoint action of J∞(g) = g[[t]] is
locally finite. We denote such an object by (P, µP ).

Remark. A genuine definition should be given in terms of “homotopy vertex Poisson algebra”, which would
be the combination of “homotopy vertex Lie algebra” structure and cdga structure. We will come back to
this point in a future work.
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We are now interested in a vertex Poisson analogue of the category MT (Definition 2.3.1). It is enough
to consider the composition of morphisms. Following Proposition 2.4.5 of the relation between the derived
Hamiltonian reduction and the classical BRST complex, we will define the coisson gluing of vertex Poisson
algebras by the coisson BRST complex. For that, some preparations are in order:

• Let g1 and g2 be the Lie algebras of semisimple algebraic groups G1 and G2 respectively. For a

Poisson algebra object (P, µP ) in L
J∞(G1×G2)
QCoh (J∞(g∗1 × g∗2)) we define

µiP : J∞(Sym(gi)) −→ P (i = 1, 2)

by µ1
P (x) = µP (x⊗1) for x ∈ g1 and µ

2
P (y) = µP (1⊗y) for y ∈ g2. Here we used J∞(Sym(g1⊕g2)) '

J∞(Sym(g1))⊗ J∞(Sym(g2)).
• For a dg vertex Poisson algebra P = (P, d, |0〉 , T, Y+, Y−), we denote by P op the opposite dg vertex
Poisson algebra of P . Explicitly, it is given by

P op := (P, d, |0〉 ,−T, Y op
+ , Y op

− )

with Y op
± (a, z) := Y±(a,−z).

Definition 5.2.3. Let g1, g2 and g3 be the Lie algebras of semisimple algebraic groups G1, G2 and G3

respectively. Let (P, µP ) and (P ′, µP ′) be Poisson algebra objects in LGQCoh(g
∗
1 × g∗2) and in LGQCoh(g

∗
2 × g∗3)

respectively. We define the Poisson algebra object P ′ ◦̃ P in LGQCoh(g
∗
1 × g∗3) by

P ′ ◦̃ P := BRSTco(J∞(g2), P
op ⊗ P ′, µco).

with µco := −µ2
P + µ1

P ′ . The coisson momentum map J∞(Sym(g1 ⊕ g3)) → P ′ ◦̃ P is naturally induced by
the given µ1

P and µ3
P ′ . We call P ′ ◦̃ P the coisson gluing of P and P ′.

Here is our definition of vertex Poisson analogue of MT:

Definition 5.2.4. We define the category MTco by the following description.
• An object is a simply connected semi-simple algebraic group G over C. We identify it with the
associated Lie algebra g.

• A morphisms from g1 to g2 is a Poisson algebra object (P, µP ) in LGQCoh(g
∗
1 × g∗2).

• The composition of (P, µP ) ∈ HomMTco
(g1, g2) and (P ′, µP ′) ∈ HomMTco

(g2, g3) is given by the
coisson gluing P ′ ◦̃ P .

Let us study the compatibility with the derived gluing (Definition 2.3.1). Recall the monoidal functor
Rco

(−) : dgVP → dgPA taking the associated dg Poisson algebra (Definition 4.3.3). Applying it to a coisson

momentum map µco : J∞(g) → P and using Lemma 4.3.9, we have a morphism µ := Rco
µco

: Sym(g) → Rco
P

of dg Poisson algebra, which is equivalent to a momentum map µ : g → Rco
P . We also have Rco

P op ' (Rco
P )op,

where the second term denotes the opposite dg Poisson algebra (Definition 2.1.5), and Rco
Clco(J∞(g)) = Cl(g)

by Corollary 4.3.12. Combining these facts, we obtain:

Proposition 5.2.5. Let P , P ′ and µco : J∞(Sym(g2)) → P op ⊗ P ′ be as in Definition 5.2.3, and define
µ = Rco

µco
: g2 → (Rco

P )op ⊗Rco
P ′ as above. Then we have

Rco
P ′◦̃P ' BRSTcl(g2, (R

co
P )op ⊗Rco

P ′ , µ)

as dg Poisson algebras.

