

Isolated autosomal recessive woolly hair/hypotrichosis: genetics, pathogenesis and therapies

Journal:	Journal of the European Academy of Dermatology and Venereology
Manuscript ID	JEADV-2020-4638.R1
Manuscript Type:	Review Article
Keywords:	C3ORF52, KRT25, LIPH, LPAR6, lysophosphatidic acid, minoxidil

2 3		
4	1	Journal of the European Academy of Dermatology and Venereology
5 6	2	Manuscript ID JEADV-2020-4638 Revised Version
7	3	
8 9	4	REVIEW ARTICLE
10 11	5	
12	6	Isolated autosomal recessive woolly hair/hypotrichosis: genetics, pathogenesis
13 14	7	and therapies
15	8	
16 17	9	Masashi Akiyama
18 19	10	
20	11	Department of Dermatology, Nagoya University Graduate School of Medicine,
21 22	12	Nagoya, Japan
23	13	
24 25	14	
26	15	Corresponding Author:
27 28	16	Masashi Akiyama MD, PhD
29 30	17	Department of Dermatology
31	18	Nagoya University Graduate School of Medicine
32 33	19	65 Tsurumai-cho, Showa-ku, Nagoya
34	20	Aichi 466-8550, Japan
35 36	21	Tel: +81-52-744-2314, Fax: +81-52-744-2318
37 38	22	E-mail: makiyama@med.nagoya-u.ac.jp
39	23	
40 41	24	
42	25	Word, table and figure counts: 2817 words, 75 references, 5 tables, 3 figures
43 44	26	
45 46	27	Disclosure statement: Dr. Akiyama has nothing to disclose.
47	28	
48 49		
50		
51 52		
53 54		
55		
56 57		
58		
59 60		

Abstract

Isolated autosomal recessive woolly hair/hypotrichosis (ARWH) is a rare hereditary hair disease characterized by tightly curled sparse hair at birth or in early infancy. Patients with ARWH consist of genetically heterogeneous groups. Woolly hair autosomal recessive 1 (ARWH1) (MIM #278150), woolly hair autosomal recessive 2 (ARWH2) (MIM #604379) and woolly hair autosomal recessive 3 (ARWH3) (MIM #616760) are caused by mutations in LPAR6, LIPH and *KRT25*, respectively. In addition, nonsense variants in *C3ORF52* (*611956) were identified in ARWH patients. The frequencies of the mutations in the causative genes in ARWH patients are thought to differ by ethnicity and country/geographical area. Large numbers of ARWH families with LIPH mutations have been described only in populations from Japan, Pakistan and the Volga–Ural region of Russia. In that region of Russia, most ARWH families have an extremely prevalent founder mutation, the deletion of exon 4, in LIPH. In the Pakistani population, 47.2% of ARWH families had the disease due to LIPH mutations and 52.8% of them carried LPAR6 mutations. The prevalent, recurrent LIPH mutation c.659 660delTA (p.Ile220Argfs*29) was found in more than half of Pakistani ARWH families with LIPH mutations. Most Japanese ARWH families (98.7%) harbor LIPH mutations, including the two highly prevalent, recurrent *LIPH* mutations c.736T>A (p.Cys246Ser) and c.742C>A (p.His248Asn). In ARWH patients whose disease was due to LIPH, LPAR6 or C3ORF52 mutations, the loss of function of LIPH, LPAR6 or C3ORF52 leads to reduced LIPH-LPA-LPAR6 signaling, resulting in the decreased transactivation of EGFR signaling and the phenotype of underdeveloped hairs. Our recent prospective interventional study suggests that topical minoxidil might be a promising treatment for ARWH due to LIPH mutations, although sufficiently effective treatments have not been established for ARWH yet. (280 words)

Key words: C3ORF52, KRT25, LIPH, LPAR6, lysophosphatidic acid, minoxidil **Conflicts of interest**

2
3
4
5
6
7
8
9
10
11
12
13
14
15
15
16
17
18
19
20
21
22
23
23 24
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

 The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding sources

These studies were supported by funding from the Japan Agency for Medical Research and

Development (AMED) to M.A. under the Advanced Research and Development Programs for

Medical Innovation (AMED-CREST) (19gm0910002h0105). This work was also supported by a

Grant-in-Aid for Scientific Research (B) (18H02832) from the Japan Society for the Promotion

of Science (JSPS) and by Health and Labor Sciences Research Grants; Research on Intractable

Diseases (20FC1052) from the Ministry of Health, Labor and Welfare of Japan to M.A. stry

Introduction

Isolated autosomal recessive woolly hair/hypotrichosis (ARWH) is a rare hereditary hair disease characterized by tightly curled hair at birth or in early infancy, leading to sparse hair later in life without any other organ or tissue involvement (Fig. 1). ARWH is a genetically heterogenous disease. To date, mutations in the four genes LIPH, LPAR6, KRT25, and C3ORF52 are known to underlie ARWH.¹⁻⁵ Owing to remarkable advances in molecular biological techniques, we are now able to perform causative mutation searches easily and frequently for patients with ARWH. Accordingly, our understanding of the causative genetic defects and pathogenetic mechanisms of ARWH has significantly progressed in recent years. This review comprehensively summarizes our knowledge of the genetic background and pathogenic mechanisms of ARWH. Furthermore, I mention current treatments and novel, potential therapeutic strategies for ARWH. I include a list of abbreviations used in the present review for readers to easily understand the contents (Table 1).

The disease phenotype and differential diagnoses of isolated ARWH

Clinical features of isolated ARWH

Patients with woolly hair show tightly curled hair on the entire scalp. The affected hair shafts are irregularly bent with rough cuticles and waves at very short intervals.^{6,7} Woolly hair consists of syndromic and non-syndromic forms. Isolated woolly hair is a non-syndromic form in which the scalp hair abnormality is the only phenotype and no other skin symptoms or extracutaneous organ involvement is seen. Isolated woolly hair comprises ARWH and autosomal dominant woolly hair.⁸ In most patients with ARWH, the eyebrows, eyelashes, beard and pubic hair seem to be unaffected.⁸ Individuals affected with ARWH have defective hair growth, with their woolly hair seldom growing longer than a few inches.⁸ Most patients with ARWH suffer from moderate to severe hypotrichosis (sparse scalp hair). Patients with LIPH mutations (see below) show the

ARWH phenotype on the scalp from early infancy. They have tightly curled hair continuously
during their entire life, but the severity of hypotrichosis varies by patient and family.⁸⁻¹⁰ The
most severe cases suffer from a total loss of scalp hair.^{11,12} In addition, the severity of the
hypotrichosis differs among patients in a given family.^{11,12} Furthermore, the severity of the
hypotrichosis changes variably during the disease course. Some patients show a roughly
unchanging severity with aging, whereas others exhibit variable levels of improvement or
worsening of hypotrichosis with aging.^{11,12}

105 Differential diagnoses of isolated ARWH

A number of congenital hair shaft disorders are thought to be differential diagnoses of isolated ARWH.^{7,13} Syndromic hereditary hair shaft disorders and hypotrichosis are differentially diagnosed from their accompanying cutaneous and extracutaneous symptoms. The isolated hair shaft diseases that are differential diagnoses include monilethrix, pili torti, trichorrhexis nodosa, trichorrhexis invaginata, and trichothiodystrophy.^{7,13} Monilethrix can be differentially diagnosed from its characteristic beaded appearance due to the periodic thinning of the hair shafts.¹³ Patients with monilethrix often show perifollicular papules and erythema, which are not seen in ARWH patients. Autosomal dominant monilethrix is caused by mutations in the type II hair keratin genes KRT81, KRT83 and KRT 86.6 Autosomal recessive monilethrix is due to mutations in DSG4.⁶ Patients with DSG4 mutations show short, twisted, coarse brittle hair shafts called pili torti, which resemble steel wool.^{13,14} Unlike in ARWH, the hair shafts in pili torti are bent only slightly at irregular intervals.¹³ Trichorrhexis nodosa is a common hair shaft abnormality that can be diagnosed from the characteristic hair shaft appearance suggestive of two brush ends pushed toward each other due to the breakdown of the hair shafts.¹³ Patients with trichorrhexis nodosa do not show woolly hair. Trichorrhexis nodosa is a symptom in some syndromes, including Menke's kinky hair syndrome.¹³ Trichorrhexis invaginata also has a very characteristic structure of hair shafts called bamboo hair. In bamboo hair, the distal hair shaft invaginates into the

 $\mathbf{5}$

1 2		
3 4 5	123	proximal hair shaft. Trichorrhexis invaginata is a main symptom in Netherton syndrome due to
6 7	124	SPINK5 mutations. ¹³
, 8 9	125	
9 10 11 12 13 14 15 16 17 18 19 20 21 22		
	126	A number of isolated hereditary hair loss disorders are also considered to be differential
	127	diagnoses of ARWH. ¹⁴ However, most isolated hereditary hypotrichoses do not show woolly
	128	hair and are easily excluded from the differential diagnoses of ARWH. Patients with a rare
	129	hereditary hypotrichosis called "hereditary hypotrichosis 3 and woolly hairs", which results from
	130	KRT74 mutations, show a woolly hair phenotype similar to ARWH. Unlike ARWH, hereditary
	131	hypotrichosis 3 and woolly hairs is autosomal dominant. ¹⁴
23	132	
24 25	133	
26 27 28 29 30 31 32 33 34 35 36 37 38 39	134	Genetics of isolated ARWH
	135	
	136	Causative genes of isolated ARWH
	137	As mentioned above, patients with ARWH consist of genetically heterogenous groups (Table 2).
	138	Woolly hair autosomal recessive 1 (ARWH1) (MIM #278150) is caused by mutations in LPAR6,
	139	also known as P2RY5. ^{2,3} Woolly hair autosomal recessive 2 (ARWH2) (MIM #604379) is
	140	known to be caused by mutations in <i>LIPH</i> . ¹ In addition, Woolly hair autosomal recessive 3
40 41	141	(ARWH3) (MIM #616760) is due to mutations in <i>KRT25</i> . ⁴ Furthermore, very recently, nonsense
42 43	142	variants in C3ORF52 (*611956) were identified in ARWH patients from two independent
44 45	143	families. ⁵
46 47	144	
48 49	145	LIPH encodes lipase H (LIPH), also known as membrane-associated phosphatidic acid (PA)-
50 51 52 53	146	selective phospholipase $A_1\alpha$ (mPA-PLA ₁ α), which produces lysophosphatidic acid (LPA) from
	147	phosphatidic acid. ¹⁵ LPA is an extracellular lipid mediator with various biological functions. To
54 55	148	date, 32 mutations (13 missense/nonsense, 5 splice-site, 5 small-deletion, 3 small-insertion, 3
56 57 58 59 60		

3
4
5
6 7
7
8
9
10
11
12
13
14
15
16
16 17
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
40 49
50
51
52
53
54
55
56
57
58
59

165

166	Two homozygous nonsense variants in C3ORF52 were reported in ARWH patients in two
167	independent families (Table 3). ⁵ C3ORF52 encoded by C3ORF52 is thought to be necessary for
168	LPA synthesis by LIPH. ⁵ One variant, c.492T>A (p.Tyr164*), in C3ORF52 was found in an
169	unrelated family of Hispanic origin. The other variant, c.34G>T (p.Glu12*), was detected in a
170	related family of Arab Muslim origin.
171	
172	Frequencies of mutations in each causative gene and prevalent recurrent mutations
173	causative of ARWH by ethnicity or geographic area
174	The frequencies of the mutations in the causative genes in ARWH patients are thought to differ
175	depending on ethnicity and country/geographical area.

60

149 small-indel, 2 gross-deletion and 1 gross-insertion mutation) in LIPH have been identified in ARWH patients in several populations (www.hgmd.cf.ac.uk) (Table 3).9-12,16-46 150 151 152 LPAR6 encodes a G protein-coupled receptor, LPA receptor 6 (LPAR6), also known as P2Y5 153 and P2RY5. To date, 27 mutations (15 missense/nonsense, 4 small-deletion, 4 small-insertion, 2 154 small-indel, 1 gross-deletion and 1 gross-insertion mutation) in LPAR6 have been identified as 155 underlying ARWH in patients from several populations (www.hgmd.cf.ac.uk) (Table 3).^{19,20} 156 157 Keratin 25 is a type I (acidic) keratin, and keratins 25–28, which are type I, are expressed in the 158 hair medulla and the inner root sheath of hair follicles. The inner root sheath plays an important 159 role in intact hair shaft formation and elongation. To date, only two missense mutations in 160 *KRT25* have been identified in the Pakistani population⁴ and in the population of the Volga–Ural 161 region of Russia (Table 3).²¹ Most ARWH patients (116 of 119 patients) in the population of that region of Russia had the prevalent founder *LIPH* mutation: the deletion of exon 4.²¹ However, 162 the other three patients with relatively mild phenotypes had the founder *KRT25* mutation 163 c.712G>T (p.Val238Leu) in the population from the Volga–Ural region of Russia.²¹ 164

 $\overline{7}$

1 2 3		
4 5 6 7 8 9	176	
	177	LIPH mutations in ARWH families have been reported in Russian, ¹ Pakistani, ²² Jewish, ²³ Arab-
	178	Muslim, ²³ Italian, ²³ Indian, ¹² Japanese, ²⁴ Lebanese ²⁵ and Chinese ¹⁶ populations. However, large
10 11	179	numbers of ARWH families with LIPH mutations have been described only in populations from
12 13	180	Japan, Pakistan, and the Volga–Ural region of Russia ¹ (Table 4). Most ARWH families in
14 15	181	populations from Japan, Pakistan, and the Volga–Ural region of Russia have extremely prevalent
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	182	founder mutations in <i>LIPH</i> (Table 4). ^{1,9-12,16-19,22,24,26-46}
	183	
	184	In the Japanese population, the situation of <i>LIPH</i> mutations causative of ARWH is particularly
	185	unique. The two highly prevalent, recurrent LIPH mutations c.736T>A (p.Cys246Ser) and
	186	c.742C>A (p.His248Asn) were found to be genetic causes of ARWH in the Japanese population
	187	(Table 4). ³⁸ Indeed, c.736T>A (p.Cys246Ser) and/or c.742C>A (p.His248Asn) were detected in
	188	all 75 previously reported Japanese ARWH families with LIPH mutations.9,10,17,18,24,33-46 Our
	189	previous study revealed 1.5% and 0.5% of healthy Japanese individuals to have one of the LIPH
	190	mutant alleles, c.736T>A (p.Cys246Ser) and c.742C>A (p.His248Asn), respectively. ³⁸ The
	191	mutant allele frequencies of c.736T>A (p.Cys246Ser) and c.742C>A (p.His248Asn) in healthy
	192	Japanese individuals were 0.79 and 0.12, respectively. ⁹ Thus, it can be estimated that there are
	193	approximately 10,000 Japanese patients with ARWH due to LIPH founder mutations.
	194	
42 43 44	195	LPAR6 mutations in ARWH families have been reported in Arab-Muslim, ² Pakistani, ^{3,46}
45 46	196	Brazilian, ⁴⁷ Indian, ⁴⁸ Turkish, ⁴⁸ Iranian, ⁴⁹ Syrian, ⁵⁰ Chinese ⁵¹ and Japanese populations. ⁵²
47 48	197	However, a large number of ARWH families with LPAR6 mutations have been described only in
49 50	198	the Pakistani population (Table 5). ^{3,19,20,27,30,49,53,54}
51 52	199	Highly prevalent founder mutations in LIPH and/or LPAR6, as seen in the population of the
53 54	200	Volga-Ural region in Russia and the Japanese population, might exist in other ethnic populations.
55 56	201	
57 58		
59 60		