In particular, combining it with Proposition 2.4.5, we have a quasi-isomorphism of homotopy Poisson
algebras

Rco
P ′◦̃P '

qis
Rco
P ′ ◦̃Rco

P = ((Rco
P )op ⊗Rco

P ′)//Lµ Sym(g).

In other words, we have:

Theorem 5.2.6. The functor Rco
(−) : dgVP → dgPA taking the associated dg Poisson algebra induces a

functor

Rco
(−) : MTco −→ MT.

In the remaining part we consider coisson analogue of Hamiltonian reduction of Poisson algebra objects.
Recall Definition 2.1.13 of the derived Hamiltonian reduction: For a dg Lie algebra l, a dg Poisson algebra
R and a momentum map µ : l → R we have R//Lµ Sym(l) := CE(l, k) ⊗L

CE(l,Sym(l)) CE(l, R). It is natural to

guess that in the coisson setting we replace the dg Lie algebra l by the level 0 vertex Lie algebra J∞(l).
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We should be careful here that as a Lie algebra J∞(g) = g[[t]] is infinite-dimensional. Recalling Proposition
2.2.10, we modify Definition 1.2.13 of Chevalley-Eilenberg complex as

CE(g[[t]],M) := Homrst
U(g[[t]])(U(g[[t]]†),M)

for a dg g[[t]]-module M , where Homrst is given by Definition 2.2.9 with the abelian group Γ = Z and the
decomposition g[[t]] =

⊕
n∈N g⊗ tn. Using this modified Chevalley-Eilenberg complex, we consider:

Definition. For a Poisson algebra object (P, µco) of L
J∞(G)
QCoh (J∞(g∗)), we define a commutative dg algebra

P//Lµco
J∞(Sym(g)) := CE(g[[t]], k)

⊗L
CE(g[[t]],J∞(Sym(g))) CE(g[[t]], P ),

where P is regarded as a g[[t]]-module by µco. We call it the coisson Hamiltonian reduction of P with respect
to the coisson momentum map µco.

Then we can apply the argument in Proposition 2.2.10 to the finite-dimensional decomposition J∞(g) =
g[[t]] =

⊕
n∈N g⊗ tn. Since we have BRSTcl(g[[t]], P, µco) ' BRSTco(J∞(g), P, µco) as cdgas, we have:

Proposition 5.2.7. Let G and g be as above. For a Poisson algebra object (P, µco) in L
J∞(G)
QCoh (J∞(g∗)), we

have a quasi-isomorphism of cdgas

P//Lµco
J∞(Sym(g)) '

qis
BRSTco(J∞(g), P, µco).

Remark 5.2.8. Let us continue Remark 2.4.6, where we considered the reduction of a Poisson algebra with
Hamiltonian G-action. Here we consider the action of J∞(G) = G[[t]] on the arc space instead.

We use the same notation in Remark 2.4.6. Thus, (R,µR) is a Poisson object in QCohG(g∗), and identified
with (X := Spec(R), µX : X → g∗). We assume that there is a closed subscheme S ⊂ X such that the action

map gives an isomorphism G × S
∼−→ X, and that the momentum map µX is flat. Note that the spectrum

J∞(R) of the arc space J∞(X) is a Poisson algebra object in QCohJ∞(G)(J∞(g∗)), and the corresponding
coisson momentum map (Definition 5.1.2) is given by J∞(µX) : J∞(X) → J∞(g∗).