From the combined data on *LIPH* and *LPAR6* mutations, among the 89 Pakistani ARWH
families whose causative mutations were identified, 47.2% of the families had the disease due to *LIPH* mutations and 52.8% of the families carried *LPAR6* mutations.^{3,11,19,20,22,26-32,53,54} In
contrast, most of the Japanese ARWH families (75/76, 98.7%) harbored *LIPH* mutations as a
cause of ARWH. Therefore, in order to define the causative mutations in Pakistani ARWH
patients, we have to perform mutation searches in both *LIPH* and *LPAR6*, although we should
start by searching for the two founder *LIPH* mutations in Japanese ARWH patients.

Pathogenetic mechanisms of ARWH due to a defective LIPH/LPAR6 pathway Both LIPH (PA-PLA1 α) and LPAR6 are abundantly expressed in human hair follicles. Kazantseva et al.1 reported that the expression of LIPH mRNA was observed in anagen hair follicles, including in the bulge, but not in the dermal papilla. Shimomura et al.³ demonstrated that LPAR6 protein was predominantly expressed in the inner root sheath (IRS) of hair follicles. Thus, the expressions of LIPH and LPAR6 are thought to overlap in IRS. It has been postulated that LIPH and LPAR6 are components of a common signaling pathway that plays a crucial role in hair growth in humans.^{2,55} The idea that LIPH and LPAR6 work cooperatively in hair follicle formation is reinforced by observations that individuals with mutations in LIPH and LPAR6 show clinically indistinguishable phenotypes of ARWH.

LIPH is a membrane-associated phosphatidic acid-selective phospholipase A1 that produces 2acyl LPA from phosphatidic acid.⁵ In cellular membranes, LIPH hydrolyzes PA and produces 2acyl-LPA (with an acyl chain at the sn-2 position of glycerol).¹⁵ LPAR6 is a G-protein-coupled receptor and is a receptor of LPA.^{2,3,56} Inoue *et al.*⁵⁷ postulated that LIPH hydrolyzes PA on the plasma membrane of the outer root sheath (ORS) cells and provides 2-acyl-LPA for LPAR6, which leads to hair follicle formation.

Inoue *et al.*⁵⁷ generated and analyzed LIPH-deficient (*LIPH-/-*) mice. Their report elucidated the fact that LIPH, tumor necrosis factor- α -converting enzyme (TACE, ADAM17), transforming growth factor- α (TGF- α), and phosphorylated-epidermal growth factor receptor (EGFR, HER1) co-localize in IRS and the fact that both LIPH and LPAR6 are expressed during the anagen phase of the hair cycle. LPA species with unsaturated fatty acids, potent agonists for LPAR6, are reduced in LIPH-/- mice.⁵⁷ Activation levels of TGFa and EGFR are down-regulated in LIPH-/-mice.⁵⁷ In addition, *in vitro* studies have demonstrated that LPA is an initiator of EGFR transactivation in various cells, such as corneal epithelial cells and lung epithelial cells.⁵⁸⁻⁶⁰ From these findings, Inoue *et al.*⁵⁷ finally proposed a system in which hair follicle development is regulated by LIPH and LPAR6. They proposed that LIPH is expressed in IRS of hair follicles and produces 2-acyl-LPA from PA on the outer leaflet of the plasma membrane by hydrolyzing the acyl chain at the sn-1 position. The 2-acyl-LPA produced by LIPH activates LPAR6 in a paracrine and/or autocrine manner, eliciting ADAM17-dependent shedding of membrane-bound TGF α (pro-TGF α). Soluble TGF α released by that shedding binds to EGFR expressed on the IRS cells of hair follicles. Activated/phosphorylated EGFR provokes the IRS development that is required for the appropriate formation of the hair shaft (Fig. 2). Actually, EGFR is well known to be expressed in the outer root sheath.⁶¹ Regarding the IRS, Inoue et al.⁵⁷ showed the phosphorylated form of EGFR to be co-expressed with LIPH, ADAM17 and TGF α in the IRS, specifically in the IRS cuticle of the keratin 72-positive layer by immunofluorescence staining. Previous studies reported TGF α and LPAR6 to be expressed in the IRS.^{3,62} From these data, Inoue et al.⁵⁷ suggested that LIPH and LPAR6 regulate hair follicle formation via the ADAM17-TGF α -EGFR pathway in the IRS. Indeed, Inoue et al.⁵⁷ confirmed that immunofluorescence staining for phosphorylated EGFR in the IRS is reduced in the hair follicles of LIPH-deficient mice. Recently, nonsense variants in C3ORF52 were found in ARWH patients.⁵ C3ORF52 has previously been demonstrated to interact with LIPH according to data obtained from BioPlex 2.0

1	
2	
3	
4	
5	
6	
7	
8	
9	
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 13 \\ 14 \\ 15 \\ 16 \\ 7 \\ 18 \\ 9 \\ 21 \\ 22 \\ 24 \\ 25 \\ 27 \\ 28 \\ 9 \\ 31 \\ 32 \\ 33 \\ 33 \\ 35 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37$	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

256	(Biophysical Interactions of ORFeome-derived complexes). ^{63,64} Based on prediction software
257	analyses, Malki et al.5 suggested that C3ORF52 and LIPH may be involved in common lipid
258	metabolism-associated pathways. It is speculated that C3ORF52 might functionally interact with
259	LIPH and play an important role in LPA synthesis as a co-factor for LIPH activity (Fig. 2).
260	
261	Thus, in ARWH patients whose disease is due to LIPH, LPAR6 or C3ORF52 mutations, the loss
262	of function of LIPH, LPAR6 or C3ORF52 leads to reduced LIPH-LPA-LPAR6 signaling,
263	resulting in the decreased transactivation of EGFR signaling and the phenotype of
264	underdeveloped hairs (Fig. 3). In fact, genetic deletions of these key molecules in the regulation
265	system of hair follicle development, LIPH/LPAR6, LIPH, ^{1,57} LPAR6, ^{2,3} ADAM17, ^{65,66}
266	TGF α , ^{62,67} and EGFR, ⁶¹ result in aberrant hair formation in mice and/or humans.
267	
268	
269	Treatments for isolated ARWH
270	Cho et al. ⁶⁸ reported that non-ablative fractional lasers induced the growth of intact hair in three
271	adult patients with ARWH. However, sufficiently effective treatments have not been established
272	for ARWH.
273	
274	The efficacy of topical minoxidil was suggested in ARWH patients with <i>LIPH</i> mutations. ^{44,46}
275	Tanahashi et al. ⁴⁴ reported that application of topical minoxidil at 1% or 5% for 6 months to 3
276	years improved hypotrichosis in four ARWH patients with LIPH mutations, three patients with
277	the homozygous mutation c.736T>A (p.Cys246Ser), and one patient with compound the
278	heterozygous mutations c.736T>A (p.Cys246Ser) and c.742C>A (p.His248Asn). Furthermore,
279	Choi et al. ⁶⁹ reported that two children with woolly hair whose causative mutations were not
280	identified were treated with the daily application of a topical minoxidil (3%) and tretinoin
281	(0.025%) gel combined with an oral vitamin D analog, alfacalcidol (0.25 \Box cg/day), for 5
282	months, and that the patients' hair thickness and density were improved. Kinoshita-Ise et al.46

Page 12 of 31

described two adult ARWH patients with the homozygous *LIPH* mutation c.736T>A
(p.Cys246Ser) as responding well to topical minoxidil, with increased total hair counts and hair
thicknesses. We recently performed a one-year, single center, open-label, prospective
interventional study.⁷⁰ Topical minoxidil at 1% was found to improve hypotrichosis in all eight
ARWH patients with *LIPH* mutations enrolled in the study.⁷⁰ There were no serious adverse
events; only some mild adverse events were seen: dry skin on the scalp, trichiasis, and mild
hypertrichosis on the entire body.⁷⁰

Despite more than 30 years of minoxidil use around the world, mainly for androgenic alopecia, the mechanisms of action underlying its hair growth-promoting effects remain to be fully clarified.⁷¹ Improved blood supply to the hair follicles was suggested as a mechanism behind the hair growth effects of minoxidil.⁷² In addition, minoxidil promotes the induction of anagen from telogen by vascular endothelial growth factor and fibroblast growth factor 7 via the production of adenosine.^{73,74} In terms of clinical effects, minoxidil has been reported to increase the size of hairs and to alter the hair cycle (anagen phase prolongation).⁴⁶ Kinoshita-Ise *et al.*⁴⁶ reported no observably low total hair counts, but did find a remarkable miniaturization and increased telogen/anagen hair ratio in patients with ARWH with c.736T>A homozygous mutations in LIPH. Considering that small hair shaft diameters and high telogen/anagen ratios are main factors responsible for hypotrichosis in ARWH, it is reasonable to regard minoxidil as beneficial for ARWH patients with LIPH mutations.

In 2020, Peled *et al.*⁷⁵ confirmed that gentamicin induces *in vitro* read-through activity across a *CDSN* mutation that causes hypotrichosis simplex of the scalp, and they successfully treated 4
patients with hypotrichosis simplex of the scalp with topical gentamicin. Considering that topical
gentamicin improves hypotrichosis via the read-through of a causative nonsense mutation, I
consider that there is a possibility that topical gentamicin might be an effective treatment for
ARWH cases resulting from nonsense mutations in *LIPH*, *LPAR6* or *C3ORF52*. I hope that

1	
2 3	
3 4	
5 6	310
7	311
8 9	312
10 11	313
12 13	314
14 15	315
16 17	316
18 19	317
20 21	318
22 23	319
23 24 25	
26	320
27 28	321
29 30	322
31 32	323
33 34	324
35 36	325
37 38	326
39 40	327
41 42	328
43 44	329
45 46	
47	
48 40	
49 50	
51	
52	
53 54	
55	
56	
57	

310 innovative curative treatments such as translational read-through therapies across causative

311 mutations by enhancers of ribosomal read-through activity including gentamicin, LIPH

312 replacement therapy and the application of LPAR6 agonists will be developed in the near future.

- 314

Conclusions 315

316 The present summary of the data on causative mutations of ARWH in various populations

317 around the world—both of LIPH mutations and LPAR6 mutations causative of ARWH—shows

318 that predominant recurrent mutations, probably founder mutations, including certain extremely

319 predominant founder mutations, exist among certain ethnicities and in certain geographical areas.

320 Such information on the frequencies of causative genes and mutations would enable the smooth,

321 prompt genetic diagnosis of ARWH. The pathogenetic mechanisms of ARWH due to mutations

322 in LIPH and LPAR6 have not been elucidated completely. I hope that information on the genetics

323 and pathophysiology of ARWH that has been accumulated will contribute to innovations in

324 novel therapeutic strategies for ARWH.

58 59 60

326 **Acknowledgements**

327 The patients in this manuscript have given written informed consent for the publication of their 328 case details. I thank Dr. Kana Tanahashi for providing the clinical photos of the ARWH patients.

14

1 2 3		
4 5	330	References
6	331	
7 8	332	1 Kazantseva A, Goltsov A, Zinchenko R et al. Human hair growth deficiency is linked to a
9	333	genetic defect in the phospholipase gene LIPH. Science 2006; 314: 982–985.
10 11	334	
12	335	2 Pasternack SM, von Kügelgen I, Aboud KA et al. G protein-coupled receptor P2Y5 and its
13 14	336	ligand LPA are involved in maintenance of human hair growth. Nat Genet 2008; 40: 329-334.
15 16	337	
16	338	3 Shimomura Y, Wajid M, Ishii Y et al. Disruption of P2RY5, an orphan G protein-coupled
18 19	339	receptor, underlies autosomal recessive woolly hair. Nat Genet 2008; 40: 335-339.
20	340	
21 22	341	4 Ansar M, Raza SI, Lee K et al. A homozygous missense variant in type I keratin KRT25
23	342	causes autosomal recessive woolly hair. J Med Genet 2015; 52: 676-680.
24 25	343	
26	344	5 Malki L, Sarig O, Cesarato N et al. Loss-of-function variants in C3ORF52 result in localized
27 28	345	autosomal recessive hypotrichosis. Genet Med 2020; 22: 1227-1234.
29 30	346	
30 31	347	6. Shimomura Y. Journey toward unraveling the molecular basis of hereditary hair disorders. J
32 33	348	Dermatol Sci 2016; 84: 232-238.
34	349	
35 36	350	7. Singh G, Miteva M. Prognosis and management of congenital hair shaft disorders with
37	351	fragility - Part II. <i>Pediatr Dermatol</i> 2016; 33 : 481-487.
38 39	352	
40	353	8. Shimomura Y. Congenital hair loss disorders: rare, but not too rare. <i>J Dermatol</i> 2012; 39: 3-
41 42	354	10.
43 44	355	
45	356	9 Tanahashi K, Sugiura K, Kono M, Takama H, Hamajima N, Akiyama M. Highly prevalent
46 47	357	LIPH founder mutations causing autosomal recessive woolly hair/hypotrichosis in Japan and
48		
49 50	358	the genotype/phenotype correlations. PLoS One 2014; 9: e89261.
51	359	
52 53	360	10 Takeichi T, Tanahashi K, Taki T, Kono M, Sugiura K, Akiyama M. Mutational analysis of 29
54	361	patients with autosomal-recessive woolly hair and hypotrichosis: LIPH mutations are
55 56	362	extremely predominant in autosomal-recessive woolly hair and hypotrichosis in Japan. BrJ
57 58	363	Dermatol 2017; 177 : 290-292.
58 59	364	
60		