Let (P ′, µP ′) be another Poisson algebra object in QCohJ∞(G)(J∞(g∗)), which will be identified with
(Y ′ := Spec(P ′), µY ′). Then we can consider the tensor product J∞(R)op⊗P ′ with coisson momentum map
µco : J∞(X)op × Y ′ → J∞(g∗), µco(x, y) := −J∞(µX)(x) + µY ′(y). By the assumption we have X ' G× S,
so that we also have J∞(X) ' J∞(G)× J∞(S) as schemes. Thus the fiber µ−1

co (0) is given by

µ−1
co (0) ' J∞(X)×J∞(g∗) Y

′ ' J∞(G)× (J∞(S)×J∞(g∗) Y
′).

Now let us further assume that the morphism J∞(µX) : J∞(X) → J∞(g∗) is flat. We have the non-derived
Hamiltonian reduction (J∞(X)op × Y ′)//∆(J∞(G)). Then, similarly as in the argument in Remark 2.4.6,
we can deduce from Proposition 5.2.7 that there is an quasi-isomorphism

BRSTco(J∞(g), J∞(R)op ⊗ P ′, µ) ' (Rop ⊗ P ′)//µcoJ∞(Sym(g)) ' k[µ−1
co (0)/∆(J∞(G))]

of cdgas, and on the cohomology we have

H• BRSTco(J∞(g), J∞(R)op ⊗ P ′, µ) ' k[J∞(S)×J∞(g∗) X
′]⊗H•(G,C).

Thus we recover the formula [A, (15)].

6. Derived gluing of dg vertex algebras

Finally we present the main result. We introduce a vertex algebra analogue MTch of the category MT.
The composition of morphisms in MTch will be called the chiral gluing of dg vertex algebras.

6.1. Chiral BRST complex. In this subsection we explain BRST reduction for vertex algebras. Our
exposition is a coordinate-dependent version of the general argument for chiral algebras in [BD, §3.8].

Remark. We give a brief account on the theory of chiral algebras developed by Beilinson and Drinfeld
[BD, Chap. 3]. We explained in Remark 5.1.1 that a vertex Poisson algebra is a special case of coisson
algebra, which is a Poisson algebra object in the compound (⊗! and ⊗⋆) monoidal structure on the category
DMod(Ran(X)) of D-modules on the Ran space of X = A1. On similar footing, a vertex algebra can be
regarded as a Lie algebra object in the chiral monoidal structure ⊗ch on DMod(Ran(X)). See also [FG12]
for the chiral monoidal structure.

Thus the BRST complex for vertex algebra should be defined by replacing “Lie algebra” in the classical

BRST complex (§2.2) with “Lie algebra object in DMod(Ran(X))⊗
ch

”. This is the very rough explanation
of the construction of chiral BRST complex in [BD, §3.8].
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6.1.1. Clifford vertex algebra and Tate extension. We work over a field k of characteristic 0. In this part

we give a new explanation the free fermion vertex algebra
∧∞

2 (U) in §4.1.6, and also introduce the Tate
extension of dg vertex Lie algebra. These materials are given in [BD, §3.8].

Let L be a dg vertex Lie algebra. We denote by L∗ := Hom(L, k) the dual complex. It has a dg vertex
Lie algebra structure. The canonical pairing L∗ ⊗L→ k induces a pairing (·, ·) on M := L∗[−1]⊕L[1], and
it defines a one-dimensional central extension M ♭ of the commutative dg vertex Lie algebra M . Thus we
have the twisted enveloping vertex algebra U(M)♭ of M (Definition 4.2.6).

Definition ([BD, 3.8.6]). We denote the twisted enveloping vertex algebra by

Clch(L) = Clch
(
L,L∗, (·, ·)

)
:= U(M)♭

and call it the Clifford vertex algebra.
M ♭ has an extra Z-grading by (M ♭)(−1) := L∗[−1], (M ♭)(0) := k and (M ♭)(1) := L[1]. It induces an extra

Z-grading Clch(L)
(•).

Remark 6.1.1. (1) In [BD, 3.8.6], Clch(L) is called the chiral Clifford algebra, which is the origin of
the symbol ch.

(2) The notation Clch(U((t)), U∗((t))dt, (·, ·)) in Definition 4.1.25 agrees with this definition. In this case
the Z-grading (•) is nothing but the charge grading.

Recall the PBW filtration Clch(L)• in Definition 4.2.6 (3). We can check that Clch(L)
(0)
2 = (L∗[−1]) ⊗

(L[1])⊕ k is a dg vertex Lie subalgebra of Clch(L)Lie, and is a one-dimensional central extension of L∗ ⊗ L.
On the other hand, the adjoint action of Lie(L) on itself yields a morphism L → L∗ ⊗ L of dg vertex Lie
algebras. We denote by L♭ the pullback of the extension 0 → kLie → Clch(L)Lie → L∗ ⊗ L → 0 by this
morphism.

Definition. [BD, 3.8.7] We call the dg vertex Lie algebra L♭ the Tate extension.

We have a morphism L♭ → Clch(L)Lie of dg vertex Lie algebras satisfying 1♭ 7→ 1Clch(L).

6.1.2. Chiral BRST complex. We continue to work over a field k of characteristic 0. We fix a dg vertex Lie
algebra L.

Definition ([BD, 3.8.8]). A BRST datum is a pair (V, α) of a dg vertex algebra V and a morphism α : L→
VLie of dg Lie algebras such that α(1♭) = − |0〉, where |0〉 denotes the vacuum of V .

Given a BRST datum (V, α), we have a morphism `(0) = α + β : L → V ⊗ Clch(L)
(0) of dg vertex Lie

algebras. As in the argument of §5.1, the contractible complex L† = (L[1] → L) inherits the dg vertex Lie

algebra structure of L. Defining `(1) : L[1] → V ⊗ Clch(L)
(−1) to be the composition L[1] ↪→ Clch(L)

(−1) ↪→
V ⊗ Clch(L)

(−1), we have a morphism

l : L† −→ Clch(L)⊗ V

of graded vertex Lie algebras (forgetting the differential).
We now regard the symmetric dg algebra Sym(L∗[−1]) as a Chevalley-Eilenberg complex of the trivial

L-module, and denote by δ the differential. By the embedding Sym(L∗[−1]) ⊂ Clch(L) ⊂ V ⊗ Clch(L) we
regard δ acting on V ⊗ Clch(L).

Fact 6.1.2 ([BD, 3.8.10]). There is a unique element Q ∈ V ⊗ Clch(L)
(1) of cohomological degree 1 such

that [Q(0), l
(−1)] = l(0) and Q2

(0) = 0. The morphism dch := Q(0) + dClch(L)⊗V defines a dg vertex algebra

structure on V ⊗ Clch(L). We denote it by

BRSTch(V, α) := (V ⊗ Clch(L), dch)

and call it the (chiral) BRST complex for the BRST datum (V, L, α).

The morphism l gives a morphism L† → BRSTch(V, α)Lie of dg Lie algebras.

6.1.3. The case of universal affine vertex algebras. In this part we describe in detail the chiral BRST complex
for the universal affine vertex algebras, which will be used to formulate the vertex algebra analogue of the
category MT in §6.2. Hereafter we work over C, and use notations in §4.1.4 for Lie algebras. In particular

• g is the Lie algebra of the semi-simple algebraic group over C, and
• ĝ = g((t))⊕ CK is the the derived algebra of the non-twisted affine Lie algebra associated to g.
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Let Vk(g) be the universal affine vertex algebra at level k ∈ C. (Definition 4.1.13). Regarding it as a
graded dg vertex algebra concentrated in cohomological degree 0 with trivial differential (Definition 4.1.23),
we have the category Vk(g)-dgVMod of dg Vk(g)-modules (Definition 4.1.21). Hereafter we regard g ⊂ Vk(g)
by the injective linear map

g ↪−→ Vk(g), x 7−→ xt−1 |0〉 .
Following [A, §3, p. 10], we introduce the notion of momentum maps in the category Vk(g)-dgVMod:

Definition 6.1.3. (1) A chiral momentum map is a morphism µ : Vk(g) → V of dg vertex algebras.
(2) A dg vertex algebra object (dgva object for short) in Vk(g)-dgVMod is a pair (V, µ) of a dg vertex

algebra V and a chiral momentum map µ : Vk(g) → V , where we regard V ∈ Vk(g)-dgVMod by
Lemma 4.1.24.