1 2		
3 4	265	11 Shimamura V. Waiid M. Datukhawa I. Shamina I. Christiana A.M. Mutationa in the linear H
5 6	365	11 Shimomura Y, Wajid M, Petukhova L, Shapiro L, Christiano AM. Mutations in the lipase H
7	366	gene underlie autosomal recessive woolly hair/hypotrichosis. <i>J Invest Dermatol</i> 2009; 129 :
8 9	367	622-628.
10	368	
11 12	369	12 Shimomura Y, Wajid M, Zlotogorski A, Lee YJ, Rice RH, Christiano AM. Founder
13 14	370	mutations in the lipase H gene in families with autosomal recessive woolly hair/hypotrichosis.
15	371	J Invest Dermatol 2009; 129 : 1927-1934.
16 17	372	
18	373	13. Singh G, Miteva M. Prognosis and management of congenital hair shaft disorders with
19 20	374	fragility - Part I. Pediatr Dermatol 2016; 33: 473-480.
21 22	375	
22	376	14. Basit S, Khan S, Ahmad W. Genetics of human isolated hereditary hair loss disorders. <i>Clin</i>
24 25	377	Genet 2015; 88 : 203-212.
26	378	
27 28	379	15 Sonoda H, Aoki J, Hiramatsu T et al. A novel phosphatidic acid-selective phospholipase A1
29	380	that produces lysophosphatidic acid. J Biol Chem 2002; 277: 34254-34263.
30 31	381	
32	382	16 Chang XD, Gu YJ, Dai S et al. Novel mutations in the lipase H gene lead to secretion defects
33 34	383	of LIPH in Chinese patients with autosomal recessive woolly hair/hypotrichosis (ARWH/HT).
35 36	384	Mutagenesis 2017; 32 : 599-606.
30 37	385	
38 39	386	17 Asano N, Okita T, Yasuno S <i>et al</i> . Identification of a novel splice site mutation in the LIPH
40	387	gene in a Japanese family with autosomal recessive woolly hair. J Dermatol 2019; 46: e19-
41 42	388	e20.
43	389	
44 45	390	18 Mizukami Y, Hayashi R, Tsuruta D, Shimomura Y, Sugawara K. Novel splice site mutation
46	391	in the LIPH gene in a patient with autosomal recessive woolly hair/hypotrichosis: Case report
47 48	392	and published work review. J Dermatol 2018; 45: 613-617.
49	393	
50 51	394	19 Ahmad F, Sharif S, Furqan Ubaid M <i>et al.</i> Novel sequence variants in the LIPH and LPAR6
52	395	genes underlies autosomal recessive woolly hair/hypotrichosis in consanguineous families.
53 54	396	Congenit Anom (Kyoto) 2018; 58 : 24-28.
55	397	
56 57		
58 59		
60		

3	
4 5	398
6 7	399
8	400
9 10	401
11	402
12 13	403
14	404
15 16	404
17	405 406
18 19	400
20 21	
21	408
23 24	409
25	410
26 27	411
28	412
29 30	413
31	414
32 33	415
34	416
35 36	417
37	
38 39	418
40	419
41 42	420
43	421
44 45	422
46	423
47 48	424
49 50	425
50 51	426
52 53	427
53 54	428
55 56	
57	429
58 59	

20 Khan GM, Hassan N, Khan N *et al.* Biallelic mutations in the LPAR6 gene causing autosomal
recessive wooly hair/hypotrichosis phenotype in five Pakistani families. *Int J Dermatol* 2019;
58: 946-952.

21 Zernov NV, Skoblov MY, Marakhonov AV *et al.* Autosomal recessive hypotrichosis with woolly hair caused by a mutation in the keratin 25 gene expressed in hair follicles. *J Invest Dermatol* 2016; **136**: 1097-1105.

22 Ali G, Chishti MS, Raza SI, John P, Ahmad W. A mutation in the lipase H (LIPH) gene underlie autosomal recessive hypotrichosis. *Hum Genet* 2007; **121**: 319-325.

Horev L, Tosti A, Rosen I *et al.* Mutations in lipase H cause autosomal recessive
hypotrichosis simplex with woolly hair. *J Am Acad Dermatol* 2009; **61**: 813-818.

24 Shimomura Y, Ito M, Christiano AM. Mutations in the LIPH gene in three Japanese families
with autosomal recessive woolly hair/hypotrichosis. *J Dermatol Sci* 2009; 56: 205-207.

25 Sleiman MB, Sleiman MB, Abbas O *et al.* Novel mutation in LIPH in a Lebanese patient with
autosomal recessive woollyhair/hypotrichosis. *J Dermatol* 2015; 42: 822-824.

418 26 Petukhova L, Shimomura Y, Wajid M, Gorroochurn P, Hodge SE, Christiano AM. The effect
419 of inbreeding on the distribution of compound heterozygotes: a lesson from lipase H
420 mutations in autosomal recessive woolly hair/hypotrichosis. *Hum Hered* 2009; 68: 117-130.

422 27 Khan S, Habib R, Mir H *et al.* Mutations in the LPAR6 and LIPH genes underlie autosomal
423 recessive hypotrichosis/woolly hair in 17 consanguineous families from Pakistan. *Clin Exp*424 *Dermatol* 2011; 36: 652-654.

28 Shah SH, Abid A, Shahid S, Khaliq S. Identification of LIPH gene mutation in a
consanguineous family segregating the woolly hair/hypotrichosis phenotype. *J Pak Med Assoc* 2011; **61**: 1060-1064.

1 2 3		
4 5	430	29 Tariq M, Azhar A, Baig SM, Dahl N, Klar J. A novel mutation in the lipase H gene underlies
6 7	431	autosomal recessive hypotrichosis and woolly hair. Sci Rep 2012; 2: 730.
8	432	
9 10	433	30 Kurban M, Wajid M, Shimomura Y, Christiano AM. Mutations in LPAR6/P2RY5 and LIPH
11 12	434	are associated with woolly hair and/or hypotrichosis. J Eur Acad Dermatol Venereol 2013;
13	435	27 : 545-549.
14 15	436	
16 17	437	31 Mehmood S, Jan A, Muhammad D et al. Mutations in the lipase-H gene causing autosomal
18 19	438	recessive hypotrichosis and woolly hair. Australas J Dermatol 2015; 56: e66-70.
20	439	
21 22	440	32 Mehmood S, Shah SH, Jan A et al. Frameshift sequence variants in the human lipase-H gene
23 24	441	causing hypotrichosis. <i>Pediatr Dermatol</i> 2016; 33 : e40-42.
25	442	
26 27	443	33 Yoshizawa M, Nakamura M, Farooq M, Inoue A, Aoki J, Shimomura Y. A novel mutation,
28 29	444	c.699C>G (p.C233W), in the LIPH gene leads to a loss of the hydrolytic activity and the
30	445	LPA6 activation ability of PA-PLA1 α in autosomal recessive wooly hair/hypotrichosis. J
31 32	446	Dermatol Sci 2013; 72: 61-64.
33 34	447	
35	448	34 Hayashi R, Inui S, Farooq M, Ito M, Shimomura Y. Expression studies of a novel splice site
36 37	449	mutation in the LIPH gene identified in a Japanese patient with autosomal recessive woolly
38 39	450	hair. J Dermatol 2014; 41 : 890-894.
40	451	
41 42	452	35 Hayashi R, Akasaka T, Ito M, Shimomura Y. Compound heterozygous mutations in two
43 44	453	distinct catalytic residues of the LIPH gene underlie autosomal recessive woolly hair in a
45	454	Japanese family. J Dermatol 2014; 41: 937-938.
46 47	455	
48 49	456	36 Ito T, Shimomura Y, Hayashi R, Tokura Y. Identification of a novel mutation,
50 51	457	c.686delAins18 (p.Asp229Glyfs*22), in the LIPH gene as a compound heterozygote with
52	458	c.736T>A (p.Cys246Ser) in autosomal recessive woolly hair/hypotrichosis. <i>J Dermatol</i> 2015;
53 54	459	42 : 752-753.
55 56	460	
57	461	37 Matsuo Y, Tanaka A, Shimomura Y, Hide M. Novel splice site mutation in LIPH identified in
58 59 60	462	a Japanese patient with autosomal recessive woolly hair. <i>J Dermatol</i> 2016; 43 : 1384-1385.