Remark 6.1.4. In [A] a chiral momentum map is called a chiral quantum momentum map. See also Remark
5.1.3.

Given a chiral momentum map µ : Vk(g) → V , we have a morphism µLie : Vk(g) → VLie of dg vertex Lie
algebras by the polar part construction (Lemma 4.2.3). Restricting µLie to the subalgebra vk(g) ⊂ Vk(g) in
Example 4.2.4, we have a BRST datum (V, µLie|vk(g) : vk(g) → V ), and thus we have the BRST complex

(Fact 6.1.2).

Definition 6.1.5. Let k ∈ C and (V, µ) be a dgva object in Vk(g)-dgVMod.
(1) We denote the BRST complex for the BRST datum (V, µLie|vk(g)) by

BRST(ĝk, V, µ) := BRSTch(V, µLie|vk(g)).

(2) The cohomology vertex algebra (Lemma 4.1.22) of the BRST complex is denoted by

H
∞
2 +•(ĝk, V, µ) := H•(BRST(ĝk, V, µ), dcl),

and called the BRST cohomology.
(3) In the case V = Vk(g) and µ = id, we denote BRST(ĝk, Vk(g)) := BRST(ĝk, Vk(g), id).

Now recall the free fermionic dg vertex algebra
∧∞

2 (g) in Definition 4.1.25. Note that the Z-grading∧∞
2 (g)• of the dg structure is equal to the minus of the charge grading

∧∞
2 +•

(g). By the characterization
of the BRST charge in Fact 6.1.2, we can write down this BRST complex in the following form:

Lemma 6.1.6. Let k ∈ C and (V, µ) be a dgva object in Vk(g)-dgVMod. Then the dg vertex algebra
BRST(ĝk, V, µ) is described as follows.

(1) As a graded vertex algebra (forgetting the differential), we have

BRST(ĝk, V, µ) ' V ⊗
∧∞

2 (g).

(2) The differential is given by dch = Q(0) + dV⊗
∧∞/2(g), where Q ∈ BRST(ĝk, V, µ) is the BRST charge

Q :=

dim g∑
i=1

µ(xi)⊗ ψ∗
i −

1

2

dim g∑
i,j,k=1

1⊗ ckijψ
∗
i ψ

∗
jψk.

Here we used the structure constant ckij of g as in Lemma 2.2.5 and omit the vacuum |0〉.

Now recall the functor taking the associated graded space of the Li filtration (Lemma 4.4.4):

grF : dgVA −→ dgVP.

Given a dgva object(V, µV ) in Vk(g)-dgVMod. the chiral momentum map µV : Vk(g) → V induces the coisson
momentum map

µgrF V : grF Vk(g) ' J∞(Sym(g)) −→ grF V.

Here we used the isomorphism in Fact 4.4.9 (2). Then, comparing the description of BRST complex (Lemma
6.1.6) with the coisson BRST complex (Definition 5.1.2), we obtain:

Lemma 6.1.7. Let (V, µV ) be a dgva object in Vk(g)-dgVMod with k ∈ C. Then we have an isomorphism
of dg vertex Poisson algebras

grF BRST(ĝk, V, µV ) ' BRSTco(J∞(g), grF V, µgrF V ).
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6.2. Chiral gluing procedure. In this subsection we give a vertex algebra analogue of composition of
morphisms in the category MT. We work under the same setting as in §6.1.3, and use the same symbols
g = Lie(G), Vk(g) and so on.