2 3		
4 5 6 7 8	463	
	464	38 Shinkuma S, Akiyama M, Inoue A et al. Prevalent LIPH founder mutations lead to loss of
	465	P2Y5 activation ability of PA-PLA1alpha in autosomal recessive hypotrichosis. <i>Hum Mutat</i>
9 10	466	2010; 31 : 602-610.
11	467	
12 13	468	39 Yoshimasu T, Kanazawa N, Kambe N, Nakamura M, Furukawa F. Identification of 736T>A
14 15	469	mutation of lipase H in Japanese siblings with autosomal recessive woolly hair. J Dermatol
16 17 18 19 20 21 22 23 24 25 26	470	2011; 38 : 900-904.
	471	
	472	40 Shinkuma S, Inoue A, Aoki J <i>et al.</i> The β 9 loop domain of PA-PLA1 α has a crucial role in
	473	autosomal recessive woolly hair/hypotrichosis. J Invest Dermatol 2012; 132: 2093-2095.
	474	
	475	41 Tanahashi K, Sugiura K, Takeichi T <i>et al.</i> Prevalent founder mutation c.736T>A of LIPH in
	476	autosomal recessive woolly hair of Japanese leads to variable severity of hypotrichosis in
27 28	477	adulthood. J Eur Acad Dermatol Venereol 2013; 27: 1182-1184.
29 30	478	
31	479	42 Harada K, Inozume T, Kawamura T <i>et al.</i> Two cases of autosomal recessive woolly hair with
32 33	480	LIPH gene mutations. Int J Dermatol 2013; 52: 572-574.
34 35	481	
36 37 38 39 40 41 42 43	482	43 Matsuno N, Kunisada M, Kanki H, Simomura Y, Nishigori C. A case of autosomal recessive
	483	woolly hair/hypotrichosis with alternation in severity: deterioration and improvement with
	484	age. Case Rep Dermatol 2013; 5: 363-367.
	485	
	486	44 Tanahashi K, Sugiura K, Akiyama M. Topical minoxidil improves congenital hypotrichosis
44 45	487	caused by LIPH mutations. Br J Dermatol 2015; 173: 865-866.
46 47	488	
48	489	45 Itoh E, Nakahara T, Furumura M, Furue M, Shimomura Y. Case of autosomal recessive
49 50	490	woolly hair/hypotrichosis with atopic dermatitis. J Dermatol 2017; 44: 1185-1186.
51 52	491	
53	492	46 Kinoshita-Ise M, Kubo A, Sasaki T, Umegaki-Arao N, Amagai M, Ohyama M. Identification
54 55	493	of factors contributing to phenotypic divergence via quantitative image analyses of autosomal
56 57 58	494	recessive woolly hair/hypotrichosis with homozygous c.736T>A LIPH mutation. Br J
	495	Dermatol 2017; 176 : 138-144.
59 60		

1 2		
3 4		
5	496	
6 7	497	47 Petukhova L, Sousa EC Jr, Martinez-Mir A et al. Genome-wide linkage analysis of an
8 9	498	autosomal recessive hypotrichosis identifies a novel P2RY5 mutation. <i>Genomics</i> 2008; 92 (5):
10	499	273-278.
11 12	500	
13 14	501	48 Pasternack SM, Murugusundram S, Eigelshoven S et al. Novel mutations in the P2RY5 gene
15	502	in one Turkish and two Indian patients presenting with hypotrichosis and woolly hair. Arch
16 17	503	Dermatol Res 2009; 301 (8): 621-624.
18 19	504	
20	505	49 Shimomura Y, Garzon MC, Kristal L, Shapiro L, Christiano AM. Autosomal recessive
21 22	506	woolly hair with hypotrichosis caused by a novel homozygous mutation in the P2RY5 gene.
23 24	507	<i>Exp Dermatol</i> 2009; 18 : 218-221.
25	508	
26 27	509	50 Kurban M, Ghosn S, Abbas O, Shimomura Y, Christiano A. A missense mutation in the
28	510	P2RY5 gene leading to autosomal recessive woolly hair in a Syrian patient. J Dermatol Sci
29 30	511	2010; 57 : 132-134.
31 32	512	
33	513	51 Liu LH, Chen G, Wang JW et al. A novel deletion mutation in the LPAR6 gene underlies
34 35	514	autosomal recessive woolly hair with hypotrichosis. Clin Exp Dermatol 2013; 38: 796-798.
36 37	515	
38	516	52 Hayashi R, Inoue A, Suga Y, Aoki J, Shimomura Y. Analysis of unique mutations in the
39 40	517	LPAR6 gene identified in a Japanese family with autosomal recessive woolly
41 42 43	518	hair/hypotrichosis: Establishment of a useful assay system for LPA6. J Dermatol Sci 2015;
	519	78 : 197-205.
44 45	520	
46 47	521	53 Azeem Z, Jelani M, Naz G et al. Novel mutations in G protein-coupled receptor gene
48	522	(P2RY5) in families with autosomal recessive hypotrichosis (LAH3). Hum Genet 2008; 123:
49 50	523	515-519.
51 52	524	
53	525	54 Raza SI, Muhammad D, Jan A et al. In silico analysis of missense mutations in LPAR6
54 55	526	reveals abnormal phospholipid signaling pathway leading to hypotrichosis. PLoS One 2014;
56 57	527	9 (8): e104756.
57 58 59	528	
60		

1 2 3		
4 5 6 7 8 9	529	55 Pasternack SM, von Kügelgen I, Müller M <i>et al</i> . In vitro analysis of LIPH mutations causing
	530	hypotrichosis simplex: evidence confirming the role of lipase H and lysophosphatidic acid in
	531	hair growth. J Invest Dermatol 2009; 129 : 2772-2776.
	532	
10 11	533	56 Yanagida K, Masago K, Nakanishi H et al. Identification and characterization of a novel
12 13	534	lysophosphatidic acid receptor, p2y5/LPA6. J Biol Chem 2009; 284: 17731-17741.
14	535	
15 16 17	536	57 Inoue A, Arima N, Ishiguro J, Prestwich GD, Arai H, Aoki J. LPA-producing enzyme PA-
	537	PLA ₁ α regulates hair follicle development by modulating EGFR signalling. <i>EMBO J</i> 2011;
18 19	538	30 : 4248-4260.
20 21 22 23 24 25	539	
	540	58 Prenzel N, Zwick E, Daub H et al. EGF receptor transactivation by G-protein-coupled
	541	receptors requires metalloproteinase cleavage of proHB-EGF. <i>Nature</i> 1999; 402 : 884-888.
	542	
26 27	543	59 Zhao Y, He D, Saatian B et al. Regulation of lysophosphatidic acid-induced epidermal
28	544	growth factor receptor transactivation and interleukin-8 secretion in human bronchial
29 30	545	epithelial cells by protein kinase C delta, Lyn kinase, and matrix metalloproteinases. J Biol
31	546	<i>Chem</i> 2006; 281 : 19501-19511.
32 33 34 35 36 37 38 39 40 41 42 43 44	547	
	548	60 Xu KP, Yin J, Yu FS. Lysophosphatidic acid promoting corneal epithelial wound healing by
	549	transactivation of epidermal growth factor receptor. Invest Ophthalmol Vis Sci 2007; 48: 636-
	550	643.
	551	
	552	61 Luetteke NC, Phillips HK, Qiu TH et al. The mouse waved-2 phenotype results from a point
	553	mutation in the EGF receptor tyrosine kinase. Genes Dev 1994; 8: 399-413.
	554	
45	555	62 Luetteke NC, Qiu TH, Peiffer RL, Oliver P, Smithies O, Lee DC. TGF alpha deficiency
46 47	556	results in hair follicle and eye abnormalities in targeted and waved-1 mice. <i>Cell</i> 1993; 73 :
48 49	557	263-278.
50	558	
51 52	559	63 Huttlin EL, Ting L, Bruckner RJ et al. The BioPlex Network: A Systematic Exploration of
53	560	the Human Interactome. Cell 2015; 162: 425-440.
54 55	561	
56	562	64 Huttlin EL, Bruckner RJ, Paulo JA et al. Architecture of the human interactome defines
57 58	563	protein communities and disease networks. Nature 2017; 545: 505-509.
59 60		
00		

1 2		
4	564	
5 6	565	65 Peschon JJ, Slack JL, Reddy P et al. An essential role for ectodomain shedding in mammalian
7 0	566	development. <i>Science</i> 1998; 282 : 1281-1284.
9	567	
	568	66 Hassemer EL, Le Gall SM, Liegel R et al. The waved with open eyelids (woe) locus is a
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 4 35 36 37 38	569	hypomorphic mouse mutation in Adam17. <i>Genetics</i> 2010; 185 : 245-255.
	570	
15	571	67 Mann GB, Fowler KJ, Gabriel A, Nice EC, Williams RL, Dunn AR. Mice with a null
	572	mutation of the TGF alpha gene have abnormal skin architecture, wavy hair, and curly
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 	573	whiskers and often develop corneal inflammation. <i>Cell</i> 1993; 73 : 249-261.
	574	
	575	68. Cho S, Choi MJ, Zheng Z, Goo B, Kim D-Y, Cho SB. Clinical effects of non-ablative and
	576	ablative fractional lasers on various hair disorders: a case series of 17 patients. J Cosmet
	577	Laser Ther 2013; 15: 74-79.
	578	
	579	69. Peled A, Samuelov L, Sarig O et al. Treatment of hereditary hypotrichosis simplex of the
	580	
		scalp with topical gentamicin. Br J Dermatol 2020; 183: 114-120.
	581 582	70 Taki T, Tanahashi K, Takeichi T <i>et al.</i> Association of topical minoxidil with autosomal
	583	recessive woolly hair/hypotrichosis caused by LIPH pathogenic variants. <i>JAMA Dermatol</i>
	584	2020 Epub ahead of print. doi: 10.1001/jamadermatol.2020.2195
	585	2020 Epub undud of print. doi: 10.1001/juniuderinutor.2020.21/5
	585 586	71 Suchonwanit P, Thammarucha S, Leerunyakul K. Minoxidil and its use in hair disorders: a
	587	review. Drug Des Devel Ther 2019; 13: 2777-2786.
	588	
43 44	589	72 Messenger AG, Rundegren J. Minoxidil: Mechanisms of action on hair growth. Br J
45 46	590	Dermatol 2004; 150 : 186-194.
47	591	Dermuloi 2004, 150. 180-194.
48 49	592	72 Li M. Maruhavashi A. Nakava V. Eulavi K. Arasa S. Minavidil induced heir growth is
50 51		73 Li M, Marubayashi A, Nakaya Y, Fukui K, Arase S. Minoxidil-induced hair growth is
52	593	mediated by adenosine in cultured dermal papilla cells: possible involvement of sulfonylurea
53 54	594	receptor 2B as a target of minoxidil. J Invest Dermatol 2001; 117: 1594–1600.
55	595	
56 57		
58 59		
60		

³
⁴
⁵
⁶
⁷
⁷
⁶
⁷
⁷
⁸
⁹
⁹
¹⁰
¹¹
¹¹<

to per period

1		
2 3		
4 5	604	Figure legends
6 7	605	
8	606	Figure 1 Clinical features of patients with ARWH
9 10	607	(a) An adult male patient with severe hypotrichosis. (b) A boy with moderate hypotrichosis. Both
11 12	608	patients had the compound heterozygous LIPH mutations c.736T>A (p.Cys246Ser) and
13	609	c.742C>A (p.His248Asn). ARWH patients uniformly show tightly curled hair, although the
14 15 16 17 18 19 20 21 22 23	610	severity of the hypotrichosis varies depending on the case and course.
	611	
	612	Figure 2 Schematic of the LIPH-LPA-LPAR6 signaling pathway in the development of IRS and
	613	the formation of intact hair shafts
	614	In IRS, after interacting with C3ORF52, LIPH hydrolyzes PA and produces 2-acyl-LPA. 2-acyl-
	615	LPA binds to LPAR6 as a ligand in a paracrine and/or autocrine manner. The activated LPAR6
24 25	616	provokes the ADAM17-dependent shedding of membrane-bound pro-TGF α and upregulates
26 27	617	soluble TGF α release. TGF α binds to EGFR and drives the development of IRS, which is
28	618	required for the formation of intact hair shafts.
29 30	619	
31 32	620	Figure 3 Schematic of the disease pathomechanisms in ARWH due to the loss of function of
33	621	LIPH, LPAR6 or C3ORF52
34 35	622	LIPH mutations result in loss of function or the deficiency of LIPH, leading to the defective
36 37	623	conversion of PA to 2-acyl-LPA and following defective activation of the LIPH-LPA-LPAR6
38	624	signaling pathway (left). LPAR6 mutations cause deficient enzyme activity of LPAR6, resulting
39 40	625	in the defective activation of ADAM17 and the loss of LIPH-LPA-LPAR6 signaling (center).
41 42	626	C3ORF52 mutations lead to the defective conversion of PA to 2-acyl-LPA by LIPH, resulting in
43	627	the loss of activation of the LIPH-LPA-LPAR6 signaling pathway (right). The defective LIPH-
44 45	628	LPA-LPAR6 signaling leads to the aberrant development of the IRS and the malformation of the
46 47	629	hair shaft.
48	630	Molecules and arrows in faint gray indicate deficiency or loss of activity. X marks indicate loss-
49 50	631	of-function or deficiency of the molecules by disease causative mutations.
51 52	632	
53 54		
56 57		
58		
59 60		
49 50 51 52 53 54 55 56 57 58 59	631	

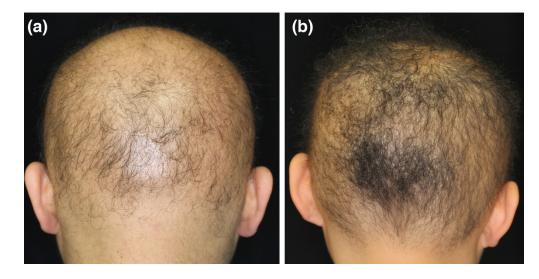
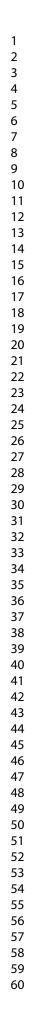
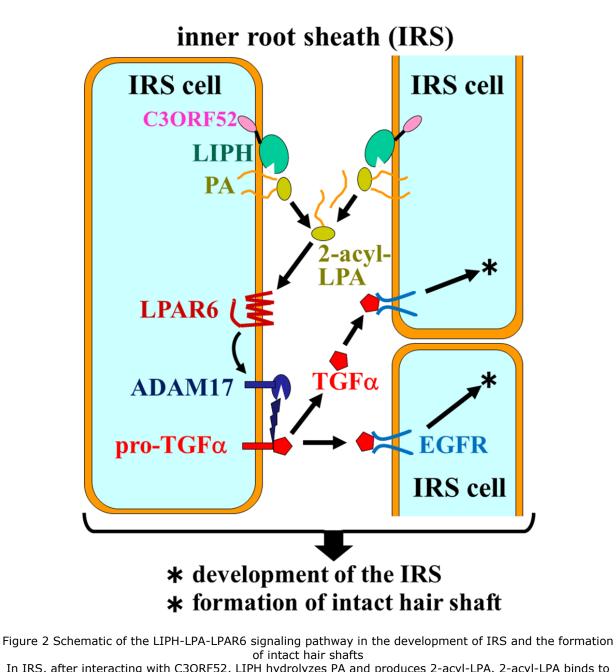




Figure 1 Clinical features of patients with ARWH

(a) An adult male patient with severe hypotrichosis. (b) A boy with moderate hypotrichosis. Both patients had the compound heterozygous LIPH mutations c.736T>A (p.Cys246Ser) and c.742C>A (p.His248Asn). ARWH patients uniformly show tightly curled hair, although the severity of the hypotrichosis varies depending on the case and course.