Some preparations are in order.
• Let (V, µ) and (V ′, µ′) be dgva objects in Vk(g)-dgVMod and Vl(g)-dgVMod respectively. Then we
can regard (V ⊗ V ′, µ⊗ µ′) ∈ Vk+l(g)-dgVMod by the diagonal action of ĝ (Lemma 4.1.17).

• For a dg vertex algebra V = (V •, d, |0〉 , T, Y ), we define the opposite dg vertex algebra V op by

V op := (V •, d, |0〉 , T op, Y op)

with Y op(a, z) := Y (a,−z) and T op := −T . We have

grF (V op) ' (grF V )op

as dg vertex Poisson algebras.
• For a dgva object (V, µ) in Vk(g)-dgVMod, we have the new dgva object (V op, µop) with µop(a) :=
−µ(a).

Definition 6.2.1. Let (V, µV ) and (V ′, µV ′) be dgva objects in Vk(g)-dgVMod and in Vl(g)-dgVMod respec-
tively. We define a chiral momentum map µ : V op ⊗ V ′ → Vk+l(g) by µ(a ⊗ b) := −µV (a) + µV ′(b), and a
dgva object V ′ ◦̃ V in Vk+l(g)-dgVMod by

V ′ ◦̃ V := BRST(ĝk+l, V
op ⊗ V ′, µ)

and call it the chiral gluing.

Recall that for a dg vertex algebra V , we denote by RV = F 0V/F 1V Zhu’s C2-algebra (Definition 4.4.5).
By Lemma 6.1.7 and Definition 5.2.3 of the coisson gluing, we have:

Proposition 6.2.2. Under the same setting of Definition 6.2.1, we have the following quasi-isomorphism of
dg vertex Poisson algebras:

grF (V ′ ◦̃ V ) ' (grF V ′) ◦̃ (grF V ).

On Zhu’s C2-algebras, we have

RV ′◦̃V ' RV ′ ◦̃RV .

6.3. The category MTch. Under the same setting as in §6.2, we finally introduce the category MTch, which
is a vertex algebra analogue of MT in §2.3 and MTco in §5.2. In the latter case, we considered a vertex

Poisson object in L
J∞(G)
QCoh (J∞(g∗)), which satisfies some finite condition (Definition 5.2.2). Following [A, §3,

p. 10], we introduce the corresponding category of vertex algebras.
Recall the equivalence of Vk(g)-modules and smooth ĝ-representations of level k (Fact 4.1.16). Thus on a

Vk(g)-module we can discuss the action of g ⊂ ĝ and g[[t]]t ⊂ ĝ.

Definition. Let k ∈ C.
(1) We denote by dgKLk(g) the full subcategory of Vk(g)-dgVMod spanned by objects on which g[[t]]t

acts locally nilpotently and g acts locally finitely.
(2) We denote by KLk(g) the full subcategory of dgKLk(g) spanned by objects concentrated in cohomo-

logical degree 0.
(3) We denote by KLordk (g) the full subcategory of KLk(g) spanned by objects that are N-graded (Defi-

nition 4.1.11) and each homogeneous subspaces are finite-dimensional.

Remark. (1) The subcategory KLk(g) ⊂ dgKLk(g) spanned by those dg modules concentrated in degree
0 was originally introduced in [A12] as the category of graded Harish-Chandra (ĝ, G[[t]])-modules of
level k. The category KLk(g) was used for showing the cohomology vanishing of BRST complex in
[A12], and used in [A] to construct the genus zero chiral algebra VS

G,b of class S.
(2) As noted in [A, §3], every object in KLk(g) is a colimit of a direct system of objects in KLordk (g).

We immediately have:

Lemma 6.3.1. Let V be a vertex algebra object in dgKLk(g). Then grF is a Poisson algebra object in

L
J∞(G)
QCoh (J∞(g∗)), and RV is a Poisson algebra object in LGQCoh(g

∗),

The family {dgKLk(g) | k ∈ C} inherits the tensor structure of {Vk(g)-dgVMod | k ∈ C} in Lemma 4.1.17:
For M ∈ dgKLk(g) and N ∈ dgKLk(g), we have M ⊗N ∈ dgKLk+l(g) by the diagonal action of ĝ.