In IRS, after interacting with C3ORF52, LIPH hydrolyzes PA and produces 2-acyl-LPA. 2-acyl-LPA binds to LPAR6 as a ligand in a paracrine and/or autocrine manner. The activated LPAR6 provokes the ADAM17-dependent shedding of membrane-bound pro-TGFa and upregulates soluble TGFa release. TGFa binds to EGFR and drives the development of IRS, which is required for the formation of intact hair shafts.

77x97mm (300 x 300 DPI)

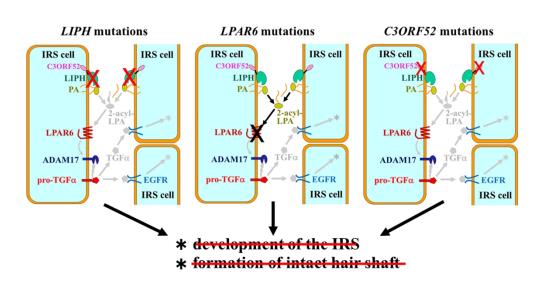


Figure 3 Schematic of the disease pathomechanisms in ARWH due to the loss of function of LIPH, LPAR6 or C3ORF52

LIPH mutations result in loss of function or the deficiency of LIPH, leading to the defective conversion of PA to 2-acyl-LPA and following defective activation of the LIPH-LPA-LPAR6 signaling pathway (left). LPAR6 mutations cause deficient enzyme activity of LPAR6, resulting in the defective activation of ADAM17 and the loss of LIPH-LPA-LPAR6 signaling (center). C3ORF52 mutations lead to the defective conversion of PA to 2-acyl-LPA by LIPH, resulting in the loss of activation of the LIPH-LPA-LPAR6 signaling pathway (right). The defective LIPH-LPA-LPAR6 signaling leads to the aberrant development of the IRS and the malformation of the hair shaft.

Molecules and arrows in faint gray indicate deficiency or loss of activity. X marks indicate loss-of-function or deficiency of the molecules by disease causative mutations.

1	
2	
3	
2 3 4 5 6 7 8 9 10	
4	
5	
~	
6	
7	
0	
ð	
9	
10	
10	
11	
10	
12	
13	
1 /	
14	
15	
16	
10	
17	
10	
10	
19	
20	
20	
21	
22	
~~	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	
24	
27	
25	
26	
27	
27	
28	
20	
29	
30	
21	
51	
32	
22	
22	
34	
25	
55	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	

Table 1. List of abbreviations, full names and synonyms of molecules, structures and disorders mentioned in this review

abbreviation	full name	synonym
ADAM17	a disintegrin and	tumor necrosis factor-α-
	metalloprotease domain 17	converting enzyme (TACE)
ARWH	(isolated) autosomal recessive woolly hair/hypotrichosis	woolly hair autosomal recessive
C3ORF52	TPA-induced transmembrane protein (encoded by chromosome 3 open reading frame 52)	-
EGFR	epidermal growth factor receptor	HER1
IRS	inner root sheath	-
LIPH	lipase H	membrane-associated phosphatidic acid-selective phospholipase $A_1\alpha$ (mPA- PLA ₁ α)
LPA	lysophosphatidic acid	-
LPAR6	lysophosphatidic acid receptor 6	P2Y5, P2RY5
ORS	outer root sheath	-
PA	phosphatidic acid	-
TGF-α	transforming growth factor- α	-

2
3
4
5
6
7
/
8
9
10
11
12
12
13
14
15
16
17
10
18
19
20
21
22 23
23
23
24
25
26
27
28
20
29 30
30
31
32
33
34
35
36
37
38
39
55
40
41
42
43
44
45
46
47
48
49
50
51
53
54
55
56
50 57
58
50

Table 2. Genotypes of isolated autosomal recessive wooly hair, hypotrichosis (ARWH) and the causative genes/molecules

genotype (OMIM No.)	causative gene	causative molecule	function of causative molecule
ARWH2 (#604379)	LIPH	lipase H (LIPH) (membrane-associated phosphatidic acid selective phospholipase A ₁ α; mPA- PLA ₁ α)	LIPH produces 2-acyl-LPA from phosphatidic acid in hair follicles.
ARWH1 (#278150)	LPAR6	LPA receptor 6 (LPAR6) (P2Y5, P2RY5)	LPAR6 activated by 2-acyl- LPA mediates TACE- dependent TGFα release in the inner root sheath of hair follicles.
ARWH3 (#616760)	KRT25	keratin 25	Keratin 25 forms keratin intermediate filaments in the hair medulla and the inner root sheath of hair follicles.
- (*611956)	C30RF52	C3ORF52 (protein product from <i>C3ORF52</i>)	C3ORF52 interacts with LIPH and is necessary for LPA production by LIPH.

1	
1	
2	
3	
4	
5	
6	
7 8	
,	
9	
10	
11	
12	
13 14	
14	
15	
10	
16 17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
L F	

11 Table 3. Summary of reported gene mutations causative of isolated ARWH

genotype	type of reported causative mutation	No. of reported mutations
(OMIM No.)		
ARWH2	LIPH mutations, total	32
(#604379)	missense/nonsense	13
	splice-site	5
	small-deletion	5
	small-insertion	3
	small-indel	3
	gross-deletion	2
	gross-insertion	1
ARWH1	LPAR6 mutations, total	27
(#278150)	missense/nonsense	15
	small-deletion	4
	small-insertion	4
	small-indel	2
	gross-deletion	1
	gross-insertion	1
ARWH3	KRT25 mutations, total	2
(#616760)	missense	2
-	C3ORF52 mutations, total	2
(*611956)	nonsense	2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
5 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 23 24 25 26 27 28 9 30 31 32 33
20
21
22
23
24
25
20
27
28
29
30
31
32
33
34
35
34 35 36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
54 55
55

13 Table 4. Prevalent recurrent *LIPH* mutations causative of ARWH by ethnicity and geographic area ethnicity or No. of reported prevalent recurrent No. of reported families

	ethnicity or geographic area	No. of reported families	prevalent recurrent mutation	No. of reported families
	Japanese	75	c.736T>A (p.Cys246Ser)	72
			c.742C>A (p.His248Asn)	24
	Volga–Ural region of Russia	50	deletion of exon 4	50
	Pakistani	42	c.659_660delTA (p.Ile220Argfs*29)	22
			5290 bp genomic DNA deletion including exons 7 and 8 of <i>LIPH</i>	6
4				

1	
1	
2	
3	
3 4 5 6 7 8	
-	
5	
6	
7	
8	
0	
9 10	
10	
11	
12	
13	
14	
14 15	
16	
16 17	
1/	
18	
19	
20	
21	
22	
23	
24	
27	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

	ethnicity or geographic area	No. of reported families	prevalent recurrent mutation	No. of reported families
	Pakistani	47	c.436G>A (p.Gly146Arg)	10
			c.562A>T (p.Ile188Phe)	10
			c.68_69dupGCAT	9
			(p.Phe24Hisfs*29),	
			c.188A>T (p.Asp63Val),	7
6				