Here is the definition of vertex analogue of the category MT.
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Definition 6.3.2. We define the category MTch by the following description.
• An object is a simply connected semi-simple algebraic group G over C. We identify it with the
associated Lie algebra g.

• A morphisms from g1 to g2 is a vertex algebra object (V, µV ) in
(
Vk(g1)⊗Vl(g2)

)
-dgVMod with some

k, l ∈ C such that (V, µ1
V ) ∈ dgKLk(g1) and (V, µ2

V ) ∈ dgKLl(g2). Here we defined µ1
V : Vk(g1) → V ,

µ1
V (a) := µV (a⊗ |0〉) and µ2

V : Vl(g2) → V , µ2
V (b) := µV (|0〉 ⊗ b).

• The composition of (V, µV ) ∈ HomMTch
(g1, g2) and (V ′, µV ′) ∈ HomMTch

(g2, g3) is given by the
chiral gluing V ′ ◦̃ V in Definition 6.2.1 where we regard (V, µ2

V ) ∈ Vl(g2)-dgVMod and (V, µ1
V ′) ∈

Vk′(g2)-dgVMod.

By Proposition 6.2.2 and Lemma 6.3.1 we have the main result:

Theorem 6.3.3. The functors grF : dgVA → dgVP, Rco : dgVA → dgPA and R : dgVP → dgPA give a
commutative diagram

MTch
grF //

R

��

MTco

Rco

��
MT MT

Remark 6.3.4. Let us continue Remark 5.2.8 and give a connection to the argument in [A, §3]. Recall
that in §5.2 we considered coisson gluing, which is a vertex Poisson analogue of composition of morphisms
in MT. Here we consider a chiral analogue.

Let (V, µV ) be a vertex algebra object in KLk. Then the associated graded space grF V is a vertex Poisson

algebra object in QCohJ∞(G)(J∞(g∗)), and Zhu’s C2-algebra RV is a Poisson algebra object in QCohG(g).
Let X = Spec(R) be an affine Poisson scheme, and assume the following conditions.

(i) RV ' R.
(ii) The surjection J∞(RV ) ↠ grF V of vertex Poisson algebras is an isomorphism.

If moreover V is separated (Definition 4.4.8), then V is called a strict chiral quantization of X [A, Definition
2.1]. We further assume the following conditions considered in Remarks 2.4.6 and 5.2.8.

(iii) There is a closed subscheme S ⊂ X such that the action map gives an isomorphism G× S
∼−→ X.

(iv) The chiral momentum map J∞(µX) = (grF µV )
∗ : J∞(X) → J∞(g∗) is flat.

Let (V ′, µV ′) be a vertex algebra object in KLl. Then the tensor product V op ⊗ V ′ is a vertex algebra
object in KLk+l with chiral momentum map µ(a, b) := −µV (a) + µV ′(b).

By the same argument in Remarks 2.4.6 and 5.2.8, we can then deduce an quasi-isomorphism

grF BRST(ĝk+l, V
op ⊗ V ′, µ) '

(
(J∞(R))op ⊗ (grF V ′)

)
//grFµJ∞(g∗) ' k[(grF µ)−1(0)/∆(J∞(G))]

of cdgas, and as for the cohomology we have

grF H
∞
2 +•(ĝk+l, V

op ⊗ V ′, µ) '
(
k[J∞(S)]⊗J∞(Sym(g)) gr

F V ′)⊗H•(G,C).
Thus we have

grF H
∞
2 +0(ĝk+l, g, V

op ⊗ V ′, µ) ' k[J∞(S)]⊗J∞(Sym(g)) gr
F V ′,

which recovers the formula in [A, Theorem 3.1].
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[T14] B. Toën, Derived algebraic geometry, EMS Surv. Math. Sci. 1 (2014), 153–240.
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